
SAS/GRAPH® 9.2
Reference
Second Edition

TW12141_ColorTitlePage.indd 1 3/4/10 3:20:52 PM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2010.
SAS/GRAPH ® 9.2 Reference, Second Edition. Cary, NC: SAS Institute Inc.

SAS/GRAPH® 9.2 Reference, Second Edition
Copyright © 2010, SAS Institute Inc., Cary, NC, USA
978-1–60764–449–1
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, May 2010
1st printing, May 2010
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New xv

Overview xv

The SAS/GRAPH Statistical Graphics Suite xv

The SAS/GRAPH Network Visualization Workshop xvi

Support for Multiple Open ODS Destinations xvii

Support for ODS Styles xvii

Devices xvii

Colors xviii

Fonts and Font Rendering xviii

Changing the Appearance of Output to Match That of Earlier SAS Releases xix

Procedures xix

Global Statements xxiii

Graphics Options xxiv

Transparent Overlays xxiv

ActiveX Control xxiv

Java Map Applet xxiv

Java Tilechart Applet xxiv

The Annotate Facility xxv

New Map Data Sets xxv

Updated Map Data Sets xxv

Map Data Set Descriptions xxx

New Data Set for Military ZIP Codes xxx

Changes in SAS/GRAPH Documentation xxx

P A R T 1 SAS/GRAPH Concepts 1

Chapter 1 � Introduction to SAS/GRAPH Software 3
Overview 4

Components of SAS/GRAPH Software 4

Device-Based Graphics and Template-Based Graphics 6

Graph Types 7

About this Document 24

Conventions Used in This Document 25

Information You Should Know 28

Chapter 2 � Elements of a SAS/GRAPH Program 31
Overview 31

A Typical SAS/GRAPH Program 31

Chapter 3 � Getting Started With SAS/GRAPH 39
Introduction 39

Introduction to ODS Destinations and Styles 40

iv

Generating Output With SAS/GRAPH Procedures 43

Controlling the Graphics Output Format With the DEVICE= Option 48

Summary of Default Destinations, Styles, and Devices 49

Sending Output To Multiple Open Destinations 51

Related Topics 52

Chapter 4 � SAS/GRAPH Processing 53
Running SAS/GRAPH Programs 53

SAS Data Sets 54

Specifying an Input Data Set 54

Using Engines with SAS/GRAPH Software 56

RUN-Group Processing 56

Chapter 5 � The Graphics Output Environment 59
Overview 59

The Graphics Output and Device Display Areas 59

Controlling Dimensions 60

Controlling Display Area Size and Image Resolution 61

Units 62

Maintaining the Quality of Your Image Across Devices 65

How Graphic Elements are Placed in the Graphics Output Area 65

How Errors in Sizing Are Handled 66

Chapter 6 � Using Graphics Devices 67
Overview 67

What Is a SAS/GRAPH Device? 68

Commonly Used Devices 68

Default Devices For ODS Destinations 69

Viewing The List Of All Available Devices 70

Deciding Which Device To Use 71

Overriding the Default Device 72

Device Categories And Modifying Default Output Attributes 72

Using Universal Printer Shortcut Devices 75

Using Scalable Vector Graphics Devices 77

Viewing and Modifying Device Entries 85

Creating a Custom Device 86

Related Topics 86

Chapter 7 � SAS/GRAPH Output 87
About SAS/GRAPH Output 88

Specifying the Graphics Output File Type for Your Graph 91

The SAS/GRAPH Output Process 93

Setting the Size of Your Graph 94

Setting the Resolution of Your Graph 95

Controlling Where Your Output is Stored 97

v

Replacing an Existing Graphics Output File Using the GSFMODE= Graphics
Option 104

Storing Multiple Graphs in a Single Graphics Output File 104

Replaying Your SAS/GRAPH Output 106

Previewing Output 109

Printing Your Graph 110

Exporting Your Output 111

Chapter 8 � Exporting Your Graphs to Microsoft Office Products 113
What to Consider When Choosing an Output Format 113

Comparison of the Graphics Output 116

Enhancing Your Graphs 120

Importing Your Graphs into Microsoft Office 120

Chapter 9 � Writing Your Graphs to a PDF File 123
About Writing Your Graphs to a PDF File 123

Changing the Page Layout 124

Adding Metadata to Your PDF File 124

Adding Bookmarks for Your Graphs 124

Changing the Default Compression Level for Your PDF File 125

Examples 125

Chapter 10 � Controlling The Appearance of Your Graphs 133
Overview 133

Style Attributes Versus Device Entry Parameters 134

About Style Templates 135

Specifying a Style 139

Overriding Style Attributes With SAS/GRAPH Statement Options 140

Precedence of Appearance Option Specifications 141

Viewing the List of Styles Provided by SAS 141

Modifying a Style 142

Graphical Style Element Reference for Device-Based Graphics 144

Turning Off Styles 153

Changing the Appearance of Output to Match That of Earlier SAS Releases 154

Chapter 11 � Specifying Fonts in SAS/GRAPH Programs 155
Introduction: Specifying Fonts in SAS/GRAPH Programs 155

SAS/GRAPH, System, and Device-Resident Fonts 155

TrueType Fonts That Are Supplied by SAS 156

Determining What Fonts Are Available 157

Default Fonts 157

Viewing Font Specifications in the SAS Registry 158

Specifying a Font 159

Methods For Specifying Fonts 163

Chapter 12 � SAS/GRAPH Colors and Images 167
Using SAS/GRAPH Colors and Images 167

vi

Specifying Colors in SAS/GRAPH Programs 168

Specifying Images in SAS/GRAPH Programs 181

Chapter 13 � Managing Your Graphics With ODS 191
Introduction 191

Managing ODS Destinations 191

Specifying a Destination 192

ODS Destination Statement Options 192

ODS and Procedures that Support RUN-Group Processing 194

Controlling Titles and Footnotes with Java and ActiveX Devices in HTML Output 194

Chapter 14 � SAS/GRAPH Statements 197
Overview 197

Example 1. Ordering Axis Tick Marks with SAS Date Values 294

Example 2. Specifying Logarithmic Axes 297

Example 3. Rotating Plot Symbols Through the Color List 299

Example 4. Creating and Modifying Box Plots 302

Example 5. Filling the Area between Plot Lines 304

Example 6. Enhancing Titles 307

Example 7. Using BY-group Processing to Generate a Series of Charts 309

Example 8. Creating a Simple Web Page with the ODS HTML Statement 313

Example 9. Combining Graphs and Reports in a Web Page 315

Example 10. Creating a Bar Chart with Drill-Down Functionality for the Web 321

Chapter 15 � Graphics Options and Device Parameters Dictionary 327
Introduction 327

Specifying Graphics Options and Device Parameters 327

Dictionary of Graphics Options and Device Parameters 328

P A R T 2 Bringing SAS/GRAPH Output to the Web 437

Chapter 16 � Introducing SAS/GRAPH Output for the Web 439
Which Device Driver or Macro Do I Use? 439

Types of Web Presentations Available 440

Selecting a Type of Web Presentation 447

Generating Web Presentations 451

Chapter 17 � Creating Interactive Output for ActiveX 453
Overview 453

When to Use the ACTIVEX Device 454

Installing the SAS/GRAPH ActiveX Control 455

Generating Output for ActiveX 457

About Languages in ACTIVEX 458

About Special Fonts and Symbols in ACTIVEX 459

SAS Formats Supported by ACTIVEX 459

Configuring Drill-Down Links with ACTIVEX 460

vii

ActiveX Examples 461

Chapter 18 � Creating Interactive Output for Java 469
Overview 469

When to Use the JAVA Device 470

Generating Output for Java 470

Configuring Drill-Down Links for Java 475

Examples of Interactive Java Output 475

Chapter 19 � Attributes and Parameters for Java and ActiveX 485
Specifying Parameters and Attributes for Java and ActiveX 485

Parameter Reference for Java and ActiveX 488

Chapter 20 � Generating Static Graphics 503
What is a Static Graphic? 503

Creating a Static Graphic 504

ACTXIMG and JAVAIMG Devices Compared to GIF, JPEG, SVG, and PNG
Devices 506

Developing Web Presentations with the GIF, JPEG, SVG, and PNG Devices 508

Developing Web Presentations with the JAVAIMG and ACTXIMG Devices 510

Adding Drill-Down Links to Web Presentations Generated with a Static-Graphic
Device 511

Sample Programs for Static Images 512

Chapter 21 � Generating Web Animation with GIFANIM 519
Developing Web Presentations with the GIFANIM Device 519

When to Use the GIFANIM Device 519

Creating an Animated Sequence 520

GOPTIONS for Controlling GIFANIM Presentations 521

Sample Programs: GIFANIM 522

Chapter 22 � Generating Interactive Metagraphics Output 531
Developing Web Presentations for the Metaview Applet 531

Advantages of Using the JAVAMETA Device 532

Using ODS With the JAVAMETA Device 532

Enhancing Web Presentations for the Metaview Applet 533

Specifying Non-English Resource Files and Fonts 533

Metaview Applet Parameters 534

Example: Generating Metacode Output With the JAVAMETA Driver 536

Chapter 23 � Generating Web Output with the Annotate Facility 539
Overview of Generating Web Output with the Annotate Facility 539

Generating Web Output with the Annotate Facility 539

Examples 541

Chapter 24 � Creating Interactive Treeview Diagrams 543
Creating Treeview Diagrams 543

Enhancing Presentations for the Treeview Applet 546

viii

DS2TREE Macro Arguments 547

Sample Programs: Treeview Macro 547

Chapter 25 � Creating Interactive Constellation Diagrams 553
Creating Constellation Diagrams 553

Enhancing Presentations for the Constellation Applet 559

DS2CONST Macro Arguments 560

Sample Programs: Constellation Macro 560

Chapter 26 � Macro Arguments for the DS2CONST and DS2TREE Macros 569
Macro Arguments 569

Chapter 27 � Enhancing Web Presentations with Chart Descriptions, Data Tips, and
Drill-Down Functionality 595
Overview of Enhancing Web Presentations 596

Chart Descriptions for Web Presentations 596

Data Tips for Web Presentations 598

Adding Links with the HTML= and HTML_LEGEND= Options 601

Controlling Drill-Down Behavior For ActiveX and Java Using Parameters 608

Example: Creating Bar Charts with Drill-Down for the Web 618

Chapter 28 � Troubleshooting Web Output 633
Troubleshooting Web Output 633

Checking Browser Permissions 636

Using HTML Character Entities 636

Connecting to Web Servers that Require Authentication 637

Removing CLASSPATH Environment Variables 637

Setting the SAS_ALT_DISPLAY Variable for X Window Systems on UNIX 637

Correcting Text Fonts 638

Resolving Differences Between Graphs Generated with Different Technologies 638

P A R T 3 The Annotate Facility 639

Chapter 29 � Using Annotate Data Sets 641
Overview 641

About the Annotate Data Set 643

About Annotate Graphics 649

Creating an Annotate Data Set 654

Producing Graphics Output from Annotate Data Sets 655

Annotate Processing Details 656

Examples 658

Chapter 30 � Annotate Dictionary 667
Annotate Dictionary Overview 669

Annotate Functions 669

Annotate Variables 700

Annotate Internal Coordinates 737

ix

Annotate Macros 738

Using Annotate Macros 759

Annotate Error Messages 761

P A R T 4 The Data Step Graphics Interface 767

Chapter 31 � The DATA Step Graphics Interface 769
Overview 770

Applications of the DATA Step Graphics Interface 773

Using the DATA Step Graphics Interface 774

DSGI Graphics Summary 776

Chapter 32 � DATA Step Graphics Interface Dictionary 813
Overview 813

GASK Routines 816

GDRAW Functions 855

GRAPH Functions 866

GSET Functions 870

Return Codes for DSGI Routines and Functions 908

See Also 909

References 910

P A R T 5 SAS/GRAPH Procedures 911

Chapter 33 � The GANNO Procedure 913
Overview 913

Procedure Syntax 914

Examples 916

Chapter 34 � The GAREABAR Procedure 931
Overview 931

Concepts 932

Procedure Syntax 933

Examples 937

Chapter 35 � The GBARLINE Procedure 947
Overview 947

Concepts 949

Procedure Syntax 958

Examples 981

Chapter 36 � The GCHART Procedure 989
Overview 990

Concepts 996

Procedure Syntax 1003

Examples 1066

x

References 1093

Chapter 37 � The GCONTOUR Procedure 1095
Overview 1095

Concepts 1097

Procedure Syntax 1098

Examples 1115

References 1123

Chapter 38 � The GDEVICE Procedure 1125
Overview 1126

Concepts 1126

Procedure Syntax 1128

Using the GDEVICE Procedure 1136

Examples 1143

Chapter 39 � The GEOCODE Procedure 1147
Overview of the GEOCODE Procedure 1147

Concepts 1149

Procedure Syntax 1154

Street Geocoding 1162

Examples 1167

Chapter 40 � The GFONT Procedure 1175
Overview 1175

Concepts 1176

Procedure Syntax 1178

Creating Fonts 1187

Examples 1199

Chapter 41 � The GINSIDE Procedure 1205
Overview 1205

Procedure Syntax 1205

Examples 1207

Chapter 42 � The GKPI Procedure 1213
Overview 1213

Concepts 1216

Procedure Syntax 1225

Examples 1230

Chapter 43 � The GMAP Procedure 1239
Overview 1240

Concepts 1244

Procedure Syntax 1251

Using FIPS Codes and Province Codes 1289

Using Formats for Map Variables 1291

xi

Using SAS/GRAPH Map Data Sets 1294

Examples 1301

Chapter 44 � The GOPTIONS Procedure 1319
Overview 1319

Procedure Syntax 1320

Examples 1322

Chapter 45 � The GPLOT Procedure 1325
Overview 1325

Concepts 1329

Procedure Syntax 1332

Examples 1366

Chapter 46 � The GPROJECT Procedure 1395
Overview 1395

Concepts 1397

Procedure Syntax 1402

Using the GPROJECT Procedure 1407

Examples 1409

References 1418

Chapter 47 � The GRADAR Procedure 1419
Overview 1419

Calculating Weighted Statistics 1420

Procedure Syntax 1421

Examples 1435

Chapter 48 � The GREDUCE Procedure 1447
Overview 1447

Concepts 1449

Procedure Syntax 1450

Using the GREDUCE Procedure 1452

Examples 1454

References 1457

Chapter 49 � The GREMOVE Procedure 1459
Overview 1459

Concepts 1460

Procedure Syntax 1462

Examples 1465

Chapter 50 � The GREPLAY Procedure 1473
Overview 1474

Concepts 1475

Procedure Syntax 1477

Using the GREPLAY Procedure Windows 1500

xii

Running the GREPLAY Procedure Using Code-based Statements 1504

Replaying Catalog Entries 1505

Creating Custom Templates 1506

Replaying Graphics Output in a Template 1506

Creating Color Maps 1507

Examples 1508

Chapter 51 � The GSLIDE Procedure 1517
Overview 1517

Procedure Syntax 1518

Examples 1522

Chapter 52 � The GTILE Procedure 1527
Overview 1527

Concepts 1527

Procedure Syntax 1529

Examples 1536

Chapter 53 � The G3D Procedure 1541
Overview 1541

Concepts 1543

Procedure Syntax 1546

Examples 1560

References 1570

Chapter 54 � The G3GRID Procedure 1571
Overview 1571

Concepts 1573

Procedure Syntax 1576

Examples 1581

References 1590

Chapter 55 � The MAPIMPORT Procedure 1593
Overview 1593

Procedure Syntax 1594

Examples 1597

P A R T 6 Appendixes 1599

Appendix 1 � Summary of ActiveX and Java Support 1601
Introduction 1602

Global Statements 1602

PROC GAREABAR 1612

PROC GBARLINE 1613

PROC GCHART 1615

PROC GCONTOUR 1620

PROC GMAP 1622

xiii

PROC GPLOT 1625

PROC GRADAR 1630

PROC GTILE 1633

PROC G3D 1633

Annotate Functions 1635

Appendix 2 � Using SAS/GRAPH Fonts 1643
Introduction 1643

Rendering Bitstream Fonts 1643

Listing or Displaying SAS/GRAPH Fonts on Your System 1644

SAS/GRAPH Font Lists 1644

The SIMULATE Font 1652

Font Locations And the Default Search Path 1653

Appendix 3 � Using Device-Resident Fonts 1655
Introduction 1655

Default Device-Resident Fonts 1655

Specifying the Full Font Name 1657

Specifying Alternative Device-Resident Fonts 1657

Appendix 4 � Transporting and Converting Graphics Output 1659
About Transporting and Converting Graphics Output 1659

Transporting Catalogs across Operating Environments 1659

Converting Catalogs to a Different Version of SAS 1662

Appendix 5 � GREPLAY Procedure Template Code 1663
Overview 1663

H2: One Box Left and One Box Right 1663

H2S: One Box Left and One Box Right with Space 1664

H3: Three Boxes Across 1664

H3S: Three Boxes Across with Space 1665

H4: Four Boxes Across 1665

H4S: Four Boxes Across with Space 1666

L1R2: One Box Left and Two Boxes Right 1666

L1R2S: One Box Left and Two Boxes Right with Space 1667

L2R1: Two Boxes Left and One Box Right 1667

L2R1S: Two Boxes Left and One Box Right with Space 1668

L2R2: Two Boxes Left and Two Boxes Right 1668

L2R2S: Two Boxes Left and Two Boxes Right with Space 1669

U1D2: One Box Up and Two Boxes Down 1670

U1D2S: One Box Up and One Box Down with Space 1670

U2D1: Two Boxes Up and One Box Down 1671

U2D1S: Two Boxes Up and One Box Down with Space 1671

V2: One Box Up and One Box Down 1672

V2S: One Box Up and One Box Down with Space 1672

V3: Three Boxes Vertically 1672

xiv

V3S: Three Boxes Vertically with Space 1673

Whole: Entire Screen Template 1673

Appendix 6 � Recommended Reading 1675
Recommended Reading 1675

Glossary 1677

Index 1693

xv

What’s New

Overview
The changes and enhancements for SAS/GRAPH 9.2 are very extensive. Highlights

include the following:
� The new SAS/GRAPH statistical graphics suite provides a new set of procedures, a

new language, and a graph editor specifically designed for creating and editing
statistical graphics.

� All SAS/GRAPH procedures now support ODS styles for all devices.
� SAS/GRAPH now automatically selects an appropriate device and style for all

open destinations.
� SAS/GRAPH now provides TrueColor support, which allows over 16 million colors

in a single image.
� The new Network Visualization Workshop enables you to visualize and investigate

the patterns and relationships hidden in network data (node-link data).
� The new GKPI procedure generates several key performance indicators.
� The new GTILE procedure generates tile charts.
� The new GEOCODE procedure enables you to add geographic coordinates to data

sets that contain location information such as mailing addresses or to perform
geolocation with non-address location data.

� The new GINSIDE procedure determines which polygon in a map data set
contains the geographic coordinates in your input data set.

� All procedures now support graphics output filenames up to 256 characters long.
� Many procedures have significant enhancements and new options. See

“Procedures” on page xix for a complete list.
� The new Scalable Vector Graphics devices enable you to generate SVG output.
� Several new map data sets, as well as new feature data sets, have been added to

the MAPS library. Several existing map data sets have been updated.

The SAS/GRAPH Statistical Graphics Suite
ODS Statistical Graphics (referred to as ODS Graphics for short) is major new

functionality for creating statistical graphics that is available in a number of SAS

xvi What’s New

software products, including SAS/STAT, SAS/ETS, SAS/QC, and SAS/GRAPH. Many
statistical procedures have been enabled to use this functionality, and these procedures
now produce graphs as automatically as they produce tables. In addition, the new
statistical graphics (SG) family of SAS/GRAPH procedures use this functionality to
produce plots for exploratory data analysis and customized statistical displays.

ODS Graphics includes the new SAS/GRAPH statistical graphics suite. This suite
provides the following new features:

SAS/GRAPH statistical graphics procedures
provide a simple syntax for creating graphics commonly used in exploratory data
analysis and for creating customized statistical displays. These new procedures
include the SGPANEL, SGPLOT, and SGSCATTER procedures. In addition, the
SGRENDER procedure provides a SAS procedure interface to the new Graph
Template Language. For more information, including changes and enhancements
for SAS 9.2 Phase 2, see SAS/GRAPH: Statistical Graphics Procedures Guide.

Graph Template Language (GTL)
is the underlying language for the default templates that are provided by SAS for
procedures that use ODS Statistical Graphics. You can use the GTL either to
modify these templates or to create your own highly customized graphs. Templates
written with the GTL are built with the TEMPLATE procedure. For more
information about Graph Template Language, see the SAS/GRAPH: Graph
Template Language Reference and the SAS/GRAPH: Graph Template Language
User’s Guide.

ODS Graphics Editor
is an interactive editor that enables you to edit and enhance graphs that are
produced by procedures that use ODS Statistical Graphics. You can use the ODS
Graphics Editor to modify the existing elements of a graph such as titles and
labels, or to add features such as text annotation for data points. For more
information, including changes and enhancements for SAS 9.2 Phase 2, see
SAS/GRAPH: ODS Graphics Editor User’s Guide.

ODS Graphics Designer
provides a point-and-click interface for creating ODS graphics. Using the ODS
Graphics Designer does not require knowledge of ODS templates or the Graph
Template Language. With the ODS Graphics Designer, you can easily create
multi-cell graphs, classification panels, scatter plot matrices, and more. You can
save your output as an image file or as an ODS Graphics Designer file (SGD file)
that you can edit later.

The ODS Graphics Designer is available beginning with SAS 9.2 Phase 2. For
more information, including information about changes and enhancements for the
third maintenance release of SAS 9.2, see SAS/GRAPH: ODS Graphics Designer
User’s Guide.

Note: For additional information on the ODS Statistical Graphics functionality, see
SAS Output Delivery System: User’s Guide and SAS/STAT User’s Guide. �

The SAS/GRAPH Network Visualization Workshop

The Network Visualization (NV) Workshop application enables you to visualize and
investigate the patterns and relationships hidden in network data (node-link data).
Some common applications that use network data include supply chains,
communication networks, Web sites, database schema, and software module
dependencies. NV Workshop is designed for visualizing large networks. Using a

What’s New xvii

combination of data tables, statistical graphs, and network graphs, NV Workshop
enables you to extract information that would otherwise remain hidden. Help is
available from the menu within the product. To start NV Workshop, select Start �
Programs � SAS � SAS GRAPH NV Workshop 2.1.

For more information, including changes and enhancements for SAS 9.2 Phase 2, see
SAS/GRAPH: Network Visualization Workshop User’s Guide.

Support for Multiple Open ODS Destinations
If you have multiple ODS destinations open, SAS/GRAPH automatically selects the

appropriate device for each destination. In addition, each graph uses the ODS style
associated with each destination. You do not need to specify a device or style to get
optimal results. For example, if you do not specify a device, then SAS/GRAPH
automatically selects the PNG device for the HTML destination if it is open and the
SASEMF device for the RTF destination.

Also, if you have multiple ODS destinations open and you are using a device other
than the Java or ActiveX devices (ACTIVEX, JAVA, ACTXIMG, or JAVAIMG), a
different GRSEG is created for each open destination. The GRSEGs for the first
destination are stored in WORK.GSEG. The GRSEGs for any other open destinations
are stored in catalogs named according to the destinations, for example, WORK.HTML.

Support for ODS Styles
All SAS/GRAPH procedures and devices now support ODS styles. By default, all

colors, fonts, symbols, and graph sizes are derived from the current style. Procedure
statement options and SAS/GRAPH GOPTIONS override individual elements of the
style, so you can easily customize the appearance of any graph.

Additionally, the colors used by the styles have been updated to enhance the
appearance of your graphics output.

The use of ODS styles by default is controlled by the GSTYLE system option. For
information on the GSTYLE option, refer to SAS Language Reference: Dictionary.

Devices
� The new Scalable Vector Graphics devices enable you to create SVG graphs. The

SVG devices (SVG, SVGZ, SVGView, and SVGT) are supported for the LISTING,
HTML, and PRINTER destinations.

� The default device for the ODS HTML destination has changed from GIF to PNG,
which provides TrueColor support. Using the PNG device might result in graphs
that have spacing or size differences, such as slightly narrower bars in bar charts.

� Data tips are now supported by the JAVAIMG device.
� Several devices have been added for compatibility with previous releases of

SAS/GRAPH. These devices are named Zdevice, where device is the name of the
device in previous releases.

� The following devices ignore the FONTRENDERING= system option and
force host font rendering (see “Fonts and Font Rendering” on page xviii):
ZGIF, ZGIF733, ZGIFANIM, ZJPEG, ZPNG, ZSASBMP, ZTIFFB, ZTIFFBII,
ZTIFFBMM, ZTIFFG3, ZTIFFG4, and ZTIFFP.

xviii What’s New

� The following devices support printer-resident fonts only: ZPCL5, ZPDF,
ZPDFC, ZPSCOLOR, ZPSEPSFC, ZPSL, and ZPSLEPSF. They will not work
well with ODS styles (see “Support for ODS Styles” on page xvii) because
they do not support TrueType fonts, which are used by the styles.

� Several Universal Printing shortcut devices have been added. The UPCL5,
UPCL5E and UPCL5C devices have been added for printing support. The
UPDF and UPDFC devices have been added for PDF support. The UPSL and
UPSLC devices have been added for PostScript support. See also “Using
Universal Printer Shortcut Devices” on page 75.

Colors

� SAS/GRAPH now provides TrueColor support, which allows over 16 million colors
in a single image.

� The number of colors in the default color list has been increased to 38.

Fonts and Font Rendering

� The following fonts are now obsolete: DAVID, NHIRA, NKATA.

� Some of the characters in the Hebrew font are mapped differently to the Roman
character set than they were previously.

� Fonts are now rendered using the FreeType engine. This new font rendering
might result in fonts appearing larger than they did in previous versions of
SAS/GRAPH. See also “Changing the Appearance of Output to Match That of
Earlier SAS Releases” on page xix.

� Many new TrueType fonts have been added. These new fonts are listed in Table
0.1 on page xviii.

Table 0.1 TrueType Fonts Supplied by SAS

Albany AMT* Thorndale Duospace WT SC GungsuhChe

Cumberland AMT* Thorndale Duospace WT TC Dotum

Thorndale AMT* Arial Symbol* DotumChe

Symbol MT Times New Roman Symbol* Gulim

Monotype Sorts MS PMincho GulimChe

Monotype Sans WT J MS Mincho NSimSun

Monotype Sans WT K MS PGothic SimHei

Monotype Sans WT SC MS UI Gothic SimSun

Monotype Sans WT TC Batang PMingLiU

Thorndale Duospace WT J BatangChe MingLiU

Thorndale Duospace WT K Gungsuh HeiT

* Albany AMT, Cumberland AMT, Thorndale AMT, Arial Symbol, and Times New Roman Symbol
are font families. Normal, bold, italic, and bold italic versions of these fonts are provided.

What’s New xix

Changing the Appearance of Output to Match That of Earlier SAS
Releases

SAS/GRAPH 9.2 introduces many new features that significantly change the default
appearance of your SAS/GRAPH output. To produce output that looks as if it was
produced with previous versions of SAS/GRAPH, do the following:

� Specify the NOGSTYLE system option. This option turns off the use of ODS
styles. See “Turning Off Styles” on page 153.

� Specify the FONTRENDERING=HOST_PIXELS system option. This option
specifies whether devices that are based on the SASGDGIF, SASGDTIF, and
SASGDIMG modules render fonts by using the operating system or by using the
FreeType engine. This option applies to certain native SAS/GRAPH devices (see
“Device Categories And Modifying Default Output Attributes” on page 72). For
example, this option works for GIF, TIFFP, JPEG, and ZPNG devices, but it is not
applicable to PNG, SVG, or SASPRT* devices.

� Specify DEVICE=ZGIF on the GOPTIONS statement when you are sending output
to the HTML destination.

� In other cases where your application specifies a device, specify a compatible Z
device driver, if applicable. See “Devices” on page xvii for more information.

Procedures

Support for Long Filenames
The NAME= option for each procedure has been enhanced to allow you to specify

filenames up to 256 characters long for graphics output files (PNG files, GIF files, and
so on). See the documentation for the specific SAS/GRAPH procedures for more
information.

GAREABAR Procedure
The GAREABAR procedure has the following new options and enhancements:
� The GAREABAR procedure now supports the BY and LEGEND statements.
� The CONTINUOUS option enables you to display a range of numeric values along

the width axis.
� The DESCRIPTION= option specifies the description of the catalog entry for the

plot.
� The LEGEND= option assigns the specified LEGEND definition to the legend

generated by the SUBGROUP= option.
� The NOLEGEND option suppresses the legend automatically generated by the

SUBGROUP= option.

GBARLINE Procedure
The GBARLINE procedure has the following new options and enhancements:
� The PLOT statement supports the creation of multiple plot lines on a single bar

chart.

xx What’s New

� The SUBGROUP= option divides the bar into segments according to the values of
the SUBGROUP variable values.

� The HTML= option on the PLOT statement supports data tips and drill-down
links on the markers of the line plot.

� The HTML_LEGEND= option supports data tips and drill-down legend links.
� The IMAGEMAP= option enables you to generate an image map with drill-down

functionality in an HTML file.
� The LEGEND= option enables you to generate both BAR and PLOT legends.
� The LEVELS=ALL option has been enhanced to display any number of midpoints.
� The ASCENDING and DESCENDING options now join plot points from

left-to-right by default when the bars are reordered.
� The PLOT statement now supports several options for references lines on the plot

(right) response axis.
� The AUTOREF option draws a reference line at each major tick mark.
� The REF= option draws reference lines at the specified positions.
� The CREF=, LREF=, and WREF= options enable you to specify the color, line

style, and width of user-defined reference lines.
� The CAUTOREF=, LAUTOREF=, and WAUTOREF= options enable you to

specify the color, line style, and width of AUTOREF lines.

� The WREF= and WAUTOREF= options on the BAR statement enable you to
specify the width of reference lines on the bar (left) response axis.

� The PLOT statement now supports the following options:

CAXIS= specifies a color for the tick marks and the axis area frame

CTEXT= specifies a color for all text on the plot response axis and legend

NOAXIS suppresses the right PLOT response axis

GCHART Procedure
The GCHART procedure has the following new options and enhancements:
� The COUTLINE= option has been enhanced to include outlines on cylinder-shaped

bars.
� The GAXIS= option is now supported by the ACTIVEX, ACTXIMG, JAVA, and

JAVAIMG devices.
� The MAXIS= option is now supported by the ACTIVEX, ACTXIMG, JAVA, and

JAVAIMG devices.
� The NOPLANE option enables you to remove walls from three–dimensional bar

charts.
� The PCTSUM option in the HBAR statement displays a column of percentages for

the sum variable values.
� The new PCTSUMLABEL= option enables you to specify the text for the column

label for the PCTSUM statistic in the table of statistics.
� The PLABEL= option enables you to specify the font, height, and color of pie slice

labels.
� The NOZERO option on the BAR statement is now supported by the JAVA and

JAVAIMG devices.
� The RADIUS= option on the PIE statement enables you to specify the radius of

the pie chart.

What’s New xxi

� The RAXIS= option is now supported by the ACTIVEX, ACTXIMG, JAVA, and
JAVAIMG devices.

� The SHAPE= option on BLOCK statement is now supported by the ACTIVEX,
ACTXIMG, JAVA, and JAVAIMG devices.

� The WREF= and WAUTOREF= options enable you to specify the width of
reference lines.

� The pie and bar name variable now support up to 256 characters.

GCONTOUR Procedure
The GCONTOUR procedure has the following changes and enhancements.
� When used with the Java and ActiveX devices, the LJOIN option displays filled

contour areas with separated by contour lines.
� When used with the Java and ActiveX devices, the SMOOTH option produces

smooth gradient areas between levels.
� The WAUTOHREF= and WAUTOVREF= options specify the line width for

reference lines generated with the AUTOHREF and AUTOVREF options,
respectively.

� The WHREF= and WVREF= options specify the line width for reference lines
generated with the HREF= and VREF= options, respectively.

GEOCODE Procedure
The new GEOCODE procedure enables you to add geographic coordinates (latitude

and longitude) to data sets that contain location information such as mailing addresses.
You can also perform geolocation, which is adding geographic coordinates to
non-address locations such as sale territories.

For SAS 9.2 Phase 2 and later, the new RANGE geocoding method enables you to
perform geolocation for IP addresses.

For the third maintenance release of SAS 9.2, the new STREET geocoding method
enables you to perform geolocation for street addresses.

GINSIDE Procedure
The new GINSIDE procedure determines which polygon in a map data set contains

the X and Y coordinates in your input data set. For example, if your input data set
contains coordinates within Canada, you can use the GINSIDE procedure to identify
the province for each data point.

GKPI Procedure
The new GKPI procedure generates key performance indicators, including sliders,

bullet graphs, speedometers, dials, and traffic lights. This GKPI procedure is supported
by the JAVAIMG device only.

GMAP Procedure
The GMAP procedure has the following new features:
� The AREA statement enables you to control the appearance of regions in block

maps and prism maps.

xxii What’s New

� The CDEFAULT= option specifies the color for empty map areas.
� The DENSITY= option enables you to reduce the number of map points that are

drawn.
� The RELZERO= option specifies that the heights of bars and regions are relative

to zero, rather than the minimum value.
� The STATISTIC= option specifies a statistic to use for the response variable.
� The STRETCH option stretches the extents of a map to fill the output device.
� The UNIFORM option specifies that each map that is created when you use the

BY statement uses the same colors and legend.
� The WOUTLINE= option on the BLOCK and CHORO statements is now

supported by the JAVA and JAVAIMG devices.

GPLOT Procedure
The GPLOT procedure has the following new options and enhancements:
� The BFILL= option enables you to generate gradient, solid-filled bubble plots.
� The FRONTREF= option specifies that reference lines are drawn in front of filled

areas.
� The OVERLAY option is no longer required to display a legend when the PLOT (or

PLOT2)statement specifies only one plot.
� The WAUTOHREF= and WAUTOVREF= options specify the line width for

reference lines generated with the AUTOHREF and AUTOVREF options,
respectively.

� The WHREF= and WVREF= options specify the line width for reference lines
generated with the HREF= and VREF= options, respectively.

� Enhanced features in box plots enable you to click on the interior of the boxes for
simple drill-down functionality. Previously, you could click only on visible box
elements. Now, you can click anywhere inside the box to drill down to more
detailed data.

GPROJECT Procedure
The NODATELINE option enables contiguous projections when projecting maps that

cross the line between 180 degrees and –180 degrees longitude.
The following options for the GPROJECT procedure have been renamed:

Old Name New Name

DEGREE DEGREES

PARALEL1 PARALLEL1

PARALEL2 PARALLEL2

GRADAR Procedure
The GRADAR procedure has the following new options and enhancements:
� The CALENDAR option produces a chart showing twelve equal-sized segments,

one for each month of the year.

What’s New xxiii

� The NLEVELS= option specifies the number of colors to use in calendar charts.
� The NOLEGEND option turns off the automatically generated legend.
� The SPOKESCALE= option specifies whether every spoke is drawn to the same

scale or each spoke is drawn to a different scale.
� The WINDROSE option produces a windrose chart, which is a type of histogram.
� The FREQ= option now supports only non-zero integers. Zero and negative values

are dropped. Decimal values are truncated to integers.
� The WEIGHT= option is no longer supported.
� The GRADAR procedure now draws missing overlay values to the center.

Previously, missing values were drawn to zero.

GREMOVE Procedure
The GREMOVE procedure has the following new options:
� The FUZZ= option specifies an error tolerance for the point matching algorithm.
� The NODECYCLE option enables some types of polygons to be closed properly.

GTILE Procedure
The new GTILE procedure enables you to create and display tile charts using the

Java or ActiveX device drivers. Tile charts are designed for visualizing a large quantity
of hierarchical-type data and are sometimes referred to as rectangular tree maps. Tile
charts display rectangles of varying sizes and colors based on the magnitude of the
variables specified and provides drill-down links to more detailed data.

MAPIMPORT Procedure
The ID statement for the MAPIMPORT procedure enables you to group related

polygons.

Global Statements

� The REPEAT= option on the LEGEND statement enables you to specify the
number of times a plot symbol is displayed in a single legend item in the legend.

� The VALUE=EMPTY option on the PATTERN statement is now supported by
three-dimensional bar charts.

� The STAGGER option offsets the axis values on a horizontal axis.
� The TICK= suboption on the VALUE= option of the LEGEND statement is now

supported by the Java Map Applet.
� The ROWMAJOR and COLMAJOR options on the LEGEND statement enable you

to control whether legend entries are listed by row or by column.

xxiv What’s New

Graphics Options

� The ACCESSIBLE graphics option generates descriptive text and the summary
statistics that are represented by the graph. This option is valid for the Java and
ActiveX devices only.

� The ALTDESC option enables you to specify whether the text specified in the
DESCRIPTION= option is used as the data tip text.

� The TRANSPARENCY option is supported by the ACTIVEX and ACTXIMG
devices when the output is used in a PowerPoint presentation.

Transparent Overlays
Transparent overlays from GIF files are now supported in SAS/GRAPH output. You

can use transparent GIFs with the IMAGE function in the Annotate facility and with
the IBACK and IFRAME graphics options.

ActiveX Control
The following are enhancements for the ActiveX Control:
� The ActiveX control now displays calendar and windrose charts generated by the

GRADAR procedure.
� The control also displays tile charts created by the new GTILE procedure.
� Support for UNICODE fonts has been added.
� A new field in the user interface enables you to provide interactive graphs in

Microsoft Powerpoint slideshows.
� The user interface now enables you to specify the properties of scroll bars in your

graph.
� Data tips are supported for scatter plots generated with the GCONTOUR

procedure.
� Enhanced support of the Annotate Facility listed under “The Annotate Facility” on

page xxv.

Java Map Applet
The Java Map Applet user interface enables you to change block sizes.
Support has been added for the MENUREMOVE parameter, which enables you to

remove menu items from the applet user interface.

Java Tilechart Applet
The new Java Tile Chart applet creates and displays tile charts. Tile charts are

designed for visualizing a large quantity of hierarchical-type data and are sometimes
referred to as rectangular tree maps. They display rectangles of varying sizes and
colors based on the magnitude of the variables specified and provide drill-down links to

What’s New xxv

more detailed data. You can generate the applet with the GTILE procedure and the
JAVA device.

The Annotate Facility

The following new features are available for the Annotate facility:

� The ANGLE, CBORDER, CBOX, LINE, and ROTATE variables are now supported
by the ACTIVEX and ACTXIMG devices.

� The ARROW function and %ARROW macro enable you to draw arrows.

� A new value for the HSYS= option, ’D’, specifies points as the unit of measurement
for font sizes.

� The IMAGE function is now supported by the JAVA and JAVAIMG devices.

� The WIDTH variable for the PIE function specifies the thickness of the outline
around the pie slice.

New Map Data Sets

New map data sets are provided for Antarctica (ANTARCTI, ANTARCT2),
Montenegro (MONTENEG, MONTENE2), Romania (ROMANIA, ROMANIA2), Rwanda
(RWANDA, RWANDA2), and Serbia (SERBIA, SERBIA2).

The continent map data sets now have corresponding feature data sets (ANTARCT2,
AFRICA2, EUROPE2, OCEANIA2, NAMERIC2, SAMERIC2).

Note: Antarctica uses the new continent code 97. �

Updated Map Data Sets

Some of the map data sets in the MAPS library have been updated. Table 0.2 on
page xxv contains a list of the changes.

Table 0.2 Changes to the Map Data Sets

Data Set(s) Changes

Continent data sets (ASIA,
AFRICA, EUROPE,
NAMERICA, OCEANIA,
SAMERICA)

updated to include new geographic features. Each data set
includes a new DENSITY variable.

Brunei, Indonesia, and the Philippines have moved from
OCEANIA to ASIA. The continent code for these countries has
changed from 96 to 95.

OCEANIA replaces SPACIFIC as continent 96. Tasmania has
been added to the OCEANIA data set.

CHINA, CHINA2 updated with new province names and ID numbers. The new
OLDID and OLDIDNAME variables in the CHINA2 data set
contain the old ID numbers and province names.

Because the ID numbers and province names have changed, you
might need to change your response data in any existing SAS
programs that use these data sets.

xxvi What’s New

Data Set(s) Changes

GERMANY, GERMANY2 updated with new districts and states. The following new
variables have been added:

� AREA

� DISTNAME

� DISTRICT

� ID2

The IDNAME variable contains the values that were previously
in IDNAME2. The IDNAME2 variable has been removed.

INDIA, INDIA2 updated with new states and new ID numbers. The new OLDID
variable in the INDIA2 data set contains the old ID numbers.
Additionally, the IDNAME2 variable in the INDIA2 data set
contains alternate spellings for the state names. The INDIA
data set contains a new DENSITY variable.

Because the ID numbers have changed, you might need to
change your response data in any existing SAS programs that
use these data sets.

ITALY, ITALY2 updated with new provinces and ID numbers. The new OLDID
variable in the ITALY2 data set contains the old ID numbers.
The ITALY data set contains new DENSITY, NUTS, and
REGNAME2 variables.

Because the ID numbers have changed, you might need to
change your response data in any existing SAS programs that
use these data sets.

JAOSAKA, JAOSAKA2 updated with new ID values. The new TYPE variable in
JAOSAKA2 contains feature types.

JATOKYO, JATOKYO2 updated with new ID values. The new TYPE variable in
JATOKYO2 contains feature types.

LUXEMBOU, LUXEMBO2 updated with more detail and new variables. The LUXEMBOU
data set has a new DENSITY variable. The LUXEMBO2 data
set has the following new variables:

� DISTNAME

� DISTRICT

� IDNAME2

� NUTS4

What’s New xxvii

Data Set(s) Changes

NAMES

(feature table for the WORLD
data set)

contains three new variables:

ID2
for territories, specifies the ID values for the countries
that the territory is associated with. For example,
Greenland has an ID2 value of 315 because it is a
territory of Denmark.

If a territory is claimed by more than one country, its
ID2 value might consist of several three–digit ID values to
identify each country.

REGION
specifies a geographic region for each country or territory.
For example, Panama belongs to the Central America
region.

TERRITORY
for territories, describes the association between the
territory and the country or countries that are identified
by ID2. For example, Togo is described as Overseas
territory of France.

PHILIPPI, PHILIPP2 updated with more detail and new variables. The PHILIPPI
data set has a new DENSITY variable. The PHILIPP2 data set
has the following new variables:

� ISLANDG

� ISLAND_GROUP

� OLDID

� PROVINCE

� PSGC_PROV

� PSGC_REG

� REGION

� REGNAME

� REGNAME2

The ID numbers for these data sets have changed. You might
need to change your response data in any existing SAS
programs that use these data sets.

POLAND, POLAND2 updated with new values and variables. The POLAND data set
has a new DENSITY variable. The POLAND2 data set has new
PROVNAME and PROVNAME2 variables.

SPACIFIC renamed to OCEANIA.

SPAIN, SPAIN2 updated with values and new variables. The SPAIN data set
contains a new DENSITY variable.

The new OLDID variable in the SPAIN2 data set contains the
old ID numbers. The new REGION and REGNAME variables
identify regions. The new IDNAME2 and REGNAME2 variables
contain alternate spellings for the province and region names.

Because the ID numbers have changed, you might need to
change your response data in any existing SAS programs that
use these data sets.

xxviii What’s New

Data Set(s) Changes

SWEDEN, SWEDEN2 updated with new provinces and ID numbers. The SWEDEN
data set contains a new DENSITY variable. The new OLDID
variable in the SWEDEN2 data set contains the old ID numbers.
The new REGNAME variable contains region names.

Because the ID numbers have changed, you might need to
change your response data in any existing SAS programs that
use these data sets.

SWITZERL, SWITZER2 updated with new province names and ID numbers, and new
variables. The new OLDID and OLDNAME variables in the
SWITZER2 data set contains the old names and ID numbers.
The SWITZERL data set contains new DENSITY and LAKE
variables.

Because the province names and ID numbers have changed, you
might need to change your response data in any existing SAS
programs that use these data sets.

THAILAND, THAILAN2 updated with more detail and new variables. The THAILAND
data set has a new DENSITY variable. The THAILAN2 data set
has the following new variables:

� IDNAME2

� OLDID

� REGION

� REGNAME

The provinces have new ID numbers. The new OLDID variable
in the THAILAN2 data set contains the old ID numbers.

Because the ID numbers have changed, you might need to
change your response data in any existing SAS programs that
use these data sets.

UKRAINE, UKRAINE2 updated with more detail and new variables. The UKRAINE
data set has a new DENSITY variable. The UKRAINE2 data set
has the following new variables:

� IDNAME2

� OLDID

� OLDIDNAME

The provinces have new names and ID numbers. The new
OLDIDNAME and OLDID variables in the UKRAINE2 data set
contain the old province names and ID numbers.

Because the province names and ID numbers have changed, you
might need to change your response data in any existing SAS
programs that use these data sets.

What’s New xxix

Data Set(s) Changes

US, USCENTER, USCITY Puerto Rico added as state 72. The new STATECODE variable
in the US and USCITY data sets contains two-letter state
abbreviations.

The USCITY data set has new cities, and some city names have
been standardized. The PLACE variable now includes the state
FIPS code as the first two digits.

Note: The projected X and Y values might be
different due to the need to re-project the data sets
with the addition of more cities in USCITY. �

VIETNAM, VIETNAM2 updated with more detail and new variables. The VIETNAM
data set has a new DENSITY variable. The VIETNAM2 data set
has the following new variables:

� PROVINCE

� REGION

� REGNAME

The ID numbers for these data sets have changed. You might
need to change your response data in any existing SAS
programs that use these data sets.

xxx What’s New

Data Set(s) Changes

WORLD simplified to use fewer observations. In addition, the following
changes have been made:

� The values are now projected using the CYLINDRI
algorithm.

� Continent 96 has been renamed from South Pacific to
Oceania.

� Antarctica has been added as continent 97.

� Brunei, Indonesia, and the Philippines have been
reassigned from continent 96 to continent 95.

� French Southern Territories and Heard & McDonald
Islands have been reassigned from continent 96 to
continent 97.

� St. Helena has been reassigned from continent 91 to
continent 94.

� The former country of Yugoslavia has been split into
Serbia and Montenegro.

� Newfoundland has been added to Canada (ID 260).

� Tasmania has been added to Australia (ID 160).

� More data points are included for Cuba (ID 300).

� The Galapagos Islands have been added to Ecuador (ID
325).

� Hong Kong is now included as part of China.

YUGOSLA, YUGOSLA2 replaced by the new SERBIA, SERBIA2, MONTENEG,
MONTENE2 data sets.

Map Data Set Descriptions

Descriptive labels have been added to the map data sets in the MAPS library.

New Data Set for Military ZIP Codes

The new ZIPMIL data set in the SASHELP library contains ZIP codes for U.S.
military post offices.

Changes in SAS/GRAPH Documentation

� Information about the DS2CSF macro has been removed. The functionality of the
DS2CSF macro is available through the new GKPI procedure.

� Information about the META2HTM macro has been removed. To generate the
Metaview applet, use the JAVAMETA device.

1

P A R T1

SAS/GRAPH Concepts

Chapter 1.Introduction to SAS/GRAPH Software 3

Chapter 2.Elements of a SAS/GRAPH Program 31

Chapter 3.Getting Started With SAS/GRAPH 39

Chapter 4.SAS/GRAPH Processing 53

Chapter 5.The Graphics Output Environment 59

Chapter 6.Using Graphics Devices 67

Chapter 7.SAS/GRAPH Output 87

Chapter 8.Exporting Your Graphs to Microsoft Office Products 113

Chapter 9.Writing Your Graphs to a PDF File 123

Chapter 10.Controlling The Appearance of Your Graphs 133

Chapter 11.Specifying Fonts in SAS/GRAPH Programs 155

Chapter 12.SAS/GRAPH Colors and Images 167

Chapter 13.Managing Your Graphics With ODS 191

Chapter 14.SAS/GRAPH Statements 197

Chapter 15.Graphics Options and Device Parameters Dictionary 327

2

3

C H A P T E R

1
Introduction to SAS/GRAPH
Software

Overview 4
Components of SAS/GRAPH Software 4

Device-Based Graphics and Template-Based Graphics 6

Graph Types 7

Charts 7

Block charts 7
Horizontal bar charts 8

Vertical bar charts 8

Pie charts, Detailed pie charts, 3D pie charts, and Donut charts 9

Star charts 10

Bar-line Charts 10

Area Bar Charts 11
Tile Charts 12

Radar Charts 12

Two-Dimensional Plots 13

Two-dimensional scatter plots 13

Simple line plots 14
Regression plots 14

High-low plots 15

Bubble plots 16

Three-Dimensional Plots 16

Surface plots 16
Scatter plots 17

Contour plots 17

Maps 18

Block maps 18

Choropleth maps 19

Prism maps 19
Surface maps 20

KPI Charts 21

Creating Text Slide and Presentation Graphics 21

Text Slides 21

Combining Output into One Slide 22
Enhancing Graphics Output (graphs and text slides) 23

SAS/GRAPH Statements 23

The Annotate Facility 23

Creating Custom Graphics 23

The DATA Step Graphics Interface 23
Graph-N-Go 24

About this Document 24

Audience 24

4 Overview � Chapter 1

Prerequisites 24
Conventions Used in This Document 25

Syntax Conventions 25

Conventions for Examples and Output 27

Information You Should Know 28

Support Personnel 28
Sample Programs 28

Map Data Sets 30

Annotate Macros Data Set 30

Overview
SAS/GRAPH is the data visualization and presentation (graphics) component of the

SAS System. As such, SAS/GRAPH:
� organizes the presentation of your data and visually represents the relationship

between data values as two- and three-dimensional graphs, including charts, plots,
and maps.

� enhances the appearance of your output by allowing you to select text fonts, colors,
patterns, and line styles, and control the size and position of many graphics
elements.

� creates presentation graphics. SAS/GRAPH can create text slides, display several
graphs at one time, combine graphs and text in one display, and create automated
presentations.

� generates a variety of graphics output that you can display on your screen or in a
Web browser, store in catalogs, review, or send to a hard copy graphics output
device such as a laser printer, plotter, or slide camera.

� provides utility procedures and statements to manage the output.

This chapter describes the graphs that are produced by SAS/GRAPH and explains
some of the parts and features of SAS/GRAPH programs.

Components of SAS/GRAPH Software
There are several components to SAS/GRAPH software.

Device-based SAS/GRAPH procedures
enable you to create a variety of graphs, including bar charts, pie charts, scatter
plots, surface plots, contour plots, a variety of maps, and much more. The
device-based SAS/GRAPH procedures include the GAREABAR, GCHART, GPLOT,
GMAP, GBARLINE, GKPI, GCONTOUR, and G3D procedures, as well as others.
These procedures use device drivers to generate output. SAS/GRAPH device
drivers enable you to send output directly to your output device as well as create
output in a variety of formats such as PNG files and interactive ActiveX controls
or Java applets. This document, SAS/GRAPH: Reference, describes the
device-based SAS/GRAPH procedures and how to use devices. See also
“Device-Based Graphics and Template-Based Graphics” on page 6.

The Annotate Facility
enables you to generate a special data set of graphics commands from which you
can produce graphics output. This data set is referred to as an Annotate data set.
You can use it to generate custom graphics or to enhance graphics output from

Introduction to SAS/GRAPH Software � Components of SAS/GRAPH Software 5

many device-based SAS/GRAPH procedures, including GCHART, GPLOT, GMAP,
GBARLINE, GCONTOUR, and G3D, as well as others. For more information, see
Chapter 29, “Using Annotate Data Sets,” on page 641.

Network Visualization (NV) Workshop
enables you to visualize and investigate the patterns and relationships hidden in
network data (node-link data). Some common applications that use network data
include supply chains, communication networks, Web sites, database schema, and
software module dependencies. NV Workshop is designed for visualizing large
networks. Using a combination of data tables, statistical graphs, and network
graphs, NV Workshop enables you to extract information that would otherwise
remain hidden. Help is available from the menu within the product. Network
Visualization Workshop runs in Windows operating environments only. For
additional information, see SAS/GRAPH: Network Visualization Workshop User’s
Guide.

SAS/GRAPH statistical graphics suite
is part of ODS Statistical Graphics (referred to as ODS Graphics for short). ODS
Graphics is functionality for creating statistical graphics that is available in a
number of SAS software products, including SAS/STAT, SAS/ETS, SAS/QC, and
SAS/GRAPH. The SAS/GRAPH statistical graphics suite provides the following
features:

SAS/GRAPH statistical graphics procedures
provide a simple syntax for creating graphics commonly used in exploratory
data analysis and for creating customized statistical displays. These
procedures include the SGPANEL, SGPLOT, and SGSCATTER procedures.
In addition, the SGRENDER procedure provides a SAS procedure interface to
create graphs using the Graph Template Language. These procedures are
template-based procedures; they do not use devices like the device-based
SAS/GRAPH procedures. For more information, see “Device-Based Graphics
and Template-Based Graphics” on page 6 and SAS/GRAPH: Statistical
Graphics Procedures Guide.

Graph Template Language (GTL)
is the underlying language for the default templates that are provided by
SAS for procedures that use ODS Statistical Graphics. You can use the GTL
either to modify these templates or to create your own customized graphs.
Templates written with the GTL are built with the TEMPLATE procedure.
For more information about Graph Template Language, see SAS/GRAPH:
Graph Template Language User’s Guide and SAS/GRAPH: Graph Template
Language Reference.

ODS Graphics Editor
is an interactive editor that enables you to edit and enhance graphs that are
produced by procedures that use ODS Graphics. You can use the ODS
Graphics Editor to modify the existing elements of a graph such as titles and
labels, or to add features such as text annotation for data points. The ODS
Graphics Editor runs in Windows and UNIX operating environments only.
For more information, see SAS/GRAPH: ODS Graphics Editor User’s Guide.

ODS Graphics Designer
provides a point-and-click interface for creating ODS Graphics. Using the
ODS Graphics Designer does not require knowledge of ODS templates or the
Graph Template Language. With the ODS Graphics Designer, you can easily
create multi-cell graphs, classification panels, scatter plot matrices, and
more. You can save your output as an image file or as an ODS Graphics
Designer file (SGD file) that you can edit later. The ODS Graphics Designer

6 Device-Based Graphics and Template-Based Graphics � Chapter 1

runs in Windows and UNIX operating environments only. For more
information, see SAS/GRAPH: ODS Graphics Designer User’s Guide.

For additional information on the ODS Statistical Graphics functionality, see
SAS Output Delivery System: User’s Guide and SAS/STAT User’s Guide.

Device-Based Graphics and Template-Based Graphics

SAS/GRAPH produces graphics using two very distinct systems. SAS/GRAPH can
produce output using a device-based system or using a template-based system. The
traditional system for producing graphics output that most users are familiar with is
the device-based system.

device-based graphics
are SAS/GRAPH output that is generated by a default or user-specified device
(DEVICE= option). Device drivers supplied by SAS are stored in the SAS/GRAPH
catalog. Examples of device drivers are GIF, PNG, ACTIVEX, SVG, and SASPRTC.
Most procedures that produce device-based graphics also produce GRSEG catalog
entries in addition to any image files that are produced. Common SAS/GRAPH
procedures that produce device-based graphics and GRSEG catalog entries include
the GCHART, GPLOT, GMAP, GBARLINE, GCONTOUR, and G3D procedures.
The device-based procedures that do not produce GRSEG catalog entries are the
GAREABAR, GKPI, and GTILE procedures. For device-based graphics, you can
use the GOPTIONS statement to control the graphical environment.

Introduction to SAS/GRAPH Software � Charts 7

template-based graphics
are SAS/GRAPH output that is produced from a compiled ODS template of type
STATGRAPH. Templates supplied by SAS are stored in SAS/GRAPH. Device
drivers and most global statements (such as SYMBOL, PATTERN, AXIS, and
LEGEND) have no effect on template-based graphics. The SAS/GRAPH
procedures that produce template-based graphics are the SGPLOT, SGPANEL,
SGSCATTER, and SGRENDER procedures. Many SAS/STAT, SAS/ETS, and SAS/
QC procedures also produce template-based graphics when you specify the ODS
GRAPHICS ON statement. (Template-based graphics are frequently referred to as
ODS graphics.) Template-based graphics are always produced as image files and
never as GRSEG catalog entries. For template-based graphics, you must use the
ODS GRAPHICS statement to control the graphical environment.

The SAS/GRAPH: Reference contains information about device-based graphics only.
For information about template-based graphics, see SAS/GRAPH: Statistical Graphics
Procedures Guide and SAS/GRAPH: Graph Template Language Reference.

Graph Types
SAS/GRAPH produces many kinds of charts, plots, and maps in both two- and

three-dimensional versions. In addition to helping you understand the variety of graphs
that are available to you, these descriptions also help you choose the correct type of
graph for your data and point you to the appropriate chapter.

Charts
SAS/GRAPH uses the GCHART procedure to produce charts that graphically

represent the value of a statistic for one or more variables in a SAS data set. See
Chapter 36, “The GCHART Procedure,” on page 989 for a complete description.

Block charts
Block charts use three-dimensional blocks to graphically represent values of

statistics. Block charts are useful for emphasizing relative magnitudes and differences
among data values.

8 Charts � Chapter 1

Horizontal bar charts
Horizontal bar charts use horizontal bars to represent statistics based on the values

of one or more variables. Horizontal bar charts can generate a table of chart statistics
and are useful for displaying exact magnitudes and emphasizing differences.

Vertical bar charts
Vertical bar charts use vertical bars to represent statistics based on the values of one

or more variables. Vertical bar charts, which generate only one statistic, are useful for
displaying exact magnitudes and emphasizing differences.

Introduction to SAS/GRAPH Software � Charts 9

Pie charts, Detailed pie charts, 3D pie charts, and Donut charts
Pie charts, detailed pie charts, 3-D pie charts, and Donut charts use the angle of pie

slices to graphically represent the value of a statistic for a data range. Pie charts are
useful for examining how the values of a variable contribute to the whole and for
comparing the values of several variables.

Figure 1.1 Detailed Pie Chart

10 Bar-line Charts � Chapter 1

Figure 1.2 Donut Chart

Star charts
Star charts use the length of spines to graphically represent the value of a statistic

for a data range. Star charts are useful for analyzing where data are out of balance.

Bar-line Charts
The GBARLINE procedure produces vertical bar charts with plot overlays. These

charts graphically represent the value of a statistic calculated for one or more variables
in an input SAS data set. The charted variables can be either numeric or character.

See Chapter 35, “The GBARLINE Procedure,” on page 947 for a complete description.

Introduction to SAS/GRAPH Software � Area Bar Charts 11

Area Bar Charts
The GAREABAR procedure produces area bar charts that show the magnitudes of

two variables for each category of data. For example, the following area bar chart
shows the sales total for each of three geographical sites. The width of each bar
indicates the number of sales persons at each site. In a bar chart such as the chart
shown in “Vertical bar charts” on page 8, the width is the same for each bar. In an area
bar chart, the width and height of each bar is determined by the value of variables. See
Chapter 34, “The GAREABAR Procedure,” on page 931 for a complete description.

12 Tile Charts � Chapter 1

Tile Charts
The GTILE procedure produces charts that tile charts, which consist of a rectangle or

square divided into tiles. The sizes of the individual tiles represent the value of the size
variable. You can also specify a color variable, so that the colors of the individual tiles
represent the magnitude of the color variable. Tile charts are useful for determining the
relative magnitude of categories of data or the contribution of a category toward the
whole.

Radar Charts
The GRADAR procedure produces radar charts that show the relative frequency of

data measures. On a radar chart, the chart statistics are displayed along spokes that
radiate from the center of the chart. The charts are often stacked on top of one another
with reference circles, thus giving them the look of a radar screen. Radar charts are
frequently called star charts and are often used in quality control or market research
problems.

See Chapter 47, “The GRADAR Procedure,” on page 1419 for a complete description.

Introduction to SAS/GRAPH Software � Two-Dimensional Plots 13

Two-Dimensional Plots
SAS/GRAPH uses the GPLOT procedure to produce two-dimensional graphs that

plot one or more dependent variables against an independent variable within a set of
coordinate axes. GPLOT can display the data points as individual symbols (as in a
scatter plot), or use interpolation methods specified by the SYMBOL statement to join
the points, request spline interpolation or regression analysis, produce various high-low
plots, or generate several other types of plots.

GPLOT can also display data as bubble plots in which circles of different sizes
represent the values of a third variable.

Plots are useful for demonstrating the relationship between two or more variables and
frequently compare trends or data values or depict movements of data values over time.

See Chapter 45, “The GPLOT Procedure,” on page 1325 for a complete description.

Two-dimensional scatter plots
Two-dimensional scatter plots show the relationship of one variable to another, often

revealing concentrations or trends in the data. Typically, each variable value on the
horizontal axis can have any number of corresponding values on the vertical axis.

14 Two-Dimensional Plots � Chapter 1

Simple line plots

Simple line plots show the relationship of one variable to another, often as
movements or trends in the data over a period of time. Typically, each variable value on
the horizontal axis has only one corresponding value on the vertical axis. The line
connecting data points can be smoothed using a variety of interpolation methods,
including the Lagrange and the cubic spline interpolation methods.

Regression plots

Regression plots specify that the plot is a regression analysis. You can specify one of
three types of regression equation – linear, quadratic, or cubic, and you can choose to
display confidence limits for mean predicted values or individual predicted values.

Introduction to SAS/GRAPH Software � Two-Dimensional Plots 15

High-low plots
High-low plots show how several values of one variable relate to one value of another

variable. Typically, each variable value on the horizontal axis has several corresponding
values on the vertical axis. High-low plots include box, needle, and stock market plots.

16 Three-Dimensional Plots � Chapter 1

Bubble plots
Bubble plots show the relative magnitude of one variable in relation to two other

variables. The values of two variables determine the position of the bubble on the plot,
and the value of a third variable determines the size of the bubble.

Three-Dimensional Plots
SAS/GRAPH uses the G3D procedure to produce three-dimensional surface and

scatter plots that examine the relationship among three variables. Variable values are
plotted on a set of three coordinate axes.

See Chapter 53, “The G3D Procedure,” on page 1541 for a complete description.

Surface plots
Surface plots are three-dimensional plots that display the relationship of three

variables as a continuous surface. Surface plots examine the three-dimensional shape
of data.

Introduction to SAS/GRAPH Software � Three-Dimensional Plots 17

Scatter plots

Scatter plots enable you to examine three-dimensional data points instead of surfaces
and to classify your data using size, color, shape, or a combination of these features.

Contour plots

SAS/GRAPH uses the GCONTOUR procedure to examine three-dimensional data in
two dimensions. Lines or areas in a contour plot represent levels of magnitude (z)
corresponding to a position on a plane (x,y).

See Chapter 37, “The GCONTOUR Procedure,” on page 1095 for a complete
description.

Contour plots are two-dimensional plots that show three-dimensional relationships.
These plots use contour lines or patterns to represent levels of magnitude of a contour
variable plotted on the horizontal and vertical axes.

18 Maps � Chapter 1

When you need to interpolate or smooth data values that are used by the G3D and
GCONTOUR procedures, use the G3GRID procedure. The G3GRID procedure does not
produce graphics output but processes existing data sets to create data sets that the
G3D or GCONTOUR procedure can use to produce three-dimensional surface or contour
plots. See Chapter 54, “The G3GRID Procedure,” on page 1571 for a complete
description.

Maps
SAS/GRAPH uses the GMAP procedure to produce two- and three-dimensional maps

that can show an area or represent values of response variables for subareas.
SAS/GRAPH includes data sets to produce geographic maps. In addition, you can

create your own map data sets.
See Chapter 43, “The GMAP Procedure,” on page 1239 for a complete description.

Block maps
Block maps are three-dimensional maps that represent data values as blocks of

varying height rising from the middle of the map areas.

Introduction to SAS/GRAPH Software � Maps 19

Choropleth maps
Choropleth maps are two-dimensional maps that display data values by filling map

areas with combinations of patterns and color that represent the data values.

Prism maps
Prism maps are three-dimensional maps that display data by raising the map areas

and filling them with combinations of patterns and colors.

20 Maps � Chapter 1

Surface maps

Surface maps are three-dimensional maps that represent data values as spikes of
varying heights.

SAS/GRAPH also provides several utility procedures for handling map data.
The GPROJECT procedure lets you choose how geographic maps are projected. This

is particularly important for large areas because producing a map of any large area on
the Earth involves distorting some areas in the process of projecting the spherical
surface of the Earth onto a flat plane. You can use the procedure to select the projection
method that least distorts your map.

Map areas are constructed of joined data points. Each data point represents an
observation in a SAS data set. For large maps, the amount of data can be prohibitively
expensive (in terms of computing resources or time to process); the GREDUCE

Introduction to SAS/GRAPH Software � Creating Text Slide and Presentation Graphics 21

procedure enables you to reduce the number of points in the data set. The GREMOVE
procedure enables you to remove boundary lines within a map.

KPI Charts
The GKPI procedure creates graphical key performance indicator (KPI) charts. KPIs

are metrics that help a business monitor its performance and measure its progress
toward specific goals. The procedure produces five KPI chart types:

� slider (vertical or horizontal)

� bullet graph (vertical or horizontal)

� radial dial

� speedometer

� traffic light (vertical or horizontal).

Creating Text Slide and Presentation Graphics
You can use SAS/GRAPH to create slide presentations of your graphs. With

SAS/GRAPH you can

� create text slides with the GSLIDE procedure

� combine several graphs into one output with the GREPLAY procedure

� automatically or manually replay your graphs and text slides with the GREPLAY
procedure.

Text Slides

Use the GSLIDE procedure to create text slides in which you can specify a variety of
colors, fonts, sizes, angles, overlays, and other modifications as well as drawing lines
and boxes on the output.

See Chapter 51, “The GSLIDE Procedure,” on page 1517 for a complete description.
Text slides display text as graphics output. Text slides can be used as title slides for

presentations, or to produce certificates, signs, or other display text.

22 Creating Text Slide and Presentation Graphics � Chapter 1

Combining Output into One Slide

Use the GREPLAY procedure to combine several graphs into a single output. You can
create special effects by overlaying or rotating the graphs at any angle.

Templated graphs display two or more graphs or text slides as one output by
replaying stored graphs into a template or framework. Like graphs and text slides,
templated graphs can be ordered in groups and stored in catalogs for replay as part of a
presentation.

Figure 1.3 Templated graphs

In addition, you can use the GREPLAY procedure to create an automated or
user-controlled presentation of graphics output. The GREPLAY procedure enables you
to name, arrange, and customize the presentation of graphs that are stored in a catalog.

See Chapter 50, “The GREPLAY Procedure,” on page 1473 for a complete description.

Introduction to SAS/GRAPH Software � Creating Custom Graphics 23

Enhancing Graphics Output (graphs and text slides)

SAS/GRAPH Statements
You can also use global statements and graphics options in SAS/GRAPH programs.

With global statements, you can add titles and footnotes and control the appearance of
axes, symbols, patterns, and legends. With graphics options, you can control the
appearance of graphics elements by specifying default colors, fill patterns, fonts, text
height, and so on.

The Annotate Facility
The Annotate facility enables you to program graphics by using certain variables in

SAS data sets. It is often used to add text or special elements to the graphics output of
other procedures, although it can also be used to construct custom graphics output.
Text and graphics can be placed at coordinates derived from input data, as well as
coordinates expressed as explicit locations on the display.

Figure 1.4 Annotated graphs

Creating Custom Graphics
The Annotate facility can also be used to generate custom graphics without using any

of the SAS/GRAPH graphing procedures.

The DATA Step Graphics Interface
The DATA Step Graphics Interface provides functions and calls that produce

graphics output from the DATA step, rather than from a procedure. The functions and
calls are similar in form to those specified by the ISO Graphic Kernel Standard (GKS);
however, the interface is not an implementation of the GKS. The form is similar enough
that many GKS-compliant programs can be converted easily to run as SAS/GRAPH
programs.

24 About this Document � Chapter 1

Graph-N-Go
To generate presentation graphs without writing any SAS/GRAPH code, you can use

Graph-N-Go (not available on mainframes). You can start Graph-N-Go in several ways:
� from the menus in any SAS window, select Solutions � Reporting � Graph-N-Go

� submit either of the following from the SAS command line:

gng

graphngo

� use an Explorer window to directly open a GFORM entry. Double-click (or
right-click and choose Open) on a GFORM entry to start a Graph-N-Go session
using that entry.

Information on using the application is in Graph–N-Go help, which you can access
from the application’s main window in either of two ways:

� select Help � Using This Window

� press F1 (this might not work in some operating environments).

You can also get help for the application by submitting the following command from
the SAS command line:

help gng

About this Document
This document provides reference information for all facilities, procedures,

statements, and options that can be used with SAS/GRAPH. This chapter describes
what you need to know to use SAS/GRAPH, and what conventions are used in text and
example code. To gain full benefit from using this document, you should familiarize
yourself with the information presented in this chapter, and refer to it as needed.

Audience
This document is written for users who are experienced in using the SAS System.

You should understand the concepts of programming in the SAS language, and you
should have an idea of the tasks you want to perform with SAS/GRAPH.

Prerequisites
The following table summarizes the SAS System concepts that you need to

understand in order to use SAS/GRAPH:

To learn how to Refer to

invoke the SAS System at your site instructions provided by the on-site SAS support
personnel

use Base SAS software

use the DATA step to create and manipulate
SAS data sets

use the SAS Text Editor to enter and edit text

SAS Language Reference: Concepts or SAS
Language Reference: Dictionary

Introduction to SAS/GRAPH Software � Syntax Conventions 25

To learn how to Refer to

allocate SAS libraries and assign librefs

create external files and assign filerefs

documentation for using the SAS System under
the operating system for the hardware at your
site

manipulate SAS data sets using SAS procedures Base SAS Procedures Guide

Conventions Used in This Document
This section explains the conventions this document uses for text, SAS language

syntax, and file and library references. The document uses the following terms in
discussing syntax:

keyword is a literal that is a primary part of the SAS language. (A literal
must be spelled exactly as shown, although it can be entered in
uppercase or lowercase letters.) Keywords in this document are
procedure names, statement names, macro names, routine names,
and function names.

argument is an element that follows a keyword. It is either literal, or it is
user-supplied. It has a built-in value (for example, NODISPLAY), or
it has a value assigned to it (for example, COLOR=text-color).

Arguments that you must use are required arguments. Other
arguments are optional arguments, or simply options.

value is an element that follows an equal sign. It assigns a value to an
argument. It might be a literal, or it might be a user-supplied value.

parameter is a value assigned to an argument that itself takes a value, for
example, the COLOR= parameter of the LABEL= option in a
LEGEND statement, as shown in the following statement:

legend label=(color=blue);

Syntax Conventions
Type styles have special meanings when used in the presentation of SAS/GRAPH

syntax in this document. The following list explains the style conventions for the syntax
sections:

UPPERCASE identifies SAS keywords such as the names of statements and
procedures (for example, PROC GCHART). Uppercase characters
also identify arguments and values that are literals (for example,
NOLEGEND and LABEL=NONE).

italic identifies arguments or values that you supply. Items in italic can
represent user-supplied values that are either

� nonliteral values assigned to an argument (for example,
axis-color in COLOR=axis-color)

� nonliteral arguments (for example, VBAR chart-variable. . . ;).

In addition, an item in italics can be the generic name for a list of
arguments or parameters from which the user can choose (for
example, appearance-options).

26 Syntax Conventions � Chapter 1

The following symbols are used to indicate other syntax conventions:

< > (angle
brackets)

identify optional arguments. Any argument not enclosed in angle
brackets is required.

| (vertical bar) indicates that you can choose one value from a group. Values
separated by bars are mutually exclusive.

. . . (ellipsis) indicates that the argument following the ellipsis can be repeated
any number of times (plot-request <. . . plot-request-n>, for
example). If the ellipsis and the following argument are enclosed in
angle brackets, they are optional. In SAS/GRAPH, an ellipsis also
indicates a range from which a value is selected (LINE=1 . . . 46,
for example).

The following examples illustrate the syntax conventions described in this section.
These examples contain selected syntax elements, not complete syntax.

PROC GANNO ANNOTATE=Annotate-data-set
<DATASYS>;

� PROC GANNO is in uppercase because it is a SAS keyword, the name of a
statement. The remaining elements are arguments for the statement.

� ANNOTATE= is not enclosed in angle brackets because it is a required argument.
It is in uppercase to indicate that it is a literal and must be spelled as shown.

� Annotate-data-set is in italic because it is a value that you must supply; in this
case, the value must be a data set name.

� DATASYS is enclosed in angle brackets because it is an optional argument. It is in
uppercase to indicate that it is a literal and must be spelled as shown.

� The ending semicolon (;) is required because it is outside the angle brackets for the
option.

SYMBOL <1 . . . 99>
<COLOR=symbol-color>
<MODE=EXCLUDE|INCLUDE>
<appearance-options>;

� SYMBOL is in uppercase because it is a SAS keyword, the name of a statement.
The numbers 1 . . . 99 are in angle brackets because they are optional. The
ellipsis indicates that you choose one from the range of numbers 1 through 99.
The remaining elements are arguments for the statement.

� COLOR= is enclosed in angle brackets because it is an optional argument.

� Symbol-color is in italics because it represents a value that you specify.

� MODE= is enclosed in angle brackets because it is an optional argument.

� EXCLUDE and INCLUDE are in uppercase because they are literal values and
must be spelled exactly as shown. They are separated by a vertical bar (an OR
bar) because you use one or the other but not both.

� Appearance-options is in italics because it is a generic name for a list of options
that can be used in the SYMBOL statement.

HBAR chart-variable< . . . chart-variable-n>
</ <PATTERNID=BY | GROUP | MIDPOINT | SUBGROUP>
<statistic-options>>;

Introduction to SAS/GRAPH Software � Conventions for Examples and Output 27

� Chart-variable is italic because it is an argument that you supply. It is required
because it is not in angle brackets.

� Chart-variable-n is enclosed in angle brackets because additional user-supplied
arguments are optional. The ellipsis before the argument indicates that it can be
repeated as many times as desired.

� PATTERNID= is a literal option. The values BY, GROUP, MIDPOINT, and
SUBGROUP are literal values that are mutually exclusive. You can use only one,
and it must be spelled as shown.

� Statistic-options is in italics because it is the generic name of a list of options that
affect the chart statistics.

When you are using an option, a statement, or a procedure whose syntax shows
arguments or values in italics, you must supply the argument or value. When the
argument or value is a font, color, or variable name, SAS/GRAPH expects valid font
names, color names, and variable names. Consider the following four syntax samples:

FONT=font

COLOR=color

COLOR=text-color

PIE chart-variable < . . . chart-variable-n>;

� Font must be a valid SAS font name. (See Chapter 11, “Specifying Fonts in SAS/
GRAPH Programs,” on page 155 for details.)

� Color and text-color must be valid SAS/GRAPH colors. (See Chapter 12, “SAS/
GRAPH Colors and Images,” on page 167 for details.)

� Chart-variable must be a valid SAS variable name. (See SAS Language Reference:
Dictionary for details.)

Conventions for Examples and Output
Most of the chapters in this document include examples that illustrate some of the

features of a procedure or its statements. Each example contains
� a description of the highlights of the example
� the program statements that produce the output
� the actual output from the example
� an explanation of the features of the example.

The output that is shown for the examples was generated in a Windows operating
environment. If you are using a different operating environment, you might need to
make some minor adjustments to the example programs.

In most cases, the output was sent to the Listing destination and generated using the
default style and device for that destination. Exceptions are noted in the text.

The dimensions of the graphics output area vary across devices and when using the
GRAPH windows. The dimensions can affect aspects of the graphics output – for
example, the appearance of axes or the position of graphics elements that use explicit
coordinates in units other than percent. You might need to adjust the dimensions of
your graphics output area or the size of graphics elements to correct any differences you
see. Most of the images of output in this document were generated with a GOPTIONS

28 Information You Should Know � Chapter 1

statement that specified a size approximately equal 5.5 inches by 4.2 inches, although
some images might be larger, if necessary, to accommodate the content of the graph.

goptions hsize=5.5inin vsize=4.2in;

These HSIZE= and VSIZE= settings are not shown in the example code and are not
necessary for generating the output, but you might want to use similar settings if your
output looks different from the output that is shown in the document.

Most examples specify these options:

RESET=ALL sets all graphics options to default values and cancels all global
statements.

BORDER draws a border around the graphics output area.

Information You Should Know
This section outlines information you should know before you attempt to run the

examples in this document.

Support Personnel
Most sites have personnel available to help users learn to run SAS System. Record

the name of your on-site SAS support personnel. Also, record the names of anyone else
you regularly turn to for help with running SAS/GRAPH.

Sample Programs
The documentation for each procedure, for global statements, and for features such

as the Annotate facility provide examples that demonstrate these features of
SAS/GRAPH. You can copy the example code from the help or the OnlineDoc and paste
it into the Program Editor in your SAS session.

These same programs are included in the sample library SAS Sample Library. How
you access the code in the sample library depends on how it is installed at your site.

� In most operating environments, you can access the sample code through the SAS
Help and Documentation. Select Help � SAS Help and Documentation. On the
Contents tab, select Learning to Use SAS � Sample SAS Programs � SAS/
GRAPH � Samples.

� In other operating environments, the SAS Sample Library might be installed in
your file system. If the SAS Sample Library has been installed at your site, ask
your on-site SAS support personnel where it is located.

To access the sample programs through SAS Help and Documentation or through
your file system, you must understand the naming convention used for the samples.
The naming convention for SAS/GRAPH samples is Gpcxxxxx, where pc is the product
code and xxxxx is an abbreviation of the example title. The product code can be a code
for a procedure, a statement, or in the case of Java and ActiveX examples, WB for "web
graphs." For example, the code for the first example in the GMAP procedure chapter,
Example 1 on page 1301, is stored in sample member GMPSIMPL. The sample-library
member name is sometimes displayed as a footnote in the output’s lower-right corner.

� In the Help system, the sample programs are organized by product. Within each
product category, most of the samples are sorted by procedure. Thus, to access the

Introduction to SAS/GRAPH Software � Sample Programs 29

code for the first example in the GMAP procedure chapter, select Learning to Use
SAS � SAS/GRAPH � Samples, scroll to GMAP Procedure, and select
GMPSIMPL-Producing a Simple Block Map.

� In your file system, the files that contain the sample code have filenames that
match the sample member names. For example, in a directory-based system, the
code for sample member GMPSIMPL is located in a file named GMPSIMPL.SAS.

Note: For Java and ActiveX (web graph) samples, the naming convention is
GWBxxxxx. �

Table 1.1 Product Codes for SAS/GRAPH Procedures

Procedure Code

dsgi DS

ganno AN

gareabar AB

gbarline BL

gchart CH

gcontour CT

geocode GE

gfont FO

ginside IN

gkpi KP

gmap MP

goptions OP

gplot PL

gproject PJ

gradar RR

greduce RD

gremove RM

greplay RE

gslide SL

gtile TL

g3d TD

g3grid TG

Table 1.2 Product Codes for SAS/GRAPH Statements

Statement Code

axis AX

by BY

footnote FO

30 Map Data Sets � Chapter 1

Statement Code

goptions ON

legend LG

note NO

pattern PN

symbol SY

title TI

Map Data Sets
To run the examples that draw maps, you need to know where the map data sets are

stored on your system. Depending on your installation, the map data set might
automatically be assigned a libref. Ask your on-site SAS support personnel or system
administrator where the map data sets are stored for your site.

Annotate Macros Data Set
To run the examples using Annotate macros, you need to know where the Annotate

macro data set is stored on your system. Depending on your installation, the Annotate
macro data set might automatically be assigned a fileref. Ask your on-site SAS support
personnel or system administrator where the Annotate macro data set is stored for your
site.

31

C H A P T E R

2
Elements of a SAS/GRAPH
Program

Overview 31
A Typical SAS/GRAPH Program 31

SAS/GRAPH PROC Step 32

Procedure Statement 32

Subordinate Statement 32

Other Statements and Options 32
Global Statements 33

Annotate DATA Set 34

DSGI Functions and Routines in a DATA Step 34

ODS Statements 34

Destination Statements 34

ODS Statement Options 35
Base SAS Language Elements 35

FILENAME Statement 36

LIBNAME Statement 36

Other Resources 36

Overview
The elements used by SAS/GRAPH programs can include SAS/GRAPH language

elements, ODS statements, and Base SAS language elements. The purpose of this
chapter is to familiarize you with the overall structure of a typical SAS/GRAPH
program, to define its basic parts, and to show how these parts relate to one another.

A Typical SAS/GRAPH Program
Most SAS/GRAPH programs have Base SAS statements, ODS statements, and

SAS/GRAPH statements. Annotate DATA steps and DSGI functions are also used in
many SAS/GRAPH programs. The sample program below identifies the basic parts of a
typical SAS/GRAPH program. Each element is described in more detail in the following
sections.

32 SAS/GRAPH PROC Step � Chapter 2

Display 2.1 Typical SAS/GRAPH Program

SAS/GRAPH PROC Step
A group of SAS procedure statements is called a PROC step. The PROC step

consists of all the statements, variables, and options that are contained within the
(beginning) PROC and (ending) RUN statements of a procedure. These statements can
identify and analyze the data in SAS data sets, generate the graphics output, control
the appearance of the output, define variables, and perform other operations on your
data. You can also specify global statements and options within the PROC step to
customize the appearance of your graph, but it is often more efficient to specify global
statements before the PROC step.

Procedure Statement
The procedure statement identifies which procedure you are invoking (for example,

GCHART, GMAP, or GCONTOUR) and identifies which input data set is to be used.

Subordinate Statement
Subordinate statements are statements used within the procedure that perform

the work of the procedure. Subordinate statements that generate graphs are called
action statements. At least one action statement is required for a procedure to produce
a graph. Examples of action statements are the HBAR statement in the GCHART
procedure and the BUBBLE statement in the GPLOT procedure.

Non-action statements are those that do not generate graphs. The GRID statement
in PROC G3GRID and the DELETE statement in PROC GDEVICE are examples of
non-action statements.

Other Statements and Options

There are many options that you can specify within the PROC step to control your
graphics output. PROC step options always follow the forward slash (/) following the
action statement of the procedure. These options might control such things as axis
characteristics, midpoint values, statistics, catalog entry descriptions, or appearance
elements of your graph. For example, the SUBGROUP= option in the BLOCK
statement of the GCHART procedure tells the procedure to divide the graph’s bars into

Elements of a SAS/GRAPH Program � Global Statements 33

segments according to the values of the SUBGROUP= variable. The HAXIS option in
the PLOT statement of the GPLOT procedure, as shown in Display 2.1 on page 32,
specifies where to draw the major tick mark values for the horizontal axis.

Global Statements
A global statement is a statement that you can specify anywhere in a SAS program.

Global statements set values and attributes for all the output created from that point in
the program when the statement is specified. The specifications in a global statement
are not confined to the output generated by any one procedure but apply to all the
output generated then point on in the program, unless they are overridden by a
procedure option or another global statement. The RESET= option in the GOPTIONS
statement also overrides global statements by resetting them.

Below is a list of all the SAS/GRAPH statements along with a brief description of
each. See Chapter 14, “SAS/GRAPH Statements,” on page 197 for a more detailed
description of each of these statements.

AXIS
modifies the appearance, position, and range of values of axes in charts and plots.

BY
processes data and orders output according to the values of a classification (BY)
variable. The BY statement in SAS/GRAPH is essentially the same as the BY
statement in Base SAS, but the effect on the output is different when it is used
withSAS/GRAPH procedures. When used with SAS/GRAPH procedures, the BY
statement subsets the data and creates a graph for each unique value of the
BY-variable.

Note: The BY statement is an exception here because it is not a global
statement. It must be specified within a DATA or PROC step. �

GOPTIONS
specifies graphics options that control the appearance of graphics elements by
specifying characteristics such as default colors, fill patterns, fonts, or text height.
Graphics options can also temporarily change device settings.

LEGEND
modifies the appearance and position of legends generated by procedures that
produce charts, plots, and maps.

PATTERN
defines the characteristics of patterns used in graphs created by the GAREABAR,
GBARLINE, GCHART, GCONTOUR, GMAP, and GPLOT procedures.

SYMBOL
defines the characteristics of symbols that display the data plotted by a PLOT
statement used by PROC GBARLINE, PROC GCONTOUR, and PROC GPLOT as
well the interpolation method for plot data. The SYMBOL statement also controls
the appearance of lines in contour plots.

TITLE, NOTE, and FOOTNOTE
add text to maps, plots, charts, and text slides. They control the content,
appearance, and placement of text on your graph. The FOOTNOTE statement is
used to display lines of text at the bottom of the page. The TITLE statement is
used to specify up to ten title lines to be printed on the title area of the output. The
NOTE statement is used to add text to the procedure output area of your graph.

Note: The NOTE statement is a local statement. It can be specified only within
a PROC step, and it affects the output of that PROC step only. �

34 Annotate DATA Set � Chapter 2

Annotate DATA Set
An Annotate DATA set is a data set containing graphics commands that can be

applied to SAS/GRAPH output. See Chapter 29, “Using Annotate Data Sets,” on page
641 for information on building and using Annotate data sets. The Annotate facility can
be used to create a completely new graph or to annotate existing PROC output. See
Chapter 30, “Annotate Dictionary,” on page 667 for a complete description of all
Annotate functions and variables. Below is an example of how the Annotate facility can
be used to add text labels and symbols to a graph that was created using the GMAP
procedure.

Display 2.2 Using Annotate with GMAP Procedure Output

DSGI Functions and Routines in a DATA Step
The DATA Step Graphics Interface (DSGI) enables you to create graphics output

within the DATA step or from within an SCL application. Through DSGI, you can call
the graphics routines used by SAS/GRAPH to generate a custom graph, or to rescale
and replay existing graphs into viewports. DSGI GASK routines can be used to query
current system or graphics area settings. For more information on DSGI functions and
routines, see Chapter 31, “The DATA Step Graphics Interface,” on page 769.

ODS Statements

Destination Statements

Like Base SAS, SAS/GRAPH uses ODS destination statements (,) to control
where the output goes and how it looks. While ODS statements are not required in
every SAS/GRAPH program, they are necessary if you want to generate graphs for
destinations other than the default listing destination. Some other destinations include
HTML, RTF, and PDF. For more information about ODS destinations, see
“Understanding ODS Destinations” in SAS Output Delivery System: User’s Guide.

Elements of a SAS/GRAPH Program � Base SAS Language Elements 35

As shown in Display 2.1 on page 32, the ODS destination statement is used at the
beginning and end of the program to open and close the destination, respectively. If you
do chose to use a destination other than the default and need to use the ODS
destination statement, you should always open the destination before calling the
procedure. To conserve system resources, you should also use the ODS destination
statement to close the LISTING destination if you do not need LISTING output.

ODS Statement Options

You can use the STYLE= option on the ODS destination statement to change the
style that is applied to your output. For more information about the STYLE= option,
see Chapter 10, “Controlling The Appearance of Your Graphs,” on page 133.

Base SAS Language Elements
The following Base SAS language statements are also part of SAS/GRAPH:

FORMAT statement
assigns a format to a variable. SAS/GRAPH procedures use formatted values to
determine such aspects of the graph as midpoints, axis labels, tick-mark values,
and legend entries.

FILENAME
associates a SAS fileref with an external text file or output device. See
“FILENAME Statement” on page 36 for a more detailed description of this
statement.

RUN statement
executes the statements in the PROC step.

LABEL statement
assigns a descriptive text string (a “label”) to a variable. The label appears in
place of the variable name on the axis and legend.

LIBNAME
associates a libref with a SAS library. See “LIBNAME Statement” on page 36 for a
more detailed description of this statement.

ODS statements
control the output of SAS/GRAPH procedures, where the output is sent
(destination), the appearance of the output (STYLE=), and the output file type
(DEVICE=). See Chapter 3, “Getting Started With SAS/GRAPH,” on page 39 for
information on using ODS with SAS/GRAPH procedures.

OPTIONS statement
changes the value of one or more SAS system options.

QUIT statement
executes any statements that have not executed and ends the procedure. It also
ends a procedure that is using RUN-GROUP processing.

WHERE statement
specifies observations from SAS data sets that meet a particular condition. You
can use a WHERE statement to easily subset your data.

For a complete description of these statements, see “Statements” in SAS Language
Reference: Dictionary.

36 Other Resources � Chapter 2

FILENAME Statement
The FILENAME statement associates a SAS fileref with an external text file or

output device. With SAS/GRAPH software, you can use a FILENAME statement to to
the following tasks:

� point to a text file that you want to use for data input or output.

� assign the destination of a graphics stream file (GSF). This destination can be
either a single, specific file or an aggregate file storage location, such as directory
or PDS. See “Exporting Your Output” on page 111 for information on creating
graphics stream files.

You can also use the FILENAME statement to route input to and from other devices.
For details, see the SAS documentation for your operating environment.

A FILENAME statement that points to an external file has this general form:

FILENAME fileref ’external-file’;

fileref
is any SAS name.

external-file
is the physical name of the external file or aggregate file storage location you want
to reference. For details on specifying the physical names of external files, see the
SAS documentation for your operating environment.

LIBNAME Statement
The LIBNAME statement associates a libref with a SAS library. A SAS library can

be either temporary or permanent. Typically, SAS libraries used with SAS/GRAPH
software contain the following items:

� SAS files for data input and output.

� SAS catalogs that contain SAS/GIS maps, fonts, GRSEG, CMAP, TEMPLATE, or
device entries.

� SAS catalogs that contain graphics output. These catalogs are often stored in
permanent libraries. See “Controlling Where Your Output is Stored” on page 97
for information on storing graphics output in a permanent catalog.

The LIBNAME statement has this general form:

LIBNAME libref ’SAS-library’;

libref
is any SAS name.

SAS-library
is the physical name for the SAS library on your host system. For details on
specifying SAS-library, see the SAS documentation for your operating
environment.

The libref WORK is reserved; it always points to an area where temporary data sets
and catalogs are kept. The contents of WORK are deleted when you exit a SAS session.

Other Resources
� For more information on using and managing SAS/GRAPH programs to create

graphics output, see Chapter 3, “Getting Started With SAS/GRAPH,” on page 39.

Elements of a SAS/GRAPH Program � Other Resources 37

� For more information on bringing SAS/GRAPH output to the Web, see Chapter 16,
“Introducing SAS/GRAPH Output for the Web,” on page 439.

� For information on using and managing SAS/GRAPH output, see Chapter 7, “SAS/
GRAPH Output,” on page 87.

38

39

C H A P T E R

3
Getting Started With SAS/GRAPH

Introduction 39
Introduction to ODS Destinations and Styles 40

Opening And Closing Destinations 40

The LISTING Destination 41

Introduction to Styles 41

Specifying a Style 42
Generating Output With SAS/GRAPH Procedures 43

Sending Output to the GRAPH Window (LISTING Destination) 43

Sending Output to a File 44

Sending Output to a Web Page 45

Sending Output to an RTF File (Microsoft Word Document) 46

Sending Output to a PDF File 47
Controlling the Graphics Output Format With the DEVICE= Option 48

Overview of Devices and Destinations 48

Specifying the DEVICE= Graphics Option 49

Summary of Default Destinations, Styles, and Devices 49

Sending Output To Multiple Open Destinations 51
Closing Destinations To Save System Resources 51

Specifying Devices And Styles With Multiple Open Destinations 51

Related Topics 52

Introduction

Like other SAS procedures, the output from SAS/GRAPH procedures is controlled by
ODS (Output Delivery System). ODS controls where your output is sent, which could be
to a file, to the GRAPH window, directly to a printer, and so on. By default, ODS also
applies a style to your output. Styles set the overall appearance of your output; that is,
the colors and fonts that are used.

SAS/GRAPH uses device drivers to generate graphics output. SAS/GRAPH device
drivers control the format of your graphics. For example, they determine whether
SAS/GRAPH produces a PNG file, an SVG file, or an ActiveX control.

Note: This document deals only with device-based graphics. See “Device-Based
Graphics and Template-Based Graphics” on page 6. �

Each ODS destination is associated with a default style and a default graphics device
to optimize your output for that destination. However, using ODS statements and
SAS/GRAPH statements and options, you can customize all of the aspects of your
output, including where your output is sent, its appearance, and the format of your
graphics.

40 Introduction to ODS Destinations and Styles � Chapter 3

ODS destination The ODS destination controls where your output is sent, such as to
a file or directly, to a printer, and so on. The ODS destination is
specified by the ODS destination statement.

ODS style The ODS style controls the appearance of your output, including
colors and fonts. The ODS STYLE= attribute in the ODS destination
is specified by the ODS style statement.

SAS/GRAPH
device

The SAS/GRAPH device controls the format of your graphics output
such as PNG, GIF, SVG , and so on. The SAS/GRAPH DEVICE=
option is specified in the GOPTIONS SAS/GRAPH DEVICE=
statement

Note: The LISTING destination is unique. For the LISTING destination, the device
controls where your output is sent. �

The following sections discuss these concepts of SAS output and describe how you
can use SAS/GRAPH and ODS statements and options to create the graphic output you
want.

For complete information on ODS, see also SAS Output Delivery System: User’s
Guide.

Introduction to ODS Destinations and Styles

ODS destinations determine where your SAS/GRAPH output is sent. For example,
the LISTING destination sends output to the GRAPH window (by default), and the
HTML destination sends output to an HTML file. By default, ODS styles determine the
overall appearance of your output.

Opening And Closing Destinations

A destination is a designation that ODS uses to determine where to send your
output. Valid destinations include LISTING (the GRAPH window, by default), HTML,
RTF, and PDF, but other destinations are also available.

To generate output from SAS, a valid ODS destination must be open. By default, the
LISTING destination is open, but you can open other destinations as needed by
specifying an ODS destination statement. Depending on the options available for the
destination, you can specify options such as the filename or the path to an output
directory. With the exception of the LISTING destination, you must also close the
destination before output is generated.

ods destination <options>; /* opens the destination */
/* procedure statements and other program elements here */

ods destination close; /* closes the destination */

For example, to send output to the HTML destination, you would specify

ods html;
/* procedure statements and other program elements here */

ods html close;

For more information on ODS destinations, see “Managing ODS Destinations” on
page 191 and “ODS Destination Statement Options” on page 192.

� Introduction to Styles 41

The LISTING Destination
The LISTING destination is open by default. If you are sending output to other

destinations and are not interested in the output that is sent to the LISTING
destination, you should close it to conserve resources. The usual practice is to close
LISTING at the beginning of your program and to reopen it at the end. This practice
ensures that you always have one open destination. See “Closing Destinations To Save
System Resources” on page 51 for more information.

The LISTING destination is somewhat different from other ODS destinations. For
the LISTING destination, if you do not specify a device, then your output is sent to the
GRAPH window. However, if you specify a device, then where your output is sent is
determined by the device. For example, the PNG device sends output to a PNG file
instead of the GRAPH window. Your company might have device drivers specific to your
site that send output directly to a certain printer. Where your output is sent is
controlled by the device entry in the SASHELP.DEVICES catalog. See “Controlling the
Graphics Output Format With the DEVICE= Option” on page 48 and Chapter 6, “Using
Graphics Devices,” on page 67 for more information about devices.

The LISTING destination is the only destination that does not have to be closed
before output can be generated.

Introduction to Styles
By default, ODS applies a style to all output. A style is a template, or set of

instructions, that determines the colors, font face, font sizes, and other presentation
aspects of your output. SAS ships many predefined styles in the STYLES item store,
such as Analysis, Statistical, and Journal. Examples of some of these predefined styles
are shown in Table 3.1 on page 42. Many additional styles (see “Viewing the List of
Styles Provided by SAS” on page 141) are available in the STYLES item store in
SASHELP.TMPLMST.

Each destination has a default style associated with it. For example, the default
style for the PDF destination is Printer, and the default style for the HTML destination
is Default. See “ODS Destinations and Default Styles” on page 135 and “Recommended
Styles” on page 136 for more information.

42 Specifying a Style � Chapter 3

Table 3.1 Examples of Styles Available in SASHELP.TMPLMST

Display 3.1 Style=Statistical Display 3.2 Style=Analysis

Display 3.3 Style=Ocean Display 3.4 Style=Harvest

Display 3.5 Style=Gears Display 3.6 Style=Banker

Specifying a Style
To change the style that is applied to your output, specify the STYLE= option on your

ODS destination statement. For example, if you want to change the overall look of your

� Sending Output to the GRAPH Window (LISTING Destination) 43

graph for the HTML destination to the Analysis style, you would specify
style=analysis in the ODS HTML destination statement as follows:

ods html style=analysis;

See “About Style Templates” on page 135 and “Specifying a Style” on page 139 for more
information.

Note: You can turn off the use of styles by default by specifying the NOGSTYLE
option. See “Changing the Appearance of Output to Match That of Earlier SAS
Releases” on page 154 and the GSTYLE system option in SAS Language Reference:
Dictionary for more information. �

Generating Output With SAS/GRAPH Procedures
ODS provides many destinations to which you can send output. Some of the most

often used destinations are LISTING, HTML (a Web page), RTF (an Microsoft Word
document), and PDF. As described in “Introduction to Styles” on page 41, each
destination is associated with a default style. The following topics each show the
default output for each of the destinations listed above.

Each destination is also associated with a default device driver for generating
graphics output. Device drivers determine the form that your graphics output takes.
For example, the PNG device driver generates PNG image files, and the JAVA device
driver generates Java applets that can be run from within HTML pages.

Each destination is associated with a default style and a default device, so you do not
need to specify either one to get professional-quality output. You can even send output
to several destinations at the same time without specifying either a device or a style.

Sending Output to the GRAPH Window (LISTING Destination)
When working in an interactive environment such as Windows, the LISTING

destination is the GRAPH window. By default, the LISTING destination is open, so to
send output to it, you simply submit your SAS/GRAPH program. The following example
is a simple GCHART program that produces the output shown in Display 3.7 on page 44.

goptions reset=all border;
title "US Electric Power - Revenue and Generation Sources";

proc gchart data=sashelp.electric (where=(year >= 2000)) ;
vbar year / discrete sumvar=Revenue subgroup=Customer;

run;
quit;

44 Sending Output to a File � Chapter 3

Display 3.7 LISTING Destination Output Using the Listing Style (Shown in the GRAPH Window)

The default style applied to output sent to the LISTING destination is the Listing
style. When you send output to the LISTING destination, SAS/GRAPH uses a default
device driver that generates output for the GRAPH window. This device driver does not
write an image file to disk.* For the LISTING destination, the default device driver
varies by operating environment. In a Display Manager Session (DMS), the default
device driver on Windows systems is WIN. On UNIX systems, the default device driver
is XCOLOR, and on z/OS systems, the default device driver is IBMPCGX.

Sending Output to a File
To send output to disk file, send your output to the ODS LISTING destination, but

specify a graphics output device using the DEVICE= graphics option. You can use a
FILENAME statement and the GSFNAME= graphics option to specify a name and
location for the graphics output file. If you do not specify a name with the GSFNAME=
graphics option, the default name for the procedure or the name specified with the
NAME= option is used as the filename.

To create a GIF file with the graph shown in Display 3.7 on page 44, in the procedure
code, add a FILENAME statement to create a file reference to the desired output file.
Then, add the DEVICE=GIF and GSFNAME=FileRef graphics options to the
GOPTIONS statement, where FileRef is the file reference that you created in the
FILENAME statement.

filename gout "./revgensrcs.gif";
goptions reset=all device=gif gsfname=gout border;
title "US Electric Power - Revenue and Generation Sources";

* SAS/GRAPH procedures create GRSEG catalog entries when you send output to the LISTING destination, but the GRSEG
file format is an internal file format specific to SAS/GRAPH. It cannot be used as if it was an image file such as a PNG, GIF,
or JPEG file.

� Sending Output to a Web Page 45

proc gchart data=sashelp.electric (where=(year >= 2000)) ;
vbar year / discrete sumvar=Revenue subgroup=Customer;

run;
quit;

By default, the Listing style is applied to the graph as shown in Display 3.7 on page
44. In the FILENAME statement, the current directory is the default SAS output
directory.

For more information on sending graphics output to a file, see “Controlling Where
Your Output is Stored” on page 97.

Sending Output to a Web Page
Tosend output to a Web page, send your output to the HTML destination by

specifying the ODS HTML statement. This statement opens the HTML destination so
that it can receive output. You must also close the HTML destination before output can
be generated.

To create a Web page with the graph shown in Display 3.7 on page 44, add the ODS
HTML statements around the procedure code.

ods listing close;
ods html;
goptions reset=all border;
title "US Electric Power - Revenue and Generation Sources";

proc gchart data=sashelp.electric (where=(year >= 2000)) ;
vbar year / discrete sumvar=Revenue subgroup=Customer;

run;
quit;
ods html close;
ods listing;

46 Sending Output to an RTF File (Microsoft Word Document) � Chapter 3

Display 3.8 HTML Destination Output Using the Default Style (Styles.Default)

By default, SAS/GRAPH creates a PNG file that contains the graph and an HTML
page that references the PNG file. You can use the BODY= and PATH= options in the
ODS HTML statement to specify a specific filename and location for the HTML and PNG
files. SAS/GRAPH displays the HTML page in the Results Viewer. You can also view
the graph outside of your SAS session by displaying the HTML page in your browser.
The default device driver is PNG, and the default style is Default (STYLES.DEFAULT).

Sending Output to an RTF File (Microsoft Word Document)

To send output to an RTF file, send your output to the RTF destination by specifying
the ODS RTF statement. This statement opens the RTF destination so that it can
receive output. You must also close the RTF destination before output can be generated.

To create an RTF document that contains the graph shown in Display 3.7 on page 44,
add the ODS RTF statements around the procedure code.

ods listing close;
ods rtf;
goptions reset=all border;
title "US Electric Power - Revenue and Generation Sources";

proc gchart data=sashelp.electric (where=(year >= 2000)) ;
vbar year / discrete sumvar=Revenue subgroup=Customer;

run;
quit;
ods rtf close;
ods listing;

� Sending Output to a PDF File 47

Display 3.9 RTF Output Using the Rtf Style

By default, SAS/GRAPH creates an RTF file with the graph embedded in it and
displays this RTF file in the Results Viewer. When you send output to the RTF
destination, SAS/GRAPH does not write a separate image file to disk. The default
device driver is the SASEMF driver, and the default style is Rtf.

Sending Output to a PDF File
To send output to a PDF file, send your output to the PDF destination by specifying

the ODS PDF statement. This statement opens the PDF destination so that it can
receive output. You must also close the PDF destination before output can be generated.

To create a PDF document that contains the graph shown in Display 3.7 on page 44,
add the ODS PDF statements around the procedure code.

ods listing close;
ods pdf;
goptions reset=all border;
title "US Electric Power - Revenue and Generation Sources";

proc gchart data=sashelp.electric (where=(year >= 2000)) ;
vbar year / discrete sumvar=Revenue subgroup=Customer;

run;
quit;
ods pdf close;
ods listing;

48 Controlling the Graphics Output Format With the DEVICE= Option � Chapter 3

Display 3.10 PDF Output Using the Printer Style

By default, SAS/GRAPH creates a PDF file and displays this PDF file in the Results
Viewer. When you send output to the PDF destination, SAS/GRAPH does not write a
separate image file to disk. The default device driver is the SASPRTC device driver,
and the default style applied to output sent to the PDF destination is Printer.

Controlling the Graphics Output Format With the DEVICE= Option

Overview of Devices and Destinations
SAS/GRAPH procedures use device drivers to generate graphics output. Device

drivers determine the format of your graphics output. For example, the GIF device
driver generates GIF image files. The ACTIVEX device driver generates ActiveX
controls that can be run within HTML pages or RTF documents. The SASPRTC device
generates images for the current printer as determined by the PRINTERPATH= system
option (or the SYSPRINT= system option on Windows).

Every ODS destination has a default device driver associated with it. For example,
the default device driver for the HTML destination is PNG. By default, when you send
output to the HTML destination, your graphics output is rendered as a PNG file. (An
HTML file is also generated. This HTML file contains any non-graphical output
generated by your application plus an tag that inserts the PNG output that was
generated.)

Each destination supports several devices. For example, the HTML destination
supports the SVG, PNG, GIF, JAVA, and ACTIVEX devices, in addition to several

� Summary of Default Destinations, Styles, and Devices 49

others. “Viewing The List Of All Available Devices” on page 70 describes how to display
the entire list of devices that are available. Table 3.2 on page 50 lists the default and
supported devices for the LISTING, HTML, RTF, and PDF destinations.

Specifying the DEVICE= Graphics Option
You can change the device, and therefore the format of your graphics output, by

changing the device driver that SAS uses. You can specify a device with either the
OPTIONS statement or the GOPTIONS statement. For example, to use the GOPTIONS
statement to change the device, submit this code:

goptions device=device-entry;

Devices that you might specify include PNG, GIF, JPEG, SVG, ACTIVEX, ACTXIMG,
JAVA, JAVAIMG, and many others. For all open destinations, SAS/GRAPH attempts to
use the device that you specify. If the device that you specify is not valid for an open
destination, SAS/GRAPH switches to the default device for that destination.

For details, see “GOPTIONS Statement” on page 220. “Summary of Default
Destinations, Styles, and Devices” on page 49 describes the supported devices for the
LISTING, HTML, RTF, and PDF destinations. See also Chapter 6, “Using Graphics
Devices,” on page 67.

Summary of Default Destinations, Styles, and Devices
Each destination has a default device and default style that are used if you do not

specify otherwise. Also, each destination has a set of recommended devices. Table 3.2
on page 50 summarizes this information for the LISTING, HTML, RTF, and PDF
destinations.

You can use any style with any destination. If you specify a device with the
GOPTIONS DEVICE= option, you should specify a device that is compatible with all of
the destinations that you have open.

50 Summary of Default Destinations, Styles, and Devices � Chapter 3

Table 3.2 Default Devices and Styles for Commonly Used ODS Destinations

ODS
Destination Default Device

Default
Style Default Output

Recommended
Devices

LISTING WIN (Windows)

XCOLOR (UNIX)

IBMPCGX (z/OS)

Listing Graphics output is
displayed in the GRAPH
window1

All devices2 except
JAVA and
ACTIVEX

HTML PNG Default

(Styles.Default)

HTML and PNG file PNG

GIF

JPEG

JAVA

JAVAIMG

ACTIVEX

ACTXIMG

SVG

JAVAMETA

GIFANIM

RTF SASEMF Rtf RTF file (with embedded
metafile)

SASEMF

PNG

JPEG

JAVAIMG

ACTIVEX

ACTXIMG

PDF SASPRTC Printer PDF file SASPRTC (color)

SASPRTG (gray
scale)

SASPRTM
(monochrome)

PRINTER SASPRTC Printer Controlled by the
PRINTERPATH= system
option (and by the
SYSPRINT= system
option on Windows)3

SASPRTC (color)

SASPRTG (gray
scale)

SASPRTM
(monochrome)

1 The default devices for the LISTING destination do not write image files to disk.
2 JAVAMETA is supported for the LISTING destination, but its output requires processing with

the Metaview applet.
3 In Windows, if the PRINTERPATH= option is not specified, then SAS uses the setting of the

SYSPRINT= system option. If neither the SYSPRINT= nor the PRINTERPATH= option has
been set, then SAS uses the default Windows printer.

Note: SASHELP.DEVICES also has high resolution versions of the PNG and JPEG
devices, PNG300 and JPEG300. These devices are not appropriate choices for the
HTML destination. Web browsers cannot display images in high resolution, so high
resolution images appear very large. �

� Specifying Devices And Styles With Multiple Open Destinations 51

Sending Output To Multiple Open Destinations
When you are sending output to more than one destination at the same time, you

should remember two points:

� You should close any open destinations whose output you are not interested in.
Doing so saves system resources.

� If you specify a device that is not supported for an open destination, SAS/GRAPH
switches to the default device for that destination and prints a warning to the SAS
log.

Closing Destinations To Save System Resources
SAS/GRAPH creates output for every open destination. The LISTING destination is

open by default, and you can open as many additional destinations as needed. For
example, you can open the HTML and PDF destinations, and generate output for all
three destinations by submitting your SAS code only once. However, SAS/GRAPH goes
through the process of generating GRSEG catalog entries and graphics output files for
each open destination. This process uses system resources. Each open destination
increases system resources required for by your application. If you are not interested in
the output of a destination, it is recommended that you close that destination.

Specifying Devices And Styles With Multiple Open Destinations
Unless you specify a different device or different style, SAS/GRAPH uses the default

device and default style for each open destination. For example, suppose your
application specifies the following:

ods listing close;
ods html;
ods rtf;

/* procedure statements and other program elements here */
ods html close;
ods rtf close;
ods listing;

SAS/GRAPH uses the PNG device and the Default style to generate output for the
HTML destination, and it uses the SASEMF device and the Rtf style to generate output
for the RTF destination.

If you specify a different device with the DEVICE= option in the GOPTIONS
statement, SAS/GRAPH attempts to use that device to generate output for every open
destination. If you want to use a different style for all output, you need to specify that
style on each ODS destination statement. For example, to use the ACTIVEX device and
the ANALYSIS style for all output sent to both the HTML and RTF destinations, you
would specify the GOPTIONS statement and the STYLE= option as follows:

goptions device=activex;
ods listing close;
ods html style=analysis;
ods rtf style=analysis;

/* procedure statements and other program elements here */
ods html close;
ods rtf close;
ods listing;

52 Related Topics � Chapter 3

If you specify a device that is not supported for an open destination, SAS/GRAPH
switches to the default device for that destination and prints a warning to the SAS log.

Related Topics
Additional information is available on all of the SAS/GRAPH output concepts that

are described in this topic. For more information on generating output with the SAS/
GRAPH procedures, see the following topics:

� Chapter 7, “SAS/GRAPH Output,” on page 87
� Chapter 16, “Introducing SAS/GRAPH Output for the Web,” on page 439

For more information on the ODS, ODS destinations, and ODS styles, see the
following topics:

� Chapter 13, “Managing Your Graphics With ODS,” on page 191
� Chapter 10, “Controlling The Appearance of Your Graphs,” on page 133

For more information on using the graphics devices, see Chapter 6, “Using Graphics
Devices,” on page 67.

53

C H A P T E R

4
SAS/GRAPH Processing

Running SAS/GRAPH Programs 53
SAS Data Sets 54

Specifying an Input Data Set 54

Using a Library Reference 54

Using a File Specification 55

Input Data Set Requirements 55
Automatic Data Set Locking 56

Using Engines with SAS/GRAPH Software 56

RUN-Group Processing 56

RUN-group Processing with global and local statements 56

RUN-group Processing with BY statements 57

RUN-group Processing with the WHERE Statement 57

Running SAS/GRAPH Programs

Here are the environments and modes in which you can run a SAS/GRAPH program:
� The SAS windowing environment provides a text editor for submitting programs,

windows for the SAS log and SAS output, and many other facilities. For more
information on the SAS windowing environment see “Introduction to the SAS
Windowing Environment” in SAS Language Reference: Concepts.

� Interactive line mode enables you to submit programs one line at a time in
response to prompts from the SAS/GRAPH system. In interactive line mode, the
SAS/GRAPH program can display graphics output on your monitor as well as store
the output in a file.

� Noninteractive mode enables you to issue a SAS command that executes a
SAS/GRAPH program that is stored in an external file. This mode is valid only in
your current terminal session. In this mode, the SAS/GRAPH program can display
graphics output on your monitor as well as store the output in a file.

� Batch mode enables you to execute a SAS program (stored in a file) in a separate
terminal session. In batch mode, the graphics output is not displayed on your
monitor. In this case, your program must send the graphics output to a printer or
plotter, permanent catalog, or an external file.

Note: Certain fonts called device-resident fonts are specific to the device being used
and therefore are not portable between devices when running in batch mode. See
“Overview” on page 1175 for more information on using fonts in batch mode. �

Regardless of how you run your programs, SAS/GRAPH software applies ODS styles
by default to your graphics output. For more information on ODS styles see Chapter 10,
“Controlling The Appearance of Your Graphs,” on page 133.

54 SAS Data Sets � Chapter 4

See Chapter 7, “SAS/GRAPH Output,” on page 87 for more information about
SAS/GRAPH output.

SAS Data Sets
Many SAS/GRAPH procedures use and create SAS data sets. SAS data sets are files

stored in SAS libraries and can be either temporary or permanent.
When you create a SAS data set, it is stored automatically in the WORK library.

Unless you specify a different library, the WORK library serves as a temporary holding
place for all the data sets you access and create for the duration of a SAS session. By
default, the WORK library and all the data sets stored in it will be removed after the
SAS session ends.

You can also create permanent SAS libraries that can be saved in a specified location
on your computer. Permanent libraries are not deleted when the SAS session
terminates and are available for processing in subsequent SAS sessions.

For more information on SAS data sets and other data processing details, see SAS
Language Reference: Concepts.

For a complete discussion of SAS data set options and SAS system options, see SAS
Language Reference: Dictionary.

Specifying an Input Data Set
You can specify an input data set by using one of the following methods:

� a library reference

� a file specification

When using either of these methods, you usually specify the DATA= option in the
procedure statement, as shown in this example:

proc gplot data=stocks;

If you omit the DATA= option, then the procedure uses the SAS data set that was
most recently used or created in the current SAS session.

If you do not specify a SAS data set and no data set has been created in the current
SAS session, an error occurs and the procedure stops.

Most of the procedures that read data sets or create output data sets accept data set
options. SAS data set options appear in parentheses after the DATA= option
specification, as shown in this example:

proc gplot data=stocks(where=(year=1997));

Using a Library Reference
A SAS library is a storage location for SAS data sets in your operating environment.

Data sets stored in a SAS Library are created and referenced using either a one- or
two-level name. SAS data sets stored in the temporary WORK library are usually
specified using a one-level name. Procedures assume that SAS data sets that are
specified with a one-level name are to be read from or written to the WORK library.
Since temporary SAS data sets are typically stored by default in the WORK data library,
you can specify them using a one-level name and SAS knows where to find them. For
example, this statement specifies the data set stocks that resides in the WORK library:

SAS/GRAPH Processing � Input Data Set Requirements 55

proc gplot data=stocks;

To specify a permanent data set you typically use a two-level name. A permanent
library reference is specified in the form libref.SAS-data-set-name in which libref
identifies a storage location on your host system. A LIBNAME statement associates a
libref with the storage location. See also “LIBNAME Statement” in SAS Language
Reference: Dictionary. For example, these statements specify a permanent data set:

libname reflib ’my-SAS-library’;
proc gplot data=reflib.stocks;

run;

You can use a one-level name for permanent SAS data sets if you specify a USER
data library. In this case, the procedure assumes that data sets with one-level names
are in the User library instead of in the WORK data library. You can assign a User
library with a LIBNAME statement or the USER= SAS system option. For example,
these statements use a single-level name to specify a permanent data set that is stored
in the library identified as the User library:

options user=’my-SAS-library’;
proc gplot data=stocks;

For more information on SAS Libraries see “SAS Libraries” in SAS Language
Reference: Concepts.

Using a File Specification

To use a file specification for specifying a data set, enclose the file specification in
single quotation marks. The specification can be a filename, or a path and filename. The
specification must follow the file naming conventions of your operating environment.

For example, the following code creates a file named mydata in the default storage
location, which is the location where the SAS session was started:

data ’mydata’;

The quotes are required for a file specification; if omitted, SAS treats the specification
as a library reference. In the above example, if the quotes are omitted, SAS creates the
data set in the temporary WORK catalog and identifies it by the name WORK.MYDATA.

To create the file in a location other than the default location, the quoted file
specification must include the full path to the desired location.

You cannot use quoted file specifications for the following items:

� SAS catalog names

� MDDB and FDB references

� the _LAST_= system option

Input Data Set Requirements

SAS/GRAPH procedures often have certain requirements for the input data sets
they use. Some procedures might require the input data set to be sorted in a certain
way while others might require the data set to contain certain variables or types of
information. If necessary, you can use DATA steps and Base SAS procedures in your
program to manipulate the data appropriately. For more information on the
requirements of any given procedure, see the “Concepts” section which is included at
the beginning of each procedure overview.

56 Automatic Data Set Locking � Chapter 4

Automatic Data Set Locking
All SAS/GRAPH procedures that produce graphics output automatically lock the

input data sets during processing. By locking a data set, SAS/GRAPH software
prevents another user from updating the data at the same time you are using it to
produce a graph. If data in a data set changes while you are using it to draw a graph,
unpredictable results can occur in the graph or your program can end with errors.

Using Engines with SAS/GRAPH Software
In SAS, procedures use engines to access data. Characteristics of these engines vary;

generally, they enable SAS procedures to access a data library in a particular way.
Engines can specify the expected format for the SAS data file, the type of read or write
activity that can occur in SAS data files, and so on. In most cases, you use the default
engine for the current SAS version and do not need to specify an engine.

For more information about SAS engines, see “Library Engines” in SAS Language
Reference: Concepts.

RUN-Group Processing
You can use RUN-group processing with the GAREABAR, GBARLINE, GCHART,

GKPI, GMAP, GPLOT, GRADAR, GREPLAY, GSLIDE, and GTILE procedures to
produce multiple graphs without restarting the procedure every time.

To use RUN-group processing, you start the procedure and then submit multiple
RUN-groups. A RUN-group is a group of statements that contains at least one action
statement and ends with a RUN statement. The procedure can contain other SAS
statements such as AXIS, BY, GOPTIONS, LEGEND, TITLE, or WHERE. As long as
you do not terminate the procedure, it remains active and you do not need to resubmit
the PROC statement.

To end RUN-group processing and terminate the procedure, submit a QUIT or RUN
CANCEL statement, or start a new procedure. If you do not submit a QUIT or RUN
CANCEL statement, SAS/GRAPH does not terminate RUN-group processing until it
reaches another step boundary.

Note: When using SAS/GRAPH with the ODS statement, it is best to use a QUIT
statement after each procedure that uses RUN-group processing, rather than relying on
a new procedure to end the processing. Running too many procedures without an
intervening QUIT statement can use up too much memory. Also, note that failing to
submit a QUIT statement before submitting an ODS CLOSE statement results in the
process memory not being freed at all. �

RUN-group Processing with global and local statements
Global statements and NOTE statements that are submitted in a RUN-group affect

all subsequent RUN-groups until you cancel the statements or exit the procedure. For
example, each of these two RUN-groups produces a plot and both plots display the title
defined in the first RUN-group:

/* first run group*/
proc gplot data=sales;

SAS/GRAPH Processing � RUN-group Processing with the WHERE Statement 57

title1 "Sales Summary";
plot sales*model_a;

run;

/* second run group */
plot sales*model_b;

run;
quit;

RUN-group Processing with BY statements
BY statements persist in exactly the same way as global and local statements.

Therefore, if you submit a BY statement within a RUN-group, the BY-group processing
produces a separate graph for each value of the BY variable for the RUN-group in
which you submit it and for all subsequent RUN-groups until you cancel the BY
statement or exit the procedure. Thus, as you submit subsequent action statements,
you continue to get multiple graphs (one for each value of the BY variable). For more
information, see “BY Statement” on page 216.

RUN-group Processing with the WHERE Statement
The WHERE statement enables you to graph only a subset of the data in the input

data set. If you submit a WHERE statement with a RUN-group, the WHERE definition
remains in effect for all subsequent RUN-groups until you exit the procedure or reset
the WHERE definition.

Using a WHERE statement with RUN-group processing follows most of the same
rules as using the WHERE statement outside of RUN-group processing with these
exceptions:

� With the GMAP procedure, the WHERE variable must be in the input data set.
� With a procedure that is using an Annotate data set, the following requirements

must be met:
� The ANNOTATE= option must be included in the action statement.
� The WHERE variable must occur in both the input data set and the Annotate

data set.

58

59

C H A P T E R

5
The Graphics Output
Environment

Overview 59
The Graphics Output and Device Display Areas 59

Controlling Dimensions 60

Controlling Display Area Size and Image Resolution 61

Units 62

Cells 62
Other Units 64

Maintaining the Quality of Your Image Across Devices 65

Maintaining Proportions 65

Getting the Colors You Want 65

Previewing Your Output 65

How Graphic Elements are Placed in the Graphics Output Area 65
How Errors in Sizing Are Handled 66

Overview
The result of most SAS/GRAPH procedures is the graphic display of data in the form

of graphics output. Graphics output consists of commands that tell a graphics device
how to draw graphic elements. A graphics element is a visual element of graphics
output—for example, a plot line, a bar, a footnote, the outline of a map area, or a border.

To generate graphics output, your program uses a device driver that directs the
graphics output to a display device (a monitor or terminal), a hard-copy device, or a file.
Even though all graphics devices do not understand the same commands, SAS/GRAPH
can produce graphics output on many types of graphics devices.

Your program controls this process as well as the environment in which the graphics
appear. This section describes this graphics environment and how you can modify it
and make your programs work for different output devices.

The Graphics Output and Device Display Areas
When SAS/GRAPH produces graphics output, it draws the graphic elements inside

an area called the graphics output area. The graphics output area is contained within
the device display area. Characteristics of both the graphics output area and the device
display area are determined by the values of specific device parameters. In many cases
the dimensions of the graphics output area equals those of the device display area. This
is particularly true for display devices such as monitors and terminals. Hard-copy
devices, such as a printed output, create a margin since the dimensions of the graphics
output area are smaller than those of the device’s display area.

60 Controlling Dimensions � Chapter 5

You can modify some of the characteristics of the graphics output area and the device
display area by using graphics options to change the values of the device parameter.

This section describes how you can change the dimensions of the output and display
areas, how these changes in dimension affect the output, and the types of units you can
specify for your output. For a description of the graphics options and device parameters
referred to in this section, see Chapter 15, “Graphics Options and Device Parameters
Dictionary,” on page 327.

Controlling Dimensions

The outer dimensions of the device’s display area are controlled by the values of the
XMAX and YMAX device parameters. XMAX sets the maximum horizontal dimension;
YMAX sets the maximum vertical dimension.

The outer dimensions of the graphics output area are controlled by the values of the
HSIZE and VSIZE device parameters.

Since the dimensions of the device display area are typically the same as the
dimensions of the graphics output area, the default value of HSIZE and VSIZE is 0.
However, for hard-copy devices, because the XMAX, YMAX values represent the outer
boundaries of the output medium (such as a sheet of paper), these devices might need a
margin. Therefore, HSIZE, VSIZE, HORIGIN, and VORIGIN are assigned default
values and the default graphics output area is somewhat smaller than the device’s
display area. Figure 5.1 on page 61 illustrates such a device.

Note: The default unit of measurement for the XMAX and YMAX options is inches. �

The Graphics Output Environment � Controlling Display Area Size and Image Resolution 61

Figure 5.1 Default Dimensions of the PSCOLOR Device

graphics output area

HSIZE=8.0in

 display area
VSIZE=8.5in

YMAX=11.00in

YPIXELS=3300

XPIXELS=2550

XMAX=8.5in

HORIGIN=0.218in

VORIGIN=1.496in

For further discussion of how the default values for HSIZE and HORIGIN are
determined using the value of the LEFTMARGIN option, see “HSIZE” on page 384 and
“HORIGIN” on page 382.

Note that HORIGIN and VORIGIN define the left margin and bottom margin,
respectively. The right margin and top margin are calculated by the device driver as
follows:

right-margin = XMAX − (HSIZE + HORIGIN)

top-margin = YMAX − (VSIZE + VORIGIN)

You cannot specify values for right-margin and top-margin.
You can change the dimensions of the graphics output area for a SAS session or for a

single graph with the HSIZE= and VSIZE= graphics options. Changing the size of the
graphics output area does not change the dimensions of the device’s display area or
affect the resolution. The values of HSIZE= and VSIZE= cannot exceed the maximum
dimensions for the device as specified by XMAX and YMAX. Furthermore, you cannot
specify values for graphics options HSIZE= and VSIZE= that exceed the HSIZE and
VSIZE values for that device.

Controlling Display Area Size and Image Resolution
The resolution of an image is the number of pixels per inch. Resolution is determined

by the values of the device parameters XMAX, YMAX, XPIXELS, and YPIXELS, and is
calculated by dividing the number of pixels by the corresponding outer dimension. For
example:

x-resolution = XPIXELS / XMAX

Therefore, the X resolution of the PSCOLOR device illustrated in Figure 5.1 on page 61
is 300dpi (dots per inch).

Ordinarily, you do not want to change the image resolution because changing it
might distort your image. However, you might want to change the size of the display
area. To do so without changing the resolution, use the GOPTIONS statement to

62 Units � Chapter 5

change either the values of XPIXELS= and YPIXELS=, or the values of XMAX= and
YMAX=. SAS/GRAPH automatically calculates the correct value for the unspecified
parameters so that the device retains the default resolution.

For information on controlling the resolution of your image see “Using the
XPIXELS=, XMAX=, YPIXELS=, and YMAX= Graphics Options to Set the Resolution
for Device-Based Graphics” on page 96.

Units

Cells
Within the graphics output area, SAS/GRAPH defines an invisible grid of rows and

columns. This grid consists of character cells as shown in Figure 5.2 on page 62.
The size and shape of these cells affect the size and appearance of your graph since

each graphic element is drawn using units of cells. The size and shape of the cells are
determined by both the size of the graphics output area and by the number of rows and
columns that SAS/GRAPH has defined in the grid. You can control the number of rows
by specifying the LROWS device parameter (for a landscape orientation) or the PROWS
device parameter (for a portrait orientation). Similarly, the number of columns is
controlled by the LCOLS (landscape) or PCOLS (portrait) device parameter.

It is not recommended that you change the number of rows and columns in the grid
from the default for your device. If you must do so, you can specify the HPOS= and
VPOS= graphics options. HPOS= overrides the value of LCOLS or PCOLS and sets the
number of columns in the graphics output area. VPOS= overrides the value of LROWS
or PROWS and sets the number of rows in the graphics output area.

Figure 5.2 on page 62 illustrates how device parameter settings for the size of the
output area relate to the parameter settings for the number of character cells in the
output area.

Figure 5.2 Rows, Columns, and Cells in the Graphics Output Area

HPOS=8
(columns in graphics output area; can also be

defined by LCOLS or PCOLS device parameter)

VPOS=6
(rows in
graphics output
area; can also
be defined by
LROWS or
PROWS device
parameter)

character
cell

VSIZE=6 in
(can also be
defined by
YMAX device
parameter)

HSIZE=8 in
(can also be defined by XMAX device parameter)

The Graphics Output Environment � Cells 63

Changing only the outer dimensions of the graphics output area (HSIZE= and
VSIZE=) retains the cell size but causes SAS/GRAPH to automatically recalculate the
number of rows and columns, as illustrated in Figure 5.3 on page 63.

Figure 5.3 Changing HSIZE= and VSIZE= Changes Dimensions and Recalculates
the Number of Rows and Columns

(specified)

HSIZE=4IN

HPOS=8

HSIZE=6IN

VSIZE=6IN

VPOS=18

VPOS=12

VSIZE=9IN

HPOS=12
(recalculated)

(recalculated) (specified)

Changing only the number of rows and columns (HPOS and VPOS) changes the size
of the cells without altering the overall size of the output. Figure 5.4 on page 63 shows
how increasing the number of rows and columns reduces the size of the individual cells.

Figure 5.4 Changing HPOS= and VPOS= Changes Cell Size

(no change)
HSIZE=4IN

HPOS=8

HSIZE=4IN

VSIZE=6IN

VPOS=12

VPOS=10

VSIZE=6IN

HPOS=12
(specified)

(no change)(specified)

If you use units of CELLS to control the size of the text in your graph while also
changing the number of rows and columns, then the size of the text changes. If the cells
are large (that is, HPOS= and VPOS= have small values), the text might not fit. If the
cells are too small, the text might be too small to read. In this case, you can adjust the
size of the text with the HEIGHT= statement option or the HTEXT= graphics option.

To change all the attributes of the graphics output area, specify values for all four
options, as shown in Figure 5.5 on page 64.

64 Other Units � Chapter 5

Figure 5.5 Changing HSIZE=, VSIZE=, HPOS=, and VPOS= Changes Dimensions
and the Number and Size of Cells

VSIZE=6IN

HSIZE=6INHSIZE=4IN

HPOS=8

HPOS=6
(specified)

(specified)

VPOS=10
(specified)

VSIZE=7.5IN
(specified)

VPOS=12

Table 5.1 on page 64 summarizes the interaction of the HSIZE=, VSIZE=, HPOS=,
and VPOS= graphics options.

Table 5.1 Interaction of Graphics Options Affecting Cells

Options Specified Options Not
Specified

Result

HSIZE= and VSIZE= HPOS= and VPOS= (or
specify HPOS=0 and
VPOS=0)

changes the external dimensions of the graphics
output area and recalculates the number of
rows and columns in order to retain cell size
and proportions.

HPOS= and VPOS= HSIZE= and VSIZE= keeps the external dimensions but changes the
cell size according to the number of rows and
columns.

HSIZE=, HPOS=,
VSIZE=, and VPOS=

changes the dimensions of the graphics output
area, the number of rows and columns, and
recalculates the cell size.

Other Units
By default, most graphic elements are drawn using units of CELLS to determine

their size. For example, the default character height for the TITLE1 definition is two
cells; for all other text the default height is one cell.

Changing the cell size to control the size of one element, such as text, can distort
other parts of your graph. Instead, you might want to change the type of units that
SAS/GRAPH uses to control the size of the graphic elements. In addition to CELLS you
can use the following units:

� inches (IN)

� centimeters (CM)

� points (PT)

� percent (PCT)

The percent unit specification is often a good choice because it changes the height of
the graphic elements in proportion to the size of the graphics output area.

You can specify the unit for individual graphic elements, or you can use the GUNIT=
graphics option to set the units for most graphic element heights.

The Graphics Output Environment � How Graphic Elements are Placed in the Graphics Output Area 65

Maintaining the Quality of Your Image Across Devices

When you want to write a program that produces the same graphics output on two
different devices, you can use features in SAS/GRAPH to simplify the process.

Maintaining Proportions
You can use percent of the graphics output area (PCT) as the unit of measure when

specifying text size to make sure that text is proportional across devices. For example,
a one-inch-high title might be appropriate on a standard piece of paper, but a title of
this size uses almost all of the display area of a slide. To make units of percentage the
default for size specifications, use the GUNIT= graphics option:

goptions gunit=pct;

You can also specify PCT anywhere you specify a size:

axis1 label=(height=3 pct ’Year’);

See “GUNIT” on page 378 for a complete description of the GUNIT= graphics option.

Getting the Colors You Want
Since ODS styles are designed to provide optimal results for a variety of devices, you

use the STYLE= option in the ODS statement to chose a style best suited for your
device. For example, you might want to chose the ODS style Journal since it works well
with black and white devices. You can also set a different style for each ODS output
destination. For information on ODS styles and destinations see “Specifying Devices
And Styles With Multiple Open Destinations” on page 51. You can compare colors and
patterns for different devices and choose the device that has the fewest colors. A slide
camera, for example, offers over 16 million colors from which to chose, but some
graphics monitors display significantly fewer colors.

Previewing Your Output
You can preview the appearance of the output on a different device with the

TARGETDEVICE= graphics option. For example, to see how the output looks on a color
PostScript printer, specify as follows:

goptions targetdevice=pscolor;

How Graphic Elements are Placed in the Graphics Output Area

By default, SAS/GRAPH software positions certain graphics elements in predefined
locations in the graphics output area. Figure 5.6 on page 66 shows the graphics output
area and the areas within it that are used by the following graphic elements:

� Titles are placed in the title area at the top of the graphics output area.

� Footnotes are placed in the footnote area at the bottom of the graphics output area.

� The graph itself uses the procedure output area, which is the area left after the
titles and footnotes have been drawn.

66 How Errors in Sizing Are Handled � Chapter 5

� Legends use the procedure output area and can affect the amount of space
available for the graph. By default, space is reserved for the legend below the axis
area of a graph and above the footnote area. However, you can position the legend
in the part of the procedure output area that is reserved for the graph. For details,
see “LEGEND Statement” on page 225.

Note: Titles and footnotes can be positioned elsewhere on the graph as well, with
different effects on space allocation. See “TITLE, FOOTNOTE, and NOTE Statements”
on page 279 for details. For destinations other than the listing destination, some
graphics elements, such as the title and footnote, can appear in the graphics output
instead of the procedure output area. �

Figure 5.6 Default Locations for Graphic Elements in the Graphics Output Area

optional
area for
titles and
footnotes

optional
area for
titles and
footnotes

procedure
output
area

graphics
output
area

default footnote area

default title area

Note: If the titles, footnotes, and legend are very large, they can make the
procedure output area too small for the graph. You can control the size of title and
footnote text and of most legend elements with statement options. For details, see
Chapter 14, “SAS/GRAPH Statements,” on page 197 for a description of the appropriate
statement. In addition, the section “GOPTIONS Statement” on page 220 lists the
graphics options that control the size of various graphic elements. �

How Errors in Sizing Are Handled

Sometimes SAS/GRAPH cannot fit one or more graphic elements on the graph. This
can happen if an element is too big for the available space (for example, the title is too
long), or if you have too many elements to fit in a given space (for example, a bar chart
has too many bars). In these cases, SAS/GRAPH does one of the following:

� resizes the graphics element and issues a warning explaining what it did

� issues an error message and does not attempt to produce the graph

For example, it adjusts the size of titles to make them fit but it does not drop bars in
order to produce a readable bar chart. If you get unexpected results or no graph, check
the SAS log for notes, warnings, and errors.

67

C H A P T E R

6
Using Graphics Devices

Overview 67
What Is a SAS/GRAPH Device? 68

Commonly Used Devices 68

Default Devices For ODS Destinations 69

Viewing The List Of All Available Devices 70

Deciding Which Device To Use 71
Overriding the Default Device 72

Device Categories And Modifying Default Output Attributes 72

Using Universal Printer Shortcut Devices 75

Using Scalable Vector Graphics Devices 77

What Is an SVG Document? 77

Why Create SVG Documents? 78
The SVG Devices and the Output That They Create 79

Example: Placing Images Behind SVG Documents 79

Example: Generating A Single SVG Document With Multiple Pages and Page Controls 81

Implementing Drill-Down Functionality With the SVG Devices 83

Web Server Content Type for SVG Documents 83
Browsers That Support SVG Documents 83

Controlling Graph Resolution With The SVG Devices 84

Controlling Graph Size With the SVG Devices 84

SAS System Options and SVG Output 84

Viewing and Modifying Device Entries 85
Viewing the Contents of a Device Entry 85

Modifying Device Entry Parameters 85

Creating a Custom Device 86

Related Topics 86

Overview
SAS/GRAPH procedures that produce graphics output require a device to create the

output. The following topics discuss the role of devices in generating SAS/GRAPH
output, provide directions for selecting and specifying them, and explain how you can
change the settings of device parameters.

Note: SAS/GRAPH produces graphics using two very distinct systems. SAS/GRAPH
can produce output using a device-based system or using a template-based system.
Template-based graphics (ODS graphics) do not use SAS/GRAPH devices. See
“Device-Based Graphics and Template-Based Graphics” on page 6. �

68 What Is a SAS/GRAPH Device? � Chapter 6

What Is a SAS/GRAPH Device?
A SAS/GRAPH device generates graphical output in a specified format. It might send

output to a file on disk, such as a PNG file or a GIF file, or it might send output directly
to a hardware device, such as a Postscript printer or a display. A SAS/GRAPH device
consists of two parts: a device entry and device driver.

Device entry A device entry is a SAS catalog entry of type DEV. Every device that
is shipped with SAS/GRAPH has a device entry in the
SASHELP.DEVICES catalog. Device entries contain parameters
that control the following:

� the appearance of the output when styles are not in effect, such
as dimensions and orientation, cell size, colors, and default
SAS/GRAPH or device-resident fonts

� where output is sent (when you send output to the LISTING
destination and use a SAS/GRAPH device)

� communications between the operating environment and the
device

� host commands that are issued before and after its driver
produces output

� the device driver that is used to generate graphics output

See also “Viewing and Modifying Device Entries” on page 85.

Device driver A device driver is the executable module that produces
device-specific commands that a device can understand. Every
device entry specifies the name of the executable module (device
driver) that is to be used to generate output. The device driver uses
the parameters specified in the device entry or the current style to
tell it exactly how to do so.

When you specify a device, you are specifying the name of a device entry.
SAS/GRAPH uses that device entry to determine which device driver to use in order to
generate final output. However, most users do not ever need to deal directly with device
drivers, so for simplicity, this document simply refers to “devices”.

Commonly Used Devices
The following table lists some of the more commonly used SAS/GRAPH devices and

describes the output they produce.

Table 6.1 SAS/GRAPH Devices and the Output They Generate

Device External Files

ACTIVEX This device is used with the ODS HTML and ODS RTF destinations. It
generates an HTML or RTF file that contains XML code that is consumed by
the ActiveX control. When the HTML or RTF file is viewed in a browser, the
SAS/GRAPH output is displayed as an interactive ActiveX control.

ACTXIMG A PNG file that contains a static image of the graph that is generated with
the ACTIVEX device.

BMP A BMP file that contains the graph

Using Graphics Devices � Default Devices For ODS Destinations 69

Device External Files

CGM A CGM file that contains the graph.

CGMOF97L A CGM file suitable for inserting into Microsoft Word or PowerPoint
presentations.

EMF An EMF file that contains the graph.

GIF A GIF file that contains the graph.

JAVA This device is used with the ODS HTML destination. It generates a
JavaScript that ODS includes in the HTML file. When the HTML file is
viewed in a browser, the SAS/GRAPH output is displayed as an interactive
Java applet.

IBMPCGX Display device. This device is available on z/OS hosts only.

JAVAIMG A PNG file that contains a static graph that is generated with the JAVA
device.

JPEG A JPG file that contains the graph.

PCL5 A PCL file that contains the graph.

PDF A PDF file that contains one or more graphs and tables.

PNG A PNG file that contains the graph.

PSCOLOR A PostScript file that contains one or more graphs.

PSL A PostScript file that contains the graph in gray scale.

SASEMF An EMF file that contains the graph. This device is the default device for the
ODS RTF destination.

SVG An SVG file that contains the graph.

TIFFP A TIFF file that contains the graph in color.

WIN Display device. This device is available on Windows hosts only.

XCOLOR Display device. This device is available on UNIX hosts only.

Note: Chapter 16, “Introducing SAS/GRAPH Output for the Web,” on page 439
describes any requirements or limitations associated with using the ActiveX, Java, and
SVG devices. �

Default Devices For ODS Destinations
Each ODS destination has a default device. Table 6.2 on page 70 summarizes this

information for the most commonly used destinations. These default devices are used to
generate output for each open destination unless you override the default device as
described in “Overriding the Default Device” on page 72.

70 Viewing The List Of All Available Devices � Chapter 6

Table 6.2 Default Devices and Styles for Commonly Used ODS Destinations

ODS
Destination Default Device

Default
Style Default Output

Recommended
Devices

LISTING WIN (Windows)

XCOLOR (UNIX)

IBMPCGX (z/OS)

Listing Graphics output is
displayed in the GRAPH
window1

All devices2 except
JAVA and
ACTIVEX

HTML PNG Default

(Styles.Default)

HTML and PNG file PNG

GIF

JPEG

JAVA

JAVAIMG

ACTIVEX

ACTXIMG

SVG

JAVAMETA

GIFANIM

RTF SASEMF Rtf RTF file (with embedded
metafile)

SASEMF

PNG

JPEG

JAVAIMG

ACTIVEX

ACTXIMG

PDF SASPRTC Printer PDF file SASPRTC (color)

SASPRTG (gray
scale)

SASPRTM
(monochrome)

PRINTER SASPRTC Printer Controlled by the
PRINTERPATH= system
option (and by the
SYSPRINT= system
option on Windows)3

SASPRTC (color)

SASPRTG (gray
scale)

SASPRTM
(monochrome)

1 The default devices for the LISTING destination do not write image files to disk.
2 JAVAMETA is supported for the LISTING destination, but its output requires processing with

the Metaview applet.
3 In Windows, if the PRINTERPATH= option is not specified, then SAS uses the setting of the

SYSPRINT= system option. If neither the SYSPRINT= nor the PRINTERPATH= option has
been set, then SAS uses the default Windows printer.

Viewing The List Of All Available Devices

You can view the complete list of devices that are available in any of the following
ways:

Using Graphics Devices � Deciding Which Device To Use 71

� Use the SAS Explorer window to display the contents of the default device catalog,
SASHELP.DEVICES, or any other device catalog.

� Use the GDEVICE procedure to open the GDEVICE DIRECTORY window, which
lists all of the devices in the current catalog. By default, the current catalog is
SASHELP.DEVICES. To specify a catalog, include the CATALOG= option, as
shown in the following statement:

proc gdevice catalog=sashelp.devices;
run;

If you do not specify a catalog, and you have defined a libref named GDEVICE0,
then the GDEVICE procedure looks in the GDEVICE0 catalog first. See “Using
the GDEVICE Windows” on page 1136 for details.

� Use GDEVICE procedure statements to write the list of device drivers to the
Output window. For example:

proc gdevice catalog=sashelp.devices nofs browse;
list;

run;
quit;

The NOFS option in the PROC GDEVICE statement causes the procedure not to
use the GDEVICE window.

If you want to write the list of devices to an external file you can do either of
the following actions:

� save the contents of the Output window.

� use the PRINTTO procedure to redirect the GDEVICE procedure output to
an external file. See Base SAS Procedures Guide for a description of the
PRINTTO procedure.

Deciding Which Device To Use

The default device for each ODS destination generates optimal results for that
destination. It is recommended that you use the default device whenever possible. If
you do not specify a device, then SAS/GRAPH automatically uses the default device
listed in “Default Devices For ODS Destinations” on page 69 for each open destination.

Note: If you are working with multiple open destinations, see “Specifying Devices
And Styles With Multiple Open Destinations” on page 51. �

If you need to specify a different device, you should specify one of the recommended
devices in the table in “Default Devices For ODS Destinations” on page 69. If you
specify a device that cannot be used with an open destination, SAS/GRAPH switches to
a device that produces similar results as the device that you specified.

The SAS/GRAPH device that you specify should be appropriate for your specific
output device. For example, if you are using a color PostScript printer and you select a
device for a black and white PostScript printer, your graph will not print in color.

When you are sending output to the HTML destination, there are several devices
that you can specify. See “Selecting a Type of Web Presentation” on page 447 for
information and recommendations on which device to use.

Note: High resolution devices such as PNG300 and JPEG300 are not appropriate
choices for the HTML destination. Web browsers cannot display images in high
resolution, so high resolution images appear very large. These drivers are appropriate
for high resolution output that can be inserted into other software applications. �

72 Overriding the Default Device � Chapter 6

Overriding the Default Device
You can override the default device in a SAS session in the following ways:
� Specify the name of a device entry with the DEVICE= option in a GOPTIONS

statement. For example:

goptions device=gif;

For details, see “GOPTIONS Statement” on page 220.

� Specify the name of a device entry with the DEVICE= option in an OPTIONS
statement. For details, see “DEVICE= System Option” in SAS Language
Reference: Dictionary.

� Enter OPTIONS on the SAS command line, or select Tools � Options � System to
open the SAS System Options window. Expand Graphics, and select Driver
settings. Right-click on Device, select Modify value, and specify the name of
the graphics device that you want to use.

� Enter the device name in the DEVICE prompt window. The DEVICE prompt
window opens automatically if you submit a SAS/GRAPH program that produces
graphics output, no device has been specified, and you are running outside of the
SAS windowing system environment.

If you specify a device in more than one way, the last specification that SAS/GRAPH
encounters is the one that it uses. The device specification stays in effect until you
specify another device, submit the graphics option RESET=GOPTIONS or
RESET=ALL, or end your SAS session.

If you use the same device for most or all of your SAS/GRAPH programs, you can put
the GOPTIONS DEVICE= statement in an AUTOEXEC file. See the SAS companion
for your operating environment for details on setting up an AUTOEXEC file.

You can also specify a device for previewing or printing your output with the
TARGETDEVICE= graphics option. For details, see “Printing Your Graph” on page 110.

If you submit a SAS procedure without specifying a device and your display device
does not support the GRAPH window or you are running outside the SAS windowing
system, then SAS/GRAPH prompts you for a device.

Device Categories And Modifying Default Output Attributes
There are four general categories of devices that are distributed with SAS/GRAPH.

The type of device determines how you control certain aspects of your output.

Note: Chapter 10, “Controlling The Appearance of Your Graphs,” on page 133
describes the recommended methods for controlling the attributes of your SAS/GRAPH
output. Modifying device parameters should be attempted only in unusual
circumstances when modifying parameters and options in the GOPTIONS statement is
not sufficient. If you need to modify a device entry, consider contacting SAS Technical
Support for assistance first. �

Native SAS/GRAPH devices
produce output in the native language of the device. For example, TIFFP, PS300,
SASEMF, JPEG, CGMC, and GIF are native SAS/GRAPH devices. With native
SAS/GRAPH devices, you can specify default attributes for your output by
customizing the device entry (the DEV catalog entry). For example, by editing the
DEV catalog entry for the device, you can change the default size and resolution of
your output and the default colors and fonts that are used when styles are turned

Using Graphics Devices � Device Categories And Modifying Default Output Attributes 73

off. Native SAS/GRAPH devices do not set and or use the SYSPRINT= or
PRINTERPATH= system options.

Java and ActiveX devices
produce output using different technologies than the native SAS/GRAPH devices.
These devices are the JAVA, JAVAIMG, ACTIVEX, and ACTXIMG devices. These
devices do not use information specified in the device entry.

Universal Printer shortcut devices
use the Universal Printing system to generate output. Universal Printing is a
printing system that provides printing capabilities to SAS applications and
procedures on all the operating environments that are supported by SAS. It is part
of Base SAS. For information on universal printing, see “Printing With SAS” in
SAS Language Reference: Concepts.

Universal Printer shortcut devices can generate output in the following formats:
PDF, PostScript, PCL, PNG, GIF, and SVG. For example, PNG and SVG are
Universal Printer shortcut devices. Any device whose name begins with the letter
U, such as UGIF or UPSL, is also a Universal Printer shortcut device. The
description of a Universal Printer shortcut device generally says “Universal
Printer” when you view the contents of the SASHELP.DEVICES catalog (see
“Viewing The List Of All Available Devices” on page 70). The list of all Universal
Printer shortcut devices is shown in Table 6.4 on page 76.

Universal Printer shortcut devices are designed to emulate a native
SAS/GRAPH device, which means that these devices behave as much as possible
like native SAS/GRAPH devices. For example, these devices set the value of
PRINTERPATH= so that you need only specify the device name with the
GOPTIONS statement. However, for these devices there are some attributes of
your output, such as default resolution, that cannot be changed by modifying the
DEV catalog entry. See “Using Universal Printer Shortcut Devices” on page 75 for
more information.

Interface devices
are devices that, in some operating environments, use the facilities of the
operating environment, and, in other operating environments, use Universal
Printing to generate output. There are three subcategories of interface devices:
printer, display, and metafile.

The printer interface devices are the SASPRTC, SASPRTG, and SASPRTM
devices (and the WINPRT* devices on Windows systems). In Windows operating
environments, if the PRINTERPATH= system option has not been set, these
devices use the setting of the SYSPRINT= system option to determine the default
output device and the Windows Print Manager to control the generation of output.
In Windows operating environments, the Universal Printing System is used if the
PRINTERPATH= system option is specified or if the UPRINT system option has
been specified at invocation. Otherwise, they use the setting of the
PRINTERPATH= system option to determine the default output device and the
Universal Printing system to control the generation of output.

74 Device Categories And Modifying Default Output Attributes � Chapter 6

Table 6.3 Device Categories, GOPTIONS, and DEV Entries

Device Category Examples
Honor GOPTIONS
specifications?

Honor Device (DEV)
entry specifications?

Native SAS/GRAPH devices GIF

TIFFP

JPEG

CGM

BMP1

SASBMP2

EMF, WMF1

SASEMF,
SASWMF2

JAVAMETA

ZPNG

IBMPCGX

Yes4 Yes

Java and ActiveX devices JAVA

ACTIVEX

JAVAIMG

ACTXIMG

Yes, except as noted in
the documentation for
specific graphics
options. Also,
resolution is controlled
by the operating
environment.

no

Shortcut devices PNG

UGIF

SVG

Yes3, except for
resolution5

Yes, except for size,
resolution, and fonts

Printer6 SASPRTC

SASPRTG

SASPRTM

Yes, except for
resolution7

Yes, except for size,
resolution, and fonts

Display WIN

XCOLOR

Yes, except for
resolution9

Yes, except for size8,
resolution9, and fonts

Interface
devices

Metafile BMP1

EMF, WMF1

Yes Yes, except for
resolution9 and fonts

1 On Windows, BMP, EMF, and WMF are interface metafile devices. In all other operating
environments, BMP, EMF, and WMF are native SAS/GRAPH devices.

2 In operating environments other than Windows, SASEMF, SASWMF, and SASBMP are copies
of EMF, WMF, and BMP, respectively.

3 With SVG devices, the XMAX= and YMAX= graphics options set the size of the page, and the
HSIZE= and VSIZE= graphics options set the size of the SVG output. With other devices,

Using Graphics Devices � Using Universal Printer Shortcut Devices 75

all four options set the size of the graphics output, and if all four are specified, the smaller
specifications are used.

4 Some native devices have a set resolution, and others have a fixed set of supported resolutions
that you can specify.

5 Shortcut devices use Universal Printers. Universal Printers have a fixed set of supported
resolutions that can be selected through the Print Setup dialog box or through the PRINTDEF
procedure.

6 The WINPRT* devices are identical to the SASPRT* devices. They differ in name only.
7 The interface printer devices use a mix of host printing facilities and Universal Printing,

depending on the operating environment. On Windows systems, use the Windows Print
Manager to change the default resolution and size. On other systems, resolution and size
are set through the Print Setup dialog box or through the PRINTDEF procedure.

8 The device is queried. The size is constrained by the window.
9 Display resolution is set in the display properties for the operating environment. The device is

queried, and the resolution is set according to the value returned.

See also “Viewing and Modifying Device Entries” on page 85.

Using Universal Printer Shortcut Devices
Universal Printer shortcut devices enable you to generate SAS/GRAPH output using

the Universal Printing system without specifying ODS statements or an OPTIONS
PRINTERPATH= statement. The shortcut devices were created primarily for use with
the LISTING and HTML destinations. They perform two functions:

� set the PRINTERPATH= system option. These options determine which Universal
Printer is used to generate your final output. See “Using Universal Printer
Shortcut Devices” on page 75.

� convert SAS/GRAPH GRSEG output into instructions understood by Universal
Printers.

Using a Universal Printer shortcut device requires that there is a Universal Printer
with the same name in the SAS registry. Universal printers have already been defined
for all of the shortcut devices that are shipped with SAS. However, if you create your
own device by copying one of the Universal Printer shortcut device entries, then you
must make sure that you define a Universal Printer with the same name as your new
device entry. For information on creating a new SAS/GRAPH device, see “Creating a
Custom Device” on page 86. For information on defining a new Universal Printer, see
“Define a New Printer” in the Printing With SAS section of SAS Language Reference:
Concepts.

An example of the differences in specifying a shortcut device and in specifying a
Universal Printer directly (without going through the shortcut device) is shown in Table
6.4 on page 76.

76 Using Universal Printer Shortcut Devices � Chapter 6

Table 6.4 Differences In Using Shortcut Devices And Universal Printers

Using a shortcut device Using a Universal Printer directly

The following two sets of code are equivalent.goptions device=PNG;
/* procedure step */

ods printer printer=PNG;
/* procedure step */

ods printer close;

options printerpath=PNG;
ods printer;
/* procedure step */

ods printer close;

The device is set to PNG by the
GOPTIONS statement.

The default output filename is
controlled by the procedure, for
example, sasgraph.png.

The device is set to SASPRTC because SASPRTC is the default
device for the PRINTER destination.

The Universal Printer is set to PNG by the PRINTER= or
PRINTERPATH= option.

The default output filename is controlled by ODS, for example,
sasprt.png.

Table 6.5 on page 76 lists all of the Universal Printer shortcut devices that are
provided by SAS.

Table 6.5 Universal Printer Shortcut Devices

Name Description

PCL5 PCL5 Universal Printer

PCL5C PCL5c Universal Printer

PCL5E PCL5e Universal Printer

PDF PDF Version 1.3 — color

PDFA Archive PDF - ISO-19005-1/b

PDFC PDF Version 1.3 — color

PNG PNG Universal Printer

PNG300 PNG Universal Printer-300 dpi

PNGT PNG Universal Printer with Transparency

PSCOLOR PostScript Level 1 (Color)

PSL PostScript Level 1 (Gray Scale)

PSLEPSF PostScript EPS (Gray Scale)

PSLEPSFC PostScript EPS (Color)

SVG SVG Universal Printer

SVGT SVG Transparency Universal Printer

SVGVIEW SVG Printer w/ Control Buttons

SVGZ SVG Compressed Universal Printer

UEPS PostScript EPS (Gray Scale)

UEPSC PostScript EPS (Color)

UGIF GIF Universal Printer

UPCL5 PCL5c Universal Printer

UPCL5C PCL5c Universal Printer

Using Graphics Devices � What Is an SVG Document? 77

Name Description

UPCL5E PCL5e Universal Printer

UPDF PDF Version 1.3 – color

UPNG PNG Universal Printer

UPNGT PNG Universal Printer with Transparency

UPSL PostScript Level 1 (Gray Scale)

UPSLC PostScript Level 1 (Color)

Using Scalable Vector Graphics Devices
Scalable Vector Graphics (SVG) is an XML language for describing two-dimensional

vector graphics. SAS creates SVG documents based on the World Wide Web Consortium
(W3C) recommendation for SVG documents. SAS SVG files are created using the
UNICODE standard encoding.

Note: Animation is not supported in SAS 9.2. �

SAS can create SVG documents by using either the SVG Universal Printers or
SAS/GRAPH SVG devices. There are four SVG devices: SVG, SVGT, SVGVIEW, and
SVGZ. These devices are Universal Printer shortcut devices and are, therefore,
intended mainly for use with the LISTING and HTML destinations. With the
PRINTER destination, it is recommended that you use the SVG Universal Printers
directly (see Table 6.4 on page 76).

The information provided here is limited to creating SVG documents using
SAS/GRAPH devices in the LISTING and HTML destinations. For information about
creating SVG documents in the PRINTER destination using the SVG Universal
Printers, see “Creating Scalable Vector Graphics Using Universal Printing” in SAS
Language Reference: Concepts.

For detailed information about the SVG standard, see the W3C documentation at
http://www.w3.org/TR/SVG.

What Is an SVG Document?
An SVG document produced by SAS/GRAPH is an XML file that contains an <svg>

element.

SVG document fragment
any number of SVG graphic or container elements enclosed an <svg> element.
Typical SVG graphics elements include circle, line, text, image, and many others.
These elements draw the graphics that comprise the SVG document.

SVG document
an SVG document fragment that can stand by itself. The SVG devices produce
stand-alone SVG documents. When you send output to the HTML destination, the
SVG document is embedded in an HTML document using the <embed> tag.

For example, the following code produces an SVG file named europepop.svg and an
HTML file named europe.htm:

goptions reset=all device=svg;
ods listing close;
ods html file="europe.htm";

http://www.w3.org/TR/SVG

78 Why Create SVG Documents? � Chapter 6

title "Population in Europe";
proc gmap map=maps.europe(where=(id ne 405 and id ne 845))

data=sashelp.demographics(where=(cont=93)) all;
id id;
choro pop / name="europePop";

run;
quit;
ods html close;
ods listing;

You can view the SVG coding by opening the SVG document, europepop.svg, in a
text editor. When you view the SVG document in an SVG-enabled browser (see
“Browsers That Support SVG Documents” on page 83), the browser renders the image.

Why Create SVG Documents?

Because SVG graphics are vector graphics, they can be resized without losing quality.
A single SVG document can be scaled to any size or transformed to any resolution
without compromising the clarity of the document. Bitmap images such as PNG and
GIF lose quality any time they are resized.

Also, if you need to display the same graphic at multiple sizes or resolutions, you
would need multiple bitmap images, but only one SVG document. SVG documents
display clearly at any size in any viewer or browser that supports SVG. The user can
zoom in to view details in a complicated SVG graphic.

An SVG document might also be smaller in file size than the same graphic created by
a bitmap (image) device such as GIF or PNG.

Using Graphics Devices � Example: Placing Images Behind SVG Documents 79

SVG documents are ideal for producing documents to display on a computer monitor,
PDA, or cell phone; or documents to be printed.

The SVG Devices and the Output That They Create
There are four SVG devices:

SVG
produces SVG 1.1 documents. When used in the HTML destination, if your
procedure produces multiple graphs, the SVG device produces separate SVG
documents for each graph. When used in the LISTING destination, the SVG
device produces one SVG file, and the pages are in a continuous layout.

SVGT
produces SVG 1.1 documents that are transparent (no background). These
documents are useful when you want to overlay several graphs on top of each
other and you want all of the graphs to be visible. The SVGT device is intended
for use when a procedure produces multiple graphs and is best used in conjunction
with the ODS PRINTER destination. See “Creating Overlaid Transparent SVG
Documents” in SAS Language Reference: Concepts for more information.

SVGZ
produces compressed SVG 1.1 documents, which are useful when file size is an
issue. However, some browsers do not support compressed SVG documents, and
you cannot view these files in a text editor. (See also “Browsers That Support SVG
Documents” on page 83.)

SVGVIEW
produces SVG1.1 documents with navigational controls when the SVG file contains
multiple pages. This device is primarily for use in the LISTING destination with
procedures that produce multiple graphs. The navigational controls enable you to
page through the graphs. See “Example: Generating A Single SVG Document
With Multiple Pages and Page Controls” on page 81. When used in the HTML
destination, the SVGVIEW device produces separate SVG documents for each
graph, just like the SVG device.

Example: Placing Images Behind SVG Documents
You can use the IBACK= graphics option in the GOPTIONS statement to specify the

graphics file that you want to be placed behind the SVG graphic. SAS/GRAPH creates a
PNG file from the image file that you specify. This PNG file is used as the background
image and is referenced in the SVG with an <image> tag. The <image> tag specifies a
relative (not absolute) pathname to the PNG file. If the SVG file is moved, the PNG file
must also be moved to the same location. If many images are referenced in an SVG file,
it is recommended that you create a new directory and store your SVG file and any
images it references in the directory. Then, the entire directory can be moved as a
package.

/* Reset existing options, specify the SVG device, and */
/* set the size of the SVG document. Specify the */
/* background image with the IBACK= option. Replace */
/* external-image-file with the name of an image that */
/* resides on your system. */

goptions reset=all device=svg hsize=4.8in vsize=3.2in

80 Example: Placing Images Behind SVG Documents � Chapter 6

imagestyle=fit iback="external-image-file";

/* Close the LISTING destination to conserve resources. */
/* Open the HTML destination and specify */
/* the name of the HTML output file. */

ods listing close;
ods html file="carType.htm";

/* Specify the title for the graphic file and */
/* define response axis characteristics. */
title h=2 "Types of Vehicles Produced Worldwide";
axis1 label=none major=none minor=none;

/* Generate the bar chart. The NAME= option */
/* specifies the name of the SVG file. */
proc gchart data=sashelp.cars;

vbar type / raxis=axis1 outside=freq
noframe name="carType";

run;
quit;

/* Close the HTML destination and */
/* reopen the LISTING destination. */
ods html close;
ods listing;

For additional information, see “Displaying an Image in a Graph Background” on
page 182.

Using Graphics Devices � Example: Generating A Single SVG Document With Multiple Pages and Page Controls 81

Example: Generating A Single SVG Document With Multiple Pages and
Page Controls

The SVGVIEW device is designed to be used when in the LISTING destination. It is
useful when a single procedure produces multiple graphs, such as with BY-group
processing. When used in the LISTING destination, the SVGVIEW device creates a
single SVG document with multiple pages. Each graph produced by the procedure is on
a different page. The SVG document, by default, has control buttons that enable you to
navigate forward and backward through the graphs as well as display an index page
that shows a thumbnail image of each page in the document.

For example, the following display shows the initial graph that is produced by the
program in Example Code 6.1 on page 82. The program produces six graphs. You can
page through them clicking on using the Prev and Next buttons.

The Index button displays a page of thumbnail images. There is one thumbnail for
each page in the SVG document.

82 Example: Generating A Single SVG Document With Multiple Pages and Page Controls � Chapter 6

The program that generates this SVG document is as follows:

Example Code 6.1 Program Code: Using SVGVIEW Device With BY-Group Processing

/* Subset the data set SASHELP.PRDSALE. */
/* Output the subset to WORK.PRODSUB. */

data prodsub;
set sashelp.prdsale;
where year=1994 and

(country = "U.S.A." or country = "CANADA")
and region="EAST" and division="CONSUMER" and

(product in ("SOFA", "TABLE", "BED"));
run;

/* Sort WORK.PRODSUB. */

proc sort data=prodsub;
by country product;

run;

/* Define a fileref for the SVG document. */
/* Use the GSFNAME= option to send the */
/* output of the LISTING destination to */
/* that fileref. */

filename mysvg "productView.svg";
goptions reset=all device=svgview

gsfmode=replace gsfname=mysvg;

/* Join the data points and change the */
/* line style for the predicted sales */
/* to a dashed line. */

Using Graphics Devices � Browsers That Support SVG Documents 83

symbol1 interpol=join line=1 color=_style_;
symbol2 interpol=join line=2 color=_style_;
legend1 label=none;

/* Generate a graph for each unique */
/* combination of country and product. */

proc gplot data=work.prodsub;
by country product;
plot actual*month predict*month /

overlay legend=legend1;
run;
quit;

When used in the HTML destination, the SVGVIEW device produces separate SVG
documents for each graph, just like the SVG device.

For additional information, see “Multi-Page SVG Documents in a Single File” and
“Multi-Page SVG Documents in a Single File” in SAS Language Reference: Concepts.

Implementing Drill-Down Functionality With the SVG Devices
You can implement drill-down links in SVG documents that are generated in the

HTML and LISTING destinations. In both cases, you use the HTML= option or the
HTML_LEGEND= option (or both options) to specify variables in your input data that
define the drill-down URLs. See “Adding Links with the HTML= and
HTML_LEGEND= Options” on page 601 for information on implementing drill-down
links, including defining link variables.

Implementing drill-down links in SVG documents that are generated in the LISTING
destination has an additional requirement: you must specify the IMAGEMAP= option
in the PROC statement. This option makes the image map generated by the procedure
available to the SVG device. For example:

proc gchart data=sashelp.prdsale imagemap=myimgmap;

Web Server Content Type for SVG Documents
If the mime content type setting for your Web server does not have the correct

setting for SVG documents, your Web browser might render SVG documents as text
files or SVG documents might be unreadable.

To ensure that SVG documents are rendered correctly, you can configure your Web
server to use this mime content type:

image/svg+xml

Browsers That Support SVG Documents
In order to view SVG documents, you need a viewer or browser that supports Scalable

Vector Graphics. Some browsers, such as Mozilla Firefox, have built-in support for SVG
documents. Other browsers, such as Microsoft Internet Explorer, require an SVG
plug-in to view SVG documents. One such plug-in is available from Adobe Systems, Inc.

The following table lists some browsers and viewers that support SVG documents.
See “Browser Support for Viewing SVG Documents” in SAS Language Reference:
Concepts for additional information.

84 Controlling Graph Resolution With The SVG Devices � Chapter 6

Table 6.6 SVG Browser Support

Browser or Viewer Company

Adobe SVG Viewer 31 Adobe Systems, Inc.

Batik SVG Toolkit Apache Software Foundation

eSVG Viewer and IDE eSVG Viewer for PC, PDA, Mobile

GPAC Project GPAC

Mozilla Firefox2 Mozilla Foundation

Opera Opera Software

TinyLine TinyLine

1 Adobe SVG Viewer 3 works in Internet Explorer 7. Check www.adobe.com for information on
support by Adobe Systems, Inc. for the SVG viewer.

2 Mozilla Firefox does not support compressed SVG documents or font embedding. To avoid font
mapping problems, specify the NOFONTEMBEDDING system option. Zooming and panning
features are not currently implemented. Also, if you select View � Page Style � No Style,
all graphs appear as a black rectangle.

Controlling Graph Resolution With The SVG Devices
The default resolution for the SVG devices is 96 dpi. Because the SVG devices are

Universal Printer shortcut devices, you cannot change the resolution using options in
the GOPTIONS statement. To change the resolution for these devices, you must use
either the Print Setup dialog box or the PRTDEF procedure to change the resolution for
the Universal Printer. Universal Printers have a fixed set of supported resolutions.

To use the Print Setup dialog box, select File � Print Setup, and select the printer
for which you want to change the resolution. Select Properties and click on the
Advanced tab. Select the resolution that you want to use from the list.

For information on using the PRTDEF procedure, see “The PRTDEF Procedure” in
Base SAS Procedures Guide.

Controlling Graph Size With the SVG Devices
The default graph size for the SVG output is 600 x 800 pixels. You can change the

size of your graph with the HSIZE= and VSIZE= graphics options. You can change the
paper size by specifying the XMAX= and YMAX= or the XPIXELS= and YPIXELS=
graphics options. Specifying a value for the XMAX=, YMAX=, XPIXELS=, or YPIXELS=
graphics options changes the setting of the PAPERSIZE= system option. See Chapter
15, “Graphics Options and Device Parameters Dictionary,” on page 327 and “SAS
System Options and SVG Output” on page 84.

SAS System Options and SVG Output
Because the SVG devices are Universal Printer shortcut devices, there are several

SAS system options that affect the way the SVG devices generate output. These options
include SVGHEIGHT=, SVGWIDTH=, SVGVIEWBOX=, SVGCONTROLBUTTONS,
and PAPERSIZE=, among others. These options and their interactions are described in
several topics in SAS Language Reference: Concepts under “Creating Scalable Vector
Graphics Using Universal Printing” . Before reviewing the topics that deal with the
various system options, you should review the topic “SVG Terminology” .

Using Graphics Devices � Modifying Device Entry Parameters 85

Topics dealing primarily with SAS system options are as follows:
� “SAS System Options That Effect Stand-alone SVG Documents”
� “Scaling an SVG Document to the Viewport”
� “Setting the ViewBox”
� “Preserving the Aspect Ratio”
� “Interaction between SAS SVG System Options and the SVG Tag Attributes”

Viewing and Modifying Device Entries
As described in “What Is a SAS/GRAPH Device?” on page 68, device entries contain

parameters that control much of the default behavior and default output attributes of a
device. However, even though a device entry exists for every device, the information in
it is not always used. See “Device Categories And Modifying Default Output Attributes”
on page 72 for more information.

Viewing the Contents of a Device Entry
SAS/GRAPH provides device entries for your operating environment in the

SASHELP.DEVICES catalog. If your site has created custom device entries, they might
also be stored in SASHELP.DEVICES, although custom devices are typically stored in
the catalog GDEVICE0.DEVICES. For more information about custom device entries,
see “Device Catalogs” on page 1126 or ask your on-site SAS support personnel.

Use any of the following methods to view the contents of a device entry:
� Use the SAS Explorer window to display the contents of the DEVICES catalog in

the SASHELP library. Double-click a device entry to display the contents of the
device entry in the Output window.

� Run the GDEVICE procedure in program mode. For example, the following
statements list in the Output window the contents of the PSCOLOR device entry:

proc gdevice catalog=sashelp.devices nofs browse;
list pscolor;

run;
quit;

� Run the GDEVICE procedure in windowing mode. The following statements open
the GDEVICE directory window that lists the available devices:

proc gdevice catalog=sashelp.devices;
run;

From the GDEVICE Directory window, select the device name to open the
GDEVICE Detail window. From there you can move to the other GDEVICE
windows for the entry, either by selecting windows from the Tools menu or
entering commands on the command line. For details, see “Using the GDEVICE
Windows” on page 1136.

Modifying Device Entry Parameters
Use the GDEVICE procedure to modify the properties of an existing device entry. See

Chapter 38, “The GDEVICE Procedure,” on page 1125.
The modifications made to a device entry are in effect for all SAS sessions.
The new values that you specify for device parameters must be within the device’s

capabilities. For example, devices are limited in the size of the output they can display.

86 Creating a Custom Device � Chapter 6

Some output devices cannot display color. If you try to increase the size of the display
past the device’s capability or if you specify colors for a device that cannot display them,
you will get unpredictable results. You cannot force a device to act as a device with
different capabilities by choosing a different device driver

Note: The device driver that is associated with a device entry is shown in the
Module field in the device entry. It is recommended that you do not change the device
driver associated with a device entry. Please contact SAS Technical Support before
changing the device driver associated with a device entry. �

Note: If you run SAS/GRAPH software in a multi-user environment, you should not
change the device entries in the SASHELP.DEVICES catalog unless you are the system
administrator or other on-site SAS support personnel. �

If you need to change a device entry in SASHELP.DEVICES, copy it into a personal
catalog named DEVICES, and then modify the copy. To use the new device, assign the
libref GDEVICE0 to the library that contains the modified copy. See “Creating or
Modifying Device Entries” on page 1142 for details.

Creating a Custom Device
You can use the GDEVICE procedure to create a custom device. For each new device,

you need to create a new device entry. Device entries that you create or modify are
typically stored in the catalog GDEVICEn.DEVICES.

If you want to create a custom device, it is recommended that you copy an existing
device and modify it as needed. If you cannot find a device that is suitable for your
purposes, contact SAS Technical Support.

See “Modifying Device Entry Parameters” on page 85 and Chapter 38, “The
GDEVICE Procedure,” on page 1125 for more information.

Related Topics
Other tasks related to devices are discussed in the following topics:

“Devices” on page xvii
describes changes in device support for the current release.

Chapter 7, “SAS/GRAPH Output,” on page 87
provides general information about graphics output formats and the SAS/GRAPH
output process, setting the size and resolution of your graphics output, previewing
on one device how output will look on another device, sending output directly to a
printer or other hardcopy device, and replaying output.

Chapter 16, “Introducing SAS/GRAPH Output for the Web,” on page 439
describes the options available for creating a Web presentation. Several devices
can be used to create a Web presentation, including JAVA and ACTIVEX, which
create interactive presentations.

Chapter 8, “Exporting Your Graphs to Microsoft Office Products,” on page 113
describes how to choose a device for output that you want to use in Microsoft
Office products.

Chapter 38, “The GDEVICE Procedure,” on page 1125
describes how to create and modify devices.

� creating files in graphics formats that can be viewed with a Web browser with
other applications (see “Graphics Output Files” on page 92).

87

C H A P T E R

7
SAS/GRAPH Output

About SAS/GRAPH Output 88
SAS/GRAPH Output Terminology 88

Supported Graphics Formats 88

Output Types 89

About GRSEGs 89

What You Can Do With SAS/GRAPH Output 90
Specifying the Graphics Output File Type for Your Graph 91

About the Output Delivery System (ODS) 91

About the Graphics Output Devices 91

The Output that Each Device Generates 91

Graphics Output Files 92

About File Extensions 93
The SAS/GRAPH Output Process 93

All Devices Except JAVA, JAVAIMG, ACTIVEX, and ACTXIMG 93

JAVA or ACTIVEX Device 93

JAVAIMG or ACTXIMG Device 94

Setting the Size of Your Graph 94
Using the HSIZE= and VSIZE= Graphics Options to Set the Size of Your Graphics Area 94

Using the XPIXELS= and YPIXELS= Graphics Options to Set the Size of Your Graph 95

Setting the Resolution of Your Graph 95

Using the XPIXELS=, XMAX=, YPIXELS=, and YMAX= Graphics Options to Set the Resolution
for Device-Based Graphics 96

Using a Device Variant to Set the Size or Resolution of Your Graph 97

Controlling Where Your Output is Stored 97

Specifying the Name and Location of Your ODS Output 97

Specifying the Name and Location of Your Graphics Output File 98

About Filename Indexing 99

Specifying the Catalog Name and Entry Name for Your GRSEGs 100
Using the Default Catalog and Entry Name 100

Specifying a Name for Your GRSEG with the NAME= Option 101

Specifying the Catalog and GRSEG Name with the GOUT= and NAME= Options 101

Where GRSEGs are Stored When Multiple ODS Destinations are Used 102

Summary of How Output Filenames and GRSEG Names are Handled 102
Replacing an Existing Graphics Output File Using the GSFMODE= Graphics Option 104

Storing Multiple Graphs in a Single Graphics Output File 104

Using Graphics Options to Store Multiple Graphs in One Graphics Output File 105

Using the GREPLAY Procedure to Store Multiple Graphs in One Graphics Output File 105

Replaying Your SAS/GRAPH Output 106
Replaying Your Output Using the GREPLAY Procedure 106

Replaying Output Using the DOCUMENT Procedure 107

Creating Your ODS Document 107

88 About SAS/GRAPH Output � Chapter 7

Replaying Your ODS Document 108
Previewing Output 109

Printing Your Graph 110

Sending Your Graph Directly to a Printer 110

Saving and Printing Your Graph 110

Exporting Your Output 111

About SAS/GRAPH Output
The result of most SAS/GRAPH procedures is the graphic display of data in the form

of graphics output, which is distinct from SAS output. Whereas SAS output consists of
text, graphics output consists of commands that tell a graphics device how to draw
graphic elements. A graphics element is a visual element of graphics output—for
example, a plot line, a bar, a footnote, the outline of a map area, or a border.

This chapter discusses how to display, print, store, and export SAS/GRAPH output
after you have created it.

SAS/GRAPH Output Terminology
The following terms are used when describing SAS/GRAPH output:

Graphics output
file

A file that contains bitmapped or vector graphic information. See
“Supported Graphics Formats” on page 88.

Image file A file that contains bitmapped graphic information. Examples
include GIF, PNG, and JPEG files. Image files are a subset of
graphics output files.

Document file A file output by the Output Delivery System (ODS) that contains an
image or is used to view an image. Examples include HTML, PDF,
RTF, SVG, and PostScript files.

Supported Graphics Formats
You can export your SAS/GRAPH output in many different graphics file formats.

SAS/GRAPH supports the following image file formats:

BMP Windows Bitmap

GIF Graphics Interchange Format

JPEG Joint Photographic Experts Group

PNG Portable Network Graphics

TIFF Tagged Image Format File

SAS/GRAPH supports the following vector file formats:

CGM Computer Graphics Metafile

EMF Microsoft Enhanced Metafile

EPS Encapsulated PostScript

PCL Printer Control Language

PDF Portable Document Format

� About GRSEGs 89

PS PostScript

SVG Scalable Vector Graphics

The vector-based formats

� are usually smaller than image files

� can be edited with third–party software (except for EPS)

� support system fonts

� support font embedding with the PDF, SVG, l, and PostScript devices

� provide a clear image on high-resolution devices.

The type of graphics file format that you choose depends on how you are going to use
the output. For example, you are planning to import the graph into other software
applications, such as Microsoft Excel, Word or Power Point, you might prefer to create a
CGM file. The vector-based files are usually smaller than image files, they support
TrueType fonts, and except for EPS, they can be edited with third-party software. In
addition, they use device-resident fonts and provide a clear image on high-resolution
devices.

If you want to display the graph on a Web page, or import it into software that
cannot accept vector graphics. You must create an image file such as PNG or GIF.

Most software applications that process graphics input can accept one or more of
these file formats. Check the documentation for the hardware or software product to
which you want to send the graph to determine what file formats it can use.

For a complete list of graphics file formats that are available with SAS/GRAPH in
your operating environment, refer to the Device Help for SAS/GRAPH in the SAS Help
facility.

Output Types
The SAS graphics procedures can generate the following types of output:

� a GRSEG (except for procedures GKPI, GTILE, and GAREABAR)

� a graphics output file that contains the graph (BMP, JPG, GIF, PNG, and so on)

� an HTML file that contains XML code that is consumed by the ActiveX control or
Java applet

In addition, the SAS Output Delivery System (ODS) creates document files, which
include the following types of output:

� an HTML file that displays a graph

� an RTF file that contains a graph

� a PCL file that contains a graph

� a PDF file that contains a graph

� a PostScript file that contains a graph

� an SVG file that contains one or more graphs

About GRSEGs
A GRSEG is a SAS catalog entry that contains graphics commands in a generic,

device-independent format. There are few cases in which you would be concerned with
the GRSEGs. One case for using the GRSEGs is when combining multiple graphs into a
single graphics output file using the GREPLAY procedure (see “Using the GREPLAY
Procedure to Store Multiple Graphs in One Graphics Output File” on page 105). Beyond

90 What You Can Do With SAS/GRAPH Output � Chapter 7

this case, there are few reasons to use the GRSEGs. If you plan to use the GRSEGs,
you must understand when they are generated and where they are stored.

GRSEGs are supported by the SAS/GRAPH procedures that use the graphics output
devices with some exceptions. The procedures that are supported by only the JAVA,
JAVAIMG, ACTIVEX, and ACTXIMG devices, such as GKPI, GTILE, and GAREABAR,
do not support GRSEGs.

A procedure that generates a GRSEG produces output in two steps:
1 It creates a GRSEG in a SAS catalog.
2 It uses a graphics output device to translate the commands from the GRSEG to

commands that a particular graphics device understands. This is called
device-dependent output.

This method enables you to produce graphics output on several types of graphics
output devices.

A GRSEG is stored in a catalog in the SAS temporary directory. The graphics
instructions that are contained in the GRSEG are understood only by the SAS/GRAPH
software. You cannot use third-party graphics applications to view the graphic in a
GRSEG. The SAS/GRAPH software provides devices that enable you to output a
GRSEG to standard graphics formats such as GIF, PNG, and PDF, which you can view
using third-party applications.

SAS/GRAPH software always assigns a name and a description to each GRSEG so
that you can identify it. By default, the names and descriptions are determined by the
procedure. For example, a GRSEG produced by the GCHART procedure is assigned the
name GCHART and a description such as PIE CHART OF MONTH.

By default, SAS/GRAPH appends each new GRSEG to the catalog. If you create
more than one graph with a procedure during a SAS session and the GRSEGs are
stored in the same catalog, SAS/GRAPH software appends a number to the end of the
name of subsequent GRSEGs. This number makes the names unique within the
catalog. For example, if you create three graphs with the GCHART procedure during
the same SAS session, the GRSEGs are named GCHART, GCHART1, and GCHART2.
SAS/GRAPH software uses this naming convention whether GRSEGs are being stored
in a temporary or a permanent catalog.

You can supply a name and description when you create the graph by using the
NAME= and DESCRIPTION= options. If you create more than one graph of the same
name, the SAS/GRAPH software increments the specified name just as it does the
default names.

What You Can Do With SAS/GRAPH Output
By default, SAS/GRAPH procedures that produce graphics output display the output

on your computer screen using either the GRAPH window or the direct-display method.
Using the SAS ODS and the graphics options, you can direct graphics output to a variety
of other destinations. Specifically, you can do the following with your graphics output:

� send it directly to a graphics hard-copy device, such as a printer. For details, see
“Printing Your Graph” on page 110.

� save it in a temporary or permanent SAS catalog for later replay. See “Replaying
Your SAS/GRAPH Output” on page 106.

� export it to a graphics output file using different graphics file formats. For
example, you can save SAS/GRAPH output in formats such as CGM or PostScript
for use with other software applications. For details, see “Exporting Your Output”
on page 111.

Regardless of the destination of a graph, a GRSEG is created for those SAS/GRAPH
procedures that support GRSEGs. The GRSEG is stored in the WORK.GSEG catalog

� About the Graphics Output Devices 91

unless you specify a different catalog with the GOUT= procedure option. To generate
only GRSEGs and suppress all other forms of graphics output, use the NODISPLAY
graphics option. See “DISPLAY” on page 353.

After your graphics output is saved in a catalog, you can do the following with your
graphics:

� transport them in catalogs from one operating environment to another. For details,
see Appendix 4, “Transporting and Converting Graphics Output,” on page 1659.

� convert them for use with a different version of SAS by converting the catalog
containing the graphics output. For details, see “Converting Catalogs to a
Different Version of SAS” on page 1662.

� export them to graphics output files using different graphics file formats. For
details, see “Exporting Your Output” on page 111.

Specifying the Graphics Output File Type for Your Graph

About the Output Delivery System (ODS)
The SAS ODS sends your graph output to a default destination or a destination that

you specify, such as your monitor, a printer, or a graphics output file. Each destination
has a default style and graphics output device associated with it. You can use the
STYLE= ODS option to specify a different style, and you can use the DEVICE=
graphics option to specify a different device that is supported by the ODS destination
that you are using.

See Chapter 16, “Introducing SAS/GRAPH Output for the Web,” on page 439 for
more information on using the ODS destinations, styles, and supported devices.

About the Graphics Output Devices

The Output that Each Device Generates
By default, the SAS/GRAPH ODS outputs to the LISTING destination, which

displays your graph on your monitor and creates a GRSEG in the catalog. You can
specify a graphics output device other than your monitor for the ODS LISTING
destination, or you can specify a different ODS destination and device. For information
on the ODS destinations and the devices that each supports, see Chapter 16,
“Introducing SAS/GRAPH Output for the Web,” on page 439.

The following table lists the common graphics output devices, and the default output
that each generates.

Table 7.1 SAS/GRAPH Devices and the Output They Generate

Device External Files

ACTIVEX This device is used with the ODS HTML and ODS RTF destinations. It
generates an HTML or RTF file that contains XML code that is consumed by
the ActiveX control. When the HTML or RTF file is viewed in a browser, the
SAS/GRAPH output is displayed as an interactive ActiveX control.

ACTXIMG A PNG file that contains a static image of the graph that is generated with
the ACTIVEX device.

92 About the Graphics Output Devices � Chapter 7

Device External Files

BMP A BMP file that contains the graph

CGM A CGM file that contains the graph.

CGMOF97L A CGM file suitable for inserting into Microsoft Word or PowerPoint
presentations.

EMF An EMF file that contains the graph.

GIF A GIF file that contains the graph.

JAVA This device is used with the ODS HTML destination. It generates a
JavaScript that ODS includes in the HTML file. When the HTML file is
viewed in a browser, the SAS/GRAPH output is displayed as an interactive
Java applet.

IBMPCGX Display device. This device is available on z/OS hosts only.

JAVAIMG A PNG file that contains a static graph that is generated with the JAVA
device.

JPEG A JPG file that contains the graph.

PCL5 A PCL file that contains the graph.

PDF A PDF file that contains one or more graphs and tables.

PNG A PNG file that contains the graph.

PSCOLOR A PostScript file that contains one or more graphs.

PSL A PostScript file that contains the graph in gray scale.

SASEMF An EMF file that contains the graph. This device is the default device for the
ODS RTF destination.

SVG An SVG file that contains the graph.

TIFFP A TIFF file that contains the graph in color.

WIN Display device. This device is available on Windows hosts only.

XCOLOR Display device. This device is available on UNIX hosts only.

Graphics Output Files

When you export SAS/GRAPH output, you run the output through a device that
creates a graphics output file. A graphics output file is a file that contains vector or
bitmap graphics commands. Typically, you select a device that produces the type of
graphics file format that you want, such as PNG, CGM, PS or EPS, GIF, or TIFF. You
can select a device that sends the output directly to a printer or other hard-copy device
without creating a graphics output file. You can specify the exact name and location of
each file or assign a default location to which all files are sent.

You can also use the ODS to generate SAS/GRAPH output as HTML that you can
view with a Web browser. Details are discussed in Chapter 16, “Introducing SAS/
GRAPH Output for the Web,” on page 439.

Once you have created a graphics output file, you can do the following:

� print the file using host commands

� view the file with an appropriate viewer or browser

� edit the file with the appropriate editing software

� import the file into other software applications

� JAVA or ACTIVEX Device 93

Note: A graphics output file is different from a SAS/GRAPH GRSEG. A graphics
output file is a file that is independent of SAS, and a GRSEG is a type of SAS catalog
file. Consequently, you use host commands to manipulate a graphics output file
independent of the SAS System, whereas you must use the SAS System to manipulate
SAS GRSEGs. The GREPLAY procedure can be used to replay graph entries stored in
catalogs and display them in the GRAPH window. �

About File Extensions
When you send SAS/GRAPH output to an aggregate file storage location,

SAS/GRAPH generates the name of the graphics output file. This is done by taking the
GRSEG name and adding the appropriate file extension. Most devices provide a default
extension. If a device does not generate an extension, then SAS/GRAPH uses the default
extension .gsf. To specify a different extension from the one SAS/GRAPH provides, use
the EXTENSION= graphics option. (For details, see “EXTENSION” on page 357).

The SAS/GRAPH Output Process

All Devices Except JAVA, JAVAIMG, ACTIVEX, and ACTXIMG
The following diagram illustrates the output process for all of the SAS/GRAPH

graphics output devices except JAVA, JAVAIMG, ACTIVEX, and ACTXIMG.

ods listing close;
ods rtf;
ods html;
proc ...

ODS uses the
device to generate

graphics output

SAS/GRAPH
generates GRSEGs
for each open
destination (see note)

ODS

BrowserWORK HTML

WORK GSEG

GRSEGs

RTF file with
embedded graph

Note: The image size, color, and font information is obtained from the device entry
and incorporated into the GRSEG. �

JAVA or ACTIVEX Device
The following diagram illustrates the output process for the JAVA and ACTIVEX

graphics output devices.

94 JAVAIMG or ACTXIMG Device � Chapter 7

goptions device=
 activex | java;
ods html;
proc ...

PROC DOCUMENT
works from
this point

image

ODS

ODS Output Object

ACTIVEX
or JAVA
Device

XML

HTML and XML File Browser

Size and color
information

from styles is
incorporated here

JAVAIMG or ACTXIMG Device
The following diagram illustrates the output process for the JAVAIMG and

ACTXIMG graphics output devices.

goptions device=
 actximg | javaimg;
ods rtf
proc ...

PROC DOCUMENT
works from

this point

image
ACTXIMG

or JAVAIMG
Device

XML

ODS

ODS Output Object RTF File with
embedded graph

Size and color
information

from styles is
incorporated here

Setting the Size of Your Graph

You can use graphics options to control the size of your graph. Each device uses a
default size for the graphics that they generate. You can use the HSIZE= and VSIZE=
graphics options to override the default size of your graphics area, or the XPIXELS=
and YPIXELS= graphics options to override the default size of your graph.

Using the HSIZE= and VSIZE= Graphics Options to Set the Size of Your
Graphics Area

You can use the HSIZE= and VSIZE= graphics options to change the default size of
the graphics area for the device that you are using. The HSIZE= option sets the
horizontal dimension, while the VSIZE= option sets the vertical dimension. You can
specify the dimension in inches (in), centimeters (cm), or points (pt). The default unit is
inches (in). Here is an example that creates a 20 centimeter wide by 10 centimeter high
GIF image of a graph.

option gstyle;
ods listing style=statistical;
goptions reset=all device=gif hsize=20cm vsize=10cm;

proc gchart data=sashelp.cars;

� Setting the Resolution of Your Graph 95

vbar Make;
where MPG_Highway >= 37;

run;
quit;

Using the XPIXELS= and YPIXELS= Graphics Options to Set the Size of
Your Graph

For devices other than the default display devices and the Universal Printing
devices, you can use the XPIXELS= and YPIXELS= graphics options to change the
default size of the display area for your graph without having to modify the device.

Note: The XPIXELS= and YPIXELS= graphics options are not supported by the
default display devices. They are also not supported by Universal Printer devices
(including the shortcut devices). The options are partially supported by the ACTIVEX
and JAVA devices. �

Setting only the XPIXELS= and YPIXELS= options affects the size of the graph, but
does not affect the resolution. Here is an example that creates a 600 pixel wide by 800
pixel high GIF image of a graph.

option gstyle;
ods listing style=statistical;
goptions reset=all device=gif xpixels=600 ypixels=800;

proc gchart data=sashelp.cars;
vbar Make;

where MPG_Highway >= 37;
run;

quit;

Notice that XMAX= and YMAX= are not set. In this example, the SAS/GRAPH
software recomputes the XMAX= and YMAX= values to retain the original resolution
for the new graph size.

Setting the Resolution of Your Graph
To set the resolution of your template-based graphics:
� use the IMAGE_DPI= option in your ODS statement to specify the resolution in

DPI.
See SAS/GRAPH: Graph Template Language Reference and SAS/GRAPH:

Statistical Graphics Procedures Guide.

To set the resolution of your device-based graphics, use one of the following methods:
� For devices other than the default display devices and the Universal Printer

devices (including the shortcut devices), use the XPIXELS=, XMAX=, YPIXELS=,
and YMAX= graphics options to set the resolution for graphics formats that
support variable resolution.

� Use a device variant to set the resolution of your graph to a specific resolution.

96 Using the XPIXELS=, XMAX=, YPIXELS=, and YMAX= Graphics Options to Set the Resolution for Device-Based Graphics � Chapter 7

Using the XPIXELS=, XMAX=, YPIXELS=, and YMAX= Graphics Options
to Set the Resolution for Device-Based Graphics

For devices other than the default display devices and the Universal Printer devices,
you can use the XPIXELS=, XMAX=, YPIXELS=, and YMAX= graphics options to set
the resolution of your graph.

Note: The XPIXELS=, YPIXELS=, XMAX=, and YMAX= graphics options are not
supported by the default display devices and the Universal Printer devices, including
the shortcut devices. These graphics options are partially supported by the ACTIVEX
and JAVA devices. �

Note: The resolution of GIF and BMP images is fixed and cannot be changed using
this method. �

The XPIXELS= and YPIXELS= graphics options set the number of pixels for the X
and Y axes respectively. The XMAX= and YMAX= graphics options set the maximum
boundaries of the output on the X and Y axes respectively. The SAS/GRAPH software
computes the resolution as follows:

X-resolution = XPIXELS / XMAX
Y-resolution = YPIXELS / XMAX
Table 7.2 on page 96 summarizes the affect of the XPIXELS=, XMAX=, YPIXELS=,

and YMAX= graphics options have on the image resolution.

Table 7.2 Interactions of Graphics Options That Affect Resolution

Options Specified Options Not Specified SAS/GRAPH Action

XPIXELS= and YPIXELS= XMAX= and YMAX= Changes the dimensions and
recalculates the value of
XMAX= and YMAX= in order
to retain the resolution.

XMAX= and YMAX= XPIXELS= and YPIXELS= Changes the dimensions and
recalculates the value of
XPIXELS= and YPIXELS= in
order to retain the resolution.

XMAX= and XPIXELS= Changes the horizontal
dimension and recalculates the
resolution.

YMAX= and YPIXELS= Changes the vertical dimension
and recalculates the resolution.

For example, for the graphics option settings XPIXELS=800 and XMAX=8in, the
resulting X resolution is 100 DPI.

You can set the X resolution, the Y resolution, or both. Here is an example that sets
the resolution of a 1000-pixel-wide-by-1200-pixel-high TIFF image of a graph to 200
DPI.

option gstyle;
ods listing style=seaside;
goptions reset=all device=tiffp xpixels=1000 xmax=5in ypixels=1200 ymax=6in;

proc gchart data=sashelp.cars;
vbar Make;

� Specifying the Name and Location of Your ODS Output 97

where MPG_Highway >= 37;
run;

quit;

Using a Device Variant to Set the Size or Resolution of Your Graph
Some of the graphics output devices have variants that produce graphics of a specific

size or resolution for a given format. Table 7.3 on page 97 lists the GIF device variants
that produce images of a specific size.

Table 7.3 GIF Device Variants that Produce Images of a Specific Size

Device Variant Default Image Size

GIF160 160 x 120

GIF260 260 x 195

GIF373 373 x 280

GIF570 570 x 430

GIF733 733 x 550

The PNG300 and JPEG300 device variants produce 300 DPI images in the PNG and
JPEG format respectively.

Note: The PNG300 and JPEG300 devices are not appropriate for use with the ODS
HTML destination. These devices are used when a high-resolution graph (300 DPI) in
the PNG or JPEG format is required for printing purposes. Because most browsers do
not use the resolution value stored in the PNG or JPEG file, images produced by the
PNG300 and JPEG300 devices appear very large when they are viewed in the browser. �

See “Overview” on page 67.

Controlling Where Your Output is Stored

Specifying the Name and Location of Your ODS Output
By default, ODS output is stored in the default SAS output directory. You can use

the FILE= option in your ODS statement to specify where your ODS output files are
stored. For the HTML destination, you can also use the PATH=, GPATH=, and the
BODY= options to specify a different location for the HTML output file and the graphics
output files. Here is an example that uses the FILE= ODS option with the PDF
destination to send the PDF output to file mygraph.pdf in the default SAS directory.

goptions reset=all;
ods listing close;
ods pdf style=money file="mygraph.pdf";
proc gchart data=sashelp.prdsale;

vbar Product / sumvar=actual;
title1 "First Quarter Sales in Canada";
where Quarter=1 and Country="CANADA";

98 Specifying the Name and Location of Your Graphics Output File � Chapter 7

run;
quit;
ods pdf close;
ods listing;

Here is an example that uses the PATH=, GPATH=, and the BODY= ODS options
with the HTML destination to send the HTML output to file mygraph.html in the
current directory, and the graphics output file to the images subdirectory.

goptions reset=all;
ods listing close;
ods html style=banker path="./" gpath="images" body="mygraph.html";
proc gchart data=sashelp.prdsale;

vbar Product / sumvar=actual;
title1 "First Quarter Sales in Canada";
where Quarter=1 and Country="CANADA";

run;
quit;
ods html close;
ods listing;

For more information on the PATH=, GPATH=, and BODY= options, see SAS Output
Delivery System: User’s Guide .

Specifying the Name and Location of Your Graphics Output File
When you use the ODS LISTING destination, you can use the GSFNAME= graphics

option to send your output to a graphics output file that you specify. The GSFNAME=
option requires a FILENAME statement that creates a file reference that points to a file
or an aggregate file storage location. The syntax of the FILENAME statement is as
follows:

FILENAME RefName "DirectoryOrFile"

If the file reference points to an aggregate file storage location, the graphics output
files are named according to the NAME= option, if specified, or the default naming
convention. If the file reference points to a file, the file specified in the FILENAME
statement is used, even if the NAME= option is specified. See “Summary of How
Output Filenames and GRSEG Names are Handled” on page 102.

Here is an example that shows how to send the output of the GCHART procedure to
file mychart.png in the MyGraphs directory.

filename graphout "MyGraphs";
goptions reset=all device=png gsfname=graphout;
proc gchart data=sashelp.cars;

pie Make / name="MYCHART";
where MSRP <= 15000;

run;
quit

If a MYCHART GRSEG entry does not already exist in the temporary catalog, the
device sends the output to file mychart.png in the Mygraphs directory. If a MYCHART
GRSEG entry already exists, the device uses an incremented name such as MYCHART1.
In the previous example, you can replace the aggregate file location with a filename in
the FILENAME statement and omit the NAME= option and get the same result.

If you specify the filename in the FILENAME statement, you must include the
proper file extension. See “About File Extensions” on page 93.

� About Filename Indexing 99

You can also store your output in a graphics output file on a remote host using FTP.
Here is an example that uses FTP to store multiple PNG graphs in directory /public/
sas/graphs on the remote UNIX host unixhost73.

filename grafout ftp "/public/sas/graphs" dir host="unixhost73" fileext
user="anonymous";

ods listing style=banker;
goptions reset=all device=png gsfname=grafout;

/* Create our data set by sorting sashelp.cars by type */
proc sort data=sashelp.cars out=work.cars;

by type;
run;

/* Generate the graphs */
proc gchart data=work.cars;

vbar Make;
title1 "30 MPG or Better";
where MPG_Highway >= 30;
by type;

run;
quit;

This example creates four PNG files in directory /public/sas/graphs on host
unixhost73. Since the GCHART procedure uses BY-group processing, the FILENAME
statement includes the DIR option, which defines an aggregate file storage location. If
you need to create only one graph, remove the DIR option and specify the absolute path
to your graphics output file in your FILENAME statement.

About Filename Indexing
When duplicate names occur in graphics output filenames, SAS/GRAPH procedures

use indexing systems to determine unique names for new graphics output files.
(Numbers are added to the end of the filename to create new filenames.) Two indexing
systems are used: ODS Statistical Graphics indexing and catalog-based indexing. ODS
Statistical Graphics indexing is used in all ODS Statistical Graphics output and by the
procedures listed in Table 7.4 on page 100. All of the other procedures use
catalog-based indexing.

100 Specifying the Catalog Name and Entry Name for Your GRSEGs � Chapter 7

Table 7.4 Filename Indexing Systems Used by SAS/GRAPH Procedures

Procedure Type Indexing System How To Control
Graphics Filenames

Procedure Name

Catalog-based All procedures not listed
below.

Device-based

ODS Statistical
Graphics

NAME= option in the
procedure action statement

GAREABAR

GKPI

GTILE

Template-based ODS Statistical
Graphics

IMAGENAME= option in
the ODS GRAPHICS
statement

SGDESIGN

SGPLOT

SGPANEL

SGSCATTER

SGRENDER

Note: See “Device-Based Graphics and Template-Based Graphics” on page 6 for a
description of the procedure types. �

Because two independent indexing systems are used by the SAS/GRAPH procedures,
it is possible that graphics output files can be overwritten if you specify the same
graphics filename both for procedures that use catalog-based indexing and for
procedures that use ODS Statistical Graphics indexing. To avoid this problem, make
sure that you specify different names for the procedures that use ODS Statistical
Graphics indexing and the procedures that use catalog-based indexing. For example, if
your application uses both the GMAP procedure and the GAREABAR procedure, and
you are using the NAME= option to specify output filenames, make sure you specify
different filenames for each procedure.

Specifying the Catalog Name and Entry Name for Your GRSEGs

Using the Default Catalog and Entry Name

If you omit the NAME= and GOUT= options, the SAS/GRAPH software uses the
default naming convention to name the GRSEG entry and stores the entry in the
default WORK.GSEG catalog. The GRSEG naming convention uses up to eight
characters of the default name for the procedure as the base name for the GRSEG. If
the name generated by the procedure duplicates an existing GRSEG, the name is
incremented such as GCHART, GCHART1, GCHART2, and so on. For details, see the
description of the NAME= option for a specific procedure.

If you specify a filename for the graphics output file and omit the NAME= option, the
graphics output filename is the name specified in the FILENAME statement, and the
GRSEG entry name is the default procedure name. When you specify the filename,
make sure that you include the appropriate file extension, such as .cgm, .gif, or .ps.

If you specify an aggregate file storage location instead of a specific filename and you
omit the NAME= option, the name of both the GRSEG entry and the graphics output file
is the default procedure name, and SAS/GRAPH supplies the appropriate file extension.

See “Summary of How Output Filenames and GRSEG Names are Handled” on page
102 for examples.

� Specifying the Catalog Name and Entry Name for Your GRSEGs 101

Specifying a Name for Your GRSEG with the NAME= Option
You can use the NAME= option to change the name of your output. Here is an

example that shows how to change the name of the GCHART procedure output to
MYCHART.

filename outfile "./";
goptions reset=all device=png gsfname=outfile;
proc gchart data=sashelp.cars;

pie Make / name="MYCHART";
where MSRP <= 15000;

run;
quit;

This example creates the file mychart.png in the SAS default output directory, and it
creates the GRSEG Mychart in the SAS temporary catalog.

See “Summary of How Output Filenames and GRSEG Names are Handled” on page
102 for additional information on output naming.

Specifying the Catalog and GRSEG Name with the GOUT= and NAME= Options
By default, GRSEGs are stored in the WORK.GSEG temporary catalog under the

default name of the procedure that was used to generate the graph. The GRSEG name
can be specified using the NAME= option, and the output catalog can be changed using
the GOUT= procedure option. GRSEG names are limited to eight characters. If the
NAME= option is set to a name that is more than eight characters in length, the
GRSEG name is truncated to eight characters.

The name of the library and catalog in which the GRSEG is stored can be changed
with the GOUT= procedure option. The GOUT= procedure option is assigned the
catalog name in the format libref.catalog for the desired catalog. The name can be a
one-level or a two-level name. If a one-level name is used, the GRSEG is stored in the
temporary WORK library under the specified catalog name. A two-level name can be
used to specify a permanent catalog.

Here is an example that shows how to store a GRSEG generated by the GCHART
procedure under entry MYCHART in the MYGRAPHS.CARS catalog.

LIBNAME Mygraphs "Mygraphs";
ods listing style=banker;

proc gchart data=sashelp.cars gout=Mygraphs.cars;
vbar Make / name="Mychart";

where MPG_Highway >= 37;
run;

quit;

Table 7.5 on page 101 summarizes the location of the GRSEG based on the NAME=
and GOUT= procedure using the GCHART procedure as an example.

Table 7.5 How NAME= and GOUT= Affect the GRSEG Location

NAME= GOUT= GRSEG Location

Not specified Not specified Gchart in WORK.GSEG

Not specified CARS Gchart in WORK.CARS

Not specified MYGRAPHS.CARS Gchart in MYGRAPHS.CARS

MYCHART Not specified Mychart in WORK.GSEG

102 Summary of How Output Filenames and GRSEG Names are Handled � Chapter 7

NAME= GOUT= GRSEG Location

MYCHART CARS Mychart in WORK.CARS

MYCHART MYGRAPHS.CARS Mychart in MYGRAPHS.CARS

Where GRSEGs are Stored When Multiple ODS Destinations are Used
When you send output to multiple ODS destinations, a catalog is created for the

GRSEGs for each of the destinations. If the GOUT= procedure option is not specified,
by default, the GRSEGs for the first destination that was opened are sent to the
WORK.GSEG catalog. The GRSEGs for the subsequently opened ODS destinations are
sent to a catalog that is named after the destination itself. For example, if you open the
ODS LISTING, HTML, and RTF destinations, in that order, the GRSEGs are stored in
the catalogs that are shown in the following table.

Catalog Name Content

WORK.GSEG The GSEGs for ODS LISTING

WORK.HTML The GSEGs for ODS HTML

WORK.RTF The GSEGs for ODS RTF

In the default case, the GRSEGs for the first destination that is opened are stored in
the WORK.GSEG catalog, regardless of the destination.

If you use the GOUT= procedure option to specify a catalog name, the GRSEGs for
the first destination that you opened are sent to the catalog that is specified by the
GOUT= procedure option. The GRSEGs for the subsequently opened ODS destinations
are sent to a catalog that is named after the destination itself. For example, if you open
the ODS HTML, LISTING, and RTF destinations, and you use the
GOUT=MyGraphs.Sales procedure option, the GRSEGs are stored in the catalogs that
are shown in the following table.

Catalog Name Content

MYGRAPHS.SALES The GRSEGs for ODS HTML

MYGRAPHS.LISTING The GRSEGs for ODS LISTING

MYGRAPHS.RTF The GRSEGs for ODS RTF

The GRSEGs for the first destination are stored in the catalog that is specified by the
GOUT= procedure option.

Summary of How Output Filenames and GRSEG Names are Handled
Table 7.6 on page 103 summarizes how SAS/GRAPH generates names for catalog

entries and graphics output files, depending on 1) whether the NAME= option is used,
and 2) the file reference specification in the FILENAME statement. This illustration
assumes that the GCHART procedure is used with the DEVICE=GIF graphics option.
It describes the case where a GRSEG and output file of the same name do not already
exist, and the case where they do already exist.

� Summary of How Output Filenames and GRSEG Names are Handled 103

Table 7.6 How SAS/GRAPH Generates Initial GRSEG Names and Filenames

NAME= Condition Result

NAME="FRED" GSFNAME= points to a file
named "MYGRAPH.GIF"
and the catalog is empty.

GRSEG name: FRED

external filename:
MYGRAPH.GIF

NAME="FRED" GSFNAME= points to an
aggregate file storage
location and the catalog is
empty.

GRSEG name: FRED

external filename:
FRED.GIF

NAME="WEATHEROBS" GSFNAME= points to an
aggregate file storage
location and the catalog is
empty.

GRSEG name:WEATHERO

external filename:
WEATHEROBS.GIF

NAME= (not specified) GSFNAME= points to a file
named "MYGRAPH.GIF"
and the catalog is empty.

GRSEG name: GCHART

external filename:
MYGRAPH.GIF

NAME= (not specified) GSFNAME= points to an
aggregate file storage
location and the catalog is
empty.

GRSEG name: GCHART

external filename:
GCHART.GIF

Note: When the file reference points to an aggregate file storage location, the name
of the GRSEG always determines the name of the graphics output file. It does not
matter whether the GRSEG name is the default name or a name assigned by the
NAME= option. �

CAUTION:
If the graph created by your program already exists in the catalog, a new GRSEG with an
incremented name is created. A new graphics output file might be created, which leaves
your old graphics output file in place. �

Although GRSEG names cannot be more than eight characters in length, the
NAME= option supports long names. When the NAME= option is assigned a name of
more than eight characters and the file reference points to an aggregate file location,
the GRSEG name is the NAME= value truncated to eight characters, and the graphics
output filename is the complete NAME= value. This is demonstrated by the
NAME="WEATHEROBS" example in Table 7.6 on page 103.

When a GRSEG of the same name already exists in the catalog, the SAS/GRAPH
software combines the NAME= option value with a number to create an incremented
name of no more than eight characters. If the GSFNAME= graphics option is used and
the file reference points to an aggregate file location, the new graphics output filename
is also incremented, but the filename is the full value of the NAME= option with a
number appended. The same number is used for the GRSEG name and the graphics
output filename.

If the GSFNAME= graphics option points to a file, the graphics output filename
remains the same and the original file is replaced with the new graph by default.

Table 7.7 on page 104 demonstrates how the SAS/GRAPH software increments the
GRSEG name and the graphics output filenames when a GRSEG and graphics output
file of the same name already exist.

104 Replacing an Existing Graphics Output File Using the GSFMODE= Graphics Option � Chapter 7

Table 7.7 How SAS/GRAPH Increments GRSEG Names and Filenames

NAME= Condition Result

NAME="FRED" GSFNAME= points to a file
named "MYGRAPH.GIF"
and GRSEG FRED already
exists.

GRSEG name: FRED1

external filename:
MYGRAPH.GIF

NAME="FRED" GSFNAME= points to an
aggregate file storage
location and GRSEG
FRED already exists.

GRSEG name: FRED1

external filename:
FRED1.GIF

NAME="WEATHEROBS" GSFNAME= points to an
aggregate file storage
location and GRSEG
WEATHERO already
exists.

GRSEG name:WEATHER1

external filename:
WEATHEROBS1.GIF

NAME= (not specified) GSFNAME= points to a file
named "MYGRAPH.GIF"
and GRSEG GCHART
already exists.

GRSEG name: GCHART1

external filename:
MYGRAPH.GIF

NAME= (not specified) GSFNAME= points to an
aggregate file storage
location and GRSEGs
GCHART and GCHART1
already exist.

GRSEG name: GCHART2

external filename:
GCHART2.GIF

You cannot replace individual GRSEGs in a catalog. To replace a GRSEG, you must
delete the GRSEG, and then re-create it. Therefore, even though the contents of the
graphics output file are replaced, the GRSEG is not. Each time you submit the
program, a new GRSEG is created, and the GRSEG name is incremented.

Replacing an Existing Graphics Output File Using the GSFMODE=
Graphics Option

You can use the GSFMODE= graphics option to replace an existing graphics output
file with a new graph. To replace an existing graphics output file, the GSFMODE=
option must be set to REPLACE, which is the default value for this option. When you
run a SAS program that creates a graphics output file and the graphics option
GSFMODE=REPLACE is used, the existing graphics output file is replaced with the
new graph. However, a unique GRSEG is still generated each time you run the
procedure.

See “Introduction” on page 327.

Storing Multiple Graphs in a Single Graphics Output File
If you want to store multiple graphs in a single graphics output file, you can use

either the GSFMODE=APPEND and GSFNAME= graphics options, or the GREPLAY
procedure.

� Using the GREPLAY Procedure to Store Multiple Graphs in One Graphics Output File 105

Using Graphics Options to Store Multiple Graphs in One Graphics
Output File

You can use the GSFMODE=APPEND and the GSFNAME= graphics options to store
multiple graphs in one graphics output file. When the GSFMODE= graphics option is
set to APPEND and the GSFNAME= option points to a file, if the graphics output file
specified by the GSFNAME= option already exists, the SAS/GRAPH software appends
the new graph to the graphics output file. Otherwise, it creates the graphics output file
and stores the graph in it.

Note: Although a file can contain multiple graphs, some viewers can view only one
graph. This can make it appear that a file containing multiple graphs contains only one
graph. �

A common application of the GSFMODE=APPEND option is in the production of
animated GIFs. See “Developing Web Presentations with the GIFANIM Device” on page
519.

Using the GREPLAY Procedure to Store Multiple Graphs in One
Graphics Output File

You can use the GOUT= procedure option with the GREPLAY procedure to store
multiple graphs in one graphics output file. This involves the following steps:

1 Create a file reference for your output file. For example:

filename myfile "MyOutputFile.ps";

2 Run the procedure to generate your charts and store them in a catalog.
3 Add the GSFNAME=FileRefName to your GOPTIONS statement.
4 Run the GREPLAY procedure as follows:

proc greplay
igout=<CatalogName>

replay _all_;
run;

quit;

Replace <CatalogName> with the name of the catalog in which your graphs are
stored. The REPLAY _ALL_ action statement replays all of the entries in the
catalog.

Here is an example that replays five graphs to one PostScript file for printing.

/* Specify graphics output file name */
filename psout "multicharts.ps";

/* Specify style and graphics options */
ods listing style=banker;
goptions reset=all device=pscolor gsfname=psout nodisplay;

/* Generate the graphs */
proc gchart data=sashelp.cars gout=Work.Mygraphs;

vbar Make;
title1 "30 MPG or better";
where MPG_Highway > 30;

run;

106 Replaying Your SAS/GRAPH Output � Chapter 7

vbar Make;
title1 "Between 25 MPG and 29 MPG";
where MPG_Highway >= 25 AND MPG_Highway <= 29;

run;

vbar Make;
title1 "Between 20 MPG and 24 MPG";
where MPG_Highway >= 20 AND MPG_Highway <= 24;

run;

vbar Make;
title1 "Between 15 MPG and 19 MPG";
where MPG_Highway >= 15 AND MPG_Highway <= 19;

run;

vbar Make;
title1 "Less than 15 MPG";
where MPG_Highway < 15;

run;
quit;

/* Enable display, and then replay all of the graphs to psout */
goptions display;
proc greplay

igout=Work.Mygraphs nofs;
replay _all_;

run;
quit;

Replaying Your SAS/GRAPH Output

You can use the GREPLAY procedure or the ODS DOCUMENT destination and the
DOCUMENT procedure to replay your SAS/GRAPH output.

Replaying Your Output Using the GREPLAY Procedure
For the SAS/GRAPH procedures that support GRSEGs, you can use the GREPLAY

procedure to replay your graph GRSEGs without having to rerun your DATA step and
procedures. You can replay all of your graphs or only the ones you select. When you
replay your graphs, use the same device that you used when you generated the original
graphs. If you use a different device, your replayed graphs might be distorted.

You can replay your graphs to the GRAPH window for viewing or to a graphics
output file. Here is an example that replays all of the graphs in the WORK.GSEG
catalog to the GRAPH window for viewing:

ods listing;
goptions reset=all;
proc greplay igout=work.gseg nofs;

replay _all_;
run;
quit;

� Replaying Output Using the DOCUMENT Procedure 107

You can also use the GREPLAY procedure to replay multiple graphs to a single file
for the graphic and document formats that support multiple images per file. See “Using
the GREPLAY Procedure to Store Multiple Graphs in One Graphics Output File” on
page 105 and Chapter 21, “Generating Web Animation with GIFANIM,” on page 519.

For information on the GREPLAY procedure, see Chapter 50, “The GREPLAY
Procedure,” on page 1473.

Replaying Output Using the DOCUMENT Procedure
For all of the SAS/GRAPH procedures, you can use the DOCUMENT procedure to

replay output that you created. Use the ODS DOCUMENT destination, without having
to rerun your DATA step and procedures. The ODS DOCUMENT destination creates
ODS output objects for your output. You can replay the output objects at any time to
your monitor or to a different device.

Creating Your ODS Document
To create an ODS document for your output, do the following in your SAS program:
1 Open ODS DOCUMENT and specify the name of the output catalog with write

permissions.
2 Close ODS LISTING.
3 Open the ODS destinations that you want to send your output to.
4 Specify the device that you want to use using the DEVICE= graphics option.
5 Generate your chart.
6 Close the ODS destinations that you opened in step 3.
7 Close ODS DOCUMENT.
8 Open ODS LISTING.

Here is an example that shows how to create an ODS document containing three pie
charts and how to store it in catalog Mygraphs.Mydocs. The pie charts are generated
with the JAVA device.

/* Create the Mygraphs catalog */
LIBNAME Mygraphs "./";

/* Open the DOCUMENT destination. Specify catalog */
/* Mygraphs.Mydocs for the output and give it write permission */
ods document name=Mygraphs.Mydocs(write);

/* Close the LISTING destination */
ods listing close;

/* Open the HTML destination, and specify the JAVA device. */
ods html style=seaside;
goptions reset=all device=java;

/* Generate the charts */
proc gchart data=sashelp.cars gout=Mygraphs.Mydocs;

pie Make / other=2;
title1 "30 MPG or Better";
where MPG_Highway >= 30;

run;
pie Make / other=3;

108 Replaying Output Using the DOCUMENT Procedure � Chapter 7

title1 "Between 20 MPG and 29 MPG";
where MPG_Highway < 30 and MPG_Highway >=20;

run;
pie Make / other=3;

title1 "19 MPG or less";
where MPG_Highway < 20;

run;
quit;

/* Close the HTML and DOCUMENT destinations */
ods html close;
ods document close;

/* Reopen the LISTING destination */
ods listing;

Replaying Your ODS Document
After you create your ODS document, use the DOCUMENT procedure to replay it.

You can replay all of the graphs in your document or only those that you select. To see
a list of the graphs in an ODS document, use a LIST statement with the DOCUMENT
procedure. Here is an example that shows how to list the graphs in Mygraphs.Mydocs.

proc document name=Mygraphs.Mydocs;
list / levels=all;

run;
quit;

A list of the graphs in the document is displayed in the Output window as shown in
the following example:

Listing of: \Mygraphs.Mydocs\
Order by: Insertion
Number of levels: All

Obs Path Type

1 \Gchart#1 Dir
2 \Gchart#1\Gchart#1 Graph
3 \Gchart#1\Gchart#2 Graph
4 \Gchart#1\Gchart#3 Graph

In this example, the graphs are listed in the order in which they were inserted into
the catalog. To replay individual graphs, you must know the path to the graphs, which
is shown in the Path column.

To replay the output:
1 Close the ODS LISTING destination.
2 Open the ODS destinations that you want to send the output to.
3 Use the DEVICE= graphics option to specify the graphics output device that you

want to use to generate the graphs.
4 Run the DOCUMENT procedure with one or more REPLAY statements to replay

your graphs. Specify the path to each graph, and use the DEST= option to specify
the output destination.

Note: If you want to display all of the graphs, do not specify a path. �

5 Close the ODS destinations that you opened in step 2.

� Previewing Output 109

6 Open the ODS LISTING destination.

Here is an example that shows how to play the first and the third graphs in the
Mygraphs.Mydocs catalog to the ODS RTF destination using the ACTIVEX device.

goptions reset=all device=activex;
ods listing close;
ods rtf style=money;
proc document name=Mygraphs.Mydocs;

replay \Gchart#1\Gchart#1 / levels=all dest=rtf;
replay \Gchart#1\Gchart#3 / levels=all dest=rtf;
run;

quit;
ods rtf close;
ods listing;

To replay all of the graphs in the catalog, use one REPLAY statement that does not
specify a path. For example:

proc document name=Mygraphs.Mydocs;
replay / levels=all dest=rtf;
run;

For more information on using the ODS DOCUMENT destination and the
DOCUMENT procedure, see SAS Output Delivery System: User’s Guide.

Previewing Output
If you want to preview how a graph is going to appear on another device before you

send it to that device, use the TARGETDEVICE= graphics option. For example, to
preview output on your display as it would appear on a color PostScript printer, include
TARGETDEVICE= in a GOPTIONS statement and specify the device for the printer:

goptions targetdevice=pscolor;

How output is displayed on your screen depends on the following:
� the orientation of the target device. As a result, the graph might not cover the

entire display area of the preview device.
� the values of either the LCOLS and LROWS pair or the PROWS and PCOLS pair,

depending on the orientation of the target device.
� the default color list of the target device.
� the values of the HSIZE and VSIZE device parameters for the target device. The

HSIZE and VSIZE values are scaled to fit the display device, but they retain the
target device aspect ratio.

� the value of the CBACK device parameter for the target device.

All other device parameter values, including the destination of the output, come from
the current device entry. Therefore, the output displayed by TARGETDEVICE= might
not be an exact replication of the actual output, but it is as close as possible.

See “TARGETDEVICE” on page 424 for a complete description of TARGETDEVICE=.

110 Printing Your Graph � Chapter 7

Printing Your Graph

You can print your SAS/GRAPH output on hard-copy devices such as a printer.
Regardless of the destination, you can create a hard copy of your graph in one of the
following ways:

� Print the SAS/GRAPH program output directly to a hard-copy device.

� Print the SAS/GRAPH program output by creating a graphics output file, HTML
file, or PDF file, and then printing the file using host commands or host
application commands.

� Print the displayed graph directly from the GRAPH or Results Viewer window or
the Graphics Editor window.

� Print the displayed graph directly from a browser that supports the SVG format.

Sending Your Graph Directly to a Printer
You can send graphics output directly to a hard-copy device by sending the graphics

commands directly to the device or to a device port. On most systems you can use any
of the following methods to print directly to a device:

� Use the ODS PRINTER destination to send your output directly to the default
printer. Use the PRINTER= option if you want to direct your output to a printer
other than the default printer or if a default printer is not defined.

See the SAS Output Delivery System: User’s Guide for information on the ODS
PRINTER statement.

See the SAS Language Reference: Concepts for information on how to define a
default printer for the Universal Printer.

� Use a FILENAME statement, a GOPTIONS statement, and a SAS/GRAPH device.
The FILENAME statement defines a file reference that points to the print
commands to send your output to any available hard-copy device. The GOPTIONS
statement references the file reference, assigns the device, and specifies any
additional parameters.

� Use the GDEVICE procedure to modify a SAS/GRAPH device entry to spool output
directly to a printer. See Chapter 38, “The GDEVICE Procedure,” on page 1125 for
information on adding host commands to a device entry.

� Use the Universal Printing interface.

For detailed instructions on each of these methods, refer to the SAS Help facility for
SAS/GRAPH.

Saving and Printing Your Graph
You can save your graph to a graphics output file, and then print the file using host

commands. You can perform these two steps separately or combine them by
incorporating the host printing commands into your program or graphics output device.
In any case, you must choose a graphics file format that is compatible with your printer.
For example, if you are using a PostScript printer, be sure to create a PostScript file
using the appropriate device for the printer.

You can use any of the following methods to create and print a graphics output file:

� Use FILENAME and GOPTIONS statements to create the graphics output file,
and then use a host command to spool the file to a spooler for the device.

� Exporting Your Output 111

� Use an ODS PRINTER statement to produce a Postscript, PDF, PCL, SVG, PNG,
or GIF file. Then use a host command or a host application command to send the
file to the printer.

� Use the GDEVICE procedure to modify a SAS/GRAPH device to save the output to
a graphics output file and spool the output directly to a printer. See Chapter 38,
“The GDEVICE Procedure,” on page 1125 for information on modifying device
entries.

� Use the Universal Printing interface.

Note: On Windows platforms, the ODS PRINTER destination uses the Universal
Printing interface in addition to the Windows system printers. �

For detailed instructions on each of these methods, refer to the SAS Help facility for
SAS/GRAPH.

Exporting Your Output
You can export your SAS/GRAPH output to other formats or to other software

applications such as Microsoft Office. See the following topics for more information.
� “Replaying Output Using the DOCUMENT Procedure” on page 107
� Chapter 9, “Writing Your Graphs to a PDF File,” on page 123

� Chapter 8, “Exporting Your Graphs to Microsoft Office Products,” on page 113

112

113

C H A P T E R

8
Exporting Your Graphs to
Microsoft Office Products

What to Consider When Choosing an Output Format 113
Graphics Formats Versus Document Formats 113

Image Resolution and Size 114

Color Depth 114

Fonts 115

Multiple-Image Graphics Files 115
Ability to Edit: Vector Versus Raster Formats 115

Comparison of the Graphics Output 116

Working Around the EMF and CGM Transparency Limitation 119

About the Default CGM Filter for Microsoft Office 120

Enhancing Your Graphs 120

Importing Your Graphs into Microsoft Office 120
Importing Graphs into Microsoft Word 120

Importing Graphs into Microsoft Excel 121

Importing Graphs into Microsoft PowerPoint 122

What to Consider When Choosing an Output Format
When choosing a format for your SAS/GRAPH output to use with Microsoft products,

you must consider the following:
� whether you need output in a graphics format or a document format
� the resolution and size of your graphs
� the color depth required for your graphs

� the fonts you want to use
� whether you need multiple graphs per page
� whether you need to edit your graphs using Microsoft products or using other

third-party software

Graphics Formats Versus Document Formats
The SAS/GRAPH software supports output in both graphics format and document

format. The graphics format includes graphics information and some text, such as
titles, footnotes, and legends. The graphics format includes:

EMF

WMF

CGM

114 Image Resolution and Size � Chapter 8

PNG

JPEG

TIFF

GIF

BMP

The document format can include both text and graphics in a single document. These
documents store graphics in one of the following ways:

� in the format of the document

� in a graphics format embedded in the document

� in an external file that the document links to

To include images in a document, the images must be compatible with the document.
Here is a summary of the compatibility between the SAS/GRAPH document and
graphics formats:

Document Format Compatible Graphics Formats

HTML PNG, GIF, JPEG, SVG, and ActiveX

RTF EMF, PNG, JPEG, and ActiveX

Image Resolution and Size
Each of the SAS/GRAPH graphics output devices has a default size and resolution

setting for the graphics they generate. For information on the default settings for each
device, see “Overview” on page 67. If you are using a raster format for your graphs,
resizing the graph after it is imported into a Microsoft application might degrade the
quality of the graph. To preserve the qualify of your raster image, when you create your
graph in SAS, set the size to the size you need in the Microsoft application so that it
does not have to be resized after it is imported. See “Setting the Size of Your Graph” on
page 94. You can also change to one of the vector formats, which can be resized with no
loss of quality.

If you need a high-resolution image, many of the graphics output devices enable you
to use the graphics options to change their default resolution. Some of the devices have
device variants that you can use to generate high-resolution images. See “Setting the
Resolution of Your Graph” on page 95

Color Depth
Another consideration when choosing a graphics format is color depth, which is the

number of bits that are used to represent each color in an image. Color depth can affect
the smoothness, clarity, and color trueness of the elements in a rasterized image. A
greater color depth means that more distinct colors are available to represent elements
such as gradient shading and antialiasing in text.

Most of the graphics file formats support Truecolor, which provides a 24-bit color
depth. The GIF format provides only an 8-bit color depth, which can represent up to
256 distinct colors in a single image. For many graphics, 8-bit color depth is sufficient.
However, if your output includes background images, color gradients, or other

� Ability to Edit: Vector Versus Raster Formats 115

color-intensive elements, consider using a format that supports Truecolor. The formats
that support Truecolor include the following:

BMP

CGM

EMF

EPS

PNG

SVG

WMF

See “Overview” on page 67 for information on the color depth supported by each of
the graphics output devices.

Fonts
Microsoft Office products use fonts that are native to the Windows operating system,

which include TrueType and OpenType fonts. The SAS/GRAPH graphics output devices
might support the fonts that you are using in your Microsoft applications. See
“Introduction” on page 1643 for information on the fonts that the SAS/GRAPH graphics
output devices use.

Multiple-Image Graphics Files
If you need to store more than one graph in a file, you can use one of the following

methods:

� Use the GREPLAY procedure to replay multiple graphs to a file of the same format
that was used to generate the original graphs.

� Use the ODS DOCUMENT destination and the DOCUMENT procedure to replay
multiple graphs to a file of any supported format

� Use the ODS PRINTER destination with a Universal Printer device that supports
multiple-page documents.

� Use the GIFANIM procedure to insert multiple graphs into an animated GIF.

See “Using the GREPLAY Procedure to Store Multiple Graphs in One Graphics
Output File” on page 105 and “Exporting Your Output” on page 111 for information on
replaying your graphs. See “Developing Web Presentations with the GIFANIM Device”
on page 519 for information on using the GIFANIM device.

Ability to Edit: Vector Versus Raster Formats
If you need the ability to edit your graphs using Microsoft or other third-party

software, choose a graphics format that enables you to perform the type of editing that
you need to do. For vector formats, such as WMF, EMF, SVG, and CGM, you can edit
individual text and graphic elements using graphics editing software. Although EPS
contains vector graphs, Microsoft products cannot edit an EPS image. For raster
images, some programs such as Microsoft Paint enable you to edit the image. However,
in Microsoft Office products, editing is limited to changing only the global attributes of
the image, such the size, contrast, brightness, and so on.

116 Comparison of the Graphics Output � Chapter 8

Comparison of the Graphics Output
The SAS/GRAPH software can generate the following types of graphics output that

can be imported into Microsoft products:

EMF and WMF

CGM

PNG

JPEG and TIFF

GIF and BMP

EPS

HTML (PNG)

RTF

ACTIVEX (RTF)

ACTIVEX (RTF)

ACTXIMG (PNG)

JAVAIMG (PNG)

Note the following:
� The ODS HTML destination generates two files: a PNG file (by default) that

contains the graph and an HTML file that enables you to view the graph file.
� The ACTIVEX device is used with the ODS RTF or ODS HTML destination to

create an RTF or HTML file that contains code that is consumed by the ActiveX
Control.

� The ACTXIMG and JAVAIMG devices generate a PNG file that contains a static
graph that is generated by the ACTIVEX and JAVA devices respectively.

� Procedures that do not support the ACTIVEX, ACTXIMG, JAVA, and JAVAIMG
devices produce a GIF file when the ACTIVEX, ACTXIMG, JAVA, or JAVAIMG
device is used.

Table 8.1 on page 117 provides a brief comparison of these graphics output formats
and lists some of the graphics output devices that generate each output type. For
detailed information on all of the graphics output devices, see “Overview” on page 67.

� Comparison of the Graphics Output 117

Table 8.1 Comparison of the Graphics and Document Types

Type Advantages and Limitations Devices

EMF and
WMF

Advantages:

� Most Windows-based applications
recognize the EMF and WMF formats.

� Graphs stored in EMF or WMF can
usually be edited after they are imported.

� Graphs are imported at full size into
Office, and can be resized without a loss
of quality.

Limitations:

� The EMF format does not support
transparency (see “Working Around the
EMF and CGM Transparency
Limitation” on page 119).

� Only one graph per file is supported.

� SASEMF and SASWMF

� EMF and WMF

CGM Advantages:

� Graphs stored in CGM files can be edited
after they are imported.

� The image can be resized without a loss
of quality.

Limitations:

� The format does not support
transparency (see “Working Around the
EMF and CGM Transparency
Limitation” on page 119).

� Because the default CGM filter is not
installed by default in Microsoft Office,
to import CGM files, you must install the
CGM filter (see “About the Default CGM
Filter for Microsoft Office” on page 120).

� Although the CGM format supports
multiple images per file, not all versions
of Microsoft Office can import more than
one image per file (see “About the
Default CGM Filter for Microsoft Office”
on page 120).

� CGMOFML (landscape)

� CGMOFMP (portrait)

118 Comparison of the Graphics Output � Chapter 8

Type Advantages and Limitations Devices

PNG Advantages:

� Designed to display images on the Web.

� Uses lossless data compression.

� Supports transparency (with the PNGT
device).

� Can store high-resolution images.

� Supports truecolor images.

Limitation: cannot be resized without a loss of
quality.

� PNG (no transparency)

� PNG300 (no transparency)

� PNGT (transparency)

� UPNG (no transparency)

� UPNGT (transparency)

JPEG and
TIFF

Advantages:

� JPEG is widely used for displaying
photographs on the Web.

� Both can store high-resolution graphics.

Limitations:

� JPEG uses lossy compression.

� The SAS/GRAPH JPEG device supports
only 256 colors.

� TIFF is not a Web graphics format.

� JPEG and TIFF images cannot be
resized without a loss of quality.

� JPEG

� TIFFP (color)

� TIFFB (monochrome)

GIF and
BMP

Advantages:

� GIF supports transparent backgrounds.

� GIF can store multiple images per file
when it is formatted as an animated GIF.

� Both support the IBACK option and the
IMAGE annotation function for
including logos and other images in the
background of the graph.

Limitations:

� Both formats have a fixed resolution of
96 DPI.

� The GIF standard is limited to 256
colors.

� Cannot be resized without a loss of
quality.

� BMP (720x480)

� BMP20 (720 480, BMP 2.0)

� GIF (800x600)

� GIFANIM (1280x1024,
multi-image)

� UGIF (Universal Printer)

� Working Around the EMF and CGM Transparency Limitation 119

Type Advantages and Limitations Devices

EPS Advantages:

� Can contain a combination of vector and
bitmap objects.

� Can be resized after it is imported into
Office 97 or Office 2000.

Limitations:

� The images should not be edited after
they are imported.

� Because the system display does not use
the PostScript language to render the
graph, these graphics might be visible
only when printed to a PostScript printer.

� Because the preview is created
automatically in Office 2002 and later,
the image should not be resized after it
is imported.

� Although this format can store more
than one image per file, an EPS file
should contain only one image.

� UEPS (gray scale)

� UEPSC (color)

� PSEPSF (gray scale)

� PSEPSFA4 (gray scale)

� PSLEPSF (gray scale)

� PSLEPSFC (color)

HTML Advantages:

� Can store text and graphics.

� In Office 2000 and later, and in Microsoft
Word in Office 97, the images are loaded
into the document automatically when
the HTML is imported.

Limitation: In Office 97, the images are not
loaded into a PowerPoint or Excel document
when the HTML is imported. Only the text
and tables are imported.

� JPEG

� GIF and UGIF

� ACTIVEX

� ACTXIMG and JAVAIMG,
which create PNG files

� PNG, PNGT, UPNG, and
UPNGT

RTF Advantages:

� Designed specifically for sharing
documents between word processors.

� Can store both text and graphics.

� JPEG

� ACTIVEX

� ACTXIMG and JAVAIMG,
which create PNG files

� PNG, PNGT, UPNG, and
UPNGT

� SASEMF and EMF

Working Around the EMF and CGM Transparency Limitation

For the EMF and CGM devices, you can work around the transparency limitation as
follows:

� For EMF, use the CBACK= or IBACK= graphics options to assign the matching
color or image for the graph background. You could instead edit the EMF file after
it is imported to remove the default background.

120 About the Default CGM Filter for Microsoft Office � Chapter 8

� For CGM, use the CBACK= graphics to assign a matching background color to the
CGM file. The CGM devices do not support the IBACK= graphics option or the
IMAGE function. To have an image in the document or slide appear as the
background of the graph, edit the graph after it is imported to remove the
background created by SAS so that the document background shows through.

About the Default CGM Filter for Microsoft Office
To import CGM files in Microsoft Office, you must install the default CGM filter. For

information on the CGM filter and how to install it for your version of Microsoft Office,
visit the Microsoft Support Web site:

http://support.microsoft.com

Enhancing Your Graphs

You can use various features in SAS/GRAPH that enable you to enhance your
graphs. The following table lists some of these features.

Table 8.2 Features that can Enhance Your Graph

Feature in SAS/GRAPH Reference

Changing the style of the graphic Chapter 10, “Controlling The Appearance of
Your Graphs,” on page 133.

Adding annotations to the graph Chapter 29, “Using Annotate Data Sets,” on
page 641

Making the graph interactive Chapter 17, “Creating Interactive Output for
ActiveX,” on page 453

Adding drill-down links and data tips to the
graph

Chapter 27, “Enhancing Web Presentations with
Chart Descriptions, Data Tips, and Drill-Down
Functionality,” on page 595

Animating the graph Chapter 21, “Generating Web Animation with
GIFANIM,” on page 519

Importing Your Graphs into Microsoft Office

This section describes how to import SAS/GRAPH graphics and documents into
Microsoft Office 2007 products. For instructions on how to import graphics and
documents for other versions of Microsoft Office, contact Technical Support.

Importing Graphs into Microsoft Word
To insert a SAS/GRAPH graphics file into a Microsoft Word 2007 document:

1 If you have not already done so, open your Microsoft Word document and position
your cursor where you want to insert your graph.

2 Select the Insert tab.

http://support.microsoft.com

� Importing Graphs into Microsoft Excel 121

3 On the Insert tab, click the Picture icon in the Illustrations group. The Insert
Picture dialog box opens.

4 In the Insert Picture dialog box, select your graphics output file, and then click
Insert.

To insert a SAS/GRAPH document into a Microsoft Word 2007 document:
1 Do one of the following based on the type of the document you are importing from:

� If you are importing from an HTML document, open the document in your Web
browser.

� If you are importing from an RTF document, open the document in Microsoft
Word.

2 If you have not already done so, open the target document and position your
cursor where you want to insert your graph.

3 In the HTML or RTF document, right-click the graph, and then select Copy from
the pop-up menu.

4 In the target document, right-click in the page area, and then select Paste from
the pop-up menu.

If the graph you have imported is an ActiveX graph, you can right-click on your
graph in your document and change various attributes of your graph using the pop-up
menu. For more information on this menu, select Help � Graph Control Help from the
pop-up menu.

If the graph you have imported is an animated GIF, you must convert the Microsoft
Word document to HTML, and then open the HTML version of your document in your
Web browser to play the animated GIF.

Importing Graphs into Microsoft Excel
To insert a SAS/GRAPH graphics file into a Microsoft Excel 2007 spreadsheet:
1 If you have not already done so, open your Microsoft Excel spreadsheet.
2 Locate the cell that you want to import your graph to. Resize the cell to

accommodate the graph, if necessary.
3 Select the Insert tab.
4 In the Insert tab, click Picture in the Illustrations group. The Insert Picture

dialog box appears.
5 In the Insert Picture dialog box, select your graphics output file, and then click

Insert.
6 Adjust the size of the graph and cell, if necessary.

To insert a SAS/GRAPH document into a Microsoft Excel 2007 spread sheet:
1 Open the SAS/GRAPH document that you want to import from:

� If the document is an HTML document, open it in your Web browser or
Microsoft Word.

� If the document is an RTF document, open it in Microsoft Word.

2 If you have not already done so, open your Microsoft Excel spreadsheet.
3 Locate the cell that you want to import your graph to. Resize the cell to

accommodate the graph, if necessary.
4 In the HTML or RTF document that you are importing from, right-click your

graph, and then select Copy from the pop-up menu.
5 In your spread sheet, right-click in the cell that you are importing to, and then

select Paste from the pop-up menu.

122 Importing Graphs into Microsoft PowerPoint � Chapter 8

6 Adjust the size of the graph and cell, if necessary.

If the graph you have imported is an ActiveX graph, you can right-click on your
graph in your spreadsheet and change various attributes of your graph using the
pop-up menu. For more information on this menu, select Help � Graph Control Help
from the pop-up menu.

Importing Graphs into Microsoft PowerPoint
To insert a SAS/GRAPH graphics file into a Microsoft PowerPoint 2007 presentation:
1 If you have not already done so, open your Microsoft PowerPoint presentation.
2 Locate the slide on which you want to insert your graph. Insert a new slide, if

necessary.
3 Click the Insert tab.
4 In the Insert tab, click Picture in the Illustrations group. The Insert Picture

dialog box appears.
5 In the Insert Picture dialog box, select your graphics output file, and then click

Insert.
6 Adjust the size and position of the graph, if necessary.

To insert a SAS/GRAPH document into a Microsoft PowerPoint 2007 presentation:
1 Open the SAS/GRAPH document that you want to import from:

� If the document is an HTML document, open it in your Web browser or
Microsoft Word.

� If the document is an RTF document, open it in Microsoft Word.

2 If you have not already done so, open your Microsoft PowerPoint presentation.
3 Locate the slide on which you want to insert your graph. Insert a new slide, if

necessary.
4 In the HTML or RTF document that you are importing from, right-click the graph,

and then select Copy from the pop-up menu.
5 In your PowerPoint presentation, right-click in the slide that you are importing to,

and then select Paste from the pop-up menu.
6 Adjust the size and position of the graph, if necessary.

If the graph you have imported is an ActiveX graph, you can change various
attributes of your graph dynamically as follows:

1 Right-click your graph, and then select SAS Graph v9 Object � Edit to activate
the ActiveX Control.

2 Right-click your graph again, and then select an item from the pop-up menu to
change one or more attributes of the graph. You can change the chart type, style,
and so on, using this menu. For more information on this menu, select Help �
Graph Control Help from the pop-up menu.

3 To deactivate the ActiveX Control, deselect your graph.

If the graph you have imported is an animated GIF, you must set the PowerPoint
mode to Slide Show to play the animated GIF as follows:

1 In the left panel, select the slide that contains your animated GIF.
2 Click the Slide Show tab.
3 On the Slide Show tab, click From Current Slide in the Start Slide Show group.
4 Verify that your animated GIF plays properly.
5 Press the Esc key to exit the Slide Show mode.

123

C H A P T E R

9
Writing Your Graphs to a PDF
File

About Writing Your Graphs to a PDF File 123
Changing the Page Layout 124

Adding Metadata to Your PDF File 124

Adding Bookmarks for Your Graphs 124

Changing the Default Compression Level for Your PDF File 125

Examples 125
Creating a Multipage PDF File with Bookmarks and Metadata 125

Creating a PDF/A-1b-Compliant File that Contains Multiple Graphs Per Page 127

Creating a Multiple-Page PDF File Using BY-Group Processing 129

Creating a Multiple-Page PDF File Using the GREPLAY Procedure 129

About Writing Your Graphs to a PDF File
You can use the ODS PDF destination to write your graph output to a PDF Version

1.4 file or a PDF file that is compliant with PDF/A-1b standards and can be archived.
You can add multiple graphs to your PDF file with one or more graphs per page. You
can also add bookmarks, links, and document metadata in your PDF file, and use
system options to change the default page layout of your document.

The ODS PDF destination supports the SAS/GRAPH fonts, the TrueType fonts that
are installed with the Base SAS product, and the resident PDF fonts. The resident PDF
fonts are the Base 14 fonts that are installed by default with the Adobe Acrobat Reader.
These fonts include:

Courier

Courier/oblique

Courier/bold

Courier/bold/oblique

Helvetica

Helvetica/oblique

Helvetica/bold

Helvetica/bold/
oblique

Times

Times/italic

Times/bold

124 Changing the Page Layout � Chapter 9

Times/bold/italic

Symbol

ITC Zapf Dingbats

For more information on fonts, see Chapter 11, “Specifying Fonts in SAS/GRAPH
Programs,” on page 155.

By default, the ODS PDF destination writes your output to a PDF Version 1.4 file. To
write your graphs to a PDF file that can be archived, add the PRINTER=PDFA option
to your ODS statement. The PDFA Universal Printer shortcut device creates a PDF file
that is compliant with PDF/A-1b standards and can be archived. See Chapter 6, “Using
Graphics Devices,” on page 67 for information on the PDFA Universal Printer shortcut
device. See “Creating a PDF/A-1b-Compliant File that Contains Multiple Graphs Per
Page” on page 127 for an example of how to create an archivable PDF file.

Changing the Page Layout
Use the following system options to change the page layout for your PDF document:
� ORIENTATION=PORTRAIT | LANDSCAPE | REVERSEPORTRAIT |

REVERSELANDSCAPE
� PAPERSIZE="paper-size"
� LEFTMARGIN=value
� RIGHTMARGIN= value
� TOPMARGIN= value
� BOTTOMMARGIN=value

See SAS Language Reference: Dictionary for information on these system options.
See “Creating a Multipage PDF File with Bookmarks and Metadata” on page 125 for an
example of how to use these system options to change the page layout of a PDF file.

Adding Metadata to Your PDF File
Use the following ODS options to add document metadata to the PDF file:
� AUTHOR="author-name"
� KEYWORDS="word1 word2 ... "
� SUBJECT="document-subject"
� TITLE="document-title"

See “Creating a Multipage PDF File with Bookmarks and Metadata” on page 125 for
an example of how to add metadata to a PDF file.

Adding Bookmarks for Your Graphs
You can use an ODS PROCLABEL=label statement to add bookmarks for your

graphs. The PROCLABEL= ODS option specifies the name of the top-level bookmark.
The description for each procedure that you run after your ODS PROCLABEL=
statement is added as a subtopic under the top-level bookmark that the PROCLABEL=
option defines. You can use the DESCRIPTION= option to set the text of the subtopic

� Creating a Multipage PDF File with Bookmarks and Metadata 125

bookmark for each graph procedure. If you do not specify a description, the default
graph description is used. See “Creating a Multipage PDF File with Bookmarks and
Metadata” on page 125 for an example.

Changing the Default Compression Level for Your PDF File

You can use the COMPRESS= ODS option to change the default compression level
for your PDF file. The COMPRESS= option can be set to an integer value between 0
and 9, which specifies the level of compression. A value of 0 means no compression. The
default level is 6.

Examples
This section provides the following examples:

“Creating a Multipage PDF File with Bookmarks and Metadata” on page 125

“Creating a PDF/A-1b-Compliant File that Contains Multiple Graphs Per Page” on
page 127

“Creating a Multiple-Page PDF File Using BY-Group Processing” on page 129

“Creating a Multiple-Page PDF File Using the GREPLAY Procedure” on page 129

Creating a Multipage PDF File with Bookmarks and Metadata
Here is an example that creates a multipage PDF file with bookmarks and metadata

using RUN-group processing. Each page displays a single graph in the landscape
orientation, and is set up for A4 paper with a 1 cm right, left, and bottom margin, and a
2 cm top margin. The PROCLABEL= ODS option is used to set the top-level bookmark
for each category of graphs. The DESCRIPTION= option is used with each procedure to
set the text of each subheading bookmark.

/* Close the LISTING destination */
ods listing close;

/* Reset the graphics options */
goptions reset=all;

/* Open the PDF destination */
ods pdf style=seaside

file="MyDoc.pdf" /* Output filename */
compress=0 /* No compression */
/* Add metadata */
author="J. L. Cho"
subject="Auto makers"
title="Car Makers by MPG and Vehicle Type"
keywords="automobiles cars MPG sedans trucks wagons SUVs";

/* Modify the PDF page properties */
options orientation=LANDSCAPE

papersize=A4
leftmargin=1cm

126 Creating a Multipage PDF File with Bookmarks and Metadata � Chapter 9

rightmargin=1cm
bottommargin=1cm
topmargin=2cm;

/* Set the top-level bookmark for the first set of graphs */
ods proclabel="Makes By MPG";

/* Create the first set of graphs */
proc gchart data=sashelp.cars;

pie Make / name="HighMPG" other=3
description="High-MPG"; /* Set subheading text */
title1 "30 MPG or Better";
where MPG_Highway >= 30;

run;
pie Make / name="MedMPG" other=3

description="Average-MPG"; /* Set subheading text */
title1 "Between 20 MPG and 29 MPG";
where MPG_Highway < 30 and MPG_Highway >= 20;

run;
pie Make / name="LowMPG" other=3

description="Low-MPG"; /* Set subheading text */
title1 "19 MPG or less";
where MPG_Highway < 20;

run;
quit;

/* Set the top-level bookmark for the second set of graphs */
ods proclabel="Makes By Type";

/* Create the second set of graphs */
proc gchart data=sashelp.cars;

pie Make / name="Sedans" other=3
description="Sedans"; /* Set subheading text */
title1 "Sedans";
where Type = "Sedan";

run;
pie Make / name="SUVs" other=3

description="SUVs"; /* Set subheading text */
title1 "SUVs";
where Type="SUV";

run;
pie Make / name="Trucks" other=3

description="Trucks"; /* Set subheading text */
title1 "Trucks";
where type="Truck";

run;
pie Make / name="Wagons" other=3

description="Wagons"; /* Set subheading text */
title1 "Wagons";
where type="Wagon";

run;
pie Make / name="Sports" other=3

description="Sports Cars"; /* Set subheading text */
title1 "Sports Cars";

� Creating a PDF/A-1b-Compliant File that Contains Multiple Graphs Per Page 127

where type="Sports";
run;

quit;

/* Close the PDF destination */
ods pdf close;
ods listing;

/* Reset the graphics options */
goptions reset=all;

This creates a PDF file with the bookmarks shown in the following display:

The document metadata is displayed on the Description tab of the Document
Properties dialog box. To open the Document Properties dialog box, type CTRL-D
anywhere in the PDF viewer window or right-click in the PDF viewer window, and then
select Document Properties from the pop-up menu. The following display shows the
document metadata that is displayed for this example.

Creating a PDF/A-1b-Compliant File that Contains Multiple Graphs Per
Page

Here is an example that creates the PDF file FourVbars.pdf, which contains four
graphs on one page and can be archived. The PRINTER=PDFA ODS option is used to

128 Creating a PDF/A-1b-Compliant File that Contains Multiple Graphs Per Page � Chapter 9

create a PDF file that is compliant with PDF/A-1b standards. To create a standard
Version 1.4 PDF file, remove the PRINTER=PDFA option from the ODS statement.

/* Close the LISTING destination */
ods listing close;

/* Set page options */
options orientation=portrait rightmargin=0.1in leftmargin=0.1in;
goptions reset=all ftext="Helvetica/bold";

/* Open PDF */
ods pdf style=printer

printer=pdfa /* Create an archivable PDF */
file="FourVbars.pdf" /* Output filename */
startpage=never; /* Do not insert a pagebreak after each graph */

/* Create a slide for the graphs */
goptions hsize=0 vsize=0;

proc gslide;
title1 "1997 Quarterly U.S. Sales By State";

run;

/* Size each graph 4in x 4in */
goptions hsize=4in vsize=4in;
title1;

/* Generate the graphs */
proc gchart data=sashelp.prdsal3;

/* Create the Q1 graph in the top-left quadrant */
title2 "First Quarter";
goptions horigin=0 vorigin=5;
pie State / sumvar=Actual type=mean;

where country="U.S.A." AND quarter=1 AND Year=1997;
run;

/* Create the Q2 graph in the top-right quadrant */
goptions horigin=4 vorigin=5;
title2 "Second Quarter";
pie State / sumvar=Actual type=mean;

where country="U.S.A." AND quarter=2 AND Year=1997;
run;

/* Create the Q3 graph in the bottom-left quadrant */
title2 "Third Quarter";
goptions horigin=0 vorigin=0;
pie State / sumvar=Actual type=mean;

where country="U.S.A." AND quarter=3 AND Year=1997;
run;

/* Create the Q4 graph in the bottom-right quadrant */
title2 "Fourth Quarter";
goptions horigin=4 vorigin=0;
pie State / sumvar=Actual type=mean;

where country="U.S.A." AND quarter=4 AND Year=1997;

� Creating a Multiple-Page PDF File Using the GREPLAY Procedure 129

run;
quit;

/* Close PDF and reopen LISTING */
ods pdf close;
ods listing;

/* Reset the graphics options */
goptions reset=all;

Creating a Multiple-Page PDF File Using BY-Group Processing
Here is an example that uses BY-group processing to create a multiple-page PDF file

that contains one graph per page in the landscape orientation.

/* Specify the landscape page orientation */
options orientation=landscape;

/* Close the LISTING destination */
ods listing close;

/* Reset the options */
goptions reset=all;

/* Open the PDF destination */
ods pdf style=statistical;

/* Create our data set by extracting 1994 data from sashelp.prdsale */
/* and sorting by product */
proc sort data=sashelp.prdsale(where=(Year=1994)) out=work.prdsale;

by product;
run;

/* Generate the graphs */
title1 "1994 Monthly Sales By Product";
proc gchart data=work.prdsale;

hbar month /sumvar=actual type=sum sum;
by product;

run;
quit;

/* Close the PDF destination */
ods pdf close;

/* Reset the graphics options */
goptions reset=all;

/* Open the LISTING destination */
ods listing;

Creating a Multiple-Page PDF File Using the GREPLAY Procedure
Here is an example that uses the GREPLAY procedure to create a PDF file that

contains four graphs.

130 Creating a Multiple-Page PDF File Using the GREPLAY Procedure � Chapter 9

/* Specify the landscape page orientation */
options orientation=portrait;

/* Close the LISTING destination */
ods listing close;

/* Reset the options and set NODISPLAY */
goptions reset=all nodisplay;

/* Open the PDF destination */
ods pdf style=statistical file="Mygraph.pdf";

/* Create our data set by extracting 1994 data from sashelp.prdsale */
/* and sorting by quarter */
proc sort data=sashelp.prdsale(where=(Year=1994)) out=work.prdsale;

by quarter;
run;

/* Delete the old GRSEGs */
proc greplay igout=work.gseg nofs;

delete _all_;
run;

/* Generate the graphs */
proc gchart data=work.prdsale;

vbar product /sumvar=actual discrete type=mean mean;
title1 "1994 Q1 Average Sales By Product";
where quarter=1;

run;

title1 "1994 Q2 Average Sales By Product";
where quarter=2;

run;

title1 "1994 Q3 Average Sales By Product";
where quarter=3;

run;

title1 "1994 Q4 Average Sales By Product";
where quarter=4;

run;
quit;

/* Replay the graphs to the PDF file */
goptions display;
proc greplay igout=work.gseg nofs;

replay _all_;
run;
quit;

/* Close the PDF destination */
ods pdf close;

/* Reset the graphics options */

� Creating a Multiple-Page PDF File Using the GREPLAY Procedure 131

goptions reset=all;

/* Open the LISTING destination */
ods listing;

132

133

C H A P T E R

10
Controlling The Appearance of
Your Graphs

Overview 133
Style Attributes Versus Device Entry Parameters 134

About Style Templates 135

ODS Destinations and Default Styles 135

Recommended Styles 136

Examples of Output Using Different Styles 136
Specifying a Style 139

Changing the Current Style by Using the STYLE= Option in ODS Destination Statements 139

Changing the Default Style in the SAS Registry 139

Overriding Style Attributes With SAS/GRAPH Statement Options 140

Precedence of Appearance Option Specifications 141

Viewing the List of Styles Provided by SAS 141
Using The TEMPLATE Procedure 141

Using the Templates Window 141

Modifying a Style 142

Using the TEMPLATE Procedure 142

Example: Modifying a Style Element 142
Ways to Modify Graph Fonts Or Colors Specified By Styles 143

Modifying the GraphFonts And GraphColors Style Elements 143

Graphical Style Element Reference for Device-Based Graphics 144

The GraphColors Style Element 144

The GraphFonts Style Element 145
Font Specifications In The GraphFonts Style Element 146

Style Elements For Use With Device-Based SAS/GRAPH Output 146

Turning Off Styles 153

Changing the Appearance of Output to Match That of Earlier SAS Releases 154

Overview
The appearance of SAS/GRAPH output is determined by ODS styles by default.

Along with table and page attributes, ODS styles contain a collection of graphical
attributes such as color, marker shape, line pattern, fonts, and so on. Many carefully
designed styles that enhance the visual impact of the graphics are shipped with SAS. In
addition to creating visually appealing graphics, the styles ensure that different groups
of data can be easily distinguished from one another. They also ensure that data of
equal importance is given equal visual emphasis.

These styles produce professional-looking graphics without additional code in your
SAS programs and without modifying the styles themselves. However, you can use
SAS/GRAPH statement options to override specific elements in the styles, or you can
modify style elements to create a customized style for yourself or your organization.

134 Style Attributes Versus Device Entry Parameters � Chapter 10

Table 10.1 Controlling Graph Appearance

Method Description
Level of
Complexity Reference

Specify a
different style
template.

Specify a style template with the STYLE=
option to change the appearance of the entire
graph. Requires no further modification.

Low “Changing the
Current Style by
Using the STYLE=
Option in ODS
Destination
Statements” on
page 139

Use
appearance
options.

Specify an appearance option using
SAS/GRAPH procedure options or global
statement options to change various aspects
of your graph. This method requires
modification of your SAS/GRAPH program.

Medium “Overriding Style
Attributes With
SAS/GRAPH
Statement
Options” on page
140

Modify
individual
style
elements.

Specify or change style attributes in order to
modify a style element. This requires the use
of PROC TEMPLATE style statements.

High “Modifying a
Style” on page 142

You can turn off the use of styles if needed. In this case, the default appearance of
your output is controlled by device entry parameters. See “Style Attributes Versus
Device Entry Parameters” on page 134 and “Turning Off Styles” on page 153 for more
information.

Note: This section covers only device-based graphics. See “Device-Based Graphics
and Template-Based Graphics” on page 6. �

Style Attributes Versus Device Entry Parameters
The default appearance of SAS/GRAPH output is determined by either style

attributes or device entry parameters, depending on the setting of the GSTYLE system
option and on the device that is being used.

By default, the GSTYLE system option is in effect, and the appearance of all
SAS/GRAPH output is determined by style attributes. If the NOGSTYLE system option
is in effect, then the device entry parameters govern the appearance of SAS/GRAPH
output for all devices except the Java and ActiveX devices. The Java and ActiveX
devices always use styles to determine appearance. The setting of the GSTYLE system
option has no effect on the Java and ActiveX devices.

Controlling The Appearance of Your Graphs � ODS Destinations and Default Styles 135

Table 10.2 The GSTYLE System Option and Default Appearance

Current Device GSTYLE NOGSTYLE

Java or ActiveX device style style

All other devices style device entry parameters

For information on device entries, see “What Is a SAS/GRAPH Device?” on page 68
and “Viewing and Modifying Device Entries” on page 85. See also “Changing the
Appearance of Output to Match That of Earlier SAS Releases” on page 154 and
“Turning Off Styles” on page 153.

About Style Templates
An ODS style is a collection of named style elements that provides specific visual

attributes for your graphical and tabular SAS output. Each style element is a named
collection of style attributes such as background color, text color, marker symbol, line
style, font face, font size, as well as many others. Each graphical element of a plot, such
as a marker, a bar, a line or a title, derives its visual attributes from a specific style
element from the current style.

Note: The style that a destination uses is applied to tabular output as well as
graphical output. �

ODS Destinations and Default Styles
Every ODS output destination, except the Document and Output destinations, has a

default style associated with it. These styles are tailored for each destination, therefore
your output might look different depending on which destination you use. If your
program does not specify a style, SAS uses the styles listed in Table 10.3 on page 135.

Table 10.3 Default Style Templates

ODS Destination Default Style Name

DOCUMENT Not applicable

LISTING Listing

OUTPUT Not applicable

HTML Default (Styles.Default)

LATEX Default (Styles.Default)

PRINTER Printer

RTF Rtf

Measured RTF Rtf

The default style for each destination is set in the SAS registry. Changing the style
specified in the SAS registry can be a convenient way to apply a company’s style to all
output sent to all destinations. See “Changing the Default Style in the SAS Registry”
on page 139.

Chapter 3, “Getting Started With SAS/GRAPH,” on page 39 shows examples of
graphs using several styles, including the default styles for the most commonly used

136 Recommended Styles � Chapter 10

destinations. “Examples of Output Using Different Styles” on page 136 shows examples
of graphs and tables using the Printer, Rtf, Analysis, and Journal styles.

Recommended Styles
SAS provides a set of styles that have been designed by GUI experts to address the

needs of different situations. Table 10.4 on page 136 describes a subset of the styles
provided by SAS that are particularly well-suited to displaying graphics.

Table 10.4 Recommended Style Templates

Desired Output
Recommended
Styles Comments

Default

(Styles.Default)

Gray background, optimized for
HTML output

Analysis Yellow background

Statistical White background, colored fills

Listing White background, optimized for
color format on white paper

Printer White background; serif fonts;
optimized for PS and PDF output

Full Color

Rtf Similar to Printer; optimized for RTF
output

Black and White onochromePrinter Black and white output; patterned
fills; optimized for PCL output

Journal2 Interior filled areas have no color

Gray Scale Journal Interior filled areas are gray scale

Note: Certain ODS styles map textures onto graph elements. For the Java devices,
these textures can be applied to two-dimensional rectangles only. Therefore, styles with
textures cannot be applied to three-dimensional bar and pie charts in Java graphs. �

Chapter 3, “Getting Started With SAS/GRAPH,” on page 39 shows examples of
graphs using several styles, including the default styles for the most commonly used
destinations. “Examples of Output Using Different Styles” on page 136 shows examples
of graphs and tables using the Printer, Rtf, Analysis, and Journal styles.

Examples of Output Using Different Styles
Each of the following sets of output was created using a different style. Additional

examples of output in Chapter 3, “Getting Started With SAS/GRAPH,” on page 39.

Controlling The Appearance of Your Graphs � Examples of Output Using Different Styles 137

Figure 10.1 Output Using the Printer Style

Figure 10.2 Output Using The RTF Style

138 Examples of Output Using Different Styles � Chapter 10

Figure 10.3 Output Using The Analysis Style

Figure 10.4 Output Using The Journal Style

Note: The table in Figure 10.4 on page 138 was sent to the PDF destination. �

Controlling The Appearance of Your Graphs � Changing the Default Style in the SAS Registry 139

Specifying a Style

Changing the Current Style by Using the STYLE= Option in ODS
Destination Statements

Changing the current style for an ODS destination is the easiest, simplest way of
changing the appearance of your output. Changing the current style requires only the
use of the STYLE= option in an ODS destination statement. By specifying only
STYLE=style-definition in your ODS destination statement, you can create an entirely
different appearance for your graphs. For example, you can specify that ODS apply the
Styles.Journal style template to all HTML output with one of the following statements:

ods html style=styles.journal;
ods html style=journal;

This style is applied to all output for that destination until you change or close the
destination or start a new SAS session.

Changing the Default Style in the SAS Registry
By default, the SAS registry applies a default style to the output for each ODS

destination. The default styles for each destination are listed in Table 10.3 on page 135.
To permanently change the default style associated with a destination, you can change
the setting of Selected Style in the SAS registry.

CAUTION:
If you make a mistake when you modify the SAS registry, then your system might become
unstable or unusable. See “Managing the SAS Registry” in SAS Language Reference:
Concepts. �

Note: You many have more than one SAS registry. Each site has a SAS registry in
SASHELP. Each directory from which you run SAS has an individual registry in
SASUSER. If you run SAS from multiple locations, and you want to change default
styles via the SAS registry, you might need to change it in multiple locations. For more
information, see “The SAS Registry” in SAS Language Reference: Concepts. �

For more information on ODS and the SAS registry, see “Changing SAS Registry
Settings for ODS” in SAS Output Delivery System: User’s Guide.

To permanently change the default style for a particular destination:

1 Select Solutions � Accessories � Registry Editor, or issue the command
REGEDIT in the SAS command line.

2 Select ODS � Destinations.

3 Select the destination that you want to change the default style for.

4 Select Selected Style, right-click, and select Modify. The Edit String Value
window appears.

5 Type the style in the Value Data text box and click OK.

140 Overriding Style Attributes With SAS/GRAPH Statement Options � Chapter 10

Display 10.1 SAS Registry Showing Selected Style Setting

Overriding Style Attributes With SAS/GRAPH Statement Options
By default, the attributes of various elements of the graph are derived from specific

style elements (or from device entry parameters if the NOGSTYLE system option is in
effect), unless explicitly overridden with procedure or global statement options. For
example, you can use the CTITLE= and CTEXT= options in the GOPTIONS global
statement to change the color of the text in all of your graphs. You can use the SYMBOL
statement to specify colors for markers. The settings remain in effect until you change
them or end your SAS session. For information on GOPTIONS, see “GOPTIONS
Statement” on page 220 and “Specifying Colors in a GOPTIONS Statement” on page
168. See the examples in Chapter 14, “SAS/GRAPH Statements,” on page 197.

Instead of specifying global options, which affect all of your SAS/GRAPH output, you
can specify options on specific action statements that affect only the output produced by
that statement. Values that you specify on procedure action statements override default
style attributes (or device entry parameters) and global options. For an example, see
Example 6 on page 1441.

The documentation for each option that overrides a style element includes the name
of the style element and attribute. For example, the documentation for the CAXIS=
option for the GCHART procedure includes the following style reference information:

CAXIS=
Style reference: Color attribute of the GraphAxisLines element

If you want to change the color of the same graphical elements that are affected by the
CAXIS= option by modifying a style, then you need to modify the Color attribute of the
GraphAxisLines element. See “Modifying a Style” on page 142 for more information.

Controlling The Appearance of Your Graphs � Using the Templates Window 141

Attributes that are used repeatedly might be best specified in an ODS style.
However, if you have created a customized style, be aware that you might need to make
this style available to anyone that you send your SAS code to.

Attributes that are used only once or occasionally are best specified using
SAS/GRAPH statements.

Precedence of Appearance Option Specifications

When you specify options that override style attributes or device parameters, the
general order of precedence that SAS/GRAPH uses is as follows:

1 options in a SAS/GRAPH procedure action statement

2 options in AXIS, FOOTNOTE, LEGEND, NOTE, PATTERN, SYMBOL, or TITLE
statements

3 graphics options in a GOPTIONS statement

a color options in the GOPTIONS statement that control specific graph elements
such as the background color or title text color

b the color list specified with the COLORS= option in the GOPTIONS statement

4 attributes specified in the current style or, if the NOGSTYLE option is in effect,
device parameters in a device entry for the current device

5 default hardware settings for a device.

SAS/GRAPH uses the first specification it finds in this list. Any exceptions to this
rule are noted in the documentation for the specific option as described in “Overriding
Style Attributes With SAS/GRAPH Statement Options” on page 140.

Viewing the List of Styles Provided by SAS

You can view the styles that SAS provides using the TEMPLATE procedure or
through the Templates window.

Using The TEMPLATE Procedure
To view the list of all styles available, submit the following code:

proc template;
list styles;

run;

SAS writes the list of available styles in the Output window.

Using the Templates Window
To view the list of all styles available, follow these steps:

1 Open the Templates window. You can open the Templates window in two ways:

� Enter the odstemplates command on the SAS command line.

� In the Results window, select the Results folder. Right-click and select
Templates to open the Templates window.

142 Modifying a Style � Chapter 10

The Templates window contains the item stores Sasuser.Templat and
Sashelp.Tmplmst.

2 Double-click an item store, such as Sashelp.Tmplmst, to expand the list of
directories where ODS templates are stored. The templates that SAS provides are
in the item store Sashelp.Tmplmst.

3 Double-click Styles to view the list of styles defined in the selected item store.

4 Double-click the style definition that you want to view. For example, the Default
style definition is the template store for HTML output. Similarly, the Rtf style
definition is the template store for RTF output.

To view the actual style definition, double-click on a style name. The style definition
is displayed in the Template Browser window.

Modifying a Style

Using the TEMPLATE Procedure
Within the TEMPLATE procedure, you can use the DEFINE STYLE statement to

create a completely new style or you can start from an existing style. When you create
styles from existing styles, you can modify the individual style elements.

For complete documentation on using PROC TEMPLATE to modify and create styles,
see “TEMPLATE Procedure: Creating a Style Definition” in SAS Output Delivery
System: User’s Guide.

Example: Modifying a Style Element
The style element GraphData1 is defined in the Default style as follows:

proc template;
define style Styles.Default;

...more style elements...
class GraphData1 /

markersymbol = "circle"
linestyle = 1
contrastcolor = GraphColors(’gcdata1’)
color = GraphColors(’gdata1’);

You can use the DEFINE STYLE statement in the TEMPLATE procedure to create a
new style from the Default style and modify the GraphData1 style element. The
following program creates the new style MyStyleDefault, which inherits all of its style
elements and style attributes from the Default style, and modifies the GraphData1
style element:

proc template;
define style MyStyleDefault;
parent=Styles.Default;
style GraphData1 from GraphData1 /

markersymbol = "triangle"
linestyle = 2
contrastcolor = GraphColors("gcdata1")

Controlling The Appearance of Your Graphs � Modifying the GraphFonts And GraphColors Style Elements 143

color = GraphColors("gdata1");
end;

run;

The new GraphData1 uses the same colors as the original GraphData1, but specifies a
different marker symbol and line style.

To use the new MyStyleDefault style for HTML output, specify the STYLE= option:

ods html style=MyStyleDefault;

Ways to Modify Graph Fonts Or Colors Specified By Styles
There are different ways to change the fonts or colors used by a style. Which method

you choose depends on how extensively you want to change the font or color
specifications used in your output. You can do any of the following:

� Modify a specific style element that controls a specific graphical element. For
example, the GraphValueText element specifies the font and color for tick mark
values and legend value descriptions. You could change the font or color specified
by the GraphValueText element for the Analysis style. Changes to specific style
elements affect only the graphical elements they control and affect them in only
the styles where you change them. See “Style Elements For Use With
Device-Based SAS/GRAPH Output” on page 146 for information on the specific
style elements that you can modify.

� Modify the font or color specifications in the GraphFonts or GraphColors style
elements for a specific style. The settings specified in GraphFonts and
GraphColors are referenced by specific style elements elsewhere in the style.
Other style elements that reference the GraphFonts or GraphColors style elements
use the modified settings. See “The GraphFonts Style Element” on page 145 and
“The GraphColors Style Element” on page 144 for more information. A single
change in the specifications in the GraphFonts or GraphColors style elements can
potentially change the appearance of several graphical elements and affect output
of any style that refers to GraphFonts or GraphColors.

� Modify the font settings for one or more subkeys in the SAS registry. Many styles
refer to the font settings in the SAS registry to determine the fonts to use for
various graphical elements. Modifying the SAS registry settings changes the fonts
used for all styles that refer to the subkeys that you change. See SAS Output
Delivery System: User’s Guide for information on changing SAS registry settings.
(Colors used by the styles supplied by the company are not controlled through the
SAS registry.)

Modifying the GraphFonts And GraphColors Style Elements
The attributes in the GraphFonts and GraphColors style elements are used as the

values for specific style elements elsewhere in the style. In other words, the
GraphFonts and GraphColors elements are abstract elements. They are used to assign
values to other elements.

For example, the GraphFonts element could be defined follows:

class GraphFonts
"Fonts used in graph styles" /
’GraphDataFont’ = ("<sans-serif>, <MTsans-serif> ",7pt)
’GraphValueFont’ = ("<sans-serif>, <MTsans-serif>",9pt)
’GraphLabelFont’ = ("<sans-serif>, <MTsans-serif> ",10pt,bold)
’GraphFootnoteFont’ = ("<sans-serif>, <MTsans-serif>",10pt)

144 Graphical Style Element Reference for Device-Based Graphics � Chapter 10

’GraphTitleFont’ = ("<sans-serif>, <MTsans-serif>",11pt,bold);

Each attribute, GraphDataFont, GraphValueFont, GraphLabelFont, and so on, defines
a list of fonts for use by SAS/GRAPH whenever the corresponding attribute is
referenced. These attributes are specified elsewhere in the style as the value of a
another font attribute. (For information on the syntax used in the GraphFonts style
element, see “Font Specifications In The GraphFonts Style Element” on page 146.)

For example, the GraphValueText element specifies the font and color for tick mark
values and legend value descriptions. Suppose the GraphValueText element is defined
as follows:

class GraphValueText /
font = GraphFonts(’GraphValueFont’)
color = GraphColors(’gtext’);

The font and color for GraphValueText are specified by elements in the GraphFonts and
GraphColors style elements.

GraphFonts(’GraphValueFont’)
tells SAS/GRAPH to use the font specified by the GraphValueFont attribute in the
GraphFonts style element.

GraphColors(’gtext’)
tells SAS/GRAPH to use the color specified by the gtext attribute in the
GraphColors style element.

To change the font and color for tick mark values and legend value descriptions, you
could modify either of the following:

� the FONT= and COLOR= attributes in the GraphValueText element
� the GraphValueFont attribute in the GraphFonts style element and the gtext

attribute in the GraphColors style element.

However, because elements in GraphFonts and GraphColors are referred to by other
elements in the style, changing the values in GraphFonts and GraphColors result in
more extensive changes than modifying a specific style element such as GraphValueText
directly. If you modify the GraphValueText element directly, your modifications affect
only the items controlled by GraphValueText. If you modify the GraphValueFont or
gtext attributes, then your modifications might affect other portions of the graph in
addition to tick mark values and legend value descriptions. This list includes pie labels,
regression equations, data point labels, bar labels, and graph titles.

The styles supplied with SAS/GRAPH are designed to provide a consistent visual
appearance for all graphical elements in your output. Modifying attributes in the
GraphFonts or GraphColors elements instead of modifying several specific style
elements makes it easier to maintain the consistent appearance in your output.

The tables listed in “Graphical Style Element Reference for Device-Based Graphics”
on page 144 describe the portions of SAS/GRAPH output that are affected by elements
and attributes defined in the styles.

Graphical Style Element Reference for Device-Based Graphics

The GraphColors Style Element
The GraphColors style element specifies the colors that are used for different

categories of graphical elements. Table 10.5 on page 145 lists the style attributes that

Controlling The Appearance of Your Graphs � The GraphFonts Style Element 145

are defined in the GraphColors style element and the graphical elements that they
affect by default.

Table 10.5 GraphColors Attributes For Device-Based Output

GraphColors Attribute1 Portion of Graph Affected

gaxis Axis lines and tick marks

gborderlines Border around the graph wall, legend border, and
borders to complete axis frame

gconnectLine Line for connecting boxes

gfloor Graph floor

ggrid Grid lines

glabel Axis labels and legend titles

glegend Background of the legend

goutline Outlines for data primitives such as bars, pie slices,
and boxes

gshadow Drop shadows used with text

gtext2 Graph titles, tick mark values, and legend value
descriptions

gwalls Frame area in two-dimensional graphs and vertical
walls in three-dimensional graphs

gdata1–gdata12

gcdata1–gcdata12

Data items; gdata1–gdata12 apply to filled areas;
gcdata1–gcdata12 apply to markers and lines

gramp2cstart

gramp2cend

Gradient contours, surfaces, continuous choropleth
maps, and continuous block maps when areas are not
used

gconramp2cstart

gconramp2cend

Continuous block maps when areas are used

1 Elements in the GraphColors style element that are not included in this table are used with
template-based (ODS Graphics) output only. (See “Device-Based Graphics And Template-Based
Graphics” in Chapter 1, “Introduction to SAS/GRAPH Software”.)

2 The gtext attribute does not affect text that is not rendered as part of the graph. See also
“Controlling Titles and Footnotes with Java and ActiveX Devices in HTML Output” in Chapter
13, “Managing Your Graphics With ODS”.

The GraphFonts Style Element
The GraphFonts style element specifies the fonts that are used for different categories

of graphical elements. Table 10.6 on page 146 lists the style attributes that are defined
in the GraphFonts style element and the graphical elements that they affect by default.

146 Font Specifications In The GraphFonts Style Element � Chapter 10

Table 10.6 GraphFonts Attributes For Device-Based Output

GraphFonts Attributes* Portion of Graph Affected

GraphDataFont Contour labels

GraphValueFont Axis tick mark labels, legend value description labels,
data values in statistics tables, pie labels, regression
equations, data point labels, bar labels

GraphLabelFont Axis labels, legend labels, column headings in
statistics tables

GraphFootnoteFont Footnotes

GraphTitleFont Titles

* The GraphUnicode and GraphAnnoFont attributes are used with ODS graphics only.

Font Specifications In The GraphFonts Style Element
Font definitions in the GraphFonts style element can refer to registry entries, they

can specify a specific font, or they can specify a font family. For example:

’GraphLabelFont’ = ("<MTsans-serif>, Arial, sans-serif",10pt,bold)

<MTsans-serif>
specifies the font family identified by the MTsans-serif subkey in the SAS
registry. The less than and greater than signs tell SAS that this is the name of a
subkey in the SAS registry. Because it is the first font listed, SAS uses this font if
possible. To view the font settings in the SAS registry, select ODS � FONTS in the
SAS registry. See SAS Output Delivery System: User’s Guide for information on
changing SAS registry settings.

Arial
specifies the Arial font family. If SAS cannot find the first font listed, it tries to
find the second font listed.

sans-serif
specifies the san-serif font family. If SAS cannot find the specific fonts listed, then
it looks for a font in the san-serif font family.

10pt,bold
specifies the weight and style that should be used.

In this example, if the SAS registry entry for the MTsans-serif subkey specifies
Albany AMT, then SAS/GRAPH first tries to use the Albany AMT 10 point bold font. If
it cannot find this font, then it tries to use Arial 10 point bold, and so on.

Note: SAS might not be able to find a specific font unless it is registered with the
FONTREG procedure. The fonts provided by SAS are already registered. If you want to
add additional fonts, see SAS Language Reference: Concepts for information on
registering TrueType fonts. See Base SAS Procedures Guide for information on the
FONTREG procedure. �

Style Elements For Use With Device-Based SAS/GRAPH Output
The style elements listed in the following tables affect SAS/GRAPH output and can

be used in styles. These tables list each style element, the portion of the graph it affects
or was created to use with, and its attribute values. Attribute values can be changed

Controlling The Appearance of Your Graphs � Style Elements For Use With Device-Based SAS/GRAPH Output 147

with PROC TEMPLATE, as described in “Using the TEMPLATE Procedure” on page
142 and “Example: Modifying a Style Element” on page 142. For complete
documentation on the style attributes that can be specified in each style element, see
“Style Attributes and Their Values” in the section “TEMPLATE Procedure: Creating a
Style Definition” in SAS Output Delivery System: User’s Guide.

Table 10.7 Device-Based Graph Style Elements: General Graph Appearance

Style Element
Portion of Graph
Affected Recognized Attributes

Attribute Values in
DEFAULT Style

DropShadowStyle Used with text types Color GraphColors("gshadow")

Graph Graph size and outer border
appearance

OutputWidth

OutputHeight

BorderColor

BorderWidth

CellPadding

CellSpacing

Not set

Not set

Inherited

Inherited

0

Inherited

GraphAxisLines X, Y, and Z axis lines Color

LineStyle

LineThickness

GraphColors("gaxis")

1

1px

GraphBackground Background of the graph Transparency

BackgroundColor

Gradient_Direction

StartColor

EndColor

BackgroundImage

Image

VerticalAlign

TextAlign

Not set

Colors("docbg")

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphBorderLines Border around graph wall,
legend border, borders to
complete axis frame

Color

LineThickness

LineStyle

GraphColors("gborderlines")

1px

1

GraphCharts All charts within the graph Transparency

BackgroundColor

Gradient_Direction

StartColor

EndColor

BackgroundImage

Image

VerticalAlign

TextAlign

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Not set

148 Style Elements For Use With Device-Based SAS/GRAPH Output � Chapter 10

Style Element
Portion of Graph
Affected Recognized Attributes

Attribute Values in
DEFAULT Style

GraphDataText Text font and color for point
and line labels

Font or font-attributes*

Color

GraphFonts("GraphDataFont")

Not set

GraphColors("gtext")

GraphFloor 3D floor BackgroundColor

Transparency

Gradient_Direction

StartColor

EndColor

BackgroundImage

Image

VerticalAlign

TextAlign

GraphColors("gfloor")

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphFootnoteText Text font and color for
footnotes

Font or font-attributes*

Color

GraphFonts("GraphFootnoteFont")

Not set

GraphColors("gtext")

GraphGridLines Horizontal and vertical grid
lines drawn at major tick
marks

Color

LineStyle

LineThickness

Transparency

displayopts

GraphColors("ggrid")

1

1px

.5

"Auto"

GraphGridLines Horizontal and vertical grid
lines drawn at major tick
marks

Color

LineStyle

LineThickness

Transparency

displayopts

GraphColors("ggrid")

1

1px

.5

"Auto"

GraphLegendBackground Background color of the
legend

Color

Transparency

Colors("glegend")

Not set

GraphOutlines Outline properties for fill
areas such as bars, pie
slices, and box plots.

Color

LineStyle

LineThickness

GraphColors("goutlines")

1

1px

GraphTitleText Text font and color for titles Font or font-attributes*

Color

GraphFonts("GraphTitleFont")

Not set

GraphColors("gtext")

Controlling The Appearance of Your Graphs � Style Elements For Use With Device-Based SAS/GRAPH Output 149

Style Element
Portion of Graph
Affected Recognized Attributes

Attribute Values in
DEFAULT Style

GraphValueText Text font and color for axis
tick values and legend
values

Font or font-attributes*

Color

GraphFonts("GraphValueFont")

Not set

GraphColors("gtext")

GraphWalls Vertical walls bounded by
axes

Transparency

BackgroundColor

Gradient_Direction

StartColor

EndColor

BackgroundImage

Image

Not set

GraphColors("gwalls")

Not set

Not set

Not set

Not set

Not set

* Font-attributes can be one of the following: FONTFAMILY=, FONTSIZE=, FONTSTYLE=, FONTWEIGHT=.

Table 10.8 Style Elements Affecting Device-Based Non-Grouped Graphical Data Representation

Style Element Portion of Graph
Affected

Default Attributes Attribute Values in
DEFAULT Style

ThreeColorAltRamp Line contours, markers, and
data labels with segmented
range color response

StartColor

NeutralColor

EndColor

GraphColors("gconramp3start")

GraphColors("gconramp3cneutral")

GraphColors("gconramp3end")

ThreeColorRamp Gradient contours, surfaces,
markers, nad data labels
with continuous color
response

StartColor

NeutralColor

EndColor

GraphColors("gramp3cstart")

GraphColors("gramp3cneutral")

GraphColors("gramp3cend")

TwoColorAltRamp Line contours, markers, and
data labels with segmented
range color response

StartColor

EndColor

GraphColors("gconramp2cstart")

GraphColors("gconramp2cend")

TwoColorRamp Gradient contours, surfaces,
markers, and data labels
with continuous color
response

StartColor

EndColor

GraphColors("gramp2cstart")

GraphColors("gramp2cend")

150 Style Elements For Use With Device-Based SAS/GRAPH Output � Chapter 10

Table 10.9 Style Elements Affecting Device-Based Grouped Graphical Data
Representation

Style Element Portion of Graph
Affected

Default Attributes Attribute Values in
DEFAULT Style

GraphData1 Primitives related to 1st
grouped data items.
Color applies to filled
areas. ContrastColor
applies to markers and
lines.

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata1")

GraphColors("gcdata1")

"Circle"

1

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData2 Primitives related to
2nd grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata2")

GraphColors("gcdata2")

"Plus"

4

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData3 Primitives related to
3rd grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata3")

GraphColors("gcdata3")

"X"

8

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Controlling The Appearance of Your Graphs � Style Elements For Use With Device-Based SAS/GRAPH Output 151

Style Element Portion of Graph
Affected

Default Attributes Attribute Values in
DEFAULT Style

GraphData4 Primitives related to
4th grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata4")

GraphColors("gcdata4")

"triangle"

5

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData5 Primitives related to
5th grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata5")

GraphColors("gcdata5")

"square"

14

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData6 Primitives related to
6th grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata6")

GraphColors("gcdata6")

"Asterisk"

26

Not set

Not set

Not set

Not set

Not set

Not set

Not set

152 Style Elements For Use With Device-Based SAS/GRAPH Output � Chapter 10

Style Element Portion of Graph
Affected

Default Attributes Attribute Values in
DEFAULT Style

GraphData7 Primitives related to
7th grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata7")

GraphColors("gcdata7")

"Diamond"

15

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData8 Primitives related to
8th grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata8")

GraphColors("gcdata8")

Not set

20

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData9 Primitives related to
9th grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata9")

GraphColors("gcdata9")

Not set

41

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Controlling The Appearance of Your Graphs � Turning Off Styles 153

Style Element Portion of Graph
Affected

Default Attributes Attribute Values in
DEFAULT Style

GraphData10 Primitives related to
10th grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata10")

GraphColors("gcdata10")

Not set

42

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData11 Primitives related to
11th grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata11")

GraphColors("gcdata11")

Not set

2

Not set

Not set

Not set

Not set

Not set

Not set

Not set

GraphData12 Primitives related to
12th grouped data items

Color

ContrastColor

MarkerSymbol

LineStyle

MarkerSize

LineThickness

Gradient_Direction

StartColor

EndColor

BackGroundImage

Image

GraphColors("gdata12")

GraphColors("gcdata12")

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Turning Off Styles

To turn off styles, specify the SAS system option NOGSTYLE. To change the setting of
the SAS system option from GSTYLE to NOGSTYLE, you can do either of the following:

� Submit the following OPTIONS statement:

OPTIONS NOGSTYLE;

154 Changing the Appearance of Output to Match That of Earlier SAS Releases � Chapter 10

� Enter OPTIONS on the SAS command line, or select Tools � Options � System to
open the SAS System Options window. Expand Graphics, and select Driver
settings. Right-click on Gstyle, select Modify value, and select 0=False as the
new value.

Changing the Appearance of Output to Match That of Earlier SAS
Releases

SAS/GRAPH 9.2 introduces many new features that significantly change the default
appearance of your SAS/GRAPH output. To produce output that looks as if it was
produced with previous versions of SAS/GRAPH, do the following:

� Specify the NOGSTYLE system option. This option turns off the use of ODS
styles. See “Turning Off Styles” on page 153.

� Specify the FONTRENDERING=HOST_PIXELS system option. This option
specifies whether devices that are based on the SASGDGIF, SASGDTIF, and
SASGDIMG modules render fonts by using the operating system or by using the
FreeType engine. This option applies to certain native SAS/GRAPH devices (see
“Device Categories And Modifying Default Output Attributes” on page 72). For
example, this option works for GIF, TIFFP, JPEG, and ZPNG devices, but it is not
applicable to PNG, SVG, or SASPRT* devices.

� Specify DEVICE=ZGIF on the GOPTIONS statement when you are sending output
to the HTML destination.

� In other cases where your application specifies a device, specify a compatible Z
device driver, if applicable. See “Devices” on page xvii for more information.

155

C H A P T E R

11
Specifying Fonts in SAS/GRAPH
Programs

Introduction: Specifying Fonts in SAS/GRAPH Programs 155
SAS/GRAPH, System, and Device-Resident Fonts 155

TrueType Fonts That Are Supplied by SAS 156

Determining What Fonts Are Available 157

Default Fonts 157

Viewing Font Specifications in the SAS Registry 158
Specifying a Font 159

Specifying Font Modifiers (/bold, /italic, and /unicode) 159

Using a Registry Subkey 159

Specifying International Characters (Unicode Encoding) 159

Specifying Special Characters Using Character and Hexadecimal Codes 160

Methods For Specifying Fonts 163
Using SAS/GRAPH Global Statement Options to Specify Fonts 164

Using GOPTIONS to Specify Fonts 164

Changing The Font Specifications Used By a Style 165

Precedence of Font Specifications 165

Introduction: Specifying Fonts in SAS/GRAPH Programs
SAS/GRAPH provides access to a variety of fonts, or typefaces, to display text and

special characters for your graphics output. SAS provides a number of TrueType fonts
that you can use in your applications. By default, ODS styles use system fonts,
including the TrueType fonts shipped with SAS, for the various titles, labels, and other
text in SAS/GRAPH output. You can modify the default fonts by modifying the styles,
by specifying graphics options, or by using font options in procedure action statements.
You can specify special characters using character codes or hexadecimal codes.

SAS/GRAPH, System, and Device-Resident Fonts
There are three types of fonts that you can use when you generate output with

SAS/GRAPH.

SAS/GRAPH fonts
fonts stored in the SASHELP.FONTS catalog, and fonts created by the user and
stored in a GFONTn catalog. These fonts can be used only by SAS/GRAPH
procedures or other procedures that generate GRSEG output files. Examples of
SAS/GRAPH fonts include Swiss, Simulate, and Marker. These fonts are provided
for specialized purposes only. For information on these fonts, see Appendix 2,
“Using SAS/GRAPH Fonts,” on page 1643.

156 TrueType Fonts That Are Supplied by SAS � Chapter 11

system fonts
fonts that can be used by any SAS procedure and by other software, such as
Microsoft Word. These fonts include TrueType and Type1 fonts. Examples of
system fonts include Albany AMT, Monotype Sorts, and Arial. Some system fonts,
such as Helvetica, can also be present as device-resident fonts. System fonts are
installed on the operating system, and then registered with SAS using the
FONTREG procedure. System fonts generally provide the highest quality output.
SAS/GRAPH installs and registers a set of TrueType fonts, and it is recommended
that you use these fonts whenever possible. See “TrueType Fonts That Are
Supplied by SAS” on page 156 for more information.

device-resident fonts
fonts that are burned into the chips in a device’s hardware. These fonts are
specific to the device being used and are not portable between devices. Some
device-resident fonts, such as Helvetica, can also be present as system fonts.

TrueType Fonts That Are Supplied by SAS
SAS/GRAPH installs and registers a set of TrueType fonts, that are referred to

collectively as system fonts. TrueType fonts that are shipped with SAS are listed in
Table 11.1 on page 156.

You can use these fonts in your SAS programs by assigning the font name to font
options, enclosed in quotes. For example, you can specify the following:

goptions ftext="Thorndale AMT";

Table 11.1 TrueType Fonts Supplied by SAS

Albany AMT* Thorndale Duospace WT SC GungsuhChe

Cumberland AMT* Thorndale Duospace WT TC Dotum

Thorndale AMT* Arial Symbol* DotumChe

Symbol MT Times New Roman Symbol* Gulim

Monotype Sorts MS PMincho GulimChe

Monotype Sans WT J MS Mincho NSimSun

Monotype Sans WT K MS PGothic SimHei

Monotype Sans WT SC MS UI Gothic SimSun

Monotype Sans WT TC Batang PMingLiU

Thorndale Duospace WT J BatangChe MingLiU

Thorndale Duospace WT K Gungsuh HeiT

* Albany AMT, Cumberland AMT, Thorndale AMT, Arial Symbol, and Times New Roman Symbol
are font families. Normal, bold, italic, and bold italic versions of these fonts are provided.

For more information about using TrueType fonts with SAS/GRAPH, see SAS
Language Reference: Concepts.

Specifying Fonts in SAS/GRAPH Programs � Default Fonts 157

Determining What Fonts Are Available
The fonts listed in Table 11.1 on page 156 are available on all systems where SAS is

installed. It is recommended that you use these fonts when possible. Additional system
fonts that are available to your application and the methods for determining those fonts
depend on the following:

� the operating environment that you are working in
� the device or universal printer that you are using

For more information on determining what fonts are available, see SAS Language
Reference: Concepts and the SAS documentation for your operating environment.

You can add additional fonts to your system for use by SAS/GRAPH, but all fonts
must be registered with the FONTREG procedure. See Base SAS Procedures Guide for
more information.

All of the fonts that have been registered with the FONTREG procedure are listed in
the SAS registry. To view the list of registered fonts, follow these steps:

1 Open the registry editor by either selecting Solutions � Accessories � Registry
Editor or by issuing the command REGEDIT in the command line.

2 Select CORE � PRINTING � FREETYPE � FONTS.

The SAS/GRAPH fonts are available on all systems where SAS/GRAPH is installed,
but they are provided primarily for special uses. See Appendix 2, “Using SAS/GRAPH
Fonts,” on page 1643 for more information.

When you are deciding what font to use, consider all operating environments in
which your SAS code will be run. For example, if you specify a font, such as Arial, that
is available only on Windows systems, then your output will appear different on other
systems. If you specify one of the fonts that is installed with SAS (see Table 11.1 on
page 156) then your output will appear the same on all systems. It is recommended
that you use system fonts whenever possible.

Default Fonts
Many of the default fonts are specified in the SAS registry. See “Viewing Font

Specifications in the SAS Registry” on page 158. The SAS registry is localized, so fonts
that are specified by the SAS registry are dependent on your locale.

For most devices, when you are using styles (the GSTYLE system option is in effect),
fonts are specified by the current style. Each style specifies fonts for various graph
elements such as axis labels, graph titles, tick mark labels, and so on. See “Modifying
the GraphFonts And GraphColors Style Elements” on page 143 and “The GraphFonts
Style Element” on page 145 for more information about the font specifications in the
styles. See “Style Attributes Versus Device Entry Parameters” on page 134 for more
information on the GSTYLE system option.

Table 11.2 on page 158 shows the fonts used when styles are not active (the
NOGSTYLE system option is in effect).

158 Viewing Font Specifications in the SAS Registry � Chapter 11

Table 11.2 Fonts Used By Default When NOGSTYLE System Option Is In Effect

Device TITLE1 All Other Text

GIF, JPEG, PNG, TIFF, SVG,
SASBMP, SASPRTx, GIFANIM, PCL,
PS, PDF

Swiss Font specified by <MTmonospace>
subkey in the SAS registry

BMP, ZGIF, ZPNG, ZJPEG, ZTIFF in
all environments except z/OS

EMF and WMF on Windows

Display devices for Graph window:
WIN, XCOLOR, IBMPCGX

Swiss Font specified by DMSFont

SASEMF, SASWMF, EMF and WMF
in other operating environments

Swiss Font specified by <MTmonospace>
subkey in the SAS registry

JAVAMETA Swiss Font specified in the Chartype 1 field
in the device entry

CGM, ZPCL, ZPS, ZPDF Swiss Font specified by the device entry

The DMS font is controlled by the FONT= option on Windows, by the Xdefaults X
resources on UNIX, and by the host display code on z/OS. For more information, see the
SAS documentation for your operating environment.

Note: In some cases, SAS/GRAPH can switch to Simulate. When styles are turned
off (the NOGSTYLE system option is in effect), the only default font that is scalable is
the font used for TITLE1. If the height specified for other fonts is not equal to one, then
SAS/GRAPH switches to Simulate. See “The SIMULATE Font” on page 1652 for more
information. �

The Java and ActiveX devices ignore the NOGSTYLE system option; they always use
styles. When you are using the Java and ActiveX devices (which always use styles), the
fonts are determined at run time. The fonts are resolved based on the fonts available on
the system where the graph is viewed. When you use the JAVA or ACTIVEX device, the
fonts specified by the styles are also specified in the HTML or RTF file that is
generated. When the file is viewed, if a font is not available, the font mapper on the
system where the file is viewed determines the font that is substituted.

See “Specifying a Font” on page 159 and “Methods For Specifying Fonts” on page 163
for information on how to override default font specifications.

Viewing Font Specifications in the SAS Registry

To view the font settings in the SAS registry, follow these steps:

1 Open the registry editor by either selecting Solutions � Accessories � Registry
Editor or by issuing the command REGEDIT in the command line.

2 Select ODS � Fonts.

Each entry in the registry consists of a name, such as <MTsans-serif> or
<MTmonospace> followed by its value, such as “Albany AMT” or “Cumberland AMT”.

Note: The Fonts key contains subkeys that specify which fonts to use based on the
locale. �

For more information, see “The SAS Registry” in SAS Language Reference: Concepts.

Specifying Fonts in SAS/GRAPH Programs � Specifying International Characters (Unicode Encoding) 159

Specifying a Font
To specify a font in your SAS program, include a font name, enclosed in quotes,

anywhere fonts are supported. For example, you can specify Thorndale AMT as the font
for legend labels as follows:

legend label=(font="Thorndale AMT" "Generation Source");

You can change between fonts, specify font modifiers such as /bold, and specify special
characters. Font names are not case-sensitive. For example, the following FOOTNOTE
statement prints .

footnote font="Thorndale AMT/bold" "E=mc" font="Albany AMT" "b2"x;

Specifying Font Modifiers (/bold, /italic, and /unicode)
To add a modifier such as bold or italic to a font, follow the font name with /modifier.

For example:

axis1 value=(font="Cumberland AMT/bold/italic");

SAS/GRAPH recognizes three font modifiers.

/bold or /bo
specifies bold text.

/italic or /it
specifies italic text.

/unicode or /unic
specifies special characters using Unicode code points. See “Specifying
International Characters (Unicode Encoding)” on page 159 for more information.

Note: The /unicode modifier is not supported by the Java or ActiveX devices. �

Note: With the ACTIVEX and ACTXIMG devices you can specify only one modifier
at a time. Specifying font modifiers is not supported by the JAVA or JAVAIMG devices. �

Note: You cannot specify font modifiers if you specify the font using a registry
subkey. �

Using a Registry Subkey
You can specify a font by specifying a registry subkey such as <MTsans-serif> or

<MTmonospace> instead of specifying a font name. For example:

title font="<MTsans-serif>" "My Title";

The font specified by the <MTsans-serif> registry subkey will be used for the title.
The SAS registry is localized. If you specify a font using a registry subkey, the actual

font that is used will be the localized value specified in your registry.
See also “Viewing Font Specifications in the SAS Registry” on page 158 and “Font

Specifications In The GraphFonts Style Element” on page 146.

Specifying International Characters (Unicode Encoding)
You can use the /unicode modifier with a hexadecimal code to print any character in

a font. This modifier can be used only with fonts that support Unicode encoding. Most
of the TrueType fonts listed in Table 11.1 on page 156 support Unicode encoding.

160 Specifying Special Characters Using Character and Hexadecimal Codes � Chapter 11

For example, the following statement uses the /unicode modifier and a hexadecimal
code (see “Specifying Special Characters Using Character and Hexadecimal Codes” on
page 160) to display the symbol for the Euro sign.

title "Euro Symbol" font="Albany AMT/unicode" "20ac"x;

Unicode Character Code Charts can be found on the Unicode Web site at http://
www.unicode.org/charts. See also SAS Language Reference: Concepts for information
on printing international characters.

The Java and ActiveX devices do not support the /unicode modifier.

Specifying Special Characters Using Character and Hexadecimal
Codes

Some fonts contain characters that are not mapped to the keyboard and cannot be
typed directly into a text string. To display these special characters, substitute a
character code or a hexadecimal value in the text string. Hexadecimal values are
recommended over character codes.

Note: You can also display special characters using unicode code points. Unicode
code points are specified with the /unicode font modifier followed by a hexadecimal
value. See “Specifying International Characters (Unicode Encoding)” on page 159 for
more information. �

Character codes include the letters, numbers, punctuation marks, and symbols that
are commonly found on a keyboard. They are usually associated with symbols or
national alphabets. These codes enable you to display the character by specifying the
font and using the keyboard character in the text string. For example, on Windows
operating environments, to produce the character �, you can specify the Symbol MT font
and the character code z in the text string.

title font="Symbol MT" "z";

Hexadecimal values are any two-digit hexadecimal numbers enclosed in quotation
marks, followed by the letter x. For example, “3D”x. (In double-byte character sets, the
hexadecimal values contain four digits, for example, “4E60”x. Unicode characters also
contain four digits.)

You display characters with hexadecimal values the same way that you display them
with character codes. You specify the font that contains the special character and place
the hexadecimal value in the text string. For example, this TITLE statement uses
hexadecimal A9 to produce © in the Albany AMT font.

title font="Albany AMT" "a9"x;

Note: The character code or hexadecimal value associated with characters in a font
might be dependent on the key map that is currently being used. Keymaps are not used
if the /unicode modifier is specified, a symbol font is specified, or NOKEYMAP is
specified in the font header. Contact Technical Support if you need assistance with
creating or modifying key maps. �

To determine the hexadecimal codes that you need to specify for a specific character,
you can use the program shown in Example Code 11.1 on page 161. This program
displays 224 characters of a font together with the hexadecimal codes for each
character. As shown here, it displays the characters in the Symbol font. You can change
the font displayed by this program to any font available on your system. Also, some
fonts have many more characters than those displayed by the program below.

Note: Some fonts, such as Albany AMT, display variations due to the national
characters for that locale. Symbol fonts, such as Monotype Sorts, are not affected by

http://www.unicode.org/charts
http://www.unicode.org/charts

Specifying Fonts in SAS/GRAPH Programs � Specifying Special Characters Using Character and Hexadecimal Codes 161

your locale encoding. For double-byte encodings, the second half of the table might be
blank or show small rectangles. �

Example Code 11.1 SAS Program For Displaying Hexadecimal Codes For Special Characters

goptions reset=all;

/***/
/* Generate the hexadecimal values. The A values */
/* do not include 0 and 1 because these values are */
/* reserved for commands in most hardware fonts. */
/***/

data one;
do a="2","3","4","5","6","7","8","9","a","b","c","d","e","f";
do b="0","1","2","3","4","5","6","7","8","9","a","b","c","d","e","f";

char=input(a||b,$hex3.);
output;
end;

end;
run;

/***/
/* Create annotation data set to show the */
/* hexadecimal values and the corresponding font */
/* characters underneath the hexadecimal value. */
/***/

data anno;
length text $2. style $ 25.;
retain xsys "3" ysys "3"

tempy 95 x 0
size 1.5 count 0
y 0 position "6";

set one;
count = count + 1;
x = x + 4;

y = tempy;
text = compress(a||b);
style = "Albany AMT/bold";
output;

y = tempy - 3;
function = "label";

/* Modify this statement to use the */
/* font that you want to display. */
style = "Monotype Sorts";
text = char;
output;

if int(count/16) = (count/16)
then do;

162 Specifying Special Characters Using Character and Hexadecimal Codes � Chapter 11

x = 0;
tempy = tempy - 6;

end;
run;

/**/
/* Create the table. The symbol is shown below its */
/* hexadecimal value. For example, a circle with */
/* the number one inside is the hexadecimal value */
/* AC in the Monotype Sorts system font. To use */
/* this symbol, specify: */
/* font="Monotype Sorts" "AC"x; */
/**/

proc ganno anno=anno;
run;
quit;

Figure 11.1 on page 162 and Figure 11.2 on page 163 show the output of the program
above for the TrueType fonts Symbol MT and Monotype Sorts.

Figure 11.1 Symbol MT Font

Specifying Fonts in SAS/GRAPH Programs � Methods For Specifying Fonts 163

Figure 11.2 Monotype Sorts Font

Methods For Specifying Fonts
In general, there are four ways to specify fonts. The method you choose depends on

how extensively you want to change font specifications used in your program..
� Many procedures support font options that enable you to specify the fonts for

certain graph elements. For example, with the GCHART procedure, you can use
the FONT= suboption with the PLABEL= option to control the font for the pie
slice labels. With the GKPI procedure, you can use the BFONT= option to specify
the font for boundary labels. Changes specified using procedure options affect the
output of the current invocation of the procedure only.

For information on the font options that are available for a specific procedure,
see the documentation for the procedure.

� You can specify fonts in the AXIS, LEGEND, or SYMBOL global statements.
Fonts specified with these statements affect the output of any procedure that
references those statements. See “Using SAS/GRAPH Global Statement Options to
Specify Fonts” on page 164.

� You can specify fonts in the GOPTIONS statement. The GOPTIONS statement is
also a global statement, and specifications in the GOPTIONS statement affect all

164 Using SAS/GRAPH Global Statement Options to Specify Fonts � Chapter 11

output in the current SAS session. Using the FTEXT= graphics option is
frequently the best solution if you are dealing with any of the following situations.

� You want to specify the fonts only for the current SAS session.
� You want to specify the fonts only for a specific application.
� You do not need all of your output to use the same style.
� You do not want your code to be dependent on registry settings or a

customized style. For example, you might want to run your program as a
stored process or send it to others who might not have the same registry
settings.

See “Using GOPTIONS to Specify Fonts” on page 164.
� If you want all of your output to use the same ODS style, you can create a new

style by copying and modifying an existing style and changing the font settings.
Your new style can be used for all your ODS output at your site to ensure a
consistent appearance. If you always want all of your output to have a specific
appearance, then modifying a style might be the best alternative. See “Changing
The Font Specifications Used By a Style” on page 165.

Using SAS/GRAPH Global Statement Options to Specify Fonts
Font options on SAS/GRAPH AXIS, LEGEND, and SYMBOL global statements

enable you to specify fonts for the following:
� axis labels, reference line labels, and tick mark values
� legend labels and legend value descriptions
� contour line labels and plot point labels

For example, the following statement could be used to label contour lines:

symbol value="Deep" font="CUMBERLAND AMT/bold/italic";

See Example 2 on page 1116 for an example that uses SYMBOL statements to label
contour lines.

As with the options specified in the GOPTIONS statement, options specified with
these global statements remain in effect until you change them or until you start a new
SAS session.

For specific information on each of the global statements, see Chapter 14, “SAS/
GRAPH Statements,” on page 197.

Using GOPTIONS to Specify Fonts
The GOPTIONS statement has several options that can be used to specify fonts for

your graphs.
� FBY= sets the BY line font in your graphs.
� FTEXT= sets the font for all the text in your graphs.
� FTITLE= sets the font for the first title in your graphs.

For example, to specify Cumberland AMT for all of the text in your graphs, use

goptions ftext="Cumberland AMT";

Settings specified in the GOPTIONS statement remain in effect until you change
them, until you specify reset=all, or until you close the SAS session.

If you want most or all of the text in your output to use a single font, specifying this
font with the FTEXT= graphics option is frequently the best alternative. Using the

Specifying Fonts in SAS/GRAPH Programs � Precedence of Font Specifications 165

FTEXT= option in the GOPTIONS statement instead of adding font specifications to
several procedure action statements in addition to other global statements makes your
code easier to maintain.

Note: The FBY= option is not supported by the Java or ActiveX devices. For specific
information on the GOPTIONS statement, see “GOPTIONS Statement” on page 220.
Information for specific graphics options is in Chapter 15, “Graphics Options and Device
Parameters Dictionary,” on page 327. �

Note: When you are sending SAS/GRAPH output to the HTML or RTF destinations
(MARKUP destinations), titles and footnotes can be rendered as part of your graph
image or as part of the HTML or RTF files. Where your titles and footnotes are rendered
determines the fonts that are used for them. See “Controlling Titles and Footnotes with
Java and ActiveX Devices in HTML Output” on page 194 for information on the
GTITLE and GFOOTNOTE destination options and the ODS USEGOPT statement. �

Changing The Font Specifications Used By a Style
There are three ways to change the font specifications used by a style. Which method

you choose depends on how extensively you want to change the fonts used in your
output.

� You can modify the style element that controls a specific graph element such as
graph titles or contour line labels.

� You can modify the abstract font specifications in the GraphFonts class. These font
specifications can be referenced in multiple places in a style and affect several
graph elements.

� You can modify the font settings in the SAS registry that the styles use to
determine the default fonts. Changes to the SAS registry affect the fonts used by
all styles that reference the SAS registry entry.

Modifying an existing style to use different fonts might be the best alternative if you
need to create a style for all of your company’s output. If you only want to change the
fonts used in a few applications, then using the GOPTIONS statement is a better
alternative.

For information on changing the font specifications used by the styles, see “Ways to
Modify Graph Fonts Or Colors Specified By Styles” on page 143.

Precedence of Font Specifications
When SAS/GRAPH is trying to determine the font to use for a specific graph element,

it uses the first font that it finds from the following list.
1 Fonts specified on procedure action statement options such as the PLABEL=

option in the PIE statement in the GCHART procedure.
2 Fonts specified on the AXIS, LEGEND, or SYMBOL statements.
3 Fonts specified with the GOPTIONS global statement.
4 Default fonts as described in “Default Fonts” on page 157

.

166

167

C H A P T E R

12
SAS/GRAPH Colors and Images

Using SAS/GRAPH Colors and Images 167
Specifying Colors in SAS/GRAPH Programs 168

Specifying Colors in a GOPTIONS Statement 168

Defining and Using a Color List 169

Introduction to the Color Lists 169

Using a Device’s Color List 169
Building a Color List with the GOPTIONS COLORS= Option 169

Color-Naming Schemes 170

Introduction to Color-Naming Schemes 170

RGB Color Codes 171

CMYK Color Codes 171

HLS Color Codes 172
HSV (or HSB) Color Codes 174

Gray-Scale Color Codes 175

SAS Color Names and RGB Values in the SAS Registry 175

Color Naming System Values 176

Using the Color Utility Macros 177
Processing Limitations For Colors 180

Maximum Number of Colors Displayed on a Device 180

Replaying Graphs on a Device That Displays Fewer Colors 180

Specifying Images in SAS/GRAPH Programs 181

Image File Types Supported by SAS/GRAPH 181
Displaying an Image in a Graph Background 182

Displaying an Image in Graph Frame 184

Displaying Images on Data Elements 185

Displaying Images Using Annotate 187

Displaying Images using DSGI 188

Disabling and Enabling Image Output 190

Using SAS/GRAPH Colors and Images
The appearance of SAS/GRAPH output is determined by the current ODS style by

default. Styles set the overall appearance of your output, including the colors and fonts
that are used. Some styles also add an image to the background of your graphs.

You can turn off the use of styles if needed. In this case, the default appearance of
your output is controlled by device entry parameters. See “Style Attributes Versus
Device Entry Parameters” on page 134 and “Turning Off Styles” on page 153 for more
information.

In either case (using ODS styles or using device parameters), you can override the
default colors by specifying options in your SAS/GRAPH program. Whether you are

168 Specifying Colors in SAS/GRAPH Programs � Chapter 12

using ODS styles or you have turned styles off, you can the change these colors as
described in “Specifying Colors in SAS/GRAPH Programs” on page 168. You can add
images to your output as described in “Specifying Images in SAS/GRAPH Programs” on
page 181.

Specifying Colors in SAS/GRAPH Programs

SAS/GRAPH enables you to set colors in several ways. You can do any of the
following:

� specify colors in procedure action statements for any procedures that create
graphics output. For example, the CAXIS= option in the HBAR statement specifies
a color for the response and midpoint axis lines. These options are described in the
documentation for the individual procedures.

� specify colors in global statements that enhance procedure output: AXIS,
FOOTNOTE, LEGEND, PATTERN, SYMBOL, and TITLE. You can also specify
colors in the NOTE statement, which is a local statement, not a global statement.
See Chapter 14, “SAS/GRAPH Statements,” on page 197.

� use options in the GOPTIONS statement that define colors for specific graphics
elements. See “Specifying Colors in a GOPTIONS Statement” on page 168.

� define a color list with the GOPTIONS COLORS= option. See “COLORS” on page
340

� specify a different style, modify an existing style, or create a custom style. See
Chapter 10, “Controlling The Appearance of Your Graphs,” on page 133 for more
information on styles.

� modify the color list in the device entry for the device that you want to use.
However, the colors listed in the device entry are not used unless styles are turned
off. See “Using a Device’s Color List” on page 169 and Chapter 38, “The GDEVICE
Procedure,” on page 1125 for more information.

See “Precedence of Appearance Option Specifications” on page 141 for information on
which settings take precedence when colors are set in more than one way.

Specifying Colors in a GOPTIONS Statement
The GOPTIONS statement has several graphics options that set colors for specific

graphical elements. These colors are used unless they are overridden by more specific
options specified on other global statements or on procedure statements.

Option Sets the color for

CBACK= background for graphics output

CBY= BY lines in graphics output

CPATTERN= fill patterns

CSYMBOL= SYMBOL definitions

CTEXT= all text and the border in graphics output

CTITLE= border, plus all titles, footnotes, and notes

SAS/GRAPH Colors and Images � Defining and Using a Color List 169

You can also use the COLORS= option in a GOPTIONS statement to specify a list of
colors rather than specific colors for individual graphical elements. Refer to Chapter 15,
“Graphics Options and Device Parameters Dictionary,” on page 327 for complete
information about each of these graphics options.

Defining and Using a Color List

Introduction to the Color Lists
Each device is associated with a list of colors that it can use. This list is defined in

the device entry for the device. You can modify this list as needed. However, this
device-specific list of colors is not used unless you turn off styles by specifying the
NOGSTYLE system option. See “Using a Device’s Color List” on page 169.

You can also use the GOPTIONS statement to specify a list of colors for SAS/GRAPH
to use instead of the device-specific color list or the colors defined by the current style.
Colors specified in the GOPTIONS statement are always used regardless of the setting
of the GSTYLE or NOGSTYLE system option. See “Building a Color List with the
GOPTIONS COLORS= Option” on page 169 for more information.

The color selected from a color list varies depending on the procedure using the color
and graphical element it’s drawing. Usually, the first color in the list is used; however,
certain procedures can select other colors. For example, if the CAXIS= option is not
specified in the GCONTOUR procedure’s PLOT statement, the procedure selects the
second color from the color list to draw the axes. See the documentation for individual
procedures for more information.

Using a Device’s Color List
If you specify the NOGSTYLE system option and you do not define a color list with

the COLORS= graphics option, then SAS/GRAPH uses the color list from the current
device. This color list is found in the device entry of the specified device. The color list
might change if you select a different device during a SAS session.

When SAS/GRAPH assigns colors from the current device’s color list, this assignment
uses some of the colors that you can specify for a graph. The limit on the number of
colors that can be used in your output is set by the current device. For example, the
PNG device is a true color device and can use up to 16 million different colors.
However, the GIF device is limited to 256 colors.

To view, create, or modify a device’s color list, use the GDEVICE procedure. See
Chapter 38, “The GDEVICE Procedure,” on page 1125.

To reset a color list back to the default color list, for the current device driver, specify
the COLORS= option without specifying any colors.

goptions colors=;

Building a Color List with the GOPTIONS COLORS= Option

To build a color list, use the COLORS= option in the GOPTIONS statement. A color
list specified with the COLORS= option overrides the color list of the current device.
Building a color list is useful for selecting a subset of colors in a specific order for
graphics output. For example, to ensure that the colors red, green, and blue are
available in that order, you can specify any of the following:

goptions colors=(red green blue);
goptions colors=(CXFF0000 CX00FF00 CX0000FF);
goptions colors=(medium_red medium_green medium_blue);

170 Color-Naming Schemes � Chapter 12

You can specify colors in any color-naming schemes described in “Color-Naming
Schemes” on page 170. Each value specified in a color list must be one of the following:

� a valid color name, not to exceed 64 characters
� a valid color code, not exceed eight characters

Note: The COLORS= graphics option provides only a default lookup table. Any time
you explicitly select any other colors in your SAS/GRAPH program, those colors are
used to draw the graphical elements for which you have specified them. �

See “COLORS” on page 340 for more information.

Color-Naming Schemes

Introduction to Color-Naming Schemes
The valid color-naming schemes are as follows:
� RGB (red green blue)
� CMYK (cyan magenta yellow black)
� HLS (hue lightness saturation)
� HSV (hue saturation brightness), also called HSB
� Gray scale
� SAS color names (from the SAS Registry)
� SAS Color Naming System (CNS)

Table 12.1 on page 170 shows examples of each color-naming scheme.

Table 12.1 Examples of Specifying Colors

Color-Naming
Scheme Example

RGB COLORS=(cx98FB98 cxDDA0DD cxFFDAB9 cxDB7093 cxB0E0E6)

CMYK COLORS=("FF00FF00" "00FFFF00" "FFFFFF00")

HLS COLORS=(H14055FF H0F060FF H0B485FF H07880FF)

HSV COLORS=(V0F055FF v010FFFF v03BFFFF v12C55E8)

Gray Scale COLORS=(GRAY4F GRAY6D GRAY8A GRAYC3)

SAS Registry Colors COLORS=(palegreen plum peachpuff palevioletred powderblue)

CNS Color Names COLORS=("very light purplish blue"
"light vivid green" "medium strong yellow"
"dark grayish green")

You can also mix color-naming schemes in the same statement, for example:

goptions colors=(cxEE0044 "vivid blue" darkgreen);

Note: Hardware characteristics of your output device might cause some colors with
different color definitions to appear the same. The same color is likely to appear
different on different devices and might not appear correctly on some devices. To
determine whether your device supports a specific color-naming scheme, refer to your
graphics device documentation. �

Each of the color-naming schemes supported by SAS/GRAPH has its advantages and
disadvantages based on how the output is used. For example, if you are creating a

SAS/GRAPH Colors and Images � Color-Naming Schemes 171

report that will be viewed online only, then specifying colors using the RGB naming
scheme or the SAS color names defined in the registry might produce better results. If
you are creating a report for publishing in printed form, you might want to use the
CMYK color-naming scheme.

The color utility macros enable you to create colors for a specific color-naming
scheme. These macros convert color values between color-naming schemes. See “Using
the Color Utility Macros” on page 177.

Note: Invalid color names, such as a misspelled color name, are mapped to gray, and
a NOTE is issued to the SAS log. A valid color name that is not supported by the
current device is mapped to the closest color that is supported by the device. �

RGB Color Codes
The RGB color-naming scheme is usually used to define colors for a display screen.

This color-naming scheme is based on the properties of light. With RGB color codes, a
color is defined by its red, green, and blue components. Individual amounts of each
color are added together to create the desired color. All the colors combined together
create white. The absence of all color creates black.

Color names are in the form CXrrggbb, where the following is true:
� CX indicates to SAS that this is an RGB color specification.
� rr is the red component.
� gg is the green component.

� bb is the blue component.

The components are given as hexadecimal numbers in the range 00 through FF (0%
to 100%), where lower values are darker and higher values are lighter. This scheme
allows for up to 256 levels of each color component (over 16 million different colors).

Table 12.2 Examples of RGB Color Values

Color RGB Value

red CXFF0000

green CX00FF00

blue CX0000FF

white CXFFFFFF

black CX000000

Any combination of the color components is valid. Some combinations match the
colors produced by predefined SAS color names. See “Using the SAS Registry to Control
Color” in SAS Language Reference: Concepts for information on viewing the RGB
combinations that match predefined SAS color names.

CMYK Color Codes
CMYK is a color-naming scheme used in four-color printing. CMYK is based on the

principles of objects reflecting light. Combining equal values of cyan, magenta, and
yellow produces process black, which might not appear as pure black. The black
component (K) of CMYK can be used to specify the level of blackness in the output. A
lack of all colors produces white, when the output is printed on white paper.

172 Color-Naming Schemes � Chapter 12

To specify the colors from a printer’s Pantone Color Look-Up Table, you can use the
CMYK color-naming scheme. Specify colors in terms of their cyan, magenta, yellow, and
black components. Color names are of the form ccmmyykk, where the following is true:

� cc is the cyan component.

� mm is the magenta component.

� yy is the yellow component.

� kk is the black component.

The components are given as hexadecimal numbers in the range 00 through FF,
where higher values are darker and lower values are brighter. This scheme allows for
up to 256 levels of each color component. Quotation marks are required when the color
value starts with a number instead of a letter.

Table 12.3 Examples of CMYK Color Values

Color CMYK Value

red 00FFFF00

green FF00FF00

blue FFFF0000

white 00000000

process black (using cyan, magenta, and yellow ink) FFFFFF00

pure black (using only black ink) 000000FF

Note: You can specify a CMY value by making the kk, the color’s black component,
zero (00). �

CMYK color specifications are for devices that support four colors. If a CMYK color is
used on a three-color device, the device processes the color specification. The resulting
colors might not be as expected. Different CMYK colors might map to the same device
color because a four-color space supports more colors than a three-color space.

HLS Color Codes
The HLS color-naming scheme follows the Tektronix Color Standard illustrated in

Figure 12.1 on page 174. To make the HLS color model consistent with the HSV
coordinate system, Tektronix places blue at zero degrees. With the HLS color
naming-scheme, you specify colors in terms of hue, lightness, and saturation levels.
HLS color names are of the form Hhhhllss, where the following is true:

� H indicates that this is an HLS color specification.

� hhh is the hue component.

� ll is the lightness component.

� ss is the saturation component.

The components are given as hexadecimal numbers. The hue component has the
range of 000 through 168 hexadecimal (168 hexadecimal is equivalent to 360 decimal).
Both the lightness and saturation components are hexadecimal and scaled to a range of
0 to 255 expressed with values of 00 through FF (0% to 100%). Thus, they provide 256
levels for each component.

SAS/GRAPH Colors and Images � Color-Naming Schemes 173

Table 12.4 Examples of HLS Color Codes

Color HLS Color Code

red H07880FF

green H0F080FF

blue H00080FF

light gray H000BB00

white* HxxxFF00, such as H000FF00

black* Hxxx0000 such as H0000000

* When the saturation is set to 00, the color is a shade of gray that is determined by the lightness
value. Therefore, white is defined as HxxxFF00 and black as Hxxx0000, where xxx can be any
hue.

174 Color-Naming Schemes � Chapter 12

Figure 12.1 Tektronix Color Standard

HSV (or HSB) Color Codes
Specify the HSV color-naming scheme in terms of hue, saturation, and value (or

brightness) components. HSV color names are of the form Vhhhssvv, where the
following is true:

� V indicates that this is an HSV color specification.

� hhh is the hue component.

� ss is the saturation component.

� vv is value or brightness component.

The components are given as hexadecimal numbers. The hue component has the
range of 000 through 168 hexadecimal (168 hexadecimal is equivalent to 360 decimal).
Both the saturation and value (brightness) components are hexadecimal, scaled to a

SAS/GRAPH Colors and Images � Color-Naming Schemes 175

range of 0 to 255, and expressed with values of 00 through FF. Thus, they provide 256
levels for each component.

Table 12.5 Examples of HSV (or HSB) Color Codes

Color HSV Color Code

red V000FFFF

green V078FFFF

blue V0F0FFFF

light gray* Vxxx00BB such as V07900BB

white* Vxxx00FF such as V07900FF

black* Vxxx00000 such as V0790000

* When the saturation is set to 00, the color is a shade of gray. The value component determines
the intensity of gray level. The xxx can be any hue.

Gray-Scale Color Codes
Specify the lightness or darkness of gray using the word GRAY and a lightness value.

Gray-scale color codes are of the form GRAYll. The value ll is the lightness of the gray
and is given as a hexadecimal number in the range 00 through FF. This scheme allows
for 256 levels on the gray scale.

Note: GRAY, without a lightness value, is a SAS color name defined in the SAS
registry (see “SAS Color Names and RGB Values in the SAS Registry” on page 175). Its
value is CX808080. Invalid color specifications are mapped to GRAY. �

Table 12.6 Examples of Gray-Scale Color Codes

Color Gray-Scale Color Codes RGB equivalent

white GRAYFF CXFFFFFF

light gray GRAYC0 CXC0C0C0

dark gray GRAY40 CX404040

black GRAY00 CX000000

SAS Color Names and RGB Values in the SAS Registry
SAS provides, in the SAS Registry, a set of color names and RGB values that you can

use to specify colors. These color names and RGB values are common to most Web
browsers. You can specify the name itself or the RGB value associated with that color
name. To view the color names as associated RGB values that are defined in the
registry, submit the following code;

proc registry list
startat="COLORNAMES";
run;

SAS prints the output in the SAS log.
You can also create your own color values by adding them to the registry. For more

information on viewing and modifying the list of color names, see “Using the SAS
Registry to Control Color” in SAS Language Reference: Concepts.

176 Color-Naming Schemes � Chapter 12

Color Naming System Values
With CNS, you specify a color value by specifying lightness, saturation, and hue, in

that order, using the terms shown in the following table.

Table 12.7 Color Naming System Values

Lightness Saturation Hue

Black Gray Blue

Very Dark Grayish Purple

Dark Moderate Red

Medium Strong Orange/Brown

Light Vivid Yellow

Very Light Green

White

Follow these rules when you are determining the CNS color name:

� The lightness values black and white should not be used with saturation or hue
values.

� If not specified, medium is the default lightness value and vivid is the default
saturation value.

� Gray is the only saturation value that can be used without a hue.

� Unless the color you want is black, white, or some form of gray, you must specify
at least one hue.

One or two hue values can be used in the CNS color name. When using two hue
values, the hues must be adjacent to each other in the following list: blue, purple, red,
orange/brown, yellow, green, and then returning to blue. When two hues are used, the
resulting color is a combination of both colors. Use the suffix ish to reduce the effect of a
hue when two hues are combined. Reddish purple is less red than red purple. If you are
using a color with an ish suffix, this color must precede the color without the ish suffix.

Color names can be written in the following ways:

� without space separators between words

� with an underscore to separate words

� with a space to separate words, enclosed in quotation marks

For example, the following are all valid color specifications:

� verylightmoderatepurplishblue

� very_light_moderate_purplish_blue

� “very light moderate purplish blue”

Note: If a CNS color name is also a color name in the SAS Registry, the SAS
Registry color value takes precedence. Some CNS color names and color names in the
SAS Registry have different color values. To use a CNS color value when the color
name is also in the SAS Registry, do the following:

� Include a space to separate the words.

� Enclose the entire color name in quotation marks.

�

SAS/GRAPH Colors and Images � Color-Naming Schemes 177

Using the Color Utility Macros
The color utility macros enable you to define colors for a specific color-naming scheme

and convert color values between color-naming schemes.
The %COLORMAC macro contains several subcomponent macros that can be used to

construct and convert color values for the different color-naming schemes supported by
SAS. The %HELPCLR macro provides information about the %COLORMAC
subcomponent macros. The following table shows information displayed in your SAS log
when you call the %HELPCLR macro from the command line.

Table 12.8 Using the %HELPCLR macro

Use... To...

%HELPCLR; List the color utility macro names with help
information.

%HELPCLR(ALL); Display the short descriptions and examples for
each of the color utility macros.

%HELPCLR(macroname); Obtain a short description and an example of a
specific color utilities macro. Replace
macroname with the name of the color utility
macro you are interested in.

When the color utility macros are invoked, the calculated color value is directed to
the SAS log. The calculated color can also be used to perform in-place substitutions in
the code.

Table 12.9 %CMY(cyan, magenta, yellow);

Description Usage Example

Replace cyan, magenta, yellow with numeric values to
create an RGB color value. The numeric values that are
used in place of cyan, magenta, yellow indicate the
percentage of each color to be included in the RGB value.

Entering the following code into your
Program Editor:
%COLORMAC;
data _null_;
put "%CMY(100,0,100)";
run;

Returns the RGB value CX00FF00
which is green.

178 Color-Naming Schemes � Chapter 12

Table 12.10 %CMYK(cyan, magenta, yellow, black);

Description Usage Example

Replace cyan, magenta, yellow, black with numeric values
to create a CMYK color value. The numeric values that are
used in place of cyan, magenta, yellow, black indicate the
percentage of each color to include in the CMYK color value.
See “CMYK Color Codes” on page 171 for more information
on the color value produced by using this macro.

Entering the following code into your
Program Editor:
%COLORMAC;
data _null_;
put %CMYK(0,46,16,31);
run;

Returns the CMYK value 0075294F
which is purple.

Note: In the PUT statement, %CMYK(cyan, magenta, yellow, black), should not be
placed in quotations. �

Table 12.11 %CNS (colorname);

Description Usage Example

Replace colorname with a color-naming scheme color name
to create an HLS color value. See “HLS Color Codes” on
page 172 for more information on HLS color values. For
more information on valid color-naming scheme color names
see “Color Naming System Values” on page 176 or enter
the following into the command-line of the Program Editor:

%HELPCLR(CNS);

Entering the following code into your
Program Editor:

%COLORMAC;
data _null_;
put "%CNS(GRAYISH REDDISH PURPLE)";
run;

Returns the HLS value H04B8040
which is grayish reddish purple.

Note: The %CNS macro accepts only CNS color names where a space is used to
separate the words in the color name. �

SAS/GRAPH Colors and Images � Color-Naming Schemes 179

Table 12.12 %HLS(hue, lightness, saturation);

Description Usage Example

Replace hue, lightness, saturation with numeric values to
create an HLS color value. Hue should be replaced with
any value from 0 to 360. Lightness and saturation indicate
a percentage to be included in the HLS color values. See
“HLS Color Codes” on page 172 for more information.

Entering the following code into your
Program Editor:

%COLORMAC;
data _null_;
put "%HLS(0,50,100)";
run;

Returns the HLS value H00080FF
which is blue.

Table 12.13 %HSV(hue, saturation, value);

Description Usage Example

Replace hue, saturation, value with numeric values to
create an HLS value from HSV components. Hue should be
replaced with any value from 0 to 360. Saturation and
value (brightness) indicate a percentage to be included in
the HLS color value. See “HSV (or HSB) Color Codes” on
page 174 and “HLS Color Codes” on page 172 for more
information.

Entering the following code into your
Program Editor:

%COLORMAC;
data _null_;
put "%HSV(0,100,75)";
run;

Returns the HSV value V000FFBF
which is dark red.

Table 12.14 %RGB(red, green, blue);

Description Usage Example

Replace red, green, blue with numeric values to create an
RGB color value from RGB color components. The numeric
values that are used in place of red, green, blue indicate the
percentage of each color to be included in the RGB color
value. See “RGB Color Codes” on page 171 for more
information.

Entering the following code into your
Program Editor:

%COLORMAC;
data _null_;
put "%RGB(100,100,0)";
run;

Returns the RGB value CXFFFF00
which is yellow.

Table 12.15 %HLS2RGB(hls);

Description Usage Example

Replace hls with an HLS color value to create an RGB color
value. See “HLS Color Codes” on page 172 and “RGB Color
Codes” on page 171 for more information.

Entering the following code into your
Program Editor:
%COLORMAC;
data _null_;
put "%HLS2RGB(H04B8040)";
run;

Returns the RGB value CX9F5F8F
which is grayish reddish purple.

180 Processing Limitations For Colors � Chapter 12

Table 12.16 %RGB2HLS(rgb);

Description Usage Example

Replace rgb with an RGB color value to create an HLS
color value. See “RGB Color Codes” on page 171 and “HLS
Color Codes” on page 172 for more information.

Entering the following code into your
Program Editor:

%COLORMAC;
data _null_;
put "%RGB2HLS(CX9F5F8F)";
run;

Returns the HLS value H04C7F40
which is grayish reddish purple.

Note: Round-trip conversions using the HLS2RGB and RGB2HLS macros might
produce ultimate output values that differ from the initial input values. For example,
converting CXABCDEF (a light blue) using %RGB2HLS produces H14ACDAD.
Converting this value back to RGB using %HLS2RGB returns CXAACCEE. While not
identical, the colors are very similar on the display, and when printed. �

For additional information on color-naming schemes. See Effective Color Displays:
Theory and Practice by David Travis and Computer Graphics: Principles and Practice
by Foley, van Dam, Feiner, and Hughes.

Processing Limitations For Colors
Using colors in SAS/GRAPH is limited by the number of colors that you can use in

one graph and by the capabilities of your device.

Maximum Number of Colors Displayed on a Device
The number of colors that you can display is limited by the graphics output device. If

you create a graph with more colors than the device can display, the colors are mapped
to an existing color for display. You might also receive a note in the SAS log telling you
when a color is mapped to another color, along with the name of the replacement color.

If your device can support 16 million colors, it might not let you use all of them at
once. The MAXCOLORS device parameter tells SAS/GRAPH the maximum number of
colors it can display simultaneously. MAXCOLORS is the number of foreground colors
plus the background color. If you use more than the number of colors set by the
MAXCOLORS device parameter, the excess colors are remapped.

Note: The MAXCOLORS device parameter defaults to the number of colors that the
basic model of each graphics device supported can display. If your graphics device can
display more colors than the base model, use the PENMOUNTS= graphics option to
specify the number of colors your graphics device can display. You can also use the
GDEVICE procedure to modify the value of the MAXCOLORS device parameter. �

Replaying Graphs on a Device That Displays Fewer Colors
You can use the GREPLAY procedure to display previously created graphs.

Sometimes you might need to replay the graphs on a device that cannot display as
many colors as the device on which the graph was originally developed. Use the CMAP
statement (see “CMAP” on page 339) to control some of the remapping.

When you replay graphs on devices that display fewer colors than are in the graph,
two situations can cause problems:

SAS/GRAPH Colors and Images � Image File Types Supported by SAS/GRAPH 181

� Colors are specified that the device does not support.
� More colors are specified than the device can display at one time.

If you specify colors on a device that does not support the colors requested, the colors
are remapped to gray. A note is issued to the SAS log telling you when a color is
mapped gray.

The number of colors that your device can display affects the actual colors displayed.
If your graphics output device can create a maximum of 64 distinct colors, and your
graph contains 256 colors, then the 65th through the 256th color specifications are
remapped to the colors specified in the current style. If the NOGSTYLE system option
is in effect, the colors are remapped to the device’s available colors and might not
display as the color you specify.

You can use the TARGETDEVICE= graphics option to preview the way a graph is
going to look on a different device. Set the device entry name of the device driver to this
graphics option. The graph is displayed as close as possible to the display when the
other device is used.

Note: When you use the TARGETDEVICE= graphics option, SAS/GRAPH uses the
color list of the target device as the default color list; any color that you explicitly use is
displayed when you preview the graph, although the color might be mapped by the
target device. Refer to “TARGETDEVICE” on page 424 for complete information about
the TARGETDEVICE= graphics option. �

Specifying Images in SAS/GRAPH Programs
SAS/GRAPH enables you to display images as part of your graph. You can place an

image in the background area of a graph, in the backplane of graphs that support
frames, or on the bars of two-dimensional bar charts. You can also apply images at
specified graph-coordinate positions using the Annotate facility or the DATA Step
Graphics Interface (DSGI).

The images you add to your graphs can be SAS files or external files, in a range of
image formats.

Image File Types Supported by SAS/GRAPH
For displaying images in your graphs, SAS/GRAPH supports the image file types

shown in the following table.

File Type Description

BMP (Microsoft Windows Device Independent
Bitmap)

supports color-mapped and true color images
stored as uncompressed or run-length encoded.
BMP was developed by Microsoft Corporation for
storing images under Windows 3.0.

DIB (Microsoft Windows Device Independent
Bitmap)

see the description of BMP.

GIF (Graphics Interchange Format) supports only color-mapped images. GIF is
owned by CompuServe, Inc.

JPEG (Joint Photographic Experts Group) supports compression of images with the use of
JPEG File Interchange Format (JFIF) software.
JFIF software is developed by the Independent
Joint Photographic Experts Group.

182 Displaying an Image in a Graph Background � Chapter 12

File Type Description

PBM (Portable Bitmap Utilities) supports gray, color, RGB, and bitmap files. The
Portable Bitmap Utilities is a set of free utility
programs that were primarily developed by Jeff
Poskanzer.

PCD (Photo CD) Kodak Photo CD format which supports
multiple image resolutions.

PCX (PC Paintbrush) supports bitmap, color-mapped, and true color
images. PCX and PC Paintbrush are owned by
Zsoft Corporation.

PNG (Portable Network Graphic) supports truecolor, gray-scale, and 8-bit images.

TGA (Targa) supports true color images. Targa is owned by
Truevision, Inc.

TIFF (Tagged Image File Format) internally supports a number of compression
types and image types, including bitmap,
color-mapped, gray-scale, and true color. TIFF
was developed by Aldus Corporation and
Microsoft Corporation.

XBM (X Window Bitmaps) supports bitmap images only. XBM is owned by
MIT X Consortium.

XWD (X Window Dump) supports all X visual types (bitmap,
color-mapped, and true color.) XWD is owned by
MIT X Consortium.

Displaying an Image in a Graph Background
To place an image on the graph background, use the IBACK= option in a GOPTIONS

statement. Specify either the path to the image file in quotation marks or a fileref that
has been defined to point to the image file as follows:

goptions iback="external-image-file" | fileref;

For example, the following program creates a pie chart with a background image:

goptions reset=all
htitle=1.25

colors=(cx7c95ca cxde7d6f cx66ada0
cxb689cd cxa9865b cxbabc5c)

iback="external-image-file";
title "Projected Automobile Sales";
data sales;

input Month Amount;
informat month monyy.;
datalines;

jan08 200
feb08 145
mar08 220
apr08 180
may08 155

SAS/GRAPH Colors and Images � Displaying an Image in a Graph Background 183

jun08 250
;
proc sort;

by month;
proc gchart;

format month monname8.;
pie month / discrete freq=amount value=inside

noheading coutline=black;
run;
quit;

Because the default value for the IMAGESTYLE= graphics option is TILE, the image
is copied as many times as needed to fill the background area.

You can specify IMAGESTYLE=FIT in the GOPTIONS statement to stretch the
image so that a single image fits within the entire background area.

184 Displaying an Image in Graph Frame � Chapter 12

Displaying an Image in Graph Frame
Procedure action statements that support the IFRAME= support frames, which are

the backplanes behind the graphs. The backplane is the area within the graph axes. To
place an image on the backplane of a graph, specify the IFRAME= option in the
procedure action statement that generates the graph. On the IFRAME= option, specify
either the path to the image file in quotation marks or a fileref that has been defined to
point to the image file:

iframe=fileref | "external-image-file";

For example, the following program creates a vertical bar chart and adds an image to
the graph frame:

goptions reset=all htitle=1.25 colors=(yellow cxde7d6f);
title "Projected Automobile Sales";
data sales;

input Month Amount;
informat month monyy.;
datalines;

jan08 200
feb08 145
mar08 220
apr08 180
may08 155
jun08 250
;
proc sort;

by month;
proc gchart;

format month monname8.;
vbar month / discrete freq=amount inside=freq

coutline=black iframe="external-image-file";
run;

SAS/GRAPH Colors and Images � Displaying Images on Data Elements 185

quit;

Because the default value for the IMAGESTYLE= graphics option is TILE, the image
is copied as many times as needed to fill the frame area.

You can specify IMAGESTYLE=FIT in the GOPTIONS statement to stretch the
image so that a single image fits within the entire frame area.

Displaying Images on Data Elements
You can place images on the bars in two-dimensional bar charts generated by the

GCHART HBAR or VBAR statements. You can also place images on the bars in
three-dimensional bar charts if you are using the ACTIVEX device.

186 Displaying Images on Data Elements � Chapter 12

On the IMAGE= option of the PATTERN statement, specify either the path to the
image file in quotation marks or a fileref that has been defined to point to the image file.

pattern image=fileref | "external-image-file";

By default, the image is tiled on the bar, which means that the image is copied as
many times as needed to fill each bar. Specify IMAGESTYLE=FIT in the PATTERN
statement to stretch the image as needed to fill each bar.

pattern image="external-image-file" imagestyle=fit;

To tile subsequent images, reset the PATTERN statement or by specify
IMAGESTYLE=TILE.

Note: Images are supported on bar charts generated by the HBAR and VBAR
statements. If an image is specified on a PATTERN statement that is used with another
type of chart, then the PATTERN statement is ignored and default pattern rotation is
affected. If you submit a PIE statement when an image has been specified in the
PATTERN= option, the default fill pattern is used for the pie slices. Each pie slice
displays the same fill pattern. �

The following example places an image on the bars of a vertical bar chart:

goptions reset=all htitle=1.25 colors=(yellow cxde7d6f);
title "Projected Automobile Sales";
data sales;

input Month Amount;
informat month monyy.;
datalines;

jan08 200
feb08 145
mar08 220
apr08 180
may08 155
jun08 250
;
proc sort;

by month;
pattern1 image="external-image-file";
proc gchart;

format month monname8.;
vbar month / discrete freq=amount inside=freq

coutline=black;
run;
quit;

The image is tiled to fill each bar.

SAS/GRAPH Colors and Images � Displaying Images Using Annotate 187

If the PATTERN IMAGESTYLE=FIT option is used, the image is stretched to fill
each bar.

pattern=fileref | "external-image-file" imagestyle=fit;

Displaying Images Using Annotate
The Annotate facility enables you to display an image at the coordinate location that

you specify with the X and Y variables. To display an image, do the following:

� Specify the image file in quotation marks on the IMGPATH variable.

� Set the image coordinates with the X and Y variables.

� Specify the IMAGE function.

188 Displaying Images using DSGI � Chapter 12

One corner of the image is located by the current X and Y position. The opposite corner
is located by the X and Y variables associated with the IMGPATH variable.

goptions reset=all border htitle=1.25
hsize=5.5in vsize=4.2in;

data my_anno;
length function $8;
xsys="3"; ysys="3"; when="a";

function="move"; x=55; y=55; output;
function="image"; style="fit"; imgpath="external-image-file";

x=x+15; y=y+18; output;
run;
title1 "GMAP with Annotated Image";
proc gmap data=maps.us map=maps.us anno=my_anno;

id state;
choro state/
levels=1
nolegend
statistic=freq;

run;
quit;

The style="fit" variable on the IMAGE function stretches the image as needed to fill
the area.

To tile the image to fill the area, set the STYLE variable equal to "tile".

Displaying Images using DSGI

Using the DATA Step Graphics Interface (DSGI), you can display an image in a
designated position. To display an image, specify the file specification for the image file
in quotation marks on the GDRAW(’IMAGE’,...) function.

SAS/GRAPH Colors and Images � Displaying Images using DSGI 189

This code displays the image in the screen coordinates (20, 20) to (40, 40). The last
parameter, FIT, indicates how to display the image.

rc=gdraw("image", "external-image-file", 20, 20, 40, 40, "fit");

“Image File Types Supported by SAS/GRAPH” on page 181 shows the supported
image file formats.

goptions reset=all
ftext="Albany AMT/bold" htitle=1.25
hsize=5.5in vsize=4.2in;

title "DSGI with Image";
data image;

rc=ginit();
rc=graph("clear");
rc=gdraw("image","external-image-file",

5, 5, 90, 90,"tile");
rc=graph("update");
rc=gterm();

run;
quit;

If you specify the TILE keyword for the GDRAW(’IMAGE’,...) function, the image is
copied as many times as needed to fill the specified area.

rc=gdraw("image","external-image-file",
5, 5, 90, 90,"tile");

If you specify the FIT keyword for the GDRAW(’IMAGE’,...) function, the image is
stretched to fit within the entire area.

rc=gdraw("image","external-image-file",
5, 5, 90, 90,"fit");

190 Disabling and Enabling Image Output � Chapter 12

Disabling and Enabling Image Output
The NOIMAGEPRINT graphics option disables image output without removing code

from your SAS/GRAPH program. It is useful for printing output without images.

goptions noimageprint;

To enable image output, reset the GOPTIONS statement or specify the
IMAGEPRINT graphics option.

goptions imageprint;

191

C H A P T E R

13
Managing Your Graphics With
ODS

Introduction 191
Managing ODS Destinations 191

Specifying a Destination 192

ODS Destination Statement Options 192

ODS and Procedures that Support RUN-Group Processing 194

Controlling Titles and Footnotes with Java and ActiveX Devices in HTML Output 194
Controlling Where Titles and Footnotes are Rendered 194

Controlling the Text Font, Size, and Color 195

Using Graphics Options with ODS (USEGOPT) 195

Introduction
The Output Delivery System (ODS) manages all output created by procedures and

enables you to display the output in a variety of forms, such as HTML, PDF, and RTF.
The ODS destination statements provide options for control of many relevant features.

Managing ODS Destinations
ODS supports multiple destinations for procedure output. The most frequently used

destinations are LISTING, HTML, RTF, and PDF, although many more destinations are
available.

ODS destinations can be open or closed. When a destination is open, ODS can send
output to it, and when a destination is closed, ODS cannot send output to it. You can
have several destinations open at the same time, and SAS will send output to each
destination. The LISTING destination is open by default.

An open destination always uses system resources. It is best to close any
destinations if you do not need the output from that destination.

Note: For more information on ODS destinations, see SAS Output Delivery System:
User’s Guide. �

The following table lists the ODS destinations and the default type of output that
results from each destination.

192 Specifying a Destination � Chapter 13

Table 13.1 Relevant Destination Table

Destinations Results Default Style Default
ImgFmt

Default DPI

DOCUMENT ODS document N/A N/A N/A

LISTING SAS output
listing

Listing PNG 100

OUTPUT SAS data set N/A N/A N/A

HTML HTML file for
online viewing

Default PNG 100

LATEX 1 LaTeX file Default PostScript 200

PRINTER printable output
in one of three
different formats:
PCL, PDF, or PS
(PostScript)

Printer for PDF
and PS,
monochromePrinter
for PCL

Embedded PNG 150

RTF output written in
Rich Text Format
for use with
Microsoft Word
2000

RTF Embedded PNG 200

Measured RTF RTF Embedded 200

1 LATEX is an experimental tagset. Do not use this tagset in production jobs.

Specifying a Destination

To generate output from SAS, a valid ODS destination must be open. By default, the
LISTING destination is open. You can use an ODS destination statement, such as ODS
HTML, to open a different destination. You can also specify options, such as the HTML
filename or the path to an output directory, on the ODS destination statement.

ODS destination <option(s);>

The options available vary with the destination that is specified.

ODS Destination Statement Options
There are several destination statement options that you can use to control where

your files or graphics should be written, as well as specifying a different style, and
specifying the appropriate image resolution in DPI for your output images. For
example, the following ODS HTML statement:

� opens the HTML destination
� specifies that images be written to the directory C:\myfiles\images

� specifies that the path to the images is specified as http://www.sas.com/
images/image-filename in the HTML file

Managing Your Graphics With ODS � ODS Destination Statement Options 193

� specifies that other output files (for example, the HTML file) be written to the
directory C:\myfiles\

� specifies that the name of the initial HTML file that is displayed is barGraph.htm

� changes the style to Analysis.

ods html path="c:\myfiles\"
gpath="c:\myfiles\images" (url="http://www.sas.com/images/")
body="barGraph.htm"
style=analysis;

The following ODS HTML statement specifies that the output is sent to the HTML
destination. Because it does not specify either the PATH= or GPATH= options, all
output is sent to the default SAS folder.

ods html body="barGraph.html";

The HTML output is written to the file specified by the BODY= option, barGraph.html.
At start up, the SAS current folder is the same directory in which you start your SAS
session. If you are running SAS with the windowing environment in the Windows
operating system, then the current folder is displayed in the status bar at the bottom of
the main SAS window.

If you do not specify a filename for your output, then SAS provides a default file that
is determined by the ODS destination. This file is saved in the SAS current folder. You
can check the SAS log to verify the name of the file in which your output is saved.

For complete documentation on ODS destinations, see SAS Output Delivery System:
User’s Guide.

Options that you might want to specify on ODS destination statements are the
following:

GPATH=
location (URL=
’Uniform-
Resource-
Locator’ |
NONE)

specifies the location for all graphics output that is generated while
the destination is open. You can specify an external file or a fileref.
You can use the URL= suboption to specify a URL that is used in
links and references to output files. The GPATH= option is valid for
the Listing destination and the Markup family of destinations. If
the GPATH option is not specified, the images are written to the
location specified by the PATH option. For complete documentation
on GPATH= option, see the ODS LISTING statement and the ODS
MARKUP statement in SAS Output Delivery System: User’s Guide.

PATH= location
(URL=
’Uniform-
Resource-
Locator’ |
NONE)

specifies the location of an external file or a SAS catalog for all
markup files. You can specify an external file or a fileref. You can
use the URL= suboption to specify a URL that is used in links and
references to output files. The PATH= option is valid for the RTF,
Measured RTF, and Markup family of destinations. If the PATH
option is not specified, images are written to the current working
directory. For complete documentation on PATH= option, see the
ODS LISTING statement, ODS MARKUP statement, or
TAGSET.RTF statement in SAS Output Delivery System: User’s
Guide.

DPI= specifies the image resolution in DPI for the output images sent to
PRINTER family destinations. The default value for the PRINTER
destination is 150. For complete documentation on the DPI= option,
see the valid ODS PRINTER statement in SAS Output Delivery
System: User’s Guide.

194 ODS and Procedures that Support RUN-Group Processing � Chapter 13

STYLE=
style-definition

specifies a style to be used for the output. Each ODS destination has
a default style for the formatting of output. The style specifies a
collection of visual attributes that are used for the rendering of the
output. The STYLE= option is valid for all ODS destinations except
the Document destination and the Output destination. For complete
documentation on the STYLE= option, see the ODS statements in
SAS Output Delivery System: User’s Guide. For more information on
using the STYLE= option with SAS/GRAPH output, see Chapter 10,
“Controlling The Appearance of Your Graphs,” on page 133.

Note: If you specify the PATH= or GPATH= options, the directory name that you
specify is used to refer to images that are generated as part of your output. For
example, if you are sending output to the HTML destination, and you specify
path="C:\myfiles\", then all HTML image tags use that path to refer to your images:

If your browser implements strict security regarding access to local files, you might
have problems viewing the images. You can avoid these problems by specifying the
URL= suboption. �

ODS and Procedures that Support RUN-Group Processing

When you use ODS, it is wise to specify a QUIT statement at the end of every
procedure that supports RUN-group processing. If you end every procedure step
explicitly, rather than waiting for the next PROC or DATA step to end it for you, then
the QUIT statement clears the selection list, and you are less likely to encounter
unexpected results.

Controlling Titles and Footnotes with Java and ActiveX Devices in
HTML Output

When you use ODS to send your graphs to an HTML destination, you can choose
whether titles and footnotes are rendered as part of the HTML body file, as they are
with tabular output, or the graphical image that appears in the Web page.

Where titles and footnotes are rendered determines how you control their font, size,
and color.

Controlling Where Titles and Footnotes are Rendered
Where titles and footnotes are rendered depends on the device driver that you are

using and on the setting of the ODS statement options GTITLE and GFOOTNOTE.
For the JAVA, JAVAIMG, ACTIVEX, and ACTXIMG device drivers, titles and

footnotes are always rendered as part of the HTML body file. The GTITLE and
GFOOTNOTE options are ignored for these drivers.

For all other devices, the GTITLE and GFOOTNOTE options determine where the
titles and footnotes are rendered. The default settings, GTITLE and GFOOTNOTE,
render titles and footnotes as part of the graphic image. If you want titles and footnotes
to appear within the HTML body file and not as part of the graphical image, you must
specify the NOGTITLE or NOGFOOTNOTE option, as in the following example.

Managing Your Graphics With ODS � Using Graphics Options with ODS (USEGOPT) 195

/* direct titles and footnotes to the HTML file */
ods html body="filename.htm" nogtitle nogfootnote;

If the title or footnote is being output through an ODS markup destination (such as
HTML) and the corresponding ODS option NOGTITLE or NOGFOOTNOTE is specified,
then the title or footnote is rendered in the body of the HTML file rather than in the
graphic itself. Specifying NOGTITLE or NOGFOOTNOTE results in increasing the
amount of space allowed for the procedure output area, which can result in increasing
the size of the graph. Space that would have been used for the title or footnote is
devoted instead to the graph. You might need to be aware of this possible difference if
you are using annotate or map coordinates.

Controlling the Text Font, Size, and Color
When you use ODS to send graphics to an HTML destination, and titles and footnotes

are rendered as part of the HTML body file instead of the graphic image, then SAS
looks for information about how to format titles and footnotes in the following order:

1 SAS looks for options on the TITLE and FOOTNOTE statement. For example, you
can specify BOLD, ITALIC, FONT=, or HEIGHT= options on these statements.

2 SAS looks for global options such as CTEXT= and FTITLE= in the GOPTIONS
statement. For more information, see “Using Graphics Options with ODS
(USEGOPT)” on page 195.

3 SAS looks for information specified in the current style.

When titles and footnotes are rendered as part of the graphic image, SAS looks first
for options on the TITLE and FOOTNOTE statement and then for options in the
GOPTIONS statement. When titles and footnotes are rendered as part of the graphic
image, you do not need to specify the ODS USEGOPT statement.

When titles and footnotes are rendered as part of the body of the HTML file, font sizes
that are specified as a percentage are interpreted as a percentage of the size specified
by the current style. When titles and footnotes are rendered as part of the image, fonts
sizes that are specified as a percentage are interpreted as a percentage of graphics
output area. For more information about specifying fonts and font sizes, refer to

� “FTEXT” on page 363 and “FTITLE” on page 363

� “HTEXT” on page 385 and “HTITLE” on page 385

� “GUNIT” on page 378

� “TITLE, FOOTNOTE, and NOTE Statements” on page 279.

Using Graphics Options with ODS (USEGOPT)
When you use ODS to send graphics to an HTML destination, and titles and

footnotes are rendered as part of the HTML body file instead of the graphic image, ODS
does not recognize the settings for the following graphics options unless you also specify
the ODS USEGOPT statement:

� CTEXT=

� CTITLE=

� FTEXT=

� FTITLE=

� HTEXT=

� HTITLE=

196 Using Graphics Options with ODS (USEGOPT) � Chapter 13

For example, the following code generates two graphs. The title for the first graph uses
the text color and font as defined by the current style (ASTRONOMY). The title for the
second graph uses the font size and color specified by the HTITLE and CTEXT options.

ods html file="myout.htm" style=astronomy;
goptions reset=all dev=activex htitle=8 ctext="black";

ods nousegopt;
title "My title";
footnote "My footnote";
proc gchart data=sashelp.class;

pie age / discrete legend;
run;

ods usegopt;
pie age / discrete legend;

run;

quit;
ods nousegopt;
ods html close;

While ODS USEGOPT is in effect, the settings for these graphics options affect all of
the titles and footnotes rendered by ODS. To turn off the use of these graphics option
settings for non-graphic output, specify the ODS NOUSEGOPT statement.

The default setting is ODS NOUSEGOPT.

197

C H A P T E R

14
SAS/GRAPH Statements

Overview 197
AXIS Statement 198

BY Statement 216

FOOTNOTE Statement 220

GOPTIONS Statement 220

LEGEND Statement 225
NOTE Statement 238

ODS HTML Statement 239

PATTERN Statement 240

SYMBOL Statement 252

TITLE, FOOTNOTE, and NOTE Statements 279

Example 1. Ordering Axis Tick Marks with SAS Date Values 294
Example 2. Specifying Logarithmic Axes 297

Example 3. Rotating Plot Symbols Through the Color List 299

Example 4. Creating and Modifying Box Plots 302

Example 5. Filling the Area between Plot Lines 304

Example 6. Enhancing Titles 307
Example 7. Using BY-group Processing to Generate a Series of Charts 309

Example 8. Creating a Simple Web Page with the ODS HTML Statement 313

Example 9. Combining Graphs and Reports in a Web Page 315

Example 10. Creating a Bar Chart with Drill-Down Functionality for the Web 321

Details 325
Building an HREF value 325

Creating an image map 326

Referencing SAS/GRAPH Output 326

Overview

SAS/GRAPH programs can use some of the SAS language statements that you
typically use with the Base SAS procedures or with the DATA step, such as LABEL,
WHERE, and FORMAT. These statements are described in the SAS Language
Reference: Dictionary.

In addition, SAS/GRAPH has its own set of statements that affect only graphics
output generated by the SAS/GRAPH procedures and the graphics facilities Annotate
and DSGI. Most of these statements are global statements. That is, they can be
specified anywhere in your program and remain in effect until explicitly changed or
canceled. These are the SAS/GRAPH global statements:

AXIS
modifies the appearance, position, and range of values of axes in charts and plots.

198 AXIS Statement � Chapter 14

FOOTNOTE
adds footnotes to graphics output. This statement is like the TITLE statement and
is described in that section.

GOPTIONS
submits graphics options that control the appearance of graphics elements by
specifying characteristics such as colors, fill patterns, fonts, or text height.
Graphics options can also temporarily change device settings.

LEGEND
modifies the appearance and position of legends generated by procedures that
produce charts, plots, and maps.

NOTE
adds text to the graphics output. This statement is an exception because it is not
global but local, meaning that it must be submitted within a procedure. Otherwise,
the NOTE statement is like the TITLE statement and is described in that section.

PATTERN
controls the color and fill of patterns assigned to areas in charts, maps, and plots.

SYMBOL
specifies the shape and color of plot symbols as well the interpolation method for
plot data. It also controls the appearance of lines in contour plots.

TITLE
adds titles to graphics output. The section describing the TITLE statement
includes the FOOTNOTE and NOTE statements.

The above statements are described in this chapter, as well as the following two Base
language statements that have a special effect when used with SAS/GRAPH procedures:

BY
processes data according to the values of a classification (BY) variable and
produces a separate graph for each BY-group value. This statement is not a global
statement. It must be specified within a DATA step or a PROC step.

ODS HTML
generates one or more files written in Hypertext Markup Language (HTML). If
you use it with SAS/GRAPH procedures, you can specify one of the device drivers
GIF, ACTIVEX, or JAVA. ACTIVEX and JAVA are available only with GCHART,
GCONTOUR, GMAP, GPLOT, and G3D. With the GIF device driver, the graphics
output is stored in GIF files. With the ACTIVEX device driver, graphics output is
stored as XML input to ActiveX controls. With the JAVA device driver, graphics
output is stored as XML input to Java applets. The HTML files that are generated
reference the graphics output. When viewed with a Web browser, the HTML files
can display graphics and non-graphics output together on the same Web page.

For more information on the BY, LABEL, OPTIONS, and WHERE statements in Base
SAS software, see SAS Language Reference: Dictionary.

AXIS Statement

Controls the location, values, and appearance of the axes in plots and charts.

Used by: GCHART, GBARLINE, GCONTOUR, GPLOT, GRADAR, G3D procedures

SAS/GRAPH Statements � AXIS Statement 199

Restriction: For the G3D procedure, the AXIS statement is supported by the JAVA and
ActiveX devices only.

Type: Global

Syntax
AXIS<1...99> <options>;

option(s) can be one or more options from any or all of the following categories:

� axis scale options:

INTERVAL=EVEN | UNEVEN | PARTIAL

LOGBASE=base | E | PI

LOGSTYLE=EXPAND | POWER

ORDER=(value-list)

� appearance options:

COLOR=axis-color

LENGTH=axis-length <units >

NOBRACKETS

NOPLANE

OFFSET=(<n1 ><,n2 >)<units > | (<n1<units>><,n2<units >>)

ORIGIN=(<x><,y >)<units> | (<x<units >><,y<units>>)

STAGGER

STYLE=line-type

WIDTH=thickness-factor

� tick mark options:

MAJOR=(tick-mark-suboption(s))| NONE

MINOR=(tick-mark-suboption(s))| NONE

� text options:

LABEL=(text-argument(s))| NONE

REFLABEL=(text-argument(s))| NONE

SPLIT=“split-char”

VALUE=(text-argument(s))| NONE

Description
AXIS statements specify the following characteristics of an axis:

� the way the axis is scaled

� how the data values are ordered

� the location and appearance of the axis line and the tick marks

� the text and appearance of the axis label and major tick mark values

AXIS definitions are used only when they are explicitly assigned by an option in a
procedure that produces graphs with axes.

Figure 14.1 on page 200 illustrates the terms associated with the various parts of
axes.

200 AXIS Statement � Chapter 14

Figure 14.1 Parts of Axes

Options
When the syntax of an option includes units, use one of these:

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area

PT points

If you omit units, a unit specification is searched for in this order:
1 The GUNIT= option in a GOPTIONS statement
2 the default unit, CELLS.

COLOR=axis-color
specifies the color for all axis components (the axis line, all tick marks, and all
text) unless you include a more explicit AXIS statement color specification. The
following table lists the SAS/GRAPH statement options that can be used to
override the COLOR= specification. The table also lists the name of the style
reference associated with each of the options.

Table 14.1

Option Graph Element Style Reference

AXIS statement:

LABEL=

(COLOR=color)

axis label GraphLabelText

REFLABEL=

(COLOR=color)

reference-line labels

VALUE=

(COLOR=color)

major tick mark values GraphValueText

SAS/GRAPH Statements � AXIS Statement 201

Option Graph Element Style Reference

calling

procedure:

CTEXT= all axis text

(AXIS label and

major tick mark

value descriptions)

GraphLabelText

CAXIS= axis line and major

and minor tick

marks

GraphAxisLines

If you omit all color options, the AXIS statement looks for a color specification
in this order:

1 The CTEXT= graphics option in a GOPTIONS statement.
2 If the CTEXT= option is not used, the color of all axis components is the color

of the default style.
Alias: C=
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Date Values” on

page 294

INTERVAL=EVEN | UNEVEN | PARTIAL
The INTERVAL option affects the LOGBASE option in the AXIS statement.
Specifying the option INTERVAL=UNEVEN and LOGBASE=10, permits
non-base10 values to be specified for the ORDER option, while retaining a
logarithmic scale for the axis.

Note: PARTIAL is an alias for UNEVEN. They have the same effect. �

Restriction: Not supported by Java and ActiveX

LABEL=(text-argument(s)) | NONE
modifies an axis label. Text-argument(s) defines the appearance or the text of an
axis label, or both. NONE suppresses the axis label. Text-argument(s) can be one
or more of these:

“text-string”
provides up to 256 characters of label text. By default, the text of the axis
label is either the variable name or a previously assigned variable label.
Enclose each string in quotes. Separate multiple strings with blanks.

text-description-suboption
modifies a characteristic such as the font, color, or size of the text string(s)
that follows it. Text-description-suboption can be

ANGLE=degrees

COLOR=text-color

FONT=font | NONE

HEIGHT=text-height <units >
JUSTIFY=LEFT | CENTER | RIGHT
ROTATE=degrees
See “Text Description Suboptions” on page 210 for a complete description.

Specify as many text strings and text description suboptions as you want, but
enclose them all in one set of parentheses.

202 AXIS Statement � Chapter 14

Style Reference: Color attribute of the GraphLabelText style element
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Date Values” on

page 294, “Example 2. Specifying Logarithmic Axes” on page 297 , and “Example
7. Using BY-group Processing to Generate a Series of Charts” on page 309

Restriction: Partially supported by Java and ActiveX.

LENGTH=axis length <units >
specifies the length of the axis in number of units. If you request a length that
cannot fit the display, a warning message is written to the log and your graph may
produce unexpected results.

This option is not supported by the GRADAR Procedure.
Style Reference: Color attribute of the GraphLabelText graph element.
Restriction: Not supported by Java.
Featured in: “Example 2. Specifying Logarithmic Axes” on page 297 and

“Example 9. Combining Graphs and Reports in a Web Page” on page 315 .

LOGBASE=base | E | PI
scales the axis values logarithmically according to the value specified. Base must
be greater than 1. The number of minor tick marks is a function of the logbase,
and is calculated as the logbase minus 2. For example, if logbase=10, there are 8
minor tick marks. If logbase=2, then there are no minor tick marks. Because the
value of logbase=e (2.718281828) is so close to 2, it also results in no minor tick
marks. How the values are displayed on the axis depends on the LOGSTYLE=
option. For example, LOGBASE=10 with the default LOGSTYLE=EXPAND
generates an axis like the one in Figure 14.2 on page 202.

Figure 14.2 Axis Generated with LOGBASE=10 and LOGSTYLE=EXPAND

NUMNUM
e ** 4e ** 4

e ** 3e ** 3

e ** 2e ** 2

e ** 1e ** 1

e ** 0e ** 0

This option is not supported by the GRADAR Procedure.
Featured in: “Example 2. Specifying Logarithmic Axes” on page 297
Restriction: Not supported by Java

LOGSTYLE=EXPAND | POWER
specifies whether the values displayed on the logarithmic axis are the values of the
base or the values of the power. LOGSTYLE= is meaningful only when you use
LOGBASE=.

SAS/GRAPH Statements � AXIS Statement 203

LOGSTYLE=EXPAND specifies that the values displayed are the values of the
base raised to successive powers and that the minor tick marks are logarithmically
placed. For example, if the base is 10, the values displayed are 10, 100, 1000,
10000, and so on. The default is LOGSTYLE=EXPAND. This statement generates
an axis like the one in part (a) of Figure 14.3 on page 203:

axis logbase=10 logstyle=expand;

LOGSTYLE=POWER specifies that the values displayed are the powers to
which the base is raised (for example, 1, 2, 3, 4, 5, and so on). For example, this
statement generates an axis like the one in part (b) of Figure 14.3 on page 203:

axis logbase=10 logstyle=power;

Figure 14.3 Axes Generated with the LOGSTYLE=option

NUMNUM
100000100000

1000010000

10001000

100100

1010

a.a.

NUM LOG 10NUM LOG 10
5

4

3

2

1

b.b.

If you use the ORDER= option with a logarithmic axis, the values specified by
the ORDER= option must match the style specified by the LOGSTYLE= option.
For example, if you specify a logarithmic axis with a base of 2 and you want to
display the first five expanded values, use this statement:

axis logbase=2 logstyle=expand
order=(2 4 8 16 32);

If you use LOGSTYLE=POWER, the values in the ORDER= option must
represent the powers to which the base is raised, as in this example:

axis logbase=2 logstyle=power order=(1 2 3 4 5);

If the values that are specified by ORDER= do not match the type of values
specified by LOGSTYLE=, the request for a logarithmic axis is ignored.

This option is not supported by the GRADAR Procedure.
Featured in: “Example 2. Specifying Logarithmic Axes” on page 297
Restriction: Not supported by Java

MAJOR=(tick-mark-suboption(s))| NONE
modifies the major tick marks. Tick-mark-suboption(s) defines the color, size, and
number of the major tick marks. NONE suppresses all major tick marks, although
the values represented by those tick marks are still displayed.
Tick-mark-suboption can be

COLOR=tick-color
HEIGHT=tick-height <units >
NUMBER=number-of-ticks

204 AXIS Statement � Chapter 14

WIDTH=thickness-factor
See “Tick Mark Description Suboptions” on page 214 for complete descriptions.

List all suboptions and their values within the parentheses.
AXIS definitions assigned to the group axis of a bar chart by the GAXIS= option

ignore MAJOR= because the axis does not use tick marks.

Note: By default, tick marks are now placed at three intervals on the spokes of
a GRADAR chart. They are placed at the minimum value, maximum value, and at
one value in between. The tick marks on the 12 o’clock spoke are also labeled by
default.

HEIGHT is not supported by Java or ActiveX. WIDTH is not supported by
Java. �
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Date Values” on

page 294 , “Example 2. Specifying Logarithmic Axes” on page 297, and “Example
7. Using BY-group Processing to Generate a Series of Charts” on page 309

Restriction: Partially supported by Java and ActiveX

MINOR=(tick-mark-suboption(s))| NONE
modifies the minor tick marks that appear between major tick marks.
Tick-mark-suboption(s) defines the color, number, or size of the minor tick marks.
NONE suppresses all minor tick marks. Tick-mark-suboption can be

COLOR=tick-color

HEIGHT=tick-height <units >
NUMBER=number-of-ticks
WIDTH=thickness-factor
See “Tick Mark Description Suboptions” on page 214 for complete descriptions.

List all suboptions and their values within the parentheses.
AXIS definitions assigned to the group axis of a bar chart by the GAXIS= option

ignore MINOR= because the axis does not use tick marks.
This option is not supported by the GRADAR Procedure.
HEIGHT is not supported by Java or ActiveX.

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Date Values” on
page 294, “Example 2. Specifying Logarithmic Axes” on page 297, and “Example
7. Using BY-group Processing to Generate a Series of Charts” on page 309

Restriction: Partially supported by Java and ActiveX

NOBRACKETS
suppresses the printing of group brackets drawn around the values on the group
axis in a bar chart. NOBRACKETS applies only to the group axis of bar charts.

This option is not supported by the GRADAR Procedure.

See also: GROUP= on page 1025 and GAXIS= on page 1025
Restriction: Not supported by Java and ActiveX

NOPLANE
removes either the horizontal or vertical three-dimensional axis plane in bar
charts produced by the HBAR3D and VBAR3D statements. NOPLANE affects
only the axis to which the AXIS statement applies.

To remove selected axis elements such as lines, values or labels, use specific
AXIS statement options. To remove all axis elements except the three-dimensional
planes use the NOAXIS option in the procedure. To remove the backplane, use the
NOFRAME option in the procedure.

This option is not supported by the GRADAR Procedure.

Featured in: “Example 7. Using BY-group Processing to Generate a Series of
Charts” on page 309.

SAS/GRAPH Statements � AXIS Statement 205

OFFSET=(<n1><,n2>)<units > | (<n1<units>><,n2<units>>)
specifies the distance from the first and last major tick marks or bars to the ends
of the axis line.

The value of (n1) is the distance from the beginning (origin) of the axis line to
the first tick mark or middle of the first bar. The value of (n2) is the distance from
the end of the axis line to the last tick mark or middle of the last bar.

On a horizontal axis, the (n1) offset is measured from the left end of the axis
line and the (n2) offset is measured from the right end. On a vertical axis, the (n1)
offset is measured up from the bottom of the axis line and the (n2) offset is
measured down from the top of the line.

To specify the same offset for both n1 and n2, use one value, with or without a
following comma. For example, either option sets both n1 and n2 to 4 centimeters:

offset=(4 cm)
offset=(4 cm,)

To specify different offsets, use two values, with or without a comma separating
them. For example:

offset=(4 cm, 2 cm)

To specify only the second offset, use only one value preceded by a comma. This
option offsets the last major tick mark or bar three centimeters from the
right-hand end of the axis line:

offset=(,3 cm)

You can specify units for the n1,n2 pair or for the individual offset values.
This option is not supported by the GRADAR Procedure.

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Date Values” on
page 294

Restriction: Not supported by Java

ORDER=(value-list)
specifies the order in which data values appear on the axis. The values specified
by the ORDER= option are the major tick mark values. You can modify the
appearance of these values with the VALUE= option.

The way you specify value-list depends on the type of variable:
� For numeric variables, value-list is either an explicit list of values or a

starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>
n TO n <BY increment>
n<...n> TO n <BY increment > <n <...n > >
If a numeric variable has an associated format, the specified values must

be the unformatted values.
Values must be listed in either ascending or descending order. By default

the increment value is 1. You can use a negative integer for increment to
specify a value list in descending order. In all forms, multiple n values can be
separated by blanks or commas. Here are some examples:

order=(2 4 6)
order=(6,4,2)
order=(2 to 10 by 2)
order=(50 to 10 by -5)

If the specified range is not evenly divisible by the increment value, the
highest value displayed on the axis is the last incremental value below the

206 AXIS Statement � Chapter 14

ending value for the range. For example, this value list produces a maximum
axis value of 9:

order=(0 to 10 by 3)

� For character variables, value-list is a list of unique character values enclosed
in quotes and separated by blanks:

“value-1” <...“value-n”>
If a character variable has an associated format, the specified values must

be the formatted values for PROC GCHART and the unformatted values for
PROC GPLOT.

Character values can be specified in any order, but the character strings
must match exactly the variable values in case and spelling. For example,

order=("Paris" "London" "Tokyo")

Observations can be inadvertently excluded if entries in the value-list are
misspelled or if the case does not match exactly.

� For date and time values, value-list can have the following forms:
“SAS-value“i <...”SAS-value“i>”
“SAS-value”i TO “SAS-value”i <BY interval>

“SAS-value”i
is any SAS date, time, or datetime value described for the SAS
functions INTCK and INTNX. Enclose the value in quotes and
specify one of the following for i:

D date

T time

DT datetime

interval
is one of the valid arguments for the INTCK or INTNX functions.
These are the default intervals:

DAY default interval for date

SECOND default interval for time

DTSECOND default interval for datetime
These value lists use SAS date and time values:

order=("25MAY98"d "04JUL98"d "07SEP98"d)
order=("01JUL97"d to "01AUG97"d)
order=("01JUL97"d to "01JAN98"d by week)
order=("9:25"t to "11:25"t by minute)
order=("04JUN97:12:00:00"dt to

"10JUN97:12:00:00"dt by dtday)

With SAS date and time values, use a FORMAT statement so that the tick
mark values have an understandable form. For more information on SAS
date and time values, see the SAS Language Reference: Dictionary.

With any type of value-list, specifying values that are not distributed uniformly
or are not in ascending or descending order, generates a warning message in the
SAS log. The specified values are spaced evenly along the axis even if the values
are not distributed uniformly.

Using the ORDER= option to restrict the values displayed on the axis can result
in clipping. For example, if the data range is 1 to 10 and you specify ORDER=(3

SAS/GRAPH Statements � AXIS Statement 207

TO 5), only the data values from 3 to 5 appear on the plot or chart. For charts, the
omitted values are still included in the statistic calculation.

Note: Values out of range do not always produce a warning message in the
SAS log. �

CAUTION:
The ORDER= option does not calculate midpoint values; as a result it is not
interchangeable with the MIDPOINTS= option in the GCHART procedure. �

You can use the ORDER= option to specify the order in which the midpoints are
displayed on a chart, but do not use it to calculate midpoint values. Make sure
that the values you specify match the midpoint values that are calculated either
by default by the GCHART procedure or by the MIDPOINTS= option. For details,
see the description of the MIDPOINTS= option for the appropriate statement in
Chapter 36, “The GCHART Procedure,” on page 989.

The ORDER= option overrides the suboption NUMBER= described in “Tick
Mark Description Suboptions” on page 214.

The ORDER= option is not valid with the ASCENDING, DESCENDING, and
NOZEROS options used with the bar chart statements in the GCHART procedure.

This option is not supported by the GRADAR procedure.

Note: The Java applet supports the ORDER= option for numeric axes, but does
not support the ORDER= option for categorical, character, midpoint, or group axes.

The ActiveX control supports only simple order lists. Non-uniform interval
values, such as dates, are not supported. Only maximum and minimum values are
supported with a default interval of one day. �
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Date Values” on

page 294, “Example 5. Filling the Area between Plot Lines” on page 304, and
“Example 7. Using BY-group Processing to Generate a Series of Charts” on page
309

Restriction: Partially supported by Java and ActiveX

ORIGIN=(<x><,y>)<units> | (<x<units>><,y<units>>)
specifies the x coordinate and the y coordinate of the origin of the axis. The origin
of the horizontal axis is the left end of the axis, and the origin of the vertical axis
is the bottom of the axis. The ORIGIN= option explicitly positions the axis
anywhere on the graphics output area.

If you specify only one value, with or without a comma following it, only the x
coordinate is set to that value. For example, this specification sets x to 4
centimeters:

origin=(4 cm,)

If you specify two values, with or without a comma separating them, the first
value sets the x coordinate and the second value sets the y coordinate:

origin=(2 pct, 4 pct)

If you specify one value preceded by a comma, only the y coordinate is set to
that value, as shown here:

origin=(,3 pct)

You can specify units for the x,y pair or for the individual coordinates.
This option is not supported by the GRADAR Procedure.

Restriction: Not supported by Java and ActiveX

REFLABEL=(text-argument(s)) | NONE

208 AXIS Statement � Chapter 14

creates and defines the appearance of a reference-line label. Text-argument(s)
defines the appearance or the text of the label, or both. NONE suppresses the
reference-line label. Text-argument(s) can be one or more of these:

“text-string”
provides up to 256 characters of label text. By default, a reference line does
not have a label. Enclose each string in quotes. Separate multiple strings
with blank spaces. The strings are applied to the reference lines specified by
the VREF or HREF option.

text-description-suboption
modifies a characteristic such as the font, color, or size of the text string(s)
that follows it. Text-description-suboption can be

ANGLE=degrees
AUTOREF
COLOR=text-color
FONT=font | NONE
HEIGHT=text-height <units >
JUSTIFY=LEFT | CENTER | RIGHT
POSITION=TOP| MIDDLE| BOTTOM
ROTATE=degrees
T=n
See “Text Description Suboptions” on page 210 for a complete description.

Specify as many text strings and text description suboptions as you want, but
enclose them all in one set of parentheses.

REFLABEL is not supported by the GRADAR Procedure.
Style Reference: Font and Color attributes of the GraphLabelText element
Restriction: Not supported by Java and ActiveX

STAGGER
offsets the axis values on a horizontal axis. This option is useful when values
overlap on an axis. When specifying the Java and ActiveX devices, the STAGGER
option must sometimes be used in conjunction with the ORDER statement.

SPLIT=“split-char”
specifies the split character that the AXIS statement uses to break axis values into
multiple lines. Split-char can be any character value that can be specified in a SAS
character variable. The split character must be embedded in the variable values in
the data set or in an associated format. When the AXIS statement encounters the
split character, it automatically breaks the value at that point and continues on the
next line. For example, suppose the data set contains the value Berlin, Germany,
and you specify SPLIT=“,”. The value would appear on the axis as follows:

Berlin
Germany

Note that the split character itself is not displayed.
Axis values specified with VALUE= do not use the split character. For example,

suppose you specify this statement:

axis1 split="," value=(tick=1 "December, 1999");

The value appears on the axis on one line as December, 1999. However, any
other axis values containing a comma honors the split character.

This option is not supported by the GRADAR Procedure.
Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on

page 618
Restriction: Not supported by Java and ActiveX

SAS/GRAPH Statements � AXIS Statement 209

STYLE=line-type
specifies a line type for the axis line. Valid values for line-type are 0 through 46. If
you specify STYLE=0, the axis line is not drawn. The default is 1, a solid line.

Note: In order for the axis line to be altered by the STYLE= option, the
NOFRAME option must also be set. If only the STYLE=option is set, the axis
frame is modified. �

Note: See also: Figure 14.22 on page 277 for examples of the available line
types. �

Style Reference: Line style attribute of the GraphAxisLine element

VALUE=(text-argument(s))| NONE
modifies the major tick mark values. That is, this option modifies the text that
labels the major tick marks on the axis. Text-argument(s) defines the appearance
or the text of a major tick mark value, or both. NONE suppresses the major tick
mark values, although the major tick marks are still displayed. Text-argument(s)
can be one or more of these:

“text-string”
provides up to 256 characters of text for the major tick mark value. By
default, the value is either the variable value or an associated format value.
Enclose each string in quotes and separate multiple strings with blanks.

Specified text strings are assigned to major tick marks in order. If you
specify only one text string, only the first tick mark value changes, and all
the other tick mark values display the default. If you specify multiple strings,
the first string is the value of the first major tick mark, the second string is
the value of the second major tick mark, and so on. For example, to change
default tick mark values 1, 2, and 3 to First, Second, and Third, use this
option:

value=("First" "Second" "Third")

Note: Although the VALUE= option changes the text displayed at a major
tick mark, it does not affect the actual value represented by the tick mark. To
change the tick mark values, use the ORDER= option. Also note that with the
Java or ActiveX devices, it is necessary to use the ORDER= option to ensure
that the same number of tick marks are displayed as are with graphics
rendered with the other device drivers. For example, specify ORDER=(1 to
12) to ensure that tick marks for all twelve months are displayed.

To change the value of midpoints in bar charts produced with the
GCHART procedure, use the MIDPOINTS= option in the procedure. �

text-description-suboption
modifies a characteristic such as the font, color, or size of the text string(s)
that follows it. Text-description-suboption can be

ANGLE=degrees

COLOR=text-color

FONT=font | NONE

HEIGHT=text-height <units >

JUSTIFY=LEFT | CENTER | RIGHT

ROTATE=degrees

TICK=n.
For a complete description, see “Text Description Suboptions” on page 210.

210 AXIS Statement � Chapter 14

Place text description suboptions before the text strings they modify.
Suboptions not followed by a text string affect the default values. To specify
and describe the text for individual values or to produce multi-line text, use
the TICK= suboption.

Specify as many text strings and text description suboptions as you want, but
enclose them all in one set of parentheses.

Note: If an end user viewing a graph in the Java applet or ActiveX control
zooms in on a particular part of a graph for which the VALUE= option is specified,
the values are not readjusted in coordination with the zooming. �

Style Element: Color attribute of the GraphLabelText graph element
Featured in: “Example 2. Specifying Logarithmic Axes” on page 297, “Example

7. Using BY-group Processing to Generate a Series of Charts” on page 309, and
“Example 9. Combining Graphs and Reports in a Web Page” on page 315

Restriction: Partially supported by Java

WIDTH=thickness-factor
specifies the thickness of the axis line. Thickness increases directly with the value
of thickness-factor. By default, WIDTH=1.

Note: In order for the axis line to be altered by the WIDTH= option, the
NOFRAME option must also be set. If only the WIDTH=option is set, the axis
frame is modified.

Java does not support the WIDTH option. ActiveX ignores the WIDTH option
for the vertical axis of an AXIS statement with GPLOT and GCONTOUR. �
Style Reference: LineThickness attribute of the GraphAxisLines element
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Date Values” on

page 294

Restriction: Not supported by Java and partially supported by ActiveX

Text Description Suboptions
Text description suboptions are used by the LABEL=, REFLABEL=, and VALUE=
options to change the color, height, justification, font, and angle of either default text or
specified text strings. See the LABEL= option on page 201, the REFLABEL= option on
page 207, and the VALUE= option on page 209.

ANGLE=degrees
A=degrees

specifies the angle of the baseline with respect to the horizontal. A positive value
for degrees moves the baseline counterclockwise; a negative value moves it
clockwise. By default, ANGLE=0 (horizontal) unless the text is automatically
angled or rotated to avoid overlapping. .

Note: Changing the angle of a vertical axis-label can result in the label being
positioned above the graph when using the Java or ActiveX device drivers. �

Alias: A=
Restriction: Partially supported by Java

See also: the ROTATE= suboption on page 213
Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on

page 618

AUTOREF
automatically labels each reference line on an axis with the response value at the
reference line’s position. The AUTOREF option is used only with the REFLABEL=

SAS/GRAPH Statements � AXIS Statement 211

option. The automatic labels are applied only to reference lines that do not have
specific labels assigned to them. For example, the following option uses the
response-axis value as the label for every reference line except the second
reference line, which is assigned the label two:

reflabel=(autoref t=2 "two")

Note, however, that if you simultaneously request automatic labeling with a
PLOT or BUBBLE statement (using the AUTOHREF or AUTOVREF option), then
the automatic labeling can write on top of the custom label you specified using the
AXIS statement. You must ensure that your custom labels specified using the
AXIS statement are not at the same position as automatic labels requested with a
different statement.
Restriction: Not supported by Java, ActiveX, and GIF

COLOR=text-color
specifies the color for the text. If you omit the COLOR= suboption, a color
specification is searched for in this order:

1 the CTEXT= option for the procedure
2 the CTEXT= option in a GOPTIONS statement
3 the color of the default style.

Alias: C=

FONT=font | NONE
specifies the font for the text. See Chapter 11, “Specifying Fonts in SAS/GRAPH
Programs,” on page 155 for details on specifying font. If you omit FONT=, a font
specification is searched for in this order:

1 the FTEXT= option in a GOPTIONS statement
2 the default style font, NONE.

Alias: F=
Restriction: Partially supported by Java

HEIGHT=text-height <units >
specifies the height of the text characters in number of units. By default,
HEIGHT=1 CELL. If you omit the HEIGHT= option, a text height specification is
searched for in this order:

1 the HTEXT= option in a GOPTIONS statement
2 the default style value, 1.

Alias: H=

JUSTIFY=LEFT | CENTER | RIGHT
specifies the alignment of the text. The default depends on the option with which
it is used and the text it applies to.

� With the LABEL= option:
� for a left vertical axis label, the default is JUSTIFY=RIGHT
� for a right vertical axis label, the default is JUSTIFY=LEFT
� for a horizontal axis label, the default is JUSTIFY=CENTER.

�

With the REFLABEL= option:
� for a reference line that intersects a vertical axis, the default is

JUSTIFY=CENTER. RIGHT places the text string on the right end of
the line, CENTER places the text string in the middle of the line, and
LEFTplaces the text string to the left of the line.

212 AXIS Statement � Chapter 14

� for a reference line that intersects a horizontal axis, the default is
JUSTIFY=RIGHT for all procedures except the BAR statement in
GBARLINE. For the BAR statement in GBARLINE the default is
JUSTIFY=LEFT. RIGHT places the text string just to the right of the
line, CENTER is centered on top of the line, and LEFT places the text
string just to the left of the line.

� With the VALUE= option:
� for numeric variables on a vertical axis, the default is JUSTIFY=RIGHT
� for character variables on a vertical axis, the default is JUSTIFY=LEFT
� for all variables on a horizontal axis, the default is JUSTIFY=CENTER.

Note: With output using Java and ActiveX, text justification is relative to the
text string, not the tick mark. For example, left justification means that the left
end of the text string is justified with respect to the drawing location, as well as
other strings in a multiline label. Because the text is left justified with respect to
the drawing location and not the tick mark, the text string can be placed to the
right of a tick mark. �

You can use the JUSTIFY= option to print multiple lines of text by repeating
the JUSTIFY= option before the text string for each line. You can also use
JUSTIFY= to specify multi-line text at specified major tick marks. For example,
this statement produces an axis label and major tick mark values like those shown
in Figure 14.4 on page 212.

axis label=("Current" justify=c
"Sales Projections")

value=(tick=1 "JAN" justify=c "1997"
tick=2 "FEB" justify=c "1997"
tick=3 "MAR" justify=c "1997"
tick=4 "APR" justify=c "1997"
tick=5 "MAY" justify=c "1997");

Figure 14.4 The JUSTIFY= suboption

CurrentCurrent
 Sales ProjectionsSales Projections

 JAN JAN FEB FEB MAR MAR APR APR MAYMAY
 1997 1997 1997 1997 1997 1997 1997 1997 19971997

Specify additional suboptions before any string.
Alias: J=L | C | R
Restriction: Not supported by Java
See also: the suboption TICK= on page 213

POSITION=TOP | MIDDLE | BOTTOM
specifies the position of a reference-line label relative to the reference line. The
default is TOP for both vertical and horizontal reference lines. The POSITION=
option is available only on the REFLABEL= option.

� For horizontal reference lines, TOP places the label just above the reference
line, MIDDLE places the label on the reference line, and BOTTOM places the
label just below the reference line.

SAS/GRAPH Statements � AXIS Statement 213

� For vertical reference lines, TOP places the label at the top end of the
reference line, MIDDLE places the label in the middle of the line, and
BOTTOM places the label at the bottom end of the line.

Restriction: Not supported by Java and ActiveX

ROTATE=degrees
specifies the angle at which each character of text is rotated with respect to the
baseline of the text string. A positive value for degree rotates the character
counterclockwise; a negative value moves it clockwise. By default, ROTATE=0
(parallel to the baseline) unless the text is automatically angled or rotated to avoid
overlapping.
Alias: R=degrees
Restriction: Partially supported by Java
See also: the suboption ANGLE= on page 210

TICK=n
specifies the n reference line or tick mark value. Used only with the REFLABEL=
option or the VALUE= option. If neither one is specified, then the TICK= option is
ignored.

� With the REFLABEL= option, the TICK= option specifies the nth reference
line. It is used to limit modifications to individual reference lines when there
are multiple reference lines on an axis. For example, the following option
changes the color of only the third reference line’s label and leaves all other
reference-line labels unchanged:

reflabel=(autoref t=3 color=red)

Suboptions that precede the TICK= option affect all the reference-line labels
on an axis. Suboptions that follow the TICK= option affect only the specified
line’s label. For example, the following option assigns the color green to all
the reference-line labels on an axis, but left-justifies only the third reference
line’s label:

reflabel(c=green "one" "two" t=3 j=left "three")

For the options to be applied to a text string, they must precede the quoted
string. In the following option, the j=left is ignored because it follows the
string:

reflabel(c=green "one" "two" t=3 "three" j=left)

�

Note: The Java and ActiveX device drivers do not support the REFLABEL
option. �

With the VALUE= option, the TICK= option specifies the nth major tick mark
value. It is used to designate the tick mark value whose text and appearance
you want to modify. For example, the following option changes the color of
only the third tick mark value and leaves all others unchanged:

value=(tick=3 color=red)

Suboptions that precede the TICK= option affect all the major tick mark
values. Suboptions that follow the TICK= option affect only the specified
value. For example, the following option makes all the major tick mark
values four units high and colors all of them blue except for the third one,
which is red:

value=(height=4 color=blue tick=3 color=red)

214 AXIS Statement � Chapter 14

Alias: T=n

Using Text Description Suboptions
Text description suboptions affect all the strings that follow them unless the suboption
is changed or turned off. If the value of a suboption is changed, the new value affects
all the text strings that follow it. Consider this example:

label=(font=swiss height=4 "Weight"
justify=right height=3 "(in tons)")

FONT=SWISS applies to both Weight and (in tons). HEIGHT=4 affects Weight,
but is respecified as HEIGHT=3 for (in tons). JUSTIFY=RIGHT affects only (in
tons).

Tick Mark Description Suboptions
Tick mark description suboptions are used by the MAJOR= and the MINOR= options to
change the color, height, width, and number of the tick marks to which they apply. See
the MAJOR= and MINOR= options.

COLOR=tick-mark-color
colors the tick marks. If you omit the COLOR= suboption, a color specification is
searched for in this order:

1 the COLOR= option in the AXIS statement
2 the CAXIS= option for the procedure
3 the color of the default style.

Alias: C=tick-mark color

HEIGHT=tick-height <units>
specifies the height of the tick mark. The defaults for the HEIGHT= suboption
depend on the option with which it is used:

� With the MAJOR= option the default height .5 CELLS.
� With the MINOR= option the default height .25 CELLS.

If you specify a negative number, tick marks are drawn inside the axis.
Alias: H=tick-height <units>
Restriction: Not supported by Java and ActiveX.

NUMBER=number-of-ticks
specifies the number of tick marks to be drawn. With the MAJOR= option,
number-of-ticks must be greater than 1. With the MINOR= option, number-of-ticks
must be greater than 0.

With the MAJOR= option, the NUMBER= suboption can be overridden by a
major tick mark specification in the procedure, which in turn can be overridden by
the ORDER= option.

With the MINOR= option, the NUMBER= suboption can be overridden by a
minor tick mark specification in the procedure.

The NUMBER= option is not valid with logarithmic axes.
Alias: N=number-of-ticks

WIDTH=thickness-factor
specifies the thickness of the tick mark, where thickness-factor is a number.
Thickness increases directly with thickness-factor. By default, WIDTH=1.
Style Reference: LineThickness attribute of the GraphAxisLines element.
Alias: W=thickness-factor

SAS/GRAPH Statements � AXIS Statement 215

Restriction: Partially supported by Java

Using the AXIS Statement

AXIS statements can be defined anywhere in your SAS program. They are global and
remain in effect until redefined, canceled, or until the end of your SAS session. AXIS
statements are not applied automatically, and must be explicitly assigned by an option
in the procedure that uses them.

You can define up to 99 different AXIS statements. If you define two AXIS
statements of the same number, the most recently defined statement replaces the
previously defined statement of the same number. An AXIS statement without a
number is treated as an AXIS1 statement.

Cancel individual AXIS statements by defining an AXIS statement of the same
number without options (a null statement):

axis4;

Canceling one AXIS statement does not affect any other AXIS definitions. To cancel
all current AXIS statements, use the RESET= option in a GOPTIONS statement:

goptions reset=axis;

Specifying RESET=GLOBAL or RESET=ALL cancels all current AXIS definitions as
well as other settings.

To display a list of current AXIS definitions in the LOG window, use the GOPTIONS
procedure with the AXIS option:

proc goptions axis nolist;
run;

Assigning AXIS Definitions

AXIS definitions must always be explicitly assigned by the appropriate option in the
statement that generates the graph. The following table lists the procedures and
statements that generate axes, the type of axis, and the statement option that assigns
an AXIS definitions to that axis:

Procedure

Statement
that generates
an axis Type of axis

Option that assigns an AXIS
definition

GBARLINE BAR | PLOT midpoint axis

response axis

MAXIS=

RAXIS=

GCHART HBAR | VBAR group axis

midpoint axis

response axis

GAXIS=

MAXIS=

RAXIS=

GCONTOUR PLOT horizontal axis

vertical axis

HAXIS=

VAXIS=

GPLOT PLOT horizontal axis

vertical axis

HAXIS=

VAXIS=

GRADAR CHART star axis STARAXIS=

216 BY Statement � Chapter 14

Some types of axes cannot use certain AXIS statement options:
� Group and midpoint axes ignore the LOGBASE=, MAJOR=, and MINOR= options.
� Midpoint, horizontal and vertical axes ignore the NOBRACKETS option.

BY Statement

Processes data and orders output according to the BY group.

Used by: GAREABAR, GCHART, GBARLINE, GCONTOUR, GMAP, GPLOT, GRADAR,
GREDUCE, G3D, G3GRID procedures

Syntax
BY<DESCENDING> variable

<...<DESCENDING> variable-n>
<NOTSORTED>;

Description
The BY statement divides the observations from an input data set into groups for
processing. Each set of contiguous observations with the same value for a specified
variable is called a BY group. A variable that defines BY groups is called a BY variable
and is the variable that is specified in the BY statement. When you use a BY
statement, the graphics procedure performs the following operations:

� processes each group of observations independently
� generates a separate graph or output for each BY group
� automatically adds a heading called a BY line to each graph identifying the BY

group represented in the graph
� adds BY statement information below the Description field of the catalog entry.

By default, the procedure expects the observations in the input data set to be sorted
in ascending order of the BY variable values.

Note: The BY statement in SAS/GRAPH is essentially the same as the BY
statement in Base SAS: however, the effect on the output is different when it is used
with SAS/GRAPH procedures. �

Required Arguments
variable

specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. By default, the procedure expects observations in the data
set to be sorted in ascending order by all the variables that you specify or to be
indexed appropriately.

Options
DESCENDING

indicates that the data set is sorted in descending order by the specified variable.
The option affects only the variable that immediately follows the option name, and
must be repeated before every variable that is not sorted in ascending order. For
example, this BY statement indicates that observations in the input data set are
arranged in descending order of VAR1 values and ascending order of VAR2 values:

SAS/GRAPH Statements � BY Statement 217

by descending var1 var2;

This BY statement indicates that the input data set is sorted in descending
order of both VAR1 and VAR2 values:

by descending var1 descending var2;

NOTSORTED
specifies that observations with the same BY value are grouped together, but are
not necessarily sorted in alphabetical or numeric order. The observations can be
grouped in another way, for example, in chronological order.

NOTSORTED can appear anywhere in the BY statement and affects all
variables specified in the statement. NOTSORTED overrides DESCENDING if
both appear in the same BY statement.

The requirement for ordering or indexing observations according to the values
of BY variables is suspended when you use the NOTSORTED option. In fact, the
procedure does not use an index if you specify NOTSORTED. For NOTSORTED,
the procedure defines a BY group as a set of contiguous observations that have the
same values for all BY variables. If observations with the same value for the BY
variables are not contiguous, the procedure treats each new value it encounters as
the first observation in a new BY group and creates a graph for that value, even if
it is only one observation.

Preparing Data for BY-Group Processing
Unless you specify the NOTSORTED option, observations in the input data set must be
in ascending numeric or alphabetic order. To prepare the data set, either sort it with
the SORT procedure using the same BY statement that you plan to use in the target
SAS/GRAPH procedure or create an appropriate index on the BY variables.

If the procedure encounters an observation that is out of the proper order, it issues
an error message.

If you need to group data in some other order, you can still use BY-group processing.
To do so, process the data so that observations are arranged in contiguous groups that
have the same BY-variable values and specify the NOTSORTED option in the BY
statement.

For an example of sorting the input data set, see “Example 7. Using BY-group
Processing to Generate a Series of Charts” on page 309 .

Controlling BY Lines
By default, the BY statement prints a BY line above each graph that contains the
variable name followed by an equal sign and the variable value. For example, if you
specify BY SITE in the procedure, the default heading when the value of SITE is
London would be SITE=London.

Suppressing the BY line To suppress the entire BY line, use the NOBYLINE option in
an OPTION statement or specify HBY=0 in the GOPTIONS statement. See “Example
7. Using BY-group Processing to Generate a Series of Charts” on page 309.

Suppressing the name of the BY variable To suppress the variable name and the
equal sign in the heading and leave only the BY value, use the LABEL statement to
assign a null label ("00"X) to the BY variable. For example, this statement assigns a
null label to the SITE variable:

label site="00"x;

Controlling the appearance of the BY line To control the color, font, and height of the
BY lines, use the following graphics options in a GOPTIONS statement:

218 BY Statement � Chapter 14

CBY=BY-line-color
specifies the color for BY lines.

FBY=font
specifies the font for BY lines.

HBY=n<units>
specifies the height for BY lines.

See Chapter 15, “Graphics Options and Device Parameters Dictionary,” on page 327
for a complete description of each option.

Naming the Catalog Entries
The catalog entries generated with BY-group processing always use incremental
naming. This means that the first entry created by the procedure uses the base name
and subsequent entries increment that name. The base name is either the default entry
name for the procedure (for example, GPLOT) or the name specified with the NAME=
option in the action statement. Incrementing the base name automatically appends a
number to each subsequent entry (for example, GPLOT1, GPLOT2, and so on). See also
“Specifying the Catalog Name and Entry Name for Your GRSEGs” on page 100. For an
example of incremented catalog names, see “Example 9. Combining Graphs and
Reports in a Web Page” on page 315.

Using the BY Statement
This section describes the following:

� the effect of BY-group processing on the GCHART, GMAP, and GPLOT procedures
� the interaction between BY-group and RUN-group processing
� the requirements for using BY-group processing with the Annotate facility
� how to include BY information in titles, notes, and footnotes
� how patterns and symbols are assigned to BY-groups
� the effect of using BY-group processing with the ODS HTML statement

For additional information on any of these topics, refer to the appropriate chapter.

With the GCHART Procedure When you use BY-group processing with the GCHART
procedure, you can do the following tasks:

� With the BLOCK, HBAR, and VBAR statements, you can use the PATTERNID=BY
option to assign patterns according to BY groups. With PATTERNID=BY, each BY
group uses a different PATTERN definition, but all bars or blocks within a BY
group use the same pattern. For further information, see “Example: PATTERN
and SYMBOL Definitions with BY Groups in the GCHART Procedure” on page 220.

� With the BLOCK statement, you can use the BLOCKMAX= option to produce the
same block-height scaling in all block charts in a BY group.

� With the HBAR or VBAR statement, you can use the RAXIS= option to produce the
same response axis scaling in all horizontal or vertical bar charts in a BY group.

With the PIE and STAR statements, the effect of a BY statement is similar to that of
the GROUP= option, except that the GROUP= option enables you to put more than one
graph on a single page while the BY statement does not. Do not use a BY variable as
the group variable in STAR or PIE statements.

With the GMAP Procedure By default, BY-group processing affects both the map data
set and the response data set. This means that you get separate, individual output for

SAS/GRAPH Statements � BY Statement 219

each map area common to both data sets. For example, if the map data set REGION
contains six states and the response data set contains the same six states, and you
specify BY STATE in the GMAP procedure, you get six graphs with one state on each
graph.

If you use the ALL option in the PROC GMAP statement and you also use the BY
statement, you get one output for each map area in the response data set, but that
output displays all the map areas in the map data set. Only one map area per output
contains response data information; the others are empty. For example, if you create a
block map using the data sets REGION and SALES, specify BY STATE, and include the
ALL option in the PROC GMAP statement, you get six graphs with six states on each
graph. One state per graph has a block; the remaining five are empty. The UNIFORM
option applies colors and heights uniformly across all BY-groups.

With the GPLOT Procedure You can use the UNIFORM option in the PROC GPLOT
statement to produce the same axis scaling for all graphs in a BY group. By default,
the range of the axes can vary from graph to graph, but UNIFORM forces the scaling to
be the same for all graphs generated by the procedure.

The UNIFORM option applies colors and heights uniformly across all BY-groups.

With the RUN Groups If you use the BY statement with a procedure that processes
data and supports RUN-group processing (the GCHART, GMAP, and GPLOT
procedures), then each time you submit an action statement or a RUN statement you
get a separate graph for each value of the BY variable. For example, each of these two
RUN-groups produces a separate plot for every value of the BY variable SITE:

/* first run group*/
proc gplot data=sales;

title1 "Sales Summary";
by site;
plot sales*model_a;

run;

/* second run group */
plot sales*model_b;

run;
quit;

The BY statement stays in effect for every subsequent RUN group until you submit
another BY statement or exit the procedure. Variables in subsequent BY statements
replace any previous BY variables.

You can also turn off BY-group processing by submitting a null BY statement (BY;) in
a RUN group, but when you do this, the null BY statement turns off BY-group
processing and the RUN group generates a graph.

For more information, see “RUN-Group Processing” on page 56.

With the Annotate Facility If a procedure that is using BY-group processing also
specifies annotation with the ANNOTATE= option in the PROC statement, the same
annotation is applied to every graph generated by the procedure.

If you specify annotation with the ANNOTATE= option in the action statements for a
procedure, the BY-group processing is applied to the Annotate data set. In this way,
you can customize the annotation for the output from each BY group by including the
BY variable in the Annotate data set and by using each BY-variable value as a
condition for the annotation to be applied to the output for that value.

With TITLE, FOOTNOTE, and NOTE Statements TITLE, FOOTNOTE, and NOTE
statements can automatically include the BY variable name, BY variable values, or BY

220 FOOTNOTE Statement � Chapter 14

lines in the text they produce. To insert BY variable information into the text strings
used by these statements, use the #BYVAR, #BYVAL, and #BYLINE substitution
options. For an example, see “Example 7. Using BY-group Processing to Generate a
Series of Charts” on page 309.

With PATTERN and SYMBOL Definitions By default, when using a BY statement, the
graph for each BY group uses the same patterns or symbols in their defined order. For
example, if the BY variable contains four values and there are two response levels for
each BY value, the PATTERN1 and PATTERN2 or SYMBOL1 and SYMBOL2
statements are used for each graph. Each BY-group starts over with PATTERN1 or
SYMBOL1. The UNIFORM option in the GMAP procedure changes this behavior.

Example: PATTERN and SYMBOL Definitions with BY Groups in the GCHART
Procedure The GCHART procedure, when used with SYMBOL or PATTERN
definitions, assigns the symbols or patterns in order to each BY group. For example, if
the BY variable REGION has four values—East, North, South, and West—the patterns
are assigned to the BY-groups in this order:

1 PATTERN1 is assigned to East
2 PATTERN2 is assigned to North
3 PATTERN3 is assigned to South
4 PATTERN4 is assigned to West.

If you create sets of graphs from several data sets containing the variable REGION,
and if you want the same pattern assigned to the same region each time, you must be
sure that REGION always has the same four values. Otherwise, the patterns may not
be the same across graphs. For example, if the value North is missing from the data,
the patterns are assigned as follows:

1 PATTERN1 is assigned to East
2 PATTERN2 is assigned to South
3 PATTERN3 is assigned to West.

In this case, South is assigned pattern 2 instead of pattern 3 and West is assigned
pattern 3 instead of pattern 4. To avoid this, include the value North for the variable
REGION, but assign it a missing value for all other variables.

FOOTNOTE Statement
Writes up to 10 lines of text at the bottom of the graph.

See: “TITLE, FOOTNOTE, and NOTE Statements” on page 279

Syntax
FOOTNOTE<1...10> < text-argument(s)>;

GOPTIONS Statement
Temporarily sets default values for many graphics attributes and device parameters used by
SAS/GRAPH procedures.

SAS/GRAPH Statements � GOPTIONS Statement 221

Used by: all statements and procedures in a SAS session

Syntax
GOPTIONS <options-list>;

options-list can be one or more options from any or all of the following categories:
� reset option

RESET=ALL | GLOBAL | statement-name | (statement-name(s))
� options that affect the appearance of the display area and the graphics output

ASPECT=scaling-factor
ALTDESC | NOALTDESC
AUTOSIZE=ON | OFF | DEFAULT
BORDER | NOBORDER
CELL | NOCELL
GSIZE=lines
HORIGIN=horizontal-offset <IN | CM>
HPOS=columns
HSIZE=horizontal-size <IN | CM>
IBACK= fileref | “external-file”
IMAGESTYLE = TILE | FIT
IMAGEPRINT | NOIMAGEPRINT
ROTATE=LANDSCAPE | PORTRAIT
ROTATE | NOROTATE
TARGETDEVICE=target-device-entry
VORIGIN=vertical-offset <IN | CM>
VPOS=rows
VSIZE=vertical-size <IN | CM>
XMAX=width <IN | CM>
XPIXELS=width-in-pixels
YMAX=height <IN | CM>
YPIXELS=height-in-pixels

� options that affect color
CBACK=background-color
CBY=BY-line-color
COLORS=<(colors-list | NONE)>
CPATTERN=pattern-color
CSYMBOL=symbol-color
CTEXT=text-color
CTITLE=title-color
PENMOUNTS=active-pen-mounts
PENSORT | NOPENSORT

� options that control font selection or text appearance
CHARTYPE=hardware-font-chartype
FASTTEXT | NOFASTTEXT
FBY=BY-line-font

222 GOPTIONS Statement � Chapter 14

FCACHE=number-fonts-open
FONTRES=NORMAL | PRESENTATION
FTEXT=text-font
FTITLE=title-font
FTRACK=LOOSE | NONE | NORMAL | TIGHT | TOUCH | V5
HBY=BY-line-height <units>
HTEXT=text-height <units>
HTITLE=title-height <units>
RENDER=APPEND | DISK | MEMORY | NONE | READ
RENDERLIB=libref
SIMFONT=software-font

� options that set defaults for procedures and global statements
GUNIT=units
INTERPOL=interpolation-method
OFFSHADOW=(x <units>, y <units> | (x,y) <units>
V6COMP | NOV6COMP

� image animation options
DELAY=delay-time
DISPOSAL=NONE | BACKGROUND | PREVIOUS | UNSPECIFIED
INTERLACED | NONINTERLACED
ITERATION=iteration-count
TRANSPARENCY | NOTRANSPARENCY

� options that affect how your SAS/GRAPH program runs
DISPLAY | NODISPLAY
ERASE | NOERASE
GWAIT=seconds
GRAPHRC | NOGRAPHRC
IMAGEPRINT | NOIMAGEPRINT
PCLIP | NOPCLIP
POLYGONCLIP | NOPOLYGONCLIP

� options that control how output is sent to devices or files
ADMGDF | NOADMGDF
DEVADDR=device-address
DEVICE=device-entry
DEVMAP=device-map-name | NONE
EXTENSION=“file-type”
FILECLOSE=DRIVERTERM | GRAPHEND
FILEONLY | NOFILEONLY
GACCESS=output-format | “output-format > destination”
GEND=“string” <...“string-n”>
GEPILOG=“string” <...“string-n”>
GOUTMODE=APPEND | REPLACE
GPROLOG=“string” <...“string-n”>
GPROTOCOL=module-name
GSFLEN=record-length

SAS/GRAPH Statements � GOPTIONS Statement 223

GSFMODE=APPEND | PORT | REPLACE
GSFNAME=fileref
GSFPROMPT | NOGSFPROMPT
GSTART=“string” <...“string-n”>
HANDSHAKE=HARDWARE | NONE | SOFTWARE | XONXOFF
KEYMAP=map-name | NONE
POSTGEPILOG=“string”
POSTGPROLOG=“string”
PREGEPILOG=“string”
PREGPROLOG=“string”
PROMPTCHARS=“prompt-chars-hex-string”X

� options that specify hardware capabilities of the device
CHARACTERS | NOCHARACTERS
CIRCLEARC | NOCIRCLEARC
DASH | NODASH
DASHSCALE=scaling-factor
FILL | NOFILL
FILLINC=0...9999
LFACTOR=line-thickness-factor
PIEFILL | NOPIEFILL
POLYGONFILL | NOPOLYGONFILL
SYMBOL | NOSYMBOL

� options that control printer hardware features
AUTOCOPY | NOAUTOCOPY
AUTOFEED | NOAUTOFEED
BINDING=DEFAULTEDGE | LONGEDGE | SHORTEDGE
COLLATE | NOCOLLATE
DUPLEX | NODUPLEX
GCOPIES=(<current-copies><,max-copies>)
PAPERDEST=bin
PAPERFEED=feed-increment <IN | CM>
PAPERLIMIT=width <IN | CM>
PAPERSIZE=“size-name” | (width,height)
PAPERSOURCE=tray
PAPERTYPE=“type-name”
PPDFILE=fileref | “external-file”
REPAINT=redraw-factor
REVERSE | NOREVERSE
SPEED=pen-speed
UCC=“control-characters-hex-string”X

� options that interact with the operating environment
DRVINIT=“system-command(s)”
DRVTERM=“system-command(s)”
PREGRAPH=“system-command(s)”
POSTGRAPH=“system-command(s)”

224 GOPTIONS Statement � Chapter 14

PROMPT | NOPROMPT
� options for mainframe systems

GCLASS=SYSOUT-class

GDDMCOPY=FSCOPY | GSCOPY
GDDMNICKNAME=nickname

GDDMTOKEN=token

GDEST=destination

GFORMS=“forms-code”
GWRITER=“writer-name”
TRANTAB=table | user-defined-table

Description
The GOPTIONS statement specifies values for graphics options. Graphics options
control characteristics of the graph, such as size, colors, type fonts, fill patterns, and
symbols. If GOPTIONS are specified, they override the default style. In addition, they
affect the settings of device parameters, which are defined in the device entry. Device
parameters control such characteristics as the appearance of the display, the type of
output produced, and the destination of the output.

The GOPTIONS statement enables you to change these settings temporarily, either
for a single graph or for the duration of your SAS session. You can use the GOPTIONS
statement to do the following tasks:

� override default values for graphics options that control either graphics attributes
or device parameters for a single graph or for an entire SAS session

� reset individual graphics options or all graphics options to their default values
� cancel definitions for AXIS, FOOTNOTE, PATTERN, SYMBOL, and TITLE

statements

To change device parameters permanently, you must use the GDEVICE procedure to
modify the appropriate device entry or to create a new one. See Chapter 38, “The
GDEVICE Procedure,” on page 1125 for details.

To review the current settings of all graphics options, use the GOPTIONS procedure.
See Chapter 44, “The GOPTIONS Procedure,” on page 1319 for details.

Options
See Chapter 15, “Graphics Options and Device Parameters Dictionary,” on page 327 for
a complete description of all graphics options used by the GOPTIONS statement.

Using the GOPTIONS Statement
GOPTIONS statements are global and can be located anywhere in your SAS program.
However, for the graphics options to affect the output from a procedure, the GOPTIONS
statement must execute before the procedure.

With the exception of the RESET= option, graphics options can be listed in any order
in a GOPTIONS statement. The RESET= option should be the first option in the
GOPTIONS statement.

A graphics option remains in effect until you either specify the option in another
GOPTIONS statement, or use the RESET= option to reset the values, or end the SAS
session. When a session ends, the values of the graphics options return to their default
values.

Graphics options are additive; that is, the value of a graphics option remains in effect
until the graphics option is explicitly changed or reset or until you end your SAS

SAS/GRAPH Statements � LEGEND Statement 225

session. Graphics options remain in effect even after you submit additional GOPTIONS
statements specifying different options.

To reset an individual option to its default value, submit the option without a value
(a null graphics option.) You can use a comma (but it is not required) to separate a null
graphics option from the next one. For example, this GOPTIONS statement sets the
values for background color, text height, and text font:

goptions cback=blue htext=6 pct ftext=albany;

To reset only the background color specification to the default and keep the
remaining values, use this GOPTIONS statement:

goptions cback=;

To reset all graphic options to their default values, specify RESET=GOPTIONS:

goptions reset=goptions;

Alternatively, you can use RESET=ALL, but it also cancels any global statement
definitions in addition to resetting all graphics options to default values.

Graphics Option Processing
You can control many graphics attributes through statement options, graphics options,
device parameters, or a combination of these. SAS/GRAPH searches these places to
determine the value to use, stopping at the first place that gives it an explicit value:

1 statement options
2 the value of the corresponding graphics option
3 the value of a device parameter found in the catalog entry for your device driver

Note: Not every graphics attribute can be set in all three places. See the statement
and procedure chapters for the options that can be used with each. �

Some graphics options are supported for specific devices or operating environments
only. See the SAS Help facility for SAS/GRAPH or the SAS companion for your
operating environment for more information.

LEGEND Statement

Controls the location and appearance of legends on two-dimensional plots, contour plots, maps,
and charts.

Used by: GAREABAR, GCHART, GBARLINE, GCONTOUR, GMAP, GPLOT procedures
Type: Global

Syntax
LEGEND<1...99> <options>;

option(s) can be one or more options from any or all of the following categories:
� appearance options

ACROSS=number-of-columns
CBLOCK=block-color
CBORDER=frame-color

226 LEGEND Statement � Chapter 14

CFRAME=background-color
CSHADOW=shadow-color
DOWN=number-of-rows
FRAME
FWIDTH=thickness-factor
REPEAT=1 | 2 | 3
ROWMAJOR | COLMAJOR
SHAPE=BAR(width,height) <units> | LINE(length) <units> |

SYMBOL(width,height) <units>
� position-options

MODE=PROTECT | RESERVE | SHARE
OFFSET=(<x ><,y >)<units > | (<x <units >><,y <units >>)
ORIGIN=(<x ><,y >)<units > | (<x <units >><,y <units >>)
POSITION=(<BOTTOM | MIDDLE | TOP> <LEFT | CENTER | RIGHT>

<INSIDE | OUTSIDE>)
� text-options

LABEL=(text-argument(s)) | NONE
ORDER=(value-list)
VALUE=(text-argument(s)) | NONE

Description
LEGEND statements specify the characteristics of a legend but do not create legends.
The characteristics are as follows:

� the position and appearance of the legend box
� the text and appearance of the legend label
� the appearance of the legend entries, including the size and shape of the legend

values
� the text of the labels for the legend values

LEGEND definitions are not automatically applied when a procedure generates a
legend. Instead, they must be explicitly assigned with a LEGEND= option in the
appropriate procedure statement.

The following figure illustrates the terms associated with the various parts of a
legend.

Figure 14.5 Parts of a Legend

Tools

legend
entry

Repairs

legend
value

PartsDepartment

legend
label

offset
origin legend

frame
border of graph

legend value
description

Options
When the syntax of an option includes units, use one of these:

CELLS character cells

CM centimeters

SAS/GRAPH Statements � LEGEND Statement 227

IN inches

PT points

PCT percentage of the graphics output area

Note: The Java applet does not support CM, IN, or PT. �

If you omit units, a unit specification is searched for in this order:

1 GUNIT= in a GOPTIONS statement

2 the default unit, CELLS

ACROSS=number-of-columns
specifies the number of columns to use for legend entries. If there are multiple
rows and columns in a legend, use the ROWMAJOR and COLMAJOR options to
specify the arrangement of legend entries. Specify the ROWMAJOR option to
arrange entries (from lowest to highest) starting from left to right, and then top to
bottom. Specify the COLMAJOR option to arrange entries starting from top to
bottom, and then left to right.

Featured in: “Example 8. Creating a Simple Web Page with the ODS HTML
Statement” on page 313

See also: ROWMAJOR, COLMAJOR

CBLOCK=block-color
generates and colors a three-dimensional block effect behind the legend. The size
and position of the block are controlled by the graphics option OFFSHADOW=(x,y).

The CBLOCK= and CSHADOW= options are mutually exclusive. If both are
present, SAS/GRAPH software uses the last one specified. The CBLOCK= option is
usually used in conjunction with the FRAME, CFRAME=, or CBORDER= options.

The Java applet treats the CBLOCK option like the CSHADOW option.

See also: The OFFSHADOW=“OFFSHADOW” on page 394 graphics option and
“Creating Drop Shadows and Block Effects” on page 238

Restriction: Not supported by Java.

CBORDER=frame-color
draws a colored frame around the legend. This option overrides the FRAME
option. CBORDER= can be used in conjunction with the CFRAME= option.

Style Reference: Color attribute of the GraphBorderLines graph element

CFRAME=background-color
specifies the background color of the legend. This option overrides the FRAME
option. If both the CFRAME= and FRAME= options are specified, only the solid
background produced by the CFRAME= option is displayed. The CFRAME= option
can be used in conjunction with the CBORDER= option.

Style Reference: Color attribute of the GraphLegendBackground graph element

CSHADOW=shadow-color
generates and colors a drop shadow behind the legend. The size and position of
the shadow is controlled by the graphics option OFFSHADOW=(x,y).

The CSHADOW= and CBLOCK= options are mutually exclusive. If both are
present, SAS/GRAPH uses the last one specified. The CSHADOW= option is
usually specified in conjunction with the FRAME, CFRAME=, or CBORDER=
options.

See also: the OFFSHADOW=“OFFSHADOW” on page 394 graphics option and
“Creating Drop Shadows and Block Effects” on page 238.

228 LEGEND Statement � Chapter 14

DOWN=number-of-rows
specifies the number of rows to use for legend entries. If there are multiple rows
and columns in a legend, use the ROWMAJOR and COLMAJOR options to specify
the arrangement of legend entries. Specify the ROWMAJOR option to arrange
entries (from lowest to highest) starting from left to right, and then top to bottom.
Specify the COLMAJOR option to arrange entries starting from top to bottom, and
then left to right. The ROWMAJOR option is the default.

FRAME
draws a frame around the legend. The color of the frame is the first color in the
color list.

FWIDTH=thickness-factor
specifies the thickness of the frame, where thickness-factor is a number. The
thickness of the line increases directly with thickness-factor. By default,
FWIDTH=1.
Restriction: Not supported by Java and ActiveX

LABEL=(text-argument(s)) | NONE
modifies a legend label. Text-argument(s) defines the appearance or the text of a
legend label, or both. NONE suppresses the legend label. By default, the text of
the legend label is either the variable name or a previously assigned variable label
(except in the case of GPLOT with OVERLAY. In that case the default label is
“PLOT”). Text-argument(s) can be one or more of these:

“text-string”
provides up to 256 characters of label text. Enclose each string in quotes.
Separate multiple strings with blanks.

text-description-suboption
modifies a characteristic such as the font, color, or size of the text strings that
follows it. Text-description-suboption can be as follows:

COLOR=text-color
FONT=font | NONE
HEIGHT=text-height <units>
JUSTIFY=LEFT | CENTER | RIGHT
POSITION=(<BOTTOM | MIDDLE | TOP> <LEFT | CENTER |

RIGHT>)

Note: The Java applet does not support the POSITION= suboption—it
draws legend labels at the top-left of the legend. Also, it does not support
multiple values for the JUSTIFY= suboption (only the first is honored). The
ActiveX control supports the POSITION= option but does not support
multiple values for the JUSTIFY suboption (only the first is honored). �

See “Text Description Suboptions” on page 233 for complete descriptions.
Specify as many text strings and text description suboptions as you want, but

enclose them all in one set of parentheses.
Style Reference: Color attribute of the GraphLabelText graph element
Featured in: “Example 3. Rotating Plot Symbols Through the Color List” on

page 299 and “Example 8. Creating a Simple Web Page with the ODS HTML
Statement” on page 313

Restriction: Partially supported by Java and ActiveX

MODE=PROTECT | RESERVE | SHARE
specifies whether the legend is drawn in the procedure output area or whether
legend elements can overlay other graphics elements. MODE= can take one of
these values:

SAS/GRAPH Statements � LEGEND Statement 229

PROTECT draws the legend in the procedure output area, but a blanking
area surrounds the legend, preventing other graphics elements
from being displayed in the legend. (A blanking area is a
protected area in which no other graphics elements are
displayed.)

RESERVE takes space for the legend from the procedure output area,
thereby reducing the amount of space available for the graph.
If MODE=RESERVE is specified in conjunction with
OFFSET=, the legend can push the graph off the graphics
output area. RESERVE is valid only when
POSITION=OUTSIDE. If POSITION=INSIDE is specified, a
warning is issued and MODE= value is changed to PROTECT.

SHARE draws the legend in the procedure output area. If the legend is
positioned over elements of the graph itself, both graphics
elements and legend elements are displayed.

By default, MODE=RESERVE unless POSITION=INSIDE. In this case, the
default changes to MODE=PROTECT.
See also: “Positioning the Legend” on page 237

Restriction: Not supported by Java and ActiveX

OFFSET=(<x><,y>)<units> | (<x <units>><,y <units>>)
specifies the distance to move the entire legend; x is the number of units to move
the legend right (positive numbers) or left (negative numbers), and y is the number
of units to move the legend up (positive numbers) or down (negative numbers).

To set only the x offset, specify one value, with or without a following comma:

offset=(4 cm,)

To set both the x and y offset, specify two values, with or without a comma
separating them:

offset=(2 pct, 4 pct)

To set only the y offset, specify one value preceded by a comma:

offset=(,-3 pct)

The OFFSET= option is usually used in conjunction with the POSITION=
option to adjust the position of the legend. Moves are relative to the location
specified by the POSITION= option, with OFFSET=(0,0) representing the initial
position. You can also apply the OFFSET= option to the default legend position.

The OFFSET= option is unnecessary with the ORIGIN= option since the
ORIGIN= option explicitly positions the legend and requires no further
adjustment. However, if you specify both options, the OFFSET= values are added
to the ORIGIN= values,l and the LEGEND is positioned accordingly.

See also: “Positioning the Legend” on page 237 and the option POSITION= on
page 230

Restriction: Not supported by Java and ActiveX

230 LEGEND Statement � Chapter 14

ORDER=(value-list)
selects or orders the legend values that appear in the legend. The way you specify
value-list depends on the type of variable that generates the legend:

� For numeric variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>

n TO n <BY increment>

n <...n> TO n <BY increment> <n <...n>>

If a numeric variable has an associated format, the specified values must
be the unformatted values.

� For character variables, value-list is a list of unique character values enclosed
in quotes and separated by blanks:

“value-1” <...“value-n”>

If a character variable has an associated format, the specified values must
be the formatted values.

For a complete description of value-list, see the option ORDER= on page 205 in
the AXIS statement.

Even though the ORDER= option controls whether a legend value is displayed
and where it appears, the VALUE= option controls the text that the legend value
displays.

Restriction: Not supported by Java and ActiveX

ORIGIN=(<x><,y>)<units> | (<x <units >><,y <units>>)
specifies the x coordinate and the y coordinate of the lower-left corner of the legend
box. The ORIGIN= option explicitly positions the legend anywhere on the graphics
output area. It is possible to run a legend off the page or overlay the graph.

To set only the x coordinate, specify one value, with or without a following
comma:

origin=(4 cm,)

To set both the x and y coordinates, specify two values, with or without a comma
separating them:

origin=(2 pct, 4 pct)

To set only the y coordinate, specify one value preceded by a comma:

origin=(,3 pct)

The ORIGIN= option overrides the POSITION= option if both are used.
Although using the OFFSET= option with the ORIGIN= option is unnecessary, if
the OFFSET= option is also specified, it is applied after the ORIGIN= request has
been processed.

See also: “Positioning the Legend” on page 237

Restriction: Not supported by Java and ActiveX

POSITION=(<BOTTOM | MIDDLE | TOP> <LEFT | CENTER | RIGHT>
<OUTSIDE | INSIDE>)

positions the legend on the graph. Values for POSITION= are

OUTSIDE or
INSIDE

specifies the location of the legend in relation to the axis area.

BOTTOM or
MIDDLE or
TOP

specifies the vertical position.

SAS/GRAPH Statements � LEGEND Statement 231

LEFT or
CENTER or
RIGHT

specifies the horizontal position.

By default, POSITION=(BOTTOM CENTER OUTSIDE). You can change one or
more settings. If you supply only one value the parentheses are not required. If
you specify two or three values and omit the parentheses, SAS/GRAPH accepts the
first value and ignores the others.

Once you assign the initial legend position, you can adjust it with the OFFSET=
option.

The ORIGIN= option overrides the POSITION= option. The value of the
MODE= option can affect the behavior of the POSITION= option.

Note: The Java applet defaults to BOTTOM-CENTER and supports all
possible combinations of BOTTOM | MIDDLE | TOP with LEFT | CENTER |
RIGHT except for MIDDLE-CENTER (which would overwrite the map.) The Java
applet does not support INSIDE for positioning. �
See also: OFFSET= option on page 229 and MODE= option on page 228
Restriction: Partially supported by Java

REPEAT=1 | 2 | 3
Use the REPEAT= option to specify how many times the plot symbol is repeated in
the legend. Valid values are 1 to 3, with 3 being the default.

ROWMAJOR | COLMAJOR
specifies the arrangement of legend entries when there are multiple rows and
multiple columns. Specify the ROWMAJOR option (the default) to arrange entries
(from lowest to highest) starting from left to right, and then top to bottom. Specify
the COLMAJOR option to arrange the entries starting from top to bottom, and
then left to right.

See also: ACROSS=, DOWN=

SHAPE=BAR(width<units>,height<units>) <units> | LINE(length) <units> |
SYMBOL(width<units>,height<units>) <units>

specifies the size and shape of the legend values displayed in each legend entry.
The SHAPE= value you specify depends on which procedure generates the legend.

BAR(width,height)<units>
is used with the GCHART and GMAP procedures, with the GPLOT procedure
if you use the AREAS= option, and with the GCONTOUR procedure if you
use the PATTERN option. Each legend value is a bar of the specified width
and height. By default, width is 5, height is 0.8, and units are CELLS. You
can specify units for the width,height pair or for the individual coordinates.

LINE(length) <units>
is used with the GPLOT and GCONTOUR procedures. Each legend value is a
line of the length you specify. Plotting symbols are omitted from the legend
values. By default, length is 5 and units are CELLS. You can specify units for
length.

232 LEGEND Statement � Chapter 14

SYMBOL(width<units>,height<units>) <units>
is used with the GPLOT procedure. Each legend value (not each symbol) is
the width and height you specify. For example, this specification produces
legend values like the ones in Figure 14.6 on page 232(a):

shape=symbol(.5,.5)

This specification produces legend values like the ones in Figure 14.6 on
page 232(b):

shape=symbol(2,.5)

Figure 14.6 Legend Values Produced with SHAPE= SYMBOL

a. b.

CICITYTY
MinnMinn

PhoenixPhoenix

RaleighRaleigh

CICITYTY
MinnMinn

PhoenixPhoenix

RaleighRaleigh

By default, width is 5, height is 1, and units are CELLS. You can specify
units for the width,height pair or for the individual coordinates.

Restriction: Not supported by Java and ActiveX

VALUE=(text-argument(s))| NONE
modifies the legend value descriptions. Text-argument(s) defines the appearance or
the text of the value descriptions. By default, value descriptions are the values of
the variable that generates the legend or an associated format value. Numeric
values are right-justified and character values are left-justified.

NONE suppresses the value descriptions although the legend values (bars,
lines, and so on) are still displayed. (NONE is not supported by Java or ActiveX).
Text-argument(s) can be one or more of these:

“text-string”
provides up to 256 characters of text for the value description. Enclose each
string in quotes. Separate multiple strings with blanks.

Specified text strings are assigned to the legend values in order. If you
submit only one string, only the first legend entry uses the value of that
string. If you specify multiple strings, the first string is the text for the first
entry; the second string is the text for the second entry; and so on. For
example, this specification produces legend entries like those shown in Figure
14.7 on page 232:

value=("1986" "1987" "1988")

Figure 14.7 Specifying Value Descriptions with the VALUE= Option

Year 1986 1987 1988

SAS/GRAPH Statements � LEGEND Statement 233

text-description-suboption
modifies a characteristic such as the font, color, or size of the text string(s)
that follows it. Text-description-suboption can be as follows:

COLOR=text-color
FONT=font | NONE
HEIGHT=text-height <units >
JUSTIFY=LEFT | CENTER | RIGHT
TICK=n
See “Text Description Suboptions” on page 233 for complete descriptions.
Place text description suboptions before the text strings they modify.

Suboptions not followed by a text string affect the default values. To specify
and describe the text for individual values or to produce multi-line text, use
the TICK= suboption.

Specify as many text strings and text description suboptions as you want, but
enclose them all in one set of parentheses.

To order or select legend entries, use the ORDER= option.
See also: “Text Description Suboptions” on page 233 and the option ORDER= on

page 230
Restriction: Partially supported by Java and ActiveX

Text Description Suboptions
Text description suboptions are used by the LABEL= and VALUE= options to change the
color, height, justification, font, and angle of either default text or specified text strings.
See the LABEL= suboption on page 228 and the VALUE= suboption on page 232.

COLOR=text-color
specifies the color of the text. If you omit the COLOR= suboption, a color
specification is searched for in this order:

1 the CTEXT= option for the procedure
2 the CTEXT= option in a GOPTIONS statement
3 the color of the default style

Alias: C=text-color

FONT=font | NONE
specifies the font for the text. See Chapter 11, “Specifying Fonts in SAS/GRAPH
Programs,” on page 155 for information on specifying fonts. If you omit the
FONT= suboption, a font specification is searched for in this order:

1 the FTEXT= option in a GOPTIONS statement
2 the default style font, NONE

Alias: F=font | NONE

HEIGHT=text-height <units>
specifies the height of the text characters in the number of units. By default,
HEIGHT=1 CELL. If you omit the HEIGHT= suboption, a text height specification
is searched for in this order:

1 the HTEXT= option in a GOPTIONS statement
2 the height specified by the default style

Alias: H=text-height <units>

JUSTIFY=LEFT | CENTER | RIGHT
specifies the alignment of the text. The default for character variables is
JUSTIFY=LEFT. The default for numeric variables is JUSTIFY=RIGHT.

234 LEGEND Statement � Chapter 14

Associating a character format with a numeric variable does not change the
default justification of the variable.

You can use the JUSTIFY= suboption to print multiple lines of text by repeating
the suboption before the text string for each line. For example, this statement
produces a legend label and value descriptions like those shown in Figure 14.8 on
page 234:

legend label=(justify=c "Distribution"
justify=c "Centers")

value=(tick=1 justify=c "Portland,"
justify=c "Maine"

tick=2 justify=c "Paris,"
justify=c "France"

tick=3 justify=c "Sydney,"
justify=c "Australia");

Figure 14.8 Specifying Multiple Lines of Text with the JUSTIFY= Suboption

Distribution
Centers

Portland,
Main

Paris,
France

Sydney,
Australia

Specify additional suboptions before any string.
See also: the suboption TICK= on page 235.
Alias: J=L | C | R

POSITION=(<BOTTOM | MIDDLE | TOP> <LEFT | CENTER | RIGHT>)
places the legend label in relation to the legend entries. The POSITION=
suboption is used only with the LABEL= option. By default, POSITION=LEFT.

The parentheses are not required if only one value is supplied. If you specify
two or three values and omit the parentheses, SAS/GRAPH accepts the first value
and ignores the others.

Figure 14.9 on page 235 shows some of the ways the POSITION= suboption
affects a multiple-line legend label in which the entries are stacked in a column
(ACROSS=1). This figure uses a label specification such as the following:

label=("multi-"
justify=left "line"
justify=left "label"
position=left)

In this specification, the POSITION= suboption specifies the default value,
LEFT, which is represented by the first legend in the figure. The POSITION=
value is indicated above each legend. The default justification is used unless you
also use the JUSTIFY= suboption.

SAS/GRAPH Statements � LEGEND Statement 235

Figure 14.9 Using the POSITION= Suboption with Multiple-line Legend Labels

POSITION=LEFT
(default)

POSITION=(TOP)
JUSTIFY=CENTER

multi-
line
label + + + ONE
 ● ● ● TWO
 x x x THREE
 # # # FOUR
 $ $ $ FIVE

POSITION=(TOP LEFT)

multi- + + + ONE
line ● ● ● TWO
label x x x THREE
 # # # FOUR
 $ $ $ FIVE

POSITION=(MIDDLE LEFT)

 + + + ONE
multi- ● ● ● TWO
line x x x THREE
label # # # FOUR
 $ $ $ FIVE

POSITION=(BOTTOM LEFT)

 + + + ONE
 ● ● ● TWO
multi- x x x THREE
line # # # FOUR
label $ $ $ FIVE

multi-
line
label

 + + + ONE
 ● ● ● TWO
 x x x THREE
 # # # FOUR
 $ $ $ FIVE

POSITION=TOP
JUSTIFY=LEFT

 + + + ONE
 ● ● ● TWO
 x x x THREE
 # # # FOUR
 $ $ $ FIVE

multi-
line
label

multi-
line

label

 + + + ONE
 ● ● ● TWO
 x x x THREE
 # # # FOUR
 $ $ $ FIVE

POSITION=TOP
JUSTIFY=RIGHT

POSITION
In addition, specifying POSITION=RIGHT mirrors the effect of POSITION=LEFT,
and specifying POSITION=BOTTOM mirrors the effect of POSITION=TOP.

Restriction: Not supported by Java. Partially supported by ActiveX.

TICK=n
specifies the nth legend entry. The TICK= suboption is used only with the
VALUE= option to designate the legend entry whose text and appearance you
want to modify. For example, to change the text of the third legend entry to
Minneapolis, specify the following code:

value=(tick=3 "Minneapolis")

The characteristics of all other value descriptions remain unchanged.

236 LEGEND Statement � Chapter 14

If you use the TICK= suboption when you designate text for one legend entry,
you must also use it when you designate text for any additional legend entries. For
example, this option changes the text of both the second and third legend entries:

value=(tick=2 "Paris" tick=3 "Sydney")

If you omitted TICK=3, the text of the second legend entry would be
ParisSydney.

Text description suboptions that precede the TICK= suboption affect all the
value descriptions for the legend unless the same suboption (with a different
value) follows a TICK= specification. Text description suboptions that follow the
TICK= suboption affect only the specified legend entry. For example, suppose you
specify this option for a legend with three entries:

value=(color=red font=swiss tick=2 color=blue)

The text of all three entries would use the Swiss font; the first and third entries
would be red and only the second entry would be blue.

Alias: T=n

Using Text Description Suboptions
Text description suboptions affect all the strings that follow them unless the suboption
is changed or turned off. If the value of a suboption is changed, the new value affects
all the text strings that follow it. Consider this example:

label=(font=albany amt height=4 "Weight"
justify=right height=3 "(in tons)")

FONT=ALBANY applies to both Weight and (in tons). HEIGHT=4 affects Weight,
but is respecified as HEIGHT=3 for (in tons). JUSTIFY=RIGHT affects only (in
tons).

Using the LEGEND Statement
LEGEND statements can be located anywhere in your SAS program. They are global
and remain in effect until canceled or until you end your SAS session. LEGEND
statements are not applied automatically, and must be explicitly assigned by an option
in the procedure that uses them.

You can define up to 99 different LEGEND statements. If you define two LEGEND
statements of the same number, the most recently defined statement replaces the
previously defined statement of the same number. A LEGEND statement without a
number is treated as a LEGEND1 statement.

Cancel individual LEGEND statements by defining a LEGEND statement of the
same number without options (a null statement):

legend4;

Canceling one LEGEND statement does not affect any other LEGEND definitions. To
cancel all current LEGEND statements, use RESET= in a GOPTIONS statement:

goptions reset=legend;

Specifying RESET=GLOBAL or RESET=ALL cancels all current LEGEND
definitions as well as other settings.

To display a list of current LEGEND definitions in the LOG window, use the
GOPTIONS procedure with the LEGEND option:

proc goptions legend nolist;
run;

SAS/GRAPH Statements � LEGEND Statement 237

Positioning the Legend
By default, the legend shares the procedure output area with the procedure output,
such as a map or bar chart. (See “How Graphic Elements are Placed in the Graphics
Output Area” on page 65.) However, several LEGEND statement options enable you to
position a legend anywhere on the graphics output area and even to overlay the
procedure output. This section describes these options and their effect on each other.

Positioning the Legend on the Graphics Output Area There are two ways you can
position the legend on the graphics output area:

� Describe the general location of the legend with the POSITION= option. If
necessary, fine-tune the position with the OFFSET= option.

� Position the legend explicitly with the ORIGIN=option.

Using POSITION= and OFFSET= The values of the POSITION= option affect the legend
in two ways:

� OUTSIDE and INSIDE determine whether the legend is located outside or inside
the axis area.

� BOTTOM or MIDDLE or TOP (vertical position) and LEFT or CENTER or RIGHT
(horizontal position) determine where the legend is located in relation to its
OUTSIDE or INSIDE position.

Figure 14.10 on page 237 shows the legend positions inside the axis area.

Figure 14.10 Legend Positions Inside the Axis Area

axis
legend
positions

Figure 14.11 on page 237 shows legend positions outside the axis area.

Figure 14.11 Legend Positions Outside the Axis Area

axis area

legend
positions

axis frame

The default combination is POSITION=(BOTTOM CENTER OUTSIDE). The
combination (OUTSIDE MIDDLE CENTER) is not valid.

Use OFFSET=(x,y) to adjust the position of the legend specified by the POSITION=
option. The x value shifts the legend either left or right and the y value shifts the
legend either up or down.

The offset values are always applied after the POSITION= request. For example, if
POSITION=(TOP RIGHT OUTSIDE), the legend is located in the upper right corner of

238 NOTE Statement � Chapter 14

the graphics output area. If OFFSET=(0,0) is specified, the legend does not move. If
OFFSET=(-5,-8)CM, the legend moves 5 centimeters to the left and 8 centimeters down.

Using ORIGIN= Use ORIGIN=(x,y) to specify the coordinates of the exact location of
the lower left corner of the legend box. Because ORIGIN=(0,0) is the lower left corner of
the graphics output area, the values of x and y must be positive. If you specify negative
values, a warning is issued and the default value is used.

Relating Legends to Other Graphic Elements By default, the legend is inside the
procedure output area and the space it occupies reduces the size of the graph itself. To
control the way the legend relates to the other elements of the graph, use the MODE=
option. These are values for the MODE= option:

� RESERVE reserve space for the legend outside the axis area and move the graph
to make room for the legend. This is the default setting and is valid only when
POSITION=OUTSIDE.

� PROTECT prevents the legend from being overwritten by the procedure output.
PROTECT blanks out graphics elements, allowing only legend elements to be
displayed in the legend’s space.

� SHARE displays both graphics elements and legend elements in the same space.
This setting is usually used when the legend is positioned inside the axis area.
SHARE is useful when the graph has a space that the legend can fit into.

Interactions Between POSITION= and MODE= You cannot specify both
POSITION=INSIDE and MODE=RESERVE because MODE=RESERVE assumes that
the legend is outside the axis area, and POSITION=INSIDE positions the legend inside
the axis area. Therefore, when you specify POSITION=INSIDE, change the value of the
MODE= option to SHARE or PROTECT. Otherwise, SAS/GRAPH issues a warning and
automatically changes the MODE= value to PROTECT.

Creating Drop Shadows and Block Effects
To produce a drop shadow or a three-dimensional block effect behind the legend use the
CSHADOW= or CBLOCK= option in the LEGEND statement in conjunction with the
graphics option OFFSHADOW=(x,y).

The value of x determines how far the shadow or block extends to the right (positive
numbers) or to the left (negative numbers) of the legend. The value of y determines how
far the shadow or block extends above (positive numbers) or below (negative numbers)
the legend. If OFFSHADOW=(0,0) is specified, the shadow or block is not visible.

By default, OFFSHADOW=(0.0625, -0.0625) IN; that is, the shadow or block extends
1/16th of an inch to the right and 1/16th of an inch below the legend.

NOTE Statement

Writes lines of text in the output.

See: “TITLE, FOOTNOTE, and NOTE Statements” on page 279

Syntax
NOTE <text-arguments(s)>;

SAS/GRAPH Statements � ODS HTML Statement 239

ODS HTML Statement

Opens or closes the HTML destination.

Used by: GANNO, GAREABAR, GBARLINE, GCHART, GCONTOUR, GIMPORT,
GMAP, GPLOT, GRADAR, GREPLAY, GSLIDE, and G3D procedures

Requirements: On mainframes, either GPATH= or PATH= is required.

Syntax
ODS HTML <(<ID=>identifier)> <action>;

ODS HTML <(<ID=>identifier)> <option(s)>;

Description
This section describes the ODS HTML statement as it relates to SAS/GRAPH
procedures. For complete information on the ODS HTML statement, see SAS Output
Delivery System: User’s Guide

The ODS HTML statement opens or closes the HTML destination. If the destination
is open, the procedure produces output that is written in Hypertext Markup Language
in the form of an HTML file. If no device is specified, SAS/GRAPH, by default, creates a
PNG file containing the graph. The HTML file references the PNG file in order to
display the graph in a Web page.

If DEVICE=JAVAMETA, graphics output is produced as metagraphics data. The
browser passes the metacodes as a parameter to the Metaview applet. The Metaview
applet renders the output defined by the metacodes, and displays the interactive graph
in a Web page. For more information on DEVICE=JAVAMETA see “Developing Web
Presentations for the Metaview Applet” on page 531.

You can also use the DEVICE=JAVA and DEVICE=ACTIVEX options to create
interactive graphics presentations for the Web.

SAS/GRAPH adds datatip text to some graphs depending on the device specified.
These datatips are generated by default using the values of fields in a SAS data set.
You can specify the DESCRIPTION= option on the SAS/GRAPH procedure to change or
remove the datatip text. For more information on using data tips see “Data Tips for
Web Presentations” on page 598.

The FILE= option identifies the file that contains the HTML version of the procedure
output. With SAS/GRAPH, the body file contains references to the graphs. If
DEVICE=PNG, the graphs are stored in separate PNG files. When you view the body
file in a browser, the graphs are automatically displayed. By default with ODS
processing, the PNG files are stored in the current directory. To specify a destination for
all the HTML and PNG files, use the PATH= option. To store thePNG files in a
different location than the HTML files, use the GPATH= option to specify a location for
thePNG files, and the PATH= option to specify the location of the HTML files. In both
cases,the destination must be an aggregate storage location.

Anchors
ODS HTML automatically creates an anchor for every piece of output generated by the
SAS procedures. An anchor specifies a particular location within an HTML file. In
SAS/GRAPH, an anchor usually defines a link target such as a graph whose location is
defined in an IMG element.

240 PATTERN Statement � Chapter 14

In order for the links from the contents, page, or frame file to work, each piece of
output in the body files must have a unique anchor to link to. The anchor for the first
piece of output in a body file acts as the anchor for that file. These anchors are used by
the frame and contents files, if they are created, to identify the targets for the links that
ODS HTML automatically generates. For more information about using anchors with
the ODS HTML statement see SAS Output Delivery System: User’s Guide. .

PATTERN Statement

Defines the characteristics of patterns used in graphs.

Used by: GCHART, GBARLINE, GCONTOUR, GMAP, GPLOT procedures; SYMBOL
statement; Annotate facility.

Type: Global

Syntax
PATTERN<1...255> <COLOR=pattern-color |_style_>

<REPEAT=number-of-times>
<VALUE=bar/block-pattern | map/plot-pattern | pie/star-pattern >;

� bar/block-pattern can be one of these:
EMPTY

SOLID
style <density>

� map/plot-pattern can be one of these:

MEMPTY
MSOLID

Mdensity <style <angle>>
� pie/star-pattern can be one of these:

PEMPTY

PSOLID
Pdensity <style <angle>>

Description
PATTERN statements create PATTERN definitions that define the color and type of
area fill for patterns used in graphs. These are the procedures and the graphics areas
that they create that use PATTERN definitions:

GCHART color, fill pattern, or image for the bars in two-dimensional bar
charts; color and fill pattern for the segments of three-dimensional
bar charts, pie charts, and star charts.

GCONTOUR contour levels in contour plots

GMAP map areas in choropleth, block, and prism maps; blocks in block
maps

GPLOT areas beneath or between plotted lines

SAS/GRAPH Statements � PATTERN Statement 241

In addition, the SYMBOL statement and certain Annotate facility functions and
macros can use pattern specifications. For details see the “SYMBOL Statement” on
page 252 and Chapter 29, “Using Annotate Data Sets,” on page 641.

You can use the PATTERN statement to control the fill and color of a pattern, and
whether the pattern is repeated. There are three types of patterns:

� bar and block patterns
� map and plot patterns
� pie and star patterns

Pattern fills can be solid or empty, or composed of parallel or crosshatched lines. For
two-dimensional bar charts, the PATTERN statement can specify images to fill
horizontal or vertical bars. In addition, you can specify device-dependent hardware
patterns for rectangle, polygon, and pie fills on devices that support hardware patterns.

If you do not create PATTERN definitions, SAS/GRAPH software generates them as
needed and assigns them to your graphs by default. Generally, the default behavior is
to rotate a solid pattern through the current color list. For details, see “About Default
Patterns” on page 248.

Options
COLOR=pattern-color | _style_

specifies the color of the fill. Pattern-color is any SAS/GRAPH color name. The
STYLE value specifies the appropriate color based on the current style. See
Chapter 12, “SAS/GRAPH Colors and Images,” on page 167 the SAS/GRAPH:
Reference for more information on specifying colors and images.

Note: ActiveX assigns colors in a different order from Java, so the same data
can appear differently with those two drivers. �

Using the COLOR= option with a null value cancels the color specified in a
previous PATTERN statement of the same number without affecting the values of
other options.

The COLOR= option overrides the CPATTERN= graphics option.
The CFILL= option in the PIE and STAR statements overrides the COLOR=

option. For details, see “Controlling Slice Patterns and Colors” on page 1053.

CAUTION:
Omitting the COLOR= option in a PATTERN statement can cause the PATTERN
statement to generate multiple PATTERN definitions. �

If no color is specified for a PATTERN statement, that is, if neither the
COLOR= nor the CPATTERN= option is used, the PATTERN statement rotates
the specified fill through each color in the color list before the next PATTERN
statement is used. .
Alias: C=pattern-color
See also: “Working with PATTERN Statements” on page 249
Featured in: “Example 7. Using BY-group Processing to Generate a Series of

Charts” on page 309
Restriction: Partially supported by Java and ActiveX

IMAGE= fileref | “external-file”
specifies an image file that is used to fill one or more bars of a bar chart, as
generated by the HBAR, HBAR3D, VBAR, and VBAR3D statements of the
GCHART procedure. The format of the external file specification varies across
operating environments. See also the IMAGESTYLE= option.

Note: When you specify an image file to fill a bar, the bar is not outlined. Also,
the COLOR= and VALUE= options are ignored. �

242 PATTERN Statement � Chapter 14

Note: If an image is specified on a PATTERN statement that is used with
another type of chart, then the PATTERN statement is ignored and default pattern
rotation is affected. For example, if you submit a PIE statement when an image
has been specified in a PATTERN statement, the default fill pattern is used for the
pie slices, with each slice in the pie displaying the fill pattern in the same color.

For DEVICE=ACTIVEX and DEVICE=ACTXIMG, if you do not specify a
pathname to the image, then the ActiveX control searches a predefined list of
locations to try to find the image. If all else fails, the ActiveX control looks for the
image on the Web. It is recommended that you specify the pathname to the image.

For DEVICE=JAVA and DEVICE=JAVAIMG, the IMAGE= option works only for
the VBAR and HBAR statements. �
See also: For related information, see “Displaying Images on Data Elements” on

page 185

Restriction: Partially supported by Java and ActiveX

IMAGESTYLE = TILE | FIT
specifies how the image specified in the IMAGE= option is to be applied to fill a bar
in a bar chart. The TILE value, which is the default, repeats the image as needed
to fill the bar. The FIT value stretches a single instance of the image to fill the bar.

Restriction: Partially supported by Java and ActiveX

REPEAT=number-of-times
specifies the number of times that a PATTERN definition is applied before the next
PATTERN definition is used. By default, REPEAT=1.

The behavior of the REPEAT= option depends on the color specification:

� If you use both the COLOR= and the REPEAT= options in a PATTERN
statement, the pattern is repeated the specified number of times in the
specified color. The fill can be either the default solid or a fill specified with
the VALUE= option.

� If you use the CPATTERN= option in a GOPTIONS statement to specify a
single pattern color, and use the REPEAT= option either alone or with the
VALUE= option in a PATTERN statement, the resulting hatch pattern is
repeated the specified number of times.

� If you omit both the COLOR= and CPATTERN= options, and use the
REPEAT= option either alone (generates default solids) or with the VALUE=
option in a PATTERN statement, the resulting pattern is rotated through
each color in the color list, and then the entire group generated by this cycle
is repeated the number of times specified in the REPEAT= option. Thus, the
total number of patterns produced depends on the number of colors in the
current color list.

Using REPEAT= with a null value cancels the repetition specified in a previous
PATTERN statement of the same number without affecting the values of other
options. Note that in most cases, it is preferable to use LEVELS=1 in the GMAP
procedure rather than using this option in the PATTERN statement.

Alias: R=number-of-times

See also: “Understanding Pattern Sequences” on page 251

Restriction: Partially supported by Java and ActiveX

VALUE=bar/block-pattern
specifies patterns for:

� bar charts produced by the HBAR, HBAR3D, VBAR, and VBAR3D
statements in the GCHART procedure including two-dimensional and
three-dimensional bar shapes.

SAS/GRAPH Statements � PATTERN Statement 243

� the front surface of blocks in block charts produced by the BLOCK statement
in the GCHART procedure.

� the blocks in block maps produced by the BLOCK statement in the GMAP
procedure. (The map area from which the block rises takes a map pattern as
described on the option VALUE= on page 244). See also “About Block Maps
and Patterns” on page 1268.

Values for bar/block-pattern are as follows:

EMPTY
E

an empty pattern. Neither the Java applet nor the ActiveX
control supports EMPTY.

SOLID
S

a solid pattern (the only valid value for three-dimensional
charts).

style<density> a shaded pattern.

Note: style<density> is not supported by the Java or
ActiveX device drivers. �

Style specifies the direction of the lines:

L left-slanting lines.

R right-slanting lines.

X crosshatched lines.

Density specifies the density of the pattern’s shading:

1...5 1 produces the lightest shading and 5
produces the heaviest shading.

Figure 14.12 on page 243 shows all of the patterns available for bars and blocks.

Figure 14.12 Bar and Block Patterns

244 PATTERN Statement � Chapter 14

If no valid patterns are available, default bar and block fill patterns are selected
in this order:

1 SOLID
2 X1– X5
3 L1– L5
4 R1– R5
Each fill is used once with every color in the color list unless a pattern color is

specified. The entire sequence is repeated as many times as required to provide
the necessary number of patterns.
Alias: V=bar/block-pattern
Restriction: Partially supported by Java and ActiveX

VALUE=map/plot-pattern
specifies patterns for the following:

� contour levels in contour plots produced by the GCONTOUR procedure
� map area surfaces in block, choropleth, and prism maps produced by the

BLOCK, CHORO, AND PRISM statements in the GMAP procedure.
� areas under curves in plots produced by the AREAS= option in the PLOT

statement in the GPLOT procedure.

Values for map/plot-pattern are as follows:

MEMPTY
ME

an empty pattern. EMPTY or E are also valid aliases, except
when used with the map areas in block maps created by the
GMAP procedure.

MSOLID
MS

a solid pattern. SOLID or S are also valid aliases, except when
used with the map areas in block maps created by the GMAP
procedure.

Mdensity<style<angle>>a shaded pattern.

Note: Mdensity<style<angle>> is not supported by the Java
or ActiveX device drivers. �

Density specifies the density of the pattern’s shading:

1...5 1 produces the lightest shading and 5
produces the heaviest shading.

Style specifies the type of the pattern lines:

N parallel lines (the default).

X crosshatched lines.

Angle specifies the angle of the pattern lines:

0...360 the degrees at which the parallel lines are
drawn, measured from the horizontal. By
default, angle is 0 (lines are horizontal).

Figure 14.13 on page 245 shows some typical map and plot patterns.

SAS/GRAPH Statements � PATTERN Statement 245

Figure 14.13 Map and Plot Patterns

90o

45o

0o

135o

M3N0 M3X0

M3N90 M3X90

M3X135M3N135

M3N45 M3X45

If no valid patterns are available, default map and plot fill patterns are selected
in this order:

1 MSOLID
2 M2N0
3 M2N90
4 M2X45
5 M4N0
6 M4N90
7 M4X90
Each fill is used once with every color in the color list unless a pattern color is

specified. The entire sequence is repeated as many times as required to provide
the necessary number of patterns.
Alias: V=map/plot-pattern
Restriction: Partially supported by Java and ActiveX.

VALUE=pie/star-pattern
specifies patterns for pie and star charts produced by the PIE and STAR
statements in the GCHART procedure. Values for pie/star-pattern are

PEMPTY
PE

an empty pattern. EMPTY or E are also valid aliases.

PSOLID
PS

a solid pattern. SOLID or S are also valid aliases.

Pdensity<style<angle>>a shaded pattern.

Note: Pdensity<style<angle>> is not supported by the Java
or ActiveX device drivers. �

Density specifies the density of the pattern’s shading:

246 PATTERN Statement � Chapter 14

1...5 1 produces the lightest shading and 5
produces the heaviest shading.

Style specifies the type of the pattern lines:

N parallel lines (the default).

X crosshatched lines.

Angle specifies the angle of the pattern lines:

0...360 the angle of the lines, measured in degrees
from perpendicular to the radius of the
slice. By default, angle is 0.

The FILL= option in the PIE and STAR statements in the GCHART procedure
overrides VALUE=.

Figure 14.14 on page 246 shows some typical pie and star patterns.

Figure 14.14 Pie and Star Patterns

90o

45o

0o

135o

P3N0

P3N45

P3X0

P3X45

P3N90 P3X90

P3X135P3N135

If no valid patterns are available, default pie and star fill patterns are selected
in this order:

1 PSOLID
2 P2N0
3 P2N90
4 P2X45
5 P4N0
6 P4N90

SAS/GRAPH Statements � PATTERN Statement 247

7 P4X90
Each fill is used once with every color in the color list unless a pattern color is

specified. The entire sequence is repeated as many times as required to provide
the necessary number of patterns.

Note: If you use hatch patterns and request a legend instead of slice labels, the
patterns in the slices are oriented to be visually equivalent to the legend. �

Alias: V=pie/star-pattern

Restriction: Partially supported by Java and ActiveX

Using the PATTERN Statement
PATTERN statements can be located anywhere in your SAS program. They are global
and remain in effect until redefined, canceled, or until the end of your SAS session.

You can define up to 255 different PATTERN statements. A PATTERN statement
without a number is treated as a PATTERN1 statement.

PATTERN statements generate one or more PATTERN definitions, depending on how
the COLOR=, VALUE=, and IMAGE= options are used. For information on PATTERN
definitions, see “Working with PATTERN Statements” on page 249, as well as the
description of COLOR= on page 241, VALUE= on page 244, and IMAGE= on page 241
options.

PATTERN definitions are generated in the order in which the statements are
numbered, regardless of gaps in the numbering or the statement’s position in the
program. Although it is common practice, you do not have to start with PATTERN1,
and you do not have to use sequential statement numbers.

PATTERN definitions are applied automatically to all areas of the graphics output
that require patterns. When assigning PATTERN definitions, SAS/GRAPH starts with
the lowest-numbered definition with an appropriate fill specification or with no fill
specification. It continues to use the specified patterns until all valid PATTERN
definitions have been used. Then, if more patterns are required, SAS/GRAPH returns
to the default pattern rotation, but continues to outline the areas in the same color as
the fill.

Altering or Canceling PATTERN Statements PATTERN statements are additive. If you
define a PATTERN statement and later submit another PATTERN statement with the
same number, the new PATTERN statement redefines or cancels only the options that
are included in the new statement. Options not included in the new statement are not
changed and remain in effect. For example, assume you define PATTERN4 as follows:

pattern4 value=x3 color=red repeat=2;

This statement cancels only REPEAT= without affecting the rest of the definition:

pattern4 repeat=;

Add or change options in the same way. This statement changes the color of the
pattern from red to blue:

pattern4 color=blue;

After all these modifications, PATTERN4 has these characteristics:

pattern4 value=x3 color=blue;

Cancel individual PATTERN statements by defining a PATTERN statement of the
same number without options (a null statement):

pattern4;

248 PATTERN Statement � Chapter 14

Canceling one PATTERN statement does not affect any other PATTERN definitions.
To cancel all current PATTERN statements, use the RESET= option in a GOPTIONS
statement:

goptions reset=pattern;

Specifying RESET=GLOBAL or RESET=ALL cancels all current PATTERN
definitions as well as other settings.

To display a list of current PATTERN definitions in the LOG window, use the
GOPTIONS procedure with the PATTERN option:

proc goptions pattern nolist;
run;

About Default Patterns
When a procedure produces a graph that needs one or more patterns, SAS/GRAPH
either does one of the following:

� automatically generates the appropriate default patterns and outlines to fill the
areas, or

� uses patterns, colors, and outlines that are defined by PATTERN statements,
graphics options, and procedure options.

In order to understand how SAS/GRAPH generates and assigns patterns defined
with PATTERN statements it is helpful to understand how it generates and assigns
default patterns. The following sections describe the default pattern behavior for all
procedures. See “Working with PATTERN Statements” on page 249 for details about
defining patterns.

How Default Patterns and Outlines Are Generated In general, the default pattern that
the SAS/GRAPH uses is a solid fill. The default colors are determined by the current
style and the device.

SAS/GRAPH uses default patterns when no PATTERN statements are defined. The
default colors are determined by the current style and the device.

Because the system option-GSTYLE-is in effect by default, the procedure uses the
style’s default bar fill colors, plot line colors, widths, symbols, patterns, and outline
colors when producing output. Specifically, SAS/GRAPHuses the default values when
you do not specify any of the following:

� any PATTERN statements

� the CPATTERN= graphics option

� the COLORS= graphics options (that is, you use the device’s default color list and
it has more than one color)

� the COUTLINE= option in the action statement

If all of these conditions are true, then SAS/GRAPH performs the following
operations:

� selects the first default fill for the appropriate pattern, which is always solid, and
rotates it once through the list of colors available in the current style, generating
one solid pattern for each color. If you use the default style colors and the first
color in the list is either black or white, the procedure does not create a pattern in
that color. If you specify a color list with the COLORS= graphics option, then the
procedure uses all the colors in the list to generate the patterns.

Note: The one exception to the default solid pattern is the map area pattern in
a block map produced by the GMAP procedure, which uses a hatch fill by default.
By default the map areas and their outlines use the first color in the color list,

SAS/GRAPH Statements � PATTERN Statement 249

regardless of whether the list is the default device list or one specified with
COLORS= in the GOPTIONS statement. �

� uses the style’s outline color to outline every patterned area.

If a procedure needs additional patterns, SAS/GRAPH selects the next default
pattern fill appropriate to the graph and rotates it through the color list, skipping the
foreground color as before. SAS/GRAPH continues in this fashion until it has generated
enough patterns for the chart.

Things That Affect Default Patterns Changing any of these conditions can change or
override the default behavior:

� If you specify a color list with the COLORS= option in a GOPTIONS statement
and the list contains more than one color, SAS/GRAPH rotates the default fills,
beginning with SOLID, through that list. In this case, it uses every color, even if
the foreground color is black (or white). The default outline color remains the
foreground color.

� If you specify either COLORS=(one-color) or the CPATTERN= graphics option, the
default fill changes from SOLID to the appropriate list of hatch patterns.
SAS/GRAPH uses the specified color to generate one pattern definition for each
hatch pattern in the list.

For a description of these graphics options, see Chapter 15, “Graphics Options and
Device Parameters Dictionary,” on page 327.

Working with PATTERN Statements
With PATTERN statements, you can specify the following:

� the type of fill (VALUE=)
� the color of the fill (COLOR=)
� the images used to fill the bars in a 2D chart (IMAGE=)
� how many times to apply the statement before using the next one (REPEAT=.

See “Displaying Images on Data Elements” on page 185 for information on filling the
bars of two–dimensional bar charts with images using the PATTERN statement.

You can also use procedure options to specify the pattern outline color and the
CPATTERN= graphics option to specify a default color for all patterns.

Whether you use PATTERN statement options alone or with each other affects the
number and kind of patterns your PATTERN statements generate. Depending on the
options you use, you can explicitly specify every pattern used by your graphs or you can
let the PATTERN statement generate a series of pattern definitions using either the
color list or the list of default fills.

Explicitly Specifying Patterns To explicitly specify all the patterns in your graph, you
need to do one of the following for every pattern your graph requires:

� Provide a PATTERN statement that uses the COLOR= option to specify the
pattern color, for example:

pattern1 color=red;

By default, the fill type SOLID.
� Provide a PATTERN statement that uses both the COLOR= option and the

VALUE= option to specify the fill, for example:

pattern1 color=blue value=r3;

Including the COLOR= option in the PATTERN statement is the simplest way to
assure that you get exactly the patterns you want. When you use the COLOR= option,

250 PATTERN Statement � Chapter 14

the PATTERN statement generates exactly one PATTERN definition for that statement.
If you also use the REPEAT= option, the PATTERN definition is repeated the specified
number of times.

Generating Multiple Pattern Definitions You can also use PATTERN statements to
generate multiple PATTERN definitions. To do this use the VALUE= option to specify
the type of fill you want but omit the COLOR= option – for example:

pattern1 value=r3;

In this case, the PATTERN statement rotates the R3 fill through all the colors in the
color list. For more information on pattern rotation, see “Understanding Pattern
Sequences” on page 251.

Selecting an Appropriate Pattern The type of fill you specify depends on the type of
graph you are producing:

With this type of graph Use this type of fill

bar and block charts (PROC
GCHART), block maps (PROC GMAP)

VALUE= bar/block-pattern on page
242

contour plots (PROC GCONTOUR),
map area surfaces (PROC GMAP)

VALUE=map/plot-pattern on page 244

pie and star charts (PROC GCHART) VALUE=pie/star-pattern on page 245

Note: If you specify a fill that is inappropriate for the type of graph you are
generating (for example, if you specify VALUE=L1 in a PATTERN statement for a
choropleth map), SAS/GRAPH ignores the PATTERN statement and continues
searching for a valid pattern. If it does not find a definition with a valid fill
specification, it uses default patterns instead. �

Controlling Outline Colors Whenever you use PATTERN statements, the default
outline color uses the style’s outline color to outline every patterned area.

To change the outline color of any pattern, whether the pattern is default or
user-defined, use the COUTLINE= option in the action statement that generates the
chart.

The Effect of the CPATTERN= Graphics Option Although the CPATTERN= graphics
option is used most often with default patterns, it does affect the PATTERN statement.
With default patterns (no PATTERN statements specified) it does the following:

� specifies the color for all patterns
� causes default patterns to use hatched fills instead of the default SOLID.

In conjunction with the PATTERN statement it does the following:
� With a PATTERN statement that only specifies a fill (VALUE=), the CPATTERN=

option determines the color of that fill. For example, these statements produce two
green, hatched patterns:

goptions cpattern=green;
pattern1 value=x3;
pattern2 value=x1;

� With a PATTERN statement that only specifies a color (COLOR=), the COLOR=
option overrides the CPATTERN= color, but CPATTERN= causes the fill to be

SAS/GRAPH Statements � PATTERN Statement 251

hatched, not the default SOLID. For example, these statements produce one red,
hatched pattern:

goptions cpattern=green;
pattern1 color=red;

See also the description of CPATTERN=“CPATTERN” on page 343.

Understanding Pattern Sequences
Pattern sequences are sets of PATTERN definitions that SAS/GRAPH automatically
generates when a PATTERN statement specifies a fill but not a color. In this case, the
specified fill is used once with every color in the color list. If the REPEAT= option is also
used, the resulting PATTERN definitions are repeated the specified number of times.

Generating Pattern Sequences SAS/GRAPH generates pattern sequences when a
PATTERN statement uses VALUE= to specify a fill and all of the following conditions
are also true:

� The COLOR= option is not used in the PATTERN statement.

� The CPATTERN= graphics option is not used.

� The color list, either default or user-specified, contains more than one color.

In this case, the PATTERN statement rotates the fill specified by the VALUE= option
through every color in the color list, generating one PATTERN definition for every color
in the list. After every color has been used once, SAS/GRAPH goes to the next
PATTERN statement. For example, suppose you specified the following color list and
PATTERN statements for bar/block patterns:

goptions colors=(blue red green) ctext=black;
pattern1 color=red value=x3;
pattern2 value=r3;
pattern3 color=blue value=l3;

Here, PATTERN1 generates the first PATTERN definition. PATTERN2 omits the
COLOR= option, so the specified fill is rotated through all three colors in the color list
before the PATTERN3 statement is used. This table shows the color and fill of the
PATTERN definitions that would be generated if nine patterns were required:

Definition
Number Source

Characteristics:
Color Fill

1 PATTERN1 red x3

2 PATTERN2 blue r3

3 PATTERN2 red r3

4 PATTERN2 green r3

5 PATTERN3 blue l3

6 first default blue solid

7 first default red solid

8 first default green solid

9 second default blue x1

252 SYMBOL Statement � Chapter 14

Notice that after all the PATTERN statements are exhausted, the procedure begins
using the default bar and block patterns, beginning with SOLID. Each fill from the
default list is rotated through all three colors in the color list before the next default fill
is used.

Repeating Pattern Sequences If you use the REPEAT= option but not the COLOR=
option, the sequence generated by cycling the definition through the color list is
repeated the number of times specified by the REPEAT= option. For example, these
statements illustrate the effect of the REPEAT= option on PATTERN statements both
with and without explicit color specifications:

goptions colors=(red blue green);
pattern1 color=gold repeat=2;
pattern2 value=x1 repeat=2;

Here, PATTERN1 is used twice and PATTERN2 cycles through the list of three colors
and then repeats this cycle a second time:

Sequence Number Source
Characteristics:
Color Fill

1 PATTERN1 gold solid (first default)

2 PATTERN1 gold solid (first default)

3 PATTERN2 red x1

4 PATTERN2 blue x1

5 PATTERN2 green x1

6 PATTERN2 red x1

7 PATTERN2 blue x1

8 PATTERN2 green x1

SYMBOL Statement

Defines the characteristics of symbols that display the data plotted by a PLOT statement used by
PROC GBARLINE, PROC GCONTOUR, and PROC GPLOT.

Used by: GBARLINE, GCONTOUR, GPLOT procedures

Type Global

Syntax
SYMBOL<1...255> <COLOR=symbol-color|_style_>

<MODE=EXCLUDE | INCLUDE> <REPEAT=number-of-times>
<STEP=distance<units>> <appearance-option(s)>
<interpolation-option> <SINGULAR=n>;

appearance-options can be one or more of these:

BWIDTH=box-width

SAS/GRAPH Statements � SYMBOL Statement 253

CI=line-color|_style_
CO=color
CV=value-color|_style_
FONT=font

HEIGHT=symbol-height<units>
LINE=line-type
POINTLABEL<=(label-description(s)) | NONE>
VALUE=special-symbol | text-string | NONE
WIDTH=thickness-factor

interpolation-option can be one of these:
� general methods

INTERPOL=JOIN
INTERPOL=map/plot-pattern
INTERPOL=NEEDLE
INTERPOL=NONE
INTERPOL=STEP<placement><J><S>

� high-low interpolation methods
INTERPOL=BOX<option(s)><00...25>
INTERPOL=HILO<C><option(s)>
INTERPOL=STD<1 | 2 | 3><variance><option(s)>

� regression interpolation methods
INTERPOL=R<type><0><CLM | CLI<50...99>>

� spline interpolation methods
INTERPOL=L<degree><P><S>
INTERPOL=SM<nn><P><S>
INTERPOL=SPLINE<P><S>

Description
SYMBOL statements create SYMBOL definitions, which are used by the GPLOT,
GBARLINE and GCONTOUR procedures.

For the GPLOT and GBARLINE procedure, SYMBOL definitions control the
following:

� the appearance of plot symbols and plot lines, including bars, boxes, confidence
limit lines, and area fills

� interpolation methods
� how plots handle data out of range

For the GCONTOUR procedure, SYMBOL definitions control the following:
� the appearance and text of contour labels
� the appearance of contour lines

If you create SYMBOL definitions, they are automatically applied to a graph by the
procedure. If you do not create SYMBOL definitions, these procedures generate default
definitions and apply them as needed to your plots.

Options
When the syntax of an option includes units, use one of these:

254 SYMBOL Statement � Chapter 14

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area

PT points.

If you omit units, a unit specification is searched for in this order:
1 the GUNIT= option in a GOPTIONS statement
2 the default unit, CELLS.

BWIDTH=box-width
specifies the width of the box generated by either the INTERPOL=BOX or
INTERPOL=HILOB option. Box-width can be any number greater than 0. By
default, the value of box-width is the same as the value of the WIDTH= option,
whose default value is 1. Therefore, if you specify a WIDTH= value for and omit
the BWIDTH= option, the width of the box changes accordingly.
Featured in: “Example 4. Creating and Modifying Box Plots” on page 302.

CI=line-color|_style_
specifies a color for an interpolation line (GPLOT and GBARLINE) or a contour
line (GCONTOUR). The _STYLE_ value specifies the appropriate color based on
the current style. If you omit the CI= option but specify the CV= option, the CI=
option assumes the value of the CV= option. In this case, the CI= and CV= options
specify the same color, which is the same as specifying the COLOR= option alone.

If you omit the CI= option, the color specification is searched for in this order:
1 the COLOR= option
2 the CV= option
3 the CSYMBOL= option in a GOPTIONS statement
4 each color in the color list sequentially before the next SYMBOL definition is

used.
See also: “Using Color” on page 275
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Date Values” on

page 294

CO=color
specifies a color for the following:

� outlines of filled areas generated by the INTERPOL=map/plot-pattern option
� confidence limit lines generated by the INTERPOL=R series option
� staffs, boxes, and bars generated by the high-low interpolation methods:

INTERPOL=HILO, INTERPOL=BOX, and INTERPOL=STD

If you omit the CO= option, the search order for a color specification depends on
the interpolation method being used.
See also: “Using Color” on page 275
Featured in: “Example 5. Filling the Area between Plot Lines” on page 304 and

“Example 4. Creating and Modifying Box Plots” on page 302

COLOR=symbol-color | _style_
specifies a color for the entire definition, unless it is followed by a more explicit
specification. For the GPLOT and GBARLINE procedures, this includes plot
symbols, the plot line, confidence limit lines, and outlines. For the GCONTOUR

SAS/GRAPH Statements � SYMBOL Statement 255

procedure, this includes contour lines and labels. The _STYLE_ value specifies the
appropriate color from the current style.

Using the COLOR= option is exactly the same as specifying the same color for
both the CI= and CV= options.

If COLOR= precedes the CI= or CV= option in the same statement, the CI= or
CV= option is used instead.

If you do not use the COLOR=, CI=, CV=, or CO= option, the color specification
is searched for in this order:

1 the CSYMBOL= option in a GOPTIONS statement

2 each color in the color list sequentially before the next SYMBOL definition is
used.

If you do not use a SYMBOL statement to specify a color for each symbol, but
you do specify a color list in a GOPTIONS statement, then Java and ActiveX
assign colors to symbols differently than other devices. To ensure consistency on all
devices, you should specify the desired color of each symbol. If you do not specify a
symbol color, SAS/GRAPH uses the first default color and the first symbol. It uses
each color in the list of default colors until the list is exhausted. SAS/GRAPH then
selects the next symbol and begins again with the first default color. It rotates the
new symbol through the list of default colors before selecting another symbol. It
continues selecting new symbols and colors until no more symbols are needed.

Note: Neither the Java applet nor the ActiveX control supports using COLOR=
with PROC GCONTOUR. �

Style Reference: Color attribute of the GraphLabelText style element.

Alias: C=symbol-color

See also: “Using Color” on page 275

Restriction: Partially supported by Java and ActiveX

CV=value-color|_style_
specifies a color for the following:

� plot symbols in the GPLOT procedure

� the filled areas generated by the INTERPOL=map/plot-pattern option

� contour labels in the GCONTOUR procedure

The _STYLE_ value specifies the appropriate color based on the current style. If
you omit the CV= option but specify the CI=, the CV= option assumes the value of
the CI= option. In this case, the CV= and CI= options specify the same color,
which is the same as specifying the COLOR= option alone.

If you omit the CV= option, the color specification is searched for in this order:

1 the COLOR= option

2 the CI= option

3 the CSYMBOL= option in a GOPTIONS statement

4 each color in the color list sequentially before the next SYMBOL definition is
used.

Note: Neither the Java applet nor the ActiveX control supports using the CV=
option with PROC GCONTOUR. �

See also: “Using Color” on page 275

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Date Values” on
page 294, “Example 5. Filling the Area between Plot Lines” on page 304, and
“Example 4. Creating and Modifying Box Plots” on page 302

Restriction: Partially supported by Java and ActiveX

256 SYMBOL Statement � Chapter 14

FONT=“font”
specifies the font for the plot symbol (GPLOT, GBARLINE) or contour labels
(GCONTOUR) specified by the VALUE= option. The font specification must be
enclosed in quotes and can include the /bold and /italic font modifiers.

By default, the symbol specified by the VALUE= option is taken from the special
symbol table shown in Figure 14.21 on page 271. To use symbols from the special
symbol table, you must omit the FONT= option.

To use a symbol that is not in that special symbol table, specify the font
containing the symbol and the character code or hexadecimal code of the symbol
that you want to use. You can also specify text instead of special symbols. For
example:

symbol font="Albany AMT" value="80"x; /* hexadecimal code for the Euro symbol */
symbol font="Monotype Sorts" value="s"; /* character code for a filled triangle */
symbol font="Cumberland AMT/bo" value="F"; /* prints the letter F in bold */

To cancel a font specification and return to the default special symbol table,
enter a null font specification:

symbol font= value=dot;

Alias: F=font

See also: the VALUE= option on page 269, “Specifying Plot Symbols” on page
274, and “Specifying Special Characters Using Character and Hexadecimal
Codes” on page 160.

Featured in: Example 2 on page 1116
Restriction: Not supported by Java and ActiveX

HEIGHT=symbol-height<units>
specifies the height in number of units of plot symbols (GPLOT, GBARLINE) or
contour labels (GCONTOUR).

Note: The HEIGHT= option affects only the height of the symbols and labels on
the plot; it does not affect the height of any symbols that might appear in a legend.

The HEIGHT option overrides the MarkerSize attribute in graph styles. For
more information on graph styles, see SAS Output Delivery System: User’s
Guide. �

Note: With the Java device driver, the minimum height is two pixels; with
ActiveX a symbol can be so small as to be invisible.

Neither the Java applet nor the ActiveX control supports HEIGHT= with PROC
GCONTOUR. �
Alias: H=symbol-height<units>

See also: the option SHAPE= on page 231 in the LEGEND statement
Featured in: “Example 4. Creating and Modifying Box Plots” on page 302and

“Example 3. Rotating Plot Symbols Through the Color List” on page 299
Restriction: Partially supported by Java and ActiveX

INTERPOL=BOX<option(s)><00...25>
produces box and whisker plots. The bottom and top edges of the box are located
at the sample 25th and 75th percentiles. The center horizontal line is drawn at
the 50th percentile (median). By default, INTERPOL=BOX. In this case the
vertical lines, or whiskers, are drawn from the box to the most extreme point less
than or equal to 1.5 interquartile ranges. (An interquartile range is the distance
between the 25th and the 75th sample percentiles.) Any value more extreme than
this is marked with a plot symbol.

Values for option(s) are one or more of these:

SAS/GRAPH Statements � SYMBOL Statement 257

F fills the box with the color specified by CV= and outlines the
box with the color specified by CO=

J joins the median points of the boxes with a line

T draws tops and bottoms on the whiskers.
In addition, you can specify a percentile to control the length of the whiskers

within the range 00 through 25. These are examples of percentile specifications
and their effect:

00 high/low extremes. INTERPOL=BOX00 is not the same as the
default, INTERPOL=BOX.

01 1st percentile low, 99th high

05 5th percentile low, 95th high

10 10th percentile low, 90th high

25 25th percentile low, 75th high; since the box extends from the
25th to the 75th percentile, no whiskers are produced.

Figure 14.15 on page 257 shows the type of plot INTERPOL=BOX produces.

Figure 14.15 Box Plot

Note: If you use the HAXIS= or VAXIS= options in the PLOT statement or the
ORDER= option in an AXIS definition to restrict the range of axis values, by
default any observations that fall outside the axis range are excluded from the
interpolation calculation. See the MODE= option on page 266 �

You cannot use the GPLOT procedure PLOT statement option AREAS= with
INTERPOL=BOX.

To increase the thickness of all box plot lines, including the box, whiskers, join
line, and top and bottom ticks, use the WIDTH= option.

To increase the width of the box itself, use the BWIDTH= option. By default the
value of the BWIDTH= option is the same as the value of the WIDTH= option.
Therefore, if you specify a value for the WIDTH= option and omit BWIDTH=, the
width of the box changes.

258 SYMBOL Statement � Chapter 14

For a scatter effect with the box, use a multiple plot request, as in this example:

symbol1 i=none v=star color=green;
symbol2 i=box v=none color=blue;
proc gplot data=test;

plot (y y)*x / overlay;

Note: When using DEVICE=JAVA and DEVICE=JAVAIMG with overlaid plots,
different interpolations are supported per overlay unless any of the interpolations
is BOX, HILO or STD. When any of these interpolations are encountered, the first
interpolation specified becomes the only interpolation that is used for all overlays.
All other interpolations are ignored. �
Alias: I=BOX<option(s)><00...25>
Featured in: “Example 4. Creating and Modifying Box Plots” on page 302

INTERPOL=HILO<C><option>
specifies that a solid vertical line connect the minimum and maximum Y values for
each X value. The data should have at least two values of Y for every value of X;
otherwise, the single value is displayed without the vertical line.

By default, for each X value, the mean Y value is marked with a tick. This is
shown in Figure 14.16 on page 259.

To specify high, low, close stock market data, include this option:

C draws tick marks at the close value instead of at the mean
value. Specifying C assumes that there are three values of Y
(HIGH, LOW, and CLOSE) for every value of X. If more or
fewer than three Y values are specified, the mean is ticked.
The Y values can be in any order in the input data set.

In addition, you can specify one of these values for option:

B connects the minimum and maximum Y values with bars
instead of lines. Use the BWIDTH= option to increase the
width of the bars.

J joins the mean values or the close values (if HILOC is
specified) with a line. This point is not marked with a tick
mark. You cannot use the PLOT statement option AREAS=
with INTERPOL=HILOJ.

T adds tops and bottoms to each line.

BJ connects maximum and minimum values with a bar and joins
the mean or close values.

TJ adds tops and bottoms to the lines and joins the mean or close
values.

Figure 14.16 on page 259 shows the type of plot INTERPOL=HILO produces.
Plot symbols in the form of dots have been added to this figure.

SAS/GRAPH Statements � SYMBOL Statement 259

Figure 14.16 High-Low Plot

Y

5050

4040

3030

2020

1010

0

A B C

X

To increase the thickness of all lines generated by the INTERPOL=HILO option,
use the WIDTH= option.

Note: If you use the HAXIS= or VAXIS= options in the PLOT statement or the
ORDER= option in an AXIS definition to restrict the range of axis values, by
default any observations that fall outside the axis range are excluded from the
interpolation calculation. See the option MODE= on page 266. �

When using DEVICE=JAVA and DEVICE=JAVAIMG with overlaid plots,
different interpolations are supported per overlay unless any of the interpolations
is BOX, HILO or STD. When any of these interpolations are encountered, the first
interpolation specified becomes the only interpolation that is used for all overlays.
All other interpolations are ignored.
Alias: I=HILO<C><option>
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Date Values” on

page 294
Restriction: Partially supported by Java

INTERPOL=JOIN
connects data points with straight lines. Points are connected in the order they
occur in the input data set. Therefore, the data should be sorted by the
independent (horizontal axis) variable.

If the data contain missing values, the observations are omitted. However, the
plot line is not broken at missing values unless the SKIPMISS option is used.
Alias: I=JOIN
See also: the SKIPMISS on page 1358 option and “Missing Values” on page 1331

INTERPOL=L<degree><P><S>
specifies a Lagrange interpolation to smooth the plot line. Specify one of these
values for degree:

1 | 3 | 5 specifies the degree of the Lagrange interpolation polynomial.
By default, degree is 1.

In addition, you can specify one or both of these:

P specifies a parametric interpolation

S sorts a data set by the independent variable before plotting its
data.

The Lagrange methods are useful chiefly when data consist of tabulated, precise
values. A polynomial of the specified degree (1, 3, or 5) is fitted through the
nearest 2, 4, or 6 points. In general, the first derivative is not continuous. If the

260 SYMBOL Statement � Chapter 14

values of the horizontal variable are not strictly increasing, the corresponding
parametric method (L1P, L3P, or L5P) is used.

Specifying INTERPOL=L1P, INTERPOL=L3P, or INTERPOL=L5P results in a
parametric Lagrange interpolation of degree 1, 3, or 5, respectively. Both the
horizontal and vertical variables are processed with the Lagrange method and a
parametric interpolation of degree 1, 3, or 5, using the distance between points as
a parameter.

INTERPOL=map/plot-pattern
I=map/plot-pattern

specifies that a pattern fill the polygon that has been defined by the data points.
Values for map/plot-pattern are as follows:

MEMPTY
ME

an empty pattern. EMPTY and E are valid aliases.
The Java applet does not support this option.

MSOLID
MS

a solid pattern. SOLID and S are valid aliases

Mdensity<style<angle>>
a shaded pattern. (The Java applet does not support this option.)

Density specifies the density of the pattern’s shading:

1...5 1 produces the lightest shading and 5 produces the
heaviest.

Style specifies the direction of pattern lines:

N parallel lines (the default)

X crosshatched lines.
Angle specifies the starting angle for parallel or crosshatched lines:

0...360 the degree at which the parallel lines are drawn. By
default, angle is 0 (lines are parallel to the horizontal
axis).

The INTERPOL=map/plot-pattern option only works if the data are structured
so that the data points and, consequently, the plot lines form an enclosed area.
The plot lines should not cross each other.
Alias: I=L<degree><P><S>
See also: the “PATTERN Statement” on page 240
Featured in: “Example 5. Filling the Area between Plot Lines” on page 304
Restriction: Partially supported by Java

INTERPOL=NEEDLE
draws a vertical line from each data point to a horizontal line at the 0 value on the
vertical axis or the minimum value on the vertical axis. The horizontal line is
drawn automatically.

Figure 14.17 on page 261 shows the type of plot INTERPOL=NEEDLE
produces. Plot symbols are not displayed in this figure.

SAS/GRAPH Statements � SYMBOL Statement 261

Figure 14.17 Needle Plot

1 1 2 2 3 3 4 4 5 5 6

 X

Y

2020

1010

0

1010

2020

You cannot use the PLOT statement option AREAS= with
INTERPOL=NEEDLE.
Alias: I=NEEDLE

INTERPOL=NONE
I=NONE

suppresses any interpolation and, if the VALUE= option is not specified, also
suppresses plot points. If no interpolation method is specified in a SYMBOL
statement and if the graphics option INTERPOL= is not used, INTERPOL=NONE
is the default.

You cannot use the PLOT statement option AREAS= with INTERPOL=NONE.

INTERPOL=R<type><0><CLM | CLI<50...99>>
specifies that a plot is a regression analysis. By default, regression lines are not
forced through plot origins and confidence limits are not displayed.

Type specifies the type of regression. Specify one of these values for type:

L requests linear regression representing the regression equation

Y= � 0 + � 1 X

Q requests quadratic regression representing the regression
equation

Y= � 0 + � 1 X + � 2 X2

C requests cubic regression representing the regression equation

Y= � 0 + � 1 X+ � 2 X 2 + � 3 X3

Note: When least-square solutions for the parameters are
not unique, the SAS/GRAPH uses a quadratic equation by
default for the interpolation whereas the Java and ActiveX
device drivers might pick a cubic solution to use. �

By default, type is L. The regression line is drawn in the line type specified in
the LINE= option. By default, the type of the regression line is 1.

Note: You must specify type if you use either 0, or CLI, or CLM. �

262 SYMBOL Statement � Chapter 14

To force the regression line through a (0,0) origin, specify:

0 eliminates the � 0 parameter, or intercept, from the regression
equation. If the origin is at (0,0), also forces the regression line
through the origin. For example, if you specify 0 for a linear
regression, the plot line represents the equation

Y= �1 X

Note: To force the regression line through the origin (0,0)
when the data ranges do not place the origin at (0,0), use the
GPLOT procedure options HZERO and VZERO (ignored if the
data contain negative values), or use the HAXIS= and VAXIS=
options to specify axes ranges from 0 to maximum data value.
If the data ranges contain negative values and the HAXIS= and
VAXIS= options specify ranges starting at 0, only values within
the displayed range are used in the interpolation calculations. �

To display confidence limits, specify one of these:

CLM displays confidence limits for mean predicted values

CLI displays confidence limits for individual predicted values.
You can specify confidence levels from 50% to 99%. By default, the confidence

level is 95%. Include a confidence level specification only if you use CLM or CLI.
The line type used for the confidence limit lines is determined by adding 1 to

the values of LINE=. By default, the line type of confidence limit lines is 2.
Figure 14.18 on page 262 shows the type of plot INTERPOL=RCCLM95

produces (cubic regression analysis with 95% confidence limits).

Figure 14.18 Plot of Regression Analysis and Confidence Limits

*
*

*
*

*
*

**
*

**

*

*

*
*

40 40 60 60 80 80 100 100 120 120 140 140 160160

 X

Y

3030

2020

1010

0

Alias: I=R<type><0><CLM | CLI<50...99>>
Featured in: Example 4 on page 1372

Restriction: Partially supported by Java

INTERPOL=SM<nn><P><S>
specifies that a smooth line is fit to data using a spline routine. INTERPOL=SM is
a method for smoothing noisy data. The points on the plot do not necessarily fall
on the line.

SAS/GRAPH Statements � SYMBOL Statement 263

The relative importance of plot values versus smoothness is controlled by nn.
Values for nn are as follows:

0...99 produces a cubic spline that minimizes a linear combination of
the sum of squares of the residuals of fit and the integral of the
square of the second derivative (Reinsch 1967)*. The greater
the nn value, the smoother the fitted curve. By default, the
value of nn is 0.

In addition, specify one or both of these:

P specifies a parametric cubic spline

S sorts data by the independent variable before plotting.
Restriction: Not supported by Java

INTERPOL=SPLINE<P><S>
specifies that the interpolation for the plot line use a spline routine.
INTERPOL=SPLINE produces the smoothest line and is the most efficient of the
nontrivial spline interpolation methods.

Spline interpolation smoothes a plot line using a cubic spline method with
continuous second derivatives (Pizer 1975)**This method uses a piecewise
third-degree polynomial for each set of two adjacent points. The polynomial passes
through the plotted points and matches the first and second derivatives of
neighboring segments at the points.

Specify one or both of these:

P specifies a parametric spline interpolation method. This
interpolation uses a parametric spline method with continuous
second derivatives. Using the method described earlier for the
spline interpolation, a parametric spline is fitted to both the
horizontal and vertical values. The parameter used is the
distance between points

� �
�
��� � ���

If two points are so close together that the computations
overflow, the second point is not used.

S sorts a data set by the independent variable before plotting its
data.

Note: When points on the graph are out of range of the axis values, the curve is
clipped. If an end point is out of range, no curve is drawn. Out-of-range conditions
can be caused by restricting the range of axis values with the HAXIS= or VAXIS=
option in the PLOT statement or the ORDER= option in an AXIS definition.

Note: When points on the graph are close together and a spline interpolation is
used, the Java applet is unable to draw some line types correctly. �

�

Alias: I=SPLINE<P><S>

* Reinsch, C.H. (1967), “Smoothing by Spline Functions,” Numerische Mathematik, 10, 177–183.
** Pizer, Stephen M. (1975), Numerical Computing and Mathematical Analysis, Chicago: Science Research Associates, Inc.,

Chapter 4.

264 SYMBOL Statement � Chapter 14

INTERPOL=STD<1 | 2 | 3><variance><option(s)>
specifies that a solid line connect the mean Y value with ± 1, 2, or 3 standard
deviations for each X.

Note: By default, two standard deviations are used. �
The sample variance is computed about each mean, and from it, the standard

deviation sy is computed. Variance can be one or both of these:

M computes ��,

P computes sample variances using a pooled estimate, as in a
one-way ANOVA model.

In addition, specify one of these values for option(s):

B connects the minimum and maximum Y values with bars
instead of lines.

J connects the means from bar to bar with a line.

T adds tops and bottoms to each line.

BJ connects maximum and minimum values with a bar and joins
the mean values.

TJ adds tops and bottoms to the lines and joins the mean values.
Figure 14.19 on page 264 shows the type of plot INTERPOL=STD produces. A

horizontal tick is drawn at the mean.Plot symbols in the form of dots have been
added to this figure.

Figure 14.19 Plot of Standard Deviations

●
●
●

●
●

●

●

●

●

●

●

●

●

Y

6060

5050

4040

3030

2020

1010

0

A A B B C

 X

Note: By default, the vertical axis ranges from the minimum to the maximum
Y value in the data. If the requested number of standard deviations from the
mean covers a range of values that exceeds the maximum or is less than the
minimum, the STD lines are cut off at the minimum and maximum Y values.
When this cutoff occurs, rescale the axis using VAXIS= in the PLOT statement or
ORDER= in an AXIS definition so that the STD lines are shown. �

If you restrict the range of axis values by using the HAXIS= or VAXIS= option
in a PLOT statement or the ORDER= option in an AXIS definition, by default any
observations that fall outside the axis range are excluded from the interpolation
calculation. See the MODE= option on page 266 option.

To increase the thickness of all lines generated by the INTERPOL=STD option,
use the WIDTH= option.

You cannot use the PLOT statement option AREAS= with INTERPOL=STD.

SAS/GRAPH Statements � SYMBOL Statement 265

When using DEVICE=JAVA and DEVICE=JAVAIMG with overlaid plots,
different interpolations are supported per overlay unless any of the interpolations
is BOX, HILO or STD. When any of these interpolations are encountered, the first
interpolation specified becomes the only interpolation that is used for all overlays.
All other interpolations are ignored.
Alias: I=STD<1 | 2 | 3><variance><option(s)>
Restriction: Partially supported by Java

INTERPOL=STEP<placement><J><S>
specifies that the data are plotted with a step function. By default, the data point
is on the left of the step, the steps are not joined with a vertical line, and the data
are not sorted before processing.

Specify one of these values for placement:

L displays the data point on the left of the step.

R displays the data point on the right of the step.

C displays the data point in the center of the step.

Note: When a step is retraced in order to locate its center
point, the GIF, JPEG, PNG, ACTXIMG, Java, and JAVAIMG
devices treat this as effectively not drawing that part of the
step at all. ActiveX, however, draws each part of the
step—resulting in a somewhat different graph. �

In addition, specify one or both of these:

J produces steps joined with a vertical line.

S sorts unordered data by the independent variable before
plotting.

Figure 14.20 on page 265 shows the type of plot INTERPOL=STEPJR produces.
Plot symbols in the form of dots have been added to this figure.

Figure 14.20 Step Plot

●●

●

●

●

●

●

Y
100100

7575

5050

2525

0

1 1 2 2 3 3 4 4 5 5 6 6 7

 X

Alias: I=STEP<placement><J><S>

LINE=line-type
L=line-type

specifies the line type of the plot line in the GPLOT procedure, or the contour line
in the GCONTOUR procedure:

1 a solid line.

266 SYMBOL Statement � Chapter 14

2...46 a dashed line.
Line types are shown in Figure 14.22 on page 277. By default, LINE=1.

Note: This option overrides the LineStyle attribute in graph styles.
Neither the Java applet nor ActiveX control supports GCONTOUR. �

Restriction: Partially supported by Java and ActiveX

MODE=EXCLUDE | INCLUDE
specifies that any interpolation method exclude or include data values that are
outside the range of plot axes. By default, MODE=EXCLUDE prevents values
outside the axis range from being displayed.

If you control the range of values displayed on an axis by using HAXIS= and
VAXIS= in the GPLOT procedure, or ORDER= in an AXIS definition, any data
points that lie outside the range of the axes are discarded before interpolation is
applied to the data. Using these options to control value ranges has a particularly
noticeable effect on the high-low interpolation methods, which include
INTERPOL=HILO, INTERPOL=BOX, and INTERPOL=STD. Regression analysis
also represents only part of the original data.

Restriction: Not supported by Java and partially supported by ActiveX

See also: “Values Out of Range” on page 1331

POINTLABEL<=(label-description(s)) | NONE>
labels plot points. The labels always use the format that is assigned to the
variable or variables whose values are used for the labels. POINTLABEL without
any specified descriptions labels points with the Y value. NONE suppresses the
point labels. Label-description(s) can be used to change the variable whose values
are used to label points, and to change features of the label text, such as the color,
font, or size of the text.

Note: If you do not specify a color on a SYMBOL statement, the symbol
definition is rotated through the color list before the next SYMBOL statement is
used. Thus, if your plot contains multiple plot lines and you want to limit your
POINTLABEL specification to a single line, you must specify a color in the
SYMBOL statement that contains the POINTLABEL description. �

Label-description(s) can be one or more of these:

COLOR=text-color
specifies the color of the label text. The default is the first color from the color
list.

Alias: C=text-color

DROPCOLLISIONS | NODROPCOLLISIONS

specify DROPCOLLISIONS to drop new labels if they collide with a label
already in use. Specify NODROPCOLLISIONS to retain all labels. The
default is DROPCOLLISIONS.

The algorithm for the placement of markers tries to avoid placing labels
such that they collide. If the algorithm is unable to avoid a collision, then the
default DROPCOLLISIONS is to drop the new label, whereas
NODROPCOLLISIONS retains even colliding labels.

FONT=font | NONE
specifies the font for the text. See Chapter 11, “Specifying Fonts in SAS/
GRAPH Programs,” on page 155 for details on specifying font. If you omit
FONT=, a font specification is searched for in this order:

1 the FTEXT= option in a GOPTIONS statement
2 the default hardware font, NONE.

SAS/GRAPH Statements � SYMBOL Statement 267

Alias: F=font | NONE

HEIGHT=text-height <units >
specifies the height of the text characters in number of units. By default,
HEIGHT=1 CELL. If you omit HEIGHT=, a text height specification is
searched for in this order:

1 the HTEXT= option in a GOPTIONS statement

2 the default value, 1.

Alias: H=text-height <units >

JUSTIFY=CENTER | LEFT | RIGHT
specifies the horizontal alignment of the label text. The default is CENTER.
The location of the point label is relative to the location of the corresponding
data point.

POSITION=TOP | MIDDLE | BOTTOM
specifies the vertical placement of the label text. The default is TOP. The
location of the point label is relative to the location of the corresponding data
point.

Alias: J=C | L | R

“#var” | “#x:#y <$char>” | “#y:#x <$char>”
specifies the variable or variables whose values label the plot points. The
variable specification must be enclosed in either single or double quotation
marks. The first specified variable must be prefixed with a pound sign (#). If a
second variable is specified, it must be prefixed with a colon and a pound sign
(:#). When you specify both the X and Y variables, you can also specify the
character to display as the delimiter between variable values in the plot label.

By default if the POINTLABEL= option is specified without naming a label
variable, the Y values label the plot points. You can change the default by
using “#var” to specify a different variable whose values should label the
points. For example, you might specify the name of the X variable. The
following option specifies the variable SALES as the variable whose values
label plot points:

POINTLABEL=("#sales")

Alternatively, you can label the plot points with the values of the X and Y
variables, in either order. The order that you specify X and Y in the variable
specification determines the order that the values are displayed in the label.
The following option specifies variables HEIGHT and WEIGHT; in the label,
the value for HEIGHT is displayed, followed by the value for WEIGHT:

POINTLABEL=("#height:#weight")

By default when you specify both the X and Y variables, a colon (:) displays
in the label to separate the values in each label. To change the character that
displays as the delimiter, use the $ syntax to specify an alternative character.
The following option specifies a vertical bar (|) as the delimiter in the label:

POINTLABEL=("#height:#weight $|")

The $ syntax must be within the same quotation marks as the variable
specification. The $ specification can precede or follow the variable
specification, but it must be separated from the variable specification by at
least one space.

Note: Specifying a delimiting character with the $ only changes the
character that displays in the label. It does not change the syntax of the

268 SYMBOL Statement � Chapter 14

variable specification, which requires a colon and pound sign (:#) to precede
the second variable. �

Note: There is a sixteen character length limit for each variable. A
maximum character length limit of thirty-three characters is possible. This
can be composed of X and Y variables, any other valid data set variable, and
a separator as required. �

When creating output using the ActiveX or Java devices, the variables that you
specify in the POINTLABEL= option must be for the plot’s X and Y variables.
Specifying any other variables causes unexpected labeling.

Specify as many label-description suboptions as you want. Enclose them all
within a single set of parentheses, and separate each suboption from the others by
at least one space.
Restriction: Partially supported by Java and ActiveX

REPEAT=number-of-times
specifies the number of times that a SYMBOL definition is applied before the next
SYMBOL definition is used. By default, REPEAT=1.

The behavior of REPEAT= depends on whether any of the SYMBOL color options
(CI=, CV=, CO=, and COLOR=) or the CSYMBOL= graphics option also is used:

� If any SYMBOL color option also is used in the SYMBOL definition, that
SYMBOL definition is repeated the specified number of times in the specified
color.

� If no SYMBOL color option is used but the CSYMBOL= graphics option is
currently in effect, the SYMBOL definition is repeated the specified number
of times in the specified color.

� If no SYMBOL statement color options are used and the CSYMBOL=
graphics option is not used, the SYMBOL definition is cycled through each
color in the color list, and then the entire group generated by this cycle
repeats the number of times specified by the REPEAT= option. Thus, the
total number of iterations of the SYMBOL definition depends on the number
of colors in the current color list.

Neither the Java applet nor ActiveX control supports GCONTOUR.

Alias: R=number-of-times
See also: “Using the SYMBOL Statement” on page 272
Restriction: Partially supported by Java and ActiveX

SINGULAR=n
tunes the algorithm used to check for singularities. The default value is machine
dependent but is approximately 1E-7 on most machines. This option is rarely
needed.

STEP=distance<units>
specifies the minimum distance between labels on contour lines. The value of
distance must be greater than zero. By default, STEP=65PCT.

Note: If you specify units of PCT or CELLS, the STEP= option calculates the
distance between the labels based on the width of the graphics output area, not
the height. For example, if you specify STEP=50PCT and if the graphics output
area is 9 inches wide, the distance specified is 4.5 inches. A value less than 10
percent is ignored and 10 percent is used instead. �

When you use the STEP= option, specify the minimum distance that you want
between labels. The option then calculates how many labels it can fit on the
contour line, taking into account the length of the labels and the minimum
distance you specified. Once it has calculated how many labels it can fit while

SAS/GRAPH Statements � SYMBOL Statement 269

retaining the minimum distance between them, it places the labels, evenly spaced,
along the line. Consequently, the space between labels can be greater than what
you specify, although it will never be less.

In general, to increase the number of labels from the default, reduce the value
of distance.

If the procedure cannot write the label at a particular location on the contour,
for example because the contour line makes a sharp turn, the label might be
placed farther along the line or omitted. If labels are omitted, a note appears in
the log. Specifying a low value for the GCONTOUR procedure’s TOLANGLE=
option can also cause labels to be omitted, since this forces the procedure to select
smoother labeling locations, which might not be available on some contours.
Featured in: Example 2 on page 1116
Restriction: Not supported by Java and ActiveX

VALUE=special-symbol | text-string | NONE

� specifies a plot symbol for the data points (GPLOT and GBARLINE). If you
omit the SYMBOL statement, plot points are generated using the default plot
symbol. The default symbol is a square if you use the ActiveX or Java devices
and a PLUS sign for other devices. If you specify a SYMBOL statement, but
do not specify the VALUE= option, plot symbols are suppressed.

Note: For ActiveX output, the VALUE= option is not supported when
INTERPOL=HILO or INTERPOL=STD. You can use the OVERLAY option
with GPLOT to get symbols to appear on the data points. �

� specifies contour-label text in a contour plot (GCONTOUR). By default with
the AUTOLABEL option, GCONTOUR labels contour lines with the contour
variable’s value at that contour level.

� VALUE=NONE suppresses plot symbols at the data points, or labels on the
contour lines. You can set the VALUE=NONE option independent of the
INTERPOL= option.

Values for special-symbol are the names and characters shown in Figure 14.21
on page 271. The special symbol table can be used only if the FONT= option is not
used or a null value is specified:

font=,

To specify a single quotation mark, you must enclose it in double quotation
marks

value="’"

To specify a double quotation mark, you must enclose it in single quotation
marks:

value=’"’

In some operating environments, punctuation characters might require single
quotes.

If you use VALUE=text-string to specify a plot symbol, you must also use the
FONT= option to specify a symbol font or a text font. If you specify a symbol font,
the characters in the string are character codes for the symbols in the font. If you
specify a text font, the characters in the string are displayed. If you specify a text
string containing quotes or blanks, enclose the string in single quotes.

For example, if you specify this statement, the plot symbol is the word “plus”
instead of the symbol +:

symbol font=swiss value=plus;

270 SYMBOL Statement � Chapter 14

Java and ActiveX support the following characters from the marker font for
special-symbol:

Table 14.2 Marker-font symbols supported by Java and ActiveX

Character Aliases

Marker Cone, Pyramid, Default

Square Cube

Star

Circle Sphere, Dot, Balloon

Plus Cross

Flag Y

X

Prism Z

Spade “

Heart #

Diamond $

Club %

Hexagon Paw

Cylinder Hash

Note: If you do not use a SYMBOL statement to specify a color for each
symbol, but you do specify a color list in a GOPTIONS statement, then Java and
ActiveX assign colors to symbols differently than do the other device drivers. To
ensure consistency on all devices, you should specify the desired color of each
symbol. If you do not specify a symbol color, SAS/GRAPH uses the first default
color and the first symbol. It uses each color in the list of default colors until the
list is exhausted. SAS/GRAPH then selects the next symbol and begins again with
the first default color. It rotates the new symbol through the list of default colors
before selecting another symbol. It continues selecting new symbols and colors
until no more symbols are needed. �

Note: The VALUE option overrides the MarkerSymbol attribute in graph
styles. �

See also: the option FONT= on page 256 and “Specifying Plot Symbols” on page
274.

Alias: V=special-symbol | text-string | NONE

Featured in: “Example 3. Rotating Plot Symbols Through the Color List” on
page 299, “Example 4. Creating and Modifying Box Plots” on page 302, and
Example 2 on page 1116

Restriction: Partially supported by Java and ActiveX

WIDTH=thickness-factor
specifies the thickness of interpolated lines (GPLOT) or contour lines
(GCONTOUR), where thickness-factor is a number. The thickness of the line
increases directly with thickness-factor. By default, WIDTH=1.

WIDTH= also affects all the lines in box plots (INTERPOL=BOX), high-low
plots with bars (INTERPOL=HILOB), and standard deviation plots

SAS/GRAPH Statements � SYMBOL Statement 271

(INTERPOL=STD). It also affects the outlines of the area generated by the
AREAS= option in the PLOT statement of the GPLOT procedure.

Note: By default, the value specified by WIDTH= is used as the default value
for the BWIDTH= option. For example, specifying WIDTH=6 also sets BWIDTH=
to 6 unless you explicitly assign a value to BWIDTH=.

Java and ActiveX do not provide the same measure of control for width as SAS/
GRAPH device drivers. Measurements are translated to pixels rather than a
percentage. For DEVICE=JAVA and DEVICE=ACTIVEX the maximum width is
6. �

Style Reference: LineThickness attribute of the GraphAxisLines element

Alias: W=thickness-factor

Featured in: “Example 1. Ordering Axis Tick Marks with SAS Date Values” on
page 294 and “Example 4. Creating and Modifying Box Plots” on page 302

Restriction: Partially supported by Java and ActiveX

Figure 14.21 Special Symbols for Plotting Data Points

Note: The words or special characters in the VALUE= column are entered exactly as
shown. �

272 SYMBOL Statement � Chapter 14

Using the SYMBOL Statement
A SYMBOL statement specifies one or more options that indicate the color and other
attributes used by the GPLOT, GBARLINE, and GCONTOUR procedures. For GPLOT
and GBARLINE, the main attributes include the plot symbol, interpolation method,
and type of plot line. For GCONTOUR, the main attributes include the type of contour
lines used and the text used to label those lines.

Note: SYMBOL statements can be applied only to contour plots when the
AUTOLABEL option is specified on GCONTOUR. �

You can define up to 255 different SYMBOL statements. A SYMBOL statement
without a number is treated as a SYMBOL1 statement.

SYMBOL definitions can be defined anywhere in your SAS program. They are global
and remain in effect until canceled or until you end your SAS session. Once defined,
SYMBOL definitions can be used as follows:

� assigned by default by GPLOT or explicitly selected with the plot request
� used by GCONTOUR to control the labels and attributes of contour lines

SYMBOL statements generate one or more symbol definitions, depending on how
color is used and whether a plot symbol or type of contour line is specified. For more
information, see “Controlling Consecutive SYMBOL Statements” on page 273 and
“Using Generated Symbol Sequences” on page 277.

Although it is common practice, you do not have to start with SYMBOL1, and you do
not have to use sequential statement numbers. When assigning SYMBOL definitions,
SAS/GRAPH software starts with the lowest-numbered definition and works upward,
ignoring gaps in the numbering.

Altering or Canceling SYMBOL Statements SYMBOL statements are additive. If you
define a SYMBOL statement and later submit another SYMBOL statement with the
same number, the new SYMBOL statement defines or cancels only the options that are
included in the new statement. Options that are not included in the new statement are
not changed and remain in effect.

Note: An exception to this rule is presented by POINTLABEL= suboptions which
are not carried over to subsequent SYMBOL statements. �

Assume you define SYMBOL4 as follows:

symbol4 value=star cv=red height=4;

The following statement cancels only HEIGHT= without affecting the rest of the
definition:

symbol4 height=;

Add or change options in the same way. This statement adds an interpolation
method to SYMBOL4:

symbol4 interpol=join;

This statement changes the color of the plot symbol from red to blue:

symbol4 cv=blue;

After all these modifications, SYMBOL4 has these characteristics:

symbol4 value=star cv=blue interpol=join;

Cancel individual SYMBOL statements by defining a SYMBOL statement of the
same number without options (a null statement):

symbol4;

SAS/GRAPH Statements � SYMBOL Statement 273

Canceling one SYMBOL statement does not affect any other SYMBOL definitions. To
cancel all current SYMBOL statements, use the RESET= option in a GOPTIONS
statement:

goptions reset=symbol;

Specifying RESET=GLOBAL or RESET=ALL cancels all current SYMBOL
definitions as well as other settings.

To display current SYMBOL definitions in the Log window, use the GOPTIONS
procedure with the SYMBOL option:

proc goptions symbol nolist;
run;

Controlling Consecutive SYMBOL Statements
If you specify consecutively numbered SYMBOL statements and you want SAS/GRAPH
to use each definition only once, use color specifications to ensure that each SYMBOL
statement generates only one symbol definition. You can do the following actions:

� specify colors on each SYMBOL statement, using the COLOR=, CI=, CV=, or CO=
options. This method lets you explicitly assign colors for each definition. For
example, these statements generate two definitions:

symbol1 value=star color=green;
symbol2 value=square color=yellow;

� specify a default color for all SYMBOL statements using the CSYMBOL= option in
the GOPTIONS statement. This method makes it easy to specify the same color
for each definition when you do not need more explicit color specifications.

� limit the color list to a single color using the COLORS= option in the GOPTIONS
statement. This method makes it easy to specify the same color for each definition
when you want the color to apply to other definitions also, such as PATTERN
definitions.

For more information on specifying colors for symbol definitions, see “Using Color” on
page 275.

If you do not use color to limit a SYMBOL statement to a single symbol definition,
SAS/GRAPH generates multiple symbol definitions from that statement by rotating the
current definition through the color list (for more details, see “Using Generated Symbol
Sequences” on page 277). Because SAS/GRAPH uses symbol definitions in the order
they are generated, this means that the nth symbol definition applied to a graph does
not necessarily correspond to the SYMBOLn statement.

For example, assuming that no color is specified on the CSYMBOL= graphics option,
these statements generate four definitions:

goptions colors=(red blue green);
symbol1 value=star;
symbol2 value=square color=yellow;

Because no color is specified on SYMBOL1, SAS/GRAPH rotates the symbol
definition through the color list, which has three colors. Thus, SYMBOL1 defines the
first three applied symbol definitions, and SYMBOL2 defines the 4th:

Sequence Number Source
Characteristics:
Color Symbol

1 SYMBOL1 red star

2 SYMBOL1 blue star

274 SYMBOL Statement � Chapter 14

Sequence Number Source
Characteristics:
Color Symbol

3 SYMBOL1 green star

4 SYMBOL2 yellow square

In this case, if a graph needs only three symbols, the SYMBOL2 definition is not used.
To make the nth applied symbol definition correspond to the SYMBOLn statement,

limit each SYMBOL statement to a single color, using one of the techniques listed at
the beginning of this section.

Setting Definitions for PROC GPLOT and PROC GBARLINE

The following topics apply only for SYMBOL statements used with PROC GPLOT and
PROC GBARLINE:

� specifying plot symbols

� specifying default interpolation methods

� sorting data with spline interpolation

Specifying Plot Symbols The VALUE= option specifies the plot symbols that PROC
GPLOT and PROC GBARLINE uses to mark the data points on a plot. Plot symbols
can be in the following forms:

� special symbols as shown in Figure 14.21 on page 271

� characters from symbol fonts

� text strings

By default, the plot symbol is the + symbol. To specify a special symbol, use the
VALUE= option to specify a name or a character from Figure 14.21 on page 271:

symbol1 value=hash color=green;
symbol2 value=) color=blue;

This example uses color to ensure that each SYMBOL statement generates only one
definition. You can omit color specifications to let SAS/GRAPH rotate symbol definitions
through the color list. For details, see “Using Generated Symbol Sequences” on page
277.

To use plot symbols other than those in Figure 14.21 on page 271, use the FONT=
option to specify a font for the plot symbol. If the font is a symbol font, such as Marker,
the string specified with the VALUE= option is the character code for the symbol to be
displayed. If the font is a text font, the string specified with the VALUE= option is
displayed as the plot symbol. (See VALUE= on page 269 and FONT= on page 256.)

This table illustrates some of the ways you can define a plot symbol:

Definition
Plot
Symbol

symbol1 value=plus;

symbol2 value=+;

symbol3 font=swiss value=plus; plus

SAS/GRAPH Statements � SYMBOL Statement 275

Definition
Plot
Symbol

symbol4 font=marker value=U;

symbol5value="’";

Specifying a Default Interpolation Method The INTERPOL= option in a GOPTIONS
statement specifies a default interpolation method to be used with all SYMBOL
definitions. This default interpolation method is in effect unless you specify a different
interpolation in a SYMBOL statement. If the GOPTIONS statement does not specify an
interpolation method, the default for each SYMBOL statement is NONE.

Sorting Data with Spline Interpolation If you want the GPLOT procedure to sort by the
horizontal axis variable before plotting, add the letter S to the end of any of the spline
interpolation methods (INTERPOL=L, INTERPOL=SM, and INTERPOL=SPLINE). For
example, suppose you want to overlay three plots (Y1*X1, Y2*X2, and Y3*X3) and for
each plot, you want the X variable sorted in ascending order. Use these statements:

symbol1 i=splines c=red;
symbol2 i=splines c=blue;
symbol3 i=splines c=green;

proc gplot;
plot y1*x1 y2*x2 y3*x3 / overlay;

run;

Using Color
Generally, there are two ways to explicitly specify color for SYMBOL statements:

� specify colors on the SYMBOL statements
� specify a color on the CSYMBOL= graphics option

You can also let SAS/GRAPH rotate symbol definitions through the color list. For
details, see “Using Generated Symbol Sequences” on page 277.

Specifying Colors with SYMBOL Statements The SYMBOL statement has these
options for specifying color:

� The CV= option specifies color for plot symbols in GPLOT and GBARLINE, or for
contour labels in GCONTOUR.

� The CO= option specifies color for confidence limit lines and area outlines in
GPLOT and GBARLINE.

� The CI= option specifies color for plot lines in GPLOT and GBARLINE, or contour
lines in GCONTOUR.

� The COLOR= option specifies color for the entire symbol. For GPLOT and
GBARLINE, this includes plot symbols, plot lines, and outlines. For GCONTOUR,
this includes contour lines and labels.

The CV= and CI= options have the same effect as using the COLOR= option when
they are used in these ways:

� Only CV= or CI= option is used. (The option that is not used is assigned the value
of the option used.)

� Both the CV= and CI= options specify the same color.

276 SYMBOL Statement � Chapter 14

In general, the CI=, CV=, and CO= options color specific areas of the symbol. Use
these options to produce symbols and plot lines of different colors without having to
overlay multiple plot pairs. For example, if you request regression analysis with
confidence limits, use this statement to assign red to the plot symbol, blue to the
regression lines, and green to the confidence limit lines:

symbol cv=red ci=blue co=green;

The COLOR= option colors the entire symbol or those portions of it not colored by
one of the other color options. If the COLOR= option precedes the CI= or CV= options,
the CI= or CV= specification is used instead. If none of the SYMBOL color options is
used, color specifications are searched for in this order:

1 the CSYMBOL= option in a GOPTIONS statement
2 each color in the color list sequentially before the next SYMBOL definition is used

CAUTION:
If no color options are used, the SYMBOL definition cycles through each color in the color
list. �

If the SYMBOL color options and the CSYMBOL= graphics option are not used, the
SYMBOL definition cycles through each color in the color list before the next definition
is used. For details, see “Using Generated Symbol Sequences” on page 277.

Specifying Color with CSYMBOL= The CSYMBOL= option in the GOPTIONS
statement specifies the default color to be used by all SYMBOL definitions:

goptions csymbol=green;
symbol1 value=star;
symbol2 value=square;

In this example, both SYMBOL statements use green.
CSYMBOL= is overridden by any of the SYMBOL statement color options. See

“Using Color” on page 275 for details.
If more SYMBOL definitions are needed, SAS/GRAPH returns to generating default

symbol sequences.

Specifying Line Types
To specify the type of line for plot or contour lines, use the LINE= option to specify a
number from 1 through 46. Figure 14.22 on page 277 shows the line types represented
by these numbers. By default, the line type is 1 for plot and contour lines, and 2 for
confidence limit lines.

SAS/GRAPH Statements � SYMBOL Statement 277

Figure 14.22 Line Types

Note: These line types are also used by other statements and procedures. Some
options accept a line type of 0, which produces no line. �

Using Generated Symbol Sequences
Symbol sequences are sets of SYMBOL definitions that are automatically generated by
SAS/GRAPH software if any of these conditions is true:

� no valid SYMBOL definition is available. In this case, default symbol sequences
are generated by rotating symbol definitions through the color specified in the
GOPTIONS statement’s CSYMBOL= option. If a CSYMBOL= color is not in effect,
the definitions are rotated through the color list.

� a SYMBOL statement specifies color but not a plot symbol for the GPLOT
procedure, or a line type for the GCONTOUR procedure (assuming that
GCONTOUR does not specify the needed line types). In this case, a default plot
symbol or line type is used with the specified color and only one definition is
generated.

� a SYMBOL statement specifies a plot symbol for GPLOT or a line type for
GCONTOUR, but no color options. In this case, the specified plot symbol or line
type is used once with the color specified by the CSYMBOL= graphics option. If a

278 SYMBOL Statement � Chapter 14

CSYMBOL= color is not in effect, the specified plot symbol or line type is rotated
through the color list.

If the REPEAT= option is also used, the resulting SYMBOL definition is repeated the
specified number of times.

Default Symbol Sequences Default symbol sequences are generated by rotating
symbol definitions through the current color list.

� Definitions used for GPLOT rotate plot symbols through the color list; the first
default plot symbol is a plus sign (+).

� Definitions used for GCONTOUR rotate line types; the first default line type is a
solid line (line type 1).

Each time a default definition is required, SAS/GRAPH takes the first default plot
symbol or line type and uses it with the first color in the color list. If more than one
definition is required, it uses the same plot symbol or line type with the next color in
the color list and continues until all the colors have been used once. If more definitions
are needed, SAS/GRAPH selects the second default plot symbol or line type and rotates
it through the color list. It continues in this fashion, selecting default plot symbols or
line types and cycling them through the color list until all the required definitions are
generated.

If a color has been specified with the CSYMBOL= option in the GOPTIONS
statement, each default plot symbol or line type is used once with the specified color,
and the colors in the color list are ignored.

Symbol Sequences Generated from SYMBOL Statements If a SYMBOL statement does
not specify color, and if the CSYMBOL= graphics option is not used, the symbol
definition is rotated through every color in the color list before the next SYMBOL
definition is used:

goptions colors=(blue red green);
symbol1 cv=red i=join;
symbol2 i=spline v=dot;
symbol3 cv=green v=star;

Here, the SYMBOL1 statement generates the first SYMBOL definition. The
SYMBOL2 statement does not include color, so the first default plot symbol is rotated
through all colors in the color list before the SYMBOL3 statement is used. This table
shows the colors and symbols that would be used if nine symbol definitions were
required for PROC GPLOT:

Sequence
Number Source

Characteristics:
Color Symbol Interpolation

1 SYMBOL1 cv=red first default join

2 SYMBOL2 color=blue dot spline

3 SYMBOL2 color=red dot spline

4 SYMBOL2 color=green dot spline

5 SYMBOL3 cv=green star NONE

6 first default color=blue first default default

7 first default color=red first default default

SAS/GRAPH Statements � TITLE, FOOTNOTE, and NOTE Statements 279

Sequence
Number Source

Characteristics:
Color Symbol Interpolation

8 first default color=green first default default

9 second
default

color=blue second
default

default

Notice that after the SYMBOL statements are exhausted, the procedure begins using
the default definitions (sequences 6 through 9). Each plot symbol from the default list is
rotated through all colors in the color list before the next plot symbol is used. Also,
SYMBOL1 does not specify a plot symbol, so the default sequencing provides the first
default symbol (a + sign). When sequencing resumes in sequence number 6, it starts at
the beginning again, selecting the first default plot symbol and rotating it through the
color list.

If you use the REPEAT= option but no color, the sequence generated by cycling the
definition through the color list is repeated the number of times specified by the
REPEAT= option. For example, these statements define a color list and illustrate the
effect of the REPEAT= option on SYMBOL statements both with and without explicit
color specifications:

goptions colors=(blue red green);
symbol1 color=gold repeat=2;
symbol2 value=star color=cyan;
symbol3 value=square repeat=2;

Here, SYMBOL1 is used twice, SYMBOL2 is used once, and SYMBOL3 rotates
through the list of three colors and then repeats this cycle a second time:

Sequence
Number Source

Characteristics:
Color Symbol Interpolation

1 SYMBOL1 gold first default default

2 SYMBOL1 gold first default default

3 SYMBOL2 cyan star default

4 SYMBOL3 blue square default

5 SYMBOL3 red square default

6 SYMBOL3 green square default

7 SYMBOL3 blue square default

8 SYMBOL3 red square default

9 SYMBOL3 green square default

TITLE, FOOTNOTE, and NOTE Statements

Control the content, appearance, and placement of text.

280 TITLE, FOOTNOTE, and NOTE Statements � Chapter 14

Used by: GANNO, GAREABAR, GBARLINE, GCHART, GCONTOUR, GFONT,
GIMPORT, GMAP, GPLOT, GRADAR, GREPLAY, GSLIDE, G3D, and G3GRID
Global: TITLE and FOOTNOTE
Local: NOTE

Syntax
TITLE<1...10> < text-argument(s)>;

FOOTNOTE<1...10> <text-argument(s)>;

NOTE <text-arguments(s)>;
text-argument(s) can be one or more of these:
“text-string”
text-options (text options must precede text-string.)

text-options can be one or more of the following, in any order:
� appearance options

COLOR=color
FONT=font
HEIGHT=text-height<units>

� placement and spacing options
JUSTIFY=LEFT | CENTER | RIGHT
LSPACE=line-space<units>
MOVE=(x,y)<units>
WRAP

� baseline angling and character rotation options
ANGLE=degrees
LANGLE=degrees
ROTATE=degrees

� boxing, underlining, and line drawing options
BCOLOR=background-color
BLANK=YES
BOX=1...4
BSPACE=box-space<units>
DRAW=(x,y...,x-n,y-n)<units>
UNDERLIN=0...3

� linking option
LINK= “URL”

Options
When the syntax of an option includes units, use one of these:

CELLS character cells

CM centimeters

IN inches

PT points

PCT percentage of the graphics output area

SAS/GRAPH Statements � TITLE, FOOTNOTE, and NOTE Statements 281

If you omit units, a unit specification is searched for in this order:

1 the GUNIT= option in a GOPTIONS statement

2 the default unit, CELLS.

ANGLE=degrees
A=degrees

specifies the angle of the baseline of the entire text string with respect to the
horizontal. A positive degrees value angles the baseline counterclockwise; a
negative value angles it clockwise. By default, ANGLE=0 (horizontal).

Angled titles or footnotes might require more vertical space and, consequently,
might increase the size of the title area or the footnote area, thereby reducing the
vertical space in the procedure output area.

Using the BOX= option with angled text does not produce angled boxes; the box
is sized to accommodate the angled note.

Using the ANGLE= option after one text string and before another can reset
some options to their default values. See “Using Options That Can Reset Other
Options” on page 293.

The ANGLE= option has the same effect on the text as LANGLE=, except when
you specify an angle of 90 degrees or –90 degrees. In these angle specifications, the
procedure output area is shrunk from the left or right to accommodate the angled
title or footnote. The result depends on the statement in which you use the option:

� With the TITLE statement:

Figure 14.23 on page 281 shows how ANGLE=90 degrees or ANGLE=–90
degrees positions and rotates title text.

ANGLE=90
positions the title at the left edge of the graphics output area, angled 90
degrees (counterclockwise) and centered vertically.

ANGLE=–90
positions the title at the right edge of the graphics output area, angled
–90 degrees (clockwise) and centered vertically.

Figure 14.23 Positioning Titles with the ANGLE= Option

T
itl

e
w

ith
 A

N
G

LE
=

90

T
itle w

ith A
N

G
LE

=−90

� With the FOOTNOTE statement:

Figure 14.24 on page 282 shows how ANGLE=90 degrees or ANGLE=–90
degrees positions and rotates footnote text.

282 TITLE, FOOTNOTE, and NOTE Statements � Chapter 14

ANGLE=90
positions the footnote at the right edge of the graphics output area,
angled 90 degrees (counterclockwise) and centered vertically.

ANGLE=–90
positions the footnote at the left edge of the graphics output area, angled
–90 (clockwise) and centered vertically.

Figure 14.24 Positioning Footnotes with the ANGLE=Option

F
ootnote w

ith A
N

G
LE

=−90 F
oo

tn
ot

e
w

ith
 A

N
G

LE
=

90
� With the NOTE statement:

Figure 14.25 on page 282 shows how ANGLE= 90 degrees or -90 degrees
positions and rotates note text.

ANGLE=90
positions the note at the bottom of the left edge of the graphics output
area, angled 90 degrees (counterclockwise) and reading from bottom to
top.

ANGLE=–90
positions the note at the top of the right edge of the graphics output
area, angled –90 (clockwise) and reading from top to bottom.

Figure 14.25 Positioning Notes with the ANGLE= Option

N
ot

e
w

ith
 A

N
G

LE
=

90

N
ote w

ith A
N

G
LE

=−90

Footnote

Title

See also: the options LANGLE= on page 287 and ROTATE= on page 290

SAS/GRAPH Statements � TITLE, FOOTNOTE, and NOTE Statements 283

Featured in: “Example 6. Enhancing Titles” on page 307

Restriction: Not supported by Java and ActiveX

BCOLOR=background-color
specifies the background color of a box produced by the BOX= option. If you omit
BOX=, BCOLOR= is ignored. By default, the background color of the box is the
same as the background color for the entire graph. The color of the frame of the
box is determined by the color specification used in BOX=.

Note: The BCOLOR= option can be reset by the ANGLE= or JUSTIFY=
options, or by the MOVE= optionwith absolute coordinates. See “Using Options
That Can Reset Other Options” on page 293 for details. �

Alias: BC=background-color

See also: the option BOX= on page 283

Featured in: “Example 6. Enhancing Titles” on page 307.

BLANK=YES
protects the box and its contents from being overwritten by any subsequent
graphics elements by blanking out the area where the box is displayed. The
BLANK= option enables you to overlay graphics elements with boxed text. It is
ignored if you omit the BOX= option. Because titles and footnotes are written from
the highest numbered to the lowest numbered, the BLANK= option only blanks
out titles and footnotes of a lower number.

Note: The BLANK= option can be reset by the ANGLE= or JUSTIFY= options,
or by the MOVE= option with absolute coordinates. See “Using Options That Can
Reset Other Options” on page 293 for details. �

Alias: BL=YES

See also: the option BOX= on page 283

Featured in: “Example 6. Enhancing Titles” on page 307

Restriction: Not supported by Java and ActiveX

BOX=1...4
draws a box around one line of text. A value of 1 produces the thinnest box lines; 4
produces the thickest. Boxing angled text does not produce an angled box; the box
is sized to include the angled text.

The color of the box is either:

� the color specified by the COLOR= option in the statement

� the default text color.

The COLOR= option affects only the frame of the box. To color the background
of the box, use the BCOLOR= option.

You can include more than one text string in the box as long as no text break
occurs between the strings; that is, you cannot use the JUSTIFY= option to create
multiple lines of text within a box.

To draw a box around multiple lines of text, you can either

� Use the MOVE= option with relative coordinates to position the lines of text
where you want them and enclose them with the BOX= option. For example,
this statement produces the boxed note shown in Figure 14.26 on page 284:

note font=swiss justify=center box=3
"Office Hours" move=(40pct,-12pct) "9-5";

� Use the DRAW= option to draw the box and do not use the BOX= option.

284 TITLE, FOOTNOTE, and NOTE Statements � Chapter 14

Figure 14.26 Using the BOX= Option and the MOVE= Option to Box Multiple Lines
of Text

Note: The BOX= option can be reset by the ANGLE= or JUSTIFY= options, or
by the MOVE= options with absolute coordinates. See “Using Options That Can
Reset Other Options” on page 293 for details. �

Alias: BO=1...4
See also: the options BCOLOR= on page 283, BLANK= on page 283, and

BSPACE= on page 284.
Featured in: “Example 6. Enhancing Titles” on page 307
Restriction: Not supported by Java and ActiveX

BSPACE=box-space<units>
specifies the amount of space between the boxed text and the box. The space above
the text is measured from the font maximum, and the space below the text is
measured from the font minimum. By default, BSPACE=1. If the BOX= option is
not used, the BSPACE= option is ignored.

The spacing is uniform around the box. For example, BSPACE=.5IN leaves
one-half inch of space between the text and the top, bottom, and sides of the box.

Note: The BSPACE= option can be reset by the ANGLE= or JUSTIFY=
options, or by the MOVE= option with absolute coordinates. See “Using Options
That Can Reset Other Options” on page 293 for details. �
Alias: BS=box-space<units>
See also: the option BOX= on page 283.
Restriction: Not supported by Java and ActiveX.

COLOR=color
specifies the color for the following text, box, or line. The COLOR= option affects
all text, lines, and boxes that follow it and stays in effect until another COLOR=
specification is encountered.

Change colors as often as you like. For example, this statement produces a title
with red text in a box with a blue frame and a cream background:

title color=red "Total Sales" color=blue
box=3 bcolor=cream;

Although the BCOLOR= option controls the background color of the box, the
frame color is controlled with the COLOR= option that precedes the BOX= option.

If you omit the COLOR= option, a color specification is searched for in this order:

SAS/GRAPH Statements � TITLE, FOOTNOTE, and NOTE Statements 285

1 the CTITLE= option in a GOPTIONS statement
2 the CTEXT= option in a GOPTIONS statement
3 the default, the first color in the color list.

Alias: ~~ C=color
See also: the option BCOLOR= on page 283, and “Controlling Titles and

Footnotes with Java and ActiveX Devices in HTML Output” on page 194

DRAW=(x,y...,x-n,y-n)<units>
draws lines anywhere on the graphics output area using x and y as absolute or
relative coordinates. The following table shows the specifications for absolute and
relative coordinates:

Absolute Coordinates Relative Coordinates

x<units> ±x<units>

y<units> ±y<units>

The coordinate position (0,0) is the lower-left corner of the graphics output area.
Specify at least two coordinate pairs. Commas between coordinates are optional;
blanks can be used instead. The DRAW= option does not affect the positioning of
text.

The starting point for lines specified with relative coordinates begins at the end
of the most recently drawn text or line in the current statement. If no text or line
has been drawn in the current statement, a warning is issued and the relative
draw is measured from where a zero-length text string would have ended, given
the normal placement for the statement.

You can mix relative and absolute coordinates. For example,
DRAW=(+0,+0,+0,1IN) draws a vertical line from the end of the text to one inch
from the bottom of the graphics output area.
Alias: D=(x,y...,x-n, y-n)<units>
Restriction: Not supported by Java and ActiveX

FONT=font
specifies the font for the subsequent text. See Chapter 11, “Specifying Fonts in
SAS/GRAPH Programs,” on page 155 for details on specifying SAS/GRAPH fonts.
If you omit this option, a font specification is searched for in this order:

� for a TITLE1 statement
1 the FTITLE= option in a GOPTIONS statement
2 the FTEXT= option in a GOPTIONS statement
3 the default font, SWISS (COMPLEX in Release 6.06 and earlier).

� for all other TITLE statements and the FOOTNOTE and NOTE statements:
1 the FTEXT= option in a GOPTIONS statement
2 the default hardware font, NONE.

Note: Font names greater than eight characters in length must be enclosed in
quotation marks. �

Note: If the TITLE or FOOTNOTE is being output through an ODS markup
destination and the corresponding NOGTITLE or NOGFOOTNOTE option is
specified, then the bold and italic FONT attributes are on by default. However, if
you specify different attributes with the FONT= option, the bold and italic
attributes are turned off. �

286 TITLE, FOOTNOTE, and NOTE Statements � Chapter 14

Alias: F=font
See also: “Controlling Titles and Footnotes with Java and ActiveX Devices in

HTML Output” on page 194
Featured in: “Example 6. Enhancing Titles” on page 307

HEIGHT=text-height<units>
specifies the height of text characters in number of units. By default, HEIGHT=1.
Height is measured from the font minimum to the capline. Ascenders can extend
above the capline, depending on the font.

If your text line is too long to be displayed in the height specified in the
HEIGHT= option, the height specification is reduced so that the text can be
displayed. A note in the SAS log tells you what percentage of the specified size
was used.

If you omit the HEIGHT= option, a text height specification is searched for in
this order:

� for a TITLE1 statement:
1 the HTITLE= option in a GOPTIONS statement
2 the HTEXT= option in a GOPTIONS statement
3 the default value, 2.
By default, a TITLE1 title is twice the height of all other titles.

� for all other TITLE statements and the FOOTNOTE and NOTE statements:
1 the HTEXT= option in a GOPTIONS statement
2 the default value, 1.

Note: The Java applet and ActiveX control allow you to control the relative
height of text with the HEIGHT= option, but not the absolute height in terms of
specific units. �
Alias: H=text-height<units>
See also: “Controlling Titles and Footnotes with Java and ActiveX Devices in

HTML Output” on page 194
Featured in: “Example 1. Ordering Axis Tick Marks with SAS Date Values” on

page 294 and “Example 6. Enhancing Titles” on page 307
Restriction: Partially supported by Java and ActiveX

JUSTIFY=LEFT | CENTER | RIGHT
specifies the alignment of the text string. The default depends on the statement
with which you use the JUSTIFY= option:

� for a FOOTNOTE statement the default is CENTER
� for a NOTE statement the default is LEFT
� for a TITLE statement the default is CENTER.

All the text strings following JUSTIFY= are treated as a single string and are
displayed as one line that is left-, right-, or center-aligned.

You can change the justification within a single line of text. For example, this
NOTE statement displays a date on the left side of the output and the page
number on the same line on the right:

note "June 28, 1997" justify=right "Page 3";

In addition, you can use the JUSTIFY= option to produce multiple lines of text
by repeating the JUSTIFY= option with the same value before the text string for
each line. Multiple lines of text with the same justification are blocked together.
For example, this TITLE statement produces a three-line title with each line
right-justified:

SAS/GRAPH Statements � TITLE, FOOTNOTE, and NOTE Statements 287

title justify=right "First Line"
justify=right "Second Line"
justify=right "Third Line";

You can get the same effect with three TITLE statements, each specifying
JUSTIFY=RIGHT. If you produce a block of text by specifying the same
justification for multiple text strings, and then change the justification for an
additional text string, that text is placed on the same line as the first string
specified in the statement.

Note: Using the JUSTIFY= option after one text string and before another can
reset some options to their default values. See “Using Options That Can Reset
Other Options” on page 293 for details. �
Alias: J=L | C | R
Featured in: “Example 3. Rotating Plot Symbols Through the Color List” on

page 299

LANGLE=degrees
specifies the angle of the baseline of the entire text string(s) with respect to the
horizontal. A positive value for degrees moves the baseline counterclockwise; a
negative value moves it clockwise. By default, LANGLE=0 (horizontal).

Angled titles or footnotes might require more vertical space and consequently
can increase the size of the title area or the footnote area, thereby reducing the
vertical space in the procedure output area.

Using the BOX= option with angled text does not produce an angled box; the
box is sized to accommodate the angled note.

Unlike the ANGLE= option, the LANGLE= option does not reset any other
options. Therefore, the LANGLE= option is easier to use because you do not need
to repeat options after a text break.

The LANGLE= option has the same effect on the text as the ANGLE= option,
except when an angle of 90 degrees or –90 degrees is specified. The result depends
on the statement in which you use the option:

� With the TITLE statement:
Figure 14.27 on page 287 shows how LANGLE=90 degrees and

LANGLE=–90 degrees positions and rotates titles.

LANGLE=90
angles the title 90 degrees (counterclockwise) so that it reads from
bottom to top. The title is centered horizontally and positioned at the
top of the picture.

LANGLE=-90
angles the title –90 degrees (clockwise) so that it reads from top to
bottom. The title is centered horizontally and positioned at the top of
the picture.

Figure 14.27 Positioning Titles with the LANGLE= Option

T
itl

e
w

ith
 L

A
N

G
LE

=
90

T
itle w

ith LA
N

G
LE

=−90

288 TITLE, FOOTNOTE, and NOTE Statements � Chapter 14

� With the FOOTNOTE statement:

Figure 14.28 on page 288 shows how LANGLE=90 degrees and
LANGLE=–90 degrees positions and rotates footnotes.

LANGLE=90
angles the footnote 90 degrees (counterclockwise) so that it reads from
bottom to top. The footnote is centered horizontally and positioned as
the bottom of the picture.

LANGLE=–90
angles the footnote –90 degrees (clockwise) so that it reads from top to
bottom. The footnote is centered horizontally and positioned at the
bottom of the picture.

Figure 14.28 Positioning Footnotes with the LANGLE= Option
F

oo
tn

ot
e

w
ith

 L
A

N
G

LE
=

90
F

ootnote w
ith LA

N
G

LE
=−90

� With the NOTE statement:

Figure 14.29 on page 288 shows how LANGLE=90 degrees and
LANGLE=–90 degrees positions and rotates notes.

LANGLE=90
positions the note at the top of the left edge of the procedure output area,
angled 90 degrees (counterclockwise) so that it reads from bottom to top.

LANGLE=–90
positions the note at the top of the left edge of the procedure output
area, angled –90 degrees (clockwise) so that it reads from top to bottom.

Figure 14.29 Positioning Notes with the LANGLE= Option

Title

Footnote

N
ot

e
LA

N
G

LE
=9

0

Title

Footnote

N
ote LA

N
G

LE
=−90

Alias: LA=degrees

See also: the option ANGLE= on page 281

Restriction: Not supported by Java and ActiveX

LINK= “URL”
specifies a uniform resource locator (URL) that a title or footnote links to.

SAS/GRAPH Statements � TITLE, FOOTNOTE, and NOTE Statements 289

The text-string that you use to specify the URL can contain occurrences of the
variables #BYVAL, #BYVAR, and #BYLINE, as described in text-string on page
290.

Note: If the title or footnote is being output through an ODS markup
destination (such as HTML) and the corresponding ODS option NOGTITLE or
NOGFOOTNOTE is specified, then the title or footnote is rendered in the body of
the HTML file rather than in the graphic itself. Specifying the NOGTITLE or
NOGFOOTNOTE options results in increasing the amount of space allowed for the
procedure output area, which can result in increasing the size of the graph. Space
that would have been used for the title or footnote is devoted instead to the graph.
You might need to be aware of this possible difference if you are using annotate or
map coordinates. �

See also: “Controlling Where Titles and Footnotes are Rendered” on page 194

LSPACE=line-space <units>
specifies the amount of spacing above lines of note and title text and the amount of
spacing below lines of footnote text. For notes and titles, the spacing is measured
from the capline of the current line to the font minimum of the line above. For
footnotes, the spacing is measured from the font minimum of the current line to
the capline of the line below. By default, LSPACE=1.

Note: The LSPACE= option can be reset by the ANGLE= or JUSTIFY= option,
or by the MOVE= option with absolute coordinates. See “Using Options That Can
Reset Other Options” on page 293 for details. �

Alias: LS=line-space <units>
Restriction: Not supported by Java and ActiveX

MOVE=(x,y) <units>
positions subsequent text or lines anywhere on the graphics output area using x
and y as absolute or relative coordinates. The following table shows the
specifications for absolute and relative coordinates:

Absolute Coordinates Relative Coordinates

x<units> ±x<units>

y<units> ±y<units>

Commas between coordinates are optional; you can use blanks instead.
The starting point for lines specified with relative coordinates begins with the

end of the most recently drawn text or line in the current statement. If no text or
line has been drawn in the current statement, a warning is issued and the relative
move is measured from where a zero-length text string would have ended, given
the normal placement for the statement. You can mix relative and absolute
coordinates.

The MOVE= option overrides a JUSTIFY= option specified for the same text
string.

If a NOTE, FOOTNOTE, or TITLE statement uses the MOVE= option to
position the text so that the statement does not use its default position, the text of
the next NOTE, FOOTNOTE, or TITLE statement occupies the unused position
and no blank lines are displayed.

Note: If you specify the MOVE= option with at least one absolute coordinate
and if the option follows one text string and precedes another, some options can be

290 TITLE, FOOTNOTE, and NOTE Statements � Chapter 14

reset to their default values. If you specify the GUNIT graphics option, then that
unit is the default unit. If you do not specify the GUNIT= graphics option, then
the default unit is CELLS. See “Using Options That Can Reset Other Options” on
page 293 for details �

Alias: M=(x,y) <units>

Featured in: “Example 2. Specifying Logarithmic Axes” on page 297 and
“Example 6. Enhancing Titles” on page 307

Restriction: Not supported by Java and ActiveX

ROTATE=degrees
specifies the angle at which each character of text is rotated with respect to the
baseline of the text string. The angle is measured from the current text baseline
angle, which is specified by the ANGLE= or LANGLE= options. By default, the
baseline is horizontal. A positive value for degrees rotates the character
counterclockwise; a negative value rotates it clockwise. By default, ROTATE=0
(parallel to the baseline).

Figure 14.30 on page 290 shows how characters are positioned when
ROTATE=90 is used with the default (horizontal) baseline.

Figure 14.30 Tilting Characters with the ROTATE= Option

R O T A T E

Alias: R=degrees

See also: the option ANGLE= on page 281

Featured in: “Example 6. Enhancing Titles” on page 307

Restriction: Not supported by Java and ActiveX

text-string(s)
is one or more strings up to 200 characters. You must enclose text strings in single
or double quotation marks. The text appears exactly as you type it in the
statement, including uppercase and lowercase characters and blanks.

To use single quotation marks or apostrophes within the title, you can either

� use a pair of single quotation marks together:

footnote ’All’s Well That Ends Well’;

� enclose the text in double quotation marks:

footnote "All’s Well That Ends Well";

Because FOOTNOTE, NOTE, and TITLE statements concatenate all text
strings, the strings must contain the correct spacing. With a series of strings, add
blanks at the beginning of a text string rather than at the end, as in this example:

note color=red "Sales:" color=blue " 2000";

With some fonts, you produce certain characters by specifying a hexadecimal
value. A trailing x identifies a string as a hexadecimal value. For example, this
statement* produces the title Profits Increase £ 3,000:

* This statement assumes you are using a U.S. key map.

SAS/GRAPH Statements � TITLE, FOOTNOTE, and NOTE Statements 291

title font=swiss "Profits Increase " "18’x "3,000";

For more information see “Specifying Special Characters Using Character and
Hexadecimal Codes” on page 160.

In addition, you can embed one or more of the following in the string:

#BYLINE
substitutes the entire BY line without leading or trailing blanks for
#BYLINE in the text string, and displays the BY line in the footnote, note, or
title produced by the statement.

#BYVALn | #BYVAL(BY-variable-name)
substitutes the current value of the specified BY variable for #BYVAL in the
text string and displays the value in the footnote, note, or title produced by
the statement. Specify the variable with one of these:

n specifies which variable in the BY statement #BYVAL
should use. The value of n indicates the position of the
variable in the BY statement. For example, #BYVAL2
specifies the second variable in the BY statement.

BY-variable-
name

names the BY variable. For example, #BYVAL(YEAR)
specifies the BY variable, YEAR. Variable-name is not
case sensitive.

Featured in: “Example 7. Using BY-group Processing to Generate a Series of
Charts” on page 309 and “Example 9. Combining Graphs and Reports in a
Web Page” on page 315

#BYVARn | #BYVAR(BY-variable-name)
substitutes the name of the BY-variable or label associated with the variable
(whatever the BY line would normally display) for #BYVAR in the text string
and displays the name or label in the footnote, note, or title produced by the
statement. Specify the variable with one of these:

n specifies which variable in the BY statement #BYVAR
should use. The value of n indicates the position of the
variable in the BY statement. For example, #BYVAR2
specifies the second variable in the BY statement.

BY-variable-
name

names the BY variable. For example, #BYVAR(SITES)
specifies the BY variable, SITES. Variable-name is not
case sensitive.

A BY variable name displayed in a title, note, or footnote is always in
uppercase. If a label is used, it appears as specified in the LABEL statement.

For more information , see “Substituting BY Line Values in a Text String”
on page 294

UNDERLIN=0...3
underlines subsequent text. Values of 1, 2 and 3 underline with an increasingly
thicker line. UNDERLIN=0 halts underlining for subsequent text.

Underlines follow the text baseline. If you use an LANGLE= or ANGLE= option
for the line of text, the underline is drawn at the same angle as the text.
Underlines do not break up to follow rotated characters. See the option ROTATE=
on page 290.

To make the text and the underline the same color, specify a COLOR= option
before the UNDERLIN= option that precedes the text string. To make the text a
different color, specify the COLOR= option after the UNDERLIN= option.

Note: The UNDERLIN= option can be reset by the ANGLE= or JUSTIFY=
option, or by the MOVE= option with absolute coordinates. See “Using Options
That Can Reset Other Options” on page 293 for details.

292 TITLE, FOOTNOTE, and NOTE Statements � Chapter 14

Note: The Java applet and ActiveX control underline text when the
UNDERLIN= option is specified, but they do not vary the thickness of the line. �

�

Alias: U=

Featured in: “Example 6. Enhancing Titles” on page 307

Restriction: Partially supported by Java and ActiveX

WRAP
wraps the text to a second line if the text does not fit on one line. If the WRAP
option is omitted, the text font-size is reduced until the text fits on one line.
Wrapping occurs at the last blank before the text meets the end of the window. If
there are no blanks in the text string, then there is no wrapping.

Restriction: The WRAP option does not work with the BOX, BLANK,
UNDERLINE, and MOVE options.

Using TITLE and FOOTNOTE Statements
You can define TITLE and FOOTNOTE statements anywhere in your SAS program.
They are global and remain in effect until you cancel them or until you end your SAS
session. All currently defined FOOTNOTE and TITLE statements are automatically
displayed.

You can define up to ten TITLE statements and ten FOOTNOTE statements in your
SAS session. A TITLE or FOOTNOTE statement without a number is treated as a
TITLE1 or FOOTNOTE1 statement. You do not have to start with TITLE1 and you do
not have to use sequential statement numbers. Skipping a number in the sequence
leaves a blank line.

You can use as many text strings and options as you want, but place the options
before the text strings they modify. See “Using Multiple Options” on page 293.

The most recently specified TITLE or FOOTNOTE statement of any number
completely replaces any other TITLE or FOOTNOTE statement of that number. In
addition, it cancels all TITLE or FOOTNOTE statements of a higher number. For
example, if you define TITLE1, TITLE2, and TITLE3, resubmitting the TITLE2
statement cancels TITLE3.

To cancel individual TITLE or FOOTNOTE statements, define a TITLE or
FOOTNOTE statement of the same number without options (a null statement):

title4;

But remember that this cancels all other existing statements of a higher number.
To cancel all current TITLE or FOOTNOTE statements, use the RESET= graphics

option in a GOPTIONS statement:

goptions reset=footnote;

Specifying RESET=GLOBAL or RESET=ALL also cancels all current TITLE and
FOOTNOTE statements as well as other settings.

Using the NOTE Statement
NOTE statements are local, not global, and they must be defined within a procedure or
RUN-group with which they are used. They remain in effect for the duration of the
procedure that includes NOTE statements in any of its RUN-groups or until you end
your SAS session. All notes defined in the current RUN group, as well as those defined
in previous RUN-groups, are displayed in the output as long as the procedure remains
active.

SAS/GRAPH Statements � TITLE, FOOTNOTE, and NOTE Statements 293

You can use as many text strings and options as you want, but place the options
before the text strings they modify. See “Using Multiple Options” on page 293.

Using Multiple Options
In each statement you can use as many text strings and options as you want, but you
must place the options before the text strings they modify. Most options affect all text
strings that follow them in the same statement, unless the option is explicitly reset to
another value. In general, TITLE, FOOTNOTE, and NOTE statement options stay in
effect until one of these events occurs:

� The end of the statement is reached.
� A new specification is made for that option.

For example, this statement specifies that one part of the note is red and another
part is blue, but the height for all of the text is 4:

note height=4 color=red "Red Tide"
color=blue " Effects on Coastal Fishing";

Setting Defaults
You can set default characteristics for titles (including TITLE1 definitions), footnotes,
and notes by using the following graphics options in a GOPTIONS statement:

CTITLE=color
sets the default color for all titles, footnotes, and notes; overridden by the
COLOR= option in a TITLE, FOOTNOTE, or NOTE statement.

CTEXT=text-color
sets the default color for all text; overridden by the CTITLE= option for titles,
footnotes, and notes.

FTITLE=title-font
sets the default font for TITLE1 definitions; overridden by the FONT= option in
the TITLE1 statement.

FTEXT=text-font
sets the default font for all text, including the TITLE1 statement if the FTITLE=
option is not used; overridden by the FONT= option a TITLE, FOOTNOTE, or
NOTE statement.

HTITLE=height<units>
sets the default height for TITLE1 definitions; overridden by the HEIGHT= option
in the TITLE1 statement.

HTEXT=n<units>
sets the default height for all text, including the TITLE1 statement if the
HTITLE= option is not used; overridden by the HEIGHT= option a TITLE,
FOOTNOTE, or NOTE statement.

See Chapter 15, “Graphics Options and Device Parameters Dictionary,” on page 327
for a complete description of each option.

Using Options That Can Reset Other Options
The ANGLE=, MOVE=, and JUSTIFY= options affect the position of the text and cause
text breaks. (To cause a text break, the MOVE= option must have at least one absolute
coordinate.) When a statement contains multiple text strings, the resulting text break
can cause the following options to reset to their default values:

294 Example 1. Ordering Axis Tick Marks with SAS Date Values � Chapter 14

� BCOLOR=
� BLANK=
� BOX=
� BSPACE=
� LSPACE=
� UNDERLIN=.

Note: The LANGLE= option does not cause a text break. �

If in a TITLE, FOOTNOTE, or NOTE statement, before the first text string, you use
an option that can be reset (such as the UNDERLIN= option) and before the second
string you use an option that resets it (such as the JUSTIFY= option), the first option
does not affect the second string. In order for the first option to affect the second string,
repeat the option and position it after the resetting option and before the text string.

For example, this statement produces a two-line title in which only the first line is
underlined:

title underlin=2 "Line 1" justify=left "Line 2";

To underline Line 2, repeat the UNDERLIN= option before the second text string and
after the JUSTIFY= option:

title underlin=2 "Line 1" justify=left
underlin=2 "Line 2";

Substituting BY Line Values in a Text String
To use the #BYVAR and #BYVAL options, insert the option in the text string at the
position you want the substitution text to appear. Both #BYVAR and #BYVAL
specifications must be followed by a delimiting character, either a space or other
nonalphanumeric character, such as the quotation mark that ends the text string. If
not, the specification is completely ignored and its text remains intact and is displayed
with the rest of the string. To allow a #BYVAR or #BYVAL substitution to be followed
immediately by other text, with no delimiter, use a trailing dot (as with macro
variables). The trailing dot is not displayed in the resolved text. If you want a period to
be displayed as the last character in the resolved text, use two dots after the #BYVAR
or #BYVAL substitution.

If you use a #BYVAR or #BYVAL specification for a variable that is not named in the
BY statement (such as #BYVAL2 when there is only one BY-variable or #BYVAL(ABC)
when ABC is not a BY-variable or does not exist), or if there is no BY statement at all,
the substitution for #BYVAR or #BYVAL does not occur. No error or warning message is
issued and the option specification is displayed with the rest of the string. The graph
continues to display a BY line at the top of the page unless you suppress it by using the
NOBYLINE option in an OPTION statement.

For more information, see “BY Statement” on page 216.

Note: This feature is not available in the DATA Step Graphics Interface or in the
Annotate facility since BY lines are not created in a DATA step. �

Example 1. Ordering Axis Tick Marks with SAS Date Values
Features:
AXIS statement options:

LABEL=
OFFSET=
ORDER=

SAS/GRAPH Statements � Example 1. Ordering Axis Tick Marks with SAS Date Values 295

FOOTNOTE statement option:
JUSTIFY=

SYMBOL statement options:
INTERPOL=
WIDTH=

GOPTIONS statement options:
BORDER

Sample library member: GAXTMDV1

This example uses SAS datetime values with an AXIS statement’s ORDER= option to
set the major tick marks on the horizontal axis. It adjusts the position of the first and
last major tick marks.

The example also uses HILOCTJ interpolation in a SYMBOL statement to join
minimum and maximum values.

Set the graphics environment.. BORDER draws a border around the graph.

goptions reset=all border;

Create the data set. DOWHLC contains the high, low, and close values of the Dow
Jones Industrial index for each business day for a month.

data dowhlc;
input date date9. high low close;
format date date9.;
datalines;

02JAN1997 6511.38 6318.96 6442.49
03JAN1997 6586.42 6437.10 6544.09
06JAN1997 6647.22 6508.30 6567.18
07JAN1997 6621.82 6481.75 6600.66
08JAN1997 6650.30 6509.84 6549.48
09JAN1997 6677.24 6520.23 6625.67
10JAN1997 6725.35 6530.62 6703.79
13JAN1997 6773.45 6647.99 6709.18

296 Example 1. Ordering Axis Tick Marks with SAS Date Values � Chapter 14

14JAN1997 6816.17 6689.94 6762.29
15JAN1997 6800.77 6669.93 6726.88
16JAN1997 6818.47 6688.40 6765.37
17JAN1997 6863.88 6732.66 6833.10
20JAN1997 6839.13 6777.30 6843.87
21JAN1997 6934.69 6771.14 6883.90
22JAN1997 6913.14 6801.16 6850.03
23JAN1997 6953.55 6724.19 6755.75
24JAN1997 6798.08 6629.91 6696.48
27JAN1997 6748.82 6598.73 6660.69
28JAN1997 6823.48 6612.20 6656.08
29JAN1997 6673.39 6627.98 6740.74
30JAN1997 6845.03 6719.96 6823.86
31JAN1997 6912.37 6769.99 6813.09
;

Prepare the data for a high-low plot. DOWHLC2 generates three records for each
date, storing each date’s high, low, and close values in variable DOW.

data dowhlc2;
set dowhlc;
drop high low close;
dow=high; output;
dow=low; output;
dow=close; output;

run;

Define titles and footnote. JUSTIFY=RIGHT in the FOOTNOTE statement causes
the footnote to be displayed in the bottom right.

title1 "Dow Jones High-Low-Close";
title2 "January, 1997";
footnote justify=right "GAXTMDV1 ";

Define symbol characteristics. INTERPOL=HILOCTJ specifies that the minimum and
maximum values of DOW are joined by a vertical line with a horizontal tick mark at
each end. The close values are joined by straight lines. The CV= option controls the
color of the symbol. The CI= and WIDTH= options control the color and the thickness of
the line that joins the close points.

symbol interpol=hiloctj
cv=red
ci=blue
width=2;

Define characteristics of the horizontal axis. The ORDER= option uses a SAS date
value to set the major tick marks. The OFFSET= option moves the first and last tick
marks to make room for the tick mark value.

axis1 order=("30DEC1996"d to "03FEB1997"d by week)
offset=(3,3)
label=none ;

Define characteristics of the vertical axis. LABEL=NONE suppresses the AXIS label.

axis2
label=none
offset=(2,2);

SAS/GRAPH Statements � Example 2. Specifying Logarithmic Axes 297

Generate the plot and assign AXIS definitions. The HAXIS= option assigns AXIS1 to
the horizontal axis, and the VAXIS= option assigns AXIS2 to the vertical axis.

proc gplot data=dowhlc2;
plot dow*date / haxis=axis1

vaxis=axis2;
run;
quit;

Example 2. Specifying Logarithmic Axes
Features:

AXIS statement options:

LABEL=
LENGTH=
LOGBASE=

LOGSTYLE=
MAJOR=

MINOR=
VALUE=

TITLE statement option:
MOVE=

GOPTIONS statement options:

GUNIT

This example illustrates the AXIS statement options LOGBASE= and LOGSTYLE=.
The horizontal axis represents pH level. The vertical axis, which represents the
concentration of the hydroxide ion expressed as moles per liter, is scaled logarithmically.

298 Example 2. Specifying Logarithmic Axes � Chapter 14

In addition, this example shows how the TICK= parameter of the VALUE= option
modifies individual tick marks.

The example uses the MOVE= option in a TITLE statement to position the title’s
subscript and superscript text.

Set the graphics environment. The GUNIT option specifies the default unit of
measure to use with height specifications.

goptions reset=all gunit=pct;

Create the data set. The CONCENTR option contains the pH values and the
concentration amount.

data concentr;
input ph conc;
datalines;

1 1E-1
2 1E-2
3 1E-3
4 1E-4
5 1E-5
6 1E-6
7 1E-7
8 1E-8
9 1E-9
10 1E-10
11 1E-11
12 1E-12
13 1E-13
14 1E-14
;

run;
Define title and footnote. The MOVE= option positions subscript 3 and superscript +.

Each new position is relative to the last position specified by the MOVE= option.

title1 h=3.7 "Relationship of pH to H"
move=(-0,-.75) h=2 "3"
move=(+0,+.75) h=2 "O"
move=(+0,+.75) h=2 "+"
move=(-0,-.75) h=2 " Concentration";

Define symbol characteristics.

symbol value=dot color=black height=2;

Define characteristics for horizontal axis. The LABEL= option uses the JUSTIFY=
suboption to create a descriptive two-line label that replaces the variable name PH.
MINOR=NONE removes all minor tick marks. The LENGTH= option controls the
length of the horizontal axis. The OFFSET= option specifies the distance from the first
and last major tick marks to the ends of the axis line.

axis1 label=(h=3 "Scale of pH Values"
justify=left color=red h=2 "More acid"
justify=right color=blue "More alkaline")

minor=none
length=60
offset=(2,2);

SAS/GRAPH Statements � Example 3. Rotating Plot Symbols Through the Color List 299

Define characteristics for vertical axis. LOGBASE=10 scales the vertical axis
logarithmically, using a base of 10. Each major tick mark represents a power of 10.
LOGSTYLE=EXPAND displays minor tick marks in logarithmic progression. The
LABEL= option uses the ANGLE= suboption to place the label parallel to the vertical
axis. The VALUE= option displays the major tick mark values as 10 plus an exponent.
The HEIGHT= suboption for each TICK= specification affects only the text following it.

axis2 logbase=10
logstyle=expand
label=(angle=90 h=2 color=black

"Concentration (Moles/Liter)")
value=(tick=1 "10" height=1.2 "-14"

tick=2 "10" height=1.2 "-13"
tick=2 "10" height=1.2 "-13"
tick=3 "10" height=1.2 "-12"
tick=4 "10" height=1.2 "-11"
tick=5 "10" height=1.2 "-10"
tick=6 "10" height=1.2 "-9"
tick=7 "10" height=1.2 "-8"
tick=8 "10" height=1.2 "-7"
tick=9 "10" height=1.2 "-6"
tick=10 "10" height=1.2 "-5"
tick=11 "10" height=1.2 "-4"
tick=12 "10" height=1.2 "-3"
tick=13 "10" height=1.2 "-2"
tick=14 "10" height=1.2 "-1")
offset=(3,3);

Generate the plot and assign AXIS definitions. AXIS1 modifies the horizontal axis
and AXIS2 modifies the vertical axis. The AUTOHREF and AUTOVREF options draw
reference lines at all major tick marks on both axes. The CHREF and CVREF options
specify the color for these reference lines.

proc gplot data= concentr;
plot conc*ph / haxis=axis1

vaxis=axis2
autohref chref=graydd
autovref cvref=graydd;

run;
quit;

Example 3. Rotating Plot Symbols Through the Color List
Features:

GOPTIONS statement options:

COLORS=

LEGEND statement options:

LABEL=

SYMBOL statement options:
VALUE=

TITLE statement option:

JUSTIFY=

300 Example 3. Rotating Plot Symbols Through the Color List � Chapter 14

HEIGHT=

Sample library member: GSYRPSC1

This example specifies a plot symbol on a SYMBOL statement and rotates the
symbol through the specified color list. Temperature values in the data are represented
by the same plot symbol in a different color. The example also shows how default
symbol sequencing provides a default plot symbol if a plot needs more plot symbols
than are defined.

It also uses a LEGEND statement to specify a two-line legend label, and to align the
label with the legend values.

Set the graphics environment. The COLORS= option specifies the color list. This list
is used by the SYMBOL statement.

goptions reset=all border
colors=(black blue green red)
;

Create the data set. BACTERIA contains information about the number and size of
bacterial divisions at various temperatures.

data bacteria;
input temp div mass life @@;
datalines;

10 3 10 1 20 22 46 0 30 23 20 9 40 42 16 16 50 33 20 6
10 1 11 2 20 01 44 2 30 21 31 10 40 41 14 12 50 31 21 7
10 4 14 3 20 13 32 4 30 24 34 9 40 43 22 14 50 34 24 2
10 2 09 2 20 12 40 6 30 26 29 8 40 42 20 16 50 26 29 4
10 3 08 3 20 09 33 8 30 24 38 11 40 39 23 18 50 34 38 2

SAS/GRAPH Statements � Example 3. Rotating Plot Symbols Through the Color List 301

10 2 09 1 20 08 38 1 30 25 47 14 40 38 18 12 50 43 44 1
10 4 10 3 20 15 42 3 30 29 30 14 40 35 22 14 50 39 20 8
10 3 11 2 20 20 36 5 30 28 31 9 40 40 26 15 50 28 31 0
10 2 15 3 20 19 35 7 30 26 25 11 40 39 25 17 50 26 15 4
10 4 12 3 20 14 33 2 30 27 22 8 40 36 23 12 50 27 22 3
10 4 13 3 20 12 37 4 30 26 33 9 40 42 27 14 50 26 33 5
10 2 17 1 20 10 39 6 30 25 43 13 40 40 29 16 50 35 43 7
10 3 14 1 20 08 38 4 30 28 34 8 40 38 28 14 50 28 34 4
10 1 12 1 20 06 41 2 30 26 32 14 40 36 21 12 50 21 22 2
10 1 11 4 20 09 32 2 30 27 31 8 40 39 22 12 50 37 31 2
10 1 20 2 20 11 32 5 30 25 32 16 40 41 22 15 50 35 22 5
10 4 09 2 20 13 39 1 30 28 29 12 40 43 19 15 50 28 29 1
10 3 02 2 20 09 32 5 30 26 32 9 40 39 22 15 50 36 22 5
10 2 05 3 20 07 35 4 30 24 35 15 40 37 25 14 50 24 35 4
10 3 08 1 20 05 38 6 30 23 28 9 40 35 28 16 50 33 28 6
;
proc sort data=bacteria;

by temp;
run;

Define title and footnote.J= breaks the title into two lines. H= specifies the size of the
title.

title1 "Effect of Temperature on the Number"
j=c h=2 "and Size of Bacterial Divisions";

footnote1 j=r "GSYRPSC1";

Define symbol shape. The VALUE= option specifies a dot for the plot symbol. Because
no color is specified, the symbol is rotated through the color list. Because the plot needs
a fifth symbol, the default plus sign is rotated into the color list to provide that symbol.

symbol1 value=dot;

Define axis characteristics.

axis1 label=("Size (in Angstroms)") ;
axis2 label=("Divisions");

Define legend characteristics. The LABEL= option specifies text for the legend label.
J=L specifies a new line and left-justifies the second string under the first. The
POSITION= option aligns the top label line with the first (and in this case only) value
row.

legend1 label=(position=(top left)
"Temperature" j=l "(Celsius)")

;

Generate the plot.

proc gplot data= bacteria;
plot div*mass=temp / haxis=axis1

vaxis=axis2
legend=legend1;

run;
quit;

302 Example 4. Creating and Modifying Box Plots � Chapter 14

Example 4. Creating and Modifying Box Plots

Features:

SYMBOL statement options:

BWIDTH=

CO=

CV=

HEIGHT=

INTERPOL=

VALUE=

Sample library member: GSYCMBP1

This example shows how to create box plots and how to specify SYMBOL definitions
so data outside the box-plot range can be represented with data points. It also shows
how to change a box plot’s percentile range to see whether the new range encompasses
the data.

The first plot in the example uses a SYMBOL definition with INTERPOL=BOXT20
to specify a box plot with whisker tops at the 80th percentile and whisker bottoms at
the 20th percentile. Data points that are outside this percentile range are represented
with squares.

As illustrated in the following output, the example then changes the SYMBOL
definition to INTERPOL=BOXT10, which expands the whisker range to the 90th
percentile for tops and the 10th percentile for bottoms. There are no data points outside
the new percentile range.

SAS/GRAPH Statements � Example 4. Creating and Modifying Box Plots 303

Set the graphics environment.

goptions reset=all border;

Create the data set. GRADES contains codes to identify each class section, and the
grades scored by students in each section.

data grades;
input section $ grade @@;
datalines;

A 74 A 89 A 91 A 76 A 87 A 93 A 93 A 96 A 55
B 72 B 72 B 84 B 81 B 97 B 78 B 88 B 90 B 74
C 62 C 74 C 71 C 87 C 68 C 78 C 80 C 85 C 82
;

Define title and footnote.

title1 "Comparison: Grades by Section";
footnote1 j=r "GSYCMBP1(a) ";

Define symbol characteristics. INTERPOL=BOXT20 specifies a box plot with tops and
bottoms on its whiskers, and the high and low bounds at the 80th and 20th percentiles.
The CO= option colors the boxes and whiskers. The BWIDTH= option affects the width
of the boxes. The VALUE= option specifies the plot symbol that marks the data points
outside the range of the box plot. The CV= option colors the plot symbols. The
HEIGHT= option specifies a symbol size.

symbol interpol=boxt20 /* box plot */
co=blue /* box and whisker color */
bwidth=4 /* box width */
value=square /* plot symbol */
cv=red /* plot symbol color */
height=2; /* symbol height */

Define axis characteristics.

axis1 label=none
value=(t=1 "Monday" j=c "section"

t=2 "Wednesday" j=c "section"

304 Example 5. Filling the Area between Plot Lines � Chapter 14

t=3 "Friday" j=c "section")
offset=(5,5)
length=50;

Generate the first plot.

proc gplot data= grades;
plot grade*section / haxis=axis1

vaxis=50 to 100 by 10;
run;

Define the footnote for the second plot.

footnote j=r ‘‘GSYCMBP1(b)’’;

Change symbol characteristics. INTERPOL=BOXT10 changes the high and low
bounds to the 90th percentile at the top and the 10th percentile on the bottom. All
other symbol characteristics remain unchanged.

symbol interpol=boxt10 width=2;

Generate the second plot.

plot grade*section / haxis=axis1
vaxis=50 to 100 by 10;

run;
quit;

Example 5. Filling the Area between Plot Lines
Features:

AXIS statement option:
ORDER=

SYMBOL statement options:
CO=
CV=
INTERPOL=

Sample library member: GSYFAPL1

SAS/GRAPH Statements � Example 5. Filling the Area between Plot Lines 305

This example shows how to fill the area between two plot lines by concatenating two
data sets into one to form a polygon with the data points. It uses a SYMBOL statement
to specify a pattern to fill the polygon and to determine the color of the area fill and the
outline around the area.

The example plots yearly highs and lows for the Dow Jones Industrial Average. It
separates the dependent variables HIGH and LOW to produce an upper plot line and a
lower plot line. The dependent variable is named VALUE and the independent variable
is named YEAR. When concatenated into one data set, AREA, the data sets form the
polygon.

Set the graphics environment.

goptions reset=all border;

Create the data set. STOCKS contains yearly highs and lows for the Dow Jones
Industrial Average, and the dates of the high and low values each year.

data stocks;
input year @7 hdate date9. @17 high

@26 ldate date9. @36 low;
format hdate ldate date9.;
datalines;

1980 20NOV1980 1000.17 21APR1980 759.13
1981 27APR1981 1024.05 25SEP1981 824.01
1982 27DEC1982 1070.55 12AUG1982 776.92
1983 29NOV1983 1287.20 03JAN1983 1027.04
1984 06JAN1984 1286.64 24JUL1984 1086.57
1985 16DEC1985 1553.10 04JAN1985 1184.96
1986 02DEC1986 1955.57 22JAN1986 1502.29
1987 25AUG1987 2722.42 19OCT1987 1738.74
1988 21OCT1988 2183.50 20JAN1988 1879.14
1989 09OCT1989 2791.41 03JAN1989 2144.64
1990 16JUL1990 2999.75 11OCT1990 2365.10
1991 31DEC1991 3168.83 09JAN1991 2470.30
1992 01JUN1992 3413.21 09OCT1992 3136.58
1993 29DEC1993 3794.33 20JAN1993 3241.95
1994 31JAN1994 3978.36 04APR1994 3593.35

306 Example 5. Filling the Area between Plot Lines � Chapter 14

1995 13DEC1995 5216.47 30JAN1995 3832.08
;

Restructure the data so that it defines a closed area. Create the temporary data sets
HIGH and LOW.

data high(keep=year value)
low(keep=year value);

set stocks;
value=high; output high;
value=low; output low;

run;

Reverse order of the observations in LOW.

proc sort data=low;
by descending year;

run;

Concatenate HIGH and LOW to create data set AREA.

data area;
set high low;

run;

Define titles and footnote.

title1 "Dow Jones Industrial Average";
title2 "Highs and Lows From 1980 to 1995";
footnote " Source: 1997 World Almanac"

j=r "GSYFAPL1 ";

Define symbol characteristics. The INTERPOL= option specifies a map/plot pattern to
fill the polygon formed by the data points. The pattern consists of medium-density
parallel lines at 90 degrees. The CV= option colors the pattern fill. The CO= option
colors the outline of the area. (If the CO= option is not used, the outline is the color of
the area.)

symbol interpol=m3n90
cv=red
co=blue;

Define axis characteristics. The ORDER= option places the major tick marks at
5-year intervals.

axis1 order=(1980 to 1995 by 5)
label=none
major=(height=2)
minor=(number=4 height=1)
offset=(2,2)
width=3;

axis2 order=(0 to 5500 by 500)
label=none
major=(height=1.5) offset=(0,0)
minor=(number=1 height=1);

Generate the plot using data set AREA.

proc gplot data=area;
plot value*year / haxis=axis1

vaxis=axis2

SAS/GRAPH Statements � Example 6. Enhancing Titles 307

vref=(1000 3000 5000);
run;
quit;

Example 6. Enhancing Titles

Features:

GOPTIONS statement options:

BORDER

TITLE statement options:

BCOLOR=

BLANK=

BOX=

COLOR=

FONT=

HEIGHT=

MOVE=

ROTATE=

UNDERLIN=

Sample library member: GTIENTI1

This example illustrates some ways you can format title text. The same options can
be used to format footnotes.

Set the graphics environment. BORDER draws a border around the graph.

goptions reset=all border;

Define title1. TITLE1 uses the default font and height defined in the default style.
The HEIGHT= option sets the height of the text.

title1 "This is TITLE1" height=4;

308 Example 6. Enhancing Titles � Chapter 14

Define TITLE3. The UNDERLIN= option underlines both text strings.

title3 underlin=1
"TITLE3 Is"
color=red
" Underlined";

Define TITLE5. The ANGLE= option tilts the line of text clockwise 90 degrees and
places it at the right edge of the output.

title5 color=red
angle=-90
"TITLE5 is Angled -90";

Define TITLE7. The ROTATE= option rotates each character in the text string at the
specified angle. The HEIGHT= option sets the height of the text.

title7 height=4
color=red
rotate=25
"TITLE7 is Rotated";

Define TITLE8. The BOX= option draws a green box around the text.

title8 color=green
box=1
"TITLE8 is Boxed";

Define TITLE9. The BLANK= option prevents the boxed title from being overwritten
by TITLE10. The first COLOR= option specifies the color of the box border, and the
BCOLOR= option specifies the color of the box background. The second COLOR= option
specifies the text color.

title9 color=red
box=3
blank=yes
bcolor=red
color=blue
move=(70,20)
angle=-25
"TITLE9 is Angled in a Red Box";

Define TITLE10. In this statement, the BOX= option draws a box around the first
text string. The BOX= option is turned off by the MOVE= option that uses absolute
coordinates and causes a text break.

title10 color=red
box=1
bcolor=blue
move=(60,20)
font=script
"TITLE10 is in Script and "
move=(60,15)
height=2
"is Partially Boxed, Positioned"
move=(60,10)

height=2
"with Explicit Moves, and Overlaid by TITLE9"

;

SAS/GRAPH Statements � Example 7. Using BY-group Processing to Generate a Series of Charts 309

Define footnote.

footnote justify=right "GTIENTI1 ";

Display titles and footnote. All existing titles and footnotes are automatically
displayed by the procedure.

proc gslide;
run;
quit;

Example 7. Using BY-group Processing to Generate a Series of Charts
Features:
AXIS statement options:

LABEL=
MAJOR=
MINOR=
NOPLANE
ORDER=
STYLE=
VALUE=

BY statement
OPTIONS statement option:

NOBYLINE
PATTERN statement option:

COLOR=
TITLE statement:

#BYVAL

Sample library member: GBYGMSC1
This example uses a BY statement with the GCHART procedure to produce a

separate three-dimensional vertical bar chart for each value of the BY variable TYPE.
The three charts, which are shown in Display 14.1 on page 312, Display 14.2 on page
312, and Display 14.3 on page 313 following the code, show leading grain producers for
1995 and 1996.

The program suppresses the default BY lines and instead uses #BYVAL in the TITLE
statement text string to include the BY variable value in the title for each chart.

The AXIS1 statement that is assigned to the vertical (response) axis is automatically
applied to all three graphs generated by the BY statement. This AXIS statement
removes all the elements of the response axis except the label. The same AXIS
statement also includes an ORDER= option. Because this option is applied to all the
graphs, it ensures that they all use the same scale of response values.

Because no subgroups are specified and the PATTERNID= option is omitted, the
color specified in the single PATTERN statement is used by all the bars.

Set the graphics environment.

goptions reset=all border;

Create the data set GRAINLDR. GRAINLDR contains data about grain production in
five countries for 1995 and 1996. The quantities in AMOUNT are in thousands of
metric tons. MEGTONS converts these quantities to millions of metric tons.

310 Example 7. Using BY-group Processing to Generate a Series of Charts � Chapter 14

data grainldr;
length country $ 3 type $ 5;
input year country $ type $ amount;
megtons=amount/1000;
datalines;

1995 BRZ Wheat 1516
1995 BRZ Rice 11236
1995 BRZ Corn 36276
1995 CHN Wheat 102207
1995 CHN Rice 185226
1995 CHN Corn 112331
1995 INS Wheat .
1995 INS Rice 49860
1995 INS Corn 8223
1995 USA Wheat 59494
1995 USA Rice 7888
1995 USA Corn 187300
1996 BRZ Wheat 3302
1996 BRZ Rice 10035
1996 BRZ Corn 31975
1996 IND Wheat 62620
1996 IND Rice 120012
1996 IND Corn 8660
1996 USA Wheat 62099
1996 USA Rice 7771
;

Create a format for the values of COUNTRY.

proc format;
value $country "BRZ" = "Brazil"

"CHN" = "China"
"IND" = "India"
"INS" = "Indonesia"
"USA" = "United States";

run;

Suppress the default BY line and define a title that includes the BY-value. #BYVAL
inserts the value of the BY variable COUNTRY into the title of each report.

options nobyline;
title1 "Leading #byval(type) Producers"

j=c "1995 and 1996";
footnote1 j=r "GBYGMSC1 ";

Specify a color for the bars.

pattern1 color=green;

Define the axis characteristics for the response axes. The ORDER= option specifies the
range of values for the response axes. ANGLE=90 in the LABEL= option rotates the
label 90 degrees. All the other options remove axis elements. The MAJOR=, MINOR=,
and VALUE= options remove the tick marks and values. STYLE=0 removes the line.
The NOPLANE option removes the three-dimensional plane.

axis1 order=(0 to 550 by 100)
label=(angle=90 "Millions of Metric Tons")
major=none

SAS/GRAPH Statements � Example 7. Using BY-group Processing to Generate a Series of Charts 311

minor=none
value=none
style=0
noplane;

Define midpoint axis characteristics. The SPLIT= option defines the character that
causes an automatic line break in the axis values.

axis2 label=none
split=" ";

Sort data according to values of BY variable. The data must be sorted before running
PROC GCHART with the BY statement.

proc sort data=grainldr out=temp;
by type;

run;

Generate the vertical bar charts using a BY statement. The BY statement produces a
chart for each value of SITE. The FORMAT statement assigns the $COUNTRY. format
to the chart variable. Assigning AXIS1 to the RAXIS= option causes all three charts to
have the same response axis.

proc gchart data=temp (where=(megtons gt 31));
by type;
format country $country.;
vbar3d country / sumvar=megtons

outside=sum
descending
shape=hexagon
width=8
coutline=black
cframe=grayaa
maxis=axis2
raxis=axis1 name="GBYGMSC1";

run;
quit;

312 Example 7. Using BY-group Processing to Generate a Series of Charts � Chapter 14

Display 14.1 Output for BY Value Corn

Display 14.2 Output for BY Value Rice

SAS/GRAPH Statements � Example 8. Creating a Simple Web Page with the ODS HTML Statement 313

Display 14.3 Output for BY Value Wheat

Example 8. Creating a Simple Web Page with the ODS HTML Statement
Features:
ODS HTML statement options:

BODY=
CLOSE

GOPTIONS statement options:
RESET=

LEGEND statement options:
ACROSS=
LABEL=

Sample library member: GONCSWB1

314 Example 8. Creating a Simple Web Page with the ODS HTML Statement � Chapter 14

Display 14.4 Displaying a Map in a Web Page

This example illustrates the simplest way to use the ODS HTML statement to create
an HTML file and a GIF file that you can display in a Web browser. It generates one
body file that displays one piece of SAS/GRAPH output—a map of average per capita
income.

This example also illustrates default pattern behavior with maps and explicit
placement of the legend on the graph. It shows how the default solid map pattern uses
different shades of the default style color to differentiate between countries.

And it shows how to use a LEGEND statement to arrange and position a legend so it
fits well with the graph’s layout.

Close the ODS Listing destination for procedure output, and set the graphics
environment. To conserve system resources, ODS LISTING CLOSE closes the Listing
destination for procedure output. Thus, the graphics output is not displayed in the
GRAPH window, although it is written to the graphics catalog and to the GIF files.

ods listing close;
goptions reset=all;

Open the ODS HTML destination. The BODY= option names the file for storing
HTML output.

ods html body="na_body.html"
;

Define title for the map. By default, any defined title is included in the graphics
output (GIF file).

title "North America Gross National Income per Capita 2004";

SAS/GRAPH Statements � Example 9. Combining Graphs and Reports in a Web Page 315

Define legend characteristics. The ACROSS= option defines the number of columns in
the legend. The LABEL= option specifies a legend label and left-justifies it above the
legend values.

legend across=2
origin=(8,5)
mode=share
label=(position=top

justify=left
"Gross National Income per Capita")

;

Generate the prism map. Because the NAME= option is omitted, SAS/GRAPH
assigns the default name GMAP to the GRSEG entry in the graphics catalog. This is
the name that is assigned to the GIF file created by the ODS HTML statement.

proc gmap map=maps.namerica data=sashelp.demographics;
id cont id;

format gni dollar10.0;
choro gni / levels=10 legend=legend1;

run;
quit;

Close the ODS HTML destination, and open the ODS Listing destination. You must
close the HTML destination before you can view the output with a browser. ODS
LISTING opens the Listing destination so that the destination is again available for
displaying output during this SAS session.

ods html close;
ods listing;

Example 9. Combining Graphs and Reports in a Web Page
Features:

AXIS statement options:
LENGTH=
VALUE=

BY statement
GOPTIONS statement options:

BORDER
DEVICE=
TRANSPARENCY

ODS HTML statement options:
BODY=
CONTENTS=
FRAME=
PATH=
NOGTITLE

OPTIONS statement option:
NOBYLINE

TITLE statement option:

316 Example 9. Combining Graphs and Reports in a Web Page � Chapter 14

#BYVAL

Sample library member: GONCGRW1
This example generates several graphs of sales data that can be accessed from a

single Web page. The graphs are two bar charts of summary sales data and three pie
charts that break the data down by site. Each bar chart and an accompanying report is
stored in a separate body file.

The three pie charts are generated with BY-group processing and are stored in one
body file. The program suppresses the default BY lines and instead includes the BY
variable value in the title for each chart. The SAS/GRAPH titles are displayed in the
HTML output instead of in the graphics output.

The Web page contains two frames, one that displays a Table of Contents for all the
graphs, and one that serves as the display area. Links to each piece of output appear in
the table of contents, which is displayed in the left frame. Initially the frame file
displays the first body file, which contains a bar chart and a report, as shown in the
following figure.

Display 14.5 Browser View of Bar Chart and Quarterly Sales Report

Notice that the chart title is displayed outside the graph as part of the HTML file.
Select the link to Total Department Sales to display the second bar chart, as shown in

the following figure.

SAS/GRAPH Statements � Example 9. Combining Graphs and Reports in a Web Page 317

Display 14.6 Browser View of Bar Chart and Department Sales Report

Selecting any link for Department Sales displays the corresponding pie chart as
shown in the following figure.

Display 14.7 Browser View of Pie Charts of Site Sales

Because the pie charts are stored in one file, you can easily see all three by scrolling
through the file.

Additional features include AXIS statements that specify the same length for both
midpoint axes, so that the bar charts are the same width even though they have a
different number of bars.

Close the ODS Listing destination for procedure output, and set the graphics
environment. To conserve system resources, ODS LISTING CLOSE closes the Listing
destination for procedure output. DEVICE=GIF causes the ODS HTML statement to
generate the graphics output as GIF files. The TRANSPARENCY option causes the
graphics output to use the Web-page background as the background of the graph. The

318 Example 9. Combining Graphs and Reports in a Web Page � Chapter 14

BORDER option is used so that the border around the graphics output area is
compatible with the borders that are created for nongraphics output.

ods listing close;

goptions reset=all border ;

Create the data set TOTALS. The data set contains quarterly sales data for three
manufacturing sites for one year.

data totals;
length Dept $ 7 Site $ 8;
input Dept Site Quarter Sales;
datalines;

Repairs Sydney 1 5592.82
Repairs Atlanta 1 9210.21
Tools Sydney 1 1775.74
Tools Atlanta 1 2424.19
Tools Paris 1 5914.25
Parts Atlanta 2 11595.07
Parts Paris 2 9558.29
Repairs Sydney 2 5505.31
Repairs Paris 2 7538.56
Tools Atlanta 2 1903.99
Tools Paris 2 7868.34
Parts Sydney 3 8437.96
Parts Paris 3 6789.85
Tools Atlanta 3 3048.52
Tools Paris 3 9017.96
Parts Sydney 4 6065.57
Parts Atlanta 4 9388.51
Parts Paris 4 8509.08
Repairs Atlanta 4 2088.30
Repairs Paris 4 5530.37
;

Open the ODS HTML destination. The FRAME= option names the HTML file that
integrates the contents and body files. The CONTENTS= option names the HTML file
that contains the table of contents to the HTML procedure output. The BODY= option
names the file for storing the HTML output. The contents file links to each of the body
files written to the HTML destination. The NOGTITLE option suppresses the graphics
titles from the SAS/GRAPH output and displays them through the HTML page.

ods html frame="sales_frame.html"
contents="sales_contents.html"
body="sales_body1.html"
nogtitle;

Define title and footnote.

title1 "Total Sales By Quarter";
footnote j=r "salesqtr ";

Define axis characteristics for the first bar chart. In AXIS2, the LENGTH= option
specifies the length of the midpoint axis.

axis1 order=(0 to 60000 by 20000)
minor=(number=1)

SAS/GRAPH Statements � Example 9. Combining Graphs and Reports in a Web Page 319

label=none;
axis2 label=none length=70pct

value=("1Q" "2Q" "3Q" "4Q");

Suppress the legend label and define the size of the legend values.

legend1 label=none shape=bar(4,4);

Generate the vertical bar chart of quarterly sales. The NAME= option specifies the
name of the catalog entry.

proc gchart data=totals;
format sales dollar8.;
vbar3d quarter / discrete

sumvar=sales
shape=cylinder
subgroup=site
cframe=grayaa
caxis=black
width=12
space=4
legend=legend1
maxis=axis2
raxis=axis1
des="Total Quarterly Sales"
name="salesqtr";

run;
quit;

Sort the data set for the report of quarterly sales. The data must be sorted in order of
the BY variable before running PROC REPORT with BY-group processing.

proc sort data=totals out=qtrsort;
by quarter site;

run;

Reset the footnote and suppress the BY line. We suppress the BY line because
otherwise #BYVAL inserts the value of the BY variable into the title of each report.

footnote1;
options nobyline;

Generate a report of quarterly sales. Because the HTML body file that references the
GCHART procedure output is still open, the report is stored in that file. The chart and
report are shown in Display 14.5 on page 316.

title1 "Sales for Quarter #byval(quarter)";
proc report data=qtrsort nowindows;
by quarter;
column quarter site dept sales;
define quarter / noprint group;
define site / display group;
define dept / display group;
define sales / display sum format=dollar8.;
compute after quarter;

site="Total";

320 Example 9. Combining Graphs and Reports in a Web Page � Chapter 14

endcomp;
break after site / summarize style=rowheader;
break after quarter / summarize style=rowheader;

run;

Open a new body file for the second bar chart and report. Assigning a new body file
closes SALES_BODY1.HTML. The contents and frame files, which remain open,
contains links to all body files.

ods html body="sales_body2.html";

Define title and footnote for second bar chart.

title1 "Total Sales By Department";
footnote1 j=r "salesdep ";

Define axis characteristics. These AXIS statements replace the ones defined earlier.
As before, the LENGTH= option defines the length of the midpoint axis.

axis1 label=none
minor=(number=1);
order=(0 to 100000 by 20000)

axis2 label=none length=70pct;

Generate the vertical bar chart of departmental sales.

proc gchart data=totals;
format sales dollar8.;
vbar3d dept / shape=cylinder

subgroup=site
cframe=grayaa
width=12
space=4
sumvar=sales
legend=legend1
maxis=axis2
raxis=axis1
caxis=black
des="Total Department Sales"
name="salesdep";

run;
quit;

Sort the data set for the report of department sales. The data must be sorted in order
of the BY variable before running PROC REPORT with BY-group processing.

proc sort data=totals out=deptsort;
by dept site;

run;

Reset the footnote, define a report title, and generate the report of department sales.
#BYVAL inserts the value of the BY variable into the title of each report. The chart and
report are shown in Display 14.5 on page 316.

footnote1;
title1 "Sales for #byval(dept)";
proc report data=deptsort nowindows;

by dept;
column dept site quarter sales;
define dept / noprint group;

SAS/GRAPH Statements � Example 10. Creating a Bar Chart with Drill-Down Functionality for the Web 321

define site / display group;
define quarter / display group;
define sales / display sum format=dollar8.;
compute after dept;

site="Total";
endcomp;
break after site / summarize style=rowheader;
break after dept / summarize style=rowheader;

run;

Open a new body file for the pie charts. Assigning a new file as the body file closes
SALES_BODY2.HTML. The contents and frame files remain open. GTITLE displays
the titles in the graph.

ods html body="sales_body3.html" gtitle;

Sort data set in order of the BY variable before running the GCHART procedure with
BY-group processing.

proc sort data=totals out=sitesort;
by site;

run;

Define title and footnote. #BYVAL inserts the value of the BY variable SITE into the
title for each output.

title "Departmental Sales for #byval(site)";
footnote j=r "salespie ";

Generate a pie chart for each site. All the procedure output is stored in one body file.
Because BY-group processing generates multiple graphs from one PIE3D statement, the
name assigned by the NAME= option is incremented to provide a unique name for each
piece of output.

proc gchart data=sitesort;
format sales dollar8.;
by site;
pie3d dept / noheading

coutline=black
sumvar=sales
des="Department Sales"
name="salespie";

run;
quit;

Close the ODS HTML destination, and open the ODS Listing destination.

ods html close;
ods listing;

Example 10. Creating a Bar Chart with Drill-Down Functionality for the
Web

Features:
GOPTIONS statement option:

RESET=
TRANSPARENCY=

322 Example 10. Creating a Bar Chart with Drill-Down Functionality for the Web � Chapter 14

DEVICE=
ODS HTML statement options:

BODY=
NOGTITLE
PATH=

Sample library member: GONDDCW1
This example shows you how to create a drill-down graph in which the user can

select an area of the graph in order to display additional information about the data.
The program creates one vertical bar chart of total sales for each site and three reports
that break down the sales figures for each site by department and quarter. The
following figure shows the bar chart of sales.

Display 14.8 Vertical Bar Chart of Total Sales

Display 14.9 on page 323 shows the PROC REPORT output that appears when you
click on the bar for Atlanta.

SAS/GRAPH Statements � Example 10. Creating a Bar Chart with Drill-Down Functionality for the Web 323

Display 14.9 PROC REPORT Output Displayed in a Web Browser

For additional information about this program, see “Details” on page 325.
Close the ODS Listing destination for procedure output, and set the graphics

environment. To conserve system resources, ODS LISTING CLOSE closes the Listing
destination for procedure output. In the GOPTIONS statement, DEVICE=GIF causes
the ODS HTML statement to generate the graphics output as GIF files. The
TRANSPARENCY option causes the graphics output to use the Web-page background
as the background of the graph.

ods listing close;
goptions reset=all device=gif transparency noborder;

Add the HTML variable to TOTALS and create the NEWTOTAL data set. The HTML
variable SITEDRILL contains the targets for the values of the variable SITE. Each
HREF value specifies the HTML body file and the name of the anchor within the body
file that identifies the target graph.

data newtotal;
set totals;
length sitedrill $40;

if site="Atlanta" then
sitedrill="HREF=’report_deptsales.html#IDX1’";

else if site="Paris" then
sitedrill="HREF=’report_deptsales.html#IDX2’";

if site="Sydney" then
sitedrill="HREF=’report_deptsales.html#IDX3’";

run;

Open the ODS HTML destination. The BODY= option names the file for storing
HTML output. The NOGTITLE option suppresses the graph titles from the
SAS/GRAPH output and displays them in the HTML.

324 Example 10. Creating a Bar Chart with Drill-Down Functionality for the Web � Chapter 14

ods html
body="report_body.html"
nogtitle;

Define title and footnote.

title1 "Total Sales for All Sites";
footnote1 j=l "click on bars" j=r "REPORT3D ";

Assign a pattern color for the bars. Each bar in the graph uses the same PATTERN
definition.

pattern color=cyan;

Define axis characteristics. The VBAR3D statement assigns AXIS1 to the response
axis and AXIS2 to the midpoint axis.

axis1 order=(0 to 80000 by 20000)
minor=(number=1)
label=none;

axis2 label=none offset=(9,9);

Generate the vertical bar chart of total sales for each site. The HTML= option
specifies SITEDRILL as the variable that contains the name of the target. Specifying
the HTML= option causes SAS/GRAPH to add an image map to the HTML body file.
The NAME= option specifies the name of the catalog entry.

proc gchart data=newtotal;
format sales dollar8.;
vbar3d site / discrete

width=15
sumvar=sales
inside=sum
html=sitedrill
coutline=black
cframe=blue
maxis=axis2
raxis=axis1
name="report3d ";

run;
quit;

Open the file for the PROC REPORT output. Assigning a new body file closes
REPORT_BODY.HTML.

ods html body="report_deptsales.html" ;

Sort the data set NEWTOTAL. The data must be sorted in order of the BY variable
before running PROC REPORT with BY-group processing.

proc sort data=newtotal;
by site dept quarter;

run;
quit;

Clear the footnote.

goptions reset=footnote1;

Suppress the default BY line and define a title that includes the BY-value. #BYVAL
inserts the value of the BY variable SITE into the title of each report.

SAS/GRAPH Statements � Building an HREF value 325

options nobyline;
title1 "Sales Report for #byval(site)";

Print a report of departmental sales for each site.

proc report data=newtotal nowindows;
by site;
column site dept quarter sales;
define site / noprint group;
define dept / display group;
define quarter / display group;
define sales / display sum format=dollar8.;
compute after site;

dept="Total";
endcomp;
break after site / summarize style=rowheader page;

run;
quit;

Close the ODS HTML destination, and open the ODS Listing destination.

ods html close;
ods listing;

Details

This section provides additional information about the pieces of this program and
how they work together to generate SAS/GRAPH output with drill-down functionality.
It describes

� how an HREF value is built

� how the HTML= option creates an image map in the HTML file

� how the HTML file references the SAS/GRAPH output.

Building an HREF value

In the DATA step, the variable SITEDRILL is assigned a string that defines the link
target for a data value. For example,

if site="Atlanta" then
sitedrill="HREF=’report_deptsales.html#IDX1’";

The link target is specified by the HTML HREF attribute. The HREF value tells the
Web page where to link to when a user selects the region associated with the value
Atlanta.

For example, clicking on the first bar in the chart links to the target defined by
report_deptsales.html#IDX1. This target consists of a filename and an anchor. The
file, report_deptsales.html, is generated by the PROC REPORT step. IDX1 is the
anchor that identifies the section of the file that contains the report for the first BY
group, Atlanta.

Because anchor names increment, in order to assign them accurately you must know
how many pieces of output your program generates and in what order. For example,
this table lists in order the pieces of output generated by this example and their default
anchor names:

326 Creating an image map � Chapter 14

Procedure Output Anchor name

GCHART report3d.gif IDX

REPORT Atlanta report IDX1

REPORT Paris report IDX2

REPORT Sydney report IDX3

Creating an image map
The HTML= option in the GCHART procedure is assigned the variable with the

target information – in this case, SITEDRILL.

html=sitedrill

This option causes SAS/GRAPH to generate in the HTML body file the MAP and
AREA elements that compose the image map. It loads the HREF attribute value from
SITEDRILL into the AREA element. This image map, which is named gqcke00k_map,
is stored in report_body.html (ODS generates unique map names each time you run
the program, so the next time this program runs, the map name will be different):

<MAP NAME="gqcke00k_map">
<AREA SHAPE="POLY"

HREF="report_deptsales.html#IDX3"
COORDS="423,409,423,242,510,242,510,409" >

<AREA SHAPE="POLY"
HREF="report_deptsales.html#IDX2"
COORDS="314,409,314,139,401,139,401,409" >

<AREA SHAPE="POLY"
HREF="report_deptsales.html#IDX1"
COORDS="205,409,205,199,292,199,292,409" >

<
/MAP>

The AREA element defines the regions within the graph that you can select to link to
other locations. It includes attributes that define the shape of the region (the SHAPE=
option) and position of the region (the COORDS= option) as well as the link target (the
HREF= option).

The value assigned to the HREF= attribute is contained in the variable assigned to
the HTML= option, in this case SITEDRILL.

Referencing SAS/GRAPH Output
In the GOPTIONS statement, DEVICE=GIF causes SAS/GRAPH to create GIF files

from the SAS/GRAPH output. It also adds to the open body file an IMG element that
points to the GIF file. In this case, SAS/GRAPH adds the following IMG element to
report_body.html:

The IMG element tells the Web page to get the image from the file report3d.gif. It
also tells the Web page to use the image map #report3d_map to define the hotspots of
the bar chart.

327

C H A P T E R

15
Graphics Options and Device
Parameters Dictionary

Introduction 327
Specifying Graphics Options and Device Parameters 327

Specifying Units of Measurement 328

Dictionary of Graphics Options and Device Parameters 328

Introduction
This chapter provides a detailed description of all of the graphics options and device

parameters used with SAS/GRAPH software. These include
� all graphics options used by the GOPTIONS statement
� all device parameters that can be specified as options in the ADD and MODIFY

statements in the GDEVICE procedure
� all device parameters that appear as fields in the GDEVICE windows.

The descriptions provide the syntax, defaults, and required information for each
option and parameter.

The graphics options and device parameters are intermixed and listed alphabetically.
When the graphics option and device parameter have the same name, they are
discussed in the same dictionary entry and the description uses only that name and
does not distinguish between the option and the parameter except where the distinction
is necessary.

For a list of all the graphics options, see “GOPTIONS Statement” on page 220. For a
list of all the device parameters, see “ADD Statement” on page 1129.

If the syntax for the graphics option and the device parameter is different, both
forms are shown. If the syntax is the same, one form is shown.

Specifying Graphics Options and Device Parameters
Use a GOPTIONS statement to specify the graphics options. Some graphics options

can also be specified in an OPTIONS statement. Use the GDEVICE procedure to
specify the device parameters. (See “GOPTIONS Statement” on page 220 and Chapter
38, “The GDEVICE Procedure,” on page 1125 for details.)

Note: The syntax for device parameters is the syntax for specifying parameters
when using the GDEVICE procedure statements. With the GDEVICE windows, simply
enter values into fields in the windows. �

Note: The values that you specify for any option or parameter must be valid for the
device. If you specify a value that exceeds the device’s capabilities, SAS/GRAPH
software reverts to values that can be used with the device. �

328 Specifying Units of Measurement � Chapter 15

Specifying Units of Measurement
When the syntax of an option includes units, use one of these unless the syntax

specifies otherwise:

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area

PT points (there are approximately 72 points in an inch).

If you omit units, a unit specification is searched for in this order:

1 the value of GUNIT= in a GOPTIONS statement
2 the default unit, CELLS.

Dictionary of Graphics Options and Device Parameters

ACCESSIBLE

Generates descriptive text and summary statistics representing your graphics output.

Used in: GOPTIONS statement

Default: NOACCESSIBLE

Restriction: Only supported by JAVA and ActiveX when used with the ODS HTML
output destination.

Syntax
ACCESSIBLE | NOACCESSIBLE

ACCESSIBLE
enables you to comply with section 508 of the Rehabilitation Acts and meet usability
requirements for disabled users. Specifying the ACCESSIBLE option, when used
with the ODS HTML statement, generates descriptive text and data for your graphs.
SAS/GRAPH writes accessibility information to the graph’s output HTML file, and
creates a left-justified footnote that provides a link to the information.

The information and the link are not visible in the output HTML, however both
are detected by accessibility aids, such as screen readers. You can also access the
information by pressing the tab key and enter. The information will be displayed
once you press enter on the link in the footnote. The information will also display if
you move your mouse over the location of the left–justified footnote, and click the
link when the mouse pointer shape changes.

Graphics Options and Device Parameters Dictionary � ACCESSIBLE 329

Figure 15.1 Accessible

NOACCESSIBLE
toggles off the ACCESSIBLE option.

330 ADMGDF � Chapter 15

Figure 15.2 Noaccessible

ADMGDF

Specifies whether to write an ADMGDF or GDF file when the GSFNAME= and GSFMODE= graphics
options are used with a GDDM device driver.

Used in: GOPTIONS statement
Default: NOADMGDF
Restriction: GDDM device drivers on IBM mainframe systems only

Syntax
ADMGDF | NOADMGDF

ADMGDF
instructs the GDDM device driver to write out an ADMGDF file.

NOADMGDF
instructs the GDDM device driver to write out a GDF file.

ALTDESC

Specifies whether to write the DESCRIPTION= statement text to the ALT= text in an HTML file.

Used in: GOPTIONS statement

Graphics Options and Device Parameters Dictionary � ASPECT 331

Default: ALTDESC
Restriction: Only supported when used with the HTML output destination and the
DESCRIPTION= option.

Syntax
ALTDESC | NOALTDESC

ALTDESC
With ODS HTML output, by default the entire output has an HTML ALT tag that
specifies which procedure was used, and which variables were plotted. Or, if you
have specified text using the DESCRIPTION= option, then that value is used for the
HTML ALT tag rather than the default ALT tag (many users add a textual
description of the graph using this technique, to help the vision-impaired, and to help
meet 508-compliance).

If you prefer not to have an ALT tag for the entire graph, you can suppress it by
specifying DESCRIPTION=" " (which might be more convenient on a graph by graph
basis) or by using GOPTIONS NOALTDESC (which might be more convenient for
turning them off for all graphs, such as putting this in your AUTOEXEC.BAT).

NOALTDESC
toggles off the ALTDESC option.

ASPECT

Sets the aspect ratio for graphics elements.

Used in: GOPTIONS statement GDEVICE procedure GDEVICE Detail window
Default: device–dependent
Restriction: not supported by Java or ActiveX

Syntax
ASPECT=scaling-factor

scaling-factor
is a non-negative integer or real number that determines the ratio of width to height
for graphics elements. If you specify ASPECT=1, each graphics element has equal
horizontal and vertical scaling factors; ASPECT=2 scales the graphics element twice
as wide as its height; and so on. If ASPECT= is not specified or is set to 0 or null,
SAS/GRAPH uses the aspect ratio of the hardware device.

Details
The aspect ratio affects many graphics characteristics, such as the shape of software
characters and the roundness of pie charts. Some graphics drivers do not produce
correct output if the aspect ratio is anything other than the default. When you use a

332 AUTOCOPY � Chapter 15

device that uses local scaling (that is, the device itself can scale the output, for example,
some plotters), use ASPECT= to tell SAS/GRAPH the scaling factor.

Note: You can get more reliable results if you use the default aspect ratio and use
the HSIZE= and VSIZE= graphics options to set the dimensions. �

AUTOCOPY

Specifies whether to generate hard copy automatically.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Defaults: GOPTIONS: NOAUTOCOPY; GDEVICE: AUTOCOPY=N
Restrictions: device-dependent; not supported by Java or ActiveX

Syntax
GOPTIONS: AUTOCOPY | NOAUTOCOPY

GDEVICE: AUTOCOPY=Y | N

AUTOCOPY
AUTOCOPY=Y

prints a copy of the graph automatically.

NOAUTOCOPY
AUTOCOPY=N

suppresses printing a copy of the graph. A blank Autocopy field in the Parameters
window is the same as AUTOCOPY=N.

Details
AUTOCOPY is used only for older terminals that have printers attached directly to the
device.

AUTOFEED

Specifies whether devices with continuous paper or automatic paper feed should roll or feed the
paper automatically for the next graph.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Defaults: GOPTIONS: AUTOFEED (if a device is specified): GDEVICE: AUTOFEED=Y
Restrictions: device-dependent; not supported by Java or ActiveX
See also: PPDFILE

Syntax
GOPTIONS: AUTOFEED | NOAUTOFEED

Graphics Options and Device Parameters Dictionary � AUTOSIZE 333

GDEVICE: AUTOFEED=Y | N

AUTOFEED
AUTOFEED=Y

causes the device to feed new paper automatically for the next graph. A blank
Autofeed field in the Parameters window is the same as AUTOFEED=Y.

NOAUTOFEED
AUTOFEED=N

suppresses the automatic paper feed.

Details
For PostScript devices, if AUTOFEED is unaltered, the PostScript file is unchanged. If
you specify NOAUTOFEED and do not select a PPD file with the PPDFILE option, a
PostScript Level 1 MANUALFEED command is added to the driver output. If you
specify NOAUTOFEED and select a PPD that contains a MANUALFEED option, the
procedure code for that MANUALFEED option is sent. If there is no MANUALFEED
option in the PPD, no MANUALFEED code is sent. See “PPDFILE” on page 406.

AUTOSIZE

Controls whether to change the size of the character cells in order to preserve the number of rows
and columns specified in the device entry.

Used in: GOPTIONS statement
Default: device-dependent
Restriction: not supported by Java or ActiveX
See also: DEVOPTS

Syntax
AUTOSIZE=ON | OFF | DEFAULT

ON
changes the cell size in order to preserve the number of rows and columns.

OFF
preserves the device’s original cell size and temporarily changes the number of rows
and columns.

DEFAULT
uses the default setting (ON or OFF) that is controlled by DEVOPTS bit 50 (see
“DEVOPTS” on page 350).

Details
AUTOSIZE is useful when you change the size of the graphics display area using one or
more of the options PAPERSIZE, XPIXELS, YPIXELS, XMAX, or YMAX. It lets you

334 BINDING � Chapter 15

control image text size without using PROC GDEVICE. Typically, AUTOSIZE is on for
most image drivers and off for all other types of drivers.

Note: If you use HSIZE of VSIZE, the character cell size changes regardless of the
AUTOSIZE setting. �

BINDING

Specifies which edge of the document is the binding edge.

Used in: GOPTIONS statement OPTIONS statement

Default: DEFAULTEDGE

Restrictions: PostScript and PCL printers only. PostScript printers require a PPD file.
Not supported by Java or ActiveX.

See also: DUPLEX, PPDFILE

Syntax
BINDING=DEFAULTEDGE | LONGEDGE | SHORTEDGE

Details
BINDING controls how the page is flipped when DUPLEX is in effect. It does not

change the orientation of the graph. DEFAULTEDGE refers to the harware’s
factory-default setting. LONGEDGE and SHORTEDGE refer to the paper’s long and
short edges.

For PostScript printers, a PPD file must also be specified, using the PPDFILE=
option. The PPD file contains the command that SAS/GRAPH needs to request the
appropriate binding method on the printer being used. If a PPD file is not specified, the
BINDING= option is ignored because SAS/GRAPH will lack the command needed to
request the binding method.

BORDER

Specifies whether to draw a border around the graphics output area.

Used in: GOPTIONS statement

Default: NOBORDER

Syntax
BORDER | NOBORDER

Graphics Options and Device Parameters Dictionary � CBY 335

Details
The placement of the border on the display is defined by the HSIZE= and VSIZE=
graphics options, if used. Otherwise the placement is defined by the XMAX and YMAX
device parameters.

CBACK

Specifies the background color of the graphics output.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Gcolors window
Default: as specified in the Gcolors window

Syntax
CBACK=background-color

background-color
specifies any SAS/GRAPH color name. See Chapter 12, “SAS/GRAPH Colors and
Images,” on page 167 for information about specifying colors.

Details
The CBACK= option is valid on all devices but can be ignored by some (for example,
plotters). Specify the default in the Gcolors window of the device entry.

Note: This option overrides the Background and Foreground style attributes in the
graph styles. For more information on graph styles, refer to the TEMPLATE procedure
documentation in SAS Output Delivery System: User’s Guide. �

If you explicitly specify a background color with the CBACK= option, the background
color you select should contrast with the foreground colors.

If the IBACK= option is in effect, an image will appear in the background in place of
the color specified with the CBACK= option.

CBY

Selects the color of the By lines that appear in the graphics output.

Used in: GOPTIONS statement
Default: (1) CTEXT= graphics option, if used; (2) first color in current color list
Restriction: not supported by Java or ActiveX

Syntax
CBY=By line-color

336 CELL � Chapter 15

By line-color
specifies any SAS/GRAPH color name. See Chapter 12, “SAS/GRAPH Colors and
Images,” on page 167 for information about specifying colors.

Details
When you use a BY statement with a SAS/GRAPH procedure to process a data set in
subgroups, each graph produced by that procedure is headed by a By line that displays
the BY variables and their values that define the current subgroup.

CELL

Controls whether to use cell alignment.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device-dependent
Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: CELL | NOCELL

GDEVICE: CELL=Y | N

CELL
CELL=Y

causes the device to use cell alignment. In that case SAS/GRAPH attempts to place
hardware (or simulated hardware) characters inside character cells. This restriction
on the location of characters means that in some cases the SAS/GRAPH procedure
can generate axes that do not occupy the entire procedure output area or might be
unable to create the requested graph. A blank Cell field in the Parameters window
is the same as CELL=Y.

NOCELL
CELL=N

suppresses cell alignment, causing the procedure to use the entire procedure output
area and place axis and tick mark labels without regard to cell alignment.

Details
Specify N in the device entry or use NOCELL in a GOPTIONS statement if you want to
preview a graph on a cell-aligned display but intend to produce the final graph on a
device that is not cell-aligned, such as a pen plotter.

Graphics Options and Device Parameters Dictionary � CHARREC 337

CHARACTERS

Specifies whether the device—resident font is used when no font or FONT=NONE is specified in a
SAS statement.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Defaults: GOPTIONS: CHARACTERS; GDEVICE: CHARACTERS=Y

Restriction: not supported by Java or ActiveX

Syntax

GOPTIONS: CHARACTERS | NOCHARACTERS

GDEVICE: CHARACTERS=Y | N

CHARACTERS
CHARACTERS=Y

causes SAS/GRAPH to use the device-resident font when you do not specify a font in
a SAS program. A blank Characters field in the Parameters window is the same as
CHARACTERS=Y.

NOCHARACTERS
CHARACTERS=N

causes SAS/GRAPH to draw the characters using the SIMULATE font and
suppresses the use of all device—resident fonts, regardless of values you specify in
other SAS statements.

Details

The device—resident font is not used if you changed the HPOS= and VPOS= graphics
options from the default, or if you used the HEIGHT= option in a SAS statement and
the device does not have scalable characters.

CHARREC

Specifies a device-resident font by associating a CHARTYPE number with a device-resident font.
Also defines a default size to use with that font.

Used in: GDEVICE procedure

Default: device-dependent

Syntax

CHARREC=(charrec-list(s))

338 CHARTYPE � Chapter 15

charrec-list
a list of values that correspond to the fields in the Chartype window. Charrec-list has
this form:

type, rows, cols, ’font’, ’Y’ | ’N’

type is the CHARTYPE number and can be an integer from 0 to 9999.
(See “CHARTYPE” on page 338 for more information.)

rows is the number of rows of text in the font that will fit on the
display. (See “ROWS” on page 419 for more information.)

cols is the number of columns of text in the font that will fit on the
display. (See “COLS” on page 342 for more information.)

font is a character string enclosed in quotation marks that contains
the name of the corresponding device-resident font. (See “FONT
NAME” on page 361 for more information.)

Y represents a scalable font. A scalable font can be displayed at any
size. (See “SCALABLE” on page 419 for more information.)

N represents a nonscalable font. A nonscalable font can be displayed
only at a fixed size. (See “SCALABLE” on page 419 for more
information.)

For example, these values assign the device’s Helvetica font to be the first
device-resident font in the CHARTYPE window of the driver entry:

charrec=(1, 100, 75, ’helvetica’, ’y’)

CHARTYPE

Selects the number of the default hardware character set.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Default: device-dependent

Restriction: not supported by Java or ActiveX

Syntax

CHARTYPE=hardware-font-chartype

hardware-font-chartype
is a nonnegative integer from 0 to 999. hardware-font-chartype refers to the actual
number for the device-resident font you want to use as listed in the Chartype window
of the device entry for the selected device driver. By default, CHARTYPE is 0, which
is the default device-resident font for the device.

Graphics Options and Device Parameters Dictionary � CMAP 339

CIRCLEARC

Specifies whether SAS/GRAPH should use the device’s hardware circle-drawing capability, if
available.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Default: device-dependent

Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: CIRCLEARC | NOCIRCLEARC

GDEVICE: CIRCLEARC=Y | N

CIRCLEARC
CIRCLEARC=Y

causes SAS/GRAPH to use the built-in hardware circle- and arc-drawing capability of
the device. A blank Circlearc field in the Parameters window is the same as
CIRCLEARC=Y.

hardware drawing is faster, but not all devices have the capability. SAS/GRAPH
device drivers do not try to use the capability if the device does not have it.

NOCIRCLEARC
CIRCLEARC=N

causes SAS/GRAPH to use software move and draw commands to draw circles and
arcs.

CMAP

Specifies a color map for the device.

Used in: GDEVICE procedure; GDEVICE Colormap window

Syntax
CMAP=(’from-color : to-color’ <...,’from-color-n : to-color-n’>)

from-color
specifies the name you want to assign to the color designated by the color value. In
the Colormap window, enter this value in the From field.

to-color
specifies any SAS/GRAPH color name up to eight characters long. In the Colormap
window, enter this value in the To field. See Chapter 12, “SAS/GRAPH Colors and
Images,” on page 167 for information on specifying colors.

340 COLLATE � Chapter 15

Details
Once you have defined the color mapping, you use the new color name in any color
option. For example, if your device entry maps the color name DAFFODIL to the SAS
color value PAOY, you can specify the following:

pattern1 color=daffodil;

and the driver will map this to the color value PAOY.

COLLATE

Specifies whether to collate the output, if collation is supported by the device.

Used in: GOPTIONS statement; OPTIONS statement
Default: NOCOLLATE
Restriction: hardware–dependent, PostScript printers require a PPD file; not supported
by Java or ActiveX
See also: GPROLOG, PPDFILE

Syntax
COLLATE | NOCOLLATE

Details
A limited number of printers can collate output, which means to separate each copy

of printed output when you print multiple copies of output.

For PostScript printers, if a device’s PPD file has Collate defined as “True”, the
COLLATE option is supported.

For PCL printers that support collation, use the GPROLOG= option to specify a
Printer Job Language (PJL) command to enable the collation. For information on the
appropriate PJL command, consult the Printer Commands section of your printer’s user
manual.

COLORS

Specifies the foreground colors used to produce your graphics output if you do not specify colors
explicitly in program statements.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Gcolors window
Default: device-dependent

Syntax
GOPTIONS: COLORS=<(colors-list | NONE)>

Graphics Options and Device Parameters Dictionary � COLORS 341

GDEVICE: COLORS=(<colors-list>)

colors-list
specifies one or more SAS color names. If you specify more than one color, separate
each name with a blank. See Chapter 12, “SAS/GRAPH Colors and Images,” on page
167 for information on specifying colors and using a color list.

To change some of the colors in the color list and retain others, you can use a null
value for colors you do not want to change. For example, to change COLORS=(RED
GREEN BLUE) to COLORS=(WHITE GREEN BROWN), you can specify
COLORS=(WHITE,BROWN).

NONE
tells SAS/GRAPH to use only the colors that you explicitly specify in program
statements and to ignore the device’s default color list.

Note: If you specify COLORS=(NONE) and omit a color specification for a
graphics element, such as patterns, SAS/GRAPH selects at random one of the colors
already specified in your program. �

Featured in: “Example 3. Rotating Plot Symbols Through the Color List” on page
299

Details
The order of the colors in the list is important when you use default colors. For
example, the colors used for titles, axes, and surfaces in the G3D procedure are
assigned by default according to their position in the color list.

Note: Colors can be assigned to graph elements in different orders by different
devices such as Java and ActiveX. �

If you omit or reset COLORS=, SAS/GRAPH uses the default color list for the
current device. To explicitly reset the color list to the device default, specify either

goptions colors=;
goptions colors=();

If you use default patterns with a color list specified by COLORS= option, the
patterns rotate through every color in the list. If the color list contains only one color,
for example COLORS=(BLUE), the solid pattern is skipped and the patterns rotate
through only the appropriate default hatch patterns for the graph.

Note: By default, if black is the first color in a device’s color list, default pattern
rotation skips black as a pattern color, but uses black as the area-outline color. Thus,
the outline color is never the same as an area’s fill color. Using COLORS= to change
the color list changes this default pattern behavior. When COLORS= is used, all colors
in the specified color list are used in color rotation, and the outline color is the first
color in the specified color list. Thus, the outline color will match any area using the
first color as its fill. �

See “PATTERN Statement” on page 240 for more information on pattern rotation.

342 COLORTBL � Chapter 15

COLORTBL

An eight-character field in the Gcolors window that is not currently implemented. SAS/GRAPH
ignores any value entered into this field.

COLORTYPE

Specifies the color space used by the user-written part of the Metagraphics device driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Default: NAME

Syntax
COLORTYPE=NAME | RGB | HLS | GRAY | CMY | CMYK | HSV | HSB

NAME SAS predefined color names.

RGB red-green-blue (RGB) color specifications.

HLS hue-lightness-saturation (HLS) color specifications.

GRAY gray-scale level.

CMY cyan-magenta-yellow color specifications.

CMYK cyan-magenta-yellow-black color specifications.

HSV | HSB hue-saturation-value color specifications. These specifications are
also referred to as hue-saturation-brightness (HSB).

See Chapter 12, “SAS/GRAPH Colors and Images,” on page 167 for a description of
these color types.

Details
Use the COLORTYPE device parameter also to specify the color-naming scheme that is
used for devices that support more than one color-naming scheme.

For information about Metagraphics drivers, contact Technical Support.

COLS

Sets the number of columns that the device-resident font uses.

Used in: GDEVICE Chartype window; GDEVICE procedure; CHARREC= option
Default: 0

Graphics Options and Device Parameters Dictionary � CSYMBOL 343

See also: CHARREC

Syntax
See “CHARREC” on page 337 for syntax.

Details
If you are using a device driver from SASHELP.DEVICES, this parameter is already set
for device-resident fonts that have been defined for your installation. If you are adding
to or modifying the device-resident fonts available for a particular device driver, specify
a positive value for the COLS device parameter. If COLS is greater than 0, it overrides
the values of the LCOLS and PCOLS device parameters. For scalable fonts, you can
specify 1 for COLS, and the actual number of columns will be computed based on the
current text width.

CPATTERN

Selects the default color for PATTERN definitions when a color has not been specified.

Used in: GOPTIONS statement

Default: first color in current color list

Restriction: not supported by Java or ActiveX

Syntax
CPATTERN=pattern-color

pattern-color
specifies any SAS/GRAPH color name. See Chapter 12, “SAS/GRAPH Colors and
Images,” on page 167 for information about specifying colors.

Details
CPATTERN= is overridden by any color specification in a PATTERN statement. For
details on how CPATTERN= affects the PATTERN statement, see “The Effect of the
CPATTERN= Graphics Option” on page 250.

If you specify CPATTERN=, the solid pattern is skipped and the patterns rotate
through only the appropriate default hatch patterns for the graph. See “PATTERN
Statement” on page 240 for more information on pattern rotation.

CSYMBOL

Specifies the default color for SYMBOL definitions when a color has not been specified.

344 CTEXT � Chapter 15

Used in: GOPTIONS statement

Default: first color in current color list

Restriction: not supported by Java or ActiveX

Syntax
CSYMBOL=symbol-color

symbol-color
specifies any SAS/GRAPH color name. See Chapter 12, “SAS/GRAPH Colors and
Images,” on page 167 for information about specifying colors.

Details
CSYMBOL= is overridden by any color specification in a SYMBOL statement. See
“SYMBOL Statement” on page 252.

CTEXT

Selects the default color for all text and the border.

Used in: GOPTIONS statement

Default: black for Java and ActiveX devices; for other devices, the first color in current
color list

See also: CTITLE

Restriction: partially supported by Java

Syntax
CTEXT=text-color

text-color
specifies any SAS/GRAPH color name. See Chapter 12, “SAS/GRAPH Colors and
Images,” on page 167 for information about specifying colors.

Details
The CTITLE= graphics option overrides CTEXT= for all titles, notes, and footnotes, as
well as the border. Any other color specifications for text in SAS statements also
override the value of the CTEXT= graphics option.

Note: When you use ODS to send graphics to an HTML destination, and titles and
footnotes are rendered as part of the HTML body file instead of the graphic image, you
must specify the ODS USEGOPT statement for this option to work. See “Using
Graphics Options with ODS (USEGOPT)” on page 195 for more information. �

Graphics Options and Device Parameters Dictionary � DASH 345

CTITLE

Selects the default color for all titles, footnotes, and notes, and the border.

Used in: GOPTIONS statement

Default: (1) color specified by CTEXT=, if used; (2) black for Java and ActiveX devices;
for other devices, the first color in current color list

See also: CTEXT

Syntax

CTITLE=title-color

title-color
specifies any SAS/GRAPH color name. See Chapter 12, “SAS/GRAPH Colors and
Images,” on page 167 for information about specifying colors.

Details

Any color specification in a TITLE, FOOTNOTE, or NOTE statement overrides the
value of the CTITLE= graphics option for the text. The border, however, still uses the
color specified in the CTITLE= graphics option.

Note: When you use ODS to send graphics to an HTML destination, and titles and
footnotes are rendered as part of the HTML body file instead of the graphic image, you
must specify the ODS USEGOPT statement for this option to work. See “Using
Graphics Options with ODS (USEGOPT)” on page 195 for more information. �

DASH

Specifies whether to use the device’s hardware dashed-line capability, if available.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Default: device– dependent

Restriction: not supported by Java or ActiveX

See also: DASHLINE

Syntax

GOPTIONS: DASH | NODASH

GDEVICE: DASH=Y | N

346 DASHLINE � Chapter 15

DASH
DASH=Y

causes SAS/GRAPH to use the built-in hardware dashed-line drawing capability of
the device when generating graphics output. A blank Dash field in the Parameters
window is the same as DASH=Y.

hardware drawing is faster, but not all devices have the capability. SAS/GRAPH
device drivers do not try to use the capability if the device does not have it.

NODASH
DASH=N

causes SAS/GRAPH to draw the dashed lines.

DASHLINE

Specifies which dashed lines should be generated by hardware means if possible.

Used in: GDEVICE procedure; GDEVICE Parameters window
Default: device-dependent
See also: DASH

Syntax
DASHLINE=’dashed-line-hex-string’X

dashed-line-hex-string
is a hexadecimal string 16 characters long that must be completely filled. Each bit in
the string corresponds to a line type. See Figure 14.22 on page 277 for line types that
correspond to each bit.

To use line type 1, turn on bit 1; to use line type 2, turn on bit 2; and so on. For
example, in the following option the first byte is ’1000’; only bit 1 is on and only line
type 1 is selected:

dashline=’8000000000000000’x

To turn on both bits 1 and 2, specify

dashline=’c000000000000000’x

Bit 1 should always be on because it corresponds to a solid line.

Details
If the DASH device parameter is N in the device entry or if NODASH is used in a
GOPTIONS statement, SAS/GRAPH ignores the hexadecimal string in the DASHLINE
device parameter.

Graphics Options and Device Parameters Dictionary � DELAY 347

DASHSCALE

Scales the lengths of the dashes in a dashed line.

Used in: GOPTIONS statement

Default: DASHSCALE=1

Restriction: not supported by Java or ActiveX

Syntax
DASHSCALE=scaling-factor

scaling-factor
can be any number greater than 0. For example, GOPTIONS DASHSCALE=.5
reduces any existing dash length by one-half.

Details
Only dashes or spaces with lengths greater than one pixel are scaled. Dots are not
scaled because their length is effectively zero. DASHSCALE= always uses system line
styles instead of the device’s dashed line capabilities.

DELAY

Controls the amount of time between graphs in the animation sequence.

Used in: GOPTIONS statement

Default: 0

Restriction: GIFANIM driver only; not supported by all browsers

Syntax
DELAY=delay-time

delay-time
specifies the length of time between graphs in units of 0.01 seconds. For example, to
specify a delay of .03 seconds, specify DELAY=3.

Details
SAS/GRAPH puts the DELAY= value into the image file. Based on this value, the
browser determines how to display the series of graphs.

348 DESCRIPTION � Chapter 15

DESCRIPTION

Provides a description of the device entry.

Alias: DES
Used in: GDEVICE procedure GDEVICE Detail window
Default: none

Syntax
DESCRIPTION=’text-string’

text-string
is a string up to 256 characters long. This is a comment field and does not affect the
graphics output.

DEVADDR

Specifies the location of the device to which the output of device drivers is sent.

Used in: GOPTIONS statement
Default: host dependent
Restriction: IBM mainframe systems only

Syntax
DEVADDR=device-address

DEVICE

Specifies the device driver to which SAS/GRAPH sends the procedure output. The device driver
controls the format of graphics output.

Alias: DEV
Used in: GOPTIONS statement OPTIONS statement
Default: device–dependent

Syntax
DEVICE=device-entry

Graphics Options and Device Parameters Dictionary � DEVMAP 349

device-entry
specifies the name of a device entry that is stored in a device catalog.

Details
A device driver can direct graphics output to a hardware device, such as a terminal or a
printer, or can create an external file in another graphics file format, such as TIF, GIF,
or PostScript. Some device drivers also generate both graphics files and HTML files
that can be viewed with a Web browser.

Usually a device driver is assigned by default. If a default driver is not assigned or if
you specify RESET=ALL in a GOPTIONS statement, and you do not specify a device
driver, SAS/GRAPH prompts you to enter a driver name when you execute a procedure
that produces graphics output. If you are producing a graph to the screen and the
Graph window is active, SAS/GRAPH selects the display driver for you automatically.

For a description of device drivers and for more information on selecting a device
entry and changing device parameters, see Chapter 6, “Using Graphics Devices,” on
page 67.

For information on using device drivers to display and print graphics output, see
Chapter 7, “SAS/GRAPH Output,” on page 87.

For information on using device drivers to export graphics output to external files,
see “Specifying the Graphics Output File Type for Your Graph” on page 91. For
information on using device drivers to create output for the Web, see “Generating Web
Presentations” on page 451.

DEVMAP

Specifies the device map to be used when device-resident fonts are used.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window
Default: device-dependent
Restriction: not supported by Java or ActiveX

Syntax
DEVMAP=device-map-name | NONE

device-map-name
is a string up to eight characters long that is the name of the device map entry.

NONE
specifies that you do not want to use a device map. This can cause text to be
displayed incorrectly or not at all.

Details
Device maps usually are used only when national characters appear in the text and you
want them to display properly.

350 DEVOPTS � Chapter 15

DEVOPTS

Specifies the hardware capabilities of the device.

Used in: GDEVICE procedure; GDEVICE Parameters window
Default: device-dependent

Syntax
DEVOPTS=’hardware-capabilities-hex-string’X

hardware-capabilities-hex-string
is a hexadecimal string 16 characters long that must be completely filled. The
following table lists the hardware capabilities of each bit:

Table 15.1 Device Capabilities Represented in the DEVOPTS String

Bit On Capability

0 hardware circle generation

1 hardware pie fill supported

2 scalable hardware characters

3 device is a CRT-type (See TYPE device parameter)

4 translate table needed for non-ASCII hosts

5 hardware polygon fill available

6 hardware characters cell-aligned

7 user-definable colors supported

8 hardware polygons with multiple boundaries supported

9 not used

10 not used

11 adjustable hardware line width

12 double-byte font (non-US) supported

13 hardware repaint supported

14 hardware characters supported

15 no hard limit on x coordinate

16 no hard limit on y coordinate

17 not used

18 ability to justify proportional text

19 driver can produce dependent catalog entries

20 device cannot draw in default background color

21 flush device buffer when filled

22 colors defined using HLS

Graphics Options and Device Parameters Dictionary � DEVOPTS 351

Bit On Capability

23 colors defined using RGB

24 not used

25 polyline supported

26 polymarker supported

27 graphics clipping supported

28 not used

29 linkable device driver

30 pick CHARTYPE by name in CHARREC entries

31 device-dependent pattern support

32 treat SCALABLE=Y CHARREC as metric

33 size CHARTYPE as HW from CHARREC entries

34 device supports rotated arcs

35 device supports target fonts

36 device supports drawing images

37 device supports multiple color maps

38 image rotation direction

39 device requires sublib for image rotation

40 device is a 24 bit truecolor machine

41 device supports setting font attributes

42 use scan line font rendering

43 device can scale images

44 text clipping supported

45 static color device

46 driver does prolog processing

47 driver does epilog processing

48 driver output only uses a file

49 driver output requires a directory or PDS

50 autosize text to fit rows and columns

51 default binding is SHORTEDGE

52 driver supports duplex printing

53 device does right edge binding

54 ActiveX device

55 Java device

56 device uses a universal printer driver

Details
Each capability in the table corresponds to a bit in the value of the DEVOPTS device
parameter. For example, if your device can generate hardware pie fills, the second bit

352 DEVTYPE � Chapter 15

in the first byte of the DEVOPTS string should be turned on if you want the driver to
use that capability. If your device is capable of generating only hardware circles and pie
fills, specify a value of ’C000000000000000’X as your DEVOPTS value (the first byte is
’1100’ so the first 2 bits of the first byte are set to 1). Many of the hardware capabilities
specified in the DEVOPTS string are overridden by graphics options or other device
parameters.

CAUTION:
Do not modify the DEVOPTS device parameter unless you are building a Metagraphics
driver. If you want to prevent an SAS-supplied driver from using certain hardware
capabilities, change the specific device parameter or use the corresponding graphics
option. �

If the DEVOPTS string indicates that a capability is available, the driver uses it
unless it is explicitly disabled by another device parameter or graphics option. If the
DEVOPTS string indicates that the capability is not available, it is not used by the
driver, even if the corresponding device parameter or graphics option indicates that it
should be used. For example, if the DEVOPTS value indicates that the device can do a
hardware pie fill, the driver uses the hardware pie fill capability unless the PIEFILL
device parameter is set to N or NOPIEFILL has been specified in a GOPTIONS
statement. However, if the DEVOPTS device parameter indicates that the device
cannot do a hardware pie fill, the driver does not attempt to use one, even if the
PIEFILL device parameter is set to Y or PIEFILL is used in a GOPTIONS statement.

DEVTYPE

Specifies the information required by SAS/GRAPH routines to determine the nature of the output
device.

Used in: GDEVICE procedure; GDEVICE Host File Options window

Default: device-dependent

Syntax
DEVTYPE=device-type

device-type
is a string eight characters long containing either blanks or some token name that is
interpreted by the host. Device-type can be:

GTERM
indicates that the output device is a graphics device that will be receiving graphics
data; most device drivers use this value.

G3270
indicates that the output device is an IBM 3270 graphics data stream. If your
device is an IBM 3270 type of device, DEVTYPE= must be G3270.

Note: GTERM and G3270 are SAS/GRAPH device types. Other valid values depend
on your operating environment. DEVTYPE supports any of the device-type values
supported on the FILENAME statement. Refer to the SAS Help facility for the device

Graphics Options and Device Parameters Dictionary � DISPOSAL 353

types the FILENAME statement supports in your operating environment. In most
cases, this field should not be changed. �

DISPLAY

Specifies whether output is displayed on the graphics device but does not affect whether a graph
is placed in a catalog.

Used in: GOPTIONS statement
Default: DISPLAY
Restriction: not supported by Java or ActiveX

Syntax
DISPLAY | NODISPLAY

Details
In most cases, NODISPLAY suppresses all output except the catalog entry written to

the catalog selected in the GOUT= option. Therefore, you usually specify NODISPLAY
when you want to generate a graph in a catalog but do not want to display the graph on
your monitor or terminal while the catalog entry is being produced.

DISPOSAL

Specifies what happens to the graphic after it is displayed.

Used in: GOPTIONS statement
Default: NONE
Restriction: GIFANIM driver only

Syntax
DISPOSAL=NONE | BACKGROUND | PREVIOUS | UNSPECIFIED

NONE
causes the graphic to be left in place after displaying. This is the default.

BACKGROUND
causes the background color to be returned and the graph erased after displaying.

PREVIOUS
causes the graphic area to be restored with what was displayed in the area previously.

UNSPECIFIED
indicates that no action is necessary.

354 DRVINIT � Chapter 15

Details
In Version 6, the ERASE | NOERASE graphics option performed this function for the
GIFANIM driver.

DRVINIT

Specifies host commands to be executed before driver initialization.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host Commands
window
Restriction: not supported by Java or ActiveX

Syntax
DRVINIT1=’system-command(s)’

DRVINIT2=’system-command(s)’

system-command(s)
specifies a character string that is a valid system command and can be in upper- or
lowercase letters. You can include more than one command in the string if you
separate the commands with a command delimiter, which is host-specific; for
example, some operating environments use a semicolon. The length of the entire
string cannot exceed 72 characters.

Details
The DRVINIT command is executed before the driver is initialized. DRVINIT is
typically used with FILECLOSE=DRIVERTERM to allocate a host file needed by the
device driver.

DRVQRY

Specifies whether the device can be queried for information about the current device configuration.

Used in: GDEVICE procedure GDEVICE Detail window
Default: device-dependent

Syntax
DRVQRY | NODRVQRY

Details
Generally, this setting is device-dependent and you should not change it.

Graphics Options and Device Parameters Dictionary � DUPLEX 355

DRVTERM

Specifies host commands to be executed after the driver terminates.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host Commands
window
Restriction: not supported by Java or ActiveX

Syntax
DRVTERM1=’system-command(s)’

DRVTERM2=’system-command(s)’

system-command(s)
specifies a character string that is a valid system command and can be in upper- or
lowercase letters. You can include more than one command in the string if you
separate the commands with a command delimiter, which is host-specific; for
example, some operating environments use a semicolon. The length of the entire
string cannot exceed 72 characters.

Details
The DRVTERM command is executed after the driver terminates. DRVTERM is
typically used with FILECLOSE=DRIVERTERM to de-allocate a host file and execute
utility programs that send the data to the graphics device. For example, DRVTERM
might specify commands to send the file to a host print queue.

DUPLEX

Specifies whether to use duplex printing if available on the device.

Used in: GOPTIONS statement; OPTIONS statement
Default: NODUPLEX
Restriction: duplex printers only
See also: BINDING, GSFMODE, PPDFILE

Syntax
DUPLEX | NODUPLEX

Details
When DUPLEX is on, the driver sets up the printer for duplex operation. Before

producing the first graph, set GSFMODE=REPLACE on the GOPTIONS statement, and
DUPLEX on an OPTIONS or GOPTIONS statement. You can also use the BINDING=
option in conjunction with DUPLEX. Before producing the second graph, set

356 ERASE � Chapter 15

GSFMODE=APPEND on the GOPTIONS statement so that the driver knows to place
succeeding graphs on the next available side of paper.

If DUPLEX is in effect, the page’s inside (binding) margin is set equal to the current
HORIGIN setting, and the outside margin is set equal to

XMAX − HSIZE − HORIGIN

In terms of even- and odd-numbered pages, this means the following:

odd-numbered
pages

HORIGIN determines the left margin, and XMAX-HSIZE-HORIGIN
determines the right margin

even-numbered
pages

XMAX-HSIZE-HORIGIN determines the left margin, and HORIGIN
determines the right margin

For PostScript printers, if you do not use the PPDFILE= option to specify a PPD
(PostScript Printer Description) file, a generic PostScript Level 1 duplex command is
added to the driver output. If PPDFILE= is used, the duplex command is obtained from
the PPD file.

ERASE

Specifies whether to erase graph after display.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Defaults: GOPTIONS: NOERASE; GDEVICE: ERASE=N

Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: ERASE | NOERASE

GDEVICE: ERASE=Y | N

ERASE
ERASE=Y

causes the graph to be erased when you press RETURN after the graph has been
displayed.

NOERASE
ERASE=N

causes the graph to remain on the display when you press RETURN after the graph
has been displayed. A blank Erase field in the Parameters window is the same as
ERASE=N.

Details
ERASE is useful for those devices that overlay the graphics area and the message area
– that is, those devices that have separate dialog box and graphics areas. On other
devices, the graph is erased.

Graphics Options and Device Parameters Dictionary � FASTTEXT 357

EXTENSION

Specifies the file extension for an external graphics file.

Used in: GOPTIONS statement
Default: device-dependent
Restriction: not supported by Java or ActiveX
See also: GACCESS, GSFNAME

Syntax
EXTENSION=’file-type’

file-type
a string up to eight characters long that is a file extension, such as GIF or CGM, that
you want to append to an external file.

Details
The extension specified on EXTENSION= is used when the output destination is a
storage location. The extension is ignored when the output destination is a file. To
specify the output destination, you can use a FILENAME statement, or the graphics
options GACCESS= or GSFNAME=.

Assuming that the output destination is a storage location,
� if EXTENSION=’.’, no extension is added to the filename
� if EXTENSION=’ ’or EXTENSION= is not used, the driver’s default extension is

added to the filename
� if the driver has no default extension, SAS/GRAPH uses the default extension

.GSF.

FASTTEXT

Specifies whether to use integer-based font processing for faster font rendering.

Used in: GOPTIONS statement
Default: FASTTEXT
Restriction: not supported by Java or ActiveX

Syntax
FASTTEXT | NOFASTTEXT

358 FBY � Chapter 15

FBY

Selects the font for By lines.

Used in: GOPTIONS statement
Default: (1) font specified by FTEXT=, if used; (2) device–resident font (3) simulate font
Restriction: not supported by Java or ActiveX
See also: “BY Statement” on page 216

Syntax
FBY=By line-font

By line-font
specifies the font for all By lines on the graphics output. See Chapter 11, “Specifying
Fonts in SAS/GRAPH Programs,” on page 155 for information about specifying fonts.

Details
When you use a BY statement with a SAS/GRAPH procedure to process a data set in
subgroups, each graph produced by that procedure is headed by a By line that displays
the BY variables and their values that define the current subgroup.

FCACHE
Specifies the number of system fonts to keep open at one time.

Used in: GOPTIONS statement
Default: FCACHE=3
Restriction: not supported by Java or ActiveX

Syntax
FCACHE=number-fonts-open

number-fonts-open
specifies the number of system fonts to keep open. Number-fonts-open must be
greater than or equal to zero.

Details
Each font requires from 4K to 10K memory. Graphs that use many fonts can run faster
if you set the value of number-fonts-open to a higher number. However, graphs that use

Graphics Options and Device Parameters Dictionary � FILEONLY 359

multiple fonts might require too much memory on some computer systems if all the
fonts are kept open. In such cases, set the value of number-fonts-open to a lower
number to conserve memory.

FILECLOSE

Controls when the graphics stream file (GSF) is closed when you are using the device driver to
send graphics output to a hard copy device.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window
Default: DRIVERTERM (if a device is specified)
Restriction: not supported by Java or ActiveX
See also: “Specifying the Graphics Output File Type for Your Graph” on page 91

Syntax
FILECLOSE=DRIVERTERM | GRAPHEND

DRIVERTERM
DRIVER

closes the GSF and makes it available to the device after all graphs have been
produced and the procedure or driver terminates. A host command might be needed
to actually send the GSF to the device. Host commands can be specified with the
DRVINIT or DRVTERM parameters or entered in the Host File Options window of
the device entry.

If multiple graphs are produced by a procedure, this specification creates one large
file. Specifying DRIVERTERM is appropriate for batch processing because it is
slightly more efficient to allocate the file only once.

GRAPHEND
GRAPH

closes the GSF after each separate graph is produced and releases it to the device
before sending another. This method creates smaller files if multiple graphs are
produced by a procedure. You can specify a command that sends the graph to the
device with the POSTGRAPH parameter or use the Host File Options window.

Specifying GRAPHEND is appropriate for drivers that are used interactively, or
for devices that require only one graph per physical file.

FILEONLY

Specifies whether a file or a storage location is the default destination for graphics output.

Used in: GOPTIONS statement
Default: device-dependent
Restriction: FILEONLY ignored if the device requires the output destination to be a
storage location; not supported by Java or ActiveX

360 FILL � Chapter 15

See also: DEVOPTS, GSFNAME

Syntax
FILEONLY | NOFILEONLY

FILEONLY
specifies that a file rather than a storage location is the default destination for
graphics output.

NOFILEONLY
specifies that a storage location is the default destination for graphics output, unless
a file of the same name exists.

Details
Most devices use FILEONLY as the default. However, devices that require the output
destination to be a storage location use NOFILEONLY as the default. For example, the
HTML device requires a storage location because it produces two types of output
(HTML files and GIF image files) that cannot be written to the same file.

To determine what the default is for a particular device, look at the settings for
DEVOPTS bits 48 and 49.

For more information, see “Specifying the Graphics Output File Type for Your Graph”
on page 91.

FILL

Specifies whether to use the device’s hardware rectangle-fill capability.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Restriction: not supported by Java or ActiveX

Default: device–dependent

Syntax
GOPTIONS: FILL | NOFILL

GDEVICE: FILL=Y | N

FILL
FILL=Y

causes SAS/GRAPH to use the built-in hardware rectangle-filling capability of the
device. A blank Fill field in the Parameters window is the same as FILL=Y.

hardware drawing is faster, but not all devices have the capability. SAS/GRAPH
does not try to use the capability if your device does not support it.

Graphics Options and Device Parameters Dictionary � FONT NAME 361

NOFILL
FILL=N

causes SAS/GRAPH to use software fills to fill rectangles.

FILLINC

Specifies the number of pixels to move before drawing the next line in a software fill of a solid
area.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device-dependent
Restriction: not supported by Java or ActiveX
See also: FILL, PIEFILL, POLYGONFILL

Syntax
FILLINC= 0...9999

Details
In order for FILLINC to have any effect, a software fill must be used. To force a

software fill, use the options NOFILL, NOPIEFILL, and NOPOLYGONFILL in a
GOPTIONS statement.

If FILLINC is set to 0 or 1, adjacent lines are used (solid fill with no gaps). If
FILLINC is set to 2, a pixel-width line is skipped before drawing the next line of a fill.

This option can be useful for keeping plotters from over saturating a solid area and
for speeding the plotting. Some inks spread on paper. The type of paper used can also
affect ink spread.

FONT NAME

Specifies the device–resident font associated with CHARTYPE.

Used in: GDEVICE Chartype window; GDEVICE procedure; CHARREC= option
Required if adding or modifying a CHARREC
See also: CHARREC

Syntax
See “CHARREC” on page 337 for syntax.

Details
Use FONT NAME if you are adding to or modifying the device-resident fonts available
for a particular device driver. The fonts that you specify must be valid for the output

362 FONTRES � Chapter 15

device. If you are using an SAS-supplied device entry, this parameter already is set for
most available device-resident fonts.

FONTRES
Controls the resolution of Bitstream fonts.

Used in: GOPTIONS statement
Default: NORMAL
Restriction: not supported by Java or ActiveX
See also: FASTTEXT, FCACHE, RENDER, RENDERLIB, SWFONTRENDER

Syntax
FONTRES=NORMAL | PRESENTATION

NORMAL
renders fonts in memory using integer rendering routines, which improves character
drawing speed for most host systems. NORMAL has the same effect as specifying the
default values for these graphics options.

render=memory
renderlib=saswork
fasttext
fcache=0

PRESENTATION
disables the storage or use of rendered versions of Bitstream fonts, but produces the
fonts at their highest resolution. FONTRES=PRESENTATION has the same effect
as specifying these graphics options:

render=none
renderlib=saswork
nofasttext
fcache=3

FORMAT
Sets the file format of the metacode file produced by the SAS-supplied part of the Metagraphics
device driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Default: CHARACTER
Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
FORMAT=CHARACTER | BINARY

Graphics Options and Device Parameters Dictionary � FTITLE 363

Details
A blank field defaults to CHARACTER. For information about Metagraphics drivers,

contact Technical Support.

FTEXT

Sets the default font for all text.

Used in: GOPTIONS statement
Default: Default device–resident font (except the first title)
Restriction: partially supported by Java or ActiveX
See also: FTITLE

Syntax
FTEXT=text-font

text-font
specifies the font for all text on the graphics output. See Chapter 11, “Specifying
Fonts in SAS/GRAPH Programs,” on page 155 for information about specifying fonts.

Details
The FTITLE= graphics option overrides FTEXT= for the first title. Not all fonts are
supported by the ActiveX and Java devices.

Note: When you use ODS to send graphics to an HTML destination, and titles and
footnotes are rendered as part of the HTML body file instead of the graphic image, you
must specify the ODS USEGOPT statement for this option to work. See “Using
Graphics Options with ODS (USEGOPT)” on page 195 for more information. �

FTITLE

Selects the default font for the first TITLE line.

Used in: GOPTIONS statement
Default: (1) font specified by FTEXT=, if used; (2) value of the style variable
(3)device-resident font (4)simulate font
See also: FTEXT

Syntax
FTITLE=title-font

364 FTRACK � Chapter 15

title-font
specifies the font for the TITLE1 statement. See Chapter 11, “Specifying Fonts in
SAS/GRAPH Programs,” on page 155 for information about specifying fonts.

Details
Note: When you use ODS to send graphics to an HTML destination, and titles and

footnotes are rendered as part of the HTML body file instead of the graphic image, you
must specify the ODS USEGOPT statement for this option to work. See “Using
Graphics Options with ODS (USEGOPT)” on page 195 for more information. �

FTRACK

Controls the amount of space between letters in the SAS-supplied Bitstream fonts (Brush, Century,
Swiss, and Zapf).

Used in: GOPTIONS statement

Default: TIGHT

Restriction: not supported by Java or ActiveX

Syntax
FTRACK=LOOSE | NONE | NORMAL | TIGHT | TOUCH | V5

LOOSE
leaves the most visible space between characters and produces a longer string.

NONE
spacing depends on the size of the font. NONE might produce a shorter or longer
string than LOOSE for the same font at different point sizes, because some sizes add
space between the characters while others remove it.

NORMAL
is the recommended setting.

TIGHT
reduces the space between characters.

TOUCH
leaves the least visible space between characters.

V5
places a fixed amount of space between the characters and does not adjust for the
shape of the character; that is, it does not support kerning. This spacing is
compatible with Version 5 Bitstream fonts.

Details
The spacing you specify with FTRACK= affects all Bitstream text in a graph. For
example, you cannot produce TIGHT Century type and LOOSE Zapf type
simultaneously. This option has no effect on other font types.

Graphics Options and Device Parameters Dictionary � GACCESS 365

Because the value of FTRACK= is stored with the graph, the spacing that you specify
when the graph is created is always used when the graph is replayed.

GACCESS

Specifies the format or the destination or both of graphics data written to a device or graphics
stream file (GSF).

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window
Default: device-dependent
Restriction: not supported by Java, ActiveX, or shortcut devices. See Chapter 6, “Using
Graphics Devices,” on page 67 for more information about devices.

Syntax
GACCESS=output-format | ’output-format destination’

output-format
specifies the format or the destination (the SAS log or a fileref) of the graphics data.
Output-format varies according to the operating environment. These values can be
specified in all operating environments:

SASGASTD
specifies that a continuous stream of data is written. SASGASTD is the default for
most devices and is typically appropriate when the output file will be sent directly
to a device. If you specify GACCESS=SASGASTD, use the GSFNAME= and
GSFMODE= graphics options or device parameters to direct your graphics output
to a GSF.

SASGAEDT
specifies that the file be host-specific edit format. Some hosts allow editing by
inserting characters at the end of each record. SASGAEDT is typically used when
the output file is to be edited later. If you specify GACCESS=SASGAEDT, use the
GSFNAME= and GSFMODE= graphics options or device parameters to direct your
graphics output to a GSF.

SASGAFIX
specifies that fixed-length records be written. (The record length is controlled by
the value of the GSFLEN= graphics option or device parameter or the sixth byte of
the PROMPTCHARS value.) The records are padded with blanks where necessary.
SASGAFIX is typically used when the output file will be transferred to a computer
that requires fixed-length records. If you specify GACCESS=SASGAFIX, use the
GSFNAME= and GSFMODE= graphics options or device parameters to direct your
graphics output to a GSF.

Note: The value of the GPROTOCOL= graphics option or device parameter can
greatly affect the length of the records; for example, if GPROTOCOL=SASGPLCL,
the length of the records is doubled. �

SASGALOG
specifies that records are to be written to the SAS log.

366 GCLASS � Chapter 15

GSASFILE
specifies that the records are to be written to the destination whose fileref is
GSASFILE. The fileref can point to a specific external file or to an aggregate file
location. See “FILENAME Statement” on page 36 for more information on
specifying a fileref.

’output-format destination’
specifies the destination in addition to one of these output format values: SASGASTD,
SASGAEDT, or SASGAFIX. Destination is the physical name of an external file or
aggregate file location, or of a device. For details on specifying the physical name of a
destination, see the SAS documentation for your operating environment.

This form is not available in all operating environments. See “Specifying the
Graphics Output File Type for Your Graph” on page 91 for more information on
creating graphics stream files.

Note: In the Gaccess field of the Host File Options window, you can specify a
destination without an output format. In that case the format defaults to
SASGASTD. When you specify a value in the Gaccess field, you do not need to quote
it. �

Operating Environment Information: Depending on your operating environment, you
might be able to specify other values for GACCESS=. See the SAS companion for your
operating environment for additional values. �

GCLASS

Specifies the output class for IBM printers

Used in: GOPTIONS statement
Default: GCLASS=G
Restriction: used only with IBM3287 and IBM3268 device drivers on z/OS systems only

Syntax
GCLASS=SYSOUT-class

Details
Specifies the SYSOUT class to which the IBM3287 and IBM3268 device driver

output is written.

GCOPIES

Sets the current and maximum number of copies to print.

Used in: GOPTIONS statements; GDEVICE Parameters window; GDEVICE procedure;
OPTIONS statement
Defaults: GOPTIONS: GCOPIES=(0,20) GDEVICE: GCOPIES=0
Restriction: not supported by Java or ActiveX

Graphics Options and Device Parameters Dictionary � GDDMNICKNAME 367

Syntax
GOPTIONS: GCOPIES=(<current-copies>< ,max-copies>)

GDEVICE: GCOPIES=current-copies

current-copies
is a nonnegative integer ranging from 0 through 255, but it cannot exceed the
max-copies value specified. A value of 0 or 1 produces a single copy.

max-copies
is a nonnegative integer ranging from 1 through 255.

If you do not specify GCOPIES, a default number of copies is searched for in this
order:

1 the number of copies specified on an OPTIONS COPIES setting
2 0 current copies, and 20 maximum copies.

Details
Not all devices have the capability to print multiple copies. See the Gcopies field in the
Parameters window for your device to determine its capabilities.

GDDMCOPY
Instructs the driver to issue either an FSCOPY or GSCOPY call to GDDM when AUTOCOPY is in
effect.

Used in: GOPTIONS statement
Default: FSCOPY
Restriction: GDDM device drivers on IBM mainframe systems only
See also: AUTOCOPY

Syntax
GDDMCOPY=FSCOPY | GSCOPY

FSCOPY
used when sending output to an IEEE attached plotter.

GSCOPY
used when creating an ADMPRINT file for output on 3287-type printers.

GDDMNICKNAME
Selects a GDDM nickname for the device to which output is sent.

368 GDDMTOKEN � Chapter 15

Alias: GDDMN
Used in: GOPTIONS statement
Restriction: GDDM device drivers on IBM mainframe systems only

Syntax
GDDMNICKNAME=nickname

Details
Refer to the SAS Help facility for details on using GDDM drivers and options.

GDDMTOKEN
Selects a GDDM token for the device to which output is sent.

Alias: GDDMT
Used in: GOPTIONS statement
Restriction: GDDM device drivers on IBM mainframe systems only

Syntax
GDDMTOKEN=token

Details
Refer to the SAS Help facility for details on using GDDM drivers and options.

GDEST
Specifies the JES SYSOUT destination for IBM printers.

Used in: GOPTIONS statement
Default: LOCAL
Restriction: used only with IBM3287 and IBM3268 device drivers on z/OS systems

Syntax
GDEST=destination

GEND
Appends an ASCII string to every graphics data record that is sent to a device or file.

Graphics Options and Device Parameters Dictionary � GEPILOG 369

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Gend window
Restriction: not supported by Java or ActiveX
See also: GSTART

Syntax
GEND=’string’ <...’string-n’>

’string’
can be either of the following:

’hex-string’X
’character-string’
In a GOPTIONS statement or in the GDEVICE procedure ADD or MODIFY

statement, you can specify multiple strings with the GEND= option. In this case, you
can mix the formats, specifying some as ASCII hexadecimal strings and some as
character strings. Multiple strings are concatenated automatically.

In the GEND window, enter the hexadecimal string without either quotation
marks or a trailing x. Note, however, that the string must be entered as a
hexadecimal string.

PROC GOPTIONS always reports the value as a hexadecimal string.

Details
GEND is useful if you are creating a file and want to insert a carriage return at the end
of every record. You can also use GEND in conjunction with the GSTART= graphics
option or device parameter.

If you must specify the long and complicated initialization strings required by some
devices (for example, PostScript printers), it is easier to use the GOPTIONS GEND=
option rather than the GDEVICE Gend window because it is easier to code the string as
text with GEND= than it is to convert the string to its ASCII representation, which is
required to enter the string in the GDEVICE Gend window.

Note: On non-ASCII hosts, only ASCII hexadecimal strings produce consistent
results in all instances because of the way the character strings are translated. In
addition, the only way to specify a value for GEND that can be used by all hosts is to
use an ASCII hexadecimal string; therefore, using an ASCII hexadecimal string to
specify a value for GEND is the recommended method. �

GEPILOG

Sends a string to a device or file after all graphics commands are sent.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Gepilog window
Restriction: not supported by Java or ActiveX
See also: PREGEPILOG, POSTGEPILOG

Syntax
GEPILOG=’string’ <...’string-n’>

370 GFORMS � Chapter 15

’string’
can be either of the following:

’hex-string’X
’character-string’
In a GOPTIONS statement or in the GDEVICE procedure ADD or MODIFY

statement, you can specify multiple strings with the GEPILOG= option. In this case,
you can mix the formats, specifying some as ASCII hexadecimal strings and some as
character strings. Multiple strings are concatenated automatically.

In the Gepilog window, enter the hexadecimal string without either quotation
marks or a trailing x. Note, however, that the string must be entered as a
hexadecimal string.

PROC GOPTIONS always reports the value as a hexadecimal string.

Details
GEPILOG can be used in conjunction with the GPROLOG= graphics option or device
parameter.

If you must specify the long and complicated initialization strings required by some
devices (for example, PostScript printers), it is easier to use the GOPTIONS GEPILOG=
option rather than the Gepilog window because it is easier to code the string as text
with GEPILOG= than it is to convert the string to its ASCII representation, which is
required to enter the string in the Gepilog window.

Note: On non-ASCII hosts, only ASCII hexadecimal strings produce consistent
results in all instances because of the way the character strings are translated. In
addition, the only way to specify a value for GEPILOG that can be used by all hosts is
to use an ASCII hexadecimal string; therefore, using an ASCII hexadecimal string to
specify a value for GEPILOG is the recommended method. �

GFORMS

Specifies the JES form name for IBM printers.

Used in: GOPTIONS statement
Default: STD
Restriction: used only with IBM3287 and IBM3268 device drivers on z/OS systems only

Syntax
GFORMS=’forms-code’

GOUTMODE

Appends to or replaces the graphics output catalog.

Graphics Options and Device Parameters Dictionary � GPROLOG 371

Used in: GOPTIONS statement

Default: APPEND

Restriction: not supported by Java or ActiveX

Syntax
GOUTMODE=APPEND | REPLACE

APPEND
adds each new graph to the end of the current catalog.

REPLACE
replaces the contents of the catalog with the graph or graphs produced by a single
procedure.

CAUTION:
If you specify REPLACE, the entire contents of the catalog are replaced, not just graphs of
the same name. Graphs are added to the catalog for the duration of the procedure,
but when the procedure ends and a new procedure begins, the contents of the catalog
are deleted and the new graph or graphs are added. �

GPROLOG

Sends a string to device or file before graphics commands are sent.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Gprolog window

Restriction: not supported by Java or ActiveX

See also: PREGPROLOG, POSTGPROLOG

Syntax
GPROLOG=’string’ <...’string-n’>

’string’
can be either of the following:

’hex-string’X

’character-string’
In a GOPTIONS statement or in the GDEVICE procedure ADD or MODIFY

statement, you can specify multiple strings with the GPROLOG= option. In this case,
you can mix the formats, specifying some as ASCII hexadecimal strings and some as
character strings. Multiple strings are concatenated automatically.

In the GPROLOG window, enter the hexadecimal string without either quotation
marks or a trailing x. Note, however, that the string must be entered as a
hexadecimal string.

PROC GOPTIONS always reports the value as a hexadecimal string.

372 GPROTOCOL � Chapter 15

Details
GPROLOG can be used in conjunction with the GEPILOG= graphics option or device
parameter.

If you must specify the long and complicated initialization strings required by some
devices (for example, PostScript printers), it is easier to use the GOPTIONS
GPROLOG= option rather than the GDEVICE Gprolog window because it is easier to
code the string as text with GPROLOG= than it is to convert the string to its ASCII
representation, which is required to enter the string in the GDEVICE Gprolog window.

Note: On non-ASCII hosts, only ASCII hexadecimal strings produce consistent
results in all instances because of the way the character strings are translated. In
addition, the only way to specify a value for GEND that can be used by all hosts is to
use an ASCII hexadecimal string; therefore, using an ASCII hexadecimal string to
specify a value for GEND is the recommended method. �

GPROTOCOL

Specifies the protocol module to use when routing output directly to a printer or creating a
graphics stream file (GSF) to send to a device attached to your host by a protocol converter.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window
Restriction: not supported by Java or ActiveX
Default: host dependent

Syntax
GPROTOCOL=module-name

module-name can be one of these
SASGPADE*

SASGPAGL*

SASGPASC

SASGPAXI*

SASGPCAB*

SASGPCHK*

SASGPDAT*

SASGPDCA*

SASGPHEX

SASGPHYD*

SASGPIDA*

SASGPIDX*

SASGPIMP*

Graphics Options and Device Parameters Dictionary � GRAPHRC 373

SASGPIOC*

SASGPISI*

SASGPI24*

SASGPLCL*

SASGPNET*

SASGPMIC*

SASGPRTM*

SASGPSCS*

SASGPSTD

SASGPSTE*

SASGPTCX*

SASGPVAT*

SASGP497*

SASGP71

*Valid only for IBM mainframe systems.

Details
GPROTOCOL= specifies whether the graphics data generated by the SAS/GRAPH
device driver should be altered and how the data should be altered. Unless you are
using a protocol converter on an IBM mainframe, most devices do not require that the
data be altered, and ordinarily, you do not have to change the default of GPROTOCOL.

On IBM hosts, the protocol module converts the graphics output to a format that can
be processed by protocol converters. On other hosts, it can be used to produce a file in
ASCII hexadecimal format.

Refer to the SAS Help facility for descriptions of these protocol modules.

Operating Environment Information: GPROTOCOL is valid only in certain operating
environments. �

GRAPHRC

Specifies whether to return a step code at graphics procedure termination.

Used in: GOPTIONS statement

Restriction: not supported by Java or ActiveX

Default: GRAPHRC

Syntax
GRAPHRC | NOGRAPHRC

374 GSFLEN � Chapter 15

GRAPHRC
allows a return code at procedure termination. If the return code is not 0, the entire
job might terminate.

NOGRAPHRC
always returns a step code of 0, even if the SAS/GRAPH program produced errors.
As a result, the entire job’s return code is unaffected by errors in any graphics
procedure. NOGRAPHRC also overrides the ERRABEND system option.

Details
You typically use this option when you are running multiple jobs in a batch
environment. It is useful primarily in an z/OS batch environment.

GSFLEN

Controls the length of records written to the graphics stream file (GSF).

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window
Default: device-dependent
Restriction: not supported by Java or ActiveX
See also: PROMPTCHARS

Syntax
GSFLEN=record-length

record-length
must be a nonnegative integer up to five digits long (0...99999). GSFLEN= specifies
the length of the records written by the driver to a GSF or to the device.

If GSFLEN is 0, SAS/GRAPH uses the sixth byte of the PROMPTCHARS string to
determine the length of the records. If the sixth byte of the PROMPTCHARS string
is 00, the device driver sets the record length.

If you specify GACCESS=SASGAFIX and omit GSFLEN=, SAS/GRAPH uses the
default length for the device.

Some values of the GPROTOCOL device parameter cause each byte in the data
stream to be expanded to two bytes. This expansion is done after the length of the
record is set by GSFLEN. If you are specifying a value for GPROTOCOL that does
this (for example, SASGPHEX, SASGPLCL, or SASGPAGL), specify a value for
GSFLEN that is half of the actual record length desired. For example, a value of 64
produces a 128-byte record after expansion by the GPROTOCOL module.

Graphics Options and Device Parameters Dictionary � GSFMODE 375

GSFMODE

Specifies the disposition of records written to a graphics stream file (GSF) or to a device or
communications port by the device driver.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window
Default: REPLACE
Restriction: not supported by Java or ActiveX
See also: GACCESS, GSFNAME

Syntax
GSFMODE=APPEND | PORT | REPLACE

APPEND
adds the records to the end of a GSF designated by the GACCESS= or GSFNAME=
graphics option or device parameter. If the file does not already exist, it is created.

The destination can be either a specific file or an aggregate file storage location.
If the destination of the GSF is a specific file and you specify APPEND,

SAS/GRAPH will add the new records to an existing GSF of the same name.
If the destination of the GSF is a file location and not a specific file, SAS/GRAPH

will add the records to an external file whose name matches the name of the newly
created catalog entry. For more information on how SAS/GRAPH names catalog
entries, see “Specifying the Graphics Output File Type for Your Graph” on page 91.

Note: Some viewers of bitmapped output can view only one graph, even though
multiple graphs are stored in the file. Therefore it might appear that a file contains
only one graph when in fact it contains multiple graphs. �

PORT
sends the records to a device or communications port. The GACCESS= graphics
option or device parameter should point to the desired port or device.

REPLACE
replaces the existing contents of a GSF designated by the GACCESS= or
GSFNAME= graphics option or device parameter. If the file does not exist, it is
created. REPLACE is always the default, regardless of the destination of the GSF.

If the destination of the GSF is a specific file and you specify REPLACE,
SAS/GRAPH will replace an existing GSF with the contents of a newly created GSF
of the same name.

If the destination of the GSF is a file location and not a specific file, SAS/GRAPH
will replace an external file whose name matches the name of the newly created
catalog entry. For more information on how SAS/GRAPH names catalog entries, see
“Specifying the Graphics Output File Type for Your Graph” on page 91.

Details
When you create a GSF, the GSFNAME= or GACCESS= graphics option or device
parameter controls where the output goes, and GSFMODE= controls how the driver
writes graphics output records. If the output is to go to a file, specify APPEND or
REPLACE. If the output is to go directly to a device or to a communications port,

376 GSFNAME � Chapter 15

specify PORT. See “Specifying the Graphics Output File Type for Your Graph” on page
91 for more information on creating a graphics stream file.

GSFNAME

Specifies the fileref of the file or aggregate file location to which graphics stream file records are
written.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window

Restriction: Not valid for IBM32xx, linkable, Metagraphics, Java, or ActiveX drivers.

See also: GACCESS, GSFMODE

Syntax
GSFNAME=fileref

fileref
specifies a fileref that points to the destination for the graphics stream file (GSF)
output. Fileref must be a valid SAS fileref up to eight characters long and must be
assigned with a FILENAME statement before running a SAS/GRAPH procedure that
uses that fileref. The destination specified by the FILENAME statement can be
either a specific file or an aggregate file location. See “FILENAME Statement” on
page 36 for additional information on the FILENAME statement.

Details
Whether the resulting graphs are stored as one file or many files depends on both the
type of destination and the setting of the GSFMODE= option.

If you specify a fileref with GSFNAME= and forget the FILENAME statement that
defines the fileref, and if a destination is specified by the GACCESS= graphics option or
device parameter, SAS/GRAPH assigns that destination to the fileref and sends the
graphics output there. See also “GACCESS” on page 365.

See “Specifying the Graphics Output File Type for Your Graph” on page 91 for more
information on creating graphics stream files.

GSFPROMPT

Specifies whether to write prompt messages to the graphics stream file (GSF).

Used in: GOPTIONS statement

Default: NOGSFPROMPT

Restriction: not supported by Java or ActiveX

Graphics Options and Device Parameters Dictionary � GSTART 377

Syntax
GSFPROMPT | NOGSFPROMPT

Details
When the GSF is processed by another program, that program can display the

prompt messages. The default, NOGSFPROMPT, is compatible with Release 6.06.

Although the prompt messages appear if the graphics device is in eavesdrop mode,
they do not wait for user response. If GSFPROMPT is on, the prompt messages are
sent with the GSF to the device, regardless of the status of the graphics options
PROMPT, GACCESS=, GSFMODE=, or GSFNAME=.

GSIZE

Sets the number of lines of display used for graphics for devices whose displays can be divided
into graphics and text areas.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Restriction: not supported by Java or ActiveX
Default: device-dependent

Syntax
GSIZE=lines

lines
specifies the number of lines to be used for graphics. Lines is a nonnegative integer
up to three digits long (0...999), and can be larger or smaller than the total number of
lines that can be displayed at one time. If the number is larger, scroll the graph to
see it all. If GSIZE is 0, all lines are used for text.

GSTART

Prefixes every record of graphics data sent to a device or file with a string of characters.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Gstart window
Default: none
Restriction: not supported by Java or ActiveX
See also: GEND

Syntax
GSTART=’string <...’string-n’>

378 GUNIT � Chapter 15

’string’
can be either of the following:

’hex-string’X
’character-string’
In a GOPTIONS statement or in the GDEVICE procedure ADD or MODIFY

statement, you can specify multiple strings with the GSTART= option. In this case,
you can mix the formats, specifying some as ASCII hexadecimal strings and some as
character strings. Multiple strings are concatenated automatically.

In the GSTART window, enter the hexadecimal string without either quotation
marks or a trailing x. Note, however, that the string must be entered as a
hexadecimal string.

PROC GOPTIONS always reports the value as a hexadecimal string.

Details
GSTART is useful when sending a file to a device that requires each record be prefixed
with some character. You can use GSTART= in conjunction with the GEND= graphics
option or device parameter.

If you must specify the long and complicated initialization strings required by some
devices (for example, PostScript printers), it is easier to use the GOPTIONS GSTART=
option rather than the GDEVICE Gstart window because it is easier to code the string
as text with GSTART= than it is to convert the string to its ASCII representation,
which is required to enter the string in the GDEVICE Gstart window.

Note: On non-ASCII hosts, only ASCII hexadecimal strings produce consistent
results in all instances because of the way the character strings are translated. In
addition, the only way to specify a value for GEND that can be used by all hosts is to
use an ASCII hexadecimal string; therefore, using an ASCII hexadecimal string to
specify a value for GEND is the recommended method. �

GUNIT

Specifies the default unit of measure to use with height specifications.

Used in: GOPTIONS statement
Default: CELLS
Restriction: partially supported by Java or ActiveX

Syntax
GUNIT=units

units must be one of

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area

Graphics Options and Device Parameters Dictionary � GWRITER 379

PT points (there are approximately 72 points in an inch).

Details
Used with options in the AXIS, FOOTNOTE, LEGEND, NOTE, SYMBOL, and TITLE
statements and in some graphics options. If you specify a value but do not specify an
explicit unit, the value of the GUNIT= graphics option is used. If the HSIZE= and
VSIZE= options are specified then GUNIT is ignored and inches will be used.

GWAIT

Specifies the time between each graph displayed in a series.

Used in: GOPTIONS statement
Default: GWAIT=0
Restriction: not supported by Java or ActiveX

Syntax
GWAIT=seconds

seconds
specifies the number of seconds between graphs. Seconds can be any reasonable
positive integer. By default, GWAIT=0, which means that you must press the
RETURN key between each display in a series of graphs.

Details
GWAIT= enables you to view a series of graphs without having to press the ENTER key
(or the RETURN or END key, depending on your device) between each display. For
example, if you specify GWAIT=5, five seconds elapse between the display of each graph
in a series. If you use the NOPROMPT graphics option, the GWAIT= graphics option is
disabled.

GWRITER

Specifies the name of the external writer used with IBM printers.

Used in: GOPTIONS statement
Default: SASWTR
Restriction: Used only with IBM3287 and IBM3268 device drivers on z/OS systems

Syntax
GWRITER=’writer-name’

380 HANDSHAKE � Chapter 15

HANDSHAKE

Specifies the type of flow control used to regulate the flow of data to a hard copy device.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: host dependent
Restriction: not supported by Java or ActiveX

Syntax
HANDSHAKE=HARDWARE | NONE | SOFTWARE | XONXOFF

HARDWARE
HARD

specifies that SAS/GRAPH instruct the device to use the hardware CTS and RTS
signals. (This is not appropriate for some devices.)

NONE
specifies that SAS/GRAPH send data without providing flow control. Specify NONE
only if the hardware or interface program you are using provides its own flow control.

SOFTWARE
SOFT

specifies that SAS/GRAPH use programmed flow control with plotters in eavesdrop
mode.

XONXOFF
X

specifies that SAS/GRAPH instruct the device to use ASCII characters DC1 and DC3.
(This is not appropriate for some devices.)

Details
HANDSHAKE regulates flow of control by specifying how and if a device can signal to
the host to temporarily halt transmission and then resume it. Flow control is important
because it is possible to send commands to a hard copy device faster than they can be
executed.

HANDSHAKE can be used when you are using a protocol converter, interface
program, or host computer that can perform XONXOFF or hardware handshaking. You
can also use this option if you are routing output through flow-control programs of your
own, as in a multiple-machine personal computer environment where the graphics
plotter is a shared resource. SAS/GRAPH software sends output to a server (the file
transfer does not require flow control). The server queues incoming graphs and sends
them to the plotter. The server, rather than SAS/GRAPH software, is responsible for
handling flow control. An interface program is usually invoked by the line printer
daemon and provides formatting or control signals for a system destination. The
interface program typically includes port configuration options, such as baud, parity, and
special character processing requirements (raw or cooked mode) for that destination.

If you do not use HANDSHAKE, the value in the driver entry is used.

Graphics Options and Device Parameters Dictionary � HEADER 381

If you use HANDSHAKE=XONXOFF or HANDSHAKE=HARDWARE, SAS/GRAPH
does not actually do the handshaking. It tells the device which type of handshake is
being used. The protocol converter, interface program, or host computer actually does
the handshake.

Note: If you are creating a graphics stream file using a driver for a plotter and you
specify HANDSHAKE=SOFTWARE, the software that you use to send the file to the
plotter must be able to perform a software handshake. You will probably want to
specify one of the alternative values if you route output to a file. �

HBY

Specifies the height of By lines generated when you use BY-group processing.

Used in: GOPTIONS statement
Default: One cell unless the HTEXT= option is used

Restriction: not supported by Java or ActiveX
See also: “BY Statement” on page 216

Syntax
HBY=By line-height <units>

By line-height <units>
specifies the height of By line text; by default By line-height is 1. If you specify
HBY=0, the BY headings are suppressed. For a description of units, see “Specifying
Units of Measurement” on page 328.

Note: If a value for units is not specified, the current units associated with the
GUNIT graphics option are used. �

Details
When you use a BY statement with a SAS/GRAPH procedure to process a data set in
subgroups, each graph produced by that procedure is headed by a By line that displays
the BY variables and their values that define the current subgroup.

HEADER

Specifies the command that executes a user-supplied program to create HEADER records for the
driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window

Restriction: Used only with user-supplied Metagraphics drivers.

See also: HEADERFILE

382 HEADERFILE � Chapter 15

Syntax
HEADER=’command’

command
specifies a command that runs a user-written program that creates the file of
HEADER records. Command is a string up to 40 characters long.

Details
For information about Metagraphics drivers, contact Technical Support.

HEADERFILE

Specifies the fileref for the file from which the Metagraphics driver reads HEADER records.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Restriction: Used only with user-supplied Metagraphics drivers.
See also: HEADER

Syntax
HEADERFILE=fileref

fileref
specifies a valid SAS fileref up to eight characters long. Fileref must have been
previously assigned with a FILENAME statement or a host command before running
the Metagraphics driver. See “FILENAME Statement” on page 36 for details.

Details
For information about Metagraphics drivers, contact Technical Support.

HORIGIN

Sets the horizontal offset from the lower-left corner of the display area to the lower-left corner of
the graph.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window
Restriction: not supported by Java or ActiveX
See also: VORIGIN

Syntax
HORIGIN=horizontal-offset <IN | CM | PT>

Graphics Options and Device Parameters Dictionary � HPOS 383

horizontal-offset <IN | CM | PT>
must be a nonnegative number and can be followed by a unit specification, either IN
for inches (default), or CM for centimeters, or PT for points. If you do not specify
HORIGIN, a default offset is searched for in this order:

1 the left margin specification on an OPTIONS LEFTMARGIN setting
2 HORIGIN setting in the device catalog.

Details
The display area is defined by the XMAX and YMAX device parameters. By default, the
origin of the graphics output area is the lower-left corner of the display area; the
graphics output is offset from the lower-left corner of the display area by the values of
HORIGIN and VORIGIN. HORIGIN + HSIZE cannot exceed XMAX.

Note: When sending output to the PRINTER destination (ODS PRINTER), if you
specify the VSIZE= option without specifying the HSIZE= option, the default origin of
the graphics output area changes. The default placement of the graph changes from the
lower-left corner of the display area to the top-center of the graphics output area.
Likewise, if you specify the HSIZE= option without specifying the VSIZE= option, the
graph is positioned at the top-center of the graphics output area by default. �

See “The Graphics Output and Device Display Areas” on page 59 for details.

HOSTSPEC
Stores FILENAME statement options in the device entry.

Used in: GDEVICE procedure; GDEVICE Host File Options window

Syntax
HOSTSPEC=’text-string’

text-string
specifies FILENAME statement options that are valid for the operating environment.
Text-string accepts characters in upper or lower case. See the SAS documentation for
your operating environment for details.

Details
HOSTSPEC can be used when the driver dynamically allocates a graphics stream file or
spool file. It can specify the attributes of the file, such as record format or record length.
It cannot be used with Metagraphics drivers.

HPOS
Specifies the number of columns in the graphics output area.

384 HSIZE � Chapter 15

Used in: GOPTIONS statement

Default: device-dependent: the value of the LCOLS or PCOLS device parameter

Restriction: not supported by Java or ActiveX

See also: PCOLS, LCOLS, VPOS

Syntax
HPOS=columns

columns
specifies the number of columns in the graphics output area, which is equivalent to
the number of hardware characters that can be displayed horizontally. Specifying
HPOS=0 causes the device driver to use the default hardware character cell width for
the device.

Details

The HPOS= graphics option overrides the values of the LCOLS or PCOLS device
parameters and temporarily sets the number of columns in the graphics output area.
HPOS= does not affect the width of the graphics output area but merely divides it into
columns. Therefore, you can use HPOS= to control cell width.

The values specified in the HPOS= and VPOS= graphics options determine the size
of a character cell for the graphics output area and consequently the size of many
graphics elements, such as device–resident text. The larger the size of the HPOS= and
VPOS= values, the smaller the size of each character cell.

See “Overview” on page 59 for more information.

HSIZE

Sets the horizontal size of the graphics output area.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window

Restriction: partially supported by Java or ActiveX

See also: VSIZE, XMAX

Syntax

HSIZE=horizontal-size <IN | CM | PT>

horizontal-size <IN | CM | PT>
specifies the width of the graphics output area; horizontal-size must be a positive
number and can be followed by a unit specification, either IN for inches (default), or
CM for centimeters, or PT for points.

Graphics Options and Device Parameters Dictionary � HTITLE 385

If you do not specify HSIZE=, a default size is searched for in this order:
1 the horizontal size is calculated as

XMAX − LEFTMARGIN − RIGHTMARGIN

Note that LEFTMARGIN and RIGHTMARGIN are used in the OPTIONS
statement.

2 HSIZE setting in the device catalog.

HTEXT

Specifies the default height of the text in the graphics output.

Used in: GOPTIONS statement
Default: One cell
Restriction: partially supported by Java

Syntax
HTEXT=text-height <units>

text-height <units>
specifies the height of the text; by default text-height is 1. For a description of units,
see “Specifying Units of Measurement” on page 328.

Note: If a value for units is not specified, the current units associated with the
GUNIT graphics option are used. �

Details
HTEXT= is overridden by the HTITLE= graphics option for the first TITLE line.

Note: When you use ODS to send graphics to an HTML destination, and titles and
footnotes are rendered as part of the HTML body file instead of the graphic image, you
must specify the ODS USEGOPT statement for this option to work. See “Using
Graphics Options with ODS (USEGOPT)” on page 195 for more information. �

HTITLE

Selects the default height used for the first TITLE line.

Used in: GOPTIONS statement
Default: Two cells unless HTEXT= is used

Syntax
HTITLE=title-height <units>

386 IBACK � Chapter 15

title-height <units>
specifies the height of the text in the TITLE1 statement. By default, title-height is 2.
For a description of units, see “Specifying Units of Measurement” on page 328.

Note: If a value for units is not specified, the current units associated with the
GUNIT graphics option are used. �

Details
If you omit the HTITLE= option, TITLE1 uses the height specified by the HTEXT=
graphics option, if used.

Note: When you use ODS to send graphics to an HTML destination, and titles and
footnotes are rendered as part of the HTML body file instead of the graphic image, you
must specify the ODS USEGOPT statement for this option to work. See “Using
Graphics Options with ODS (USEGOPT)” on page 195 for more information. �

IBACK

Specifies an image file to display in a graph’s background area.

Restriction: partially supported by Java
See also: CBACK, IMAGESTYLE

Syntax
IBACK=fileref | ’external-file’ | ’URL’| " "

fileref
specifies a fileref that points to the image file you want to use. Fileref must be a valid
SAS fileref up to eight characters long and must have been previously assigned with
a FILENAME statement.

external-file
specifies the complete filename of the image file you want to use. The format of
external-file varies across operating environments.

URL
specifies the URL of the image file that you want to use.

Details
The image can be used with any procedures that produce a picture or support the

CBACK= option. The IBACK option is supported by the Graph applet and the Map
applet, but it is not supported by the Contour applet. See Chapter 16, “Introducing
SAS/GRAPH Output for the Web,” on page 439 for information about these applets.

This option overrides the BackGroundImage and Image styles attribute in the graph
styles. To suppress a background image that is defined in a style or to reset the value of
the IBACK= option, specify a blank space:

Graphics Options and Device Parameters Dictionary � IMAGEPRINT 387

IBACK=" "
For more information on graph styles, refer to the TEMPLATE procedure

documentation in SAS Output Delivery System: User’s Guide.
For a list of the file types that you use, see “Image File Types Supported by SAS/

GRAPH” on page 181.

ID

Specifies the description string used by the Metagraphics driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window

Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
ID=’description’

description
is a character string up to 70 characters long. If this field is blank, the name and
description of the graph as specified in the PROC GREPLAY window of the
GREPLAY procedure are used.

Details
For information about Metagraphics drivers, contact Technical Support.

IMAGEPRINT

Enables or disables image output

Used in: GOPTIONS statement

Default: IMAGEPRINT

Restriction: not supported by Java or ActiveX

Syntax
IMAGEPRINT | NOIMAGEPRINT

IMAGEPRINT
default value specifies that any images are to be included in graphics output.

NOIMAGEPRINT
specifies that images are to be withheld from graphics output.

388 IMAGESTYLE � Chapter 15

IMAGESTYLE

Specifies the way to display the image file that is specified on the IBACK= option.

Default: TILE

Restriction: not supported by Java

Syntax
IMAGESTYLE= TILE | FIT

TILE
tile the image within the specified area. This copies the images as many times as
needed to fit the area.

FIT
fit the image within the background area. This stretches the image, if necessary.

Details
Note: This option overrides the BackGroundImage and Image styles attribute in the

graph styles. For more information on graph styles, refer to the TEMPLATE procedure
documentation in SAS Output Delivery System: User’s Guide. �

INTERACTIVE

Sets level of interactivity for Metagraphics driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window

Default: USER

Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
INTERACTIVE=USER | GRAPH | PROC

USER
specifies that the user-written part of the driver be executed outside of SAS/GRAPH.

PROC
specifies that the user-written part of the Metagraphics driver be invoked after the
procedure is complete.

GRAPH
specifies that the user-written part be invoked for each graph.

Graphics Options and Device Parameters Dictionary � ITERATION 389

Details
For information about Metagraphics drivers, contact Technical Support.

INTERLACED

Specifies whether images are to be displayed as they are received in the browser.

Used in: GOPTIONS statement
Default: NONINTERLACED
Restriction: driver-dependent, GIF series of drivers only

Syntax
INTERLACED | NONINTERLACED

Details
With interlacing it is possible to get a rough picture of what a large image will look

like before it is completely drawn in your browser. Your browser might allow you to set
an option that will determine how images are displayed.

INTERPOL

Sets the default interpolation value for the SYMBOL statement.

Used in: GOPTIONS statement
Restriction: not supported by Java or ActiveX

Syntax
INTERPOL=interpolation-method

interpolation-method
specifies the default interpolation to be used when the INTERPOL= option is not
specified in the SYMBOL statement. See “SYMBOL Statement” on page 252 for the
complete syntax of all interpolation methods.

ITERATION

Specifies the number of times to repeat the animation loop.

Used in: GOPTIONS statement

390 KEYMAP � Chapter 15

Default: 0
Restriction: GIFANIM driver only

Syntax
ITERATION=iteration-count

iteration-count
specifies the number of times that your complete GIF animation loop is repeated. It
is assumed that the animation is always played once; this option specifies how many
times the animation is repeated. Iteration-count can be a number from 0...65535. A
value of 0 causes the animation to loop continuously.

Details
In Version 6, the GCOPIES graphics option controlled iteration for the GIFANIM driver.

KEYMAP

Selects the keymap to use.

Used in: GOPTIONS statement
Default: installation dependent

Restriction: not supported by Java or ActiveX

Syntax
KEYMAP=key-map-name | NONE

key-map-name
specifies the name of a keymap.

NONE
suppresses the keymap assigned by default to a non-U.S. keyboard. If you specify
KEYMAP=NONE, text might display incorrectly or not at all.

Details
Non-default key maps usually are used only with non-U.S. Keyboards.

LCOLS

Sets the number of columns in the graphics output area for landscape orientation.

Graphics Options and Device Parameters Dictionary � LROWS 391

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device-dependent
See also: HPOS, LROWS, PCOLS

Syntax
LCOLS=landscape-columns

landscape-columns
must be a nonnegative integer up to three digits long (0...999).

Details
Either the LROWS and LCOLS pair of device parameters or the PROWS and PCOLS
pair of device parameters are required and must be nonzero.

The HPOS= graphics option overrides the value of LCOLS.
See “Overview” on page 59 for more information.

LFACTOR

Selects the default hardware line thickness.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device-dependent
Restriction: Used only with devices that can draw hardware lines of varying thicknesses.
Not supported by Java or ActiveX.

Syntax
LFACTOR=line-thickness-factor

line-thickness-factor
can range from 0 through 9999. A value of 0 for LFACTOR is the same as a factor of
1. Lines are drawn line-thickness-factor times as thick as normal.

Details
LFACTOR is useful when you are printing graphics output on a plotter. Depending on
the orientation and type of device, some plotters might require LFACTOR=10 to get the
same thickness of lines as on the display of some devices.

LROWS

Sets the number of rows in the graphics output area for landscape orientation.

392 MAXCOLORS � Chapter 15

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device-dependent
See also: LCOLS, PROWS, VPOS

Syntax
LROWS=landscape-rows

landscape-rows
is a nonnegative integer up to three digits long (0...999).

Details
Either the LROWS and LCOLS pair of device parameters or the PROWS and PCOLS
pair of device parameters are required and must be nonzero.

The VPOS= graphics option overrides the value of LROWS.
See “Overview” on page 59 for more information.

MAXCOLORS

Sets the total number of colors that can be displayed at once.

Used in: GDEVICE procedure; GDEVICE Parameters window
Default: device-dependent
See also: PENMOUNTS

Syntax
MAXCOLORS=number-of-colors

number-of-colors
must be an integer in the range 2 through 256. The total number of colors includes
the foreground colors plus the background color.

Details
The PENMOUNTS= graphics option overrides the value of MAXCOLORS.

MAXPOLY

Sets the maximum number of vertices for hardware-drawn polygons.

Used in: GDEVICE procedure; GDEVICE Parameters window

Graphics Options and Device Parameters Dictionary � MODULE 393

Default: device-dependent

Syntax
MAXPOLY=number-of-vertices

number-of-vertices
is a nonnegative integer up to four digits long. A value of 0 means that there is no
limit to the number of vertices that can be specified in the hardware’s
polygon-drawing command. The maximum value of MAXPOLY depends on the
number of vertices your device can process.

MODEL

Specifies the model number of the output device.

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device-dependent

Syntax
MODEL=model-number

model-number
is a nonnegative integer up to five digits long that is the SAS-designated model
number for the corresponding device. It is not the same as a manufacturer’s model
number.

Details
Do not change this field in SAS-supplied drivers or in drivers that you copy from
SAS-supplied drivers.

MODULE

Specifies the name of the corresponding executable driver module for the device.

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device-dependent

Syntax
MODULE=driver-module

394 NAK � Chapter 15

driver-module
is a literal string up to eight characters long. All standard driver modules begin with
the characters SASGD.

Details
Do not change this field in SAS-supplied drivers or in drivers that you copy from
SAS-supplied drivers.

NAK

Specifies the negative response for software handshaking for Metagraphics drivers.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
NAK=’negative-handshake-response’X

negative-handshake-response
is a hexadecimal string up to 16 characters long.

Details
For information about Metagraphics drivers, contact Technical Support.

OFFSHADOW

Controls the width and depth of the drop shadow in legend frames.

Used in: GOPTIONS statement
Default: (0.0625, − 0.0625) IN
Restriction: not supported by Java or ActiveX

Syntax
OFFSHADOW=(x <units>, y <units>) | (x,y) <units>

x,y
specify the width (x) and depth (y) of the drop shadow generated by the LEGEND
statement.

Graphics Options and Device Parameters Dictionary � PAPERFEED 395

If a value for units is not specified, the current units associated with the GUNIT
graphics option are used. For a description of units, see “Specifying Units of
Measurement” on page 328.

Details
The values specified by OFFSHADOW= are used with the CSHADOW= and CBLOCK=
options in a LEGEND statement. For details, see “LEGEND Statement” on page 225.

PAPERDEST

Specifies which output bin the printer should use if multiple bins are available on the device.

Used in: GOPTIONS statement; OPTIONS statement
Default: 1 (the upper output bin)
Restrictions: hardware-dependent, PostScript printers require a PPD file; not supported
by Java or ActiveX
See also: PAPERSOURCE, PPDFILE

Syntax
PAPERDEST=bin

bin
specifies the name or number of the output bin. Values for bin depend on the type of
printer and can be one of the following:

bin the name or number of the output bin – for example,
PAPERDEST=4, PAPERDEST=BIN2, PAPERDEST=SIDE

’long bin name’ a character string that is the name of the output bin – for
example, PAPERDEST=’Top Output Bin’. Names with blanks or
special characters must be quoted.

For PostScript printers, the value for bin must correspond to an OutputBin value
in the PPD file.

For PCL printers, consult the printer’s documentation for valid bin values. If a
numeric value exceeds the maximum bin value allowed for the printer, a warning
message is issued . For string values, the string is checked against a list of strings
that are valid for the driver (for example, ’UPPER’, ’LOWER’, or
’OPTIONALOUTBINn’, where n is the bin number). If the string is not valid for the
driver, a warning message is issued.

PAPERFEED

Specifies the increment of paper that is ejected when a graph is completed.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window

396 PAPERLIMIT � Chapter 15

Default: PAPERFEED=0.0 IN

Restriction: device-dependent; not supported by Java or ActiveX

Syntax
PAPERFEED=feed-increment <IN | CM>

feed-increment <IN | CM>
must be a nonnegative number and can be followed by a unit specification, either IN
for inches (default) or CM for centimeters.

Details
PAPERFEED does not control the total length of the ejection. If you specify
PAPERFEED=1, the driver ejects paper in 1 inch increments until the total amount of
paper ejected is at least half an inch greater than the size of the graph last printed. If
you specify PAPERFEED=8.5 IN, the paper is ejected in increments of 8.5 inches,
measuring from the origin of the first graph.

PAPERFEED is provided mainly for plotters that use fanfold or roll paper. If you are
using fanfold paper, specify a value for PAPERFEED that is equal to the distance
between the perforations.

PAPERLIMIT

Sets the width of the paper used with plotters.

Used in: GOPTIONS statement

Default: maximum dimensions specified in the device driver

Restriction: ZETA plotters and KMW rasterizers

Syntax
PAPERLIMIT=width <IN | CM>

width <IN | CM>
specifies the paper width in IN for inches (default) or CM for centimeters. If
PAPERLIMIT= is not specified, the maximum dimensions of the graph are restricted
by the hardware limits of the graphics device.

Details
If you want to use a driver with a device that has a larger plotting area than the device
for which the driver is intended (for example, using the ZETA887 driver with a ZETA
836 plotter), the PAPERLIMIT= graphics option can be used to override the size limit of
the driver.

Graphics Options and Device Parameters Dictionary � PAPERSOURCE 397

PAPERSIZE

Specifies the name of a paper size.

Used in: GOPTIONS statement; OPTIONS statement

Default: device-dependent
Restriction: hardware- dependent, PostScript printers require a PPD file; not supported
by Java or ActiveX

See also: PAPERSOURCE, PPDFILE

Syntax
PAPERSIZE=’size-name’

size-name
specifies the name of a paper size, such as LETTER, LEGAL, or A4.

If you do not specify the PAPERSIZE= option, the PAPERSIZE= option setting on
an OPTIONS statement is used. If no OPTIONS statement sets a paper size, the
value for paper size is device-dependent:

� The universal printing devices use the size specified in the Page Setup dialog
box.

� All other printer devices use the LETTER paper size.

Details
Typically, you might use the PAPERSIZE= option with the Output Delivery System
(ODS). For some printers, the PAPERSIZE= option overrides the PAPERSOURCE=
option selection.

For PostScript devices, the name must match the name of a paper size in the PPD
file. Refer to the PPD file for a list of valid names. Size-name is case-insensitive and
can contain a subset of the full name. For example, if the name in the PPD file is
*PageSize A4/A4, you can specify PAPERSIZE=’A4’. If a PPD file is not specified, the
PAPERSIZE= option is ignored.

For PCL devices, the device driver searches the SAS Registry for supported paper
size values. To see the supported list of sizes, submit the following statements:

proc registry listhelp
startat=’options\papersize’;

run;

For more information about the SAS Registry, refer to the SAS Help facility.

PAPERSOURCE

Specifies which paper tray the printer should use if multiple trays are available on the device.

Used in: GOPTIONS statement; OPTIONS statement
Default: device-dependent

398 PAPERTYPE � Chapter 15

Restriction: hardware– dependent, PostScript printers require a PPD file; not supported
by Java or ActiveX

See also: PAPERDEST, PAPERSIZE, PPDFILE

Syntax
PAPERSOURCE=tray

tray
specifies the name or number of the paper tray. Values for tray depend on the type of
printer and can be one of the following:

tray the name or number of the paper tray, for example,
PAPERSOURCE=3, PAPERSOURCE=TRAY3,
PAPERSOURCE=Upper

’long tray name’ a character string that is the name of the paper tray, for example,
PAPERSOURCE=’Optional Output Tray’. Names with blanks or
special characters must be quoted.

Details
On some printers, if the PAPERSIZE= option is also specified, it overrides the setting
on the PAPERSOURCE= option.

For PostScript printers, a tray number, such as PAPERSOURCE=’tray3’, must
correspond to an InputSlot value in the PPD file.

For PCL printers, consult the printer’s documentation for valid tray values. If a
numeric value exceeds the maximum tray value allowed for the printer, a warning
message is issued . For string values, the string is checked against a list of strings that
are valid for the driver:

� ’AUTO’

� ’HCI’ or ’HCIn’, where n is a number from 2 to 21

� ’MANUAL’

� ’MANUAL_ENVELOPE’

� ’TRAYn’, where n is 1, 2, or 3.

If the string is not valid for the driver, a warning message is issued.

PAPERTYPE

Specifies the name of a paper type.

Used in: GOPTIONS statement; OPTIONS statement

Default: PLAIN

Restriction: hardware– dependent, PostScript printers require a PPD file; not supported
by Java or ActiveX

See also: PPDFILE

Graphics Options and Device Parameters Dictionary � PCLIP 399

Syntax
PAPERTYPE=’type-name’

type-name
specifies the name of a paper type. Valid values depend on the type of printer.

For PostScript devices, type-name must match the name of a paper type in the
PPD file, such as TRANSPARENCY or PLAIN. Refer to the PPD file for a list of valid
names. Type-name is case-insensitive and can contain a subset of the full name. For
example, if the name in the PPD file is *MediaType Plain/Paper you can specify
PAPERTYPE=’PLAIN/PAPER’.

For PCL devices, type-name specifies the name of a paper type that is available on
the current printer, such as GLOSSY, PLAIN, SPECIAL, or TRANSPARENCY.
Consult your printer’s user manual for the complete list of available paper types on
your printer.

Details
For PostScript devices, if a PPD file is not specified, the PAPERTYPE= option is ignored.

PATH

Sets the increment of the angle for device–resident text rotation.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Default: PATH=0
Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
PATH=angle-increment

angle-increment
is an integer in the range 0 to 360 that specifies the angle at which to rotate the text
baseline. A value of 0 means that the device uses its default orientation. Specify 0 if
your device does not perform string angling in hardware.

Details
For information about Metagraphics drivers, contact Technical Support.

PCLIP

Specifies whether a clipped polygon is stored in its clipped or unclipped form.

Used in: GOPTIONS statement

400 PCLIP � Chapter 15

Default: NOPCLIP

Restriction: not supported by Java or ActiveX

See also: POLYGONCLIP

Syntax
PCLIP |NOPCLIP

PCLIP
stores clipped polygons with the graph in the default catalog WORK.GSEG, or in the
catalog you specify.

NOPCLIP
stores the unclipped form of the polygon and causes the polygon to be clipped when
replayed.

Details
The effects of this option are seen only when you use the graphics editor to edit a graph.

When a procedure produces a graph with intersecting polygons or blanking areas, it
clips portions of the polygons to prevent the ones behind from showing through. When
the graph is created and stored in a catalog, if PCLIP is in effect, the clipped form of
the polygon is stored with it. If NOPCLIP is specified, the complete polygon is stored in
the catalog and the graph is clipped each time it is replayed.

For example, suppose you create a block map like the one in Figure 15.3 on page 400.

Figure 15.3 Intersecting Polygons

The block clips the boundary of the map area polygon. If you specify PCLIP, the map
area polygon is stored in its clipped form, as shown in Figure 15.4 on page 400.

Figure 15.4 Clipped Polygon with PCLIP Option

Graphics Options and Device Parameters Dictionary � PENMOUNTS 401

NOPCLIP stores the map area in its unclipped form, as shown in Figure 15.5 on
page 401.

Figure 15.5 Polygon with NOPCLIP Option

In this case, when the graph is recalled from the catalog, the map area polygon must
be clipped before it is displayed with the block. If you plan to edit the graph with the
graphics editor, specify NOPCLIP so polygons retain their original form.

PCOLS

Sets the number of columns in the graphics output area for portrait orientation.

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device–dependent
See also: HPOS, LCOLS, PROWS

Syntax
PCOLS=portrait-columns

portrait-columns
must be a nonnegative integer up to three digits long (0...999).

Details
Either the LROWS and LCOLS pair of device parameters or the PROWS and PCOLS
pair of device parameters are required and must be nonzero.

The HPOS= graphics option overrides the value of PCOLS.
See “Overview” on page 59 for more information.

PENMOUNTS

Specifies the number of active pens or colors.

Used in: GOPTIONS statement
Default: device-dependent
Restriction: not supported by Java or ActiveX

402 PENSORT � Chapter 15

See also: MAXCOLORS

Syntax
PENMOUNTS=active-pen-mounts

active-pen-mounts
specifies the number of pens for a plotter with multiple pens. After the specified
number of pens have been used, you are prompted to change the pens.

Details
For devices that are not pen plotters, PENMOUNTS= can be used to indicate the
number of colors that can be displayed at one time. In this case, PENMOUNTS=
performs the same function as the MAXCOLORS device parameter except that the
value specified for MAXCOLORS includes the background color and PENMOUNTS only
refers to foreground colors. Thus, PENMOUNTS=4 implies MAXCOLORS=5.

PENMOUNTS= overrides the value of the MAXCOLORS device parameter. You can
specify MAXCOLORS= in a GOPTIONS statement as a synonym for PENMOUNTS=.

PENSORT

Specifies whether plotters draw graphics elements in order of color.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Restriction: not supported by Java or ActiveX
Default: device-dependent

Syntax
GOPTIONS: PENSORT | NOPENSORT

GDEVICE: PENSORT=Y | N

Graphics Options and Device Parameters Dictionary � POLYGONCLIP 403

PENSORT
PENSORT=Y

causes the plotter to draw all graphics elements of one color at one time. For
example, it draws all the red elements in the output, then all the blue elements, and
so on. This specification is compatible with previous releases. Use it for plotters with
real pens.

NOPENSORT
PENSORT=N

causes the plotter to draw each element as it is encountered, regardless of its color.
For example, the plotter might draw a red circle, then a blue line, and then a red
line, and so on. This method is best for electrostatic printers implemented with
Metagraphics drivers of TYPE=PLOTTER. In addition, NOPENSORT enables you to
specify non-standard color names.

PIEFILL

Specifies whether to use the device’s hardware pie-fill capability.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device-dependent
Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: PIEFILL | NOPIEFILL

GDEVICE: PIEFILL=Y | N

PIEFILL
PIEFILL=Y

causes SAS/GRAPH to use the built-in hardware capability of the device, if available,
to fill pies and pie sections. A blank Piefill field in the Parameters window is the
same as PIEFILL=Y.

Hardware drawing is faster, but not all devices have the capability. SAS/GRAPH
does not try to use the capability if your device does not support it.

NOPIEFILL
PIEFILL=N

causes SAS/GRAPH to fill pies and pie sections using software pie fills.

POLYGONCLIP

Specifies the type of clipping used when two polygons overlap.

Used in: GOPTIONS statement

404 POLYGONFILL � Chapter 15

Default: device-dependent
Restriction: not supported by Java or ActiveX
See also: PCLIP

Syntax
POLYGONCLIP | NOPOLYGONCLIP

POLYGONCLIP
specifies polygon clipping, which enables a clipped polygon to be filled with a
hardware pattern. POLYGONCLIP affects only graphs that have blanking areas or
intersecting polygons.

NOPOLYGONCLIP
specifies line clipping; a polygon that has been line-clipped cannot use a hardware
pattern.

Details
Clipping is the process of removing part of one polygon when two polygons intersect.
For example, in a block map, a block might overlap the boundary of its map area. In
this case, the polygon that makes up the map area is clipped so that you do not see the
boundary line behind the block. (See Figure 15.3 on page 400 for an illustration of a
clipped polygon.) The type of clipping used by a graph affects whether a clipped area
can use hardware patterns.

POLYGONCLIP is affected by the PCLIP graphics option:

POLYGONCLIP with PCLIP or NOPCLIP
all areas can use hardware patterns

NOPOLYGONCLIP with NOPCLIP
all areas use only software patterns

NOPOLYGONCLIP with PCLIP
areas can use either hardware or software patterns depending on the nature of the
clipped polygons.

Under some conditions the polygons might not be clipped correctly. Specifying both
POLYGONCLIP and NOPCLIP will produce the correct graph.

POLYGONFILL

Specifies whether to use the hardware polygon-fill capability.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device-dependent
Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: POLYGONFILL | NOPOLYGONFILL

Graphics Options and Device Parameters Dictionary � POSTGPROLOG 405

GDEVICE: POLYFILL=Y | N

POLYGONFILL
POLYFILL=Y

causes SAS/GRAPH to use the built-in hardware capability of the device to fill
polygons. A blank Polyfill field in the Parameters window is the same as
POLYGONFILL.

hardware drawing is faster, but not all devices have the capability. SAS/GRAPH
does not try to use the capability if your device does not support it.

NOPOLYGONFILL
POLYFILL=N

causes SAS/GRAPH to use software fills to fill polygons.

POSTGEPILOG

Specifies data to send immediately after the data that is stored in the Gepilog field of the device
entry is sent.

Used in: GOPTIONS statement
Default: Null string
Restriction: not supported by Java or ActiveX
See also: GEPILOG, PREGEPILOG

Syntax
POSTGEPILOG=’string’

’string’
can be either of the following:

’hex-string’X
’character-string’
PROC GOPTIONS always reports the value as a hexadecimal string.

POSTGPROLOG

Specifies the data to send immediately after the data that is stored in the Gprolog field of the
device entry is sent.

Used in: GOPTIONS statement
Default: Null string
Restriction: not supported by Java or ActiveX
See also: GPROLOG, PREGPROLOG

406 POSTGRAPH � Chapter 15

Syntax
POSTGPROLOG=’string’

’string’
can be either of the following:

’hex-string’X
’character-string’
PROC GOPTIONS always reports the value as a hexadecimal string.

POSTGRAPH

Specifies host commands to be executed after the graph is produced.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host Commands
window
Restriction: not supported by Java or ActiveX
See also: FILECLOSE

Syntax
POSTGRAPH1=’system-command(s)’

POSTGRAPH2=’system-command(s)’

system-command(s)
specifies one or more valid system commands. The string can contain upper- or
lowercase characters. Separate multiple commands with a command delimiter, which
is host-specific; for example, some operating environments use a semicolon. The total
length of the string cannot exceed 72 characters. The commands are executed right
after the graph is produced.

Details
If you want to use a host command to send output to the device after each graph
executes, use the POSTGRAPH parameter with FILECLOSE=GRAPHEND.

PPDFILE

Specifies the location of an external file containing PostScript Printer Description (PPD)
information.

Used in: GOPTIONS statement
Restriction: PostScript printers only
See also: BINDING, COLLATE, DUPLEX, PAPERDEST, PAPERSIZE,
PAPERSOURCE, PAPERTYPE, REVERSE

Graphics Options and Device Parameters Dictionary � PREGPROLOG 407

Syntax
PPDFILE=fileref | ’external-file’

fileref
specifies a fileref that points to the PPD file you want to use. Fileref must be a valid
SAS fileref up to eight characters long and must have been previously assigned with
a FILENAME statement.

external-file
specifies the complete filename of the PPD file you want to use. The format of
external-file varies across operating environments. For details, see the SAS
documentation for your operating environment.

Details
A PostScript Printer Description (PPD) file is a text file that contains commands
required to access features of the device. These files are available from Adobe. Also,
many printer manufacturers provide the appropriate PPD file for their PostScript
printers.

PREGEPILOG
Specifies data to send immediately before the data that is stored in the Gepilog field of the device
entry is sent.

Used in: GOPTIONS statement
Default: Null string
Restriction: not supported by Java or ActiveX
See also: GEPILOG, POSTGEPILOG

Syntax
PREGEPILOG=’string’

’string’
can be either of the following:

’hex-string’X
’character-string’
PROC GOPTIONS always reports the value as a hexadecimal string.

PREGPROLOG
Specifies the data to send immediately before the data that is stored in the Gprolog field of the
device entry is sent.

408 PREGRAPH � Chapter 15

Used in: GOPTIONS statement
Default: Null string
Restriction: not supported by Java or ActiveX
See also: GPROLOG, POSTGPROLOG

Syntax
PREGPROLOG=’string’

’string’
can be either of the following:

’hex-string’X
’character-string’
PROC GOPTIONS always reports the value as a hexadecimal string.

PREGRAPH

Specifies host commands to be executed before the graph is produced.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host Commands
window
Restriction: not supported by Java or ActiveX
See also: FILECLOSE

Syntax
PREGRAPH1=’system-command(s)’

PREGRAPH2=’system-command(s)’

system-command(s)
specifies one or more valid system commands. The string can contain upper- or
lowercase characters. Separate multiple commands with a command delimiter, which
is host-specific; for example, some operating environments use a semicolon. The total
length of the string cannot exceed 72 characters. The commands are executed
immediately before the graph is produced.

Details
The PREGRAPH parameter should be used with FILECLOSE=GRAPHEND.

PROCESS

Specifies the command that translates the metafile into commands for the device.

Graphics Options and Device Parameters Dictionary � PROCESSOUTPUT 409

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Restriction: Used only with user-supplied Metagraphics drivers.
See also: INTERACTIVE

Syntax
PROCESS=’command’

command
specifies the command that translates the metafile produced by the Metagraphics
driver into commands for the device. The command runs your program to produce
the output. Command is a string up to 40 characters long.

Details
PROCESS is required if the value of the INTERACTIVE device parameter is PROC or
GRAPH.

For information about Metagraphics drivers, contact Technical Support.

PROCESSINPUT
Specifies the fileref for the file that contains input for the user-written part of the Metagraphics
driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
PROCESSINPUT=fileref

fileref
specifies a valid SAS fileref up to eight characters long. Fileref must be assigned with
a FILENAME statement or a host command before running the Metagraphics driver.
See “FILENAME Statement” on page 36 SAS/GRAPH: Reference for additional
information.

Details
For information about Metagraphics drivers, contact Technical Support.

PROCESSOUTPUT
Specifies the fileref for the file that receives output from the user-written part of the Metagraphics
driver.

410 PROMPT � Chapter 15

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
PROCESSOUTPUT=fileref

fileref
specifies a valid SAS fileref up to eight characters long. Fileref must be assigned with
a FILENAME statement or a host command before running the Metagraphics driver.
See “FILENAME Statement” on page 36 for additional information.

Details
For information about Metagraphics drivers, contact Technical Support.

PROMPT

Specifies whether prompts are issued.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Restriction: not supported by Java or ActiveX
Default: device-dependent

Syntax
GOPTIONS: PROMPT | NOPROMPT

GDEVICE: PROMPT=0...7

PROMPT
causes all prompts to be displayed.

NOPROMPT
suppresses all prompts. NOPROMPT overrides the GWAIT= graphics option.

PROMPT=0...7
in the GDEVICE procedure, specifies the level of prompting:

0 provides no prompting

1 issues startup messages only. Startup messages are messages such as PLEASE
PRESS RETURN TO CONTINUE.

2 signals end of graph if device is a video display or sends message to change paper if
device is a plotter.

3 combines the effects of 1 and 2.

4 sends a message to mount pens if the device is a plotter.

Graphics Options and Device Parameters Dictionary � PROMPTCHARS 411

5 combines the effects of 4 and 1.

6 combines the effects of 4 and 2.

7 sends all prom

Note: If you specify either 0 for the PROMPT device parameter or NOPROMPT
in a GOPTIONS statement for a display device, the display clears immediately after
the graph is drawn. �

In the GDEVICE Parameters window, the PROMPT parameter consists of four fields
that describe the type of prompt:

start up
issues a message to turn the device on (if the device is a hardcopy device) or the
message PLEASE PRESS RETURN AFTER EACH BELL TO CONTINUE.

end of graph
signals, usually by a bell, when the graph is complete (valid for video displays only).

mount pens
issues a message to mount pens in a certain order and (for certain devices only) to
ask for pen priming strokes for plotters.

change paper
prompts the user to change the paper (valid for plotters only).

Enter an X for each prompt that you want to be given. If no Xs appear in these
fields, no prompt messages are issued, and the device does not wait for you to respond
between graphs.

PROMPTCHARS

Selects the prompt characters to be used by SAS/GRAPH device drivers.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window

Default: host dependent

Restriction: not supported by Java or ActiveX

See also: GSFLEN, HANDSHAKE

Syntax
PROMPTCHARS=’prompt-chars-hex-string’X

prompt-chars-hex-string
is an 8-byte hexadecimal string that is specified as 16 hexadecimal characters. In
GDEVICE procedure statements, enclose the string in single quotation marks,
followed by an X. In the Parameters window, enter the hexadecimal string without
either quotation marks or a trailing X.

412 PROMPTCHARS � Chapter 15

Note: Bytes 1, 4, and 5 are the safest for you to change because you are most
likely to know the correct value for them. Check with Technical Support before
changing any of the other bytes. �

The following list describes each byte in the string:

byte 1
is the ASCII code of the system prompt character (for software handshaking). The
system prompt character is the last character that the host sends before waiting
for a response from the plotter. For example, 11 means the host sends an XON or
DC1 character as a prompt. If the host does not send a special character for a
prompt, set this byte to 00.

byte 2
is the ASCII code of the echo-terminator character (for software handshaking).
This character is sent at the beginning of each record.

byte 3
prevents splitting commands across records if the value is 01. If you are creating a
graphics stream file to send to a device at a later time, and there is the possibility
that extra characters will be added between records during transmission, setting
the third byte to 01 reduces the likelihood that the extra characters will be
interpreted as graphics commands and cause stray lines or other device
characters. If the third byte is set to 00, the driver makes the records as long as
possible and splits device commands across records if necessary. Setting the third
byte to 00 is more efficient but is more likely to result in device errors if output is
written to a file and later transmitted to the device.

byte 4
is the line-end character (for software handshaking). It indicates that more data
can be sent. This character is almost always a carriage-return character, 0D.

byte 5
specifies turnaround delay in tenths of a second (for software handshaking). The
turnaround delay is the amount of time the device waits after receiving the
prompt character before sending the line-end character. For example, a value of 05
represents a half-second delay.

byte 6
sets default record length using a hexadecimal value 00–FF. This byte sets the
length of the records sent to the device or to a file. If this byte is set to 00 (the
default), SAS/GRAPH uses the longest record length possible for the device. To
specify an alternate length, set the sixth byte to the hexadecimal value for the
desired length. For example, to generate records of length 80, specify 50 for the
sixth byte. If the GSFLEN device parameter or graphics option is specified, its
value overrides the value of the sixth prompt character.

Some values of the GPROTOCOL device parameter cause each byte in the data
stream to be expanded to two bytes. This expansion is done after the length of the
record is set by PROMPTCHARS. If you are specifying a value for GPROTOCOL
that does this (for example, SASGPHEX, SASGPLCL, or SASGPAGL), specify a
value for the sixth byte of PROMPTCHARS that is half of the actual record length
desired. For example, a hexadecimal value of 40 (64 decimal) produces a 128-byte
record after expansion by the GPROTOCOL module.

bytes 7 and 8
are unused and should be set to 0000.

Graphics Options and Device Parameters Dictionary � QMSG 413

Details
PROMPTCHARS is most commonly used to specify parameters used in software
handshaking (see “HANDSHAKE” on page 380), but it can also be used to control the
length of records written by most drivers. You can also use the GSFLEN= graphics
option for this purpose.

PROWS

Sets the number of rows in the graphics output area for portrait orientation.

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device–dependent
See also: LROWS, PCOLS, VPOS

Syntax
PROWS=portrait-rows

portrait-rows
is a nonnegative integer up to three digits long (0...999).

Details
Either the LROWS and LCOLS pair of device parameters or the PROWS and PCOLS
pair of device parameters are required and must be nonzero.

The VPOS= graphics option overrides the value of PROWS.
See “Overview” on page 59 for more information.

QMSG

Specifies whether log messages are held until after the graphics output is displayed.

Used in: GDEVICE procedure; GDEVICE Detail window
Default: device–dependent

Syntax
GOPTIONS: QMSG | NOQMSG

GDEVICE: QMSG=Y | N

QMSG QMSG=Y
queues driver messages while the device is in graphics mode (default for video
devices).

414 RECTFILL � Chapter 15

NOQMSG QMSG=N
prevents the queuing of messages (default for plotters, cameras, and printers).

Details
Message queuing is desirable on display devices that do not have a separate dialog box
and graphics area. If messages are not queued, they are written to the log as the
graphics output is being generated. This behavior can cause problems on some devices.

A blank Queued messages field in the Parameters window can mean either Y or N,
depending on the device.

RECTFILL

Specifies which rectangle fills should be performed by hardware.

Used in: GDEVICE procedure; GDEVICE Parameters window
Default: device-dependent
See also: FILL

Syntax
RECTFILL=’rectangle-fill-hex-string’X

rectangle-fill-hex-string
is a hexadecimal string that is 16 characters long. In GDEVICE procedure
statements, enclose the string in single quotation marks, followed by an X. In the
Parameters window, enter the hexadecimal string without either quotation marks or
a trailing X.

The following table shows which bit position (left-to-right) within the hexadecimal
string controls each fill pattern.

Bit Fill pattern Bit Fill pattern

1 R1 9 L4

2 R2 10 L5

3 R3 11 X1

4 R4 12 X2

5 R5 13 X3

6 L1 14 X4

7 L2 15 X5

8 L3 16 S

For example, if you want the driver to use only the L1 and R1 fills in hardware,
the first and sixth bits of the first byte of the hexadecimal string should be turned on,

Graphics Options and Device Parameters Dictionary � RENDER 415

which corresponds to a value of ’8400000000000000’X (’84’X is equivalent to ’1 0 0 0 0
1 0 0’ in binary). If a particular hardware rectangle fill is not available or not to be
used (as indicated by the value of RECTFILL), the fill is generated by the software.

See “PATTERN Statement” on page 240 for an illustration of the fill patterns.

Details
Note: Not all devices support this capability. If FILL=N is specified or the NOFILL

option is used in a GOPTIONS statement, RECTFILL is ignored. �

RENDER

Controls the creation and disposition of rendered Bitstream fonts.

Used in: GOPTIONS statement

Default: MEMORY

Restriction: not supported by Java or ActiveX

See also: RENDERLIB

Syntax
RENDER=APPEND | DISK | MEMORY | NONE | READ

APPEND
creates files to store rendered versions of Bitstream fonts if the files do not already
exist, reads previously rendered characters from the font files, and appends rendered
versions of new characters to the font files when the SAS/GRAPH procedure
terminates.

DISK
creates files to store rendered versions of Bitstream fonts if the files do not already
exist, reads previously rendered characters from the font files, and appends rendered
versions of new characters to the font files as they are encountered. This method is
slower on some hosts, but it can work in memory-constrained conditions where the
other rendering methods fail.

MEMORY
renders all fonts in memory without creating any font files on disk. Font files are not
used even if they already exist. New characters are not written to existing font files
when SAS/GRAPH procedures terminate.

This is the default and should be the fastest method on hosts that support virtual
memory.

NONE
disables the font rendering features.

READ
reads existing rendered font files but does not create new font files or write new
characters to existing font files. This is useful only when font files already exist in
the rendered font library.

416 RENDERLIB � Chapter 15

Details
The memory capacity and input/output characteristics of your host system determine
which value for the RENDER= option provides the best performance.

RENDERLIB

Specifies the SAS library in which rendered font files are stored.

Used in: GOPTIONS statement
Default: WORK
Restriction: not supported by Java or ActiveX
See also: RENDER

Syntax
RENDERLIB=libref

libref
specifies a previously defined libref that identifies the SAS library. The default
library is WORK. See “LIBNAME Statement” on page 36 for more information on
assigning a libref.

REPAINT

Specifies how many times to redraw the graph.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device–dependent
Restriction: not supported by Java or ActiveX

Syntax
REPAINT=redraw-factor

redraw-factor
is a nonnegative integer up to three digits long (0...999).

Details
Use this option with printers that produce light images after only one pass. This option
also is useful for producing transparencies; multiple passes make the colors more solid
or more intense.

Not all devices have this capability.

Graphics Options and Device Parameters Dictionary � REVERSE 417

RESET

Resets graphics options to their defaults and/or cancels global statements.

Used in: GOPTIONS statement

Syntax
RESET=ALL | GLOBAL | statement-name | (statement-name(s))

ALL
sets all graphics options to defaults and cancels all global statements.

GLOBAL
cancels all global statements (AXIS, FOOTNOTE, LEGEND, PATTERN, SYMBOL,
and TITLE). Options in the GOPTIONS statement are unaffected.

statement-name
resets or cancels only the specified global statements. For example,
RESET=PATTERN cancels all PATTERN statements only. To cancel several
statements at one time, enclose the statement names in parentheses. For example,
RESET=(TITLE FOOTNOTE AXIS).

Note: RESET=GOPTIONS sets all graphics options to defaults but does not
cancel any global statements. �

Featured in: “Example 10. Creating a Bar Chart with Drill-Down Functionality for
the Web” on page 321

Details
RESET=ALL or RESET=GOPTIONS must be the first option specified in the
GOPTIONS statement; otherwise, the graphics options that precede the RESET= option
in the GOPTIONS statement are reset. Other options can follow the RESET= graphics
option in the statement.

REVERSE
Specifies whether to print the output in reverse order, if reverse printing is supported by the device.

Used in: GOPTIONS statement
Default: NOREVERSE
Restrictions: hardware-dependent, PostScript printers require a PPD file; not supported
by Java or ActiveX
See also: PPDFILE

Syntax
REVERSE | NOREVERSE

418 ROTATE � Chapter 15

Details
The purpose of REVERSE is to control the stacking order of printer output,

depending on how the printer stacks paper. On some printers, reverse implies using the
alternate output bin (back of the printer).

For PCL devices, REVERSE sends output to the LOWER out bin, which is the
face-up output bin.

For PostScript devices, if the PPD file has an “OutputOrder” entry and one of its
entries is “Reverse,” the device supports reverse order printing and the appropriate
PostScript code to activate reverse will be used. If the PPD file does not have an
“OutputOrder” entry but does have a “PageStackOrder” entry and corresponding
OutputBin value, then reverse order printing is supported indirectly, using the PPD
file’s PageStackOrder/OutputBin entries.

Note: Some PostScript devices implement Reverse as the default output mode for
one of the output bins. In this case, selecting either the “reverse” output bin or
specifying REVERSE mode produces identical results. �

ROTATE
Specifies whether and how to rotate the graph.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window
Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: ROTATE=LANDSCAPE | PORTRAIT

GOPTIONS: ROTATE | NOROTATE

GDEVICE: ROTATE=LANDSCAPE | PORTRAIT

ROTATE | NOROTATE
specifies whether to rotate the graph 90 degrees from its default orientation.

ROTATE=LANDSCAPE
specifies landscape orientation (the graph is wider than it is high).

ROTATE=PORTRAIT
specifies portrait orientation (the graph is higher than it is wide).

If you do not specify a rotation, a default is searched for in this order:
1 the ORIENTATION setting on an OPTIONS statement
2 device-dependent default.

ROTATION
Sets the increment of the angle by which the device can rotate any given letter in a string of text
in a Metagraphics driver.

Graphics Options and Device Parameters Dictionary � SCALABLE 419

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Default: ROTATION=0
Restriction: Used only with user-supplied Metagraphics drivers.

Syntax
ROTATION=angle-increment

angle-increment
specifies the increment of the angle at which to rotate individual characters, for
example, every 5 degrees, every 45 degrees, and so on. Angle-increment is an integer
in the range 0 to 360. A value of 0 means that the device uses its default character
rotation. Specify 0 if your device does not perform hardware character rotation.

Details
For information about Metagraphics drivers, contact Technical Support.

ROWS

Specifies the number of rows the device–resident font uses in graphics output.

Used in: GDEVICE Chartype window; GDEVICE procedure; CHARREC= option
Default: 0
See also: CHARREC

Syntax
See “CHARREC” on page 337 for syntax.

Details
If you are using a device driver from SASHELP.DEVICES, this parameter already is set
for device–resident fonts that have been defined for your installation. For scalable
fonts, you can specify 1 for ROWS, and the actual number of rows will be computed
based on the current text width. If you are adding to or modifying device-resident fonts
available for a particular device driver, specify a positive value for the ROWS device
parameter. If ROWS is greater than 0, it overrides the values of the LROWS and
PROWS device parameters.

SCALABLE

Specifies whether a font is scalable.

Used in: GDEVICE Chartype window; GDEVICE procedure; CHARREC= option

420 SIMFONT � Chapter 15

Default: device– dependent

See also: CHARTYPE

Syntax
See “CHARREC” on page 337 for syntax.

Details
A device-resident font is scalable if it can be used with any combination of rows and
columns. Use the SCALABLE device parameter if you are adding to or modifying the
fonts available for a particular device driver. If you are using a device driver from
SASHELP.DEVICES, this parameter already is set for device-resident fonts that have
been defined for your installation.

SIMFONT

Specifies a SAS/GRAPH font to use if the default device-resident font cannot be used.

Used in: GOPTIONS statement

Default: SIMULATE

Restriction: not supported by Java or ActiveX

Syntax
SIMFONT=SAS/GRAPH-font

SAS/GRAPH-font
specifies a SAS/GRAPH font to use instead of the default device-resident font. By
default, this is the SIMULATE font, which is stored in the SASHELP.FONTS catalog.

Details
SAS/GRAPH substitutes the SAS/GRAPH font specified by the SIMFONT= option for
the default device-resident font in these cases:

� when you use the NOCHARACTERS option in a GOPTIONS statement

� when you specify a non-default value for the HPOS= or VPOS= graphics option
and your device does not have scalable hardware characters

� when you replay a graph using a device driver other than the one used to create
the graph

� when you specify an angle or rotation for your hardware text that the device is not
capable of producing

� when you specify a device-resident font that is not supported by your device.

See Chapter 11, “Specifying Fonts in SAS/GRAPH Programs,” on page 155 for details.

Graphics Options and Device Parameters Dictionary � SWAP 421

SPEED

Selects pen speed for plotters with variable speed selection.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device– dependent
Restriction: not supported by Java or ActiveX

Syntax
SPEED=pen-speed

pen-speed
specifies a percentage (1 through 100) of the maximum pen speed for the device. For
example, SPEED=50 slows the drawing speed by half. In general, slowing the
drawing speed produces better results.

By default, the value of SPEED is the normal speed for the device.

SWAP

Specifies whether to reverse BLACK and WHITE in the graphics output.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Defaults: GOPTIONS: NOSWAP; GDEVICE: SWAP=N
Restriction: not supported by Java or ActiveX

Syntax
GOPTIONS: SWAP | NOSWAP

GDEVICE: SWAP=Y | N

SWAP
SWAP=Y

swaps BLACK for WHITE and vice versa.

NOSWAP
SWAP=N

does not swap the colors. A blank Swap field in the Parameters window is the same
as SWAP=N.

Details
SWAP does not affect the background color and only affects BLACK and WHITE
foreground colors specified as predefined SAS color names. SWAP ignores BLACK and
WHITE specified in HLS, RGB, or gray-scale format. This option is useful when you

422 SWFONTRENDER � Chapter 15

want to preview a graph on a video device and send the final copy to a printer that uses
a white background.

goptions reset=all cback=blue ctitle=black swap;
title1 h=8 ’swap test’;
title2 h=8 ’another title’;
proc gslide border;
run;

SWFONTRENDER
Specifies the method used to render system fonts.

Used in: GOPTIONS statement
Default: device– dependent
Restriction: not supported by Java or ActiveX

Syntax
SWFONTRENDER = POLYGON | SCANLINE

SWFONTRENDER = POLYGON
uses polygon rendering

SWFONTRENDER = SCANLINE
uses scanline rendering

Details
SWFONTRENDER determines the method used to render system text to a vector
graphics file. In some graphics formats, SCANLINE rendering can produce better
quality output might be distorted if the output is replayed on a device with a different
resolution than the original device. If the system text is rendered as a POLYGON,
resizing the graph will not distort the text.

SYMBOL
Specifies whether to use the device’s symbol-drawing capability.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Default: device– dependent
Restriction: not supported by Java or ActiveX
See also: SYMBOLS

Syntax
GOPTIONS: SYMBOL | NOSYMBOL

Graphics Options and Device Parameters Dictionary � SYMBOLS 423

GDEVICE: SYMBOL=Y | N

SYMBOL
SYMBOL=Y

causes SAS/GRAPH to use the built-in symbol-drawing capability of the device, if
available. A blank Symbol field in the Parameters window is the same as
SYMBOL=Y.

hardware drawing is faster, but not all devices have the capability. SAS/GRAPH
does not try to use the capability if your device does not support it.

NOSYMBOL
SYMBOL=N

causes SAS/GRAPH to draw the symbols using SAS/GRAPH fonts.

SYMBOLS

Specifies which symbols can be generated by hardware.

Used in: GDEVICE procedure; GDEVICE Parameters window
Default: device–dependent
See also: “SYMBOL Statement” on page 252

Syntax
SYMBOLS=’hardware-symbols-hex-string’X

hardware-symbols-hex-string
is a hexadecimal string that is 16 characters long and must be completely filled. This
table shows which bit position (left-to-right) within the hexadecimal string controls
each hardware symbol.

424 TARGETDEVICE � Chapter 15

For example, if you want the driver to do only the PLUS and X symbols in
hardware, the first and second bits of the first byte of the hexadecimal string should
be turned on, which would correspond to a value of ’C000000000000000’X (’C0’X is
equivalent to ’1 1 0 0 0 0 0 0’ in binary).

Details
These are not the only symbols that can be generated for graphics output but are the
symbols that can be drawn by the hardware. SAS/GRAPH can draw other symbols.

Note: Not all devices are capable of drawing every symbol. If a particular hardware
symbol is not available or not to be used (as indicated by the value of SYMBOLS), the
symbol is generated by the software. If the value of the SYMBOL device parameter in
the device entry is N or the NOSYMBOL graphics option is used, the value of
SYMBOLS is ignored. �

TARGETDEVICE

Displays the output as it would appear on a different device. Also, specifies the device driver for
the PRINT command.

Alias: TARGET

Used in: GOPTIONS statement

Restriction: not supported by Java or ActiveX

Graphics Options and Device Parameters Dictionary � TRAILERFILE 425

Syntax
TARGETDEVICE=target-device-entry

target-device-entry
specifies the name of a device entry in a catalog.

Details
Use TARGETDEVICE= to specify a device driver when you want to:

� preview graphics output on your monitor as it would appear on a different output
device. For details, see “Previewing Output” on page 109.

� print output from the Graph window or the Graphics Editor window with the
PRINT command. For details, see “Printing Your Graph” on page 110.

� specify a device driver for graphics output created by the ODS HTML statement.

TRAILER

Specifies the command that creates TRAILER records for the Metagraphics driver.

Used in: GDEVICE procedure; GDEVICE Metagraphics window
Restriction: Used only with user-supplied Metagraphics drivers
See also: TRAILERFILE

Syntax
TRAILER=’command’

command
specifies a command that runs a user-written program that creates the TRAILER
file. Command is a string up to 40 characters long.

Details
For information about Metagraphics drivers, contact Technical Support.

TRAILERFILE

Specifies the fileref of the file from which the Metagraphics driver reads TRAILER records.

Used in: GDEVICE procedure GDEVICE Metagraphics window
Restriction: Used only with user-supplied Metagraphics drivers
See also: TRAILER

426 TRANSPARENCY � Chapter 15

Syntax
TRAILERFILE=fileref

fileref
specifies a valid SAS fileref up to eight characters long. Fileref must have been
previously assigned with a FILENAME statement or a host command before running
the Metagraphics driver. See “FILENAME Statement” on page 36 for additional
information on the FILENAME statement.

Details
For information about Metagraphics drivers, contact Technical Support.

TRANSPARENCY

Specifies whether the background of the image should appear to be transparent when the image is
displayed in the browser.

Used in: GOPTIONS statement
Default: NOTRANSPARENCY
Restriction: This option is supported by the ACTIVEX and ACTXIMG drivers when the
output is used in a PowerPoint presentation and by the GIF series of drivers only.

Syntax
TRANSPARENCY | NOTRANSPARENCY

Details
When the image is displayed and TRANSPARENCY is in effect, the browser’s
background color replaces the driver’s background color, causing the image to appear
transparent.

Note: It is recommended that you set the background color of your GIF output to
match the background color of the presentation in which you want to use the GIF
image. As an alternative, consider using the UPNGT device. �

TRANTAB

Selects a translate table for your system that performs ASCII-to-EBCDIC translation.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Host File Options
window

Graphics Options and Device Parameters Dictionary � TYPE 427

Default: host dependent

Restriction: not supported by Java or ActiveX

Syntax
TRANTAB=table | user-defined-table

table
specifies a translate table stored as a SAS/GRAPH catalog entry. Table can be one of
the following:

SASGTAB0 (default translate table for your operating environment)

GTABVTAM

GTABTCAM

user-defined-table
specifies the name of a user-created translate table.

Details
TRANTAB is set by the SAS Installation Representative and is needed when an
EBCDIC host sends data to an ASCII graphics device. See the SAS/GRAPH installation
instructions for details. You can also create your own translate table using the
TRANTAB procedure. For a description of the TRANTAB Procedure, see Base SAS
Procedures Guide.

TYPE

Specifies the type of output device to which graphics commands are sent.

Used in: GDEVICE procedure; GDEVICE Detail window

Default: device–dependent

Syntax
TYPE=CAMERA | CRT | EXPORT | PLOTTER | PRINTER

CAMERA
specifies a film-recording device.

CRT
specifies a monitor or terminal.

EXPORT
identifies the list in which the device appears under SAS/ASSIST software. This is
used for drivers that produce output to be exported to other software applications,
such as CGM or HPGL.

428 UCC � Chapter 15

PLOTTER
specifies a pen plotter.

PRINTER
specifies a printer

Details
You should not modify this value for SAS-supplied device drivers.

UCC

Sets the user-defined control characters for the device.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Parameters window
Restriction: device–dependent; not supported by Java or ActiveX

Syntax
UCC=’control-characters-hex-string’X

control-characters-hex-string
is a hexadecimal string that can be up 32 bytes (64 characters) long. You only need
to specify up to the last non-zero byte; the remaining bytes will be set to zero.

Details
Not all devices support this feature, and the meaning of each byte of the string varies
from device to device.

Typically the UCC byte position is indicated by a bracketed value. For example,
UCC[2] refers to the second byte of the string. For assistance with determining UCC
values for your specific device, please contact SAS Technical Support.

USERINPUT

Determines whether user input is enabled for the device.

Used in: GOPTIONS statement
Default: NOUSERINPUT
Restrictions: GIFANIM driver only; not supported by all browsers

Syntax
USERINPUT | NOUSERINPUT

Graphics Options and Device Parameters Dictionary � VORIGIN 429

USERINPUT
enables user input

NOUSERINPUT
disables user input

Details
When user input is enabled, processing of the animation is suspended until a carriage
return, mouse click, or some other application-dependent event occurs. The user input
feature works with the delay time setting so that processing continues when user input
occurs or the delay time has elapsed, whichever comes first.

VORIGIN

Sets the vertical offset from the lower-left corner of the display area to the lower-left corner of the
graph.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window

Restriction: not supported by Java or ActiveX

See also: HORIGIN

Syntax
VORIGIN=vertical-offset <IN | CM | PT>

vertical-offset <IN | CM | PT>
must be a nonnegative number and can be followed by a unit specification, either IN
for inches (default), or CM for centimeters, or PT for points. If you do not specify
VORIGIN, a default offset is searched for in this order:

1 the bottom margin specification on an OPTIONS BOTTOMMARGIN setting

2 VORIGIN setting in the device catalog.

Details
The display area is defined by the XMAX and YMAX device parameters. By default, the
origin of the graphics output area is the lower-left corner of the display area; the
graphics output is offset from the lower-left corner of the display area by the values of
HORIGIN and VORIGIN. VORIGIN + VSIZE cannot exceed YMAX.

Note: When sending output to the PRINTER destination (ODS PRINTER), if you
specify the VSIZE= option without specifying the HSIZE= option, the default origin of
the graphics output area changes. The default placement of the graph changes from the
lower-left corner of the display area to the top-center of the graphics output area.
Likewise, if you specify the HSIZE= option without specifying the VSIZE= option, the
graph is positioned at the top-center of the graphics output area by default. �

See “The Graphics Output and Device Display Areas” on page 59 for details.

430 VPOS � Chapter 15

VPOS

Sets the number of rows in the graphics output area.

Used in: GOPTIONS statement

Default: device–dependent: the value of the LROWS or PROWS device parameter

Restriction: not supported by Java or ActiveX

See also: HPOS, LROWS, PROWS

Syntax

VPOS=rows

rows
specifies the number of rows in the graphics output area, which is equivalent to the
number of hardware characters that can be displayed vertically. Specifying VPOS=0
causes the device driver to use the default hardware character cell height for the
device.

Details

The VPOS= graphics option overrides the values of the LROWS or PROWS device
parameters and temporarily sets the number of columns in the graphics output area.
VPOS= does not affect the height of the graphics output area but merely divides it into
rows. Therefore, you can use VPOS= to control cell height.

The values specified in the HPOS= and VPOS= graphics options determine the size
of a character cell for the graphics output area and consequently the size of many
graphics elements, such as hardware text. The larger the size of the HPOS= and
VPOS= values, the smaller the size of each character cell.

See “Overview” on page 59 for more information.

VSIZE

Sets the vertical size of the graphics output area.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window

Restriction: partially supported by Java or ActiveX

See also: HSIZE, YMAX

Syntax

VSIZE=vertical-size <IN | CM | PT>

Graphics Options and Device Parameters Dictionary � V6COMP 431

vertical-size <IN | CM | PT>
specifies the height of the graphics output area; vertical-size must be a positive
number and can be followed by a unit specification, either IN for inches (default), or
CM for centimeters, or PT for points. If you do not specify the VSIZE= option, a
default size is searched for in this order:

1 the vertical size is calculated as

YMAX − BOTTOMMARGIN − TOPMARGIN

Note that BOTTOMMARGIN and TOPMARGIN are used in the OPTIONS
statement.

2 VSIZE setting in the device catalog.

V6COMP

Allows programs that are run in the current version of SAS to run with selected Version 6 defaults.

Used in: GOPTIONS statement

Default: NOV6COMP

Restriction:
Partially supported by Java or ActiveX

Ignored unless OPTIONS NOGSTYLE is also specified

Syntax

V6COMP | NOV6COMP

V6COMP
causes SAS/GRAPH programs to use these Version 6 behaviors:

� By default, patterns are hatched patterns, not solid, and the default outline
color matches the pattern color.

� By default, the GCHART and GPLOT procedures do not draw a frame around
the axis area.

NOV6COMP
causes SAS/GRAPH programs to use all the features of the current SAS version.

Details

V6COMP performs the necessary conversions so that, for selected defaults, you get the
same results in the current SAS version that you did in Version 6.

Note: V6COMP does not convert Version 6 catalogs to catalogs with the current SAS
catalog format. �

432 XMAX � Chapter 15

XMAX

Specifies the width of the addressable graphics display area; affects the horizontal resolution of
the device and the horizontal dimension of the graphics output area.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window
Restriction: Ignored by default display drivers, universal printing drivers, Java, and
ActiveX
See also: HSIZE, PAPERSIZE, XPIXELS

Syntax
XMAX=width <IN | CM | PT>

width
is a positive number that can be followed by a unit specification, either IN for inches
(default), or CM for centimeters, or PT for points. If you do not specify XMAX, a
default width is searched for in this order:

1 the width specification on an OPTIONS PAPERSIZE setting
2 XMAX in the device entry catalog.
If XMAX=0, default behavior is used. If both XMAX and PAPERSIZE have been

specified on GOPTIONS, the last request is used.

Details
Like the XPIXELS device parameter, XMAX controls the width of the display area, but
the width is in inches, centimeters, or points rather than pixels. Typically, you might
use XMAX to change the width of the display area for a hardcopy device.

SAS/GRAPH uses the value of XMAX in calculating the horizontal resolution of the
device:

x-resolution = XPIXELS / XMAX

However, changing XMAX does not necessarily change the resolution:
� If you use the GOPTIONS statement to change only the value of XMAX= and do

not change XPIXELS=, SAS/GRAPH retains the default resolution of the device
and recalculates XPIXELS, temporarily changing the width.

� If you specify values for both XMAX= and XPIXELS=, SAS/GRAPH recalculates
the resolution of the device using both of the specified values. The new resolution
might be different. For example, both of these pairs of values produce the same
resolution, 300dpi:

XPIXELS=1500 and XMAX=5

XPIXELS=1800 and XMAX=6

XMAX also affects the value of HSIZE, which controls the horizontal dimension of
the graphics output area.

� If you change the value of XMAX and do not change HSIZE=, SAS/GRAPH
calculates a new value for HSIZE=, using this formula:

HSIZE = XMAX − margins

Graphics Options and Device Parameters Dictionary � XPIXELS 433

Note: The margins quantity, here, is not a device parameter. It represents the
value of the left margin plus the right margin. The left margin is the value of
HORIGIN. The right margin is whatever is left over when you subtract HSIZE
and HORIGIN from XMAX. The value of margins is always based on the original
XMAX and HSIZE values that are stored in the device entry. �

� If you specify values for both XMAX= and HSIZE=, SAS/GRAPH uses the specified
values plus the value of device parameter HORIGIN. Anything left over is added
to the right margin. For example, if XMAX=6IN and HSIZE=4IN and
HORIGIN=.5IN, the right margin will be 1.5in. If HSIZE= is larger than XMAX=,
HSIZE= is ignored.

To permanently change the value of the XMAX device parameter in the device entry,
use the GDEVICE procedure. This can change the resolution.

To temporarily change the size of the display and the resolution of the device for the
current graph or for the duration of your SAS session, use XMAX= and XPIXELS= in
the GOPTIONS statement.

To reset the value of XMAX to the default, specify XMAX=0. To return to the default
resolution for the device, specify both XMAX=0 and XPIXELS=0.

See “Overview” on page 59 for more information.

XPIXELS

Specifies the width of the addressable display area in pixels and in conjunction with XMAX
determines the horizontal resolution for the device.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window

Default: device–dependent
See also: XMAX

Restriction: Partially supported by Java and ActiveX

Syntax
XPIXELS=width-in-pixels

width-in-pixels
is a positive integer up to eight digits long (0...99999999).

Details
Like the XMAX device parameter, XPIXELS controls the width of the display area, but
the width is in pixels rather than inches, centimeters, or points. Typically, you might
use XPIXELS to change the width of the display area for an image format device.

Note: This option overrides the OutputWidth style attribute in the graph styles. For
more information on graph styles, refer to the TEMPLATE procedure documentation in
SAS Output Delivery System: User’s Guide. �

The value of XPIXELS is used in calculating the resolution of the device:

x-resolution = XPIXELS / XMAX

434 YMAX � Chapter 15

However, changing XPIXELS does not necessarily change the device resolution:
� If you use the GOPTIONS statement to change only the value of XPIXELS= and

do not change XMAX=, SAS/GRAPH retains the default resolution of the device
and recalculates XMAX, temporarily changing the width of the display. If HSIZE=
is also not specified, SAS/GRAPH uses the new XMAX value to calculate a new
HSIZE value, using this formula:

HSIZE = XMAX − margins

Note: Margins are not device parameters, but represent the value of HORIGIN
(the left margin) plus the right margin. The right margin is whatever is left over
when you subtract HSIZE and HORIGIN from XMAX. The values of margins is
always based on the original XMAX and HSIZE values that are stored in the
device entry. �

If HSIZE= is specified and its value is larger than XMAX, HSIZE= is ignored.
� If you use the GDEVICE procedure to permanently change the value of the

XPIXELS device parameter in the device entry, SAS/GRAPH automatically
recalculates the resolution of the device is using the value of XMAX device
parameter.

� If you change the values of both XMAX= and XPIXELS=, SAS/GRAPH recalculates
the resolution of the device using both of the specified values.

Note: When SAS/GRAPH recalculates the resolution, the resolution does not
necessarily change. For example, both of these pairs of values produce the same
resolution, 300dpi:

XPIXELS=1500 and XMAX=5
XPIXELS=1800 and XMAX=6

�

To reset the value of XPIXELS to the default, specify XPIXELS=0. To return to the
default resolution for the device, specify both XPIXELS=0 and XMAX=0.

YMAX

Specifies the height of the addressable graphics display area; affects the vertical resolution of the
device and the vertical dimension of the graphics output area.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window
Restriction: ignored by default display drivers and universal printing drivers; not
supported by Java or ActiveX
See also: PAPERSIZE, VSIZE, YPIXELS

Syntax
YMAX=height <IN | CM | PT>

height
is a positive number that can be followed by a unit specification, either IN for inches
(default), or CM for centimeters, or PT for points. If you do not specify YMAX, a
default height is searched for in this order:

Graphics Options and Device Parameters Dictionary � YPIXELS 435

1 the height specification on an OPTIONS PAPERSIZE setting
2 YMAX in the device entry catalog.
If YMAX=0, default behavior is used. If both YMAX and PAPERSIZE have been

specified on GOPTIONS, the last request is used.

Details
See “XMAX” on page 432.

YPIXELS

Specifies the height of the addressable display area in pixels and in conjunction with YMAX
determines the horizontal resolution for the device.

Used in: GOPTIONS statement; GDEVICE procedure; GDEVICE Detail window
Default: device–dependent
See also: YMAX
Restriction: Partially supported by Java and ActiveX

Syntax
YPIXELS=height-in-pixels

height-in-pixels
is a positive integer up to eight digits long (0...99999999).

Details
See “XPIXELS” on page 433.

Note: This option overrides the OutputHeight style attribute in the graph styles.
For more information on graph styles, refer to the TEMPLATE procedure
documentation in SAS Output Delivery System: User’s Guide. �

436

437

P A R T2

Bringing SAS/GRAPH Output to the Web

Chapter 16.Introducing SAS/GRAPH Output for the Web 439

Chapter 17.Creating Interactive Output for ActiveX 453

Chapter 18.Creating Interactive Output for Java 469

Chapter 19.Attributes and Parameters for Java and ActiveX 485

Chapter 20.Generating Static Graphics 503

Chapter 21.Generating Web Animation with GIFANIM 519

Chapter 22.Generating Interactive Metagraphics Output 531

Chapter 23.Generating Web Output with the Annotate Facility 539

Chapter 24.Creating Interactive Treeview Diagrams 543

Chapter 25.Creating Interactive Constellation Diagrams 553

Chapter 26.Macro Arguments for the DS2CONST and DS2TREE
Macros 569

Chapter 27.Enhancing Web Presentations with Chart Descriptions, Data
Tips, and Drill-Down Functionality 595

Chapter 28.Troubleshooting Web Output 633

438

439

C H A P T E R

16
Introducing SAS/GRAPH Output
for the Web

Which Device Driver or Macro Do I Use? 439
Types of Web Presentations Available 440

Presentations That Use The ActiveX Control 440

Presentations That Use Java Applets 441

Graph, Map, Tilechart, and Contour Applets 441

Treeview Applet 442
Constellation Applet 443

Metaview Applet 444

Presentations that Use Static Images 445

ACTXIMG Presentations 446

JAVAIMG Presentations 446

GIF, JPEG, and PNG Presentations 446
Animated GIF Presentations 447

Selecting a Type of Web Presentation 447

How is the graphical output produced? 447

What features are supported for each type of presentation? 448

What does your audience need to view the presentation? 449
Recommendations 450

Generating Web Presentations 451

Using ODS HTML with a SAS/GRAPH Procedure 451

Using DS2TREE and DS2CONST Macros 451

Which Device Driver or Macro Do I Use?

Generating a web presentation that includes graphics requires that you use a device
driver or macro that generates web output. Determining which device driver or macro
to use requires that you consider issues such as

� What type of graph do I need?

� What procedure, if any, generates the graph that I need?

� In which operating environments do I need to generate the presentation?

� In which operating environments do I need to deliver the presentation?

� Will my audience need to install additional software to view the presentation?

� What interactive features do I want in my presentation?

The following topics describe the types of web presentations that are available, help
you decide which type you need, and tell you how to generate the presentation and
deliver it to your audience. The primary purpose of these topics is to help you
determine which device driver or macro you need to use.

440 Types of Web Presentations Available � Chapter 16

� “Types of Web Presentations Available” on page 440 describes each type of web
presentation, their features, and which device driver or macro you need to use to
create that type of presentation.

� “Selecting a Type of Web Presentation” on page 447 guides you through the
process of determining which device driver or macro to use. If the type of
presentation you need to generate can be generated with multiple device drivers,
then additional factors determine which driver to use.

� “Generating Web Presentations” on page 451 summarizes the methods by which
each type of web presentation is created.

Types of Web Presentations Available
Delivering information via the web frequently requires a web presentation that

includes not only tables but graphics as well. SAS/GRAPH provides three basic ways to
display presentations that include graphics. Presentations can be displayed

by an ActiveX control
The ActiveX control displays the output of SAS/GRAPH procedures. It enables
such features as pop-up data tips, drill-down links, and interactive menus. For
more information, see “Presentations That Use The ActiveX Control” on page 440.

by a Java applet
Java applets display the output of SAS/GRAPH procedures and macros.
Depending on the applet, it may enable such features as data tips, drill-down
links, or interactive features available through a pop-up menu. For more
information, see “Presentations That Use Java Applets” on page 441.

as a static graph
You can also generate graphs that do not have any interactive features but do
have interactive capabilities such as data tips or drill-down links. Static graphs
can be generated as GIF, JPEG, or PNG files. For more information, see
“Presentations that Use Static Images” on page 445.

For additional information about SAS/GRAPH output for the Web, including samples,
refer to

http://support.sas.com/rnd/datavisualization

Presentations That Use The ActiveX Control
The SAS/GRAPH ActiveX control displays the output of SAS/GRAPH procedures and

enables extensive interactive features via a pop-up menu. The pop-up menus enable
you to rotate, and zoom, and to control the properties of graphs such as its colors,
legends, and axes.

You can enable pop-up data tips and drill-down links with presentations created for
the ActiveX control.

Display 16.1 on page 441 shows output from the GCHART procedure as displayed by
the ActiveX control. (You can open the pop-up menu for the ActiveX control by
positioning your cursor over the graph and pressing the right mouse button.)

http://support.sas.com/rnd/datavisualization

Introducing SAS/GRAPH Output for the Web � Presentations That Use Java Applets 441

Display 16.1 Sample ActiveX Presentation

The ActiveX control can be viewed only in Windows operating environments with
Microsoft Internet Explorer on a PC with the ActiveX control installed.

The ActiveX control displays output from the G3D, GAREABAR, GBARLINE,
GCHART, GCONTOUR, GMAP, GPLOT, GRADAR, and GTILE procedures.

To create a graph to be displayed by ActiveX, specify DEVICE=ACTIVEX on your
GOPTIONS statement. See “Using ODS HTML with a SAS/GRAPH Procedure” on page
451 and Chapter 17, “Creating Interactive Output for ActiveX,” on page 453 for more
information.

Presentations That Use Java Applets
If you want to deliver your presentation to more operating environments than just

Windows, you can use one of the following Java applets:

Graph, Map, Tilechart, and Contour applets
These applets display the output of SAS/GRAPH procedures and offer many
interactive features. The Graph and Map applets.

Treeview and Constellation applets
These applets generate hierarchical treeview diagrams and constellation diagrams,
respectively, and are generated with the DS2TREE and DS2CONST macros.

Metaview applet
The Metaview applet displays the output of SAS/GRAPH procedures, and it
enables pop-up data tips, drill-down links, and zooming.

Graph, Map, Tilechart, and Contour Applets
Like the ActiveX control, the Graph, Map, Tilechart, and Contour applets display the

output of SAS/GRAPH procedures and enable extensive interactive features. The

442 Presentations That Use Java Applets � Chapter 16

Graph, Map, Tilechart, and Contour applets enable interactive features such as data
tips and drill-down links, and they provide pop-up menus which enable the user to
change properties such as the graph’s colors, legends, and axes.

Display 16.2 on page 442 shows PROC GCHART output displayed by the Java Graph
applet with a Properties dialog box. You can open the pop-up menu for these applets by
positioning your cursor over the graph and pressing the right mouse button.

Display 16.2 Sample Java Presentation

These applets display the output of the following SAS/GRAPH procedures:

Graph Applet G3D Scatter Plots, GCHART, GPLOT

Contour Applet G3D Surface Plots, GCONTOUR

Map Applet GMAP

Tilechart Applet GTILE

To create a graph to be displayed by one of these applets, specify DEVICE=JAVA on
your GOPTIONS statement. For more information, see “Using ODS HTML with a SAS/
GRAPH Procedure” on page 451 and Chapter 18, “Creating Interactive Output for
Java,” on page 469.

Treeview Applet
This applet displays a treeview diagram, which shows the parent-child relationships

in a tree structure. In a treeview diagram, each child node has exactly one parent, and
each parent node has zero or more children. In other words, the relationships in a
treeview diagram are one-to-many. A treeview diagram is ideal for displaying such data
as organizational charts or the hierarchical relationships of the pages of a Web site.

By default, the Treeview applet zooms in on the portion of the tree that is in the
center of the display, as if you were looking through a fish-eye lens. Nodes in the center
of the display are spread apart and shown with more detail, including node labels.
Nodes near the periphery of the display are compressed and shown with less detail.

Introducing SAS/GRAPH Output for the Web � Presentations That Use Java Applets 443

Initially, the Treeview applet places the root node in the center of the display. You can
click and drag the diagram to change the portion of the diagram that is in the center of
the display.

The Treeview applet supports a pop-up menu that enables you to search for nodes,
select or hide subtrees, and so on. You can add hotspots that link to Web pages when
the user clicks on a node.

For example, Display 16.3 on page 443 shows a treeview diagram (with the pop-up
menu opened) displaying the structure of an XML Document Type Definition.

To generate a treeview diagram, use the DS2TREE macro. For more information, see
Chapter 24, “Creating Interactive Treeview Diagrams,” on page 543.

Display 16.3 Sample Treeview Diagram

Constellation Applet
The Constellation applet displays a general node-link diagram. Each node can be

linked to one or more other nodes. Unlike the Treeview applet, the Constellation applet
does not require a hierarchical relationship between the nodes. (Although it can be
used to display hierarchical relationships, the Constellation applet does not
automatically place the root node at the center of the display.)

The Constellation applet supports node and link properties, which determine the
color and size of the nodes and the color and thickness of the link joining the nodes.
These properties indicate the relative strength of the relationship between the nodes.

Like the Treeview applet, by default, the Constellation applet zooms in on the portion
of the diagram that is in the center of the display, as if you were looking through a
fish-eye lens. Nodes in the center of the display are spread apart and shown with more
detail, including node labels. Nodes near the periphery of the display are compressed
and shown with less detail. You can click and drag the diagram to change the portion of
the diagram that is in the center of the display.

444 Presentations That Use Java Applets � Chapter 16

The Constellation applet has a pop-up menu that supports several functions such as
highlighting specific links and searching for specific nodes. You can add hotspots that
link to Web pages when the user clicks on a node.

Display 16.4 on page 444 shows a constellation diagram (with the Mouse Help menu
displayed).

To generate the Constellation applet, use the DS2CONST macro. For more
information, see Chapter 25, “Creating Interactive Constellation Diagrams,” on page
553.

Display 16.4 Sample Constellation Diagram

Metaview Applet
The Metaview applet displays the output of SAS/GRAPH procedures and enables

interactive features that are not available with static images such as GIFs or JPEGs. It
enables zooming and scrolling and supports pop-up menus with customized
user-selectable links. When you generate a graph with the Metaview applet, you can
specify background colors and text fonts, and enable drill-down links to HTML files,
metagraphics files, and sets of metacodes.

Display 16.5 on page 445 shows the zoom control that the Metaview applet provides.

Introducing SAS/GRAPH Output for the Web � Presentations that Use Static Images 445

Display 16.5 Sample Metaview Applet

The Metaview applet displays output from the G3D, GANNO, GBARLINE, GCHART,
GCONTOUR, GPLOT, GMAP, GRADAR, GREPLAY, and GSLIDE procedures. To create
a graph to be displayed by the Metaview applet, specify DEVICE=JAVAMETA on your
GOPTIONS statement.

For additional information, see Chapter 22, “Generating Interactive Metagraphics
Output,” on page 531.

Presentations that Use Static Images
If you do not need any interactive features in your presentations, then you can

specify one of the following device drivers to generate a presentation that uses a GIF,
JPEG, or PNG file.

ACTXIMG or JAVAIMG
create a web presentation that uses a static PNG image instead of an interactive
applet. The images are identical to the images generated with the ACTIVEX and
JAVA device drivers.

GIF, JPEG, or PNG
create web presentations that use static GIF, JPEG, or PNG images.

GIFANIM
generates a series of images that are displayed in sequence from a single GIF file.

446 Presentations that Use Static Images � Chapter 16

To generate a web presentation that uses one of these drivers, specify the driver name
with the DEVICE= option in your GOPTIONS statement. All of these device drivers
generate output from SAS/GRAPH procedures.

For more information, refer to the following topics:

� “ACTXIMG Presentations” on page 446

� “JAVAIMG Presentations” on page 446

� “GIF, JPEG, and PNG Presentations” on page 446

� “Animated GIF Presentations” on page 447

� “Using ODS HTML with a SAS/GRAPH Procedure” on page 451

� Chapter 20, “Generating Static Graphics,” on page 503.

ACTXIMG Presentations
You can use the ACTXIMG device driver to create a presentation that uses a PNG file

that is identical in appearance to the image produced with the ACTIVEX device driver.
A presentation generated with the ACTXIMG driver supports data tips and drill-down

links for GCHART, GBARLINE, and GPLOT (except for high-low plots) output.
To render your output (create the PNG file), the ActiveX control must be installed on

the PC where your SAS session is running. Because of this requirement, ACTXIMG
presentations can be generated only on PCs. When you specify the ACTXIMG device
driver, the output is rendered when your web presentation is generated, and the user
does not need to have the ActiveX control installed to view it.

Note: The ACTXIMG device cannot be used with the ODS PDF, PCL, PS, or
PRINTER destinations on 64-bit machines. SAS uses the JAVAIMG device instead. �

You can use the ACTXIMG device driver to generate presentations with the same
procedures that are supported by the ACTIVEX driver: G3D, GAREABAR, GBARLINE,
GCHART, GCONTOUR, GPLOT, GMAP, GRADAR, and GTILE.

JAVAIMG Presentations
You can use the JAVAIMG device driver to create a presentation that uses a PNG file

that is identical in appearance to the image produced with the JAVA device driver.
The appropriate Java applet (Graph, Map, Tilechart, or Contour applet) is required

to render your output (create the PNG file). The appropriate Java applet must be
installed on the machine where your SAS session is running. When you specify the
JAVAIMG device driver, the output is rendered when your web presentation is
generated, and the user does not need to have any Java applet files installed to view it.

You can use the JAVAIMG device driver to generate presentations with the same
procedures that are supported by the JAVA driver: G3D, GCHART, GCONTOUR,
GPLOT, and GTILE.

GIF, JPEG, and PNG Presentations
For Web presentations generated with the GIF, JPEG, or PNG device drivers, you

can add pop-up data tips that are displayed when the cursor is over a portion of the
image and links to other Web pages.

You can use the GIF, JPEG, or PNG device drivers to generate presentations to
display output from the G3D, GANNO, GBARLINE, GCHART, GCONTOUR, GPLOT,
GMAP, GRADAR, GREPLAY, and GSLIDE procedures.

To create a web presentation with one of these devices, specify DEVICE=GIF, JPEG,
or PNG in your GOPTIONS statement.

Introducing SAS/GRAPH Output for the Web � How is the graphical output produced? 447

Animated GIF Presentations
An animated presentation is a series of static images that are displayed

automatically one after the other. Specify DEVICE=GIFANIM in your GOPTIONS
statement to generate a web presentation that displays a series of images from a single
GIF file. You can control the rate at which the successive images are presented.

You can generate animated GIF presentations from the G3D, GANNO, GBARLINE,
GCHART, GCONTOUR, GPLOT, GMAP, GRADAR, GREPLAY, and GSLIDE procedures.

For more information, see Chapter 21, “Generating Web Animation with GIFANIM,”
on page 519.

Selecting a Type of Web Presentation
The type of web presentation that you choose to generate depends on several factors

such as the type of graphs you need, the operating environment in which you want to
generate your presentation, and the operating environments in which you plan to
deliver your web presentation.

To determine which type of web presentation you need, consider the following
questions:

How is your graphical output produced?
The structure of your data and the information that you need to generate from
this data determine the type of graph that you need to produce. The type of graph
that you need determines which procedure or macro you need to use to produce
your graph. Which procedure or macro, if any, you need to use may determine
which device drivers you can use.

What features are supported for each type of presentation?
Each type of web presentation enables different features such as data tips,
drill-down links, and pop-up menus. Whether you need extensive interactive
capabilities or just data tips can determine which device driver you need to use.

What does your audience need to view the presentation?
Which device or macro you use to generate your web presentation determines
whether the presentation can be viewed on multiple platforms and whether it
requires any software except a supported browser.

How is the graphical output produced?
Which type of graph you need to produce is determined by the structure of your data

and the information that you need to convey to your audience. For example, treeview
diagrams and bar charts convey very different types of information. If you need to
create a web presentation that includes graphics that are produced by one of the
SAS/GRAPH procedures, then you need to use one of the device drivers that supports
that procedure. Assuming that you know which type of graph you need, then you can
determine which device drivers or macros you can use.

Table 16.1 on page 448 lists the procedures that are supported by each device driver
and the diagrams that are produced by each macro.

Note: To generate a web presentation using the ACTXIMG device driver, the
ActiveX control must be installed on the PC on which your SAS session is running. �

448 What features are supported for each type of presentation? � Chapter 16

Table 16.1 How is the graphical output produced?

Driver or Macro How Output is Produced

ACTXIMG G3D, GAREABAR, GBARLINE, GCHART,
GCONTOUR, GPLOT, GMAP, GRADAR, GTILE

JAVAIMG G3D, GCHART, GCONTOUR, GKPI, GPLOT, GMAP,
GTILE

ACTIVEX G3D, GAREABAR, GBARLINE, GCHART,
GCONTOUR, GPLOT, GMAP, GRADAR, GTILE

JAVA G3D, GCHART, GCONTOUR, GMAP, GPLOT, GTILE

SVG G3D, GANNO, GBARLINE, GCHART, GCONTOUR,
GPLOT, GMAP, GRADAR, GREPLAY, GSLIDE

GIF, JPEG, PNG G3D, GANNO, GBARLINE, GCHART, GCONTOUR,
GPLOT, GMAP, GRADAR, GREPLAY, GSLIDE

GIFANIM G3D, GANNO, GBARLINE, GCHART, GCONTOUR,
GPLOT, GMAP, GRADAR, GREPLAY, GSLIDE

JAVAMETA G3D, GANNO, GBARLINE, GCHART, GCONTOUR,
GPLOT, GMAP, GRADAR, GREPLAY, GSLIDE

DS2TREE, DS2CONST These macros create treeview diagrams or constellation
diagrams, respectively, without involving a SAS/
GRAPH procedure.

For example, if you need a radar chart, you can use the ACTXIMG, ACTIVEX, or
JAVAMETA driver (as well as other drivers). Which device driver you choose depends
on what additional features (such as interactive capabilities) you need and on how you
plan to deliver your web presentation.

If you need to graph hierarchical relationships, consider using the DS2TREE macro
to generate a treeview diagram. If you need to show relationships that are not
hierarchical or if you need to show the relative affinity of the relationships, then
consider using the DS2CONST macro to generate a constellation diagram.

What features are supported for each type of presentation?
The following table shows, for each type of Web presentation, what features are

available to a viewer when viewing the presentation in a browser. You can see from the
table that presentations that involve a Web executable, such as Java applets or the
ActiveX control, enable interactive manipulation via pop-up menus. Presentations that
use GIF, JPEG, and PNG files provide static images with no interactivity besides
pop-up data tips and drill-down links.

After you have determined which device drivers or macros you can use, you then
need to determine which extra features you need in your web presentation. For
example, you may not want or need to give your audience the ability to subset the
graph’s data or change the graph from a bar chart to a pie chart.

The following table shows which features are supported for each device driver or
macro.

Introducing SAS/GRAPH Output for the Web � What does your audience need to view the presentation? 449

Table 16.2 What features are supported for each type of presentation?

Driver or Macro Features Supported

ACTXIMG pop-up data tips and drill-down links (for selected
output), static graphics with no interactivity

JAVAIMG static graphics with no interactivity

ACTIVEX pop-up data tips, drill-down links, interactivity via
pop-up menus

JAVA pop-up data tips, drill-down links, interactivity via
pop-up menus

SVG drill-down links, zooming supported in SVG-enabled
browsers

GIF, JPEG, PNG drill-down links, static graphics with no interactivity

GIFANIM Slide show of static images with no interactivity

JAVAMETA Pop-up data tips, drill-down links, some interactivity
such as zooming and slide shows

DS2TREE, DS2CONST Pop-up data tips, drill-down links, interactivity via
pop-up menus

Data tips and drill-down links for ACTXIMG are supported for output from
GCHART, GPLOT (except for high-low plots), GBARLINE, and GRADAR.

The pop-up menus available with the JAVA and ACTIVEX device drivers typically
enable your audience to change many aspects of the graph such as changing chart
types, subsetting data, changing the variable used as the response variable, turning
data tips on or off, or changing the colors used the graph. Static graphs do not offer any
of these interactive features. Web presentations that use the JAVAMETA driver may
enable a zoom control, and page selection and slide show controls for presentations that
include multiple images.

What does your audience need to view the presentation?
To view your web presentation, your audience must view the presentation through

one of the supported browsers. For a list of supported browsers, refer to the SAS Web
site Install Center at

http://support.sas.com/documentation/installcenter

Select the System Requirements link for the appropriate operating system environment
and search for the section on viewing HTML pages created for Java and ActiveX.

It is recommended that graphs be displayed on a device that has at least 16-bit color
(that is, more than 8-bit, 256 colors).

Depending on how the presentation is generated, there may be additional
requirements. The following table shows, for each type of Web presentation, what is
required on a viewer’s machine besides a supported browser.

http://support.sas.com/documentation/installcenter

450 Recommendations � Chapter 16

Table 16.3 What does your audience need to view the presentation besides the
browser?

Driver or Macro Additional Requirements

ACTXIMG None

JAVAIMG None

ACTIVEX The presentation must be viewed with Internet
Explorer on a Windows system with the SAS ActiveX
control installed locally.

JAVA The Java applet files must be installed locally or on a
server accessible by the client machine, and Java 1.4
plug-in must be installed on each client machine. On
Windows systems, the user is prompted to install the
plug-in if it is not already installed. On other systems,
the plug-in can be installed from the Sun Microsystems
site (http://www.sun.com) or from one of the SAS Third
Party Software Components CDs.

SVG The presentation must be viewed in an SVG-enabled
browser.

GIF, JPEG, PNG None

GIFANIM None

JAVAMETA The Java applet files must be installed locally or on a
server accessible by the client machine. The Java
plug-in is not required on the client machine; the
Metaview applet works with the Java Virtual Machine
that is built into the supported browsers.

DS2TREE, DS2CONST The Java applet files must be installed locally or on a
server accessible by the client machine, and Java 1.4
plug-in must be installed on each client machine. On
Windows systems, the user is prompted to install the
plug-in if it is not already installed. On other systems,
the plug-in can be installed from the Sun Microsystems
site (http://www.sun.com) or from one of the SAS Third
Party Software Components CDs.

Presentations generated with the ACTIVEX driver can be viewed only with Internet
Explorer on Windows PCs, and the ActiveX control must be installed locally on each PC.

Presentations generated with the JAVAMETA driver can be viewed in any supported
browser and offer limited interactivity, but do not require that a Java plug-in be
installed.

Recommendations
If you will be delivering your presentation on Windows only and you want your

audience to be able to interact with the graph, then you can use the ACTIVEX device
driver. If you will be delivering your presentation to other operating environments, but
you still want to use interactive features, then you can use the JAVA device driver.
However, the ACTIVEX and JAVA device drivers require that your audience install the
ActiveX control and Java plug-in, respectively.

http://www.sun.com
http://www.sun.com

Introducing SAS/GRAPH Output for the Web � Using DS2TREE and DS2CONST Macros 451

If you want the look of the ACTIVEX or JAVA driver, but do not need the interactive
capability or do not want to require that your audience install the ActiveX control or
the Java plug-in, then use the ACTXIMG or JAVAIMG device drivers.

If you need data tips, drill-down capability, or limited interactivity such as zoom, but
you do not want to require that your audience install the Java plug-in or the ActiveX
control, then you can use the JAVAMETA device driver.

If you need only data tips and drill-down capability, then you can use the GIF, JPEG,
or PNG device driver.

Generating Web Presentations
There are two basic methods in which you can generate a web presentation:
� using the ODS HTML destination with a SAS/GRAPH procedure.
� using the DS2TREE or DS2CONST macro.

Using ODS HTML with a SAS/GRAPH Procedure
The recommended method for getting procedure output on the Web is with ODS. By

using the ODS HTML statement in a program with one or more SAS/GRAPH
procedures, you can create an HTML file and its associated SAS/GRAPH (or tabular)
output.

At a minimum, to use ODS with SAS/GRAPH you must do the following:
1 Use the an ODS HTML statement to open the HTML destination. For device

drivers that generate image output files, use the PATH= option to ensure that all
output files are stored in the same location.

2 Run a graphics procedure. If your procedure supports run-group processing, be
sure include a QUIT statement.

3 Close the HTML destination to write your HTML file.

If the LISTING destination is open, then SAS/GRAPH creates an additional copy of
your output. To improve performance, you might want to close the LISTING destination
while you are generating Web output.

Using DS2TREE and DS2CONST Macros
The following macros generate a Web presentation from a SAS data set:
� DS2TREE generates treeview diagrams
� DS2CONST generates constellation diagrams.

To use these macros, simply define your data, then call one of these macros using the
appropriate options. For these macros, you do not use ODS or call a SAS/GRAPH
procedure. For additional information, refer to Chapter 24, “Creating Interactive
Treeview Diagrams,” on page 543 and Chapter 25, “Creating Interactive Constellation
Diagrams,” on page 553.

452

453

C H A P T E R

17
Creating Interactive Output for
ActiveX

Overview 453
When to Use the ACTIVEX Device 454

Installing the SAS/GRAPH ActiveX Control 455

Manually Installing the SAS/GRAPH ActiveX Control 455

Configuring Your Program to Prompt Users to Install the SAS/GRAPH ActiveX Control 456

Configuring an Existing ActiveX Presentation to Prompt Users to Install the SAS/GRAPH ActiveX
Control 456

Uninstalling the SAS/GRAPH ActiveX Control 457

Generating Output for ActiveX 457

About Languages in ACTIVEX 458

About Special Fonts and Symbols in ACTIVEX 459

SAS Formats Supported by ACTIVEX 459
Configuring Drill-Down Links with ACTIVEX 460

ActiveX Examples 461

Generating an ActiveX Graph for a Microsoft Word Document 461

Generating an Interactive Contour Plot in ActiveX 463

Providing JavaScript Drill-Down with ActiveX 464
Providing More JavaScript Drill-Down with ActiveX 466

Overview
The SAS/GRAPH ActiveX Control provides user interactivity in Microsoft Office

products in the Windows operating environment. Interactive features include the
ability to change graph types (a bar chart to a pie chart, for example), display data tips
at the point of the cursor, rotate and zoom, reassign variable roles, and modify axes,
legends, colors, and text fonts.

For your Web users who have SAS installed locally, the control is run automatically
when the HTML output file is displayed in Internet Explorer. For your Web users who
do not have the SAS system installed locally, and who have not already installed the
SAS/GRAPH ActiveX Control, you can configure your HTML output file to prompt them
to install the control at display time, as described in “Installing the SAS/GRAPH
ActiveX Control” on page 455.

You can enhance your ActiveX presentations by adding drill-down links (see
“Configuring Drill-Down Links with ACTIVEX” on page 460) and configuring interactive
features (see “Specifying Parameters and Attributes for Java and ActiveX” on page 485).

In addition to HTML output, you can use the SAS/GRAPH ActiveX Control to display
interactive graphs in Object Linked Embedded (OLE) documents, and in applications
written in Visual Basic, C++, and JavaScript. You can also include them in Microsoft
Office Products, such as Word, Excel, and PowerPoint. See Chapter 8, “Exporting Your
Graphs to Microsoft Office Products,” on page 113.

454 When to Use the ACTIVEX Device � Chapter 17

The following table lists the procedures and statements that generate output that
can be displayed in the SAS/GRAPH ActiveX Control.

Table 17.1 Procedures and Statements that Generate Output for the SAS/GRAPH
ActiveX Control

Procedure Statements

GAREABAR HBAR, VBAR

GBARLINE BAR, PLOT

GCHART BLOCK, HBAR, HBAR3D, VBAR, VBAR3D,
PIE, PIE3D, DONUT

GCONTOUR PLOT

GMAP CHORO, BLOCK, PRISM

(see note)

GPLOT BUBBLE, BUBBLE2, PLOT, PLOT2

GRADAR CHART

G3D PLOT, SCATTER

GTILE FLOW, TILE, TOGGLE

Note: Using PROC GMAP to generate a highly detailed map might create a large
HTML output file, which might cause problems on certain Web browsers. If this is the
case, you can use PROC GREDUCE to remove some of the complexity and produce a
more usable map. �

The SAS/GRAPH ActiveX Control does not enable 8-bit gray scale images. If you use
images for backgrounds or chart elements, make sure that they are 24-bit images.

When to Use the ACTIVEX Device
If your Web users are using the Windows operating environment and the Internet

Explorer Web browser, the SAS/GRAPH ActiveX Control might be preferable over a
Java applet from a performance standpoint. In general, the interactive features of the
SAS/GRAPH ActiveX Control are comparable to those that are provided in Java
through the Java applets. Some features differ, as you can see in the comparison table
that is presented in the “Parameter Reference for Java and ActiveX” on page 488. Also,
the JAVA device does not display output that is generated with the GAREABAR,
GBARLINE, or GRADAR procedures.

Unlike the JAVA device, you can use the ACTIVEX device to embed interactive
graphics in Microsoft Word documents by using the ODS RTF statement, as shown in
“Generating an ActiveX Graph for a Microsoft Word Document” on page 461 and in
“Importing Your Graphs into Microsoft Office” on page 120. You can also copy the
ActiveX window out of Internet Explorer and paste it into a Microsoft Word, Excel, or
PowerPoint document.

If you have created a graph with the ACTIVEX device but you do not need the
interactivity that it provides, then use the ACTXIMG device, as described in
“Developing Web Presentations with the JAVAIMG and ACTXIMG Devices” on page
510. The ACTXIMG device creates a static snapshot of the graph in a PNG file. The
graph has the same look as the graph that is produced with the ACTIVEX device, but
the graph does not support interactivity. You can use the ACTXIMG device only on

Creating Interactive Output for ActiveX � Manually Installing the SAS/GRAPH ActiveX Control 455

Windows systems. Although you do not need the SAS/GRAPH ActiveX Control when
you are viewing the ACTXIMG output, to produce the output file, you must install the
SAS/GRAPH ActiveX Control on your computer. See “Installing the SAS/GRAPH
ActiveX Control” on page 455.

You can generate output for the SAS/GRAPH ActiveX Control even if you are not
working in the Windows operating environment. For example, you can generate HTML
output for ActiveX in the UNIX operating environment, even though you cannot run
Internet Explorer in that environment. Displaying the HTML in Internet Explorer on
Windows will display the output as if it was generated in that operating environment.
You can also run your SAS jobs in a stored process on UNIX and display the output in
the Internet Exporer browser on Windows.

When you use the ACTIVEX device with an ODS destination that does not support
the ACTIVEX device, SAS/GRAPH switches to the ACTXIMG device, which generates a
PNG image. For example, the ODS PDF statement generates output for the Adobe
Reader in a Portable Document Format (PDF) file. This format does not support
embedded ActiveX applications. Specifying the ACTIVEX device with the ODS PDF
statement generates a PDF output file that contains a static image of the graphics
output that is embedded in the PDF file. The ODS RTF destination creates an RTF file
that contains a PNG image. The ODS PRINTER destinations use their native format.

The ACTXIMG device can produce an image map in the HTML output file to enable
data tips and drill-down functionality from the image. See Chapter 27, “Enhancing Web
Presentations with Chart Descriptions, Data Tips, and Drill-Down Functionality,” on
page 595.

Installing the SAS/GRAPH ActiveX Control

The SAS/GRAPH ActiveX Control is installed silently when you install SAS/GRAPH.
The SAS/GRAPH ActiveX Control can be installed manually, as described in “Manually
Installing the SAS/GRAPH ActiveX Control” on page 455. You can configure your
presentation to prompt your Web users to go through the installation process, as
described in “Configuring Your Program to Prompt Users to Install the SAS/GRAPH
ActiveX Control” on page 456 and “Configuring an Existing ActiveX Presentation to
Prompt Users to Install the SAS/GRAPH ActiveX Control” on page 456.

Manually Installing the SAS/GRAPH ActiveX Control
Follow these steps to manually install the SAS/GRAPH ActiveX Control.

1 Open the SAS Downloads page in your Web browser:

http://www.sas.com/apps/demosdownloads/setupintro.jsp

2 If you are not already logged in, type in your user name and password, and then
click the LOG IN button.

Note: You must log in to download files. If you do not have an account, click the
Sign up now link to create an account. �

3 Click the Request Download button for your Windows platform. This opens the
License Agreement page.

4 On the License Agreement page, read the license agreement, and the click the
I Accept button. This opens the Downloads page.

Note: If you do not want to accept the license agreement, click the
Do Not Accept button to cancel the download. �

http://www.sas.com/apps/demosdownloads/setupintro.jsp

456 Configuring Your Program to Prompt Users to Install the SAS/GRAPH ActiveX Control � Chapter 17

5 On the Downloads page, click the Download button, and then select a location on
your computer for the file. This downloads a ZIP file to your computer.

6 Extract the ZIP file that you downloaded. This extracts file sasgraph.exe.

7 Run the installation program (sasgraph.exe) and follow the installation prompts.
The installation program installs the SAS/GRAPH ActiveX Control files in the
following folder:

C:\Program Files\SAS\SharedFiles\Graph\Vx

Where x is the version number. Installation requires eight megabytes of disk space.

Note: For 64-bit enabled Windows, the SAS/GRAPH ActiveX Control works only in
the 32-bit version of Internet Explorer. �

Configuring Your Program to Prompt Users to Install the SAS/GRAPH
ActiveX Control

When you create a Web presentation using the SAS/GRAPH ACTIVEX device, by
default, the resulting presentation is configured to prompt users to install the
SAS/GRAPH ActiveX Control if it is not already installed. The SAS/GRAPH software
configures the presentation by setting the CODEBASE= option in the HTML file as
shown in the following example:

CODEBASE="http://www2.sas.com/codebase/graph/v92/sasgraph.exe#version=9,2"

No files are installed without the user’s permission. Users can refuse installation by
refusing the licensing agreement at the beginning of the installation process. Also note
that the installation program does not run if the control has already been installed.

To be able to access the installation program, Web users must be able to access its
storage location. You might need to copy the installation program to another location to
ensure availability.

You can use the CODEBASE= option with the ODS HTML statement to configure the
HTML output file to reference the installation program when the HTML file is opened.
For example:

ods html body="myGraph.html"
codebase="http://www.ourco.com/sasweb/graph/sasgraph.exe#version=9,2";

If the installation program is not stored on a Web server, then you can use a file
specification as the value of the CODEBASE attribute. For example:

ods html body="myGraph.html"
codebase="/grsrc/sasgraph.exe#version=9,2";

Configuring an Existing ActiveX Presentation to Prompt Users to
Install the SAS/GRAPH ActiveX Control

You can edit an existing presentation that was generated with the ACTIVEX device
so that the presentation prompts your users to install the SAS/GRAPH ActiveX Control
if it is not already installed.

Follow these steps to add the installation capability to your ACTIVEX presentation:

1 In a text editor, open the initial HTML file of your Web presentation.

2 In the OBJECT tag, insert the CODEBASE= attribute. The attribute references
the location of the installation program. The following CODEBASE value
references a public directory:

Creating Interactive Output for ActiveX � Generating Output for ActiveX 457

CODEBASE="file://grsrc/sasgraph.exe"

If the installation program is stored on a Web server, use an HTTP reference. For
example:

CODEBASE="http://www.ourco.com/sasweb/graph/sasgraph.exe#version=9,2"

3 Save the HTML file and close the editor.

With the file thus modified, displaying the HTML file gives users who need it the
option of installing the control in the default location on their local computers.

Note: If you want to install the control in a non-default location, you must install
the control manually, as described in “Manually Installing the SAS/GRAPH ActiveX
Control” on page 455. �

Uninstalling the SAS/GRAPH ActiveX Control
If the SAS/GRAPH ActiveX Control was installed with the SAS/ GRAPH software,

you cannot manually uninstall the SAS/GRAPH ActiveX Control separately from the
SAS/GRAPH software. In this case, to uninstall the SAS/GRAPH ActiveX Control, you
must uninstall the SAS/GRAPH software. If you manually installed the SAS/GRAPH
ActiveX Control, you can manually uninstall it.

To manually uninstall the SAS/GRAPH ActiveX Control on Windows XP:
1 Open the Control Panel window by selecting Start � Settings � Control Panel.
2 Double-click Add or Remove Programs.
3 Select SAS Graph ActiveX Control.
4 Click Remove.

To manually uninstall the SAS/GRAPH ActiveX Control on Windows Vista:
1 Open the Control Panel window by selecting Start � Control Panel.
2 In the Control Panel, under Programs, click Uninstall a program. A list of the

installed programs is displayed.
3 In the program list, select SAS Graph ActiveX Control, and then click

Uninstall.

Generating Output for ActiveX
The SAS/GRAPH ActiveX Control displays interactive charts, maps, and plots. The

following table lists the various ways that you can deliver ActiveX output to your
audience.

Table 17.2 Primary Delivery Choices for SAS/GRAPH ActiveX Control Output

Application ODS Statement Output File

Internet Explorer ODS HTML HTML

Microsoft Word ODS RTF Rich text format

Adobe Acrobat Reader ODS PDF Portable document format

Ghostview, and so on ODS PS PostScript format

Note: These choices also apply to the JAVA device. �

458 About Languages in ACTIVEX � Chapter 17

Table 17.1 on page 454 lists the SAS/GRAPH procedures that generate output for
ActiveX.

Follow these steps to generate a default Web presentation that runs the SAS/GRAPH
ActiveX Control.

1 Reset the graphics options and specify the ACTIVEX device:

goptions reset=all device=activex;

2 To conserve resources, close the ODS LISTING destination:

ods listing close;

3 Open an ODS destination that is listed in Table 17.2 on page 457. Use the
STYLE= option to specify an ODS style (see Chapter 10, “Controlling The
Appearance of Your Graphs,” on page 133), and use the PATH= and BODY=
options to specify an output filename other than the default. For example:

ods html path="C:\" body="your_file.htm"
style="banker";

4 Run a procedure or procedures that are supported by the ACTIVEX device (see
Table 17.1 on page 454):

proc gchart data=sashelp.class;
vbar height / group=age;

run;
quit;

5 Close the ODS destination that you opened in step 3, and then reopen the ODS
LISTING destination. For example:

ods html close;
ods listing;

The preceding program assumes that your Web users have installed the SAS/GRAPH
ActiveX Control in advance. If the SAS/GRAPH ActiveX Control is not already installed
on a user’s computer, your Web presentation automatically prompts the user to install
the SAS/GRAPH ActiveX Control. For information on prompting new users to start the
SAS/GRAPH ActiveX Control installation process, see “Configuring Your Program to
Prompt Users to Install the SAS/GRAPH ActiveX Control” on page 456. For further
troubleshooting information, see “Troubleshooting Web Output” on page 633. For
information on enhancing the default Web presentation, see “Configuring Drill-Down
Links with ACTIVEX” on page 460.

About Languages in ACTIVEX
For international audiences, the SAS/GRAPH ActiveX Control has a graphical user

interface that can appear in the following languages: Chinese (simplified), Danish,
English, French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Polish,
Russian, and Spanish. To display a translated graphical user interface, in general,
Web-based ActiveX devices must use a language-specific operating environment and
Web browser. For further information, contact your on-site SAS support personnel.

Creating Interactive Output for ActiveX � SAS Formats Supported by ACTIVEX 459

About Special Fonts and Symbols in ACTIVEX
The ACTIVEX device supports only system fonts. You can also use characters from

many of the fonts that you have installed on your computer. In the LABEL and GPLOT
SYMBOL statement, the ACTIVEX device supports the following SAS markers:

Marker

Square

Star

Circle

Plus

Flag

X

Prism

Spade

Heart

Diamond

Club

Hexagon

Cylinder

See “SYMBOL Statement” on page 252 for more information.

SAS Formats Supported by ACTIVEX
The ActiveX devices support the SAS character, numeric, and date and time formats

that are listed in the following tables. For more information about the formats, see the
SAS Language Reference: Dictionary.

Table 17.3 Character Formats Supported by ActiveX

$ $ASCII $BINARY $BYVAL $CHAR

$EBCDIC $HEX $OCTAL $QUOTE $REVERJ

$REVERS $UPCASE $XPORTCH

Table 17.4 Numeric Formats Supported by ActiveX

BEST BESTX BINARY COMMA COMMAX

D DOLLAR DOLLARX E EURO

EUROX F FLOAT FRACT HEX

IB IBR IEEE IEEER LOGPROB

MINGUO MRB NEGPAREN NUMX OCTAL

460 Configuring Drill-Down Links with ACTIVEX � Chapter 17

ODDSR PB PCPIB PERCENT PERCENTN

PIB PIBR PK PVALUE RB

ROMAN S370FF S370FHEX S370FIB S370FIBU

S370FPD S370FPDU S370FPIB S370FRB S370FZD

S370FZDL S370FZDS S370FZDT S370FZDU SIZEK

SIZEKB SIZEKMG SSN VAXRB WORDF

WORDS XPORTFLT XPORTINT YEN Z

ZD

Table 17.5 Date and Time Formats Supported by ActiveX

DATE DATEAMPM DATETIME DAY DDMMYY

DDMMYYB DDMMYYC DDMMYYD DDMMYYN DDMMYYP

DDMMYYS DOWNAME DTDATE DTMONYY DTWKDATX

DTYEAR DTYYQC HHMM HOUR JULDATE

JULDAY JULIAN MDYAMPM MMDDYY MMDDYYB

MMDDYYC MMDDYYD MMDDYYN MMDDYYP MMDDYYS

MMSS MMYY MMYYC MMYYD MMYYN

MMYYP MMYYS MONNAME MONTH MONYY

NENGO PDJULG PDJULI QTR QTRR

TIME TIMEAMPM TOD WEEKDATE WEEKDATX

WEEKDAY WORDDATE WORDDATX XYYMMDD YEAR

YYMM YYMMC YYMMD YYMMDD YYMMDDB

YYMMDDC YYMMDDD YYMMDDN YYMMDDP YYMMDDS

YYMMN YYMMP YYMMS YYMON YYQ

YYQC YYQD YYQN YYQP YYQR

YYQRC YYQRD YYQRN YYQRP YYQRS

YYQS YYQZ

Note: The ACTIVEX and ACTXIMG devices do not support nested formats. If you
create a custom format to use with these devices, do not nest existing formats in your
new format. �

Configuring Drill-Down Links with ACTIVEX

ActiveX parameters provide a way to implement drill-down functionality and to
configure interactive features. The purpose and syntax of these parameters are defined
in “Parameter Reference for Java and ActiveX” on page 488.

In the ODS HTML statement, ActiveX parameters are specified with the
PARAMETERS= option, as described in “Specifying Parameters and Attributes for Java
and ActiveX” on page 485.

Creating Interactive Output for ActiveX � Generating an ActiveX Graph for a Microsoft Word Document 461

The SAS/GRAPH ActiveX Control enables the URL, HTML, and Script drill-down
modes for charts and maps. Drill-down functionality is not enabled for contour plots.
These drill-down modes are implemented in ActiveX in the same way that they are
implemented in Java. For information on implementing these drill-down modes, see
Chapter 27, “Enhancing Web Presentations with Chart Descriptions, Data Tips, and
Drill-Down Functionality,” on page 595.

Note: You can convert the Java examples to ActiveX by changing the
DEVICE=JAVA graphics option in the GOPTIONS statement to DEVICE=ACTIVEX. �

The following table lists the procedures and statements that generate output that
can be used in ActiveX presentations with drill-down functionality.

Table 17.6 Statements Enabled for Drill-Down Functionality in ActiveX

Procedure Statements

GBARLINE BAR, PLOT

GCHART HBAR, HBAR3D, VBAR, VBAR3D, PIE, PIE3D,
DONUT

GPLOT PLOT, BUBBLE, BUBBLE2, PLOT2

GMAP CHORO, BLOCK, PRISM

G3D PLOT, SCATTER

ActiveX Examples
The following sections provide examples of how to create interactive graphs using the

ACTIVEX device:
“Generating an ActiveX Graph for a Microsoft Word Document” on page 461
“Generating an Interactive Contour Plot in ActiveX” on page 463
“Providing JavaScript Drill-Down with ActiveX” on page 464
“Providing More JavaScript Drill-Down with ActiveX” on page 466

The following additional samples are available in the Sample Library:
� GWBAXBLK—Generating an Interactive Block Diagram
� GWBAXCON—Generating an Interactive Contour Plot
� GWBAXMAP—Generating an Interactive Map for the Web

Generating an ActiveX Graph for a Microsoft Word Document
Here is an example that demonstrates how the ODS RTF statement can be combined

with the ACTIVEX device to generate interactive graphs inside Microsoft Word files.
The sample program is as follows:

goptions reset=all device=activex;
ods listing close;
ods rtf path="C:\" file="vehicles.rtf" style=statistical;
title "Types of Vehicles Produced Worldwide (Details)";

proc gchart data=sashelp.cars;

462 Generating an ActiveX Graph for a Microsoft Word Document � Chapter 17

pie type / detail=drivetrain
detail_percent=best
detail_value=none
detail_slice=best
detail_threshold=2
legend;

run;
quit;
ods rtf close;
ods listing;

The following display shows the resulting file opened in Microsoft Word.

The SAS/GRAPH ActiveX Control provides a pop-up menu that enables you to
change many aspects of the graph, including the chart type. For example, to change the
pie chart to a bar chart, right-click the graph, and then select ChartType � VerticalBar
in the pop-up menu. The chart changes from a pie chart to a vertical bar chart.

Note: The SAS/GRAPH ActiveX pop-up menu does not display if the SAS/GRAPH
ActiveX Control is in the design mode in Microsoft Word. If the ActiveX object is in the
design mode, in Microsoft Word, click the Exit Design Mode icon in the Control
Toolbox. �

Creating Interactive Output for ActiveX � Generating an Interactive Contour Plot in ActiveX 463

Generating an Interactive Contour Plot in ActiveX
Here is an example that displays a contour plot of water depth in a lake. The

SAS/GRAPH ActiveX Control lets you manipulate many of the aspects of the plot using
the pop-up menu that is displayed when you right-click.

The sample program is as follows:

goptions reset=all border device=activex;
ods listing close;
ods html style=default;
proc gcontour data=sashelp.lake;

plot width * length = depth;
run;
quit;
ods html close;
ods listing;

The following display shows the result.

464 Providing JavaScript Drill-Down with ActiveX � Chapter 17

Providing JavaScript Drill-Down with ActiveX
Here is an example that shows you how to implement the Script drill-down mode

using the MAP procedure and the ACTIVEX device. By default, SAS/GRAPH provides
data tips for graphs that are generated with the ACTIVEX device. These data tips are
displayed when the cursor is over a portion of the map. To implement JavaScript
drill-down functionality, PUT statements are used to insert JavaScript code into the
HTML file. The JavaScript, in the example, opens an alert window that displays the
state abbreviation.

This example is available in the Sample Library under the name GWBDRACT.

The sample program is as follows:

Creating Interactive Output for ActiveX � Providing JavaScript Drill-Down with ActiveX 465

/* Change the following line to specify your output file. */
filename odsout "states.htm" ;

/* If your site has already installed the map data sets and */
/* defined the MAPS libref, then you can delete the LIBNAME */
/* statement below and the sample code should work. */
/* If not, contact your on-site SAS support personnel */
/* to determine how to define the MAPS libref. */
*libname maps ’SAS-MAPS-library’;
/* Create a data set that contains the US states. */
proc sql;
create table work.mydata as
select unique state from maps.us;
quit;

/* Add state abbreviations to the new data set. */
data work.mydata;
length Statename $2;
set work.mydata;
Statename=trim(left(upcase(fipstate(state))));
run;

/* Specify the ACTIVEX device. */
goptions reset=all device=activex;

/* Specify the HTML output file, the Script */
/* drill-down mode, and the callback method. */
/* Close ODS LISTING to conserve resources. */

ods listing close;
ods html file=odsout

style=default
parameters=("DRILLDOWNMODE"="Script"

"EXTERNALNAME"="GIDX"
"DRILLTARGET"="_self"
"DRILLFUNC"="MapDrill")

attributes=("NAME"="GIDX");

/* Specify a map title and generate the map. */
title "State Abbreviations";
proc gmap map=maps.us data=work.mydata all;

id state;
choro statename / nolegend;

run;
quit;

/* Close the HTML destination and */
/* open the listing destination. */
ods html close;
ods listing;

/* Create the MapDrill script that is specified on */
/* the ODS HTML statement’s DRILLFUNC parameter. */
/* Write the script to the same file that contains */

466 Providing More JavaScript Drill-Down with ActiveX � Chapter 17

/* the HTML output from the GMAP procedure. */
data _null_ ;
file odsout mod; /* modify rather than replace file */

put " " ;
put "<SCRIPT LANGUAGE=’JavaScript’>" ;
put "function MapDrill(appletref)" ;
put "{" ;
put " " ;
put "/* Open an alert box to show the abbreviated state name. */" ;
put "for(i = 2; i < MapDrill.arguments.length; i += 2)" ;
put " {" ;
put " if (MapDrill.arguments[i] == ’G_DEPV,f’) " ;
put " alert(MapDrill.arguments[i+1]);" ;
put " }" ;
put " " ;
put "}" ;
put "</SCRIPT>";

run ;

Providing More JavaScript Drill-Down with ActiveX
Here is an example that is similar to the example shown in “Providing JavaScript

Drill-Down with ActiveX” on page 464 but involves slightly more JavaScript coding.
The program generates a map of the United States showing the states in which stores
have been closed. If you click on a state in which no stores have been closed, then no
action is performed. If you click on a state in which stores have been closed, a
JavaScript alert window is displayed that shows the state abbreviation. In a real
application, the JavaScript could be modified to display a list of the closed stores. This
example is available in the Sample Library under the name GWBDRAC2.

For additional information on the script drill-down mode, see “Controlling Drill-Down
Behavior For ActiveX and Java Using Parameters” on page 608.

Creating Interactive Output for ActiveX � Providing More JavaScript Drill-Down with ActiveX 467

The sample program is as follows:

/* Change the following line to specify your output file. */
filename odsout "stores.htm" ;

goptions reset=all device=activex;

data stores;
length stateabbrev $ 2;
input state closedstore stateabbrev $ @@;
datalines;
1 1 AL 2 0 AK 3 0 -- 4 0 AZ 5 0 AR 6 0 CA
7 0 -- 8 0 CO 9 0 CT 10 0 DE 11 0 DC 12 1 FL
13 0 GA 14 0 -- 15 0 HI 16 0 ID 17 0 IL 18 0 IN
19 0 IA 20 0 KS 21 0 KY 22 0 LA 23 0 ME 24 0 MD
25 0 MA 26 0 MI 27 0 MN 28 0 MS 29 0 MO 30 0 MT
31 0 NE 32 0 NV 33 0 NH 34 1 NJ 35 0 NM 36 1 NY
37 0 NC 38 0 ND 39 1 OH 39 1 OH 40 0 OK 41 0 OR
42 0 PA 43 0 -- 44 0 RI 45 1 SC 46 0 SD 47 1 TN
48 0 TX 49 0 UT 50 0 VT 51 1 VA 52 0 -- 53 0 WA
54 0 WV 55 0 WI 56 0 WY 57 0 -- 58 0 -- 59 0 --
60 0 AS 61 0 PQ 62 0 EQ 63 0 -- 64 0 FM 65 0 --
66 0 GU 67 0 JQ 68 0 MH 69 0 MP 70 0 PW 71 0 MQ
72 0 PR
;
run;

/* create own custom maps data set where id is 2--letter state
abbreviation(statecode) not state fips number(state) */
data cus_map;

length stateabbrev $2;
set maps.us;
stateabbrev=fipstate(state);

run;

ods listing close;
ods html body=odsout nogtitle

style=default
parameters=("DRILLDOWNMODE"="Script"

"EXTERNALNAME"="GIDX"
"DRILLTARGET"="_self"
"DRILLFUNC"="MapDrill")

attributes=("NAME"="GIDX");

legend1 label=("Closed Stores")
value=(t=1 j=l "No" t=2 j=l "Yes") frame;

proc gmap map=cus_map(where=(state ^in(2, 15))) data=stores;
id stateabbrev;
choro closedstore/discrete missing
legend=legend1;
run;

quit;

ods html close;

468 Providing More JavaScript Drill-Down with ActiveX � Chapter 17

ods listing;

data _null_ ;

file odsout mod;

put "<SCRIPT LANGUAGE=’JavaScript’>" ;
put " var isclosed = null; ";
put " var newWin; ";
put " var stateabbrev; ";
put " stateabbrev = ’’; ";

put "function MapDrill(appletref)" ;
put "{" ;
put " " ;
put "/* Open an alert box to show the abbreviated state name. */";
put " for(i = 2; i < MapDrill.arguments.length; i += 2)";
put " { ";
put " if (MapDrill.arguments[i] == ’G_DEPV,f’)

{isclosed=MapDrill.arguments[i+1]; }";
put " if (MapDrill.arguments[i] == ’G_LABELV,f’)

{stateabbrev =MapDrill.arguments[i+1] + ’ ’; }";
put " } ";
put " if (isclosed == 1.000000){ alert(stateabbrev) }";
put "}";

put "</SCRIPT>";
run;

469

C H A P T E R

18
Creating Interactive Output for
Java

Overview 469
When to Use the JAVA Device 470

Generating Output for Java 470

About the Java HTML Output and the Java Runtime Environment Plug-In 471

About Languages in JAVA 472

About Special Fonts and Symbols in JAVA 472
SAS Formats Supported for Java 472

Configuring Drill-Down Links for Java 475

Examples of Interactive Java Output 475

Local Drill-Down Mode with Java 475

Script Drill-Down Mode with Java 477

URL Drill-Down Mode with Java 479
HTML Drill-Down Mode 482

Overview
The JAVA device generates interactive presentations that run in the Graph, Map,

Tile, and Contour applets. These applets can display the output of certain SAS/GRAPH
procedures as follows:

Graph applet G3D scatter plots, GCHART, GPLOT

Map applet GMAP

Tile applet GTILE

Contour applet G3D surface plots, GCONTOUR

The Java applets enable Web users to display data tips, to change the graph type, to
pan, rotate, and zoom, and to change colors, fonts, axes, legends, and variable roles.

Note: The Java applets do not support the GAREABAR, GBARLINE, or GRADAR
procedures. To provide interactivity with the output of these procedures, use the
ACTIVEX device instead, as described in Chapter 17, “Creating Interactive Output for
ActiveX,” on page 453. ActiveX output can also appear in Microsoft Word documents or
other OLE applications. �

You can enhance JAVA-device-generated graphs by setting applet parameters and
specifying Output Delivery System (ODS) options. Applet parameters let you configure
drill-down links and override default values in the user interface. Information on
parameters is provided in Chapter 19, “Attributes and Parameters for Java and
ActiveX,” on page 485.

You can use ODS styles to enhance the appearance of JAVA-device-generated charts,
as described in Chapter 10, “Controlling The Appearance of Your Graphs,” on page 133.

470 When to Use the JAVA Device � Chapter 18

To generate a Web presentation that runs the Graph, Map, or Contour applet, you
generally specify the JAVA device in a GOPTIONS statement, open the HTML
destination, generate one or more graphs, and then close the HTML destination, as
described in “Generating Output for Java” on page 470.

You can generate the same graphs as static images using the DEVICE=JAVAIMG
graphics option. Static images can be displayed without requiring that the Web user
install the applets or Java Runtime Environment (JRE). For details, see “ACTXIMG
and JAVAIMG Devices” on page 506.

You can also use the JAVAMETA device to create interactive metagraphics output.
See Chapter 22, “Generating Interactive Metagraphics Output,” on page 531.

When to Use the JAVA Device

The JAVA device generates output for the Graph, Map, Tile, and Contour applets.
These applets provide user interactivity in all of the supported Web browsers. If you do
not need interactivity, then use the JAVAIMG device, as described in “Developing Web
Presentations with the JAVAIMG and ACTXIMG Devices” on page 510, or use the PNG
device, as described in “Developing Web Presentations with the GIF, JPEG, SVG, and
PNG Devices” on page 508.

Generating Output for Java

To develop a SAS/GRAPH program that generates output for the Graph applet or
Map applet, follow these steps:

1 Reset graphics options and specify the JAVA device:

goptions reset=all device=java;

2 To conserve resources, close the ODS LISTING destination:

ods listing close;

3 Open the ODS HTML destination. You can use the BODY= option to specify an
HTML filename, and the STYLE= option to specify an ODS style (see Chapter 10,
“Controlling The Appearance of Your Graphs,” on page 133). Use the
PARAMETERS= option to configure the applet (see “Specifying Parameters and
Attributes for Java and ActiveX” on page 485). For example:

ods html
file="your_file.htm"
style=gears
parameters=("tips"="none");

Note: To run an applet, your users must be able access the appropriate Java
archive files. Two archives are referenced by default: one is the Java plug-in from
Sun Microsystems, and the other is the SAS Java archive. �

In the HTML output file, the location of the Java plug-in from Sun
Microsystems is specified in the CODEBASE attribute of the OBJECT tag. If you
need to change this default value, then use the ATTRIBUTES= option of the ODS
statement, as described in “Specifying Parameters and Attributes for Java and
ActiveX” on page 485. On Windows systems, the user is prompted to install the
plug-in if it is not already installed. On other systems, the plug-in can be installed

Creating Interactive Output for Java � About the Java HTML Output and the Java Runtime Environment Plug-In 471

from the Sun Microsystems site (http://www.sun.com) or from the SAS
Third-Party Software References Web page:

http://support.sas.com/resources/thirdpartysupport/index.html

The location of the SAS Java archive is specified in the JAVA_CODEBASE and
the ARCHIVE parameters in the body of the APPLET tag. The default
JAVA_CODEBASE is specified by the APPLETLOC= system option. If the default
value of this system option specifies a widely accessible URL, then you do not need
to change this value. If you need to specify a different location, then you can
change the value of the system option. Another alternative is to override the
APPLETLOC= system option by specifying a value for the ODS statement option
CODEBASE=, as described in “Specifying Parameters and Attributes for Java and
ActiveX” on page 485.

Note: When specifying a location for the SAS Java archive, you can use an
HTTP address, or you can use a UNC path, such as //sasjava, with forward
slashes instead of backward slashes. �

4 Run a procedure or procedures that are used by the JAVA device (see Table 17.1 on
page 454):

proc gchart data=sashelp.class;
vbar height / group=age;

run;
quit;

5 Close the ODS HTML destination, and then reopen the ODS LISTING destination:

ods html close;
ods listing;

Running your program starts the applet and displays the initial graph. If the
browser display differs from what you see in SAS, then ensure that your SAS/GRAPH
procedure is fully enabled in the applet. Refer to Appendix 1, “Summary of ActiveX and
Java Support,” on page 1601 for details.

Note: Using the GMAP procedure to generate a highly detailed map might create a
large HTML output file, which might cause problems on certain browsers. If this is the
case, you can run the GREDUCE procedure to remove some of the complexity and
produce a more usable map. �

For further information on troubleshooting Web output, see “Resolving Differences
Between Graphs Generated with Different Technologies” on page 638.

About the Java HTML Output and the Java Runtime Environment
Plug-In

The Java Runtime Environment (JRE) plug-in is required to open HTML output that
is generated by the JAVA device. If you open an HTML file that you generated using
the JAVA device and you do not have the JRE plug-in installed for your Web browser,
the browser prompts you to install the JRE plug-in. You must install the JRE plug-in
for your browser in this case. When your users open your HTML file, they will also
have to install the JRE plug-in for their Web browser if the plug-in is not already
installed on their computer.

The 9.2 SAS/GRAPH Java applets will work with JRE 1.5.0_12. They have also been
tested with 1.5.0_13 and 1.5.0_15. We recommended that you use one of these versions.
If future JREs are backward compatible, then the applets should work without any
issues.

http://www.sun.com
http://support.sas.com/resources/thirdpartysupport/index.html

472 About Languages in JAVA � Chapter 18

About Languages in JAVA
For international audiences, the Java applets have graphical user interfaces that can

appear in the following languages: Chinese (simplified), Czech, Danish, English,
French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish,
Russian, Spanish, and Swedish. Generally, to display a translated graphical user
interface, Web-based JAVA devices must use a language-specific operating environment
and Web browser. This requires the all-languages version of the JRE. For further
information, contact your on-site SAS support personnel.

About Special Fonts and Symbols in JAVA
The JAVA device supports only system fonts. In the LABEL and GPLOT SYMBOL

statement, the ACTIVEX device supports the following SAS markers:

Marker

Square

Star

Circle

Plus

Flag

X

Prism

Spade

Heart

Diamond

Club

Hexagon

Cylinder

See “SYMBOL Statement” on page 252 for more information.

SAS Formats Supported for Java
The JAVA devices support the SAS character, numeric, and the date and time

formats that are listed in the following tables. For a description of these formats, see
SAS Language Reference: Dictionary.

Table 18.1 Character Formats Supported By Java

$ $ASCII $BINARY $CHAR

$F $HEX $OCTAL

Creating Interactive Output for Java � SAS Formats Supported for Java 473

Table 18.2 Numeric Formats Supported By Java

BEST BINARY COMMA COMMAX COMMAX

D DOLLAR DOLLARX E EURO

EUROX F HEX LOGPROB NEGPAREN

NLBEST NLD NLMNIAED NLMNIAUD NLMNIBGN

NLMNIBRL NLMNICAD NLMNICHF NLMNICNY NLMNICZK

NLMNIDKK NLMNIEEK NLMNIEGP NLMNIEUR NLMNIGBP

NLMNIHKD NLMNIHRK NLMNIHUF NLMNIIDR NLMNIILS

NLMNIINR NLMNIJPY NLMNIKRW NLMNILTL NLMNILVL

NLMNIMOP NLMNIMXN NLMNIMYR NLMNINOK NLMNINZD

NLMNIPLN NLMNIROL NLMNIRUB NLMNIRUR NLMNISEK

NLMNISGD NLMNISKK NLMNITHB NLMNITRY NLMNITWD

NLMNIUSD NLMNIZAR NLMNLAED NLMNLAUD NLMNLBGN

NLMNLBRL NLMNLCAD NLMNLCHF NLMNLCNY NLMNLCZK

NLMNLDKK NLMNLEEK NLMNLEGP NLMNLEUR NLMNLGBP

NLMNLHKD NLMNLHRK NLMNLHUF NLMNLIDR NLMNLILS

NLMNLINR NLMNLJPY NLMNLKRW NLMNLLTL NLMNLLVL

NLMNLMOP NLMNLMXN NLMNLMYR NLMNLNOK NLMNLNZD

NLMNLPLN NLMNLROL NLMNLRUB NLMNLRUR NLMNLSEK

NLMNLSGD NLMNLSKK NLMNLTHB NLMNLTRY NLMNLTWD

NLMNLUSD NLMNLZAR NLMNY NLMNYI NLNUM

NLNUMI NLPCT NLPCTI NLPVALUE NUMX

OCTAL PERCENT PERCENTN PVALUE ROMAN

RSTDOCNY RSTDOCYY RSTDONYN RSTDOPNY RSTDOPYN

RSTDOPYY YEN

Table 18.3 Date and Time Formats Supported By Java

AFRDFDD AFRDFDE AFRDFDN AFRDFDT AFRDFDWN

AFRDFMN AFRDFMY AFRDFWDX AFRDFWKX CATDFDD

CATDFDE CATDFDN CATDFDT CATDFDWN CATDFMN

CATDFMY CATDFWDX CATDFWKX CRODFDD CRODFDE

CRODFDN CRODFDT CRODFDWN CRODFMN CRODFMY

CRODFWDX CRODFWKX CSYDFDD CSYDFDE CSYDFDN

CSYDFDT CSYDFDWN CSYDFMN CSYDFMY CSYDFWDX

CSYDFWKX DANDFDD DANDFDE DANDFDN DANDFDT

DANDFDWN DANDFMN DANDFMY DANDFWDX DANDFWKX

474 SAS Formats Supported for Java � Chapter 18

DATE DATEAMPM DATETIME DAY DDMMYY

DDMMYYN DESDFDD DESDFDE DESDFDN DESDFDT

DESDFDWN DESDFMN DESDFMY DESDFWDX DESDFWKX

DEUDFDD DEUDFDE DEUDFDN DEUDFDT DEUDFDWN

DEUDFMN DEUDFMY DEUDFWDX DEUDFWKX DOWNAME

DTDATE DTMONYY DTWKDATX DTYEAR DTYYQC

ENGDFDD ENGDFDE ENGDFDN ENGDFDT ENGDFDWN

ENGDFMN ENGDFMY ENGDFWDX ENGDFWKX ESPDFDD

ESPDFDE ESPDFDN ESPDFDT ESPDFDWN ESPDFMN

ESPDFMY ESPDFWDX ESPDFWKX EURDFDD EURDFDE

EURDFDN EURDFDT EURDFDWN EURDFMN EURDFMY

EURDFWDX EURDFWKX FINDFDD FINDFDE FINDFDN

FINDFDT FINDFDWN FINDFMN FINDFMY FINDFWDX

FINDFWKX FRADFDD FRADFDE FRADFDN FRADFDT

FRADFDWN FRADFMN FRADFMY FRADFWDX FRADFWKX

FRSDFDD FRSDFDE FRSDFDN FRSDFDT FRSDFDWN

FRSDFMN FRSDFMY FRSDFWDX FRSDFWKX HHMM

HOUR HUNDFDD HUNDFDE HUNDFDN HUNDFDT

HUNDFDWN HUNDFMN HUNDFMY HUNDFWDX HUNDFWKX

ITADFDD ITADFDE ITADFDN ITADFDT ITADFDWN

ITADFMN ITADFMY ITADFWDX ITADFWKX JDATEMD

JDATEMON JDATEQRW JDATEQTR JDATESEM JDATESMW

JULDATE JULDAY JULIAN MACDFDD MACDFDE

MACDFDN MACDFDT MACDFDWN MACDFMN MACDFMY

MACDFWDX MACDFWKX MMDDYY MMDDYYN MMSS

MMYY MMYYN MONNAME MONTH MONYY

NLDATE NLDATEMD NLDATEMN NLDATEW NLDATEWN

NLDATEYM NLDATEYQ NLDATEYR NLDATEYW NLDATM

NLDATMAP NLDATMDT NLDATMMD NLDATMTM NLDATMW

NLDATMWN NLDATMYM NLDATMYQ NLDATMYR NLDATMYW

NLDDFDD NLDDFDE NLDDFDN NLDDFDT NLDDFDWN

NLDDFMN NLDDFMY NLDDFWDX NLDDFWKX NLSTRMON

NLSTRQTR NLSTRWK NLTIMAP NLTIME NORDFDD

NORDFDE NORDFDN NORDFDT NORDFDWN NORDFMN

NORDFMY NORDFWDX NORDFWKX POLDFDD POLDFDE

POLDFDN POLDFDT POLDFDWN POLDFMN POLDFMY

POLDFWDX POLDFWKX PTGDFDD PTGDFDE PTGDFDN

PTGDFDT PTGDFDWN PTGDFMN PTGDFMY PTGDFWDX

Creating Interactive Output for Java � Local Drill-Down Mode with Java 475

PTGDFWKX QTR QTRR RUSDFDD RUSDFDE

RUSDFDN RUSDFDT RUSDFDWN RUSDFMN RUSDFMY

RUSDFWDX RUSDFWKX SLODFDD SLODFDE SLODFDN

SLODFDT SLODFDWN SLODFMN SLODFMY SLODFWDX

SLODFWKX SVEDFDD SVEDFDE SVEDFDN SVEDFDT

SVEDFDWN SVEDFMN SVEDFMY SVEDFWDX SVEDFWKX

TIME TIMEAMPM TOD WEEKDATE WEEKDATX

WEEKDAY WEEKU WEEKV WEEKW WORDDATE

WORDDATX YEAR YYMM YYMMDD YYMMDDN

YYMMN YYMON YYQ YYQN YYQR

YYQRN YYWEEKU YYWEEKV YYWEEKW

Note: The JAVA and JAVAIMG devices do not support nested formats. If you create
a custom format to use with these devices, do not nest existing formats in your new
format. �

Configuring Drill-Down Links for Java
You can configure your Java applet to add drill-down links to your graph in one of

the following modes:
� Local mode
� Script mode
� URL mode

See Chapter 27, “Enhancing Web Presentations with Chart Descriptions, Data Tips,
and Drill-Down Functionality,” on page 595. See also “Examples of Interactive Java
Output” on page 475.

Examples of Interactive Java Output
The following sections provide examples of creating interactive graphs using the

JAVA device:
Additional samples are available in the Sample Library:
� GWBJABAR—Generating a Bar Chart for the Web
� GWBJACON—Generating a Contour Plot for the Web

Local Drill-Down Mode with Java
Here is an example that generates an HTML output file that runs the Graph applet.

If the graph contains a group or subgroup, then by default the applet automatically
provides drill-down functionality. When a user clicks on an element in the graph, the
applet generates and displays a new graphic based on the selected elements. In the
example, note how variable roles are assigned in the VBAR3D statement.

This example is available in the Sample Library under the name GWBJALOC. For
further information, see “Links in ACTIVEX Presentations” on page 605.

476 Local Drill-Down Mode with Java � Chapter 18

The following picture shows output produced by the sample program. The top of the
picture shows the initial graph. The bottom of the picture shows the graph that results
from a user clicking on a portion of the initial graph.

Here is the sample program:

filename odsout "sales.htm";

/* Close the listing destination. */
ods listing close;

data sales;
length Region $ 4 State $ 2;
format Sales dollar8.;
input Region State Sales Year Qtr;
datalines;

West CA 13636 1999 1
West OR 18988 1999 1
West CA 14523 1999 2
West OR 18988 1999 2
East MA 18038 1999 1

Creating Interactive Output for Java � Script Drill-Down Mode with Java 477

East NC 13611 1999 1
East MA 11084 1999 2
East NC 19660 1999 2
West CA 12536 1998 1
West OR 17888 1998 1
West CA 15623 1998 2
West OR 17963 1998 2
East NC 17638 1998 1
East MA 12811 1998 1
East NC 12184 1998 2
East MA 12760 1998 2
;
goptions reset=all device=java;

ods html file=odsout style=gears;

title "Company Sales, Mid Year";

proc gchart data=sales;
vbar3d region / sumvar=sales
group=year subgroup=state;

run; quit;

ods html close;
ods listing;

You can also use the HTML= procedure option to implement local drill-down links in
your graphs. See “Adding Links with the HTML= and HTML_LEGEND= Options” on
page 601.

Script Drill-Down Mode with Java
Here is an example that shows how to implement the script drill-down mode in the

Graph applet or Map applet. SAS/GRAPH provides data tips by default. These data
tips are displayed when the cursor is over a portion of the map. To implement
JavaScript drill-down functionality, PUT statements are used to insert JavaScript code
into the HTML file. The JavaScript, in the example, opens an alert window that
displays the state abbreviation.

This example is available in the Sample Library under the name GWBSCDRL. For
further information, see “Links in ACTIVEX Presentations” on page 605.

478 Script Drill-Down Mode with Java � Chapter 18

/* Change the next two lines to run this program. */
filename odsout "states.htm" ;

/* If your site has already installed the map data sets and */
/* defined the MAPS libref, then you can delete the LIBNAME statement */
/* below and the sample code will work. */
/* If not, contact your on-site SAS support personnel */
/* to determine how to define the MAPS libref. */
*libname maps ’SAS-MAPS-library’;

/* Create a data set that contains the US states. */
proc sql;
create table work.mydata as
select unique state from maps.us;
quit;

/* Add state abbreviations to the new data set. */
data work.mydata;
length Statename $2;
set work.mydata;
Statename=trim(left(upcase(fipstate(state))));
run;

/* Specify the JAVA device. */
goptions reset=all device=java;

/* Close the LISTING destination to save */
/* system resources. */
/* Specify the HTML output file, the script */
/* drill-down mode, and the callback method. */
ods listing close;
ods html file=odsout style=default

parameters=("DRILLDOWNMODE"="Script"
"DRILLFUNC"="MapDrill");

/* Specify a map title and generate the map. */
title1 "State Abbreviations";

Creating Interactive Output for Java � URL Drill-Down Mode with Java 479

proc gmap map=maps.us data=work.mydata all;
id state;
choro statename / nolegend;

run;
quit;

/* Close the HTML destination and */
/* open the listing destination. */
ods html close;
ods listing;

/* Create the MapDrill script that is specified on */
/* the ODS HTML statement’s DRILLFUNC parameter. */
/* Write the script to the same file that contains */
/* the HTML output from the GMAP procedure. */
data _null_ ;
file odsout mod; /* Modify the file rather than replacing it. */
put " " ;
put "<SCRIPT LANGUAGE=’JavaScript’>" ;
put "function MapDrill(appletref)" ;
put "{" ;
put " " ;
put "/* Open an alert box to show the abbreviated state name. */ " ;
put "for(i = 2; i < MapDrill.arguments.length; i += 2)" ;
put " {" ;
put " if (MapDrill.arguments[i] == ’G_DEPV,f’)";
put " alert(MapDrill.arguments[i+1]);" ;
put " }" ;
put " " ;
put "}" ;
put "</SCRIPT>";
run ;

URL Drill-Down Mode with Java
Here is an example that demonstrates the URL drill-down mode. This example is

available in the SAS sample library under the name GWBURLDR. For further
information, see “Links in ACTIVEX Presentations” on page 605.

The following display shows the output of the sample code. The resulting sales.html
file displays a bar chart. Clicking on any one of the bars opens the corresponding
HTML file that displays a table further breaking down the data.

480 URL Drill-Down Mode with Java � Chapter 18

/* Change web-output-path in the following statements */
filename urldrill "web-output-path";
filename sales "web-output-path/sales.html";
filename central "web-output-path/central.html";
filename south "web-output-path/south.html";
filename west "web-output-path/west.html";

/* Close the ODS listing destination to conserve resources. */
ods listing close;

/* Specify the device. */
goptions reset=all device=java;

/* Create the data set REGSALES. */
data regsales;

length Region State $ 8;
format Sales dollar8.;
input Region State Sales;

/* Initialize the link variable. */
length rpt $40;

/* Assign values to the link variable. */
if Region="Central" then

rpt="href=’central.html’";
else if Region="South" then

Creating Interactive Output for Java � URL Drill-Down Mode with Java 481

rpt="href=’south.html’";
else if Region="West" then
rpt="href=’west.html’";

datalines;
West CA 13636
West OR 18988
West WA 14523
Central IL 18038
Central IN 13611
Central OH 11084
Central MI 19660
South FL 14541
South GA 19022
;

/* Open the HTML output file and specify the URL drill-down mode. */
ods html body=sales

path=urldrill
style=money
parameters=("drilldownmode"="url");

/* Create a chart that uses the link variable. */
title "Company Sales";
proc gchart data=regsales;

vbar3d region / sumvar=sales
patternid=midpoint
html=rpt;

run;
quit;

/* Create an HTML file for Central sales. */
ods html body=central path=urldrill style=money;
title "Central Sales";
proc print data=regsales noobs;

var state sales;
where region="Central";

run;

/* Create an HTML file for Southern sales */
ods html body=south path=urldrill style=money;
title "Southern Sales";
proc print data=regsales noobs;

var state sales;
where region="South";

run;

/* Create an HTML file for Western sales. */
ods html body=west path=urldrill style=money;
title1 "Western Sales";
proc print data=regsales noobs;

var state sales;
where region="West";

run;

482 HTML Drill-Down Mode � Chapter 18

quit;

/* Close the HTML destination and open the listing destination. */
ods html close;
ods listing;

HTML Drill-Down Mode
Here is an example that generates an HTML output file that displays the Map applet.

The applet is configured for the HTML drill-down mode, where URLs are dynamically
generated based on the data in the graph element that was selected in the drill-down
action. In this example, the value of the STATENAME variable is used to complete the
URLs. For additional information, see “Links in ACTIVEX Presentations” on page 605.

In the resulting HTML page, clicking on a state in the U.S. map activates a URL.
This sample is available in the SAS Sample Library under the name GWBJAMAP.

/* Close the listing destination to conserve resources. */

ods listing close;

/* Specify a path and name for the HTML output file. */

ods html
file="your_HTML_file.htm"
style=default
parameters=("DRILLDOWNMODE"="HTML")
parameters=("DRILLPATTERN"="http://www.state.{&statename}.us")
parameters=("BACKCOLOR"="FFFFFF");

/* Specify the JAVA device and set up customizations. */

goptions reset=all device=java;

/* Create data for the graph. */

proc sql;
create table work.mydata as
select unique state from maps.us;
quit;
run;

data work.mydata;
length statename $1020;
set work.mydata;

/* Place the state name in the data set. */

statename=trim(left(lowcase(fipstate(state))));
run;

title1
"Click on a state to go to that state’s home page";

/* Generate the graph. */

Creating Interactive Output for Java � HTML Drill-Down Mode 483

proc gmap map=maps.us
data=work.mydata all;
id state;
choro statename / levels=1 discrete

coutline=black
nolegend
des="US Government Web Sites"
name="usgov";

run; quit;

/* Close the HTML output file and open the listing */
/* destination. */

ods html close;
ods listing;

484

485

C H A P T E R

19
Attributes and Parameters for
Java and ActiveX

Specifying Parameters and Attributes for Java and ActiveX 485
Specifying the Location of Control and Applet Files (CODEBASE= and ARCHIVE= Options) 486

Specifying the Location of the ActiveX Control 487

Specifying the Location of the Java Applets 487

Specifying the CODEBASE= URL 487

Specifying the Location of the Java Plug-In (CODEBASE= Attribute) 488
Parameter Reference for Java and ActiveX 488

Parameter Definitions 491

Specifying Parameters and Attributes for Java and ActiveX

You can specify attributes and parameters in ODS to override default values in Java
and ActiveX. No attributes or parameters are required. SAS provides workable defaults
in most cases.

Attributes can be any HTML name/value pair that is valid inside the initial
(opening) OBJECT tag. Parameters are values that appear in the body of the OBJECT
tag, to configure the appearance or functionality of a Java applet or the ActiveX control.

Attributes and parameters are specified as options of one of the available ODS
statements, such as ODS HTML:

ODS HTML

<ATTRIBUTES=("attr-name"="attr-value")>

<PARAMETERS=("param-name"="param-value")>

<other-options>;

The preceding syntax applies to all applicable ODS statements, such as HTML,
MARKUP, PDF, PS, and RTF.

You can specify more than one name/value pair (separated by blank spaces) inside
the parenthesis of an ATTRIBUTES= or PARAMETERS= option. You can also specify
multiple ATTRIBUTES= and PARAMETERS= options in a single ODS statement.
These options can be specified in any order in the ODS statement.

You can remove a parameter tag by specifying a $ for its value, or by setting it to
None using the menu of the applet or control. This removes the data and axis label that
would otherwise be included in the graph.

You can also append ,n to tags that reference variables whose values are URLs.
Normally, the substitution string is URL-encoded for browsers that do not support
embedded white space in URL strings. Use ,n to prevent this encoding.

No intervening white space should be added between the primary tag and the
appended ,f or ,n characters.

486 Specifying the Location of Control and Applet Files (CODEBASE= and ARCHIVE= Options) � Chapter 19

Note: Using ,n is not the same as using the applet parameter PATTERNSTRIP. The
PATTERNSTRIP parameter removes blank spaces from data values before those values
are applied to substitution strings. �

Most of the examples in the following topics specify parameters:

� “Examples of Interactive Java Output” on page 475

� “ActiveX Examples” on page 461

For information on other ODS statement options, see the SAS Output Delivery
System: User’s Guide.

In HTML output that runs an applet or a control, all values of the ATTRIBUTES=
option appear in the opening OBJECT tag. For example, a SAS/GRAPH program can
specify the WIDTH attribute as follows:

ods html file="C:\sashtml\piechart.htm"
attributes=("width"="720");

In the HTML output file, the WIDTH attribute appears inside the beginning OBJECT
tag as shown in the following:

<script language="javascript" type="text/javascript">
<!--

document.writeln("<OBJECT");
document.writeln(’style=" width: 720px; height: 480px;

background-color: #4E5056; border-width: 0px;"’);
document.writeln("ALIGN=\"baseline\" class=\"Graph\"");
.
.
.

//-->
</script>

Valid attribute names are those that are enabled for the OBJECT tag in HTML.
Valid attributes must also be specified as required by JAVA or ACTIVEX device drivers
that run in the operating environment.

All of the name/value pairs that are specified in the ODS statement option
PARAMETERS= appear in the body of the OBJECT tag. For example, a SAS program
can disable the tooltips and set the background color for a graph as follows:

ods html file="test.html" parameters=("tips"="none" "backdropcolor"="CXff0000");

Valid parameter values for the ActiveX control, Graph applet, Map applet, and
Contour applet are defined in “Parameter Reference for Java and ActiveX” on page 488.
Parameters for other applets, such as the Metaview applet, are provided in the sections
that apply to those applets, as in “Metaview Applet Parameters” on page 534.

Specifying the Location of Control and Applet Files (CODEBASE= and
ARCHIVE= Options)

When you generate Web presentations with the JAVA and ACTIVEX device drivers,
the SAS/GRAPH software generates HTML pages that automatically look for the Java
archive files or the ActiveX control file in the default installation location. If you install
the ActiveX control .exe file or the Java archive .jar files in a location other than the
default or if you want to publish Output Delivery System (ODS) output containing the
SAS/GRAPH control or the applets in a Web server, then you might need to specify the
location of the .exe file or the .jar files when you generate your Web presentation.

� Specifying the Location of Control and Applet Files (CODEBASE= and ARCHIVE= Options) 487

You can use the CODEBASE= option to specify the location of the ActiveX control or
the Java applets. You can use the ARCHIVE= option to specify the name of the Java
archive file.

Note: The ActiveX control must be installed locally on each PC where the Web
presentation will be viewed. �

Specifying the Location of the ActiveX Control
If you use the ACTIVEX device driver to generate output containing an ActiveX

control, then specify the location and version of the .exe file with the CODEBASE=
option in the ODS statement. Specify the directory and filename of the .exe file. (The
default filename is sasgraph.exe.) The CODEBASE location can be specified as a
pathname or as a URL. (See “Specifying the CODEBASE= URL” on page 487 for more
information.) If you have installed previous versions of the ActiveX control, then you
also need to specify the version that you want to use. For example, if your .exe file is
in /sasweb/graph) you would specify

ods html file="/path/to/mygraph.html"
codebase="/sasweb/graph/sasgraph.exe#version=9,2";

Specifying the Location of the Java Applets
By default, the location of the SAS Java archive files is specified by the

APPLETLOC= system option. This value is the default value of the CODEBASE=
parameter. If the default location is accessible by users who will be viewing your Web
presentation, and the SAS Java archive is installed at that location, then you do not
need to change the value of the CODEBASE= parameter.

If you use the JAVA device driver to generate output containing a SAS/GRAPH
applet, then specify the path to the .jar file with the CODEBASE= option in the ODS
statement. Specify only the directory of the .jar file. The CODEBASE location can be
specified as a pathname or as a URL. (See “Specifying the CODEBASE= URL” on page
487 for more information.) For example, if your .jar file is in /sasweb/graph), you
would specify

ods html body="/path/to/mygraph.html"
codebase="/sasweb/graph";

The ARCHIVE= option specifies the filename of the .jar file(s). You do not need to
specify the ARCHIVE= option in the ODS statement unless you have renamed the .jar
files.

For applets generated with macros, specify the CODEBASE= argument for the
macro. For example:

%ds2const(codebase=http://your_path_to_archive, htmlfile=your_path_and_filename.htm
...

);

For the DS2TREE and DS2CONST macros, you do not need to specify the
ARCHIVE= argument unless you have renamed the .jar files.

Specifying the CODEBASE= URL
If the value that you specify for CODEBASE= is a URL, it can be a full URL (for

example, http://your_server/sasweb/graph), or it can be relative to your Web
server (/sasweb/graph). If you are publishing HTML only on Web servers where the
control or the applets are installed in a common location, it is generally recommended
that you use the shorter, relative URL. A relative URL enables you to move the HTML

488 Specifying the Location of the Java Plug-In (CODEBASE= Attribute) � Chapter 19

to any Web server without modifying the HTML (assuming the control or the applets
are installed on that server). If you are creating HTML that will be viewed from an
e-mail or copied to a Web server on which the applets are not installed, then you should
use a full URL to point to the applet .jar files at a known location.

Specifying the Location of the Java Plug-In (CODEBASE= Attribute)
The CODEBASE= attribute in the ODS statement specifies the location of the Java

plug-in from Sun Microsystems. By default, SAS points to the Web site of the Java
plug-in from Sun Microsystems. If necessary, you can change the location of the Java
plug-in by specifying the CODEBASE= attribute in the ODS statement. For example:

ods html file="c:\myfile.htm"
attributes=("codebase"="http://ourco.com/Plugins/j2re--1_4_1--windows-i586.exe");

On Windows systems, the user is prompted to install the plug-in if it is not already
installed. On other systems, the plug-in can be installed from the Sun Microsystems site
(http://www.sun.com) or from the SAS Third-Party Software References Web page:

http://support.sas.com/resources/thirdpartysupport/index.html.

Parameter Reference for Java and ActiveX

The following table lists the parameters that you can specify in programs that use
the JAVA and ACTIVEX device drivers. Output from the JAVA device driver runs in the
Graph applet, Map applet, or Contour applet. Output from the ACTIVEX device driver
runs in theSAS/GRAPH Control for ActiveX.

For information on parameters for other applets, see the sections that apply to those
applets, such as “Metaview Applet Parameters” on page 534.

Parameter definitions appear after the following table.

Note: These parameters are not supported by the JAVAIMG and ACTXIMG device
drivers. �

Table 19.1 Parameters Enabled for Java and ActiveX

Parameter
ActiveX Graph

Applet
Map
Applet

Contour
Applet

AMBIENT on page 491 x x

BACKDROPCOLOR on page 491 x x

BACKIMAGE on page 491 x* x x x

CLIPTIPS on page 491 x

COLORNAMELIST on page 491 x

COLORNAMES on page 491 x x

COLORSCHEME on page 491 x x

DDLEVELn on page 492 x x

DIRECT on page 492 x x

DRAWIMAGE on page 492 x x x

DRAWMISSING on page 492 x

http://support.sas.com/resources/thirdpartysupport/index.html
http://www.sun.com

� Parameter Reference for Java and ActiveX 489

Parameter
ActiveX Graph

Applet
Map
Applet

Contour
Applet

DRAWSIDES on page 492 x

DRILLDOWNFUNCTION on page
492

x x x

DRILLDOWNMODE on page 492 x x x

DRILLPATTERN on page 493 x x x

DRILLTARGET on page 493 x x x

DUPLICATEVALUES on page 493 x

FILLPOLYGONEDGES on page 494 x

FREQNAME on page 494 x

G_COLOR on page 494 x x x

G_COLORV on page 494 x x x

G_DEP on page 494 x x x

G_DEPTH on page 494 x x x

G_DEPTHV on page 494 x x x

G_DEPV on page 494 x x x

G_GROUP on page 495 x x x

G_GROUPV on page 495 x x x

G_INDEP on page 495 x x x

G_INDEPV on page 495 x x x

G_LABEL on page 495 x

G_LABELV on page 495 x

G_SUBGR on page 495 x x x

G_SUBGRV on page 495 x x x

GRADIENTBACKGROUND on page
495

x x x

GRADIENTENDCOLOR on page 496 x x x

GRADIENTSTARTCOLOR on page
496

x x x

HONORASPECT on page 496 x

IMAGEPOSX on page 496 x x x

IMAGEPOSY on page 496 x x x

LEGENDFIT on page 496 x

LEGENDFONT on page 496 x

LEGENDFONTSIZE on page 496 x

LEGENDHEIGHTPERCENT on page
496

x

LEGENDPERCENT on page 496 x

LEVELOFDETAIL on page 497 x

490 Parameter Reference for Java and ActiveX � Chapter 19

Parameter
ActiveX Graph

Applet
Map
Applet

Contour
Applet

LEGENDWIDTHPERCENT on page
496

x

LIGHTING on page 497 x

LOADFUNC x

LOCALE on page 497 x x x

LODCOUNT on page 497 x

MENUREMOVE on page 497 x x

MINLEGENDFONTSIZE on page
497

x

MISSINGCOLOR on page 498 x

NAME on page 498 x x x

NAVIGATERENDERMODE on page
498

x

NOJSOOBJECT on page 498 x

OUTLINES on page 498 x

OVERFLOWCOLOR on page 498 x

PATTERNSTRIP on page 498 x x x

PROJECTION on page 498 x

PROJECTIONRATIO on page 498 x

RENDERMODE on page 498 x

RENDEROPTIMIZE on page 499 x

RENDERQUALITY on page 499 x x

SHOWBACKDROP on page 499 x x

SIMPLEDEPTHSORT on page 499

SIMPLETHRESHOLD on page 500 x

STACKED on page 500 x

STACKPERCENT on page 500 x

SURFACESIDECOLOR on page 500 x

TIPBACKCOLOR on page 500 x

TIPBORDERCOLOR on page 500 x

TIPS on page 500 x x x x

TIPMODE on page 500 x

TIPSTEMSIZE on page 501 x

TIPTEXTCOLOR on page 501 x

UNDERFLOWCOLOR on page 501 x

USERFMTn on page 501 x

VIEW2D on page 501 x x x

� Parameter Definitions 491

Parameter
ActiveX Graph

Applet
Map
Applet

Contour
Applet

VIEWPOINT on page 501 x

XBINS on page 501 x

YBINS on page 501 x

* This option works only if STYLE=MINIMAL is specified in ODS destination statement.

Parameter Definitions

AMBIENT=light-level
specifies the intensity of non-directional ambient light in relation to direct light.
Valid values range from 0.0 to 1.0. The default value is 0.4. The sum of direct
light (see the DIRECT parameter) and ambient light can never exceed 1.0. Direct
light is given priority. If you specify a sum of these two values that is greater than
one, the ambient value will be reduced so that the sum of the two values equals
one. This parameter is valid in the ActiveX control and for the Contour applet.

BACKDROPCOLOR=color
specifies the color of all walls in the applet, including the floor. The default value
is white. This parameter is valid only in the Contour applet.

BACKIMAGE=image-URL
specifies the URL of the image that is applied to the background of the applet
image area. By default, no image is used and the background is drawn in a single
solid color. The way that the image will be applied to the background is specified
with the DRAWIMAGE parameter. For the ActiveX control, the background image
must be in GIF, JPEG, or BMP format. For the Graph, Map, or Contour applet,
the URL must be absolute and not relative.

CLIPTIPS=TRUE | FALSE
indicates whether data tips should be clipped. The default value of TRUE does not
display data tips when the cursor is outside of the plot area. A value of FALSE
displays data tips when the cursor is outside of the plot area. The data tips
window hugs the boundary and displays the value of the element that is closest to
the cursor along that edge of the plot. This parameter is valid only in the Contour
applet.

COLORNAMELIST=string
specifies which of two named color lists has priority when searching for named
colors. The default is to search the list of HTML 3.2 colors first, followed by the
SAS name list. Specifying SAS as the string reverses this priority, giving SAS
names higher priority. This parameter is valid only in the Contour applet.

COLORNAMES=name1=value1,name2=value2, ... nameN=valueN
specifies the color names and associated 6-digit hexadecimal RGB values that will
be displayed in the Standard Colors list box in the Color Edit dialog box. In the
parameter value, no white space is allowed. The color name can be any valid
string, and is displayed as specified in the list box. This parameter is valid in the
Graph, Map, and Contour applets.

COLORSCHEME=scheme-name
specifies the name of the color scheme that is applied to the graph. By default, no
color scheme is applied to the graph. This parameter is valid in the ActiveX
control and the Graph applet.

492 Parameter Definitions � Chapter 19

DDLEVELnconfiguration-string
configures the drill-down graph that is generated at the drill-down level that is
specified by the letter n. The drill-down graph is configured using drill-down tags
such as G_INDEPV. For details, see “Configuring Drill-Down Links with
ACTIVEX” on page 460. This parameter is valid in the ActiveX control and in the
Graph and Map applets.

DIRECT=light-level
specifies the intensity of direct light (from a light source) in relation to the
ambient (non-directional) light. Valid values range from 0.0 to 1.0. The default
value is 0.6. The sum of direct light and ambient light (see the AMBIENT
parameter) cannot exceed 1.0. Direct light is given priority. If you specify a sum of
these two values that is greater than one, the level of ambient light will be
reduced so that the sum of the two values equals one. This parameter is valid in
the ActiveX control and the Contour applet.

DRAWIMAGE=background-image-application
specifies how the image specified in the BACKIMAGE parameter is applied to the
background of the applet window. This parameter is valid for the Graph, Map, and
Contour applets. Here are the valid values:

CENTER
centers a single instance of the image in the background, without resizing the
image.

POSITION
places a single instance of the image at the location supplied by the
IMAGEPOSX and IMAGEPOSY parameters, without resizing. If these
parameters are not specified, then the image is centered in the applet window.

SCALE
fills the entire background of the applet window with a single instance of the
specified image, which is resized as necessary.

TILE
fills the entire background of the applet window using multiple instances of
the specified image, without resizing that image. The images are arranged in
rows and columns.

DRAWMISSING=TRUE | FALSE
specifies whether missing values should be drawn. By default, missing values are
not drawn. Missing values are drawn only when this parameter is set to TRUE
and the Styles menu option is set to Block, Smooth, or Surface. This parameter is
valid only in the Contour applet.

DRAWSIDES=TRUE | FALSE
specifies that sides should be drawn when the value of the STACKED parameter is
TRUE and when the Styles menu option is set to Surface, Areas, or
LinesAndAreas. The default value is FALSE. To override this parameter, you can
specify an ODS style definition. This parameter is valid in the Contour applet.

DRILLDOWNFUNCTION=function-name
DRILLFUNC=function-name

specifies the name of the JavaScript function that is called in Script drill-down
mode. This parameter is valid in the ActiveX control and in the Graph and Map
applets.

DRILLDOWNMODE=HTML | LOCAL | SCRIPT | URL
specifies the drill-down mode. This parameter is valid in the ActiveX control and
in the Graph and Map applets. Here are the valid values:

� Parameter Definitions 493

HTML
uses a substitution string to dynamically generate a URL based on the
selected chart elements, and then passes the URL to the browser.

Local mode (Graph applet only)
constructs and displays a new graph based on the data in the previous level
of a drill-down graph.

Script mode
invokes the JavaScript function specified in the DRILLDOWNFUNCTION
parameter, and passes into the function data from the selected graph element.

URL mode
provides static drill-down, using an image map in the HTML file. The image
map is generated using the IMAGEMAP= and HTML= options in
SAS/GRAPH.

The default drill-down mode is Local for the Graph applet. The Map applet and
the ActiveX control do not enable user-selectable drill-down modes.

DRILLPATTERN=substitution-string
specifies how to construct the drill-down URL when the drill-down mode is HTML.
The substitution string is constructed with drill-down tags, which are expressed in
parameters such as G_DEPV, as described in “Configuring Drill-Down Links with
ACTIVEX” on page 460. This parameter is valid in the ActiveX control and in the
Graph and Map applets.

DRILLTARGET=target
specifies where the drill-down destination is displayed in the browser. The default
target is _BLANK, which is an HTML reserved word that displays the drill-down
destination in a new browser window. The target can be specified as another
reserved target name or as the name of a window or frame in your Web
presentation. This parameter is valid in the ActiveX control and in the Graph and
Map applets.

DUPLICATEVALUES=string
determines how the applet will handle data values for grid positions that already
have a data value. This parameter is valid in the Contour applet. Specify one of
the following values:

COUNT
stores at each grid location the number of values found for that location.

FIRST
stores the first value found.

LAST
stores the last value found.

MAX
stores the maximum value found.

MEAN
stores the mean (average) of all values found. This is the default value.

MIN
stores the maximum value found.

NMISS
stores the number of missing values found.

494 Parameter Definitions � Chapter 19

RANGE
stores the range of values found. The range is computed as the maximum
value minus the minimum value.

SUM
stores the sum of all values found.

FILLPOLYGONEDGES=ALWAYS | NEVER | OS/2
specifies whether to adjust rendering to fix a temporary vendor rendering defect.
This parameter is valid only in the Contour applet. When you set the value to
ALWAYS, the adjusted rendering is always performed, regardless of the operating
system on which the applet is running. Similarly, if you set the value to NEVER,
the adjusted rendering is never performed on any operating system. If the value of
this parameter equals the os.name Java system property, then the Contour applet
sets the default value of this parameter to OS/2, which lets draw Polygon correctly
fill in (render) the polygon edges, yet this extra drawing effort slows performance.
If you set this parameter to the value of the parameter of the name of the operating
system returned in os.name, then the adjusted rendering is performed when the
applet runs on that operating system because the applet notifies the Java console.

FREQNAME=variable-name
specifies a name for a new variable that contains the frequency count when a
frequency chart is produced. By default, the name assigned to this variable is
“Frequency”. This parameter might be overridden if you specify an ODS style
definition. This parameter is valid in the Graph applet.

G_COLOR=variable-name
specifies a new color variable for the current drill-down level. This parameter is
valid in the ActiveX control and in the Graph and Map applets.

G_COLORV=variable-name
specifies that the current color variable is the same variable that was used to
configure the previous drill-down level. This parameter is valid in the ActiveX
control and in the Graph and Map applets.

G_DEP=variable-name
specifies a new dependent variable for the current drill-down level. This
parameter is valid in the ActiveX control and in the Graph and Map applets.

Note: The value of the G_DEP tag cannot be set to None because it is always
represented in the graph. �

G_DEPV=variable-name
specifies that the drill-down graph at the specified drill-down level is to use the
same dependent variable that was used in the previous drill-down level. This
parameter is valid in the ActiveX control and in the Graph and Map applets.

G_DEPTH=variable-name
specifies a new depth variable for the current drill-down level. Drill-down graphs
that use this variable can be vertical bar charts or scatter plots. This parameter is
valid in the ActiveX control and in the Graph and Map applets.

G_DEPTHV=variable-name
specifies that the depth variable for the current drill-down level is the same depth
variable that was used in the previous drill-down level. Drill-down graphs that
use this variable can be vertical bar charts or scatter plots. This parameter is
valid in the ActiveX control and in the Graph and Map applets.

� Parameter Definitions 495

G_GROUP=variable-name
specifies a new group variable for the current drill-down level. Drill-down graphs
that use this variable can be bar charts. This parameter is valid in the ActiveX
control and in the Graph and Map applets.

G_GROUPV=variable-name
specifies that this group variable should be the same group variable that was used
at the previous drill-down level. Drill-down graphs that use this variable can be
bar charts. This parameter is valid in the ActiveX control and in the Graph and
Map applets.

G_INDEP=variable-name
specifies a new independent variable for the current drill-down level. Drill-down
graphs that use this variable can be charts and maps. This parameter is valid in
the ActiveX control and in the Graph and Map applets.

Note: The values of the G_INDEP tags cannot be set to None because it is
always represented in the graph. �

G_INDEPV=variable-name
specifies that an independent variable at the current drill-down level is the same
variable that was used at the previous drill-down level. Drill-down graphs that
use this variable can be charts and maps. This parameter is valid in the ActiveX
control and in the Graph and Map applets.

G_LABEL=variable-name
specifies a new label variable for the current drill-down level. Drill-down graphs
that use this variable can be maps. This parameter is valid in the ActiveX control
and in the Graph and Map applets.

G_LABELV=variable-name
specifies that this label variable should be the same label variable that was used
at the previous drill-down level. Drill-down graphs that use this variable can be
maps. This parameter is valid in the ActiveX control and in the Graph and Map
applets.

G_SUBGR=variable-name
specifies a new subgroup variable for the current drill-down level. Drill-down
graphs that use this variable can be bar charts and scatter plots. This parameter
is valid in the ActiveX control and in the Graph and Map applets.

G_SUBGRV=variable-name
specifies that a subgroup variable at this drill-down level is the same subgroup
variable that was used at the previous drill-down level. Drill-down graphs that
use this variable can be bar charts and scatter plots. This parameter is valid in
the ActiveX control and in the Graph and Map applets.

GRADIENTBACKGROUND=TRUE | FALSE | VERTICAL | HORIZONTAL
specifies that the background of the window is or is not using a color gradient. To
override this parameter, you can specify an ODS style definition. This parameter
is valid in the ActiveX control and in the Graph, Map, and Contour applets. TRUE
and FALSE are valid only for the Graph and Map applets. VERTICAL and
HORIZONTAL specify the orientation of the color gradient and are valid only for
the Contour applet. This parameter is ignored in the Contour applet if you specify
the BACKIMAGE parameter. Use GRADIENTSTARTCOLOR and
GRADIENTENDCOLOR to define the colors used to draw the background.

496 Parameter Definitions � Chapter 19

GRADIENTENDCOLOR=color
GRADIENTSTARTCOLOR=color

specify the start color and the end color when two colors are blended in a gradient
across a wall, background, or graph element. The color can be an HTML 3.2 color
name or a 6-digit hexadecimal RGB value. This parameter might be overridden if
you specify an ODS style definition. This parameter is valid in the ActiveX control
and in the Graph, Map, and Contour applets.

HONORASPECT=TRUE | FALSE
specifies whether the aspect of the data being displayed is or is not honored. The
default value FALSE scales the shortest axis (x or y). This parameter is valid in
the Contour applet. Note that certain annotations, such as pies, might display
differently in the applet than in SAS when the value is FALSE.

IMAGEPOSX=horizontal-pixels
IMAGEPOSY=vertical-pixels

specify the location of the upper-left corner of the background image that is named
in the BACKIMAGE parameter. These parameters are ignored unless the value of
the DRAWIMAGE parameter is POSITION. Positive pixel values are measured
from the top-left corner of the applet window. Negative pixel values are measured
from the bottom-right corner of the applet window. These parameters are valid in
the ActiveX control and in the Graph, Map, and Contour applets.

LEGENDFIT=TRUE | FALSE
specifies whether the legend should fit within the height of the contour plot area.
By default the legend occupies as much of the applet height as is feasible. If
TRUE, the height of the legend is restricted to the height of the contour plot
within the legend. When you set this parameter, any value specified for
LEGENDHEIGHTPERCENT is ignored. This parameter is valid only in the
Contour applet.

LEGENDFONT=font
specifies which font to use in the legend. Except for the case, the font name must
match the name of a Java font available in the browser. This parameter is valid
only in the Contour applet.

LEGENDFONTSIZE=font-size
specifies the default size of the font to be used in the legend. Only positive values
are valid. This parameter is valid only in the Contour applet.

LEGENDHEIGHTPERCENT=percentage
restricts the height of the legend to a specified percentage of the height of the
Contour applet. A vertical margin is always maintained. Valid values are greater
than 0 and less than 100 percent, with the default value being 20. This parameter
is valid only in the Contour applet.

LEGENDPERCENT=percentage
specifies how much of the Contour applet space (width) to use as the legend area.
Valid values are 0 to 80 percent. The default value is 20. This parameter is valid
only in the Contour applet.

LEGENDWIDTHPERCENT=percentage
restricts the width of the legend to a specified percentage of the width of the
Contour applet. A horizontal margin is always maintained. Valid values are
greater than 0 and up to 80 percent, which the default value being 20. This
parameter is valid only in the Contour applet.

� Parameter Definitions 497

LEVELOFDETAIL=TRUE | FALSE
specifies whether the level-of-detail processing should be used when drawing plots.
The default value is TRUE, which allows level-of-detail processing. See also the
LODCOUNT parameter. This parameter is valid only in the Contour applet.

LIGHTING=HEADLIGHT | OVERHEAD | NORTHEAST | SOUTHEAST
specifies the position of the light source relative to the position of the graph. The
default value is HEADLIGHT, which directs two light sources at the graph from
the front-center of the screen. This parameter is valid in the Contour applet.

LOADFUNC=Java-method
specifies the name of a JavaScript method in the HTML output file that loads
values and specifications. This parameter is valid in the Graph applet. This
parameter should not be specified if you are using ODS.

LOCALE=xx_yy<_variant>
specifies the language and country to use when displaying locale-sensitive text.
This parameter is valid in the Graph, Map and Contour applets. Here are the
values for this parameter, which are java.util locale specifiers:

xx
represents the required two-digit ISO-639 language code, as defined at
http://www.loc.gov/standards/iso639-2/.

yy
represents the required two-digit ISO-3166 country code, as defined at
http://www.iso.org/iso/country_codes/iso_3166_code_lists.htm.

<_variant>
represents the optional variant code, which depends on the browser and
operating environment. If a variant is specified, the initial underscore
character is required.

LODCOUNT=number-of-cell(s)
specifies the number of cells to use as the level-of-detail threshold. The default
value is 2000. When the number of cells involved in drawing a plot in the applet
exceeds this value and level-of-detail processing is on, then some cells are ignored
when rendering the plot representation. See also the LEVELOFDETAIL
parameter. This parameter is valid only in the Contour applet.

MENUREMOVE=menu-item(s)
disables items in the Graph applet menu and in the Map applet menu. Here is the
syntax of menu-item(s):

menu1-item<.menu2-item... .menuN-item, menu–item2, ...menu-itemN>

In the menu-item(s) value, periods (“.”) separate menu levels in menu paths. In
menu paths, the menu item that is disabled is the last item in the path. Commas
separate menu items and menu paths in a series. Menu items are specified using
the text that is displayed by the applet, with blank spaces removed. For example,
the menu item Graph Properties would be specified as GRAPHPROPERTIES. To
apply the MENUREMOVE parameter, first generate the graph without the
MENUREMOVE parameter. Then note the menu paths of the items that you want
to disable. This parameter is valid in the Graph applet and the Map applet.

MINLEGENDFONTSIZE=font
specifies the minimum font to be used when attempting to fit the legend in the
available applet area. Only positive integers are valid values. This parameter is
valid only in the Contour applet.

http://www.loc.gov/standards/iso639-2/
http://www.iso.org/iso/country_codes/iso_3166_code_lists.htm

498 Parameter Definitions � Chapter 19

MISSINGCOLOR=color
specifies an HTML 3.2 color name or 6-digit hexadecimal RGB value that is to be
used to draw missing values. The default color is black. This parameter is valid in
the Contour applet.

NAME=applet-name
specifies the name for this instance of the applet. Use this parameter only if you
have more than one instance of the APPLET tag in your HTML file, and if you
have included your own scripts or DHTML that communicates with or acts on a
particular instance of the applet. This parameter might be overridden if you
specify an ODS style definition. This parameter is valid in the Graph, Map, and
Contour applets.

NAVIGATERENDERMODE=NONE | POINT | SOLID | WIREFRAME
specifies how to render the graph during pan, rotate, and zoom. The default value
is WIREFRAME. This parameter is valid when the RENDERQUALITY parameter
is set to CUSTOM. This parameter might be overridden if you specify an ODS
style definition. This parameter is valid in the Contour applet.

NOJSOOBJECT
specifies that no JavaScript callback options can be created or used within the
applet. This parameter might be overridden if you specify an ODS style definition.
This parameter is valid in the Graph applet.

OUTLINES=TRUE | FALSE
specifies whether outlines should be drawn for the current contour style. Outlines
are drawn when this parameter is TRUE and the Styles menu option is set to
Area, Block, or Surface. This parameter is valid only in the Contour applet.

OVERFLOWCOLOR=color
specifies an HTML 3.2 color name or a 6-digit hexadecimal RGB color for colors
that are assigned to data values that exceed the maximum range of colors that
have been defined in the style or color list. The default value is CYAN. This
parameter is valid in the ActiveX control and in the Contour applet.

PATTERNSTRIP=TRUE | FALSE
removes preceding and trailing white space from drill-down substitution patterns
before the substituted text is added into a dynamically generated drill-down URL.
The default value is FALSE. This parameter is valid in the ActiveX control and in
the Graph and Map applets.

PROJECTION=ORTHOGRAPHIC | PERSPECTIVE
specifies the type of projection that is used to draw contours. The default value is
ORTHOGRAPHIC. This parameter is valid in the Contour applet.

PROJECTIONRATIO=plot-size-ratio
specifies the ratio of the plot area (applet size minus legend reserve) to the longest
dimension of the plot. For example, specifying a value of 2.0 means that the area
that contains the contour plot is twice the size of the longest plot dimension. This
guarantees that the plot will be surrounded by a space that measures half the
length of the longest projection (not including axes). The default value is 1.5.
Values must be greater than or equal to 1.0. This parameter is valid in the
Contour applet.

RENDERMODE=string
specifies how to render the contours when you are not navigating (panning,
rotating, or zooming) the Contour applet. This parameter is valid only in the
Contour applet. In some cases, changing the representation can provide additional
information about the image, such as more clearly displaying cell boundaries.

� Parameter Definitions 499

Here are the valid values for the polygon representations that determine how the
Contour applet image can be drawn:

POINT
draws polygons using only single-pixel points at the polygon vertices.

SOLID
draws filled polygons. This is the default value and the normal
representation.

WIREFRAME
draws polygons using only lines to represent their edges.

RENDEROPTIMIZE=ALWAYS| NAVIGATION | NEVER | ONNAVIGATION
sets the default for rendering optimization for the Contour applet. This parameter
is valid only in the Contour applet. To correctly render images, the applet must
first sort the polygons that comprise the image. Some polygons require additional
sorting steps to ensure that they are correctly drawn. In many cases, these
additional steps are unnecessary because they only slow applet performance and
do not add to image quality. This parameter lets you specify if and when the
applet should attempt to optimize or reduce the number of sorting operations to be
performed. The RENDEROPTIMIZE parameter is ignored unless you set the
RENDERQUALITY parameter to CUSTOM. The default value depends on the
value of the RENDERQUALITY parameter.

When the RENDERQUALITY parameter is set to BESTQUALITY, the default
value for the RENDEROPTIMIZE parameter is NEVER.

When the RENDERQUALITY parameter is set to FASTERNAVIGATION, the
default value for the RENDEROPTIMIZE parameter is ONNAVIGATION.

When the RENDERQUALITY parameter is set to BESTPERFORMANCE, the
default value for the RENDEROPTIMIZE parameter is ALWAYS.

RENDERQUALITY=value
specifies how two available rendering algorithms, one slower and one faster, are
applied to the graph. This parameter might be overridden if you specify an ODS
style definition. This parameter is valid for the Map and Contour applets. Here
are the valid values:

BESTPERFORMANCE | PERFORMANCE
always uses the faster, less complex rendering algorithm.

BESTQUALITY | QUALITY
always uses the slower, more complex rendering algorithm.

FASTERNAVIGATION | NAVIGATION
uses the faster, less complex rendering algorithm during pan, rotate, and
zoom, and uses the more complex algorithm otherwise. This is the default
value.

CUSTOM (Contour applet only)
lets the user select individual elements that control speed and quality
directly, rather than as a group when rendering an image.

SHOWBACKDROP=TRUE | FALSE
specifies whether all walls (including the floor) should be displayed. This
parameter overrides any ODS settings and is valid only in the Contour applet.

SIMPLEDEPTHSORT=TRUE | FALSE
the default value TRUE indicates that the simpler polygon sorting algorithm is
used when rendering the plot. This parameter is valid in the Contour applet.

500 Parameter Definitions � Chapter 19

SIMPLETHRESHOLD=number-of-elements | NEVER
specifies an integer for the threshold that is used to determine whether the graph
should be rendered using simple geometry. For bar charts, simple geometry means
that graphical elements are represented as lines. For plots, simple geometry
means that graphical elements are represented as plus signs (+).

If the graph contains a number of elements that is greater than the
SIMPLETHRESHOLD value, simple geometry is used and the Shape menu is
made unavailable. The default value is 500. You can also specify the value
NEVER. In that case, simple geometry is never used and the Shape menu is
always available.

Note that if you select and display a subset of the graph, and if the number of
elements in the resulting graph drops below the value of the
SIMPLETHRESHOLD parameter, regular markers are drawn and the Shape
menu is made available.

This parameter is valid in the Graph applet.

STACKED=TRUE | FALSE
specifies whether the contours should be displayed in stacked form, where height
is added to the contour plot based on the contour level. This parameter takes
effect only when the Style menu option is set to Areas or LinesAndAreas. The
default value of this parameter is FALSE. See also the DRAWSIDES parameter.
This parameter is valid in the Contour applet.

STACKPERCENT=height-percentage
specifies the maximum stacking height as a percentage of the longest axis. The
default value is 30. This parameter is valid in the Contour applet.

SURFACESIDECOLOR=color
specifies the color of the sides of a contour plot when that plot uses multiple colors.
The value of the parameter is ignored when drawing a surface plot in a single
color. The default color is the color of the minimum data value. The value must be
an HTML 3.2 color name or a 6-digit hexadecimal RGB value. This parameter is
valid in the Contour applet.

TIPBACKCOLOR=color
specifies an HTML 3.2 color name or a 6-digit hexadecimal RGB value for the
background of the data tips. The default value is YELLOW. This parameter is
valid in the Contour applet.

TIPBORDERCOLOR=color
specifies an HTML 3.2 color name or a 6-digit hexadecimal RGB value for the
border of the data tips. The default value is BLACK. This parameter is valid in
the Contour applet.

TIPS=NONE | STATIONARY | TRUE | FALSE
specifies whether to display data tips. NONE and STATIONARY are valid values
only for the Graph and Map applets, and TRUE and FALSE are valid only for the
Contour applet. Specifying the default value of STATIONARY or TRUE enables
displays data tips, and NONE and FALSE disables this. This parameter is valid in
the ActiveX control and in the Graph, Map, and Contour applets.

TIPMODE=STANDARD | HTML | TABULAR | ALL
specifies which of two types of data tips are to be displayed. One set of data tips is
specified with the TIPS parameter. The other set of data tips is specified with the
HTML= statement option. Specify TIPMODE=HTML to display only the data tips
that are indicated by the HTML= statement option. Specify TIPMODE=TABULAR
to display only the data tips that are indicated by the value of the TIPS
parameter. Specify TIPMODE=STANDARD to display both sets of data tips. The
default value is STANDARD.

� Parameter Definitions 501

To display data tips with the HTML= statement option. You can specify the
HTML= option. The syntax of that option is HTML=“ALT=’text’ | variable-name”.
For further information on data tips, see “Data Tips for Web Presentations” on
page 598.

TIPSTEMSIZE=line-length
specifies the length in pixels of the line that connects the data tips to the graph
element that makes use of that data. The default value is 20. This parameter is
valid in the Contour applet.

TIPTEXTCOLOR=color
specifies an HTML 3.2 color name or a 6-digit hexadecimal RGB value for the text
in the data tips. The default value is BLACK. This parameter is valid in the
Contour applet.

UNDERFLOWCOLOR=color
specifies an HTML 3.2 color name or a 6-digit hexadecimal RGB value for the color
that is assigned to data values that are smaller than the minimum range of colors
that have been defined in the style or color list. The default value is WHITE. This
parameter is valid in the Contour applet.

USERFMTn=string(s)
defines the user format specification. The syntax is the same as that of the
VALUE and PICTURE statements for PROC FORMAT. You can specify multiple
USERFMTn parameters by replacing n with the appropriate number from 1 to n,
where n is the number of format parameters to be defined. For example, to define
a simple YESNO format, specify the parameter <PARAM NAME=“USERFMT1”
VALUE=“VALUE YESNO 1=’Yes’ 2=’No’ ”>. This parameter is valid only in the
Contour applet.

VIEW2D=TRUE | FALSE
indicates whether the view point should be locked to two dimensions. The default
value is TRUE for the Contour applet and FALSE for the Graph applet and ActiveX
control. This parameter might be overridden if you specify an ODS style definition.

XBINS=bin-number-or–values
YBINS=bin-number-or-values

configures the bins uses to generate a contour plot. Specifying a single integer
uses that number of bins. The single integer must be greater than 2. Specifying
multiple values uses multiple bins with those values. Multiple values are real
numbers that are separated by semicolons, as follows:

ods html file=filename.html
parameters=("XBINS"="-1;0;2.5;3.5;4"

"YBINS"="1;2;3;4;5;6");

These parameters are enabled in the Contour applet.

VIEWPOINT=2D| SE | SOUTHEAST
defines the initial viewpoint for the Contour applet. The value SE or SOUTHEAST
set the initial viewpoint to Southeast, a three-dimensional viewpoint. The value
2D sets the value to be two-dimensional. The default value is 2D for PROC
GCONTOUR output and SOUTHEAST for PROC G3D. Setting this parameter
unlocks the 2D view. (See VIEW2D.) This parameter is valid only in the Contour
applet.

502

503

C H A P T E R

20
Generating Static Graphics

What is a Static Graphic? 503
Creating a Static Graphic 504

ACTXIMG and JAVAIMG Devices Compared to GIF, JPEG, SVG, and PNG Devices 506

GIF, JPEG, SVG, and PNG Devices 506

ACTXIMG and JAVAIMG Devices 506

Output From Different Devices and the GSTYLE/NOGSTYLE System Options 506
Developing Web Presentations with the GIF, JPEG, SVG, and PNG Devices 508

About the GIF, JPEG, SVG, and PNG Devices 508

When to Use the GIF, JPEG, SVG, and PNG Devices 509

Generating an HTML Output File Using the GIF, PNG, SVG, or JPEG Device 509

Developing Web Presentations with the JAVAIMG and ACTXIMG Devices 510

About the JAVAIMG and the ACTXIMG Devices 510
When to Use the JAVAIMG or ACTXIMG Device 511

Using JAVAIMG in the z/OS Environment 511

Generating an HTML Output File Using the JAVAIMG or the ACTXIMG Device 511

Adding Drill-Down Links to Web Presentations Generated with a Static-Graphic Device 511

Sample Programs for Static Images 512
Using the ACTXIMG Device 512

Generating PNG Output 514

GIF Output with Drill-Down Links 515

What is a Static Graphic?

A static graphic is a graphic that is permanently fixed after it is displayed. You can
view a static graphic but you cannot manipulate it as you view it in a browser.
Examples of static graphics include GIF and PNG images. To generate a static graphic,
in your SAS program, run a SAS graphics procedure and specify with the DEVICE=
graphics option on one of the following devices:

PNG

GIF

SVG

JPEG

ACTXIMG

JAVAIMG

Variants of some of the devices are also available for special purposes. The GIF
device by default creates images with dimensions of 800 x 600 pixels. To enable you to

504 Creating a Static Graphic � Chapter 20

create GIF images with different default dimensions, the following GIF device variants
are provided:

GIF160 160 x 120

GIF260 260 x 195

GIF373 373 x 280

GIF570 570 x 430

GIF733 733 x 550

However, we recommend that you use the XPIXELS= and YPIXELS= graphics
options with the GIF device to change the default size of your GIF graph to whatever
size you need. See “Using the XPIXELS= and YPIXELS= Graphics Options to Set the
Size of Your Graph” on page 95.

You can also use the following additional variants:

PNG300 produces PNG images with 300 DPI resolution

PNGT provides support for transparency in PNG images

SVGZ produces compressed SVG images

SVGT provides support for transparency in SVG images

SVGVIEW provides navigational control buttons for multipage SVG images

Zdevice devices provided for compatibility with previous releases of the
SAS/GRAPH software

See Chapter 6, “Using Graphics Devices,” on page 67 for more information on these
devices.

When you send your graph output to the ODS HTML destination, you can add data
tips and drill-down links to your static graphic. See Chapter 27, “Enhancing Web
Presentations with Chart Descriptions, Data Tips, and Drill-Down Functionality,” on
page 595.

Creating a Static Graphic
You can use a GOPTIONS statement with a device type of GIF, JPEG, SVG, or PNG

to create a static graphic output file from one or more SAS/GRAPH procedures. SAS
first creates a GRSEG entry in a graphics catalog in your WORK library, and then
creates a graphics output file of the specified type from the GRSEG entry.

Follow these steps to generate one or more static graphs using the ODS LISTING
destination:

1 Add a FILENAME statement to create a file reference for the location of the
output files. To generate only one output file, specify the file reference, filename,
and storage location as follows:

filename mygif1 "C:\mysas\images\barchart.gif"; /* Path to output file */

The file reference can be up to eight characters in length. To generate multiple
images in a single program, specify a file reference for the path only, as follows:

filename imageout "C:\mysas\images"; /* Path to output directory */

When you generate multiple image output files, the SAS/GRAPH software
automatically generates the names of the graphics output files, as described in

Generating Static Graphics � Creating a Static Graphic 505

“Summary of How Output Filenames and GRSEG Names are Handled” on page
102.

2 Add a GOPTIONS statement to specify the output format using the DEVICE=
graphics option, and the file reference using the GSFNAME= graphics option as
follows:

goptions reset=all device=gif gsfname=mygif1;

The value of the GSFNAME= graphics option is the name of your previously
defined file reference, whether that file reference references a filename or a
directory. If you do not specify a value for the GSFNAME= graphics option, the
SAS/GRAPH software uses default names for your graphics output files as
described in “Summary of How Output Filenames and GRSEG Names are
Handled” on page 102.

3 Run the procedure that generates the graph. For example:

proc gchart data=sashelp.class;
hbar3d sex / sumvar=height type=mean;

run;
quit;

The output is stored in the format specified by the DEVICE= graphics option, and
in the output location specified by the GSFNAME= graphics option. For example,
C:\mysas\images\barchart.gif.

To create an HTML file that embeds the image, use the ODS HTML destination with
the following options:

BODY= The filename of the output HTML file (FILE= is a synonym for
BODY=).

PATH= The location (URL or file reference) of the HTML file and static
graphic file.

GPATH= The location of the graphics output file that is created.

Note: You must specify a value for the GPATH= option only if
you specify the FILE= option as a complete path and filename, and
you do not specify the PATH= option.

If you specify FILE= as just a filename (and extension), and you
specify PATH=, then both the HTML file and the graphics output file
are written to the same location (as specified by PATH=.) �

STYLE= The style to be applied. If you do not specify a style, the default
style is applied.

For samples, see “Sample Programs for Static Images” on page 512.
For complete information on these options, see SAS Output Delivery System: User’s

Guide.

506 ACTXIMG and JAVAIMG Devices Compared to GIF, JPEG, SVG, and PNG Devices � Chapter 20

ACTXIMG and JAVAIMG Devices Compared to GIF, JPEG, SVG, and PNG
Devices

GIF, JPEG, SVG, and PNG Devices
When you use the graphics option DEVICE=GIF, JPEG, SVG, or PNG with a

SAS/GRAPH procedure, an ODS style is applied to your graph by default—that is, the
GSTYLE system option is on by default. You can apply any of the ODS styles to your
graph when the GSTYLE system option is on. You cannot apply an ODS style if the
NOGSTYLE system option is on.

For complete information on the GSTYLE system option, see SAS Language
Reference: Dictionary.

When you send your output to the ODS HTML destination, you can add data tips to
your graph that are displayed when the cursor is over a portion of the image. You can
also add drill-down links to other images or to other URLs. See “Links in GIF, JPEG,
PNG, and SVG Presentations” on page 604.

ACTXIMG and JAVAIMG Devices
Like the GIF, JPEG, SVG, and PNG devices, when you use the graphics option

DEVICE=ACTXIMG or JAVAIMG with a SAS/GRAPH procedure, an ODS style is
applied to your graph by default. You can apply any of the ODS styles to your graph.
Unlike the GIF, JPEG, SVG, and PNG devices, the ACTXIMG and JAVAIMG style is not
affected by the GSTYLE and NOGSTYLE system options. (See “Output From Different
Devices and the GSTYLE/NOGSTYLE System Options” on page 506.) An ODS style is
always applied to a graph that is generated by the ACTXIMG or JAVAIMG device.

You can also add data tips to your graph (see “Data Tips in ACTIVEX, ACTXIMG,
JAVA, and JAVAIMG Presentations” on page 600) and drill-down links to other URLs.

Output From Different Devices and the GSTYLE/NOGSTYLE System
Options

The static devices all support ODS styles. However, the ACTXIMG and JAVAIMG
devices are not affected by the GSTYLE|NOGSTYLE system option, so an ODS style is
applied to an ACTXIMG or JAVAIMG image regardless of the setting of this system
option. To demonstrate the impact of the GSTYLE and NOGSTYLE system options on
the device output, here is an example that applies the Statistical style to a GIF image
with the GSTYLE system option on:

options gstyle;
ods listing close;
ods html style=statistical;
goptions reset=all device=gif;

proc gchart data=sashelp.cars;
vbar Make;

where MPG_Highway >= 37;
run;
quit;

Generating Static Graphics � Output From Different Devices and the GSTYLE/NOGSTYLE System Options 507

ods html close;
ods listing;

Display 20.1 A Bar Chart Using the GIF Device with the Statistical Style and GSTYLE System Option

The output is similar for the other devices.
Here is an example that applies the Statistical style to a GIF image with the

NOGSTYLE system option on:

options nogstyle;
ods listing close;
ods html style=statistical;
goptions reset=all device=gif;

proc gchart data=sashelp.cars;
vbar make;
where MPG_Highway >= 37;

run;
quit;

ods html close;
ods listing;

508 Developing Web Presentations with the GIF, JPEG, SVG, and PNG Devices � Chapter 20

Display 20.2 A Bar Chart Using the GIF Device with the Statistical Style and the NOGSTYLE System Option

Notice that STYLE=STATISTICAL is overridden by the NOGSTYLE system option
and that no style is applied to the graph. The NOGSTYLE system option is valid only
for the GIF, JPEG, SVG, and PNG devices. For the ACTXIMG and JAVAIMG devices,
the NOGSTYLE system option has no effect. In this example, if the
DEVICE=JAVAIMG or DEVICE=ACTXIMG graphics option is used, the Statistical
style is applied even though the NOGSTYLE system option is on.

Developing Web Presentations with the GIF, JPEG, SVG, and PNG
Devices

You can use the GIF, JPEG, SVG, and PNG devices to create Web presentations that
consist of static graphics. You can also add data tips and drill-down links to your graphs.

About the GIF, JPEG, SVG, and PNG Devices
The GIF, JPEG, SVG, and PNG devices enable you to generate static graphs for your

Web presentation. You can use these devices when you are sending output to the ODS
HTML destination in order to generate an HTML file to display one or more graphs.
For details, see “Generating an HTML Output File Using the GIF, PNG, SVG, or JPEG
Device” on page 509.

Enhancements that are available to GIF, PNG, SVG, and JPEG Web presentations
include adding drill-down links or tool-tip functionality. Styles other than the default
ODS style can be applied with the STYLE= ODS option. Drill-down links can be added
to the following elements:

Generating Static Graphics � Generating an HTML Output File Using the GIF, PNG, SVG, or JPEG Device 509

� the chart elements (such as the bars, plot markers, or GMAP areas) using the
HTML= option

� the legend using the HTML_LEGEND= option
� the titles and footnotes using the LINK= option in the title or footnote statement
� the annotated text or graphics or both that use the HTML= variable in the

annotate data set

For details, see “Adding Drill-Down Links to Web Presentations Generated with a
Static-Graphic Device” on page 511.

When to Use the GIF, JPEG, SVG, and PNG Devices
The GIF, JPEG, SVG, and PNG devices are best suited to Web presentations that

consist of static graphs and graphs with simple drill-down capabilities. If you need
more interactivity, or if you want to compute responses to drill-down actions when the
graph is viewed, then generate a presentation using the ACTIVEX or JAVA device. The
GIF device provides only 256 colors, which might be suitable for many presentations.
The PNG, SVG, and JPEG devices provide TruColor support and are better suited for
Web presentations that contain color-intensive graphics.

Generating an HTML Output File Using the GIF, PNG, SVG, or JPEG
Device

Follow these steps to generate a complete Web presentation that consists of an
HTML output file and one or more images:

1 To conserve resources, close the ODS LISTING destination (the Output window,
which is open by default):

ods listing close;

2 Enter your DATA step, if necessary.
3 Specify your ODS HTML statement, with the following options:

ods html
path="C:/Public/graph" (url=none)/* HTML output directory */
body="webgif1.htm" /* HTML filename */
gpath="C:/Public/graph/images"; /* graphics output file location */

Specifying URL=NONE tells ODS to reference the graphics output file simply by
name without prefixing the full path (assuming that the graphics output file is in
the same directory as the HTML file).

Note: With the GIF, JPEG, SVG, or PNG device, footnotes and titles are stored
in the graphics output file by default. To move footnotes and titles out of the
graphics output file and into the HTML file, specify the ODS HTML options
NOGTITLE or NOGFOOTNOTE, or both. See “Controlling Titles and Footnotes
with Java and ActiveX Devices in HTML Output” on page 194. �

4 Specify your device:

goptions reset=all device=png;

5 Run procedures to generate graphs. For example

proc gchart data=sashelp.class;
hbar3d sex / sumvar=height type=mean;

run;

510 Developing Web Presentations with the JAVAIMG and ACTXIMG Devices � Chapter 20

quit;

You can use BY statements to create multiple graphs.

6 Close the HTML output file and reopen the ODS listing destination:

ods html close;
ods listing;

Reopening the listing destination establishes standard operating conditions for
later programs that you run in the same SAS session.

7 Open the HTML output file in your Web browser. For example, open file
C:\Public\graph\webgif1.htm.

Note: Using this technique, however, you cannot create drill-down links or data tips
for your graphs. �

For an example, see “Generating PNG Output” on page 514.

Developing Web Presentations with the JAVAIMG and ACTXIMG Devices

You can use the JAVAIMG and ACTXIMG devices to create Web presentations that
include snapshots of graphs that are generated with the JAVA and ACTIVEX devices,
but without the interactivity that JAVA and ACTIVEX graphs provide. You can also
add data tips and drill-down links to your graphs.

About the JAVAIMG and the ACTXIMG Devices
The JAVAIMG and ACTXIMG devices enable you to generate Web presentations that

display a snapshot of one or more graphs in the PNG format. The ACTXIMG device
works on PC hosts only. On all other hosts, the ACTXIMG device defaults to using the
JAVAIMG device.

When you run a program that specifies the ACTXIMG device, the SAS/GRAPH
ActiveX Control runs in the background to generate the PNG files. This means that you
must install the SAS/GRAPH ActiveX Control on your computer before you can use the
ACTXIMG device. For information on installing the ActiveX control, see “Installing the
SAS/GRAPH ActiveX Control” on page 455. SAS/GRAPH procedures that can be used
with the ACTXIMG device are the same as those that can be used with the
SAS/GRAPH ActiveX Control, as listed in Table 17.1 on page 454. The procedures that
can be used with the JAVAIMG device are listed in “Graph, Map, Tilechart, and
Contour Applets” on page 441.

The resulting PNG files can be viewed in any supported browser that supports the
PNG format—neither Java nor ActiveX is required to view them.

The PNG files are identical in appearance to the graphs created with the
DEVICE=JAVA or DEVICE=ACTIVEX graphics option as they are initially displayed in
a browser. However, unlike these latter graphs, which are interactive and can be
manipulated by a user viewing them in a browser, the PNG files are static and their
appearance cannot be changed after they are created.

Note: With the JAVAIMG and ACTXIMG devices, the titles and footnotes are
always stored in the HTML file and not in the graphics output files regardless of
whether the GTITLE and GFOOTNOTE options are set. See “Controlling Titles and
Footnotes with Java and ActiveX Devices in HTML Output” on page 194. �

Generating Static Graphics � Adding Drill-Down Links to Web Presentations Generated with a Static-Graphic Device 511

When to Use the JAVAIMG or ACTXIMG Device
If you do not need interactivity such as changing the chart type or style, the

JAVAIMG and ACTXIMG devices provide several advantages over the interactive
presentations that are generated with the JAVA and ACTIVEX devices. Because PNG
image files are generated, the Web clients are not required to access the Java run-time
environment or install the SAS/GRAPH ActiveX Control to display the graphs. Also,
Web performance improves because the PNG image files are smaller in size than the
HTML files that are required to run an applet or an ActiveX control.

Note: The ACTXIMG device cannot be used with the ODS PDF, PCL, PS, or
PRINTER destinations on 64-bit computers. The SAS/GRAPH software uses the
JAVAIMG device instead. �

Some of the SAS/GRAPH procedures, such as the GKPI and GEAREABAR
procedures, support only the JAVA, JAVAIMG, ACTIVEX, and ACTXIMG devices. For
these procedures, you must use the JAVAIMG or the ACTXIMG device if you need a
static image.

Finally, in some cases such as plots generated with the G3D procedure, the
ACTXIMG and JAVAIMG devices provide a better static image than the other devices.

Note: When SAS is installed on a server, the ACTXIMG and JAVAIMG devices are
limited by the display capabilities of the server on which they run—for example, the
number of colors that the server is capable of. Consequently, the ACTXIMG or
JAVAIMG PNG snapshot might not look as good as what you get from the JAVA and
ACTIVEX devices. Therefore, it is better to use the JAVA or ACTIVEX device if the
server’s display settings are less than optimal. �

Using JAVAIMG in the z/OS Environment
If you are running SAS in the z/OS operating environment with the

DEVICE=JAVAIMG graphics option, then you must specify FILESYSTEM=HFS
because HFS file space is needed to write the graphics output files. You might also need
to increase the amount of memory that is allotted for your session so that SAS can run
Java in the background. The suggested region size is 400 megabytes. For a batch job,
add either REGION=400M or REGION=409600K to the JOB card. For a TSO session,
specify SIZE(409600). For more information, refer to your JCL reference manual.

Generating an HTML Output File Using the JAVAIMG or the ACTXIMG
Device

The procedure for generating an HTML output file for viewing JAVAIMG or
ACTXIMG device output is similar to the procedure for generating an HTML output file
for the GIF, PNG, SVG, or JPEG devices. See “Generating an HTML Output File Using
the GIF, PNG, SVG, or JPEG Device” on page 509.

For an example, see “Using the ACTXIMG Device” on page 512.

Adding Drill-Down Links to Web Presentations Generated with a
Static-Graphic Device

You can add drill-down links to Web presentations that are generated with an
ACTXIMG, JAVAIMG, GIF, JPEG, SVG, or PNG device. For information on the default

512 Sample Programs for Static Images � Chapter 20

configurations of these Web presentations, see “GIF Output with Drill-Down Links” on
page 515.

You can add drill-down links to the following elements:
� graph elements or legend elements or both. See “GIF Output with Drill-Down

Links” on page 515.
� graph elements specified in an Annotate data set. See “Generating Web Links

with the Annotate Facility” on page 540.
� titles and footnotes using the LINK= option in the TITLE or FOOTNOTE

statement.

Sample Programs for Static Images
The following sections describe how to create a Web presentation using static images:
� “Using the ACTXIMG Device” on page 512
� “Generating PNG Output” on page 514
� “GIF Output with Drill-Down Links” on page 515

Using the ACTXIMG Device
Here is an example that uses the ODS HTML destination to create an HTML file

that references four PNG files that are created by the GCHART procedure with the
DEVICE=ACTXIMG graphics option. Because the ACTXIMG device invokes an
SAS/GRAPH ActiveX Control, you can run this example only in a Windows environment.

The GCHART procedure in this example uses BY-group processing to display the
results of each of the four quarters of the year. Consequently, the procedure produces
four separate PNG files. Only the first graph is shown here. To see all of the PNG
images in the output, you must scroll down the page in your browser.

Generating Static Graphics � Using the ACTXIMG Device 513

Display 20.3 Using ODS with the ACTXIMG Device

The following is the complete SAS code for this example. In this example, the output
files are sent to the default location. If you want to send the output files to a different
location, add the BODY= option to the ODS HTML statement to specify the new
location of the output files. You can specify the complete path and filename with the
BODY= option (or the FILE= option, which is the same), or you can specify the path
separately using the PATH= option, and just the filename with the FILE= or BODY=
option. If you want to send the PNG files to a separate location, add the GPATH=
option to the ODS HTML statement to specify the new location for the PNG files.

See the section “ODS HTML Statement” in the SAS Output Delivery System: User’s
Guide.

/* Create data set from sashelp.prdsale */
data prdsummary;
set sashelp.prdsale;
where year=1993 and (country = "GERMANY" or country = "CANADA")

and region="EAST" and division="CONSUMER" and
(product="SOFA" or product="TABLE" or product="BED");

run;

/* Sort the data set by quarter */
proc sort data=work.prdsummary;
by quarter;
run;

/* Since the LISTING destination is not used, close it to save system resources */
ods listing close;

514 Generating PNG Output � Chapter 20

/* Send output to an HTML file */
ods html style=seaside;

/* Specify device as actximg */
goptions reset=all device=actximg border;

title1 "1993 Sales";

/* Chart total 1993 sales for each country by quarter */
proc gchart data=work.prdsummary;

hbar country / sumvar=actual subgroup=product sum;
by quarter;

run;
quit;

/* Close HTML file */
ods html close;

/* Reopen the LISTING destination */
ods listing;

Generating PNG Output
Here is an example that uses ODS to create an HTML file that references four PNG

files that are created by a SAS/GRAPH procedure. The GCHART procedure in this
example uses BY-group processing to display the results of each of the four quarters of
the year. Consequently, the procedure produces four separate PNG files. Only the first
graph is shown here. To see all of the graphs, you must scroll down the page in your
browser.

Display 20.4 Generating PNG Output Using ODS

Generating Static Graphics � GIF Output with Drill-Down Links 515

The following is the complete SAS code for this example. In this example, the output
files are sent to the default location. If you want to send the output files to a different
location, add the BODY= option to the ODS HTML statement to specify the new location
of the output files. You can specify the complete path and filename with the BODY=
option (or the FILE= option, which is the same), or you can specify the path separately
using the PATH= option, and just the filename with the FILE= or BODY= option. See
the section “ODS HTML Statement” in the SAS Output Delivery System: User’s Guide.

If you want to send the PNG files to a separate location, add the GPATH= option to
the ODS HTML statement to specify the new location for the PNG files.

/* Create data set from sashelp.prdsale */
data prdsummary;

set sashelp.prdsale;
where year=1993 and (country = "GERMANY" or country = "CANADA")

and region="EAST" and division="CONSUMER" and
(product="SOFA" or product="TABLE" or product="BED");

run;
/* Sort the data set by quarter */
proc sort data=work.prdsummary;

by quarter;
run;
ods listing close;
ods html style=seaside;
goptions reset=all border;
title1 "1993 Sales";
proc gchart data=prdsummary(where=(year=1993));

vbar3d country / sumvar=actual subgroup=product sum;
by quarter;

run;
quit;
ods html close;
ods listing;

Notice that a device is not specified in the GOPTIONS statement in this example.
ODS uses the PNG device as the default device for the HTML destination.

GIF Output with Drill-Down Links
Here is an example that generates Web output with drill-down functionality using

the GIF device.
(See also Chapter 27, “Enhancing Web Presentations with Chart Descriptions, Data

Tips, and Drill-Down Functionality,” on page 595.)
In this example, the DEVICE=GIF graphics option generates image output files and

the ODS HTML statement generates an HTML output file. The HTML= option
identifies a link variable that provides drill-down URLs. The values of the link
variables are added to the data set with IF/THEN statements. ODS inserts the
drill-down URLs into an image map that it generates in the HTML output file.

When you display the HTML output file in a Web browser, the following chart is
displayed.

516 GIF Output with Drill-Down Links � Chapter 20

Display 20.5 Three-Dimensional Vertical Bar Chart with Drill-Down Links

If you click one of the three blocks in the chart, you see a table of the data for that
block. For example, if you click the Central block, the following table is displayed.

Here is the example code, which is available in the SAS Sample Library under the
name GWBDRILL:

Generating Static Graphics � GIF Output with Drill-Down Links 517

/* Close the LISTING destination. */
ods listing close;

/* Set graphic options. */
goptions reset=all border device=gif;

/* Create the data set REGSALES. */
data regsales;

length Region State $ 8;
format Sales dollar8.;
input Region State Sales;

/* Initialize the link variable. */
length rpt $40;

/* Assign values to the link variable. */
if Region="Central" then

rpt="href=’central.html’";
else if Region="South" then
rpt="href=’south.html’";

else if Region="West" then
rpt="href=’west.html’";

datalines;
West CA 13636
West OR 18988
West WA 14523
Central IL 18038
Central IN 13611
Central OH 11084
Central MI 19660
South FL 14541
South GA 19022
;

/* Open the HTML destination for ODS output. Specify the */
/* filename in BODY=. */

ods html body="company.html" style=statistical;

/* Create a chart that uses the link variable. */
title1 "Company Sales";
proc gchart data=regsales;

vbar3d region / sumvar=sales
patternid=midpoint
html=rpt;

run;
quit;

/* Create the Central sales page */
ods html body="central.html";

title1 "Central Sales";
proc print data=regsales noobs;

518 GIF Output with Drill-Down Links � Chapter 20

var state sales;
where region="Central";

run;
quit;

/* Create the Southern sales page */
title1 "Southern Sales";

ods html body="south.html";

proc print data=regsales noobs;
var state sales;
where region="South";

run;
quit;

/* Create the Western sales page */
title1 "Western Sales";
ods html body="west.html";

proc print data=regsales noobs;
var state sales;
where region="West";

run;
quit;

/* Close the HTML output file and */
/* open the listing destination. */

ods html close;
ods listing;

519

C H A P T E R

21
Generating Web Animation with
GIFANIM

Developing Web Presentations with the GIFANIM Device 519
When to Use the GIFANIM Device 519

Creating an Animated Sequence 520

Preparing the Header 520

Preparing the Body 520

Preparing the Trailer 520
GOPTIONS for Controlling GIFANIM Presentations 521

Sample Programs: GIFANIM 522

Creating an Animated GIF with BY-Group Processing 522

Results Shown in a Browser 522

SAS Code 522

About the HTML File 524
Creating an Animated GIF with RUN-Group Processing 524

Results Shown in a Browser 524

SAS Code 525

Creating an Animated GIF with the GREPLAY Procedure 527

Results Shown in a Browser 527
SAS Code 527

Developing Web Presentations with the GIFANIM Device

The GIFANIM device enables you to create sequences of images that are displayed
automatically from a single GIF file. These animated sequences are commonly referred
to as slide shows. The display sequence repeats until the Web user selects Stop in the
Web browser, until the user displays another Web page, or until it completes the
number of iterations that it is configured to run.

You can use graphics options to customize your GIFANIM presentations, as described
in “ GOPTIONS for Controlling GIFANIM Presentations” on page 521.

When to Use the GIFANIM Device

The GIFANIM device is useful for slide shows or animations that do not need to be
controlled by the Web user. Finite looping is appropriate for most cases, such as
demonstrating trends in data over time. Infinite looping is appropriate for unattended
kiosk displays. The GIFANIM device does not support data tips and drill-down links. If
you need to add data tips and drill-down links to your images, use the JAVAMETA
device instead. This device generates Web presentations that run in the Metaview

520 Creating an Animated Sequence � Chapter 21

applet, as described in “Developing Web Presentations for the Metaview Applet” on
page 531.

Creating an Animated Sequence

To create an animated sequence with the GIFANIM device, you need to ensure that
the resulting data stream is constructed properly. The GIFANIM data stream has three
parts: header, body, and trailer.

To see an example of a program that uses the GIFANIM device, see “Sample
Programs: GIFANIM” on page 522.

Preparing the Header
When creating a new animated GIF data stream, you must issue a GOPTIONS

GSFMODE=REPLACE statement before you invoke the first SAS/GRAPH procedure.
The device then constructs a new data stream by writing a valid GIF header and
inserting graphical data from the first procedure.

Preparing the Body
After the first procedure has been executed, you must construct the body of the GIF

animation. You can think of the body as all of the graphic images between the first and
the last images in the sequence. Specify GSFMODE=APPEND in your GOPTIONS
statement to suppress the header information and to begin appending graphic data to
the current data stream. The GOPTIONS GSFMODE=APPEND statement must
appear between the first and second SAS/GRAPH procedures.

Note: If you use BY-group processing on the first graphics procedure to generate
multiple graphs, then the output is automatically appended to the same GIF file. Thus,
you do not need to specify GSFMODE=APPEND for that first procedure. If you do not
use a second graphics procedure to append additional graphs to the GIF file, you do not
need to set the GSFMODE= graphics option in the body section of your program. �

Preparing the Trailer
The final step in the GIF animation process is to mark the end of the animation by

appending a GIF trailer (“3B”x) to the data stream. The way you do this depends on
whether you use BY-group processing in the last procedure:

� If you do not use BY-group processing in the last procedure, set GOPTIONS
GEPILOG=“3B”X before the last SAS/GRAPH procedure.

� If you use BY-group processing in the last procedure, do not assign a value to the
GEPILOG= option. If you assign a value to GEPILOG=, because the GEPILOG=
value is written after each graph in a BY-group, the GIF decoder interprets the
first “3B”x as the end of the animation. Instead, use a DATA step to add the
trailer to the data stream as follows:

data _null_;
file out recfm=n mod;
put "3B"x;

run;

� GOPTIONS for Controlling GIFANIM Presentations 521

In the preceding example, OUT is the file reference of the GIF output file.

After the animation is complete, issue a GOPTIONS RESET=ALL statement to
prepare for subsequent SAS jobs.

GOPTIONS for Controlling GIFANIM Presentations
You can specify the following options in the GOPTIONS statement to configure Web

presentations that are generated with the GIFANIM device.

ITERATION=iteration-count
specifies the number of times to repeat the animation loop. The default value of 0
continues the animation indefinitely (until the Web user selects Stop or displays
another Web page in the Web browser). Specifying a number greater than 0
repeats the animated sequence for the specified number of iterations, and then
continuously displays the last image in the sequence, unless the DISPOSAL=
graphics option specifies otherwise.

GSFMODE=REPLACE | APPEND
specifies whether the graphics output should replace the contents of an existing file
or be appended to it. In this case, the value of REPLACE specifies that the device
is to write a GIF header. Use the GSFMODE= option to specify when to write the
GIF header. Specify REPLACE before you generate the first GIF image, and then
specify APPEND in a second statement before you generate the rest of the images.

DELAY=delay-time
specifies the amount of time that each image is displayed, in hundredths of a
second. For example, a value of 1 specifies a delay of 0.01 seconds. The default
value is 0.

DISPOSAL=NONE | BACKGROUND | PREVIOUS | UNSPECIFIED
specifies how the image sequence is to be displayed.

NONE
superimposes the images in the sequence, without removing any of them
from the screen. This is the default value.

BACKGROUND
restores the background color before displaying the next image.

PREVIOUS
replaces the current image with the previous image before displaying the
next image.

UNSPECIFIED
takes no further action before displaying the next image.

TRANSPARENCY | NOTRANSPARENCY
specifies whether the background of the image should be replaced by the
background color of the Web browser.

INTERLACED | NONINTERLACED
specifies whether interlacing is to be used as the images are displayed.

522 Sample Programs: GIFANIM � Chapter 21

Sample Programs: GIFANIM

The following sections provide examples of how to generate animated GIFs:

� “Creating an Animated GIF with BY-Group Processing” on page 522

� “Creating an Animated GIF with RUN-Group Processing” on page 524

� “Creating an Animated GIF with the GREPLAY Procedure” on page 527

See also example GWBANIMA in the Sample Library.

Creating an Animated GIF with BY-Group Processing
Here is an example that generates an animated GIF from a SAS data set and two

invocations of the GCHART procedure, each of which uses BY-group processing. It also
generates an HTML file that enables you to view the animation.

Results Shown in a Browser
The following picture shows the first image of the animated GIF only. After a

specified time lapse, the chart for each quarter of each of the two years is displayed in
turn.

SAS Code
The following is the complete SAS code for this example. Notice the following

features:

� The GSFNAME= graphics option specifies the file reference that defines the name
of the GIF file that is to be created. In this example, the value of GSFNAME= is
specified as gifout, which is defined as the file gifanim1.gif in a FILENAME
statement.

� Creating an Animated GIF with BY-Group Processing 523

� The statement goptions gsfmode=append; is included before the second
invocation of PROC GCHART so that the output is appended to the same GIF file.

� FILENAME statements specify the filename of the GIF file and the HTML file to
be created by the PUT statements.

/* Specify output files for the images and the HTML code */
filename gifout "gifanim1.gif"; /* Image output */
filename htmlout "gifanim1.htm"; /* HTML output */

/* Set the graph style */
ods listing style=harvest;

/* Delete the previously created graphs before creating new ones */
proc greplay igout=work.gseg nofs;

delete _all_;
run; quit;

/* Use gifout to specify the name of the GIF file */
goptions reset=all device=gifanim gsfname=gifout

gsfmode=replace /* not necessary when using "BY" */
delay=150 /* set delay between images */
border;

/* Create our data set by extracting information on Canada */
/* and Germany from sashelp.prdsale. */
data work.qsales;

set sashelp.prdsale(where=(country="CANADA" or country="GERMANY")
keep=Actual Country Product Quarter Year);

run;

/* Sort our data by quarter */
proc sort data=work.qsales;

by quarter;
run;

/* Generate the first set of graphs */
title1 "1993 Sales";
proc gchart data=work.qsales(where=(year=1993));

vbar3d country / sumvar=actual subgroup=product sum
shape=hexagon;
where product in ("BED" "TABLE" "CHAIR");
by quarter;

run;
quit;

/* Set the GSFMODE= graphics option to append the subsequent graphs to the file */
goptions gsfmode=append;

/* Generate the second set of graphs */
title1 "1994 Sales";
proc gchart data=work.qsales(where=(year=1994));

vbar3d country / sumvar=actual subgroup=product sum
shape=hexagon;
where product in ("BED" "TABLE" "CHAIR");
by quarter;

524 Creating an Animated GIF with RUN-Group Processing � Chapter 21

run;
quit;

/* Write the trailer to the GIF file. Since we */
/* used BY-group processing, use a DATA step */
data _null_;

file gifout recfm=n mod;
put "3B"x;

run;

/* Create the HTML file to view the animated GIF */
data _null_ ;

file htmlout ;
put "<HTML>";
put "<HEAD>";
put "<TITLE> GIFANIM </TITLE>";
put "</HEAD>";
put "<BODY>";
put "";
put "</BODY>";
put "</HTML>";

run;
quit;

About the HTML File
The following is the code in the HTML file that is generated by the PUT statements.

Instead of embedding PUT statements in a SAS program, you can manually create your
own HTML file using an editor of your choice.

<HTML>
<HEAD>
<TITLE> GIFANIM </TITLE>
</HEAD>
<BODY>

</BODY>
</HTML>

Creating an Animated GIF with RUN-Group Processing
This section describes an example that generates an animated GIF using RUN-group

processing. RUN-group processing is used to show the 1993 sales data in a specific
product order: desks, tables, chairs, sofas, and beds.

Results Shown in a Browser
The following display shows the first image of the animated GIF only.

� Creating an Animated GIF with RUN-Group Processing 525

The animation iterates through the sales data for Canada, Germany, and the U.S.A.
The animation waits two seconds between each image and iterates through the
animation four times. The animation stops after the fourth iteration and displays the
first graph (desks).

SAS Code
The images are generated using the GCHART procedure with RUN-group processing

and WHERE clauses to select individual products. Transparency is enabled for each
image, so that the Web browser background shows through the unoccupied areas of
each image. PUT statements are then used to generate an HTML file that enables you
to view the animation with a Web browser. The <BODY> tag in the HTML code
specifies a Web browser background color of #F2F2CF, which shows through the image.

You can change the delay between each image by changing the DELAY= graphics
option. You can change the number of iterations by changing or removing the
ITERATIONS= graphics option. You can also remove the TRANSPARENCY graphics
option or change it to NOTRANSPARENCY to see the affect that transparency has on
the image.

The SAS code for this example follows.

/* Create file references for the output */
filename gifout "gifanim2.gif"; /* Image output */
filename htmout "gifanim2.html"; /* HTML output */

/* Set the graph style */
ods listing style=highcontrast;

/* Delete the previously created graphs before creating new ones */
proc greplay igout=Work.Gseg nofs;

delete _all_;
run; quit;

/* Set graphics options */

526 Creating an Animated GIF with RUN-Group Processing � Chapter 21

goptions reset=all device=gifanim gsfmode=replace gsfname=gifout noborder
transparency /* Let the browser background show through */
disposal=background /* Restore the background between images */
delay=200 /* Wait 2 seconds between each image (200 x 0.01s) */
iterations=4 /* Run the animation four times */
gsfname=gifout gsfmode=replace;

/* Generate the graphs using RUN-group processing */
title1 "1993 Sales";
proc gchart data=sashelp.prdsale(where=(year=1993));

title2 "Desks";
vbar3d country / sumvar=actual;
where product="DESK";

run;

/* Set the GSFMODE= graphics option to append the remaining graphs */
goptions gsfmode=append;

title2 "Tables";
vbar3d country / sumvar=actual;
where product="TABLE";

run;
title2 "Chairs";
vbar3d country / sumvar=actual;
where product="CHAIR";

run;
title2 "Sofas";
vbar3d country / sumvar=actual;
where product="SOFA";

run;

/* For the last graph, set the GEPILOG= graphics option to */
/* append the trailer */
GOPTIONS GEPILOG="3B"X;

/* Generate the last graph */
title2 "Beds";
vbar3d country / sumvar=actual;
where product="BED";

run;
quit;

/* Create the HTML file to view the animated GIF */
data _null_ ;

file htmout ;
put "<HTML>";
put "<HEAD>";
put "<TITLE> GIFANIM </TITLE>";
put "</HEAD>";
put "<BODY STYLE=’background:#F2F2CF’>";
put "";
put "</BODY>";
put "</HTML>";

run;

� Creating an Animated GIF with the GREPLAY Procedure 527

quit;

Creating an Animated GIF with the GREPLAY Procedure
Here is an example of using the GREPLAY procedure to combine several graphs

stored in a catalog into an animated GIF. The GCHART procedure, with BY-group
processing, generates the graphs and stores them in a catalog. The GREPLAY
procedure is then used to create an animated GIF that plays the graphs in a specific
product order: desks, tables, chairs, sofas, and beds.

Results Shown in a Browser
The following display shows the first image of the animated GIF only.

The animation iterates through the 1993 sales data for Canada, Germany, and the
U.S.A. The animation waits two seconds between each image and iterates through the
animation continuously.

SAS Code
The SAS code for this example follows.

/* Create file references for the output */
filename gifout "gifanim3.gif"; /* Image output */
filename htmout "gifanim3.html"; /* HTML output */

/* Create catalog Mygraphs */
libname Mygraphs "C:\";

/* Set the graph style */
ods listing style=harvest;

528 Creating an Animated GIF with the GREPLAY Procedure � Chapter 21

/* Delete the previously created graphs before creating new ones */
proc greplay igout=Mygraphs.Sales nofs;

delete _all_;
run; quit;

/* Create our data set by sorting sashelp.prdsale by product */
proc sort data=sashelp.prdsale out=Work.sales;

by product;
run;
quit;

/* Set graphics options */
goptions reset=all device=gif noborder nodisplay;

/* Generate the graphs */
title1 "1993 Sales";
proc gchart data=work.sales(where=(year=1993)) gout=Mygraphs.Sales;

pie3d country / sumvar=actual type=mean;
by product;

run;
quit;

/* Specify the replay options */
goptions reset=all device=gifanim noborder

disposal=background /* Restore the background between images */
delay=200 /* Wait 2 seconds between each image (200 x 0.01s) */
gsfname=gifout gsfmode=replace;

/* The graphs are to be replayed in the following product order: */
/* desks, tables, chairs, sofas, and beds */
/* This means that we have to replay the GRSEGs in the following order: */
/* GCHART2, GCHART4, GCHART1, GCHART3, and GCHART */
/* Replay the first graph */
proc greplay igout=Mygraphs.Sales nofs;

replay GCHART2;
run;
quit;

/* Set the GSFMODE= graphics option to append the remaining graphs */
goptions gsfmode=append;

/* Replay the remaining graphs */
proc greplay igout=Mygraphs.Sales nofs;

replay GCHART4 GCHART1 GCHART3 GCHART;
run;
quit;

/* Write the trailer to the animated GIF file. */
/* Since we used BY-group processing, use a DATA step */
data _null_;

file gifout recfm=n mod;
put "3B"x;

run;

� Creating an Animated GIF with the GREPLAY Procedure 529

/* Create the HTML file to view the animated GIF */
data _null_ ;

file htmout ;
put "<HTML>";
put "<HEAD>";
put "<TITLE> GIFANIM </TITLE>";
put "</HEAD>";
put "<BODY>";
put "";
put "</BODY>";
put "</HTML>";

run;
quit;

530

531

C H A P T E R

22
Generating Interactive
Metagraphics Output

Developing Web Presentations for the Metaview Applet 531
Advantages of Using the JAVAMETA Device 532

Using ODS With the JAVAMETA Device 532

Enhancing Web Presentations for the Metaview Applet 533

Specifying Non-English Resource Files and Fonts 533

Metaview Applet Parameters 534
Specifying Applet Parameters Using the ODS PARAMETERS= Statement 536

Example: Generating Metacode Output With the JAVAMETA Driver 536

Developing Web Presentations for the Metaview Applet
The JAVAMETA device driver generates graphs that are stored in metagraphics

format and displayed by the SAS Metaview Applet to create interactive graphical Web
presentations. The metacodes that comprise the metagraphics format are simple ASCII
codes that look like the following:

37 8 106 97 118 97 109 101 116 97 30 0 10 1 13 5
0 0 0 50 8 32 32 32 32 32 32 32 32 51 18 57
46 48 48 46 48 48 77 48 68 48 56 48 49 50 48 48

You can use a GOPTIONS statement with a DEVICE=JAVAMETA to create
metacode output from one or more SAS/GRAPH procedures. When the graph is viewed,
the browser passes the metacodes as a parameter to the Metaview applet. The
Metaview applet renders the output defined by the metacodes, and displays the
interactive graph to the user.

Most SAS/GRAPH procedures that generate GRSEG catalog entries, as well as some
other SAS procedures such as PROC GANTT, can be used with the JAVAMETA device
to generate metagraphics output. For a list of these procedures, see “Metaview Applet”
on page 444.

Interactive features of the Metaview Applet include pan and a play mode for
animations. You can add data tips, specify resource files for language translation,
specify background colors and text fonts, and drill down to HTML files, metagraphics
files, and sets of metacodes. You can also provide a list of selectable drill-down URLs in
the pop-up menu. Whereas regular HTML drill-down only allows a single drill-down,
the metaview applet allows a selection list of multiple drill-downs per each chart
element. For information on these enhancements, see “Enhancing Web Presentations
for the Metaview Applet” on page 533.

To generate a Metaview applet presentations, use ODS with the JAVAMETA device
driver.

532 Advantages of Using the JAVAMETA Device � Chapter 22

To see examples of programs that generate a Web presentation for the Metaview
Applet, see “Example: Generating Metacode Output With the JAVAMETA Driver” on
page 536.

Advantages of Using the JAVAMETA Device
The Metaview applet offers these advantages:
� The Metaview applet runs with the Java Virtual Machine that is included with

Web browser. It does not require the installation of a Java Plug-in on the user’s
machine.

� The images produced by the Metaview applet are vector graphics, so the zooming
capability provided by the Metaview applet allows the user to zoom in on a graph
without degrading the graph’s appearance. The zoom control is included by
default. You can disable it with the ZOOMCONTROLENABLED= parameter () .

� Compared to raster images (GIF, JPEG, PNG), the Metaview applet offers faster
data tips, and the data tips stay up as long as you hold your mouse over them.
DEV=JAVAMETA lets you use older versions of JAVA (as compared to DEV=JAVA,
which does not allow this functionality).

Using ODS With the JAVAMETA Device
The following steps use ODS to develop a Web presentation for the Metaview Applet.

This particular example displays a single graph. The metacodes for that graph are
embedded in the body of the HTML output file.

1 Specify the JAVAMETA device driver.

goptions reset=all device=javameta;

2 Close the LISTING destination to conserve resources.

ods listing close;

3 Open the HTML destination. You can also specify an HTML filename with the
BODY= option. If you do not specify an HTML output filename, the default
filename is

sashtml.htm

. The APPLETLOC= system option specifies the default location of the applet JAR
files. If necessary, you can specify another location with the CODEBASE= option
in the SAS program.

ods html body="filename.htm"
<codebase="location-of-jar-files">;

You can enhance your Web presentation by specifying other applet parameters,
as described in “Metaview Applet Parameters” on page 534.

4 Include the SAS/GRAPH procedure code.

proc gchart data=sashelp.class;
vbar height / group=age;

run;
quit;

5 Close the HTML destination. You must close the HTML destination to generate
output. (You may also want to reopen the LISTING destination.)

Generating Interactive Metagraphics Output � Specifying Non-English Resource Files and Fonts 533

ods html close;
ods listing;

Submit the program to generate the HTML output file, which includes the metacodes
generated by the JAVAMETA device.

When you view the HTML file in a Web browser, the Metaview applet renders the
graph defined by the metacodes.

Enhancing Web Presentations for the Metaview Applet

Programming for the default configuration of the Metaview Applet consists of
specifying the JAVAMETA device driver, specifying an HTML output file, and
generating a graph. For information on programming for this default configuration, see
“Developing Web Presentations for the Metaview Applet” on page 531.

You can enhance the default configuration as follows:
� Specify a non-English resource file and font for Java 1.02 presentations. See

“Specifying Non-English Resource Files and Fonts” on page 533.
� Display and configure a zoom control. See the applet parameters that begin with

ZOOM, in “Metaview Applet Parameters” on page 534.
� Display and configure a play button to display multiple graphs or to produce an

animation effect.
� Set the background color by setting the applet parameter BACKGROUNDCOLOR.
� If you specify an ODS style, do not specify a style that uses a background image

(such as Gears or Astronomy) or specify the NOIMAGEPRINT option on the
GOPTIONS statement.

Note that you can combine almost all of the available enhancements, including
different drill-down modes.

To learn how to specify applet parameters, see “Specifying Applet Parameters Using
the ODS PARAMETERS= Statement” on page 536. Reference information on applet
parameters is provided in “Metaview Applet Parameters” on page 534.

Specifying Non-English Resource Files and Fonts
The Metaview Applet supports Java 1.02, which is good in that it runs in most

browsers. Unfortunately, Java 1.02 does not support the use of resource files and fonts,
which would enable the automated use of translated text and localized formats as
supported by Java 1.2. To overcome this limitation, the Metaview Applet enables you to
name a resource file and a resource font by specifying applet parameters. In this
resource file you can hard-code translated versions of the text that the Metaview Applet
uses.

Follow these steps to manually translate the text in the Metaview Applet:
1 Specify the LOGRESOURCES parameter in your SAS job, generate the HTML,

and view it in a browser. (See “Metaview Applet Parameters” on page 534.) The
Metaview Applet will then write its tag/value pairs to the Java console.

2 Copy the tag/value pairs that you want to translate out of the Java console and
paste them into your resources file. Then translate those values to your language.
You do not need to translate all of the tag/value pairs. The defaults will be used
where translations are not provided.

534 Metaview Applet Parameters � Chapter 22

3 Name your resources file MVAResources.properties.

4 Store your resources file in the same directory as either the HTML output file or
the sas.graph.metaviewapplet.jar file.

5 In the SAS program, remove the LOGRESOURCES parameter specification.

6 If your resources file requires a non-English text font, then specify that font as the
value of the parameter RESOURCESFONTNAME. To display this font, your Web
audience must have this font installed.

7 Run your program and test your Web output.

For information on specifying applet parameters, see “Specifying Applet Parameters
Using the ODS PARAMETERS= Statement” on page 536. For reference information on
the Metaview Applet parameters, see “Metaview Applet Parameters” on page 534.

Metaview Applet Parameters

The following parameters may be specified for the Metaview Applet. For information
on how to specify these parameters, see “Specifying Applet Parameters Using the ODS
PARAMETERS= Statement” on page 536.

BACKGROUNDCOLOR=color
specifies the background for the applet as an RGB color in hexadecimal. White is
0xffffff. Red is 0xff0000. If not specified, the background color is 0xd3d3d3 (gray).

Note: This parameter changes only the color of the applet. You can use the
CBACK= graphics option on the GOPTIONS statement to set the background color
of the graph. �

DATATIPHIGHLIGHTCOLOR=color
specifies an RGB color in hexadecimal that is displayed as the outline of the graph
element that is displaying its data tip information. The default color is red. This
parameter is valid only if the DATATIPSTYLE parameter is set to the value
HIGHLIGHT.

DATATIPSTYLE= HIGHLIGHT | STICK | STICK_FIXED
specifies the style of the data tip pop-up window. Values can be:

HIGHLIGHT
causes the data tip to appear above the segment with no connecting line. The
border of the graph element is highlighted.

STICK
connects the data tip pop-up window to the graph element with a line. The
pop-up window is positioned over the cursor. While the cursor remains in the
element, moving the cursor moves the pop-up window and the connecting line.

STICK_FIXED
connects a stationary data tip pop-up window to the graph element with a
line drawn into the middle of the graph element.

DEFAULTTARGET=target-name
specifies where the browser will display drill-down URLs by default. The value of
this parameter can be an HTML target such as _BLANK or the name of a window
or frame in the Web presentation. The default value is _BLANK, which displays
drill-down URLs in a new browser window. The value of the DEFAULTTARGET
parameter is superseded by the optional drill-down tag TARGET.

Generating Interactive Metagraphics Output � Metaview Applet Parameters 535

LOGRESOURCES=TRUE | FALSE
specifying a value of TRUE logs tag/value pairs in the key definition file. The
default value is FALSE. The tag value pairs are copied out of the key definition file
and modified to create a resource file. The resource file is named
MVAResources.properties, and it enables the Metaview Applet text to be
translated to another language. See also the RESOURCESFONTNAME
parameter.

METACODES=codes-or-file-specification
identifies a text file that contains metagraphics codes, or it provides inline
metagraphics codes. The file specification is an absolute or relative URL address.

METACODES1-METACODESn=codes-or-file-specification
identifies additional metacode specifications when you need to identify more than
one file or more than one set of inline metagraphics codes.

METACODESLABEL=menu-label
METACODES1LABEL-METACODESnLABEL=menu-label

names the text labels that are used to identify the graphs specified in the
METACODES and METACODESn parameters. If specified, there should be as
many METACODESLABEL parameters as there are METACODESn parameters.
Always specify METACODESLABEL parameters in sequential order
(METACODESLABEL, METACODES1LABEL, METACODES2LABEL, and so on).
The applet displays the labels in an embedded graph-selection control.

RESOURCESFONTNAME=font-name
specifies the name of the font family that is used to display the resource values in
a user-defined resource file. This allows the Metaview Applet, which is Java 1.02
compliant, to emulate the language translation capabilities of Java 1.2. The applet
first tries to use the specified font-name, then it tries to use the SansSerif font,
then it tries to use the Serif font, then it uses the first font that is returned by the
Java.Awt.Toolkit. The first font that is found is the font that is used. See also the
LOGRESOURCES parameter.

ZOOMCONTROLENABLED=TRUE | FALSE
displays the embedded zoom control under the graph. The default is TRUE.
Specifying a value of FALSE suppresses the display of the zoom control.

Unless you choose to suppress it, the Metaview applet always displays a zoom
control which allows a user to zoom in on and out of the image. To suppress the
zoom control, specify ZOOMCONTROLENABLED=FALSE in the ODS statement,
as follows:

ods html body=“ncpop.htm”
parameters=(“ATATIPSTYLE”=“STICK”
“ZOOMCONTROLENABLED”=“FALSE”);

ZOOMCONTROLMIN=minimum-percentage
specifies a new lower limit for the zoom feature. The default value is 25 percent of
initial size. Valid values range from 1 to 99.

ZOOMCONTROLMAX=maximum-percentage
specifies a new upper limit for the zoom feature. The default value is 500 percent
of initial size. Valid values range from 100 to 25000.

536 Specifying Applet Parameters Using the ODS PARAMETERS= Statement � Chapter 22

Specifying Applet Parameters Using the ODS PARAMETERS= Statement

You can control the initial appearance of your Web output and configure aspects of
the applet’s user interface by specifying applet parameters. The applet parameters are
generally specified as follows in the PARAMETERS= option of the ODS statement.

ODS HTML BODY=HTML-output-file-specification

PARAMETERS=(
“parameter-name1”=“parameter-value1”...
“parameter-nameN”=“parameter-valueN”);

For example:

ods html body="ncpop.htm"
parameters=("DATATIPSTYLE"="STICK"

"ZOOMCONTROLENABLED"="FALSE");

You can specify any number of parameters in a single PARAMETERS= statement.
The parameters can be specified in any order. Blank spaces separate multiple
parameter specifications. You can also use multiple PARAMETERS= statements within
a given ODS statement. The quotation marks and parentheses are required. Additional
quotation marks are required in the specification of certain parameter values.

Example: Generating Metacode Output With the JAVAMETA Driver

The following example uses DEVICE=JAVAMETA to generate metcodes to be
displayed by the Metaview applet. It uses ODS to create an HTML file, and
GOPTIONS DEVICE=JAVAMETA with two instances of PROC GCHART to create
graphical output in the form of metacodes. Because both instances of PROC GCHART
contain a BY statement, the HTML file created by ODS contains multiple invocations of
the applet—one invocation for each value of the BY statement for each procedure (eight
invocations in all). The metacodes produced by PROC GCHART are passed to the
applet as a parameter.

When you use DEVICE=JAVAMETA with ODS, only one graph can be passed to an
instance of the Metaview applet at a time. ODS generates a separate invocation of the
Metaview applet for each SAS/GRAPH procedure that it runs. And, if a procedure
includes BY GROUP processing, then it generates another separate invocation of the
Metaview applet for each BY-group chart. In sum, Metaview applet presentations
generated by ODS never contain a slider page control or drop-down list graph control to
allow a user to select which graph is to be displayed. Although an HTML page generated
by ODS can contain multiple instances of the Metaview applet, each instance can
display one picture only, and a user must scroll the HTML page to see all the pictures.

Each GCHART procedure in this example includes a BY statement to display the
results of each of the four quarters of the year. Consequently, ODS generates eight
separate invocations of the Metaview applet, only the first of which is shown here. A
user would have to scroll the page in the browser to see all four quarters displayed.

Notice the zoom control at the bottom of the image. Because the image is displayed
by the Metaview, the run-time option is available to the user to control the
magnification of the chart. If you want to place multiple graphs in a single metaview
applet so that you can use the slider page control or the play/pause buttons, you must
script out your own HTML with the PUT statement rather than using ODS.

Generating Interactive Metagraphics Output � Example: Generating Metacode Output With the JAVAMETA Driver 537

The following is the complete SAS code to generate a Web presentation. The HTML
file is created using ODS HTML.The statement GOPTIONS DEVICE=JAVAMETA
causes PROC GCHART to produce metacodes which are embedded in the HTML file
produced by ODS and passed to the Metaview applet as parameters.

proc sort data= sashelp.prdsale out=prdsummary;
by year quarter;

run;

goptions reset=all device=javameta
ftext="Trebuchet" htext=1.5 hby=2;

ods listing close;
ods html;

proc gchart data=prdsummary;
by year quarter;
hbar country / sumvar=actual subgroup=product sum;

run;
quit;

ods html close;

538

539

C H A P T E R

23
Generating Web Output with the
Annotate Facility

Overview of Generating Web Output with the Annotate Facility 539
Generating Web Output with the Annotate Facility 539

When to Use PROC GANNO to Generate Web Output 540

When to Apply Annotate Data Sets to Web Output 540

Generating Web Links with the Annotate Facility 540

Examples 541

Overview of Generating Web Output with the Annotate Facility
You can use the Annotate facility to enhance your Web presentation, or you can

generate an entire Web presentation using Annotate and the GANNO procedure. In
either case you can use the Annotate facility to generate drill-down presentations with
the GIF, JPEG, or PNG device driver.

Note: You can also use the Annotate facility to enhance output from the ACTXIMG
driver, but the ACTXIMG driver does not support the GANNO procedure. �

Note that your graph may conceal your annotations unless your annotations are
specified with the value WHEN=A. Specifying this option causes the annotations to be
displayed after the graph, so that they will not be occluded. This is particularly
important for interactive presentations, where the back wall of the graph may be made
visible by default.

Note also that annotations disappear when the Web user selects another graph type.
The annotations reappear when the Web user selects the Refresh button in the Web
browser.

To learn how to use Annotate data sets to generate drill-down Web presentations, see
“Generating Web Output with the Annotate Facility” on page 539.

Reference information on generating and applying Annotate data sets is provided in
Chapter 30, “Annotate Dictionary,” on page 667. Usage information is provided in
Chapter 29, “Using Annotate Data Sets,” on page 641. For information on the GANNO
procedure, see Chapter 33, “The GANNO Procedure,” on page 913.

Generating Web Output with the Annotate Facility
You can use the Annotate facility to generate drill-down Web presentations in two

ways: you can use PROC GANNO and an Annotate data set as the sole basis of a
drill-down presentation, or you can apply an Annotate data set to add drill-down
functionality to a Web presentation that is generated with the ACTXIMG, GIF, JPEG,
or PNG device driver.

540 When to Use PROC GANNO to Generate Web Output � Chapter 23

When to Use PROC GANNO to Generate Web Output
You can use ODS, the GANNO procedure, an Annotate data set, and a device driver

to generate a Web presentation with drill-down links. This method of generating a
drill-down presentation is preferred if you do not need to use an image from another
SAS/GRAPH procedure in your Web presentation. For example, you could use PROC
GANNO to generate an HTML output file that showed a JPEG image, with
accompanying text, and a selectable label containing the text “Click Here”. Larger
presentations with multiple drill-down links are also entirely feasible.

To generate a drill-down graph with PROC GANNO, see “Generating Web Links with
the Annotate Facility” on page 540.

When to Apply Annotate Data Sets to Web Output
You can use Annotate data sets to add drill-down links to Web presentations

generated by any procedure that uses the ANNOTATE= option. The Web presentation
must be generated with the ACTXIMG, GIF, JPEG, or PNG device driver.

Using an Annotate data set to add drill-down links is preferable in the following
circumstances:

� When you cannot add drill-down functionality by other means. Some SAS/GRAPH
statements do not support the HTML= option, which SAS/GRAPH needs to
generate an image map in the HTML output file. If the procedure does support the
ANNOTATE= option, then you can use that procedure as the basis of a drill-down
Web presentation.

� When you do not want Web users to drill down by selecting graph elements. For
example, if you did not want your Web users to drill down by selecting the bars in
a bar chart, you could define graphics elements with drill-down links using the
Annotate facility.

To use the Annotate facility to add drill-down links to a Web presentation, see
“Generating Web Links with the Annotate Facility” on page 540.

Generating Web Links with the Annotate Facility
Follow these steps if you are adding drill-down links to a Web presentation or if you

are generating an entire Web presentations with PROC GANNO:

1 Plan your Web presentation so that you know how and where you want to apply
Annotate graphical elements with drill-down links. Also determine your drill-down
URLs.

2 Generate an Annotate data set. Elements that can be defined as drill-down hot
zones are generated by Annotate functions that use the HTML variable. To see
which functions use the HTML variable, refer to Figure 29.4 on page 647. To
generate the Annotate data set, see Chapter 29, “Using Annotate Data Sets,” on
page 641.

3 Specify the ACTXIMG, GIF, JPEG, or PNG device driver using the DEVICE=
option in a GOPTIONS statement.

4 Close the listing destination and open an HTML output file in ODS.

ods listing close;
ods html file="annodril.htm"

style=science;

Generating Web Output with the Annotate Facility � Examples 541

5 Generate a GIF, JPEG, or PNG image and identify the Annotate data set. Use the
GANNO procedure or another SAS/GRAPH procedure that uses the ANNOTATE=
option.

6 Close the HTML output file.

7 Generate any additional HTML files or images as needed to provide files that are
named in drill-down URLs.

Examples

For an example of creating web output with the GANNO procedure, see Example 4
on page 925.

For examples of applying Annotate data sets to output, see “Examples” on page 658.

542

543

C H A P T E R

24
Creating Interactive Treeview
Diagrams

Creating Treeview Diagrams 543
When to Use the Treeview Applet 544

Interactivity Enabled by the Treeview Applet 545

Programming with the DS2TREE Macro for the Treeview Applet 545

Enhancing Presentations for the Treeview Applet 546

DS2TREE Macro Arguments 547
Sample Programs: Treeview Macro 547

Sample Treeview with XML Embedded in the HTML File 547

Results Shown in a Browser 548

SAS Code 548

Sample Treeview with XML Written to an External File 549

SAS Code 549
Treeview with Hotspots 550

SAS Code 550

Creating Treeview Diagrams
The Treeview applet generates node/link diagrams for hierarchical data, with

optional fish-eye distortion that highlights the central area of interest, as shown in the
following figure:

544 When to Use the Treeview Applet � Chapter 24

Display 24.1 A Treeview Applet Web Link Diagram

You can scroll across the diagram by selecting off-center nodes or by searching for
nodes. Positioning the cursor over a node can display optional data tips. If you then
right-click, you access a pop-up menu. The menu enables you to highlight or hide
subtrees or drill-down to an optional URL. The menu also enables you to select all
nodes, display all previously hidden nodes, reset the view, display applet help, and
search for nodes using various search parameters.

SAS/GRAPH programming for the Treeview applet differs from some of the other
applets in that it does not use ODS, a device driver specification, or a SAS/GRAPH
procedure. Instead, the DS2TREE macro references data sets to generate and configure
an HTML output file that runs the Treeview applet.

When to Use the Treeview Applet
The Treeview applet is well-suited for the illustration of hierarchical data sets. The

fish-eye distortion factor, coupled with extensive node selection features, means that a
single node/link diagram can accommodate large data sets. Applet parameters can be
set to specify the layout of the diagram. You specify a starting node, and then you
specify how the other nodes are to be drawn in relation to that node. The resulting
diagram can be as complex as the Web link diagram in Display 24.1 on page 544, or as
simple as an organizational tree for a department in a corporation.

If you need a higher degree of configurability to illustrate weighted relationships
between the nodes and links in your diagram, then the Constellation applet might be a
better choice than the Treeview applet, as described in “Creating Constellation
Diagrams” on page 553.

Creating Interactive Treeview Diagrams � Programming with the DS2TREE Macro for the Treeview Applet 545

Interactivity Enabled by the Treeview Applet
The following picture shows the pop-up menu that a user can invoke by right-clicking

a Treeview diagram in a browser. The picture shows all the options that are available
for interacting with the diagram. For a description of these options, right-click on any
Treeview diagram and select Treeview Applet Help from the pop-up menu.

Programming with the DS2TREE Macro for the Treeview Applet
The DS2TREE macro generates HTML output files for the Treeview applet. Macro

arguments enable you to generate and format an HTML file and to customize the
appearance of your node/link diagram.

Follow the steps shown in the following code to generate a Web presentation that
runs the Treeview applet. (Note that the ODS LISTING destination must be open in
running the macro.)

/* 1. Define the name and storage location of the HTML output file */
/* and the location of the jar files. */
%let htmlfile = your_path_and_filename.htm;
%let jarfiles = http://your_path_to_archive;

/* 2. Define a data set that contains parent-child relationships. */
data myorg;
input name $ empno mgrno deptname $22. deptcode $;
cards;
Peter 2620 1420 Documentation DOC
Linda 6915 1420 Research & Development R&D
Maria 1320 1420 Legal LGL
Vince 1420 1750 Executive EXE
Jim 6710 6915 Quality Assurance QA
Nancy 22560 6915 Quality Assurance QA
Patrick 28470 6915 Quality Assurance QA
Elsa 33075 6915 Development DEV
Clement 22010 6915 Development DEV
Murielle 3020 6915 Development DEV

546 Enhancing Presentations for the Treeview Applet � Chapter 24

David 11610 6915 Research RES
;
run;

/* 3. Specify titles and footnotes: (optional). */
title1 ’Organizational Chart’;
footnote1 ’To display the department name, place the cursor over a node.’;
footnote2 ’To rotate the chart, click and drag a node.’;

/* 4. Run the DS2TREE macro. */
/* You must change the CODEBASE= argument (using either http:// */
/* or a directory path such as C:/) to specify the location of your */
/* sas.graph.treeview.jar file and its associated jar files */
/* (sas.graph.nld.jar, sas.graph.j2d.jar). See the CODEBASE= argument in: */
/* Arguments for the APPLET Tag*/
/* Make sure that the ods listing destination is open. */
ods listing;
%ds2tree(ndata=myorg, /* data sets and files */

codebase=&jarfiles,
xmltype=inline,
htmlfile=&htmlfile,
nid=empno, /* roles of variables */
nparent=mgrno,
ntip=deptname,
nlabel=name,
height=500, /* appearance */
width=600,
tcolor=navy,
fcolor=black);

Display the resulting HTML file in a Web browser to run the Treeview applet and
display the node/link diagram.

The preceding example shows how the arguments of the DS2TREE macro identify a
data set and specify how the variables in that data set are to be interpreted to generate
the diagram. Appearance arguments define the size of the diagram and the color of the
text in the title and footnotes.

For information on generating more complex diagrams for the Treeview applet, see
“Enhancing Presentations for the Treeview Applet” on page 546.

For definitions of all DS2TREE macro arguments, see “DS2TREE Macro Arguments”
on page 547.

Enhancing Presentations for the Treeview Applet
The Treeview applet displays interactive node/link diagrams. The diagrams are

generated in SAS using a hierarchical data set and the DS2TREE macro, as described
in “Programming with the DS2TREE Macro for the Treeview Applet” on page 545.

To enhance Treeview applet presentations, specify additional arguments for the
DS2TREE macro. The following table describes some of the available enhancements
and identifies the DS2TREE arguments that implement them. For a complete list of
macro arguments, see “Macro Arguments” on page 569.

Creating Interactive Treeview Diagrams � Sample Treeview with XML Embedded in the HTML File 547

Table 24.1 Treeview Applet Enhancements

Enhancement DS2TREE Argument

Specify a stylesheet to format your HTML
output file.

SSFILE, SSFREF, SSHREF, SSMEDIA, SSREL,
SSREV, SSTITLE, SSTYPE

Specify dash patterns for link lines. LSTIP, LSTIPFAC

Specify a background color, image, or drill-down
URL.

IBACKPOS, IBACKLOC, IBACKURL

Add pop-up data tips to nodes. NTIP, TIPS

Add drill-down URLs to nodes. NURL

Specify an action for the pull-down menu. ACTION, NACTION

Change the amount of fisheye distortion. FACTOR, FISHEYE

Determine layout of diagram. SPREAD, TREEDIR, TREESPAN

DS2TREE Macro Arguments
The arguments of the DS2TREE macro specify the configuration of the HTML output

file, the location of the data that is used to generate the diagram, and the configuration
of the applet’s interactive features.

The DS2TREE macro uses the following syntax:

%DS2TREE(argument1=value1, argument2=value2, ...);

The arguments of the DS2TREE macro can be divided into the following categories:

� “Arguments for the APPLET Tag” on page 569. The CODEBASE argument is
required.

� “DS2TREE and DS2CONST Arguments for Data Definition” on page 571. For
DS2TREE the arguments NDATA and NID are required.

� “Arguments for Generating HTML and XML Files” on page 578.
� “DS2TREE and DS2CONST Arguments for Diagram Appearance” on page 579.
� “Arguments for Page Formatting” on page 585.
� “Arguments for Stylesheets” on page 587.

� “Arguments for the SAS TITLE and FOOTNOTE Tags” on page 589.
� “Arguments for Character Transcoding” on page 593.

Sample Programs: Treeview Macro
The following sample programs generate Treeview diagrams:
� “Sample Treeview with XML Embedded in the HTML File” on page 547

� “Sample Treeview with XML Written to an External File” on page 549
� “Treeview with Hotspots” on page 550.

Sample Treeview with XML Embedded in the HTML File
This sample program generates a very simple Treeview diagram.

548 Sample Treeview with XML Embedded in the HTML File � Chapter 24

Results Shown in a Browser
The following is the Treeview diagram that is generated by the sample code. Notice

the pop-up menu. Because the diagram is displayed by the Treeview applet, it is not
just a static picture. A user can manipulate the diagram, for example, by bringing
selected nodes to the center, spreading out the nodes, and searching for nodes.

SAS Code
The following is the complete SAS code used to generate the Treeview diagram from

a SAS data set. Note the following:
� The parameter HTMLFILE= specifies the complete path and name of the HTML

file to be created by the DS2TREE macro. If you want to run this sample, then
change the values of HTMLFILE and CODEBASE to the locations that you want
to use.

� The parameter XMLTYPE=INLINE tells the DS2TREE macro that the XML it
generates from the SAS data set should be included inline in the HTML file.

� The parameter CUTOFF=1 specifies that every node on the graph be labeled. Use
this parameter to suppress node labels for diagrams with numerous nodes.

data father_and_sons;
input id $8. name $15. father $8.;
cards;
aaron Aaron Parker
bob Bob Parker aaron
charlie Charlie Parker aaron

Creating Interactive Treeview Diagrams � Sample Treeview with XML Written to an External File 549

david David Parker aaron
edward Edward Parker david
;
run;

/* make sure ods listing is open when running macro */
ods listing;
/* run the macro */
%ds2tree(ndata=father_and_sons, /* data set */

/* specify complete url if jar files are not in same directory as
html file */

codebase=http://your_path_to_archive,
xmltype=inline,
htmlfile=your_path_and_filename.htm,
nid=id, /* use this variable as the id */
cutoff=1, /* display the name on every node */
nparent=father,/* this identifies the parent of each node */
nlabel=name, /* display this on each node */
height=400,
width=400,
tcolor=navy,
fcolor=black);

Sample Treeview with XML Written to an External File
This sample program generates the same Treeview as the previous example, “Sample

Treeview with XML Embedded in the HTML File” on page 547, with the difference that
the XML is written to an external file instead of being embedded in the HTML file.

SAS Code
The following is the complete SAS code to generate the Treeview diagram from a SAS

data set. Note the following:
� The parameter HTMLFILE= specifies the complete path and name of the HTML

file to be created by the DS2TREE macro. If you want to run this sample, then
change the value of HTMLFILE to something that makes sense for you.

� The parameter XMLTYPE=EXTERNAL tells the DS2TREE that the XML it
generates from the SAS data set should be written to an external file.

� The parameter XMLFILE= specifies the path and file name of the XML file to be
created.

� The parameter XMLURL= specifies how the XML file is to be addressed from
within the HTML file.

� The parameter CUTOFF=1 specifies that every node on the graph be labeled. Use
this parameter with a value between 0 and 1 to suppress node labels for diagrams
with numerous nodes.

data father_and_sons;
input id $8. name $15. father $8.;
cards;
aaron Aaron Parker
bob Bob Parker aaron
charlie Charlie Parker aaron

550 Treeview with Hotspots � Chapter 24

david David Parker aaron
edward Edward Parker david
;
run;
goptions reset=all;
/* make sure ods listing is open when running macro */
ods listing;
/* run the macro */
%ds2tree(ndata=father_and_sons, /* data set */

codebase=http://your_path_to_archive,
htmlfile=your_path_and_filename.htm,
xmltype=external,
makexml=y,
xmlurl=http://www.xtz.com/weboutput_treeview2_sample.xml,
xmlfile=u:/public/weboutput_treeview2_sample.xml,
nid=id, /* as the id, use this variable specified here */
cutoff=1, /* display the name on every node */
nparent=father,/* this identifies the parent of each node */
nlabel=name, /* display the value of this variable on each node */
height=400,
width=400,
tcolor=navy,
fcolor=black);

Treeview with Hotspots
This sample program generates the same Treeview as the previous example, “Sample

Treeview with XML Embedded in the HTML File” on page 547, with the difference that
a node is associated with a URL and can be activated by a user double-clicking the node.

SAS Code
The following is the complete SAS code to generate the Treeview diagram from a SAS

data set. Note the following:
� The parameter NURL= specifies the URL to be opened when the corresponding

node is double-clicked.
� The parameter DRILTARG=_TOP specifies that the HTML file is to be opened in

the same window as the Treeview diagram instead of in a new window, as is the
default.

data father_and_sons;
input id $8. name $15. father $8. url $30.;
cards;
aaron Aaron Parker http://www.xyz.com/index.html
bob Bob Parker aaron http://www.xyz.com/index.html
charlie Charlie Parker aaron http://www.xyz.com/index.html
david David Parker aaron http://www.xyz.com/index.html
edward Edward Parker david http://www.xyz.com/index.html
;
run;
/* make sure ods listing is open when running macro */
ods listing;
/* run the macro */

Creating Interactive Treeview Diagrams � Treeview with Hotspots 551

%ds2tree(ndata=father_and_sons, /* data set */
/* specify complete url if jar files are not in same directory as html

file */
codebase=http://your_path_to_archive,
xmltype=inline,
htmlfile=your_path_and_filename.htm,
nid=id, /* as the id, use the variable specified here */
cutoff=1, /* display the name on every node */
nparent=father,/* this identifies the parent of each node */
nlabel=name, /* display the value of this variable on each node */
height=400,
width=400,
tcolor=navy,
fcolor=black,
nurl=url,
driltarg=_top);

552

553

C H A P T E R

25
Creating Interactive
Constellation Diagrams

Creating Constellation Diagrams 553
When to Use the Constellation Applet 554

Programming with the DS2CONST Macro for the Constellation Applet 555

Enhancing Presentations for the Constellation Applet 559

DS2CONST Macro Arguments 560

Sample Programs: Constellation Macro 560
Constellation Chart with DATATYPE=ARCS 560

Results Shown in a Browser 560

SAS Code 561

Constellation Chart with DATATYPE=ASSOC 562

Results Shown in a Browser 562

SAS Code 563
Constellation Chart with XML Written to an External File 564

SAS Code 565

Constellation Chart with Hotspots 566

SAS Code 566

Creating Constellation Diagrams
The Constellation Applet provides interactivity for node/link diagrams that illustrate

data that is associative, hierarchical, or requires an arc list. Node and link color and
size can be associated with specified data values.

554 When to Use the Constellation Applet � Chapter 25

Display 25.1 A Constellation Diagram

Interactive features of the Constellation Applet include pop-up data tips for links and
nodes, subsetting of links via an embedded scroll bar, pan and zoom, and several node
and link selection modes. You can define drill-down URLs for nodes, specify menu text
for the drill-down action, insert a background image, and specify a drill-down URL for
the background image, among other enhancements. You can also specify your own
JavaScript methods to define responses to drill-down actions.

The Constellation Applet, like the Treeview applet, differs from the other applets in
that the diagrams that they display are not generated by SAS/GRAPH procedures. The
DS2CONST macro generates and formats an HTML output file, and specifies the
appearance and behavior of the node/link diagram based on values in a data set.

When to Use the Constellation Applet
The Constellation Applet is best used to illustrate relationships between links and

nodes, which can be shown in affinity, sequence, and Web-click path diagrams, for
example. Colors, link line widths, and link directional indicators can be specified to
illustrate relationships. Pop-up data tips can be specified for nodes and links, along
with drill-down URLs for nodes and for an optional background image. For diagrams
that illustrate associative data, an embedded scroll bar subsets the data in the diagram
dynamically.

The Constellation Applet can be used to display hierarchical data, but so can the
Treeview Applet, which should also be considered for hierarchical diagrams such as

Creating Interactive Constellation Diagrams � Programming with the DS2CONST Macro for the Constellation Applet 555

organizational trees, because of its unique layout capabilities. For information on the
Treeview Applet, see “Creating Treeview Diagrams” on page 543.

Programming with the DS2CONST Macro for the Constellation Applet
The DS2CONST macro enables you to generate complete Web presentations for the

Constellation Applet. The macro has a large number of arguments that you can use to
generate and format an HTML output file, configure the diagram, and describe how
data sets and variables are to be applied to the diagram.

The macro arguments are structured so that you can associate a variable with an
aspect of the diagram. The values of the variable are then used for that part of the
diagram. For example, the NLABEL argument specifies the name of the variable whose
values define the text labels that are to be applied to the nodes. Other arguments
provide default values that are used when no variable value is provided.

Descriptions of all of the arguments of the DS2CONST macro are provided in
“DS2CONST Macro Arguments” on page 560.

Run the following code to use the DS2CONST macro to generate the Web
presentation for the Constellation Applet shown in the picture above. (Note that the
ODS LISTING destination must be open in running the macro.)

/*--- Define name and storage location of the HTML output file,
and the location of the jar files. */

%let htmlfile = your_path_and_filename.htm;
%let jarfiles = .; /* jar file is in same directory as this html file */
%let archive = constapp.jar;
%let lib = WORK; /* put everything in WORK library */

/*--- Define the node names and locations. */
data &lib..regions;
length regionName $80 /* Node text label */

regionId $4 /* Node identifying string */
xLoc yLoc 8; /* Pixel position of node */

input regionID xLoc yLoc reserve RegionName $ &;
cards;
PNW 30 30 8.5 Western Systems Coordinating Council - Pacific Northwest
NWPE 100 60 8.5 Western Systems Coordinating Council - Northwest Power Pool East
CALI 40 220 9.5 Western Systems Coordinating Council - California
RMPA 140 180 10.8 Western Systems Coordinating Council - Rocky Mountain Power Area
AZNM 110 310 12.9 Western Systems Coordinating Council - AZNMSNV
MAPP 180 80 15 Mid-continent Area Power Pool
SPPN 185 200 13.6 Southwest Power Pool - North
SPPS 170 270 13.6 Southwest Power Pool - South
ERCT 180 400 15 Electric Reliability Council of Texas
WUMS 270 90 17 Wisconsin - Upper Michigan
MANO 290 240 17 Mid-America Interconnected Network - South
ENTG 290 360 12.4 Entergy
MECS 350 130 15 Michigan Electric Coordination System
ECAO 360 200 15 East Central Area Reliability Coordination Agreement - South
TVA 360 300 12.4 Tennessee Valley Authority
SOU 390 400 12.4 Southern Company
FRCC 420 460 15 Florida Reliability Coordinating Council
VACA 450 340 12.4 Virginia and Carolinas
MACS 460 280 19 Mid-Atlantic Area Council - South
MACE 495 235 19 Mid-Atlantic Area Council - East

556 Programming with the DS2CONST Macro for the Constellation Applet � Chapter 25

MACW 430 220 19 Mid-Atlantic Area Council - West
UPNY 450 160 18 Upstate New York
DSNY 500 170 18 Downstate New York
NYC 530 200 18 New York City
LILC 570 170 18 Long Island Lighting Company
NENG 570 90 18 New England Power Pool
;
run;

/*--- Define the node connections. */
data &lib..links;
length from to $4 ltip $12;
format capacity comma.;
input from to capacity;
ltip = left(put(capacity, comma.) || " MW");
if capacity < 500 then width = 1;
else if capacity < 1000 then width = 2;
else if capacity < 2000 then width = 3;
else if capacity < 3000 then width = 4;
else width = 5;
cards;
MECS ECAO 2250
ECAO MECS 2250
ECAO MACW 2957
ECAO MANO 1655
ECAO TVA 1890
ECAO VACA 2334
ERCT SPPS 635
MACE MACW 1500
MACE DSNY 1130
MACS MACW 1800
MACS VACA 3075
MACW ECAO 2612
MACW MACE 3368
MACW MACS 3075
MACW UPNY 481
MANO ECAO 3033
MANO WUMS 608
MANO MAPP 531
MANO SPPN 1191
MANO TVA 2207
MANO ENTG 1245
WUMS MANO 1080
WUMS MAPP 676
MAPP MANO 1150
MAPP WUMS 324
MAPP SPPN 1172
MAPP ENTG 1000
MAPP NWPE 150
MAPP RMPA 233
NENG DSNY 1425
UPNY MACW 1418
UPNY DSNY 3750
DSNY LILC 788

Creating Interactive Constellation Diagrams � Programming with the DS2CONST Macro for the Constellation Applet 557

DSNY MACE 308
DSNY NENG 1125
DSNY UPNY 3750
DSNY NYC 3750
NYC LILC 788
NYC DSNY 3750
LILC DSNY 938
LILC NYC 788
SPPN MANO 1228
SPPN MAPP 891
SPPN SPPS 525
SPPN ENTG 636
SPPS ERCT 569
SPPS ENTG 636
SPPS SPPN 900
SPPS AZNM 315
SPPS ENTG 1200
ENTG SOU 1136
ENTG TVA 1278
ENTG MANO 1399
ENTG SPPS 292
ENTG SPPN 292
ENTG MAPP 856
SOU FRCC 4516
SOU TVA 1810
SOU VACA 1346
SOU ENTG 1902
FRCC SOU 21
TVA ECAO 2235
TVA MANO 2331
TVA SOU 2052
TVA ENTG 2153
TVA VACA 2261
VACA ECAO 2822
VACA MACS 2794
VACA SOU 3042
VACA TVA 2240
CALI PNW 4922
CALI AZNM 0
CALI NWPE 1184
PNW CALI 5903
PNW NWPE 1050
RMPA MAPP 233
RMPA AZNM 518
RMPA NWPE 413
NWPE RMPA 413
NWPE CALI 1574
NWPE MAPP 113
NWPE AZNM 840
NWPE PNW 2145
AZNM CALI 5663
AZNM NWPE 638
AZNM RMPA 518
AZNM SPPS 315

558 Programming with the DS2CONST Macro for the Constellation Applet � Chapter 25

;
run;

/*--- Make sure ods listing is open when running macro. */
ods listing;

/*--- Set chart title. */
title1 "Electric Power Regional Interconnections";
title2 "Created with SAS/GRAPH Constellation Applet";
footnote1 "Link: Base Electricity Transfer Capacity";
footnote2 "Node: Generation Reserve Margin";

/*--- Use the DS2CONST macro to generate the chart. */
%ds2const(ndata=&lib..regions, /* Node parameters */

ldata=&lib..links, /* Node linkage parameters */
datatype=assoc, /* Size nodes by nvalue var */
nvalue=reserve, /* Var for node sizes */
nodeshap=circle, /* Node shape */
cnode=red, /* Node fill color */
colormap=y, /* Use colormap for link/node colors */
height=520, /* Applet window height */
width=600, /* Applet window width */
codebase=&jarfiles, /* Path to archive file */
htmlfile=&htmlfile, /* Output file name */
openmode=replace, /* Create a new html file */
archive=&archive, /* Java archive file name */
nid=regionID, /* Var for node ID string */
border=y, /* Enclose diagram */
fntsize=14, /* Node label font size */
fntstyl=plain, /* Node label font style */
nlabel=regionID, /* Var for node label string */
labels=y, /* Display node labels */
linktype=line, /* Do not show flow direction */
layout=user, /* Use nx/ny to position nodes */
nx=xLoc, /* x-coordinate of node */
ny=yLoc, /* y-coordinate of node */
lfrom=from, /* Var for from-node ID */
lto=to, /* Var for to-node ID */
lwidth=width, /* Var for line widths */
ntip=RegionName, /* Var for popup node text */
ltip=ltip, /* Var for popup line text */
center=y, /* Center chart on the page */
tcolor=#0000FF, /* Title text color */
fcolor=#0000FF, /* Footnote text color */
tsize=3, /* Title text size */
fsize=2, /* Footnote text size */
bgtype=color, /* Use page background color */
bg=#DDDDDD, /* The page background color */
septype=none); /* No separator line */

Display the resulting HTML file in a Web browser to run the applet and generate the
diagram.

Arguments in the DS2CONST macro identify the name of the nodes and links data
sets. In the nodes data set, arguments identify a node ID variable and a node label

Creating Interactive Constellation Diagrams � Enhancing Presentations for the Constellation Applet 559

variable. Other arguments identify the links data set and the variables that define the
nodes at the start and end of each link line.

For information on more complex presentations for the Constellation Applet, see
“Enhancing Presentations for the Constellation Applet” on page 559.

Enhancing Presentations for the Constellation Applet
The Constellation Applet displays interactive node/link diagrams. These diagrams

can show relationships between nodes and links. The Constellation Applet displays
affinity, sequence, and ring diagrams that are generated out of arc, associative, or
hierarchical data sets. The Constellation Applet provides a number of interactive
features by default, as described in “Creating Constellation Diagrams” on page 553.

Enhancements to Constellation Applet presentations are configured in your
SAS/GRAPH program by specifying arguments in the DS2CONST macro. The following
table lists some of the available enhancements and the DS2CONST arguments that
implement them. These enhancements enable you to provide data tips and drill-down
URLs for nodes and links, and to increase the visible distinctions between the data
values that are associated with the nodes and links.

Table 25.1 Constellation Applet Enhancements

Enhancements DS2CONST Arguments

Specify link weights and configure a scroll bar
that controls the display of links based on
weight.

LVALUE, MINLNKWT, SCLNKWT

Lay out the diagram automatically or as
specified in a data set.

LAYOUT

Specify a stylesheet to format the HTML output
file.

BDCLASS, SEPCLASS, SPCLASS, SSFILE,
SSHREF

See “Arguments for Stylesheets” on page 587.

Add pop-up data tips to nodes and links. LTIP, NTIP

Define drill-down URLs for nodes and links. LURL, NURL

Specify menu option text for a drill-down action. ACTION, NACTION

Specify a browser window or frame that displays
drill-down URLs.

DRILTARG

Add a background color, image, or drill-down
URL.

IBACKLOC, IBACKPOS, IBACKURL,

Specify text colors, fonts, styles, and sizes. NFNTNAME, NSFNTNAM, CTEXT, CATEXT

See “DS2TREE and DS2CONST Arguments for
Diagram Appearance” on page 579.

Specify colors for nodes and links. NCOLVAL, NCOLOR, CNODE, LCOLVAL,
LCOLOR, CLINK

Specify dashed link lines. LSTIP and LSTIPFAC

Note that a number of enhancements apply only to associative data sets when you
specify the macro argument DATATYPE=ASSOC. The macro argument definitions
identify which features apply only to associative data.

560 DS2CONST Macro Arguments � Chapter 25

The DS2CONST macro requires you to specify node and link data sets. As an
enhancement, you can define a node styles data set that contains style information only.
You can use the node styles data set to standardize the appearance of a series of
diagrams, among other uses.

Reference information on the arguments of the DS2CONST macro is provided in
“DS2CONST Macro Arguments” on page 560.

DS2CONST Macro Arguments
The arguments of the DS2CONST macro specify the configuration of the HTML

output file, the location of the data that is used to generate the diagram, and the
configuration of the applet’s interactive features.

The DS2CONST macro uses the following syntax:

%DS2CONST(argument1=value1, argument2=value2, ...);

The arguments of the DS2CONST macro can be divided into the following categories:
� “Arguments for the APPLET Tag” on page 569. The CODEBASE argument is

required.
� “DS2TREE and DS2CONST Arguments for Data Definition” on page 571. For

DS2CONST the arguments NDATA, NID, LDATA, and LTO are required.
� “Arguments for Generating HTML and XML Files” on page 578.
� “DS2TREE and DS2CONST Arguments for Diagram Appearance” on page 579.
� “Arguments for Page Formatting” on page 585.
� “Arguments for Stylesheets” on page 587.
� “Arguments for the SAS TITLE and FOOTNOTE Tags” on page 589.
� “Arguments for Character Transcoding” on page 593.

Sample Programs: Constellation Macro
The following sample programs generate these kinds of Constellation diagrams:
� “Constellation Chart with DATATYPE=ARCS” on page 560
� “Constellation Chart with DATATYPE=ASSOC” on page 562
� “Constellation Chart with XML Written to an External File” on page 564
� “Constellation Chart with Hotspots” on page 566.

Constellation Chart with DATATYPE=ARCS
This sample program generates a very simple Constellation diagram. It displays a

number of countries and the languages spoken in those countries.

Results Shown in a Browser
The following is the Constellation diagram that is generated by the sample code

shown below. Notice the help window. Because the diagram is displayed by the
Constellation applet, it is not just a static picture. A user can manipulate the diagram,
for example, by moving nodes and searching for nodes. The Mouse Help window in the
following diagram documents for the user what interactivity is available (right-click a
diagram to invoke the window).

Creating Interactive Constellation Diagrams � Constellation Chart with DATATYPE=ARCS 561

SAS Code
The following is the complete SAS code used to generate a Constellation diagram

from a SAS data set. Notice the following:

� The parameter HTMLFILE= specifies the complete path and name of the HTML
file to be created by the DS2CONST macro. If you want to run this sample, then
change the value of HTMLFILE to the location where you want the HTML file
stored.

� The parameter NSHAPE= specifies the variable in the SAS data set that encodes
the shape of each node.

� The parameter NCOLOR= specifies the variable in the SAS data set that encodes
the color of each node.

/*Define a nodes data set of countries and languages */
data nodedata;
input nodeLabel $15. shape $10. color $8. size;
cards;
France square red .1
Germany square red .1
Italy square red .1
Belgium square red .1
Switzerland square red .1
Holland square red .1
German triangle blue .1
French triangle blue .1
Italian triangle blue .1
Flemish triangle blue .1
Dutch triangle blue .1

562 Constellation Chart with DATATYPE=ASSOC � Chapter 25

;
run;

/*Define a links data set */
data linkdata;
input from $15. to $15.;
cards;
France French
Germany German
Belgium French
Belgium German
Belgium Flemish
Belgium Dutch
Switzerland French
Switzerland German
Switzerland Italian
Italy Italian
Italy German
Holland Dutch
;
run;
goptions reset=all;
/* make sure ods listing is open when running macro */
ods listing;
/*Run the DS2CONST macro*/
%ds2const(ndata=nodedata,

ldata=linkdata,
datatype=arcs,
cnode=red,
colormap=y,
height=400,
width=500,
code=ConstChart,
codebase=http://your_path_to_archive,
htmlfile=your_path_and_filename.htm,
nid=nodelabel,
nlabel=nodelabel,
lfrom=from,
lto=to,
fntsize=12,
nshape=shape,
ncolor=color,
nsize=size);

Constellation Chart with DATATYPE=ASSOC
This sample program generates a very simple Constellation diagram with

DATATYPE=ASSOC.

Results Shown in a Browser
The following is the Constellation diagram that is generated by the sample code. A

Constellation diagram with DATATYPE=ASSOC depicts the strength of the
relationships among variables. Variables in the SAS data set determine the size and

Creating Interactive Constellation Diagrams � Constellation Chart with DATATYPE=ASSOC 563

color of nodes, as well as the width and color of the lines between nodes. At the bottom
of the picture, notice the slider bar which allows a user to choose how many of the links
on the diagram are displayed. Move the slider to the left, and only the most important
links are displayed. Move the slider to the right, and all of the links are displayed.

SAS Code
The following is the complete SAS code to generate a Constellation diagram from a

SAS data set. Notice the following:
� The parameter HTMLFILE= specifies the complete path and name of the HTML

file to be created by DS2CONST. If you want to run this sample, then change the
value of HTMLFILE to something that makes sense for you.

� The parameter NVALUE= specifies the data set variable that is used to determine
the size and color of each node.

� The parameter LVALUE= specifies the data set variable that is used to determine
the width and color of each line between nodes.

data nodedata;
length nodeID value 8 label $11 tip $25;
input nodeID value @11 label $char11. @25 tip $char25.;
cards;
0 6556 depression depression: #6556
1 6322 anxiety anxiety: #6322
2 5980 fatigue fatigue: #5980
3 5286 headache headache: #5286
4 4621 chest pain chest pain: #4621
6 3149 nausea nausea: #3149
;
run;

data linkdata;
length from to linkvalue 8 tip $40;

564 Constellation Chart with XML Written to an External File � Chapter 25

input from to linkvalue @13 tip $char40.;
cards;
2 0 5978 #5978, Support:63.0790, Conf:99.9833
4 1 4621 #4621, Support:48.7602, Conf:100.0000
1 0 4307 #4307, Support:45.4469, Conf:68.1272
1 2 3964 #3964, Support:41.8276, Conf:62.7017
2 3 3010 #3010, Support:31.7611, Conf:50.3429
0 3 3009 #3009, Support:31.7506, Conf:47.5957
1 6 2772 #2772, Support:29.2498, Conf:43.8469
4 6 2609 #2609, Support:27.5298, Conf:56.4596
4 0 2606 #2606, Support:27.4982, Conf:56.3947
4 2 2263 #2263, Support:23.8789, Conf:48.9721
3 0 1980 #1980, Support:20.8927, Conf:40.6821
3 1 1701 #1701, Support:17.9487, Conf:34.9497
3 2 1701 #1701, Support:17.9487, Conf:34.9497
1 3 1593 #1593, Support:16.8091, Conf:25.1977
4 3 1152 #1152, Support:12.1557, Conf:24.9297
0 6 623 #623, Support:6.5738, Conf:9.8545
2 6 623 #623, Support:6.5738, Conf:10.4198
6 3 597 #597, Support:6.2995, Conf:20.0268
3 6 372 #372, Support:3.9253, Conf:7.6433
6 0 344 #344, Support:3.6298, Conf:11.5398
run;

/* make sure ods listing is open when running macro */
ods listing;

title1 "Diagnosis Sequence Diagram.";
%ds2const(ndata=nodedata,

ldata=linkdata,
datatype=assoc,
minlnkwt=30,
height=450,
width=600,
codebase=http://your_path_to_archive,
htmlfile=your_path_and_filename.htm,
colormap=y,
nid=nodeID,
nlabel=label,
nvalue=value,
fntsize=12,
ntip=tip,
lfrom=from,
lto=to,
lvalue=linkvalue,
ltip=tip,
linktype=arrow);

Constellation Chart with XML Written to an External File
This sample program generates the same Constellation diagram as the previous

example,“Constellation Chart with DATATYPE=ASSOC” on page 562, with the
difference that the XML is written to an external file instead of being embedded in the
HTML file.

Creating Interactive Constellation Diagrams � Constellation Chart with XML Written to an External File 565

SAS Code
The following is the complete SAS code to generate the Constellation diagram from a

SAS data set. You can notice the following:

� The parameter HTMLFILE= specifies the complete path and name of the HTML
file to be created by DS2CONST. If you want to run this sample, then change the
value of HTMLFILE to something that makes sense for you.

� The parameter XMLTYPE=EXTERNAL tells the DS2CONST macro that the XML
that it generates from the SAS data set should be written to an external file.

� The parameter XMLFILE= specifies the path and file name of the XML file to be
created.

� The parameter XMLURL= specifies how the XML file is to be addressed from
within the HTML file.

data nodedata;
length nodeID value 8 label $11 tip $25;
input nodeID value @11 label $char11. @25 tip $char25.;
cards;
0 6556 depression depression: #6556
1 6322 anxiety anxiety: #6322
2 5980 fatigue fatigue: #5980
3 5286 headache headache: #5286
4 4621 chest pain chest pain: #4621
6 3149 nausea nausea: #3149
;
run;

data linkdata;
length from to linkvalue 8 tip $40;
input from to linkvalue @13 tip $char40.;
cards;
2 0 5978 #5978, Support:63.0790, Conf:99.9833
4 1 4621 #4621, Support:48.7602, Conf:100.0000
1 0 4307 #4307, Support:45.4469, Conf:68.1272
1 2 3964 #3964, Support:41.8276, Conf:62.7017
2 3 3010 #3010, Support:31.7611, Conf:50.3429
0 3 3009 #3009, Support:31.7506, Conf:47.5957
1 6 2772 #2772, Support:29.2498, Conf:43.8469
4 6 2609 #2609, Support:27.5298, Conf:56.4596
4 0 2606 #2606, Support:27.4982, Conf:56.3947
4 2 2263 #2263, Support:23.8789, Conf:48.9721
3 0 1980 #1980, Support:20.8927, Conf:40.6821
3 1 1701 #1701, Support:17.9487, Conf:34.9497
3 2 1701 #1701, Support:17.9487, Conf:34.9497
1 3 1593 #1593, Support:16.8091, Conf:25.1977
4 3 1152 #1152, Support:12.1557, Conf:24.9297
0 6 623 #623, Support:6.5738, Conf:9.8545
2 6 623 #623, Support:6.5738, Conf:10.4198
6 3 597 #597, Support:6.2995, Conf:20.0268
3 6 372 #372, Support:3.9253, Conf:7.6433
6 0 344 #344, Support:3.6298, Conf:11.5398
run;
title1 "Diagnosis Sequence Diagram.";

566 Constellation Chart with Hotspots � Chapter 25

/* make sure ods listing is open when running macro */
ods listing;

%ds2const(ndata=nodedata,
ldata=linkdata,
datatype=assoc,
minlnkwt=30,
height=450,
width=600,
codebase=http://your_path_to_archive,
htmlfile=your_path_and_filename.htm,
xmltype=external,
makexml=y,
xmlurl=http://www.xyz.com/Web_output/const_assoc_external.xml,
xmlfile=u://Web_output/const_assoc_external.xml,
colormap=y,
nid=nodeID,
nlabel=label,
nvalue=value,
fntsize=12,
ntip=tip,
lfrom=from,
lto=to,
lvalue=linkvalue,
ltip=tip,
linktype=arrow);

Constellation Chart with Hotspots
This sample program generates the same Constellation diagram as in “Constellation

Chart with DATATYPE=ARCS” on page 560 and adds hotspots to the nodes of the
diagram.

SAS Code
The following is the complete SAS code to generate the Constellation diagram from a

SAS data set. Notice the following:
� The parameter NURL= specifies the variable in the SAS data set that contains the

URL to be linked to when a user double-clicks the node.

/*Define a nodes data set of countries and languages */
data nodedata;
input nodeLabel $15. shape $10. color $8. size url $40.;
cards;
France square red .1 http://www.xyz.com
Germany square red .1 http://www.xyz.com/rnd/webgraphs/
Italy square red .1 http://www.xyz.com
Belgium square red .1 http://www.xyz.com/rnd/webgraphs/
Switzerland square red .1 http://www.xyz.com
Holland square red .1 http://www.xyz.com
German triangle blue .1 http://www.xyz.com
French triangle blue .1 http://www.xyz.com/rnd/webgraphs/odssyntax.htm

Creating Interactive Constellation Diagrams � Constellation Chart with Hotspots 567

Italian triangle blue .1 http://www.xyz.com
Flemish triangle blue .1 http://www.xyz.com
Dutch triangle blue .1 http://www.xyz.com
;
run;

/*Define a links data set: */
data linkdata;
input from $15. to $15.;
cards;
France French
Germany German
Belgium French
Belgium German
Belgium Flemish
Belgium Dutch
Switzerland French
Switzerland German
Switzerland Italian
Italy Italian
Italy German
Holland Dutch
;
run;
goptions reset=all;
/* make sure ods listing is open when running macro */
ods listing;
/*Run the DS2CONST macro:*/
%ds2const(ndata=nodedata,

ldata=linkdata,
nurl=url,
datatype=arcs,

cnode=red,
colormap=y,
height=400,
width=500,
code=ConstChart,
codebase=http://your_path_to_archive,
htmlfile=your_path_and_filename.htm,
nid=nodelabel,
nlabel=nodelabel,
lfrom=from,
lto=to,
fntsize=12,
nshape=shape,
ncolor=color,
nsize=size);

568

569

C H A P T E R

26
Macro Arguments for the
DS2CONST and DS2TREE Macros

Macro Arguments 569
Arguments for the APPLET Tag 569

DS2TREE and DS2CONST Arguments for Data Definition 571

Arguments for Generating HTML and XML Files 578

DS2TREE and DS2CONST Arguments for Diagram Appearance 579

Arguments for Page Formatting 585
Arguments for Stylesheets 587

Arguments for the SAS TITLE and FOOTNOTE Tags 589

Arguments for Character Transcoding 593

Reserved Names 594

Macro Arguments
Macro arguments specify the configuration of the HTML output file, the location of

the data that is used to generate the diagram, and the configuration of the applet’s
interactive features.

The macros use the following syntax:

%macroname(argument1=value1, argument2=value2, ...);

� “Arguments for the APPLET Tag” on page 569. The CODEBASE argument is
required.

� “DS2TREE and DS2CONST Arguments for Data Definition” on page 571. For
DS2TREE, the arguments NDATA and NID are required. For DS2CONST the
arguments NDATA, NID, LDATA, and LTO are required.

� “Arguments for Generating HTML and XML Files” on page 578.
� “DS2TREE and DS2CONST Arguments for Diagram Appearance” on page 579.
� “Arguments for Page Formatting” on page 585.
� “Arguments for Stylesheets” on page 587.
� “Arguments for the SAS TITLE and FOOTNOTE Tags” on page 589.
� “Arguments for Character Transcoding” on page 593.

Arguments for the APPLET Tag
The following arguments configure the APPLET tag in the HTML output file. The

CODEBASE argument is required.

AHUNITS=PIXELS | PERCENT
specifies the units of the HEIGHT= argument. The default value is PIXELS. See
also the AWUNITS= argument.

570 Arguments for the APPLET Tag � Chapter 26

Used by: DS2TREE, DS2CONST

ALIGN=position
specifies the alignment of the applet window in the browser window or frame.
Values can be LEFT, RIGHT, TOP, BOTTOM, TEXTTOP, MIDDLE, ABSMIDDLE,
BASELINE, or ABSBOTTOM.

Used by: DS2TREE, DS2CONST

ALT=text
specifies the text that will be displayed on mouseover by browsers that understand
the tag but cannot run Java applets. The default value is SAS Institute Inc.
applet_name.

Used by: DS2TREE, DS2CONST

ARCHIVE=filename
specifies the name of the Java archive file(s).

Note: The path to the Java archive is specified in the CODEBASE argument. �
The following table shows what archive files to use with each of the macros. For

DS2TREE and DS2CONST, you do not have to specify a value for ARCHIVE=
because the values shown are generated by default.

DS2TREE archive=%str(sas.graph.treeview.jar, sas.graph.nld.jar,
sas.graph.j2d.jar)

DS2CONST archive=%str(sas.graph.constapp.jar, sas.graph.nld.jar,
sas.graph.j2d.jar)

Note: Before SAS 9.1, treeview.jar and constapp.jar also contained the classes
that are now included in the auxiliary JAR files (sas.graph.nld.jar and
sas.graph.j2d.jar). Although you can continue to use the older JAR files by
specifying ARCHIVE=treeview.jar or ARCHIVE=constapp.jar, future versions may
not support these older JAR files. �

Used by: DS2TREE, DS2CONST

AWUNITS=PIXELS | PERCENT
specifies the units of the WIDTH= argument. The default value is PIXELS. See
also the HEIGHT= and AHUNITS= arguments.

Used by: DS2TREE, DS2CONST

CODEBASE=path-or-URL
specifies the path of the SAS Java archives specified in the ARCHIVE= argument.

The CODEBASE argument is required. You can specify CODEBASE=“.” if the
HTML file and Java archive files are in the same directory.

Note: You can specify the location pointed to by the SAS system option
APPLETLOC=, or you can specify a different location. To display the current value
of APPLETLOC, run the following code:

proc options option=appletloc;
run;

The value of the APPLETLOC system option is not used as the default value. �

Used by: DS2TREE, DS2CONST

HEIGHT=applet-height
specifies the height of the applet window. The unit of measure is pixels unless
changed by the AHUNITS= argument. The default value is 600 for all macros.

Used by: DS2TREE, DS2CONST

Macro Arguments for the DS2CONST and DS2TREE Macros � DS2TREE and DS2CONST Arguments for Data Definition 571

HSPACE=pixels
specifies the amount of horizontal space, in pixels, to the left and right of the
graph or diagram.

Used by: DS2TREE, DS2CONST

NAME=applet-name
specifies the name for this instance of the applet. You need to use this argument
only if you have more than one instance of the APPLET tag in your HTML file,
and if you have included your own scripts or DHTML that communicates with or
acts on a particular instance of the applet.

Used by: DS2TREE, DS2CONST

VSPACE=pixels
specifies the amount of vertical space, in pixels, to the top and bottom of the graph
or diagram.

Used by: DS2TREE, DS2CONST

WIDTH=applet-width
specifies the width of the applet window. The unit of measure defaults to pixels
unless specified by the AWUNITS= argument.

Used by: DS2TREE, DS2CONST

DS2TREE and DS2CONST Arguments for Data Definition
The following arguments for the DS2TREE and DS2CONST macros define how the

applet will use the data set to generate the node/link diagram.
For DS2TREE the arguments NDATA and NID are required.
For DS2CONST the arguments NDATA, NID, LDATA, and LTO are required.

DATATYPE=ARCS | ASSOC | HIER
specifies the type of the XML data. Valid values are defined as follows:

ARCS
indicates that the data set is in the form of an arc list. This is the default
value.

ASSOC
indicates that the data set is associative. The links can be displayed based on
their weighted values, and node size and link width can represent the
relative size of the node and link values.

HIER
indicates that the data set is hierarchical.

Used by: DS2CONST

LABELS=Y | N
indicates whether or not node labels are displayed in the diagram. The default
value is Y.

Used by: DS2CONST, DS2TREE

LAYOUT=AUTO | USER
when the value is AUTO (default), specifies that the Constellation Applet lays out
the diagram using stress and strain equations. Specifying the value USER
indicates that the node positions are specified in the NX and NY arguments.

Used by: DS2CONST

572 DS2TREE and DS2CONST Arguments for Data Definition � Chapter 26

LCOLOR=variable-name
specifies the name of the variable that determines the color of the link lines. The
values of this variable must be HTML 3.2 color names, or you must use the
LCOLFMT= argument to convert those values to valid color names. The default
color is provided by the CLINK= argument (see “DS2TREE and DS2CONST
Arguments for Diagram Appearance” on page 579).

In the DS2CONST macro, the LCOLOR= argument is overridden by the
LCOLVAL= argument.
Used by: DS2CONST, DS2TREE

LCOLFMT=user-defined-format-name
specifies the name of a user-defined SAS format that converts the values in the
variable named in the LCOLOR= argument to valid HTML color names. Note that
the SAS format does not change any values in the data set. The formatted values
are applied to the diagram only.
Used by: DS2CONST, DS2TREE

LCOLVAL=variable-name
specifies the name of the variable that determines the color mapping of link lines.
This argument is valid only when the value of the DATATYPE= argument is
ASSOC, and only when the value of the COLORMAP= argument is Y. If the
LCOLVAL= argument is not specified, the link colors are determined by the
following arguments in the following order: LCOLOR= (see above) and CLINK=
(see “DS2TREE and DS2CONST Arguments for Diagram Appearance” on page
579).
Used by: DS2CONST

LDATA=data-set-name
specifies the name of the SAS data set that contains the link data that is used to
generate the diagram.

This argument is required.
Used by: DS2CONST

LFROM=variable-name
specifies the name of the variable whose values define the nodes at the start of
link lines. The LFROM variable values must be coordinated with the values of the
variables that are named in the NID= and LTO= arguments.

This argument is required.
Used by: DS2CONST

LINKTYPE=LINE | ARROW
when the value is ARROW (default), indicates that link lines are to be drawn with
arrowheads that indicate the direction of flow.
Used by: DS2CONST

LPT=password
specifies the password that is needed for accessing a password-protected link data
set (specified with the LDATA= argument). The LPT= argument is required if the
data set has a READ or PW password. You do not need to specify this argument if
the data set has a WRITE or ALTER password.
Used by: DS2CONST

LSTIP=variable-name
specifies the name of the variable in the data set that determines the stipple
mask. The stipple mask generates dashed or dotted link lines. The value of the
variable must be an integer, which is then converted into a binary value. In the
binary value, a “1” bit means that a pixel is to be drawn and a “0” bit means that

Macro Arguments for the DS2CONST and DS2TREE Macros � DS2TREE and DS2CONST Arguments for Data Definition 573

no pixel is to be drawn. For example, if the variable has a value of 61680, the
binary conversion of that value will be 1111000011110000. This stipple mask
generates a dashed link line with dashes and spaces that are four pixels wide. See
also the LSTIPFAC= argument.

Used by: DS2CONST, DS2TREE

LSTIPFAC=variable-name
specifies the name of the variable in the data set whose value specifies a multiplier
for the binary stipple mask (see the LSTIP= argument). The multiplier lengthens
the dashes in the base mask. For example, if the multiplier is 2, a stipple mask
that specifies 4-pixel dashes and 4-pixel spaces will generate link lines with 8-pixel
dashes and spaces.

Used by: DS2CONST, DS2TREE

LTIP=variable-name
specifies the name of the variable in the data set that provides the text that is
displayed in the pop-up data tips windows for links.

Used by: DS2CONST, DS2TREE

LTIPFMT=user-defined-format-name
specifies the name of a user-defined SAS format that is applied to the values in the
variable specified in the LTIP= argument to configure those values for display in
the pop-up data tips window. Note that the SAS format does not change any
values in the data set. The formatted values are applied to the diagram only.

Used by: DS2CONST, DS2TREE

LTO=variable-name
specifies the name of the variable whose values identify the nodes at the ends of
link lines. The LTO variable values must be coordinated with the values of the
variables that are named in the LFROM and NID arguments.

This argument is required.

Used by: DS2CONST

LVALUE=variable-name
specifies the name of the variable whose values determine the weights of the link
lines, which determines the color and relative thickness of link lines. The variable
values must be real numbers. The link weights are used with the MINLNKWT=
argument (see below) and the SCLNKWT= argument (see “DS2TREE and
DS2CONST Arguments for Diagram Appearance” on page 579) to control the
display of link lines. The LVALUE= argument is valid only when the value of the
DATATYPE= argument is ASSOC.

Used by: DS2CONST

LWHERE=subset-expression
specifies a WHERE clause that subsets the link data for display in the diagram. If
the expression contains any special characters (for example, % or &), include
%NRBQUOTE in the expression to process those characters correctly. The
following example shows how to correctly specify INT%:

LWHERE=%NRBQUOTE(value="Int%")

See also the NWHERE argument.

Used by: DS2CONST

LWIDTH=variable-name
specifies the name of the variable in the data set that determines the width of the
link lines.

574 DS2TREE and DS2CONST Arguments for Data Definition � Chapter 26

For DS2CONST: When this argument is not specified, the width is determined
by the LVALUE argument. This argument is valid for DS2CONST only when the
value of the DATATYPE argument is ASSOC.
Used by: DS2CONST, DS2TREE

MINLNKWT=minimum-link-weight
specifies the initial minimum link weight, which determines which links are
initially displayed. The initial diagram show only those links that have weights
that are greater than or equal to the minimum weight. In the Constellation Applet,
a scroll bar allows the Web user to change the minimum link weight to change the
number of links that are displayed. Selecting the brower’s Refresh option restores
the intial minimum link weight that is specified in the MINLNKWT argument.
Link weights are determined by the LVALUE argument. This argument is valid
only when the value of the DATATYPE argument is ASSOC.
Used by: DS2CONST

NACTION=variable-name
specifies the name of the variable in the nodes data set that provides the menu
text that is displayed when the Web user selects a node with the right mouse
button. Selecting this menu option text displays the URL that is associated with
that node in the NURL= argument. This argument overrides the ACTION=
argument (see “DS2TREE and DS2CONST Arguments for Diagram Appearance”
on page 579). The default menu option text is Open URL.
Used by: DS2CONST, DS2TREE

NCOLFMT=SAS-format-name
specifies the name of a user-defined SAS format that converts the values in the
variable named in the NCOLOR= argument to valid HTML color names. Note
that the data in the data set is not altered; the formatted value is used in the
hierarchical tree rather than the data value.
Used by: DS2CONST, DS2TREE

NCOLOR=variable-name
specifies the variable in the nodes data set that determines the background color
of the nodes, using HTML 3.2 color names or 6-digit hexadecimal RGB values . If
the variable does not contain valid HTML color names, then you can use the
NCOLFMT=argument to convert those values to the HTML color names. See also
the NCOLVAL= and NVALUE=arguments.
Used by: DS2CONST, DS2TREE

NCOLVAL=variable-name
specifies the name of the variable in the nodes data set that determines the color
mapping for the nodes. This argument is valid only when the DATASET=
argument is set to ASSOC, and only when the value of the COLORMAP=
argument is Y. If this argument is not specified, then the node color is determined
by the LVALUE= argument.
Used by: DS2CONST

NDATA=SAS-data-set-name
specifies the SAS data set that contains the node data.

This argument is required.
Used by: DS2CONST, DS2TREE

NFNTNAME=node-font-variable-name
specifies the name of the variable that determines the text font for the node labels.
The variable value can be SERIF, SANSSERIF, DIALOG, DIALOGINPUT, or
MONOSPACED. The default node font is specified by the FNTNAME= argument

Macro Arguments for the DS2CONST and DS2TREE Macros � DS2TREE and DS2CONST Arguments for Data Definition 575

(see “DS2TREE and DS2CONST Arguments for Diagram Appearance” on page
579).

Used by: DS2CONST, DS2TREE

NFNTSIZE=variable-name
specifies the name of the variable in the nodes data set that determines the size of
the text font used for node labels. This font size is expressed in points. This
argument overrides the FNTSIZE= argument.

Used by: DS2CONST, DS2TREE

NFNTSTYL=node-font-style-variable-name
specifies the name of the variable that determines the font style for the node label.
The valid values that can be assigned to the variable are BOLD, ITALIC, and
PLAIN.

Used by: DS2CONST, DS2TREE

NID=variable-name
specifies the name of the variable in the nodes data set whose values are to
illustrated as the nodes in the diagram. The node ID variable type can be either
numeric or character. For the DS2CONST macro, the values of the NID variable
must be coordinated with the values of the LFROM and LTO variables.

This argument is required.

Used by: DS2CONST, DS2TREE

NLABEL=node-label-variable-name
specifies the name of the variable that represents the node labels. This variable
type can be either numeric or character.

Used by: DS2CONST, DS2TREE

NPARENT=node-parent-variable-name
specifies the name of the variable that represents the parent nodes. This variable
type can be either numeric or character.

Used by: DS2TREE

NPW=password
specifies the password that is needed for accessing a password-protected data set.
This argument is required if the data set has a READ or PW password. You do not
need to specify this argument if the data set has only WRITE or ALTER passwords.

Used by: DS2CONST, DS2TREE

NSCBACK=variable-name
specifies the name of the variable in the node styles data set that determines the
background color of the nodes. The variable values must be HTML 3.2 color
names. The default value is determined by the CNODE= argument (see
“DS2TREE and DS2CONST Arguments for Diagram Appearance” on page 579).

Used by: DS2CONST, DS2TREE

NSCTEXT=variable-name
specifies the name of the variable in the node styles data set that provides the
colors for the node label text. Valid variable values must be HTML 3.2 color
names. The default color is provided by the CATEXT= argument.

Used by: DS2CONST, DS2TREE

NSDATA=SAS-data-set-name
specifies the name of the node styles data set.

Used by: DS2CONST, DS2TREE

576 DS2TREE and DS2CONST Arguments for Data Definition � Chapter 26

NSFNTNAM=variable-name
specifies the name of the variable in the node styles data set that determines the
text font that is to be used for node labels. Valid variable values can be SERIF,
SANSSERIF, DIALOG, DIALOGINPUT, or MONOSPACED. This argument
overrides the FNTNAME= argument.

Used by: DS2CONST, DS2TREE

NSFNTSIZ=variable-name
specifies the name of the variable in the node styles data set that determines the
size of the node label text, in points. This argument overrides the FNTSIZE=
argument.

Used by: DS2CONST, DS2TREE

NSFNTSTY=variable-name
specifies the name of the variable in the node styles data set that determines the
style of the node label text. Valid variable values can be BOLD, ITALIC, or the
default value, PLAIN. This argument overrides the FNTSTYL= argument.

Used by: DS2CONST, DS2TREE

NSHAPE=variable-name
specifies the name of the variable that determines the shape of the nodes. Valid
variable values can be CIRCLE, DIAMOND, NONE, SQUARE, or TRIANGLE. The
default value is SQUARE. This argument overrides the NODESHAP= argument.

Used by: DS2CONST

NSID=variable-name
specifies the name of the variable in the node styles data set that represents the
nodes.

Used by: DS2CONST, DS2TREE

NSIZE=variable-name
specifies the name of the variable that determines the size of the nodes. The
values of this variable can be real numbers. Node sizes are determined based on
the value of the LAYOUT= argument. When LAYOUT=USER, the values of the
NSIZE variable are interpreted as literal pixel measurements. When
LAYOUT=AUTO, the values of the NSIZE variable determine the size of the nodes
based on the relative size of individual values. The values of the NSIZE variable
can be scaled with the SCNSIZE= argument (see “DS2TREE and DS2CONST
Arguments for Diagram Appearance” on page 579). This argument is valid only
when the value of the DATATYPE= argument is ASSOC.

Used by: DS2CONST

NSPW=password
specifies the password that is needed to access a password-protected node styles
data set. This argument is required if the data set has a READ or PW password.
You do not need to specify this argument if the data set has only WRITE or
ALTER passwords.

Used by: DS2CONST, DS2TREE

NSTYLE=variable-name
specifies the name of the variable that determines the style of the nodes. This
variable type can be either numeric or character, and the values must correspond
to the node identifiers specified in the NSID= argument.

Used by: DS2CONST, DS2TREE

Macro Arguments for the DS2CONST and DS2TREE Macros � DS2TREE and DS2CONST Arguments for Data Definition 577

NSWHERE=subset-expression
specifies a WHERE clause that subsets the node styles data set for display in the
diagram. If the expression contains any special characters (for example, % or &),
then include %NRBQUOTE in the expression to process those characters correctly.
The following example shows how to correctly specify INT%:

NSWHERE=%NRBQUOTE(value="Int%")

Used by: DS2CONST, DS2TREE

NTEXTCOL=variable-name
specifies the name of the variable that determines the color of the text for the node
labels. Valid variable values must be HTML 3.2 color names.

Used by: DS2CONST, DS2TREE

NTIP=variable-name
specifies the name of the variable that provides the data or text that is displayed
in the pop-up data tips window.

Used by: DS2CONST, DS2TREE

NTIPFMT=user-defined-format-name
specifies the name of a user-defined SAS format that is applied to the data tips
variable that is named in the NTIP= argument. Note that the data set is not
altered; the formatted value is used only in the diagram.

Used by: DS2CONST, DS2TREE

NURL=drill-down-URL
specifies the name of the variable that provides the drill-down URLs for the nodes.
These URLs are displayed when the Web user double-clicks on a node or selects
the node with the right mouse button and chooses an option from the pop-up
menu. Menu text is determined by the NACTION= argument above and by the
ACTION= argument in “DS2TREE and DS2CONST Arguments for Diagram
Appearance” on page 579. The default menu option text is Open URL.

Used by: DS2CONST, DS2TREE

NVALUE=variable-name
specifies the name of the variable that determines the relative node size. This
argument is valid only when DATATYPE=ASSOC.

If you do not specify a particular node color using either the NCOLOR or
NCOLVAL argument (and if COLORMAP=Y), then this argument also determines
a default node color. By default, the largest value of NVALUE is mapped to red,
the median value to green, and the lowest value to blue. Values in between result
in interpolated colors.

Used by: DS2CONST

NWHERE=subset-expression
specifies a WHERE clause that subsets the nodes data set for display in the
diagram. If the expression contains any special characters (for example, % or &),
then include %NRBQUOTE in the expression to process those characters correctly.
The following example shows how to correctly specify INT%:

NWHERE=%NRBQUOTE(value="Int%")

See also the LWHERE= argument.

Used by: DS2CONST, DS2TREE

578 Arguments for Generating HTML and XML Files � Chapter 26

NX=variable-name
NY=variable-name

specify the variables that determine the locations of the centers of the nodes.
These arguments are valid only when the LAYOUT= argument is set to USER.
The values are expressed in pixels. Positive values are measured from the top-left
corner of the screen. Negative values are measured from the bottom-right corner
of the screen.

Used by: DS2CONST

Arguments for Generating HTML and XML Files
The following arguments determine the name, storage location, and file makeup of

Web presentations that run in the Constellation Applet or the Treeview Applet.

HTMLFILE=external-filename
specifies the name and storage location of the HTML output file. If the external
file does not exist, then it is created for you. Either this argument, or
HTMLFREF=, is required if you specify MAKEHTML=Y. Note: Do not use the
HTMLFILE= argument if you use the HTMLFREF= argument.

Used by: DS2TREE, DS2CONST

HTMLFREF=fileref
specifies the SAS fileref that identifies the name and storage location of the HTML
output file. If the external file does not exist, then it is created for you. Either this
argument, or HTMLFILE=filename, is required if you specify MAKEHTML=Y.
Note: Do not use the HTMLFREF= argument if you use the HTMLFILE=
argument, and do not use a reserved name (see “Reserved Names” on page 594).

Used by: DS2TREE, DS2CONST

MAKEHTML=Y | N
specifies whether or not an HTML file is to be generated. The default value is Y,
which generates the HTML output file. If you specify MAKEHTML=N and
MAKEXML=Y, then only an XML file is generated.

Used by: DS2TREE, DS2CONST

MAKEXML=Y | N
specifies whether or not an XML file is to be generated. The default value is Y,
which generates the XML output file. If you specify MAKEXML=N and
MAKEHTML=Y, then only an HTML file will be generated. Note that under these
circumstances, you must specify a value for the XMLURL= argument.

Used by: DS2TREE, DS2CONST

OPENMODE=REPLACE | APPEND
indicates whether the new HTML or XML output or both overwrites the
information that is currently in the specified file(s), or if the new output is
appended to the end of the existing file(s). The default value is REPLACE. Specify
APPEND to add your new HTML-enhanced output to the end of an existing file.
Note: OPENMODE=APPEND is not valid if you are writing your resulting HTML
to a partitioned data set (PDS) on z/OS.

Used by: DS2TREE, DS2CONST

RUNMODE=B | S
specifies whether you are running the DS2TREE macro in batch or server mode.
Batch mode (RUNMODE=B, the default) means that you are submitting the
DS2TREE macro in the SAS Program Editor or you have included it in a SAS

Macro Arguments for the DS2CONST and DS2TREE Macros � DS2TREE and DS2CONST Arguments for Diagram Appearance 579

program. Server mode (RUNMODE=S) generates the HTTP header that is
required by Application Dispatcher in the SAS/INTRNET software.
Used by: DS2TREE, DS2CONST

XMLFILE=external-filename
specifies the name and storage location of the XML output file. If the external file
does not exist, then it is created for you. This argument, or XMLFREF=, is
required if you specify MAKEXML=Y and XMLTYPE=EXTERNAL. Note: Do not
use the XMLFILE= argument if you use the XMLFREF= argument.
Used by: DS2TREE, DS2CONST

XMLFREF=fileref
specifies the SAS fileref that identifies the name and storage location of the XML
output file. If the external file does not exist, then it is created for you. This
argument, or XMLFILE=, is required if you specify MAKEXML=Y and
XMLTYPE=EXTERNAL. Note: Do not use the XMLFREF= argument if you use
the XMLFILE= argument, and do not use a reserved name (see “Reserved Names”
on page 594).
Used by: DS2TREE, DS2CONST

XMLTYPE=INLINE | EXTERNAL
specifies whether the XML output file is to be written to an external file or
included inline with the HTML. The default value is INLINE. If you specify
EXTERNAL you must also specify a value for either the XMLFILE= or
XMLFREF= arguments. This argument is required if you specify MAKEXML=Y.
Used by: DS2TREE, DS2CONST

XMLURL=URL
specifies the URL of the existing file that contains the XML tags that define the
node/link diagram. This argument is required if specified XMLTYPE=EXTERNAL.
Used by: DS2TREE, DS2CONST

DS2TREE and DS2CONST Arguments for Diagram Appearance
The following arguments for the DS2TREE and DS2CONST macros specify

non-default behavior and appearance of the node/link diagram in the respective applet.
None of the following arguments are required.

ACTION=text
specifies the default text that is displayed in a pop-up menu when the Web user
selects a node with the right mouse button. Selecting this menu option displays
the URL that is associated with that node in the NURL= argument. This
argument is overridden by the NACTION= argument (see “DS2TREE and
DS2CONST Arguments for Data Definition” on page 571). The ACTION=
argument is useful when you want to use a single menu text string for most of the
nodes in your diagram. The default menu option text is Open URL.
Used by: DS2CONST, DS2TREE

ANGLE=link-angle
works with the TREESPAN= argument to determine the direction of growth for
the diagram. The ANGLE= argument is valid only when you do not specify the
TREEDIR= argument. The TREESPAN= argument defines the angular width of
the tree (narrow or wide layout). The TREESPAN angle can be visualized as a V
shape, with the starting node positioned at the base of the V. The rest of the nodes
are laid out between the spreading arms of the V. The ANGLE= argument
specifies the angle of the V shape. By default, the value of the ANGLE= argument

580 DS2TREE and DS2CONST Arguments for Diagram Appearance � Chapter 26

is zero (0) and the V shape opens to the right, as if the letter V was rotated 90
degrees clockwise, to the three-o’clock position. Values of the ANGLE= argument
that are greater than zero rotate the V shape counterclockwise away from the
three-o’clock position. Valid values for the ANGLE= argument range from zero (0)
to 360 degrees.

Used by: DS2TREE

BORDER=Y | N
specifies whether or not a border is drawn around the background area. The
default value is N.

Used by: DS2CONST, DS2TREE

CATEXT=default-text-color
specifies a default color for the text in the diagram, using an HTML 3.2 color name
or a 6-digit hexadecimal RGB value. For DS2CONST, this argument is overridden
by the FNTNAME= argument (see below) and the NTEXTCOL argument (see
“DS2TREE and DS2CONST Arguments for Data Definition” on page 571).

Used by: DS2CONST, DS2TREE

CBACK=color
specifies a background color for the Treeview Applet. The value must be a valid
HTML 3.2 color name.

Used by: DS2TREE

CHANDLE=color
specifies the color of the Collapse/Expand handle on the nodes. The handle is
represented by a small plus sign (+) that is prefixed to the label of the node when
its subtree is collapsed. The value must be a valid HTML color name.

Used by: DS2TREE

CLINK=default-link-color
specifies a default color for the links in the diagram, using an HTML 3.2 color
name or a 6-digit RGB value. For DS2CONST, this argument is overridden by the
LCOLOR= and LCOLVAL= arguments (see “DS2TREE and DS2CONST
Arguments for Data Definition” on page 571).

Used by: DS2CONST, DS2TREE

CNODE=color
specifies the node background color. The value must be a valid HTML color name.
The value specified here can be overridden by specifying a value for the NCOLOR=
argument.

Used by: DS2TREE

CNODE=default-node-color
specifies a default background color for the nodes, using an HTML 3.2 color name
or a 6-digit RGB value. This argument is overridden by the NCOLOR=,
NCOLVAL=, NVALUE=, or NSCBACK= arguments (see “DS2TREE and
DS2CONST Arguments for Data Definition” on page 571).

Used by: DS2CONST

COLORMAP=N | Y
when the value is N (default), specifies that the Constellation Applet is to use the
NCOLOR= and LCOLOR= arguments (see “DS2TREE and DS2CONST Arguments
for Data Definition” on page 571) to determine node and link colors rather than
using the color map.

Used by: DS2CONST

Macro Arguments for the DS2CONST and DS2TREE Macros � DS2TREE and DS2CONST Arguments for Diagram Appearance 581

CSELECT=color
specifies a color for nodes that are selected by the mouse or as the result of a node
search. The value must be a valid HTML 3.2 color name.
Used by: DS2CONST, DS2TREE

CUTOFF=detail-percentage
specifies the percentage of the nodes that will be displayed with node labels. After
the percentage has been reached, nodes are drawn as rectangles. The size of those
rectangles decreases as the distance from the starting node increases. Valid values
range from 0.0 to 1.0 (The decimal value is mapped to a percentage from 0% to
100%). The default value is 0.5. See also the DEPTH argument.
Used by: DS2CONST, DS2TREE

DEPTH=max-path-length
specifies a whole number greater than zero that determines the maximum number
of links that are to be displayed in the node/link diagram. Paths whose lengths
exceed the limit are truncated. This argument affects only the initial display of
the diagram. Nodes that are initially hidden can become visible as a user selects
nodes and navigates around the diagram.

Note that this value is ignored if CUTOFF= 1.0. There is no default value for
this argument.
Used by: DS2TREE

DRILTARG=target-window-or-frame
specifies the HTML target or the name of the browser window or frame where
drill-down URLs are displayed. The default behavior is to open a new browser
window and reuse it for subsequent drill-down requests. Specifically, the default
value is _BLANK, which is one of several reserved names for targets in HTML.
The value can also be the name of a window or frame in the Web presentation.

Used by: DS2CONST, DS2TREE

DUPCHECK=TRUE | FALSE
specifies whether or not the applet will check for duplicate node IDs. The default
value is FALSE. When set to TRUE, this argument will cause the applet to update
an ID if a duplicate ID is found, instead of creating a new node with the same ID.
This enables you to collect node information from different locations in the data set.
Used by: DS2TREE

FACTOR=fish-eye-distortion-factor
specifies the distortion factor for the fish-eye lens. The distortion factor determines
the amount that the central region of the display is to be expanded (or zoomed).
The value specified must be greater than or equal to 1.0. The default value is 1.0,
which represents the lowest amount of distortion. This argument is valid only
when the value of the FISHEYE= argument is Y. The maximum effective value
(beyond which no further distortion is visible) is variable depending upon the
number of nodes in the diagram.

Used by: DS2TREE

FISHEYE=Y | N
indicates whether or not the diagram is to be displayed with the fish-eye distortion,
which displays the central region of the diagram at a specified size and displays
the rest of the diagram as if it were mapped onto a ball, with the nodes and links
disappearing over a curved horizon. The Web user can move the diagram past the
central region by scrolling or searching for nodes. The amount of distortion used in
the fish-eye lens is determined by the FACTOR= argument. The default value is Y.

Used by: DS2TREE

582 DS2TREE and DS2CONST Arguments for Diagram Appearance � Chapter 26

FNTNAME=default-node-label-font
specifies the default text font for node labels. Valid values can be SERIF,
SANSSERIF, DIALOG, DIALOGINPUT, or MONOSPACED. This argument is
overridden by the NFNTNAME or NSFNTNAM= arguments (see “DS2TREE and
DS2CONST Arguments for Data Definition” on page 571).

Used by: DS2CONST, DS2TREE

FNTSIZE=node-font-size
specifies the size of the node label text font, in points. This argument is overridden
by the NFNTSIZE= argument.

Used by: DS2CONST, DS2TREE

FNTSTYL=node-font-style
specifies the text font style for node labels. Valid values are BOLD, ITALIC, and
PLAIN. PLAIN is the default value. This argument is overridden by the
NFNTSTYL= argument.

Used by: DS2CONST, DS2TREE

IBACKLOC=image-URL
specifies a URL for the image that you want to use in the background of the
diagram. See also the IBACKPOS= argument.

Used by: DS2CONST, DS2TREE

IBACKPOS=CENTER | SCALE | TILE | POSITION
specifies how to display the background image in the IBACKLOC= argument.
Specify one of the following options:

CENTER
centers the image in the browser window without resizing the image.

SCALE
resizes the image to fit the browser window.

TILE
fills the browser window by replicating the image at its original size.

POSITION
positions the image without resizing at the values specified by the IBACKX=
and IBACKY= arguments.

Used by: DS2CONST, DS2TREE

IBACKURL=background-drilldown-URL
specifies the URL that is displayed when you click on the background image. This
argument is valid only when the value of the IBACKPOS= argument is
POSITION. If you are including the Powered by SAS logo, then you must use this
argument to link the image to the SAS Web site.

Used by: DS2CONST, DS2TREE

IBACKX=corner-coordinate
IBACKY=corner-coordinate

specifies the x (horizontal) and y (vertical) pixel coordinates of the upper left-hand
corner of the background image. Positive values are measured from the upper-left
corner of the background area. Negative values are measured from the lower-right
corner of the background area. These values are valid only if the value of the
IBACKPOS= argument is POSITION. Always specify both the IBACKX= and
IBACKY= arguments.

Used by: DS2CONST, DS2TREE

Macro Arguments for the DS2CONST and DS2TREE Macros � DS2TREE and DS2CONST Arguments for Diagram Appearance 583

NODEBDR=LINE | NONE | FILL | OUTLINE
specifies the appearance of the node border line, using one of the following values:

LINE
show solid border lines around the nodes.

NONE
show no border lines or background.

FILL
show background but no border lines.

OUTLINE
show a border line and background. This is the default value.

Used by: DS2TREE

NODESHAP=shape
specifies the shape of the nodes. Valid values can be CIRCLE, DIAMOND, NONE,
SQUARE, or TRIANGLE. The default value is SQUARE. This argument is
overridden by the NSHAPE= argument (see “DS2TREE and DS2CONST
Arguments for Data Definition” on page 571).
Used by: DS2CONST

RBSIZING=Y | N
the default value N indicates that size information from the resource bundle is not
to be used for sizing the two dialog boxes that can be invoked from the pop-up
menu that appears when a user right-mouse-clicks on a diagram. The two dialog
boxes are the About dialog box and the Mouse Help dialog box.

Specify Y for this argument for languages other than English.If you specify Y,
then the height and the width of the dialog box frames are read in from the
resource bundle. This allows translators to set appropriate heights and widths for
the frames in the resource bundle, based on the length of the message strings in
each language.

Used by: DS2CONST, DS2TREE

SCLNKWT=Y | N
when the value is Y (default), specifies that the link weight values are to be scaled
into the range of 0–1, which corresponds to 0–100%. When SCLNKWT=Y, the
scroll bar in Constellation Applet displays a percentage of the range of the link
weights. When SCLNKWT=N, the link weights are not scaled and the scroll bar
reflects the actual link weight data values. These values are real numbers that are
specified in the LVALUE= argument (see “DS2TREE and DS2CONST Arguments
for Data Definition” on page 571). The SCLNKWT= argument is valid only when
the value of the DATATYPE= argument is ASSOC. Note that the range of link
weights (maximum minus minimum) must be greater than 2 when SCLNKWT=N.
Otherwise, the scroll bar will not correctly map the link weights.

Used by: DS2CONST

SCLWIDTH=Y | N
when the value is Y (default), indicates that the link width values are to be scaled
into the range of 0–1. Specifying N indicates that the link widths are already
scaled into that range. This argument is valid only when the value of the
DATATYPE= argument is ASSOC.
Used by: DS2CONST

SCNSIZE=Y | N
when the value is Y (default), indicates that the node size values are to be scaled
into the range of 0–1. Specifying N indicates that the node sizes are already scaled

584 DS2TREE and DS2CONST Arguments for Diagram Appearance � Chapter 26

into that range. This argument is valid only when the value of the
DATATYPE= argument is ASSOC. Node sizes are specified with the NSIZE=
argument (see “DS2TREE and DS2CONST Arguments for Data Definition” on
page 571).

Used by: DS2CONST

SHOWLINKS=Y | N
specifies whether initially to display all arc lines between nodes. Specifying N
suppresses all arc lines. The default value is Y.

Note: This argument affects only the initial display. A viewer can
subsequently control which arc lines are displayed by right-mouse clicking and
selecting a Show links option from the pop-up menu. �

Used by: DS2CONST

SPREAD=angular-factor
specifies the angular spreading factor for the layout of the diagram. The value
specified must be greater than or equal to 1.0. The default value is 1.25.

Used by: DS2TREE

TIPS=Y | N
indicates whether or not pop-up data tips are displayed when the cursor is
positioned over nodes or links or both. The default value is Y.

Used by: DS2CONST, DS2TREE

TIPTYPE=TRACKING | STATIONARY
when the value is TRACKING (default), indicates that the pop-up data tips
windows are to move with the cursor while the cursor moves within the area of a
single node or link.

Used by: DS2CONST

TREEDIR=C | D | L | R | U
determines the growth direction of the node/link diagram using the following
values.

C | CIRCULAR
grows the tree in a circular pattern. This is the default value.

D | DOWN
grows the tree from top to bottom using center alignment.

L | LEFT
grows the tree from left to right and top to bottom.

R | RIGHT
grows the tree from right to left and top to bottom.

U | UP
grows the tree from the bottom up using center alignment.

If the value of the TREEDIR= argument is UP or DOWN, then the value of the
TREESPAN= argument is used to set the angular width of the diagram. The
starting node is aligned horizontally in the center of the applet. The diagram
grows out of the starting node based on the angular width specified in the
TREESPAN= argument. The wider the angle, the wider the layout of the diagram.

The TREEDIR= argument overrides the ANGLE= argument.

Used by: DS2TREE

Macro Arguments for the DS2CONST and DS2TREE Macros � Arguments for Page Formatting 585

TREESPAN=angular-diagram-width
specifies the angular width of the diagram in degrees. Valid values must be
greater than zero and less than 360. The default value is 60. For details, see the
TREEDIR= and ANGLE= arguments.
Used by: DS2TREE

ZOOM=starting-percentage
specifies the zoom value that is used for the initial display of the diagram. After
the initial display, the Web user can change the zoom percentage dragging the
mouse up and down while pressing the Ctrl + left mouse button. Selecting the
Refresh button on the browser runs the applet and restores the initial zoom
setting. The default value is 100 percent. The initial diagram can be scaled up
with a value greater than 100 or scaled down with a value less than 100.
Used by: DS2CONST

Arguments for Page Formatting
The following arguments format the HTML output file. The rendering of some of

these arguments may vary in certain browsers. Several of the following arguments
apply only to certain macros, as noted in the descriptions of the arguments.

The BGTYPE=, BRTITLE=, CENTER=, CTEXT=, and DOCTYPE= arguments apply
to the entire page for the current invocation of the macro. If you append data to an
existing HTML page, then the HTML formatting will not change. You may want to use
these arguments only when you replace, rather than append, HTML files.

BDCLASS=body-stylesheet-name
specifies the name of the stylesheet that is to be applied to the body of the HTML
output file.
Used by: DS2TREE, DS2CONST

BG=color-or-image
specifies the background color or image, based on the value of the BGTYPE=
argument. The color can be specified as an HTML 3.2 color name or as a 6-digit
hexadecimal RGB value. When BGTYPE=IMAGE, this argument specifies a
background image, using a path or a URL, relative or absolute.
Used by: DS2TREE, DS2CONST

BGTYPE=NONE | COLOR | IMAGE
specifies the background type, using one of the following values:

NONE
causes the applet to display its default background color. This is the default
value.

COLOR
specifies that the value of the BG= argument must be an HTML 3.2 color
name or hexadecimal RGB value.

IMAGE
specifies that the value of the BG= argument must be the path or URL
pointing to an image file that will be displayed in the background of the
applet window.

Used by: DS2TREE, DS2CONST

BRTITLE=browser-window-title
specifies the text that appears in the title bar of the browser window. By default,
no title is displayed.

586 Arguments for Page Formatting � Chapter 26

Used by: DS2TREE, DS2CONST

CENTER= Y | N
specifies whether or not the graph or diagram is centered in the browser window.
The default value is N.
Used by: DS2TREE, DS2CONST

CTEXT=default-text-color
specifies a default text color that replaces the default text color in the browser.
Other color arguments can be used to override this new default. The color can be
specified as an HTML 3.2 color name or as a six-digit hexadecimal RGB value.

Used by: DS2TREE, DS2CONST

DOCTYPE=DOCTYPE-tag
generates the following DOCTYPE tag by default, which specifies HTML version
3.2:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

To use a different DOCTYPE tag, specify the entire contents of the tag as the
value of the DOCTYPE= argument, including the angle brackets.

If you specify DOCTYPE="", then no DOCTYPE tag is generated in the HTML
output file.

Used by: DS2TREE, DS2CONST

ENCODE=Y | N
when the value is Y (default), replaces the angle bracket characters (< and >) in
SAS TITLE and FOOTNOTE lines with the HTML character entities (> and
<) respectively. Specifying ENCODE=N causes the browser to interpret the
angle brackets as parts of HTML tags. For example, you would use ENCODE=N if
you wanted to use the following TITLE statement:

title "Out of Range Data";

Used by: DS2TREE, DS2CONST

PAGEPART=ALL | HEAD | BODY | FOOT
specifies which part or parts of the HTML page are to be written into the HTML
output file. This argument is helpful when are appending HTML output to the end
of an existing HTML file, or when you are using separate files for the head, body,
and foot of your Web page.

ALL
writes the entire HTML file, including the XML tags for the DS2CONST and
DS2TREE. This is the default value. Do not use this value if you are
appending an existing HTML file.

HEAD
writes the HTML header information and or XML (for DS2CONST and
DS2TREE) into the HTML file. The header information consists of the HEAD
and BODY tags. HTML footer information is not included.

BODY
writes only the XML tags (for DS2CONST and DS2TREE) into the HTML
output file. No head or foot information is generated in the HTML output file.

FOOT
writes metagraphics codes or XML tags and the </BODY> and </HTML> tags
to conclude the HTML file.

Used by: DS2TREE, DS2CONST

Macro Arguments for the DS2CONST and DS2TREE Macros � Arguments for Stylesheets 587

SASPOWER=logo-image-file
specifies the path or URL, relative or absolute, to the image file of the SAS
Powered logo. In the HTML file, the image appears at the bottom of the page.
Selecting the image displays the SAS home page. By default, the logo is omitted.
To obtain the logo image file, see http://www2.sas.com/dispatcher/index.html. See
also the SPCLASS= argument.
Used by: DS2TREE, DS2CONST

SEPCLASS=page-separator-stylesheet
specifies the path or URL, relative or absolute, to the style sheet that is used for
the page separator. If the value of the SEPTYPE= argument is RULE, then the
value of the SEPCLASS= argument is used on the CLASS attribute of the HTML
tag <HR>. If the value of the SEPTYPE= argument is IMAGE, then the value of
SEPCLASS= argument is used on the CLASS attribute of the HTML tag .

Used by: DS2TREE, DS2CONST

SEPLOC=separator-image
specifies the path or URL, relative or absolute, to the image that you want to use
as the separator between the graphs in your presentation. This argument is valid
only if the value of the SEPTYPE= argument is IMAGE.

Used by: DS2TREE, DS2CONST

SEPTYPE= IMAGE | NONE | RULE
specifies the type of separator that is used between multiple applets in your
presentation. The valid values are defined as follows:

IMAGE
specifies separate graphs using the image specified in the SEPLOC=
argument.

NONE
specifies not to use a separator between applets.

RULE
inserts a line between applets. This is the default.

Used by: DS2TREE, DS2CONST

SPCLASS=logo-stylesheet-name
specifies the name of the style sheet class that is to be used for the Powered by
SAS logo.
Used by: DS2TREE, DS2CONST

Arguments for Stylesheets
DS2CONT and DS2TREE enable the following arguments for style sheet

specifications in the HTML output file. See also the BDCLASS=, SEPCLASS=, and
SPCLASS= arguments in “Arguments for Page Formatting” on page 585.

Style sheet arguments reference style information in one of two ways. Most of the
arguments specify parameters in the HTML LINK tag:

<LINK HREF="1qtr98.css" TYPE="text/css" REL="stylesheet">

Use these arguments when you do not want to enter your style information directly into
your HTML file when you create that file.

Other arguments embed the style information into the header of the HTML file. Use
these arguments when you want to collect style information from multiple style sheets.
The end result must create a complete STYLE tag in your HTML file.

http://www2.sas.com/dispatcher/index.html

588 Arguments for Stylesheets � Chapter 26

You can combine LINK tag arguments with arguments that embed style information,
but you cannot use the same ordinal number in two arguments. For example, you can
specify the arguments SSHREF1= and SSFILE2=, but you cannot specify SSHREF1=
and SSFILE1=.

The following arguments link to two different style sheets and include text comments
for each stylesheet.

ssfile1=comments1.txt, /* embeds text */
sshref2=/style/style1.css, /* links to stylesheet */
sstype2=text/css, /* parameters for style sheets */
ssrel2=stylesheet,
ssfile3=comments2.txt, /* embeds text */
sshref4=/style/style2.css, /* link to stylesheets */
sstype4=text/css,
ssrel4=stylesheet,

SSFILE1–SSFILE5=file-specification
embeds in the HTML file the entire contents of the specified file.

Used by: DS2TREE, DS2CONST

SSFREF1–SSFREF5=fileref
embeds in the HTML file the entire contents of the file that is referenced by the
SAS fileref.

Used by: DS2TREE, DS2CONST

SSHREF1–SSHREF5=style-sheet-URL
specifies the URL of the stylesheet in the HREF= attribute of the LINK tag. If you
specify a relative URL, it must be relative to the location of the HTML output file.

Used by: DS2TREE, DS2CONST

SSMEDIA1–5=media
specifies the media for which the style sheet was designed. The value is applied to
the MEDIA= attribute of the LINK tag. The default value is SCREEN. Examples
of other valid MEDIA values include BRAILLE for tactile feedback devices, and
HANDHELD for small-screen devices.

Used by: DS2TREE, DS2CONST

SSREL1–5=relationship
specifies the REL= attribute of the LINK tag, which describes the relationship from
the linked file to the HTML file. The value of this tag is generally STYLESHEET.
The arguments SSREL1–5= can also be used with the arguments SSREV1–5 to
link HTML pages in a series. For example, the SSREL1= argument can specify
the next document in the series, and the SSREV2= argument can specify the
reverse relationship, which would be the previous document in the series. Both
arguments, SSRELn= and SSREVn=, can appear in the same LINK tag.

Used by: DS2TREE, DS2CONST

SSREV1–5=relationship
specifies the REV= attribute of the LINK tag, which describes the relationship
from the HTML file to the linked file. See the SSREL1–5= argument for details.

Used by: DS2TREE, DS2CONST

SSTITLE1–5=title-of-linked-page
specifies the TITLE= attribute of the LINK tag. The TITLE= attribute provides a
title for the referenced page. Use this argument when you are using the SSRELn=
and SSREVn= arguments to specify next and previous links in a series of Web
pages.

Macro Arguments for the DS2CONST and DS2TREE Macros � Arguments for the SAS TITLE and FOOTNOTE Tags 589

Used by: DS2TREE, DS2CONST

SSTYPE1–5=stylesheet-type
specifies the TYPE= attribute of the LINK tag. For cascading style sheets, this
value usually is TEXT/CSS. For JavaScript style sheets, this value is generally
TEXT/JAVASCRIPT.
Used by: DS2TREE, DS2CONST

Arguments for the SAS TITLE and FOOTNOTE Tags
The following arguments determine the content and appearance of the SAS TITLE

and FOOTNOTE tags in the HTML output file.

FCLASS=footnote-style-sheet-name
TCLASS=title-style-sheet-name

specify the name of the style sheet class that is to be used for the SAS TITLE or
FOOTNOTE.
Used by: DS2TREE, DS2CONST.

FCOLOR=footnote-text-color
TCOLOR=title-text-color

specify the color of the text in the SAS TITLE or FOOTNOTE, using an HTML 3.2
color name or a six-digit hexadecimal RGB value.
Used by: DS2TREE, DS2CONST.

FFACE=footnote-text-font
TFACE=title-text-font

specify a text font for the SAS TITLE or FOOTNOTE. Valid values are
browser-specific.
Used by: DS2TREE, DS2CONST.

FSIZE=n | +n | –n
TSIZE=n | +n | –n

specify the size of the text font that is to be used for the SAS TITLE or
FOOTNOTE, where n is an integer. Valid values are browser-specific depending on
how the browser handles the SIZE attribute on the FONT tag.
Used by: DS2TREE, DS2CONST.

FTAG=tag-string
TTAG=tag-string

specify a text string that the macro translates into one or more tags that will
enclose the SAS TITLE or FOOTNOTE.

The default value is as follows:

PREFORMATTED + HEADER 3

Used by: DS2TREE, DS2CONST.
For each possible value of the TTAG= and FTAG= arguments, the following

table shows the HTML tags that are generated by the macro for the SAS TITLE
and FOOTNOTE lines (the corresponding end tags are generated automatically):

TTAG or FTAG Value HTML Tag or Tags Enclosing the SAS TITLE or
SAS FOOTNOTE

NO FORMATTING (none)

STRONG

EMPHASIS

590 Arguments for the SAS TITLE and FOOTNOTE Tags � Chapter 26

TTAG or FTAG Value HTML Tag or Tags Enclosing the SAS TITLE or
SAS FOOTNOTE

HEADER 1 <H1>

HEADER 2 <H2>

HEADER 3 <H3>

HEADER 4 <H4>

HEADER 5 <H5>

HEADER 6 <H6>

PREFORMATTED TEXT <PRE>

CITATION TEXT <CITE>

COMPUTER CODE TEXT <CODE>

KEYBOARD INPUT TEXT <KBD>

LITERAL TEXT <SAMP>

VARIABLE TEXT <VAR>

BOLD

ITALICIZED TEXT <I>

UNDERLINE TEXT <U>

TYPEWRITER <TT>

BIG TEXT <BIG>

SMALL TEXT <SMALL>

STRIKE OUT TEXT <STRIKE>

DEFINING INSTANCE TEXT <DFN>

PREFORMATTED + STRONG <PRE>

PREFORMATTED + EMPHASIS <PRE>

PREFORMATTED + HEADER 1 <PRE><H1>

PREFORMATTED + HEADER 2 <PRE><H2>

PREFORMATTED + HEADER 3 <PRE><H3>

PREFORMATTED + HEADER 4 <PRE><H4>

PREFORMATTED + HEADER 5 <PRE><H5>

PREFORMATTED + HEADER 6 <PRE><H6>

PREFORMATTED + CITATION <PRE><CITE>

PREFORMATTED + COMPUTER
CODE

<PRE><CODE>

PREFORMATTED + KEYBOARD
INPUT

<PRE><KBD>

PREFORMATTED + LITERAL <PRE><SAMP>

PREFORMATTED + VARIABLE <PRE><VAR>

PREFORMATTED + BOLD <PRE>

PREFORMATTED + ITALICIZED <PRE><I>

Macro Arguments for the DS2CONST and DS2TREE Macros � Arguments for the SAS TITLE and FOOTNOTE Tags 591

TTAG or FTAG Value HTML Tag or Tags Enclosing the SAS TITLE or
SAS FOOTNOTE

PREFORMATTED + TYPEWRITER <PRE><TT>

PREFORMATTED + UNDERLINE <PRE><U>

PREFORMATTED + BIG <PRE><BIG>

PREFORMATTED + SMALL <PRE><SMALL>

PREFORMATTED + STRIKE OUT <PRE><STRIKE>

PREFORMATTED + DEFINING
INSTANCE

<PRE><DFN>

STRONG + EMPHASIS

STRONG + ITALICIZED <I>

STRONG + CITATION <CITE>

STRONG + COMPUTER CODE <CODE>

STRONG + KEYBOARD INPUT <KBD>

STRONG + LITERAL <SAMP>

STRONG + VARIABLE <VAR>

STRONG + TYPEWRITER <TT>

STRONG + BIG <BIG>

STRONG + SMALL <SMALL>

EMPHASIS + CITATION <CITE>

EMPHASIS + COMPUTER CODE <CODE>

EMPHASIS + KEYBOARD INPUT <KBD>

EMPHASIS + LITERAL <SAMP>

EMPHASIS + VARIABLE <VAR>

EMPHASIS + TYPEWRITER <TT>

EMPHASIS + BIG <BIG>

EMPHASIS + SMALL <SMALL>

BOLD + EMPHASIS

BOLD + ITALICIZED <I>

BOLD + CITATION <CITE>

BOLD + COMPUTER CODE <CODE>

BOLD + KEYBOARD INPUT <KBD>

BOLD + LITERAL <SAMP>

BOLD + VARIABLE <VAR>

BOLD + TYPEWRITER <TT>

BOLD + BIG <BIG>

BOLD + SMALL <SMALL>

ITALICIZED + CITATION <I><CITE>

ITALICIZED + COMPUTER CODE <I><CODE>

592 Arguments for the SAS TITLE and FOOTNOTE Tags � Chapter 26

TTAG or FTAG Value HTML Tag or Tags Enclosing the SAS TITLE or
SAS FOOTNOTE

ITALICIZED + KEYBOARD INPUT <I><KBD>

ITALICIZED + LITERAL <I><SAMP>

ITALICIZED + VARIABLE <I><VAR>

ITALICIZED + TYPEWRITER <I><TT>

ITALICIZED + BIG <I><BIG>

ITALICIZED + SMALL <I><SMALL>

STRONG + EMPHASIS + BIG <BIG>

STRONG + CITATION + BIG <CITE><BIG>

STRONG + COMPUTER CODE + BIG <CODE><BIG>

STRONG + KEYBOARD INPUT + BIG <KBD><BIG>

STRONG + LITERAL + BIG <SAMP><BIG>

STRONG + VARIABLE + BIG <VAR><BIG>

STRONG + TYPEWRITER + BIG <TT><BIG>

EMPHASIS + CITATION + BIG <CITE><BIG>

EMPHASIS + COMPUTER CODE +
BIG

<CODE><BIG>

EMPHASIS + KEYBOARD INPUT +
BIG

<KBD><BIG>

EMPHASIS + LITERAL + BIG <SAMP><BIG>

EMPHASIS + VARIABLE + BIG <VAR><BIG>

EMPHASIS + TYPEWRITER + BIG <TT><BIG>

BOLD + EMPHASIS + BIG <BOLD><BIG>

BOLD + ITALICIZED + BIG <BOLD><I><BIG>

BOLD + CITATION + BIG <BOLD><CITE><BIG>

BOLD + COMPUTER CODE + BIG <BOLD><CODE><BIG>

BOLD + KEYBOARD INPUT + BIG <BOLD><KBD><BIG>

BOLD + LITERAL + BIG <BOLD><SAMP><BIG>

BOLD + VARIABLE + BIG <BOLD><VAR><BIG>

BOLD + TYPEWRITER + BIG <BOLD><TT><BIG>

ITALICIZED + CITATION + BIG <I><CITE><BIG>

ITALICIZED + COMPUTER CODE +
BIG

<I><CODE><BIG>

ITALICIZED + KEYBOARD INPUT +
BIG

<I><KBD><BIG>

ITALICIZED + LITERAL + BIG <I><SAMP><BIG>

ITALICIZED + VARIABLE + BIG <I><VAR><BIG>

ITALICIZED + TYPEWRITER + BIG <I><TT><BIG>

STRONG + EMPHASIS + SMALL <SMALL>

Macro Arguments for the DS2CONST and DS2TREE Macros � Arguments for Character Transcoding 593

TTAG or FTAG Value HTML Tag or Tags Enclosing the SAS TITLE or
SAS FOOTNOTE

STRONG + ITALICIZED + SMALL <I><SMALL>

STRONG + CITATION + SMALL <CITE><SMALL>

STRONG + COMPUTER CODE +
SMALL

<CODE><SMALL>

STRONG + LITERAL + SMALL <SAMP><SMALL>

STRONG + VARIABLE + SMALL <VAR><SMALL>

STRONG + TYPEWRITER + SMALL <TT><SMALL>

EMPHASIS + CITATION + SMALL <CITE><SMALL>

EMPHASIS + COMPUTER CODE +
SMALL

<CODE><SMALL>

EMPHASIS + KEYBOARD INPUT +
SMALL

<KBD><SMALL>

EMPHASIS + LITERAL + SMALL <SAMP><SMALL>

EMPHASIS + TYPEWRITER +
SMALL

<TT><SMALL>

BOLD + EMPHASIS + SMALL <BOLD><SMALL>

BOLD + ITALICIZED + SMALL <BOLD><I><SMALL>

BOLD + CITATION + SMALL <BOLD><CITE><SMALL>

BOLD + COMPUTER CODE +
SMALL

<BOLD><CODE><SMALL>

BOLD + KEYBOARD INPUT +
SMALL

<BOLD><KBD><SMALL>

BOLD + LITERAL + SMALL <BOLD><SAMP><SMALL>

BOLD + VARIABLE + SMALL <BOLD><VAR><SMALL>

BOLD + TYPEWRITER + SMALL <BOLD><TT><SMALL>

ITALICIZED + CITATION + SMALL <I><CITE><SMALL>

ITALICIZED + COMPUTER CODE +
SMALL

<I><CODE><SMALL>

ITALICIZED + KEYBOARD INPUT +
SMALL

<I><KBD><SMALL>

ITALICIZED + LITERAL + SMALL <I><SAMP><SMALL>

ITALICIZED + VARIABLE + SMALL <I><VAR><SMALL>

ITALICIZED + TYPEWRITER +
SMALL

<I><TT><SMALL>

Arguments for Character Transcoding
The following arguments allow you to specify a character set or convert character

data to the corresponding Unicode Numeric Character Reference (NCR).

594 Reserved Names � Chapter 26

CHARSET=char-set-name
specifies the character set name that will be written into the META tag of the
HTML output file. For information on available character set names, see
http://www.iana.org/assignments/character-sets.

Used by: DS2TREE, DS2CONST, META2HTM

TRANLIST=transcoding-list-name
specifies the name and location of an existing transcoding list, either user-defined
or from SAS. The transcoding list name must be a four-level name, and the fourth
level must be SLIST, as in the following example:

TRANLIST=SASHELP.HTMLGEN.IDENTITY.SLIST

This argument is required if you are implementing character transcoding.
SAS provides a number of transcoding lists in the SASHELP.HTMLNLS

catalog. For a description of these transcoding lists, and for information on
generating your own transcoding lists, see the SAS Web site at
http://support.sas.com/rnd/web/intrnet/format/lang2.html.

Used by: DS2TREE, DS2CONST, META2HTM

Reserved Names
Do not use the following names as the value of a macro variable:

Libnames and Filerefs

HTML

CATENT

HTMSS

Global Macro Variables

_htmovp

_htmcap

_htmtitl

_htmwher

Data Sets or Views

WORK._BYGRP

Catalogs

WORK._HTMLG_

SASHELP.HTMLNLS

Catalog Entries

SASHELP.HTMLGEN.DSPROP.SLIST

SASHELP.HTMLGEN.IDENTITY.SLIST

SASHELP.HTMLGEN.OUTPROP.SLIST

SASHELP.HTMLGEN.TABPROP.SLIST

SASHELP.HTMLGEN.TAGS.SLIST

http://www.iana.org/assignments/character-sets
http://support.sas.com/rnd/web/intrnet/format/lang2.html

595

C H A P T E R

27 Enhancing Web Presentations
with Chart Descriptions, Data
Tips, and Drill-Down
Functionality

Overview of Enhancing Web Presentations 596
Chart Descriptions for Web Presentations 596

What Is a Chart Description? 596

Example: Adding Custom Chart Descriptions 597

Chart Descriptions in GIF, JPG, PNG, ACTXIMG, and JAVAIMG Presentations 597

Chart Descriptions in SVG, SVGT, SVGView, and SVGZ Presentations 598
Data Tips for Web Presentations 598

What Is a Data Tip? 598

Adding Custom Data Tips with the HTML= Option 598

Data Tips in GIF, JPEG, PNG, JAVAMETA, SVG, SVGT, SVGView, and SVGZ Presentations 600

Data Tips in ACTIVEX, ACTXIMG, JAVA, and JAVAIMG Presentations 600

Adding Links with the HTML= and HTML_LEGEND= Options 601
Working with Link and Enhancement Variables 601

Assigning Values to Link and Enhancement Variables 601

Links in GIF, JPEG, PNG, and SVG Presentations 604

Links in ACTXIMG and JAVAIMG Presentations 604

Links in ACTIVEX Presentations 605
Links in JAVA Presentations 605

Links in Metaview Applet Presentations 608

Links in Animated GIF Presentations 608

Controlling Drill-Down Behavior For ActiveX and Java Using Parameters 608

Using Drill-Down Tags 608
Specifying the Drill-Down Mode 609

Understanding Variable Roles 610

Removing Blank Spaces from Data Values In Substitution Strings 611

Using Variables as Substitution Strings 612

Configuring HTML Drill-Down Mode 613

Specifying Graphs For Each Drill-Down Level 613
Configuring the Drill-Down Response In HTML and URL Modes 615

Configuring Script Drill-Down Mode 616

Working With The Array Of Elements 616

Implementing Script Drill-Down Mode 617

Formatting Data Values in Script Drill-Down Mode 617
Disabling Drill-Down Functionality 618

Example: Creating Bar Charts with Drill-Down for the Web 618

Example Part A 621

Example Part B 626

Example Part C 628
Example Part D 630

596 Overview of Enhancing Web Presentations � Chapter 27

Overview of Enhancing Web Presentations
When you enhance a Web presentation, you specify additional options, arguments, or

parameters to enhance the Web presentation that is generated by default.
Enhancements include the following:

� Adding custom chart descriptions. See “Chart Descriptions for Web Presentations”
on page 596

� Displaying pop-up text when the mouse pointer is over a portion of the diagram.
See “Data Tips for Web Presentations” on page 598

� Adding drill-down functionality that enables you to link to other Web pages. See
“Adding Links with the HTML= and HTML_LEGEND= Options” on page 601.

Table 27.1 Support for Chart Descriptions, Data Tips, and Drill-Down Functionality

Chart Descriptions Data Tips Drill-Down Links

Device

Generated
by default

Can be
customized

Generated
by
default

Can be
customized

Generated
by default

Can be
Customized

GIF X X X X

JPEG X X X X

PNG X X X X

SVG
family

X X X X

ACTIVEX X X X

JAVA X X X

ACTXIMG X X X X X

JAVAIMG X X X X X

Chart Descriptions for Web Presentations

What Is a Chart Description?
A chart description is the text that describes the entire chart. Default chart

descriptions are generated when you use the HTML output destination, in combination
with certain device driver entries. A description of your graphics output is created and
stored in the HTML ALT tag of your output file. You can suppress any chart description
by specifying the NOALTDESC graphics option. You can display the chart description
again by using the ALTDESC graphics option.

Chart descriptions are one way to meet Section 508 standards that require text
equivalents for graphic elements. See “ACCESSIBLE” on page 328 for an alternate
technique.

To supply your own text that describes the chart, use the DESCRIPTION= option
with your procedure statement. The maximum length for a custom chart description is
256 characters. See individual procedure statements for DESCRIPTION= option details.

Enhancing Web Presentations � Chart Descriptions in GIF, JPG, PNG, ACTXIMG, and JAVAIMG Presentations 597

Example: Adding Custom Chart Descriptions

The following code generates a plot chart with a custom chart description. The
custom chart description is created using the DESCRIPTION= option. The default
device for the HTML destination is PNG, so the output of the following code is an
HTML file that references a PNG image file.

goptions reset=all border cback="#FFFFFF";
axis1 label=("Population Est.") minor=(n=2);
symbol v=dot;
ods listing close;
ods html;
proc gplot data=sashelp.citiyr;

format pan comma7.;
plot pan*date/ vaxis=axis1 autovref

description="This is the DESCRIPTION= option text.";
run;
quit;
ods html close;
ods listing;

Figure 27.1 Plot of Two Variables with a Custom Chart Description

Chart Descriptions in GIF, JPG, PNG, ACTXIMG, and JAVAIMG
Presentations

598 Chart Descriptions in SVG, SVGT, SVGView, and SVGZ Presentations � Chapter 27

For output generated with the GIF, JPG, PNG, ACTXIMG, and JAVAIMG device
drivers, using the ALTDESC graphics option displays the chart description, and is set
by default.

The NOALTDESC graphics option suppresses the display of the chart description.
Specifying DESCRIPTION= provides content to the ALT attribute of your HTML file

and replaces the default chart description content. The description value is limited to
256 characters. Chart descriptions are not supported in presentations generated by the
ActiveX, Java, and JAVAMETA device drivers.

Note: DESCRIPTION=" " can also be used to suppress the chart description. �

Chart Descriptions in SVG, SVGT, SVGView, and SVGZ Presentations
For output generated with the SVG, SVGT, SVGView, and SVGZ device drivers, using

the ALTDESC graphics option displays the chart description, and is set by default.
The NOALTDESC graphics option suppresses the display of the chart description.
Specifying DESCRIPTION= provides content to the feMerge element of your output

file and replaces the default chart description content. The description value is limited
to 256 characters.

Note: DESCRIPTION=" " can also be used to suppress the chart description. �

Data Tips for Web Presentations

What Is a Data Tip?
A data tip is a data value or detailed information that is displayed as pop-up text

when a user positions a mouse pointer over an element in a graph. A data tip typically
displays the data value that is represented by a bar, a plot point, or some other data
element. Data tips created by default, and custom data tips are supported when using
the HTML output destination, in combination with certain device drivers.

Adding Custom Data Tips with the HTML= Option
You can add custom data tips to the output of any SAS/GRAPH procedure that

supports the HTML= option. The default device for the HTML destination is PNG, so
the output of the following code is an HTML file that references a PNG image file.

To add custom data tips:
1 Add a data tip variable to the data set. In the example that follows, the data tip

variable is named rpt.
2 Assign data tip values to the data tip variable using the following form:

’alt="data tip"’

.
3 Add HTML=data-tip-variable to your procedure’s statement. The example below

specifies HTML=RPT.

When the user positions the mouse pointer over a data element, the browser displays
the data tip. The following example generates the data tips North Carolina and
Massachusets and California and Oregon.

Enhancing Web Presentations � Adding Custom Data Tips with the HTML= Option 599

/* Create the temporary data set named sales. */
data sales;

length Region $ 4 State $ 2;
format Sales dollar8.;
input Region State Sales Year Qtr;
datalines;

West CA 13636 1999 1
West OR 18988 1999 1
West CA 14523 1999 2
West OR 18988 1999 2
East MA 18038 1999 1
East NC 13611 1999 1
East MA 11084 1999 2
East NC 19660 1999 2
West CA 12536 1998 1
West OR 17888 1998 1
West CA 15623 1998 2
West OR 17963 1998 2
East NC 17638 1998 1
East MA 12811 1998 1
East NC 12184 1998 2
East MA 12760 1998 2
;
/* Use an IF statement to assign values to the variable rpt. */
data;

set data;
if state in ("NC" "MA") then RPT="alt=’North Carolina and Massachusets’";
if state in ("CA" "OR") then RPT="alt=’California and Oregon’";

run;

/* Close the LISTING destination to conserve resources. */
/* Open the HTML destination and create the bar chart. */
/* Add the HTML= option to associate custom data tips */
/* with each graph element. */

goptions reset=all;
ods listing close;
ods html file="datatips.htm";
title "Company Sales, Mid Year";
proc gchart data=sales;

vbar region / sumvar=sales
group=year
html=RPT;

run;
quit;
ods html close;
ods listing;

600 Data Tips in GIF, JPEG, PNG, JAVAMETA, SVG, SVGT, SVGView, and SVGZ Presentations � Chapter 27

Figure 27.2 Bar Chart with Custom Data Tips

Data Tips in GIF, JPEG, PNG, JAVAMETA, SVG, SVGT, SVGView, and
SVGZ Presentations

For output generated with the GIF, JPEG, PNG, JAVAMETA, and SVG, SVGT,
SVGView, and SVGZ device drivers, data tips are not generated by default.

Custom data tips can be implemented for the output of any SAS/GRAPH procedure
that supports the HTML= option. For procedures that support the HTML= option, refer
to the individual procedure chapter.

For more information, see “Adding Custom Data Tips with the HTML= Option” on
page 598.

Data Tips in ACTIVEX, ACTXIMG, JAVA, and JAVAIMG Presentations
For output generated with the ACTIVEX, ACTXIMG, JAVA, and JAVAIMG device

drivers, data tips are created by default and are displayed when the mouse pointer is
positioned over a graph data element. Use the TIPS=NONE parameter to suppress
data tips for ActiveX and Java. For example:

ODS HTML parameters=("Tips"="NONE")

Custom data tips can be implemented for the output of any SAS/GRAPH procedure
that supports the HTML= option. For procedures that support the HTML= option, refer
to the individual procedure chapter. For more information, see “Adding Custom Data
Tips with the HTML= Option” on page 598.

Note: Terminals set to use 16-bit colors or 32-bit colors are not supported when
specifying data tips for output generated using DEVICE=ACTXIMG �

Enhancing Web Presentations � Working with Link and Enhancement Variables 601

Adding Links with the HTML= and HTML_LEGEND= Options
The HTML= and HTML_LEGEND= options can be used in a number of statements

that generate graphs. These options are use to add drill-down links to Web
presentations that are generated with the following device drivers:

� GIF, JPEG, OR PNG
� JAVA and ACTIVEX
� JAVAMETA

In these Web presentations, the HTML= and HTML_LEGEND= options identify a
variable that provides URLs for drill-down links. This variable is referred to as a link
variable.

The HTML= option and HTML_LEGEND= options are also used to implement
enhancements that run in the Metaview applet. In this case, the variables that are
identified by the HTML= and HTML_LEGEND= options are referred to as enhancement
variables because they do more than establish links.

Working with Link and Enhancement Variables
To use link or enhancement variables in a Web presentation, you need to define those

variables, add data to those variables, and then identify those variables in the HTML=
option or the HTML_LEGEND= options, or both.

The following code fragment defines a link variable named RPT and assigns that
variable a length of 40 characters.

data regsales;
input Region State Sales;
length RPT $40;

Be sure to define your link variable with a length that will be sufficient to contain
your URLs (plus the HREF= option). There is no limit on the length of the variable.

The values of the link variable use the following syntax:

"HREF=’URL<#anchor name’>"

The syntax is used in the following example:

RPT="href=’reports.html#west’ "

Assigning Values to Link and Enhancement Variables
The most obvious method of adding these variables to your data set is to manually

add them to the desired observations in your data set. This method is not practical or
feasible in many cases, in which case you can use IF/THEN statements or variable
substitution.

The following picture shows how link variables are assigned to a bar chart. The three
bars represent regional sales for a company’s central, southern, and western regions.

602 Working with Link and Enhancement Variables � Chapter 27

Figure 27.3 Links in Drill-Down Graphs

Each bar in the chart links to an anchor tag in an HTML file named reports.html.
The anchor names in the linked file are “Central,” “South,” and “West.” The following
DATA step the IF/ THEN statement to assign values to the the link variable.

/* create data set REGSALES */
data regsales;
length Region State $ 8;
format Sales dollar8.;
input Region State Sales;
length rpt $80; /* the link dest. variable */
datalines;
West CA 13636
West OR 18988
West WA 14523
Central IL 18038
Central IN 13611
Central OH 11084
Central MI 19660
South FL 14541
South GA 19022
;
/* assign HREF values to link dest. variable */
data regsales;
set regsales;
if Region="Central" then
rpt="HREF=’reports.htm#central’";

else if Region="South" then
rpt="HREF=’reports.htm#south’";

else if Region="West" then
rpt="HREF=’reports.htm#west’";

run;

goptions reset=all device=ActiveX;

ods listing close;
ods html file="sales.htm";

Enhancing Web Presentations � Working with Link and Enhancement Variables 603

/* create chart that uses link targets */
title "Regional Sales";
proc gchart data=regsales;

vbar region / sumvar=sales
html=rpt;

run;

/* create the link targets */
ods html file="reports.htm" anchor="south";
title "Southern Sales";
proc gchart data=regsales;
where region="South";
vbar state /sumvar=sales;
run;

ods html anchor="central";
title "Central Sales";
proc gchart data=regsales;
where region="Central";
vbar state /sumvar=sales;
run;

ods html anchor="west";
title "Western Sales";
proc gchart data=regsales;
where region="West";
vbar state /sumvar=sales;
run;
quit;
ods html close;
ods listing;

604 Links in GIF, JPEG, PNG, and SVG Presentations � Chapter 27

Display 27.1 REGSALES Data Set

You could use variable substitution to simplify the DATA step. The URLs used in the
preceding program all use the same HTML file name, but the anchor differs depending
on the value of the Region variable. You can concatenate the value of the Region
variable to the common HTML file name to generate the drill-down URLs.

data regsales;
set regsales;
rpt="HREF=’reports.htm#"||Region||"’";
run;

Links in GIF, JPEG, PNG, and SVG Presentations
To add drill-down functionality to images generated with the GIF, JPEG, PNG, SVG,

SVGT, SVGZ, and SVGVIEW device drivers, do one of the following:

� Use the HTML= option with a SAS/GRAPH procedure to add drill-down
functionality to the graph data elements.

� Use the HTML_LEGEND= option with a SAS/GRAPH procedure to add drill-down
functionality to the legend entries.

� Use both the HTML= option and the HTML_LEGEND= option with a
SAS/GRAPH procedure to add drill-down functionality to the legend entries.

Links in ACTXIMG and JAVAIMG Presentations
To add drill-down functionality to an image created with the ACTXIMG or JAVAIMG

device drivers, use the HTML= option as described in “Adding Links with the HTML=
and HTML_LEGEND= Options” on page 601.

Enhancing Web Presentations � Links in JAVA Presentations 605

Links in ACTIVEX Presentations
To add drill-down functionality to the ActiveX control created with the ACTIVEX

device driver, use the HTML= option as described in “Adding Links with the HTML=
and HTML_LEGEND= Options” on page 601.

Links in JAVA Presentations
The Graph applet is a Java applet that provides drill-down functionality by default.

The following code generates a graph using DEVICE=JAVA. When the Web page is
displayed, drill-down functionality is enabled. The Graph applet retains the type and
style of the initial graph for all the graphs in the presentation. The result is a sequence
of three-dimensional, vertical bar charts that use the ODS style GEARS.

data sales;
length Region $ 4 State $ 2;
format Sales dollar8.;
input Region State Sales Year Qtr;
datalines;

West CA 13636 1999 1
West OR 18988 1999 1
West CA 14523 1999 2
West OR 18988 1999 2
East MA 18038 1999 1
East NC 13611 1999 1
East MA 11084 1999 2
East NC 19660 1999 2
West CA 12536 1998 1
West OR 17888 1998 1
West CA 15623 1998 2
West OR 17963 1998 2
East NC 17638 1998 1
East MA 12811 1998 1
East NC 12184 1998 2
East MA 12760 1998 2
;
goptions reset=all device=java;
ods listing close;
ods html file="vbarweb.htm" style=gears;
title "Company Sales, Mid Year";
proc gchart data=sales;

vbar3d region / sumvar=sales
group=year subgroup=state;

run;
quit;
ods html close;
ods listing;

The initial graph displayed by this example is shown in the example below. In this
graph, REGION is the independent variable, and SALES is the dependent variable.

� SALES is the dependent variable.
� REGION is the independent variable.
� STATE is the subgroup variable.

606 Links in JAVA Presentations � Chapter 27

� YEAR is the group variable.

Figure 27.4 Graph Applet: Level 1

Clicking the bar segment labeled East generates the graph shown in Figure 27.5 on
page 607. The Level 2 drill-down graph retains the dependent variable SALES. The
group variable YEAR is promoted to the independent variable role. The drill-down
action creates one bar segment for each unique value of YEAR.

� SALES is the dependent variable.
� YEAR is the independent variable.

Enhancing Web Presentations � Links in JAVA Presentations 607

Figure 27.5 Graph Applet: Level 2

Clicking the bar segment labeled 1998 generates the graph shown in Figure 27.6 on
page 607. The Level 3 drill-down graph retains the dependent variable SALES. The
subgroup variable STATE is promoted to the independent variable role. STATE is the
last variable that can appear as an independent variable. The drill-down action creates
one bar segment for each unique value of STATE.

� SALES is the dependent variable.
� STATE is the independent variable.

Figure 27.6 Graph Applet: Level 3

608 Links in Metaview Applet Presentations � Chapter 27

Links in Metaview Applet Presentations
To generate drill-down presentations for the Metaview applet use either the HTML=

or the HTML_LEGEND= options or both and an enhancement variable, as introduced
in “Adding Links with the HTML= and HTML_LEGEND= Options” on page 601.

Links in Animated GIF Presentations
SAS/GRAPH does not directly support drill-down functionality for animated GIFs. To

enable drill-down functionality from an animated GIF, use any third-party tools that
are available to you. You can make the entire image a hotspot by including the
tag inside an tag.

Controlling Drill-Down Behavior For ActiveX and Java Using Parameters
You can use parameter tags on the ODS HTML statement to specify drill-down

behavior for the ActiveX control, the Graph applet, or the Map applet, in the ODS
HTML statement. Parameters are specified on the ODS destination statement with the
PARAMETERS= option as follows:

ODS HTML PARAMETERS=(options);

See Chapter 19, “Attributes and Parameters for Java and ActiveX,” on page 485 for a
detailed description of the parameter tags and attributes that are available for use with
ActiveX and Java.

Using Drill-Down Tags
You can use the following tags to specify drill-down behavior for the Graph applet,

Map applet, or ActiveX control. The following table defines the drill-down tags and
explains the types of graphs to which the tags can be applied.

Table 27.2 Drill-Down Tags Used by the Graph Applet, Map Applet, and ActiveX
Control

Tag Name Description

Definition of the
Value That Follows
the Tag Applied in

G_COLOR Use new colors for the
graph elements

Name of the new color
variable

Scatter plots

G_COLORV Use the color variable
from the preceding level

None Scatter plots

G_DEP Use a new dependent
variable

Name of the new
dependent variable

All charts

G_DEPV Use the dependent
variable from the previous
level

None All charts

Enhancing Web Presentations � Specifying the Drill-Down Mode 609

Tag Name Description

Definition of the
Value That Follows
the Tag Applied in

G_DEPTH Use a new depth variable Name of the new
depth variable

Vertical bar charts
and scatter plots

G_DEPTHV Use the depth variable
that was used in the
previous level

None Vertical bar charts
and scatter plots

G_GROUP Use a new group variable Name of the new
group variable

Bar charts

G_GROUPV Use the group variable
that was used in the
previous level

None Bar charts

G_INDEP Use a new independent
variable

Name of the new
independent variable

Charts and maps

G_INDEPV Use the independent
variable that was used in
the previous level

None Charts and maps

G_LABEL Use a new label Name of the new label
(mapID) variable

Maps

G_LABELV Use the same label that
was used in the previous
level

None Maps

G_SUBGR Use a new subgroup
variable

Name of the new
subgroup variable

Bar charts and scatter
plots

G_SUBGRV Use the same subgroup
variable that was used in
the previous level

None Bar charts and scatter
plots

When you specify a variable name after a tag, that name must be specified exactly the
way it appears in the data set, because variable names are case-sensitive in JavaScript.
To find out how a variable was defined in the data set, use the CONTENTS procedure.

Specifying the Drill-Down Mode
To enable a given drill-down mode, specify a value for the parameter

DRILLDOWNMODE. The DRILLDOWNMODE parameter is specified in an ODS
statement. The following syntax sets the DRILLDOWNMODE parameter in the ODS
statement:

ODS HTML PARAMETERS=
(“DRILLDOWNMODE”=“LOCAL”|“SCRIPT”|“URL”|“HTML”);

Local mode
responds to drill-down actions by dynamically generating and displaying new
graphs. The data in the initial graph is subset based on the graph element that
was selected in the drill-down action. The user can select another graph element
to generate another graph. Another graph is generated as long as the data can
still be subset, or you have configured your own levels of drill-down.

To configure a graph at a given level, you specify the applet parameter
DDLEVELn. The value of this parameter determines the graph type, data subset,

610 Understanding Variable Roles � Chapter 27

variable roles, and colors. Local is the default drill-down mode for the Graph
applet.
Featured in: “Local Drill-Down Mode with Java” on page 475.
Restriction: Supported by the Graph applet only.
See also: “Links in JAVA Presentations” on page 605.

Script mode
calls a JavaScript method that you specify in your SAS/GRAPH program. You
provide the JavaScript that responds to the selected area. The data passed to the
JavaScript method determines the graphic portion selected, and the appropriate
action.
Featured in: “Script Drill-Down Mode with Java” on page 477, “Providing

JavaScript Drill-Down with ActiveX” on page 464, and “Providing More
JavaScript Drill-Down with ActiveX” on page 466.

Restriction: Supported by the Map applet and ActiveX control only.
See also: “Configuring Script Drill-Down Mode” on page 616.

URL mode
displays URLs that are provided by the HTML= variable. The URLs identify
HTML files.
Featured in: “URL Drill-Down Mode with Java” on page 479.
See also: DRILLDOWNMODE=HTML in “Parameter Definitions” on page 491.
Restriction: If the graphics procedure that generates the graph specifies the

HTML= option, then the value of the DRILLDOWNMODE parameter is
automatically set to URL. All modes specified in ODS are overridden.

HTML mode
generates drill-down URLs based on a substitution pattern that you specify in your
SAS/GRAPH program. The ActiveX control, the Graph applet, and the Map applet
complete the URL by inserting the specified data from the selected graph element.

ods html file=statepop.htm
parameters=("DRILLDOWNMODE"="HTML"
"DRILLPATTERN"="http://www.state.{&statename}.us");

The data set variable value STATENAME completes the drill-down URL.
Featured in: “HTML Drill-Down Mode” on page 482.
See also: “Adding Links with the HTML= and HTML_LEGEND= Options” on

page 601.
Note: Define the variable with the partial URL when creating the graphic. �

Any mode
attempts to implement the four drill-down modes in succession until a valid Web
destination is found. The order is Local (Graph applet only), Script, URL, and
HTML.
Restriction: Supported by Graph applet and ActiveX control only.
See: “Specifying Parameters and Attributes for Java and ActiveX” on page 485

for a complete list of ODS parameters.

Understanding Variable Roles
The assignment of roles to variables determines the appearance of the resulting

graph. The assignment of roles takes place in the SAS/GRAPH statement that
generates the graph. One variable is always assigned the role of independent variable,

Enhancing Web Presentations � Removing Blank Spaces from Data Values In Substitution Strings 611

and another is always assigned the role of dependent variable. Once the initial graph
has been displayed in the applet or control, Web users can change the variable roles
using menu options.

Variable roles are used to configure the Local, HTML, and Script drill-down modes.
The roles are assigned with parameters, using the PARAMETERS= option in the ODS
statement. In the specification of a parameter, the assignment of roles is done with
drill-down tags.

Removing Blank Spaces from Data Values In Substitution Strings
The drill-down modes Script (see “Configuring Script Drill-Down Mode” on page 616)

and HTML (see “Configuring the Drill-Down Response In HTML and URL Modes” on
page 615) make use of substitution strings to generate a response to drill-down actions.
The substitution strings are replaced with data values. Blank spaces in those data
values can produce unexpected results. To remove blank spaces from data values when
those values are to be used in a substitution string, specify the PATTERNSTRIP
parameter as follows in the ODS statement:

ODS HTML FILE=fileref-or-external-file

PARAMETERS=(“DRILLDOWNMODE”=“SCRIPT | URL”
“PATTERNSTRIP”=“NONE | YES | COMPRESS”);

612 Using Variables as Substitution Strings � Chapter 27

NONE
is the default value. Any blank spaces in the data value are inserted into the
substitution string.

YES
removes all blank spaces from the end of the data value, but retains blank spaces
elsewhere.

COMPRESS
removes all blank spaces from the data value, wherever they occur.

Using Variables as Substitution Strings
When you specify a varialbe name as a substitution string in the HTML drill-down

mode, the applet or control replaces the entire string with the value of the variable as it
is specified in the selected graph element. The syntax of the substitution string is as
follows:

{&variable_name}

Because JavaScript is case sensitive, the name of the variable must be exactly the same
as it is in the data set.

A variable name substitution string might look like this:

http://ourweb.com/uspop/{&statename}/poptable.htm

The substitution string above could be used in a Web presentation that begins with a
map of the United States. In response to a drill-down action in HTML mode, the value
of the STATENAME variable for the selected state would be substituted into the URL.
The resulting URL would point to a Web page that contains a table of population
information for the selected state.

In the HTML drill-down mode, you can specify variable roles or labels as substitution
strings, using drill-down tags, as described in “Understanding Variable Roles” on page
610. The syntax of these substitution strings is as follows:

{&drill-down-tag}

where drill-down-tag specifies a variable role or label in the initial graph. The applet or
control replaces the substitution string by deriving a variable name from the role or
label, and applying the value of that variable to the URL. The value is taken from the
data that is associated with the selected graph element.

For example, a Web presentation could be configured using this URL:

http://ourweb.com/regstaff/{&G_INDEPV}/stafflist.htm.

When a Web user selects a data element with the independent variable REGION, if the
value of REGION is East, the applet displays this URL:

http://ourweb.com/regstaff/East/stafflist.htm.

The default value for the DRILLPATTERN parameter is as follows:

{&G_INDEPV,f}{&G_GROUPV,f}{&G_SUBGRV,f}.html

The URL that is created points to an HTML file that is in the same directory as the
top level HTML file. The name of the file is a concatenation of formatted values for the
first independent, group, and subgroup variables that are defined in the data set.

See “URL Drill-Down Mode with Java” on page 479 for more information.

Enhancing Web Presentations � Configuring HTML Drill-Down Mode 613

Configuring HTML Drill-Down Mode
You can use the parameters DRILLDOWNMODE, DRILLPATTERN,

PATTERNSTRIP, and DRILLTARGET to configure the HTML drill-down mode for the
ActiveX control, the Graph applet, and the Map applet.

In the HTML drill-down mode, the applet or control responds to drill-down actions by
constructing a uniform resource locator (URL) using the data in the selected graph
element. The URL is passed to the Web browser for display.

The parameter DRILLDOWNMODE (see “Parameter Reference for Java and
ActiveX” on page 488) establishes the HTML drill-down mode. The PATTERNSTRIP
parameter (see “Removing Blank Spaces from Data Values In Substitution Strings” on
page 611) can be used to selectively remove blank spaces from data values before those
values are applied to the URL. The DRILLTARGET parameter (see “Using Variables as
Substitution Strings” on page 612) enables you to specify where you want the drill-down
graph to appear in the browser.

Specify the DRILLPATTERN parameter in the ODS statement:

ODS HTML

PARAMETERS=(“DRILLDOWNMODE”=“HTML”
“DRILLPATTERN”=“URL-with-substitution-strings”);

An example of this statement might look like this:

ods html file=statepop.htm
parameters=("DRILLDOWNMODE"="HTML"

"DRILLPATTERN"="http://www.state.{&statename}.us");

In this example, the value of the data set variable STATENAME completes the
drill-down URL.

When ODS is configured as shown above, the applet or control dynamically generates
URLs in response to drill-down actions. The applet or control replaces the substitution
strings with data values from the graph element that was selected in the drill-down
action. The URL-with-substitution-strings can include multiple substitution strings.
Substitution strings can include combinations of variable names, variable roles or
labels, and drill-down tags. For details, see “Using Variables as Substitution Strings”
on page 612. All substitution strings are enclosed in curly brackets ({ and }) and begin
with an ampersand character (&).

When you specify a variable name as a substitution string in drill-down mode, the
applet or control replaces the string with the variable value.

Specifying Graphs For Each Drill-Down Level
The DDLEVELn parameter lets you specify the graphs that are generated at each

drill-down level. The DDLEVELn parameter is specified as follows in the ODS
statement:

ODS HTML

PARAMETERS=(“DDLEVELn”=“string”);

n
represents the number of the drill-down level that is being configured.

string

� specifies the graph type.
� names the variable roles.
� specifies the color of the data elements.

614 Configuring HTML Drill-Down Mode � Chapter 27

� names the variable to subset, to create the next graph.

The syntax of the string argument is as follows:

{CHART} {chart_type} {tag_1} {variable_1...} {...tag_n} {variable_n} | {subset_tag_1...}
<{...subset_tag_n}>

{CHART} {chart_type}
identifies the type or style of the graph. This tag is case sensitive: it must always
be specified in uppercase. The values of the tag (chart types) are not case
sensitive. To use the same chart type as the preceding drill-down level, do not
specify the CHART tag. Available chart types are as follows:

HBAR
generates a two-dimensional horizontal bar chart.

HBAR3D
generates a three-dimensional horizontal bar chart.

VBAR
generates a two-dimensional vertical bar chart.

VBAR3D
generates a three-dimensional vertical bar chart.

PIE
generates a two-dimensional pie chart.

PIE3D
generates a three-dimensional pie chart.

SCATTER
generates a scatter plot that is similar in appearance to the plot shown in
Example 4 on page 1564.

LINE
generates a line or needle plot that is similar in appearance to Figure 14.17
on page 261.

BOX
generates a box plot that is similar in appearance to Figure 14.15 on page 257.

HILO
generates a high-low chart that is similar in appearance to Figure 14.16 on
page 259.

{tag_1} {variable_1...} {...tag_n} {variable_n}
associates drill-down tags with data set variables, to specify roles for variables in
the new graph, and to determine the color of the elements in the new graph
(optional). For definitions of the drill-down tags, see Table 19.1 on page 488.

{subset_tag_1...} <{...subset_tag_n}>
specifies one or more variable roles from the original graph whose values are used
to subset the data in the preceding graph. If you specify G_GROUPV, then the
data that is used to draw the new graph, is only the data that is associated with
the group variable in the preceding graph. If the group variable in the preceding
graph is REGION, and the data element labeled East is selected, only observations
where REGION=EAST are represented in the next graph.

At least one of the following tags must be specified as the subset variable:
G_INDEPV, G_GROUPV, G_SUBGRV, or G_DEPTHV. For definitions of these
tags, see Table 19.1 on page 488.

Specifying multiple subset variables means that two or more values must match
the value in the selected graph element for that observation to be used in the new

Enhancing Web Presentations � Configuring the Drill-Down Response In HTML and URL Modes 615

graph. For example, assuming that you specify {G_INDEPV}{G_SUBGRV} as the
subset variables, and that the selected graph element has an independent variable
of YEAR and a subgroup variable of STATE. Also assume that the values for these
variables in the selected graph element were 2000 and NC. The observations that
would be used in the drill-down graph would include those with YEAR=2000 and
STATE=NC.

The following example shows how the DDLEVENn parameter can be used to specify
the default behavior for the first drill-down level.

ods html file=odsout
parameters=("drilldownmode"="local"

"ddlevel1"="{chart}{vbar3d}
{g_dep}{sales}
{g_indep}{year} |
{g_indepv}");

As the example shows, the value of the DDLEVELn parameter is divided into two
halves, which are separated by a vertical bar character. The drill-down graph is
configured in the syntax that appears before the vertical bar character (|). After the
vertical bar, drill-down tags specify how the data from the previous drill-down level is to
be subset for use in the current drill-down graph.

The first drill-down level (DDLEVEL1) is configured as a three-dimensional vertical
bar chart. The dependent variable is SALES and the independent variable is YEAR.
The G_INDEPV tag specifies that the data is to be based on the values of the
independent variable. In our example the independent variable in the initial graph is
REGION. If the Web user selects a graph element that describes the WEST region, the
graph has only observations where the value of REGION is WEST.

If you do not specify a role for a variable, then that variable does not appear in the
drill-down graph. If you do not specify variables for the G_DEP and G_INDEP tags,
then the Graph applet uses the independent and dependent variables of the graph in
the preceding drill-down level.

You can explicitly remove a variable role from the drill-down graph by specifying a $
character as the drill-down value, as in the following code:

{G_GROUP} {$}

Web users can make this change in the Graph applet menus by selecting the None
option from the list of variables that can be applied to a given variable role.

Note: Note that you cannot assign a $ to the G_INDEP and G_DEP variables,
because they must always be present in the drill-down graph. �

Configuring the Drill-Down Response In HTML and URL Modes
In the HTML and URL drill-down modes, you can specify the parameter

DRILLTARGET to specify where you want the Web browser to display drill-down
graphs. By default, the applet or control displays drill-down graphs in a new Web
browser window.

Specify the DRILLTARGET parameter as follows, using the PARAMETERS= option
in the ODS statement:

ODS HTML
PARAMETERS=(“DRILLTARGET”=
“_BLANK” | “_SELF” | “_PARENT” | “_TOP” | any_named_target)

_BLANK
displays the drill-down graph in a newly opened, unnamed browser window.

616 Configuring Script Drill-Down Mode � Chapter 27

_SELF

displays the drill-down graph in the same frame or window as the initial graph.
This is the default behavior in most browsers.

_PARENT
displays the drill-down graph in the parent frame in a frame set. If no frames are
defined, this value is the same as _SELF.

_TOP
displays the drill-down graph in the full browser window, thereby replacing any
frames that were defined in that window.

any_named_target
displays the drill-down graph in the appropriately named frame or browser
window.

Configuring Script Drill-Down Mode
You can use the parameters DRILLDOWNMODE, DRILLFUNC, PATTERNSTRIP,

and DRILLTARGET to configure the Script drill-down mode for the ActiveX control, the
Graph applet, and the Map applet. The Script drill-down mode enables you to execute a
JavaScript callback method in response to drill-down actions. You use PUT statements
to write the callback method into the HTML output file. Some experience with
JavaScript is therefore required.

The syntax used to implement the Script drill-down mode is specified in the ODS
statement as follows:

ODS HTML

PARAMETERS=(“DRILLDOWNMODE”=“SCRIPT” “DRILLFUNC”=“method”);

The applet parameter DRILLDOWNMODE (see “Specifying the Drill-Down Mode” on
page 609) establishes the Script drill-down mode. The DRILLFUNC parameter specifies
the name of the JavaScript callback method that is executed in response to drill-down
actions.

In response to a drill-down mode. The DRILLFUNC parameter specifies the name of
the JavaScript callback method that is executed in response to drill-down actions.

In response to a drill-down action, the applet or control generates an array of
arguments that is to be passed into the callback method. The array contains all of the
data in the array as it generates its output. As the callback method terminates, it
might return an object. The applet or control ignores this object.

To invoke the callback method, the applet or control issues
netscape.javascript.JSObject.call() in the following form:

PUBLIC OBJECT CALL(STRING method-name, OBJECT argument-array-name[])

The method-name argument is the name of the callback method that you define in
JavaScript in your program. The applet or control supplies the argument-array-name.

Working With The Array Of Elements
Understanding the structure of the array of arguments is important for you to be

able to access those elements in your callback method. The elements in the array
represent all of the variables and values that are represented by the graph element
that was selected in the drill-down action. The data is labeled in the array using
drill-down tags. The tags identify variable roles or labels and values. For details, see
“Using Drill-Down Tags” on page 608 and “Understanding Variable Roles” on page 610.

Enhancing Web Presentations � Configuring Script Drill-Down Mode 617

The first element in the array of arguments is the name of the applet or control. The
second element in the array is the name of a file. The name of that file is derived from
the variable roles in the graph at the preceding drill-down level, using the following
substitution string:

{&G_INDEPV,f}
{&G_GROUPV,f}
{&G_SUBGRV,f}.html

The filename is a concatenation of the formatted values of the independent, group, and
subgroup variables in the graph at the preceding drill-down level.

Note: The filename and file type are provided as a convenience. If you use this
filename and file type, then you must create the actual file and provide its content. �

The remaining elements in the array consist of drill-down tags, and the data that is
associated with those tags in the graph element that was selected in the drill-down
action. Each variable is represented by triplet pairs of arguments in the array:

tag variable_name

tagV variable_value

tagV,F formatted_value

For example assume that each graph data element selected is represented by six
arguments in the array.

The graph shown in “Script Drill-Down Mode with Java” on page 477 is configured
for Script drill-down mode. Selecting the east region sales figures for the state of North
Carolina generates the following array:

[appletName East1998NC.html
G_DEP Sales G_DEPV 10000 G_DEPV,F $10,000
G_INDEP Region G_INDEPV East G_INDEPV,F East
G_GROUP Year G_GROUPV 1998 G_GROUPV,F 1998
G_SUBGR State G_SUBGRV NC G_SUBGRV,F NC]

The output filename is East1998NC.html. The remaining triplet pairs capture the roles,
and values of the variables that make up the selected data element. All variable names
are case sensitive as they appear in the array. For example, the value Region is
capitalized. This is the case only if the variable name is defined as Region in the DATA
step.

Implementing Script Drill-Down Mode
To implement Script drill-down mode, use PUT statements in a DATA step to write a

JavaScript callback method into the HTML output file.
For an example of implementing script drill-down mode, see “Script Drill-Down Mode

with Java” on page 477. For information on writing JavaScript, refer to JavaScript
tutorials that are available on the Internet.

Formatting Data Values in Script Drill-Down Mode
For Script drill-down mode only, you can specify that data values are to be formatted

or not formatted. By default, the values of the variables are not formatted. If the
characters ,f are appended to the end of the tag, then those values are presented in
formatted form. This parameter tag specifies that the values of the independent
variable cost are to appear in formatted form.

{g_inep,f}{cost}

618 Disabling Drill-Down Functionality � Chapter 27

The format is applied using the FORMAT statement in the DATA step or graphics
procedure that generated the data for the graph. Formatted values are specified in the
statement that generated the original graph. Formatted values are used for axis labels,
legends, and data tips that are displayed when the mouse is positioned over a graph
data element.

Disabling Drill-Down Functionality
For the Graph applet, you can specify the DISABLEDRILLDOWN parameter to

disable the drill-down functionality. Specify the DRILLDOWNMODE parameter as
follows in the ODS statement:

ODS HTML

PARAMETERS=(“DISABLEDRILLDOWN”=“TRUE”);

Example: Creating Bar Charts with Drill-Down for the Web
This example shows how to create 3-D bar charts with drill-down functionality for

the Web. In addition to showing how to use the ODS HTML statement and the HTML
options to create the drill-down, the example also illustrates other VBAR3D statement
options.

For creating output with drill-down functionality for the Web, the example shows
how to do the following tasks:

� explicitly name the HTML files and open and close them throughout the program
� specify names and destination for the GIF files created by the ODS HTML

statement and the GIF device driver

� assign anchor names to the graphics output
� use the HTML= and HTML_LEGEND= procedure options to assign link targets
� use BY-group processing to store multiple graphs in one file or in individual files
� increment the anchor names and increment the file names

For more information, see “ODS HTML Statement” on page 239 in Chapter 14, “SAS/
GRAPH Statements,” on page 197.

For creating 3-D bar charts, the example shows how to do the following tasks:
� group the midpoints, including patterning bars by group, modifying the group axis,

adjusting the space between groups of bars
� identify midpoint values with a legend instead of labeling each bar
� subgroup bars
� remove an axis and its axis plane
� add reference lines

The introduction to each part lists the VBAR3D options that it features.

Procedure Features:
VBAR3D statement

ODS HTML options:
ANCHOR=
BODY=
CONTENTS=

Enhancing Web Presentations � Example: Creating Bar Charts with Drill-Down for the Web 619

FRAME=

NEWFILE

NOGTITLE

PATH=

Other Features:

AXIS statement

BY statement

FORMAT statement

GOPTIONS statement option: BORDER

LEGEND statement

RUN-group processing

TITLE statement

WHERE statement

Sample library member:

GCHDDOWN

The program generates twelve linked bar charts that display data about the world’s
leading grain producers. The data contain the amount of grain produced by five
countries in 1995 and 1996. Each of these countries is one of the three leading
producers of wheat, rice, or corn, worldwide.

The first chart, shown in Figure 27.7 on page 619 as it appears in a browser, is an
overview of the data that shows the total grain production for the five countries for both
years.

Figure 27.7 Browser View of Overview Graph

The next two charts break down grain production by year. These charts are linked to
the legend values in Figure 27.7 on page 619. For example, when you select the legend
value for 1995, the graph in Figure 27.8 on page 620 appears.

620 Example: Creating Bar Charts with Drill-Down for the Web � Chapter 27

Figure 27.8 Browser View of Year Breakdown for 1995

Another group of charts breaks down the data by country. These charts are linked to
the bars. For example, when you drill down on the bar for China in either Figure 27.7
on page 619 or Figure 27.8 on page 620, the graph in Figure 27.9 on page 620 appears.

Figure 27.9 Browser View of Breakdown for China

Finally the data is charted by grain type. These graphs are linked to the bars in
Figure 27.9 on page 620. If you select the legend value or bar for Rice, Figure 27.10 on
page 621 appears.

Enhancing Web Presentations � Example Part A 621

Figure 27.10 Browser View of Breakdown for Rice

This program is divided into four parts:

� “Example Part A” on page 621 generates the graph shown in Figure 27.7 on page
619.

� “Example Part B” on page 626 generates the pair of graphs represented by Figure
27.8 on page 620.

� “Example Part C” on page 628 generates the five graphs represented by Figure
27.9 on page 620.

� “Example Part D” on page 630 generates the three graphs represented by Figure
27.10 on page 621.

Example Part A
VBAR3D options:

DES=

DISCRETE

GROUP=

GSPACE=

HTML=

HTML_LEGEND=

NAME=

SUBGROUP=

ODS HTML options:

BODY=

CONTENTS=

FRAME=

GPATH=

NOGTITLE

622 Example Part A � Chapter 27

The first part of the program, which includes setting the graphics environment and
creating the data set, does the following:

� Adds three HTML variables to the data set. The variables contain the link targets
for all of the graphs that support drill-down functionality. The HREF values for
the HTML variables in the data set contain this information about the link targets:

� the name of the body file that is the target. BODY= in the ODS HTML
statement names the body file.

� the anchor name of the output if the target file contains more than one
graph. By default, all output is assigned a unique anchor name unless you
specify a name with ANCHOR= in the ODS HTML statement.

� Opens the HTML destination for the frame and contents files and the first body file.
� Creates one grouped 3-D vertical bar chart (shown in Figure 27.7 on page 619)

with drill-down on the bars and legend values. The bars, which represent total
production for each year for each country, are grouped and labeled by COUNTRY.
Instead of displaying the year below each bar, the program suppresses the
midpoint values with an AXIS statement and creates a legend that associates bar
color and year. To create the legend, the chart variable YEAR is assigned to the
SUBGROUP= option. Because the chart variable and the subgroup variable are
the same, each bar contains only one "subgroup." As a result, the subgroup legend
has an entry for each value of YEAR, thereby creating a legend for the midpoints.
The values of COUNTRY label each group of bars.

� Assigns the HTML variables that contain link information for the bars and for the
legend values to the HTML= and HTML_LEGEND= options, respectively.

Assign the Web path. FILENAME assigns the fileref ODSOUT, which specifies a destination
for the HTML and GIF files produced by the example program. To assign that location as the
HTML destination for program output, ODSOUT is specified later in the program in the ODS
HTML statement’s PATH= option. ODSOUT must point to a Web location if procedure output is
to be viewed on the Web.

filename odsout "c:\";

Set the graphics environment. The BORDER goption draws a black border around the graph.

goptions reset=all border;

Create the data set GRAINLDR. GRAINLDR contains data about grain production in five
countries for 1995 and 1996. The quantities in AMOUNT are in thousands of metric tons.
MEGTONS converts these quantities to millions of metric tons.

data grainldr;
length country $ 3 type $ 5;
input year country $ type $ amount;
megtons=amount/1000;

datalines;
1995 BRZ Wheat 1516
1995 BRZ Rice 11236

Enhancing Web Presentations � Example Part A 623

1995 BRZ Corn 36276
1995 CHN Wheat 102207
1995 CHN Rice 185226
1995 CHN Corn 112331
1995 IND Wheat 63007
1995 IND Rice 122372
1995 IND Corn 9800
1995 INS Wheat .
1995 INS Rice 49860
1995 INS Corn 8223
1995 USA Wheat 59494
1995 USA Rice 7888
1995 USA Corn 187300
1996 BRZ Wheat 3302
1996 BRZ Rice 10035
1996 BRZ Corn 31975
1996 CHN Wheat 109000
1996 CHN Rice 190100
1996 CHN Corn 119350
1996 IND Wheat 62620
1996 IND Rice 120012
1996 IND Corn 8660
1996 INS Wheat .
1996 INS Rice 51165
1996 INS Corn 8925
1996 USA Wheat 62099
1996 USA Rice 7771
1996 USA Corn 236064
;

Add three HTML variables to GRAINLDR to create the NEWGRAIN data set. Each
HTML variable is assigned the targets for a certain variable value. These targets are specified
by the HREF attribute within an AREA element in the HTML file. Each HREF value specifies
the HTML body file and, can also reference the name of the anchor within the body file that
identifies the target graph. The HTML variable YEARDRILL contains the targets for the values
of the variable YEAR.

data newgrain;
set grainldr;
length yeardrill typedrill countrydrill $ 40;
if year=1995 then
yeardrill="HREF=’year95_body.html’";
else if year=1996 then
yeardrill="HREF=’year96_body.html’";

The HTML variable COUNTRYDRILL contains the targets for the values of the variable
COUNTRY. Because the graphs of COUNTRY are in one file, the targets must include the
anchor name.

if country="BRZ" then
countrydrill="HREF=’country_body.html#country’";
else if country="CHN" then

624 Example Part A � Chapter 27

countrydrill="HREF=’country_body.html#country1’";
else if country="IND" then
countrydrill="HREF=’country_body.html#country2’";
else if country="INS" then
countrydrill="HREF=’country_body.html#country3’";
else if country="USA" then
countrydrill="HREF=’country_body.html#country4’";

The HTML variable TYPEDRILL contains the names of the files that are the targets for the
values of the variable TYPE.

if type="Corn" then
typedrill="HREF=’type1_body.html’";
else if type="Rice" then
typedrill="HREF=’type2_body.html’";
else if type="Wheat" then
typedrill="HREF=’type3_body.html’";
run;

Create a format for the values of COUNTRY.

proc format;
value $country "BRZ" = "Brazil"

"CHN" = "China"
"IND" = "India"
"INS" = "Indonesia"
"USA" = "United States";

run;

Define legend characteristics for all legends. OFFSET= moves the legend down.

legend1 label=none
shape=bar(4,4)
position=(bottom center)
offset=(-3);

Assign the GOPTIONS for ODS HTML destination. DEVICE= generates the SAS/GRAPH
output as GIF files.

goptions device=gif;

Enhancing Web Presentations � Example Part A 625

Open the ODS HTML destination for the ODS graphics output. BODY= names the file for
storing the HTML output. CONTENTS= names the HTML file that contains the table of
contents to the HTML procedure output. The contents file links to each of the body files written
to the HTML destination. FRAME= names the HTML file that integrates the contents and body
files. PATH= specifies the ODSOUT fileref as the HTML destination for all the HTML and GIF
files. NOGTITLE suppress the graph titles from the SAS/GRAPH output and displays them
through the HTML page.

ods html body="grain_body.html"
frame="grain_frame.html"
contents="grain_contents.html"
path=odsout
nogtitle;

Suppress the label and values for the midpoint axis. The midpoint values 1995 and 1996
do not appear below each bar.

axis1 label=none value=none;

Modify the response axis. ANGLE=90 prints the axis label vertically.

axis2 label=(angle=90 "Metric Tons (millions)")
minor=(n=1)
order=(0 to 500 by 100)
offset=(0,0);

Suppress the label and order the values for the group axis. Because the values of
COUNTRY are formatted, ORDER= must specify their formatted value.

axis3 label=none
order=("China" "United States" "India"
"Indonesia" "Brazil")
split=" ";

Define titles and footnote. The footnote uses the catalog entry name to identify the graph.

title1 "Corn, Rice, and Wheat Production";
title2 "Leading Producers for 1995 and 1996";
footnote1 j=l "click on bars or legend values" j=r "GRAINALL ";

Generate the vertical bar chart that summarizes all grain production for all countries
for both years. DISCRETE creates a separate bar for each unique value of YEAR. GROUP=
groups the bars by country. To create a legend for midpoint values, SUBGROUP= is assigned
the chart variable. GSPACE= controls the space between the groups of bars.

proc gchart data=newgrain;
format country $country.;
vbar3d year / discrete
sumvar=megtons

626 Example Part B � Chapter 27

group=country
subgroup=year
legend=legend1
space=0
width=4
gspace=3
maxis=axis1
raxis=axis2
gaxis=axis3

HTML= specifies COUNTRYDRILL as the variable that contains the targets for the bars.
HTML_LEGEND= specifies YEARDRILL as the variable that contains the targets for the
legend values. Specifying HTML variables causes SAS/GRAPH to add an image map to the
HTML body file. NAME= specifies the name of the catalog entry. Because the PATH=
destination is a file storage location and not a specific file name, the catalog entry name
GRAINALL is automatically assigned to the GIF file. DES= specifies the description that is
stored in the graphics catalog and used in the Table of Contents.

html=countrydrill
html_legend=yeardrill
name="grainall"
des="Overview of leading grain producers";
run;
quit;

Example Part B
VBAR3D options:

AUTOREF
HTML=
HTML_LEGEND=
SUBGROUP=
SPACE=
NAME=

ODS HTML options:
BODY=

In the second part, the PROC GCHART step continues, using RUN-group processing
and WHERE statements to produce two graphs of grain production for each year, one of
which is shown in Figure 27.8 on page 620. Each bar represents a country and is
subgrouped by grain type. As before, both the bars and the legend values are links to
other graphs. The bars link to targets stored in COUNTRYDRILL and the legend
values link to targets in TYPEDRILL. These two graphs not only contain links, they are
the link targets for the legend values in Figure 27.7 on page 619. Before each graph is
generated, the ODS HTML statement opens a new body file in which to store the
output. Because each of these graphs is stored in a separate file, the HREF attributes
that are stored in the variable YEARDRILL point only to the file. The name of the file
is specified by the BODY= option in the ODS HTML statement. This example shows
the HREF attribute that points to the graph of 1995 and is stored in the variable
YEARDRILL:

HREF=year95_body.html

Enhancing Web Presentations � Example Part B 627

YEARDRILL is assigned to the HTML_LEGEND= option in Part A.

Open a new body file for the graph of 1995 production. Assigning a new body file closes
GRAIN_BODY.HTML. The contents and frame files, which remain open, will provide links to all
body files.

ods html body="year95_body.html" path=odsout;

Define the title and footnote for the chart.

title1 "Total Production for 1995";
footnote1 j=l "click on bars or legend values" j=r "YEAR95";

Subset the data for 1995 and generate the vertical bar chart for 1995. The AUTOREF
option draws a reference line on the backplane for every major tick mark value. The
SUBGROUP= option creates a separate bar segment for each department. The SPACE= option
controls the space between the bars. The HTML= option names the variable that contains the
targets for the bars. The HTML_LEGEND= option names the variable that contains the targets
for the legend values. The GIF files use the catalog entry name specified by the NAME= option.

proc gchart data=newgrain;
format country $country.;
where year=1995;
vbar3d country / sumvar=megtons
subgroup=type
autoref
html=countrydrill
html_legend=typedrill
legend=legend1
space=3
coutline=black
maxis=axis3
raxis=axis2
name="year95"
des="Production Breakdown for 1995";

run;
quit;

Open a new body file for the graph of 1996 production. Assigning a new body file closes
YEAR95_BODY.HTML.

ods html body="year96_body.html" path=odsout;

Define title and footnote for the second graph.

title1 "Total Production for 1996";
footnote1 j=l "click on bars or legend values" j=r "YEAR96 ";

Subset the data for 1996 and generate the vertical bar chart for 1996.

proc gchart data=newgrain;
format country $country.;
where year=1996;
vbar3d country / sumvar=megtons
subgroup=type
autoref

628 Example Part C � Chapter 27

html=countrydrill
html_legend=typedrill
legend=legend1
space=3
coutline=black
maxis=axis3
raxis=axis2
name="year96"
des="Production Breakdown for 1996";
run;
quit;

Sort the data set for the graphs of production by country. The data must be sorted in
order of the BY variable before running PROC GCHART with BY-group processing.

proc sort data=newgrain out=country;
by country;
run;

Example Part C
VBAR3D options:

DES=

GAXIS=

GROUP=

HTML=

NAME=

OUTSIDE=

PATTERNID=

RAXIS=

SHAPE=

ODS HTML options:

BODY=

ANCHOR=

The third part produces the five graphs that show the breakdowns by country. These
graphs are generated with BY-group processing and are all stored in one body file.
When the file is displayed in the browser, all the graphs appear in one frame that can
be scrolled. Because the graphs are stored in one file, the links to them must explicitly
point to the location of each graph in the file, not just to the file. This location is defined
by an anchor. ODS HTML assigns anchor names by default, but you can specify anchor
names with the ANCHOR= option. When the procedure uses BY-group processing to
generate multiple pieces of output, ODS automatically increments the anchor name to
produce a unique name for each graph. This example assigns the base name {mono
country} to the ANCHOR= variable value. The graphs created by this part are
referenced by the COUNTRYDRILL variable. With BY-group processing the catalog
entry name also increments automatically. The NAME= option specifies COUNTRY as
the base name for the graphics output. Because you cannot specify a different
description for each graph, the DES= option specifies a generic description for the
HTML Table of Contents.

Enhancing Web Presentations � Example Part C 629

Sort the data set for the graphs of production by country. The data must be sorted in
order of the BY variable before running PROC GCHART with BY-group processing.

proc sort data=newgrain out=country;
by country;
run;

Open a new body file and specify the base anchor name for the graphs of individual
countries. Assigning a new body file closes YEAR96_BODY.HTML. Because all the graphs
generated by the BY-group processing are stored in one file, each one is automatically assigned
an anchor name. The ANCHOR= option specifies a base name for these anchors.

ods html body="country_body.html"
anchor="country"
gfootnote
path=odsout
;

Redefine AXIS2 to change the range of values and suppress all axis elements. Setting
all the label and tick mark options to NONE and assigning a line style of 0 removes the
response axis. NOPLANE removes the 3-D axis plane. Specifying ORDER= makes all the
graphs use the same range of values.

axis2 order=(0 to 250 by 50)
label=none
value=none
style=0
major=none
minor=none
noplane;

Suppress the axis label for the midpoint axis.

axis4 label=none;

Suppress the default BY line and define a title that includes the BY-value. #BYVAL
inserts the value of the BY variable COUNTRY into the title of each report.

options nobyline;
title1 "Breakdown for #byval(country)";
footnote1 j=l "click on bars";
footnote2 j=c "(Millions of Metric Tons)";

630 Example Part D � Chapter 27

Generate the vertical bar chart of production for each country. The PATTERNID=
option assigns patterns by group value. The GROUP= option groups the bars by country. The
SHAPE= option assigns the bar shape. The OUTSIDE= option displays the SUM statistic above
the bars. The HTML= option specifies TYPEDRILL as the variable that contains the targets for
the bars. The RAXIS= option assigns the AXIS statement that removes all axis elements. The
GAXIS= option assigns the AXIS statement that removes the label. The MAXIS= option assigns
the AXIS statement to the midpoint axis. The NAME= option specifies the name of the catalog
entry. The graphics catalog entry name increments so the GIF files are named sequentially from
COUNTRY to COUNTRY4. The DES= option specifies a general description that appears in the
table of contents for all five graphs.

proc gchart data=country;
format country $country.;
by country;
vbar3d year / discrete
sumvar=megtons
patternid=group
group=type
shape=hexagon
outside=sum
html=typedrill
width=9
gspace=3
space=0
raxis=axis2
gaxis=axis4
maxis=axis4
name="country"
des="Grain and Year Breakdown";
run;
quit;

Sort the data set for the graphs of leading producers of each grain type.

proc sort data=grainldr out=type;
by type;
run;

Example Part D
VBAR3D options:

INSIDE=
NOZERO

ODS HTML options:
BODY=
NEWFILE=TABLE

Like Part C, this part uses BY-group processing to generate three graphs that show
the three leading producers for each type of grain. The program subsets the data and
suppresses midpoints with no observations. Instead of storing all of the output in one
body file, it stores each graph in a separate file using the ODS HTML option
NEWFILE=TABLE. When NEWFILE=TABLE is used with BY-group processing, each
new piece of output automatically generates a new body file and simply increments the
name of the file that is specified by the BODY= option. Because each graph is stored in

Enhancing Web Presentations � Example Part D 631

a separate file, the links to these graphs reference only the file name and do not require
an anchor name. The graphs created by this part are referenced by the TYPEDRILL
variable.

Sort the data set for the graphs of leading producers of each grain type.

proc sort data=grainldr out=type;
by type;
run;

Open a new body file. Assigning a new body file closes COUNTRY_BODY.HTML.
NEWFILE=TABLE opens a new body file for each piece of output generated by the procedure.
Each new file increments the name specified by the BODY= option using the number within the
body file name as the starting number.

ods html body="type1_body.html"
newfile=table
path=odsout;

Modify the group axis. Because the SPLIT= option assigns a blank as the split character, the
value United States prints on two lines.

axis5 label=none
split=" ";

Define title and footnote. #BYVAL inserts the value of the BY variable TYPE into the title of
each report.

title1 "Top Three Producers of #byval(type)";
title2 "(In Millions of Metric Tons)";
footnote j=r "TYPE ";

Generate the vertical bar chart of leading producers for each grain type. BY-group
processing generates a separate graph for each value TYPE. Each new graph generates a new
body file. NOZERO suppresses the midpoints that do not have any observations. The SHAPE=
option assigns the bar shape. The INSIDE= option displays the SUM statistic inside the bars.

proc gchart data=type (where=(megtons gt 31));
format country $country.;
by type;
vbar3d year / discrete
sumvar=megtons
group=country
nozero
shape=cylinder
noframe
patternid=group
inside=sum
width=8
maxis=axis4

632 Example Part D � Chapter 27

raxis=axis2
gaxis=axis5
name="type"
des="Leading Producers";
run;
quit;

Close the ODS HTML destination, and open the ODS Listing destination. You must close
the HTML destination before you can view the output with a browser.

ods html close;
ods listing;

633

C H A P T E R

28
Troubleshooting Web Output

Troubleshooting Web Output 633
Checking Browser Permissions 636

Using HTML Character Entities 636

Connecting to Web Servers that Require Authentication 637

Removing CLASSPATH Environment Variables 637

Setting the SAS_ALT_DISPLAY Variable for X Window Systems on UNIX 637
Correcting Text Fonts 638

Resolving Differences Between Graphs Generated with Different Technologies 638

Troubleshooting Web Output
This chapter contains information that you can use to resolve rendering problems on

client workstations.
If you or a member of your audience cannot display your presentation, then refer to

the following table for solutions.
NOTE: to ensure that software requirements have been met, see “What does your

audience need to view the presentation?” on page 449.

Table 28.1 Web Troubleshooting

Symptom Cause Remedy

Can’t access the HTML file. Incorrect URL. Check the URL in the browser.

Network access denied. Check operating environment
permissions for the HTML file.

Check firewall access
permissions for Internet
clients.

Browser can’t display the file. Browser or Java plug—in may
not meet requirements.

Check the requirements. See
“What does your audience need
to view the presentation?” on
page 449.

634 Troubleshooting Web Output � Chapter 28

Symptom Cause Remedy

ActiveX control may not have
been installed or may be out of
date.

Install the ActiveX control
manually (see “Manually
Installing the SAS/GRAPH
ActiveX Control” on page 455).
Consider updating the
presentation to prompt users to
install the control (see
“Configuring an Existing
ActiveX Presentation to
Prompt Users to Install the
SAS/GRAPH ActiveX Control”
on page 456).

User attempting to run the
ActiveX control in a browser
other than Internet Explorer.

Switch to the required version
of the Internet Explorer Web
browser.

User has not been
authenticated for that browser
and that Web page.

Check to see if authentication
is needed, and then
authenticate. See “Connecting
to Web Servers that Require
Authentication” on page 637.

Browser doesn’t recognize the
file as HTML.

Ensure that the type of the
HTML file is correctly specified.

Ensure that the DOCTYPE
and MIME tags are correctly
formatted.

Browser permissions too
restrictive.

Check browser permissions.
See “Checking Browser
Permissions” on page 636.

Browser displays blank page. Browser cannot access the
referenced image file.

If not running an applet or
control, check the image file at
the location specified in the
HTML file.

Browser cannot run the applet
or control.

For Java, ensure that the
HTML file is correctly
referencing the Java plug-in
and SAS Java archive. See
“Specifying the Location of
Control and Applet Files
(CODEBASE= and ARCHIVE=
Options)” on page 486.

Check browser permissions for
running Java scripts. See
“Checking Browser
Permissions” on page 636.

� Troubleshooting Web Output 635

Symptom Cause Remedy

In the UNIX operating
environment, remove any
CLASSPATH environment
variables. See “Removing
CLASSPATH Environment
Variables” on page 637.

Open the browser’s Java
Console and trace the source of
the error.

Browser displays popup
message
Error: Not enough
virtual memory to produce
plot.

Client RAM is insufficient for
rendering.

Generate a new graph using a
smaller data set or a simpler
graph. If using PROC GMAP,
consider using PROC
GREDUCE.

Graph is not rendering as
specified by the ODS graph
style.

A style attribute may not be
enabled for your ODS
destination.

Ensure that the attribute is
enabled for your ODS
destination. For example, the
URL attribute is not enabled
for the PS destination. Refer to
the table of style attributes for
the STYLE statement of the
TEMPLATE procedure in SAS
Output Delivery System: User’s
Guide.

A style attribute may be
overridden by a global option,
global statement option,
procedure option, or statement
option.

Specify the minimum options
needed for your graph, for
example:goptions
reset=all
device=activex;

In ActiveX, the user gets the
message
There is a pending reboot
for this machine...

1 Virus-scanning software
may be interfering with
the installation of the
control.

2 Other instances of the
control might be running.

1 Turn off any
virus-scanning software
before installing the
control.

2 Be sure to close all
instances of Internet
Explorer before installing
the control.

Text font is incorrect. Java font is defined differently. Change browser fonts or
change the SAS/GRAPH
program. See “Correcting Text
Fonts” on page 638.

Text in browser shows
incorrect characters.

Browser misinterpreting
special characters.

Replace special characters with
character entities. See “Using
HTML Character Entities” on
page 636.

636 Checking Browser Permissions � Chapter 28

Symptom Cause Remedy

Graph in browser differs from
graph in SAS.

A graphics option or global
statement may be unsupported
or partially supported for that
applet or control. See also
“Resolving Differences Between
Graphs Generated with
Different Technologies” on page
638.

Refer to the descriptions for
the options you are using and
to Appendix 1, “Summary of
ActiveX and Java Support,” on
page 1601 for information on
whether a statement or option
is supported.

A default value in the applet or
control is overriding a default
option value.

Specify a value for the option
rather than relying on the
default. See “Resolving
Differences Between Graphs
Generated with Different
Technologies” on page 638.

GPLOT lines drawn in reverse
order on the client.

This change was made
intentionally to maintain the
integrity of plots drawn with
the AREAS= option.

In ActiveX, black-and-white
image is not displayed

ActiveX does not enable 8-bit
grayscales images.

Convert the image to 24-bit
monochrome.

Graph loses attributes after
graph type is changed in the
Web browser.

Some attribute loss is inherent
in graph type changes.

Select the Refresh button in
the Web browser to restore the
original graph.

Changes made through the
Data Options dialog cause the
graph to revert to its original
view.

The graph discards subsetting
information if you make
changes through the Data
Options dialog.

Make any changes needed
through the Data Options
dialog before subsetting the
graph.

Checking Browser Permissions
Access permissions vary from browser to browser, but some form of access control is

enforced in most browsers. To check your permissions, open the browser’s Preferences
or Internet Options window. Then look for the advanced options. Use your browser’s
help system and contact your system support representative as needed to ensure that
the browser permissions allow the following:

� Stylesheets
� Java
� JavaScripts
� Java Console

In the Security tab of the Internet Explorer’s Internet Options window, make sure that
the selected Web content zone enables access to the Web presentation.

Using HTML Character Entities
If a special character in your Web presentation does not resolve in the browser, that

character may need to be changed to a character entity in the source file or in the SAS

� Setting the SAS_ALT_DISPLAY Variable for X Window Systems on UNIX 637

program. A character entity is a standardized string of characters that represents a
special character. The browser recognizes the string and replaces it with the special
character when it is formatting the display. One common character entity is > . This
entity represents the greater-than symbol (<).

Lists of standard character entities are provided in HTML reference books and in
HTML references on the Worldwide Web.

For presentations that run in the Constellation and Treeview applets, the macros
DS2CONST and DS2TREE enable the ENCODE argument, which you can use to
automatically replace or not replace angle brackets (“<” and “>”) in TITLE and
FOOTNOTE statements.

Connecting to Web Servers that Require Authentication
If you are unable to run a Java applet or install the ActiveX control, then you may be

trying to access a Web server that requires authentication. To resolve this problem,
access a different file on that server and enter your user ID and password. Redisplaying
your Web presentation should now allow you to access that Web server.

Removing CLASSPATH Environment Variables
In the UNIX operating environment, if the Java applet does not run after you have

verified that your Java archive is correctly specified, then you should remove any
CLASSPATH environment variables that have been set. The Java archive files contain
all the required classes to run the applets. Your CLASSPATH may point to old versions
of the required classes (for example, for use with the webAF software). This can cause
the applets to fail to load. Most applications allow you to specify a CLASSPATH at
startup, by using a startup option. This is often safer for running multiple clients than
using the environment variables.

Setting the SAS_ALT_DISPLAY Variable for X Window Systems on UNIX
You may need to define a special environment variable, SAS_ALT_DISPLAY, because

some server features require a valid X Windows System graphics display. This
environment variable will be used to locate a graphics display when the value of the
environment variable commonly used by the X Window System, DISPLAY, has not been
set. The value of SAS_ALT_DISPLAY must refer to a display that will always be
available during the operation of a SAS server. For example, if the server machine on
which SAS servers are running also runs an X server, then set the value of
SAS_ALT_DISPLAY to the name of the server machine. To set the SAS_ALT_DISPLAY
environment variable, edit the file !SASROOT/bin/sasenv and substitute your display
name for value:0.0 in the line,

SAS_ALT_DISPLAY=value:0.0

If an X server is not available on the server machine, an alternative is to use the X
virtual frame buffer (Xvfb) as supplied by the operating system vendor. Refer to your
vendor-supplied documentation for information on the use of Xvfb.

638 Correcting Text Fonts � Chapter 28

Correcting Text Fonts

If your presentation displays an incorrect text font on a given client computer, then
the cause may be that the client computer maps a logical font name such as Courier to
a different physical font set. If the logical font is not mapped to any physical font, Java
uses a default font.

When you are using the Java and ActiveX devices or the DS2TREE or DS2CONST
macros, the actual fonts used are determined at run time. The fonts are resolved based
on the fonts available on the system where the graph is viewed. When you use the JAVA
or ACTIVEX device, the fonts specified by the styles are also specified in the HTML or
RTF file that is generated. When the file is viewed, if a font is not available, the font
mapper on the system where the file is viewed determines the font that is substituted.

It is recommended that you specify system fonts whenever possible. See
“Determining What Fonts Are Available” on page 157 and “TrueType Fonts That Are
Supplied by SAS” on page 156 for more information.

For programs that use the JAVAMETA device, specify one of these font names:
Helvetica, TimesRoman, Courier, Dialog, DialogInput, or ZapfDingbats; or, specify one
of these font styles: serif, sansserif, or monospaced. You can also specify the bold, italic,
or italic bold versions of any of these fonts except ZapfDingbats. For example,
HelveticaBold, sansserifItalic, or DialogInputItalicBold. If you specify a font style
instead of a specific font, the actual font used is determined at run time based on the
fonts available on the system where the output is viewed.

Resolving Differences Between Graphs Generated with Different
Technologies

Graphics output that is rendered with one of the Java or ActiveX devices is rendered
using Java or ActiveX technology, and graphics output that is rendered with other
devices such as PNG, GIF, or SVG is rendered with SAS technology.

Because of technological differences between SAS, Java, and ActiveX, output
generated with these different technologies may differ from each other even if the output
is generated with the same SAS procedure code. The graphs may differ in appearance,
in the default values used for certain options, or in the availability of certain features.

For example, differences may occur if you are using a global statement or procedure
option that is not enabled for an applet or control. Most global statement and procedure
options are fully supported by the Java and ActiveX device drivers. Exceptions are
identified in the procedure and statement documentation and summarized in Appendix
1, “Summary of ActiveX and Java Support,” on page 1601.

In certain cases, differences between graphs can occur when an applet or control
overrides the default value of a procedure option. To resolve this issue, specify a value
for the option rather than relying on the default. For example, consider a bubble plot
that is being displayed in the Graph applet. The default bubble size is 5. The Graph
applet overrides that default with a larger bubble size. To apply a bubble size of 5,
specify BSIZE=5 in the BUBBLE statement, rather than relying on the default value of
the BSIZE= option.

639

P A R T3

The Annotate Facility

Chapter 29.Using Annotate Data Sets 641

Chapter 30.Annotate Dictionary 667

640

641

C H A P T E R

29
Using Annotate Data Sets

Overview 641
Enhancing Existing Graphs 642

Creating Custom Graphs 642

Creating Annotate Graphics 643

About the Annotate Data Set 643

Structure of An Annotate Data Set 643
Annotate Variables 645

Annotate Functions 647

About Annotate Graphics 649

Graphics Elements 649

Coordinates 650

Coordinate Systems 650
Ranges for Cells 652

Internal Coordinates 652

Attribute Variables 653

Creating an Annotate Data Set 654

Using the DATA Step 654
Using Annotate Macros in the DATA Step 655

Effect of Missing Values 655

Producing Graphics Output from Annotate Data Sets 655

Including Annotate Graphics with Procedure Output 655

Producing Only Annotate Graphics Output 656
Using the Annotate Variables for Web Output 656

Annotate Processing Details 656

Order in Which Graphics Elements Are Drawn 656

Controlling the Processing with the WHEN Variable 656

Using BY-Group Processing with the Annotate Facility 657

Using the LIFO Stack 657
Debugging 658

Examples 658

Labeling Cities on a Map 659

Labeling Subgroups in a Vertical Bar Chart 661

Drawing a Circle of Stars 664

Overview

The Annotate facility enables you to generate a special data set of graphics
commands from which you can produce graphics output. This data set is referred to as
an Annotate data set. You can use it to generate custom graphics or to enhance graphics

642 Enhancing Existing Graphs � Chapter 29

output from many SAS/GRAPH procedures, including GCHART, GCONTOUR, GMAP,
GPLOT, GSLIDE, and G3D.

Enhancing Existing Graphs
The Annotate facility enhances output from SAS/GRAPH procedures by adding

graphics elements to the output. For example, you can
� label points on a map using map coordinates
� label bars on horizontal and vertical bar charts
� label points on a plot
� create a legend for a three-dimensional graph.

Figure 29.1 on page 642 shows GMAP procedure output annotated with stars and
labels at selected cities.

Figure 29.1 Annotate Graphics Applied to a Map

The program that creates this output is in “Labeling Cities on a Map” on page 659.

Creating Custom Graphs
You can also use an Annotate data set to create custom graphics. For example, you

can use Annotate graphics commands to
� create various types of graphs (including pie charts, bar charts, and plots)
� draw graphics elements such as lines, polygons, arcs, symbols, and text.

Figure 29.2 on page 643 is an example of a custom graph that uses Annotate
commands to draw the graphic elements.

Using Annotate Data Sets � Structure of An Annotate Data Set 643

Figure 29.2 Custom Graphics Using Only Annotate Commands

The program that creates this output is in “Drawing a Circle of Stars” on page 664.

Creating Annotate Graphics
In order to create and use Annotate graphics, you must first understand the

structure and functioning of the Annotate data set. For this information see “About the
Annotate Data Set” on page 643. Once you understand the way the data set works, you
can follow these three steps to create Annotate graphics:

1 Determine what you want to draw, and where (location) and how (coordinate
system) you want to position it on the graphics output. (See “About Annotate
Graphics” on page 649.)

2 Build an Annotate data set of graphics commands using the Annotate variables
and functions. (See “Creating an Annotate Data Set” on page 654.)

3 Submit a SAS/GRAPH procedure to produce the graphics output. (See “Producing
Graphics Output from Annotate Data Sets” on page 655.)

About the Annotate Data Set
In an Annotate data set, each observation represents a command to draw a graphics

element or to perform an action. The graphic elements drawn by these commands can
be added to SAS/GRAPH output or displayed with the GANNO or GSLIDE procedure
as a custom graphic.

The observations in an Annotate data set use a set of predefined Annotate variables.
The values of the variables in the observation determine what is done and how it is
done. To create these observations, you assign values to the variables either explicitly
with a DATA step or implicitly with Annotate macros. See “Creating an Annotate Data
Set” on page 654.

The following sections describe the items in an Annotate data set and explain how
SAS/GRAPH software uses the commands in an Annotate data set to create graphics
elements.

Structure of An Annotate Data Set
Output 29.1 is an example of an Annotate data set called TRIANGLE. The

observations in this data set contain the commands that create a text label, move to a
point in the output, and draw a triangle. (The DATA step that creates TRIANGLE is
shown in “Using the DATA Step” on page 654.)

644 Structure of An Annotate Data Set � Chapter 29

Output 29.1 Listing of the Annotate Data Set TRIANGLE

OBS FUNCTION X Y HSYS XSYS YSYS STYLE COLOR POSITION SIZE LINE TEXT

1 label 20 85 3 3 3 swissb green 6 6.0 . Sample Annotate Graphics

2 move 28 30 3 3 3 swissb green 6 6.0 . Sample Annotate Graphics

3 draw 68 30 3 3 3 swissb red 6 0.8 1 Sample Annotate Graphics

4 draw 48 70 3 3 3 swissb red 6 0.8 1 Sample Annotate Graphics

5 draw 28 30 3 3 3 swissb red 6 0.8 1 Sample Annotate Graphics

Note: A blank denotes a missing value for a character variable. A ’.’ denotes a
missing value for a numeric variable. �

Each observation in this data set contains complete instructions for drawing a
graphic or moving to a position to draw a graphic. The value of the FUNCTION
variable determines what the observation does. Other variables control how the
function is performed. This list describes each observation in the TRIANGLE and the
task it performs:

1 Create a label. This instruction draws a green label at position 20,85 (in X,Y
coordinates). The value of the FUNCTION variable (LABEL) tells the program
what to do. The values of the coordinate variables X and Y combined with the
values of the coordinate system variables HSYS, XSYS, and YSYS tell where to do
it. The values of the attribute variables STYLE, COLOR, TEXT, POSITION, and
SIZE tell how to do it. These variables specify the font (SWISSB), the color and
text of the label, the position of the label in relation to X and Y (centered on the
point), and the size of the text.

2 Go to the starting point for the triangle. The value of the FUNCTION variable
(MOVE) tells the program to go to the point specified by X and Y. This is the only
instruction in the observation. Notice that the values of the variables specified for
the first observation persist but are not used because they have no effect on the
MOVE function.

3 Draw the first line of the triangle. The value of the FUNCTION variable (DRAW)
tells the program to draw a line from the current point (the one specified by
MOVE in the second observation to the new point specified by X and Y. The value
of the COLOR variable changes to red.

4 Draw the second line of the triangle.
5 Draw the third line of the triangle.

Figure 29.3 on page 645 shows the green title and the red triangle produced by the
TRIANGLE data set and displayed with the GANNOChapter 33, “The GANNO
Procedure,” on page 913 procedure. Notes on the figure in black contain the X and Y
coordinates of the graphics elements.

Using Annotate Data Sets � Annotate Variables 645

Figure 29.3 Annotate Output from the TRIANGLE Data Set

Annotate Variables
Annotate variables have predefined names. In each observation, the Annotate facility

looks only for variables with those names. Other variables can be present, but they are
ignored. Conceptually, there are three types of variables:

an action
variable

tells what to do. The only action variable is FUNCTION, which
specifies what graphics element to draw (graphics primitive) or what
action to take (programming function).

positioning
variables

tell where to do it. The positioning variables specify the point at
which to draw the graphics element.

attribute
variables

tell how to do it. The attribute variables specify the characteristics
of the graphics element (for example, color, size, line style, text font).

There is also an HTML variable, which provides linking information when you want
to use the annotate data set to generate a drill-down graph that can be viewed in a Web
browser.

Table 29.1 on page 645 lists all Annotate variables, grouped by task, and briefly
describes each one. See “Annotate Variables” on page 700 for a complete description of
each variable.

Table 29.1 Summary of Annotate Variables

Task Group Variable Description

Variable that
defines an action

FUNCTION specifies a drawing or programming action; Table 29.2 on page
648 describes these actions.

Positioning
variables that
determine
coordinate values

GROUP uses the value of the GCHART GROUP= option in place of X or
Y

MIDPOINT uses the value of the GCHART MIDPOINT= option in place of
X or Y

646 Annotate Variables � Chapter 29

Task Group Variable Description

SUBGROUP uses the value of the GCHART SUBGROUP= option in place of
X or Y

X specifies a numeric horizontal coordinate

Y specifies a numeric vertical coordinate

Z specifies a numeric third dimensional coordinate; used with
G3D procedure only

XC specifies a horizontal character coordinate; only used with data
coordinate systems 1, 2, 7, 8

YC specifies a vertical character coordinate; only used with data
coordinate systems 1, 2, 7, 8

Positioning
variables that
contain internal
coordinates

XLAST,
YLAST

contain the X and Y coordinates of the last nontext function

XLSTT,
YLSTT

contain the X and Y coordinates of the last text function

Positioning
variables that
specify
coordinate
systems

HSYS specifies type of units for the SIZE variable

XSYS specifies coordinate system for X or XC coordinates

YSYS specifies coordinate system for Y or YC coordinates

ZSYS specifies coordinate system for Z coordinate (G3D procedure
only)

Attribute
variables

ANGLE angle of text label or starting angle of a pie slice

CBORDER colored border around text or symbol

CBOX colored box behind text or symbol

COLOR color of a graphics primitive

IMGPATH path to an image file to be displayed.

LINE line type to use in drawing or special control over pies and bars

POSITION placement and alignment for text strings

ROTATE angle at which to place individual characters in a text string or
the delta angle (sweep) of a pie slice

SIZE size of an aspect of a graphics primitive; depends on
FUNCTION variable (for TEXT, height of characters; for PIE,
pie slice radius; for DRAW, line thickness; and so on)

STYLE font or pattern for a graphics element, depends on the
FUNCTION variable

TEXT text to use in a label, symbol, or comment

Using Annotate Data Sets � Annotate Functions 647

Task Group Variable Description

WHEN whether a graphics element is drawn before or after procedure
graphics output

Web variable HTML specifies link information for a drill-down graph

See Figure 29.4 on page 647 for a table that shows you which Annotate functions are
used with which Annotate variables.

Figure 29.4 Annotate Variables used with Annotate Functions

Variables

x

x x

x x x x x x

x x x

x x x x

x x x x x x x

x x x

x x x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x x

x x x x x x x x x x x

x

x

x

x

x

x

x

xxxxx

x

x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x

x x

x x x

x x

x

x

x

x

x

xx

x

x

x x

x x x x

x

x

x x x

x

x

x x x x x x x

x

x

x x x

x x

x

x

x

x

x

x x x x x

x x

Functions

A
R

R
O

W

B
A

R

C
N

TL
2T

X
T

LA
B

E
L

P
IE

C
N

TR

S
W

A
P

S
Y

M
B

O
L

P
O

P

P
U

S
H

P
IE

X
Y

M
O

V
E

P
IE

P
O

IN
T

P
O

LY

P
O

LY
G

O
N

T

TX
T2

C
N

TL

IM
A

G
E

FR
A

M
E

D
R

AW

C
O

M
M

E
N

T

D
R

AW
2T

X
T

D
E

B
U

G

ANGLE

CBORDER

CBOX

COLOR

FUNCTION

GROUP

HSYS

HTML

IMGPATH

LINE

MIDPOINT

POSITION

ROTATE

SIZE

STYLE (fonts)

STYLE (images)

STYLE (patterns)

SUBGROUP

TEXT

WHEN

X

XC

XSYS

Y

YC

YSYS

Z

ZSYS

XLAST

YLAST

YLSTT

XLSTT

xx

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx x x x

x

x

x

x

x

x

x

x x

x

x x x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xxx

x

x

x

x

x

x

x

x

Annotate Functions
The FUNCTION variable accepts a set of predefined values (functions) that perform

both graphics tasks and programming tasks.

648 Annotate Functions � Chapter 29

The graphics functions draw the graphics elements that are illustrated in “Graphics
Elements” on page 649.

The programming functions control the internal coordinates, manipulate the LIFO
stack, and help you debug an Annotate data set. These programming functions are
discussed in “Internal Coordinates” on page 652, “Using the LIFO Stack” on page 657,
and “Debugging” on page 658.

Table 29.2 on page 648 summarizes the tasks that are performed by the Annotate
functions. See “Annotate Functions” on page 669 for a complete description of the
FUNCTION variable and its values.

Table 29.2 Summary of Graphics Tasks Performed by Annotate Functions

Task Group If you want to... Use this function...

Graphics tasks begin to draw a polygon (starting point) and,
optionally, specify a fill color and pattern

POLY

continue drawing a polygon (additional vertex) and,
optionally, specify an outline color of the polygon

POLYCONT

draw an arrow from the current (X,Y) position (see
MOVE and TXT2CNTL)

ARROW

draw a line from the current (X,Y) position (see
MOVE and TXT2CNTL)

DRAW

draw a point POINT

draw a rectangle from the current (X,Y) position
(see MOVE and TXT2CNTL); optionally, fill with a
pattern

BAR

draw a symbol SYMBOL

draw line from (XLAST, YLAST) coordinates to
(XLSTT, YLSTT) coordinates

DRAW2TXT

draw pie slice, circle, or arc PIE

draw text LABEL

move to the specified point (X,Y) MOVE

put a frame around the area defined by XSYS and
YSYS, optionally, fill with a pattern

FRAME

Programming
tasks

insert a comment in the data set (no action);
documentation aid

COMMENT

copy (XLAST, YLAST) coordinates to (XLSTT,
YLSTT) coordinates

CNTL2TXT

copy (XLSTT, YLSTT) coordinates to (XLAST,
YLAST) coordinates

TXT2CNTL

exchange LSTT and LAST coordinates SWAP

get coordinates of a point on a pie slice outline PIEXY

get values for LAST and LSTT coordinates from
LIFO stack

POP

put current values of LAST and LSTT coordinates
onto LIFO stack

PUSH

Using Annotate Data Sets � Graphics Elements 649

Task Group If you want to... Use this function...

set pie radius and coordinates for center; does not
draw a pie

PIECNTR

turn on trace of previous values and LIFO stack DEBUG

See Figure 29.4 on page 647 for a table that shows you which Annotate functions
work with which Annotate variables.

About Annotate Graphics
When you create Annotate graphics, you specify these things:
� what to draw (graphics elements)
� where to draw those elements (the coordinates of the position on the output)
� how to draw (characteristics of the element such as size or color).

The following sections describe the components of the graphics output that are
produced by an Annotate data set.

Graphics Elements
In an Annotate data set, the FUNCTION variable determines the graphics element

that is drawn.
The particular graphics elements that you can draw are shown in Figure 29.5 on

page 649 along with the value of the FUNCTION variable or Annotate macro that
draws them.

Figure 29.5 Annotate Graphics Elements

You can control the position of graphics elements in the following ways:
� explicitly, using coordinates that you supply.
� dependently, based on the location of features in the SAS/GRAPH output. For

example, when you use the GCHART procedure, you can label the parts of a
subgrouped vertical bar chart by using the SUBGROUP variable in your Annotate

650 Coordinates � Chapter 29

data set. The Annotate facility enables you to label subgroups without having to
specify the actual coordinates of the subgroup bar.

� dependently, based on values that are supplied from other data sets. For example,
you can label the ending point of a plot line in the GPLOT procedure by extracting
the value of the last point in the sorted input data set.

Coordinates
Coordinates specify where to put graphics elements. These variables can contain

coordinate values:
� X, Y, and sometimes Z are used for numeric coordinates.
� XC and YC are used for character coordinates.
� GROUP, MIDPOINT, and SUBGROUP can be used when you annotate output

from procedures such as GCHART. Use these variables to specify coordinates for
horizontal or vertical bar charts.

Coordinates are interpreted in terms of a coordinate system in order to identify a
precise location in the graphics output.

Coordinate Systems
A coordinate system determines how coordinates are interpreted. You specify a

coordinate system to use for each dimension, using the XSYS, YSYS, and ZSYS
variables (for X, Y, and Z, respectively). Use ZSYS to annotate graphics output only
from the G3D procedure.

You also specify a coordinate system for the SIZE variable using the HSYS variable.
HSYS takes the same kinds of values as XSYS, YSYS, and ZSYS. The SIZE variable
specifies the size of a graphics element, such as the width of lines (for example,
FRAME), the radius of pie slices (for example, PIE, PIECNTR, and PIEXY), or the
height of text (for example, LABEL and SYMBOL).

These are the important components of the Annotate coordinate systems:
� Area: Each coordinate system refers to one of three drawing areas: data area,

procedure output area, and graphics output area. Coordinates are measured from
a different origin for each area; they also have different limits. Figure 29.6 on
page 651 shows the areas on the graphics output and the coordinate systems that
use them.

Using Annotate Data Sets � Coordinate Systems 651

Figure 29.6 Areas and Their Coordinate Systems

� Units: The units for a coordinate system are based on one of the following:
� data values (for data coordinate systems). The range of values depends on

the range of data expressed along the axes of the graph.
� cells (for coordinate systems for the procedure output area or graphics output

area). The range of values depends on the type of area. See “Ranges for
Cells” on page 652.

� percentages of the total area available, that is, percent of the data area, or
percent of the procedure output area, or percent of the graphics output area.

� Placement: The placement of a coordinate can be absolute or relative. Absolute
coordinates name the exact location for a graphics element in the graphics output.
Relative coordinates name the location with respect to another graphics element in
the output.

Table 29.3 on page 651 describes the coordinate system values for the XSYS, YSYS,
ZSYS, and HSYS variables.

Table 29.3 Coordinate System Values for XSYS, YSYS, ZSYS, and HSYS Variables

Type of
Coordinates Area Units Range

Value for XSYS,
YSYS, ZSYS,
HSYS

Absolute data % 0-100% of axis ’1’ *

data values minimum to maximum of axis ’2’ *

graphics output area % 0-100% of graphics output area ’3’

graphics output area cells 0 to limit of graphics output
area

’4’

procedure output area % 0-100% of procedure output area ’5’

procedure output area cells 0 to limit of procedure output
area

’6’

Relative data % 0-100% of axis ’7’ *

652 Internal Coordinates � Chapter 29

Type of
Coordinates Area Units Range

Value for XSYS,
YSYS, ZSYS,
HSYS

data values minimum to maximum of axis ’8’ *

graphics output area % 0-100% of graphics output area ’9’

graphics output area cells 0 to limit of graphics output
area

’A’

procedure output area % 0–100% of procedure output
area

’B’

procedure output area cells 0 to limit of procedure output
area

’C’

N/A Text font point size N/A 0 to limit of graphics output
area

’D’**

*Coordinate systems 1, 2, 7, and 8 are not valid with block, pie or star charts in the GCHART
procedure or surface, prism or block maps with the GMAP procedure. Additionally, coordinate systems
2 and 8 are not valid with radar charts in the GRADAR procedure.

**Coordinate system D is used only for text functions such as LABEL. For functions that do not create
text, a warning appears in the log and the 4 coordinate system is used.

Ranges for Cells
The available range for coordinate systems that are measured in cells differs by area:

graphics output area
The range of cells that are available for the graphics output area depends on the
device and the number of rows and columns that are set by the HPOS= and
VPOS= graphics options or by the PCOLS and LCOLS device parameters.

procedure output area
As with the graphics output area, the range of cells available for the procedure
output area depends on the device and the number of rows and columns set by the
HPOS= and VPOS= graphics options or by the PCOLS and LCOLS device
parameters. However, the procedure output area is sized after areas for titles and
footnotes are allocated and is reduced accordingly. If you specify that the legend
appear outside of the axis area, the procedure output area also decreases by the
size of the legend.

See “Overview” on page 59 for descriptions of the procedure output area and the
graphics output area.

Internal Coordinates
The Annotate facility maintains two pairs of internal coordinates that are stored in

internal variables:
� coordinates of the last graphics element drawn or the coordinates from the last

move are stored in the variables XLAST and YLAST
� coordinates of the last text drawn are stored in the variables XLSTT and YLSTT.

Many functions use these internal coordinates as a starting point, relying on the
coordinates that are specified with the function as an ending point. For example, in the
BAR function, the (XLAST, YLAST) coordinate pair is used for the lower left corner; the
position defined by the X and Y variables is used for the upper-right corner. (For

Using Annotate Data Sets � Attribute Variables 653

details, see “BAR Function” on page 671.) These internal variables can also provide
default coordinates if X, XC, Y, or YC contains a missing value.

The internal coordinates are automatically updated by some of the Annotate
functions. The text functions, LABEL and SYMBOL, update the (XLSTT,YLSTT)
variables. The BAR, DRAW, MOVE, PIE, and POINT functions update the
(XLAST,YLAST) variables.

You cannot explicitly assign a value to XLAST, YLAST, XLSTT, or YLSTT because
they are internal variables. For example, you cannot make this assignment:

xlast=50;

However, you can use several functions to directly manipulate the values of the
internal coordinates. The functions are shown in Figure 29.7 on page 653.

Figure 29.7 Programming Functions That Manipulate System Variables

CNTL2TXT

TXT2CNTL

SWAP

XLAST,YLAST XLSTT,YLSTT

XLAST,YLAST XLSTT,YLSTT

DRAW2TXT

XLAST,YLAST XLSTT,YLSTT

XLAST,YLAST XLSTT,YLSTT

draw line

swap values

copy values

copy values

For a complete description, see “Annotate Internal Coordinates” on page 737.

Attribute Variables
Attribute variables control the appearance of the graphics elements. Each function

uses only a subset of these variables. See Table 29.1 on page 645 for a list of attribute
variables.

What an attribute variable controls often depends on the graphics element to which
it applies. For example, the SIZE variable controls the width of a line when it is used
with FUNCTION=’DRAW’, but it controls the text height when it is used with
FUNCTION=’LABEL’.

For a complete description of the attribute variables and the aspect of the graphics
elements that they control, see “Annotate Variables” on page 700.

654 Creating an Annotate Data Set � Chapter 29

Creating an Annotate Data Set
Once you have determined what you are going to draw and how you want it to

appear in the output, you need to build an Annotate data set. Although there are many
ways to create SAS data sets, the most commonly used method for creating Annotate
data sets is with a DATA step that uses either

� assignment statements that you explicitly output as separate observations
� Annotate macros, which implicitly assign values to Annotate variables.

Most of the examples in this documentation use a DATA step with assignment
statements. For more information on creating SAS data sets, see SAS Language
Reference: Concepts.

Using the DATA Step
When you use the SAS DATA step with assignment statements, each statement

provides a value for an Annotate variable. After you have assigned all of the variable
values for an observation, you must use an OUTPUT statement to write the observation
to the data set. For example, the following statements create the TRIANGLE data set
shown in Output 29.1:

data triangle;

/* declare variables */
length function style color $ 8 text $ 25;
retain hsys xsys ysys "3";

/* create observation to draw the title */
function="label"; x=20; y=85; position="6";

text="Sample Annotate Graphics";
style="swissb"; color="green"; size=6;
output;

/* create observations to draw the triangle */
function="move"; x=28; y=30; output;
function="draw"; x=68; y=30; size=.8; line=1;

color="red"; output;
function="draw"; x=48; y=70; output;
function="draw"; x=28; y=30; output;

run;

proc ganno annotate=triangle;
run;
quit;

INF
Notice that a RETAIN statement sets the values of the HSYS, XSYS, and YSYS

variables. RETAIN statements are useful when you want to select the values for
variables that are required for many functions and the value is the same for all of them.

The SIZE, LINE, and COLOR variables are included with only the first DRAW
function. Using this method to create the data set, the values set in the first DRAW
function carry over to subsequent DRAW functions.

The PROC GANNO takes as input the annotate data set “triangle” created by the
previous DATA step and creates the output shown in Figure 29.3 on page 645.

Using Annotate Data Sets � Including Annotate Graphics with Procedure Output 655

Using Annotate Macros in the DATA Step
A set of Annotate macros is provided in the SAS sample library. You can use macro

calls in a DATA step to create observations in an Annotate data set. You can also use
Annotate macros and explicit variable assignments together in the same DATA step.
For complete information, see “Annotate Macros” on page 738 and “Using Annotate
Macros” on page 759.

Effect of Missing Values
Annotate data sets follow the same rules for missing values as any other SAS data

set. (See SAS Language Reference: Concepts for information on the effect of missing
values in a data set.)

Variables that have a missing value use a default value. For example, if the COLOR
variable has a missing value, then the first color in either the color list that is defined
by the COLORS= graphics option, if specified, or the device’s default color list is used.
If the FUNCTION variable has a missing value, LABEL is used. If the X variable is
missing, the value of the XLSTT internal coordinate is used for text functions and the
XLAST internal coordinate is used for nontext functions. See “Annotate Variables” on
page 700 for the default value of each Annotate variable.

You probably should not depend on this effect when you create an Annotate data set.
If the data set is structured so that observations depend on prior observations setting
attributes for them, then you may have extra work to do if you change the order of
observations later.

Sometimes missing values are required to produce the desired results. If you have
calculated the coordinates of a point and have the values stored in (XLAST,YLAST) or
(XLSTT,YLSTT), you can force Annotate to use the internal coordinates by supplying
missing values for the X and Y variables. See “Annotate Internal Coordinates” on page
737 for details on using the (XLAST,YLAST) and (XLSTT,YLSTT) internal coordinates.

Producing Graphics Output from Annotate Data Sets

You can display Annotate graphics in two ways:

� annotate output from a SAS/GRAPH procedure by assigning the Annotate data set
to the PROC statement or the action statement, or both.

� display only the Annotate graphics by assigning the Annotate data set to either
the GANNO or GSLIDE procedure.

Including Annotate Graphics with Procedure Output
To annotate SAS/GRAPH procedure output, you must include the ANNOTATE=

option in the appropriate statement in the procedure. ANNOTATE= must name the
Annotate data set that you have already created. If you want the Annotate graphics to
apply to all graphs produced by a procedure, you should include ANNOTATE= in the
PROC statement. If you want the Annotate graphics to apply only to the graph
produced by an action statement within the procedure, include ANNOTATE= in the
action statement. You can specify Annotate data sets in both places.

When you annotate a SAS/GRAPH procedure, the Annotate graphics are displayed
and stored as part of the graphics output that the procedure produces.

656 Producing Only Annotate Graphics Output � Chapter 29

Producing Only Annotate Graphics Output
To produce Annotate graphics without other procedure output, use the GANNO

procedure or the GSLIDE procedure:
� The GANNO procedure produces graphics output consisting only of Annotate

graphics. See Chapter 33, “The GANNO Procedure,” on page 913 for information
on displaying or storing Annotate graphics.

� The GSLIDE procedure can also produce graphics output consisting only of
Annotate graphics. In addition, you can enhance the graphics output with TITLE,
NOTE, and FOOTNOTE statements. See Chapter 51, “The GSLIDE Procedure,”
on page 1517 for details.

Using the Annotate Variables for Web Output
Most of the annotate variables can be used in programs that generate output for the

Web. For more information on the annotate functions and variables, see the Chapter
30, “Annotate Dictionary,” on page 667. For information on using annotate data sets in
Web output, see Chapter 23, “Generating Web Output with the Annotate Facility,” on
page 539.

Annotate Processing Details

Order in Which Graphics Elements Are Drawn
When a procedure uses an Annotate data set, it reads and interprets the observations

one at a time, starting with the first observation and proceeding to the last. The order
of the observations in the data set determines the order in which the graphics elements
are generated. If the coordinates of two graphics elements overlap, the graphics
element produced by an earlier observation can be overwritten by any graphics
elements that are produced by subsequent observations. As a result, graphics elements
can overlay each other and they can also overlay or be overlaid by procedure output.

CAUTION:
Overlay behavior is device-dependent. Most terminals, cameras, and some printers
demonstrate overlay behavior because the process of drawing updates pixels as each
graphics element is drawn. Plotters do not overlay the graphics elements internally
before plotting; they draw graphics elements on top of each other on the paper. The
area where graphics elements overlap shows one color bleeding through the color
that overlays it. To ensure that one graphics element overlays another, use the
WHEN variable. �

Controlling the Processing with the WHEN Variable
The WHEN variable determines the order in which observations in an Annotate data

set are processed. It determines if observations are processed before or after output that
is produced by a SAS/GRAPH procedure. This means that Annotate graphics can be
overlaid by procedure output or can overlay procedure output. By default, Annotate
graphics are drawn before the procedure output.

In effect, you can have two sets of Annotate graphics elements that are generated for
the same output:

Using Annotate Data Sets � Using the LIFO Stack 657

� Annotate graphics drawn before procedure output (the default, WHEN=’B’).
� Annotate graphics drawn after procedure output (WHEN=’A’).

Within each set, graphics elements are drawn in the order that they appear in the
Annotate data set and overlay each other as appropriate (on devices that demonstrate
overlay behavior). For details, see the description of the WHEN variable on “WHEN
Variable” on page 725.

Using BY-Group Processing with the Annotate Facility
You can use the Annotate facility with procedures that use BY statements to

annotate each graph that is generated with a BY statement. The Annotate graphics for
each graph are generated depending on the value of the BY variable. To use BY-group
processing with the Annotate facility, your program must meet the following conditions:

� Both the input data set for the procedure and the Annotate data set must contain
the same BY variable.

� The BY variable must be defined as the same type (character or numeric) and
length in both data sets.

� If a label or format is associated with a BY variable in one data set, the same label
or format has to be associated with it in the other data set.

� Both data sets must be sorted by the BY variable.
� The ANNOTATE= option must be specified in an action statement in the

procedure. If you specify the ANNOTATE= option in the PROC statement, the
Annotate graphics are used for all graphs that are generated by the procedure
rather than for unique values of the BY variable.

See “BY Statement” on page 216 for details.

Using the LIFO Stack
The FUNCTION variable supports several programming functions that manipulate

the internal coordinates and provide other utility operations. Several of these functions
use the LIFO stack to track and set variable values.

The LIFO (last-in-first-out) stack is a storage area where you can keep internal
coordinate values for later use. It is useful when you want to save the current values of
(XLAST,YLAST) and (XLSTT,YLSTT) and use them with functions later in the DATA
step.

You store and retrieve values from the stack using the PUSH and POP functions.
The PUSH function copies the current values of XLAST, YLAST, XLSTT, and YLSTT
onto the stack. The POP function copies values from the stack into XLAST, YLAST,
XLSTT, and YLSTT.

LIFO stacks manage the stored data so that the last data stored in the stack is the
first data removed from the stack. This means that a POP function retrieves the values
most recently stored with a PUSH function. Figure 29.8 on page 658 illustrates how
PUSH and POP functions work together.

658 Debugging � Chapter 29

Figure 29.8 Using PUSH and POP to Store and Retrieve Coordinate Values

XLAST YLAST XLSTT YLSTT

XLAST YLAST XLSTT YLSTT

XLAST YLAST XLSTT YLSTT

PUSH POP
LIFO stack

values from 4th PUSH

values from 3rd PUSH

values from 2nd PUSH

values from 1st PUSH

values from
last functions
that updated
internal
coordinates

See also “Internal Coordinates” on page 652.

Debugging
You can print your Annotate data set with the PRINT procedure. This is an easy way

to examine the Annotation that you have specified or to debug your program. For
example, a listing such as the one in Output 29.1 provides complete information about
the value that you specify for each variable in every observation.

For more complex problems, the DEBUG function enables you to display the values
of Annotate variables and internal coordinates before and after a function is submitted.
The values are written to the SAS log.

If there is an error in your Annotate data set, one or more diagnostic messages are
printed in the SAS log:

� If an error is found in preprocessing, this message appears:

NOTE: ERROR DETECTED IN ANNOTATE= libref.dataset

� If an error is found as an observation is being read, this message appears:

PROBLEM IN OBSERVATION number-message

where message is the text of the error message.
� If the error limit of 20 errors is reached at any point during processing of the data

set, a termination message similar to this one appears:

ERROR LIMIT REACHED IN ANNOTATE PROCESS

20 TOTAL ERRORS

For an explanation of common diagnostic messages, refer to the Help facility.

Examples
The following examples show how to annotate graphics that are created with SAS/

GRAPH procedures and how to build custom graphics:
� “Labeling Cities on a Map” on page 659
� “Labeling Subgroups in a Vertical Bar Chart” on page 661
� “Drawing a Circle of Stars” on page 664

Other examples that use Annotate data sets are as follows:

Using Annotate Data Sets � Labeling Cities on a Map 659

� Example 1 on page 916 (and others in that chapter)
� Example 2 on page 1208
� Example 2 on page 1524
� Example 4 on page 1416

Labeling Cities on a Map
Features:

Annotate
function:

LABEL

SYMBOL

Annotate
variables:

HSYS

POSITION

SIZE

TEXT

WHEN

X and Y

XSYS

YSYS

Sample library
member:

GANCITY

Figure 29.9 Map with Labeled Cities

This example labels a map of the continental United States with the location and
names of three cities. The GMAP procedure draws a map of the U.S. and an Annotate
data set adds the stars and labels.

660 Labeling Cities on a Map � Chapter 29

The DATA step that creates the Annotate data set gets the x and y coordinates of the
cities to be labeled from the MAPS.USCITY data set. Because MAPS.USCITY stores
projected coordinates in the X and Y variables, the DATA step does not need to reassign
the variable values. Also because X and Y contain data values (the map data set
coordinates), the XSYS and YSYS variables specify coordinate system 2, absolute data
values. However, the HSYS variable that controls text height uses coordinate system 3,
percent of the graphics output area.

See Example 4 on page 1416 for an example of labeling a map using map coordinates
in units of latitude and longitude.

See Chapter 43, “The GMAP Procedure,” on page 1239 for more information on using
map data sets.

Set the graphics environment.

goptions reset=all border;

Subset the U.S. map data set by omitting Alaska, Hawaii, and Puerto Rico.

data lower48;

set maps.us;

if state ne stfips("AK");

if state ne stfips("HI");

if state ne stfips("PR");

run;

Create the Annotate data set, CITYSTAR. CITYSTAR contains the commands that draw a star and a label at
each of the three cities. Setting WHEN to A draws the annotation after the map.

data citystar;

length function style color $ 8 position $ 1

text $ 20;

retain xsys ysys "2" hsys "3"

when "a";

Include the values of selected variables from MAPS.USCITY. X and Y contain projected coordinates; CITY
contains names; STATE contains FIPS codes. Because there are several Atlantas, a STATE value is necessary.

set maps.uscity(keep=x y city state);

if (city="Atlanta" and state=13)

or city="Chicago"

or city="Seattle";

Create the observation that draws the star. The text string V is the character code for the
star figure in the MARKER font assigned by the STYLE variable.

function="symbol"; style="marker"; text="V"; color="red"; size=5;
output;

Using Annotate Data Sets � Labeling Subgroups in a Vertical Bar Chart 661

Create the observation that labels the city. TEXT is assigned the value of CITY. The
default font is used. SIZE uses the units assigned by HSYS so text height is 5 percent of the
height of the graphics output area. POSITION 8 places the label directly below the city location.

function="label"; style=""; text=city; color="green";
size=5; position="8"; output;

run;

Define the title for the map.

title "Distribution Center Locations";

Define patterns for the map areas. MEMPTY colors only the state borders.

pattern value=mempty color=blue repeat=49;

Generate the map and assign the annotate data set to the CHORO statement.

proc gmap data=lower48 map=lower48;
id state;
choro state / annotate=citystar discrete nolegend;

run;
quit;

Labeling Subgroups in a Vertical Bar Chart
Features:

Annotate
function:

LABEL (default)

Annotate
variables:

MIDPOINT

POSITION

SUBGROUP

Sample library
member:

GANVBAR

662 Labeling Subgroups in a Vertical Bar Chart � Chapter 29

Figure 29.10 Bar Chart with Labeled Subgroups

This example shows how to label subgroups in a vertical bar chart that is generated
by the GCHART procedure. Each bar represents total orders for a city and is
subgrouped by the type of order. The Annotate facility labels each subgroup with the
number of orders for that category. The coordinates that position the subgroup labels
are derived from the values of the GCHART procedure variables CITY (the chart (or
midpoint) variable) and TYPE (the subgroup variable). These variables are assigned to
the corresponding Annotate variable.

See Chapter 36, “The GCHART Procedure,” on page 989 for more information on
creating bar charts.

Set the graphics environment.

goptions reset=all border;

Create the data set SOLD.

data sold;
length type $ 10;
input city $ units type $;
datalines;

Atlanta 99 Printers
Atlanta 105 Plotters
Atlanta 85 Terminals
Paris 182 Printers
Paris 150 Plotters
Paris 157 Terminals
Sydney 111 Printers
Sydney 136 Plotters
Sydney 100 Terminals
;
run;

Using Annotate Data Sets � Labeling Subgroups in a Vertical Bar Chart 663

Create the Annotate data set, BARLABEL. The MIDPOINT variable uses the values of the
chart variable CITY to provide the X coordinate for the subgroup labels. The SUBGROUP
variable uses the values of the variable TYPE to provide the Y coordinate that vertically
positions the labels in the bar. Because no function is specified, the data set uses the default
function, LABEL. The POSITION value E places the labels just below the top of each subgroup
bar.

data barlabel;
length color style $ 8;
retain color "white" when "a" style "arial"

xsys ysys "2" position "E" size 4 hsys "3";
set sold;
midpoint=city;
subgroup=type;
text=left(put(units,5.));

run;

Define the title and footnote.

title "Orders Received";
footnote j=r "GANVBAR";

Define axis characteristics. AXIS1 suppresses the vertical axis. AXIS2 drops the midpoint
axis label.

axis1 label=none major=none minor=none style=0
value=none;

axis2 label=none;

Generate a vertical bar chart and assign the Annotate data set to the VBAR statement.

proc gchart data=sold;
vbar city / type=sum

sumvar=units
subgroup=type
width=17
raxis=axis1
maxis=axis2
annotate=barlabel;

run;
quit;

664 Drawing a Circle of Stars � Chapter 29

Drawing a Circle of Stars
Features:

Annotate
function:

BAR

CNTL2TXT

FRAME

LABEL

MOVE

PIECNTR

PIEXY

SYMBOL

Annotate
variables:

COLOR

HSYS, XSYS, YSYS

LINE

STYLE

TEXT

X and Y

XLAST and YLAST

XLSTT and YLSTT

Sample library
member:

GANCIRCL

Figure 29.11 Stars Positioned in a Circle with GANNO

Using Annotate Data Sets � Drawing a Circle of Stars 665

This example shows how to use an Annotate data set to draw a flag that is composed
of a rectangle and four stars. The stars are positioned by placing them on an imaginary
circle. The program uses the PIECNTR and PIEXY functions to find the points on the
circle and the CNTL2TXT programming function to transfer coordinate values. It also
processes Annotate assignment statements in a DO loop. The GANNO procedure
displays the Annotate graphics.

Set the graphics environment.

goptions reset=all border;

Create the Annotate data set, FLAG. XSYS, YSYS, and HSYS specify coordinate system 3,
absolute size of the graphics output area.

data flag;
length function style color $ 8 text $ 30;
retain xsys ysys hsys "3";

Draw a frame. The FRAME function uses the default color BLACK to draw a frame around
the graphics output area specified by the XSYS and YSYS variables.

function="frame"; output;

Draw the title. The LABEL function draws the text specified in the TEXT variable. X and Y
explicitly position the title on the graphics output area.

function="label"; x=50; y=90; text="Flag of Micronesia";
style=""; size=6; output;

Draw the background. MOVE specifies the lower left corner of the rectangle that forms the
flag. BAR draws the rectangle using the values of X and Y for the upper right corner. The LINE
value of 3 fills the figure with the specified color.

function="move"; x=20; y=30; output;
function="bar"; x=80; y=80; color="blue";

line=3; style="solid"; output;

Draw the circle of stars. The DO loop repeats the processing instructions defined by the
nested assignment statements, placing a star every 90 degrees around the circle. To increase the
number of stars, reduce the size of the angle between them and adjust the ending angle.

do star_ang=0 to 270 by 90;

The PIECNTR function is set to the center of the rectangle. PIEXY calculates a point on the arc
based on the value of STAR_ANG and updates the internal coordinates XLAST and YLAST.

function="piecntr"; x=50; y=55; size=15; output;
function="piexy"; size=1; angle=star_ang; output;

666 Drawing a Circle of Stars � Chapter 29

The programming function CNTL2TXT copies the values of XLAST and YLAST to the
text-handling coordinates XLSTT and YLSTT. Assigning missing values to X and Y forces the
SYMBOL function to use the values of XLSTT and YLSTT to position the star. The text string V
is the character code for the star figure in the MARKER font assigned by the STYLE variable.

function="cntl2txt"; output;
function="symbol"; style="marker"; text="V";

angle=0; color="white"; size=10; x=.; y=.;
output;

end;
run;

Use the GANNO procedure to process the Annotate data set and generate the
graphics output.

proc ganno annotate=flag;
run;
quit;

667

C H A P T E R

30
Annotate Dictionary

Annotate Dictionary Overview 669
Annotate Functions 669

ARROW Function 669

BAR Function 671

CNTL2TXT Function 673

COMMENT Function 675
DEBUG Function 676

DRAW Function 676

DRAW2TXT Function 677

FRAME Function 679

IMAGE Function 682

LABEL Function 683
MOVE Function 685

PIE Function 686

PIECNTR Function 689

PIEXY Function 690

POINT Function 691
POLY Function 692

POLYCONT Function 694

POP Function 697

PUSH Function 697

SWAP Function 697
SYMBOL Function 698

TXT2CNTL Function 700

Annotate Variables 700

ANGLE Variable 700

CBORDER Variable 701

CBOX Variable 702
COLOR Variable 703

FUNCTION Variable 704

GROUP Variable 705

HSYS Variable 707

HTML Variable 709
IMGPATH Variable 710

LINE Variable 710

MIDPOINT Variable 712

POSITION Variable 714

ROTATE Variable 717
SIZE Variable 718

STYLE Variable (Fonts) 719

STYLE Variable (Images) 720

668 Contents � Chapter 30

STYLE Variable (Arrows) 720
STYLE Variable (Patterns) 721

SUBGROUP Variable 722

TEXT Variable 724

WHEN Variable 725

WIDTH Variable 726
X Variable 726

XC Variable 727

XSYS Variable 729

Y Variable 732

YC Variable 733

YSYS Variable 734
Z Variable 735

ZSYS Variable 736

Annotate Internal Coordinates 737

XLAST, YLAST Variables 737

XLSTT, YLSTT Variables 738
Annotate Macros 738

%ANNOMAC Macro 739

%ARROW Macro 739

%BAR, %BAR2 Macros 740

%CENTROID Macro 741
%CIRCLE Macro 742

%CNTL2TXT Macro 742

%COMMENT Macro 743

%DCLANNO Macro 743

%DRAW Macro 743

%DRAW2TXT Macro 744
%FRAME Macro 745

%LABEL Macro 745

%LINE Macro 747

%MAPLABEL Macro 747

%MOVE Macro 748
%PIEXY Macro 749

%POLY, %POLY2 Macro 750

%POLYCONT Macro 750

%POP Macro 751

%PUSH Macro 752
%RECT Macro 752

%SCALE Macro 753

%SCALET Macro 754

%SEQUENCE Macro 756

%SLICE Macro 756

%SWAP Macro 757
%SYSTEM Macro 758

%TXT2CNTL Macro 758

Using Annotate Macros 759

Macro Structure 759

Making the Macros Available 759
Annotate Macro Task Summary 760

Annotate Error Messages 761

Annotate Dictionary � ARROW Function 669

Annotate Dictionary Overview
The Annotate facility enables you to generate a special data set of graphics

commands from which you can produce graphics output. This data set is referred to as
an Annotate data set. You can generate a complete graph using an Annotate data set in
conjunction with Chapter 33, “The GANNO Procedure,” on page 913 or Chapter 51,
“The GSLIDE Procedure,” on page 1517, or you can apply an Annotate data set to
graphics that were generated with procedures such as Chapter 36, “The GCHART
Procedure,” on page 989, Chapter 37, “The GCONTOUR Procedure,” on page 1095, and
Chapter 43, “The GMAP Procedure,” on page 1239, among others.

In addition, SAS/GRAPH supports the following procedures with the Java or ActiveX
devices: GCHART, GCONTOUR, GMAP, GPLOT, GRADAR, and G3D.

In an Annotate data set, each observation represents a command to draw a graphics
element or perform an action. The observations use a set of predefined “Annotate
Variables” on page 700. “Annotate Functions” on page 669 determine what is to be done
with each observation. “Annotate Macros” on page 738 simplify the process of drawing
a graphics element. “Annotate Error Messages” on page 761 are sent to the SAS log.

For usage information and example programs , refer to “Using Annotate Macros” on
page 759 and Chapter 29, “Using Annotate Data Sets,” on page 641.

Annotate Functions
In an Annotate data set, the value of the FUNCTION variable specifies what action

the observation performs. Annotate functions act in conjunction with Annotate
variables that determine where and how to perform the action. Many of these variables
are function-dependent, that is, what they do depends on the function they are used
with. For example, with the LABEL function the STYLE variable specifies a font; with
the BAR function, STYLE specifies a pattern.

This section describes all of the values of the FUNCTION variable. For each function
it

� describes the function’s action.

� notes whether the function updates the internal coordinate variables XLAST,
YLAST and XLSTT, YLSTT.

� describes how other Annotate variables behave with the function. For a complete
description of each variable, see “Annotate Variables” on page 700.

For a summary of drawing and programming tasks performed by the FUNCTION
variable, see Table 29.2 on page 648.

The variables that are available for use with each function are listed in Figure 29.4
on page 647.

ARROW Function

Draws an arrow in the graphics output from the (XLAST, YLAST) coordinates to the (X,Y)
coordinates specified in the function.

Updates: XLAST, YLAST
Tip: For best results, specify a graphics device driver in the GOPTIONS statement.

670 ARROW Function � Chapter 30

Syntax
FUNCTION=’ARROW’;

Associated Variables
ANGLE= angle-value

specifies the angle for the tip of the arrowhead. You can specify any number for
the angle. If the angle that you specify is not between 0 and 180, the absolute
value of mod(angle-value,180) is used. For example, the values -45, 45, and 225 all
produce the same result.
Default: 30

COLOR=’color’
specifies the color of the arrow that is being drawn. Color can be any SAS/GRAPH
color name.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 707 for an explanation of coordinate-system.

LINE=length
specifies the length of the sides of the arrowhead. The units for LINE are always a
percentage of the graphics area, regardless of the value for HSYS.
Default: 1

SIZE=line-thickness
specifies the thickness of the line that is being drawn. The units depend on the
value of the HSYS variable. For example, if HSYS=’3’, the SIZE variable is in
units of percent of the graphics output area. If HSYS=’4’, the SIZE variable is in
units of cells of the graphics output area.

As the thickness of the line increases, it may be impossible to center around a
given coordinate. For example, if you specify a thickness of value 2 and HSYS=’4’,
the first line is drawn at the (X, Y) coordinates. The second is drawn slightly
above the first. The exact amount varies by device, but it is always one pixel in
width. A thickness of value 3 produces one line above, one line at, and one line
below the (X, Y) coordinate position. See Figure 30.7 on page 677 for examples of
line thicknesses.

Figure 30.1 Sample Line Thicknesses Used with the SIZE Variable

1 2 3

STYLE= ’CLOSED’ | ’FILLED’ | ’OPEN’
specifies the type of arrowhead. Specify one of the following values:

Annotate Dictionary � BAR Function 671

CLOSED
the arrowhead is shaped like an empty triangle.

FILLED
the arrowhead is shaped like a filled triangle.

OPEN
the arrowhead is shaped like a V.

Default: OPEN

WHEN=’B’ | ’A’
specifies when to draw the line in relation to other procedure output. See “WHEN
Variable” on page 725.

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify the endpoint of a line drawn from (XLAST, YLAST) to (X,Y).

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. The XC variable can be
used only with XSYS=’2’. See “XSYS Variable” on page 729 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. The YC variable can be
used only with YSYS=’2’. See “YSYS Variable” on page 734 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable (PROC G3D only). See “ZSYS
Variable” on page 736 for an explanation of coordinate-system.

BAR Function

Draws a rectangle whose lower-left corner is defined by the internal variables (XLAST, YLAST) and
whose upper-right corner is defined by the specified X, Y variable pair. You can define the color of
the fill, the fill pattern, and the edge lines to be drawn.

Alias: BOX
Updates: XLAST, YLAST

Syntax
FUNCTION=’BAR’;

Associated Variables
COLOR=’color’

672 BAR Function � Chapter 30

specifies the color of either the interior of the bar or the outline of the bar. Color
can be any SAS/GRAPH color name. The part of the bar affected depends on the
value of the STYLE variable. If STYLE specifies a pattern or fill, the COLOR
variable determines the color of the interior. If STYLE specifies an empty pattern,
the COLOR variable determines the color of the outline of the bar.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HTML=’link-string’
specifies the text that defines the link for drill-down.

LINE=0...3
specifies the direction in which to adjust the outline of the bar. Use LINE values 1
and 2 to offset a particular bar from an axis or adjoining area. The following figure
illustrates LINE values.

Figure 30.2 LINE Values for Bars

Default: 1

SIZE=thickness
specifies a line thickness for the rectangle

STYLE=’fill-pattern’
specifies the pattern that fills the bar. Fill-pattern can be the following bar and
block patterns:

SOLID
S

a solid fill.

EMPTY
E

an empty fill.

style<density> a shaded pattern:
style can be R | X | L
density can be 1...5

Annotate Dictionary � CNTL2TXT Function 673

WHEN=’B’ | ’A’
specifies when to draw the bar in relation to other procedure output. See “WHEN
Variable” on page 725.

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

define the upper-right corner of a bar (rectangle) whose lower-left corner is
(XLAST,YLAST). Use the Z variable only when you are annotating output from the
G3D procedure. Figure 30.3 on page 673 illustrates the use of these coordinates.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. The XC variable can be
used only with XSYS=’2’. See “XSYS Variable” on page 729 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for Y or YC variable. The YC variable can only be
used with YSYS=’2’. See “YSYS Variable” on page 734 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
736 for an explanation of coordinate-system.

Details
Figure 30.3 on page 673 shows how the XLAST, YLAST, and X, Y variables define the
diagonal corners of the bar. With character data, the XC and YC variables are used in
place of the X and Y variables. The values of the XLAST and YLAST variables are
usually initialized with a MOVE function or another function that updates the XLAST
and YLAST pair. When the XC variable is used, set XSYS=’2’. When the YC variable is
used, set YSYS=’2’.

Figure 30.3 Points Used to Construct a Bar

CNTL2TXT Function

Copies the values of the internal coordinates stored in the variable pairs (XLAST, YLAST) to
(XLSTT, YLSTT).

674 CNTL2TXT Function � Chapter 30

Updates: XLSTT, YLSTT

Syntax
FUNCTION=’CNTL2TXT’;

Details
You can use CNTL2TXT to calculate the position of labels on a graph. For example, the
following DATA step uses CNTL2TXT to position a pie slice label in the center of the
arc and just beyond the arc itself, as shown in Figure 30.6 on page 675.

First, use the PIE function to draw the pie slice:

data pielabel;
retain xsys ysys "3";
length function style $ 8;
function="pie"; size=20; x=30; y=30;

style="empty"; rotate=45; output;

Then use the PIEXY function to calculate a point outside of the arc as shown in
Figure 30.4 on page 674.

/* find a point that is half of the arc (rotate*.5) */
/* and is 4 units beyond the radius (size=1.1) */

function="piexy"; angle=rotate*.5; size=1.1; output;

Figure 30.4 Position Calculated with the PIEXY Function

At this point, the XLAST and YLAST variables contain the coordinates of the point
that is calculated by PIEXY. However, (XLAST, YLAST) cannot be used directly by text
functions. Use CNTL2TXT to copy the coordinates in (XLAST, YLAST) to the XLSTT
and YLSTT variables, which text functions can use. Figure 30.5 on page 674 shows the
results.

function="cntl2txt"; output;

Figure 30.5 Coordinates after Using the CNTL2TXT Function

Annotate Dictionary � COMMENT Function 675

Now you can use the LABEL function to write the label as shown in Figure 30.6 on
page 675. Specify missing values for the X and Y variables to force LABEL to use the
XLSTT and YLSTT variables instead of the X and Y variables.

/* write the label "Slice 1" and position it to */
/* the right of the point stored in XLSTT and YLSTT */

function="label"; text="Slice 1"; angle=0; rotate=0;
position="6"; style="swissb"; size=4; x=.; y=.;
output;

run;

/* draw the Annotate graphics */
proc ganno anno=pielabel;
run;
quit;

Figure 30.6 Labeled Pie Slice

COMMENT Function

Inserts comments within the Annotate data set. The observations generated by the COMMENT
function are ignored when the data set is processed.

Syntax
FUNCTION=’COMMENT’;

Associated Variables
TEXT=’text-string’

specifies the comment to write to the data set.

676 DEBUG Function � Chapter 30

DEBUG Function

Writes the values of internal coordinates and Annotate variables to the SAS log before and after
processing the next command (unless it is DEBUG) in the Annotate DATA step.

Syntax
FUNCTION=’DEBUG’;

DRAW Function

Draws a line in the graphics output from the (XLAST, YLAST) coordinates to the (X, Y) coordinates
specified in the function.

Updates: XLAST, YLAST

Syntax
FUNCTION=’DRAW’;

Associated Variables
COLOR=’color’

specifies the color of the line that is being drawn. Color can be any SAS/GRAPH
color name.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 707 for an explanation of coordinate-system.

LINE=1...46
specifies the line type of the line that is being drawn. See “Specifying Line Types”
on page 276 for an illustration of the line types.

SIZE=line-thickness
specifies the thickness of the line that is being drawn. The units depend on the
value of the HSYS variable. For example, if HSYS=’3’, the SIZE variable is in
units of percent of the graphics output area. If HSYS=’4’, the SIZE variable is in
units of cells of the graphics output area.

As the thickness of the line increases, it may be impossible to center around a
given coordinate. For example, if you specify a thickness of value 2 and HSYS=’4’,

Annotate Dictionary � DRAW2TXT Function 677

the first line is drawn at the (X, Y) coordinates. The second is drawn slightly
above the first. The exact amount varies by device, but it is always one pixel in
width. A thickness of value 3 produces one line above, one line at, and one line
below the (X, Y) coordinate position. See Figure 30.7 on page 677 for examples of
line thicknesses.

Figure 30.7 Sample Line Thicknesses Used with the SIZE Variable

1 2 3

WHEN=’B’ | ’A’
specifies when to draw the line in relation to other procedure output. See “WHEN
Variable” on page 725.

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify the endpoint of a line drawn from (XLAST, YLAST) to (X,Y).

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. The XC variable can be
used only with XSYS=’2’. See “XSYS Variable” on page 729 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. The YC variable can be
used only with YSYS=’2’. See “YSYS Variable” on page 734 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable (PROC G3D only). See “ZSYS
Variable” on page 736 for an explanation of coordinate-system.

DRAW2TXT Function

Draws a line from (XLAST, YLAST) to (XLSTT, YLSTT) without updating any of those variables.

Syntax
FUNCTION=’DRAW2TXT’;

Associated Variables
COLOR=’color’

specifies the line color. Color can be any SAS/GRAPH color name.

HSYS=’coordinate-system’

678 DRAW2TXT Function � Chapter 30

specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 707 for an explanation of coordinate-system.

Annotate Dictionary � FRAME Function 679

LINE=1...46
specifies the line type of the line that is being drawn. See “Specifying Line Types”
on page 276 for an illustration of the line types.

SIZE=line-thickness
specifies the thickness of the line that is being drawn. See “DRAW Function” on
page 676 for details.

WHEN=’B’ | ’A’
specifies when to draw the line in relation to generation of the procedure output.
See “WHEN Variable” on page 725.

Details
DRAW2TXT is useful for underlining text.

DRAW2TXT does not update the (XLAST, YLAST) or (XLSTT, YLSTT) coordinates;
neither can it interrupt a POLYCONT sequence.

FRAME Function

Draws a border around the portion of the display area defined by the XSYS and YSYS variables.
Optionally specifies a background color for the framed area.

Syntax
FUNCTION=’FRAME’;

Note: The FRAME function is not supported by Java. �

Associated Variables
COLOR=’color’

specifies the frame color and, if the STYLE variable is specified, fills the interior of
the frame. Color can be any SAS/GRAPH color name.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 707 for an explanation of coordinate-system.

Note: The HSYS variable is not supported by ActiveX. �

HTML=’link-string’
specifies the text that defines the link for drill-down.

LINE=1...46
specifies the line type with which to draw the frame. See “Specifying Line Types”
on page 276 for an illustration of the line types.

SIZE=line-thickness
specifies the thickness of the line with which to draw the frame. See “DRAW
Function” on page 676 for details.

Note: The SIZE variable is not supported by ActiveX. �

680 FRAME Function � Chapter 30

STYLE=’fill-pattern’
specifies the pattern that fills the area that is bounded by the frame. Fill-pattern
can be the following bar and block patterns:

SOLID
S

a solid fill.

EMPTY
E

an empty fill.

style<density> a shaded pattern:
style can be R | X | L
density can be 1...5

See also the discussion of fill patterns for bars and blocks in VALUE= on page
242.

WHEN=’B’ | ’A’
specifies when to draw the frame in relation to other procedure output. See
“WHEN Variable” on page 725

XSYS=’coordinate-system’
YSYS=’coordinate-system’

define the area to be enclosed by the frame. For example, if XSYS=’1’ and
YSYS=’1’, the frame encloses the axis area as shown in Figure 30.8 on page 680.
See “XSYS Variable” on page 729 and the YSYS variable on “YSYS Variable” on
page 734 for an explanation of coordinate-system.

Figure 30.8 Frame Created When XSYS=’1’ and YSYS=’1’

X

Y

frame when
XSYS = '1' and YSYS = '1'

graphics
output
area

If XSYS=’3’ and YSYS=’3’, the frame encloses the entire graphics output area, as
shown in Figure 30.9 on page 681.

Annotate Dictionary � FRAME Function 681

Figure 30.9 Frame Created When XSYS=’3’ and YSYS=’3’

X

Y

graphics
output area
and frame
when XSYX = '3'
and YSYS = '3'

The values for XSYS and YSYS do not have to be the same. If XSYS=’3’ and YSYS=’5’,
the frame encloses the entire width of the graphics output area; however, vertically, the
frame only encloses the procedure output area as shown in Figure 30.10 on page 681.

Figure 30.10 Frame Created When XSYS=’3’ and YSYS=’5’

TITLE 2

FOOTNOTE

graphics
output
area

frame when
XSYS = '3'
and YSYS = '5'

TITLE 1

See “XSYS Variable” on page 729 and “YSYS Variable” on page 734 for an
explanation of these variables and the areas that they affect.

Details
Use FRAME to simulate the CBACK= graphics option on devices (such as plotters) that
do not support that option. For devices that do support the CBACK= graphics option,
FRAME works in addition to that option. FRAME does not alter the (XLAST, YLAST)
coordinates. See “CBACK” on page 335 for more information on CBACK=.

682 IMAGE Function � Chapter 30

IMAGE Function

Displays an image in the graphics output from the current (X,Y) coordinates to the (X, Y)
coordinates that are associated with the IMGPATH variable.

Updates: XLAST, YLAST

Syntax
FUNCTION=’IMAGE’;

Associated Variables

HTML=’link-string’
specifies the text that defines the link for drill-down.

IMGPATH= ’external-file’
specifies the image file to be displayed in the graphics output. The syntax of
external file specifications varies across operating environments.

Note: Copying and pasting the image works only if an absolute path is
specified instead of a relative path, or if the file into which the image is being
pasted is opened from the directory to which the image is relative. �

STYLE = ’TILE’ | ’FIT’;
specifies how the image is to be applied to fill the specified area of the graphics
output. The default value of TILE replicates the image to fill the area. The FIT
value stretches a single instance of the image to fill the area.

X=horizontal-coordinate;
specifies the horizontal coordinate that determines the size of the image displayed
in the graphics output.

Y=vertical-coordinate;
specifies the vertical coordinate that determines the size of the image displayed in
the graphics output.

Z=depth-coordinate;
specifies the depth coordinate for 3D output.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
736 for an explanation of coordinate-system.

Details
The following example shows how the IMAGE function adds a single stretched instance
of an image to the graphics output, beginning at the current coordinates and ending at
the specified coordinates:

x=10; y=5; function="move"; output;
x=35; y=15; imgpath="/images/gifs/picture.gif";
style="fit";
function="image"; output;

Annotate Dictionary � LABEL Function 683

For a list of the file types that you use, see “Image File Types Supported by SAS/
GRAPH” on page 181.

LABEL Function

Places text in the graphics output. Associated variables can control the color, size, font, base
angle, and rotation of the characters displayed.

Updates: XLSTT, YLSTT

Syntax
FUNCTION=’LABEL’;

Associated Variables
ANGLE=0...360

specifies the baseline angle of the character string with respect to the horizontal.
The pivot point is at (X, Y), and the rotation is in a counterclockwise direction.

CBORDER=’color’ | ’CTEXT’
draws a colored border around the text. Color can be any SAS/GRAPH color name.

CBOX=’color’ | ’CBACK
draws a solid, colored box behind the text. Color can be any SAS/GRAPH color
name.

COLOR=’color’
specifies the color of the text. Color can be any SAS/GRAPH color name.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 707 for an explanation of coordinate-system.

HTML=’link-string’
specifies the text that defines the link for drill-down.

POSITION=’text-position’ | ’0’
controls the text string placement and alignment. Text-position can be one of the
characters 1 through 9, A through F, <, +, or >. Invalid or missing values default
to POSITION=’5’. POSITION should always be a character variable of length 1.
For details, see “POSITION Variable” on page 714.

ROTATE=rotation-angle
specifies the rotation angle of each character in the string. It is equivalent to the
ROTATE= option in the FOOTNOTE, NOTE, and TITLE statements.

SIZE=height

684 LABEL Function � Chapter 30

specifies the height of the text string. The SIZE variable units are based on the
value of the HSYS variable.

STYLE=’font-specification’ | ’NONE’
specifies the font with which to draw the text that is specified by the TEXT
variable. See “STYLE Variable (Fonts)” on page 719 for a description of the
various font specifications.

TEXT=’text-string’
specifies the text to be written. Text-string can be up to 200 characters. Define the
TEXT variable with sufficient length to contain all of the characters in your text
string. If you need longer strings, use separate observations and POSITION=’0’ to
continue the text.

Annotate Dictionary � MOVE Function 685

WHEN=’B’ | ’A’
specifies when to draw the text strings in relation to other procedure output. See
“WHEN Variable” on page 725

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify the start point of the text string. The Z variable can be used only with the
G3D procedure. Optionally, you can modify the placement of the text string with
the POSITION variable.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 729 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 734 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
736 for an explanation of coordinate-system.

MOVE Function

Moves the drawing pointer to a specific location without drawing a line.

Updates: XLAST, YLAST

Syntax
FUNCTION=’MOVE’;

Associated Variables
GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

WHEN=’B’ | ’A’
specifies when to perform the move in relation to other procedure output. See also
“WHEN Variable” on page 725.

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’

686 PIE Function � Chapter 30

YC=’character-type-vertical-coordinate’
specify the coordinates to which the pen is to be moved. The Z variable can only be
used with the G3D procedure.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 729 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 734 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
736 for an explanation of coordinate-system.

Details

Use MOVE to prepare for a DRAW command, a BAR command, or programming
functions.

PIE Function

Draws pie slices in the graphics output.

Updates: XLAST, YLAST to coordinates for center of the slice.

Syntax

FUNCTION=’PIE’;

Associated Variables

ANGLE=starting-angle
specifies the starting angle of the slice arc. The default is 0.00 (horizontal) if the
ANGLE variable is not specified for the first slice. After the first slice, the default
is the ending angle of the slice arc just drawn if ANGLE=. (missing). Therefore,
you can specify consecutive pie slices more easily by omitting the start and end
calculations that are otherwise required. If you want the next slice to start at an
angle that is different from the ending angle of the previous slice, you must specify
a value for the ANGLE variable.

COLOR=’color’
specifies the color of the pie slice, if a pattern is specified in the STYLE variable.
If you specify STYLE=’EMPTY’, the COLOR variable also specifies the outline
color of the pie slices. Color can be any SAS/GRAPH color name.

Annotate Dictionary � PIE Function 687

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 707 for an explanation of coordinate-system.

HTML=’link-string’
specifies the text that defines the link for drill-down.

LINE=0...3
specifies which slice line (or lines) to draw. See Figure 30.11 on page 687 for line
values and their actions. LINE=0 draws only the outside of the arc and enables
you to draw a circle.

Figure 30.11 LINE Values Used with the PIE Function

0 1 2 3

ROTATE=rotation-angle
specifies the angle of rotation or the delta angle of the slice arc. The default is 0.00.

For example, if you specify these statements, the slice arc that is drawn begins
at 90 degrees (vertical) and ends at 135 degrees (90+45):

function="pie"; angle=90; rotate=45; output;

The ANGLE variable is internally updated to the end value, 135 degrees. The
value is modified only internally. If a second PIE is used and the ANGLE variable
contains a missing value, the start angle is assumed to be the previous end, or 135
degrees. The arc continues from that point.

If you specify the previous statements and then specify these statements, the
slice begins at 135 degrees (the end angle from the previous slice) and extends
another 45 degrees to the end point, 180 degrees.

function="pie"; angle=.; rotate=45; output;

This action repeats for every missing angle in the sequence.

SIZE=radius
specifies the radius of the circle being drawn. The SIZE variable uses units that
are determined by the HSYS variable.

688 PIE Function � Chapter 30

STYLE=’fill-pattern’
specifies the value of the pattern that fills the pie slices. Fill-pattern can be the
following pie patterns:

PSOLID
PS

a solid fill.

PEMPTY
PE

an empty fill.

Pdensity<style<angle>> a shaded pattern:

density can be 1...5

style can be X | N

angle can be 0...360

For example, if STYLE=’P5N15’, a pie slice with a fill of parallel lines is
produced. The fill uses the heaviest density to draw the lines, and the parallel
lines are drawn at a 15-degree angle from perpendicular to the radius of the pie
slice. See also the discussion of fill patterns for pie and star charts in VALUE= on
page 245.

WIDTH=’line-thickness’
specifies the thickness of the outline around the pie slice. See “WIDTH Variable”
on page 726.

WHEN=’B’ | ’A’
specifies when to draw the pie slice in relation to other procedure output. See
“WHEN Variable” on page 725.

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

define the center of the slice. The pivot point for all slices is the point referenced
by X, Y, and Z (with PROC G3D only). The first PIE command that is issued sets
the center at the (X,Y) value. If subsequent values for X and Y are missing, the
coordinates of the center point are used.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 729 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 734 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
736 for an explanation of coordinate-system.

See Also
“CNTL2TXT Function” on page 673

Annotate Dictionary � PIECNTR Function 689

PIECNTR Function

Sets new center and radius values for later use by the PIEXY function but does not draw an arc.

Updates: XLAST, YLAST

Syntax

FUNCTION=’PIECNTR’;

Associated Variables

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 707 for an explanation of coordinate-system.

SIZE=radius
specifies the new radius of the pie slice. The new radius is used by a subsequent
PIEXY function. The HSYS variable determines the SIZE variable units.

WHEN=’B’ | ’A’
specifies when to draw the pie slice in relation to other procedure output. See
“WHEN Variable” on page 725

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

define the center and radius of the slice. All slices are referenced from that center.
Use the Z variable only with the G3D procedure.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 729 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 734 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
736 for an explanation of coordinate-system.

690 PIEXY Function � Chapter 30

PIEXY Function

Calculates a point on the outline of the slice arc.

Updates: XLAST, YLAST

Syntax
FUNCTION=’PIEXY’;

Associated Variables
ANGLE=rotation-angle

specifies the angle of rotation when moving around the perimeter of a pie. The
ANGLE variable determines the angle at which the point is located relative to 0
(the three o’clock position). The default is 0.00.

SIZE=radius-multiplier
determines the distance from the center of the slice to the point that is being
calculated. The point’s distance is the current value of the SIZE variable
multiplied by the radius (that is, the SIZE variable) of the previously drawn slice.
To position a graphics element inside the pie slice, set the SIZE variable to less
than 1; to position it outside of the pie slice, set the SIZE variable to greater than
1. For example, if you specify these statements, the point calculated is 1.1 times
the radius (where the radius is taken from the SIZE variable that is used with the
previous FUNCTION=’PIE’ or FUNCTION=’PIECNTR’ observation).

function="piexy"; size=1.1; output;

WHEN=’B’ | ’A’
specifies when to update the internal coordinate pair (XLAST, YLAST) in relation
to other procedure output. See “WHEN Variable” on page 725.

Details
PIEXY does not draw anything but places the calculated coordinates of the point in the
internal coordinate pair (XLAST, YLAST). Then you can use XLAST and YLAST with
other functions to perform other graphics actions, such as labeling pie slices. If you
need to use the calculated position for a text function, use the SWAP or CNTL2TXT to
put (XLAST, YLAST) into (XLSTT, YLSTT).

PIEXY assumes that a pie slice has been drawn or that FUNCTION=’PIECNTR’ has
been used. Erroneous results can occur if a slice has not been drawn and PIEXY is
invoked.

Figure 30.12 on page 691 shows a pie slice that is drawn with the PIE function.
Figure 30.13 on page 691 shows a point beyond the arc that was calculated using the
PIEXY function.

Annotate Dictionary � POINT Function 691

Figure 30.12 Pie Slice Drawn with the PIE Function

Figure 30.13 Point Calculated with the PIEXY Function

See Also
“CNTL2TXT Function” on page 673

POINT Function

Places a single point at the (X, Y) coordinates in the color you specify. The point is one visible
pixel in size.

Updates: XLAST, YLAST

Syntax
FUNCTION=’POINT’;

Associated Variables
COLOR=’color’

specifies the color of the point to be drawn. Color can be any SAS/GRAPH color
name.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates when used with HBAR and VBAR charts from the GCHART
procedure. Use these variables only with the data coordinate systems 1, 2, 7, and 8.

WHEN=’B’ | ’A’
specifies when to draw the point in relation to other procedure output. See
“WHEN Variable” on page 725

X=horizontal-coordinate

692 POLY Function � Chapter 30

Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify the coordinates of the point that is to be drawn. Use the Z variable only
with the G3D procedure.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 729 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 734 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
736 for an explanation of coordinate-system.

POLY Function

Specifies the beginning point of a polygon. Associated variables can define the fill pattern and
color, as well as the line type that outlines the polygon.

Syntax
FUNCTION=’POLY’;

Annotate Dictionary � POLY Function 693

Associated Variables
COLOR=’color’

specifies the color of the interior of the polygon, if a pattern is specified for the
STYLE variable. The outline color is specified with the POLYCONT function.
Color can be any SAS/GRAPH color name.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with data coordinate systems 1, 2, 7, and 8.

HTML=’link-string’
specifies the text that defines the link for drill-down.

LINE=1...46
specifies the line type that outlines the polygon. See “Specifying Line Types” on
page 276 for an illustration of the line types.

SIZE=thickness
specifies a line thickness for the polygon

STYLE=’fill-pattern’
specifies the value of the pattern that fills the polygon. Fill-pattern can be the
following map patterns:

MSOLID
MS

a solid pattern

MEMPTY
ME

an empty pattern

Mdensity<style<angle>> a shaded pattern:

density can be 1...5

style can be X | N

angle can be 0...360.
For example, if STYLE=’MSOLID’ for the POLY function, the fill area that is

drawn by the POLYCONT sequence uses a solid fill. If STYLE=’M5N15’, the fill
area uses a shaded fill of parallel lines. The fill-pattern value M5N15 specifies that
the lines use the heaviest density, are parallel, and are drawn at a 15-degree angle
from the horizontal. See also the discussion of fill patterns for maps in VALUE=
on page 244.

WHEN=’B’ | ’A’
specifies when to begin the polygon in relation to other procedure output. See
“WHEN Variable” on page 725

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify the initial point of the polygon that is being created. Use the Z variable
only with the G3D procedure.

694 POLYCONT Function � Chapter 30

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 729 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 734 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
736 for an explanation of coordinate-system.

Details
Use POLY with POLYCONT to define and fill areas in the graphics output. POLY and
POLYCONT do not update the (XLAST, YLAST) coordinates.

See Also
“POLYCONT Function” on page 694

POLYCONT Function

Continues drawing a polygon begun with the POLY function. POLYCONT specifies each successive
point in the polygon definition.

Syntax
FUNCTION=’POLYCONT’;

Associated Variables
COLOR=’color’

specifies the polygon outline color. Color can be any SAS/GRAPH color name. You
can specify an outline color only with the first POLYCONT command in the
sequence; all subsequent POLYCONT commands ignore the COLOR variable. If
you do not specify a color, the POLYCONT function uses the interior color that was
specified with the POLY function.

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

WHEN=’B’ | ’A’
specifies when to draw the polygon in relation to other procedure output. See
“WHEN Variable” on page 725

Annotate Dictionary � POLYCONT Function 695

X=horizontal-coordinate
Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify a point on the outline of the polygon that is being created. Use the Z
variable only with the G3D procedure.

XSYS=’coordinate-system’
specifies the coordinate system for the X and XC variable. Use the XC variable
only with XSYS=’2’. See “XSYS Variable” on page 729 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y and YC variable. Use the YC variable
only with YSYS=’2’. See “YSYS Variable” on page 734 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
736 for an explanation of coordinate-system.

Details
The polygon definition is terminated by a new POLY command or by any of these
functions:

BAR

DRAW

DRAW2TXT

FRAME

LABEL

MOVE

PIE

PIECNTR

PIEXY

POINT

SYMBOL

Use POLY and POLYCONT together to draw a polygon. The (X, Y) observation from
the POLY function and the last (X, Y) observation from POLYCONT are assumed to
connect. Thus, you are not required to respecify the first point. For example, these
statements draw a pentagon like the one in Figure 30.14 on page 696:

data house;
retain xsys ysys "3";
length function $ 8;

/* start at the lower left corner */
function="poly"; x=35; y=25; output;

/* move to the lower right corner */
function="polycont"; x=65; y=25; output;

/* move to the upper right corner */
function="polycont"; x=65; y=65; output;

696 POLYCONT Function � Chapter 30

/* move to the center top*/
function="polycont"; x=50; y=80; output;

/* move to the upper left corner and complete the figure */
function="polycont"; x=35; y=65; output;

run;

proc ganno anno=house;
run;
quit;

Figure 30.14 Pentagon Produced with the POLY and POLYCONT Functions

(50,80)

POLYCONT POLYCONT

(65,65)(35,65)

POLYCONT

POLYCONT
(65,25)

POLY

(35,25)

Obs. 1

Obs. 2

Obs. 3

Obs. 4Obs. 5

Missing values for the X and Y variables that are specified with POLYCONT are
interpreted differently from the way that they are interpreted with the other functions.
Other functions use the missing values to request a default value. POLYCONT
interprets a missing value as a discontinuity (that is, a hole) in the polygon. If you are
not using the data coordinate system and you specify an X or Y value of –999 in a
POLYCONT observation, the default of (XLAST, YLAST) is used. Missing values
indicate holes and are handled identically in the Annotate facility and the GMAP
procedure. See “Displaying Map Areas and Response Data” on page 1250 for more
information on handling missing values.

Annotate Dictionary � SWAP Function 697

POP Function

Removes the (XLAST, YLAST) and (XLSTT, YLSTT) values from the LIFO stack and updates the
internal coordinate pairs with the retrieved values.

Updates: (XLAST, YLAST) and (XLSTT, YLSTT)

Syntax
FUNCTION=’POP’;

Details
Use POP when you want to access the values of (XLAST, YLAST) and (XLSTT, YLSTT)
that you most recently stored with the PUSH function. See the PUSH function for a
description of the LIFO stack.

PUSH Function

Adds current (XLAST, YLAST) and (XLSTT, YLSTT) values to the LIFO stack.

Syntax
FUNCTION=’PUSH’;

Details
The LIFO (last-in-first-out) stack is a storage area where you can keep internal
coordinate values for later use by utility functions without recalculating those values.
LIFO stacks manage the stored data so that the last data stored in the stack is the first
data removed from the stack.

Use the stack to save the current values of (XLAST, YLAST) and (XLSTT, YLSTT)
and use them with functions later in the DATA step. You store and retrieve these
values from the stack with the PUSH and POP functions. The PUSH function copies
the current values of XLAST, YLAST, XLSTT, and YLSTT onto the stack. The POP
function copies values from the stack into XLAST, YLAST. XLSTT, and YLSTT.

SWAP Function

Exchanges values of (XLAST, YLAST) with (XLSTT, YLSTT) and vice versa.

Updates: (XLAST, YLAST) and (XLSTT, YLSTT)

698 SYMBOL Function � Chapter 30

Syntax
FUNCTION=’SWAP’;

Details
Use SWAP when you want to use both the (XLAST, YLAST) and (XLSTT, YLSTT)
coordinates for text and nontext functions, respectively.

SYMBOL Function

Places symbols in the graphics output. Associated variables can specify the color, font, and height
of the symbols displayed.

Updates: XLSTT, YLSTT

Syntax
FUNCTION=’SYMBOL’;

Associated Variables
CBORDER=’color’ | ’CTEXT’

draws a colored border around the text. Color can be any SAS/GRAPH color name.

CBOX=’color’ | ’CBACK’
draws a solid, colored box behind the text. Color can be any SAS/GRAPH color
name.

COLOR=’color’
specifies the symbol color. Color can be any SAS/GRAPH color name. The COLOR
variable behaves in the same way as the COLOR= option in the SYMBOL
statement. See COLOR= on page 254 for details

GROUP=group-value
MIDPOINT=midpoint-value
SUBGROUP=subgroup-value

specify coordinates for HBAR and VBAR charts from the GCHART procedure. Use
these variables only with the data coordinate systems 1, 2, 7, and 8.

HSYS=’coordinate-system’
specifies the coordinate system for the SIZE variable. See “HSYS Variable” on
page 707 for an explanation of coordinate-system.

HTML=’link-string’
specifies the text that defines the link for drill-down.

Annotate Dictionary � SYMBOL Function 699

SIZE=height
specifies the height of the symbol that is being drawn, using units determined by
the HSYS variable. The SIZE variable is equivalent to the HEIGHT= option in the
SYMBOL statement. See HEIGHT= on page 256 for details.

STYLE=’font-specification’ | ’NONE’;
specifies the font that is used to draw the symbol that is specified by the TEXT
variable. See “STYLE Variable (Fonts)” on page 719 for a description of the
various font specifications.

When the STYLE variable is used with the SYMBOL function, it behaves the
same as the FONT= option in the SYMBOL statement. By default, no font is
specified and the symbol that is specified by the TEXT variable is taken from the
special symbol table. If you use STYLE to specify a symbol font, such as Marker,
the string that is assigned by the TEXT variable is the character code for a
symbol. If you use STYLE to specify a text font, such as Swiss, the string assigned
by the TEXT variable is displayed as text. See FONT= on page 256 for details.

TEXT=’special-symbol’ | ’text-string’;
specifies the symbol to be displayed. Special-symbol can be up to eight characters
long. Values for special-symbol are those described in the VALUE= option of the
SYMBOL statement and are illustrated in VALUE= on page 269.

For ActiveX, the following values are supported: plus, X, star, square, diamond,
triangle, dot, circle, ", #, $, %, =. If a symbol is not supported, a plus sign (+) is
drawn instead.

For Java, the following values are supported: plus, X, star, square, diamond,
triangle, dot (draws a circle), circle, *, +, >. If a symbol is not supported, a plus
sign (+) is drawn instead.

If you also specify a text font with the STYLE variable, you can specify a text
string that is displayed as the symbol. The maximum length for text-string is 200
characters.

When the TEXT variable is used with the SYMBOL function, it behaves the
same as the VALUE= option in the SYMBOL statement. See VALUE= on page 269
for details.

WHEN=’B’ | ’A’
specifies when to draw the symbols in relation to other procedure output. See
“WHEN Variable” on page 725

Y=vertical-coordinate
Z=depth-coordinate (PROC G3D only)
XC=’character-type-horizontal-coordinate’
YC=’character-type-vertical-coordinate’

specify the point at which the symbol is placed. Use the Z variable only with the
G3D procedure.

XSYS=’coordinate-system’
specifies the coordinate system for the X or XC variable. Use the XC variable only
with XSYS=’2’. See “XSYS Variable” on page 729 for an explanation of
coordinate-system.

YSYS=’coordinate-system’
specifies the coordinate system for the Y or YC variable. Use the YC variable only
with YSYS=’2’. See “YSYS Variable” on page 734 for an explanation of
coordinate-system.

ZSYS=’coordinate-system’
specifies the coordinate system for the Z variable. See “ZSYS Variable” on page
736 for an explanation of coordinate-system.

700 TXT2CNTL Function � Chapter 30

Details
SYMBOL is similar to the LABEL function with these exceptions:

� SYMBOL draws symbols. If you do not specify a font, SYMBOL can use the
symbols found in Figure 14.21 on page 271.

� The text cannot be rotated or angled.
� The text string cannot be longer than eight characters.
� The text string is always centered with respect to x and y.

TXT2CNTL Function

Copies the values (XLSTT, YLSTT) to (XLAST, YLAST), replacing previous values of (XLAST,
YLAST).

Syntax
FUNCTION=’TXT2CNTL’;

Details
TXT2CNTL allows nontext functions to use the ending position of a text string as a
starting or ending point.

Annotate Variables
When an Annotate data set is processed, the Annotate facility looks at the values of

specific variables in order to draw graphics. This section describes all of the Annotate
variables in alphabetical order. Not all variables are used with all functions. Refer to
the description of the individual functions in “Annotate Functions” on page 669 for more
information about how each variable is used with each function. For a summary of
Annotate variables and their uses, see Table 29.1 on page 645.

ANGLE Variable

Specifies the angle at which the graphics output is drawn.

Type: numeric
Default: function dependent

Syntax
ANGLE= angle-value;

Annotate Dictionary � CBORDER Variable 701

Functions
The ANGLE variable is function dependent.

If function is... then the ANGLE variable specifies...

ARROW the angle of the tip of the arrowhead. You can specify any number value. If
the angle that you specify is not between 0 and 180, the absolute value of
mod(angle-value,180) is used. For example, the values -45, 45, and 225 all
produce the same result. The default value is 30.

LABEL the baseline angle of the character string with respect to the horizontal. With
the LABEL function, the pivot point is at (X,Y) and the direction of rotation is
counterclockwise. The valid values are from 0 to 360. The default value is 0.

PIE the starting angle of the slice arc, measured counterclockwise. The valid
values are from –360 to 360. The default for the first PIE function is
ANGLE=0 (horizontal, or 3:00 postion), or is the ending point of the arc of the
previous slice. Specify a value for the ANGLE variable if you want the next
slice to start at an angle that is different from the edge of the previous slice,
or if you want the first slice to start at an angle other than horizontal.

PIEXY the angle that works with the SIZE variable to establish the new XLAST,
YLAST point relative to the last pie element established with the PIE or
PIECNTR functions. The angle is measured counterclockwise starting at the
3:00 position. The default value is 0.

CBORDER Variable

Draws a colored border around text or symbols.

Type: character

Length: 8 for color codes and up to 64 for color names

See also: CBOX

Syntax
CBORDER=’color’ | ’CTEXT’;

color
specifies the color that fills the box. The color value can be any SAS/GRAPH color
name. See Chapter 12, “SAS/GRAPH Colors and Images,” on page 167 for more
information about specifying colors.

Specifying a null value for the color value (CBOX=’ ’)cancels the CBOX variable.

CTEXT
draws the border in the same color as the text or symbol. The text color is
determined by (1) the COLOR variable or (2) the CTEXT=graphics option or (3) the
first color in the color list.

702 CBOX Variable � Chapter 30

Functions
You can use the CBORDER variable with these functions:

LABEL

SYMBOL

Details
Once you have specified CBORDER, it remains in effect for all subsequent observations
that use the LABEL or SYMBOL function and draws a border around all text or
symbols. To turn off the border for subsequent text or symbols, specify CBORDER=’ ’.

To fill the area defined by CBORDER, use the CBOX variable in conjunction with
CBORDER.

CBOX Variable

Draws a solid box behind the text or symbol and fills the box with the specified color.

Type: character
Length: 8 for color codes and up to 64 for color names
See also: CBORDER

Syntax
CBOX=’color’ | ’CBACK’;

color
specifies the color that fills the box. Color is any SAS/GRAPH color name. See
Chapter 12, “SAS/GRAPH Colors and Images,” on page 167 for more information
about specifying colors.

Specifying a null value for color (CBOX=’ ’)cancels the CBOX variable.

CBACK
fills the box with the same color as the background color of the graph. The
background color is either (1) the color specified by the CBACK= graphics option or
(2) the default background color for the device.

Functions
You can use the CBOX variable with these functions:

LABEL

SYMBOL

Details
Once you have specified CBOX, it remains in effect for all subsequent observations that
use the LABEL or SYMBOL function.

Annotate Dictionary � COLOR Variable 703

The color of the text or symbol within the box is controlled by the COLOR variable.
By default, the solid box has no border. To add a colored border to the box, use the

CBORDER variable in conjunction with CBOX.

COLOR Variable

Specifies the color used by the function.

Type: character

Length: 8 for color codes and up to 64 for color names

Default:

1 first color in color list of the COLORS= graphics option

2 first color in device’s default color list.

Syntax
COLOR=’color’;

color
specifies any SAS/GRAPH color name. See Chapter 12, “SAS/GRAPH Colors and
Images,” on page 167 for more information about specifying colors.

Functions
The COLOR variable is function dependent.

If function is... then the COLOR variable specifies...

BAR the color that outlines and, optionally, fills the bar if a pattern is specified in
the STYLE (patterns)“STYLE Variable (Patterns)” on page 721 variable. If no
pattern is specified, the color value is applied only to the outline of the bar.

ARROW the color of the arrow.

DRAW,
DRAW2TXT

the color of the line.

FRAME the color of the outline of the frame. If a fill pattern is specified, color also
determines the color of the inside of the frame.

LABEL the color of the text.

PIE the color for the pie slice if a pattern is specified with the STYLE
(patterns)“STYLE Variable (Patterns)” on page 721 variable. If no pattern is
specified, color determines the color of the outline of the pie slice.

POINT the color of the point.

POLY the fill color for the interior of the polygon if a pattern is specified with the
STYLE variable. If the STYLE variable is missing or EMPTY, color is
ignored. Use the POLYCONT function to specify the outline color.

704 FUNCTION Variable � Chapter 30

If function is... then the COLOR variable specifies...

POLYCONT the color that outlines the polygon when used with the first POLYCONT
function. COLOR is ignored for subsequent POLYCONT functions in the
POLYCONT sequence.

SYMBOL the color that draws the symbol.

FUNCTION Variable

Specifies a graphics command or programming function for the Annotate facility to perform.

Type: character
Length: 8
Default: LABEL

Syntax
FUNCTION=’function-name’;

function-name
specifies the name of an Annotate function. The function-name value can be any of
the following.

BAR draws and, optionally, fills a rectangle.

CNTL2TXT,
DRAW2TXT

copies (XLAST, YLAST) to (XLSTT, YLSTT), overwriting the
previous values of (XLSTT, YLSTT).

COMMENT places comments in your data set. The observation is ignored
when the data set is processed.

DEBUG writes the values of all Annotate variables to the SAS log before
and after the next observation.

DRAW draws a line in the graphics output.

FRAME draws a border around the area defined by XSYS and YSYS and
specifies a background color for the framed area .

IMAGE displays an image in the graphics output from the current (X,Y)
coordinates to the coordinates that are associated with the
IMGPATH variable.

LABEL draws text and is the default for the FUNCTION variable.

MOVE moves to the specified point (does not draw a line).

PIE draws a pie slice, arc, or circle that can be filled.

PIECNTR sets new center and radius values. The PIEXY function can use
this information in a later observation.

PIEXY returns the coordinates of a point on a pie slice. Other functions
can use this information in a later observation.

Annotate Dictionary � GROUP Variable 705

POINT draws a point.

POLY begins drawing a polygon (first vertex). Use the POLYCONT
function in successive observations to supply the remaining
vertices.

POLYCONT continues drawing a polygon.

POP gets values from the LIFO stack and changes the current value of
(XLAST, YLAST) and (XLSTT, YLSTT) to those values.

PUSH puts the current values for (XLAST, YLAST) and (XLSTT, YLSTT)
in the LIFO stack.

SWAP exchanges the values of (XLAST, YLAST) and (XLSTT, YLSTT).

SYMBOL draws a symbol. See Figure 14.21 on page 271 for a list of the
symbols.

TXT2CNTL copies the values (XLSTT, YLSTT) to (XLAST, YLAST),
overwriting the previous values of (XLAST, YLAST).

All other variables in the observation that contain the function act as parameters
for the action. For a detailed description of each function and the Annotate variables
that can be used in conjunction with it, see “Annotate Functions” on page 669.

GROUP Variable
Positions graphics elements on the bars of a vertical or horizontal bar chart drawn using the
GROUP= option in the GCHART procedure.

Type: Numeric or character; must match the type of the GROUP= variable used in the
GCHART procedure.
Length: Should match the length of GROUP= variable in the GCHART procedure.
Default: none
Restriction: Used only with vertical or horizontal bar charts produced by the GCHART
procedure.

Syntax
GROUP=group-value;

group-value
references value(s) of the variable that is identified by the GROUP= option in the
GCHART procedure either as a variable name or as an explicit data value.
Group-value can be one of the following:

group-variable the name of a group variable.

group-data-
value

a specific numeric data value.

’group-data-
value’

a specific character data value.

To annotate all the bars in a horizontal or vertical bar chart, specify a variable
name. To annotate a bar chart for a specific value of the GROUP variable, specify a
specific value.

706 GROUP Variable � Chapter 30

Functions
You can use the GROUP variable only with the data coordinate systems 1, 2, 7, and 8,
and with these functions:

BAR

DRAW

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
Using the GROUP variable is similar to using the X and Y variables with data system
coordinates to position graphics elements in a vertical or horizontal bar chart.

Figure 30.15 on page 707 shows how the GROUP variable works with the
SUBGROUP and MIDPOINT variables to label the bars of a vertical bar chart.

Annotate Dictionary � HSYS Variable 707

Figure 30.15 Using the GROUP Variable to Position a Label in a Bar Chart

The label showing the number of units that were sold in Dallas in the year 1997 is
positioned by the values that are assigned to these Annotate variables:

� GROUP=YEAR (where YEAR is a variable in the GCHART data set)
� MIDPOINT=CITY (where CITY is a variable in the GCHART data set)
� SUBGROUP=ITEM (where ITEM is a variable in the GCHART data set).

HSYS Variable

Defines the coordinate system and area of the output used by the SIZE variable to display the
Annotate graphics. Additionally, you can use the HSYS variable with Java or ActiveX to control the
markersize and linesize for the BAR, DRAW, DRAW2TXT, POLY, and SYMBOL functions.

Type: character
Length: 1
Default: 4

Syntax
HSYS=’coordinate-system’;

708 HSYS Variable � Chapter 30

coordinate-system
specifies a value that represents a coordinate system. Values can be 1 through 9 and
A through C as shown in the following table:

Absolute
Systems

Relative
Systems Coordinate System Units

1 7 percentage of data area

2 8 data values

3 9 percentage of graphics output area

4 A cell in graphics output area

5 B percentage of procedure output area

6 C cell in procedure output area

D point size (text only)

These values are also used by the XSYS and YSYS variables. See “Coordinate
Systems” on page 650 for a description of the areas and coordinate systems.

Functions
You can use HSYS with these functions, all of which also use the SIZE variable:

DRAW

DRAW2TXT

FRAME

LABEL

PIE

PIECNTR

SYMBOL

Details
The coordinate system that you specify with the HSYS variable affects how the function
interprets the value of the SIZE variable. For example, if you use HSYS=’3’ and
SIZE=10 with the DRAW function, the thickness of the line is 10 percent of the graphics
output area. If you use HSYS=’1’ and SIZE=10 with DRAW, the thickness of the line is
10 percent of the data area.

For text only, HSYS=’D’ specifies that text sizes are in points. For example, if you
use HSYS=’D’ and SIZE=10 for the LABEL function, the label text uses a 10 point font.

If you use HSYS=’D’ with a function that does not create text, a warning appears in
the log and the HSYS=’4’ coordinate system is used.

Annotate Dictionary � HTML Variable 709

HTML Variable

Defines a link in the HTML file created for a drill-down graph. This link is associated with an area
of the graph and contains valid HTML syntax that can point to a report or another graph that you
want to display when the user drills down on the area.

Type: character
Length: no limit
Default: none

Syntax
HTML=’link-string’;

link-string
specifies the text that defines the link for drill-down. For more information about
drill-down graphs and how to specify the link string, see “Adding Links with the
HTML= and HTML_LEGEND= Options” on page 601. For using the HTML variable
for data tips, see “Adding Custom Data Tips with the HTML= Option” on page 598.

Functions
You can use the HTML variable with these functions:

BAR
FRAME
IMAGE
LABEL

PIE
POLY
SYMBOL

Details
Use a LENGTH statement to set the length of the HTML variable to the longest string
you need for the link string. Be sure to set the HTML value to a null if you continue
writing observations to the annotate data set after you are done assigning links. For
example, the following code defines link information for two squares, but then sets the
HTML variable to null when drawing a frame; otherwise the background area within
the frame will use the link information from the last defined HTML value and become a
hot zone in the graph.

data squares;
length function style color $ 8

html text $ 15;
xsys="3"; ysys="3";

/* draw a green square */
color="green";
function="move"; x=10; y=65; output;

710 IMGPATH Variable � Chapter 30

function="bar"; x=30; y=95; style="solid";
html="href=green.gif"; output;

/* draw a red square */
color="red";
function="’move"; x=60; y=65; output;
function="bar"; x=80; y=95;

html="href=red.gif"; output;

/* draw a blue frame */
function="frame"; color="blue"; style="empty";

/* set null link for background area in frame */
html=""; output;

run;

IMGPATH Variable

Specifies an image to be displayed from the current (X,Y) coordinates to the (X,Y) coordinates that
are associated with this variable.

Type: character
Length: 255

Syntax
IMGPATH = ’external-file’;

external-file
specifies the full path or full file name of an external image file. The format of the
external file specification varies between operating environments.

Note: Copying and pasting the image works only if an absolute path is specified
instead of a relative path, or if the file into which the image is being pasted is opened
from the directory to which the image is relative. �

Details
The IMGPATH variable can be used only with the “IMAGE Function” on page 682.

The manner in which the specified image is to be displayed is determined by the
“STYLE Variable (Images)” on page 720.

For a list of the file types that you use, see “Image File Types Supported by SAS/
GRAPH” on page 181.

LINE Variable

Controls the drawing of a line by determining either the type of line to draw or the relative
position of the line.

Annotate Dictionary � LINE Variable 711

Type: numeric
Default for all functions: 1

Syntax
LINE=line-type;

Functions
The behavior and syntax of the LINE variable is function-dependent.

ARROW
In the ARROW function, the valid values are positive numbers greater than 1.
The value of the LINE variable specifies the length of the sides of the arrowhead.
The units for the LINE variable are always a percentage of the graphics area,
regardless of the HSYS= value.

BAR
In the BAR function, valid values for the LINE variable can be 0, 1, 2, or 3. These
values determine how the outline of the bar is to be drawn, as shown in the
following figure.A value of 0 draws the outline all the way around the bar. A value
of 1 draws the outline only on the vertical sides of the bar. A value of 2 draws the
outline only on the horizontal sides of the bar. A value of 3 draws no outline.

Figure 30.16 LINE Values for Bars

DRAW, DRAW2TXT, FRAME, POLY
Valid values are whole numbers from 0 to 46. A value of 0 specifies that the line
not be drawn. A value of 1 specifies a solid line. The remaining values specify
different segmented lines, as illustrated in Figure 14.22 on page 277.

PIE
Valid values are 0, 1, 2, or 3. The value specifies which lines of a pie slice are to be
drawn for the current arc, as shown in Figure 30.17 on page 712.

712 MIDPOINT Variable � Chapter 30

Figure 30.17 LINE Values Used with the PIE Function

0 1 2 3

MIDPOINT Variable

Positions graphics elements on the bars of a vertical or horizontal bar chart drawn by the GCHART
procedure.

Type: Numeric or character; must match the type of the midpoint variable in the
GCHART procedure.
Length: Should match the length of the midpoint variable in the GCHART procedure.
Default: none
Restriction: Used only with vertical or horizontal bar charts produced by the GCHART
procedure.

Syntax
MIDPOINT=midpoint-value;

midpoint-value
references midpoint data value(s) in the GCHART procedure either as a variable
name or as an explicit data value. Midpoint-value can have one of the following
forms:

midpoint-
variable

the name of a midpoint variable.

midpoint-data-
value

a specific numeric data value.

’midpoint-data-
value’

a specific character data value.

Generally, specify a variable name if you want to annotate all of the bars in a
horizontal or vertical bar chart. To annotate a bar chart for a specific value of the
MIDPOINT variable, specify a specific value.

Functions
You can use the MIDPOINT variable only with the data coordinate systems 1, 2, 7, and
8, and with these functions:

BAR

DRAW

Annotate Dictionary � MIDPOINT Variable 713

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
Using the MIDPOINT variable is similar to using the X and Y variables to position
graphics elements in a vertical or horizontal bar chart when using data system
coordinates. For example, suppose you produce a vertical bar chart in which the chart
variable CITY produces a bar for each city in a data set. The height of each bar is
determined by the value of the SUMVAR= variable, UNITS.

You can label these bars by assigning the chart variable CITY to the Annotate
MIDPOINT variable. The MIDPOINT variable provides the x coordinate for the label.
By default, Annotate assigns the statistic variable, in this case the SUMVAR= variable,
UNITS, to the Annotate Y variable, which provides the y coordinate for the label.

Figure 30.18 on page 713 shows how the values of the MIDPOINT and Y variables
position the label that shows the number of units sold in Atlanta. The value, which is
calculated and printed by the LABEL function, is 56.

Figure 30.18 Using the MIDPOINT Variable to Position a Label in a Bar Chart

MIDPOINT=Atlanta

Los AngelesChicagoAtlanta City

MIDPOINT=Chicago

MIDPOINT

Y=56

Y=UNITS/2

Y➛UNITS100

56

The labels in this figure are positioned by the values that are assigned to these
Annotate variables:

� MIDPOINT=CITY (where CITY is the chart variable); the MIDPOINT variable
provides the horizontal coordinate in the vertical bar chart.

� Y=UNITS (where UNITS is the SUMVAR= variable); the Y variable provides the
vertical coordinate. By specifying Y=units/2, you can vertically center the label in
the bar.

714 POSITION Variable � Chapter 30

Note: In a horizontal bar chart, the MIDPOINT variable controls the y coordinate
and the statistic variable controls the x coordinate. �

CAUTION:
Be careful when using MIDPOINT and X and Y variables in the same data set. Using the
MIDPOINT and X variables in an Annotate data set that is used to annotate a VBAR
chart or the MIDPOINT and Y variables in the same data set used to annotate an
HBAR chart can cause unexpected results. When annotating a VBAR chart, the
Annotate facility uses the MIDPOINT variable as the horizontal coordinate if it
exists in the Annotate data set and ignores the X variable. Consequently, you should
use the MIDPOINT variable as the horizontal coordinate for all observations in an
Annotate data set if you use it for one.

A similar behavior occurs if you use both the MIDPOINT and Y variables in an
Annotate data set that is used to annotate HBAR charts. The MIDPOINT variable is
always used, regardless of whether it has a missing value, and the Annotate facility
ignores the Y variable. In this case, as well, use the MIDPOINT variable for the
vertical coordinate for all observations in an Annotate data set if you use it for one. �

POSITION Variable

Controls placement and alignment of a text string specified by the LABEL function.

Type: character
Length: 1
Default: 5

Syntax
POSITION=’text-position’ | ’0’;

text-position
specifies the placement of the text string in relation to the position that is defined by
the X and Y variables. Text-position can be one of the characters 1 through 9, A
through F, <, +, or >. These characters represent the positions that are described in
the following table:

Position Right Aligned Centered Left Aligned

One cell above 1 2 3

Centered 4 | < 5 | + 6 | >

One cell below 7 8 9

Half cell above A B C

Half cell below D E F

These positions are illustrated in Figure 30.20 on page 716.

Annotate Dictionary � POSITION Variable 715

’0’
specifies a pause in the string in order to change an attribute, such as the color of the
text.

Details

Stacking text strings To stack text strings, specify a different position value of each
string. Figure 30.19 on page 715 shows two ways to stack text.

Figure 30.19 Combining POSITION Values to Stack Text

POSITION='2'

POSITION='5'

POSITION='8'

POSITION='B'

POSITION='E'

Positioning numeric labels The <, +, and > positions perform the same function as 4,
5, and 6, respectively, but are recommended only for labels that are numbers. The <, +,
and > positions are especially useful when you are labeling a horizontal bar chart. You
can use <, +, or > if the numbers in your font are significantly smaller than the text and
you are having trouble centering labels. If the numbers in your font are the same
height or close to the same height as the text, you can use positions 4, 5, and 6 to center
the labels.

Note: You cannot stack <, +, and > positions as you can 4, 5, and 6 positions. �

716 POSITION Variable � Chapter 30

Figure 30.20 Effect of POSITION Values on Text Strings

POSITION = 'C'

POSITION = '1'

One cell above
Right aligned

POSITION = '2'

One cell above
Centered

POSITION = '3'

One cell above
Left aligned

POSITION = '4'
POSITION = '<'

Centered
Right aligned

POSITION = '6'
POSITION = '>'

Centered
Left aligned

POSITION = '5'
POSITION = '+'

Centered
Centered

POSITION = '7'

One cell below
Right aligned

POSITION = '8'

One cell below
Centered

POSITION = '9'

One cell below
Left aligned

POSITION = 'A'

Half cell above
Right aligned

POSITION = 'B'

Half cell above
Centered

Half cell above
Left aligned

POSITION = 'D'

Half cell below
Right aligned

POSITION = 'E'

Half cell below
Centered

POSITION = 'F'

Half cell below
Left aligned

Changing attributes in the middle of a text string 0 is a special value to use when you
want to pause and then continue a text string. With this value you can change colors,
fonts, and so on in the middle of a line, while retaining the exact position of the text at

Annotate Dictionary � ROTATE Variable 717

the pause. When POSITION=’0’, the combined text string is left-justified beginning at
the point that is defined by the X and Y variables. However, you must define missing
values for X for the continuation string. The following Annotate data set changes the
font in the middle of the string. The result is shown in Figure 30.21 on page 717.

data anno;
length style $ 8 text $ 12;
xsys="3"; ysys="3"; hsys="3"; x=5; y=50;

style="swissb"; size=10; text="This is the";
position="0"; output;

x=.; style="swissbi"; text=" ITALIC font";
output;

run;

Figure 30.21 Using POSITION=’0’ to Change the Attributes of a Text String

ROTATE Variable
Specifies the angle at which to rotate the graphics element.

Type: numeric
Default: 0.00

Syntax
ROTATE=rotation-angle;

Functions
The ROTATE variable is function dependent.

If function is... then the variable...

PIE specifies the sweep of the generated arc that begins at the angle that is
specified by the ANGLE variable that is used with the PIE function.

LABEL rotates the individual text characters with respect to the baseline.

718 SIZE Variable � Chapter 30

SIZE Variable

Determines the size of the graphics element with which it is used.

Type: numeric

Length: 8

Default: 1.00 (2 when HSYS=3)

Interaction: For the LABEL function, the value of the HTEXT= goption is used as the
default. However, the value of the GUNIT= goption affects the default value that is
used by the SIZE= variable.

Syntax

SIZE=size-factor;

Functions

The SIZE variable is function dependent.

If function is... then the variable...

ARROW determines the thickness of the arrow being drawn.

DRAW,
DRAW2TXT,
FRAME, POLY, or
POLYCONT

determines the thickness of the line being drawn.

LABEL specifies the height of the text.

PIE or PIECNTR determines the radius of the pie.

PIEXY sets the radius multiplier.

SYMBOL selects the height of the symbol.

Details

The SIZE variable uses the coordinate system that is specified by the “HSYS Variable”
on page 707, which specifies the type of coordinate system used to generate the graph.

As the thickness of the line increases, it may be impossible to center around a given
coordinate. For example, if you specify a thickness of value 2 and HSYS=’4’, the first
line is drawn at the (X, Y) coordinates. The second is drawn slightly above the first. The
exact amount varies by device, but it is always one pixel in width. A thickness of value
3 produces one line above, one line at, and one line below the (X, Y) coordinate position.

The SIZE variable is equivalent to the HEIGHT= option in the SYMBOL statement.
See HEIGHT= on page 256 for details.

See Figure 30.7 on page 677 for examples of line thicknesses.

Annotate Dictionary � STYLE Variable (Fonts) 719

Figure 30.22 Sample Line Thicknesses Used with the SIZE Variable

1 2 3

STYLE Variable (Fonts)

Specifies a font for text or symbols produced by the LABEL or SYMBOL functions.

Type: character
Length: Depends on specification.
Default: default device-resident font
Not supported by: ActiveX (Partial), Java

Syntax
STYLE=’font-specification’ | ’NONE’;

font-specification
specifies a font. You can specify a GRSEG catalog entry that is supplied by SAS (for
example, CENTB) or a system font that is available in your operating environment.
A device-resident font can be specified by using either of these forms:

� HWxxxnn
� “font-name”

Note: If you specify a sytem font whose name is longer than eight characters,
then you must enclose the name of the font in double quotes. �

NONE
specifies the default device-resident font.

See Chapter 11, “Specifying Fonts in SAS/GRAPH Programs,” on page 155 for more
information about specifying fonts.

If the value of the STYLE variable is missing, SAS/GRAPH software searches for a
font specification in this order:

1 the font specified by the FTEXT= graphics option
2 the device-resident font, if the device supports one
3 the SIMULATE font.

Details
When the STYLE variable is used with the SYMBOL function, it behaves the same as
the FONT= option in the SYMBOL statement. By default, no font is specified and the
symbol that is specified by the TEXT variable is taken from the special symbol table. If
you use STYLE to specify a symbol font, such as Marker, the string that is assigned by
the TEXT variable is the character code for a symbol. If you use STYLE to specify a
text font, such as Swiss, the string assigned by the TEXT variable is displayed as text.
See the FONT= option of the SYMBOL statement for details.

720 STYLE Variable (Images) � Chapter 30

Note: Java does not support the STYLE variable. However, you can use special
symbols from the MARKER font by using the SYMBOL function. �

STYLE Variable (Images)

Determines the appearance of images specified with the IMGPATH variable and the IMAGE function.

Type: character
Default: ’TILE’

Syntax
STYLE=’TILE’ | ’FIT’;

’TILE’
Uses copies of the image to fill the image area.

’FIT’
Stretches one instance of the image to fill the image area.

Details
This version of the STYLE variable can be used only with the “IMAGE Function” on
page 682.

STYLE Variable (Arrows)

Specifies the type of arrowhead for arrows.

Type: character
Length: 8
Default: OPEN

Syntax
STYLE=’CLOSED’ | ’FILLED’ | ’OPEN’;

CLOSED
the arrowhead is shaped like an empty triangle.

FILLED
the arrowhead is shaped like a filled triangle.

OPEN
the arrowhead is shaped like a V.

Annotate Dictionary � STYLE Variable (Patterns) 721

STYLE Variable (Patterns)

Specifies a pattern for bars, pies, frames, and rectangles

Type: character
Length: 8
Default: EMPTY | PEMPTY | MEMPTY
Not supported by: Java (partial), ActiveX (partial)

Syntax
STYLE=’fill-pattern’;

fill-pattern
specifies a pattern to use with the graphics element. The value for fill-pattern is
function-dependent:

Function
Valid Fill Pattern Values

BAR,FRAME

SOLID | S Fill with a solid color.

EMPTY | E No fill.

style<density> style R for right-slanted fill lines, L for
left-slanted fill lines, or X for crossing fill
lines

density Whole numbers 1 through 5 specify
increasing thickness for the fill lines.

Note: Java and ActiveX support only SOLID and EMPTY. EMPTY is the
default if any other value is used. �

An illustration of these pattern styles is provided in the definition of the
VALUE= option of the PATTERN statement.

PIE

PSOLID | PS Solid fill.

PEMPTY | PE No fill, the default.

Pdensity<style<angle>>density Whole numbers 1 through 5 specify
increasing thickness for the fill lines.

style N, the default, optionally specifies parallel
fill lines; X optionally specifies crossed fill
lines.

angle Optionally specifies the angle of the fill
lines. Values range from 0 to 360. The
angle is measured counterclockwise from
the horizontal. The default is 0�, which
draws horizontal lines.

Note: Java and ActiveX support only PSOLID and PEMPTY and default to
PEMPTY if any other value is used. �

722 SUBGROUP Variable � Chapter 30

An illustration of these pattern styles is provided in the definition of the
VALUE= option of the PATTERN statement.

POLY

MSOLID | MS Fill with a solid color.

MEMPTY | ME No fill, the default.

Mdensity<style<angle>>density Whole numbers 1 through 5 specify
increasing thickness for the fill lines.

style N, the default, optionally specifies parallel
fill lines; X optionally specifies crossed fill
lines.

angle Optionally specifies the angle of the fill
lines. Values range from 0 to 360. The
angle is measured counterclockwise from
the vertical. The default is 0�, which draws
vertical lines.

Note: Java or ActiveX support only MSOLID and MEMPTY and default to
MEMPTY is any other value is used. �

An illustration of these pattern styles is provided in the definition of the
VALUE= option of the PATTERN statement.

SUBGROUP Variable

Positions graphics elements within subgrouped bars of a vertical or horizontal bar chart produced
by the GCHART procedure.

Type: Numeric or character; must match the type of the SUBGROUP variable used in
the GCHART procedure.
Length: Should match the length of the SUBGROUP= variable in the GCHART
procedure.
Default: none
Restriction: The bar charts must have been produced using the SUBGROUP= option.

Syntax
SUBGROUP=subgroup-value;

subgroup-value
references value(s) of the SUBGROUP= variable in the GCHART procedure either as
a variable name or as an explicit data value. Subgroup-value can have one of the
following forms:

subgroup-
variable

the name of a subgroup variable.

subgroup-data-
value

a specific numeric data value.

subgroup-data-
value

a specific character data value.

Annotate Dictionary � SUBGROUP Variable 723

Generally, specify a variable name if you want to annotate all of the bars in a
horizontal or vertical bar chart. To annotate a bar chart for a specific value of the
SUBGROUP variable, specify a specific value.

Functions
You can use the SUBGROUP variable only with the data coordinate system 1, 2, 7, or 8,
and with these functions:

BAR

DRAW

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
Using the SUBGROUP variable is similar to using the X and Y variables with data
system coordinates to position the graphics elements in subgroup segments in vertical
and horizontal bar charts.For example, in a vertical bar chart that produces a bar for
each city in a data set, you can easily label the subgroups in each bar by setting
subgroup-variable to the GCHART variable by which the bar is being subgrouped. This
variable provides the y coordinate of the label (so don’t specify a competing value for y,
but instead specify y=. or y=y).

The MIDPOINT variable works well with the SUBGROUP variable to provide the x
coordinate. In this example, if you set the MIDPOINT variable to the GCHART
variable that contains the names of the cities, the MIDPOINT variable provides your x
coordinate. Rather than providing the X and Y variables, you would use the
SUBGROUP and MIDPOINT variables. Figure 30.23 on page 724 shows how the
SUBGROUP variable works with the MIDPOINT variable to label the bars of a vertical
bar chart.

724 TEXT Variable � Chapter 30

Figure 30.23 Using the SUBGROUP Variable to Position a Label in a Bar Chart

2525

...........

Los AngelesChicago

printerstypewriters copiers

City

Units 100 MIDPOINT=Atlanta
SUBGROUP=typewriters

MIDPOINT

SUBGROUP

Atlanta

The label showing the number of printers sold in Atlanta is positioned by the values
that are assigned to these Annotate variables:

� MIDPOINT=CITY (where CITY is a variable in the GCHART data set)
� SUBGROUP=ITEM (where ITEM is a variable in the GCHART data set).

TEXT Variable

Specifies the text or symbol to be placed on the graphics output.

Type: character
Length: up to 200

Default: blank string

Syntax
TEXT=’text-string’ | ’special-symbol’;

text-string
specifies the text that is used as a label (LABEL or COMMENT function) or symbol
(SYMBOL function). The maximum length for text-string is 200 characters.

special-symbol
specifies the name of a symbol from the special symbol table that is illustrated in
Figure 14.21 on page 271. The maximum length for special-symbol is eight
characters.

Functions
You can use the TEXT variable with these functions:

Annotate Dictionary � WHEN Variable 725

COMMENT

LABEL

SYMBOL

Details
Define the TEXT variable with sufficient length to contain all of the characters in your
text string. If you need longer strings, use separate observations and POSITION=’0’ to
continue the text.

Use a LENGTH statement to set the length of the TEXT variable if the length of a
text string is longer than one character.

WHEN Variable

Specifies when the function is performed in relation to generating other graphics output for the
procedure or in relation to generating other Annotate graphics.

Type: character
Length: 1
Default: B

Syntax
WHEN=’B’ | ’A’ ;

B | A
specifies whether to draw the annotation before (B) or after (A) the graph. These
values are not case sensitive. A missing value is equivalent to specifying B.

Note: The frame of some plot types is drawn before annotations where
WHEN="B". If you use the Annotate facility to draw a background and you want
your graph frame to be visible, then you can use the BAR function to draw a frame.
The following annotate statements draw a white graph frame:

xsys="3"; ysys="3"; when="b";
function="move"; x=0; y=0; output;
function="bar"; style="solid"; color="white"; x=100; y=100; output;

�

Functions
You can use the WHEN variable with these functions:

BAR

DRAW

DRAW2TXT

FRAME

LABEL

726 WIDTH Variable � Chapter 30

MOVE

PIE

PIECNTR

PIEXY

POINT

POLY

POLYCONT

SYMBOL

Details
Normally, observations in an Annotate data set are processed sequentially. If you use
the WHEN variable, all those observations with a WHEN value of B are processed first,
the procedure output is then processed (if one is to be produced), and finally the
observations with a WHEN value of A are processed.

WIDTH Variable

Determines the thickness of a line.

Type: numeric
Length: 8
Default: 1

Syntax
WIDTH=line-thickness;

Details
The WIDTH variable can be used only with the PIE function.

The WIDTH variable always specifies a width in pixels. The coordinate system that
you specify with the HSYS variable does not affect the WIDTH variable.

Note: The WIDTH variable is not supported by Java when your graph contains a
depth axis (for example, graphs that are created by the SCATTER statement of the
G3D procedure). �

Note: For ActiveX output, the maximum line thickness is ten pixels. If you specify a
greater value, then the value is reduced to 10. �

X Variable

Identifies the x coordinate of where a graphics element is to be drawn.

Annotate Dictionary � XC Variable 727

Type: numeric
Default: value of XLAST or XLSTT

Syntax
X=horizontal-coordinate;

Functions
You can use the X variable with these functions:

ARROW

BAR

DRAW

IMAGE

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Note: The X or XC variable is required unless either the MIDPOINT, GROUP, or
SUBGROUP variable provides the horizontal coordinate. �

Details
Specify a corresponding vertical coordinate when using the X variable. This vertical
coordinate can be specified with the Y, YC, MIDPOINT, or SUBGROUP variables,
depending on the type of graph that you are annotating.

The X variable uses the units that are specified in the XSYS variable. If you use
XSYS=’2’ and the data axis is typed as character, use the XC variable instead of the X
variable.

If the value of the X variable is missing for a function that requires it, the value of
the XLAST variable is used with nontext functions and the value of the XLSTT variable
is used with text functions.

XC Variable

Identifies the x coordinate of a graphics element when the coordinate value is character.

Type: character
Length: Should match that of the plot variable in the procedure.

728 XC Variable � Chapter 30

Default: the value of XLAST or XLSTT
Restrictions: Used only with output from the GCHART and GPLOT procedures. Ignored
if the axes are numeric.

Syntax
XC=’character-type-horizontal-coordinate’;

Functions
You can use the XC variable with these functions:

BAR

DRAW

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
The XC variable is the character equivalent of the X variable. Use XC when the axis
values are character. You must also specify a value of 2 (absolute data values) for the
XSYS variable. (See also “XSYS Variable” on page 729.) If you use a value other than 2
for the XSYS variable, the graphics output is not displayed properly.

Figure 30.24 on page 729 illustrates the XC variable.

Annotate Dictionary � XSYS Variable 729

Figure 30.24 Using the XC and YC Variables with Character Data

A B C D E F G

A

B

C

D

E

F

G

(XC = A) (A,A)

(YC = A)

XC

YC

Note: The X or XC variable is required unless either the MIDPOINT, GROUP, or
SUBGROUP variable provides the horizontal coordinate. �

CAUTION:
Do not use the X and XC variables in the same data set. Using both X and XC variables
in the same data set can cause unpredictable results. �

XSYS Variable
Defines the coordinate system and area of the output used by the X and XC variables to display
the Annotate graphics.

Type: character
Length: 1
Default: 4

Syntax
XSYS=’coordinate-system’;

730 XSYS Variable � Chapter 30

coordinate-system
specifies a value that represents a coordinate system. Values can be 1 through 9 and
A through C as shown in the following table:

Absolute
Systems

Relative
Systems Coordinate System Units

1 7 percentage of data area

2 8 data values

3 9 percentage of graphics output area

4 A cell in graphics output area

5 B percentage of procedure output area

6 C cell in procedure output area

These values are also used by the HSYS and YSYS variables. See “Coordinate
Systems” on page 650 for a description of the areas and coordinate systems.

Functions
You can use the XSYS variable with these functions:

ARROW

BAR

DRAW

FRAME

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

The behavior of the XSYS variable is function-dependent for the following functions:.

BAR, DRAW The coordinate system that you specify with the XSYS variable
affects how the function interprets the value of the X or XC variable.
If XC is used, XSYS=’2’ must also be used.

FRAME The XSYS and YSYS variables define the area enclosed by the
frame. To draw a frame that encloses the axis area, use XSYS=’1’
and YSYS=’1’, as shown in the following figure.

Annotate Dictionary � XSYS Variable 731

Figure 30.25 Frame Created When XSYS=’1’ and YSYS=’1’

X

Y

frame when
XSYS = '1' and YSYS = '1'

graphics
output
area

To draw a frame that encloses the entire graphics output area,
specify XSYS=’3’ and YSYS=’3’, as shown in the following figure.

Figure 30.26 Frame Created When XSYS=’3’ and YSYS=’3’

X

Y

graphics
output area
and frame
when XSYX = '3'
and YSYS = '3'

To limit the size of the frame to the size of the procedure output
area, specify a value of 5 for XSYS and YSYS.

Note that the values of XSYS and YSYS can differ. You can
specify a frame that occupies the entire width of the graphics output
area and only the vertical width of the procedure output area by
specifying XSYS=’3’ and YSYS=’5’, as shown in the following figure.

732 Y Variable � Chapter 30

Figure 30.27 Frame Created When XSYS=’3’ and YSYS=’5’

TITLE 2

FOOTNOTE

graphics
output
area

frame when
XSYS = '3'
and YSYS = '5'

TITLE 1

Details
The coordinate system that you specify with the XSYS variable affects how the function
interprets the value of the X or XC variable.

Note: Not all coordinate systems can be used with all Annotate variables. For any
restrictions, see the individual variables in this section. �

Y Variable

Identifies the y coordinate of where a graphics element is to be drawn.

Type: numeric
Default: value of YLAST or YLSTT

Syntax
Y=vertical-coordinate;

Functions
You can use the Y variable with these functions:

ARROW

BAR

DRAW

IMAGE

LABEL

MOVE

PIE

Annotate Dictionary � YC Variable 733

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Note: The Y or YC variable is required unless either the MIDPOINT, GROUP, or
SUBGROUP variable provides the vertical coordinate. �

Details
Specify a corresponding horizontal coordinate when using the Y variable. You can
specify the horizontal coordinate with the X, XC, MIDPOINT, or SUBGROUP variable,
depending on the type of graph you are annotating.

The Y variable uses the units specified in the YSYS variable. If you use YSYS=’2’
and the axis data is type character, use the YC variable instead of the Y variable.

If the value of the Y variable is missing for a function that requires it, the value
YLAST is used for nontext functions and the value of YLSTT is used for text functions.

YC Variable

Identifies the y coordinate of a graphics element when the coordinate value is character.

Type: character
Length: Should match that of the plot variable in the procedure.
Default: YLAST | YLSTT
Restrictions: Used only with output from the GCHART and GPLOT procedures. Ignored
if the axes are numeric.

Syntax
YC=’character-type-vertical-coordinate’;

Functions
You can use the YC variable with these functions:

BAR

DRAW

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

734 YSYS Variable � Chapter 30

POLYCONT

SYMBOL

Details
The YC variable is the character equivalent of the Y variable. Use YC when the axis
values are character. You must also specify a value of 2 (absolute data values) for the
YSYS variable. (See “YSYS Variable” on page 734.) If you use a value other than 2 for
the YSYS variable, the graphics output is not displayed properly.

See Figure 30.24 on page 729 for an illustration of the YC variable.

Note: The X or XC variable is required unless either the MIDPOINT, GROUP, or
SUBGROUP variable provides the horizontal coordinate. �

CAUTION:
Do not use Y and YC variables in the same data set. Using both Y and YC variables in
the same data set can cause unpredictable results. �

YSYS Variable

Defines the coordinate system and area of the output used by Y and YC to display the Annotate
graphics.

Type: character

Length: 1
Default: 4

Syntax
YSYS=’coordinate-system’;

coordinate-system
specifies a value that represents a coordinate system. Values can be 1 through 9 and
A through C, as shown in the following table:

Absolute
Systems

Relative
Systems Coordinate System Units

1 7 percentage of data area

2 8 data values

3 9 percentage of graphics output area

4 A cell in graphics output area

5 B percentage of procedure output area

6 C cell in procedure output area

Annotate Dictionary � Z Variable 735

These values are also used by the HSYS and XSYS variables. See “Coordinate
Systems” on page 650 for a description of the areas and coordinate systems.

Functions
The YSYS variable is function-dependent, as defined in the “XSYS Variable” on page 729

You can use the YSYS variable with these functions:

ARROW

BAR

DRAW

FRAME

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
The coordinate system that you specify with the YSYS variable affects how the function
interprets the value of the Y or YC variable.

Note: Not all coordinate systems can be used with all Annotate variables. For any
restrictions, see the individual variables in this section. �

Z Variable

Identifies the z coordinate of where a graphics element is to be drawn.

Type: numeric

Length: 8

Default: none

Restrictions: For Java or ActiveX, you can use the Z variable with GMAP, GCHART,
GCONTOUR, GPLOT, and G3D, for example to add annotations above the plane of the
map. For other devices, the Z variable is used only with output from the G3D procedure.

Syntax
Z=depth-coordinate;

736 ZSYS Variable � Chapter 30

Functions
You can use the Z variable with these functions:

ARROW

BAR

DRAW

IMAGE

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
The Z variable uses the units that are specified in the ZSYS variable.

ZSYS Variable

Defines the coordinate system and area of the output used by Z variable to display the Annotate
graphics.

Type: character
Length: 1
Default: 2

Syntax
ZSYS=’coordinate-system’;

coordinate-system
specifies a value that represents a coordinate system. Values can be 1, 2, 7, or 8 as
shown in the following table:

Absolute
Systems

Relative
Systems Coordinate System Units

1 7 percentage of data area

2 8 data values

Annotate Dictionary � XLAST, YLAST Variables 737

See “Coordinate Systems” on page 650 for a description of the areas and coordinate
systems.

Functions
You can use the ZSYS variable with these functions:

ARROW

BAR

DRAW

IMAGE

LABEL

MOVE

PIE

PIECNTR

POINT

POLY

POLYCONT

SYMBOL

Details
The coordinate system that you specify with the ZSYS variable affects how the function
interprets the value of the Z variable.

Note: Not all coordinate systems can be used with all Annotate variables. For any
restrictions, see the individual variables in this section. �

Annotate Internal Coordinates
The Annotate facility maintains two sets of internal coordinates that are stored in

the variable pairs (XLAST, YLAST) and (XLSTT, YLSTT). One set of variables (XLAST,
YLAST) stores coordinate values that are generated by nontext functions and the other
set (XLSTT, YLSTT) stores coordinates generated by text functions. These two variable
pairs supply default values when the X or Y variable contains a missing value.

Both pairs are initially set to 0 and remain 0 until a function updates the values.
You cannot assign explicit values to these variables, but you can manipulate their
values with some of the Annotate functions.

XLAST, YLAST Variables

Track the last values specified for the X and Y variables when X and Y are used with nontext
functions.

738 XLSTT, YLSTT Variables � Chapter 30

Details
The coordinate values that are stored in the (XLAST, YLAST) variables are
automatically updated by these nontext functions: BAR, DRAW, MOVE, PIE, and
POINT. These values are then available for use by other nontext functions that follow
in the DATA step. (The DRAW2TXT graphics function uses XLAST and YLAST but
does not update them.)

Because (XLAST, YLAST) are updated internally, you cannot specify values for them.
However, their values can be manipulated by these programming functions:

CNTL2TXT

PIECNTR

PIEXY

POP

PUSH

SWAP

TXT2CNTL

XLSTT, YLSTT Variables

Track the last position for the X and Y variables when X and Y are used with text-handling
functions.

Details
The coordinate values stored in the (XLSTT, YLSTT) variables are automatically
updated by the LABEL and SYMBOL text functions. These values are then available
for use by other text functions that follow in the DATA step.

Because (XLSTT, YLSTT) are updated internally, you cannot specify values for them.
However, their values can be manipulated by these programming functions:

CNTL2TXT

DRAW2TXT

POP

PUSH

SWAP

TXT2CNTL

Annotate Macros

You can use Annotate macros within a SAS DATA step to simplify the process of
creating Annotate observations. With a macro, you specify a function and assign
variable values in one step without having to write explicit variable assignment

Annotate Dictionary � %ARROW Macro 739

statements. You can mix assignment statements and macro calls in the same DATA
step.

This section describes all of the Annotate macros including the complete syntax and
a description of the parameters. For more information on accessing and using macros,
and for a summary of operations performed by the Annotate macros, see “Using
Annotate Macros” on page 759.

%ANNOMAC Macro

Compiles Annotate macros and makes them available for use.

Variables written out: none directly

Syntax
%ANNOMAC;

Details
In a SAS session, you must submit the ANNOMAC macro before you can use the
Annotate macros.

%ARROW Macro

Draws an arrow from (X1, Y1) to (X2,Y2).

Variables written out: ANGLE, COLOR, FUNCTION, LINE, SIZE, STYLE, X, Y
Internal variables updated: XLAST, YLAST
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%ARROW (x1, y1, x2, y2, color, line, size, angle, style);

x1, y1
specify coordinates for the start point of the arrow. Values can be coordinate
numbers, numeric constants, or numeric variables. For details, see the Annotate “X
Variable” on page 726.

x2, y2
specify coordinates for the end point of the arrow. Values can be coordinate numbers,
numeric constants, or numeric variables. For details, see the Annotate “X Variable”
on page 726.

color

740 %BAR, %BAR2 Macros � Chapter 30

specifies the color of the line using a character string without quotation marks. For
details, see the Annotate “COLOR Variable” on page 703. Use an asterisk (*) to
specify the previous value of the color parameter.

line
specifies the length of the sides of the arrowhead. The value can be a number, a
numeric constant, or a numeric variable. For valid values, see the Annotate “LINE
Variable” on page 710 for the ARROW function.

size
specifies the width of the line. The value can be a number, a numeric constant, or a
numeric variable. For valid numeric values, see the Annotate “SIZE Variable” on
page 718 for the ARROW function.

angle
specifies the angle of the tip of the arrowhead. The value can be a number, a numeric
constant, or a numeric variable. For valid numeric values, see the Annotate “ANGLE
Variable” on page 700 for the ARROW function.

style
specifies the type of arrowhead. You can specify CLOSED, FILLED, or OPEN. For
more information about the values, see “STYLE Variable (Arrows)” on page 720.

Details
The point from which the line is drawn is usually set with the MOVE macro.

%BAR, %BAR2 Macros

Draws a rectangle using two sets of x/y coordinates, which specify diagonal corners. You can
specify the rectangle’s line type, line color, fill type, and fill color.

Variables written out: COLOR, FUNCTION, LINE, STYLE, X, Y
Internal variables updated: XLAST, YLAST
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Annotate Dictionary � %CENTROID Macro 741

Syntax
%BAR (x1, y1, x2, y2, color, line, style);

%BAR2(x1, y1, x2, y2, color, line, style, width);

x1, y1
specify the location of the first corner of the bar. Values can be numeric coordinates,
numeric constants, or numeric variables. For details, see the Annotate “X Variable”
on page 726.

x2, y2
specify the location of second corner of the bar, which is drawn diagonal to the first
corner. Values can be numeric coordinates, numeric constants, or numeric variables.

color
specifies the outline color and optional fill color using a character string without
quotation marks. For details, see the Annotate “COLOR Variable” on page 703.

line
specifies which of the outlines of the bar are to be drawn. The value can be a
number, a numeric constant, or a numeric variable. For valid values, see the
Annotate “LINE Variable” on page 710 for the BAR function.

style
specifies the fill pattern for the bar using a character string without quotation marks.
For valid values, see the Annotate “STYLE Variable (Patterns)” on page 721 for the
BAR function.

width
specifies the width of the outline and optional fill lines. The value can a number, a
numeric constant, or a numeric variable. For details and valid values, see the
Annotate “SIZE Variable” on page 718 for the DRAW function.

%CENTROID Macro

Retrieves the centroids of polygons

Variables written out: X, Y, id variables

Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%CENTROID (input-data-set, output-data-set, list-of-id-variables);

input-data-set
specifies a map data set. The input map data set must be sorted by the ID variables.

output-data-set
contains the id variables and the X and Y variables.

742 %CIRCLE Macro � Chapter 30

list-of-id-variables
specifies the variables each of which is to be assigned the centroid coordinates of each
observation in the input-data-set. There will be one observation for each unique set
of ID values. If you specify more than one ID variable, then separate each variable
with a space.

%CIRCLE Macro

Draws an empty circle with the center at (x, y).

Variables written out: ANGLE, FUNCTION, ROTATE, SIZE, STYLE, X, Y
Internal variables updated: XLAST, YLAST
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%CIRCLE (x, y, size, color);

x, y
specify coordinates for the center of the circle. Values can be coordinate numbers,
numeric constants, or numeric variables. For details, see the Annotate “X Variable”
on page 726.

size
specifies the radius of the circle. The value can be a number, a numeric constant, or
a numeric variable. For details and valid values, see the Annotate “SIZE Variable”
on page 718.

color
specifies the color of the circle using a character string without quotation marks. For
details, see the Annotate “COLOR Variable” on page 703. Use an asterisk (*) to
specify the previous value of the color parameter.

See Also
“%SLICE Macro” on page 756 to draw a filled circle.

%CNTL2TXT Macro

Copies the values of the internal coordinates (XLAST, YLAST) to the text coordinate (XLSTT,
YLSTT).

Variables written out: FUNCTION
Internal variables updated: XLSTT, YLSTT
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Annotate Dictionary � %DRAW Macro 743

Syntax
%CNTL2TXT;

Details
The %CNTL2TXT macro is useful when you are calculating the position of labels on a
graph. For an example, see “CNTL2TXT Function” on page 673.

%COMMENT Macro
Inserts a comment into an Annotate data set.

Variables written out: FUNCTION, TEXT
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%COMMENT (text-string);

text-string
specifies the text to insert in the Annotate data set. The value can be a character
string enclosed in quotation marks or the name of a character variable. For details,
see the Annotate “TEXT Variable” on page 724.

%DCLANNO Macro
Automatically sets the correct length and data type for all Annotate variables except the TEXT
variable.

Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%DCLANNO;

%DRAW Macro
Draws a line from (XLAST, YLAST) to the specified coordinate.

744 %DRAW2TXT Macro � Chapter 30

Variables written out: COLOR, FUNCTION, LINE, SIZE, X, Y
Internal variables updated: XLAST, YLAST
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%DRAW (x, y, color, line, size);

x, y
specify coordinates for the end point of the line. Values can be coordinate numbers,
numeric constants, or numeric variables. For details, see the Annotate “X Variable”
on page 726.

color
specifies the color of the line using a character string without quotation marks. For
details, see the Annotate “COLOR Variable” on page 703. Use an asterisk (*) to
specify the previous value of the color parameter.

line
specifies the line type (continuous or segmented). The value can be a number, a
numeric constant, or a numeric variable. For valid values, see the Annotate “LINE
Variable” on page 710 for the DRAW function.

size
specifies the width of the line. The value can be a number, a numeric constant, or a
numeric variable. For valid numeric values, see the Annotate “SIZE Variable” on
page 718 for the DRAW function.

Details
The point from which the line is drawn is usually set with the MOVE macro.

%DRAW2TXT Macro

Draws a line from the coordinate (XLAST, YLAST) to the text coordinate (XLSTT, YLSTT).

Variables written out: COLOR, FUNCTION, LINE, SIZE
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%DRAW2TXT (color, line, size);

color
specifies the color of the line using a character string without quotation marks. For
details, see the Annotate “COLOR Variable” on page 703. Use an asterisk (*) to
specify the previous value of the color parameter.

Annotate Dictionary � %LABEL Macro 745

line
specifies the line type (continuous or segmented). The value can be a number, a
numeric constant, or a numeric variable. For valid values, see the Annotate “LINE
Variable” on page 710 for the DRAW function.

size
specifies the width of the line. The value can be a number, a numeric constant, or a
numeric variable. For valid values, see the Annotate “SIZE Variable” on page 718 for
the DRAW function.

%FRAME Macro
Draws a border around the portion of the display area defined by the reference system and
optionally fills the area.

Variables written out: COLOR, FUNCTION, LINE, SIZE, STYLE
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%FRAME (color, line, size, style);

color
specifies the outline color and the optional fill color using a character string without
quotation marks. For details, see the Annotate “COLOR Variable” on page 703. Use
an asterisk (*) to specify the previous value of the color parameter.

line
specifies a line type (continuous or segmented) for the frame outline and fill lines. The
value can be a number, a numeric constant, or a numeric variable. For valid numeric
values, see the Annotate “LINE Variable” on page 710 for the DRAW function.

size
specifies the width of the frame outline and fill lines. The value can be a number, a
numeric constant, or a numeric variable. For valid values, see the Annotate “SIZE
Variable” on page 718 for the DRAW function.

style
specifies the fill pattern for the frame using a character string without quotation
marks. For valid values, see the Annotate “STYLE Variable (Patterns)” on page 721
for the FRAME function.

Details
See “%SYSTEM Macro” on page 758 for information on setting the reference system.

%LABEL Macro
Places a text label at the specified coordinates.

746 %LABEL Macro � Chapter 30

Variables written out: ANGLE, COLOR, FUNCTION, POSITION, ROTATE, SIZE, STYLE,
TEXT, X, Y
Internal variables updated: XLSTT, YLSTT
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%LABEL (x, y, text-string, color, angle, rotate, size, style, position);

x, y
specifies the location of the text string. Values can be coordinate numbers, numeric
constants, or numeric variables. The position of the text string relative to x, y is
determined by the position parameter. For details, see the Annotate “X Variable” on
page 726.

text-string
specifies the text of the label. The value can be a character variable name or a
character string enclosed in quotation marks. For details, see the Annotate “TEXT
Variable” on page 724.

color
specifies the color of the text string using a character string without quotation
marks. For details, see the Annotate “COLOR Variable” on page 703. Use an
asterisk (*) to specify the previous value of the color parameter.

angle
specifies the angle of the text string with respect to the horizontal. The value can be
a number, a numeric constant, or a numeric variable. For valid values, see the
Annotate “ANGLE Variable” on page 700 for the LABEL function. The x, y
coordinates specify the pivot point, and the position parameter positions the text
relative to x, y.

rotate
specifies the rotation angle of each character in the text string. The value can be a
number, a numeric constant, or a numeric variable. For valid values, see the
Annotate “ROTATE Variable” on page 717.

size
specifies the size of the text string. The value can be a number, a numeric constant,
or a numeric variable. For valid values, see the Annotate “SIZE Variable” on page
718 for the LABEL function.

style
specifies the text font, using a character string without quotation marks. For valid
values, see the Annotate “STYLE Variable (Fonts)” on page 719.

position
specifies the placement and alignment of the text string relative to the x, y
coordinates, using a text string without quotation marks. For valid values, see the
Annotate “POSITION Variable” on page 714.

Annotate Dictionary � %MAPLABEL Macro 747

%LINE Macro

Draws a line between two sets of coordinates.

Variables written out: COLOR, FUNCTION, LINE, SIZE, X, Y
Internal variables updated: XLAST, YLAST
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%LINE (x1, y1, x2, y2, color, line, size);

x1, y1
specify the coordinates of the start of the line. Values can be numbers, numeric
constants, or numeric variables. For details, see the Annotate “X Variable” on page
726 variable.

x1, y2
specify the coordinates of the end of the line. Values can be numbers, numeric
constants, or numeric variables.

color
specifies the color of the line using a character string without quotation marks. For
valid values, see the Annotate “COLOR Variable” on page 703. Use an asterisk (*) to
specify the previous value of the color parameter.

line
specifies the line type, which can be continuous or segmented. The value can be a
number, a numeric constant, or a numeric variable. For valid values, see the
Annotate“LINE Variable” on page 710 for the DRAW function.

size
specifies the width of the line. The value can be a number, a numeric constant, or a
numeric variable. For valid values, see the Annotate “SIZE Variable” on page 718 for
the DRAW function.

%MAPLABEL Macro

Creates an output data set that can be used with the ANNO= option for PROC GMAP.

Variables written out: FUNCTION, STYLE, COLOR, SIZE, HSYS
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%MAPLABEL (map-dataset,

attr-dataset,output-dataset,label-var,id-list,font=font_name,color=n,size=n,hsys=n);

748 %MOVE Macro � Chapter 30

map-dataset
the name of the map to be annotated.

Note: If you specify a feature table in your GMAP procedure step, then you
should specify the map data set that corresponds to that feature table. �

attr-dataset
the name of the dataset containing the text to be shown on each ID value.

output-dataset
the name of the annotate data set created by the macro.

label-var
the name of the label variable to place on the map (the text for annotate).

id-list
the list of ID vars that you would issue in PROC GMAP to create the map. These
values need to be on both the map and the attribute data sets. If you also supply the
SEGMENT variable, then every polygon will get a value. Without the SEGMENT
variable, only one label per ID set will be shown over the collection of polygons. For
instance, Hawaii with SEGMENT gets a label on each island, whereas without
SEGMENT, there is only one label centered on the entire set of islands.

font
specifies a font name for the “STYLE Variable (Fonts)” on page 719 variable.

color
specifies a value for the “COLOR Variable” on page 703 variable.

size
specifies a value for the “SIZE Variable” on page 718 variable. Defaults to 2.

hsys
specifies a value for the “HSYS Variable” on page 707 variable. Defaults to 3.

%MOVE Macro

Moves to the (x, y) coordinate.

Variables written out: FUNCTION, X, Y
Internal variables updated: XLAST, YLAST
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%MOVE (x, y);

x, y
specify new coordinates for the next annotation. Values can be numeric coordinates,
numeric constants, or numeric variables. For details, see the Annotate “X Variable”
on page 726.

Annotate Dictionary � %PIEXY Macro 749

%PIEXY Macro

Calculates a point in relation to the latest pie slice.

Variables written out: ANGLE, FUNCTION, SIZE, X, Y
Internal variables updated: XLAST, YLAST
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%PIEXY (angle, size);

angle
specifies the angle used to calculate the point, relative to the center of the latest pie
slice. The value can be a number, a numeric constant, or a numeric variable. For
details, see the Annotate “ANGLE Variable” on page 700 for the PIEXY function.

size
specifies the radius multiplier that works with the angle parameter to determine the
location of the point. The value can be a number, a numeric constant, or a numeric
variable. For details and valid values, see the Annotate “SIZE Variable” on page 718
for the PIEXY function.

Details
This macro is useful when you want to label a pie chart or a circle.

When you use this macro, the Annotate facility expects a slice to have been
previously drawn. If a slice has not been drawn or if the “PIECNTR Function” on page
689 has not been processed, you can get erroneous results.

750 %POLY, %POLY2 Macro � Chapter 30

%POLY, %POLY2 Macro

Begins drawing a polygon at the specified coordinates and determines the color, fill pattern, and
line type of the polygon.

Variables written out: FUNCTION, COLOR, LINE, STYLE, X, Y,

Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%POLY (x, y, color, style, line);

%POLY2(x, y, color, style, line, width);

x, y
specify the starting point for a new polygon. Values can be numeric coordinates,
numeric constants, or numeric variables. For details, see the Annotate or the names
of the Annotate variables “X Variable” on page 726.

color
specifies the optional polygon fill color using a character string without quotation
marks. For valid values, see the Annotate “COLOR Variable” on page 703. Use an
asterisk (*) to specify the previous value of the color parameter. To specify the color
of the polygon outline, see the “%POLYCONT Macro” on page 750.

style
specifies the fill pattern for the polygon, using a character string without quotation
marks. For valid values, see the Annotate “STYLE Variable (Patterns)” on page 721
for the POLY function.

line
specifies the polygon’s line type, which can be continuous or segmented. The value
can be a number, a numeric constant, or a numeric variable. For valid values, see the
Annotate “LINE Variable” on page 710 for the POLY function.

width
specifies the width of the polygon’s outline and optional fill lines. The value can be a
number, a numeric constant, or a numeric variable. For details and valid values, see
the Annotate “SIZE Variable” on page 718 for the POLY function.

See Also
“POLY Function” on page 692

%POLYCONT Macro

Continues drawing the polygon to the next specified coordinates.

Variables written out: COLOR, FUNCTION, X, Y

Annotate Dictionary � %POP Macro 751

Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax

%POLYCONT (x, y, color);

x, y
specify the end point of the next line in the polygon. Values can be numeric
coordinates, numeric constants, or numeric variables. For details, see the Annotate
“X Variable” on page 726.

color
specifies the color of the polygon outline using a character string without quotation
marks. For valid values, see the Annotate “COLOR Variable” on page 703. Use an
asterisk (*) to specify the previous value of the color parameter.

Details

The first invocation of the %POLYCONT macro in the polygon-drawing sequence
determines the outline color of that polygon. Subsequent color specifications for that
polygon in later invocations of the %POLYCONT macro are ignored.

The polygon fill color and line type are specified in the initial “%POLY, %POLY2
Macro” on page 750 or %POLY2 macro.

%POP Macro

Removes the coordinates (XLAST, YLAST) and (XLSTT, YLSTT) from the LIFO system stack and
updates the internal coordinate pairs with these retrieved values.

Variables written out: FUNCTION

Internal variables updated: XLAST, YLAST, XLSTT, YLSTT

Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax

%POP;

Details

Use the %POP macro when you want to access the values of the XLAST, YLAST,
XLSTT, and YLSTT variables that you previously stored with the %PUSH macro. For
more information, see “XLAST, YLAST Variables” on page 737, “XLSTT, YLSTT
Variables” on page 738, and “%PUSH Macro” on page 752.

752 %PUSH Macro � Chapter 30

%PUSH Macro

Enters the coordinates (XLAST, YLAST) and (XLSTT, YLSTT) in a LIFO system stack.

Variables written out: FUNCTION, internal coordinates
Internal variables updated: XLAST, YLAST, XLSTT, YLSTT
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%PUSH;

Details
The last-in, first-out (LIFO) stack provides a way to save previously calculated
coordinates. It enables you to retain coordinate values for later use by utility functions
without recalculating those values. In order to save coordinate values in the stack, you
must explicitly push them onto the stack. See “Using the LIFO Stack” on page 657 for a
description of the LIFO stack.

%RECT Macro

Draws a rectangle with diagonal corners at two specified points.

Variables written out: COLOR, FUNCTION, LINE, SIZE, X, Y
Internal variables updated: XLAST, YLAST
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%RECT (x1, y1, x2, y2, color, line, size) ;

x1, y1
specify the coordinates of the first corner of the rectangle. Values can be numeric
coordinates, numeric constants, or numeric variables. For details, see the Annotate
“X Variable” on page 726.

x2, y2
specify the coordinates of the second corner of the rectangle, which is drawn diagonal
to the first corner. Values can be numeric coordinates, numeric constants, or numeric
variables.

color
specifies the color of the rectangular line using a character string without quotation
marks. For valid values, see the Annotate “COLOR Variable” on page 703. Use an
asterisk (*) to specify the previous value of the color parameter.

Annotate Dictionary � %SCALE Macro 753

line
specifies the rectangle’s line type, which can be continuous or segmented. The value
can be a number, a numeric constant, or a numeric variable. For details, see the
Annotate “LINE Variable” on page 710 for the DRAW function.

size
specifies the width of the line. The value can be a number, a numeric constant, or a
numeric variable. For valid values, see the “SIZE Variable” on page 718 for the
DRAW function.

Details

The rectangle is drawn such that the first corner is diagonal to the second corner.
The %RECT macro produces rectangles that do not have fill patterns. Use the %BAR

macro to generate filled rectangles. For more information, see “%BAR, %BAR2 Macros”
on page 740.

%SCALE Macro

Scales input coordinates relative to the origin (0, 0) based on the relationship between two ranges
of minima and maxima.

Variables written out: X, Y

Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax

%SCALE (ptx, pty, x1, y1, x2, y2, vx1, vy1, vx2, vy2);

ptx, pty
specifies the coordinates to scale. Values can be numbers, numeric constants, or
numeric variables. For details, see the Annotate “X Variable” on page 726.

x1, y1
specifies the minima of the first range. Values can be numbers, numeric constants, or
numeric variables.

x2, y2
specifies the maxima of the first range. Values can be numbers, numeric constants,
or numeric variables.

vx1, vy1
specifies the minima of the second range. Values can be numbers, numeric constants,
or numeric variables.

vx2, vy2
specifies the maxima of the second range. Values can be numbers, numeric constants,
or numeric variables.

754 %SCALET Macro � Chapter 30

Details
The %SCALE macro reduces or enlarges Annotate graphics elements that use
two-dimensional, numeric coordinates. The %SCALE macro does not affect graphics
elements that are drawn with text functions.

The difference between the %SCALE and %SCALET macros is that the %SCALE
macro always places the origin at (0, 0) and plots the new coordinates with respect to
that origin. The %SCALET macro plots the new coordinates with respect to the minima
of the second range. For details, see “%SCALET Macro” on page 754.

The following example uses the %SCALE macro to reduce x and y coordinates by 50
percent, as shown in Figure 30.28 on page 754:

%SCALE(x, y, 0, 0, 100, 100, 0, 0, 50, 50);

Figure 30.28 Using the %SCALE Macro to Reduce the Size of a Box

(10,20)

(0,0)

(5,10)

50

50

(60,20)

100

(30,10)

(60,80)

(30,40)

(10,80)

100

(5,40)

%SCALET Macro

Scales input coordinates based on the relationship between two ranges of minima and maxima.
The scaled coordinates are plotted relative to the minima of the second range.

Variables written out: X, Y

Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%SCALET (ptx, pty, x1, y1, x2, y2, vx1, vy1, vx2, vy2);

Annotate Dictionary � %SCALET Macro 755

ptx, pty
specifies the coordinates to scale. Values can be numbers, numeric constants, or
numeric variables. For details, see the Annotate “X Variable” on page 726.

x1, y1
specifies the minima of the original range. Values can be numbers, numeric
constants, or numeric variables.

x1, y2
specifies the maxima of the original range. Values can be numbers, numeric
constants, or numeric variables.

vx1, vy1
specifies the minima of the second range using numeric values. Values can be
numbers, numeric constants, or numeric variables. These coordinates are also used
as the origin against which the scaled point is plotted.

vx2, vy2
specifies the maxima of the second range. Values can be numbers, numeric constants,
or numeric variables.

Details
The %SCALET macro reduces or enlarges Annotate graphics elements that use
two-dimensional numeric coordinates. The %SCALET macro does not affect graphics
elements that are drawn with text functions.

The difference between the %SCALET and %SCALE macros is that the SCALET
macro plots the new coordinates with respect to minima of the second range (vx1, vy1).
The %SCALE macro plots the new coordinates with respect to the origin (0, 0).

The following example uses the %SCALET macro reduces x and y coordinates by 50
percent and plots the new coordinates with respect to (50, 0), as shown in Figure 30.29
on page 756:

%SCALET(x, y, 0, 0, 100, 100, 50, 0, 100, 50);

756 %SEQUENCE Macro � Chapter 30

Figure 30.29 Using the %SCALET Macro to Reduce the Size of a Box

50% of
(10,20)

(0,0)

(5,10)

(10,20)

50

50

(55,10)

(60,20)

100

(80,10)

(80,40)

(60,80)

(30,40)
 +
 (50,0)

(10,80)

100

(5,10) with respect to (vxl,cyl) moves (5,10) to (55,10)

(50,0)
(vxl,vyl)

translation

%SEQUENCE Macro

Specifies when to draw Annotate graphics elements, relative to the procedure’s graphics output or
relative to the other Annotate graphics drawn.

Variables written out: WHEN
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%SEQUENCE (when);

when
Values can be BEFORE or AFTER, as defined for the Annotate “WHEN Variable” on
page 725.

%SLICE Macro

Draws a arc, pie slice, or circle, with available line types, colors, and fill types.

Annotate Dictionary � %SWAP Macro 757

Variables written out: ANGLE, COLOR, FUNCTION, LINE, ROTATE, SIZE, STYLE, X, Y

Internal variables updated: XLAST, YLAST
Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%SLICE (x, y, angle, rotate, size, color, style, line);

x, y
specify the center point of the arc. Values can be numbers, numeric constants, or
numeric variables. For details, see the Annotate “X Variable” on page 726.

angle
specifies the starting point of the arc. The value can be a number, a numeric
constant, or a numeric variable. For details and valid values, see the Annotate
“ANGLE Variable” on page 700 for the PIE function.

rotate
specifies the sweep of the arc. The value can be a number, a numeric constant, or a
numeric variable. For valid values, see the Annotate “ROTATE Variable” on page 717
for the PIE function.

size
specifies the radius of the arc. The value can be a number, a numeric constant, or a
numeric variable. For details, see the Annotate “SIZE Variable” on page 718.

color
specifies the color of the arc outline and optional fill using a character string without
quotation marks. For valid values, see the Annotate “COLOR Variable” on page 703.
Use an asterisk (*) to specify the previous value of the color parameter.

style
specifies the fill pattern for the slice or circle, using a character string without
quotation marks. For details and valid values, see the Annotate “STYLE Variable
(Patterns)” on page 721 for the PIE function.

line
specifies which lines of a pie slice are to be drawn. The value can be a number, a
numeric constant, or a numeric variable. For valid values and details, see the “LINE
Variable” on page 710 for the PIE function.

%SWAP Macro

Exchanges control between (XLAST, YLAST) and text (XLSTT, YLSTT) coordinates.

Variables written out: FUNCTION

Internal variables updated: XLAST, YLAST, XLSTT, YLSTT

Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

758 %SYSTEM Macro � Chapter 30

Syntax
%SWAP;

%SYSTEM Macro

Defines the Annotate reference systems and the XSYS, YSYS, and HSYS variables.

Variables written out: HSYS, XSYS, YSYS

Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Syntax
%SYSTEM (xsys, ysys, hsys);

xsys, ysys, hsys
specify values that represent a coordinate system and an area of the output, as
defined for the Annotate “XSYS Variable” on page 729. The default is %SYSTEM (4,
4, 4).

Details
Note: Not all coordinate systems are valid with all Annotate variables or all SAS/

GRAPH procedures. See “Annotate Functions” on page 669 for any restrictions that
apply to the variable that you want to use. �

The ZSYS variable cannot be set through this macro. Use an explicit variable
assignment instead:

zsys="value"; output;

See Coordinate Systems“Coordinate Systems” on page 650 for a description of the
areas and coordinate systems.

%TXT2CNTL Macro

Assigns the values of the text (XLSTT, YLSTT) coordinates to the control (XLAST, YLAST)
coordinates.

Variables written out: FUNCTION

Internal variables updated: XLAST, YLAST

Prerequisite: You must run the %ANNOMAC macro before using any other annotate
macros. For more information, see “Making the Macros Available” on page 759.

Annotate Dictionary � Making the Macros Available 759

Syntax
%TXT2CNTL;

Details
Use the %TXT2CNTL macro when you want nontext functions to use the ending
position of a text string as a starting or ending point.

Using Annotate Macros

Macro Structure
The general form of an Annotate macro is

%MACRO (parameters);

In general, the macro name represents a function and the parameters contain the
values for the variables that can be used with the function. All macros except
DCLANNO, SYSTEM, and SEQUENCE output an observation.

The parameters are either numeric or character. Numeric parameters can be
numeric constants or numeric variable names that have been initialized to the
appropriate value. Most character parameters must be expressed as literals, that is
character strings without quotation marks. Exceptions are the text values that are used
with the COMMENT and LABEL macros, which can be expressed as character strings
enclosed in quotation marks or as character variable names.

The Annotate facility assigns the parameter values to the corresponding Annotate
variables. Therefore, the observations in an Annotate data set that is created with
macros that look the same as the ones that you created with assignment statements.
For example, the following two statements are equivalent:

%LABEL (10, 15, "Graph", black, 0, 0, centb, 8);

function="label"; x=10; y=15; text="Graph"; color="black"; style="centb";
position="8"; output;

Making the Macros Available
To use Annotate macros, you must provide your program with access to the data set

that contains the macros, and you must compile the macros before you use them. Check
with your SAS Software Consultant to find out if the fileref for the data set that
contains the Annotate macros that are supplied with SAS/GRAPH software is allocated
automatically at your site. Then access the Annotate macros in one of these ways:

� If the fileref is not set automatically, find out where the Annotate macros are
stored and allocate a fileref that points to the data set:

filename fileref "external-file";

Then include the Annotate macros in your session:

%include fileref (annomac);

� If the fileref is set automatically, compile the Annotate macros and make them
available by simply submitting the ANNOMAC macro:

760 Annotate Macro Task Summary � Chapter 30

%annomac;

Note: The ANNOMAC macro must be run before any other Annotate macros
are used in a SAS session. You will see a message in the SAS log that indicates
that the Annotate macros are now available. The message also shows you how to
get help for using the macros. �

Annotate Macro Task Summary
The following table summarizes the tasks performed by the Annotate macros.

Table 30.1 Tasks with Annotate Macros

If you want to... Use this macro...

assign values of (XLSTT,YLSTT) to
(XLAST,YLAST)

%TXT2CNTL;

begin drawing a polygon %POLY(x, y, color, style, line);

continue drawing a polygon %POLYCONT(x, y, color);

copy (XLAST,YLAST) to (XLSTT,YLSTT) %CNTL2TXT;

declare all variables %DCLANNO;

draw an arrow %ARROW(x1, y1, x2, y2, color, line, size, angle, style);

draw a bar %BAR(x1, y1, x2, y2, color, line, style);

draw a circle %CIRCLE(x, y, size, color);

draw a frame %FRAME(color, line, size, style);

draw a line from (XLAST,YLAST) to
(XLSTT,YLSTT)

%DRAW2TXT(color, line, size);

draw a line from previous point %DRAW(x, y, color, line, size);

draw a line %LINE(x1, y1, x2, y2, color, line, size);

draw a pie slice or arc %SLICE(x, y, angle, rotate, size, color, style, line);

draw a rectangle %RECT(x 1,y 1,x 2,y 2, color, line, size);

draw text %LABEL(x, y, text, color, angle, rotate, size, style,
position);

exchange the values of (XLAST,YLAST)
and (XLSTT,YLSTT)

%SWAP;

move to a point near a pie slice %PIEXY(angle, size);

move to a point without drawing %MOVE(x, y);

put values into a stack %PUSH;

retrieve values from a stack %POP;

scale and move input %SCALET(ptx, pty, x0, y0, x1, y1, x0, vy0, vx1, vy1);

scale input %SCALE(ptx, pty, x0, y0, x1, y1, x0, vy0, vx1, vy1);

set the coordinate system for the
observation

%SYSTEM(xsys, ysys, hsys);

Annotate Dictionary � Annotate Error Messages 761

If you want to... Use this macro...

set when to draw an observation %SEQUENCE(when);

write a comment to the data set %COMMENT(text);

Annotate Error Messages
If there is an error in your Annotate data set, one or more diagnostic messages are

printed in the SAS log. A partial list of these messages is supplied here. Annotate data
sets are checked for errors this way:

� If an error is found in preprocessing, this message appears:

NOTE: ERROR DETECTED IN ANNOTATE= libref.dataset

� If an error is found as an observation is being read, this message appears:

PROBLEM IN OBSERVATION number -- message

where message is the text of the error message.
� If the error limit of 20 errors is reached at any point during processing of the data

set, a termination message similar to this one appears:

ERROR LIMIT REACHED IN ANNOTATE PROCESS

20 TOTAL ERRORS

Some common diagnostic messages are explained here.

A CALCULATED COORDINATE LIES OUTSIDE THE VISIBLE AREA
Explanation: The x or y coordinate is outside the display area (defined by HPOS=
and VPOS= values).

User Action: Check for an invalid or misspecified coordinate system value, or x
or y values outside displayed range.

A CALCULATED WINDOW COORDINATE LIES OUTSIDE THE WINDOW AREA
Explanation: the x or y coordinate is outside of the window area. This message
may accompany the message for invalid coordinate system specification.

User Action: Check for an invalid or misspecified coordinate system value, or x
or y values outside displayed range.

A PERCENTAGE VALUE LIES OUTSIDE 0 TO 100 BOUNDARIES
Explanation: The x or y value requested is negative or greater than 100 percent.
This message is informational.

User Action: Check requested value for accuracy.

ANNOTATE MIDPOINT DATATYPE DOES NOT MATCH GCHART- INPUT WAS #
Explanation: The MIDPOINT variable in the Annotate data set is character, and
the GCHART midpoint is numeric or vice versa.

User Action: Check for misspelling or wrong variable assignment, or check for
quotes in the assignment statement.

ANNOTATE GROUP DATATYPE DOES NOT MATCH GCHART- INPUT WAS #
Explanation: The GROUP variable in the Annotate data set is character, and the
GCHART group is numeric or vice versa.

User Action: Check for misspelling or wrong variable assignment, or check for
quotes in the assignment statement.

ANNOTATE SUBGROUP DATATYPE DOES NOT MATCH GCHART- INPUT WAS #

762 Annotate Error Messages � Chapter 30

Explanation: The SUBGROUP variable in the Annotate data set is character, and
the GCHART subgroup is numeric or vice versa.

User Action: Check for misspelling or wrong variable assignment, or check for
quotes in the assignment statement.

BOTH OLD AND NEW VARIABLE NAMES ENCOUNTERED IN ANNOTATE=
DATA SET

Explanation: Variables named both MIDPOINT and MIDPNT or SUBGROUP and
SUBGRP occur in the Annotate data set.

User Action: Determine which variable has the proper values for the Annotate
data set and either delete the other variable or rename MIDPNT to MIDPOINT
and SUBGRP to SUBGROUP.

CALCULATED COORDINATES LIE COMPLETELY OFF THE VISIBLE AREA
Explanation: Both the x and y coordinates supplied are outside the visible display
area.

User Action: Check for improper or inappropriate coordinate system
specification or coordinates out of range.

CANNOT HAVE MISSING GROUP VALUE IF GROUPS ARE PRESENT
Explanation: The GROUP variable in the Annotate data set contains a missing
value.

User Action: If the GROUP= option is specified in the GCHART procedure, the
Annotate GROUP variable cannot contain missing values. Remove the missing
value from the request. Check reference system for data-dependent request.

CANNOT HAVE SUBGROUP AND X/Y MISSING IN GCHART STREAM
Explanation: Data coordinate system was requested and the X, Y and
SUBGROUP variables contain missing values.

User Action: The X, Y or SUBGROUP variable must have a value if a data
coordinate system is requested. Check stream for improper request.

CANNOT OMIT GROUP VARIABLE IF GCHART GROUPS ARE PRESENT
Explanation: You used a data coordinate system and specified GROUP= in the
GCHART procedure, but the Annotate data set does not contain the GROUP
variable.

User Action: Supply the GROUP variable in the Annotate data set.

CHARACTER VALUE SHOWN IS NOT ON THE HORIZONTAL AXIS
Explanation: The specified value of the XC variable is not on the x axis of the
graph or chart. The observation is ignored.

User Action: Check for misspelling, for uppercase or lowercase conflict, or for
exclusion in an axis specification.

CHARACTER VALUE SHOWN IS NOT ON THE VERTICAL AXIS
Explanation: The specified value of the YC variable does not occur on the y axis of
the graph or chart. The observation is ignored.

User Action: Check for misspelling, for uppercase or lowercase conflict, or for
exclusion in an axis specification.

CONFLICT BETWEEN PROCEDURE AXIS TYPE AND ANNOTATE DATA TYPE
Explanation: The axis type is character and the x and y coordinates are numeric
or vice versa.

User Action: Check values for proper type matching.

Annotate Dictionary � Annotate Error Messages 763

DATA SYSTEM NOT SUPPORTED FOR THIS STATEMENT
Explanation: The data coordinate systems 1, 2, 7, 8 are not permitted for this
statement.

User Action: Choose a different reference system for this observation.

DATA SYSTEM REQUESTED, BUT POINT IS NOT ON GRAPH
Explanation: The coordinate specified is not on displayed graph, and data
coordinate system placement has been requested.

User Action: Check for improper specification of data value or graph axis
parameters, or incorrect system specification. If this occurs, you may be able to
use percent of the data area to position Annotate graphics.

G3D DATA SYSTEM REQUESTED, ALL SYSTEMS NOT DATA DEPENDENT
Explanation: Not all requested XSYS, YSYS, and ZSYS variable values are data
values.

User Action: If one variable in G3D annotation is data-dependent, all variables
must be data-dependent. Either specify all points in the data coordinate system or
use another reference system value.

G3D DATA SYSTEM REQUESTED, VARIABLE CONTAINED MISSING VALUE
Explanation: The X, Y, or Z variable contained a missing value.

User Action: All values in G3D data placement requests must be specified.
Remove the missing value from the request.

INTERNAL SYSTEM STACK OVERFLOW- TOO MANY PUSH FUNCTIONS
Explanation: The limit of stack positions has been exhausted. The maximum
number of stack positions is system-dependent. Each PUSH operation uses one
position; each POP frees one position for re-use.

User Action: Rewrite the program section to decrease the number of values
stored in the stack.

INTERNAL SYSTEM STACK UNDERFLOW- TOO MANY POP FUNCTIONS
Explanation: The POP function has been issued with no values in the LIFO stack.

User Action: Check for unequal numbers of PUSH versus POP functions. They
can be unequal, but you cannot have more values moved with the POP function
than are stored with the PUSH function. At least one PUSH must occur {it before}
a POP can be issued.

LABEL FUNCTION REQUESTED, BUT TEXT VARIABLE NOT ON DATA SET
Explanation: A TEXT variable has not been found for the LABEL function.

User Action: If FUNCTION=’LABEL’, the TEXT variable must contain the
string to be placed in the display area. Check for misspelling of variable name or
specification of the wrong Annotate data set.

LINE VALUE SPECIFIED IS NOT WITHIN LIMITS- 0<=L<=3
Explanation: An invalid special line value has been specified.

User Action: The LINE value specified was not acceptable for
FUNCTION=’BAR’ or the RECT macro. Check function for definition of line values
or previous value used in DATA step prior to this observation.

LINE VALUE SPECIFIED IS NOT WITHIN LIMITS- 1<=L<=46
Explanation: The LINE value specified is not in the range 1 through 46.

User Action: Check for improper specification of data value. Line styles
represented by the LINE values can be found in the line-type table“Specifying
Line Types” on page 276.

MINIMUM VARIABLES NOT MET–AMBIGUITY PREVENTS SELECTION.
Explanation: The combinations of available X, Y, XC, YC, GROUP, MIDPOINT,
and SUBGROUP variables do not identify the data-dependent values uniquely.

764 Annotate Error Messages � Chapter 30

User Action: Check variable requirements and respecify.

MINIMUM VARIABLES NOT MET- MUST HAVE X/XC,Y/YC IN DATA SET
Explanation: The X, XC, Y, or YC variables have not been found in the Annotate
data set.

User Action: The X or XC and Y or YC variables must be in the data set. This
message represents a minimum validity check of the supplied Annotate data set.

POLYCONT ENCOUNTERED BEFORE POLY
Explanation: The POLYCONT function was encountered with no POLY function
specification.

User Action: Probable sequencing error. Check for missing POLY command,
improper ordering of polygon points, or interruption of POLY type commands by
other valued functions. Also, check the value of WHEN for a mismatch.

“POLYCONT” INTERRUPTED
Explanation: A POLYCONT definition has been interrupted and resumed in the
Annotate data set. This usually accompanies the error message

POLYCONT ENCOUNTERED BEFORE POLY

User Action: Check data stream for proper order.

POSITION VALUE INVALID- MUST BE ONE OF “0123...9ABCDEF”
Explanation: The value of the POSITION variable is not in range ’0’ through ’9’ or
’A’ through ’F’ or ’<’, ’+’, or ’>’ in a LABEL command.

User Action: Check desired value in POSITION description and correct.

REQUESTED POLYGON CONTAINS TOO MANY VERTICES (OBSERVATIONS)
Explanation: The maximum allocation for polygon points is exhausted. The
maximum number of vertices is limited by a device’s memory.

User Action: Define polygon with fewer points or break polygon into sections.

SYSTEM VALUE INVALID- MUST BE ONE OF “0123...9ABC”
Explanation: The value supplied for the XSYS, YSYS, or HSYS variable is not
valid.

User Action: Check the desired value and correct the data set.

TEXT STRING EXTENDS BEYOND BOUNDARY OF SYSTEM DEFINED
Explanation: The text string is too long.

User Action: Check for excessive SIZE value or shorten the string. This error
could be caused by HSYS=’4’ and a small value of the VPOS graphics option.

USE THE XC VARIABLE FOR DATA VALUES WHEN TYPE IS CHARACTER
Explanation: The X variable is character type in the Annotate data set when it
should be numeric.

User Action: If character data are being plotted, use the XC variable to specify
any data-related points pertaining to character values. If data are not character,
omit quotes in X data value assignment.

USE THE YC VARIABLE FOR DATA VALUES WHEN TYPE IS CHARACTER
Explanation: The Y variable is character type in the Annotate data set when it
should be numeric.

User Action: If character data are being plotted, use the YC variable to specify
any data-related points pertaining to character values. If data are not character,
omit quotes in Y data value assignment.

VALUE SHOWN IS NOT A VALID FONT OR PATTERN TYPE
Explanation: The value of the STYLE variable is not a valid font or pattern.

User Action: Check the value supplied for misspelling, truncation, and support
in the FUNCTION description.

Annotate Dictionary � Annotate Error Messages 765

VALUE SHOWN IS NOT A VALID FUNCTION
Explanation: The value in the FUNCTION variable is not recognized as an
available function.

User Action: Check for misspellings or truncation of value. Truncation can be
corrected by specifying a length of 8 bytes in the LENGTH statement in the DATA
step that generates the data set.

VALUE SHOWN IS NOT A VALID SIZE FACTOR
Explanation: The SIZE value of the variable is negative or excessive.

User Action: Check request or calculation for positive value result.

VARIABLE SHOWN HAS IMPROPER LENGTH IN ANNOTATE= DATA SET
Explanation: The length is incorrect for variable indicated. Either the length of
the character string exceeds the length for the variable specified in a LENGTH
statement, or the variable was not specified in a LENGTH statement.

User Action: Make sure the variable length is defined in a length statement and
that the length specified adequately covers the length of the character strings that
are used.

VARIABLE SHOWN IS NOT OF THE PROPER DATA TYPE
Explanation: The data type does not match required type for variable listed.
Either variable type is character where a numeric is required, or numeric where a
character is required.

User Action: Specify proper type for variable as described in “Annotate
Variables” on page 700.

766

767

P A R T4

The Data Step Graphics Interface

Chapter 31.The DATA Step Graphics Interface 769

Chapter 32.DATA Step Graphics Interface Dictionary 813

768

769

C H A P T E R

31
The DATA Step Graphics
Interface

Overview 770
DSGI Funtions 771

DSGI Statements 772

Syntax 772

Requirements 772

Applications of the DATA Step Graphics Interface 773
Enhancing Existing Graphs 773

Creating Custom Graphs 773

Using the DATA Step Graphics Interface 774

Summary of Use 774

Producing and Storing DSGI Graphs 774

Structure of DSGI Data Sets 775
SAS/GRAPH Global Statements with DSGI 775

Operating States 775

The Current Window System 776

Debugging DSGI Programs 776

DSGI Graphics Summary 776
DSGI Functions 777

DSGI Routines 780

Creating Simple Graphics with DSGI 783

Setting Attributes for Graphics Elements 784

How Operating States Control the Order of DSGI Statements 785
Functions That Change the Operating State 786

Order of Functions and Routines 787

Bundling Attributes 789

Attributes That Can Be Bundled for Each Graphics Primitive 789

Assigning Attributes to a Bundle 789

Selecting a Bundle 790
Defining Multiple Bundles for a Graphics Primitive 790

How DSGI Selects the Value of an Attribute to Use 791

Disassociating an Attribute from a Bundle 791

Using Viewports and Windows 791

Defining Viewports 792
Clipping around Viewports 793

Defining Windows 793

Activating Transformations 793

Inserting Existing Graphs into DSGI Graphics Output 794

Generating Multiple Graphics Output in One DATA Step 795
Processing DSGI Statements in Loops 796

Examples 797

Vertically Angling Text 797

770 Overview � Chapter 31

Changing the Reading Direction of the Text 800
Using Viewports in DSGI 801

Scaling Graphs by Using Windows 804

Enlarging an Area of a Graph by Using Windows 806

Using GASK Routines in DSGI 809

See Also 811

Overview
The DATA Step Graphics Interface (DSGI) enables you to create graphics output

within the DATA step or from within a Screen Control Language (SCL) application.
Through DSGI, you can call the graphics routines used by SAS/GRAPH software to
generate a custom graph, or to add features to an existing graph. You can use DSGI to
write a custom graphics application in conjunction with all the power of the
programming statements accessible by the DATA step.

DSGI provides many of the same features as the Annotate facility, but it also has
many advantages over the Annotate facility.

� you can use DSGI functions and routines through SCL

� you can save disk space. DSGI graphics can be generated through the DATA step
without creating an output data set. The graphics output is stored as a catalog
entry in the catalog you select, and can be displayed after the DATA step is
submitted.

� DSGI generates graphics faster than the Annotate facility. With the Annotate
facility, you create a data set and then submit a PROC step to display the graphics
output. In DSGI, you eliminate the PROC step because the graphics output is
generated after the DATA step.

� DSGI supports viewports and windows, which enable you to specify the
dimensions, position, and scale of the graphics output. You cam include multiple
graphs in the same graphics output.

Consider using the Annotate facility for enhancing procedure output. and using
DSGI for creating custom graphics without using a graphics procedure.

DSGI is based on the Graphics Kernel System (GKS) standard, although it does not
follow a strict interpretation, nor is it implemented on a particular level of GKS. GKS
was used to provide a recognizable interface to the user. Because of its modularity, the
standard allows for enhancements to DSGI without the side effect of converting
programs between versions of SAS/GRAPH software.

The concepts used to create graphics output with DSGI are explained. An overview
of the functions and routines used in DSGI are provided. For complete details of each
function and routine, see Chapter 32, “DATA Step Graphics Interface Dictionary,” on
page 813.

The DATA Step Graphics Interface � DSGI Funtions 771

DSGI Funtions

Figure 31.1 Pie Chart Created with DSGI Functions

772 DSGI Statements � Chapter 31

DSGI Statements

Figure 31.2 Text Slide Created with DSGI Statements

Syntax
DSGI uses GASK routines and functions to draw graphics elements. These

statements have the following syntax:

CALL GASK(operator, arguments);

return-code-variable=function-name (operator, arguments);

where

arguments are the additional required variables or values for the routine or
function.

return-code-
variable

is an arbitrary name and can be any numeric variable name. It
holds the return code upon execution of the function.

function-name is the DSGI command you want to execute and must be one of the
following: GDRAW, GINIT, GPRINT, GRAPH, GSET, or GTERM.

operator is a character string that names the function you either want to
submit or for which you want the current settings. When used with
functions, operator can take different values depending on
function-name.

Requirements
When using DSGI statements, the following formats for arguments must be used:

The DATA Step Graphics Interface � Creating Custom Graphs 773

� All x and y coordinates are expressed in units of the current window system. (See
“The Current Window System” on page 776 for details.)

� The arguments used with DSGI functions can be expressed as either constants or
variables. The arguments used with GASK routines must be variable names since
values are returned through them. See Chapter 32, “DATA Step Graphics
Interface Dictionary,” on page 813 for a complete explanation of each argument
used with DSGI functions and routines.

� All arguments that are character constants must be enclosed in either single or
double quotation marks.

Applications of the DATA Step Graphics Interface

With the DATA Step Graphics Interface you can

� enhance existing graphs

� create custom graphs.

Enhancing Existing Graphs
You can use DSGI to enhance existing graphs. You can add text and other graphics

elements. You can also alter the appearance of the existing graph by scaling or reducing
it. To enhance a graph produced by a SAS/GRAPH graphics procedure, insert the
existing graph into graphics output being generated with DSGI.

To insert a graph, provide:

� the catalog in which the existing graph is located

� the name of the existing graph

� the coordinates of the place in the graphics output where you want to insert the
existing graph

� a square coordinate system ((0,0) to (100,100))

� the statements to draw enhancements to the existing graph.

The coordinates that DSGI uses to position existing graphs, enhancements to that
graph, or graphics elements are based on units of percent of the window system
currently defined. See “Using Viewports and Windows” on page 791.

Creating Custom Graphs
You can produce custom graphs with DSGI without using a data set to produce the

graphics output. DSGI enables you to create

� arcs

� bars

� ellipses

� elliptical arcs

� lines

� markers

� pie slices

� polygons (filled areas)

� text.

774 Using the DATA Step Graphics Interface � Chapter 31

To create custom graphs, provide:
� DSGI statements to draw graphics elements
� the coordinates of the graphics elements in the output.

You can also specify the color, pattern, size, style, and position of the graphics
elements.

Using the DATA Step Graphics Interface
These sections provide general information about using DSGI.

Summary of Use
To create graphics output using DSGI:
1 on a grid that matches the dimensions of the graphics output, sketch the output

you want to produce
2 determine the coordinates of each graphics element
3 in the DATA step, write the program to generate the graphics output

To use the DSGI interface:

a initialize DSGI
b open a graphics segment
c generate graphics elements
d close the graphics segment
e end DSGI.

4 Submit the DATA step with a final RUN statement to display the output.

Note: The DISPLAY graphics option must be in effect for the graphics output to be
displayed. See Chapter 15, “Graphics Options and Device Parameters Dictionary,” on
page 327 for more information about the DISPLAY graphics option. �

Producing and Storing DSGI Graphs
When you create or enhance graphs with DSGI, the DSGI graphics are displayed and

stored as part of the graphics output. When you execute the DATA step, DSGI creates a
catalog entry using the name from the GRAPH(“CLEAR”, . . .)function.

DSGI uses the name DSGI if you have not specified a name with the
GRAPH(“CLEAR”, . . .)function. The catalog entry is stored in WORK.GSEG, unless
you specify another catalog with the GSET(“CATALOG”, . . .)function.

If you create another graph using a name that matches an existing catalog entry in
the current catalog, DSGI uses the default naming conventions for the catalog entry.
See “About GRSEGs” on page 89 for a description of the conventions used to name
catalog entries.

If you want to store your output in a permanent library or in a different temporary
catalog, use the GSET(“CATALOG”, . . .)function. This function enables you to specify
the libref, and catalog name for the output catalog. Before you use the
GSET(“CATALOG”, . . .)function, assign a libref using the LIBNAME statement.

You can display DSGI graphics output stored in catalog entries multiple times, using
the GREPLAY procedure or the GRAPH window.

The DATA Step Graphics Interface � Operating States 775

Structure of DSGI Data Sets
The DSGI DATA step is usually not written to produce an output data set. Unlike

data sets created by the Annotate facility, which contain observations for each graphics
element drawn. DSGI does not usually create an observation for each graphics
primitive. Only variables created in the DATA step are written to the output data set.

You can output as many observations to the data set as you want. To output these
values, you must use the OUTPUT statement. You can also use any valid SAS DATA
step statements in a DSGI DATA step. See SAS Language Reference: Dictionary for
information about the statements used in the DATA step.

SAS/GRAPH Global Statements with DSGI
Some SAS/GRAPH global statements can be used with DSGI programs. DSGI

recognizes FOOTNOTE, GOPTIONS, and TITLE statements. When TITLE and
FOOTNOTE statements are used, the output from DSGI statements is placed in the
procedure output area. See “How Graphic Elements are Placed in the Graphics Output
Area” on page 65 for an explanation of how space in graphics output is allocated to
titles and footnotes.

Note: DSGI ignores AXIS, LEGEND, NOTE, PATTERN, and SYMBOL
statements. �

Some DSGI functions override the graphics options. The following table lists the
DSGI functions that directly override graphics options. For details about the graphics
options, see Chapter 15, “Graphics Options and Device Parameters Dictionary,” on page
327.

DSGI Function

Graphics Option

That Is Overridden

GSET(’CBACK’, . . .) CBACK=

GSET(’COLREP’, . . .) COLORS=

GSET(’DEVICE’, . . .) DEVICE=

GSET(’HPOS’, . . .) HPOS=

GSET(’HSIZE’, . . .) HSIZE=

GSET(’VPOS’, . . .) VPOS=

GSET(’VSIZE’, . . .) VSIZE=

GSET(’TEXCOLOR’, . . .) CTEXT=

GSET(’TEXFONT’, . . .) FTEXT=

GSET(’TEXHEIGHT’, . . .) HTEXT=

Operating States
The operating state of DSGI determines which functions and routines can be issued

at any point in the DATA step. You can submit a function or routine only when the

776 The Current Window System � Chapter 31

operating state is appropriate. Reference “How Operating States Control the Order of
DSGI Statements” on page 785 for how functions and routines should be ordered within
the operating states.

The operating states defined by DSGI are:

GKCL facility closed, the initial state of DSGI. No graphical resources have
been allocated.

GKOP facility open. When DSGI is open, you can check the settings of the
attributes.

SGOP segment open. At this point, graphics output primitives can be
generated.

WSAC workstation active. When the workstation is active, it can receive
DSGI statements.

WSOP workstation open. In this implementation, the graphics catalog,
either the default or the one specified through the
GSET(“CATALOG”, . . .)command, is opened or created.

Refer to individual functions and routines in Chapter 32, “DATA Step Graphics
Interface Dictionary,” on page 813 for the operating states from which a function or
routine can be issued.

The Current Window System
When DSGI draws graphics, it evaluates x and y coordinates in terms of the current

window system, either a window you have defined or the default window system. Unless
you define and activate a different window, DSGI uses the default window system.

The default window system assigns two arbitrary systems of units to the x and y
axes. The default window guarantees a range of 0 through 100 in one direction (usually
the y direction) and at least 0 through 100 in the other (usually the x direction). The
ranges depend on the dimensions of your device. You can use the GASK(“WINDOW”, . .
.)routine to determine the dimensions of your default window system.

You can define the x and y ranges to be any numeric range. For example, you can use
− 1000 to +2000 on the x axis and 30 to 35 on the y axis. The units used are arbitrary.

Debugging DSGI Programs
When DSGI encounters an error in a program, it flags the statement in the SAS log

and displays a description of the error. (To receive SAS System messages,
GSET(“MESSAGE”, . . .)must be ON.) The description provides you with an
explanation of the error. The description might also provide a return code. If you get a
return code, you can refer to “Return Codes for DSGI Routines and Functions” on page
908 for a description of the error and why it might have occurred.

Some of the most common errors in DSGI programs are:
� syntax errors
� an invalid number of arguments for the function or routine
� a function or routine being executed in an operating state that is not correct for

the function or routine.

DSGI Graphics Summary
The following sections summarize the functions and routines you can use to create

graphics output with DSGI.

The DATA Step Graphics Interface � DSGI Functions 777

DSGI Functions
DSGI provides functions that
� initialize and terminate DSGI
� generate graphics elements
� control the appearance of graphics elements by setting attributes
� control the overall appearance of the graphics output
� perform management operations for the catalog
� control messages issued by DSGI.

Table 31.1 on page 777 summarizes the types of operations available and the
functions used to invoke them. Refer to Chapter 32, “DATA Step Graphics Interface
Dictionary,” on page 813 for details about each function.

Table 31.1 DATA Step Graphics Interface Functions

DSGI
Operations Associated Function

Function
Description

Bundling Attributes (valid values for xxx are FIL, LIN,
MAR, and TEX)

GSET(’ASF’, . . .) sets the aspect
source flag of an
attribute

GSET(’xxxINDEX’, . . .) selects the bundle
of attributes to use

GSET(’xxxREP’, . . .) assigns attributes
to a bundle

Setting Attributes That Affect Graphics Elements

color index GSET(’COLREF’), . . .) assigns a color
name to color index

fill area GSET(’FILCOLOR’, . . .) selects the color of
the fill area

GSET(’FILSTYLE’, . . .) selects the pattern
when FILTYPE is
HATCH or
PATTERN

GSET(’FILTYPE’, . . .) specifies the type of
interior for the fill
area

GSET(’HTML’, . . .) specifies the HTML
string to invoke
when an affected
DSGI graphic
element in a web
page is clicked

line GSET(’LINCOLOR’, . . .) selects the color of
the line

GSET(’LINTYPE’, . . .) sets the type of line

778 DSGI Functions � Chapter 31

DSGI
Operations Associated Function

Function
Description

GSET(’LINWIDTH’, . . .) specifies the width
of the line

marker GSET(’MARCOLOR’, . . .) selects the color of
the marker

GSET(’MARSIZE’, . . .) determines the size
of the marker

GSET(’MARTYPE’, . . .) sets the type of
marker drawn

text GSET(’TEXALIGN’, . . .) specifies horizontal
and vertical
alignment of text

GSET(’TEXCOLOR’, . . .) selects the color of
the text

GSET(’TEXFONT’, . . .) sets the font for the
text

GSET(’TEXHEIGHT’, . . .) selects the height of
the text

GSET(’TEXPATH’, . . .) determines reading
direction of text

GSET(’TEXUP’, . . .) selects the angle of
text

Setting Attributes That Affect Entire Graph

GSET(’ASPECT’, . . .) sets the aspect ratio

GSET(’CATALOG’, . . .) selects the catalog
to use

GSET(’CBACK’, . . .) selects the
background color

GSET(’DEVICE’, . . .) specifies the output
device

GSET(’HPOS’, . . .) sets the number of
columns in the
graphics output
area

GSET(’HSIZE’, . . .) sets the width of
the graphics output
area in units of
inches

GSET(’VPOS’, . . .) sets the number of
rows in the
graphics output
area

The DATA Step Graphics Interface � DSGI Functions 779

DSGI
Operations Associated Function

Function
Description

GSET(’VSIZE’, . . .) sets the height of
the graphics output
area in units of
inches

Managing Catalogs

GRAPH(’COPY’, . . .) copies a graph to
another entry
within the same
catalog

GRAPH(’DELETE’, . . .) deletes a graph

GRAPH(’INSERT’, . . .) inserts a previously
created graph into
the currently open
segment

GRAPH(’RENAME’, . . .) renames a graph

Drawing Graphics Elements

arc GDRAW(’’ARC’, . . .) draws a circular arc

bar GDRAW(BAR’, . . .) draws a rectangle
that can be filled

ellipse GDRAW(’ELLIPSE’, . . .) draws an oblong
circle that can be
filled

elliptical arc GDRAW(’ELLARC’, . . .) draws an elliptical
arc

fill area GDRAW(’FILL’, . . .) draws a polygon
that can be filled

line GDRAW(’LINE’, . . .) draws a single line,
a series of
connected lines, or
a dot

marker GDRAW(’MARK’, . . .) draws one or more
symbols

pie GDRAW(’PIE’, . . .) draws a pie slice
that can be filled

text GDRAW(’TEXT’, . . .) draws a character
string

Initializing DSGI

GINIT() initializes DSGI

GRAPH(’CLEAR’, . . .) opens a segment to
receive graphics
primitives

Handling Messages

780 DSGI Routines � Chapter 31

DSGI
Operations Associated Function

Function
Description

GDRAW(’MESSAGE’, . . .) prints a message in
the SAS log

GPRINT(code) prints the
description of a
DSGI error code

GSET(’MESSAGE’, . . .) turns message
logging on or off

Ending DSGI

GRAPH(’UPDATE’, . . .) closes the currently
open segment and,
optionally, displays
it

GTERM() ends DSGI

Activating Transformations

GET(’TRANSNO’, . . .) selects the
transformation
number of the
viewport or window
to use

Defining Viewports

GSET(’CLIP’, . . .) turns clipping on or
off

GSET(’VIEWPORT’, . . .) sets the coordinates
of the viewport and
assigns it a
transformation
number

Defining Windows

GSET(’WINDOW’, . . .) sets the coordinates
of the window and
assigns it a
transformation
number

DSGI Routines
DSGI routines return the values set by some of the DSGI functions. Table 31.2 on

page 781 summarizes the types of values that the GASK routines can check. Refer to
Chapter 32, “DATA Step Graphics Interface Dictionary,” on page 813 for details about
each routine.

The DATA Step Graphics Interface � DSGI Routines 781

Table 31.2 DATA Step Graphics Interface Routines

DSGI Operations Associated Routine Routine Description

Checking Attribute Bundles (valid values for xxx are FIL, LIN, MAR, and TEX)

GASK(’ASK’, . . .) returns the aspect source flag of
the attribute

GASK(’xxxINDEX’, . . .) returns the index of the active
bundle

GASK(’xxxREP’, . . .) returns the attributes assigned to
the bundle

Checking Attribute Settings

color index GASK(’COLINDEX’, . . .) returns the color indices that
currently have colors assigned to
them

GASK(’COLREP’, . . .) returns the color name assigned
to the color index

fill area GASK(’FILCOLOR’, . . .) returns the color of the fill area

GASK(’FILSTYLE’, . . .) returns the index of the pattern
when the FILTYPE is HATCH or
PATTERN

GASK(’FILTYPE’, . . .) returns the index of the type of
interior

GASK(’HTML’, . . .) finds the HTML string that is in
effect when one of the following
graphic elements is drawn: bar,
ellipse, fill, mark, pie, and text.

line GASK(’LINCOLOR’, . . .) returns the color index of the
color of the line

GASK(’LINTYPE’, . . .) returns the index of the type of
line

GASK(’LINWIDTH’, . . .) returns the width of the line

marker GASK(’MARCOLOR’, . . .) returns the color index of the
color of markers

GASK(’MARSIZE’, . . .) returns the size of markers

GASK(’MARTYPE’, . . .) returns the index of the type of
marker drawn

text GASK(’TEXALIGN’, . . .) returns the horizontal and
vertical alignment of text

GASK(’TEXCOLOR’, . . .) returns the color index of the
color of text

GASK(’TEXEXTENT’, . . .) returns the coordinates of text
extent rectangle and the text
concatenation point of the
character string

GASK(’TEXFONT’, . . .) returns the text font

782 DSGI Routines � Chapter 31

DSGI Operations Associated Routine Routine Description

GASK(’TEXHEIGHT’, . . .) returns the height of text

GASK(’TEXPATH’, . . .) returns the reading direction of
text

GASK(’TEXUP’, . . .) returns the character up vector
in x vector and y vector

Checking Attributes That Affect Entire Graph

GASK(’ASPECT’, . . .) returns the aspect ratio

GASK(’CATALOG’, . . .) returns the current catalog

GASK(’CBACK’, . . .) returns the background color

GASK(’DEVICE’, . . .) returns the current output device

GASK(’HPOS’, . . .) returns the number of columns in
the graphics output area

GASK(’HSIZE’, . . .) returns the width of the graphics
output area in units of inches

GASK(’MAXDISP’, . . .) returns the dimensions of
maximum display area for the
device in meters and pixels

GASK(’VPOS’, . . .) returns the number of rows in
the graphics output area

GASK(’VSIZE’, . . .) returns the height of the graphics
output area in units of inches

Querying Catalogs

GASK(’GRAPHLIST’, . . .) returns the names of graphs in
the current catalog

GASK(’NUMGRAPH’, . . .) returns the number of graphs in
the current catalog

GASK(’OPENGRAPH’, . . .) returns the name of the currently
open graph

Checking System Status

GASK(’STATE’, . . .) returns the current operating
state

GASK(’WSACTIVE’, . . .) returns whether or not the
workstation is active

GASK(’WSOPEN’, . . .) returns whether or not the
workstation is open

Checking Transformation Definitions

GASK(’TRANS’, . . .) returns the coordinates of the
viewport and window associated
with the transformation

GASK(’TRANSNO’, . . .) returns the active transformation
number

Checking Viewport Definitions

The DATA Step Graphics Interface � Creating Simple Graphics with DSGI 783

DSGI Operations Associated Routine Routine Description

GASK(’CLIP’, . . .) returns the status of clipping

GASK(’VIEWPORT’, . . .) returns the coordinates of the
viewport assigned to the
transformation number

Checking Window Definitions

GASK(’WINDOW’, . . .) returns the coordinates of the
window assigned to the
transformation number

Creating Simple Graphics with DSGI
Within any DSGI program, you need to follow these basic steps:
1 Initialize DSGI.

The function that initializes DSGI is GINIT(). GINIT() loads the graphics
sublibrary, opens a workstation, and activates a workstation.

2 Open a graphics segment.
Before you can submit graphics primitives, you must submit the

GRAPH(“CLEAR”, . . .) function. GRAPH(“CLEAR”, . . .) opens a graphic
segment, to allow graphics primitives to be submitted.

3 Generate graphics elements.
DSGI can generate arcs, bars, ellipses, elliptical arcs, lines, markers, pie slices,

polygons (fill areas), and text. These graphics elements are all produced with the
GDRAW function using their associated operator names.

GDRAW functions can be submitted only when a graphics segment is open.
They must be submitted between the GRAPH(“CLEAR”, . . .) and
GRAPH(“UPDATE”, . . .) functions.

4 Close the graphics segment.
Once the attribute and graphics statements have been entered, you must

submit statements to close the graphics segment and output the graph. The
GRAPH(“UPDATE”, . . .) function closes the graphic segment currently open and,
can display the graphics output.

5 End DSGI.
The GTERM() function ends DSGI by deactivating and closing the workstation,

and closing the graphics sublibrary. It frees any memory allocated by DSGI.
Note: You must execute a RUN statement at the end of the DATA step to

display the output.

Figure 31.3 on page 784 outlines the basic steps and shows the functions used to
initiate steps 1, 2, 4, and 5. Step 3 can consist of many types of functions. The
GDRAW(“LINE”, . . .)function is used as an example.

784 Creating Simple Graphics with DSGI � Chapter 31

Figure 31.3 Basic Steps Used in Creating DSGI Graphics Output

data dsname;

/* Step 1 - initialize DSGI */
rc=ginit();

/* Step 2 - open graphics segment */

rc=graph('clear');

/* Step 3 - generate graphics elements */

rc=gdraw('line' ,2, 30, 50, 70, 50);

/* Step 4 - close graphics segment and display output */

rc=graph('update');

/* Step 1 -end DSGI */
rc=gtem();

run;

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a

b

Notice that there are two pairs of functions that work together within a DSGI DATA
step (shown by a and b in Figure 31.3 on page 784). The first pair, GINIT() and
GTERM(), begin and end DSGI. Within the first pair, the second pair, GRAPH(“CLEAR”,
. . .)and GRAPH(“UPDATE”, . . .)begin and end a graphics segment. You can repeat
these pairs within a single DATA step to produce multiple graphics output; however,
the relative positions of these functions must be maintained within a DATA step. See
“Generating Multiple Graphics Output in One DATA Step” on page 795 for more
information about producing multiple graphics outputs from one DATA step.

The order of these steps is controlled by DSGI operating states. Before any DSGI
function or routine can be submitted, the operating state in which that function or
routine can be submitted must be active. See “How Operating States Control the Order
of DSGI Statements” on page 785.

Setting Attributes for Graphics Elements
The appearance of the graphics elements is determined by the settings of the

attributes. Attributes control such aspects as height of text; text font; and color, size,
and width of the graphics element. In addition, the HTML attribute determines if the
element provides a link to another graphic or web page. Attributes are set and reset
with GSET functions. GASK routines return the current setting of the attribute
specified.

Each graphics primitive is associated with a particular set of attributes. Its
appearance or linking capability can be altered only by that set of attributes. Table 31.3
on page 785 lists the operators used with GDRAW functions to generate graphics
elements and the attributes that control them.

The DATA Step Graphics Interface � Creating Simple Graphics with DSGI 785

Table 31.3 Graphics Output Primitive Functions and Associated Attributes

Graphics Output
Primitive Functions Associated Attributes

Arc GDRAW(’ARC’, . . .) HTML, LINCOLOR,
LININDEX, LINREP, LINTYPE,
LINWIDTH

Bar GDRAW(’BAR’, . . .) FILCOLOR, FILINDEX,
FILREP, FILSTYLE, FILTYPE,
HTML

Ellipse GDRAW(’ELLIPSE’, . . .) FILCOLOR, FILINDEX,
FILREP, FILSTYLE, FILTYPE,
HTML

Elliptical Arc GDRAW(’ELLARC’, . . .) HTML, LINCOLOR,
LININDEX, LINREP, LINTYPE,
LINWIDTH

Fill Area GDRAW(’FILL’, . . .) FILCOLOR, FILINDEX,
FILREP, FILSTYLE, FILTYPE,
HTML

Line GDRAW(’LINE’, . . .) HTML, LINCOLOR,
LININDEX, LINREP, LINTYPE,
LINWIDTH

Marker GDRAW(’MARK’, . . .) HTML, MARCOLOR,
MARINDEX, MARREP,
MARSIZE, MARTYPE

Pie GDRAW(’PIE’, . . .) FILCOLOR, FILINDEX,
FILREP, FILSTYLE, FILTYPE,
HTML

Text GDRAW(’TEXT’, . . .) HTML, TEXALIGN,
TEXCOLOR, TEXFONT,
TEXHEIGHT, TEXINDEX,
TEXPATH, TEXREP, TEXUP

Attribute functions must precede the graphics primitive they control. Once an
attribute is set, it controls any associated graphics primitives that follow. If you want to
change the setting, you can issue another GSET(attribute, . . .)function with the new
setting.

If you do not set an attribute before you submit a graphics primitive, DSGI uses the
default value for the attribute. Refer to Chapter 32, “DATA Step Graphics Interface
Dictionary,” on page 813 for the default values used for each attribute.

How Operating States Control the Order of DSGI Statements
Each DSGI function and routine can be submitted only when certain operating states

are active. This restriction affects the order of functions, and routines within the DATA
step. Generally, the operating states within a DATA step follow this order:

GKCL � WSAC � SGOP � WSAC � GKCL

786 Creating Simple Graphics with DSGI � Chapter 31

Functions That Change the Operating State
The functions described earlier in steps 1, 2, 4, and 5 actually control the changes to

the operating state. For example, the GINIT() function must be submitted when the
operating state is GKCL, the initial state of DSGI. GINIT() then changes the operating
state to WSAC. The GRAPH(“CLEAR”, . . .)function must be submitted when the
operating state is WSAC and before any graphics primitives are submitted. The reason
it precedes graphics primitives is that it changes the operating state to SGOP, the
operating state in which you can submit graphics primitives. The following list shows
the change in the operating state due to specific functions:

GINIT() GKCL � WSAC

GRAPH(’CLEAR’, . . .) WSAC � SGOP

GRAPH(’UPDATE’, . . .) SGOP � WSAC

GTERM() WSAC � GKCL

Because these functions change the operating state, you must order all other
functions and routines so that the change in operating state is appropriate for the
functions and routines that follow. The following program statements show how the
operating state changes from step to step in a typical DSGI program. They also
summarize the functions and routines that can be submitted under each operating
state. The functions that change the operating state are included as actual statements.
Refer to “Operating States” on page 814 for the operating states from which functions
and routines can be submitted.

data dsname;

/* GKCL - initial state of DSGI; can execute: */
/* 1. GSET functions that set attributes */
/* that affect the entire graphics output */
/* 2. some catalog management functions */
/* (some GRAPH functions) */

/* Step 1 - initialize DSGI */
rc=ginit();

/* WSAC - workstation is active; can execute: */
/* 1. most GASK routines */
/* 2. some catalog management functions */
/* (some GRAPH functions) */
/* 3. GSET functions that set attributes */
/* and bundles, viewports, windows, */
/* transformations, and message logging */

/* Step 2 - open a graphics segment */
rc=graph("clear", "text");

/* SGOP - segment open; can execute: */
/* 1. any GASK routine */
/* 2. any GDRAW function */
/* 3. some catalog management functions */
/* (some GRAPH functions) */

The DATA Step Graphics Interface � Creating Simple Graphics with DSGI 787

/* 4. GSET functions that set attributes */
/* and bundles, viewports, windows, */
/* transformations, and message logging */

/* Step 3 - execute graphics primitives */
rc = gdraw("line", 2, 30,50,50,50);

/* Step 4 - close the graphics segment */
rc=graph("update");

/* WSAC - workstation is active; can execute: */
/* 1. most GASK routines */
/* 2. some catalog management functions */
/* (some GRAPH functions) */
/* 3. GSET functions that set attributes */
/* and bundles, viewports, windows, */
/* transformations, and message logging */

/* Step 5 - end DSGI */
rc=gterm();

/* GKCL - initial state of DSGI */
run;

Order of Functions and Routines

Functions and routines within each operating state can technically be submitted in
any order; however, once an attribute is set, it remains in effect until the end of the
DATA step or until you change its value. If you are producing multiple graphics output
within the same DATA step, the attributes for one output affect the ones that follow.
Attributes are not reset until after the GTERM() function is submitted.

Notice that you can set attributes for the graphics primitives in several places. As
long as the functions that set the attributes are executed before the graphics primitives,
they affect the graphics output. If you execute them after a graphics primitive, the
primitive is not affected. See “Setting Attributes for Graphics Elements” on page 784.

The following program statements illustrate a more complex DSGI program that
produces Display 31.1 on page 788 when submitted. Notice that all attributes for a
graphics primitive are executed before the graphics primitive. In addition, the GINIT()
and GTERM() pairing and the GRAPH(“CLEAR”) and GRAPH(“UPDATE”) pairing are
maintained within the DATA step. Refer to “Operating States” on page 814 for the
operating states in which each function and routine can be submitted.

/* set the graphics environment */
goptions reset=global gunit=pct border

hsize=7 in vsize=5 in
targetdevice=pscolor;

/* execute a DATA step with DSGI */
data dsname;

/* initialize SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph("clear");

/* assign colors to color index */

788 Creating Simple Graphics with DSGI � Chapter 31

rc=gset("colrep", 1, "blue");
rc=gset("colrep", 2, "red");

/* define and display titles */
rc=gset("texcolor", 1);
rc=gset("texfont", "swissb");
rc=gset("texheight", 6);
rc=gdraw("text", 45, 93, "Simple Graphics Output");

/* change the height and */
/* display second title */

rc=gset("texheight", 4);
rc=gdraw("text", 58, 85, "Created with DSGI");

/* define and display footnotes */
/* using same text font and */
/* color as defined for titles */

rc=gset("texheight", 3);
rc=gdraw("text", 125, 1, "GDSORDER ");

/* define and draw bar */
rc=gset("lincolor", 2);
rc=gset("linwidth", 5);
rc=gdraw("line", 2, 72, 72, 30, 70);
rc=gdraw("line", 2, 52, 92, 50, 50);

/* display graph and end DSGI */
rc=graph("update");
rc=gterm();

run;

Display 31.1 Simple Graphics Output Generated with DSGI

The DATA Step Graphics Interface � Bundling Attributes 789

Bundling Attributes
DSGI allows you to bundle attributes. As a result, you can select a group of attribute

values rather than having to select each one individually. This feature is useful if you
use the same attribute settings over and over within the same DATA step.

To use an attribute bundle, you assign the values of the attributes to a bundle index.
When you want to use those attributes for a graphics primitive, you select the bundle
rather than set each attribute separately.

Attributes That Can Be Bundled for Each Graphics Primitive
Each graphics primitive has a group of attributes associated with it that can be

bundled. Only the attributes in that group can be assigned to the bundle. Table 31.4 on
page 789 shows the attributes that can be bundled for each graphics primitive.

Note: You do not have to use attribute bundles for all graphics primitives if you use
a bundle for one. You can define bundles for some graphics primitives and set the
attributes individually for others. �

However, if the other graphics primitives are associated with the same attributes you
have bundled and you do not want to use the same values, you can use other bundles to
set the attributes, or you can set the attributes back to “INDIVIDUAL”.

Table 31.4 Attributes That Can Be Bundled for Each Graphics Primitive

Graphics Output Primitive
Associated Attributes That Can Be
Bundled

GDRAW(’ARC’, . . .) LINCOLOR, LINTYPE, LINWIDTH

GDRAW(’BAR’, . . .) FILCOLOR, FILSTYLE, FILTYPE

GDRAW(’ELLARC’, . . .) LINCOLOR, LINTYPE, LINWIDTH

GDRAW(’ELLIPSE’, . . .) FILCOLOR, FILSTYLE, FILTYPE

GDRAW(’FILL’, . . .) FILCOLOR, FILSTYLE, FILTYPE

GDRAW(’LINE’, . . .) LINCOLOR, LINTYPE, LINWIDTH

GDRAW(’MARK’, . . .) MARCOLOR, MARSIZE, MARTYPE

GDRAW(’PIE’, . . .) FILCOLOR, FILSTYLE, FILTYPE

GDRAW(’TEXT’, . . .) TEXCOLOR, TEXFONT

Assigning Attributes to a Bundle
To assign values of attributes to a bundle, you must
� assign the values to a numeric bundle index with the GSET(“xxx REP”, . . .

)function. Each set of attributes that can be bundled uses a separate GSET(“xxx
REP”, . . .)function, where xxx is the appropriate prefix for the set of attributes to
be bundled. Valid values for xxx are FIL, LIN, MAR, and TEX.

� set the aspect source flag (ASF) of the attributes to “BUNDLED” before you use
the bundled attributes. You can use the GSET(“ASF”, . . .)function to set the ASF
of an attribute. You need to execute a GSET(“ASF”, . . .)function for each
attribute in the bundle.

The following example assigns the text attributes, color, and font, to the bundle
indexed by the number 1. As shown in the GSET(“TEXREP”, . . .)function, the color

790 Bundling Attributes � Chapter 31

for the bundle is green, the second color in the COLOR= graphics option. The font for
the bundle is the “ZAPF” font. (See “COLREP” on page 876 for an explanation of how
colors are used in DSGI.)

goptions colors=(red green blue);

data dsname;
.
. /* other DATA step statements */
.

/* associate the bundle with the index 1 */
rc=gset("texrep", 1, 2, "zapf");

.

. /* more statements */

.
/* assign the text attributes to a bundle */

rc=gset("asf", "texcolor", "bundled");
rc=gset("asf", "texfont", "bundled");

/* draw the text */
rc=gdraw("text", 50, 50, "Today is the day.");

The bundled attributes are used when an associated GDRAW function is executed. If
the ASF of an attribute is not set to “BUNDLED” at the time a GDRAW function is
executed, DSGI searches for a value to use in the following order:

1 the current value of the attribute

2 the default value of the attribute.

Selecting a Bundle

Once you have issued the GSET(“ASF”, . . .)and GSET(“xxx REP”, . . .)functions,
you can issue the GSET(“xxx INDEX”, . . .)function to select the bundle. The following
statement selects the bundle defined in the previous example:

/* invoke the bundle of text attributes */
rc=gset("texindex", 1);

The 1 in this example corresponds to the index number specified in the
GSET(“TEXREP”, . . .)function.

Defining Multiple Bundles for a Graphics Primitive

You can set up more than one bundle for graphics primitives by issuing another
GSET(“xxx REP”, . . .)function with a different index number. If you wanted to add a
second attribute bundle for text to the previous example, you could issue the following
statement:

/* define another attribute bundle for text */
rc=gset("texrep", 2, 3, "swiss");

When you activate the second bundle, the graphics primitives for the text that
follows uses the third color, blue, and the SWISS font.

Note: When using a new bundle, you do not need to reissue the GSET(“ASF”, . . .)
functions for the bundled attributes. Once the ASF of an attribute has been set, the
setting remains in effect until it is changed. �

The DATA Step Graphics Interface � Using Viewports and Windows 791

How DSGI Selects the Value of an Attribute to Use
Attributes that are bundled override any of the same attributes that are individually

set. For example, you assign the line color green, the type 1, and the width 5 to a line
bundle with the following statements:

goptions colors=(red green blue);
rc=gset("asf", "lincolor", "bundled");
rc=gset("asf", "linwidth", "bundled");
rc=gset("asf", "lintype", "bundled");
rc=gset("linrep", 3, 2, 5, 1);

In subsequent statements, you activate the bundle, select other attributes for the
line, and then draw a line:

/* activate the bundle */
rc=gset("linindex", 3);

/* select other attributes for the line */
rc=gset("lincolor", 3);
rc=gset("linwidth", 10);
rc=gset("lintype", 4);

/* draw a line from point (30,50) to (70,50) */
rc=gdraw("line", 2, 30, 70, 50, 50);

The color, type, and width associated with the line bundle are used rather than the
attributes set just before the GDRAW(“LINE”, . . .)function was executed. The line
that is drawn is green (the second color from the color list of the COLORS= graphics
option), five units wide, and solid (line type 1).

During processing, DSGI chooses the value of an attribute using the following logic:
1 Get the index of the active line bundle.
2 Check the ASF of the LINCOLOR attribute. If the ASF is “INDIVIDUAL”, the

value selected with GSET(“LINCOLOR”, . . .) is used; otherwise, the LINCOLOR
associated with the bundle index is used.

3 Check the ASF of the LINTYPE attribute. If the ASF is “INDIVIDUAL”, the value
selected with GSET(“LINTYPE”, . . .) is used; otherwise, the LINTYPE associated
with the bundle index is used.

4 Check the ASF of the LINWIDTH attribute. If the ASF is “INDIVIDUAL”, the
value selected with GSET(“LINWIDTH”, . . .) is used; otherwise, the LINWIDTH
associated with the bundle index is used.

5 Draw the line using the appropriate color, type, and width for the line.

Disassociating an Attribute from a Bundle
To disassociate an attribute from a bundle, use the GSET(“ASF”, . . .)function to

reset the ASF of the attribute to “INDIVIDUAL”. The following program statements
demonstrate how to disassociate the attributes from the text bundle:

/* disassociate an attribute from a bundle */
rc=gset("asf", "texcolor", "individual");
rc=gset("asf", "texfont", "individual");

Using Viewports and Windows
In DSGI, you can define viewports and windows. Viewports enable you to subdivide

the graphics output area and insert existing graphs or draw graphics elements in

792 Using Viewports and Windows � Chapter 31

smaller sections of the graphics output area. Windows define the coordinate system
within a viewport and enable you to scale the graph or graphics elements drawn within
the viewport.

The default viewport is defined as (0,0) to (1,1) with 1 being 100 percent of the
graphics output area. If you do not define a viewport, graphics elements or graphs are
drawn using the default.

The default window is defined so that a rectangle drawn from window coordinates
(0,0) to (100,100) is square and fills the display in one dimension. The actual
dimensions of the default window are device dependent. Use the
GASK(“WINDOW”, . . .) routine to find the exact dimensions of your default window.
You can define a window without defining a viewport. The coordinate system of the
window is used with the default viewport.

If you define a viewport, you can position it anywhere in the graphics output area.
You can define multiple viewports within the graphics output area so that more than
one existing graph, part of a graph, or more than one graphics element can be inserted
into the graphics output.

Transformations activate both a viewport and the associated window. DSGI
maintains 21 (0 through 20) transformations. By default, transformation 0 is active.
Transformation 0 always uses the entire graphics output area for the viewport, and
maps the window coordinates to fill the viewport. The definition of the viewport and
window of transformation 0, cannot be changed.

By default, the viewports and windows of all the other transformations (1 through
20) are set to the defaults for viewports and windows. If you want to define a different
viewport or window, you must select a transformation number between 1 and 20.

You generally follow these steps when defining viewports or windows:
� Define the viewport or window.
� Activate the transformation so that the viewport or window is used for the output.

These steps can be submitted in any order; however, if you use a transformation you
have not defined, the default viewport and window are used. Once you activate a
transformation, the graphics elements drawn by the subsequent DSGI functions are
drawn in the viewport and window associated with that transformation.

Defining Viewports
You can define a viewport with the GSET(“VIEWPORT”, n, . . .)function, where n is

the transformation number of the viewport you are defining. You can also use this
function to define multiple viewports, each containing a portion of the graphics output
area. You can then place a separate graph, part of a graph, or graphics elements within
each viewport.

The following program statements divide the graphics output area into four subareas:

/* define the first viewport, indexed by 1 */
rc=gset("viewport", 1, .05, .05, .45, .45);

/* define the second viewport, indexed by 2 */
rc=gset("viewport", 2, .55, .05, .95, .45);

/* define the third viewport, indexed by 3 */
rc=gset("viewport", 3, .55, .55, .95, .95);

/* define the fourth viewport, indexed by 4 */
rc=gset("viewport", 4, .05, .55, .45, .95);

Once you define the viewports, you can insert existing graphs or draw graphics
elements in each viewport by activating the transformation of that viewport.

The DATA Step Graphics Interface � Using Viewports and Windows 793

Clipping around Viewports
When you use viewports, you also might need to use the clipping feature. Even

though you have defined the dimensions of your viewport, it is possible for graphics
elements to display past its boundaries. If the graphics elements are too large to fit into
the dimensions you have defined, portions of the graphics elements actually display
outside of the viewport. To ensure that only the portions of the graphics elements that
fit within the dimensions of the viewport display, turn the clipping feature on by using
the GSET(“CLIP”, . . .)function. For details, see “CLIP” on page 875.

Defining Windows
You can define a window by using the GSET(“WINDOW”,n, . . .)function, where n is

the transformation number of the window you are defining. If you are defining a
window for a viewport you have also defined, n must match the transformation number
of the viewport.

You can scale the x and y axes differently for a window. The following program
statements scale the axes for each of the four viewports defined earlier in “Defining
Viewpoints”:

/* define the window for viewport 1 */
rc=gset("window", 1, 0, 50, 20, 100);

/* define the window for viewport 2 */
rc=gset("window", 2, 0, 40, 20, 90);

/* define the window for viewport 3 */
rc=gset("window", 3, 10, 25, 45, 100);

/* define the window for viewport 4 */
rc=gset("window", 4, 0, 0, 100, 100);

See “Scaling Graphs by Using Windows” on page 804 for an example of using
windows to scale graphs.

Note: When you define a window for a viewport, the transformation numbers in the
GSET(“VIEWPORT”, . . .)and GSET(“WINDOW”, . . .)functions must match in order
for DSGI to activate them simultaneously. �

Activating Transformations
Once you have defined a viewport or window, you must activate the transformation

in order for DSGI to use the viewport or window. To activate the transformation, use
the GSET(“TRANSNO”,n, . . .)function where n has the same value as n in
GSET(“VIEWPORT”,n, . . .)or GSET(“WINDOW”,n, . . .).

The following program statements illustrate how to activate the viewports and
windows defined in the previous examples:

/* define the viewports */
.
.
.
/* define the windows */
.
.
.
/* activate the first transformation */

794 Inserting Existing Graphs into DSGI Graphics Output � Chapter 31

rc=gset("transno", 1);
.
. /* graphics primitive functions follow */
.

/* activate the second transformation */
rc=gset("transno", 2);
.
. /* graphics primitive functions follow */
.

/* activate the third transformation */
rc=gset("transno", 3);
.
. /* graphics primitive functions follow */
.

/* activate the fourth transformation */
rc=gset("transno", 4);
.
. /* graphics primitive functions follow */
.

When you activate these transformations, your display is logically divided into four
subareas as shown in Figure 31.4 on page 794.

Figure 31.4 Graphics Output Area Divided into Four Logical Transformations

If you want to return to the default viewport and window, execute the
GSET(“TRANSNO”, 0) function.

Inserting Existing Graphs into DSGI Graphics Output
You can insert existing graphs into graphics output you are creating. The graph you

insert must be in the same catalog in which you are currently working. Follow these
steps to insert an existing graph:

1 Use the GSET(“CATALOG”, . . .)function to set the output catalog to the catalog
that contains the existing graph.

The DATA Step Graphics Interface � Generating Multiple Graphics Output in One DATA Step 795

Note: Unless you are using the WORK library, you must have previously
defined the libref in a LIBNAME statement or window when using
GSET(“CATALOG”, . . .). �

2 Define a viewport with the dimensions and position of the place in the graphics
output where you want to insert the existing graph. GSET(“VIEWPORT”,n, . . .)
defines a viewport and GSET(“WINDOW”,n, . . .)defines a window.

3 Define a window as (0,0) to (100,100) so that the inserted graph is not distorted.
The graph must have a square area defined to avoid the distortion. If your device
does not have a square graphics output area, the window defaults to the units of
the device rather than (0,0) to (100,100) and might distort the graph.

4 Activate the transformation number n, as defined in the viewport function, and
possibly in the window function, using GSET(“TRANSNO”, n, . . .).

5 Use the GRAPH(“INSERT”, . . .)function with the name of the existing graph.

The following program statements provide an example of including an existing graph
in the graphics output being created. The name of the existing graph is “MAP”.
“LOCAL” points to the library containing the catalog “MAPCTLG”. The coordinates of
the viewport are percentages of the graphics output area. SAS-data-library refers to
a permanent SAS data library.

Example Code 31.1 Graphics Output Area Divided into Four Logical Transformations

libname local "SAS-data-library";
.
.
.

/* select the output catalog to the */
/* catalog that contains "map" */

rc=gset("catalog", "local", "mapctlg");
.
.
.

/* define the viewport to contain the */
/* existing graph */

rc=gset("viewport", 1, .25, .45, .75, .9);
rc=gset("window", 1, 0, 0, 100, 100);

/* set the transformation number to the one */
/* defined in the viewport function */

rc=gset("transno", 1);

/* insert the existing graph */
rc=graph("insert", "map");

These statements put the existing graph “MAP” in the upper half of the graphics
output.

Generating Multiple Graphics Output in One DATA Step
You can produce more than one graphics output within the same DATA step. All

statements between the GRAPH(“CLEAR”, . . .)and GRAPH(“UPDATE”, . . .
)functions produce one graphics output.

796 Processing DSGI Statements in Loops � Chapter 31

Each time the GRAPH(“UPDATE”, . . .)function is executed, a graph is displayed.
After the GTERM() function is executed, no more graphs are displayed for the DATA
step. The GINIT() function must be executed again to produce more graphs.

CAUTION:
Be careful using global SAS/GRAPH statements when you are producing multiple output
from within the DATA step. �

If you use global SAS/GRAPH statements when producing multiple output from one
DATA step, the last definition of the statements is used for all displays.

Processing DSGI Statements in Loops
You can process DSGI statements in loops to draw a graphics element multiple times

in one graphics output or to produce multiple output. If you use loops, you must
maintain the GRAPH(“CLEAR”, . . .)and GRAPH(“UPDATE”, . . .)pairing within the
GINIT() and GTERM() pairing. (See Figure 31.3 on page 784.) The following program
statements illustrate how you can use DSGI statements to produce multiple graphics
output for different output devices:

data _null_;
length d1-d5 $ 8;
input d1-d5;
array devices{5} d1-d5;
.
.
.
do j=1 to 5;
rc=gset("device", devices{j});
.
.
.
rc=ginit();
.
.
.
do i=1 to 5;
rc=graph("clear");
rc=gset("filcolor", i);
rc=gdraw("bar", 45, 45, 65, 65);
rc=graph("update");

end;
.
.
.
rc=gterm();
end;
cards;

tek4105 hp7475 ps qms800 ibm3279
;
run;

The inner loop produces five graphs for each device. Each graphics output produced
by the inner loop consists of a bar. The bar uses a different color for each graph. The
outer loop produces all of the graphs for five different devices. A total of 25 graphs is
generated by these loops.

The DATA Step Graphics Interface � Examples 797

Examples
The following examples show different applications for DSGI and illustrate some of

its features such as defining viewports and windows, inserting existing graphs, angling
text, using GASK routines, enlarging a segment of a graph, and scaling a graph.

These examples use some additional graphics options that cannot be used in other
examples in this book. Because the dimensions of the default window vary across
devices, the TARGETDEVICE=, HSIZE=, and VSIZE= graphics options are used to
make the programs more portable. The COLORS= graphics option provides a standard
color list.

Refer to Chapter 32, “DATA Step Graphics Interface Dictionary,” on page 813 for a
complete description of each of the functions used in the examples.

Vertically Angling Text

This example generates a pie chart with text that changes its angle as you rotate
around the pie. DSGI positions the text by aligning it differently depending on its
location on the pie. In addition, DSGI changes the angle of the text so that it aligns
with the spokes of the pie.

This example illustrates how global statements can be used with DSGI. In this
example, FOOTNOTE and TITLE statements create the footnotes and title for the
graph. The GOPTIONS statement defines general aspects of the graph. The COLORS=
graphics option provides a color list from which the color referenced in
GSET(“xxx COLOR”, . . .)functions are selected.

The following program statements produce Display 31.2 on page 799:

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htitle=6 htext=3
colors=(black blue green red)
hsize=7 in vsize=5 in
targetdevice=pscolor;

/* define the footnote and title */
footnote1 j=r "GDSVTEXT ";
title1 "Text Up Vector";

/* execute DATA step with DSGI */
data vector;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph("clear");

/* define and display arc */
/* with intersecting lines */

rc=gset("lincolor", 2);
rc=gset("linwidth", 5);
rc=gdraw("arc", 84, 50, 35, 0, 360);
rc=gdraw("line", 2, 49, 119, 51, 51);
rc=gdraw("line", 2, 84, 84, 15, 85);

/* define height of text */

798 Examples � Chapter 31

rc=gset("texheight", 5);

/* mark 360 degrees on the arc */
/* using default align */
rc=gdraw("text", 121, 50, "0");

/* set text to align to the right and */
/* mark 180 degrees on the arc */
rc=gset("texalign", "right", "normal");
rc=gdraw("text", 47, 50, "180");

/* set text to align to the center and */
/* mark 90 and 270 degrees on the arc */
rc=gset("texalign", "center", "normal");
rc=gdraw("text", 84, 87, "90");
rc=gdraw("text", 84, 9, "270");

/* reset texalign to normal and */
/* display coordinate values or quadrant */
rc=gset("texalign", "normal", "normal");
rc=gdraw("text", 85, 52, "(0.0, +1.0)");

/* rotate text using TEXUP and */
/* display coordinate values or quadrant */
rc=gset("texup", 1.0, 0.0);
rc=gdraw("text", 85, 49, "(+1.0, 0.0)");

/* rotate text using TEXUP and */
/* display coordinate values or quadrant */
rc=gset("texup", 0.0, -1.0);
rc=gdraw("text", 83, 50, "(0.0, -1.0)");

/* rotate text using TEXUP and */
/* display coordinate values or quadrant */
rc=gset("texup", -1.0, 0.0);
rc=gdraw("text", 83, 52, "(-1.0, 0.0)");

/* display graph and end DSGI */
rc=graph("update");
rc=gterm();

run;

The DATA Step Graphics Interface � Examples 799

Display 31.2 Text Angled with the GSET(“TEXUP”, ...) Function

This example illustrates the following features:

� The COLORS= graphics option provides a color table to be used with the
GSET(“LINCOLOR”, . . .)function.

� The HSIZE= graphics option provides a standard width for the graphics output
area.

� The VSIZE= graphics option provides a standard height for the graphics output
area.

� The TARGETDEVICE= graphics option selects the standard color PostScript
driver to use as the target device.

� The GINIT() function begins DSGI.

� The GRAPH(“CLEAR”) function sets the graphics environment. Because the
function does not specify a name for the catalog entry, “DSGI” is the default name.

� The GSET(“TEXHEIGHT”, . . .), GSET(“LINCOLOR”, . . .), and
GSET(“LINWIDTH”, . . .)functions set attributes of the graphics primitives. The
COLORS= graphics option provides a color table for the GSET(“LINCOLOR”, 2)
function to reference. In this example, the color indexed by 2 is used to draw lines.
Since no other color table is explicitly defined with GSET(“COLREP”, . . .)
functions, DSGI looks at the color list and chooses the color indexed by 2 (the
second color in the list) to draw the lines.

� The GDRAW(“ARC”, . . .)function draws an empty pie chart. The arguments of
the GDRAW(“ARC”, . . .)function provide the coordinates of the starting point,
the radius, and the beginning and ending angles of the arc.

� The GDRAW(“LINE”, . . .)function draws a line. It provides the type of line, the
coordinates of the beginning point, and the coordinates of the ending point.

� The GDRAW(“TEXT”, . . .)function draws the text. It sets the coordinates of the
starting point of the text string as well as the text string to be written.

� The GSET(“TEXALIGN”, . . .)function aligns text to the center, left, or right of
the starting point specified in the GDRAW(“TEXT”, . . .)function.

� The GSET(“TEXUP”, . . .)function determines the angle at which the text is to be
written.

800 Examples � Chapter 31

� The GRAPH(“UPDATE”, . . .)function closes the graphics segment.

� The GTERM() function ends DSGI.

Changing the Reading Direction of the Text

This example changes the reading direction of text. Notice that the data set name is
NULL. No data set is created as a result of this DATA step; however, the graphics
output is generated. The following program statements produce Display 31.3 on page
801:

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htitle=6 htext=3
colors=(black blue green red)
hsize=7 in vsize=5 in
targetdevice=pscolor;

/* define the footnote and title */
footnote1 j=r "GDSDIREC ";
title1 "Text Path";

/* execute DATA step with DSGI */
data _null_;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */
rc=ginit();
rc=graph("clear");

/* define height of text */
rc=gset("texheight", 5);

/* display first text */
rc=gdraw("text", 105, 50, "Right");

/* change text path so that text reads from */
/* right to left and display next text */
rc=gset("texpath", "left");
rc=gdraw("text", 65, 50, "Left");

/* change text path so that text reads up */
/* the display and display next text */
rc=gset("texpath", "up");
rc=gdraw("text", 85, 60, "Up");

/* change text path so that text reads down */
/* the display and display next text */
rc=gset("texpath", "down");
rc=gdraw("text", 85, 40, "Down");

/* display the graph and end DSGI */
rc=graph("update");
rc=gterm();

run;

The DATA Step Graphics Interface � Examples 801

Display 31.3 Reading Direction of the Text Changed with the GSET(“TEXPATH”, ...) Function

Features not explained earlier in “Vertically Angling Text” are described here:
� DATA _NULL_ causes the DATA step to be executed, but no data set is created.
� The GSET(“TEXPATH”, . . .)function changes the direction in which the text

reads.

Using Viewports in DSGI
This example uses the GCHART procedure to generate a graph, defines a viewport in

which to display it, and inserts the GCHART graph into the graphics output being
created by DSGI. Display 31.4 on page 803 shows the pie chart created by the GCHART
procedure. Display 31.5 on page 803 shows the same pie chart after it has been
inserted into a DSGI graph.

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htitle=6 htext=4
colors=(black blue green red)
hsize=7 in vsize=7 in
targetdevice=pscolor;

/* create data set TOTALS */
data totals;
length dept $ 7 site $ 8;
do year=1996 to 1999;
do dept="Parts","Repairs","Tools";
do site="New York","Atlanta","Chicago","Seattle";
sales=ranuni(97531)*10000+2000;
output;
end;

end;
end;

802 Examples � Chapter 31

run;

/* define the footnote */
footnote1 h=3 j=r "GDSVWPTS ";

/* generate pie chart from TOTALS */
/* and create catalog entry PIE */

proc gchart data=totals;
format sales dollar8.;
pie site
/ type=sum
sumvar=sales
midpoints="New York" "Chicago" "Atlanta" "Seattle"
fill=solid
cfill=green
coutline=blue
angle=45
percent=inside
value=inside
slice=outside
noheading
name="GDSVWPTS";

run;

/* define the titles */
title1 "Total Sales";
title2 "For Period 1996-1999";

/* execute DATA step with DSGI */
data piein;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */
rc=ginit();
rc=graph("clear");

/* define and activate viewport for inserted graph */
rc=gset("viewport", 1, .15, .05, .85, .90);
rc=gset("window", 1, 0, 0, 100, 100);
rc=gset("transno", 1);

/* insert graph created from GCHART procedure */
rc=graph("insert", "GDSVWPTS");

/* display graph and end DSGI */
rc=graph("update");
rc=gterm();

run;

The DATA Step Graphics Interface � Examples 803

Display 31.4 Pie Chart Produced with the GCHART Procedure

Display 31.5 Pie Chart Inserted into DSGI Graph by Using a Viewport

Features not explained in previous examples are described here:
� A graph can be created by another SAS/GRAPH procedure and inserted into DSGI

graphics output. In this case, the NAME= option in the PIE statement of the
GCHART procedure names the graph, “GDSVWPTS”, to be inserted into the DSGI
graphics output.

� The GSET(“VIEWPORT”, . . .)function defines the section of the graphics output
area into which GDSVWPTS is inserted. The dimensional ratio of the viewport
should match that of the entire graphics output area so that the inserted graph is
not distorted.

� The GSET(“WINDOW”, . . .)function defines the coordinate system to be used
within the viewport. In this example, the coordinates (0,0) to (100,100) are used.
These coordinates provide a square area to insert the graph and preserve the
aspect ratio of the GCHART graph.

804 Examples � Chapter 31

� The GSET(“TRANSNO”, . . .)function activates the transformation for the defined
viewport and window.

� The GRAPH(“INSERT”, . . .)function inserts the existing graph, “GDSVWPTS”,
into the one being created with DSGI. If no viewport has been explicitly defined,
DSGI inserts the graph into the default viewport, which is the entire graphics
output area.

Scaling Graphs by Using Windows
This example uses the GPLOT procedure to generate a plot of AMOUNT*MONTH

and store the graph in a permanent catalog. DSGI then scales the graph by defining a
window in another DSGI graph and inserting the GPLOT graph into that window.
Display 31.6 on page 806 shows the plot as it is displayed with the GPLOT procedure.
Display 31.7 on page 806 shows how the same plot is displayed when the x axis is
scaled from 15 to 95 and the y axis is scaled from 15 to 75.

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htitle=6 htext=3
colors=(black blue green red)
hsize=7 in vsize=5 in
targetdevice=pscolor;

/* create data set EARN, which holds month */
/* and amount of earnings for that month */

data earn;
input month amount;
datalines;

1 2.1
2 3
3 5
4 6.4
5 9
6 7.2
7 6
8 9.8
9 4.4
10 2.5
11 5.75
12 4.35
;
run;

/* define the footnote for the first graph */
footnote1 j=r "GDSSCALE(a) ";

/* define axis and symbol characteristics */
axis1 label=(color=green "Millions of Dollars")

order=(1 to 10 by 1)
value=(color=green);

axis2 label=(color=green "Months")
order=(1 to 12 by 1)
value=(color=green Tick=1 "Jan" Tick=2 "Feb" Tick=3 "Mar"

Tick=4 "Apr" Tick=5 "May" Tick=6 "Jun"
Tick=7 "Jul" Tick=8 "Aug" Tick=9 "Sep"

The DATA Step Graphics Interface � Examples 805

Tick=10 "Oct" Tick=11 "Nov" Tick=12 "Dec");

symbol value=M font=special height=8 interpol=join
color=blue width=3;

/* generate a plot of AMOUNT * MONTH, */
/* and store in member GDSSCALE */

proc gplot data=earn;
plot amount*month

/ haxis=axis2
vaxis=axis1
name="GDSSCALE";

run;

/* define the footnote and titles for */
/* second graph, scales the output */

footnote1 j=r "GDSSCALE(b) ";
title1 "XYZ Corporation Annual Earnings";
title2 h=4 "Fiscal Year 1999";

/* execute DATA step with DSGI using */
/* catalog entry created in previous */
/* plot, but do not create a data set */
/* (determined by specifying _NULL_) */

data _null_;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph("clear");

/* define viewport and window for inserted graph */
rc=gset("viewport", 1, .20, .30, .90, .75);
rc=gset("window", 1, 15, 15, 95, 75);
rc=gset("transno", 1);

/* insert graph previously created */
rc=graph("insert", "GDSSCALE");

/* display graph and end DSGI */
rc=graph("update");
rc=gterm();

run;

806 Examples � Chapter 31

Display 31.6 Plot Produced with the GPLOT Procedure

Display 31.7 Plot Scaled by Using a Window in DSGI

One feature not explained in previous examples is described here:

� The GSET(“WINDOW”, . . .)function scales the plot with respect to the viewport
that is defined. The x axis is scaled from 15 to 95, and the y axis is scaled from 15
to 75. If no viewport were explicitly defined, the window coordinates would be
mapped to the default viewport, the entire graphics output area.

Enlarging an Area of a Graph by Using Windows
This example illustrates how you can enlarge a section of a graph by using windows.

In the first DATA step, the program statements generate graphics output that contains
four pie charts. The second DATA step defines a window that enlarges the bottom-left
quadrant of the graphics output and inserts “GDSENLAR” into that window. The

The DATA Step Graphics Interface � Examples 807

following program statements produce Display 31.8 on page 808 from the first DATA
step, and Display 31.9 on page 809 from the second DATA step:

/* set the graphics environment */
goptions reset=global gunit=pct border

ftext=swissb htext=3
colors=(black blue green red)
hsize=7 in vsize=5 in
targetdevice=pscolor;

/* define the footnote for the first graph */
footnote1 j=r "GDSENLAR(a) ";

/* execute DATA step with DSGI */
data plot;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph("clear", "GDSENLAR");

/* define and draw first pie chart */
rc=gset("filcolor", 4);
rc=gset("filtype", "solid");
rc=gdraw("pie", 30, 75, 22, 0, 360);

/* define and draw second pie chart */
rc=gset("filcolor", 1);
rc=gset("filtype", "solid");
rc=gdraw("pie", 30, 25, 22, 0, 360);

/* define and draw third pie chart */
rc=gset("filcolor", 3);
rc=gset("filtype", "solid");
rc=gdraw("pie", 90, 75, 22, 0, 360);

/* define and draw fourth pie chart */
rc=gset("filcolor", 2);
rc=gset("filtype", "solid");
rc=gdraw("pie", 90, 25, 22, 0, 360);

/* display graph and end DSGI */
rc=graph("update");
rc=gterm();

run;

/* define the footnote for the second graph */
footnote1 j=r "GDSENLAR(b) ";

/* execute DATA step with DSGI */
/* that zooms in on a section of */
/* the previous graph */

data zoom;

/* prepare SAS/GRAPH software */

808 Examples � Chapter 31

/* to accept DSGI statements */
rc=ginit();
rc=graph("clear");

/* define and activate a window */
/* that enlarges the lower left */
/* quadrant of the graph */
rc=gset("window", 1, 0, 0, 50, 50);
rc=gset("transno", 1);

/* insert the previous graph into */
/* window 1 */
rc=graph("insert", "GDSENLAR");

/* display graph and end DSGI */
rc=graph("update");
rc=gterm();

run;

Display 31.8 Four Pie Charts Generated with DSGI

The DATA Step Graphics Interface � Examples 809

Display 31.9 Area of the Graph Enlarged by Using Windows

Features not explained in previous examples are described here:
� The GSET(“WINDOW”, . . .)function defines a window into which the graph is

inserted. In this example, no viewport is defined, so the window coordinates map
to the default viewport, which is the entire graphics output area. The result of
using the default viewport is that only the portion of the graph enclosed by the
coordinates of the window is displayed.

� The GRAPH(“INSERT”, . . .)function inserts a graph that was previously
generated with DSGI. The output file to be inserted must be closed.

Using GASK Routines in DSGI
This example illustrates how to invoke GASK routines and how to display the

returned values in the SAS log and write them to a data set.
This example assigns a predefined color to color index 2 and then invokes a GASK

routine to get the name of the color associated with color index 2. The value returned
from the GASK call is displayed in the log and written to a data set. Output 31.1 shows
how the value appears in the log. Output 31.2 shows how the value appears in the data
set in the OUTPUT window.

/* execute DATA step with DSGI */
data routine;

/* declare character variables used */
/* in GASK subroutines */

length color $ 8;

/* prepare SAS/GRAPH software */
/* to accept DSGI statements */

rc=ginit();
rc=graph("clear");

/* set color for color index 2 */
rc=gset("colrep", 2, "orange");

810 Examples � Chapter 31

/* check color associated with color index 2 and */
/* display the value in the LOG window */
call gask("colrep", 2, color, rc);
put "Current FILCOLOR =" color;
output;

/* end DSGI */
rc=graph("update");
rc=gterm();

run;

/* display the contents of ROUTINE */
proc print data=routine;
run;

Output 31.1 Checking the Color Associated with a Particular Color Index

3 /* execute DATA step with DSGI */
4 data routine;
5
6 /* declare character variables used */
7 /* in GASK subroutines */
8 length color $ 8;
9
10 /* prepare SAS/GRAPH software */
11 /* to accept DSGI statements */
12 rc=ginit();
13 rc=graph("clear");
14
15 /* set color for color index 2 */
16 rc=gset("colrep", 2, "orange");
17
18 /* check color associated with color index 2 and */
19 /* display the value in the LOG window */
20 call gask("colrep", 2, color, rc);
21 put "Current FILCOLOR =" color;
22 output;
23
24 /* end DSGI */
25 rc=graph("update");
26 rc=gterm();
27 run;

Current FILCOLOR =ORANGE

Output 31.2 Writing the Value of an Attribute to a Data Set

The SAS System 13:50 Tuesday, December 22, 1998 1

Obs color rc

1 ORANGE 0

Features not included in examples are described here:

� The GSET(“COLREP”, . . .)function assigns the predefined color “ORANGE” to
the color index 2.

The DATA Step Graphics Interface � See Also 811

� GASK routines check the current value of an attribute. In this example, the
GASK(“COLREP”, . . .)function returns the color associated with color index 2.

� A PUT statement displays the value of the COLOR argument in the log.
� An OUTPUT statement writes the value of COLOR to the ROUTINE data set.
� The GRAPH(“UPDATE”) function closes the graphics segment.
� The PRINT procedure displays the contents of the ROUTINE data set.

See Also

“Specifying the Catalog Name and Entry Name for Your GRSEGs” on page 100
for an explanation of graphics catalogs and catalog entries

Chapter 15, “Graphics Options and Device Parameters Dictionary,” on page 327
for complete information about graphics options

“TITLE, FOOTNOTE, and NOTE Statements” on page 279
for details of using the TITLE and FOOTNOTE statements

“GOPTIONS Statement” on page 220
for details of using the GOPTIONS statement

Chapter 29, “Using Annotate Data Sets,” on page 641
for an explanation of the Annotate facility

Chapter 32, “DATA Step Graphics Interface Dictionary,” on page 813
for complete information on the functions and routines used with DSGI

SAS Language Reference: Dictionary
for information about additional functions and statements that can be used in the
DATA step

812

813

C H A P T E R

32
DATA Step Graphics Interface
Dictionary

Overview 813
Operating States 814

Utility Functions 814

GASK Routines 816

GDRAW Functions 855

GRAPH Functions 866
GSET Functions 870

Return Codes for DSGI Routines and Functions 908

See Also 909

References 910

Overview
This chapter contains detailed descriptions of each command used in the DATA Step

Graphics Interface (DSGI).
The following commands are associated with DSGI:
1 utility functions

� GINIT
� GPRINT
� GTERM

2 GASK routines
3 GDRAW functions
4 GRAPH functions
5 GSET functions

Each routine or function is followed by an alphabetical listing of the operators used
with it. For each operator, this chapter provides the statement syntax, other argument
definitions, and notes about using the functions and routines, operating states, and
return codes. Operating states are summarized in “Operating States” on page 775.

The syntax for all routines and functions contains the argument return-code-variable.
This argument must be a numeric variable name and can be a different variable name
for each routine.

The return-code-variable argument is used to debug DSGI programs. It contains the
return code of the routine or function call. If the return code is any value other than 0,
the routine or function did not execute properly.

Each routine and function has a different set of possible return codes. The return
codes are listed in the heading for the routine or function. Refer to “Return Codes for
DSGI Routines and Functions” on page 908 for an explanation of the return codes.

814 Operating States � Chapter 32

Operating States
This list summarizes the operating states in DSGI. For a detailed discussion of

operating states, see “Operating States” on page 775.

GKCL facility closed, initial state of DSGI.

GKOP facility open. DSGI is open. You can check the settings of attributes.

SGOP segment open. Graphics output can be generated.

WSAC workstation active. You can issue DSGI statements.

WSOP workstation open. The graphics catalog is opened or created.

Utility Functions
Utility functions enable you to initialize a session for DSGI, print error messages,

and terminate the session.

GINIT
Initializes DSGI

Operating States: GKCL
Return Codes: 0, 1, 26, 301, 307
Resulting Operating State: WSAC

Syntax
return-code-variable=GINIT();

Description
The GINIT function performs three functions: it readies the library that contains
SAS/GRAPH graphics routines, it opens a workstation, and it activates it. A workstation
is a Graphics Kernel Standard (GKS) concept. GKS allows for multiple workstations to
be open at the same time; however, for DSGI applications, you always use exactly one
workstation. This function moves the operating state from GKCL to WSAC.

See Also

“GTERM” on page 815

GPRINT
Prints the specified interface error message

DATA Step Graphics Interface Dictionary � GTERM 815

Operating States: All

Return Codes: 0

Syntax
return-code-variable=GPRINT(code);

Description
The GPRINT function displays the message that corresponds to the error code entered.
You can use this routine if you have disabled automatic error logging but still want to
display the message associated with a return code you have received.

Argument Definitions
code numeric constant or numeric variable name; should be the value of a

return code received from some previous function.

See Also

“MESSAGE” on page 893

GTERM

Terminates DSGI

Operating States: WSAC

Return Codes: 0, 3

Resulting Operating State: GKCL

Syntax
return-code-variable=GTERM();

Description
The GTERM function performs three functions: it deactivates the workstation, closes
the workstation, and closes the library that contains SAS/GRAPH routines. This
function should be issued to free memory allocated by DSGI. This function moves the
operating state from WSAC to GKCL.

See Also

“GINIT” on page 814

816 GASK Routines � Chapter 32

GASK Routines
When you use GASK routines, remember the following:
� All arguments are required.
� Most arguments are expressed as variable names. You can use any valid SAS

variable name.
� If character arguments are expressed as character strings, they must be enclosed

in quotation marks.
� All character variable names used as arguments must be declared in a previous

LENGTH statement.
� GASK routines do not change the operating state.
� PUT statements display a value returned by a routine in the SAS log.
� OUTPUT statements write a value that is returned by a routine to a data set.

GASK routines enable you to check these current attribute settings:

ASF

ASPECT

CATALOG

CBACK

CLIP

COLINDEX

COLREP

DEVICE

FILCOLOR

FILINDEX

FILREP

FILSTYLE

FILTYPE

GRAPHLIST

HPOS

HSIZE

HTML

LINCOLOR

LININDEX

LINREP

LINTYPE

LINWIDTH

MARCOLOR

MARINDEX

DATA Step Graphics Interface Dictionary � ASF 817

MARREP

MARSIZE

MARTYPE

MAXDISP

NUMGRAPH

OPENGRAPH

PATREP

STATE

TEXALIGN

TEXCOLOR

TEXEXTENT

TEXFONT

TEXHEIGHT

TEXINDEX

TEXPATH

TEXREP

TEXUP

TRANS

TRANSNO

VIEWPORT

VPOS

VSIZE

WINDOW

WSACTIVE

WSOPEN

ASF

Finds whether an aspect source flag is bundled or separate

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’ASF’, attribute, status, return-code-variable);

Description
The GASK(’ASF’, . . .)routine returns the aspect source flag (ASF) of a particular
attribute. Possible ASF values are BUNDLED (associated with a bundle index) and

818 ASPECT � Chapter 32

INDIVIDUAL (separate from a bundle index). GASK(’ASF’, . . .)returns the default
value INDIVIDUAL if you have not set the ASF for an attribute.

Argument Definitions
attribute character string enclosed in quotes or character variable name with

one of the following values:
� FILCOLOR
� FILSTYLE
� FILTYPE
� LINCOLOR
� LINTYPE
� LINWIDTH
� MARCOLOR
� MARSIZE
� MARTYPE
� TEXCOLOR
� TEXFONT.

status character variable name; returns either the value BUNDLED or
INDIVIDUAL.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“ASF” on page 872
“FILCOLOR” on page 877
“FILSTYLE” on page 880
“FILTYPE” on page 881
“LINCOLOR” on page 885
“LINTYPE” on page 887
“LINWIDTH” on page 888
“MARCOLOR” on page 888
“MARSIZE” on page 891
“MARTYPE” on page 891
“TEXCOLOR” on page 896
“TEXFONT” on page 897

ASPECT

Finds the aspect ratio

Operating States: All
Return Codes: 0

DATA Step Graphics Interface Dictionary � CATALOG 819

Syntax
CALL GASK(’ASPECT’, aspect, return-code-variable);

Description
The GASK(’ASPECT’, . . .)routine returns the current aspect ratio used to draw
graphics output. GASK(’ASPECT’, . . .)searches for the current aspect ratio in the
following order:

1 the aspect ratio set with the GSET(’ASPECT’, . . .)function
2 the ASPECT= graphics option
3 the device’s default aspect ratio found in the device entry. For more information on

device entries, see Chapter 38, “The GDEVICE Procedure,” on page 1125.

Argument Definitions
aspect numeric variable name; returns the aspect ratio.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

ASPECT= graphics option (see “ASPECT” on page 331)
“ASPECT” on page 873

CATALOG

Finds the catalog for the graphs

Operating States: All
Return Codes: 0

Syntax
CALL GASK(’CATALOG’, libref, memname, return-code-variable);

Description
The GASK(’CATALOG’, . . .)routine returns the libref and the name of the current
output catalog. GASK(’CATALOG’, . . .)returns the default catalog, WORK.GSEG, if
no other catalog has been specified with the GSET(’CATALOG’, . . .)function.

Argument Definitions
libref character variable name; returns the libref of the library in which

the current catalog is stored.

820 CBACK � Chapter 32

memname character variable name; returns the name of the current output
catalog.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“CATALOG” on page 874
“NUMGRAPH” on page 839
“OPENGRAPH” on page 839

CBACK
Finds the background color

Operating States: All
Return Codes: 0

Syntax
CALL GASK(’CBACK’, cback, return-code-variable);

Description
The GASK(’CBACK’, . . .)routine returns the current background color.
GASK(’CBACK’, . . .)searches for the current background color in the following order:

1 the background color selected with the GSET(’CBACK’, . . .)function
2 the CBACK= graphics option
3 the default background color for the device found in the device entry. For more

information about device entries, see Chapter 38, “The GDEVICE Procedure,” on
page 1125.

Argument Definitions
cback character variable name; returns the background color name.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

CBACK= graphics option (see “CBACK” on page 335)
“CBACK” on page 875

CLIP
Finds whether clipping is on or off

DATA Step Graphics Interface Dictionary � COLINDEX 821

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 55, 56

Syntax
CALL GASK(’CLIP’, status);

Description
The GASK(’CLIP’, . . .)routine checks whether clipping outside of viewports is enabled
or disabled. One of the two following messages is displayed when this routine is called:

NOTE: Clipping is ON.

or

NOTE: Clipping is OFF.

Clipping is OFF by default.

Argument Definitions
status numeric variable name; returns the current setting, 55 (ON) or 56

(OFF), for clipping.

See Also
“CLIP” on page 875

COLINDEX

Finds the color indexes that have colors associated with them

Operating States: SGOP
Return Codes: 0, 4, 86, 87

Syntax
CALL GASK(’COLINDEX’, n, index-array, return-code-variable);

Description
The GASK(’COLINDEX’, . . .)routine returns the color indexes that currently have
colors assigned to them.

Argument Definitions
n numeric constant or numeric variable name; tells how many color

indexes you want returned. If n is expressed as a variable, the
variable must be initialized. The variable returns the number of
colors currently assigned. If n is expressed as a constant, this value
is not returned.

822 COLREP � Chapter 32

index-array list of numeric variables into which the used color index numbers
are returned. The list of variable names can be members of an array
or OF argument lists (where the arguments are variables). If you
are using an array, index-array must have been declared as an
array. The dimension of the array is determined by the number of
color indexes you want returned. Refer to the discussion of ARRAY
in SAS Language Reference: Dictionary for more information about
OF argument lists.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“COLREP” on page 822
“COLREP” on page 876

COLREP

Finds the color name associated with a color index

Operating States: SGOP
Return Codes: 0, 4, 86, 87

Syntax
CALL GASK(’COLREP’, color-index, color, return-code-variable);

Description
The GASK(’COLREP’, . . .)routine returns the predefined SAS color name associated
with a color index. GASK(’COLREP’, . . .)searches for the current color assigned to a
color index in the following order:

1 the color selected by the GSET(’COLREP’, . . .)function.
2 the COLORS= graphics option. If color-index is 2, the routine returns the second

color from the color list of the COLORS= graphics option.
3 the device’s default color list found in the device entry. If color-index is 2, the

routine returns the second color from the default color list.

See “SAS Color Names and RGB Values in the SAS Registry” on page 175 for a list of
SAS predefined color names.

Argument Definitions
color-index numeric constant; indicates the color index for which you want to

check the color. Valid values are 1 to 256, inclusive.

color character variable name; returns the color name associated with
color-index.

return-code-
variable

numeric variable name; returns the return code of the routine call.

DATA Step Graphics Interface Dictionary � FILCOLOR 823

See Also

“COLINDEX” on page 821
“COLREP” on page 876

DEVICE

Finds the output graphics device

Operating States: All
Return Codes: 0

Syntax
CALL GASK(’DEVICE’, device, return-code-variable);

Description
The GASK(’DEVICE’, . . .)routine returns the current device. This routine returns the
device set by one of the following methods:

� the GSET(’DEVICE’, . . .)function
� the DEVICE= graphics option
� the device you entered in the DEVICE prompt window
� the device you entered in the OPTIONS window.

There is no default value for a device. To use DSGI, you must specify a device. For
more information about devices, see “Overriding the Default Device” on page 72.

Argument Definitions
device character variable name; returns the name of the device driver.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

DEVICE= graphics option (see “DEVICE” on page 348)
See also: “Overriding the Default Device” on page 72

FILCOLOR

Finds the color index of the color to be used to draw fill areas

Operating States: GKOP, SGOP, WSAC, WSOP

824 FILINDEX � Chapter 32

Return Codes: 0, 8

Syntax
CALL GASK(’FILCOLOR’, color-index, return-code-variable);

Description
The GASK(’FILCOLOR’, . . .)routine returns the current fill color. If a
GSET(’FILCOLOR’, . . .)function has not been previously submitted,
GASK(’FILCOLOR’, . . .)returns the default value, 1. The color index returned
corresponds to a color specification in the following order:

1 the color assigned to a color name with the GSET(’COLREP’, . . .)function
2 the nth color in the color list of the COLORS= graphics option
3 the nth color in the device’s default color list found in the device entry.

Argument Definitions
color-index numeric variable name; returns the color index of the fill color

currently selected.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 340)
“COLREP” on page 822
“COLREP” on page 876
“FILCOLOR” on page 877

FILINDEX

Finds the bundle of fill area attributes that is active

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’FILINDEX’, index, return-code-variable);

Description
The GASK(’FILINDEX’, . . .)routine asks which fill bundle is active. If no fill bundles
have been previously defined with GSET(’FILREP’, . . .)or activated with
GSET(’FILINDEX’, . . .), GASK(’FILINDEX’, . . .)returns the default value, 1.

DATA Step Graphics Interface Dictionary � FILREP 825

Argument Definitions
index numeric variable name; returns the index of the fill bundle currently

selected.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“FILREP” on page 825

“FILREP” on page 879
“FILINDEX” on page 878

FILREP

Finds the fill area attributes associated with a bundle index

Operating States: GKOP, WSOP, WSAC, SGOP

Return Codes: 0, 8, 75, 76

Syntax
CALL GASK (’FILREP’, index, color-index, interior, style-index, return-code-variable);

Description
The GASK(’FILREP’, . . .)routine returns the color, type of interior, and fill pattern
associated with a specific fill bundle. If the bundle indicated by index has not been
previously defined with the GSET(’FILREP’, . . .)function, DSGI issues the following
error message:

ERROR: A representation for the specified fill area index has
not been defined on this workstation.

Argument Definitions
index numeric constant or numeric variable name; indicates the fill bundle

to check. Valid values are 1 to 20, inclusive. If index is expressed as
a variable, the variable must be initialized to a value between 1 and
20.

color-index numeric variable name; returns the color index of the fill color
associated with the bundle. The color index that is returned
corresponds to a color specification in the following order:

1 a color index assigned to a color name with the
GSET(’COLREP’, . . .)function

2 the nth color in the color list of the COLORS= graphics option
3 the nth color in the device’s default color list found in the

device entry.

826 FILSTYLE � Chapter 32

interior character variable name; returns the style of the interior associated
with the bundle index:

� HATCH

� HOLLOW

� PATTERN

� SOLID.

style-index numeric variable name; returns the index of the fill pattern
associated with the bundle. See the “FILSTYLE” on page 880 for the
fill patterns represented by style-index.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 340)

“FILINDEX” on page 824

“COLREP” on page 876

“FILREP” on page 879

“FILSTYLE” on page 880

FILSTYLE

Finds the style of the fill area when FILTYPE is PATTERN or HATCH

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK(’FILSTYLE’, style-index, return-code-variable);

Description
The GASK(’FILSTYLE’, . . .)routine returns the current fill style of the interior when
FILTYPE is PATTERN or HATCH. If no fill style has been previously selected with the
GSET(’FILSTYLE’, . . .)function, GASK(’FILSTYLE’, . . .)returns the default value, 1.

Argument Definitions
style-index numeric variable name; returns the index of the fill pattern

associated with the bundle. See the “FILSTYLE” on page 880 for the
interior styles represented by style-index.

return-code-
variable

numeric variable name; returns the return code of the routine call.

DATA Step Graphics Interface Dictionary � GRAPHLIST 827

See Also

“FILTYPE” on page 827
“FILSTYLE” on page 880
“FILTYPE” on page 881

FILTYPE

Finds the type of the interior of the fill area

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’FILTYPE’, interior, return-code-variable);

Description
The GASK(’FILTYPE’, . . .)routine returns the current fill type. If no fill type has been
previously selected with the GSET(’FILTYPE’, . . .)function, GASK(’FILTYPE’, . . .
)returns the default value, HOLLOW.

Argument Definitions
interior character variable name; returns the fill type that is active, that is,

one of the following values:
� HATCH
� HOLLOW
� PATTERN
� SOLID.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“FILSTYLE” on page 826
“FILTYPE” on page 827

GRAPHLIST

Finds the names of segments in the current catalog

Operating States: GKOP, SGOP, WSAC, WSOP

828 HPOS � Chapter 32

Return Codes: 0, 8

Syntax
CALL GASK(’GRAPHLIST’, n, name-array, return-code-variable);

Description
The GASK(’GRAPHLIST’, . . .)routine lists the first n names of the graphs that are in
the current catalog. If a catalog has not been previously specified with the
GRAPH(’CATALOG’, . . .)function, the routine returns names from the default catalog,
WORK.GSEG.

The names returned are any of the following:
� those specified in the GRAPH(’CLEAR’, . . .)function
� if the name is omitted from the GRAPH(’CLEAR’ . . .)function, some form of

DSGI: for example, DSGI, DSGI1, or DSGI2.
� the name specified in the NAME= option of a graphics procedure
� graphs previously created by other graphics procedures and already in the catalog.

Argument Definitions
n numeric variable name; tells the maximum number of graph names

you want returned. If you express n as a variable, the variable must
be initialized to the maximum number of graph names you want
returned.

name-array list of character variable names into which the graph names are
returned. The list of variable names can be members of an array or
OF argument lists (where the arguments are variables). If you are
using an array, name-array must be declared as an array. The
dimension of the array is determined by the number of color indexes
you want returned. See the discussion for ARRAY in SAS Language
Reference: Dictionary for more information about OF argument lists.

return-code-
variable

numeric variable names; returns the return code of the routine call.

See Also

“CLEAR” on page 866

HPOS
Finds the number of columns

Operating States: All
Return Codes: 0

Syntax
CALL GASK(’HPOS’,hpos, return-code-variable);

DATA Step Graphics Interface Dictionary � HSIZE 829

Description
The GASK(’HPOS’, . . .)routine returns the number of columns currently in the
graphics output area. GASK(’HPOS’, . . .)searches for the current number of columns
in the following order:

1 the value selected in the GSET(’HPOS’, . . .)function
2 the value of the HPOS= graphics option
3 the device’s default HPOS value found in the device entry.

Argument Definitions
hpos numeric variable name; returns the number of columns in the

graphics output area.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“HSIZE” on page 829
“HPOS” on page 882
HPOS= graphics option (see “HPOS” on page 383)

HSIZE

Finds the horizontal dimension of the graphics output area

Operating States: All
Return Codes: 0

Syntax
CALL GASK(’HSIZE’, hsize, return-code-variable);

Description
The GASK(’HSIZE’, . . .)routine returns the current horizontal dimension, in inches, of
the graphics output area. GASK(’HSIZE’, . . .)searches for the current horizontal
dimension in the following order:

1 the value selected in the GSET(’HSIZE’, . . .)function
2 the value of the HSIZE= graphics option
3 the device’s default HSIZE found in the device entry.

Argument Definitions
hsize numeric variable name; the size of the graphics output area in the x

dimension (in inches).

return-code-
variable

numeric variable name; returns the return code of the routine call.

830 HTML � Chapter 32

See Also

“HPOS” on page 828
“HSIZE” on page 883
HSIZE= graphics option (see “HSIZE” on page 384)

HTML

Finds the HTML string that is in effect when one of the following graphic elements is drawn: bar,
ellipse, fill, mark, pie, and text.

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’HTML’, string, return-code-variable);

Description
The GASK(’HTML’, . . .)routine returns the current HTML string. If a GSET(’HTML’,
. . .)function has not been previously submitted, GASK(’HTML’, . . .)returns the
default value, null.

Argument Definitions
string the HTML string invoked when an affected DSGI graphic element in

a web page is clicked.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“BAR” on page 857
“ELLIPSE” on page 859
“FILL” on page 860
“MARK” on page 862
“PIE” on page 864
“TEXT” on page 865
“HTML” on page 884

LINCOLOR

Finds the current setting of the color to be used to draw lines

DATA Step Graphics Interface Dictionary � LININDEX 831

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’LINCOLOR’, color-index, return-code-variable);

Description
The GASK(’LINCOLOR’, . . .)routine returns the current line color. If a
GSET(’LINCOLOR’, . . .)function has not been previously submitted,
GASK(’LINCOLOR’, . . .)returns the default value, 1. The color index returned
corresponds to a color specification in the following order:

1 the color specified in a GSET(’COLREP’, . . .)function
2 the nth color in the color list of the COLORS= graphics option
3 the nth color in the device’s default color list.

Argument Definitions
color-index numeric variable name; returns the color index of the current line

color.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 340)
“COLREP” on page 822
“COLREP” on page 876
“LINCOLOR” on page 885

LININDEX

Finds the index of the bundle of line attributes

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’LININDEX’, index, return-code-variable);

Description
The GASK(’LININDEX’, . . .)routine returns the current line bundle. If no line
bundles have been previously defined with GSET(’LINREP’, . . .)or activated with
GSET(’LININDEX’, . . .), GASK(’LININDEX’, . . .)returns the default value, 1.

832 LINREP � Chapter 32

Argument Definitions
index numeric variable name; returns the index of the current line bundle.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“LINREP” on page 832

“LININDEX” on page 885

“LINREP” on page 886

LINREP

Finds the bundle of line attributes associated with an index

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 60, 61

Syntax
CALL GASK (’LINREP’, index, color-index, width, type, return-code-variable);

Description
The GASK(’LINREP’, . . .)routine returns the color, width, and line type associated
with a specific line bundle. If the bundle indicated by index has not been previously
defined with the GSET(’LINREP’, . . .)function, DSGI issues the following error
message:

ERROR: A representation for the specified line type index has
not been defined on this workstation.

Argument Definitions
index numeric constant or numeric variable name; indicates the fill bundle

to check. Valid values are 1 to 20, inclusive. If index is expressed as
a variable, the variable must be initialized to a value between 1 and
20.

color-index numeric variable name; returns the color index of the fill color
associated with the bundle. The color index returned corresponds to
a color specification in the following order:

1 a color index assigned with the GSET(’COLREP’, . . .)function
2 the nth color in the color list of the COLORS= graphics option
3 the nth color in the device’s default color list.

width numeric variable name; returns the line width (in pixels) associated
with the bundle.

DATA Step Graphics Interface Dictionary � LINTYPE 833

type numeric variable name; returns the index of the line type associated
with the bundle. Refer to Figure 14.22 on page 277 for
representations of the line types.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 340)

“COLREP” on page 822

“LININDEX” on page 831

“COLREP” on page 876

“LINREP” on page 886

LINTYPE

Finds the line type

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax

CALL GASK(’LINTYPE’, type, return-code-variable);

Description

The GASK(’LINTYPE’, . . .)routine returns the current line type. If no line type was
previously selected with the GSET(’LINTYPE’, . . .)function, GASK(’LINTYPE’, . . .
)returns the default value, 1.

Argument Definitions

type numeric variable name; returns the index of the line type currently
selected. Refer to Figure 14.22 on page 277 for representations of
the line types.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“LINTYPE” on page 887

834 LINWIDTH � Chapter 32

LINWIDTH

Finds the line thickness

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’LINWIDTH’, width, return-code-variable);

Description
The GASK(’LINWIDTH’, . . .)routine returns the current line width. If a line width
has not been previously selected with the GSET(’LINWIDTH’, . . .)function,
GASK(’LINWIDTH’, . . .)returns the default value, 1.

Argument Definitions
width numeric variable name; returns the current line width (in units of

pixels).

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“LINWIDTH” on page 888

MARCOLOR

Finds the color index of the color to be used to draw markers

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’MARCOLOR’, color-index, return-code-variable);

Description
The GASK’MARCOLOR’, . . .)routine returns the current marker color. If a
GSET(’MARCOLOR’, . . .)function has not been previously submitted,
GASK(’MARCOLOR’, . . .)returns the default value, 1. The color index returned
corresponds to a color specification in the following order:

1 the color selected in a GSET(’COLREP’, . . .)function

DATA Step Graphics Interface Dictionary � MARINDEX 835

2 the nth color in the color list of the COLORS= graphics option
3 the nth color in the device’s default color list.

Argument Definitions
color-index numeric variable name; returns the color index of the current

marker color.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 340)
“COLREP” on page 822
“COLREP” on page 876
“MARCOLOR” on page 888

MARINDEX

Finds the index of the bundle of marker attributes currently selected

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’MARINDEX’, index, return-code-variable);

Description
The GASK(’MARINDEX’, . . .)routine returns the current marker bundle. If no marker
bundles have been previously defined with GSET(’MARREP’, . . .)or activated with
GSET(’MARINDEX’, . . .), GASK(’MARINDEX’, . . .)returns the default value, 1.

Argument Definitions
index numeric variable name; returns the index of the marker bundle

currently selected.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“MARREP” on page 836
“MARINDEX” on page 889
“MARREP” on page 890

836 MARREP � Chapter 32

MARREP

Finds the bundle of marker attributes associated with an index

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 64, 65

Syntax
CALL GASK(’MARREP’, index, color-index, size, type, return-code-variable);

Description
The GASK(’MARREP’ . . .)routine returns the color, size, and type of marker
associated with a specific marker bundle. If the bundle indicated by index has not been
previously defined with the GSET(’MARREP’, . . .)function, DSGI issues the following
error message:

ERROR: A representation for the specified marker index has
not been defined on this workstation.

Argument Definitions
index numeric constant or numeric variable name; indicates the index of

the fill bundle to check. Valid values are 1 to 20, inclusive. If index
is expressed as a variable, the variable must be initialized to a value
between 1 and 20.

color-index numeric variable name; returns the color index of the fill color
associated with the bundle. The color index returned corresponds to
a color specification in the following order:

1 a color index assigned with the GSET(’COLREP’, . . .)function
2 the nth color in the color list of the COLORS= graphics option
3 the nth color in the device’s default color list.

size numeric variable name; returns the marker size in units of the
current window system.

type numeric variable name; the index of the marker type associated
with the bundle. See the “MARTYPE” on page 891 for an
explanation of the marker indexes.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 340)
“COLREP” on page 822
“COLREP” on page 876
“MARINDEX” on page 889
“MARREP” on page 890

DATA Step Graphics Interface Dictionary � MARTYPE 837

“MARTYPE” on page 891

MARSIZE

Finds the size of markers

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’MARSIZE’, size, return-code-variable);

Description
The GASK(’MARSIZE’, . . .)routine returns the current marker size. If no marker size
has been previously selected with the GSET(’MARSIZE’, . . .)function,
GASK’MARSIZE’, . . .)returns the default value, 1.

Argument Definitions
size numeric variable name; returns the marker size in units of the

current window system.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“MARSIZE” on page 891

MARTYPE

Finds the kind of markers

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’MARTYPE’, type, return-code-variable);

Description
The GASK(’MARTYPE’, . . .)routine returns the current marker type. If no marker
type has been previously selected with the GSET(’MARTYPE’, . . .)function,
GASK(’MARTYPE’, . . .)returns the default value, 1.

838 MAXDISP � Chapter 32

Argument Definitions
type numeric variable name; returns the index of the marker type

currently selected. See the function “MARTYPE” on page 891 for an
explanation of the indexes for markers.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“MARTYPE” on page 891

MAXDISP

Finds the maximum display area size

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK (’MAXDISP’, units, x-dim, y-dim, x-pixels, y-pixels, return-code-variable);

Description
The GASK(’MAXDISP’, . . .)routine returns the dimensions of the maximum display
area for the device. This routine is useful when you need to know the maximum display
area in order to determine the aspect ratio or to scale a graph.

There is a difference between the maximum display size returned when the operating
state is not SGOP and when it is SGOP. The full addressable display area is returned
when the operating state is not SGOP. The display area, minus room for titles and
footnotes, is returned when the operating state is SGOP.

Argument Definitions
units numeric variable name; returns a 1 to show that x-dim and y-dim

are in meters.

x-dim numeric variable name; returns the dimension, in meters, in the x
direction.

y-dim numeric variable name; returns the dimension, in meters, in the y
direction.

x-pixels numeric variable name; returns the number of pixels in the x
direction.

y-pixels numeric variable name; returns the number of pixels in the y
direction.

return-code-
variable

numeric variable name; returns the return code of the routine call.

DATA Step Graphics Interface Dictionary � OPENGRAPH 839

See Also

“HSIZE” on page 829

“VSIZE” on page 852

“HSIZE” on page 883

“VSIZE” on page 906

NUMGRAPH

Finds the number of graphs in the current catalog

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK(’NUMGRAPH’, n, return-code-variable);

Description
The GASK(’NUMGRAPH’, . . .)routine returns how many graphs are in the current
catalog. The catalog checked is the catalog selected in the GSET(’CATALOG’, . . .
)function, if specified; otherwise, it is the default catalog, WORK.GSEG.

Argument Definitions
n numeric variable name; returns the number of graphs in the current

catalog.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“CATALOG” on page 819

“CATALOG” on page 874

OPENGRAPH

Finds the name of the segment currently open

Operating States: SGOP

Return Codes: 0, 4

840 PATREP � Chapter 32

Syntax
CALL GASK(’OPENGRAPH’, name, return-code-variable);

Description
The GASK(’OPENGRAPH’, . . .)routine returns the name of the graph that is
currently open.

The name returned is one of the following:
� the name specified in the GRAPH(’CLEAR’, . . .)function
� if the name is omitted from the GRAPH(’CLEAR’, . . .)function, some form of

DSGI: for example, DSGI, DSGI1, and DSGI2.

Argument Definitions
name character variable name; returns the name of the graph that is

currently open.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“CLEAR” on page 866

PATREP

Finds the pattern name assigned to a style index

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8. 79

Syntax
CALL GASK(’PATREP’, index, pattern-name, hatch-name, return-code-variable);

Description
The GASK(’PATREP’, . . .)routine returns the pattern name assigned to a style index.

Argument Definitions
index numeric variable name; returns the index of the pattern currently

selected.

pattern-name character variable name; returns the name of the pattern at the
specified index.

hatch-name character variable name; returns the name of the hatch at the
specified index.

return-code-
variable

numeric variable name; returns the return code of the routine call.

DATA Step Graphics Interface Dictionary � TEXALIGN 841

See Also

“PATREP” on page 893

STATE

Finds the current operating state of DSGI

Operating States: All

Return Codes: 0

Syntax
CALL GASK(’STATE’, status);

Description
The GASK(’STATE’, . . .)routine returns the current operating state of DSGI.

Argument Definitions
status character variable name; returns one of the following values:

� GKCL

� GKOP

� SGOP
� WSAC

� WSOP.

See Also

“WSACTIVE” on page 854
“WSOPEN” on page 854

TEXALIGN

Finds the horizontal and vertical alignment of the text string

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK(’TEXALIGN’, halign, valign, return-code-variable);

842 TEXCOLOR � Chapter 32

Description
The GASK(’TEXALIGN’, . . .)routine returns the current horizontal and vertical text
alignment. If no values have been previously selected with the GSET(’TEXALIGN’, . . .
)function, GASK(’TEXALIGN’, . . .)returns the default value NORMAL for both halign
and valign.

Argument Definitions
halign character variable name; indicates the horizontal alignment set by

the GSET(’TEXALIGN’, . . .)function; returns one of the following
values:

� CENTER
� LEFT
� NORMAL
� RIGHT.

valign character variable name; indicates the vertical alignment set by the
GSET(’TEXALIGN’, . . .)function; returns one of the following
values:

� BASE
� BOTTOM
� HALF
� NORMAL
� TOP.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TEXPATH” on page 846
“TEXUP” on page 848
“TEXALIGN” on page 894

TEXCOLOR

Finds the color index of the color currently selected to draw text strings

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’TEXCOLOR’, color-index, return-code-variable);

Description
The GASK(’TEXCOLOR’, . . .)routine returns the current text color. If a
GSET(’TEXCOLOR’, . . .)function has not been previously submitted,

DATA Step Graphics Interface Dictionary � TEXEXTENT 843

GASK(’TEXCOLOR’, . . .)returns the default value, 1. The color index returned
corresponds to a color specification in the following order:

1 the color specified in a GSET(’COLREP’, . . .)function
2 the nth color in the color list of the COLORS= graphics option
3 the nth color in the device’s default color list.

Argument Definitions
color-index numeric variable name; returns the color index of the color used to

draw text.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

COLORS= graphics option (see “COLORS” on page 340)
“COLREP” on page 822
“COLREP” on page 876
“TEXCOLOR” on page 896

TEXEXTENT

Finds the text extent rectangle and concatenation point for a specified text string

Operating States: SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK (’TEXEXTENT’, x, y, string, x-end, y-end, x1, x2, x3, x4, y1, y2, y3, y4,
return-code-variable);

Description
The GASK(’TEXEXTENT’, . . .)routine returns the text extent rectangle and text
concatenation point for a specified text string. All text extent coordinates returned are
in units of the current window system. If no text string is specified for string,
GASK(’TEXEXTENT’, . . .)does not return values for the other arguments.

The text attributes and bundles affect the values returned by this query. See Figure
32.1 on page 843 for a diagram of the text extent rectangle (in the figure, x,y is always
the place where the text string starts).

Figure 32.1 Text Extent Diagram

844 TEXFONT � Chapter 32

Argument Definitions
x numeric variable name; x coordinates are in units based on the

current window system; returns x coordinate after justification. The
variable used to specify x must be initialized.

y numeric variable name; y coordinates are in units based on the
current window system; returns y coordinate after justification. The
variable used to specify y must be initialized.

string character string enclosed in single quotation marks or a character
variable name; a set of characters for which the text extent
rectangle and text concatenation point are calculated.

x-end numeric variable name; returns the x coordinate of the point at
which the next text string can be concatenated.

y-end numeric variable name; returns the y coordinate of the point at
which the next text string can be concatenated.

x1, x2, x3, x4,
y1, y2, y3, y4

numeric variable names; return the text extent rectangles of the text
strings as shown in Figure 32.1 on page 843.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“WINDOW” on page 853

“TEXT” on page 865

TEXFONT

Finds the font used to draw text strings

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK(’TEXFONT’, font, return-code-variable);

Description
The GASK(’TEXFONT’ . . .)routine returns the current text font. GASK(’TEXFONT’, .
. .)searches for the current font in the following order:

1 the value selected in the GSET(’TEXFONT’, . . .)function, if specified

2 the value of the FTEXT= graphics option, if specified

3 the device’s default device-resident font if the device supports a device-resident font

4 the SIMULATE font.

DATA Step Graphics Interface Dictionary � TEXINDEX 845

Argument Definitions
font character variable name; returns the font name.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

FTEXT= graphics options in (see “FTEXT” on page 363)
“TEXFONT” on page 897

TEXHEIGHT

Finds the character height of the text strings

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’TEXHEIGHT’, height, return-code-variable);

Description
The GASK(’TEXHEIGHT’, . . .)routine returns the current text height.
GASK(’TEXHEIGHT’, . . .)searches for the current text height in the following order:

1 the value selected in the GSET(’TEXHEIGHT’, . . .)function, if specified
2 the value of the HTEXT= graphics option, if specified
3 the default text height, 1.

Argument Definitions
height numeric variable name; returns the character height in units of the

current window system.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TEXHEIGHT” on page 898
HTEXT= graphics options (see “HTEXT” on page 385)

TEXINDEX

Finds the index of the bundle of text attributes currently selected

846 TEXPATH � Chapter 32

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’TEXINDEX’, index, return-code-variable);

Description
The GASK(’TEXINDEX’, . . .)routine returns the current text bundle. If no text
bundles have been previously defined with GSET(’TEXREP’, . . .)or activated with
GSET(’TEXINDEX’, . . .), GASK(’TEXINDEX’, . . .)returns the default value, 1.

Argument Definitions
index numeric variable name; returns the text bundle index.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TEXREP” on page 847
“TEXREP” on page 900
“TEXINDEX” on page 898

TEXPATH

Finds the direction of the text string

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’TEXPATH’, path, return-code-variable);

Description
The GASK(’TEXPATH’, . . .)routine returns the current text path (reading direction).
If TEXPATH has not been previously selected with the GSET(’TEXPATH’, . . .
)function, GASK(’TEXPATH’, . . .)returns the default value, RIGHT. See the
“TEXPATH” on page 899 for an illustration of text paths.

Argument Definitions
path character variable name; returns one of the following values:

� DOWN

DATA Step Graphics Interface Dictionary � TEXREP 847

� LEFT
� RIGHT
� UP.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TEXALIGN” on page 841
“TEXUP” on page 848
“TEXPATH” on page 899

TEXREP

Finds the attribute settings associated with a text bundle

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 68, 69

Syntax
CALL GASK(’TEXREP’, index, color-index, font, return-code-variable);

Description
The GASK(’TEXREP’, . . .)routine returns the color and font associated with a specific
text bundle. If the bundle indicated by index has not been previously defined with the
GSET(’TEXREP’, . . .)function, DSGI issues the following error message:

ERROR: A representation for the specified text index has
not been defined on this workstation.

Argument Definitions
index numeric constant or numeric variable name; indicates the fill bundle

to check. Valid values are 1 to 20, inclusive. If index is expressed as
a variable, the variable must be initialized to a value between 1 and
20.

color-index numeric variable name; returns the color index of the fill color
associated with the bundle. The color index that is returned
corresponds to a color specification in the following order:

1 a color index assigned with the GSET(’COLREP’, . . .)function
2 the nth color in the color list of the COLORS= graphics option
3 the nth color in the device’s default color list.

font character variable name; returns the text font associated with the
bundle.

return-code-
variable

numeric variable name; returns the return code of the routine call.

848 TEXUP � Chapter 32

See Also

COLORS= graphics option (see “COLORS” on page 340)
“COLREP” on page 822
“COLREP” on page 876
“TEXREP” on page 900

TEXUP

Finds the orientation (angle) of the text string

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8

Syntax
CALL GASK(’TEXUP’, up-x, up-y, return-code-variable);

Description
The GASK(’TEXUP’, . . .)routine returns the character up vector values. If TEXUP
has not been previously selected with the GSET(’TEXUP’, . . .)function,
GASK(’TEXUP’, . . .)returns the default values for x and y, 0 and 1. See the “TEXUP”
on page 901 for an explanation of the vector values.

Argument Definitions
up-x numeric variable name; returns the x component of the vector.

up-y numeric variable name; returns the y component of the vector.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TEXALIGN” on page 841
“TEXPATH” on page 846
“TEXUP” on page 901

TRANS

Finds the viewport and window coordinates associated with a transformation number

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 50

DATA Step Graphics Interface Dictionary � TRANS 849

Syntax
CALL GASK (’TRANS’, n, vllx, vlly, vurx, vury, wllx, wlly, wurx, wury,
return-code-variable);

Description
The GASK(’TRANS’, . . .)routine returns the viewport and window coordinates
associated with a particular transformation number. GASK(’TRANS’, . . .)returns the
default coordinates for viewports and windows if other coordinates have not been
defined for the transformation specified.

Argument Definitions
n numeric constant or numeric variable name; indicates the number of

the transformation to check. Valid values are 0 to 20, inclusive. If n
is expressed as a variable, the variable must be initialized to a value
between 0 and 20.

vllx numeric variable name; returns the x coordinate of the lower-left
viewport corner.

vlly numeric variable name; returns the y coordinate of the lower-left
viewport corner.

vurx numeric variable name; returns the x coordinate of the upper-right
viewport corner.

vury numeric variable name; returns the y coordinate of the upper-right
viewport corner.

wllx numeric variable name; returns the x coordinate of the lower-left
window corner.

wlly numeric variable name; returns the y coordinate of the lower-left
window corner.

wurx numeric variable name; returns the x coordinate of the upper-right
window corner.

wury numeric variable name; returns the y coordinate of the upper-right
window corner.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TRANSNO” on page 850

“VIEWPORT” on page 850

“WINDOW” on page 853

“TRANSNO” on page 903

“VIEWPORT” on page 904

“WINDOW” on page 907

850 TRANSNO � Chapter 32

TRANSNO

Finds the number of the transformation to be used

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Syntax
CALL GASK(’TRANSNO’, n, return-code-variable);

Description
The GASK(’TRANSNO’, . . .)routine returns the current transformation. If a
transformation has not been previously selected with the GSET(’TRANSNO’, . . .
)function, GASK(’TRANSNO’, . . .)returns the number of the default transformation, 0.

Argument Definitions
n numeric variable name; returns the number of the current

transformation.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TRANS” on page 848

“VIEWPORT” on page 850

“WINDOW” on page 853

“VIEWPORT” on page 904

“WINDOW” on page 907

“TRANSNO” on page 903

VIEWPORT

Finds coordinates of the viewport associated with a transformation number

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 50

Syntax
CALL GASK(’VIEWPORT’, n, llx, lly, urx, ury, return-code-variable);

DATA Step Graphics Interface Dictionary � VPOS 851

Description
The GASK(’VIEWPORT’, . . .)routine returns the coordinates of the viewport
associated with the specified transformation. If a viewport has not been defined with
the GSET(’VIEWPORT’, . . .)function for the specified transformation, n,
GASK(’VIEWPORT’, . . .)returns the default coordinates for the viewport, (0,0) and
(1,1).

Argument Definitions
n numeric constant or numeric variable name; indicates the

transformation number assigned to the viewport to check. Valid
values are 0 to 20, inclusive. If n is expressed as a variable, the
variable must be initialized to a value between 0 and 20.

llx numeric variable name; returns the x coordinate of the lower-left
corner.

lly numeric variable name; returns the y coordinate of the lower-left
corner.

urx numeric variable name; returns the x coordinate of the upper-right
corner.

ury numeric variable name; returns the y coordinate of the upper-right
corner.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“TRANS” on page 848

“TRANSNO” on page 850

“WINDOW” on page 853

“TRANSNO” on page 903

“VIEWPORT” on page 904

“WINDOW” on page 907

VPOS

Finds the number of rows

Operating States: All

Return Codes: 0

Syntax
CALL GASK(’VPOS’, vpos, return-code-variable);

852 VSIZE � Chapter 32

Description
The GASK(’VPOS’, . . .)routine returns the current number of rows in the graphics
output area. GASK(’VPOS’, . . .)searches for the current number of rows in the
following order:

1 the value selected in the GSET(’VPOS’, . . .)function
2 the value of the VPOS= graphics option
3 the device’s default VPOS value found in the device entry.

Argument Definitions
vpos numeric variable name; returns the number of rows in the graphics

output area.

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“HPOS” on page 828
“VSIZE” on page 852
“VPOS” on page 905
VPOS= graphics option (see “VPOS” on page 430)

VSIZE

Finds the vertical dimension of the graphics output area

Operating States: All
Return Codes: 0

Syntax
CALL GASK(’VSIZE’, vsize, return-code-variable);

Description
The GASK(’VSIZE’, . . .)routine returns the current vertical dimension, in inches, of
the graphics output area. GASK(’VSIZE’, . . .)searches for the current vertical
dimension in the following order:

1 the value selected in the GSET(’VSIZE’, . . .)function
2 the value of the VSIZE= graphics option
3 the device’s default VSIZE found in the device entry.

Argument Definitions
vsize numeric variable name; returns the size of the graphics output area

in the y dimension (in inches).

DATA Step Graphics Interface Dictionary � WINDOW 853

return-code-
variable

numeric variable name; returns the return code of the routine call.

See Also

“HSIZE” on page 829

“VPOS” on page 851

“VSIZE” on page 906

VSIZE= graphics option (see “VSIZE” on page 430)

WINDOW

Finds the coordinates of the window associated with a transformation number

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 50

Syntax
CALL GASK(’WINDOW’, n, llx, lly, urx, ury, return-code-variable);

Description
The GASK(’WINDOW’, . . .)routine returns the coordinates of the window associated
with the specified transformation number. If no window has been defined with the
GSET(’WINDOW’, . . .)function for transformation n, GASK(’WINDOW’, . . .)returns
the default window coordinates, which are device dependent.

Argument Definitions
n numeric constant or numeric variable name; indicates the

transformation number of the window to check. Valid values are 0 to
20, inclusive. If n is expressed as a variable, the variable must be
initialized to a value between 0 and 20.

llx numeric variable name; returns the x coordinate of the lower-left
corner.

lly numeric variable name; returns the y coordinate of the lower-left
corner.

urx numeric variable name; returns the x coordinate of the upper-right
corner.

ury numeric variable name; returns the y coordinate of the upper-right
corner.

return-code-
variable

numeric variable name; returns the return code of the routine call.

854 WSACTIVE � Chapter 32

See Also

“TRANS” on page 848
“TRANSNO” on page 850
“VIEWPORT” on page 850
“TRANSNO” on page 903
“VIEWPORT” on page 904
“WINDOW” on page 907

WSACTIVE

Finds whether the interface is active

Operating States: All
Return Codes: 29, 30

Syntax
CALL GASK(’WSACTIVE’, status);

Description
The GASK(’WSACTIVE’, . . .)routine asks if the workstation is active. When the
workstation is active, you can execute certain DSGI routines and functions.

Argument Definitions
status numeric variable name; returns either 29 (active) or 30 (inactive).

See Also

“STATE” on page 841
“WSOPEN” on page 854

WSOPEN

Finds whether the interface is open

Operating States: All
Return Codes: 24, 25

Syntax
CALL GASK(’WSOPEN’, status);

DATA Step Graphics Interface Dictionary � GDRAW Functions 855

Description
The GASK(’WSOPEN’, . . .)routine asks if the workstation is open. If a workstation is
open, the graphics catalog can be accessed.

Argument Definitions
status numeric variable name; returns either 24 (open) or 25 (closed).

See Also

“WSACTIVE” on page 854

GDRAW Functions

GDRAW functions create graphics elements. Each GDRAW operator is associated
with a set of GSET operators that control its attributes. The color, height, and font
attributes, for the GDRAW(’TEXT’, . . .)function are controlled by GSET(’TEXCOLOR’,
. . .), GSET(’TEXHEIGHT’, . . .), and GSET(’TEXFONT’, . . .), respectively. For a
complete list of the attributes associated with each GDRAW function, see Table 31.2 on
page 781. The complete graph is displayed after the GRAPH(’UPDATE’, . . .)function
is submitted.

When using GDRAW functions:

� all arguments must be specified

� all arguments are specified as variables or constants

� if you express an argument as a variable, the variable must be initialized

� all character arguments expressed as character strings must be enclosed in quotes

� all character variable names used as arguments must be declared in a LENGTH
statement

� all character constants must be enclosed in single or double quotes

GDRAW functions:

� ARC

� BAR

� ELLARC

� ELLIPSE

� FILL

� IMAGE

� LINE

� MARK

� MESSAGE

� PIE

� TEXT

856 ARC � Chapter 32

ARC

Draws a circular arc

Operating States: SGOP

Return Codes: 0, 4, 61, 86

Syntax
return-code-variable=GDRAW(’ARC’, x, y, radius, start, end);

Description
The GDRAW(’ARC’, . . .)function draws a circular arc. The line attributes and bundles
affect the appearance of this primitive. See Table 31.2 on page 781 for a list of these
attributes. Figure 32.2 on page 856 illustrates the arguments used with GDRAW(’ARC’,
. . .).

Figure 32.2 Arguments Used with the GDRAW(’ARC’, ...) Function

Argument Definitions
x numeric constant or numeric variable name; specifies the x

coordinate of the position of the arc on the display; x coordinates are
in units based on the current window system.

y numeric constant or numeric variable name; specifies the y
coordinate of the position of the arc on the display; y coordinates are
in units based on the current window system;

radius numeric constant or numeric variable name; the arc radius size is in
units based on the current window system.

start numeric constant or numeric variable name; the starting angle of
the arc is in degrees, with 0 degrees at 3 o’clock.

end numeric constant or numeric variable name; the ending angle of the
arc is in degrees, with 0 degrees at 3 o’clock.

DATA Step Graphics Interface Dictionary � BAR 857

See Also

“ELLARC” on page 858
“PIE” on page 864
“LINCOLOR” on page 885
“LININDEX” on page 885
“LINREP” on page 886
“LINTYPE” on page 887
“LINWIDTH” on page 888

BAR

Draws a rectangle

Operating States: SGOP
Return Codes: 0, 4, 76, 79, 80, 86

Syntax
return-code-variable=GDRAW(’BAR’, x1, y1, x2, y2);

Description
The GDRAW(’BAR’, . . .)function draws a rectangular bar whose sides are parallel to
the sides of the display area. The fill attributes and bundles affect the appearance of
this graphics element. See Table 31.2 on page 781 for a list of these attributes. Figure
32.3 on page 857 illustrates the arguments used with GDRAW(’BAR’, . . .).

Figure 32.3 Points that Draw a Bar

Argument Definitions
x1 numeric constant or numeric variable name; refers to the x

coordinate of one corner of the bar.

y1 numeric constant or numeric variable name; refers to the y
coordinate of one corner of the bar.

x2 numeric constant or numeric variable name; refers to the x
coordinate of the corner of the bar that is diagonally opposite to the
corner of (x1,y1).

858 ELLARC � Chapter 32

y2 numeric constant or numeric variable name; refers to the y
coordinate of the corner of the bar that is diagonally opposite to the
corner of (x1,y1).

See Also

“FILL” on page 860
“FILCOLOR” on page 877
“FILINDEX” on page 878
“FILREP” on page 879

“FILTYPE” on page 881
“FILSTYLE” on page 880
“HTML” on page 884

ELLARC

Draws an elliptical arc

Operating States: SGOP
Return Codes: 0, 4, 61, 86

Syntax
return-code-variable =GDRAW(’ELLARC’, x, y, major, minor, start, end, angle);

Description
The GDRAW(’ELLARC’, . . .)function draws a hollow section of an ellipse. The line
attributes and bundles affect the appearance of this primitive. See Table 31.2 on page
781 for a list of these attributes. Figure 32.4 on page 858 illustrates the arguments
used with GDRAW(’ELLARC’, . . .)and GDRAW(’ELLIPSE’, . . .).

Figure 32.4 Arguments Used with GDRAW(’ELLARC’,...) function and
GDRAW(’ELLIPSE’,...) function

DATA Step Graphics Interface Dictionary � ELLIPSE 859

Argument Definitions
x numeric constant or numeric variable name; x coordinates are in

units based on the current window system.

y numeric constant or numeric variable name; y coordinates are in
units based on the current window system.

major numeric constant or numeric variable name; the major axis lengths
for the elliptical arc.

minor numeric constant or numeric variable name; the minor axis lengths
for the elliptical arc.

start numeric constant or numeric variable name; the starting angle from
the major axis, in degrees, for the elliptical arc with 0 degrees
beginning at the major axis.

end numeric constant or numeric variable name; the ending angle from
the major axis, in degrees, for the elliptical arc with 0 degrees at 3
o’clock.

angle numeric constant or numeric variable name; the angle that the major
axis of the elliptical arc has to 0 degrees (with 0 degrees at 3 o’clock).

See Also

“ELLIPSE” on page 859
“LINCOLOR” on page 885

“LINTYPE” on page 887

“LINWIDTH” on page 888

“LINREP” on page 886
“LININDEX” on page 885

ELLIPSE

Draws an ellipse

Operating States: SGOP
Return Codes: 0, 4, 76, 79, 80, 86

Syntax
return-code-variable =GDRAW(’ELLIPSE’, x, y, major, minor, start, end, angle);

Description
The GDRAW(’ELLIPSE’, . . .)function draws a filled section of an ellipse. The fill
attributes and bundles affect the appearance of this primitive. See Table 31.2 on page
781 for a list of these attributes. Figure 32.4 on page 858 illustrates the arguments
used with GDRAW(’ELLARC’, . . .)and GDRAW(’ELLIPSE’, . . .).

860 FILL � Chapter 32

Argument Definitions
x numeric constant or numeric variable name; the x coordinate of the

position of the ellipse on the display.

y numeric constant or numeric variable name; the y coordinate of the
position of the ellipse on the display.

major numeric constant or numeric variable name; the major axis length
for the ellipse.

minor numeric constant or numeric variable name; the minor axis length
for the ellipse.

start numeric constant or numeric variable name; the starting angle for
the ellipse from the major axis, with 0 degrees beginning at the
major axis.

end numeric constant or numeric variable name; the ending angle for
the ellipse from the major axis, with 0 degrees at 3 o’clock.

angle numeric constant or numeric variable name; the angle that the
major axis of the ellipse has to 0 degrees, with 0 degrees at 3 o’clock.

See Also

“ELLARC” on page 858
“FILCOLOR” on page 877
“FILINDEX” on page 878
“FILREP” on page 879
“FILTYPE” on page 881
“HTML” on page 884

FILL

Draws a filled area

Operating States: SGOP
Return Codes: 0, 4, 76, 79, 80, 86, 100, 301

Syntax
return-code-variable=GDRAW(’FILL’, n, x-values, y-values);

Description
The GDRAW(’FILL’ . . .)function draws a filled polygon. The fill attributes and
bundles affect the appearance of this primitive. See Table 31.2 on page 781 for a list of
these attributes.

Note: All of the x coordinates are listed in the function first, followed by the y
coordinates. This primitive takes the first n values and stores them as x coordinates.
The next n values are stored as y coordinates. �

DATA Step Graphics Interface Dictionary � IMAGE 861

Argument Definitions

n numeric constant or numeric variable name; the number of vertices
(x and y pairs) in the polygon. You can specify a missing value (.) for
n. If n is missing, the number of vertices is computed from the
number of x and y arguments.

x-values list of numeric constants, variables, or OF arguments that describe
the x coordinates for the vertices in units based on the current
window system.

y-values list of numeric constants, variables, or OF arguments that describe
the y coordinates for the vertices in units based on the current
window system.

See Also

“BAR” on page 857

“FILCOLOR” on page 877

“FILINDEX” on page 878

“FILREP” on page 879

“FILTYPE” on page 881

“FILSTYLE” on page 880

“HTML” on page 884

IMAGE

Displays an image

Operating State: SGOP

Return Codes: 0, 150

Syntax

return-code-variable=GDRAW(’IMAGE’, ’external-file’, x1, y1, x2, y2, ’style’);

Description

The GDRAW(’IMAGE’, . . .) function displays the specified image within opposing pairs
of coordinates. The format of the external image file varies between operating
environments. The (x1, y1) coordinate pair specifies one corner of the image, and the
(x2, y2) coordinate pair specifies the opposite corner of the image. The style parameter
must be either ’TILE’ to copy the image as many times as necessary to fill the area; or
’FIT’ to stretch one instance of the image to fill the area.

For a list of the file types that you use, see “Image File Types Supported by SAS/
GRAPH” on page 181.

862 LINE � Chapter 32

LINE

Draws a polyline

Operating States: SGOP
Return Codes: 0, 4, 61, 86, 100, 301

Syntax
return-code-variable=GDRAW(’LINE’, n, x-values, y-values);

Description
The GDRAW(’LINE’ . . .)function draws one line, a series of connected lines, or a dot.
The line attributes and bundles affect the appearance of this primitive. See Table 31.2
on page 781 for a list of these attributes.

Note: All of the x coordinates are listed in the function first, followed by the y
coordinates. This primitive takes the first n values and stores them as x coordinates
and the next n values and stores them as y coordinates. �

Argument Definitions
n numeric constant or numeric variable name; the number of vertices

(x and y pairs) in the polygon. You can specify a missing value (.) for
n. If n is missing, the number of vertices is computed from the
number of x and y pairs.

x-values list of numeric constants, variables, or OF arguments that describe
the x coordinates for the vertices in units based on the current
window system.

y-values list of numeric constants, variables, or OF argument lists that
describe the y coordinates for the vertices in units based on the
current window system.

See Also

“FILCOLOR” on page 877
“LININDEX” on page 885
“LINREP” on page 886
“LINTYPE” on page 887
“LINWIDTH” on page 888

MARK

Draws a polymarker

Operating States: SGOP

DATA Step Graphics Interface Dictionary � MESSAGE 863

Return Codes: 0, 4, 65, 86, 100, 301

Syntax
return-code-variable=GDRAW (’MARK’, n, x-values, y-values);

Description
The GDRAW(’MARK’, . . .)function draws a series of symbols. The marker attributes
and bundles affect the appearance of this primitive. See Table 31.2 on page 781 for a
list of these attributes. Refer to the “MARTYPE” on page 891 for a list of symbols that
you can draw with GDRAW(’MARK’, . . .).

Note: All of the x coordinates are listed in the function first, followed by the y
coordinates. This primitive takes the first n values and stores them as x coordinates
and the next n values and stores them as y coordinates. �

Argument Definitions
n numeric constant or numeric variable name; the number of times

the symbol is drawn. You can specify a missing value (.) for n. If n
is missing, the number of vertices is calculated from the number of x
and y pairs.

x-values list of numeric constants, variables, or OF arguments that describe
the x coordinates of the symbols in units based on the current
window system.

y-values list of numeric constants, variables, or OF arguments that describe
the y coordinates of the symbols in units based on the current
window system.

See Also

“TEXT” on page 865

“HTML” on page 884

“MARCOLOR” on page 888

“MARINDEX” on page 889

“MARREP” on page 890

“MARTYPE” on page 891

MESSAGE

Prints a message in the SAS log

Operating States: All

Return Codes: 0

864 PIE � Chapter 32

Syntax
return-code-variable=GDRAW(’MESSAGE’, message);

Description
The GDRAW(’MESSAGE’, . . .)function prints a message in the SAS log. This function
can be used for debugging applications or for printing custom messages for your
application.

Argument Definitions
message character string enclosed in quotes or character variable name; the

text to be printed in the log.

See Also

“MESSAGE” on page 893
“GPRINT” on page 814

PIE

Draws a filled circle or section of a filled circle

Operating States: SGOP
Return Codes: 0, 4, 76, 79, 80, 86

Syntax
return-code-variable=GDRAW(’PIE’, x, y, radius, start, end);

Description
The GDRAW(’PIE’, . . .)function draws a filled section of a circular arc. The fill
attributes and bundles affect the appearance of this primitive. See Table 31.2 on page
781 for a list of these attributes.

Argument Definitions
x numeric constant or numeric variable name; x coordinates are in

units based on the current window system.

y numeric constant or numeric variable name; y coordinates are in
units based on the current window system.

radius numeric constant or numeric variable name; the pie radius size in
units based on the current window system.

start numeric constant or numeric variable name; the starting angle of
the pie, with 0 degrees at 3 o’clock on the unit circle.

end numeric constant or numeric variable name; the ending angle of the
pie, with 0 degrees at 3 o’clock on the unit circle.

DATA Step Graphics Interface Dictionary � TEXT 865

See Also

“ARC” on page 856

“FILCOLOR” on page 877

“FILINDEX” on page 878

“FILREP” on page 879

“FILTYPE” on page 881

“FILSTYLE” on page 880

“HTML” on page 884

TEXT

Draws a text string

Operating States: SGOP

Return Codes: 0, 4, 69, 86

Syntax
return-code-variable=GDRAW(’TEXT’, x, y, string);

Description
The GDRAW(’TEXT’, . . .)function draws a text string. The text attributes and bundles
affect the appearance of this primitive. See Table 31.2 on page 781 for a list of these
attributes.

Argument Definitions
x numeric constant or numeric variable name; x coordinates are in

units based on the current window system.

y numeric constant or numeric variable name; y coordinates are in
units based on the current window system.

string character string enclosed in quotes or character variable name; a set
of characters to be drawn on the output beginning at position (x,y).

See Also

“MARK” on page 862

“HTML” on page 884

“TEXCOLOR” on page 896

“TEXINDEX” on page 898

“TEXREP” on page 900

“TEXHEIGHT” on page 898

866 GRAPH Functions � Chapter 32

GRAPH Functions
GRAPH functions perform library management tasks from within the DATA Step

Graphics Interface. These functions can be performed only on one catalog at a time.
They cannot be performed across catalogs. For example, you cannot copy a graph from
one catalog to another.

When using GRAPH functions, remember the following:
� All arguments are specified as variables or constants. If you express an argument

as a variable, the variable must be initialized.
� All character arguments expressed as character strings must be enclosed in quotes.
� All character variable names used as arguments must be declared in a LENGTH

statement.
� All character constants must be enclosed in single or double quotes.

GRAPH functions:
� CLEAR
� COPY
� DELETE
� INSERT
� PLAY
� RENAME
� UPDATE

CLEAR

Opens a graphics segment for output

Operating States: WSAC
Return Codes: 0, 3, 301, 302
Resulting Operating State: SGOP

Syntax
return-code-variable=GRAPH (’CLEAR’<, name> <, des><, byline>);

Description
The GRAPH(’CLEAR’, . . .)function opens a graphics segment for output in the current
catalog. The first parameter, ’CLEAR’, is the only required one. The values of name,
des, and byline are displayed in catalog listings and in catalog information in the
GREPLAY procedure.

If the name specified is an existing graph, DSGI adds a suffix number to the name. If
PIE is chosen for the name and it already exists, DSGI names the output PIE1; the
next time the code is submitted, DSGI names the output PIE2, and so forth.

This function moves the operating state from WSAC to SGOP.

Argument Definitions
name character string enclosed in quotes or character variable name; gives

a name to the graph to be opened. If name is not specified, DSGI

DATA Step Graphics Interface Dictionary � COPY 867

assigns the graph a name that is some form of DSGI: for example,
DSGI, DSGI1, and DSGI2.

des character string enclosed in quotes or character variable name; gives
a description to the graph to be opened. If des is not specified, DSGI
assigns the following description to the catalog entry: Graph from
DATA Step Graphics Interface.

BY line character string enclosed in quotes or character variable name; gives
another line of description for the graph. The byline appears under
the titles on the graph. DSGI does not provide a default byline.

See Also

“OPENGRAPH” on page 839

“UPDATE” on page 870

COPY

Copies a graph

Operating States: GKOP, WSOP, WSAC, SGOP

Return Codes: 0, 8, 307

Syntax
return-code-variable=GRAPH(’COPY’, name, new-name);

Description
The GRAPH(’COPY’, . . .)function copies a graph to another catalog entry. The graph
to be copied must be closed, and be in the current catalog. You cannot copy from one
catalog to another. The new graph is also in the current catalog.

Argument Definitions
name character string enclosed in quotes or character variable name;

name of the graph to be copied.

new-name character string enclosed in quotes or character variable name;
name of the graph to be created.

See Also

“CATALOG” on page 819

“DELETE” on page 868

“INSERT” on page 868
“CATALOG” on page 874

868 DELETE � Chapter 32

DELETE

Deletes a graph

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 4, 8, 307

Syntax
return-code-variable=GRAPH(’DELETE’, name);

Description
The GRAPH(’DELETE’, . . .)function deletes a graph in the current catalog. The graph
does not have to be closed to be deleted.

Argument Definitions
name character string enclosed in quotes or character variable name; the

name of the graph to delete.

See Also

“CATALOG” on page 819
“COPY” on page 867
“CATALOG” on page 874

INSERT

Inserts a previously created segment into the currently open graph

Operating States: SGOP
Return Codes: 0, 4, 302, 307

Syntax
return-code-variable=GRAPH(’INSERT’, name);

Description
The GRAPH(’INSERT’, . . .)function inserts a graph into the currently open graph.
The graph to be inserted must be closed and be in the current catalog.

Argument Definitions
name character string enclosed in quotes or character variable name; the

name of a graph to be inserted.

DATA Step Graphics Interface Dictionary � RENAME 869

See Also

“CATALOG” on page 819
“COPY” on page 867
“CATALOG” on page 874

PLAY

Displays the specified graph on your output

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 307

Syntax
return-code-variable=GRAPH(’PLAY’, graph-name);

Description
The GRAPH(’PLAY’, . . .)function displays the specified graph on your output.

Argument Definitions
graph-name character variable name; the name of the graph you would like to

play.

See Also

“UPDATE” on page 870

RENAME

Renames a graph

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 307

Syntax
return-code-variable=GRAPH(’RENAME’, name, new-name);

Description
The GRAPH(’RENAME’, . . .)function renames a graph. The graph to be renamed
must be in the current catalog and be closed.

870 UPDATE � Chapter 32

Argument Definitions
name character string enclosed in quotes or character variable name; the

name of the closed graph that is to be changed.

new-name character string enclosed in quotes or character variable name; the
new name for the graph.

See Also

“CATALOG” on page 819
“INSERT” on page 868
“CATALOG” on page 874

UPDATE
Completes the currently open graph, or displays it, or both

Operating States: SGOP
Return Codes: 0, 4
Resulting Operating State: WSAC

Syntax
return-code-variable=GRAPH(’UPDATE’ <, ’show’>);

Description
The GRAPH(’UPDATE’, . . .)function closes the graph currently open and displays it.
DSGI operates in buffered mode, so the picture is never displayed until this function is
called.

This function can be called only once for the currently open graph. Therefore, you
cannot incrementally build a graph; however, you can close the currently open graph
and later insert it into another graph within the same DATA step.

This function moves the operating state from SGOP to WSAC.

Argument Definitions
show character string, optional; valid values are SHOW and NOSHOW. If

SHOW is specified, the graph is displayed. If NOSHOW is specified,
the graph is closed and not displayed.

See Also

“CLEAR” on page 866

GSET Functions
GSET functions allow you to set attributes for the graphics elements. Some GSET

functions set the attributes for a subset of graphics primitives. Attributes prefixed by

DATA Step Graphics Interface Dictionary � GSET Functions 871

FIL control the appearance of the graphics primitives GDRAW(’BAR’, . . .),
GDRAW(’ELLIPSE’, . . .), GDRAW(’FILL’, . . .), and GDRAW(’PIE’, . . .). See Table
31.2 on page 781 for a complete list of the attributes that control the appearance of the
graphics primitives.

Some GSET functions affect the appearance of the entire graphics output.
GSET(’HPOS’, . . .)and GSET(’VPOS’, . . .)set the number of columns and rows for
the output. See each GSET function for the aspect of the graphics output it controls.

When using GSET functions, remember the following:
� All arguments must be specified.
� All arguments are specified as variables or constants. If you express an argument

as a variable, the variable must be initialized.
� All character arguments that are expressed as character strings must be enclosed

in quotation marks.
� All character variable names used as arguments must be declared in a LENGTH

statement.
� All character constants must be enclosed in single or double quotation marks.

GSET functions:

ASF

ASPECT

CATALOG

CBACK

CLIP

COLREP

DEVICE

FILCOLOR

FILINDEX

FILREP

FILSTYLE

FILTYPE

HPOS

HSIZE

HTML

LINCOLOR

LININDEX

LINREP

LINTYPE

LINWIDTH

MARCOLOR

MARINDEX

MARREP

MARSIZE

872 ASF � Chapter 32

MARTYPE

MESSAGE

PATREP

TEXALIGN

TEXCOLOR

TEXFONT

TEXHEIGHT

TEXINDEX

TEXPATH

TEXREP

TEXUP

TRANSNO

VIEWPORT

VPOS

VSIZE

WINDOW

ASF
Specifies an aspect source flag to bundle or separate attributes

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8
Default Value: INDIVIDUAL

Syntax
return-code-variable=GSET(’ASF’, attribute, status);

Description
The GSET(’ASF’, . . .)function sets an attribute’s aspect source flag (ASF) so that it
can be used in a bundle (BUNDLED) or individually (INDIVIDUAL).

If an attribute’s ASF is set to ’BUNDLED’, it cannot be used outside of a bundle. It
must be defined in a GSET(’xxxREP’, . . .)function and activated with a
GSET(’xxxINDEX’, . . .)function, where xxx can have one of the following values: FIL,
LIN, MAR, TEX.

If an attribute’s ASF is set to ’INDIVIDUAL’, it cannot be used with a bundle. In
this case, the attribute is set with a GSET(’attribute’, . . .). The values of attribute are
listed in “Argument Definitions.”

Argument Definitions
attribute character string enclosed in quotes or character variable name with

one of the following values:

DATA Step Graphics Interface Dictionary � ASPECT 873

� FILCOLOR
� FILSTYLE
� FILTYPE
� LINCOLOR
� LINTYPE
� LINWIDTH
� MARCOLOR
� MARSIZE
� MARTYPE
� TEXCOLOR
� TEXFONT.

status character string enclosed in quotation marks or character variable
name; accepts either the value BUNDLED or INDIVIDUAL.

See Also

“ASF” on page 817
“FILCOLOR” on page 877
“FILSTYLE” on page 880
“FILTYPE” on page 881
“LINCOLOR” on page 885
“LINTYPE” on page 887
“LINWIDTH” on page 888
“MARCOLOR” on page 888
“MARSIZE” on page 891
“MARTYPE” on page 891
“TEXCOLOR” on page 896
“TEXFONT” on page 897

ASPECT

Specifies the aspect ratio

Operating States: GKCL
Return Codes: 0, 1, 90, 307
Default Value: 0.0

Syntax
return-code-variable=GSET(’ASPECT’, aspect);

Description
The GSET(’ASPECT’, . . .)function sets the aspect ratio used to draw graphics output.
GSET(’ASPECT’, . . .)affects only pies, arcs, and software text.

874 CATALOG � Chapter 32

Argument Definitions
aspect numeric constant or numeric variable name; specifies the aspect

ratio and cannot be less than 0.

See Also

ASPECT= graphics option (see “ASPECT” on page 331)

“ASPECT” on page 818

CATALOG

Specifies the catalog for the graphs

Operating States: GKCL

Return Codes: 0, 1

Default Values: libref = WORK, catalog-name=GSEG

Syntax
return-code-variable=GSET(’CATALOG’, libref, catalog-name);

Description
The GSET(’CATALOG’, . . .)function makes the specified catalog the current catalog in
which to store graphs generated with DSGI. GSET(’CATALOG’, . . .)creates the catalog
if it does not exist.

The values of libref and catalog-name cannot exceed eight characters. The number of
characters allowed for a catalog name varies across operating environments; see the
SAS companion for your operating system. Libref should have been defined through the
LIBNAME statement.

Argument Definitions
libref character string enclosed in quotation marks or character variable

name; points to the library that contains the catalog.

catalog-name character string enclosed in quotation marks or character variable
name; specifies the catalog name to be used.

See Also

“CATALOG” on page 819

“GRAPHLIST” on page 827

“NUMGRAPH” on page 839

DATA Step Graphics Interface Dictionary � CLIP 875

CBACK

Specifies the background color

Operating States: GKCL
Return Codes: 0, 1
Default Value: 1. CBACK= graphics option, if specified; 2. device’s default background
color.

Syntax
return-code-variable=GSET(’CBACK’, cback);

Description
The GSET(’CBACK’, . . .)function sets the background color. GSET(’CBACK’, . . .)has
the same effect as the CBACK= graphics option.

Argument Definitions
cback character string enclosed in quotation marks or character variable

name; can contain any predefined SAS color name. See “SAS Color
Names and RGB Values in the SAS Registry” on page 175 for a list
of predefined SAS color names.

See Also

CBACK= graphics option (see “CBACK” on page 335)
“CBACK” on page 820

CLIP

Specifies whether clipping is on or off

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0
Default Value: OFF

Syntax
return-code-variable=GSET(’CLIP’, status);

Description
The GSET(’CLIP’, . . .)function activates or suppresses clipping around the current
viewport.

876 COLREP � Chapter 32

Argument Definitions
status character string enclosed in quotation marks or character variable

name; valid values are ON and OFF. When ON is used, the graphics
elements outside of the specified viewport are not displayed. If you
turn clipping OFF, the graphics elements outside of the defined
viewport are displayed.

See Also

“CLIP” on page 820
“VIEWPORT” on page 850
“VIEWPORT” on page 904

COLREP

Associates a color name with a certain color index

Operating States: SGOP
Return Codes: 0, 4, 86
Default Values: 1. color list of COLORS= graphics option; 2. device’s default color list

Syntax
return-code-variable=GSET(’COLREP’, color-index, color);

Description
The GSET(’COLREP’, . . .)function associates a predefined SAS color name with a color
index. Many of the GASK routines and GSET functions use color-index as an argument.

If this function is not used, DSGI searches for a color specification in the following
order:

1 the nth color in the color list of the COLORS= graphics option
2 the nth color in the device’s default color list.

Argument Definitions
color-index numeric constant or numeric variable name; a number from 1 to 256

that identifies a color.

color character string enclosed in quotation marks or character variable
name; a predefined SAS color name. See “SAS Color Names and
RGB Values in the SAS Registry” on page 175 for a list of predefined
SAS color names.

See Also

COLORS= graphics option (see “COLORS” on page 340)

DATA Step Graphics Interface Dictionary � FILCOLOR 877

“COLINDEX” on page 821
“COLREP” on page 822

DEVICE

Specifies the output graphics device

Operating States: GKCL
Return Codes: 0, 1
Default Value: 1. DEVICE= graphics option, if specified; 2. value entered in DEVICE
prompt window; 3. value entered in OPTIONS window

Syntax
return-code-variable=GSET(’DEVICE’, device);

Description
The GSET(’DEVICE’, . . .)function selects the device driver.

Argument Definitions
device character string enclosed in quotation marks or character variable

name; the name of the driver you are using. Device must match one
of the device entries in the SASHELP.DEVICES catalog or one of
your personal device catalogs, GDEVICE0.DEVICES through
GDEVICE9.DEVICES. Refer to “Device Catalogs” on page 1126 for
more information about catalogs that store device entries.

See Also

DEVICE= graphics option (see “DEVICE” on page 348)
“DEVICE” on page 823

FILCOLOR

Specifies the color index of the color used to draw fill areas

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 85
Default Value: 1

Syntax
return-code-variable=GSET(’FILCOLOR’, color-index);

878 FILINDEX � Chapter 32

Description
The GSET(’FILCOLOR’, . . .)function selects the color index of the color used to draw
fill areas. The aspect source flag (ASF) of FILCOLOR must be set to ’INDIVIDUAL’ for
this attribute to be used outside of a fill bundle.

DSGI searches for a color to assign to the index in the following order:

1 the color specified for the index in a GSET(’COLREP’, . . .)function

2 the nth color in the color list of the COLORS= graphics option

3 the nth color in the device’s default color list found in the device entry.

Argument Definitions
color-index numeric constant or numeric variable name; indicates the index of

the color to be used. Valid values are 1 to 256, inclusive.

See Also

COLORS= graphics option (see “COLORS” on page 340)

“ASF” on page 872

“COLREP” on page 876

“FILCOLOR” on page 823

“FILREP” on page 879

FILINDEX

Specifies the index of the bundle of fill area attributes

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 75

Default Value: 1

Syntax
return-code-variable=GSET(’FILINDEX’, index);

Description
The GSET(’FILINDEX’, . . .)function activates a particular fill bundle. To use the
bundled values when the affected graphics element is drawn; the aspect source flag
(ASF) for FILCOLOR, FILSTYLE, and FILTYPE must be set to ’BUNDLED’.

Argument Definitions
index numeric constant or numeric variable name; specifies the index

number of the fill bundle. Valid values are 1 to 20, inclusive.

DATA Step Graphics Interface Dictionary � FILREP 879

See Also

“FILINDEX” on page 824
“ASF” on page 872
“FILREP” on page 879

FILREP

Associates a bundle of fill attributes with an index

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 75, 78, 85
Default Value: none

Syntax
return-code-variable =GSET(’FILREP’, index, color-index, interior, style-index);

Description
The GSET(’FILREP’, . . .)function assigns a color, type of interior, and style of the
interior to a specific fill bundle. To use the bundled values when the affected graphics
element is drawn; the aspect source flag (ASF) for FILCOLOR, FILTYPE, and
FILSTYLE must be set to ’BUNDLED’.

Argument Definitions
index numeric constant or numeric variable name; indicates the index to

be used with the bundle. Valid values are 1 to 20, inclusive. If index
is expressed as a variable, the variable name must be initialized to a
value between 1 and 20.

color-index numeric constant or numeric variable name; indicates the index of
the color to be used. Valid values are 1 to 256, inclusive. The color
index should represent one of the following:

� a color index assigned with the GSET(’COLREP’, . . .)function
� the nth color in the color list of the COLORS= graphics option
� the nth color in the device’s default color list.

interior character string enclosed in quotation marks or character variable
name; indicates the type of interior. Valid values are

� HATCH
� HOLLOW
� PATTERN
� SOLID.

style-index numeric constant or numeric variable name; indicates the index of
the style to be used. Valid values are 1 to 15, inclusive, when
FILTYPE is PATTERN, or 1 to 60, inclusive, when FILTYPE is

880 FILSTYLE � Chapter 32

HATCH. See the GSET(’FILSTYLE’, . . .)function“FILSTYLE” on
page 880 for a table of the patterns used for each style index. If
interior is HOLLOW or SOLID, style-index is ignored.

See Also

“FILREP” on page 825
“ASF” on page 872
“COLREP” on page 876
“FILCOLOR” on page 877
“FILINDEX” on page 878
“FILSTYLE” on page 880
“FILTYPE” on page 881

FILSTYLE

Specifies the style of the interior of the fill area when the FILTYPE is PATTERN or HATCH

Operating State: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 78
Default Value: 1

Syntax
return-code-variable=GSET(’FILSTYLE’, style-index);

Description
The GSET(’FILSTYLE’, . . .)function activates a particular fill pattern when FILTYPE
is specified as either PATTERN or HATCH. The aspect source flag (ASF) must be set to
’INDIVIDUAL’ for this attribute to be used outside of a fill bundle.

Table 32.1 Style Index Table

Value PATTERN HATCH Value PATTERN HATCH

1 X1 M1X 31 M3N045

2 X2 M1X030 32 M3N060

3 X3 M1X045 33 M3N090

4 X4 M1X060 34 M3N120

5 X5 M1N 35 M3N135

6 L1 M1N030 36 M3N150

7 L2 M1N045 37 M4X

8 L3 M1N060 38 M4X030

9 L4 M1N090 39 M4X045

DATA Step Graphics Interface Dictionary � FILTYPE 881

Value PATTERN HATCH Value PATTERN HATCH

10 L5 M1N120 40 M4X060

11 R1 M1N135 41 M4N

12 R2 M1N150 42 M4N030

13 R3 M2X 43 M4N045

14 R4 M2X030 44 M4N060

15 R5 M2X045 45 M4N090

16 M2X060 46 M4N120

17 M2N 47 M4N135

18 M2N030 48 M4N150

19 M2N045 49 M5X

20 M2N060 50 M5X030

21 M2N090 51 M5X045

22 M2N120 52 M5X060

23 M2N135 53 M5N

24 M2N150 54 M5N030

25 M3X 55 M5N045

26 M3X030 56 M5N060

27 M3X045 57 M5N090

28 M3X060 58 M5N120

29 M3N 59 M5N135

30 M3N030 60 M5N150

Argument Definitions
style-index numeric constant or numeric variable name. Valid values are 1 to

15, inclusive, when FILTYPE is PATTERN, or 1 to 60, inclusive,
when FILTYPE is HATCH. See Table 31.1 on page 777 for value
specifications.

See Also

“FILSTYLE” on page 826
“ASF” on page 872
“FILREP” on page 879
“FILTYPE” on page 881

FILTYPE

Specifies the type of the interior of the fill area

882 HPOS � Chapter 32

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 78
Default Value: HOLLOW

Syntax
return-code-variable=GSET(’FILTYPE’, interior);

Description
The GSET(’FILTYPE’, . . .)function selects a particular type of interior fill. If FILTYPE
is set to HATCH or PATTERN, the GSET(’FILSTYLE’, . . .)function determines the
type of hatch or pattern fill used. The aspect source flag (ASF) for FILTYPE must be
set to ’INDIVIDUAL’ for this attribute to be used outside of a fill bundle.

Argument Definitions
interior character string or character variable name; indicates the type of

interior fill. Valid values are
� HATCH
� HOLLOW
� PATTERN
� SOLID.

See Also

“ASF” on page 872
“FILREP” on page 879
“FILSTYLE” on page 880

HPOS

Specifies the number of columns

Operating States: GKCL
Return Codes: 0, 1, 90, 307
Default Value: 1. HPOS= graphics option, if specified; 2. device’s default HPOS setting

Syntax
return-code-variable=GSET(’HPOS’, hpos);

Description
The GSET(’HPOS’, . . .)function sets the number of columns in the graphics output
area. GSET(’HPOS’, . . .)has the same effect as the HPOS= graphics option. See
“HPOS” on page 383 for more information. You can reset the HPOS value by
submitting one of the following statements:

DATA Step Graphics Interface Dictionary � HSIZE 883

goptions reset=goptions;
goptions reset=all;

goptions hpos=0;

Argument Definitions

hpos numeric constant or numeric variable name; specifies the number of
horizontal columns; must be greater than 0.

See Also

“HPOS” on page 828

“HSIZE” on page 829

“VPOS” on page 851

HPOS= graphics option (see “HPOS” on page 383)

HSIZE

Specifies the horizontal dimension of the graphics output area

Operating States: GKCL

Return Codes: 0, 1, 90, 307

Default Value: 1. HSIZE= graphics option, if specified; 2. HSIZE device parameter

Syntax

return-code-variable=GSET(’HSIZE’, hsize);

Description

The GSET(’HSIZE’, . . .)function sets the horizontal dimension, in inches, of the
graphics output area. GSET(’HSIZE’, . . .)affects the dimensions of the default
window. You can reset the HSIZE value by submitting one of the following statements:

goptions reset=goptions;
goptions reset=all;

goptions hsize=0;

Argument Definitions

hsize numeric constant or numeric variable name; specifies the horizontal
dimension, in inches, of the graphics output area; must be greater
than 0.

884 HTML � Chapter 32

See Also

“HSIZE” on page 829
“HPOS” on page 882
“VSIZE” on page 906
HSIZE= graphics option (see “HSIZE” on page 384)

HTML

Specifies the HTML string to invoke when an affected DSGI graphic element in a web page is
clicked

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8
Default Value: null

Syntax
return-code-variable=GSET(’HTML’, ’string’);

Description
The GSET(’HTML’, . . .)function sets the HTML string to invoke when an affected
DSGI graphic element in a web page is clicked. The HTML string is used with ODS
processing to create a drill-down graph. The string value is used as the value for the
HREF= attribute in the image map that implements the drill-down capability.

The value for string must be HREF= followed by a valid URL that is specified in
double quotation marks, as in

rc = GSET("HTML", "HREF="http://www.sas.com/"");

The HTML string can be used by any of the following graphic element types drawn
in the code: BAR, ELLIPSE, FILL, MARK, PIE, and TEXT. The string applies to all of
these element types that are drawn after the string is set. To change the HTML string,
set a new value. To turn off the HTML string, specify a null string:

rc = GSET("HTML", "");

Argument Definitions
string the HTML string. The string must be enclosed in single quotation

marks and must begin with HREF= followed by a URL that is
enclosed in double quotation marks.

See Also

“HTML” on page 830
“BAR” on page 857
“ELLIPSE” on page 859

DATA Step Graphics Interface Dictionary � LININDEX 885

“FILL” on page 860
“MARK” on page 862
“PIE” on page 864
“TEXT” on page 865

LINCOLOR

Specifies the color index of the color used to draw lines

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 85
Default Value: 1

Syntax
return-code-variable=GSET(’LINCOLOR’, color-index);

Description
The GSET(’LINCOLOR’, . . .)function selects the index of the color used to draw lines.
The aspect source flag (ASF) for LINCOLOR must be set to ’INDIVIDUAL’ for this
attribute to be used outside of a line bundle.

DSGI searches for a color specification in the following order:
1 the color specified for the index in a GSET(’COLREP’, . . .)function
2 the nth color in the color list of the COLORS= graphics option
3 the nth color in the device’s default color list found in the device entry.

Argument Definitions
color-index numeric constant or numeric variable name; indicates the index of

the color to use. Valid values are 1 to 256, inclusive.

See Also

COLORS= graphics option (see “COLORS” on page 340)
“LINCOLOR” on page 830
“ASF” on page 872
“COLREP” on page 876
“LINREP” on page 886

LININDEX

Specifies the index of the bundle of line attributes

886 LINREP � Chapter 32

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 60
Default Value: 1

Syntax
return-code-variable=GSET(’LININDEX’, index);

Description
The GSET(’LININDEX’, . . .)function activates a particular line bundle. To use the
bundled values when the affected graphics element is drawn; the aspect source flag
(ASF) for LINCOLOR, LINTYPE, and LINWIDTH must be set to ’BUNDLED’.

Argument Definitions
index numeric constant or numeric variable name; indicates the index of

the bundle to activate. Valid values are 1 to 20, inclusive.

See Also

“LININDEX” on page 831
“ASF” on page 872
“LINREP” on page 886

LINREP

Associates a bundle of line attributes with an index

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 60, 62, 85, 90
Default Value: none

Syntax
return-code-variable=GSET (’LINREP’,index, color-index, width, type);

Description
The GSET(’LINREP’, . . .)function assigns a color, width, and line type to a specific
line bundle. To use the bundled values when the affected graphics element is drawn;
the aspect source flag (ASF) for LINCOLOR, LINWIDTH, and LINTYPE must be set to
’BUNDLED’.

Argument Definitions
index numeric constant or numeric variable name; indicates the number

for the bundle to use as an index. Valid values are 1 and 20,

DATA Step Graphics Interface Dictionary � LINTYPE 887

inclusive. If index is expressed as a variable, the variable must be
initialized to a value between 1 and 20.

color-index numeric constant or numeric variable name; specifies the index of
the color to use. Valid values are 1 to 256, inclusive. The color index
should represent one of the following:

� a color index assigned with the GSET(’COLREP’, . . .)function
� the nth color in the color list of the COLORS= graphics option
� the nth color in the device’s default color list.

width numeric constant or numeric variable name; indicates the width of
the line; must be greater than 0.

type numeric constant or numeric variable name; indicates the type of
line. Valid values are 1 to 46, inclusive. See Figure 14.22 on page
277 for representations of the different line types.

See Also

“ASF” on page 872
“COLREP” on page 876
“LINCOLOR” on page 885
“LININDEX” on page 885
“LINREP” on page 886
“LINTYPE” on page 887
“LINWIDTH” on page 888

LINTYPE

Specifies the line type

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 62
Default Value: 1

Syntax
return-code-variable=GSET(’LINTYPE’, type);

Description
The GSET(’LINTYPE’, . . .)function selects a line type. See Figure 14.22 on page 277
for representations of the different line types. The aspect source flag (ASF) for LINTYPE
must be set to ’INDIVIDUAL’ for this attribute to be used outside of a line bundle.

Argument Definitions
type numeric constant or numeric variable name; indicates the type of

line to use. Valid values are 1 to 46, inclusive.

888 LINWIDTH � Chapter 32

See Also

“LINTYPE” on page 833

“ASF” on page 872

“LINREP” on page 886

LINWIDTH

Specifies the thickness of the line

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 90

Default Value: 1

Syntax
return-code-variable=GSET(’LINWIDTH’, width);

Description
The GSET(’LINWIDTH’, . . .)function selects a line width in units of pixels. The
aspect source flag (ASF) for LINWIDTH must be set to ’INDIVIDUAL’ for this attribute
to be used outside of a line bundle.

Argument Definitions
width numeric constant or numeric variable name; specifies the width of

the line in pixels; must be greater than 0.

See Also

“LINWIDTH” on page 834

“ASF” on page 872

“LINREP” on page 886

MARCOLOR

Specifies the color index of the color used to draw markers

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 85

Default Value: 1

DATA Step Graphics Interface Dictionary � MARINDEX 889

Syntax
return-code-variable=GSET(’MARCOLOR’, color-index);

Description
The GSET(’MARCOLOR’, . . .)function selects the color index of the color used to draw
markers. The aspect source flag (ASF) of MARCOLOR must be set to ’INDIVIDUAL’ for
this attribute to be used outside of a marker bundle.

DSGI searches for a color specification in the following order:
1 the color specified for the index in a GSET(’COLREP’, . . .)function
2 the nth color in the color list of the COLORS= graphics option
3 the nth color in the device’s default color list found in the device entry.

Argument Definitions
color-index numeric constant or numeric variable name; indicates the index of

the color to use. Valid values are 1 to 256, inclusive.

See Also

COLORS= graphics option (see “COLORS” on page 340)
“MARCOLOR” on page 834
“ASF” on page 872
“COLREP” on page 876
“MARREP” on page 890

MARINDEX

Specifies the index of the bundle of marker attributes

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 64
Default Value: 1

Syntax
return-code-variable=GSET(’MARINDEX’, index);

Description
The GSET(’MARINDEX’, . . .)function activates the marker bundle indicated by index.
The aspect source flag (ASF) for MARCOLOR, MARTYPE, and MARSIZE must be set
to ’BUNDLED’ before the GDRAW(’MARK’, . . .)function is executed if you want the
bundled values to be used when the marker is drawn.

Argument Definitions
index numeric constant or numeric variable name; the number of the

bundle to activate. Valid values are 1 to 20, inclusive.

890 MARREP � Chapter 32

See Also

“MARINDEX” on page 835
“ASF” on page 872
“MARREP” on page 890

MARREP

Associates a bundle of marker attributes with an index

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 64, 66, 85, 90
Default Value: none

Syntax
return-code-variable=GSET (’MARREP’,index, color-index, size, type);

Description
The GSET(’MARREP’, . . .)function assigns a color, size, and type of marker to a
specific marker bundle. The aspect source flag (ASF) of MARCOLOR, MARSIZE, and
MARTYPE must be set to ’BUNDLED’ before the GDRAW(’MARK’, . . .)function is
executed if you want the bundled values to be used when the marker is drawn.

Argument Definitions
index numeric constant or numeric variable name; defines the bundle

index number. Valid values are 1 to 20, inclusive.

color-index numeric constant or numeric variable name; indicates the color
index of the color to use. Valid values are 1 to 256, inclusive. The
color index should represent one of the following:

� a color index assigned to a color name with the
GSET(’COLREP’, . . .)function

� the nth color in the color list of the COLORS= graphics option
� the nth color in the device’s default color list.

size numeric constant or numeric variable name; indicates the size of the
marker in units of the current window system; must be greater than
0.

type numeric constant or numeric variable name; specifies the type of
marker to use; valid values are 1 to 67, inclusive. See Table 32.2 on
page 892 for a table of the symbols used for each marker type.

See Also

“ASF” on page 872

DATA Step Graphics Interface Dictionary � MARTYPE 891

“COLREP” on page 876
“MARCOLOR” on page 888
“MARINDEX” on page 889
“MARSIZE” on page 891
“MARTYPE” on page 891

MARSIZE

Selects the size of markers

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 90
Default Value: 1

Syntax
return-code-variable=GSET(’MARSIZE’, size);

Description
The GSET(’MARSIZE’, . . .)function sets the marker size in units of the current
window system. The aspect source flag (ASF) of MARSIZE must be set to
’INDIVIDUAL’ for this attribute to be used outside of a marker bundle.

Argument Definitions
size numeric constant or numeric variable name; indicates the size of the

marker in units of the current window system; must be greater than
0.

See Also

“MARSIZE” on page 837
“ASF” on page 872
“MARREP” on page 890

MARTYPE

Selects the kind of markers

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 66
Default Value: 1

892 MARTYPE � Chapter 32

Syntax

return-code-variable=GSET(’MARTYPE’, type);

Description

The GSET(’MARTYPE’, . . .)function determines the type of marker drawn. See Figure
14.21 on page 271 for representations of the symbols described in Table 32.2 on page
892. The aspect source flag (ASF) of MARTYPE must be set to ’INDIVIDUAL’ for this
attribute to be used outside of a marker bundle.

Table 32.2 Symbol Indexes Used with DSGI

Values and Markers

1 plus 24 K 46 9

2 x 25 L 47 lozenge

3 star 26 M 48 spade

4 square 27 N 49 heart

5 diamond 28 O 50 diamond

6 triangle 29 P 51 club

7 hash 30 Q 52 shamrock

8 Y 31 R 53 fleur-de-lis

9 Z 32 S 54 star

10 paw 33 T 55 sun

11 point 34 U 56 Mercury

12 dot 35 V 57 Venus

13 circle 36 W 58 Earth

14 A 37 0 59 Mars

15 B 38 1 60 Jupiter

16 C 39 2 61 Saturn

17 D 40 3 62 Uranus

18 E 41 4 63 Neptune

19 F 42 5 64 Pluto

20 G 43 6 65 moon

21 H 44 7 66 comet

22 I 45 8 67 asterisk

23 J

Argument Definitions

type numeric constant or numeric variable name; indicates the index of
the marker to draw. Valid values are 1 to 67, inclusive. See Table
32.2 on page 892 for value specifications.

DATA Step Graphics Interface Dictionary � PATREP 893

See Also

“MARTYPE” on page 837
“ASF” on page 872
“MARREP” on page 890

MESSAGE

Specifies whether the interface error message system is enabled or disabled

Operating States: All
Return Codes: 0
Default Value: ON

Syntax
return-code-variable=GSET(’MESSAGE’, status);

Description
The GSET(’MESSAGE’, . . .)function activates or suppresses automatic error logging.

Argument Definitions
status character string enclosed in quotation marks or character variable

name; indicates whether messages should be displayed. Valid values
are ON and OFF. When ON is used, messages are automatically
generated by the DSGI based on the return code from the function.
If you set MESSAGE to OFF, no messages are automatically
printed. You can do this to print custom messages for your
application, or custom error messages.

See Also

“MESSAGE” on page 863
“GPRINT” on page 814

PATREP

Specifies the pattern name of a style index for a particular fill type.

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 79
Default value: 1

894 TEXALIGN � Chapter 32

Syntax
return-code-variable=CALL GSET(’PATREP’, index, pattern-name, hatch-name);

Description
The GSET(’PATREP’, . . .)function sets a pattern of a style index for a particular fill
type.

Argument Definitions
index numeric variable name; indicates the index of the pattern to be used.

pattern-name character variable name; sets the name of the pattern at the
specified index.

hatch-name character variable name; sets the name of the hatch at the specified
index.

See Also

“PATREP” on page 840

TEXALIGN

Specifies the horizontal and vertical alignment of the text string

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8
Default values: halign=NORMAL, valign=NORMAL

Syntax
return-code-variable=GSET(’TEXALIGN’, halign, valign);

Description
The GSET(’TEXALIGN’, . . .)function sets a particular type of horizontal and vertical
alignment for text strings. Figure 32.5 on page 895 illustrates halign.

DATA Step Graphics Interface Dictionary � TEXALIGN 895

Figure 32.5 Halign Values

Figure 32.6 on page 895 illustrates valign.

Figure 32.6 Valign Values

Argument Definitions
halign character string enclosed in quotation marks or character variable

name. Valid values are
CENTER
LEFT
NORMAL (the natural alignment based on the text path);

alignment is chosen according to the following logic:

1 If TEXPATH is ’RIGHT’, then NORMAL is ’LEFT’.
2 Otherwise, if TEXPATH is ’LEFT’, then NORMAL is

’RIGHT’.
3 Otherwise, the text string is centered.

RIGHT.

valign character string enclosed in quotation marks or character variable
name. Valid values are

BASE (alignment based on the baseline of the text string)
BOTTOM (alignment based on the bottom of the text string)
HALF (alignment based on the vertical midpoint of the string)
NORMAL (natural alignment based on the text path); alignment

is chosen according to the following logic:

896 TEXCOLOR � Chapter 32

1 If TEXPATH is ’RIGHT’ or TEXPATH is ’LEFT’, then
NORMAL is ’BASE’.

2 Otherwise, if TEXPATH is ’UP’, then NORMAL is
’BOTTOM’.

3 Otherwise, if TEXPATH is ’DOWN’, then NORMAL is
’TOP’.

TOP (alignment based on the top of the string).

See Also

“TEXALIGN” on page 841

“TEXT” on page 865

“TEXPATH” on page 899

“TEXUP” on page 901

TEXCOLOR

Specifies the color index of the color used to draw text strings

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 85

Default Value: 1

Syntax

return-code-variable=GSET(’TEXCOLOR’, color-index);

Description

The GSET(’TEXCOLOR’, . . .)function selects the color for text. The aspect source flag
(ASF) of TEXCOLOR must be set to ’INDIVIDUAL’ for this attribute to be used outside
of a text bundle.

The value of GSET(’TEXCOLOR’, . . .)can be used in a text bundle. See the
“TEXREP” on page 900 for information on how to define a text bundle.

DSGI searches for a color specification in the following order:

1 the color specified for the index in a GSET(’COLREP’, . . .)function

2 the nth color from the color list of the COLORS= graphics option

3 the nth color in the device’s default color list found in the device entry.

Argument Definitions

color-index numeric constant or numeric variable name; indicates the color
index of the color to be used. Valid values are 1 to 256, inclusive.

DATA Step Graphics Interface Dictionary � TEXFONT 897

See Also

COLORS= graphics option (see “COLORS” on page 340)

“TEXCOLOR” on page 842

“ASF” on page 872

“COLREP” on page 876

“TEXREP” on page 900

TEXFONT

Specifies the font used to draw text strings

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8

Default values: 1. FTEXT= graphics option, if specified; 2. device-resident font, if
possible; 3. SIMULATE font

Syntax
return-code-variable=GSET(’TEXFONT’, font);

Description
The GSET(’TEXFONT’, . . .)function selects a SAS/GRAPH font for the text. The
aspect source flag (ASF) of TEXFONT must be set to ’INDIVIDUAL’ for this attribute to
be used outside of a text bundle. See “SAS/GRAPH Font Lists” on page 1644 for a list of
valid SAS/GRAPH fonts. You can also use fonts you have created using the GFONT
procedure.

Argument Definitions
font character string enclosed in quotation marks or character variable

name; the name of a font that can be accessed by SAS/GRAPH
software. If you want to use the device-resident font, submit

rc=gset("texfont", " ");

When DSGI is used with long font names, the font name must be in double quotation
marks that are embedded in single quotation marks.

See Also

FTEXT= graphics options (see “FTEXT” on page 363)

“TEXFONT” on page 844

“ASF” on page 872

“TEXREP” on page 900

898 TEXHEIGHT � Chapter 32

TEXHEIGHT

Specifies the character height of the text string

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 73

Default Value: 1. HTEXT= graphics option, if specified; 2. 1 unit

Syntax
return-code-variable=GSET(’TEXHEIGHT’, height);

Description
The GSET(’TEXHEIGHT’, . . .)function sets the height for text. GSET(’TEXHEIGHT’,
. . .)affects text the same way as the HTEXT= graphics option.

Argument Definitions
height numeric constant or numeric variable name; indicates height in

units based on the current window system; must be greater than 0.

See Also

“TEXHEIGHT” on page 845

HTEXT= graphics options (see “HTEXT” on page 385)

TEXINDEX

Specifies the index of the bundle of text attributes

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 68

Default Value: 1

Syntax
return-code-variable=GSET(’TEXINDEX’, index);

Description
The GSET(’TEXINDEX’, . . .)function activates the text bundle indicated by index.
The aspect source flag (ASF) for TEXCOLOR and TEXFONT must be set to
’BUNDLED’ before the GDRAW(’TEXT’, . . .)function is executed if you want the
bundled values to be used when the text is drawn.

DATA Step Graphics Interface Dictionary � TEXPATH 899

Argument Definitions
index numeric constant or numeric variable name; indicates the number of

the bundle to activate. Valid values are 1 to 20, inclusive.

See Also

“TEXINDEX” on page 845
“ASF” on page 872
“TEXREP” on page 900

TEXPATH
Specifies the direction of the text string

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8
Default Value: RIGHT

Syntax
return-code-variable=GSET(’TEXPATH’, path);

Description
The GSET(’TEXPATH’, . . .)function selects a particular type of text path. Text path
determines the direction in which the text string reads. Figure 32.7 on page 899
illustrates the text paths that can be used with DSGI.

Figure 32.7 TEXPATH Values

Argument Definitions
path character string enclosed in quotation marks or character variable

name; specifies the direction the text is read. Valid values:

900 TEXREP � Chapter 32

� DOWN
� LEFT

� RIGHT
� UP.

See Also

“TEXPATH” on page 846
“TEXT” on page 865

“TEXALIGN” on page 894
“TEXUP” on page 901

TEXREP

Associates a bundle of text attributes with an index

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 68, 85
Default Value: none

Syntax
return-code-variable=GSET (’TEXREP’,index, color-index, font);

Description
The GSET(’TEXREP’, . . .)function assigns a color and font to a particular text bundle.
The aspect source flags (ASF) of TEXCOLOR and TEXFONT must be set to
’BUNDLED’ before the GDRAW(’TEXT’, . . .)function is executed if you want the
bundled values to be used when the text is drawn.

Argument Definitions
index numeric constant or numeric variable name; specifies the number to

use as an index for the bundle; valid values are 1 to 20, inclusive. If
index is expressed as a variable, the variable must be initialized to a
value between 1 and 20.

color-index numeric constant or numeric variable name; indicates the color to
use; valid values are 1 to 256, inclusive. The color index should
represent one of the following:

� a color index assigned with the GSET(’COLREP’, . . .)function
� the nth color in the color list of the COLORS= graphics option

� the nth color in the device’s default color list.

font character string enclosed in quotation marks or character variable
name; names the font to use with the bundle. See “SAS/GRAPH

DATA Step Graphics Interface Dictionary � TEXUP 901

Font Lists” on page 1644 for a list of valid SAS/GRAPH fonts. You
can also use fonts you have created using the GFONT procedure.

See Also

COLORS= graphics option (see “COLORS” on page 340)
“TEXREP” on page 847
“ASF” on page 872
“COLREP” on page 876
“TEXINDEX” on page 898

TEXUP

Specifies the orientation (angle) of the text string

Operating States: GKOP, SGOP, WSAC, WSOP
Return Codes: 0, 8, 74
Default Values: upx=0, upy=1

Syntax
return-code-variable=GSET(’TEXUP’,upx, upy);

Description
The GSET(’TEXUP’, . . .)function sets the angle of the text string. DSGI uses the
values of character up vectors to determine the angle of a text string. The character up
vector has two components, upx and upy, that describe the angle at which the text
string is placed. The angle is calculated with the following formula:

angle=atan(upx/upy)

Effectively, when DSGI is calculating the angle for the text, it uses upx and upy as
forces that are pushing the string toward an angle. The natural angle of text in the upx
direction is toward the 6 o’clock position. In the upy direction, text naturally angles at
the 3 o’clock position. If upx is greater than upy, the text is angled toward 6 o’clock. If
upy is greater than upx, the text is angled toward 3 o’clock. Figure 32.8 on page 902
shows the angle of text when the values for upx and upy are (0.0, 1.0) and (1.0, 0.0).

902 TEXUP � Chapter 32

Figure 32.8 Natural Angle of Text

As you change the values of upx and upy, the coordinate that has the highest value is
taken as the angle, and the lowest value as the offset. Figure 32.9 on page 902 shows
the angle of text when the character up vector values (+1.0, +0.5) are used.

Figure 32.9 Varying the Angle of Text

You can use the following macro to convert angles measured in degrees to character
up vectors:

%macro angle(x);
if mod(&x, 180)=90 then do;

if mod(&x,270) = 0 then
xup = 1.0;

else
xup = -1.0;

rc = gset("texup", xup, 0.0);
end;

DATA Step Graphics Interface Dictionary � TRANSNO 903

else do;
b = mod(&x, 360);
/* adjust y vector for 2nd and 3rd quadrants */
if b > 90 and b lt 270 then
yup = -1.0;

else
yup = 1.0;

a=&x*1.7453292519943300e-002;
xup = tan(-a);
/* adjust x vector for 3rd quadrant */
if b > 180 and b le 270 then
xup = -xup;

rc = gset("texup", xup, yup);
end;

%mend angle;

data _null_;
rc = ginit();
rc = graph("clear", "angle");
rc = gset("texalign", "left", "base");
rc = gset("texheight", 5);
rc = gset("texfont", "swissl");
%angle(180);
rc = gdraw("text", 50, 50, "180");
%angle(80);
rc = gdraw("text", 50, 50, "80");
%angle(600);
rc = gdraw("text", 50, 50, "600");
rc = graph("update");
rc = gterm();
run;

Argument Definitions
upx numeric constant or numeric variable name; if upy is 0, upx cannot

be 0.

upy numeric constant or numeric variable name; if upx is 0, upy cannot
be 0.

See Also

“TEXUP” on page 848
“TEXT” on page 865
“TEXALIGN” on page 894
“TEXPATH” on page 899

TRANSNO

Specifies the number of the transformation to be used

904 VIEWPORT � Chapter 32

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 50

Default Value: 0

Syntax
return-code-variable=GSET(’TRANSNO’, n);

Description
The GSET(’TRANSNO’, . . .)function activates the viewport, or the window you have
defined for the specified transformation number, or both. If you have not defined both a
viewport and window for a transformation, the default is used for the one missing.

You can select 0 as the active transformation, but you cannot define a viewport or
window for that transformation number. A transformation of 0 activates the default
viewport, (0,0) to (1,1), and window, which is device dependent.

Argument Definitions
n numeric constant or numeric variable name; indicates the viewport,

or the window to activate, or both. Should correspond to the n used
in the GSET(’VIEWPORT’, . . .)or GSET(’WINDOW’, . . .
)functions, or both. Valid values are 0 to 20, inclusive.

See Also

“TRANS” on page 848

“TRANSNO” on page 850

“VIEWPORT” on page 850

“WINDOW” on page 853

“VIEWPORT” on page 904

“WINDOW” on page 907

VIEWPORT

Associates a viewport with a transformation number

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 50, 51, 52

Default Values: llx=0, lly=0, urx=1, ury=1

Syntax
return-code-variable=GSET(’VIEWPORT’, n, llx, lly, urx, ury);

DATA Step Graphics Interface Dictionary � VPOS 905

Description
The GSET(’VIEWPORT’, . . .)function defines a viewport and associates it with the
transformation number, n. See the “TRANSNO” on page 903 for information on how to
activate the viewport. See the “WINDOW” on page 907 for information on how to define
a window to be used within the viewport.

Argument Definitions
n numeric constant or numeric variable name; specifies the

transformation number of the viewport. Valid values are 1 to 20,
inclusive.

llx numeric constant or numeric variable name; defines the x
component of the lower-left corner of the viewport; must not exceed
the value of urx; cannot be less than 0. Units are based on percent
of the graphics output area.

lly numeric constant or numeric variable name; defines the y
component of the lower-left corner of the viewport; must not exceed
the value of ury; cannot be less than 0. Units are based on percent
of the graphics output area.

urx numeric constant or numeric variable name; defines the x component
of the upper-right corner of the viewport; cannot be greater than 1.
Units are based on percent of the graphics output area.

ury numeric constant or numeric variable name; defines the y component
of the upper-right corner of the viewport; cannot be greater than 1.
Units are based on percent of the graphics output area.

See Also

“VIEWPORT” on page 850
“WINDOW” on page 907
“TRANSNO” on page 903
“TRANSNO” on page 850
“TRANS” on page 848
“WINDOW” on page 853

VPOS

Specifies the number of rows

Operating States: GKCL
Return Codes: 0, 1, 90, 307
Default Values: 1. VPOS=graphics option, if specified; 2. device’s default VPOS value

Syntax
return-code-variable=GSET(’VPOS’, vpos);

906 VSIZE � Chapter 32

Description
The GSET(’VPOS’, . . .)function sets the number of rows in the graphics output area.
GSET(’VPOS’, . . .)has the same effect on graphics output as the VPOS= graphics
option.

You can reset the VPOS value by submitting one of the following statements:

goptions reset=goptions;
goptions reset=all;

goptions vpos=0;

Argument Definitions
vpos numeric constant or numeric variable name; specifies the number of

rows in the graphics output area; must be greater than 0.

See Also

“VPOS” on page 851
“HPOS” on page 882
“VSIZE” on page 906
VPOS= graphics option (see “VPOS” on page 430)

VSIZE

Specifies the vertical dimension of the graphics output area

Operating States: GKCL
Return Codes: 0, 1, 90, 307
Default Values: 1. VSIZE= graphics option, if specified; 2. device’s default VSIZE value

Syntax
return-code-variable=GSET(’VSIZE’, vsize);

Description
The GSET(’VSIZE’, . . .)function sets the vertical dimension, in inches, of the graphics
output area. GSET(’VSIZE’, . . .)affects the dimensions of the default window.

You can reset the VSIZE value by submitting one of the following statements:

goptions reset=goptions;
goptions reset=all;
goptions vsize=0;

Argument Definitions
vsize numeric constant or numeric variable name; indicates the vertical

dimension for the graph in inches; must be greater than 0.

DATA Step Graphics Interface Dictionary � WINDOW 907

See Also

“VSIZE” on page 852

“HSIZE” on page 883

“VPOS” on page 905

VSIZE= graphics option (see “VSIZE” on page 430)

WINDOW

Associates a window with a transformation number

Operating States: GKOP, SGOP, WSAC, WSOP

Return Codes: 0, 8, 50, 51

Default Values: llx=0, lly=0; urx and ury are device dependent

Syntax

return-code-variable=GSET (’WINDOW’, n, llx, lly, urx, ury);

Description

The GSET(’WINDOW’, . . .)function defines a window and associates it with a
transformation number. See the “TRANSNO” on page 903 for information on how to
activate a window. See the “VIEWPORT” on page 904 for information on how to define
a viewport for a window.

Argument Definitions

n numeric constant or numeric variable name; specifies the
transformation number of the window. Valid values are 1 to 20,
inclusive.

llx numeric constant or numeric variable name; defines the x
component of the lower-left corner of the window; must not exceed
the value of urx. Units are based on percent of the active viewport.

lly numeric constant or numeric variable name; defines the y
component of the lower-left corner of the window; must not exceed
the value of ury. Units are based on percent of the active viewport.

urx numeric constant or numeric variable name; defines the x
component of the upper-right corner of the window. Units are based
on percent of the active viewport.

ury numeric constant or numeric variable name; defines the y
component of the upper-right corner of the window. Units are based
on percent of the active viewport.

908 Return Codes for DSGI Routines and Functions � Chapter 32

See Also

“TRANS” on page 848
“TRANSNO” on page 850
“VIEWPORT” on page 850
“WINDOW” on page 853
“TRANSNO” on page 903
“VIEWPORT” on page 904

Return Codes for DSGI Routines and Functions

0 Function completed successfully.

1 DATA Step Graphics Interface should be in GKCL state; the
statement is out of place within the DATA step.

3 DATA Step Graphics Interface should be in WSAC state; the
statement is out of place within the DATA step.

4 DATA Step Graphics Interface should be in SGOP state; the
statement is out of place within the DATA step.

7 DATA Step Graphics Interface should be in WSOP, WSAC, or SGOP
state; the statement is out of place within the DATA step.

8 DATA Step Graphics Interface should be in GKOP, WSOP, WSAC, or
SGOP state; the statement is out of place within the DATA step.

24 Workstation is open.

25 Workstation is not open.

26 Workstation cannot be opened.

29 Workstation is active.

30 Workstation is not active.

50 Invalid transformation number; transformation numbers must be in
the range 0 to 20; viewports and windows cannot be defined for
transformation 0.

51 Transformation is not a well-defined rectangle; transformations
must have coordinates for four vertices.

52 Viewport coordinates are out of range; coordinates must be within
dimensions of graphics output area for the device.

55 Clipping is on.

56 Clipping is off.

60 Bad line index; index numbers must be in the range 1 to 20.

61 No bundle defined for the line index; a GSET(’LINREP’, . . .
)function has not been submitted for the referenced line index.

62 Line type is less than or equal to 0 or greater than 46; type must be
in the range 1 to 46.

DATA Step Graphics Interface Dictionary � See Also 909

64 Invalid marker index; index numbers must be in the range 1 to 20.

65 No bundle defined for the polymarker index; a GSET(’MARREP’, . .
.)function has not been submitted for the referenced marker index.

66 Marker type is less than or equal to 0 or greater than 67; type must
be in the range 1 to 67.

68 Invalid text index; index numbers must be in the range 1 to 20.

69 No bundle defined for the text index; a GSET(’TEXREP’, . . .
)function has not been submitted for the referenced text index.

73 Character height is less than or equal to 0; height must be greater
than 0.

74 Both components of the character up vector are 0; both X and Y of a
character up vector cannot be 0.

75 Invalid fill index; index numbers must be in the range 1 to 20.

76 No bundle defined for the fill index; a GSET(’FILREP’, . . .)function
has not been submitted for the referenced fill index.

78 Style index is less than or equal to 0 or greater than 60; style
indexes must be in the range of 1 to 60.

79 Invalid pattern index.

86 Invalid color index; color index is out of the range 1 to 256 or is not
numeric.

87 No color name defined for the color index

90 Value is less than 0; value must be greater than or equal to 0.

150 External image file cannot be accessed. The image file either cannot
be accessed, or the image file is in an unsupported format, or the
image data is incomplete or otherwise corrupt.

301 Out of memory; your workstation does not have enough memory to
generate the graph.

302 Out of room for graph; your device cannot display the size of the
graph.

307 Error occurred in program library management; a GRAPH function
did not execute properly.

See Also

Chapter 6, “Using Graphics Devices,” on page 67
for information about specifying device drivers.

Chapter 15, “Graphics Options and Device Parameters Dictionary,” on page 327
for descriptions of graphics options and device parameters

Chapter 11, “Specifying Fonts in SAS/GRAPH Programs,” on page 155
for information about the fonts available in SAS/GRAPH software

Chapter 12, “SAS/GRAPH Colors and Images,” on page 167

910 References � Chapter 32

for information about specifying colors in SAS/GRAPH programs

“GOPTIONS Statement” on page 220
for an explanation of setting graphics options with the GOPTIONS statement

“PATTERN Statement” on page 240
for information about specifying patterns with DSGI

“SYMBOL Statement” on page 252
for representations of the markers that can be used with DSGI

Chapter 31, “The DATA Step Graphics Interface,” on page 769
for a complete explanation of using DSGI statements to produce graphs

Chapter 38, “The GDEVICE Procedure,” on page 1125
for information about device entries

The discussion for ARRAY in SAS Language Reference: Dictionary
for an explanation of argument lists

References
Enderle, G.; Kansy, K.; and Pfaff, G. (1985), Computer Graphics Programming:

GKS–The Graphics Standard Springer-Verlag New York, Inc.

911

P A R T5

SAS/GRAPH Procedures

Chapter 33.The GANNO Procedure 913

Chapter 34.The GAREABAR Procedure 931

Chapter 35.The GBARLINE Procedure 947

Chapter 36.The GCHART Procedure 989

Chapter 37.The GCONTOUR Procedure 1095

Chapter 38.The GDEVICE Procedure 1125

Chapter 39.The GEOCODE Procedure 1147

Chapter 40.The GFONT Procedure 1175

Chapter 41.The GINSIDE Procedure 1205

Chapter 42.The GKPI Procedure 1213

Chapter 43.The GMAP Procedure 1239

Chapter 44.The GOPTIONS Procedure 1319

Chapter 45.The GPLOT Procedure 1325

Chapter 46.The GPROJECT Procedure 1395

Chapter 47.The GRADAR Procedure 1419

Chapter 48.The GREDUCE Procedure 1447

912

Chapter 49.The GREMOVE Procedure 1459

Chapter 50.The GREPLAY Procedure 1473

Chapter 51.The GSLIDE Procedure 1517

Chapter 52.The GTILE Procedure 1527

Chapter 53.The G3D Procedure 1541

Chapter 54.The G3GRID Procedure 1571

Chapter 55.The MAPIMPORT Procedure 1593

913

C H A P T E R

33
The GANNO Procedure

Overview 913
Procedure Syntax 914

PROC GANNO Statement 914

Examples 916

Example 1: Scaling Data-Dependent Output 916

Example 2: Storing Annotate Graphics 919
Example 3: Using the NAME= Option to Produce Multiple Graphs 921

Example 4: Using Annotate Graphics in a Drill-Down Graph 925

Overview
The GANNO procedure displays graphs created by Annotate data sets. The

procedure can also be used to scale data-dependent graphics to fit the graphics output
area. Note that the GANNO procedure ignores all currently defined title and footnote
statements and some graphics option specifications, including BORDER=. To include
titles, footnotes, and graphics options along with your Annotate data set, use the
GSLIDE procedure instead of the GANNO procedure. For more information about the
Annotate facility, see Chapter 29, “Using Annotate Data Sets,” on page 641.

By default, both the GANNO and GSLIDE procedures scale graphics output from the
data set to fill the entire graphics area. However, if you are using a data coordinate
system and the data values are so large that some of the graphics elements do not fit in
the graphics output area and are not displayed, you can use the GANNO procedure
with the DATASYS option. This will cause the procedure to scale the output to fit the
available space. The GSLIDE procedure does not have this capability.

Figure 33.1 on page 913 displays output from an Annotate data set.

Figure 33.1 Displaying Annotate Graphics with the GANNO Procedure

914 Procedure Syntax � Chapter 33

The program for this graph is in Example 1 on page 916.

Procedure Syntax
Requirements: An input Annotate data set is required.

Supports: Output Delivery System (ODS)

PROC GANNO ANNOTATE=Annotate-data-set
<DATASYS>
<DESCRIPTION=’description’>
<GOUT=< libref.>output-catalog>
<IMAGEMAP=output-data-set>
<NAME= ’entry-name’ | variable-name>;

PROC GANNO Statement

Identifies the Annotate data set and draws the graphics output defined by that data set. It can also
scale the output to accommodate data-dependent coordinate values and specify an output catalog.

Syntax

PROC GANNO ANNOTATE=Annotate-data-set
<DATASYS>
<DESCRIPTION=’description’>
<GOUT=< libref.>output-catalog>
<IMAGEMAP=output-data-set>
<NAME=’entry-name’ | variable-name>;

Required Arguments

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set that includes Annotate variables that identify graphics commands
and parameters.

See also: Chapter 29, “Using Annotate Data Sets,” on page 641

Options
Options in the GANNO statement affect all graphs produced by that statement. You

can specify as many options as you want and list them in any order.

DATASYS
indicates that absolute or relative data-dependent coordinates occur in the Annotate
data set and scales the coordinates to fit the graphics output area. Use the DATASYS
option only with Annotate data sets in which the coordinate system variables XSYS,
YSYS, and HSYS specify the values 1, 2, 7, or 8.

The GANNO Procedure � PROC GANNO Statement 915

Use the DATASYS option when graphics elements that were created with
data-dependent variables do not fit in the graphics output area. This happens when
the coordinate values generated by the data exceed a range of 0 to 100.

If you omit the DATASYS option, the GANNO procedure attempts to draw each
graphics element according to the data values assigned to it, without scaling the
values. If the range of data values is too large, some graphics elements will not
display.
See also: “Using the DATASYS Option to Scale Graphs” on page 916
Featured in: Example 1 on page 916

DESCRIPTION=’description’
specifies the description of the catalog entry for the chart. The maximum length is
256 characters. The description does not appear on the chart. By default, the
GANNO procedure assigns the description OUTPUT FROM PROC GANNO.

The descriptive text is shown in each of the following:
� the “description” portion of the Results window
� the catalog-entry properties that you can view from the Explorer window
� the Table of Contents that is generated when you use CONTENTS= on an ODS

HTML statement, assuming that the procedure output is generated while the
contents page is open

� the Description field of the PROC GREPLAY window
� the chart description for Web output (depending on the device driver). For more

information, see “PROC GANNO Statement” on page 914.

Alias: DES=
Featured in: Example 2 on page 919

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output produced by the
GANNO procedure. If you omit the libref, the SAS/GRAPH software looks for the
catalog in the temporary library called WORK and creates the catalog if it does not
exist.
See also:
Featured in: Example 2 on page 919

IMAGEMAP=output-data-set
creates a temporary SAS data set that is used to generate an image map in an
HTML output file. The information in the image map data set includes the shape
and coordinates of the elements in the graph and drill-down URLs that have been
associated with those elements. The drill-down URLs are provided by one or two
variables in the input data set. These variables are identified to the GANNO
procedure with the HTML= and/or HTML_LEGEND= options.

The %IMAGEMAP macro generates the image map in the HTML output file. The
macro takes two arguments, the name of the image map data set and the name or
fileref of the HTML output file, as shown in the following example:

%imagemap(imgmapds, myimgmap.html);

See also: Chapter 30, “Annotate Dictionary,” on page 667 and “Adding Links with
the HTML= and HTML_LEGEND= Options” on page 601.

Featured in: Example 4 on page 925

NAME=’entry-name’ | variable-name
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to

916 Examples � Chapter 33

lowercase, and periods are converted to underscores. The default GRSEG name is
GANNO. If the name duplicates an existing name, then SAS/GRAPH adds a number
to the name to create a unique name—for example, GANNO1.

See also: “About Filename Indexing” on page 99

Featured in: Example 2 on page 919 Example 3 on page 921

Using the DATASYS Option to Scale Graphs

If your Annotate data set specifies a coordinate system that is based on data values
(that is, XSYS, YSYS, and HSYS are assigned the values 1, 2, 7, or 8), the data values
determine the size and location of the graphics elements on the output.

If the procedure that specifies the annotation generates axes (such as GPLOT or
GCHART), by default the axes are scaled to accommodate the full range of data values
and to fit in the procedure output area. Because all values are included in the axes, the
graph displays all the Annotate output that is dependent on data values.

However, if the annotation displays with the GSLIDE or GANNO procedure, which
do not generate axes, the data values might generate coordinate values that exceed the
limits of the graphics output area.

In this case, you can use the DATASYS option to tell the procedure that the Annotate
data set contains data-dependent coordinates and to scale the output accordingly. For
an illustration of this process, see Example 1 on page 916.

When you use the DATASYS option, the GANNO procedure reads the entire input
data set before drawing the graph and creates an output environment that is data
dependent; that is, the environment is based on the minimum and maximum values
that are contained in the data set. It then scales the data to fit this environment so
that all graphics elements can be drawn.

Although the DATASYS option enables you to generate graphs using one of the
data-dependent coordinate systems, it requires that the procedure scan the entire data
set to determine the minimum and maximum data values. You can save this extra pass
of the data set by using data-dependent values only in procedures that generate axes.
Annotate coordinate system 5 (percent of the procedure output area) is recommended
for use with the GANNO procedure. This coordinate system works equally well with
the GSLIDE procedure if you decide to display the annotation with titles and footnotes.

Examples

Example 1: Scaling Data-Dependent Output

Procedure features:
PROC GANNO statement options:

ANNOTATE=
DATASYS

Sample library member: GANSCALE

The GANNO Procedure � Example 1: Scaling Data-Dependent Output 917

Figure 33.2 Scaled GANNO Output

This example uses an Annotate data set to scale data-dependent output with the
DATASYS option and create a vertical bar chart of sales for each of six sites. The
values that determine the height of each bar range from 137 to 999. The range of
values is so large that the GANNO procedure cannot fit all of the bars in the output
area without scaling the output. This program uses the DATASYS option to scale the
data values so that the bars fit in the graphics output area.

Set the graphics environment.

goptions reset=all border;

Create the data set WRLDTOTL. WRLDTOTL contains sales data for six sites. SITENAME
contains the names of the sites. MEAN contains the average sales for each site.

data wrldtotl;
length sitename $ 10;
input sitename $ 1-10 mean 12-15;
datalines;

Paris 999
Munich 571
Tokyo 137
London 273
Frankfurt 546
New York 991
;
run;

Create the Annotate data set, WRLDANNO. XSYS and YSYS specify coordinate system 2
(absolute data values) for X and Y. HSYS specifies coordinate system 3 (percent of the graphics
output area) for SIZE. The SET statement processes every observation in WRLDTOTL.

data wrldanno;
length function color $ 8 text $ 20;

918 Example 1: Scaling Data-Dependent Output � Chapter 33

retain line 0 xsys ysys "2" hsys "3" x 8;
set wrldtotl end=end;

Draw the bars. The MOVE function defines the lower left corner of the bar. The BAR function
draws the bar. Bar height (Y) is controlled by MEAN.

function="move"; x=x+8; y=20; output;
function="bar"; y=y+(mean); x=x+9;

style="empty"; color="red"; output;

Label the bar with the name of site.

function="label"; y=0; x=x-4; size=3.5;
position="E"; style="swiss";
color="blue"; text=sitename; output;

Move to the top of the bar and write the value of MEAN.

function="move"; y=y+(mean)-3; output;
function="label"; x=x-1; text=left(put(mean,3.));

position="5"; style="swiss"; size=3; output;

After all the observations are processed, add an axis line, title, footnote, and frame.
The MOVE and DRAW functions draw the axis line. The LABEL function writes the title and
the footnote. The FRAME function draws a border around the output.

if end then do;
function="move"; x=10; y=20; output;
function="draw"; x=90; y=20; line=1;

size=.5; color="blue"; output;
function="label"; x=50; y=95; text="Projected Sales";

xsys="3"; ysys="3"; position="5"; style="swissb";
size=5; color=" "; output;
x=92; y=5; size=3; style="swiss"; text="GANSCALE"; output;

function="frame"; color="blue"; when="b";
style="empty"; output;

end;
run;

Display the annotate graphics. The ANNOTATE= identifies the data set that contains the
graphics commands. DATASYS tells the procedure to use the maximum and minimum data
values to construct the output environment. In addition, the values of X and Y are scaled to fit
the environment and all of the bars display on the graph.

proc ganno annotate=wrldanno
datasys;

run;
quit;

The GANNO Procedure � Example 2: Storing Annotate Graphics 919

Example 2: Storing Annotate Graphics

Procedure features:
PROC GANNO statement options:

DESCRIPTION=
GOUT=
NAME=

Sample library member: GANSQUAR

Figure 33.3 Four Squares

This example creates an Annotate data set that draws four colored squares, displays
the data set as a single graphics output, and stores the output as a catalog entry in a
permanent catalog. In this example, the NAME= option specifies a text string that
identifies the name that is stored with the graphics output in the catalog.

Set the graphics environment.

goptions reset=all border;

Create the Annotate data set, SQUARES. XSYS and YSYS specify coordinate system 3
(percent of the graphics output area) for X and Y.

data squares;
length function style color $ 8 text $ 15;
xsys="3"; ysys="3";

920 Example 2: Storing Annotate Graphics � Chapter 33

Draw the first square. The COLOR variable assigns the color for the square. The FUNCTION
variable selects the operation to be performed by the Annotate facility. The X and Y variables
contain coordinate values. The BAR function draws the square. When the STYLE variable is
used with the BAR function, it selects the fill pattern for the bar.

color="green";
function="move"; x=10; y=65; output;
function="bar"; x=30; y=95; style="solid"; output;

Label the first square. The LABEL function creates the label. The POSITION value of 6
left-justifies the text with respect to X and Y. The TEXT variable specifies the text string to be
written.

function="label"; x=10; y=63; position="6";
style="swissb"; size=2; text="Green"; output;

Draw and label the second square.

color="red";
function="move"; x=60; y=65; output;
function="bar"; x=80; y=95; output;
function="label"; x=60; y=63; position="6";

style="swissb"; size=2; text="Red"; output;

Draw and label the third square.

color="blue";
function="move"; x=10; y=15; output;
function="bar"; x=30; y=45; output;
function="label"; x=10; y=12; position="6";

style="swissb"; size=2; text="Blue"; output;

Draw and label the fourth square.

color="gray";
function="move"; x=60; y=15; output;
function="bar"; x=80; y=45; output;
function="label"; x=60; y=12; position="6";

style="swissb"; size=2; text="Gray"; output;

Add a footnote.

x=88; y=5; position="5"; size=1.5; style="swiss";
text="GANSQUAR"; output;

Draw a red frame.

function="frame"; color="red"; when="b";
style="empty"; output;

The GANNO Procedure � Example 3: Using the NAME= Option to Produce Multiple Graphs 921

run;

Display the annotate graphics. GOUT= assigns the catalog in which the graphics output is
stored. NAME= assigns a name to the entry stored in the WORK.EXCAT catalog.
DESCRIPTION= assigns a description to the catalog entry.

proc ganno annotate=squares
gout=excat
name="GANSQUAR"
description="Four squares";

run;
quit;

Example 3: Using the NAME= Option to Produce Multiple Graphs

Procedure features:
PROC GANNO statement option:

NAME=
Sample library member: GANMULTI

In this example, the GANNO procedure uses the NAME= option to generate multiple
graphs from one Annotate data set. Since NAME= is assigned the variable COLOR, the
GANNO procedure generates separate graphics output for each value of the COLOR, as
shown in Figure 33.4 on page 923, Figure 33.5 on page 924, Figure 33.4 on page 923
and Figure 33.6 on page 924.

Each output is stored as a separate entry in the temporary output catalog
WORK.EXCAT. The entries are named according to the values of COLOR: BLUE, GRAY,
GREEN, and RED. Note that the output for GRAY includes the footnote shown in Example
2 on page 919. The output for RED shows the frame that is generated by the Annotate
data set. The black borders in the other outputs are not generated by the code.

Set the graphics environment.

goptions reset=all border;

Create the Annotate data set, SQUARES. XSYS and YSYS specify coordinate system 3
(percent of the graphics output area) for X and Y.

data squares;
length function style color $ 8 text $ 15;
xsys="3"; ysys="3";

922 Example 3: Using the NAME= Option to Produce Multiple Graphs � Chapter 33

Draw the first square. The COLOR variable assigns the color for the square. The FUNCTION
variable selects the operation to be performed by the Annotate facility. The X and Y variables
contain coordinate values. The BAR function draws the square. When the STYLE variable is
used with the BAR function, it selects the fill pattern for the bar.

color="green";
function="move"; x=10; y=65; output;
function="bar"; x=30; y=95; style="solid"; output;

Label the first square. The LABEL function creates the label. The POSITION value of 6
left-justifies the text with respect to X and Y. The TEXT variable specifies the text string to be
written.

function="label"; x=10; y=63; position="6";
style="swissb"; size=2; text="Green"; output;

Draw and label the second square.

color="red";
function="move"; x=60; y=65; output;
function="bar"; x=80; y=95; output;
function="label"; x=60; y=63; position="6";

style="swissb"; size=2; text="Red"; output;

Draw and label the third square.

color="blue";
function="move"; x=10; y=15; output;
function="bar"; x=30; y=45; output;
function="label"; x=10; y=12; position="6";

style="swissb"; size=2; text="Blue"; output;

Draw and label the fourth square.

color="gray";
function="move"; x=60; y=15; output;
function="bar"; x=80; y=45; output;
function="label"; x=60; y=12; position="6";

style="swissb"; size=2; text="Gray"; output;

Add a footnote.

x=88; y=5; position="5"; size=1.5; style="swiss";
text="GANSQUAR"; output;

Draw a red frame.

function="frame"; color="red"; when="b";
style="empty"; output;

The GANNO Procedure � Example 3: Using the NAME= Option to Produce Multiple Graphs 923

run;

Generate the annotate graphics, separating graphs by color. NAME= identifies the
variable whose values PROC GANNO uses to generate the output. GANNO produces separate
output for each value of COLOR. The COLOR value is the name of the catalog entry.

proc ganno annotate=squares
name=color
gout=excat
description="Individual squares";

run;

Figure 33.4 Output for COLOR Value BLUE (WORK.EXCAT.BLUE.GRSEG)

924 Example 3: Using the NAME= Option to Produce Multiple Graphs � Chapter 33

Figure 33.5 Output for COLOR Value GRAY (WORK.EXCAT.GRAY.GRSEG)

Figure 33.6 Output for COLOR Value GREEN (WORK.EXCAT.GREEN.GRSEG)

The GANNO Procedure � Example 4: Using Annotate Graphics in a Drill-Down Graph 925

Figure 33.7 Output for COLOR Value RED (WORK.EXCAT.RED.GRSEG)

Example 4: Using Annotate Graphics in a Drill-Down Graph
Procedure features:

PROC GANNO statement option:
IMAGEMAP=

Sample library member: GANDRILL

This example creates essentially the same Annotate data set used in Example 2 on
page 919. It draws four colored squares and displays the data set as a single graphics
output.

However, this time the example shows you how to use Annotate graphics to generate
a drill-down graph. The example uses the HTML variable in the Annotate data set to

926 Example 4: Using Annotate Graphics in a Drill-Down Graph � Chapter 33

specify linking information that defines each of the four squares as a hot zone. When
the graph is viewed in a browser, you can click on a square to drill down to a related
graph. For example, if you click on the green square, it drills down to a graph that
confirms that you selected the green square.

The example uses the ODS HTML destination to generate the drill-down graph. To
implement the drill-down capability, the Annotate data set uses the HTML variable to
provide the linking information (see “HTML Variable” on page 709). The presence of the
HTML variable in the Annotate data set and the IMAGEMAP= option on the GANNO
procedure causes the ODS HTML destination to generate an image map for the graph
in the HTML output.

The example runs four GSLIDE procedures to generate the target output. Each
GSLIDE procedure uses the NAME= option to name the graph it produces, ensuring
that the GIF driver creates files named green.gif, blue.gif, red.gif, and gray.gif. These
are the files that are referenced as targets by the strings that are specified for the
Annotate data set’s HTML variable.

Allocate a storage location for all the output files, and set the graphics
environment.DEV= specifies the GIF device. GOUTMODE=REPLACE specifies that the
output graphics use the same filenames each time you run the program, instead of appending
numbers to the filenames.

/* set the graphics environment */
goptions reset=all dev=gif gunit=pct goutmode=replace border;

The GANNO Procedure � Example 4: Using Annotate Graphics in a Drill-Down Graph 927

Create the Annotate data set. The HTML variable is used to define the linking information
for each square. Because the GSLIDE procedures that generate the target output use NAME=
to ensure the output files are named green.gif, red.gif, blue.gif, and gray.gif, strings that
reference those names are assigned to the HTML variable for the appropriate observation in the
data. For the final observation, the HTML variable’s value is set to a null string; otherwise it
would retain the last assigned value, which is href=gray.gif. In that case, the graph’s
background area would be defined as a hot zone that links to file gray.gif. For a description of
the other functions and variables used in the Annotate data set, see Example 2 on page 919.

/* create the Annotate data set */
data squares;

length function style color $ 8
html text $ 15;

xsys="3"; ysys="3";

/* draw the green square */
color="green";
function="move"; x=10; y=65; output;
function="bar"; x=30; y=95; style="solid";

html="href=green.gif"; output;

/* label green square */
function="label"; x=10; y=63; position="6";

style="swissb"; size=2; text="Green"; output;

/* draw the red square */
color="red";
function="move"; x=60; y=65; output;
function="bar"; x=80; y=95;

html="href=red.gif"; output;

/* label red square */
function="label"; x=60; y=63; position="6";

style="swissb"; size=2; text="Red"; output;

/* draw the blue square */
color="blue";
function="move"; x=10; y=15; output;
function="bar"; x=30; y=45;

html="href=blue.gif"; output;

/* label blue square */
function="label"; x=10; y=12; position="6";

style="swissb"; size=2; text="Blue"; output;

/* draw the gray square */
color="gray";
function="move"; x=60; y=15; output;
function="bar"; x=80; y=45;

html="href=gray.gif"; output;

/* label gray square and add a footnote */
function="label"; x=60; y=12; position="6";

style="swissb"; size=2; text="Gray"; output;

928 Example 4: Using Annotate Graphics in a Drill-Down Graph � Chapter 33

/* draw a blue frame */
function="frame"; color="blue"; style="empty";

/* set null link for background area in frame */
html=""; output;

run;

Open the ODS HTML destination. BODY= specifies the filename for the HTML output.
PATH specifies the path where the output graphics files and HTML files are created.

/* open the ODS HTML destination */
ods html body="gandrill.htm" path=".";

Generate the drill-down graph. IMAGEMAP= specifies ANNOMAP as the name for the
Imagemap data set.

/* generate annotate graphics */
proc ganno annotate=squares

imagemap=annomap
description="Four squares";

run;

Generate the target output.PROC GSLIDE is run four times to generate the four graphs that
will serve as target output for the links that are defined in the drill-down graph.

/* generate the target output */
proc gslide wframe=4

cframe=green name="green";
note height=20;
note height=10

justify=center color=green
"Green Grass";

run;

proc gslide wframe=4
cframe=blue name="blue";
note height=20;
note height=10

justify=center color=blue
"Blue Sky";

run;

proc gslide wframe=4
cframe=red name="red";
note height=20;
note height=10

justify=center color=red
"Red Wine";

run;

proc gslide wframe=4
cframe=gray name="gray";

The GANNO Procedure � Example 4: Using Annotate Graphics in a Drill-Down Graph 929

note height=20;
note height=10

justify=center color=gray
"Gray Mare";

run;
quit;
goptions goutmode=append;
run;

930

931

C H A P T E R

34
The GAREABAR Procedure

Overview 931
Concepts 932

Procedure Syntax 933

PROC GAREABAR Statement 933

HBAR, HBAR3D, VBAR, and VBAR3D Statements 934

Examples 937
Example 1: Generating an Area Bar Chart 937

Example 2: Generating an Area Bar Chart with a Numeric Chart Variable 939

Example 3: Generating an Area Bar Chart with Subgroups 941

Example 4: Area Bar Chart with Subgroups; Using the RSTAT= option and the WSTAT= option
to Calculate Statistics as Percentages 943

Overview
The GAREABAR procedure produces an area bar chart displaying two statistics for

each category of data. In the following chart, for each bar, the width, and the height of
each bar represent different values, proportionally. The chart creates one bar for each
unique value of the SITE variable. The height of each bar represents the SUM of the
sales for that SITE. The width of each bar represents the NUMBER of sales persons
generating revenue for that site.

932 Concepts � Chapter 34

Display 34.1 Number of Sales Persons and Total Sales for Each Site

Concepts
The GAREABAR procedure produces a chart based on the values of a chart variable,

a width variable, and a sum calculation variable specified by the SUMVAR= option. The
chart variable can be either character or numeric. All values of the chart variable are
treated as discrete. The chart values are displayed in data order. PROC GAREABAR
does not calculate a midpoint.

For the VBAR statement, the width variable defines the width of the bar along the
horizontal axis. The SUMVAR= variable determines the height of the bar on the
vertical axis.

For the HBAR statement, the width variable defines the width of each bar on the
vertical axis. The SUMVAR= variable determines the length of the bar on the
horizontal axis.

The WIDTH variable, the SUMVAR= option variable, and the SUBGROUP= option
variable can be calculated, and displayed as a percentage of the total or as a sum. The
default is sum.

Examples using the SUBGROUP option are shown in “Examples” on page 937 and
Example 4 on page 943.

The GAREABAR Procedure � PROC GAREABAR Statement 933

Procedure Syntax
Requirements:

� a GOPTIONS statement with DEV=ACTIVEX or DEV=ACTXIMG
� an ODS statement to close the listing destination
� an ODS statement to open the output destination
� at least one HBAR, HBAR3D, VBAR, or VBAR3D statement
� a SUMVAR= option
� an ODS statement to close the output destination
� an ODS statement to open the listing destination.

Global statements: FOOTNOTE, GOPTIONS, LEGEND, PATTERN, TITLE
Reminder: BY, FORMAT, LABEL, WHERE
Supports: Run-group processing, Activex, Actximg

PROC GAREABAR <DATA=input-data-set;>
HBAR | HBAR3D | VBAR | VBAR3D chart-variable*width-variable/

SUMVAR=numeric-variable<(option(s)> ;

PROC GAREABAR Statement

Identifies the data set containing the chart variables.

Requirements: An input data set is required.

Syntax

PROC GAREABAR<DATA=input-data-set>;

Options
PROC GAREABAR statement options affect all graphs produced by the procedure.

DATA=input-data-set;
specifies the SAS data set that contains the variable(s) to chart. By default the
procedure uses the most recently created SAS data set.

934 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 34

HBAR, HBAR3D, VBAR, and VBAR3D Statements

Create horizontal or vertical bar charts in which the length or height of the bar represents the
value of a chart statistic for each category of data. A second statistic is represented by the width
of each bar.

Requirements: One category variable, one width variable, and the SUMVAR= option
variable.
Global statements: FOOTNOTE, GOPTIONS, LEGEND, PATTERN, TITLE

Description
The HBAR, HBAR3D, VBAR, and VBAR3D statements specify the variables that

define the categories, and width of each bar. The SUMVAR= option variable calculates
the length or height of each bar. These statements do the following;

� calculate the chart statistic for each bar (the default is SUM)
� scale the response axes and the bars according to the statistic value
� calculate the width of each bar, based on the value of the width variable
� draw a frame around the axis area using a color determined by the current style

You can use statement options to change the type of chart, to display specific
statistics, and to modify the appearance of the chart. You can also specify an additional
variable to subgroup your data, which divides the bars into segments and displays a
legend to identify the segments.

In addition, you can make the following changes with global statements:
� use the LEGEND statement to modify the legend
� use the TITLE and FOOTNOTE statements to add titles and footnotes to the chart
� use the PATTERN statement to create PATTERN definitions that define the color

and type of area fill for patterns used in graphs.

Syntax

HBAR | HBAR3D | VBAR | VBAR3D chart-variable*width-variable
SUMVAR=numeric-variable</ option(s)>;

option(s)can be one or more options from any or all of the following categories:
� appearance options:

CFRAME=background-color

CTEXT=text-color

FRAME | NOFRAME
LEGEND=LEGEND<1...99>
NOLEGEND

� statistic options:
RESPONSESTAT=statistic

WIDTHSTAT=statistic

� midpoint options:
CONTINUOUS
DISCRETE
SUBGROUP=subgroup-variable

The GAREABAR Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 935

� description options
DESCRIPTION=“description”
NAME=“name”

Required Arguments
The options in an HBAR, HBAR3D, VBAR, and VBAR3D statement affect all graphs

that are produced by that statement. You can specify as many options as you want, and
list them in any order.

category-variable
specifies the variable that defines the categories of data to chart. The CATEGORY
variable can be either character or numeric. Each unique value of the category
variable results in a separate bar.

sumvar=variable
specifies the variable that defines the height of each vertical bar or length of each
horizontal bar. The SUMVAR= option variable is always numeric. The default
statistic is sum.

width-variable
specifies the variable that defines the width of each bar. The WIDTH variable is
always numeric. The width of each bar represents the sum of the width variable
values for that category. The default statistic is sum.

Options
The options in an HBAR, HBAR3D, VBAR, and VBAR3D statement affect all graphs

that are produced by the statement. You can specify as many options as you want and
list them in any order.

CFRAME=background-color
specifies a background color for the graph. The specified color must be a valid
SAS/GRAPH color name.
Alias: CFR=
Style reference: Color attribute of GraphBackground element
Restriction: Not supported by Java.

CONTINUOUS
specifies that the graph data be treated as continuous. Continuous data can take any
of an infinite number of values between whole numbers, and so might not be
measured accurately. The default is discrete.
Restriction: Not supported by Java.

CTEXT=text-color
specifies a color for all text on the chart. The GAREABAR procedure looks for the
text color in the following order:

1 colors specified for labels and values on assigned LEGEND statements, which
override the CTEXT= option specified on the GAREABAR statement

2 the color specified by the CTEXT= option in the GAREABAR statement
3 the color specified by the CTEXT= option in a GOPTIONS statement
4 the color specified in the current style

Alias: CT=
Style reference: Color attributes of the GraphLabelText and GraphValueText

elements

936 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 34

Restriction: Not supported by Java.

DESCRIPTION=“description”
specifies the description of the plot. The maximum length for description is 256
characters.

The descriptive text is displayed as follows:
� the description in the Results window
� the properties that you view from the Explorer window
� the Table of Contents that is generated when you use CONTENTS= on an ODS

HTML statement, assuming the output is generated while the contents page is
open

� the ALT= text in the HTML file when the output destination is ODS HTML
� customized by inserting BY variable values with #BYLINE, #BYVAL(n), and

#BYVAR(n)

Alias: DES=
Default: GAREABAR ofcategory variable
Restriction: Not supported by Java.

DISCRETE
treats the chart variable axis data as discrete data. Discrete data is characterized as
data in which the variable can take only one of a finite set of values. The
GAREABAR procedure creates a separate bar for each unique value of the chart
variable. If the chart variable has a format associated with it, each formatted value
is treated as a unique value. The default is discrete.
Restriction: Not supported by Java.

FRAME | NOFRAME
specifies whether the two-dimensional axis area frame or the three-dimensional
backplane is drawn. The default is FRAME, which draws a frame around the axis
areas (in two-dimensional bar charts) or generates a colored three-dimensional
backplane (in three-dimensional bar charts). For three-dimensional charts,
NOFRAME removes the backplane color, and leaves the backplane grid, the vertical
axis and plane, and the horizontal axis and plane.

The NOFRAME option overrides the CFRAME= option.
Alias: FR | NOFR
Restriction: Not supported by Java.

LEGEND=LEGEND<1...99>
assigns the specified LEGEND definition to the legend generated by the
SUBGROUP= option. The LEGEND= option itself does not generate a legend.

LEGEND= is ignored if any of the following are true:
� The SUBGROUP= option is not used.
� The specified LEGEND definition is not in effect.
� The NOLEGEND option is used.

Restriction: The LEGEND statement options are partially supported by ActiveX.
See also: “LEGEND Statement” on page 225
Restriction: Not supported by Java.

NAME=“name”
specifies the name of the graphics output file. The name can be up to 256 characters
long. Uppercase characters are converted to lowercase. The default name is
graph.png. If the name duplicates and existing name, then SAS/GRAPH adds a
number to the name to create a unique name, for example, graph1.png.

The GAREABAR Procedure � Example 1: Generating an Area Bar Chart 937

Restriction: Not supported by Java.

See also: “About Filename Indexing” on page 99

NOLEGEND
suppresses the legend that is automatically generated by the SUBGROUP= option.
The NOLEGEND option is ignored if the SUBGROUP= option is not used.

Restriction: Not supported by Java.

RESPONSESTAT= SUM |PCT| PERCENT
specifies the statistic for subgroups. The default is sum.

If the SUBGROUP= option is not specified, then the RESPONSESTAT= option is
ignored.

Alias: RESPSTAT= or RSTAT=

Restriction: Not supported by Java.

SUBGROUP=subgroup-variable
divides the bars into segments according to the values of the subgroup-variable. The
subgroup-variable can be either character or numeric, and is always treated as a
discrete variable. The SUBGROUP= option creates a separate segment within each
bar for each unique value of the subgroup variable.

Restriction: Not supported by Java.

SUMVAR=summary-variable
specifies the numeric variable for the sum calculation. The GAREABAR procedure
calculates the sum of for each category to determine the length or height of each bar.

Restriction: Not supported by Java.

WIDTHSTAT= SUM | PCT | PERCENT
specifies whether the WIDTH= option statistic is a percent or a sum. The default
statistic is sum.

Alias: WSTAT=SUM | PCT | PERCENT

Restriction: Not supported by Java.

Examples

Note: When using procedures that support RUN-group processing, include a QUIT
statement after the last RUN statement. Using the QUIT statement is especially
important when the procedure is supposed to completely terminate within the
boundaries of an ODS destination (for example, ODS HTML; procedure-code; ODS
HTML CLOSE;). See “RUN-Group Processing” on page 56 for more information. �

Example 1: Generating an Area Bar Chart

Procedure features: VBAR Statement

Data set: WORK.TOTALS

Sample library member: GABSUMVR

938 Example 1: Generating an Area Bar Chart � Chapter 34

Figure 34.1 Area Bar Chart

This area bar chart reveals three geographic sites (Lima, NY, Rome) along the
horizontal axis. The width of each bar represents the sum of the salespersons assigned
to each site. The height of each bar represents the sum of the sales for each site. The
chart shows that NY had the greatest sales, as well as the greatest number of sales
persons.

Reset the graphics options. Set the device to output Activex..

goptions reset=all dev=activex;

Create the data set.

data totals;
input Site $ Quarter Sales Salespersons;
format Sales dollar12.2;
datalines;
Lima 1 4043.97 4
NY 1 8225.26 12
Rome 1 3543.97 6
Lima 2 3723.44 5
NY 2 8595.07 18
Rome 2 5558.29 10
Lima 3 4437.96 8
NY 3 9847.91 24
Rome 3 6789.85 14
Lima 4 6065.57 10
NY 4 11388.51 26
Rome 4 8509.08 16
;

The GAREABAR Procedure � Example 2: Generating an Area Bar Chart with a Numeric Chart Variable 939

Close the listing destination..

ods listing close;

Open the HTML output destination..

ods html;

Run PROC GAREABAR with VBAR statement.The VBAR site statement creates a vertical
bar for each value of site. *SALESPERSONS sets the width variable for bars. SUMVAR=SALES
sets the height variable for each of the bars.

proc gareabar data=totals;
vbar site*salespersons /

sumvar=sales;
run;
quit;

Close HTML destination..

ods html close;

Open the listing destination..

ods listing;

Example 2: Generating an Area Bar Chart with a Numeric Chart Variable

Procedure features: VBAR Statement, SUMVAR=, WSTAT=
Data set: WORK.TOTALS
Sample library member: GABNUMVR

940 Example 2: Generating an Area Bar Chart with a Numeric Chart Variable � Chapter 34

Figure 34.2 Area Bar Chart with Numeric Chart Variable (gabnumvr)

This chart displays a numeric chart variable, QUARTER, representing the four
quarters of an unspecified year. The GAREABAR procedure treats all values of a
numeric chart variables as discrete, unless the CONTINUOUS option is used.
GAREABAR does not calculate midpoints.

The total sales for each quarter of the year is represented by the height of each bar
along the vertical axis. The width of each bar along the horizontal axis indicates the
percentage of salespersons during each quarter. The chart shows the correlation
between the number of salespersons, and the total sales.

Reset the graphics options. Set device to output ActiveX..

goptions reset=all dev=activex;

Create the data set.

data totals;
input Site $ Quarter Sales Salespersons;
format Sales dollar12.2;
datalines;
Lima 1 4043.97 4
NY 1 8225.26 12
Rome 1 3543.97 6
Lima 2 3723.44 5
NY 2 8595.07 18
Rome 2 5558.29 10
Lima 3 4437.96 8
NY 3 9847.91 24
Rome 3 6789.85 14
Lima 4 6065.57 10
NY 4 11388.51 26
Rome 4 8509.08 16
;

The GAREABAR Procedure � Example 3: Generating an Area Bar Chart with Subgroups 941

Close the listing destination.

ods listing close;

Open the HTML output destination.

ods html;

Run PROC GAREABAR with VBAR statement.The VBAR=SITE option creates a vertical
bar for each value of quarter. *SALESPERSONS sets the width of each of the bars. The
SUMVAR=SALES option sets the height of each of the bars. WSTAT=PCT option sets the
number of salespersons as a percentage of the whole.

proc gareabar data=totals;
vbar quarter*salespersons/

sumvar=sales
wstat=pct;

run;
quit;

Close the HTML destination.

ods html close;

Open the listing destination.

ods listing;

Example 3: Generating an Area Bar Chart with Subgroups

Procedure features: HBAR Statement, SUBGROUP=, SUMVAR=, RSTAT=, WSTAT=
Data set: WORK.TOTALS
Sample library member: GABSUBGR

942 Example 3: Generating an Area Bar Chart with Subgroups � Chapter 34

Figure 34.3 Area Bar Chart with Subgroups (gabsubgr)

This example uses the SUBGROUP= option to display the same statistics as
displayed by Examples 1 and 2. Similar to Example 1, this example shows the total
sales for each of the three geographic sites. The relative thickness of each bar
represents the number of salespersons at each site.

The addition of subgroups to this chart shows the relative percentage of sales for
each quarter. This chart demonstrates that all of the sites had most of their sales
posted in the fourth quarter.

Reset the graphics options. Set the device to output ActiveX.

goptions reset=all dev=activex;

Create the data set.

data totals;
input Site $ Quarter Sales Salespersons;
format Sales dollar12.2;
datalines;
Lima 1 4043.97 4
NY 1 8225.26 12
Rome 1 3543.97 6
Lima 2 3723.44 5
NY 2 8595.07 18
Rome 2 5558.29 10
Lima 3 4437.96 8
NY 3 9847.91 24
Rome 3 6789.85 14
Lima 4 6065.57 10
NY 4 11388.51 26
Rome 4 8509.08 16
;

The GAREABAR Procedure � Example 4: Area Bar Chart with Subgroups; Using the RSTAT= option and the WSTAT= option to Calculate

Statistics as Percentages 943

Close the listing destination.

ods listing close;

Open the HTML output destination.

ods html;

Run PROC GAREABAR with an HBAR statement. The SUMVAR=SALES option sets the
length of the bar.

The HBAR SITE*SALESPERSONS creates a horizontal bar for each site. SALESPERSONS is
represented by the width of each bar. The WSTAT=PERCENT option sets the statistic to
percentage to compare the distribution of salespersons for each quarter.

The SUBGROUP=QUARTER option and the RSTAT=SUM option are reflected in the statistics
that are displayed as absolute numbers along the horizontal bar.

proc gareabar data=totals;
hbar site*salespersons /

sumvar=sales
subgroup=quarter
wstat=PCT;

run;
quit;

Close the HTML destination..

ods html close;

Open the listing destination..

ods listing;

Example 4: Area Bar Chart with Subgroups; Using the RSTAT= option and
the WSTAT= option to Calculate Statistics as Percentages

Procedure features: HBAR Statement, SUBGROUP=, RSTAT=, WSTAT=
Data set: WORK.TOTALS
Sample library member: GABWSTAT

944 Example 4: Area Bar Chart with Subgroups; Using the RSTAT= option and the WSTAT= option to Calculate Statistics as

Percentages � Chapter 34

Figure 34.4 Area Bar Chart with Subgroups and Percentage Statistics (gabwstat)

This example uses the RSTAT= option and the WSTAT= option to calculate
percentages for the length variable (sumvar) and the width variable (chart variable).
The SUBGROUP= option subgroups each bar by quarter.

When the SUBGROUP= option is specified, you can use the RSTAT= option to specify
whether the SUMVAR= option variable is to be calculated as a percentage or as a sum.

Reset the graphics options. Set the device to output Activex.

goptions reset=all dev=activex;

Create the data set.

data totals;
input Site $ Quarter Sales Salespersons;
format Sales dollar12.2;
datalines;
Lima 1 4043.97 4
NY 1 8225.26 12
Rome 1 3543.97 6
Lima 2 3723.44 5
NY 2 5558.29 10
Lima 3 4437.96 8
NY 3 9847.91 24
Rome 3 6789.85 14
Lima 4 6065.57 10
NY 4 11388.51 26
Rome 4 8509.08 16
;

Close the listing destination.

ods listing close;

The GAREABAR Procedure � Example 4: Area Bar Chart with Subgroups; Using the RSTAT= option and the WSTAT= option to Calculate

Statistics as Percentages 945

Open the HTML output destination destination.

ods html;

Run PROC GAREABAR with an HBAR statement. Because SITE*SALESPERSONS and
WSTAT=PERCENT, the percentage of salespersons is shown by the relative thickness of each
bar along the vertical axis.

The SUBGROUP=QUARTER option and the RSTAT=PCT option, request that sales for each
quarter is displayed as percentages along the horizontal axis.

proc gareabar data=totals;
hbar site*salespersons /

sumvar=sales
subgroup=quarter
rstat=PCT
wstat=PCT;

run;
quit;

Close the HTML destination..

ods html close;

Open the listing destination..

ods listing;

946

947

C H A P T E R

35
The GBARLINE Procedure

Overview 947
About Bar-Line Charts 948

Concepts 949

About the Chart Variable 950

About Midpoints 950

Character Values 950
Discrete Numeric Values 950

Continuous Numeric Values 951

Selecting and Ordering Midpoints 952

About Response Variables 952

About Chart Statistics 953

Frequency 953
Cumulative Frequency 953

Percentage 953

Cumulative Percentage 953

Sum 953

Mean 953
Calculating Weighted Statistics 954

Missing Values 954

Plot Variable Values Out of Range 955

Controlling Patterns, Outlines, Colors, and Images 955

Default Patterns, Symbols, Lines, Colors, and Outlines 955
User-Defined Patterns, Colors, Lines, Symbols, and Outlines 956

Adding Images to Bar-Line Charts 957

Controlling When Bar Patterns Change 957

Controlling Axis Color 957

Procedure Syntax 958

PROC GBARLINE Statement 958
BAR Statement 959

PLOT Statement 974

Examples 981

Example 1: Producing a Basic Bar-Line Chart 981

Example 2: Calculating Weighted Statistics 983
Example 3: Specifying Subgroups, Multiple Plots, Data Tips, and Drill-Down URLs 985

Overview

The GBARLINE procedure produces bar-line charts. Bar-line charts are vertical bar
charts with one or more plot overlays. These charts graphically represent the value of a

948 About Bar-Line Charts � Chapter 35

statistic calculated for one or more variables in an input SAS data set. The charted
variables can be either numeric or character.

The procedure calculates these statistics:
� sum
� mean
� frequency or cumulative frequency
� percentage or cumulative percentage.

Use the GBARLINE procedure to do the following tasks:
� display and compare exact and relative magnitudes
� examine the contribution of parts to the whole
� analyze where data are out of balance
� display a long series of data, showing trends and patterns.

In conjunction with the SYMBOL statement, the GBARLINE procedure can produce
needle plot overlays, and overlay plots with stepped interpolation.

Note: PROC GBARLINE is not supported by Java. �

About Bar-Line Charts
Bar-line charts display the magnitude of data with bars, each of which represents a

category of data (midpoint). The height of the bars represents the value of the bar
statistic for the corresponding midpoint.

Figure 35.1 on page 948 shows the relationship between petal width and petal length
for three species of flowers. The horizontal axis is the midpoint axis and the vertical
axes are response axes. The right response axis is the PLOT statement axis and the left
vertical axis is the BAR statement axis. Each axis is labeled with the variable name or
label. Each species is a midpoint, so each bar is labeled with the species identifier.

Figure 35.1 Bar-Line Chart

The GBARLINE Procedure � Concepts 949

Concepts
The GBARLINE procedure produces a bar chart based on the values of a chart

variable and an optional response variable (SUMVAR= option). The computed statistic
can be set with the TYPE= option. Each line chart uses the same chart variable and
has an optional response variable (SUMVAR= option). A computed statistic can be set
with the TYPE= option.

Figure 35.2 on page 949 illustrates the parts of a bar-line chart.

Figure 35.2 Parts of a Bar-Line Chart

Bar-line charts have three axes:
� a midpoint axis that shows the categories of data, based on the chart variable
� a left response axis that displays the scale of values for the bar statistic (based on

the response variable, if specified)
� a right response axis that displays the scale of values for the line statistic (based

on the response variable, if specified)

The response axes are divided into evenly spaced intervals identified with major tick
marks that are labeled with the corresponding statistic value. Minor tick marks are

950 About the Chart Variable � Chapter 35

evenly distributed between the major tick marks. Each axis is labeled with the variable
name or label. The right response axis is scaled to accommodate all the line variable
response values when multiple PLOT statements are present.

About the Chart Variable
The chart variable is the variable in the input data set whose value determines the

categories of data represented by the bar and lines. The chart variable generates the
midpoints to which each observation in the data set contribute.

A character chart variable is always discrete.

About Midpoints
Midpoints are the values of the chart variable that identify categories of data. By

default, midpoints are selected or calculated by the procedure. The way the procedure
handles the midpoints depends on whether the values of the chart variable are
character, discrete numeric, or continuous numeric.

Character Values
A character chart variable generates a midpoint for each unique value of the

variable. In the following example, the chart variable CITY contains the names of three
different cities, and each city is a midpoint, resulting in three midpoints for the chart:

Figure 35.3 Character Midpoints

By default, character midpoints are arranged in alphabetic order. If a character
variable has an associated format, then the values are arranged in order of the
formatted values.

Discrete Numeric Values
A numeric chart variable used with the DISCRETE option generates a midpoint for

each unique value of the chart variable. In the following example, the numeric variable
YEAR used with the DISCRETE option produces one midpoint for each year:

The GBARLINE Procedure � About Midpoints 951

Figure 35.4 Discrete Numeric Midpoints

By default, numeric midpoints are arranged in ascending order of the chart variable.
If the numeric variable has an associated format, then each formatted value generates
a separate midpoint. Formatted numeric variables are arranged in ascending order
according to their unformatted numeric values.

Continuous Numeric Values
A continuous numeric variable generates midpoints that represent ranges of values.

By default, the GBARLINE procedure determines the number of uniform ranges
(LEVELS), calculates the number of observations in each range, and then computes the
TYPE= statistic based on this frequency. A value that falls exactly on a range boundary
is placed in the higher range.

In the following example, the numeric variable AGE has been divided into five equal
levels that span the data range. The horizontal axis tick values are at the midpoint of
each level.

Figure 35.5 Continuous Numeric Midpoints

By default, midpoints of ranges are arranged in ascending order.

952 About Response Variables � Chapter 35

Selecting and Ordering Midpoints
For character or discrete numeric values, you can use the MIDPOINTS= option to

rearrange the midpoints or to exclude midpoints from the chart. For example, to change
the default alphabetic order of the midpoints in Figure 35.3 on page 950, specify the
following midpoints:

midpoints="Tokyo" "Denver" "Seattle"

To exclude the midpoint for Denver, specify the following midpoints:

midpoints="Tokyo" "Seattle"

In this case, values excluded by the option are not included in the calculation of the
chart statistic.

You can order or select discrete numeric midpoint values just as you do character
values, but you omit the quotation marks when specifying numeric values.

For continuous numeric variables, use the LEVELS= or MIDPOINTS= option to
change the number of midpoints, to control the range of values each midpoint
represents, or to change the order of the midpoints. To control the range of values each
midpoint represents, use the MIDPOINTS= option to specify the midpoint value of each
range. For example, to select the ranges 20–29, 30–39, and 40–49, specify the following
values:

midpoints=25 35 45;

Alternatively, to select the number of midpoints that you want and let the procedure
calculate the ranges and midpoints, use the LEVELS= option.

You can also use formats to control the ranges of continuous numeric variables, but
in that case the values are no longer continuous but become discrete.

Note: You cannot use the MIDPOINTS= option to exclude continuous numeric
values from the chart because values below or above the ranges specified by the option
are automatically included in the first and last midpoints. To exclude continuous
numeric values from a chart, use a WHERE statement in a DATA step or the WHERE=
data set option. �

See also the description of the LEVELS= and MIDPOINTS= options.

About Response Variables
Response variables can be specified for either the bar chart or any line plot with the

SUMVAR= option.
For example:

BAR age / DISCRETE SUMVAR=weight; PLOT / SUMVAR=height;

When you specify a response variable, the only statistics available are SUM or MEAN,
with SUM being the default. To change the statistic, you specify the TYPE= option. For
example, TYPE=MEAN.

If you do not specify a response variable, a summary statistic for the chart variable is
computed. By default it is FREQ (frequency). You can use the TYPE= option to indicate
another statistic: PERCENT, CFREQ (cumulative frequency) or CPERCENT
(cumulative percent).

For more information about these statistics, see “About Chart Statistics” on page 953.
See also the descriptions of the SUMVAR= and TYPE= options for the PLOT statement.

The GBARLINE Procedure � About Chart Statistics 953

About Chart Statistics
The chart statistics are the statistical values calculated for the chart variable or the

response variable. When there is no response variable, the GBARLINE procedure
calculates one of four possible statistics with the default being FREQ. When there is a
response variable one of two possible statistics is computed with the default being
SUM. You can specify the chart statistic with the TYPE= option for both the bar chart
and any line plot. For the bar chart, the default statistic is frequency. For the plot
variable, the default statistic is sum.

The examples given in the descriptions of these statistics assume a data set with two
variables, CITY and SALES. The values of CITY are Denver, Seattle, and Tokyo.
There are 21 observations: seven for Denver, nine for Seattle, and five for Tokyo.

Frequency
The frequency statistic is the total number of observations in the data set for each

midpoint. For example, seven observations of the bar variable, CITY, contain the value
Denver, so the frequency for the Denver midpoint is 7.

Cumulative Frequency
The cumulative frequency statistic adds the frequency for the current midpoint to the

frequency of all of the preceding midpoints. For example, the frequency for the Denver
midpoint is 7, and the frequency for the next midpoint, Seattle, is 9. Therefore, the
cumulative frequency for Seattle is 16 and the cumulative frequency for Tokyo is 21.

Percentage
The percentage statistic is calculated by dividing the frequency for each midpoint by

the total frequency count for all midpoints in the chart or group and multiplying it by
100. For example, the frequency count for the Denver midpoint is 7 and the total
frequency count for the chart is 21, so the percentage statistic for Denver is 33.3%.

Cumulative Percentage
The cumulative percentage statistic adds the percentage for the current midpoint to

the percentage for all of the preceding midpoints in the chart or group. For example,
the percentage for the Denver midpoint is 33.3, and the percentage for the next
midpoint, Seattle, is 42.9, so the cumulative percentage for Seattle is 76.2.

Sum
The sum statistic is the total of the values, for each midpoint, for the variable

specified by the SUMVAR= option. For example, if you specify SUMVAR=SALES and
the values of the SALES variable for the seven Denver observations are 8734, 982,
1504, 3207, 4502, 624, and 918, the sum statistic for the Denver midpoint is 20,471.

You must use the SUMVAR= option to specify the variable for which you want the
sum statistic.

Mean
The mean statistic is the average of the values, for each midpoint, for the variable

specified by the SUMVAR= option. For example, if TYPE=MEAN and
SUMVAR=SALES, the mean statistic for the Denver midpoint is 2924.42.

954 Missing Values � Chapter 35

You must use the SUMVAR= option to specify the variable for which you want the
mean statistic.

Calculating Weighted Statistics

By default, each observation is counted only once in the calculation of a chart
statistic. To calculate weighted statistics in which an observation can be counted more
than once, use the FREQ= option. This option identifies a variable whose values are
used as a multiplier for the observation in the calculation of the statistic. If the value of
the FREQ= variable is missing, zero, or negative, then the observation is excluded from
the calculation.

If you use the SUMVAR= option, then the SUMVAR= variable value for an
observation is multiplied by the FREQ= variable value for the observation. The product
of this calculation determines the chart statistic.

For example, to use a variable called COUNT to produce weighted statistics, assign
FREQ=COUNT. If you also assign the variable HEIGHT to the SUMVAR= option, then
the following table shows how the values of COUNT and HEIGHT would affect the
statistic calculation:

Value of COUNT Value of HEIGHT Number of times the
observation is used

Value used for
HEIGHT

1 55 1 55

5 65 5 325

. 63 0 -

-3 60 0 -

By default, the percentage and cumulative percentage statistics are calculated based
on the frequency. If you want to graph a percentage or cumulative percentage based on
a sum, then you can use the FREQ= option to specify a variable to use for the sum
calculation and then specify PCT as the statistic, as shown in this example:

freq=count type=pct;

Because the variable that is specified by the FREQ= option determines the number of
times an observation is counted, the value of COUNT is the equivalent of the sum
statistic.

See also the descriptions of the TYPE=, SUMVAR=, and FREQ= options.

Note: The FREQ= option is not supported by ActiveX or Java. �

Missing Values
By default, the GBARLINE procedure ignores missing midpoint values for the chart

variable. If you specify the MISSING option, then missing values are treated as a valid
midpoint and are included on the axis. Missing values for the subgroup variables are
always treated as valid subgroups.

When the value of the variable that is specified in the FREQ= option is missing, zero,
or negative, the observation is excluded from the calculation of the chart statistic.

When the value of the variable specified in the SUMVAR= option is missing, the
observation is excluded from the calculation of the chart statistic.

The GBARLINE Procedure � Controlling Patterns, Outlines, Colors, and Images 955

If all of the values for a response variable are missing for the bar chart, a midpoint is
drawn, but no bar appears above it. For a line plot, no marker is drawn and the line
connects the adjacent markers.

Plot Variable Values Out of Range
Exclude data values from a plot overlay by restricting the range of axis values with

the RAXIS= options or with the ORDER= option in an AXIS statement. When an
observation contains a value outside of the specified axis range, the GBARLINE
procedure excludes the observation from the plot and issues a message to the log.

If you specify interpolation with a SYMBOL definition, then the values outside the
axis range are excluded from interpolation calculations by default, and, as a result, can
change interpolated values for the plot overlay.

To specify that values outside of the axis range are included in the interpolation
calculations, use the MODE= option in a SYMBOL statement. When
MODE=INCLUDE, values that fall outside of the axis range are included in
interpolation calculations but excluded from the plot. The default (MODE=EXCLUDE)
omits observations that are outside of the axis range from interpolation calculations.
See the “SYMBOL Statement” on page 252 for details.

Controlling Patterns, Outlines, Colors, and Images
Default patterns, colors, outlines, and, in some cases, images, are defined by the

current style, whether that style is the default GSTYLE or one you specify with the
ODS statement. You can turn off styles by specifying the NOGSTYLE system option, or
you can override individual aspects of a graph’s appearance by specifying PATTERN
statements, SYMBOL statements, graphics options, and procedure options.

The following sections summarize pattern behavior for the GBARLINE procedure.
For more information, see the “PATTERN Statement” on page 240 and the “SYMBOL
Statement” on page 252.

Default Patterns, Symbols, Lines, Colors, and Outlines
The default pattern that the GBARLINE procedure uses is a solid fill. The default

colors are determined by the current style and the device.
Because the system option—GSTYLE—is in effect by default, the procedure uses the

style’s default bar fill colors, plot line colors, widths, symbols, patterns, and outline
colors when producing output. Specifically, the GBARLINE procedure uses the default
values when you do not specify any of the following:

� any PATTERN statements
� the CPATTERNS= graphics options
� the COLORS= graphics options
� the COUTLINE= option in the BAR statement
� any SYMBOLS statements.

If you do not specify any of these statements or options, then the GBARLINE
procedure performs the following operations:

� selects the first default fill pattern, which is always solid, and rotates it through
the list of colors available in the current style, generating one solid pattern for
each color. When the solid patterns are exhausted, the procedure selects the next
default subgroup bar pattern (empty) and rotates it through the appropriate set of
colors. It continues in this fashion until all of the required patterns have been
assigned.

956 Controlling Patterns, Outlines, Colors, and Images � Chapter 35

If you use the default style colors and the first color in the list is either black or
white, the procedure does not create a pattern in that color. If you specify a color
list with the COLORS= graphics option, then the procedure uses all the colors in
the list to generate the patterns.

� uses the style’s outline color to outline every patterned area.

� uses the style’s default symbol for the initial PLOT statement points, the second
default symbol for the next PLOT statement, the third default symbol for the next
PLOT statement, and so on, continuing through the set of symbols belonging to
that style until all the PLOT statements have been satisfied.

� connects all the plot symbols with a solid line.

If you specify the NOGSTYLE system option, the fill pattern is solid and the color
comes from the device’s color list. The GBARLINE procedure uses a solid fill for the
bars that it rotates once through the device’s default color list, skipping the foreground
color. (Typically, the foreground color is the first color in the device’s color list.) If no
SYMBOL or PATTERN statements are in effect and the COLORS= option is not used in
the GOPTIONS statement, then the plot line colors begin with the next color from the
same color list used to color the bars. By doing this, the procedure prevents the plot
line from being the same color as a bar fill. Specifically, GBARLINE performs the
following operations:

� selects the first default fill, which is always solid, and rotates it through the color
list, generating one solid pattern for each color. If the first color in the device’s
color list is black (or white), the procedure skips that color and begins generating
patterns with the next color.

� uses the foreground color to outline every patterned area.

� selects the next default pattern fill (if it needs additional patterns), and rotates
that pattern through the color list, skipping the foreground color as before. The
procedure continues in this fashion until it has generated enough patterns for the
chart.

� uses the device’s default color to outline every patterned area.

� selects the next color in the list after the last bar color and uses it to draw the first
PLOT statement symbol and connecting line.

� rotates through the color list for any subsequent PLOT statements.

If the procedure needs additional patterns, PROC GBARLINE selects the next
default pattern fill (empty) and rotates it through the color list, skipping the foreground
color as before. The procedure continues in this fashion until it has generated enough
patterns for the chart.

Changing any of the following conditions might change or override the default
behavior:

� If you specify a color list with the COLORS= option in a GOPTIONS statement
and the list contains more than one color, then the procedure rotates the default
solid pattern through that list, using every color, even if the foreground color is
black (or white). The default outline color remains the foreground color or the
color specified by the current style.

For a description of these graphics options, see Chapter 15, “Graphics Options and
Device Parameters Dictionary,” on page 327.

User-Defined Patterns, Colors, Lines, Symbols, and Outlines
To override the default patterns and select fills and colors for the bars, use the

PATTERN statement. Only solid and empty bar patterns are valid; all other pattern

The GBARLINE Procedure � Controlling Patterns, Outlines, Colors, and Images 957

fills are ignored. For a complete description of all bar patterns, see the VALUE= option
in the PATTERN statement on page 242.

When you use PATTERN statements, the procedure uses the specified patterns until
all of the PATTERN definitions they generate have been used. Then, if more patterns
are required, the procedure returns to the default pattern rotation. To change the
outline color of any pattern, whether the pattern is default or user-defined, use the
COUTLINE= option in the BAR statement that generates the chart. (See COUTLINE=
on page 963.) To override the default plot colors, symbols and line widths, use the
SYMBOL statement. For a complete description of its parameters, see the “SYMBOL
Statement” on page 252. The SYMBOL statements are used in order for each PLOT
statement. If there are fewer SYMBOL statements than PLOT statements, default
SYMBOL values are used for subsequent plots.

Adding Images to Bar-Line Charts
You can apply images to the bars and to the background of bar-line charts developed

with the BAR statement.
You can use PATTERN statements to specify images to fill the bars. For details, see

“Displaying Images on Data Elements” on page 185.
You can use the IBACK= graphics option to specify image files that fill the

background area. For additional information, including a listing of recognized image file
types, see “Image File Types Supported by SAS/GRAPH” on page 181 and “Displaying
an Image in a Graph Background” on page 182.

Controlling When Bar Patterns Change
The PATTERNID= option controls when the pattern changes. By default, all of the

bars are the same pattern. If you specify PATTERNID=MIDPOINT, then the pattern
changes every time the midpoint value changes.

Instead of changing the pattern for each midpoint, you can change the pattern for
each BY group by changing the value of the PATTERNID= option. See the
PATTERNID= option on page 970 for details.

Controlling Axis Color
By default, axis elements use the first color in the color list or the colors that are

specified by AXIS statement color options. However, BAR statement options can also
control the color of the axis lines, text, and frame.

To change the color of... Use this option...

the axis text CTEXT=

the axis lines CAXIS=

the area within the frame CFRAME=

958 Procedure Syntax � Chapter 35

Procedure Syntax
Requirements: One BAR statement

Global statements: AXIS, FOOTNOTE, GOPTIONS, LEGEND, PATTERN, TITLE

Reminder: The procedure can also include the BY, FORMAT, LABEL, and WHERE
statements.

Restriction: Not supported by Java and Javaimg

PROC GBARLINE <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<IMAGEMAP=output-data-set>;

BAR bar-variable </option(s)>;

<PLOT </option(s)>;>...

<PLOT </option(s)>;>

PROC GBARLINE Statement

Identifies the data set containing the chart and response variables. Can specify an annotate data
set.

Requirements: An input data set is required.

Restriction: Not supported by Java and Javaimg

Syntax

PROC GBARLINE <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<IMAGEMAP=output-data-set>;

Options
PROC GBARLINE statement options affect all graphs produced by the procedure.

ANNOTATE=Annotate-data-set
specifies a data set to annotate all graphs that are produced by the GBARLINE
procedure. To annotate individual graphs, use the ANNOTATE= option in the BAR
statement.

Alias: ANNO=

See also: Chapter 29, “Using Annotate Data Sets,” on page 641

DATA=input-data-set
specifies the SAS data set that contains the variable or variables to chart. By
default, the procedure uses the most recently created SAS data set.

See also: “SAS Data Sets” on page 54 and “About the Chart Variable” on page 950

The GBARLINE Procedure � BAR Statement 959

IMAGEMAP=output-data-set
creates a temporary SAS data set that is used to generate an image map in an
HTML output file. The information in the image map data set includes the shape
and coordinates of the elements in the graph and drill-down URLs that have been
associated with those elements. The drill-down URLs are provided by one or two
variables in the input data set. These variables are identified to the GBARLINE
procedure with the HTML= option.

The %IMAGEMAP macro generates the image map in the HTML output file. The
macro takes two arguments, the name of the image map data set and the name or
fileref of the HTML output file, as shown in the following example:

%imagemap(imgmapds, myimgmap.html);

BAR Statement

Creates vertical bar charts in which the height of the bars represents the value of the bar statistic
for each category of data.

Requirements: One bar variable is required.

Global statements: AXIS, FOOTNOTE, LEGEND, PATTERN, TITLE

Supports: Drill-down functionality

Restriction: Not supported by Java and Javaimg

Description
The BAR statement specifies the variable that defines the categories of data to chart.

This statement automatically performs the following operations:

� determines the midpoints

� calculates the chart statistic for each midpoint (the default is FREQ)

� scales the response axis and the bars according to the statistic value

� determines bar width and spacing

� assigns patterns to the bars (the default bar pattern is SOLID)

� draws a frame around the axis area using the color defined by the current style or
the first color in the color list if the NOGSTYLE system option is specified.

You can use statement options to select or order the midpoints (bars), to control the
tick marks on the response axis, to change the type of chart statistic, to display specific
statistics, and to modify the appearance of the chart. You can also specify additional
variables by which to subgroup or sum the data.

Bar charts support subgroups, which subdivide the bars into segments based on the
values of a subgroup variable.

In addition, you can do the following actions:

� use global statements to add a legend, modify the axes, and change the bar
patterns. See Chapter 14, “SAS/GRAPH Statements,” on page 197 for more
information.

� add titles and footnotes to the chart. See “TITLE, FOOTNOTE, and NOTE
Statements” on page 279 for more information.

� use an Annotate data set to enhance the chart. See Chapter 29, “Using Annotate
Data Sets,” on page 641 for more information.

960 BAR Statement � Chapter 35

� display an image in the background of the chart. See “IBACK” on page 386 for
more information.

� display images in the bars of the chart. See the IMAGE= option on page 241 for
the PATTERN statement.

Syntax

BARchart-variable </option(s)>;

option(s) can be one or more options from any or all of the following categories:
� appearance options

ANNOTATE=Annotate-data-set
CAUTOREF=reference-line-color
CAXIS=axis-color
CERROR=error-bar-color
CFRAME=background-color
COUTLINE=bar-outline-color | SAME
CREF=reference-line-color|(reference-line-color)|reference-line-color-list
CTEXT=text-color
FRAME | NOFRAME
LAUTOREF=reference-line-type
LEGEND=LEGEND<1...99>
LREF=reference-line-type|(reference-line-type)|reference-line-type-list
NOLEGEND
PATTERNID=BY|MIDPOINT
SPACE=bar-spacing
WAUTOREF=reference-line-width
WIDTH=bar-width
WOUTLINE=bar-outline-width
WREF=reference-line-width|(reference-line-width)|reference-line-width-list

� statistic options
CFREQ
CLM=confidence-level
CPERCENT
ERRORBAR=BARS | BOTH | TOP
FREQ
FREQ=numeric-variable
INSIDE=statistic
MEAN
OUTSIDE=statistic
PERCENT
SUM
SUMVAR=summary-variable
TYPE=statistic

� midpoint options
DISCRETE
LEVELS=number-of-midpoints

The GBARLINE Procedure � BAR Statement 961

MIDPOINTS=value-list

MIDPOINTS=OLD

MISSING

SUBGROUP=subgroup-variable

� axes options

ASCENDING

AUTOREF

AXIS=AXIS<1...99>

CLIPREF

DESCENDING

MAXIS=AXIS<1...99>

MINOR=number-of-minor-ticks

NOAXIS

NOBASEREF

NOZERO

RANGE

RAXIS=value-list | AXIS<1...99>

REF=value-list

� catalog entry description options

DESCRIPTION=’entry-description’

NAME=’entry-name’

� ODS options

HTML=variable

HTML_LEGEND=variable

Required Arguments

chart-variable
specifies the variable that defines the categories of data to chart. The variable must
be in the input data set.

See also: “About the Chart Variable” on page 950

Options
Options in the BAR statement affect all graphs that are produced by that statement.

You can specify as many options as you want and list them in any order. For details on
specifying colors, see Chapter 12, “SAS/GRAPH Colors and Images,” on page 167. For
details on specifying images, see “Specifying Images in SAS/GRAPH Programs” on page
181. For a complete description of the graphics options, see Chapter 15, “Graphics
Options and Device Parameters Dictionary,” on page 327.

ANNOTATE=Annotate-data-set
specifies a data set to annotate charts produced by the BAR statement.

Alias: ANNO=

See also: Chapter 29, “Using Annotate Data Sets,” on page 641

962 BAR Statement � Chapter 35

ASCENDING
arranges the bars in ascending order of the value of the bar statistic. By default,
bars are arranged in ascending order of midpoint value, without regard to the
lengths of the bars. ASCENDING reorders the bars from shortest to longest. The
ordering is left to right.

ASCENDING overrides any midpoint order specified in the MIDPOINTS= option or
specified in the ORDER= option in an AXIS statement assigned to the midpoint axis.

AUTOREF
draws a reference line at each major tick mark on the bar (left) response axis. To
draw reference lines at specific points on the response axis, use the REF= option.

By default, reference lines are drawn in front of the bars. To draw reference lines
behind the bars, use the CLIPREF option.

AXIS=AXIS<1...99>
See RAXIS= on page 971.

CAUTOREF=reference-line-color
specifies the color of reference lines drawn at major tick marks, as determined by the
AUTOREF option. If you do not specify the CAUTOREF option, the default color is
the value of the CAXIS= option. If neither option is specified, the default color is
retrieved from the current style or from the device’s color list if the NOGSTYLE
system option is specified. To specify a line type for these reference lines, use the
LAUTOREF= option.

Style reference: Color attribute of the GraphGridLines element.

CAXIS=axis-color
specifies a color for the response and midpoint axis lines and for the default axis area
frame. If you omit the CAXIS option, the default color is defined by the current style
or is the first color in the color list if the NOGSTYLE option is specified.

Style reference: Color attribute of the GraphAxisLines element.

CERROR=error-bar-color
specifies the color of error bars. The default color is the color of the response axis,
which is controlled by the CAXIS= option.

Style reference: Color attribute of the GraphError element.

CFRAME=background-color
specifies the color with which to fill the axis area.

The axis area color does not affect the frame color, which is always the same as
the midpoint axis line color and controlled by the CAXIS= option. By default, the
axis area is not filled.

The CFRAME= option is overridden by the NOFRAME option.

Note: If the background color, the bar color, and the outline color are the same,
then you cannot distinguish the bars.

If the specified style contains an embedded image, the image is drawn instead of
the specified CFRAME color. �

Style reference: Color attribute of the GraphWalls element.

CFREQ
displays the cumulative frequency statistic above the bars. A maximum of two
statistics can be printed if the INSIDE= option is also used. This option is ignored if
the bars are too narrow to avoid overlapping values or if the FREQ option is specified.

See also: “About Chart Statistics” on page 953 and “Displaying Statistics In
Bar-Line Charts” on page 973

The GBARLINE Procedure � BAR Statement 963

CLIPREF
clips the reference lines at the bars. Using this option makes the reference lines
appear to be behind the bars.

CLM=confidence-level
specifies the confidence intervals to use when drawing error bars. Values for
confidence-level must be greater than or equal to 50 and strictly less than 100. The
default is 95. See ERRORBAR= for details on how error bars are computed and
drawn.

COUTLINE=bar-outline-color | SAME
outlines all bars or bar segments and legend values in the subgroup legend (if it
appears) using the specified color. SAME specifies that the outline color of a bar or a
bar segment or a legend value is the same as the interior pattern color.

The default outline color depends in the PATTERN statement:
� If you do not specify a PATTERN statement, the default outline color is the

color of the current style.
� If you specify the NOGSTYLE system option and no PATTERN statement, the

default outline color is black for the ActiveX device. Otherwise, the default
outline color is the foreground color. If you specify an empty PATTERN
statement, then the default outline color is the same as the fill color.

Style reference: Color attribute of the GraphOutlines element.
See also: “Controlling Patterns, Outlines, Colors, and Images” on page 955

CPERCENT
CPCT

displays the cumulative percentage statistic above the bars. A maximum of two
statistics can be printed using the INSIDE= option for the second statistic. This
option is ignored if the bars are too narrow to avoid overlapping values or if the
FREQ, CFREQ, or PERCENT option is specified.

See also: “About Chart Statistics” on page 953 and “Displaying Statistics In
Bar-Line Charts” on page 973

CREF=reference-line-color|(reference-line-color)|reference-line-color-list
specifies colors for reference lines. Specifying a single color without parentheses
applies that color to all reference lines, including lines drawn with the AUTOREF
and REF= options. The CAUTOREF= option overrides the CREF= reference line
color for reference lines drawn with the AUTOREF option. Specifying a single color
in parentheses applies that color only to the first reference line drawn with the REF=
option. Specifying a reference color list applies colors in sequence to successive lines
drawn with the REF= option. The syntax of the color list is of the form (color1 color2
...colorN) or (color1, color2 ..., colorN). If you do not specify the CREF= option, the
GBARLINE procedure uses the color specified by the CAXIS= option. If neither
option is specified, the default color is retrieved from the current style or from the
first color in the color list if the NOGSTYLE system option is specified. To specify
line types for these reference lines, use the LREF= option.

Style reference: LineStyle attribute of the GraphGridLines element.

CTEXT=text-color
specifies a color for all text on the axes and legend, including axis labels, tick mark
values, legend labels, and legend value descriptions. The GBARLINE procedure
looks for the text color in the following order:

1 colors specified for labels and values on assigned AXIS and LEGEND
statements, which override the CTEXT= option specified in the BAR statement

2 the color specified by the CTEXT= option in the BAR statement

964 BAR Statement � Chapter 35

3 the color specified by the CTEXT= option in a GOPTIONS statement.

4 the color specified in the current style or, if the NOGSTYLE system option is
specified, black for the ActiveX device and the first color in the color list for all
other devices.

The LEGEND statement’s VALUE= color is used for legend values, and its
LABEL= color is used for legend labels.

The AXIS statement’s VALUE= color is used for axis values, and its LABEL= color
is used for axis labels. However, if the AXIS statement specifies only general axis
colors with its COLOR= option, then the CTEXT= color overrides the AXIS
statement’s COLOR= specification, and the CTEXT= color is used for axis labels and
values. The AXIS statement’s COLOR= color is still used for all other axis elements,
such as tick marks.

Note: If you use a BY statement in the procedure, the color of the BY variable
labels is controlled by the CBY= option in the GOPTIONS statement. �

Style reference: GraphLabelText, GraphValueText

DESCENDING
arranges the bars in descending order of the value of the chart statistic. By default,
bars are arranged in ascending order of midpoint value, without regard to the
lengths of the bars. DESCENDING reorders the bars from longest to shortest. The
ordering is left to right.

DESCENDING overrides any midpoint order that is specified with the
MIDPOINTS= option or that is specified in the ORDER= option in an AXIS
statement assigned to the midpoint axis.

DESCRIPTION=’entry-description’
specifies the description of the catalog entry for the chart. The maximum length for
the entry-description is 256 characters. The description does not appear on the chart.
By default, the GBARLINE procedure assigns a description of the form BAR CHART
OF variable, where variable is the name of the chart variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. Refer to “Substituting BY Line Values in a Text String” on page
294. The 256-character limit rule is applied before the substitution takes place for
these options. Thus, if, in the SAS program, the entry-description text exceeds 256
characters, it is truncated to 256 characters first, and then the substitution is
performed.

The descriptive text is shown in each of the following:

� the description portion of the Results window

� the catalog entry properties that you can view from the Explorer window

� the Description field of the PROC GREPLAY window

� the data tip text for web output (depending on the device driver you are using).

DISCRETE
treats a numeric chart variable as a discrete variable rather than as a continuous
variable. The GBARLINE procedure creates a separate midpoint and, hence, a
separate bar for each unique value of the chart variable. If the chart variable has a
format associated with it, then each formatted value is treated as a midpoint.

The LEVELS= option is ignored when you use DISCRETE. The MIDPOINTS=
option overrides DISCRETE. The ORDER= option in an AXIS statement that is
assigned to the midpoint axis can rearrange or exclude discrete midpoint values.

The GBARLINE Procedure � BAR Statement 965

ERRORBAR=BARS | BOTH | TOP
draws confidence intervals for either of the following:

� the mean of the SUMVAR= variable for each midpoint if you specify
TYPE=MEAN

� the percentage of observations assigned to each midpoint if you specify
TYPE=PCT with no SUMVAR= option.

The ERRORBAR= option cannot be used with values of the TYPE= option other than
MEAN or PCT. Valid values for ERRORBAR= are:

BARS
draws error bars as bars half the width of the main bars.

BOTH
draws error bars as two ticks joined by a line (default).

TOP
draws the error bar as a tick for the upper confidence limit that is joined to the top
of the bar by a line.
By default, ERRORBAR= uses a confidence level of 95 percent. You can specify

different confidence levels with the CLM= option.
When you use ERRORBAR= with TYPE=PCT, the confidence interval is based on

a normal approximation. Let TOTAL be the total number of observations, and PCT
be the percentage assigned to a given midpoint. The standard error of the percentage
is approximated as follows:

APSTDERR=100 * SQRT((PCT/100) * (1--(PCT/100)) / TOTAL);

Let LEVEL be the confidence level specified using the CLM= option, with a default
value of 95. The upper confidence limit for the percentage is computed as follows:

UCLP = PCT + APSTDERR * PROBIT(1-(1-LEVEL/100)/2);

The lower confidence limit for the percentage is computed as follows:

LCLP = PCT - APSTDERR * PROBIT(1-(1-LEVEL/100)/2);

When you use ERRORBAR= with TYPE=MEAN, the sum variable must have at
least two non-missing values for each midpoint. Let N be the number of observations
assigned to a midpoint, MEAN be the mean of those observations, and STD be the
standard deviation of the observations. The standard error of the mean is computed
as follows:

STDERR = STD / SQRT(N);

Let LEVEL be the confidence level specified using the CLM= option, with a default
value of 95. The upper confidence limit for the mean is computed as follows:

UCLM = MEAN + STDERR * TINV(1-(1-LEVEL/100)/2, N-1);

The lower confidence limit for the mean is computed as follows:

LCLM = MEAN - STDERR * TINV(1-(1-LEVEL/100)/2, N-1);

If you want the error bars to represent a given number, C, of standard errors
instead of a confidence interval, and if the number of observations assigned to each
midpoint is the same, then you can find the appropriate value for the CLM= option
by running a DATA step. For example, if you want error bars that represent one
standard error (C=1) with a sample size of N, then you can run the following DATA
step to compute the appropriate value for the CLM= option and assign that value to
a macro variable &LEVEL:

966 BAR Statement � Chapter 35

data null;
c = 1;
n = 10;
level = 100 * (1 - 2 * (1 - probt(c, n-1)));
put all;
call symput("level",put(level,best12.));
run;

Then, when you run the GBARLINE procedure, you can specify CLM=&LEVEL.
Note that this method does not work precisely if different midpoints have different

numbers of observations. However, choosing an average value for N can yield
sufficiently accurate results for graphical purposes if the sample sizes are large or do
not vary much.

FRAME | NOFRAME
specifies whether the axis area frame is drawn. The default is FRAME, which draws
a frame around the axis area. Specifying NOFRAME removes the axis area frame,
including any background color or image. To remove one or more axis elements, use
either the AXIS statement or the NOAXIS option.

The NOFRAME option overrides the CFRAME= option and the IBACK= graphics
option.

The color of the frame or backplane outline is the color of the midpoint axis, which
is determined by the CAXIS= option.

FREQ
displays the frequency statistic above the bars. Non-integer values are rounded down
to the nearest integer. A maximum of two statistics can be printed using the
INSIDE= option for the second. This option is ignored if the bars are too narrow to
avoid overlapping values. This option overrides the CFREQ, PERCENT, CPERCENT,
SUM, and MEAN options.

See also: “About Chart Statistics” on page 953 and “Displaying Statistics In
Bar-Line Charts” on page 973

FREQ=numeric-variable
specifies a variable whose values weight the contribution of each observation in the
computation of the chart statistic. Each observation is counted the number of times
that is specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, zero, or negative, then the observation is not used in the
statistic calculation. Non-integer values of numeric-variable are truncated to
integers. The FREQ= option is valid with all chart statistics.

Because you cannot use TYPE=PERCENT, TYPE=CPERCENT, TYPE=FREQ, or
TYPE=CFREQ with the SUMVAR= option, you must use the FREQ= option to
calculate percentages, cumulative percentages, frequencies, or cumulative
frequencies based on a sum.

The statistics are affected by applying a format to numeric-variable.

Restriction: Not supported by Java and ActiveX

See also: “Calculating Weighted Statistics” on page 954

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS statement. These links are associated with the bars and
point to the data or graph you want to display when the user drills down on the bar.

Featured in: Example 3 on page 985

See also: “Data Tips for Web Presentations” on page 598 and “Adding Links with
the HTML= and HTML_LEGEND= Options” on page 601.

The GBARLINE Procedure � BAR Statement 967

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file that is created by the ODS statement. These links are associated with a legend
value and point to the data or graph that you want to display when the user drills
down on the value. The values of variable can be up to 1024 characters long.
Characters after the 1024-character limit (including any closing quotes) are
truncated.
Restriction: Not supported by ActiveX
See also: “Data Tips for Web Presentations” on page 598 and “Adding Links with

the HTML= and HTML_LEGEND= Options” on page 601.

INSIDE=statistic
displays the values of the specified statistic inside the bars. Statistic can be one of
the following:

� FREQ
� CFREQ
� PERCENT | PCT
� CPERCENT | CPCT
� SUM
� MEAN

To display statistics with INSIDE=SUM or INSIDE=MEAN, you must also specify
the SUMVAR= option.
See also: “About Chart Statistics” on page 953 and “Displaying Statistics In

Bar-Line Charts” on page 973

LAUTOREF=reference-line-type
specifies the line type for reference lines at major tick marks, as determined by the
AUTOREF option. Line types are specified as whole numbers from 1 to 46, with 1
representing a solid line and the other values representing dashed lines. The default
line type is retrieved from the current style, or if the NOGSTYLE system option is
specified, the default value is 1, which draws a solid line. To specify a color for these
reference lines, use the CAUTOREF= option.
Style reference: LineStyle attribute of the GraphGridLines element.

LEGEND=LEGEND<1...99>
Assigns the specified LEGEND definition to the plot part of the graph. LEGEND= is
ignored if the specified LEGEND definition is not in effect. When you specify the
LEGEND option, the BAR statement generates a legend even if the SUBGROUP=
option is not specified. This output differs from the output generated by the
GCHART procedure where the SUBGROUP option creates a legend by default. In
this case, only one bar is represented in the legend.

To create a legend based on the chart midpoints instead of the subgroups, use the
chart variable as the subgroup variable:

bar city / subgroup=city;

You can specify both a BAR and PLOT legend on the same graph. If LEGEND= is
specified for both the BAR and the POSITION= options on the LEGEND statements
are the same location, a single combined legend will be drawn. However, ActiveX
output will display separate but adjacent legends.

The ActiveX device does not support all LEGEND statement options. See
“LEGEND Statement” on page 225 for more information.
Featured in: Example 2 on page 1067
Restriction: Partially supported by ActiveX
See also: SUBGROUP= on page 971 and “LEGEND Statement” on page 225

968 BAR Statement � Chapter 35

LEVELS=number-of-midpoints | ALL
specifies the number of midpoints for the numeric chart variable. The range for each
midpoint is calculated automatically using the algorithm described in Terrell and
Scott (1985). If your data contains a large number of unique midpoint values (over
200), then you can use the XPIXELS and YPIXELS GOPTIONS to allow the device
driver to render a larger (and more readable) graph. The LEVELS= option is ignored
if any of these statements are true:

� The chart variable is character type.
� The DISCRETE option is used.
� The MIDPOINTS= option is used.

LREF=reference-line-type|(reference-line-type|reference-line-type-list)
specifies line types for reference lines. Line types are specified as whole numbers
from 1 to 46, with 1 representing a solid line and the other values representing
dashed lines. Specifying a line type without parentheses applies that type to all
reference lines drawn with the AUTOREF and REF= options. Note that the
LAUTOREF= option overrides LREF=reference-line-type for reference lines drawn
with the AUTOREF option. Specifying a single line type in parentheses applies that
line type to the first reference line drawn with the REF= option. Specifying a line
type list applies line types in sequence to successive reference lines drawn with the
REF= option. The syntax of the line-type list is of the form (type1 type2 ...typeN). If
you do not specify the LREF= option, the GBARLINE procedure uses the type
specified by the AXIS statement’s STYLE= option. If neither option is specified, the
default line type is retrieved from the current style. If the NOGSTYLE system option
is specified, the default value is 1, which draws a solid line. To specify colors for
these reference lines, use the CREF= option.
Style reference: GraphReference

MAXIS=AXIS<1...99>
assigns the specified AXIS definition to the midpoint axis. The MAXIS= option is
ignored if the specified AXIS definition does not exist.
See also: “AXIS Statement” on page 198 and “About Midpoints” on page 950

MEAN
displays the mean statistic above the bars. A maximum of two statistics can be
printed using the INSIDE= option for the second. This option is ignored if the bars
are too narrow to avoid overlapping values or if the FREQ, CFREQ, PERCENT,
CPERCENT, or SUM option is specified. MEAN is ignored unless you also use the
SUMVAR= option.
See also: “About Chart Statistics” on page 953 and “Displaying Statistics In

Bar-Line Charts” on page 973

MIDPOINTS=value-list
specifies the midpoint values for the bars. The way you specify value-list depends on
the type of the bar variable.

� For numeric chart variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>

n TO n <BY increment>
n<...n> TO n <BY increment> <n <...n>>
If a numeric chart variable has an associated format, the specified values

must be the unformatted values.
If you omit the DISCRETE option, then by default these statements are true:

The GBARLINE Procedure � BAR Statement 969

� Numeric variable values are treated as continuous.
� The lowest midpoint consolidates all data points from negative infinity to

the average of the first two midpoints.

� The highest midpoint consolidates all data points from the average of the
last two midpoints up to infinity.

� All other values in value-list specify the median of a range of values, and
the GBARLINE procedure calculates the midpoint values.

If you include the DISCRETE option, then each value in value-list specifies a
unique numeric value.

� For character bar variables, value-list is a list of unique character values
enclosed in quotation marks and separated by blanks:

’value-1’ <...’value-n’>

If a character variable has an associated format, the specified values must be
the formatted values.

For a complete description of value-list, see ORDER= on page 205.
If the value-list for either type of variable specifies so many midpoints that the

axis values overwrite each other, then the values might be unreadable. In this case
the procedure writes a warning to the SAS log. On many devices, this problem can
be corrected by either adjusting the size of the text with the HTEXT= graphics option
or by increasing the number of cells in your graphics display using the HPOS= and
VPOS= graphics options.

The ORDER= option in the AXIS statement overrides the order specified in the
MIDPOINTS= option. The BAR statement options ASCENDING and DESCENDING
also override both the MIDPOINTS= and ORDER= options in the AXIS statement.

See also: “About Midpoints” on page 950

MIDPOINTS=OLD
generates default midpoints using the Nelder algorithm (Applied Statistics 25:94–7,
1976). The MIDPOINTS=OLD option is ignored unless the chart variable is numeric.

MINOR=number-of-minor-ticks
specifies the number of minor tick marks between each major tick mark on the bar
response axis.

The MINOR= option in a bar chart statement overrides the MINOR= option in an
AXIS definition assigned to the response axis with the RAXIS= option.

MISSING
accepts a missing value as a valid midpoint for the chart variable. By default,
observations with missing values are ignored.

NAME=’entry-name’
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default name is gbarline. If
the name duplicates an existing name, then SAS/GRAPH adds a number to the name
to create a unique name—for example, gbarline1.

See also: “About Filename Indexing” on page 99

NOAXIS
suppresses the left BAR response axis and displays the midpoint and right PLOT
axes. The axis lines, axis labels, axis values, and all major and minor tick marks are
suppressed on the left axis. If you specify an axis definition with the MAXIS= or
RAXIS= options, then the axes are generated as defined in the AXIS statement, but

970 BAR Statement � Chapter 35

all lines, labels, values, and tick marks are suppressed. Therefore, AXIS statement
options such as ORDER=, LENGTH=, and OFFSET= are used.

To remove only selected axis elements such as lines, values, or labels, use specific
AXIS statement option. If NOAXIS is specified for both the BAR and PLOT
statements, both response axes and the midpoint axis are suppressed.

NOAXIS does not suppress either the default frame or an axis area fill requested
by the CFRAME= option. To remove the axis frame, use the NOFRAME option in the
procedure.

NOBASEREF
suppresses the zero reference line when the SUM or MEAN bar statistic has negative
values.

NOLEGEND
suppresses the legend generated by the LEGEND= option.

NOZERO
suppresses any midpoints for which there are no corresponding values of the chart
variable and, hence, no bar.

Note: If you assign bar label names to each bar with the VALUE= option in an
AXIS statement, and a bar is omitted from your graph, then the label names might
be inadvertantly shifted and assigned to the wrong bar. �

OUTSIDE=statistic
displays the values of the specified statistic above the bars. Statistic can be one of
the following:

� FREQ
� CFREQ
� PERCENT | PCT
� CPERCENT | CPCT
� SUM
� MEAN.

To display statistics with OUTSIDE=SUM or OUTSIDE=MEAN, you must also
specify the SUMVAR= option. A second statistic can be displayed by also using the
INSIDE= option.
See also: “About Chart Statistics” on page 953 and “Displaying Statistics In

Bar-Line Charts” on page 973

PATTERNID=BY | MIDPOINT | SUBGROUP
specifies the way fill patterns are assigned. By default, all of the bars are the same
color. Values for PATTERNID= are as follows:

BY
changes patterns each time the value of the BY variable changes. All bars use the
same pattern if the GBARLINE procedure does not include a BY statement.

MIDPOINT
changes patterns every time the midpoint value changes.

SUBGROUP
changes patterns every time the value of the subgroup variable changes. The bars
must be subdivided by the SUBGROUP= option for the SUBGROUP value to have
an effect. Without the SUBGROUP= option, all bars have the same pattern.

PERCENT
displays the percentages of observations having a given value for the bar variable
above the bars. A maximum of two statistics can be printed using the INSIDE=

The GBARLINE Procedure � BAR Statement 971

option for the second. This option is ignored if the bars are too narrow to avoid
overlapping values or if the FREQ or CFREQ option is specified.
See also: “About Chart Statistics” on page 953 and “Displaying Statistics In

Bar-Line Charts” on page 973

RANGE
displays on the axis of the chart the range of numeric values represented by each bar.
In the graphics output, the less-than symbol (<) and the less-than-or-equal-to symbol
(<=) are used to accurately specify the starting and ending values of each range. The
RANGE option has no affect on axes that represent character data. By default, the
values shown on the axis are determined by the value of the MIDPOINTS= option on
page 968. If specified, the DISCRETE option overrides the RANGE option.

RAXIS=value-list | AXIS<1...99>
AXIS=value-list | AXIS<1...99>

specifies values for the major tick mark divisions on the response axis or assigns the
specified AXIS definition to the axis. See the MIDPOINTS= option on page 968 for a
description of value-list. By default, the GBARLINE procedure scales the response
axis automatically and provides an appropriate number of tick marks. The left
response axis applies to the BAR statement when a PLOT statement is used.
Otherwise, both the left and right axes apply to the BAR statement.

You can specify negative values, but negative values are reasonable only when
TYPE=SUM or TYPE=MEAN and one or more of the sums or means are less than
zero. Frequency and percentage values are never less than zero.

For lists of values, a separate major tick mark is created for each individual value.
A warning message is written to the SAS log if the values are not evenly spaced.

If the values represented by the bars are larger than the highest tick mark value,
then the bars are truncated at the highest tick mark.
See also: “AXIS Statement” on page 198

REF=value-list
draws reference lines at the specified points on the chart response axis. See the
MIDPOINTS= option on page 968 for a description of value-list.

Values can be listed in any order, but should be within the range of values
represented by the chart response axis. A warning is written to the SAS log if any of
the points are off of the axis, and no reference line is drawn for such points. You can
use the AUTOREF option to draw reference lines automatically at all of the major
tick marks.

SPACE=bar-spacing
specifies the amount of space between individual bars along the midpoint axis.
Bar-spacing can be any non-negative number, including decimal values. Units are
character cells. By default, the GBARLINE procedure calculates spacing based on
the size of the axis area and the number of bars on the chart. Use SPACE=0 to leave
no space between adjacent bars.

The SPACE= option is ignored if its value results in a chart that is too large to fit
in the space available for the midpoint axis. As a result, a warning message is issued
in the log.

SUBGROUP=subgroup-variable
divides the bars into segments according to the values of subgroup-variable.
Subgroup-variable can be either character or numeric and is always treated as a
discrete variable. SUBGROUP= creates a separate segment within each bar for
every unique value of the subgroup variable for that midpoint.

When you specify the LEGEND option, the BAR statement generates a legend
even if the SUBGROUP= option is not specified. This output differs from the output
generated by the GCHART procedure where the SUBGROUP option automatically

972 BAR Statement � Chapter 35

creates a legend by default. In this case, only one bar is represented in the legend.
To assign a LEGEND definition, use the LEGEND= option.
Featured in: Example 3 on page 985
See also: “LEGEND Statement” on page 225

SUM
displays the sum statistic above the bars. A maximum of two statistics can be
printed using the INSIDE= option for the second. This option is ignored if the bars
are too narrow to avoid overlapping values or if the FREQ, CFREQ, PERCENT, or
CPERCENT option is specified. SUM is ignored unless you also use the SUMVAR=
option.
See also: “About Chart Statistics” on page 953 and “Displaying Statistics In

Bar-Line Charts” on page 973

SUMVAR=summary-variable
specifies a numeric variable for sum or mean calculations. The GBARLINE
procedure calculates the sum or, if requested, the mean of summary-variable for each
midpoint. The resulting statistics are represented by the length of the bars along the
response axis, and they are displayed at major tick marks.

When you use the SUMVAR= option, the TYPE= option must be either SUM or
MEAN. With the SUMVAR= option, the default is TYPE=SUM.
Featured in: Example 1 on page 981

TYPE=statistic
specifies the chart statistic.

� If the SUMVAR= option is not used, statistic can be one of the following:

FREQ
frequency (default)

CFREQ
cumulative frequency

PERCENT
percentage

CPERCENT
cumulative percentage

� If the SUMVAR= option is used, statistic can be:

SUM
sum (default)

MEAN
mean

Because you cannot use TYPE=FREQ, TYPE=CFREQ, TYPE=PERCENT, or
TYPE=CPERCENT with the SUMVAR= option, you must use the FREQ= option to
calculate percentages, cumulative percentages, frequencies, or cumulative
frequencies based on a sum. See also “Calculating Weighted Statistics” on page 954.
See also: “About Chart Statistics” on page 953 for a complete description of statistic

types

WAUTOREF=reference-line-width
specifies the line width for reference lines at major tick marks, as determined by the
AUTOREF option. Line widths are specified as whole numbers. The default line
width is specified by the current style or by the AXIS statement’s WIDTH= option.
(By default, WIDTH=1.) To specify a color for these reference lines, use the
CAUTOREF= option.

The GBARLINE Procedure � BAR Statement 973

WIDTH=bar-width
specifies the width of the bars. By default, the GBARLINE procedure selects a bar
width that accommodates the midpoint values displayed on the midpoint axis using a
hardware font and a height of one cell. Units for bar-width are character cells. The
value for bar-width must be greater than zero, but it does not have to be an integer,
for example:

bar site / width=1.5;

If the requested bar width results in a chart that is too large to fit in the space
available for the midpoint axis, then the procedure issues a warning in the SAS log
and ignores the WIDTH= specification. If the specified width is too narrow, the
procedure might display the midpoint values vertically.

WOUTLINE=bar-outline-width
specifies the width of the bar outline in pixels. WOUTLINE= affects both the slice
and the subgroup outlines.

Style reference: LineThickness attribute of the GraphOutlines element.

WREF=reference-line-width|(reference-line-width|reference-line-width-list)
specifies line widths for reference lines. Line widths are specified as whole numbers.
Specifying a line width without parentheses applies that type to all reference lines
drawn with the AUTOREF and REF= options. Note that the WAUTOREF= option
overrides WREF=reference-line-width for reference lines drawn with the AUTOREF
option. Specifying a single line width in parentheses applies that line width to the
first reference line drawn with the REF= option. Specifying a line width list applies
line widths in sequence to successive reference lines drawn with the REF= option.
The syntax of the line-width list is of the form (width1 width2 ...widthN). The default
line width is specified by the current style or by the AXIS statement’s WIDTH=
option. (By default, WIDTH=1.) To specify colors for these reference lines, use the
CREF= option.

Style reference: LineThickness attribute of the GraphReference element.

The Chart Statistic and the Response Axis
In bar-line charts, the scale of values of the chart statistic is displayed on the left

response axis. By default, the response axis is divided into evenly spaced intervals
identified with major tick marks that are labeled with the corresponding statistic value.
Minor tick marks are evenly distributed between the major tick marks unless a log axis
has been requested. For sum and mean statistics, the major tick marks are labeled
with values of the SUMVAR= variable (formatted if the variable has an associated
format). The response axis is also labeled with the statistic type.

Specifying Logarithmic Axes
Logarithmic axes can be specified with the AXIS statement.
See Chapter 14, “SAS/GRAPH Statements,” on page 197 for a complete discussion.

Displaying Statistics In Bar-Line Charts
Statistic values on bar-line charts are not printed by default, so you must explicitly

request a statistic with the FREQ, CFREQ, PERCENT, CPERCENT, SUM, MEAN,
INSIDE=, or OUTSIDE= option.

For graphs generated with the ActiveX device, you can display one statistic for each
bar. For graphs generated with other devices, you can display up to two statistics for
each bar. Statistics can be displayed either above the bars or inside the bars.

974 PLOT Statement � Chapter 35

To specify a statistic that you want to display above the bars, specify the statistic
option (FREQ, CFREQ, PERCENT, CPERCENT, SUM, or MEAN) or specify
OUTSIDE=statistic. To specify a statistic that you want to display inside the bars,
specify INSIDE=statistic.

For graphs generated with the ActiveX device, the OUTSIDE= option overrides
INSIDE=, and INSIDE= overrides the FREQ, CFREQ, PERCENT, CPERCENT, SUM,
and MEAN options. For graphs generated with other devices, the individual statistic
options override the OUTSIDE= option.

If more than one statistic option is specified, only the highest priority statistic is
displayed. The priority order, from highest to lowest, is as follows:

1 FREQ
2 CFREQ
3 PERCENT
4 CPERCENT
5 SUM
6 MEAN

The bars must be wide enough to accommodate the text. You can adjust the width of
the bars with the WIDTH= option. To control the font and size of the text, use the
HTEXT= and FTEXT= graphics options.

Ordering and Selecting Midpoints
To rearrange character or discrete numeric midpoint values or to select ranges for

numeric values, use the MIDPOINTS= option. Changing the number of midpoints for
numeric variables changes the range of values for individual midpoints, but it does not
change the range of values for the chart as a whole. For details, see “About Midpoints”
on page 950.

Like the MIDPOINTS= option, the ORDER= option in the AXIS statement can
rearrange the order of the midpoints or suppress the display of discrete numeric or
character values. However, the ORDER= option cannot calculate the midpoints for a
continuous numeric variable, nor can it exclude values from the calculations. For
details, see the description of the ORDER= option on page 205.

PLOT Statement

Creates one or more plot overlays on top of the bar-line chart.

Requirements: If specified, PLOT statements must be specified after the BAR statement.
Global statements: AXIS, FOOTNOTE, LEGEND, PATTERN, SYMBOL, TITLE
Supports: Data tips and drill-down functionality
Restriction: Not supported by Java

Description
The PLOT statement specifies one plot request. You can use multiple PLOT statements
to generate multiple plots. The PLOT statement automatically

� scales the plot response (right) axis to include the maximum and minimum data
values

� plots data points within the axis and connects them from left to right

The GBARLINE Procedure � PLOT Statement 975

� labels the plot response axis and displays each major tick mark value.

You can use statement options to specify a plot variable, manipulate the plot
response axis, modify the appearance of your graph, and describe catalog entries. You
can use SYMBOL definitions to modify plot symbols for the data points, suppress the
joining of data points, or specify other types of interpolations. For more information on
the SYMBOL statement, see “SYMBOL Statement” on page 252.

In addition, you can use global statements to add a legend, modify the axis, or add
titles, footnotes, and notes to the plot.

Syntax

PLOT </options(s)>;

PLOT statements are optional, but if specified, they must follow the BAR statement.
If you do not specify any PLOT statements, GBARLINE generates only a bar chart and
duplicates the chart response axis (left axis) as the right response axis.

To specify a variable to plot, use the SUMVAR= option. If you do not specify a plot
variable, GBARLINE uses the chart variable as the plot variable. For more
information, see “About Response Variables” on page 952 and the description of the
SUMVAR= option.

Option(s) can be one or more options from any or all of the following categories:
� appearance options:

ANNOTATE=Annotate-data-set
ASCENDING
CAUTOREF=reference-line-color
CAXIS=axis-color
CREF=reference-line-color|(reference-line-color)|reference-line-color-list
CTEXT=text-color
DESCENDING
LAUTOREF=reference-line-type
LEGEND=LEGEND<1...99>
LREF=reference-line-type|(reference-line-type)|reference-line-type-list
NOLINE
NOMARKER
WAUTOREF=reference-line-width
WREF=reference-line-width|(reference-line-width)|reference-line-width-list

� statistic options:
CFREQ
CPERCENT
FREQ
FREQ=numeric-variable
MEAN
PERCENT
SUM
SUMVAR=plot-variable
TYPE=statistic

� axes options:
AUTOREF

976 PLOT Statement � Chapter 35

AXIS=AXIS<1...99>
CLIPREF
MINOR=number-of-minor-ticks
NOAXIS
RAXIS=value-list | AXIS<1...99>
REF=value-list

� ODS options:
HTML=variable
HTML_LEGEND=variable

Options
You can specify as many options as you want and list them in any order.

ASCENDING
joins the plot points in ascending order of the value of the plot statistic. By default,
plot points are connected from left to right.

AUTOREF
draws a reference line at each major tick mark on the plot (right) response axis. To
draw reference lines at specific points on the response axis, use the REF= option. By
default, reference lines are drawn in front of the bars. To draw reference lines behind
the bars, use the CLIPREF option.

AXIS=AXIS<1...99>
See RAXIS= on page 979.

CAUTOREF=reference-line-color
specifies the color of reference lines drawn at major tick marks, as determined by the
AUTOREF option. If you do not specify the CAUTOREF option, the default color is
the value of the CAXIS= option. If neither option is specified, the default color is
retrieved from the current style or from the device’s color list if the NOGSTYLE
system option is specified. To specify a line type for these reference lines, use the
LAUTOREF= option.
Style reference: Color attribute of the GraphGridLines element.

CAXIS=axis-color
specifies a color for the tick marks and for the axis area frame on the plot (right)
response axis.

If you omit the CAXIS option, the default color is the color defined by the default
style or is the first color in the color list.

CLIPREF
clips the reference lines at the bars. Using this option makes the reference lines
appear to be behind the bars.

CREF=reference-line-color|(reference-line-color)|reference-line-color-list
specifies colors for reference lines. Specifying a single color without parentheses
applies that color to all reference lines, including lines drawn with the AUTOREF
and REF= options. The CAUTOREF= option overrides the CREF= reference line
color for reference lines drawn with the AUTOREF option. Specifying a single color
in parentheses applies that color only to the first reference line drawn with the REF=
option. Specifying a reference color list applies colors in sequence to successive lines
drawn with the REF= option. The syntax of the color list is of the form (color1 color2
...colorN) or (color1, color2 ..., colorN). If you do not specify the CREF= option, the
GBARLINE procedure uses the color specified by the CAXIS= option. If neither

The GBARLINE Procedure � PLOT Statement 977

option is specified, then the default color is retrieved from the current style or from
the first color in the color list if the NOGSTYLE option is specified. To specify line
types for these reference lines, use the LREF= option.
Alias: CRF=
Style reference: LineStyle attribute of the GraphGridLines element.

CTEXT=text-color
specifies a color for all text on the plot response axis and legend, including axis
labels, tick mark values, legend labels, and legend value descriptions. The
GBARLINE procedure looks for the text color in the following order:

1 colors specified for labels and values on assigned AXIS and LEGEND
statements, which override the CTEXT= option specified in the PLOT statement

2 the color specified by the CTEXT= option in the PLOT statement
3 the color specified by the CTEXT= option in a GOPTIONS statement.
4 the color specified in the current style or, if the NOGSTYLE system option is

specified, then the default color is black for the ActiveX device and the first
color in the color list for all other devices.

The LEGEND statement’s VALUE= color is used for legend values, and its
LABEL= color is used for legend labels.

The AXIS statement’s VALUE= color is used for axis values, and its LABEL= color
is used for axis labels. However, if the AXIS statement specifies only general axis
colors with its COLOR= option, then the CTEXT= color overrides the AXIS
statement’s COLOR= specification, and the CTEXT= color is used for axis labels and
values. The COLOR= color is still used for all other axis elements, such as tick marks.

Note: If you use a BY statement in the procedure, the color of the BY variable
labels is controlled by the CBY= option in the GOPTIONS statement. �
Style reference: GraphLabelText, GraphValueText

DESCENDING
joins the plot points in descending order of the value of the plot statistic. By default,
plot points are connected from left to right.

FREQ=numeric-variable
specifies a variable whose values weight the contribution of each observation in the
computation of the plot statistic. Each observation is counted the number of times
that is specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, zero, or negative, then the observation is not used in the
statistic calculation. Non-integer values of numeric-variable are truncated to
integers. The FREQ= option is valid with all plot statistics.

Because you cannot use TYPE=PERCENT, TYPE=CPERCENT, TYPE=FREQ, or
TYPE=CFREQ with the SUMVAR= option, you must use the FREQ= option to
calculate percentages, cumulative percentages, frequencies, or cumulative
frequencies based on a sum.

The statistics are not affected by applying a format to numeric-variable.

Restriction: Not supported by ActiveX

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS statement. These links are associated with the plot points
and bars. The links point to the data or graph that you want to display when the
user drills down on the plot point or bar area. This option is featured in Example 3
on page 985.

See also: “Data Tips for Web Presentations” on page 598 and “Adding Links with
the HTML= and HTML_LEGEND= Options” on page 601.

978 PLOT Statement � Chapter 35

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file that is created by the ODS statement. These links are associated with a legend
value and point to the data or graph that you want to display when the user drills
down on the value. The values of variable can be up to 1024 characters long.
Characters after the 1024-character limit (including any closing quotes) are
truncated.
Restriction: Not supported by Java and ActiveX
See also: “Data Tips for Web Presentations” on page 598 and “Adding Links with

the HTML= and HTML_LEGEND= Options” on page 601.

LAUTOREF=reference-line-type
specifies the line type for reference lines at major tick marks, as determined by the
AUTOREF option. Line types are specified as whole numbers from 1 to 46, with 1
representing a solid line and the other values representing dashed lines. The default
line type is retrieved from the current style, or if the NOGSTYLE option is specified,
the default value is 1, which draws a solid line. To specify a color for these reference
lines, use the CAUTOREF= option.

LEGEND=LEGEND<1...99>
Generates a legend and assigns the specified LEGEND definition to the legend.
LEGEND= is ignored if the specified LEGEND definition is not in effect. When you
specify the LEGEND option, the BAR statement generates a legend even if the
SUBGROUP= option is not specified. This output differs from the output generated
by the GCHART procedure where the SUBGROUP option automatically creates a
legend by default. In this case, only one bar is represented in the legend.

Only one PLOT statement can contain a LEGEND= reference. If you request a
PLOT legend, then all of the PLOT lines are displayed in the legend.

You can specify both a BAR and PLOT legend on the same graph. If LEGEND= is
specified for both the BAR and the POSITION= options on the LEGEND statements
are the same location, a single combined legend will be drawn. However, ActiveX
output will display separate but adjacent legends.

The ActiveX device does not support all LEGEND statement options. See
“LEGEND Statement” on page 225 for more information.
Featured in: Example 3 on page 985
Restriction: Not supported by Java. Partially supported by ActiveX.
See also: “LEGEND Statement” on page 225

LREF=reference-line-type|(reference-line-type|reference-line-type-list)
specifies line types for reference lines. Line types are specified as whole numbers
from 1 to 46, with 1 representing a solid line and the other values representing
dashed lines. Specifying a line type without parentheses applies that type to all
reference lines drawn with the AUTOREF and REF= options. Note that the
LAUTOREF= option overrides LREF=reference-line-type for reference lines drawn
with the AUTOREF option. Specifying a single line type in parentheses applies that
line type to the first reference line drawn with the REF= option. Specifying a line
type list applies line types in sequence to successive reference lines drawn with the
REF= option. The syntax of the line-type list is of the form (type1 type2 ...typeN). If
you do not specify the LREF= option, the GBARLINE procedure uses the type
specified by the AXIS statement’s STYLE= option. If neither option is specified, the
default line type is retrieved from the current style. If the NOGSTYLE option is
specified, the default value is 1, which draws a solid line. To specify colors for these
reference lines, use the CREF= option.
Alias: LR=
Style reference: GraphReference

The GBARLINE Procedure � PLOT Statement 979

Restriction: Not supported by Java

MINOR=number-of-minor-ticks
specifies the number of minor tick marks that are drawn between each major tick
mark on the PLOT response axis. Minor tick marks are not labeled. The MINOR=
option overrides the NUMBER= suboption of the MINOR= option in an AXIS
definition. You must specify a positive number.

NOAXIS
suppresses the right PLOT response axis and displays the midpoint and left BAR
axes. The axis lines, axis labels, axis values, and all major and minor tick marks are
suppressed on the right axis. If you specify an axis definition with the MAXIS= or
RAXIS= options, then the axes are generated as defined in the AXIS statement, but
all lines, labels, values, and tick marks are suppressed. Therefore, AXIS statement
options such as ORDER=, LENGTH=, and OFFSET= are still used.

To remove only selected axis elements such as lines, values, or labels, use specific
AXIS statement options.

NOAXIS does not suppress either the default frame or an axis area fill requested
by the CFRAME= option. To remove the axis frame, use the NOFRAME option in the
procedure.

NOLINE
suppresses the line connecting the PLOT symbols, regardless of what is specified in
the SYMBOL statement.

NOMARKER
suppresses drawing the marker symbol, regardless of what is specified in the
SYMBOL statement.

RAXIS=value-list | AXIS<1...99>
AXIS=value-list | AXIS<1...99>

specifies the major tick mark values for the PLOT (right) response axis or assigns an
AXIS definition.

The way you specify value-list depends on the type of variable:
� For numeric variables, value-list is either an explicit list of values, or a starting

and an ending value with an interval increment, or a combination of both forms:
n <...n>
n TO n <BY increment>
n <...n> TO n <BY increment > <n <...n> >
If a numeric variable has an associated format, the specified values must be

the unformatted values.
� For date-time values, value-list includes any SAS date, time, or datetime value

described for the SAS functions INTCK and INTNX, shown here as SAS-value:
’SAS-value’i < ...’SAS-value’i>
’SAS-value’i TO ’SAS-value’i<BY interval>

Any response values that exceed the highest tick mark value are not plotted. The
overlay plot line connects only the visible plot response values.

REF=value-list
draws reference lines at the specified points using the chart response axis. See the
MIDPOINTS= option on page 968 for a description of value-list.

Values can be listed in any order, but should be within the range of values
represented by the PLOT response axis. A warning is written to the SAS log if any of
the points are off of the axis, and no reference line is drawn for such points. You can
use the AUTOREF option to draw reference lines automatically at all of the major
tick marks.

980 PLOT Statement � Chapter 35

SUMVAR=plot-variable
specifies the variable to plot. Plot-variable, if specified, must be numeric. The
GBARLINE procedure calculates the sum or, if requested, the mean of plot-variable
for each midpoint.

When you use the SUMVAR= option, the TYPE= option must be either SUM or
MEAN. With the SUMVAR= option, the default is TYPE=SUM.
Featured in: Example 1 on page 981

See also: “About Response Variables” on page 952

TYPE=statistic
specifies the plot statistic.

� If the SUMVAR= option is not used, statistic can be one of the following:

FREQ
frequency (default)

CFREQ
cumulative frequency

PERCENT
percentage

CPERCENT
cumulative percentage

� If SUMVAR= is used, statistic can be one of the following:

SUM
sum (default)

MEAN
mean

Because you cannot use TYPE=FREQ, TYPE=CFREQ, TYPE=PERCENT, or
TYPE=CPERCENT with SUMVAR=, you must use FREQ= to calculate percentages
or frequencies based on a sum.

See also: “About Chart Statistics” on page 953 and “Calculating Weighted
Statistics” on page 954

WAUTOREF=reference-line-width
specifies the line width for reference lines at major tick marks, as determined by the
AUTOREF option. Line widths are specified as whole numbers. The default line
width is specified by the current style or by the AXIS statement’s WIDTH= option.
(By default, WIDTH=1.) To specify a color for these reference lines, use the
CAUTOREF= option.
Style reference: LineThickness attribute of the GraphGridLines element.

WREF=reference-line-width|(reference-line-width|reference-line-width-list)
specifies line widths for reference lines. Line widths are specified as whole numbers.
Specifying a line width without parentheses applies that type to all reference lines
drawn with the AUTOREF and REF= options. Note that the WAUTOREF= option
overrides WREF=reference-line-width for reference lines drawn with the AUTOREF
option. Specifying a single line width in parentheses applies that line width to the
first reference line drawn with the REF= option. Specifying a line width list applies
line widths in sequence to successive reference lines drawn with the REF= option.
The syntax of the line-width list is of the form (width1 width2 ...widthN). The default
line width is specified by the current style or by the AXIS statement’s WIDTH=
option. (By default, WIDTH=1.) To specify colors for these reference lines, use the
CREF= option.

The GBARLINE Procedure � Example 1: Producing a Basic Bar-Line Chart 981

Style reference: LineThickness attribute of the GraphReference element.

About SYMBOL Definitions
SYMBOL statements control the appearance of plot symbols and lines. They can

specify the following attributes:
� the shape, size, and color of the plot symbols that mark the data points
� the plot line style, color, and width
� an interpolation method (either JOIN, NEEDLE, STEP, or NONE) for plotting data
� how missing values are treated in interpolation calculations

SYMBOL definitions are assigned either by default by the GBARLINE procedure or
explicitly with a plot request.

If no SYMBOL definition is currently in effect, the GBARLINE procedure produces a
join interpolation using the default plot symbol. For multiple PLOT statements where
no SYMBOL statements were specified, the procedure rotates through the default
symbols for the current device.

See “SYMBOL Statement” on page 252 for a complete discussion of the features of
the SYMBOL statement.

About Interpolation Methods
You can produce plot overlays such as step plot overlays by specifying interpolation
methods with the SYMBOL statement. For PROC GBARLINE, you can use the
SYMBOL statement to do the following tasks:

� connect data points with straight lines (JOIN)
� produce overlay plots with unconnected data points (NONE)
� use a step function to connect the data points (STEP).

For bar-line charts, points on the plot overlays are automatically connected by
default, which is equivalent to specifying the JOIN interpolation method.

“SYMBOL Statement” on page 252 describes the JOIN, STEP, and NONE
interpolation methods.

Examples

Example 1: Producing a Basic Bar-Line Chart

Procedure Features:
BAR statement options:

SUMVAR=
PLOT statement options:

SUMVAR=

982 Example 1: Producing a Basic Bar-Line Chart � Chapter 35

This example produces a basic bar-line chart showing the volume and closing price
for each of five days of trading activity on the New York Stock Exchange. The vertical
bars indicate the volume using the left (chart) response axis, and the line plot shows
the closing price. This graph uses the statistical style.

Set the graphics environment. Some graphics options might override style attributes, so if
you are using a style, specify the minimum graphic options needed by your graph.

goptions reset=all border;

Define the title and footnote.

title1 "NYSE Closing Price and Volume - 2002";

Create the data set NYSE. NYSE contains one observation for each of five workdays. Each
observation includes the date, closing price, and volume.

data nyse;
format Day date7.;
format High Low Close comma12.;
format Volume comma12.;
input Day date7. High Low Close Volume;

datalines;
01AUG07 10478.76 10346.24 10426.91 1908809
02AUG07 11042.92 10298.44 10274.65 1807543
05AUG07 10498.22 10400.31 10456.43 1500656
06AUG07 10694.47 10636.32 10762.98 1498403
07AUG07 10801.12 10695.13 10759.48 1695602
run;

The GBARLINE Procedure � Example 2: Calculating Weighted Statistics 983

Produce the bar-line chart. The SUMVAR= option in the BAR statement specifies the
variable whose values determine the height of the bars. The SUMVAR= option in the PLOT
statement specifies the variable whose values are used to calculate the overlay plot.

proc gbarline data=nyse;
bar day / discrete sumvar=volume space=4;
plot / sumvar=close;
run;
quit;

Example 2: Calculating Weighted Statistics
Procedure Features:

BAR statement options:
AXIS=
SUMVAR=

PLOT statement options:
AXIS=
FREQ=
SUMVAR=

Other Features:
AXIS statement

This example uses the FREQ= option to calculate weighted statistics for the line plot.
During the manufacture of a metal-oxide semiconductor (MOS) capacitor, various
defects and their frequencies were recorded.

Set the graphics environment.

goptions reset=all border;

984 Example 2: Calculating Weighted Statistics � Chapter 35

Create the data set FAILURE. Each observation of the FAILURE data set contains the type
of manufacturing defect, a count of how many times it occurred, and a cost associated with the
defect.

data failure;
length Defect $15;
input Defect Count @@;
select (Defect) ;

when ("Contamination") Cost=3.5;
when ("Metallization") Cost=10;
when ("Oxide") Cost=10.5;
when ("Corrosion") Cost=4.5;
when ("Doping") Cost=3.6;
when ("Silicon") Cost=5.4;
otherwise Cost=1.0;
end;

datalines;
Contamination 15 Corrosion 2 Doping 1 Metallization 2
Miscellaneous 3 Oxide 8 Silicon 1 Contamination 16
Corrosion 3 Doping 1 Metallization 3 Miscellaneous 1
Oxide 9 Silicon 2 Contamination 20 Corrosion 1
Doping 1 Metallization 0 Miscellaneous 3 Oxide 7
Silicon 2 Contamination 12 Corrosion 1 Doping 1
Metallization 0 Miscellaneous 0 Oxide 10 Silicon 1
Contamination 23 Corrosion 1 Doping 1 Metallization 0
Miscellaneous 1 Oxide 8 Silicon 2
;
run;

Define the title and footnote.

title1 "The Cost of Defects";
footnote1 j=r "GBLWTSTA";

Define the labels for the axes.

AXIS1 label=("Defect Count");
AXIS2 label=("Total Cost");

Produce the bar-line chart. The SUMVAR= option in the BAR statement specifies the
variable that determines the height of the bars. The SUMVAR= option in the PLOT statement
specifies the plot variable. GBARLINE multiplies the value of the FREQ= variable by the value
of the COUNT variable, and uses the result to determine the plot points.

proc gbarline data=failure;
bar Defect/ sumvar=Count axis=axis1;
plot / sumvar=Count freq=cost axis=axis2;
run;

The GBARLINE Procedure � Example 3: Specifying Subgroups, Multiple Plots, Data Tips, and Drill-Down URLs 985

quit;

Example 3: Specifying Subgroups, Multiple Plots, Data Tips, and Drill-Down
URLs

Procedure Features:
BAR statement options:

DISCRETE
HTML=
LEGEND=
MAXIS=
RAXIS=
SUBGROUP=
SUMVAR=

PLOT statement options:
AXIS=
HTML=
LEGEND=

Multiple PLOT statements:
SUMVAR=

Other Features:
STYLE= option in the ODS statement
AXIS statements
LEGEND statements
ODS HTML statement
SYMBOL statement

Data set: SASHELP.ELECTRIC

986 Example 3: Specifying Subgroups, Multiple Plots, Data Tips, and Drill-Down URLs � Chapter 35

This graph shows the total amount of power generated by six different energy
sources in the US during the years 1994 to 2005. It also shows the revenue received
from four different customer sectors during these same years.

The power generated is graphed as a subgrouped bar chart. The chart variable is
YEAR, and the subgroup variable is CUSTOMER, the customer sector. The program
also specifies the DISCRETE option, so each year’s data is graphed as a separate
midpoint. The subgroups create a separate segment in the bar for each year, and the
height of each bar represents the total revenue for that year for all customer sectors.

The power generated from each energy source is plotted as six different line plots.
Each of the six plot lines represents a different energy source.

Separate legends are created for the bar chart and the line plots. By specifying the
LEGEND POSITION= option, the legend for the bar chart is displayed at the top middle
of the graph. The legend for the plots is displayed at the bottom right of the graph.

The colors used for everything except the plot lines is controlled by the style. The
example specifies the Analysis style.

This example defines data tip text for both the plot symbols and the bar chart
segments. It defines drill-down URLs for the entries in the footnotes.

Set the graphics environment.

goptions reset=all border;

Open the HTML destination. The GTITLE option causes the title to be rendered as part of
the graph image instead of being created by the HTML code as text. Alternatively, the
NOGFOOTNOTE option causes the footnote to be created by the HTML file as text instead of
being rendered as an image with the rest of the graph. Notice that, as a result, the TITLE
appears within the graph frame, but the footnotes appear outside the frame. You can also use
the ODS PATH= and FILE= options to specify a location for the output files.

ods listing close;
ods html style=analysis gtitle nogfootnote;

Define the title and footnotes. The LINK= option in the FOOTNOTE statement defines
drill-down URLs for the source of the information.

title1 "US Electric Power - Revenue and Generation Sources";
footnote1 j=r "GBLPOWER";

footnote2 j=l italic
link="http://www.eia.doe.gov/cneaf/electricity/epa/epat7p3.html"
"Link to Bar Data: USEIA Energy Customer Sectors";

footnote3 j=l italic
link="http://www.eia.doe.gov/cneaf/electricity/epa/epat1p1.html"
"Link to Line Data: USEIA Energy Generation Sources" ;

The GBARLINE Procedure � Example 3: Specifying Subgroups, Multiple Plots, Data Tips, and Drill-Down URLs 987

Define the labels for the axes. The AXIS1 statement defines the axis properties for the bar
response (left) axis. The AXIS2 statement defines the properties for the plot response (right)
axis. The AXIS3 statement is used to suppress the default label on the midpoint axis.

axis1 label=(j=c "Revenue" j=c "(billions)") minor=none; /* left */
axis2 label=(j=c "Power" j=c "Generated" j=c "(GWh)") minor=none; /* right */
axis3 label=none; /* bottom */

Specify options for the bar and plot legends. Using different LEGEND statements and
positioning the legends in different places for the bar chart and the overlay plots causes
GBARLINE to produce two separate legends instead of combining the legends into one.

/* Bar legend */
legend1 position=(middle right outside) across=1

label=(position=(top) j=l "Customer Sector");
/* Line plot legend */
legend2 position=(bottom right outside) across=1 repeat=1

label=(position=(top) j=l "Generation Source") ;

Define the plot symbols.

symbol1 c=black value=circle;
symbol2 value=dot;

Produce the bar-line chart. This graph uses the data set entitled ELECTRIC found in the
SASHELP library. The SUMVAR= option in the BAR statement specifies the variable that
determines the height of the bars. The SUMVAR= option in the PLOT statement specifies the
plot variable. The HTML= options associate data tip text with the bars and plot points.

proc gbarline data=sashelp.electric;
bar year / discrete sumvar=Revenue subgroup=Customer

raxis=axis1 maxis=axis3 legend=legend1
html=revtip name="US_Electric_Power"
des="Chart of US Electricity Generation Sources and Consumers";

plot / sumvar=AllPower html=alltip legend=legend2 axis=axis2;
plot / sumvar=Coal html=coaltip;
plot / sumvar=Nuclear html=nuketip;
plot / sumvar=NaturalGas html=gastip;
plot / sumvar=Hydro html=hydrotip;
plot / sumvar=Other html=othertip;
run;

quit;

Close the ODS HTML destination. You must close the HTML destination before you can view
the output with a browser.

ods HTML close;
ods listing;

988

989

C H A P T E R

36
The GCHART Procedure

Overview 990
About Block Charts 990

About Bar Charts 991

About Pie, Detail Pie, and Donut Charts 993

About Star Charts 995

Concepts 996
About Chart Variables 997

Missing Values 998

About Midpoints 998

Character Values 998

Discrete Numeric Values 998

Continuous Numeric Values 999
Selecting and Ordering Midpoints 999

About Chart Statistics 1000

Frequency 1000

Cumulative Frequency 1000

Percentage 1001
Cumulative Percentage 1001

Sum 1001

Mean 1001

Calculating Weighted Statistics 1001

About Patterns 1002
Default Patterns and Outlines 1002

User-Defined Patterns, Outlines, and Images 1003

Procedure Syntax 1003

PROC GCHART Statement 1004

BLOCK Statement 1005

HBAR, HBAR3D, VBAR, and VBAR3D Statements 1015
PIE, PIE3D, and DONUT Statements 1038

STAR Statement 1055

Examples 1066

Example 1: Specifying the Sum Statistic in a Block Chart 1066

Example 2: Grouping and Subgrouping a Block Chart 1067
Example 3: Specifying the Sum Statistic in Bar Charts 1070

Example 4: Subgrouping a Three-Dimensional Vertical Bar Chart 1072

Example 5: Controlling Midpoints and Statistics in a Horizontal Bar Chart 1075

Example 6: Generating Error Bars in a Horizontal Bar Chart 1078

Example 7: Specifying the Sum Statistic for a Pie Chart 1080
Example 8: Subgrouping a Donut or Pie Chart 1083

Example 9: Ordering and Labeling Slices in a Pie Chart 1084

Example 10: Grouping and Arranging Pie Charts 1086

990 Overview � Chapter 36

Example 11: Specifying the Sum Statistic in a Star Chart 1088
Example 12: Charting a Discrete Numeric Variable in a Star Chart 1089

Example 13: Creating a Detail Pie Chart 1092

References 1093

Overview
The GCHART procedure produces six types of charts: block charts, horizontal and

vertical bar charts, pie and donut charts, and star charts. These charts graphically
represent the value of a statistic calculated for one or more variables in an input SAS
data set. The charted variables can be either numeric or character.

The procedure calculates these statistics:
� frequency or cumulative frequency counts
� percentages or cumulative percentages
� sums
� means

Use the GCHART procedure to do the following tasks:
� display and compare exact and relative magnitudes
� examine the contribution of parts to the whole
� analyze where data are out of balance

About Block Charts
Block charts display the relative magnitude of data with blocks of varying height,

each set in a square that represents a category of data (midpoint). Because block charts
do not use axes, they are most useful when the relative magnitude of the blocks is more
significant than the exact magnitude of any particular block.

Figure 36.1 on page 991 shows a simple block chart of total sales for three
manufacturing sites. Each site is a midpoint and occupies one square. The name of the
site (the midpoint value) is printed below the square. Midpoint values are, by default,
arranged in ascending order from left to right. The label below the midpoint grid names
the chart variable.

Sales for the site (the chart statistic) are represented by the height of the block; sales
amount (the formatted statistic value) is printed below the block. The heading above
the blocks describes the type of statistic, in this case SUM.

The GCHART Procedure � About Bar Charts 991

Figure 36.1 Block Chart (GCHBKSUM)

The program for this chart is in Example 1 on page 1066. For more information on
producing block charts, see “BLOCK Statement” on page 1005.

About Bar Charts
Horizontal and vertical bar charts display the magnitude of data with bars, each of

which represents a category of data (midpoint). The length (or height) of the bars
represents the value of the chart statistic for the corresponding midpoint. Both
horizontal and vertical bar charts can be either two-dimensional or three-dimensional
shapes, depending on the procedure you choose.

Figure 36.2 on page 992 shows a simple two-dimensional, horizontal bar chart of total
sales for three manufacturing sites. Each site is a midpoint and is displayed as a bar.
The name of the site (the midpoint value) is printed on the midpoint axis beside the bar.
Midpoint values are, by default, arranged in ascending alphabetical or numeric order
from top to bottom of the chart and labeled with the name or label of the chart variable.

The chart statistics, in this case total sales for each site, are represented by the
length of the bars. The response axis displays the scale of values for the chart statistic.
The table of statistics to the right of the bars displays the statistic for each bar. Both a
column in the table and the response axis are labeled with the name of the summary
variable and the type of statistic.

992 About Bar Charts � Chapter 36

Figure 36.2 Horizontal Bar Chart (GCHBRSUM (a))

The program for this chart is Example 3 on page 1070.
Figure 36.3 on page 992 shows the same data presented as a three-dimensional,

vertical bar chart. The two types of bar charts have essentially the same characteristics
except for where they display statistical values. Horizontal bar charts by default
display a table of statistic values to the right of the bars. You can specify that vertical
bar charts display the statistic value above or inside of each bar.

Figure 36.3 Vertical (Three-Dimensional) Bar Chart (GCHBRSUM(b))

The GCHART Procedure � About Pie, Detail Pie, and Donut Charts 993

The program for this chart is Example 3 on page 1070. For more information on
producing horizontal and vertical bar charts, see “HBAR, HBAR3D, VBAR, and
VBAR3D Statements” on page 1015.

About Pie, Detail Pie, and Donut Charts
Pie and donut charts represent the relative contribution of parts to the whole. They

display data as wedge-shaped “slices” of a circle (either a “pie” or “donut”), either in
two- or three-dimensional form. Each slice represents a category of data (midpoint).
The size of each slice (length of the arc) represents the contribution of the
corresponding midpoint to the total chart statistic. Detail pie charts are pie charts with
a second pie overlay that shows additional detail about the data that contributes to
each of the outer pie’s slices. Donut charts look like pie charts except that they have a
hole in the middle in which you can place text.

Figure 36.4 on page 993 shows a pie chart of total sales for three manufacturing
sites. Each site is a midpoint and is displayed as a slice. By default, the slices are
ordered alphabetically, by the midpoint name and counterclockwise beginning at the
three o’clock position.

Sales for the site (the chart statistic) are represented by the size of the slice. Both
the sales amount (the formatted value of the chart statistic) and the name of the site
(the midpoint value) are printed outside of the slice. You can also label pie slices with
the percentage of the total statistic value that they represent. The heading above the
pie describes the type of statistic (SUM), and names the summary variable (SALES)
and the chart variable (SITE).

Figure 36.4 Pie Chart (GCHPISUM(a))

Figure 36.5 on page 994 shows the three-dimensional version of the same pie chart.
This version features the exploded slice.

994 About Pie, Detail Pie, and Donut Charts � Chapter 36

Figure 36.5 Three-Dimensional Pie Chart (GCHPISUM(b))

Figure 36.6 on page 994 shows a detail pie chart generated from the same data.

Figure 36.6 Detail Pie Chart (GCHDTPIE)

The GCHART Procedure � About Star Charts 995

The programs for these charts are in Example 7 on page 1080 and Example 13 on
page 1092. For more information on producing pie or donut charts, see “PIE, PIE3D,
and DONUT Statements” on page 1038.

About Star Charts
Star charts display data as lines (“spines”) radiating from the center of a circle

toward the perimeter. Each spine represents a category of data (midpoint). The length
of a spine represents the magnitude of the chart statistic for that midpoint starting at
the center of the circle, which by default represents 0. The radius of the circle is the
length of the longest spine (greatest statistic value) in the chart. Instead of spines, star
charts can also display the chart statistic as slices, which are enclosed areas formed by
connecting the ends of the spines.

Figure 36.7 on page 995 shows the total sales for the three manufacturing sites as a
star chart. Each site is a midpoint and is displayed as a spine. By default the ends of
the spines are connected and they are ordered counterclockwise beginning at the three
o’clock position.

Sales for the site (the chart statistic) are represented by the length of the spine. Both
the sales amount (the formatted statistic value) and the name of the site (the midpoint
value) are printed outside of the star chart. You can also label star charts with the
percentage of the total statistic value that they represent. The heading above the chart
describes the type of statistic (SUM), and names the summary variable (SALES) and
the chart variable (SITE).

Figure 36.7 Star Chart (GCHSTSUM)

The program for this chart is Example 11 on page 1088. For more information on
producing star charts, see “STAR Statement” on page 1055. For an alternative way of
producing similar types of charts, see Chapter 47, “The GRADAR Procedure,” on page
1419.

996 Concepts � Chapter 36

Concepts
The GCHART procedure produces charts based on the values of a chart variable.

These values are represented by a set of midpoints. The chart itself displays
information about the chart variable in the form of chart statistics.

Figure 36.8 on page 996 and Figure 36.9 on page 997 illustrate these terms as well
as other terms used with the GCHART procedure.

Figure 36.8 Terms Used with Bar Charts

group variable
(group axis label)

midpoints

group value

group
axis

midpoint
axis

response axis

response
axis label

legend

subgroup
variable

framesubgroups summary variable

response
variable

major tick mark value

subgroup
values

type of
statistic

minor tick mark

table of statistics

chart variable
(midpoint axis label)

Bar charts have at least two axes: a midpoint axis that shows the categories of data,
and a response axis that displays the scale of values for the chart statistic. By default,
the response axis is divided into evenly spaced intervals identified with major tick
marks that are labeled with the corresponding statistic value. Minor tick marks are
evenly distributed between the major tick marks. Each axis is labeled with the chart
variable name or label. The response axis is also labeled with the statistic type.

The GCHART Procedure � About Chart Variables 997

Figure 36.9 Terms Used with Pie and Donut Charts

Pie charts show statistics based on values of a variable called the chart variable.
Generally, the values of the chart variable are represented by the slices in the chart.
Beside each pie slice a number (or character string) appears that identifies the value or
range of values assigned to that slice by the GCHART procedure. This number (or
character string) is known as the midpoint for that slice. The statistic value for each
midpoint is displayed beneath the midpoint. Each pie slice represents a different value
of a given variable (the chart variable). Because the pie chart forms a circle of 360
degrees, each slice represents a percentage of degrees of the circle. The number of
degrees created by each slice represents the statistic value for the midpoint.

About Chart Variables
The chart variable is the variable in the input data set whose values determine the

categories of data represented by the bars, blocks, slices, or spines. The chart variable
generates the midpoints to which each observation in the data set contribute.

The chart variable can be either character or numeric. Character chart variables
contain character values, which are always discrete. Numeric chart variables fall into
two categories: discrete and continuous.

Note: If you apply a format that converts multiple values or a range of values to a
single formatted value, then the GCHART procedure produces a single midpoint for
that single formatted value. �

� Discrete variables contain a finite number of specific numeric values that are to be
represented on the chart. For example, a variable that contains years, such as
1984 or 2001, is a discrete variable.

� Continuous variables contain a range of numeric values that are to be represented
on the chart. For example, a variable of temperature data that contains real
values between 0 and 212 is a continuous variable.

998 About Midpoints � Chapter 36

Numeric chart variables are always treated as continuous variables unless the
DISCRETE option is used in the action statement, or, unless a format is used to group
ranges of values. In most cases it is a good idea to specify the DISCRETE option when
using date values.

Missing Values
By default, the GCHART procedure ignores missing midpoint values for the chart

variable. If you specify the MISSING option, then missing values are treated as a valid
midpoint and are included on the chart. Missing values for the group and subgroup
variables are always treated as valid groups and subgroups.

When the value of the variable that is specified in the FREQ= option is missing, 0, or
negative, the observation is excluded from the calculation of the chart statistic.

When the value of the variable specified in the SUMVAR= option is missing, the
observation is excluded from the calculation of the chart statistic.

About Midpoints
Midpoints are the values of the chart variable that identify categories of data. By

default, midpoints are selected or calculated by the procedure. The way the procedure
handles the midpoints depends on whether the values of the chart variable are
character, discrete numeric, or continuous numeric.

Character Values
A character chart variable generates a midpoint for each unique value of the

variable. For example, if the chart variable CITY contains the names of three different
cities, each city is a midpoint, resulting in three midpoints for the chart:

Figure 36.10 Character Midpoints

(In pie charts, midpoint values that compose a small percentage of the total for the
chart might be placed in the OTHER slice and will not produce a separate midpoint.)

By default, character midpoints are arranged in alphabetic order. If a character
variable has an associated format, the values are arranged in order of the formatted
values.

Discrete Numeric Values
A numeric chart variable used with the DISCRETE option generates a midpoint for

each unique value of the chart variable. For example, the numeric variable YEAR used
with the DISCRETE option produces one midpoint for each year:

The GCHART Procedure � About Midpoints 999

Figure 36.11 Discrete Numeric Midpoints

By default, numeric midpoints are arranged in ascending order. The DISCRETE
option is very useful for working with dates and numeric values with text user-defined
formats. If the numeric variable has an associated format, each formatted value
generates a separate midpoint. Formatted numeric variables are arranged in ascending
order according to their unformatted numeric values.

Continuous Numeric Values
A continuous numeric variable generates midpoints that represent ranges of values.

By default, the GCHART procedure determines the ranges, calculates the median value
of each range, and displays the appropriate median value at each midpoint on the chart.
A value that falls exactly halfway between two midpoints is placed in the higher range.

For example, the numeric variable AGE produces four midpoints, each of which
represents a ten-year age range; the median value of the range is displayed at each
midpoint:

Figure 36.12 Continuous Numeric Midpoints

By default, midpoints of ranges are arranged in ascending order.

Selecting and Ordering Midpoints
For character or discrete numeric values, you can use the MIDPOINTS= option to

rearrange the midpoints or to exclude midpoints from the chart. For example, to change
the default alphabetic order of the midpoints in Figure 36.10 on page 998, specify the
following:

1000 About Chart Statistics � Chapter 36

midpoints="Tokyo" "Denver" "Seattle"

To exclude the midpoint for Denver, specify the following:

midpoints="Tokyo" "Seattle"

In this case, values excluded by the option are not included in the calculation of the
chart statistic.

You can order or select discrete numeric midpoint values just as you do character
values, but you omit the quotation marks when specifying numeric values.

For continuous numeric variables, use the LEVELS= or MIDPOINTS= option to
change the number of midpoints, to control the range of values each midpoint
represents, or to change the order of the midpoints. To control the range of values each
midpoint represents, use the MIDPOINTS= option to specify the median value of each
range. For example, to select the ranges 20–29, 30–39, and 40–49, specify the following:

midpoints=25 35 45

Alternatively, to select the number of midpoints that you want and let the procedure
calculate the ranges and medians, use the LEVELS= option.

You can also use formats to control the ranges of continuous numeric variables, but
in that case the values are no longer continuous but discrete.

Note: You cannot use the MIDPOINTS= option to exclude continuous numeric
values from the chart. Values below or above the ranges specified by the option are
automatically included in the first and last midpoints, respectively. To exclude
continuous numeric values from a chart, use a WHERE statement in a DATA step or
the WHERE= DATA set option. �

See also the description of the LEVELS= and MIDPOINTS= options for the
appropriate statement.

About Chart Statistics

The chart statistic is the statistical value calculated for the chart variable and
represented by each block, bar, or slice. The GCHART procedure calculates six chart
statistics; the default statistic is frequency.

The examples given in the descriptions of these statistics assume a data set with two
variables, CITY and SALES. The values of CITY are Denver, Seattle, and Tokyo.
There are 21 observations: seven for Denver, nine for Seattle, and five for Tokyo.

Frequency

The frequency statistic is the total number of observations in the data set for each
midpoint. For example, seven observations of the chart variable, CITY, contain the
value Denver, so the frequency for the Denver midpoint is 7.

Cumulative Frequency

The cumulative frequency statistic adds the frequency for the current midpoint to the
frequency of all of the preceding midpoints. For example, the frequency for the Denver
midpoint is 7, and the frequency for the next midpoint, Seattle, is 9, so the cumulative
frequency for Seattle is 16.

You cannot request cumulative frequency with the DONUT, PIE, PIE3D, or STAR
statements.

The GCHART Procedure � About Chart Statistics 1001

Percentage
The percentage statistic is calculated by dividing the frequency for each midpoint by

the total frequency count for all midpoints in the chart or group and multiplying it by
100. For example, the frequency count for the Denver midpoint is 7 and the total
frequency count for the chart is 21, so the percentage statistic for Denver is 33.3%.

Cumulative Percentage
The cumulative percentage statistic adds the percentage for the current midpoint to

the percentage for all of the preceding midpoints in the chart or group. For example,
the percentage for the Denver midpoint is 33.3, and the percentage for the next
midpoint, Seattle, is 42.9, so the cumulative percentage for Seattle is 76.2.

You cannot request cumulative percentage with the DONUT, PIE, PIE3D, or STAR
statements.

Sum
The sum statistic is the total of the values for the SUMVAR= variable for each

midpoint. For example, if you specify SUMVAR=SALES, and the values of the SALES
variable for the seven Denver observations are 8734, 982, 1504, 3207, 4502, 624, and
918, then the sum statistic for the Denver midpoint is 20,471.

You must use the SUMVAR= option to specify the variable for which you want the
sum statistic.

Mean
The mean statistic is the average of the values for the SUMVAR= variable for each

midpoint. For example, if TYPE=MEAN and SUMVAR=SALES, the mean statistic for
the Denver midpoint is 2924.42.

You must use the SUMVAR= option to specify the variable for which you want the
mean statistic.

Calculating Weighted Statistics
By default, each observation is counted only once in the calculation of the chart

statistic. To calculate weighted statistics in which an observation can be counted more
than once, use the FREQ= option. This option identifies a variable whose values are
used as a multiplier for the observation in the calculation of the statistic. If the value of
the FREQ= variable is missing, 0, or negative, the observation is excluded from the
calculation.

If you use the SUMVAR= option, then the SUMVAR= variable value for an
observation is multiplied by the FREQ= variable value for that observation when
calculating the chart statistic.

For example, to use a variable called COUNT to produce weighted statistics, assign
FREQ=COUNT. If you also assign the variable HEIGHT to the SUMVAR= option, then
the following table shows how the values of COUNT and HEIGHT would affect the
statistic calculation:

Value of
COUNT

Value of
HEIGHT

Number of times the
observation is used

Value used for
HEIGHT

1 55 1 55

5 65 5 325

1002 About Patterns � Chapter 36

Value of
COUNT

Value of
HEIGHT

Number of times the
observation is used

Value used for
HEIGHT

. 63 0 -

-3 60 0 -

By default, the percentage and cumulative percentage statistics are calculated based
on the frequency. If you want to chart a percentage or cumulative percentage based on
a sum, you can use the FREQ= option to specify a variable to use for the “sum”
calculation and specify the PCT statistic, as shown in this example:

freq=count type=pct

Because the variable that is used by the FREQ= option determines the number of
times an observation is counted, the value of COUNT is the equivalent of the sum
statistic.

See also the descriptions of the TYPE=, SUMVAR=, and FREQ= options for the
action statements.

About Patterns
When a chart needs one or more patterns, the procedure uses either one of the

following:
� default patterns and outlines that are automatically generated by SAS/GRAPH
� patterns, colors, outlines, and images that are defined by PATTERN statements,

graphics options, and procedure options

The following sections summarize pattern behavior for the GCHART procedure. For
more information, see “PATTERN Statement” on page 240.

Default Patterns and Outlines
The GCHART procedure uses default patterns and outlines when you do not do the

following:
� specify any PATTERN statements
� use the CPATTERN= graphics option
� use the COLORS= graphics options
� use the COUTLINE= option in the action statement

The default patterns, colors, and outlines are generated from the current style. If all of
the above conditions are true, and the GSTYLE option is in effect, then the GCHART
procedure does the following:

� selects the default fill, which is always solid, and rotates it through the color list of
the current style, generating one solid pattern for each color. If the first color in
the style’s color list is black (or white), the procedure skips that color and begins
generating patterns with the next color.

� uses the style outline color to outline every patterned area.

If all of the above conditions are true, and the NOGSTYLE option is specified then the
GCHART procedure does the following:

� selects the first default fill, which is always solid, and rotates it through the
device’s color list, generating one solid pattern for each color. If the first color in

The GCHART Procedure � Procedure Syntax 1003

the device’s color list is black (or white), the procedure skips that color and begins
generating patterns with the next color.

� uses the foreground color to outline every patterned area.

� if the procedure needs additional patterns, GCHART selects the next default
pattern fill that is appropriate to the type of chart and rotates it through the color
on the list, skipping the foreground color as before. The procedure continues in
this manner until it has generated enough patterns for the chart.

Changing any of the above conditions changes or overrides the default behavior:

� If you specify a color list with the COLORS= option in a GOPTIONS statement
and the list contains more than one color, the procedure produces a solid pattern
through that list, using every color, even if the foreground color is black (or white).
The default outline color remains the style outline color.

� If you specify either COLORS=(one-color) or the CPATTERN= graphics option, the
default fill pattern changes from solid to the list of appropriate hatch patterns.
The procedure uses the specified color to generate one pattern definition for each
hatch pattern in the list. The default outline color remains the style outline color.
(The Java and ActiveX devices do not support hatch patterns.)

For a description of these graphics options, see Chapter 15, “Graphics Options and
Device Parameters Dictionary,” on page 327.

User-Defined Patterns, Outlines, and Images
You can use PATTERN statements to specify patterns, including color or fill type or

both. You can also specify images to fill the bars of two-dimensional bar charts. For
complete information on all patterns, see “PATTERN Statement” on page 240. See also
the section on controlling patterns and colors for each chart type.

When you use PATTERN statements, the procedure uses the specified patterns until
all of the PATTERN definitions they generate have been used. Then, if more patterns
are required, it returns to the default pattern rotation.

To change the outline color of any pattern, whether it’s a default or user-defined
pattern, use the COUTLINE= option in the action statement that generates the chart.

Two-dimensional bar charts created with the HBAR and VBAR statements can use
the PATTERN statement to fill specified bars with specified images. For details, see the
IMAGE= option. Other means of including images in charts include adding background
images to bar charts. The IBACK= option specifies an image file that fills the entire
area behind the graph. The IFRAME= option specifies an image file that fills the area
within the axes of the graph.

For additional information, including a listing of recognized image file types, see
“Image File Types Supported by SAS/GRAPH” on page 181.

Procedure Syntax
Requirements: At least one BLOCK, HBAR, HBAR3D, VBAR, VBAR3D, PIE, PIE3D,
DONUT, or STAR statement is required.

Global statements: AXIS, FOOTNOTE, GOPTIONS, LEGEND, PATTERN, TITLE

Reminder: The procedure can include the BY, FORMAT, LABEL, and WHERE
statements as well as the SAS/GRAPH NOTEstatement.

Supports:
RUN-group processing

1004 PROC GCHART Statement � Chapter 36

PROC GCHART<DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=< libref.>output-catalog>
<IMAGEMAP=output-data-set>;

BLOCK chart-variable(s) </ option(s)>;

HBAR | HBAR3D | VBAR | VBAR3Dchart-variable(s) </ option(s)>;

PIE | PIE3D | DONUT chart-variable(s) </ option(s)>;

STAR chart-variable(s) </ option(s)>;

PROC GCHART Statement

Identifies the data set containing the chart variables. Can specify annotation and an output catalog.

Requirements: An input data set is required.

Syntax

PROC GCHART<DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=< libref.>output-catalog>
<IMAGEMAP=output-data-set>;

Options
PROC GCHART statement options affect all graphs produced by the procedure.

ANNOTATE=Annotate-data-set
specifies a data set to annotate all graphs that are produced by the GCHART
procedure. To annotate individual graphs, use ANNOTATE= in the action statement.
Alias: ANNO=
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

DATA=input-data-set
specifies the SAS data set that contains the variable or variables to chart. By
default, the procedure uses the most recently created SAS data set.
See also: “SAS Data Sets” on page 54 and “About Chart Variables” on page 997

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output that is produced by
the GCHART procedure. If you omit the libref, SAS/GRAPH looks for the catalog in
the temporary library called WORK and creates the catalog if it does not exist.
See also: “Specifying the Catalog Name and Entry Name for Your GRSEGs” on

page 100

IMAGEMAP=output-data-set
creates a temporary SAS data set that is used to generate an image map in an
HTML output file. The information in the image map data set includes the shape
and coordinates of the elements in the graph and drill-down URLs that have been

The GCHART Procedure � BLOCK Statement 1005

associated with those elements. The drill-down URLs are provided by one or two
variables in the input data set. These variables are identified to the GCHART
procedure with the HTML= or HTML_LEGEND= or both options.

The %IMAGEMAP macro generates the image map in the HTML output file. The
macro takes two arguments, the name of the image map data set and the name or
fileref of the HTML file, as shown in the following example:

%imagemap(imgmapds, myimgmap.html);

Restriction: Not supported by Java or ActiveX

BLOCK Statement

Creates block charts in which the height of the blocks represents the value of the chart statistic for
each category of data.

Requirements: At least one chart variable is required.

Global statements: LEGEND, PATTERN, TITLE, FOOTNOTE

Supports: Drill-down functionality

Description
The BLOCK statement specifies the variable or variables that define the categories of
data to chart. This statement automatically does the following actions:

� determines the midpoints

� calculates the chart statistic for each midpoint (the default is FREQ)

� scales the blocks according to the statistic value

� assigns patterns and colors to the block faces and the grid; the default block
pattern is solid

You can use statement options to select or order the midpoints (blocks), to change the
type of chart statistic, and to modify the appearance of the chart. You can also specify
additional variables by which to group, subgroup, or sum the data.

Block charts enable grouping, which organizes the blocks into rows based on the
values of a group variable, and subgrouping, which subdivides the blocks into segments
based on the values of a subgroup variable.

In addition, you can use global statements to modify the block patterns and the
legend, as well as add titles, footnotes, and notes to the chart. You can also use an
Annotate data set to enhance the chart.

Note: If you get a message that the chart is too large to display on your terminal or
printer, try one or both of the following:

� reduce the size of the character cells defined for the output device by specifying
larger values for the HPOS= and VPOS= graphics options

� decrease the size of the chart text with the HTEXT= graphics option

�

See “The Graphics Output and Device Display Areas” on page 59 for details.

1006 BLOCK Statement � Chapter 36

Syntax

BLOCK chart-variable(s) </ option(s)>;

option(s) can be one or more options from any or all of the following categories:
� appearance options

ANNOTATE=Annotate-data-set
BLOCKMAX=max-value
CAXIS=grid-color

COUTLINE=block-outline-color | SAME
CTEXT=text-color
LEGEND=LEGEND<1...99>
NOHEADING
NOLEGEND
PATTERNID=BY |GROUP |MIDPOINT |SUBGROUP
WOUTLINE=block-outline-width

� midpoint options
DISCRETE
GROUP=group-variable
LEVELS=number-of-midpoints
MIDPOINTS=value-list
MIDPOINTS=OLD
MISSING
SUBGROUP=subgroup-variable

� statistic options
FREQ=numeric-variable
G100
SUMVAR=summary-variable

TYPE=statistic
� catalog entry description options

DESCRIPTION=’entry-description’
NAME=’entry-name’

� ODS options
HTML=variable

HTML_LEGEND=variable
� axes options

GAXIS=AXIS<1...99>
MAXIS=AXIS<1...99>
RAXIS=value-list | AXIS<1...99>

Required Arguments

chart-variable(s)
specifies one or more variables that define the categories of data to chart. Each chart
variable draws a separate chart. All variables must be in the input data set.

The GCHART Procedure � BLOCK Statement 1007

Separate multiple chart variables with blanks. The values of a chart variable used
with the BLOCK statement have a maximum length of 13.
See also: “About Chart Variables” on page 997

Options
Options in a BLOCK statement affect all graphs produced by that statement. You

can specify as many options as you want and list them in any order. For details on
specifying colors, see Chapter 12, “SAS/GRAPH Colors and Images,” on page 167. For a
complete description of the graphics options, see Chapter 15, “Graphics Options and
Device Parameters Dictionary,” on page 327.

ANNOTATE=Annotate-data-set
specifies a data set to annotate charts produced by the BLOCK statement.

Note: Annotate coordinate systems 1, 2, 7, and 8 (data system coordinates) are
not valid with block charts. �
Alias: ANNO=
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

BLOCKMAX=max-value
specifies the chart statistic value of the tallest block on the chart. This option lets
you produce a series of block charts using the same scale. All blocks are rescaled as
if max-value were the maximum value on the chart.
Restriction: Not supported by Java or ActiveX

CAXIS=grid-color
specifies the color for the midpoint grid. By default, the midpoint grid uses the color
of the current style, or, if the NOGSTYLE option is specified, then the default color is
black for the Java and ActiveX devices and the first color in the color list for all other
devices.
Style reference: Color attribute of the GraphAxisLines element.
Featured in: Example 2 on page 1067

COUTLINE=block-outline-color | SAME
outlines all blocks or all block segments and legend values in the subgroup legend (if
it appears) using the specified color. SAME specifies that the outline color of a block
or a block segment or a legend value is the same as the interior pattern color.

The default outline color depends on the PATTERN statement:
� If you do not specify a PATTERN statement, the default outline color is the

color of the current style.
� If you specify the NOGSTYLE option and no PATTERN statement, the default

outline color is black for the Java or ActiveX devices. Otherwise, the default
outline color is the foreground color. If you specify an EMPTY PATTERN
statement, then the default outline color is the same as the fill color.

Style reference: Color attribute of the GraphOutlines element.
Featured in: Example 2 on page 1067
Restriction: Partially supported by Java and ActiveX
See also: “Controlling Block Chart Patterns and Colors” on page 1014 and “About

Patterns” on page 1002

CTEXT=text-color
specifies a color for all text on the axes and legend, including axis labels, tick mark
values, legend labels, and legend value descriptions. The GCHART procedure looks
for the text color in the following order:

1008 BLOCK Statement � Chapter 36

1 colors specified for labels and values on assigned AXIS and LEGEND
statements, which override the CTEXT= option specified in the BLOCK
statement

2 the color specified by the CTEXT= option in the BLOCK statement

3 the color specified by the CTEXT= option in a GOPTIONS statement.

4 the color specified in the current style or, if the NOGSTYLE option is specified,
then the default color is black for the Java and ActiveX devices and the first
color in the color list for all other devices

The LEGEND statement’s VALUE= color is used for legend values, and its
LABEL= color is used for legend labels.

The AXIS statement’s VALUE= color is used for axis values, and its LABEL= color
is used for axis labels. However, if the AXIS statement specifies only general axis
colors with its COLOR= option, the CTEXT= color overrides the general COLOR=
specification and is used for axis labels and values; the COLOR= color is still used for
all other axis colors, such as tick marks.

Note: If you use a BY statement in the procedure, the color of the BY variable
labels is controlled by the CBY= option in the GOPTIONS statement. �

Style reference: Color attributes of the GraphValueText and the GraphLabelText
elements.

DESCRIPTION=’description’
specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters. The description does not appear on the chart. By
default, the GCHART procedure assigns a description of the form BLOCK CHART
OF variable, where variable is the name of the chart variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. Refer to “Substituting BY Line Values in a Text String” on page
294. The 256-character limit applies before the substitution takes place for these
options; thus, if, in the SAS program, the entry-description text exceeds 256
characters, it is truncated to 256 characters, and then the substitution is performed.

The descriptive text is shown in each of the following:

� the “description” portion of the Results window.

� the catalog-entry properties that you can view from the Explorer window.

� the Description field of the PROC GREPLAY window.

� the data tip text for Web output (depending on the device driver you are using).
See “Data Tips for Web Presentations” on page 598 for details.

Alias: DES=

DISCRETE
treats a numeric chart variable as a discrete variable rather than as a continuous
variable. The GCHART procedure creates a separate midpoint and, hence, a separate
grid square and block for each unique value of the chart variable. If the chart variable
has a format associated with it, then each formatted value is treated as a midpoint.

The LEVELS= option is ignored when you use DISCRETE. The MIDPOINTS=
option overrides DISCRETE.

FREQ=numeric-variable
specifies a variable whose values weight the contribution of each observation in the
computation of the chart statistic. Each observation is counted the number of times
specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, 0, or negative, the observation is not used in the statistic
calculation. Non-integer values of numeric-variable are truncated to integers.

The GCHART Procedure � BLOCK Statement 1009

FREQ= is valid with all chart statistics.
Because you cannot use the PERCENT, CPERCENT, FREQ, or CFREQ statistics

with the SUMVAR= option, you must use the FREQ= option to calculate percentages,
cumulative percentages, frequencies, or cumulative frequencies based on a sum.

The statistics are not affected by applying a format to numeric-variable.

See also: “Calculating Weighted Statistics” on page 1001

GAXIS=AXIS<1...99>
assigns the specified AXIS definition to the group axis. (A group axis is created when
you use the GROUP= option.) You can use the AXIS definition to modify the order of
the groups, the text of the labels, and appearance of the axis. GAXIS= is ignored if
the specified AXIS definition does not exist.

The AXIS statement options MAJOR= and MINOR= are ignored in AXIS
definitions assigned to the group axis because the axis does not use tick marks. A
warning message is written to the SAS log if these options appear in the AXIS
definition.

The Java and ActiveX devices do not support all AXIS statement options. See
“AXIS Statement” on page 198 for more information.

To remove groups from the chart, use the ORDER= option in the AXIS statement.
To suppress the brackets drawn around the values on the group axis in vertical

bar charts, use the NOBRACKETS option in the AXIS statement.

Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on page
618

Restriction: Supported by Java and ActiveX only.

See also: “AXIS Statement” on page 198

G100
calculates the percentage and cumulative percentage statistics separately for each
group. When you use G100, the individual percentages reflect the contribution of the
midpoint to the group and total 100 percent for each group. G100 is ignored unless
you also use the GROUP= option.

By default, the individual percentages reflect the contribution of the midpoint to
the entire chart and total 100 percent for the entire chart.

GROUP=group-variable
organizes the data according to the values of group-variable. Group-variable can be
either character or numeric and is always treated as a discrete variable. The group
variable can have up to 12 different values.

GROUP= produces a group grid that contains a separate row of blocks for each
unique value of the group variable. Each row contains a square for each midpoint.
The groups are arranged from front to back in ascending order of the group variable
values. These values are printed to the left of each row; the group variable name or
label is printed above the list of group values.

By default, each group includes all midpoints, even if no observations for the group
fall within the midpoint range. Missing values for group-variable are treated as a
valid group.

Featured in: Example 2 on page 1067

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file that is created by the ODS statement. These links are associated with an area of
the chart and point to the data or graph you want to display when the user drills
down on the area. There is no limit on the length of the variable.

See also: “Overview of Enhancing Web Presentations” on page 596

1010 BLOCK Statement � Chapter 36

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file that is created by the ODS statement. These links are associated with a legend
value and point to the data or graph that you want to display when the user drills
down on the value. The values of variable can be up to 1024 characters long.
Characters after the 1024-character limit (including any closing quotes) are
truncated.

Restriction: Not supported by Java orActiveX
See also: “Overview of Enhancing Web Presentations” on page 596

LEGEND=LEGEND<1...99>
assigns the specified LEGEND definition to the legend generated by the
SUBGROUP= option. The LEGEND= option itself does not generate a legend.

LEGEND= is ignored if the following is true:
� SUBGROUP= is not used.

� The specified LEGEND definition is not in effect.
� The NOLEGEND option is used.
� The PATTERNID= option is set to any value other than SUBGROUP; that is,

the value of PATTERNID= is BY or GROUP or MIDPOINT.

To create a legend based on the chart midpoints instead of the subgroups, use the
chart variable as the subgroup variable:

block city / subgroup=city;

The Java and ActiveX devices do not support all LEGEND statement options. See
“LEGEND Statement” on page 225 for more information.
Featured in: Example 2 on page 1067
Restriction: Partially supported by Java and ActiveX
See also: SUBGROUP= on page 1013 and “LEGEND Statement” on page 225

LEVELS=number-of-midpoints
specifies the number of midpoints for the numeric chart variable. The range for each
midpoint is calculated automatically using the algorithm described in Terrell and
Scott (1985). The LEVELS= option is ignored if the following is true:

� The chart variable is character type.
� The DISCRETE option is used.
� The MIDPOINTS= option is used.

MAXIS=AXIS<1...99>
assigns the specified AXIS definition to the midpoint axis. The MAXIS= option is
ignored if the specified AXIS definition does not exist.

The Java and ActiveX devices do not support all AXIS statement options. See
“AXIS Statement” on page 198 for more information.

Featured in: Example 4 on page 1072
Restriction: Supported by Java and ActiveX only
See also: “AXIS Statement” on page 198 and “About Midpoints” on page 998

MIDPOINTS=value-list
specifies the midpoint values for the blocks. The way you specify value-list depends
on the type of variable:

� For numeric chart variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of
both forms:

The GCHART Procedure � BLOCK Statement 1011

n <...n>
n TO n <BY increment>
n <...n> TO n <BY increment> <n <...n>>
If a numeric variable has an associated format, the specified values must be

the unformatted values.
If you omit the DISCRETE option, then numeric values are treated as

continuous, which means that the following is true by default:
� The lowest midpoint consolidates all data points from negative infinity to

the median of the first two midpoints.
� The highest midpoint consolidates all data points from the median of the

last two midpoints up to infinity.
� All other values in value-list specify the median of a range of values, and

the GCHART procedure calculates the midpoint values.

If you include the DISCRETE option, then each value in value-list specifies a
unique numeric value.

� For character chart variables, value-list is a list of unique character values
enclosed in quotation marks and separated by blanks:

’value-1’ <...’value-n’>
If a character variable has an associated format, the specified values must be

the formatted values.

For a complete description of value-list, see the ORDER= option on page 205 in the
AXIS statement.

If value-list for either type of variable specifies so many midpoints that the axis
values overwrite each other, then the values might be unreadable. In this case the
procedure writes a warning to the SAS log. On many devices, you can correct
crowded values by increasing the number of cells in your graphics display using the
HPOS= and VPOS= graphics options.
Featured in: Example 2 on page 1067
See also: “About Midpoints” on page 998

MIDPOINTS=OLD
generates default midpoints using the Nelder algorithm (Applied Statistics 25:94–7,
1976). The MIDPOINTS=OLD option is ignored unless the chart variable is numeric.

MISSING
accepts a missing value as a valid midpoint for the chart variable. By default,
observations with missing values are ignored. Missing values are always valid for
the group and subgroup variables.

NAME=’entry-name’
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default name is GCHART.
If the name duplicates an existing name, then SAS/GRAPH adds a number to the
name to create a unique name—for example, GCHART1.
See also: “About Filename Indexing” on page 99

NOHEADING
suppresses the heading describing the type of statistic. For the Java and ActiveX
devices, NOHEADING is the default. For other devices, by default the heading is
printed at the top of each block chart.
Featured in: Example 2 on page 1067

1012 BLOCK Statement � Chapter 36

Restriction: Not supported by Java or ActiveX

NOLEGEND
suppresses the legend automatically generated by the SUBGROUP= option.
NOLEGEND is ignored if the SUBGROUP= option is not used.

PATTERNID=BY | GROUP | MIDPOINT | SUBGROUP
specifies the way fill patterns are assigned. By default, PATTERNID=SUBGROUP.
Values for PATTERNID= are as follows:

BY
changes patterns each time the value of the BY variable changes. All blocks use
the same pattern if the GCHART procedure does not include a BY statement.

GROUP
changes patterns every time the value of the group variable changes. All blocks in
each group (row) use the same pattern, but a different pattern is used for each
group.

MIDPOINT
changes patterns every time the midpoint value changes. If you use the GROUP=
option, the respective midpoint patterns are repeated for each group.

SUBGROUP
changes patterns every time the value of the subgroup variable changes. The
blocks must be subdivided by the SUBGROUP= option for the SUBGROUP value
to have an effect. Without SUBGROUP=, all block faces have the same pattern.

Note: If you use the SUBGROUP= option and specify a PATTERNID= value other
than SUBGROUP, the block segments use the same pattern and are
indistinguishable. �

Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on page
618

See also: “Controlling Block Chart Patterns and Colors” on page 1014

RAXIS=value-list | AXIS<1...99>
AXIS=value-list | AXIS<1...99>

specifies values for the major tick mark divisions on the response axis or assigns the
specified AXIS definition to the axis. See the MIDPOINTS= option on page 1029 for a
description of value-list. By default, the GCHART procedure scales the response axis
automatically and provides an appropriate number of tick marks.

You can specify negative values, but negative values are reasonable only when
TYPE=SUM or TYPE=MEAN and one or more of the sums or means are less than 0.
Frequency and percentage values are never less than 0.

For lists of values, a separate major tick mark is created for each individual value.
A warning message is written to the SAS log if the values are not evenly spaced.

If the values represented by the bars are larger than the highest tick mark value,
the bars are truncated at the highest tick mark.

If you use a BY statement with the PROC GCHART statement, then the same
response axes are produced for each BY group when RAXIS=value-list is used or if
there is an ORDER= list in the AXIS statement assigned to the response axis.

The Java and ActiveX devices do not support all AXIS statement options. See
“AXIS Statement” on page 198 for more information.

Featured in: Example 4 on page 1072 and “Example: Creating Bar Charts with
Drill-Down for the Web” on page 618

Restriction: Supported by Java and ActiveX only

See also: “AXIS Statement” on page 198

The GCHART Procedure � BLOCK Statement 1013

SUBGROUP=subgroup-variable
divides the blocks into segments according to the values of subgroup-variable.
Subgroup-variable can be either character or numeric and is always treated as a
discrete variable. SUBGROUP= creates a separate segment within each block for
every unique value of the subgroup variable for that midpoint.

If PATTERNID=SUBGROUP (the default setting), each segment is filled with a
different pattern, and a legend providing a key to the patterns is automatically
generated. If the value of PATTERNID= is anything other than SUBGROUP, the
segments are all the same color, the legend is suppressed, and the subgrouping effect
is lost.

By default the legend appears at the bottom of the chart. To modify the legend,
assign a LEGEND definition with the LEGEND= option. To suppress the legend,
specify NOLEGEND.
Featured in: Example 2 on page 1067
See also: “LEGEND Statement” on page 225

SUMVAR=summary-variable
specifies a numeric variable for sum or mean calculations. The GCHART procedure
calculates the sum or, if requested, the mean of numeric-variable for each midpoint.
The resulting statistics are represented by the height of the blocks in each square.
The values of a summary variable used with the BLOCK statement have a maximum
length of 8.

When you use SUMVAR=, the TYPE= option value must be either SUM or MEAN.
With SUMVAR=, the default is TYPE=SUM.
Featured in: Example 1 on page 1066

TYPE=statistic
specifies the chart statistic.

� If the SUMVAR= option is not used, statistic can be one of the following:

FREQ
frequency (the default)

CFREQ
cumulative frequency

PERCENT PCT
percentage

CPERCENT CPCT
cumulative percentage

� If SUMVAR= is used, statistic can be either:

SUM
sum (the default)

MEAN
mean

Because you cannot specify the statistics PERCENT, CPERCENT, FREQ, or CFREQ
in conjunction with the SUMVAR= option, you must use FREQ= to calculate
percentages, cumulative percentages, frequencies, or cumulative frequencies based on
a sum. See also “Calculating Weighted Statistics” on page 1001.

If you specify TYPE=MEAN and use the SUBGROUP= option, the height of the
block represents the mean for the entire midpoint. The subgroup segments are
proportional to the subgroup’s contribution to the sum for the block.
Featured in: Example 2 on page 1067
See also: “About Chart Statistics” on page 1000

1014 BLOCK Statement � Chapter 36

WOUTLINE=block-outline-width
specifies the width of the block outline in pixels.
Style reference: LineThickness attribute of the GraphOutlines element.
Restriction: Not supported by Java

Controlling Block Chart Patterns and Colors

Default patterns and outlines
Each block in a block chart is filled with a pattern, but only the front faces of the blocks
display the patterns. Because the system option, GSTYLE, is in effect by default, the
procedure uses the style’s default patterns and outlines when producing output. By
default, the procedure does the following:

� fills the bars with bar or block patterns, beginning with the default fill, SOLID,
and uses each color in the color list available in the default style. When these
colors are exhausted, the procedure rotates through a slightly modified version of
the original list of colors. It continues in this fashion until all of the chart
variables have been assigned a unique pattern.

If you use the default style colors and the first color in the list is either black or
white, the procedure does not create a pattern in that color. If you specify a color
list with the COLORS= graphics option, the procedure uses all the colors in the
list to generate the patterns.

� outlines blocks and block segments using the color defined by the style.
� colors the midpoint grid with the color of the current style.

See “About Patterns” on page 1002 for more information on how the GCHART
procedure assigns default patterns and outlines.

User-defined patterns
To override the default patterns and select fills and colors for the blocks or block
segments, use the PATTERN statement. Only bar or block patterns are valid; all other
pattern fills are ignored. For a complete description of all bar or block patterns, see the
description of the PATTERN statement option VALUE= on page 242.

Whenever you use PATTERN statements, the default pattern outline color is that of
the current style. Only when the EMPTY pattern is used does the pattern change to
SAME. That is, the outline color is the same as the fill color. To specify the outline
color, use the COUTLINE= option on page 1007.

When patterns change
The PATTERNID= option controls when the pattern changes. By default,
PATTERNID=SUBGROUP. Therefore, when you use the SUBGROUP= option to
subdivide the blocks, the pattern automatically changes each time the subgroup value
changes, and each subdivision of the block displays a different pattern. As a result, the
number of values for the SUBGROUP= variable determines the number of block
patterns on the chart. If you do not subdivide the blocks, all blocks use the same
pattern.

Instead of changing the pattern for each subgroup, you can change the pattern for
each midpoint, each group, or each BY group, by changing the value of the
PATTERNID= option. See the PATTERNID= option on page 1012 for details.

Axis color
By default, axis elements use the color specified in the current style. To change the grid
color, use the CAXIS= option. To change the axis text color, use the CTEXT= option.

The GCHART Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 1015

Controlling Block Chart Text

To control the font and size of text on the chart, use the FTEXT= and HTEXT=
graphics options. See Chapter 15, “Graphics Options and Device Parameters
Dictionary,” on page 327 for a description of these options.

Because block charts do not use AXIS statements, you must use a LABEL statement
instead to suppress the label for the midpoint variable. See Example 2 on page 1067.

Displaying Negative or Zero Values

The relative block heights in the chart represent the scaled value of the chart
statistic value for the midpoint. If the statistic has a value of 0 or, in the case of sum
and mean, a negative value, the base of the block is drawn in the square for the
corresponding midpoint. Figure 36.13 on page 1015 shows an example of a chart with 0
and negative statistic values.

Figure 36.13 Block Chart with 0 and Negative Statistic Values

HBAR, HBAR3D, VBAR, and VBAR3D Statements

Create horizontal or vertical bar charts in which the length or height of the bars represents the
value of the chart statistic for each category of data.

Requirements: At least one chart variable is required.

Global statements: AXIS, LEGEND, PATTERN, TITLE, FOOTNOTE

Supports: Drill-down functionality

1016 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 36

Description
The HBAR, HBAR3D, VBAR, and VBAR3D statements specify the variable or variables
that define the categories of data to chart. These statements automatically do the
following:

� determine the midpoints
� calculate the chart statistic for each midpoint (the default is FREQ)
� scale the response axis and the bars according to the statistic value
� determine bar width and spacing
� assign patterns to the bars; the default bar/block pattern is SOLID
� draw a frame around the axis area using a color determined by the current style,

or, if the NOGSTYLE option is specified, using the first color in the device’s color
list

You can use statement options to select or order the midpoints (bars), to control the
tick marks on the response axis, to change the type of chart statistic, to display specific
statistics, and to modify the appearance of the chart. You can also specify additional
variables by which to group, subgroup, or sum the data.

All bar charts allow grouping, which uses an additional category to organize the bars
into groups, and subgrouping, which divides the bars into segments.

In addition, you can do the following:
� use global statements to modify the axes (including requesting a logarithmic axis),

the bar patterns, and the legend. See Chapter 14, “SAS/GRAPH Statements,” on
page 197 for more information.

� add titles, footnotes, and notes to the chart. See “TITLE, FOOTNOTE, and NOTE
Statements” on page 279 for more information.

� use an Annotate data set to enhance the chart. See Chapter 29, “Using Annotate
Data Sets,” on page 641 for more information.

� display an image in the axis frame or backplane area. See the IFRAME= option on
page 1026.

� display images in the bars of an HBAR or VBAR chart. See the PATTERN
statement IMAGE= option on page 241.

Syntax

HBAR | HBAR3D | VBAR | VBAR3D chart-variable(s) </ option(s)>;

option(s) can be one or more options from any or all of the following categories:
� appearance options

ANNOTATE=Annotate-data-set

CAUTOREF=reference-line-color

CAXIS=axis-color

CERROR=error-bar-color

CFRAME=background-color

CLM=confidence-level

COUTLINE=bar-outline-color | SAME
CREF=reference-line-color|(reference-line-color)|reference-line-color-list

CTEXT=text-color

FRAME | NOFRAME
GSPACE= group-spacing

IFRAME= fileref | ’external-file’

The GCHART Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 1017

IMAGESTYLE = TILE | FIT
LAUTOREF=reference-line-type
LEGEND=LEGEND<1...99>
LREF=reference-line-type|(reference-line-type)|reference-line-type-list
NOLEGEND
NOPLANE
PATTERNID=BY | GROUP | MIDPOINT | SUBGROUP
SHAPE=3D-bar-shape (HBAR3D and VBAR3D only)
SPACE=bar-spacing

WAUTOREF=reference-line-width
WIDTH=bar-width

WOUTLINE=bar-outline-width
WREF=reference-line-width

� statistic options
CFREQ
CFREQLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
CPERCENT
CPERCENTLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
ERRORBAR=BARS | BOTH | TOP
FREQ
FREQLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
FREQ=numeric-variable

G100
INSIDE=statistic

MEAN
MEANLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
NOSTATS (HBAR and HBAR3D only)
OUTSIDE=statistic
PERCENT
PERCENTLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
PERCENTSUM
SUM
SUMLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
SUMVAR=summary-variable
TYPE=statistic

� midpoint options
DISCRETE
GROUP=group-variable
LEVELS=number-of-midpoints|ALL
MIDPOINTS=value-list
MIDPOINTS=OLD
MISSING
RANGE
SUBGROUP=subgroup-variable

1018 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 36

� axes options
ASCENDING
AUTOREF
AXIS=AXIS<1...99>
CLIPREF
DESCENDING
FRONTREF (HBAR3D and VBAR3D only)
GAXIS=AXIS<1...99>
MAXIS=AXIS<1...99>
MINOR=number-of-minor-ticks
NOAXIS
NOBASEREF
NOZERO
RANGE
RAXIS=value-list | AXIS<1...99>
REF=value-list

� catalog entry description options
DESCRIPTION=’entry-description’
NAME=’entry-name’

� ODS options
HTML=variable
HTML_LEGEND=variable

Required Arguments

chart-variable(s)
specifies one or more variables that define the categories of data to chart. Each chart
variable draws a separate chart. All variables must be in the input data set.
Multiple chart variables must be separated with blanks.
See also: “About Chart Variables” on page 997

Options
Options in an HBAR, HBAR3D, VBAR, or VBAR3D statement affect all graphs that

are produced by that statement. You can specify as many options as you want and list
them in any order. For details on specifying colors, see Chapter 12, “SAS/GRAPH Colors
and Images,” on page 167. For details on specifying images, see “Specifying Images in
SAS/GRAPH Programs” on page 181. For a complete description of the graphics options,
see Chapter 15, “Graphics Options and Device Parameters Dictionary,” on page 327.

ANNOTATE=Annotate-data-set
specifies a data set to annotate charts produced by the bar chart statement.
Alias: ANNO=
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

ASCENDING
arranges the bars in ascending order of the value of the chart statistic. By default,
bars are arranged in ascending order of midpoint value, without regard to the

The GCHART Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 1019

lengths of the bars. The ASCENDING option reorders the bars from shortest to
longest. In horizontal bar charts the ordering is top to bottom; in vertical bar charts
the ordering is left to right.

If you also use the GROUP= option, the reordering is performed separately for
each group, so the order of the midpoints might be different for each group.

The ASCENDING option overrides any midpoint order specified with the
MIDPOINTS= option or specified in the ORDER= option in an AXIS statement
assigned to the midpoint axis.

AUTOREF
draws a reference line at each major tick mark on the response axis. To draw
reference lines at specific points on the response axis, use the REF= option.

By default, reference lines in two-dimensional bar charts are drawn in front of the
bars. To draw reference lines behind the bars, use the CLIPREF option.

By default, reference lines in three-dimensional bar charts are drawn on the back
plane of the axis. To draw reference lines in front of the bars, use the FRONTREF
option.
Featured in: Example 5 on page 1075

AXIS=AXIS<1...99>
See RAXIS= on page 1032.

CAUTOREF=reference-line-color
specifies the color of reference lines drawn at major tick marks, as determined by the
AUTOREF option. If you do not specify the CAUTOREF option, the default color is
the value of the CAXIS= option. If neither option is specified, the default color is
retrieved from the current style or from the device’s color list if the NOGSTYLE
option is specified. To specify a line type for these reference lines, use the
LAUTOREF= option.
Style reference: Color attribute of the GraphGridLines element.

CAXIS=axis-color
specifies a color for the response and midpoint axis lines and for the default axis area
frame. If you omit the CAXIS= option, PROC GCHART searches for a color
specification in this order:

1 the COLOR= option in AXIS definitions
2 the color specified in the current style or, if the NOGSTYLE option is specified,

then the default color is black for the Java and ActiveX devices and the first
color in the color list for all other devices.

This option also specifies the default color for all reference lines.
Style reference: Color attribute of the GraphAxisLines attribute.

CERROR=error-bar-color
specifies the color of error bars in bar charts. The default is the color of the response
axis, which is controlled by the CAXIS= option.
Style reference: Color attribute of the GraphError element.

CFRAME=background-color
specifies the color with which to fill the axis area in two-dimensional bar charts or in
the backplane in three-dimensional bar charts.

The axis area color does not affect the frame color, which is always the same as
the midpoint axis line color and controlled by the CAXIS= option. By default, the
axis area in two-dimensional bar charts is not filled.

CFRAME= is overridden by the NOFRAME and IFRAME= options.

Note: If the background color, the bar color, and the outline color are the same,
you might not be able to distinguish the bars. �

1020 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 36

Alias: CFR=
Style reference: Color attribute of the GraphWalls element.
Featured in: Example 4 on page 1072

CFREQ
displays the cumulative frequency statistic in the table of statistics and above
vertical bars. Default statistics are suppressed when you request specific statistics.
For vertical bar charts, this option is ignored if the bars are too narrow to avoid
overlapping values or if the FREQ option is specified.
See also: “About Chart Statistics” on page 1000, “Displaying Statistics in

Horizontal Bar Charts” on page 1036, and “Displaying Statistics in Vertical Bar
Charts” on page 1036

CFREQLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
specifies the text of the column label for the CFREQ statistic in the table of statistics.
Column-label can be up to 32 characters long, but a single line of the label can be no
more than 24 characters. By default, a label with more than one word breaks as
close to the center of the line as possible. A double space in the string forces a line
break. To suppress the label, specify CFREQLABEL=NONE.
Restriction: Not supported by Java or ActiveX

CLIPREF
clips the reference lines at the bars. This makes the reference lines appear to be
behind the bars. Because the CLIPREF option is the default for three-dimensional
bar charts, it affects only two-dimensional charts.

Featured in: Example 5 on page 1075

CLM=confidence-level
specifies the confidence intervals to use when drawing error bars. Values for
confidence-level must be greater than or equal to 50 and strictly less than 100. The
default is 95. See ERRORBAR= for details on how error bars are computed and
drawn.

COUTLINE=bar-outline-color | SAME
outlines all bars or bar segments and legend values in the subgroup legend (if it
appears) using the specified color. SAME specifies that the outline color of a bar or a
bar segment or a legend value is the same as the interior pattern color.

The default outline color depends on the PATTERN statement:
� If you do not specify a PATTERN statement, the default outline color is the

color of the current style.
� If you specify the NOGSTYLE option and no PATTERN statement, the default

outline color is black for the Java or ActiveX devices. Otherwise, the default
outline color is the foreground color. If you specify an EMPTY PATTERN
statement, then the default outline color is the same as the fill color.

Style reference: Color attribute of the GraphOutlines element.
Featured in: Example 3 on page 1070, Example 5 on page 1075 and Example 6 on

page 1078
See also: “Controlling Bar Chart Patterns, Colors, and Images” on page 1037 and

“About Patterns” on page 1002

CPERCENT
displays the cumulative percentage statistic in the table of statistics and above
vertical bars. Default statistics are suppressed when you request specific statistics.
For vertical bar charts, this option is ignored if the bars are too narrow to avoid
overlapping values or if the FREQ, CFREQ, or PERCENT option is specified.

The GCHART Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 1021

Alias: CPCT=
See also: “About Chart Statistics” on page 1000, “Displaying Statistics in

Horizontal Bar Charts” on page 1036, and “Displaying Statistics in Vertical Bar
Charts” on page 1036

CREF=reference-line-color|(reference-line-color)|reference-line-color-list
specifies colors for reference lines. Specifying a single color without parentheses
applies that color to all reference lines, including lines drawn with the AUTOREF
and REF= options. Note that the CAUTOREF= option overrides the CREF=
reference color for reference lines drawn with the AUTOREF option. Specifying a
single color in parentheses applies that color to only the first reference line drawn
with the REF= option. Specifying a reference color list applies colors in sequence to
successive lines drawn with the REF= option. The syntax of the color list is of the
form (color1 color2 ...colorN) or (color1, color2 ..., colorN). If you do not specify the
CREF= option, the GCHART procedure uses the color specified by the CAXIS=
option. If neither option is specified, the default color is retrieved from the current
style or from the first color in the color list if the NOGSTYLE option is specified. To
specify line types for these reference lines, use the LREF= option.
Alias: CR=
Style reference: LineStyle attribute of the GraphGridLines element.

CPERCENTLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
specifies the text of the column label for the CPERCENT statistic in the table of
statistics. Column-label can be up to 32 characters long, but a single line of the label
can be no more than 24 characters. By default, a label with more than one word
breaks as close to the center of the line as possible. A double space in the string
forces a line break. To suppress the label, specify CPERCENTLABEL=NONE.
Restriction: Not supported by Java or ActiveX

CTEXT=text-color
specifies a color for all text on the axes and legend, including axis labels, tick mark
values, legend labels, and legend value descriptions. The GCHART procedure
searches for a color specification in this order:

1 colors specified for labels and values on assigned AXIS and LEGEND
statements, which override the CTEXT= option specified in the BAR statement.

2 the color specified by the CTEXT= option in the BAR statement.
3 the color specified by the CTEXT= option in the GOPTIONS statement.
4 the color specified in the current style, or, if the NOGSTYLE option is specified,

then the default color is black for the Java and ActiveX devices and the first
color in the color list for all other devices.

The LEGEND statement’s VALUE= color is used for legend values, and its
LABEL= color is used for legend labels.

The AXIS statement’s VALUE= color is used for axis values, and its LABEL= color
is used for axis labels. However, if the AXIS statement specifies only general axis
colors with its COLOR= option, the CTEXT= color overrides the general COLOR=
specification and is used for axis labels and values; the COLOR= color is still used for
all other axis colors, such as tick marks.

Note: If you use a BY statement in the procedure, the color of the BY variable
labels is controlled by the CBY= option in the GOPTIONS statement. �
Style reference: Color attributes of the GraphValueText and the GraphLabelText

elements.

DESCENDING
arranges the bars in descending order of the value of the chart statistic. By default,
bars are arranged in ascending order of midpoint value, without regard to the

1022 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 36

lengths of the bars. The DESCENDING option reorders the bars from longest to
shortest. In horizontal bar charts the ordering is top to bottom; in vertical bar charts
the ordering is left to right. If you also use the GROUP= option, the reordering is
performed separately for each group, so the order of the midpoints might be different
for each group.

The DESCENDING option overrides any midpoint order that is specified with the
MIDPOINTS= option or that is specified in the ORDER= option in an AXIS
statement assigned to the midpoint axis.

DESCRIPTION=’description’
specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters. The description does not appear on the chart. By
default, the GCHART procedure assigns a description of the form BAR CHART OF
variable, where variable is the name of the chart variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. Refer to “Substituting BY Line Values in a Text String” on page
294. The 256-character limit applies before the substitution takes place for these
options; thus, if in the SAS program the entry-description text exceeds 256
characters, it is truncated to 256 characters, and then the substitution is performed.

The descriptive text is shown in each of the following:
� the “description” portion of the Results window.
� the catalog-entry properties that you can view from the Explorer window.
� the Description field of the PROC GREPLAY window.
� the data tip text for Web output (depending on the device driver you are using).

See “Data Tips for Web Presentations” on page 598 for details.

Alias: DES=
Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on page

618

DISCRETE
treats a numeric chart variable as a discrete variable rather than as a continuous
variable. The GCHART procedure creates a separate midpoint and, hence, a separate
bar for each unique value of the chart variable. If the chart variable has a format
associated with it, each formatted value is treated as a midpoint.

The LEVELS= option is ignored when you use the DISCRETE option. The
MIDPOINTS= option overrides the DISCRETE option. The ORDER= option in an
AXIS statement that is assigned to the midpoint axis can rearrange or exclude
discrete midpoint values.
Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on page

618

ERRORBAR=BARS | BOTH | TOP
draws confidence intervals for either of the following:

� the mean of the SUMVAR= variable for each midpoint if you specify
TYPE=MEAN

� the percentage of observations assigned to each midpoint if you specify
TYPE=PCT with no SUMVAR= option

The ERRORBAR= option cannot be used with values of the TYPE= option other than
MEAN or PCT. Valid values for the ERRORBAR= option are:

BARS
draws error bars as bars half the width of the main bars.

The GCHART Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 1023

BOTH
draws error bars as two ticks joined by a line (default).

TOP
draws the error bar as a tick for the upper confidence limit that is joined to the top
of the bar by a line.
By default, the ERRORBAR= option uses a confidence level of 95 percent. You can

specify different confidence levels with the CLM= option.
When you use the ERRORBAR= option with TYPE=PCT, the confidence interval is

based on a normal approximation. Let TOTAL be the total number of observations,
and PCT be the percentage assigned to a given midpoint. The standard error of the
percentage is approximated as follows:

APSTDERR=100 * SQRT((PCT/100) * (1--(PCT/100)) / TOTAL);

Let LEVEL be the confidence level specified using the CLM= option, with a default
value of 95. The upper confidence limit for the percentage is computed as follows:

UCLP = PCT + APSTDERR * PROBIT(1-(1-LEVEL/100)/2);

The lower confidence limit for the percentage is computed as follows:

LCLP = PCT - APSTDERR * PROBIT(1-(1-LEVEL/100)/2);

When you use the ERRORBAR= option with TYPE=MEAN, the sum variable must
have at least two non-missing values for each midpoint. Let N be the number of
observations assigned to a midpoint, MEAN be the mean of those observations, and
STD be the standard deviation of the observations. The standard error of the mean
is computed as follows:

STDERR = STD / SQRT(N);

Let LEVEL be the confidence level specified using the CLM= option, with a default
value of 95. The upper confidence limit for the mean is computed as follows:

UCLM = MEAN + STDERR * TINV(1-(1-LEVEL/100)/2, N-1);

The lower confidence limit for the mean is computed as

LCLM = MEAN - STDERR * TINV(1-(1-LEVEL/100)/2, N-1);

If you want the error bars to represent a given number C of standard errors
instead of a confidence interval, and if the number of observations assigned to each
midpoint is the same, then you can find the appropriate value for the CLM= option
by running a DATA step. For example, if you want error bars that represent one
standard error (C=1) with a sample size of N, you can run the following DATA step to
compute the appropriate value for the CLM= option and assign that value to a macro
variable &LEVEL:

data null;
c = 1;
n = 10;
level = 100 * (1 - 2 * (1 - probt(c, n-1)));
put all;
call symput("level",put(level,best12.));
run;

Then when you run the GBARLINE procedure, you can specify CLM=&LEVEL.
Note that this trick does not work precisely if different midpoints have different

numbers of observations. However, choosing an average value for N can yield
sufficiently accurate results for graphical purposes if the sample sizes are large or do
not vary much.

1024 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 36

FRAME | NOFRAME
specifies whether the two-dimentional axis area frame or the three-dimensional
backplane is drawn. The default is FRAME, which draws a frame around the axis
area (in two-dimensional bar charts) or generates a colored three-dimensional
backplane (in three-dimensional bar charts). Specifying the NOFRAME option
removes the axis area frame from two-dimensional charts, including any background
color or image. For three-dimensional charts, NOFRAME removes the backplane
color or image, and leaves the vertical and horizontal axis planes and axes. To
remove these planes, use the NOPLANE option in the AXIS statement. To remove
one or more axis elements, use either the AXIS statement or the NOAXIS option.

The NOFRAME option overrides the CFRAME= and IFRAME= options and the
IBACK= goption“IBACK” on page 386.

The color of the frame or backplane outline is the color of the midpoint axis, which
is determined by the CAXIS= option.
Alias: FR|NOFR=
Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on page

618 and Example 6 on page 1078

FREQ
displays the frequency statistic in the table of statistics and above vertical bars.
Non-integer values are rounded down to the nearest integer. Default statistics are
suppressed when you request specific statistics. For vertical bar charts, this option is
ignored if the bars are too narrow to avoid overlapping values. This option overrides
the CFREQ, PERCENT, CPERCENT, SUM, and MEAN options.
Featured in: Example 5 on page 1075
See also: “About Chart Statistics” on page 1000, “Displaying Statistics in

Horizontal Bar Charts” on page 1036, and “Displaying Statistics in Vertical Bar
Charts” on page 1036

FREQLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
specifies the text of the column label for the FREQ statistic in the table of statistics.
column-label can be up to 32 characters long, but a single line of the label can be no
more than 24 characters. By default, a label with more than one word will break as
close to the center of the line as possible. A double space in the string forces a line
break. To suppress the label, specify FREQLABEL=NONE.
Featured in: Example 5 on page 1075 and Example 6 on page 1078
Restriction: Not supported by Java or ActiveX

FREQ=numeric-variable
specifies a variable whose values weight the contribution of each observation in the
computation of the chart statistic. Each observation is counted the number of times
that is specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, 0, or negative, the observation is not used in the
statistic calculation. Non-integer values of numeric-variable are truncated to
integers. FREQ= is valid with all chart statistics.

Because you cannot use TYPE=PERCENT, TYPE=CPERCENT, TYPE=FREQ, or
TYPE=CFREQ with the SUMVAR= option, you must use FREQ= to calculate
percentages, cumulative percentages, frequencies, or cumulative frequencies based on
a sum.

The statistics are not affected by applying a format to numeric-variable.
See also: “Calculating Weighted Statistics” on page 1001

FRONTREF
specifies that reference lines drawn by the AUTOREF or REF= options should be
drawn in front of the bars. By default, reference lines in three-dimensional bar
charts are drawn on the back plane of the axis.

The GCHART Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 1025

G100
calculates the percentage and cumulative percentage statistics separately for each
group. When you use the G100 option, the individual percentages reflect the
contribution of the midpoint to the group and total 100 percent for each group. The
G100 option is ignored unless you also use the GROUP= option.

By default, the individual percentages reflect the contribution of the midpoint to
the entire chart and total 100 percent for the entire chart.

GAXIS=AXIS<1...99>
assigns the specified AXIS definition to the group axis. (A group axis is created when
you use the GROUP= option.) You can use the AXIS definition to modify the order of
the groups, the text of the labels, and appearance of the axis. The GAXIS= option is
ignored if the specified AXIS definition does not exist.

The AXIS statement options MAJOR= and MINOR= are ignored in AXIS
definitions assigned to the group axis because the axis does not use tick marks. A
warning message is written to the SAS log if these options appear in the AXIS
definition.

The Java and ActiveX devices do not support all AXIS statement options. See
“AXIS Statement” on page 198 for more information.

To remove groups from the chart, use the ORDER= option in the AXIS statement.
To suppress the brackets drawn around the values on the group axis in vertical

bar charts, use the NOBRACKETS option in the AXIS statement.

Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on page
618

Restriction: Partially supported by Java and ActiveX

See also: “AXIS Statement” on page 198

GROUP=group-variable
organizes the data according to values of group-variable. Group-variable can be
either character or numeric and is always treated as a discrete variable.

The GROUP= option produces a separate group of bars for each unique value of
the group variable. Missing values for group-variable are treated as a valid group.
The groups are arranged in ascending order of the group variable values.

By default, each group includes all midpoints, even if no observations for the group
fall within the midpoint range, meaning that no bar is drawn at the midpoint. Use
the NOZERO option to suppress midpoints with no observations.

The GROUP= option also produces a group axis that lists the values that
distinguish the groups. The group axis has no axis line but displays the group
variable name or label. To modify the group axis, assign an AXIS definition with the
GAXIS= option.

In horizontal bar charts, the group axis is to the left of the midpoint axis and the
groups are arranged from top to bottom, starting with the lowest value at the top.

In vertical bar charts, the group axis is below the midpoint axis and the groups
are arranged from left to right starting with the lowest value at the left. If the group
label in a vertical bar chart is narrower than all the bars in the group, brackets are
added to the label to emphasize which bars belong in each group. Group brackets are
not displayed if the space between the group values is less than one and one-half
character cells. Use the NOBRACKETS option in the AXIS statement to suppress
the group brackets.

Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on page
618

GSPACE=group-spacing
specifies the amount of extra space between groups of bars. Group-space can be any
non-negative number. Units are character cells. Use GSPACE=0 to leave no extra

1026 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 36

space between adjacent groups of bars. In this case, the same space appears between
groups of bars as between the bars in the same group.

The GSPACE= option is ignored unless you also use the GROUP= option. By
default, the GCHART procedure calculates group spacing based on the size of the
axis area and the number of bars in the chart.
Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on page

618

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS statement. These links are associated with an area of the
chart and point to the data or graph you want to display when the user drills down
on the area. There is no limit on the length of the variable.
See also: “Overview of Enhancing Web Presentations” on page 596

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS statement. These links are associated with a legend value
and point to the data or graph you want to display when the user drills down on the
value. The values of variable can be up to 1024 characters long. Characters after the
1024-character limit (including any closing quotes) are truncated.
Restriction: Not supported by Java or ActiveX.
See also: “Overview of Enhancing Web Presentations” on page 596

IFRAME=fileref | ’external-file’
specifies an image file to use on a 2–D chart’s frame area or a 3–D chart’s backplane.
Fileref must be a valid SAS fileref up to eight characters long and must have been
previously assigned with a FILENAME statement. External-image-file must specify
the complete file name of the image file you want to use. The format of
external-image-file varies across operating environments.

See also the IMAGESTYLE= option and “Displaying an Image in Graph Frame”
on page 184.

This option is overridden by the NOIMAGEPRINT goption.
To fill the backplane frame of two-dimensional bar charts, see the IBACK= goption.

Restriction: Not supported by Java

IMAGESTYLE= TILE | FIT
specifies whether to use multiple instances of an image to fill the axis frame or
backplane (TILE) or to stretch a single instance of an image to fill the axis frame or
backplane frame (FIT). The TILE value is the default.

See also the IFRAME= option.
Restriction: Not supported by Java

INSIDE=statistic
displays the values of the specified statistic inside the bars. For the Java and
ActiveX devices, this option is valid for both horizontal and vertical bar charts. For
other devices, this option is valid only for vertical bar charts. For subgrouped bar
charts generated with the Java and ActiveX devices, you can display only one
statistic for each bar (these devices do not create both inside and outside bar labels).
For graphs generated with the Java and ActiveX devices, the OUTSIDE= option
overrides INSIDE=.

Statistic can be one of the following:

� FREQ
� CFREQ
� CPERCENT | CPCT

The GCHART Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 1027

� MEAN

� PERCENT | PCT
� SUM

If the bars are subgrouped, only the following statistics are valid:

� FREQ

� PERCENT | PCT

� SUBPCT

� SUM

With subgroups, PERCENT displays the percent contribution of each subgroup to
the midpoint value of the bar, based on frequency. The PERCENT values for each
subgroup total the percent contribution of the bar to the whole. For example, if the
percent contribution of the whole bar is 60%, the PERCENT statistic for all the
subgroups in that bar are 60% total. To calculate PERCENT based on the SUMVAR=
variable, use the FREQ= and TYPE= options. For details, see “Calculating Weighted
Statistics” on page 1001.

SUBPCT displays the percent contribution of each subgroup to the total bar. The
SUBPCT values for each subgroup total the percent contribution to the whole bar.
Because of rounding, the total of the percents might not equal 100.

Featured in: Example 4 on page 1072, and “Example: Creating Bar Charts with
Drill-Down for the Web” on page 618

See also: “About Chart Statistics” on page 1000, “Displaying Statistics in
Horizontal Bar Charts” on page 1036, and “Displaying Statistics in Vertical Bar
Charts” on page 1036

LAUTOREF=reference-line-type
specifies the line type for reference lines at major tick marks, as determined by the
AUTOREF option. Line types are specified as whole numbers from 1 to 46, with 1
representing a solid line and the other values representing dashed lines. The default
line type is retrieved from the current style, or if the NOGSTYLE option is specified,
the default value is 1, which draws a solid line. To specify a color for these reference
lines, use the CAUTOREF= option.

Style reference: LineStyle attribute of the GraphGridLines element.

LEGEND=LEGEND<1...99>
assigns the specified LEGEND definition to the legend generated by the
SUBGROUP= option. The LEGEND= option itself does not generate a legend.

LEGEND= is ignored if any of the following is true:
� The SUBGROUP= option is not used.

� The specified LEGEND definition is not in effect.

� The NOLEGEND option is used.

� The PATTERNID= option is set to any value other than SUBGROUP; that is,
the value of PATTERNID= is BY or GROUP or MIDPOINT.

To create a legend based on the chart midpoints instead of the subgroups, use the
chart variable as the subgroup variable:

hbar city / subgroup=city;

The Java and ActiveX devices do not support all LEGEND statement options. See
“LEGEND Statement” on page 225 for more information.

Featured in: Example 4 on page 1072

See also: “LEGEND Statement” on page 225 and SUBGROUP= on page 1033 option

1028 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 36

LEVELS=number-of-midpoints|ALL
specifies the number of midpoints for a numeric chart variable. The range for each
midpoint is calculated automatically, using the algorithm in Terrell and Scott (1985).

If you specify LEVELS=ALL, then all unique midpoint values are graphed. If your
data contains a large number of unique midpoint values (over 200), you can use the
XPIXELS and YPIXELS GOPTIONS to enable the device driver to render a larger
(and more readable) graph.

The LEVELS= option is ignored if any of the following are true:
� The chart variable is character type.
� The DISCRETE option is used.
� The MIDPOINTS= option is used.

LREF=reference-line-type|(reference-line-type|reference-line-type-list)
specifies line types for reference lines. Line types are specified as whole numbers
from 1 to 46, with 1 representing a solid line and the other values representing
dashed lines. Specifying a line type without parentheses applies that type to all
reference lines drawn with the AUTOREF and REF= options. Note that the
LAUTOREF= option overrides LREF=reference-line-type for reference lines drawn
with the AUTOREF option. Specifying a single line type in parentheses applies that
line type to the first reference line drawn with the REF= option. Specifying a line
type list applies line types in sequence to successive reference lines drawn with the
REF= option. The syntax of the line-type list is of the form (type1 type2 ...typeN). If
you do not specify the LREF= option, the GCHART procedure uses the type specified
by the AXIS statement’s STYLE= option. If neither option is specified, the default
line type is retrieved from the current style, or if the NOGSTYLE option is specified,
the default value is 1, which draws a solid line. To specify colors for these reference
lines, use the CREF= option.
Style reference: LineStyle attribute of the GraphGridLines element.
Alias: LR=
Restriction: Not supported by Java

MAXIS=AXIS<1...99>
assigns the specified AXIS definition to the midpoint axis. The MAXIS= option is
ignored if the specified AXIS definition does not exist.

The Java and ActiveX devices do not support all AXIS statement options. See
“AXIS Statement” on page 198 for more information.
Featured in: Example 4 on page 1072
Restriction: Partially supported by Java and ActiveX
See also: “AXIS Statement” on page 198 and “About Midpoints” on page 998

MEAN
displays the mean statistic in the table of statistics and above vertical bars. By
default, the column heading in the table includes the name of the variable for which
the mean is calculated. Default statistics are suppressed when you request specific
statistics. For vertical bar charts, this option is ignored if the bars are too narrow to
avoid overlapping values or if the FREQ, CFREQ, PERCENT, CPERCENT, or SUM
option is specified. The MEAN option is ignored unless you also use the SUMVAR=
option.
See also: “About Chart Statistics” on page 1000, “Displaying Statistics in

Horizontal Bar Charts” on page 1036, and “Displaying Statistics in Vertical Bar
Charts” on page 1036

MEANLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
specifies the text of the column label for the MEAN statistic in the table of statistics.
column-label can be up to 32 characters long, but a single line of the label can be no

The GCHART Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 1029

more than 24 characters. By default, a label with more than one word breaks as
close to the center of the line as possible. A double space in the string forces a line
break. To suppress the label, specify MEANLABEL=NONE.

Featured in: Example 6 on page 1078

Restriction: Not supported by Java and ActiveX

MIDPOINTS=value-list
specifies the midpoint values for the bars. The way you specify value-list depends on
the type of the chart variable.

� For numeric chart variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>

n TO n <BY increment>

n<...n> TO n <BY increment> <n <...n>>

If a numeric variable has an associated format, the specified values must be
the unformatted values.

If you omit the DISCRETE option, then numeric values are treated as
continuous, which means that the following is true by default:

� The lowest midpoint consolidates all data points from negative infinity to
the median of the first two midpoints.

� The highest midpoint consolidates all data points from the median of the
last two midpoints up to infinity.

� All other values in value-list specify the median of a range of values, and
the GCHART procedure calculates the midpoint values.

If you include the DISCRETE option, then each value in value-list specifies a
unique numeric value.

� For character chart variables, value-list is a list of unique character values
enclosed in quotation marks and separated by blanks:

’value-1’ <...’value-n’>

If a character variable has an associated format, the specified values must be
the formatted values.

For a complete description of value-list, see the ORDER= option on page 205 in the
AXIS statement.

If the value-list for either type of variable specifies so many midpoints that the
axis values overwrite each other, the values may be unreadable. In this case the
procedure writes a warning to the SAS log. On many devices, this problem can be
corrected by either adjusting the size of the text with the HTEXT= graphics option or
by increasing the number of cells in your graphics display using the HPOS= and
VPOS= graphics options.

The ORDER= option in the AXIS statement overrides the order specified in the
MIDPOINTS= option. The bar chart statement options ASCENDING and
DESCENDING also override both MIDPOINTS= and ORDER= in the AXIS
statement.

Featured in: Example 5 on page 1075

See also: “About Midpoints” on page 998

MIDPOINTS=OLD
generates default midpoints using the Nelder algorithm (Applied Statistics 25:94–7,
1976). The MIDPOINTS=OLD option is ignored unless the chart variable is numeric.

1030 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 36

MINOR=number-of-minor-ticks
specifies the number of minor tick marks between each major tick mark on the
response axis.

The MINOR= option in a bar chart statement overrides the number of minor tick
marks specified in the MINOR= option in an AXIS definition assigned to the
response axis with the RAXIS= option.

MISSING
accepts a missing value as a valid midpoint for the chart variable. By default,
observations with missing values are ignored. Missing values are always valid for
group and subgroup variables.

NAME=’entry-name’
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default name is GCHART.
If the name duplicates an existing name, then SAS/GRAPH adds a number to the
name to create a unique name-for example, GCHART1.

See also: “About Filename Indexing” on page 99

Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on page
618

NOAXIS
suppresses all axes, including axis lines, axis labels, axis values, and all major and
minor tick marks. If you specify an axis definition with the GAXIS, MAXIS=, or
RAXIS= options, then the axes are generated as defined in the AXIS statement, but
then all lines, labels, values, and tick marks are suppressed. Therefore, axis
statement options such as ORDER=, LENGTH, and OFFSET= are still used.

To remove only selected axis elements such as lines, values or labels, use specific
AXIS statement options.

The NOAXIS option does not suppress either the default frame or an axis area fill
requested by the CFRAME= option. To remove the axis frame or the
three-dimensional backplane, use the NOFRAME option in the procedure. To remove
the horizontal or vertical axis planes, use the NOPLANE option in the AXIS
statement.

NOBASEREF
suppresses the zero reference line when the SUM or MEAN chart statistic has
negative values.

NOLEGEND
suppresses the legend that is automatically generated by the SUBGROUP= option.
The NOLEGEND option is ignored if the SUBGROUP= option is not used.

NOPLANE
removes either the horizontal or vertical three-dimensinal axis plane in bar charts
produced by the HBAR3D and VBAR3D statements. NOPLANE affects only the axis
to which the AXIS statement applies.

To remove selected axis elements such as lines, values or labels, use specific AXIS
statement options. To remove all axis elements except the three-dimensional planes
use the NOAXIS option in the procedure. To remove the backplane, use the
NOFRAME option in the procedure.

This option is not supported by the GRADAR Procedure.

Featured in: “Example 7. Using BY-group Processing to Generate a Series of
Charts” on page 309.

The GCHART Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 1031

NOSTATS (HBAR and HBAR3D only)
suppresses the table of statistics. The NOSTATS option suppresses both the default
statistics and specific statistics requested by the FREQ, CFREQ, PERCENT,
CPERCENT, SUM, and MEAN options.

Restriction: Not supported by Java

NOZERO
suppresses any midpoints for which there are no corresponding values of the chart
variable and, hence, no bar. The NOZERO option usually is used with the GROUP=
option to suppress midpoints when not all values of the chart variable are present for
every group or if the chart statistic for the bar is 0.

Note: If a bar is omitted and if you have also specified bar labels with the
VALUE= option in an AXIS statement, then the labels can be shifted and not
displayed with the correct bar. �

Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on page
618

OUTSIDE=statistic
displays the values of the specified statistic above the bars. For the Java and ActiveX
devices, this option is valid for both horizontal and vertical bar charts. For other
devices, this option is valid only for vertical bar charts. For subgrouped bar charts
generated with the Java and ActiveX devices, you can display only one statistic for
each bar (these devices do not create both inside and outside bar labels). For graphs
generated with the Java and ActiveX devices, the OUTSIDE= option overrides
INSIDE=.

Statistic can be one of the following:

� FREQ

� CFREQ

� PERCENT | PCT

� CPERCENT | CPCT

� SUM

� MEAN

Featured in: Example 4 on page 1072 and “Example: Creating Bar Charts with
Drill-Down for the Web” on page 618

See also: “About Chart Statistics” on page 1000, “Displaying Statistics in
Horizontal Bar Charts” on page 1036, and “Displaying Statistics in Vertical Bar
Charts” on page 1036

PATTERNID=BY | GROUP | MIDPOINT | SUBGROUP
specifies the way fill patterns are assigned. By default, PATTERNID=SUBGROUP.
Values for PATTERNID= are as follows:

BY
changes patterns each time the value of the BY variable changes. All bars use the
same pattern if the GCHART procedure does not include a BY statement.

GROUP
changes patterns every time the value of the group variable changes. All bars in
each group use the same pattern, but a different pattern is used for each group.

MIDPOINT
changes patterns every time the midpoint value changes. If you use the GROUP=
option, the respective midpoint patterns are repeated for each group.

1032 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 36

SUBGROUP
changes patterns every time the value of the subgroup variable changes. The bars
must be subdivided by the SUBGROUP= option for the SUBGROUP value to have
an effect. Without the SUBGROUP= option, all bars have the same pattern.

Note: If you use the SUBGROUP= option and specify a PATTERNID= value other
than SUBGROUP, the bar segments use the same pattern and are
indistinguishable. �
Featured in: Example 4 on page 1072 and “Example: Creating Bar Charts with

Drill-Down for the Web” on page 618
See also: “Controlling Bar Chart Patterns, Colors, and Images” on page 1037

PERCENT
prints the percentages of observations having a given value for the chart variable in
the table of statistics and above vertical bars. Default statistics are suppressed when
you request specific statistics. For vertical bar charts, this option is ignored if the
bars are too narrow to avoid overlapping values or if the FREQ or CFREQ option is
specified.
Alias: PCT
See also: “About Chart Statistics” on page 1000, “Displaying Statistics in

Horizontal Bar Charts” on page 1036, and “Displaying Statistics in Vertical Bar
Charts” on page 1036

PERCENTSUM
calculates a percent of the sum variable for horizontal bar charts. The
PERCENTSUM option is ignored if the SUMVAR= option is not specified.
Alias: PCTSUM
See also: “About Chart Statistics” on page 1000, “Displaying Statistics in

Horizontal Bar Charts” on page 1036, and “Displaying Statistics in Vertical Bar
Charts” on page 1036

PERCENTLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
specifies the text of the column label for the PERCENT statistic in the table of
statistics. column-label can be up to 32 characters long, but a single line of the label
can be no more than 24 characters. By default, a label with more than one word
breaks as close to the center of the line as possible. A double space in the string
forces a line break. To suppress the label, specify PERCENTLABEL=NONE.
Restriction: Not supported by Java and ActiveX

RANGE
displays on the axis of the chart the range of numeric values represented by each
bar. In the graphics output, the starting value of each range is indicated with the
less-than symbol (<), and the ending value is indicated with the
greater-than-or-equal-to symbol (>=). The RANGE option has no affect on axes that
represent character data. By default, the values shown on the axis are determined
by the value of the MIDPOINTS= option on page 1029. If specified, the DISCRETE
option on page 1022 overrides the RANGE option.

RAXIS=value-list | AXIS<1...99>
AXIS=value-list | AXIS<1...99>

specifies values for the major tick mark divisions on the response axis or assigns the
specified AXIS definition to the axis. See the MIDPOINTS= option on page 1029 for a
description of value-list. By default, the GCHART procedure scales the response axis
automatically and provides an appropriate number of tick marks.

You can specify negative values, but negative values are reasonable only when
TYPE=SUM or TYPE=MEAN and one or more of the sums or means are less than 0.
Frequency and percentage values are never less than 0.

The GCHART Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 1033

For lists of values, a separate major tick mark is created for each individual value.
A warning message is written to the SAS log if the values are not evenly spaced.

If the values represented by the bars are larger than the highest tick mark value,
the bars are truncated at the highest tick mark.

If you use a BY statement with the PROC GCHART statement, then the same
response axes are produced for each BY group when RAXIS=value-list is used or if
there is an ORDER= list in the AXIS statement assigned to the response axis.

The Java and ActiveX devices do not support all AXIS statement options. See
“AXIS Statement” on page 198 for more information.

Featured in: Example 4 on page 1072 and “Example: Creating Bar Charts with
Drill-Down for the Web” on page 618

Restriction: Partially supported by Java and ActiveX

See also: “AXIS Statement” on page 198

REF=value-list
draws reference lines at the specified points on the response axis. See the
MIDPOINTS= option on page 1029 for a description of value-list.

Values can be listed in any order, but should be within the range of values
represented by the response axis. A warning is written to the SAS log if any of the
points are off of the axis, and no reference line is drawn for such points. You can use
the AUTOREF option to draw reference lines automatically at all of the major tick
marks.

By default, reference lines in three-dimensional bar charts are drawn on the back
plane of the axis. To draw the reference lines in front of the bars, use the
FRONTREF option.

SHAPE=three-dimensional-bar-shape (HBAR3D and VBAR3D only)
specifies the shape of the bars in charts that are produced with the HBAR3D and
VBAR3D statements. three-dimensional-bar-shape can be one of the following:

� BLOCK | B (the default)

� CYLINDER | C
� HEXAGON | H

� PRISM | P
� STAR | S

Featured in: “Example: Creating Bar Charts with Drill-Down for the Web” on page
618

SPACE=bar-spacing
specifies the amount of space between individual bars or between the bars within
each group if you also use the GROUP= option. Bar-spacing can be any non-negative
number, including decimal values. Units are character cells. By default, the
GCHART procedure calculates spacing based on the size of the axis area and the
number of bars on the chart. Use SPACE=0 to leave no space between adjacent bars.

The SPACE= option is ignored if the following is true:

� You specify the WIDTH= option and are using the Java or ActiveX devices.

� The specified spacing requests a chart that is too large to fit in the space
available for the midpoint axis. In this case, a warning message is issued.

Featured in: Example 4 on page 1072 and “Example: Creating Bar Charts with
Drill-Down for the Web” on page 618

SUBGROUP=subgroup-variable
divides the bars into segments according to the values of subgroup-variable.
Subgroup-variable can be either character or numeric and is always treated as a

1034 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 36

discrete variable. SUBGROUP= creates a separate segment within each bar for
every unique value of the subgroup variable for that midpoint.

If PATTERNID=SUBGROUP (the default setting), each segment is filled with a
different pattern and a legend that provides a key to the patterns is automatically
generated. If the value of PATTERNID= is anything other than SUBGROUP, the
segments are all the same color, the legend is suppressed, and the subgrouping effect
is lost.

By default the legend appears at the bottom of the chart. To modify the legend,
assign a LEGEND definition with the LEGEND= option. To suppress the legend,
specify NOLEGEND.

Featured in: Example 4 on page 1072, “Example: Creating Bar Charts with
Drill-Down for the Web” on page 618 and Example 5 on page 1075

See also: “LEGEND Statement” on page 225

SUM
displays the sum statistic in the table of statistics and above vertical bars. By
default, the column heading in the table includes the name of the variable for which
the sum is calculated. Default statistics are suppressed when you request specific
statistics. For vertical bar charts, this option is ignored if the bars are too narrow to
avoid overlapping values or if the FREQ, CFREQ, PERCENT, or CPERCENT option
is specified. SUM is ignored unless you also use the SUMVAR= option.

See also: “About Chart Statistics” on page 1000, “Displaying Statistics in
Horizontal Bar Charts” on page 1036, and “Displaying Statistics in Vertical Bar
Charts” on page 1036

SUMLABEL=’column-label’ | NONE (HBAR and HBAR3D only)
specifies the text of the column label for the SUM statistic in the table of statistics.
Column-label can be up to 32 characters long, but a single line of the label can be no
more than 24 characters. By default, a label with more than one word breaks as
close to the center of the line as possible. A double space in the string forces a line
break. To suppress the label, specify SUMLABEL=NONE.

Restriction: Not supported by Java and ActiveX

SUMVAR=summary-variable
specifies a numeric variable for sum or mean calculations. The GCHART procedure
calculates the sum or, if requested, the mean of summary-variable for each midpoint.
The resulting statistics are represented by the length of the bars along the response
axis, and they are displayed at major tick marks.

When you use the SUMVAR= option, the TYPE= option must be either SUM or
MEAN. With the SUMVAR= option, the default is TYPE=SUM.

Featured in: Example 3 on page 1070 and Example 6 on page 1078

TYPE=statistic
specifies the chart statistic.

� If the SUMVAR= option is not used, statistic can be one of the following:

FREQ
frequency (the default)

CFREQ
cumulative frequency

PERCENT PCT
percentage

CPERCENT CPCT
cumulative percentage

The GCHART Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 1035

� If the SUMVAR= option is used, statistic can be either of the following:

SUM
sum (the default)

MEAN
mean

Because you cannot use TYPE=FREQ, TYPE=CFREQ, TYPE=PERCENT, or
TYPE=CPERCENT with the SUMVAR= option, you must use the FREQ= option to
calculate percentages, cumulative percentages, frequencies, or cumulative
frequencies based on a sum. See also “Calculating Weighted Statistics” on page 1001.

If you specify TYPE=MEAN and use the SUBGROUP= option, the height or length
of the bar represents the mean for the entire midpoint. The subgroup segments are
proportional to the subgroup’s contribution to the sum for the bar. See also
SUBGROUP= on page 1033.
Featured in: Example 6 on page 1078
See also: “About Chart Statistics” on page 1000 for a complete description of

statistic types

WAUTOREF=reference-line-width
specifies the line width for reference lines at major tick marks, as determined by the
AUTOREF option. Line widths are specified as whole numbers. The default line
width is specified by the current style or by the AXIS statement’s WIDTH= option.
(By default, WIDTH=1.) To specify a color for these reference lines, use the
CAUTOREF= option.
Style reference: LineThickness attribute of the GraphGridLines element.

WIDTH=bar-width
specifies the width of the bars. By default, the GCHART procedure selects a bar
width that accommodates the midpoint values displayed on the midpoint axis using a
hardware font and a height of one cell. Units for bar-width are character cells. The
value for bar-width must be greater than 0, but it does not have to be an integer, for
example:

vbar site / width=1.5;

If the requested bar width results in a chart that is too large to fit in the space
available for the midpoint axis, then the procedure issues a warning in the log and
ignores the WIDTH= option. If the specified width is too narrow, the procedure
displays the midpoint values vertically.
Featured in: Example 4 on page 1072

WOUTLINE=bar-outline-width
specifies the width of the outline in pixels. The WOUTLINE= option affects both the
bar and the subgroup outlines.
Style reference: LineThickness attribute of the GraphOutlines element.
Restriction: Not supported by Java

WREF=reference-line-width
specifies line widths for reference lines. Line widths are specified as whole numbers.
To specify colors for these reference lines, use the CREF= option.
Style reference: LineThickness attribute of the GraphReference element.
Restriction: Not supported by Java

The Chart Statistic and the Response Axis
In bar charts, the scale of values of the chart statistic is displayed on the response

axis. By default, the response axis is divided into evenly spaced intervals identified

1036 HBAR, HBAR3D, VBAR, and VBAR3D Statements � Chapter 36

with major tick marks that are labeled with the corresponding statistic value. Minor
tick marks are evenly distributed between the major tick marks unless a log axis has
been requested. For sum and mean statistics, the major tick marks are labeled with
values of the SUMVAR= variable (formatted if the variable has an associated format).
The response axis is also labeled with the statistic type.

Specifying Logarithmic Axes
Logarithmic axes can be specified with the AXIS statement. See “AXIS Statement” on
page 198 for a complete discussion.

Displaying Statistics in Horizontal Bar Charts
For graphs generated with the Java and ActiveX devices, default statistics are not

generated, but you can display one statistic at the end of each bar. To specify the
statistic, specify the FREQ, CFREQ, PERCENT, CPERCENT, PERCENTSUM, SUM, or
MEAN option.

For graphs generated with other devices, the HBAR and HBAR3D statements print a
table of statistic values to the right of the bars. When the value of TYPE= is FREQ,
CFREQ, PERCENT, or CPERCENT, the frequency, cumulative frequency, percentage,
and cumulative percentage statistics are printed next to the bars by default. When
TYPE=SUM, the frequency and sum statistic values are printed by default. When
TYPE=MEAN, the frequency and mean statistic values are printed by default. However,
if you use the FREQ, CFREQ, PERCENT, CPERCENT, PERCENTSUM, SUM, or
MEAN options to request specific statistics, the default statistics are not printed.

For sum and mean, the name of the SUMVAR= variable is added to the heading for
the column of values.

Specifying the Table of Statistics
You can use the FREQ, CFREQ, PERCENT, CPERCENT, PERCENTSUM, SUM, and
MEAN options to select only certain statistics. Without the SUMVAR= option, only the
frequency, cumulative frequency, percentage, and cumulative percentage statistics can
be printed. With SUMVAR=, all statistics, including the sum and mean, can be printed.
You can suppress all statistics with the NOSTATS option.

To change the column labels for any statistic in the table, use one or more of the
statistic column label options: FREQLABEL=, CFREQLABEL=, PERCENTLABEL=,
CPERCENTLABEL=, SUMLABEL=, and MEANLABEL=.

To control the font and size of the text in the table of statistics, use the HTEXT= and
FTEXT= graphics options.

Displaying Statistics in Vertical Bar Charts
Statistic values on vertical bar charts are not printed by default, so you must

explicitly request a statistic with the FREQ, CFREQ, PERCENT, CPERCENT, SUM,
MEAN, INSIDE=, or OUTSIDE= option.

For graphs generated with the Java and ActiveX devices, you can display one
statistic for each bar. For graphs generated with other devices, you can display up to
two statistics. Statistics can be displayed either above the bars or inside the bars.

To specify a statistic that you want to display above the bars, specify the statistic
option (FREQ, CFREQ, PERCENT, CPERCENT, SUM, or MEAN) or specify
OUTSIDE=statistic. To specify a statistic that you want to display inside the bars,
specify INSIDE=statistic.

For graphs generated with the Java and ActiveX devices, the OUTSIDE= option
overrides INSIDE=, and INSIDE= overrides the FREQ, CFREQ, PERCENT,
CPERCENT, SUM, and MEAN options. For graphs generated with other devices, the
individual statistic options override the OUTSIDE= option.

The GCHART Procedure � HBAR, HBAR3D, VBAR, and VBAR3D Statements 1037

If more than one statistic option is specified, only the highest priority statistic is
displayed. The priority order, from highest to lowest, is as follows:

1 FREQ

2 CFREQ

3 PERCENT

4 CPERCENT

5 PERCENTSUM

6 SUM

7 MEAN

The bars must be wide enough to accommodate the text. You can adjust the width of
the bars with the WIDTH= option. To control the font and size of the text, use the
HTEXT= and FTEXT= graphics options.

Ordering and Selecting Midpoints
To rearrange character or discrete numeric midpoint values or to select ranges for

numeric values, use the MIDPOINTS= option. Remember that although changing the
number of midpoints for numeric variables can change the range of values for
individual midpoints, it does not change the range of values for the chart as a whole.
For details, see “About Midpoints” on page 998.

Like the MIDPOINTS= option, the ORDER= option in the AXIS statement can
rearrange the order of the midpoints or suppress the display of discrete numeric or
character values. However, the ORDER= option cannot calculate the midpoints for a
continuous numeric variable, or exclude values from the calculations. For details, see
the description of the ORDER= option on page 205.

Controlling Bar Chart Patterns, Colors, and Images

Default Patterns and Outlines
Each bar in a bar chart is filled with a pattern. Because the system option, GSTYLE, is
in effect by default, the procedure will use the style’s default patterns and outlines
when producing output. By default, the procedure does the following:

� fills the bars with bar patterns, beginning with the default fill, SOLID, and rotates
it through the list of colors available in the default style. When these colors are
exhausted, the procedure a slightly modified version of the original color list. It
continues in this fashion until each of the chart variables have been assigned a
unique pattern.

If you use the default style colors and the first color in the list is either black or
white, then the procedure does not create a pattern in that color. If you specify a
color list with the COLORS= graphics option, the procedure uses all the colors in
the list to generate the patterns.

� outlines bars and bar segments using the color defined by the style.

See “About Patterns” on page 1002 for more information on how the GCHART
procedure assigns default patterns and outlines.

User-Defined Patterns
To override the default patterns and select fills and colors for the bars or bar segments,
use the PATTERN statement. Only bar or block patterns are valid; all other pattern
fills are ignored. For a complete description of all bar or block patterns, see VALUE=
option on page 242 in “PATTERN Statement” on page 240.

1038 PIE, PIE3D, and DONUT Statements � Chapter 36

Whenever you use PATTERN statements, the default pattern outline color is that of
the current style. Only when the EMPTY pattern is used does the pattern change to
SAME. That is, the outline color is the same as the fill color. To specify the outline
color, use the COUTLINE= option (see COUTLINE=).

When Patterns Change
The PATTERNID= option controls when the pattern changes. By default,
PATTERNID=SUBGROUP. Therefore, when you use the SUBGROUP= option to
subdivide the bars, the pattern automatically changes each time the subgroup value
changes, and each subdivision of the bar displays a different pattern. As a result, the
number of values for the SUBGROUP= variable determines the number of bar patterns
on the chart. If you do not subdivide the bars, all bars use the same pattern.

Instead of changing the pattern for each subgroup, you can change the pattern for
each midpoint, each group, or each BY group by changing the value of PATTERNID=.
See the PATTERNID= option on page 1031 for details.

Axis Color
By default, axis elements use the colors specified in the current style or the colors that
are specified by AXIS statement color options. However, action statement options can
also control the color of the axis lines, text, and frame.

To change the color of... Use this option...

the axis text CTEXT=

the axis lines CAXIS=

the area within the frame CFRAME=

Adding Images to Bar Charts
You can apply images to the bars and to the backplane frame of two-dimensional bar
charts developed with the HBAR and VBAR statements. In three–dimensional bar
charts, you can apply images to the backplane frame. For details, see “Specifying
Images in SAS/GRAPH Programs” on page 181.

PIE, PIE3D, and DONUT Statements

Create pie or donut charts in which the size of a pie slice represents the value of the chart
statistic for that category of data in relation to the total chart statistic for all categories.

Requirements: At least one chart variable is required.
Global statements: LEGEND, PATTERN, TITLE, FOOTNOTE

Supports: Drill-down functionality

Description
The PIE, PIE3D, and DONUT statements specify the variable or variables that define
the categories of data to chart. These statements automatically do the following:

The GCHART Procedure � PIE, PIE3D, and DONUT Statements 1039

� determine the midpoints.
� calculate the chart statistic for each midpoint (the default is FREQ).
� scale each slice to represent its chart statistic. No slice is drawn if the chart

statistic for the midpoint is 0.
� order the slices by midpoint value in ascending order starting at the three o’clock

position and proceeding counterclockwise around the pie.
� print the slice name (midpoint value) and slice value (chart statistic) beside each

slice.
� assign patterns and colors to the slices. The default pie pattern is PSOLID.

You can use statement options to select or order the midpoints (slices), to change the
type of chart statistic, and to modify the appearance of the chart, including the content
and position of the slice labels, and patterns used by the slices. You can also specify
additional variables by which to group, subgroup, or sum the data. Statement options
can also produce special effects, such as exploded or invisible slices.

Donut and pie charts allow grouping and subgrouping. Grouping creates two or more
separate pie or donut charts that display in rows or columns on one graph.
Subgrouping creates a separate ring of slices within the circle for each value of the
subgroup variable. The concentric rings of the subgrouped pie or donut chart make it
easy to compare slice values between subgroups.

In addition, you can use global statements to modify patterns and legends, as well as
add titles, footnotes, and notes to the chart. You can also use an Annotate data set to
enhance the chart.

Syntax

PIE | PIE3D | DONUT chart-variable(s) </ option(s)>;

option(s) can be one or more options from any or all of the following categories:
� appearance options

ANNOTATE=Annotate-data-set
CFILL=fill-color
COUTLINE=slice-outline-color | SAME
DETAIL_RADIUS=percent (PIE and DONUT only)
EXPLODE=value-list
FILL=SOLID | X
INVISIBLE=value-list
NOHEADING
RADIUS=
WOUTLINE=slice-outline-width

� statistic options
FREQ=numeric-variable
SUMVAR=summary-variable
TYPE=statistic

� midpoint options
DISCRETE
LEVELS=number-of-midpoints|ALL
MIDPOINTS=value-list
MIDPOINTS=OLD
MISSING

1040 PIE, PIE3D, and DONUT Statements � Chapter 36

OTHER=percent-of-total
� detail pie options (PIE and DONUT only)

DETAIL=variable
DETAIL_THRESHOLD=percent

� grouping and subgrouping options
ACROSS=number-of-columns
DOWN=number-of-rows
GROUP=group-variable
NOGROUPHEADING
SUBGROUP=subgroup-variable

� slice-ordering options
ANGLE=degrees
ASCENDING
CLOCKWISE
DESCENDING
JSTYLE

� slice-labeling options
CTEXT=text-color
LEGEND | LEGEND=LEGEND<1...99>
MATCHCOLOR
NOLEGEND
OTHERLABEL=’text-string’
PERCENT=ARROW | INSIDE | NONE | OUTSIDE
PLABEL=(text argument(s))
SLICE=ARROW | INSIDE | NONE | OUTSIDE
VALUE=ARROW | INSIDE | NONE | OUTSIDE

� detail pie slice-labeling options (PIE and DONUT only)
DETAIL_PERCENT=BEST|NONE
DETAIL_SLICE=BEST|NONE
DETAIL_VALUE=BEST|NONE

� donut-labeling options (DONUT only):
DONUTPCT=percent
LABEL=(text argument(s))

� catalog entry description options
DESCRIPTION=’entry-description’

� ODS options
HTML=variable
HTML_LEGEND=variable

Required Arguments

chart-variable(s)
specifies one or more variables that define the categories of data to chart. Each chart
variable draws a separate chart. All variables must be in the input data set.
Separate multiple chart variables with blanks.

The GCHART Procedure � PIE, PIE3D, and DONUT Statements 1041

See also: “About Chart Variables” on page 997

Options
Options in a PIE, PIE3D, or DONUT statement affect all graphs that are produced

by that statement. You can specify as many options as you want and list them in any
order. For details on specifying colors, see Chapter 12, “SAS/GRAPH Colors and
Images,” on page 167. For a complete description of the graphics options, see Chapter
15, “Graphics Options and Device Parameters Dictionary,” on page 327.

ACROSS=number-of-columns
draws number-of-columns pies across the procedure output area. ACROSS is ignored
unless you also use the GROUP= option.

If number-of-columns calls for more pies than fit horizontally in the graphics
output area, no pies are drawn and an error message is written to the SAS log.

If you also use the DOWN= option, the pies are drawn in left-to-right and
top-to-bottom order.

ANGLE=degrees
starts the first slice at the specified angle. A value of 0 for degrees corresponds to the
three o’clock position. Degrees can be either positive or negative. Positive values
move the starting position in the counterclockwise direction; negative values move
the starting position clockwise. By default, ANGLE=0. Successive slices are drawn
counterclockwise from the starting slice.

ANNOTATE=Annotate-data-set
specifies a data set to annotate charts produced by the PIE, PIE3D, or DONUT
statement.

Note: Annotate coordinate systems 1, 2, 7, and 8 (data system coordinates) are
not valid with pie or donut charts. �

Alias: ANNO=

See also: Chapter 29, “Using Annotate Data Sets,” on page 641

ASCENDING
arranges the slices in ascending order of the value of the chart statistic. By default,
slices are arranged in ascending order of midpoint value, without regard to size. The
ASCENDING option reorders the slices from smallest to largest. The OTHER slice is
still last regardless of its size.

If you also use the GROUP= option, the reordering is performed separately for each
group, so the order of the midpoint values might be different for each pie or donut.

The ASCENDING option overrides any midpoint order that is specified with the
MIDPOINTS= option.

CFILL=fill-color
specifies one color for all patterns in the chart, regardless of whether the fill is solid
or hatch. For the PIE3D statement, the fill is always solid. For the PIE and DONUT
statements, if no pattern is specified in the pattern statement or with the FILL=
option, the procedure starts with the default solid fill and then, beginning with P2N0,
uses each default pie hatch pattern with the specified color. For the outline color, the
procedure uses the default color, which is retrieved from the current style, or, if the
NOGSTYLE option is specified, it uses the first color in the device’s color list. Use
the COUTLINE= option to specify a different outline color. The CFILL= option
overrides any other pattern color specification and controls the color of all slices.

Style reference: Color attribute of the GraphData1 element.

Featured in: Example 9 on page 1084

1042 PIE, PIE3D, and DONUT Statements � Chapter 36

See also: “Controlling Bar Chart Patterns, Colors, and Images” on page 1037 and
“About Patterns” on page 1002

CLOCKWISE
draws the slices clockwise starting at the twelve o’clock position. Although this
position implies ANGLE=90, you can use the ANGLE= option to specify a different
starting angle.

COUTLINE=slice-outline-color | SAME
outlines all slices, rings (subgroups), and legend values (if a legend appears) in the
specified color. SAME specifies that the outline color of a slice or a slice segment or a
legend value is the same as the interior pattern color.

The default outline color depends in the PATTERN statement:
� If you do not specify a PATTERN statement, the default outline color is the

color of the current style.
� If you specify the NOGSTYLE option and no PATTERN statement, the default

outline color is black for the Java or ActiveX devices. Otherwise, the default
outline color is the foreground color. If you specify an EMPTY PATTERN
statement, then the default outline color is the same as the fill color.

Style reference: Color attribute of the GraphOutlines element.
Featured in: Example 7 on page 1080, Example 8 on page 1083. and
See also: “Controlling Slice Patterns and Colors” on page 1053 and “About

Patterns” on page 1002

CTEXT=text-color
specifies a color for all text on the axes and legend, including axis labels, tick mark
values, legend labels, and legend value descriptions. The GCHART procedure looks
for the text color in the following order:

1 the colors specified for labels and values on assigned AXIS and LEGEND
statements, which override the CTEXT= option specified on the PIE/DONUT
statement

2 the color specified by the CTEXT= option in the PIE/DONUT statement
3 the color specified by the CTEXT= option in a GOPTIONS statement
4 the color specified in the current style or, if the NOGSTYLE option is specified,

then the default color is black for the Java and ActiveX devices and the first
color in the color list for all other devices

The LEGEND statement’s VALUE= color is used for legend values, and its
LABEL= color is used for legend labels.

The AXIS statement’s VALUE= color is used for axis values, and its LABEL= color
is used for axis labels. However, if the AXIS statement specifies only general axis
colors with its COLOR= option, the CTEXT= color overrides the general COLOR=
specification and is used for axis labels and values; the COLOR= color is still used for
all other axis colors, such as tick marks.

Note: If you use a BY statement in the procedure, the color of the BY variable
labels is controlled by the CBY= option in the GOPTIONS statement. �
Style reference: Color attributes of the GraphValueText and the GraphLabelText

elements.
Featured in: Example 8 on page 1083.

DESCENDING
arranges the slices in descending order of the value of the chart statistic. By default,
slices are arranged in ascending order of alphabetical or numeric midpoint value,
without regard to size or summary statistic. DESCENDING reorders the slices from
largest to smallest. The OTHER slice is still last, regardless of its size.

The GCHART Procedure � PIE, PIE3D, and DONUT Statements 1043

If you also use the GROUP= option, the reordering is performed separately for
each group, so the order of midpoint values might be different for each pie or donut.

DESCENDING overrides any midpoint order that is specified with the
MIDPOINTS= option.

DESCRIPTION=’description’
specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters. The description does not appear on the chart. By
default, the GCHART procedure assigns a description of the form PIE (or PIE3D or
DONUT) CHART OF variable, where variable is the name of the chart variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. Refer to “Substituting BY Line Values in a Text String” on page
294. The 256-character limit applies before the substitution takes place for these
options; thus, if in the SAS program the entry-description text exceeds 256
characters, it is truncated to 256 characters, and then the substitution is performed.

The descriptive text is shown in each of the following:

� the “description” portion of the Results window.

� the catalog-entry properties that you can view from the Explorer window.

� the Description field of the PROC GREPLAY window.

� the data tip text for the entire chart area for web output (depending on the
device driver you are using). See “Data Tips for Web Presentations” on page 598
for details.

Alias: DES=

DETAIL=variable (PIE and DONUT only)
produces an inner pie overlay whose slices show the major components that comprise
the outer pie’s slice. Variable is the variable whose values are used to construct the
detail pie. If you specify the DETAIL= option and either GROUP= or SUBGROUP=,
then the DETAIL= option is ignored.

DETAIL_PERCENT=BEST|NONE (PIE and DONUT only)
specifies the algorithm to use for displaying the percentage values for the detail pie
slices. NONE turns off the display of the percentage values.

DETAIL_RADIUS=percent (PIE and DONUT only)
determines the size of the detail pie. Percent specifies the percent of the outer pie
radius to use as the detail pie radius. The valid range is 25 to 90. The default is 75.

DETAIL_SLICE=BEST|NONE (PIE and DONUT only)
specifies the algorithm to use for displaying the detail variable labels for the inner
pie slices. NONE turns off the display of the detail variable labels.

DETAIL_THRESHOLD=percent (PIE and DONUT only)
determines whether a detail slice is included in the inner pie. Any detail slice
comprising percent or more percent of the whole pie is included. The valid range for
percent is 0 to 75. The default is 4.

DETAIL_VALUE=BEST|NONE (PIE and DONUT only)
specifies the algorithm to use for displaying the data values for the detail pie slices.
NONE turns off the display of the data values.

DISCRETE
treats a numeric chart variable as a discrete variable rather than as a continuous
variable. The GCHART procedure creates a separate midpoint and, hence, a separate
slice for each unique value of the chart variable. If the chart variable has a format
associated with it, each formatted value is treated as a midpoint.

1044 PIE, PIE3D, and DONUT Statements � Chapter 36

The LEVELS= option is ignored when you use DISCRETE. The MIDPOINTS=
option overrides DISCRETE.

DONUTPCT=percent (DONUT only)
specifies the size of the donut hole in percent of the radius of the whole chart. Values
of percent range from 0 to 99. By default, DONUTPCT=25.
Featured in: Example 8 on page 1083

DOWN=number-of-rows
draws number-of-rows pies vertically in the procedure output area. The DOWN=
option is ignored unless you also use the GROUP= option.

If number-of-rows calls for more pies than fit vertically in the graphics area of the
output device, no pies are drawn and an error message is written to the SAS log.

If you also use the ACROSS= option, the pies are drawn in left-to-right and
top-to-bottom order.

EXPLODE=value-list
pulls the specified slices slightly out from the rest of the pie for added emphasis.
Value-list is the list of midpoint values for the slices to be exploded. See the
MIDPOINTS= option on page 1047 for a description of value-list.

The values in the value list must match the existing midpoints exactly, including
the case of character midpoints. Any values in the list that do not correspond to
existing midpoints are ignored.

When you use EXPLODE=, the radius is reduced to allow room for exploded slices.
When used with subgroups, the EXPLODE= option is supported only by the

ActiveX and Java devices.
Featured in: Example 7 on page 1080

FILL=SOLID | X
specifies the fill pattern for all slices in the chart:

SOLID S
rotates a solid fill through the color list of the current style as many times as
necessary. SOLID is the default.

X
rotates a single hatch pattern through the list of colors defined in the current
style. If the NOGSTYLE option is specified, it rotates the hatch pattern through
the device color list as many times as necessary. If you do not specify the colors=
goption, the fill skips the first color in the color list.

FILL= overrides any pattern that is specified in PATTERN statements.
By default, the outline color is the color defined by the current style, or the first

color in the device’s color list if the NOGSTYLE option is specified. If PATTERN
statements are used to specify colors, the slice outline color matches the slice fill color.

If any PATTERN statements have been defined, the colors in the PATTERN
definitions are used, in order, before the default style color rotation.
Style reference: Color attribute of the GraphData1 element.
Restriction: Partially supported by Java and ActiveX
See also: “Controlling Bar Chart Patterns, Colors, and Images” on page 1037 and

“PATTERN Statement” on page 240

FREQ=numeric-variable
specifies a variable whose values weight the contribution of each observation in the
computation of the chart statistic. Each observation is counted the number of times
specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, 0, or negative, the observation is not used in the statistic
calculation. Non-integer values of numeric-variable are truncated to integers.

The GCHART Procedure � PIE, PIE3D, and DONUT Statements 1045

FREQ= is valid with all chart statistics.
Because you cannot use TYPE=PERCENT or TYPE=FREQ with the SUMVAR=

option, you must use the FREQ= option to calculate percentages and frequencies
based on a sum.

The statistics are not affected by applying a format to numeric-variable.
See also: “Calculating Weighted Statistics” on page 1001

GROUP=group-variable
organizes the data according to values of group-variable and produces a separate pie
(or donut) chart for each unique value of group-variable. Group-variable can be
either character or numeric and is always treated as a discrete variable. Missing
values for group-variable are treated as a valid group. By default, each group
includes only those midpoints with nonzero chart statistic values.

By default, the charts are produced in ascending order of group variable value and
each is drawn on a separate page or display. Therefore, the effect of the GROUP=
option is essentially the same as using a BY statement except that the GROUP=
option causes the midpoints with the same value to use the same color and fill
pattern. To place more than one pie on a page or display, use the ACROSS= or
DOWN= options, or both.
Featured in: Example 10 on page 1086
See also: “BY Statement” on page 216

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file that is created by the ODS statement. These links are associated with an area of
the chart and point to the data or graph that you want to display when the user
drills down on the area.
See also: “Overview of Enhancing Web Presentations” on page 596.

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS statement. These links are associated with a legend value and
point to the data or graph that you want to display when the user drills down on the
value. The values of variable can be up to 1024 characters long. Characters after the
1024-character limit (including any closing quotes) are truncated. If either subgroups
or the DETAIL= option are specified, then the HTML_LEGEND= option is ignored.
Restriction: Not supported by Java and ActiveX.
See also: “Overview of Enhancing Web Presentations” on page 596.

INVISIBLE=value-list
makes the specified slices invisible, as if they had been removed from the pie. Labels
are not printed for invisible slices. Value-list is the list of midpoint values for the
invisible slices. See the MIDPOINTS= option on page 1047 for a description of
value-list.

The values in the value list must match the existing midpoints exactly, including
the case of character midpoints. Any values in the list that do not correspond to
existing midpoints are ignored.

JSTYLE
arranges the midpoints in descending order of the statistic value and draws the slices
clockwise starting at the twelve o’clock position. The JSTYLE option has the same
effect as specifying both the DESCENDING and CLOCKWISE options.

LABEL=(text argument(s)) (DONUT only)
defines the text that is displayed in the donut hole. Text-argument(s) defines the text
or the appearance of the label, or both. Text-argument(s) can be one or more of the
following:

1046 PIE, PIE3D, and DONUT Statements � Chapter 36

’text-string’
provides the text of the label. Enclose each string in quotation marks. Separate
multiple strings with blanks.

text-description-suboption
modifies a characteristic such as the font, color, or size of the text string(s) that
follows it. Text-description-suboption can be

ANGLE=degrees

COLOR=color

FONT=font

HEIGHT=text-height <units>

JUSTIFY=LEFT | CENTER | RIGHT

ROTATE=degrees
The Java and ActiveX devices do not support all of the suboptions. See “Text

Description Suboptions for Donut” on page 1050 for a complete description.
Specify as many text strings and text description suboptions as you want, but

enclose them all in one set of parentheses.

Featured in: Example 8 on page 1083

Restriction: Partially supported by Java and ActiveX

LEGEND | LEGEND=LEGEND<1...99>
generates a legend for the slice names (midpoint values) instead of printing them
beside the slices. The legend displays each slice name and its associated pattern.
This option also suppresses the display of the chart statistic values. To display the
chart statistics, use the VALUE= option.

If you use the SUBGROUP= option, the legend is automatically generated.
However, because patterning is always by midpoint, the legend still describes the
midpoint values, not the subgroups.

Note: If you request a legend and the slices use hatch patterns, the patterns in
the slices are oriented to be visually equivalent to the legend. �

Specifying LEGEND=LEGENDn assigns the specified LEGEND statement to the
legend. The Java and ActiveX devices do not support all LEGEND statement options.
See “LEGEND Statement” on page 225 for more information.

Featured in: Example 8 on page 1083

Restriction: Partially supported by Java and ActiveX

See also: “LEGEND Statement” on page 225.

LEVELS=number-of-midpoints|ALL
specifies the number of midpoints for a numeric chart variable. The range for each
midpoint is calculated automatically.

If you specify LEVELS=ALL, then all unique midpoint values are graphed. If your
data contains a large number of unique midpoint values (over 200), you can use the
XPIXELS and YPIXELS GOPTIONS to enable the device driver to render a larger
(and more readable) graph.

The LEVELS= option is ignored if any of the following is true:

� The chart variable is character type.

� The MIDPOINTS= option is used.

MATCHCOLOR
uses the slice pattern color for all slice labels. MATCHCOLOR overrides the color
that is specified in the CTEXT= option.

The GCHART Procedure � PIE, PIE3D, and DONUT Statements 1047

MIDPOINTS=value-list
specifies the midpoint values for the slices. The way you specify value-list depends on
the type of variable:

� For numeric chart variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>

n TO n <BY increment>

<n...> n TO n <BY increment> <n <...n>>
If a numeric variable has an associated format, the specified values must be

the unformatted values.

If you omit the DISCRETE option, then numeric values are treated as
continuous, which means that the following is true by default:

� The lowest midpoint consolidates all data points from negative infinity to
the median of the first two midpoints.

� The highest midpoint consolidates all data points from the median of the
last two midpoints up to infinity.

� All other values in value-list specify the median of a range of values, and
the GCHART procedure calculates the midpoint values.

If you include the DISCRETE option, then each value in value-list specifies a
unique numeric value.

� For character chart variables, value-list is a list of unique character values
enclosed in quotation marks and separated by blanks:

’value-1’ <...’value-n’>

If a character variable has an associated format, the specified values must be
the formatted values.

For a complete description of value-list, see the ORDER= option on page 205 in the
AXIS statement.

Midpoints that represent small percentages are collected into a generic midpoint
named OTHER. See the OTHER= option on page 1048 and the OTHERLABEL=
option on page 1048 for more information.

Featured in: Example 9 on page 1084

See also: “About Midpoints” on page 998

MIDPOINTS=OLD
generates default midpoints using the Nelder algorithm (Applied Statistics 25:94–7,
1976). The MIDPOINTS=OLD option is ignored unless the chart variable is numeric

MISSING
accepts a missing value as a valid midpoint for the chart variable. By default,
observations with a missing value are ignored. Missing values are always valid for
the group and subgroup variable.

NAME=’entry-name’
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default name is GCHART.
If the name duplicates an existing name, then SAS/GRAPH adds a number to the
name to create a unique name-for example, GCHART1.

See also: “About Filename Indexing” on page 99

1048 PIE, PIE3D, and DONUT Statements � Chapter 36

NOGROUPHEADING
suppresses the headings that are normally printed above each pie when you use the
GROUP= option.

NOHEADING
suppresses the heading that is normally printed at the top of each page or display of
output for all devices except Java and ActiveX. For the Java and ActiveX devices,
NOHEADING is the default.
Featured in: Example 8 on page 1083
Restriction: Not supported by Java and ActiveX

NOLEGEND
suppresses the legend that is automatically generated by the SUBGROUP= option.
NOLEGEND is ignored if the SUBGROUP= option is not used.

OTHER=percent-of-total
collects all midpoints with chart statistic values less than or equal to percent-of-total
into a generic midpoint named OTHER. The value of percent-of-total can be 0 to 100;
the default value is 4. Therefore, any slice that represents 4 percent or less of the
total is put in the OTHER category.

Note: If you specify a small value for percent-of-total, the GCHART procedure
might not be able to label all of the small slices. �

The OTHER slice is the last slice in the pie, regardless of the order of the slices.
(In other words, it is the slice immediately before the starting slice.)

If only one midpoint falls into the OTHER category, its slice is displayed in its
normal position in the pie and retains its original label. For example, suppose a pie
has these slices and percent values: Coal 35%, Gas 15%, Hydro 5%, and Oil 45%. If
you specify OTHER=5, Hydro remains the third slice instead of becoming the last
slice.

OTHERCOLOR=color
specifies the color to use for the OTHER slice. If you omit the OTHERCOLOR=
option, GCHART searches for a color specification in this order:

1 the CFILL= option
2 the COLOR= option in a PATTERN statement
3 the COLOR= in a GOPTIONS statement
4 the color of the current style, or, the first color in the device’s color list if the

NOGSTYLE option is specified

For more information, see “Controlling Slice Patterns and Colors” on page 1053.
Style reference: Color attribute of the GraphData1 to GraphDataN element,

depending on the number of slices in the pie.

OTHERLABEL=’text-string’
specifies a text string up to 16 characters for the label for the OTHER slice. The
default label is OTHER.

PERCENT=ARROW | INSIDE | NONE | OUTSIDE
prints the percentage represented by each slice using the specified labeling method.
For a description of the option values, see “Selecting and Positioning Slice Labels” on
page 1052. By default, PERCENT=NONE (percentage is not displayed).

Whether the slice percent displays with or without decimal places, depends on the
range of values across the chart. The only way to control the appearance of these
values is to calculate the percentage with a DATA step or statistical procedure and
use the resulting data set as input to the GCHART procedure. Assign the variable
that contains the calculated percentages to the SUMVAR= option.

The GCHART Procedure � PIE, PIE3D, and DONUT Statements 1049

Featured in: Example 9 on page 1084 and Example 10 on page 1086

PLABEL=(text argument(s))
defines the text that is displayed on the pie slice label. Text-argument(s) defines the
text or the appearance of the label, or both. Text-argument(s) can be one or more of
the following:

’text-string’
provides the text of the label. Enclose each string in quotation marks. Separate
multiple strings with blanks.

text-description-suboption
modifies a characteristic such as the font, color, or size of the text string(s) that
follows it. Text-description-suboption can be

COLOR=color

FONT=font

HEIGHT=text-height <units>
The Java and ActiveX devices do not support all of the suboptions. See “Text

Description Suboptions for Donut” on page 1050 for a complete description.

Specify as many text strings and text description suboptions as you want, but enclose
them all in one set of parentheses.

Style reference: Font Attributes of the GraphValueText element.

RADIUS=value
specifies the radius of the pie and donut in GCHART. RADIUS=n, where n is the pie
radius in character cells.

SLICE=ARROW | INSIDE | NONE | OUTSIDE
controls the position and style of the slice name (midpoint value) for each slice. For a
description of the option values, see “Selecting and Positioning Slice Labels” on page
1052. By default, SLICE=OUTSIDE (the name is outside of the slice).

Featured in: Example 9 on page 1084 and Example 10 on page 1086

SUBGROUP=subgroup-variable
divides the chart into concentric rings according to the values of subgroup-variable.
For DEVICE=JAVA, subgroups are implemented using drill-down functionality
instead of concentric rings. In the resulting graph, you can select a pie slice to
display subgroup information. Subgroup-variable can be either character or numeric
and is always treated as a discrete variable.

The width of the rings, which is the same for each subgroup, is determined by the
radius of the pie and the size of the donut hole, if any.

By default, the subgroup rings are ordered from the outside in, alphabetically (if
character) or numerically (if numeric). If the JSTYLE option is also used, the order
of the slices within the subgroups is determined by the outermost subgroup. Any
inner subgroup that contains a value that is not in the outer subgroup, places the
new slice for that value either last or just before the "other" slice, if one is present.
That slice order is continued for any remaining subgroups.

Each ring is labeled with its subgroup value; labels are placed to the right of the
chart. If the GROUP= option is also used and if all groups contain the same
subgroups, then only the first (upper left) chart on each page is labeled. If any group
differs in the number of subgroups it contains, then all charts are labeled.

By default the subgroups are outlined in the foreground color. To specify an
outline color, use the COUTLINE= option.

The SUBGROUP= option automatically generates a legend for the midpoint values
(not the subgroup values) and suppresses display of the chart statistic. By default
the legend appears at the bottom of the chart. To modify the legend, assign a

1050 PIE, PIE3D, and DONUT Statements � Chapter 36

LEGEND definition. To suppress the legend, specify NOLEGEND. To display the
chart statistic, use the VALUE= option.

If EXPLODE is also used, it is ignored.

Featured in: Example 8 on page 1083 and Example 9 on page 1084

See also: “Controlling Bar Chart Patterns, Colors, and Images” on page 1037 and
“LEGEND Statement” on page 225

SUMVAR=summary-variable
specifies a numeric variable for sum or mean calculations. The GCHART procedure
calculates the sum or, if requested, the mean of numeric-variable for each midpoint.
The resulting statistics are represented by the size of the slice and displayed beside
of each slice.

When you use SUMVAR=, the TYPE= option must be either SUM or MEAN. With
SUMVAR=, the default is TYPE=SUM.

Featured in: Example 7 on page 1080

TYPE=statistic
specifies the chart statistic.

� If the SUMVAR= option is not used, statistic can be one of the following:

FREQ
frequency (the default)

PERCENT PCT
percentage

� If SUMVAR= is used, statistic can be one of the following:

SUM
sum (the default)

MEAN
mean

Because you cannot use TYPE=FREQ or TYPE=PERCENT with the SUMVAR=
option, you must use FREQ= to calculate percentages or frequencies based on a sum.

See also: “About Chart Statistics” on page 1000 and “Calculating Weighted
Statistics” on page 1001

VALUE=ARROW | INSIDE | NONE | OUTSIDE
controls the position and style of the slice value (chart statistic) for each slice. For a
description of the option values see “Selecting and Positioning Slice Labels” on page
1052. By default, VALUE=OUTSIDE (the value is outside the slice).

Featured in: Example 9 on page 1084n

WOUTLINE=slice-outline-width
specifies the width of the outline in pixels. WOUTLINE= affects both the slice and
the subgroup outlines.

Style reference: LineThickness attribute of the GraphOutlines element.

Restriction: Not supported by Java and ActiveX

Text Description Suboptions for Donut
The LABEL= option in the DONUT statement and the PLABEL= option in the PIE

statement uses text description suboptions to change the attributes of the following text
string or strings that follow the suboption.

The GCHART Procedure � PIE, PIE3D, and DONUT Statements 1051

ANGLE=degrees
specifies the angle at which the baseline of the text string(s) is rotated with respect
to the horizontal. A positive value for degrees moves the baseline counterclockwise;
a negative value moves it clockwise. By default, ANGLE=0 (horizontal).
Alias: A=degrees
Valid in: DONUT
Restriction: Not supported by Java

COLOR=color
specifies the color for the text string(s). The COLOR= suboption stays in effect
until another COLOR= specification is encountered. If you omit COLOR=,
LABEL= uses the color defined by the current style. It ignores the CTEXT=
graphics option. See Chapter 12, “SAS/GRAPH Colors and Images,” on page 167
for details on specifying color.
Alias: C=color
Valid in: DONUT, PIE, PIE3D
Restriction: Not supported by Java

FONT=font
F=font

specifies the font for the text string or strings. If you omit FONT=, LABEL= uses
the font that is specified by the FTEXT= graphics option. If no font is specified, it
uses the default hardware font, NONE. See Chapter 11, “Specifying Fonts in SAS/
GRAPH Programs,” on page 155 for details on specifying font. The Java and
ActiveX devices do not support all fonts.
Alias: F=font
Valid in: DONUT, PIE, PIE3D
Restriction: Partially supported by Java and ActiveX

HEIGHT=text-height <units>
specifies the height of the text string or strings. Text-height is the number of units.
If you omit HEIGHT=, LABEL= uses the height that is specified by the HTEXT=
graphics option. If no text height is specified and if the default text height is too
large for the donut hole, the size of the label is reduced to fit. Units can be CELLS
| CM | IN | PCT | PT. If you omit units, HEIGHT= uses the unit that is specified
by the GUNIT= graphics option, or the default unit, CELLS.
Alias: H=text-height <units>
Valid in: DONUT, PIE, PIE3D
Restriction: Not supported by Java and ActiveX

JUSTIFY=LEFT | CENTER | RIGHT
specifies the alignment of the text string or strings. By default,
JUSTIFY=CENTER.
Alias: J=LEFT
Restriction: Not supported by Java and ActiveX

ROTATE=degrees
specifies the angle at which each character is rotated with respect to the baseline
of the text string. The angle is measured from the current text baseline angle
specified by the ANGLE= suboption. A positive value for degrees rotates the
character counterclockwise; a negative value rotates it clockwise. By default,
ROTATE=0 (parallel to the baseline).
Valid in: DONUT
Restriction: Not supported by Java

1052 PIE, PIE3D, and DONUT Statements � Chapter 36

Selecting and Positioning Slice Labels
By default, each slice is labeled with its midpoint value (slice name) and its chart

statistic value (slice value), which are printed outside of the slice. You can control where
and how these labels are displayed with the SLICE= and VALUE= options, respectively.
In addition, each slice can display the percentage its midpoint contributes to the total
chart statistic (slice percent). Use the PERCENT= option to request slice percent.

The SLICE=, VALUE=, and PERCENT= options use the same values:

ARROW
places the text outside the slice and connects the text to the slice with a line. This
labeling method reduces the radius of the pie. The arrow uses the color that is
specified by the CTEXT= option in the PIE, PIE3D, or DONUT statement. If the
CTEXT= option is omitted, the arrow uses the color defined by the current style.

INSIDE
places the text inside the slice. The label overlays the slice fill patterns. This
labeling method increases the radius of the pie.

NONE
suppresses the text.

OUTSIDE
places the text outside of the slice.

Figure 36.14 on page 1052 illustrates these values.

Figure 36.14 Slice Labeling Methods

The SLICE= and VALUE= options are dependent on each other. If you specify only
VALUE= or only SLICE=, the other option automatically uses the same labeling
method. PERCENT= is independent of these two.

Be careful about the combinations that you specify. For example, if you specify
PERCENT=ARROW and VALUE=OUTSIDE, the line that connects the percentage
information to each slice might overlay the statistic value.

If your pie has many slices, the labels might overlap, particularly if there are several
small slices together. You can correct the overlapping labels by using any of the
following options:

The GCHART Procedure � PIE, PIE3D, and DONUT Statements 1053

� the HTEXT= graphics option to decrease the size of the labels.

� the GRSEG Graphics Editor to adjust the labels by moving or resizing the text.

� the ANGLE= option to change the orientation of the pie.

� the MIDPOINTS= option to rearrange slices so that small slices are not together.

� the OTHER= option to group more midpoints into the OTHER category.

� the HPOS= and VPOS= graphics options to increase the number of cells in your
display. (See “The Graphics Output and Device Display Areas” on page 59 for
details.)

Controlling Slice Patterns and Colors
Pie and donut charts are always patterned by midpoint. Even when you specify

subgrouping, the patterning method does not change from midpoint to subgroup.

Default patterns and outlines
Each slice in a pie or donut chart is filled with a pattern. Because the system option
GSTYLE is in effect by default, the procedure will use the current style’s default
patterns and outlines when producing output. By default, the procedure does the
following:

� fills the slices with pie patterns, beginning with the default fill, PSOLID, and
rotates it through the list of colors available in the current style. When these
colors are exhausted, the procedure rotates through a slightly modified version of
the original list of colors. It continues in this fashion until all of the chart
variables have been assigned a unique pattern.

Note: PIE3D always uses solid patterns. �

If you use the default style colors and the first color in the list is either black or
white, the procedure does not create a pattern in that color. If you specify a color
list with the COLORS= graphics option, the procedure uses all the colors in the
list to generate the patterns.

� outlines slices and subgroup segments using the color defined by the style. To
change the outline color, use the COUTLINE= option.

See “About Patterns” on page 1002 for more information on how the GCHART
procedure assigns default patterns and outlines.

Controlling patterns
You can control slice patterns and their outlines in several ways.

� To select a different fill for the slices, such as empty or hatched, you can do the
following:

� request a single hatched fill pattern for all slices by specifying the FILL=X
option on the PIE or DONUT statement. The pattern specified by FILL=X
uses the colors in the color list as many times as needed to generate all of the
patterns that are required by the chart. If you specify a single color with
either CFILL= or the graphics option, CPATTERN=, all slices use the same
color as well as the same pattern.

� specify a pattern with the VALUE= option in the PATTERN statement. Only
pie patterns are valid; all other pattern specifications are ignored. For a
complete description of all pie patterns, see the VALUE= option on page 245
in the PATTERN Statement.

If no color options are specified, the procedure rotates each specified fill
once through the list of colors available in the current style. Otherwise the
PATTERN statement generates one pattern definition for the specified pattern

1054 PIE, PIE3D, and DONUT Statements � Chapter 36

and color. When all of the specified patterns are exhausted, the procedure
starts rotating through the default pie patterns, beginning with PSOLID.

� To select colors for the slices, you can do the following:
� specify a single pattern color with the CFILL= option, or with the

CPATTERN= graphics option, or with a COLORS= list of one color. For the
PIE and DONUT statements, CFILL= starts with the default solid color and
uses the foreground color for outlines, whereas the CPATTERN= graphics
option and a COLORS= list of one color skip the solid pattern and, beginning
with P2N0, use each pie hatch pattern with the specified color, and use the
fill color for the outline color.

� specify only COLOR= in one or more PATTERN statements. In this case, the
procedure creates a solid pattern for each specified color. When it runs out of
PATTERN statements, it returns to the default patterns, beginning with
PSOLID, and rotates them each through the color list. Whenever you specify
a PATTERN statement, the default outline color is SAME.

� To define specific patterns and colors for the slices, use PATTERN statements and
specify both the VALUE= and COLOR= options. If you provide fewer PATTERN
definitions than the chart requires, the GCHART procedure uses the default
pattern rotation for the slices that are drawn after all of the defined patterns are
exhausted.

See “About Patterns” on page 1002 for more information on how the GCHART
procedure uses patterns and outlines. See “PATTERN Statement” on page 240 for a
description of default pie patterns.

Modifying the Statistic Heading and the Group Heading
By default, the procedure prints a heading at the top of each pie (or donut) chart that

indicates the type of statistic charted and the name of the chart variable—for example,
SUM of SALES by SITE. You can suppress this heading with the NOHEADING option.

When you use the GROUP= option, a heading is printed above each pie indicating
the name of the group variable and its value for the particular pie– for example,
SITE=Paris. You can suppress these headings with the NOGROUPHEADING option.
You can also suppress the variable name SITE= so that only the value Paris remains.
To do this, use a LABEL statement and assign a null value to the variable name, for
example,

label site=’00’x;

Because the AXIS statement cannot be used by the PIE, PIE3D, and DONUT
statements, you should use the FTEXT= and HTEXT= graphics options to control the
font and height of text on the chart. Increasing the value of the HTEXT= graphics
option decreases the size of the pie if any slice labels are positioned outside.

The GCHART Procedure � STAR Statement 1055

STAR Statement

Creates star charts in which the length of the spines represents the value of the chart statistic for
each category of data or midpoint.

Requirements: At least one chart variable is required.
Global statements: FOOTNOTE, PATTERN, TITLE,
Supports: Drill-down functionality (slices only)
Restriction: Not supported by Java and ActiveX

Description
The STAR statement specifies the variable or variables that define the categories of
data to chart. This statement automatically does the following:

� determines the midpoints.
� calculates the chart statistic for each midpoint (the default is FREQ).
� scales each spine or slice to represent the chart statistic. Slices or spines are

drawn for all midpoints where the value of the chart statistic is greater than the
value that is specified in the STARMIN= option.

� arranges the spines or slice counterclockwise around the star in ascending order of
midpoint value, starting at the three o’clock position.

� prints the midpoint value and chart statistic beside each spine or slice.
� assigns patterns to the slices.

If all the data to be charted with the STAR statement are positive, the center of the
star represents 0 and the outside circle represents the maximum value. If negative
values are calculated for the chart statistic, the center represents the minimum value
in the data. You can specify other values for the center and outside of the circle with
the STARMIN= and STARMAX= options.

You can also use statement options to select or order the midpoints, to change the
type of chart statistic, and to modify the appearance of the chart, including the content
and position of the spine or slice labels, and patterns that fill the slice. You can specify
additional variables by which to group or sum the data.

Star charts allow grouping, which creates two or more separate charts that display in
rows or columns on one graph.

In addition, you can use global statements to modify patterns as well as add titles,
footnotes, and notes to the chart. You can also use an Annotate data set to enhance the
chart.

Syntax

STAR chart-variable(s) </ option(s)>;

option(s) can be one or more options from any or all of the following categories:
� appearance options

ANGLE=degrees
ANNOTATE=Annotate-data-set
ASCENDINGAnnotate-data-set
CFILL=fill-color

1056 STAR Statement � Chapter 36

COUTLINE=star-outline-color | SAME
DESCENDING
FILL=SOLID | X
LEGEND=LEGEND<1...99>
NOCONNECT
NOLEGEND
NOSPINE
STARMAX=max-value
STARMIN=min-value
WOUTLINE=slice-outline-width

� statistic options
FREQ=numeric-variable
SUMVAR=summary-variable
TYPE=statistic

� midpoint options
DISCRETE
LEVELS=number-of-midpoints
MIDPOINTS=value-list
MIDPOINTS=OLD
MISSING

� grouping options
ACROSS=number-of-columns
DOWN=number-of-rows
GROUP=group-variable

� labeling options
CTEXT=text-color
MATCHCOLOR
NOGROUPHEADING
NOHEADING
PERCENT=ARROW | INSIDE | NONE | OUTSIDE
SLICE=ARROW | INSIDE | NONE | OUTSIDE
VALUE=ARROW | INSIDE | NONE | OUTSIDE

� catalog entry description options
DESCRIPTION=’entry-description’
NAME=’entry-name’

� ODS options
HTML=variable
HTML_LEGEND=variable

Required Arguments

chart-variable(s)
specifies one or more variables that define the categories of data to chart. Each chart
variable draws a separate chart. All variables must be in the input data set.
Separate multiple chart variables with blanks.

The GCHART Procedure � STAR Statement 1057

See also: “About Chart Variables” on page 997

Options
Options in a STAR statement affect all of the graphs that are produced by that

statement. You can specify as many options as you want and list them in any order.
For details on specifying colors, see Chapter 12, “SAS/GRAPH Colors and Images,” on
page 167.

ACROSS=number-of-columns
draws number-of-columns stars across the procedure output area. ACROSS= is
ignored unless you also use the GROUP= option. If number-of-columns calls for more
stars than fit horizontally in the graphics area of the output device, no stars are
drawn and an error message is written to the SAS log.

If you also use the DOWN= option, the star charts are drawn in left-to-right and
top-to-bottom order.

ANGLE=degrees
starts the first slice at the specified angle. A value of 0 for degrees corresponds to the
three o’clock position. Degrees can be either positive or negative. Positive values
move the starting position counterclockwise; negative values move the starting
position clockwise.

If the star chart uses spines instead of slices, degrees specifies the angle of the
position halfway between the first spine and the last spine.

By default, ANGLE=0, which places the first spine or the center of the first slice of
the star at the 0 degree position. Successive star spines or slices are drawn
counterclockwise from the starting position.

ANNOTATE=Annotate-data-set
specifies a data set to annotate charts that are produced by the STAR statement.

Note: Annotate coordinate systems 1, 2, 7, and 8 (data system coordinates) are
not valid with star charts. �

Alias: ANNO=

See also: Chapter 29, “Using Annotate Data Sets,” on page 641

ASCENDING
arranges the bars in ascending order of the value of the chart statistic. By default,
bars are arranged in ascending order of midpoint value, without regard to the
lengths of the bars. ASCENDING reorders the bars from shortest to longest. In
horizontal bar charts the ordering is top to bottom; in vertical bar charts the ordering
is left to right.

If you also use the GROUP= option, the reordering is performed separately for
each group, so the order of the midpoints might be different for each group.

The ASCENDING option overrides any midpoint order specified with the
MIDPOINTS= option or specified in the ORDER= option in an AXIS statement
assigned to the midpoint axis.

CFILL=fill-color
specifies one color for all slices in the chart, regardless of whether the fill is solid or
hatch. If no pattern is specified in the pattern statement or with the FILL= option,
the procedure starts with the default solid fill and then, beginning with P2N0, uses
each default star hatch pattern with the specified color. For the outline color, the
procedure uses the default color, which is retrieved from the current style, or, if the
NOGSTYLE option is specified, it uses the first color in the device’s color list. Use
the COUTLINE= option to specify a different outline color. The CFILL= option
overrides any other pattern color specification and controls the color of all slices.

1058 STAR Statement � Chapter 36

Style reference: Color attribute of the GraphData1 element.

COUTLINE=star-outline-color | SAME
specifies the color for the circle that surrounds the star chart and for the slice
outlines or spines.

SAME specifies that the outline color of a slice is the same as the interior pattern
color. Specifying COUTLINE=SAME affects only slice outlines and has no effect on
the color of the circle.

The default circle and outline color are both specified in the current style.
However, if the NOGSTYLE option is specified, then the default circle color is the
first color in the device’s color list (the foreground color), and the default slice outline
color is determined as follows:

� If you do not specify a PATTERN statement, the default outline color is the
color defined in the current style.

� If you specify the NOGSTYLE option and no PATTERN statement, the default
outline color is black for the Java or ActiveX devices. Otherwise, the default
outline color is the foreground color. If you specify an EMPTY PATTERN
statement, then the default outline color is the same as the fill color.

Style reference: Color attribute of the GraphOutlines element.

Featured in: Example 12 on page 1089

See also: “Selecting Patterns for the Star Charts” on page 1064 and “About
Patterns” on page 1002

CTEXT=text-color
specifies a color for all text on the axes and legend, including axis labels, tick mark
values, legend labels, and legend value descriptions. The GCHART procedure looks
for the text color in the following order:

1 colors specified for labels and values on assigned AXIS and LEGEND
statements, which override the CTEXT= option specified in the STAR statement

2 the color specified by the CTEXT= option in the STAR statement

3 the color specified by the CTEXT= option in a GOPTIONS statement

4 the color specified in the current style or, if the NOGSTYLE option is specified,
then the default color is black for the Java and ActiveX devices and the first
color in the color list for all other devices.

The LEGEND statement’s VALUE= color is used for legend values, and its
LABEL= color is used for legend labels.

The AXIS statement’s VALUE= color is used for axis values, and its LABEL= color
is used for axis labels. However, if the AXIS statement specifies only general axis
colors with its COLOR= option, the CTEXT= color overrides the general COLOR=
specification and is used for axis labels and values; the COLOR= color is still used for
all other axis colors, such as tick marks.

Note: If you use a BY statement in the procedure, the color of the BY variable
labels is controlled by the CBY= option in the GOPTIONS statement. �

Style reference: Color attributes for the GraphLabelText and the GraphValueText
elements.

DESCENDING
arranges the bars in descending order of the value of the chart statistic. By default,
bars are arranged in ascending order of midpoint value, without regard to the lengths
of the bars. DESCENDING reorders the bars from longest to shortest. In horizontal
bar charts the ordering is top to bottom; in vertical bar charts the ordering is left to

The GCHART Procedure � STAR Statement 1059

right. If you also use the GROUP= option, the reordering is performed separately for
each group, so the order of the midpoints might be different for each group.

The DESCENDING option overrides any midpoint order that is specified with the
MIDPOINTS= option or that is specified in the ORDER= option in an AXIS
statement assigned to the midpoint axis.

DESCRIPTION=’descriptionn’
specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters. The description does not appear on the chart. By
default, the GCHART procedure assigns a description of the form STAR CHART OF
variable, where variable is the name of the chart variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. Refer to “Substituting BY Line Values in a Text String” on page
294. The 256-character limit applies before the substitution takes place for these
options; thus, if in the SAS program the entry-description text exceeds 256
characters, it is truncated to 256 characters, and then the substitution is performed.

The descriptive text is shown in each of the following:
� the “description” portion of the Results window
� the catalog-entry properties that you can view from the Explorer window
� the Description field of the PROC GREPLAY window
� the data tip text for Web output (depending on the device driver you are using).

See “Data Tips for Web Presentations” on page 598 for details.

Alias: DES=

DISCRETE
treats a numeric chart variable as a discrete variable rather than as a continuous
variable. The GCHART procedure creates a separate midpoint and, hence, a separate
star slice for each unique value of the chart variable. If the variable has a format
associated with it, each format value is treated as a separate value.

The LEVELS= option is ignored when you use the DISCRETE option. The
MIDPOINTS= option overrides the DISCRETE option.
Featured in: Example 12 on page 1089

DOWN=number-of-rows
draws number-of-rows stars vertically in the procedure output area. The DOWN=
option is ignored unless you also use the GROUP= option. If number-of-rows calls for
more stars than fit vertically in the graphics area of the output device, no stars are
drawn and an error message is written to the SAS log.

If you also use the ACROSS= option, the stars are drawn in left-to-right and
top-to-bottom order.

FILL=SOLID | X
specifies the fill pattern for all slices in the star chart:

SOLID
S

rotates a solid fill through the list of colors available in the default style as many
times as necessary. SOLID is the default.

X
rotates a single hatch pattern through the list of colors defined in the current
style. If the NOGSTYLE option is specified, it rotates the hatch pattern through
the device color list as many times as necessary. If you do not specify the colors=
goption, the fill skips the first color in the color list.

FILL= overrides any pattern that is specified in PATTERN statements.

1060 STAR Statement � Chapter 36

By default, the outline color is the color defined by the current style, or the first
color in the device’s color list if the NOGSTYLE option is specified. If PATTERN
statements are used to specify colors, the slice outline color matches the slice fill color.

If any PATTERN statements have been defined, the colors in the PATTERN
definitions are used, in order, before the default style color rotation.
Style reference: Color attribute of the GraphData1 element.
Featured in: Example 12 on page 1089

FREQ=numeric-variable
specifies a variable whose values weight the contribution of each observation in the
computation of the chart statistic. Each observation is counted the number of times
that are specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, 0, or negative, the observation is not used in the statistic
calculation. Non-integer values of numeric-variable are truncated to integers.

The FREQ= option is valid with all chart statistics.
Because you cannot use TYPE=PERCENT or TYPE=FREQ with the SUMVAR=

option, you must use FREQ= to calculate percentages and frequencies based on a
sum.

The statistics are not affected by applying a format to numeric-variable.
See also: “Calculating Weighted Statistics” on page 1001

GROUP=variable
organizes the data according to values of group-variable and produces a separate star
chart for each unique value of group-variable. Group-variable can be either character
or numeric and is always treated as a discrete variable. Missing values for
group-variable are treated as a valid group.

By default, the charts are produced in ascending order of group variable value and
each is drawn on a separate page or display. Therefore, the effect of GROUP= is
essentially the same as using a BY statement except that GROUP= causes the
midpoints with the same value to use the same color and fill pattern. To place more
than one star chart on a page or display, use the ACROSS= or DOWN= options, or
both.

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file that is created by the ODS statement. These links are associated with a legend
value and point to the data or graph that you want to display when the user drills
down on the value. The values of variable can be up to 1024 characters long.
Characters after the 1024-character limit (including any closing quotes) are
truncated.
See also: “Overview of Enhancing Web Presentations” on page 596.

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file that is created by the ODS statement. These links are associated with an area of
the chart and point to the data or graph that you want to display when the user
drills down on the area. Only star charts with slices support drill-down functionality.
There is no limit on the length of the variable.
See also: “Overview of Enhancing Web Presentations” on page 596.

LEGEND=LEGEND<1...99>
assigns the specified LEGEND definition to the legend generated by the
SUBGROUP= option. The LEGEND= option itself does not generate a legend.

The LEGEND= option is ignored if any of the following are true:
� The SUBGROUP= option is not used.
� The specified LEGEND definition is not in effect.

The GCHART Procedure � STAR Statement 1061

� The NOLEGEND option is used.

� The PATTERNID= option is set to any value other than SUBGROUP; that is,
the value of PATTERNID= is BY or GROUP or MIDPOINT.

To create a legend based on the chart midpoints instead of the subgroups, use the
chart variable as the subgroup variable:

block city / subgroup=city;

The Java and ActiveX devices do not support all LEGEND statement options. See
“LEGEND Statement” on page 225 for more information.

Featured in: Example 2 on page 1067

Restriction: Partially supported by Java ActiveX

See also: SUBGROUP= on page 1013 and “LEGEND Statement” on page 225

LEVELS=number-of-midpoints
specifies number of midpoints for a numeric chart variable. The range for each
midpoint is calculated automatically using the algorithm described by Terrell and
Scott (1985). The LEVELS= option is ignored if any of the following are true:

� The chart variable is character type.

� The DISCRETE option is used.

� The MIDPOINTS= option is used.

MATCHCOLOR
uses the slice pattern color for all slice labels. MATCHCOLOR overrides the color
that is specified in the CTEXT= option. If the chart uses spines instead of slices, the
spine color is used for the slice label and value text.

MIDPOINTS=value-list
specifies the midpoint values for the slices. The way you specify value-list depends on
the type of variable:

� For numeric chart variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of
both forms:

n <...n>

n TO n <BY increment>

n <...n> TO n <BY increment> <n <...n>>

If a numeric variable has an associated format, the specified values must be
the unformatted values.

If you omit the DISCRETE option, then numeric values are treated as
continuous, which means that the following is true by default:

� The lowest midpoint consolidates all data points from negative infinity to
the median of the first two midpoints.

� The highest midpoint consolidates all data points from the median of the
last two midpoints up to infinity.

� All other values in value-list specify the median of a range of values, and
the GCHART procedure calculates the midpoint values.

If you include the DISCRETE option, each value in value-list specifies a
unique numeric value.

� For character chart variables, value-list is a list of unique character values
enclosed in quotation marks and separated by blanks:

’value-1’ <...’value-n’>

1062 STAR Statement � Chapter 36

If a character variable has an associated format, the specified values must be
the formatted values.

For a complete description of value-list, see the ORDER= option on page 205 in the
AXIS statement.

See also: “About Midpoints” on page 998

MIDPOINTS=OLD
generates default midpoints using the Nelder algorithm (Applied Statistics 25:94–7,
1976). The MIDPOINTS=OLD option is ignored unless the chart variable is numeric

MISSING
accepts a missing value as a valid midpoint for the chart variable. By default,
observations with a missing value are ignored. Missing values are always valid for
the group variable.

NAME=’entry-name’
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default name is GCHART.
If the name duplicates an existing name, then SAS/GRAPH adds a number to the
name to create a unique name—for example, GCHART1.

See also: “About Filename Indexing” on page 99

NOCONNECT
draws only star spines without connecting lines. By default, the spines are connected
to form slices.

Featured in: Example 12 on page 1089

NOGROUPHEADING
suppresses the headings normally printed above each star when you use the
GROUP= option.

NOHEADING
suppresses the heading normally printed at the top of each page or display of star
chart output.

Featured in: Example 12 on page 1089

NOLEGEND
suppresses the legend automatically generated by the SUBGROUP= option. The
NOLEGEND option is ignored if the SUBGROUP= option is not used.

PERCENT=ARROW | INSIDE | NONE | OUTSIDE
prints the percentage represented by each slice using the specified labeling method.
For a description of the option values see “Selecting and Positioning Spine and Slice
Labels” on page 1063. By default, PERCENT=NONE (percentage is not displayed).

SLICE=ARROW | INSIDE | NONE | OUTSIDE
controls the position and style of the slice name (midpoint value) for each slice. For a
description of the option values, see “Selecting and Positioning Spine and Slice
Labels” on page 1063. By default, SLICE=OUTSIDE (the name is outside the slice).

STARMAX=max-value
scales the chart so that the outside (or edge) of the circle represents the value that is
specified by max-value. By default, the value for STARMAX= is the maximum chart
statistic value.

The GCHART Procedure � STAR Statement 1063

STARMIN=min-value
scales the chart so that the center of the circle represents the value that is specified
by min-value. By default, STARMIN=0. If the chart statistic has negative values, by
default the value for the STARMIN= option is the minimum chart statistic value.

SUMVAR=summary-variable
specifies a numeric variable for sum or mean calculations. The GCHART procedure
calculates the sum or, if requested, the mean of the value of numeric-variable for
each midpoint. The resulting statistics are represented by the size of the slice and
displayed beside each slice.

When you use the SUMVAR= option, the TYPE= option must be either SUM or
MEAN. With SUMVAR=, the default is TYPE=SUM.
Featured in: Example 11 on page 1088

TYPE=statistic
specifies the chart statistic.

� If the SUMVAR= option is not used, statistic can be one of the following:

FREQ
frequency (the default)

PERCENT PCT
percentage
If the SUMVAR= option is used, statistic can be one of the following:

SUM
sum (the default)

MEAN
mean

Because you cannot use TYPE=FREQ or TYPE=PERCENT with the SUMVAR=
option, you must use FREQ= to calculate percentages or frequencies based on a sum.
See also: “About Chart Statistics” on page 1000 and “Calculating Weighted

Statistics” on page 1001

VALUE=ARROW | INSIDE | NONE | OUTSIDE
controls the position and style of the slice value (chart statistic) for each slice. For a
description of the option values, see “Selecting and Positioning Spine and Slice
Labels” on page 1063. By default, VALUE=OUTSIDE (the value is outside of the
slice).

WOUTLINE=slice-outline-width
specifies the width of the outline in pixels. The WOUTLINE= option affects the slice
outlines.
Style reference: LineThickness attribute of the GraphOutlines element.

Selecting and Positioning Spine and Slice Labels
By default, each spine or slice is labeled with its midpoint value and its chart

statistic value, which are printed outside of the circle. You can control where and how
these labels are displayed with the SLICE= and VALUE= options, respectively. In
addition, each spine can display the percentage that its midpoint contributes to the total
chart statistic (spine percent). Use the PERCENT= option to request spine percent.

The SLICE=, VALUE=, and PERCENT= options use the same values:

ARROW
places the text outside of the star circle and connects the text to the circle with a
line. The line points to the spine or the center of the slice. The arrow uses the

1064 STAR Statement � Chapter 36

color that is specified by the CTEXT= option in the STAR statement. If you omit
the CTEXT= option, the arrow uses the color defined by the current style.

INSIDE
places the text inside the star circle.

NONE
suppresses the text.

OUTSIDE
places the text outside the star circle.

Figure 36.14 on page 1052 illustrates these values.
The SLICE= and VALUE= options are dependent on each other. If you specify only

VALUE= or only SLICE=, the other option automatically uses the same labeling
method. The PERCENT= option is independent of these two.

Be careful about the combinations that you specify. For example, if you specify
PERCENT=ARROW and VALUE=OUTSIDE, the line that connects the percentage
information to each spine might overlay the statistic value.

Selecting Patterns for the Star Charts
Star charts are always patterned by midpoint.

Default patterns and outlines
Each slice in a star chart is filled with a pattern. Because the system option GSTYLE is
in effect by default, the procedure uses the current style’s default patterns and outlines
when producing output. By default, the procedure does the following:

� fills the slices with star patterns, beginning with the default fill, PSOLID, and
rotates it through the list of colors available in the default style. When these
colors are exhausted, the procedure rotates through a slightly modified version of
the original list of colors. It continues in this fashion until all of the chart
variables have been assigned a unique pattern.

If you use the default style colors and the first color in the list is either black or
white, the procedure does not create a pattern in that color. If you specify a color
list with the COLORS= graphics option, the procedure uses all of the colors in the
list to generate the patterns.

� outlines slices using the color defined by the style. To change the outline color, use
the COUTLINE= option.

See “About Patterns” on page 1002 for more information on how the GCHART
procedure assigns default patterns and outlines.

Controlling patterns
You can control slice patterns and their outlines in several ways.

� To select a different fill for the slices, such as empty or hatched, you can do the
following:

� request a single hatched fill pattern for all slices by specifying the FILL=X
option in the STAR statement. The pattern that is specified by FILL=X
rotates through the list of colors available in the current style as many times
as needed to generate all the patterns required by the chart. If you specify a
single color with either CFILL= or the graphics option, CPATTERN=, all
slices use the same color as well as the same pattern.

� specify a pattern with the VALUE= option in the PATTERN statement. Only
star patterns are valid; all other pattern specifications are ignored. For a

The GCHART Procedure � STAR Statement 1065

complete description of all star patterns, see the VALUE= option on page 245
in “PATTERN Statement” on page 240.

If no color options are specified, the procedure rotates each specified fill
once through the list of colors available in the current style. Otherwise the
PATTERN statement generates one pattern definition for the specified pattern
and color. When all of the specified patterns are exhausted, the procedure
starts rotating through the default star patterns, beginning with PSOLID.

� To select colors for the slices, you can do the following:
� specify a single pattern color with the CFILL= option, or with the

CPATTERN= graphics option, or with a COLORS= list of one color. If you use
the CFILL= option, the procedure starts with the default solid color and uses
the foreground color for outlines. If you use CPATTERN= or a COLORS= list
of one color, the procedure skips the default solid fill and, beginning with
P2N0, uses each default star hatch pattern with the specified color, and uses
the fill color for the outline color.

� specify only the COLOR= option in one or more PATTERN statements. In
this case, the procedure creates a solid pattern for each specified color. When
it runs out of PATTERN statements, it returns to the default patterns,
beginning with PSOLID, and rotates them each through the list of colors
available in the current style. Whenever you specify a PATTERN statement,
the default outline color is SAME.

� To define specific patterns and colors for the slices, use PATTERN statements and
specify both the VALUE= and COLOR= options. If you provide fewer PATTERN
definitions than the chart requires, the GCHART procedure uses the default
pattern rotation for the slices that are drawn after all defined patterns are
exhausted.

See “About Patterns” on page 1002 for more information on how the GCHART
procedure uses patterns and outlines. See “PATTERN Statement” on page 240 for a
description of default star patterns.

Modifying the Statistic Heading and the Group Heading
By default, the procedure prints a heading at the top of each chart indicating the

type of statistic charted and the name of the chart variable—for example, SUM of
SALES by SITE. You can suppress this heading with the NOHEADING option.

When you use the GROUP= option, a heading is printed above each star indicating
the name of the group variable and its value for the particular star—for example,
SITE=Paris. You can suppress these headings with the NOGROUPHEADING option.
You can also suppress the variable name SITE= so that only the value Paris remains.
To do this, use a LABEL statement and assign a null value to the variable name, as
shown in this example:

label site="00"x;

Because the AXIS statement cannot be used by the STAR statement, you should use
the FTEXT= and HTEXT= graphics options to control the font and height of text on the
chart. Increasing the value of HTEXT= decreases the size of the star if any slice labels
are positioned outside. For a description of these graphics options, see Chapter 15,
“Graphics Options and Device Parameters Dictionary,” on page 327.

1066 Examples � Chapter 36

Examples

Note: When using procedures that support RUN-group processing, include a QUIT
statement after the last RUN statement. Using the QUIT statement is especially
important when the procedure is supposed to completely terminate within the
boundaries of an ODS destination (for example, ODS HTML; procedure-code; ODS
HTML CLOSE;). See “RUN-Group Processing” on page 56 for more information. �

Example 1: Specifying the Sum Statistic in a Block Chart

Procedure features:
BLOCK statement option:

SUMVAR=
Other features:

FORMAT statement
GOPTIONS statement option:

BORDER
Sample library member: GCHBKSUM

This example produces a block chart of total sales for three sites by charting the
values of the character variable SITE and calculating the sum of the variable SALES
for each site. It prints formatted values of the sales statistics below the blocks.

All the blocks use the same pattern because by default patterns change for subgroups
and in this example subgroups are not specified.

The GCHART Procedure � Example 2: Grouping and Subgrouping a Block Chart 1067

Set the graphics environment. The BORDER option in the GOPTIONS statement draws a
black border around the graph.

goptions reset=all border;

Create data set TOTALS. TOTALS contains quarterly sales data for three manufacturing
sites for one year. Sales figures are broken down by department.

data totals;
length dept $ 7 site $ 8;
input dept site quarter sales;
datalines;
Parts Sydney 1 7043.97
Parts Atlanta 1 8225.26
Parts Paris 1 5543.97
Tools Sydney 4 1775.74
Tools Atlanta 4 3424.19
Tools Paris 4 6914.25
;

Define title and footnote.

title "Total Sales";
footnote j=r "GCHBKSUM ";

Produce the block chart. The BLOCK statement produces a block chart. SUMVAR=
calculates the sum of SALES for each value of the chart variable SITE. With SUMVAR= the
default statistic is SUM. The summary variable SALES is assigned a dollar format.

proc gchart data=totals;
format sales dollar8.;
block site / sumvar=sales;
run;
quit;

Example 2: Grouping and Subgrouping a Block Chart

Procedure features:
BLOCK statement options:

CAXIS=
GROUP=
LEGEND=
MIDPOINTS=
NOHEADING
SUBGROUP=
TYPE=

1068 Example 2: Grouping and Subgrouping a Block Chart � Chapter 36

Other features:
GOPTION statement option:

BORDER
LABEL statement
LEGEND statement
Default pattern rotation

Sample library member: GCHBKGRP

This example shows average quarterly sales for each department at two of the three
manufacturing sites in the TOTALS data set; it excludes the Paris site from the chart.

The program groups the chart data (sites) by department, and subgroups department
sales data by quarter. Each site is a midpoint. Because the sites are grouped by
department, each midpoint has a separate square for each department and the height
of the block represents total sales for that department.

The blocks are subgrouped to show how quarterly sales contribute to total sales; each
segment represents sales for a quarter. A legend explaining the subgroup patterns
appears below the midpoint grid.

The subgroups use four default patterns and colors which are retrieved from the
current style. The patterns are created by rotating the default fill, solid, through the
color list that is defined in the current style.

Set the graphics environment. The BORDER option in the GOPTIONS statement draws a
black border around the graph.

goptions reset=all border;

The GCHART Procedure � Example 2: Grouping and Subgrouping a Block Chart 1069

Create data set TOTALS. TOTALS contains quarterly sales data for two of the three
manufacturing sites for one year. Sales figures are broken down by department.

data totals;
length dept $ 7 site $ 8;
input dept site quarter sales;
datalines;
Parts Sydney 1 3043.97
Parts Sydney 3 5142.63
Parts Atlanta 1 5225.26
Parts Atlanta 2 3529.06
Tools Sydney 4 1775.74
Tools Atlanta 4 3424.19
Repairs Sydney 2 5543.97
Repairs Atlanta 1 3788.93
Repairs Atlanta 2 4492.89
Repairs Atlanta 3 3914.25
;

Define title and footnote.

title "Average Sales by Department";
footnote j=r "GCHBKGRP ";

Define legend characteristics. LABEL= assigns new text to the legend label. CBORDER=
draws a black frame around the legend.

legend1 cborder=black
label=("Quarter:")
position=(bottom right outside)
mode=protect
across=1;

Produce the block chart. The LABEL statement suppresses the midpoint and group labels by
assigning a null hexadecimal string to each variable name.

proc gchart data=totals;
format quarter roman.;
format sales dollar8.;
label site="00"x dept="00"x;

The TYPE= option specifies the chart statistic as the mean value of the summary variable
SALES for each site. The MIDPOINTS= option selects the two sites and the order in which they
appear. The GROUP= option creates a separate row of blocks for each different value of DEPT.
The SUBGROUP= option divides each block into separate segments for the four quarters. The
LEGEND= option assigns the LEGEND1 statement to the graph. NOHEADING suppresses the
default heading that would otherwise appear above the chart.

block site / sumvar=sales
type=mean

1070 Example 3: Specifying the Sum Statistic in Bar Charts � Chapter 36

midpoints="Sydney" "Atlanta"
group=dept
subgroup=quarter
legend=legend1
noheading;
run;
quit;

Example 3: Specifying the Sum Statistic in Bar Charts

Procedure features:
HBAR statement options:

SUMVAR=
VBAR3D statement options:

SUMVAR=

Other features:
FORMAT statement
GOPTIONS statement option:

BORDER
RUN-group processing

Sample library member: GCHBRSUM

This example produces two bar charts that show the total sales for three sites by
charting the values of the character variable SITE and calculating the sum of the
variable SALES for each site.

The GCHART Procedure � Example 3: Specifying the Sum Statistic in Bar Charts 1071

In the horizontal bar chart shown above, the summary statistics are printed by
default to the right of the bars and display the formatted values of SALES.

The output also shows the frame that is drawn by default around the axis area.
The second bar chart is a three-dimensional vertical bar chart, shown in the

following output. Vertical bar charts do not generate a table of statistics and by default
do not print any chart statistics.

Set the graphics environment. The BORDER option in the GOPTIONS statement draws a
black border around the graph.

goptions reset=all border;

Create data set TOTALS. TOTALS contains quarterly sales data for three manufacturing
sites for one year. Sales figures are broken down by department.

data totals;
length dept $ 7 site $ 8;
input dept site quarter sales;
datalines;
Parts Sydney 1 7043.97
Parts Atlanta 1 8225.26
Parts Paris 1 5543.97
Tools Sydney 4 1775.74
Tools Atlanta 4 3424.19
Tools Paris 4 6914.25
;

Define title and footnote for the first chart.

title1 "Total Sales";
footnote1 j=r "GCHBRSUM(a)";

1072 Example 4: Subgrouping a Three-Dimensional Vertical Bar Chart � Chapter 36

Produce the horizontal bar chart. The HBAR statement produces a two-dimensional bar
chart. SUMVAR= calculates the sum of SALES for each value of the chart variable SITE. The
default statistic for SUMVAR= is SUM. The summary variable SALES is assigned a dollar
format.

proc gchart data=totals;
format sales dollar8.;
hbar site / sumvar=sales;
run;

Produce the vertical bar chart. Because the procedure supports RUN-group processing, you
do not have to repeat the PROC GCHART statement to generate the second chart. The VBAR3D
statement produces a three-dimensional vertical bar chart. The FOOTNOTE1 statement
replaces the previous footnote.

vbar3d site / sumvar=sales;
footnote1 j=r "GCHBRSUM(b)";
run;
quit;

Example 4: Subgrouping a Three-Dimensional Vertical Bar Chart

Procedure features:
VBAR statement options:

CFRAME=
INSIDE=SUBPCT
LEGEND=
MAXIS=
OUTSIDE=SUM
RAXIS=
SPACE=
SUBGROUP=
WIDTH=

Other features:
AXIS statement

FORMAT statement

GOPTIONS statement option:

BORDER

LEGEND statement

Sample library member: GCHBRGRP

The GCHART Procedure � Example 4: Subgrouping a Three-Dimensional Vertical Bar Chart 1073

This example subgroups by department the three-dimensional vertical bar chart of
total sales for each site that is shown in Example 3 on page 1070. In addition to
subdividing the bars to show the amount of sales for each department for each site, the
chart displays statistics both inside and outside of the bars. OUTSIDE=SUM prints the
total sales for the site above each bar. INSIDE=SUBPCT prints the percent each
department contributed to the total sales for its site inside of each subgroup segment.

Both the LEGEND statement and the AXIS statement use the ORIGIN= option to
line up the legend and the chart by explicitly positioning their lower left corners.

Set the graphics environment. The BORDER option in the GOPTIONS statement draws a
black border around the graph.

goptions reset=all border;

Create data set TOTALS. TOTALS contains quarterly sales data for three manufacturing
sites for one year. Sales figures are broken down by department.

data totals;
length dept $ 7 site $ 8;
input dept site quarter sales;
datalines;
Parts Sydney 1 7043.97
Parts Atlanta 1 8225.26
Tools Paris 4 1775.74
Tools Atlanta 4 3424.19
Repairs Sydney 2 5543.97
Repairs Paris 3 6914.25
;

Define title and footnote.

title1 "Total Sales by Site";
footnote1 j=r "GCHBRGRP ";

1074 Example 4: Subgrouping a Three-Dimensional Vertical Bar Chart � Chapter 36

Modify the midpoint axis. The LABEL= option suppresses the axis label. The ORIGIN=
option positions the left end of the horizontal axis at a point that is 25% of the width of the
graphics output area.

axis1 label=none
origin=(24,);

Modify the response axis. The ORDER= option specifies the major tick values for the
response axis. The OFFSET= option moves the top tick mark to the end of the axis line.

axis2 label=none
order=(0 to 30000 by 5000)
minor=(number=1)
offset=(,0);

Modify the legend. The LABEL= option suppresses the legend label. The SHAPE= option
defines the size of the legend values. The CBORDER= option draws a black frame around the
legend. The ORIGIN= option specifies the same position as in the AXIS1 statement.

legend1 label=none
shape=bar(3,3)
cborder=black
origin=(24,);

Produce the vertical bar chart. The SUBGROUP= option creates a separate bar segment for
each department. The INSIDE= option prints the subgroup percent statistic inside each bar
segment. The OUTSIDE= option prints the sum statistic above each bar. The WIDTH= option
makes the bars wide enough to display the statistics. The SPACE= option controls the space
between the bars. The MAXIS= option assigns the AXIS1 statement to the midpoint axis. The
RAXIS= option assigns the AXIS2 statement to the response axis. The LEGEND= option
assigns the LEGEND1 statement to the subgroup legend. The CFRAME= option specifies the
color for the three-dimensional planes.

proc gchart data=totals;
format quarter roman.;
format sales dollar8.;
vbar3d site / sumvar=sales subgroup=dept inside=subpct

outside=sum
width=9
space=4
maxis=axis1
raxis=axis2
cframe=gray
legend=legend1;

run;
quit;

The GCHART Procedure � Example 5: Controlling Midpoints and Statistics in a Horizontal Bar Chart 1075

Example 5: Controlling Midpoints and Statistics in a Horizontal Bar Chart

Procedure features:
HBAR statement options:

AUTOREF
COUTLINE=
CLIPREF
SUBGROUP=

HBAR3D statement options:

FREQ
FREQLABEL=
MIDPOINTS=

Other features:
GOPTIONS statement option:

BORDER
AXIS statement
LEGEND statement
RUN-group processing

Sample library member: GCHBRMID

This example uses the FITNESS data set to produce a horizontal bar chart that
shows the number of people in each age group in a fitness program.

It charts the numeric variable AGE with the frequency statistic. Because the values
of AGE are continuous, the procedure automatically divides the ages into ranges and
displays the midpoint of each age range. The frequency statistic calculates the number
of observations in each range. The chart statistic defaults to FREQ because the
SUMVAR= and TYPE= options are omitted. The table of statistics displays all the
statistic values.

1076 Example 5: Controlling Midpoints and Statistics in a Horizontal Bar Chart � Chapter 36

The second part of this example modifies the midpoint axis and the table of statistics,
and uses RUN-group processing to produce the following chart. This part of the
program specifies the midpoint value for each bar and requests only the FREQ statistic
for the table.

Set the graphics environment. The BORDER option in the GOPTIONS statement draws a
black border around the graph.

goptions reset=all border;

Create the data set FITNESS. The BORDER option draws a black border around the graph.

data fitness;
input age sex $ heart exer aero;
datalines;
28 M 86 2 36.6
41 M 76 3 26.7
30 M 78 2 33.8
29 M 54 3 44.8
48 F 66 2 28.9
36 F 66 2 33.2
;

Define the title and footnote.

title1 "Fitness Program Participants";
footnote j=r "GCHBRMID(a)";

The GCHART Procedure � Example 5: Controlling Midpoints and Statistics in a Horizontal Bar Chart 1077

Modify the response axis. The OFFSET= option moves the first and last tick marks to the
ends of the axis line. The ORDER= option places major tick marks on the response axis from 1
to 14.

axis1 label=("Number of People")
minor=(number=1)
offset=(0,0);

Modify the legend. The VALUE= option specifies the text that describes the values.

legend1 label=none
value=("Women" "Men");

Modify the width, color, and type of reference lines. The REF= option defines which
reference lines will be highlighted using the type, color and width options. The WREF= option
specifies the width of the reference line. The LREF= option specifies the type of reference line.
The FREQ option requests that only the frequency statistic appears in the table. The
FREQLABEL= option specifies the text for the column header in the table of statistics.

wref=(5 5);
lref=(2 1);

Produce the first horizontal bar chart. Because neither the MIDPOINTS= option nor the
DISCRETE option is used, the procedure automatically selects the midpoints. The
SUBGROUP= option divides the bars according to the values of SEX and automatically
generates a legend. The AUTOREF option adds reference lines to the chart at each major tick
mark. The CLIPREF option positions the reference lines behind the bars.

proc gchart data=fitness;
hbar age / subgroup=sex legend=legend1 autoref

clipref
raxis=axis1;

run;

Modify the response axis for the second chart. The ORDER= option places major tick
marks on the response axis at intervals of 1.

axis1 order=(0 to 4 by 1)
label=("Number of People")
minor=(number=1)
offset=(0,0);

Define the footnote for the second chart.

footnote j=r "GCHBRMID(b)";

Modify the midpoint axis label for the second chart.

axis2 label=("Age " j=r "Group");

1078 Example 6: Generating Error Bars in a Horizontal Bar Chart � Chapter 36

Produce the second horizontal bar chart with modified midpoints. The MIDPOINTS=
option specifies the middle value of the range of values represented by each bar. The FREQ
option requests that only the frequency statistic appears in the table. The FREQLABEL= option
specifies the text for the column header in the table of statistics.

hbar3d age / midpoints=(30 40 50)
freq freqlabel="Total in Group" subgroup=sex autoref

maxis=axis2
raxis=axis1
legend=legend1
coutline=black
;

run;
quit;

Example 6: Generating Error Bars in a Horizontal Bar Chart

Procedure features:
HBAR statement options:

CLM=
ERRORBAR=
FREQLABEL=
MEANLABEL=
NOFRAME
SUMVAR=
TYPE=

Other features:
GOPTIONS statement option:

BORDER
AXIS statement

Sample library member: GCHERRBR

The GCHART Procedure � Example 6: Generating Error Bars in a Horizontal Bar Chart 1079

This example uses the FITNESS data set to chart the mean heart rate for each age
group with error bars showing the confidence limits for the average. The response axis
label describes the confidence limit for the error bars. To make the error bars easier to
read, the program suppresses the frame that the procedure draws around the axis area.
Descriptive column head labels in the table of statistics replace the statistic names that
appear by default.

Set the graphics environment. The BORDER option in the GOPTIONS statement draws a
black border around the graph.

goptions reset=all border;

Create the data set FITNESS. The BORDER option draws a black border around the graph.

data fitness;
input age sex $ heart exer aero;
datalines;
28 M 86 2 36.6
41 M 76 3 26.7
30 M 78 2 33.8
29 M 54 3 44.8
48 F 66 2 28.9
36 F 66 2 33.2
;

Define the title and footnote.

title1 "Average Resting Heart Rate by Age";
footnote j=r "GCHERRBR";

1080 Example 7: Specifying the Sum Statistic for a Pie Chart � Chapter 36

Modify the axis labels. AXIS1 is assigned to the response axis and AXIS2 is assigned to the
midpoint axis.

axis1 label=("Heart Rate" j=c "Error Bar Confidence Limits: 95%")
minor=(number=1);
axis2 label=("Age" j=r "Group");

Produce the horizontal bar chart.The SUMVAR= option calculates the mean of the variable
HEART for all the observations in each midpoint group. The TYPE= option specifies the mean
statistic for the summary variable, HEART. The FREQLABEL= and MEANLABEL= options
specify new column labels for the frequency and mean statistics. The ERRORBAR= option
draws the error bars as empty bars and CLM= specifies the confidence level. The NOFRAME
option suppresses the axis area frame.

proc gchart data=fitness;
hbar age / type=mean
sumvar=heart
freqlabel="Number in Group"
meanlabel="Mean Heart Rate"
errorbar=bars
clm=95
midpoints=(30 40 50)
raxis=axis1
maxis=axis2
noframe;
run;
quit;

Example 7: Specifying the Sum Statistic for a Pie Chart

Procedure features:
PIE statement options:

SUMVAR=

PIE3D statement options:

EXPLODE=
SUMVAR=

Other features:
GOPTIONS statement option:

BORDER

FORMAT statement

RUN-group processing

Sample library member: GCHPISUM

The GCHART Procedure � Example 7: Specifying the Sum Statistic for a Pie Chart 1081

This example produces two pie charts that show total sales for three sites by charting
the values of the character variable SITE and calculating the sum of the variable
SALES for each site. It represents the statistics as slices of the pie. By default, the
midpoint value and the summary statistic are printed beside each slice.

The pie slices use the default pattern fill, which is solid. Each slice displays a
different color because, by default, pie charts are patterned by midpoint.

The second pie chart is a three-dimensional pie chart with an exploded slice, as
shown in the following output.

1082 Example 7: Specifying the Sum Statistic for a Pie Chart � Chapter 36

Set the graphics environment. The BORDER option in the GOPTIONS statement draws a
black border around the graph.

goptions reset=all border;

Create data set TOTALS. TOTALS contains quarterly sales data for three manufacturing
sites for one year. Sales figures are broken down by department.

data totals;
length dept $ 7 site $ 8;
input dept site quarter sales;
datalines;
Parts Sydney 1 7043.97
Parts Atlanta 1 8225.26
Parts Paris 1 5543.97
Tools Sydney 4 1775.74
Tools Atlanta 4 3424.19
Tools Paris 4 6914.25
;

Define title and footnote.

title "Total Sales";
footnote j=r "GCHPISUM(a) ";

Produce the first pie chart. The pie statement produces a two dimensional pie chart. The
SUMVAR= option calculates the sum of SALES for each value of the chart variable SITE. The
default statistic for the SUMVAR= option is SUM. The summary variable SALES is assigned a
dollar format.

proc gchart data=totals;
format sales dollar8.;
pie site / sumvar=sales;
run;

Define footnote for second pie chart.

footnote j=r "GCHPISUM(b)";

Produce the second pie chart. The PIE3D statement produces a three-dimensional pie chart.
The EXPLODE= option separates the slice for PARIS from the rest of the pie.

pie3d site / sumvar=sales
explode="Paris";
run;
quit;

The GCHART Procedure � Example 8: Subgrouping a Donut or Pie Chart 1083

Example 8: Subgrouping a Donut or Pie Chart
Procedure features:

DONUT statement options:
DONUTPCT=
LABEL=
LEGEND=
NOHEADING
SUBGROUP=

Other features:
GOPTIONS statement option:

BORDER
LEGEND Statement

Sample library member: GCHSBGRP

This example produces a donut chart that is similar to the pie chart in Example 7 on
page 1080 in that each slice represents total sales for a site and each slice is a different
color. However, in this donut chart the sites are subgrouped by department, so that
each department is represented as a concentric ring with slices.

Subgrouping suppresses the chart statistic and the midpoint labels. Instead it
automatically labels the rings with the subgroup values and generates a legend that
shows how the patterns are associated with the midpoint values. Subgrouping a pie
chart produces the same results but without the hole in the center.

To make the donut chart as large as possible, the program suppresses the default
heading and moves the legend into the space at the left of the chart.

Create data set TOTALS. TOTALS contains quarterly sales data for three manufacturing
sites for one year. Sales figures are broken down by department .

data totals;
length dept $ 7 site $ 8;

1084 Example 9: Ordering and Labeling Slices in a Pie Chart � Chapter 36

input dept site quarter sales;
datalines;
Parts Sydney 1 7043.97
Parts Atlanta 1 8225.26
Parts Paris 1 5543.97
Tools Sydney 4 1775.74
Tools Atlanta 4 3424.19
Tools Paris 4 6914.25
;

Define title and footnote.

title "Sales by Site and Department";
footnote j=r "GCHSBGRP ";

Modify the subgroup legend.The LABEL= options suppresses the legend label. The
POSITION=, the OFFSET=, and the ACROSS= options arrange the legend entries in a column
to the left of the pie chart.

legend1 label=none
position=(middle left)
offset=(5,)
across=1;

Produce the donut chart. The SUBGROUP= option divides the donut into rings. Each ring
represents a value of the subgroup variable, DEPT. The DONUTPCT= option controls the size of
the donut hole, which contains the text specified by the LABEL= option. The NOHEADING
option suppresses the default heading that contains the name of the chart variable and the type
of statistic. The LEGEND= option assigns the LEGEND1 statement to the chart.

proc gchart data=totals;
format sales dollar8.;
donut site / sumvar=sales
subgroup=dept
donutpct=30
label=("All" justify=center "Quarters")
noheading
legend=legend1;
run;
quit;

Example 9: Ordering and Labeling Slices in a Pie Chart

Procedure features:
PIE statement options:

MIDPOINTS=
PERCENT=ARROW

The GCHART Procedure � Example 9: Ordering and Labeling Slices in a Pie Chart 1085

SLICE=ARROW
VALUE=NONE

Other features:
GOPTIONS Statement option:

BORDER
Sample library member: GCHLABEL

This example produces a pie chart of the types of vehicles produced worldwide. The
labeled slices represent the percent of total production for each source. Instead of the
sum statistic, each slice displays the percent each midpoint contributes to the whole
pie. Arrows connect the midpoint labels to the slices, which are arranged by the
MIDPOINTS= option so that similar types of vehicles are shown next to each other in
the pie chart.

Set the graphics environment.

goptions reset=all border;

Define title and footnote.

title "Types of Vehicles Produced Worldwide";
footnote j=r "GCHLABEL";

1086 Example 10: Grouping and Arranging Pie Charts � Chapter 36

Produce the pie chart.This graph uses the data set entitled CARS found in the SASHELP
library. OTHER=0 specifies that all midpoints, no matter how small, display a slice. The
MIDPOINTS= option assigns the order of the slices. Each slice displays the percent contribution
to total production and the slice name. VALUE=NONE suppresses the chart statistic. Both the
SLICE= and PERCENT= options specify the ARROW labeling method to point to the slice, but
only one arrow line is displayed.

proc gchart data=sashelp.cars;
pie type / other=0
midpoints="Truck" "SUV" "Sedan" "Wagon" "Sports" "Hybrid"
value=none
percent=arrow
slice=arrow
noheading;
run;
quit;

Example 10: Grouping and Arranging Pie Charts

Procedure features:
PIE statement options:

ACROSS=
CLOCKWISE
GROUP=
OTHER=
PERCENT=OUTSIDE
SLICE=OUTSIDE

Other features:
GOPTIONS statement option:

BORDER
Sample library member: GCHPIGRP

The GCHART Procedure � Example 10: Grouping and Arranging Pie Charts 1087

This example produces two pie charts that show the production of trucks worldwide.
Both charts are displayed on one page and are arranged two across. The program uses
the CLOCKWISE option to arrange the slices, which begin at the 12 o’clock position
and proceed clockwise in alphabetic order of the midpoint.

The chart statistic is suppressed and the midpoint label and the percent of the chart
statistic are displayed outside of the slice.

Set the graphics environment.

goptions reset=all border;

Define title and footnote.

title "Types of Trucks Produced Worldwide";
footnote j=r "GCHPIGRP";

Produce the pie charts. This graph uses the data set entitled CARS found in the SASHELP
library. The GROUP= option creates a separate pie for each model. In combination with the
GROUP= option, the ACROSS= option draws two charts across one page. The OTHER= option
collects all the midpoints with statistic values less than or equal to 5 percent of the total into one
slice. CLOCKWISE begins drawing the slices at the 12 o’clock position in alphabetic order of the
midpoint. The PERCENT=OUTSIDE and SLICE=OUTSIDE display the labels outside the slices.

proc gchart data=sashelp.cars(where=(type="SUV" or type="Truck"));
pie make / group=type

across=2
other=5 otherlabel="Other Makes"
clockwise value=none
slice=outside percent=outside;

run;
quit;

1088 Example 11: Specifying the Sum Statistic in a Star Chart � Chapter 36

Example 11: Specifying the Sum Statistic in a Star Chart
Procedure features:

STAR statement options:
SUMVAR=

Other features: FORMAT statement
Sample library member: GCHSTSUM

This example produces a star chart of total sales for three sites by charting the
values of the character variable SITE and calculating the sum of the variable SALES
for each site. It represents the statistics as slices of the star. The center of the circle
represents 0 and the edge of the circle represents the largest value, in this case Paris
sales. By default, the spines are joined and filled with a solid pattern to form slices, and
the midpoint value and the formatted values of the sales statistics are printed beside
each slice.

Set the graphics environment.

goptions reset=all border;

Create data set TOTALS. TOTALS contains quarterly sales data for three manufacturing
sites for one year. Sales figures are broken down by department.

data totals;
length dept $ 7 site $ 8;
input dept site quarter sales;
datalines;
Parts Sydney 1 7043.97
Parts Atlanta 1 8225.26
Parts Paris 1 5543.97
Tools Sydney 4 1775.74

The GCHART Procedure � Example 12: Charting a Discrete Numeric Variable in a Star Chart 1089

Tools Atlanta 4 3424.19
Tools Paris 4 6914.25
;

Define title and footnote.

title "Total Sales";
footnote j=r "GCHSTSUM ";

Produce the star chart. The SUMVAR= option calculates the sum of SALES for each value of
the chart variable SITE. Because the TYPE= option is omitted, the default statistic is sum. The
FORMAT statement assigns a format to the summary variable SALES.

proc gchart data=totals;
format sales dollar8.;
star site / sumvar=sales;
run;
quit;

Example 12: Charting a Discrete Numeric Variable in a Star Chart

Procedure features:
STAR statement options:

DISCRETE
FILL=
NOCONNECT
NOHEADING
SUMVAR=

Other features:
GOPTIONS statement option:

BORDER
Sample library member: GCHDSCRT

1090 Example 12: Charting a Discrete Numeric Variable in a Star Chart � Chapter 36

This example produces two star charts that show the total number of parts that were
rejected each month for a year. The STAR statement uses the DISCRETE option so
that each unique value of the numeric variable DATE is a separate midpoint and has a
separate spine. Each slice displays the formatted midpoint value and the chart
statistic. Specifying FILL=S rotates the solid pattern through all the colors in the
style’s list of colors as many times as necessary to provide patterns for all the slices.

The second chart uses the NOCONNECT option so that the chart uses spines instead
of slices.

Set the graphics environment. The BORDER option in the GOPTIONS statement draws a
black border around the graph.

goptions reset=all border;

The GCHART Procedure � Example 12: Charting a Discrete Numeric Variable in a Star Chart 1091

Create the data set REJECTS. REJECTS contains data on the number of defective parts
produced at each of three sites for 12 months. BADPARTS is the number of parts that were
rejected at each site for each month.

data rejects;
informat date date9.;
input site $ date badparts;
datalines;
Sydney 01JAN1997 8
Sydney 01FEB1997 11
Sydney 28JUN1997 13
Sydney 31OCT1997 6
Paris 11APR1997 12
Paris 04MAY1997 12
Paris 30AUG1997 14
Paris 01DEC1997 7
Atlanta 15MAR1997 7
Atlanta 18JUL1997 12
Atlanta 03SEP1997 10
Atlanta 12NOV1997 9
;

Define title and footnote.

title "Rejected Parts";
footnote j=r "GCHDSCRT(a) ";

Produce the first star chart. DISCRETE must be specified because the numeric chart
variable, DATE is assigned the WORDDATE3. Using FILL=S fills all the slices with solid
patterns.

proc gchart data=rejects;
format date worddate3.;
star date / discrete
sumvar=badparts
noheading
fill=s;
run;

Define footnote for the second chart.

footnote j=r "GCHDSCRT(b) ";

Produce the second star chart with slices and a solid fill.The NOHEADING option
suppresses the default heading for the star chart. The NOCONNECT option suppresses the
lines that by default join the ends of the spines.

star date / discrete
sumvar=badparts
noheading

1092 Example 13: Creating a Detail Pie Chart � Chapter 36

noconnect;
run;
quit;

Example 13: Creating a Detail Pie Chart

Procedure Features:
PIE statement options:

DETAIL=
DETAIL_PERCENT=
DETAIL_SLICE=
DETAIL_THRESHOLD=
DETAIL_VALUE=
LEGEND

Other features:
GOPTIONS statement option:

BORDER

Sample library member: GCHDTPIE

This example produces a normal pie chart with a detail pie overlay. The pie chart
shows the percentage of vehicle types produced worldwide. The detail pie overlay shows
the percentage of DRIVETRAINS for each vehicle TYPE.

Set the graphics environment.

goptions reset=all border;

The GCHART Procedure � References 1093

Define the title and footnote.

title "Types of Vehicles Produced Worldwide (Details)";
footnote1 j=r "GCHDTPIE";

Produce the detail pie chart.This graph uses the data set entitled CARS found in the
SASHELP library. The DETAIL= option produces a inner pie overlay showing the percentage
that each DRIVETRAIN contributes toward each type of vehicle. The DETAIL_PERCENT=
option and the DETAIL_SLICE= option control the positioning of the detail slice labels. The
DETAIL_VALUE= option turns off the display of the number of DRIVETRAINS for each detail
slice. The DETAIL_THRESHOLD= option shows all detail slices that contribute more than two
percent of the entire pie.

proc gchart data=sashelp.cars;
pie type / detail=drivetrain
detail_percent=best
detail_value=none
detail_slice=best
detail_threshold=2
legend
;
run;
quit;

References

Nelder, J. A. (1976), “A Simple Algorithm for Scaling Graphs,” Applied Statistics,
Volume 25, Number 1, London: The Royal Statistical Society.

Terrell, G. R. and Scott, D. W. (1985), “Oversmoothed Nonparametric Density
Estimates,” Journal of the American Statistical Association, 80.

1094

1095

C H A P T E R

37
The GCONTOUR Procedure

Overview 1095
Concepts 1097

CONTOUR Plot 1097

Input Data 1097

Data Ranges 1097

Missing Values 1098
Interpolating Data 1098

Procedure Syntax 1098

PROC GCONTOUR Statement 1098

PLOT Statement 1099

Examples 1115

Example 1: Simple Contour 1115
Example 2: Labeling Contour Lines, Modifying the Horizontal Axis, Modifying the Legend 1116

Example 3: Specifying Contour Levels 1118

Example 4: Using Patterns and Joins 1120

References 1123

Overview
The GCONTOUR procedure enables you to generate two-dimensional plots

representing three-dimensional relationships. For example, the following contour plot
Display 37.1 on page 1096 displays various depths of a lake. The dimensions of the lake
are plotted on the x and y axes. The z variable is plotted as the third dimension, and is
displayed as uniquely colored contour lines.

1096 Overview � Chapter 37

Display 37.1 Simple Contour Plot

With PROC GCONTOUR, you can do the following actions:
� use AXIS statements to customize the axes

� use line styles and patterns to emphasize the contour levels

� use reference lines to see how (x,y) combinations align to z values

� use SYMBOL statements to customize labels or highlight data trends

The GCONTOUR Procedure � Data Ranges 1097

Concepts

CONTOUR Plot

Figure 37.1 GCONTOUR Procedure Terms

axis label
(y variable)

axis

major tick
mark value

minor tick mark

frame

contour lines

major tick mark

legend label
(z variable)

legend value legend
value description

axis label
(x variable)

Input Data
The GCONTOUR procedure requires three numeric variables to produce a plot. The

input data set forms a rectangular grid from the values of x and y. The z variable is
plotted on the grid as the third dimension. Only one value of z is required for each (x,y)
grid location. If multiple observations have the same z value for any (x,y) combination,
only the last observation is plotted.

Data Ranges
PROC GCONTOUR produces a rectangular grid with axes scaled to include the

minimum data values and maximum data values of x and y. Each axis is labeled with
the variable name or label. The contour lines represent the levels of magnitude by
grouping the common values of the z variable. The level of each contour line is
displayed in the legend. The legend label is the z variable’s name or label.

1098 Missing Values � Chapter 37

Missing Values
PROC GCONTOUR requires data values for at least fifty percent of the z variable,

for each unique combination of (x,y). The INCOMPLETE option can be used to override
this requirement. The G3GRID procedure can also be used to create data for missing
values. (See Chapter 54, “The G3GRID Procedure,” on page 1571).

Interpolating Data
The G3GRID procedure enables you to produce a data set with nonmissing values for

z for every unique (x,y) combination. The output data set from the G3GRID procedure
can be used as the input data set for the GCONTOUR procedure. The G3GRID
procedure also enables you to smooth data for use with GCONTOUR. For details see
Chapter 54, “The G3GRID Procedure,” on page 1571. For an interpolation example see
Example 1 on page 1581 .

Procedure Syntax
Requirements: At least one PLOT statement is required.
Global statements: AXIS, FOOTNOTE, GOPTIONS, LEGEND, PATTERN, SYMBOL,
TITLE
Reminder: The procedure can include the BY, FORMAT, LABEL, NOTE, and WHERE
statements.

PROC GCONTOUR <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=< libref.>output-catalog>
<INCOMPLETE>;

PLOT y*x=z </option(s)>;

PROC GCONTOUR Statement

Identifies the data set that contains the plot variables. Can also specify an annotate data set, an
output catalog and the incomplete option.

Requirements: An input data set is required.

Syntax

PROC GCONTOUR <DATA= input-data-set>
<ANNOTATE=Annotate-data-set >
<GOUT=< libref.>output-catalog>

The GCONTOUR Procedure � PLOT Statement 1099

<INCOMPLETE>;

Options
PROC GCONTOUR statement options affect all graphs produced by the procedure.

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate all graphs produced by the GCONTOUR procedure.
To annotate individual graphs, use the ANNOTATE= option in the action statement.
Restriction: Partially supported by Java and ActiveX
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

DATA=input-data-set
specifies the SAS data set that contains the variables to plot. The procedure uses the
most recently created SAS data set if none is specified.
See also: “SAS Data Sets” on page 54 and “Concepts” on page 1097

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output that is produced by the
GCONTOUR procedure. If you omit the libref, SAS/GRAPH looks for the catalog in
the temporary library called WORK and creates the output catalog if it does not exist.

INCOMPLETE
allows the plotting of data when values are missing for more than half of the z
variable in the input data set.
Restriction: Not supported by Java and ActiveX

PLOT Statement

Creates contour plots using the values of three numeric variables from the input data set as the
source of the contour coordinates.

Requirements: A plot request is required.
Global statements: AXIS, FOOTNOTE, GOPTIONS, LEGEND, NOTES, PATTERN,
SYMBOL, TITLE

Description
The PLOT statement specifies the three variables to plot. It can also control the

contour levels, label the plot lines, and modify the axes as well as the general
appearance of the graph. Only one plot request can be specified in a PLOT statement.

To specify multiple plots for a single PROC GCONTOUR statement, use multiple
PLOT statements. If a global statement is specified more than once, the last occurrence
is applied to all PLOT statements in that PROC step.

The PLOT statement does the following actions:

� plots the contour lines as levels using the values of the z variable
� scales the axes to include the minimum data values and the maximum values of x

and y

� labels the x and y axes
� generates a labeled legend representing the values of the z variable’s contour levels

1100 PLOT Statement � Chapter 37

Global statements enable you to modify the axes, the legend, the contour lines and
contour line labels, the fill patterns and pattern colors for contour areas. You can also
add titles, footnotes, and notes to the plot. You can use an Annotate data set and set
GOPTIONS to enhance the appearance of the plot. Additionally, you can filter your
data with a WHERE clause, format your data values, add labels to the variables, and
generate multiple plots with a BY statement or multiple plot statements.

Syntax

PLOT y*x=z </option(s)>;

option(s) can be one or more options in the following categories:
� appearance options:

ANNOTATE=Annotate-data-set
CAXIS=axis-color

CFRAME=background-color
COUTLINE=outline-color

CTEXT=text-color
GRID
NOAXIS | NOAXES
NOFRAME

� horizontal axis options:
AUTOHREF
CAUTOHREF=reference-line-color
CHREF=reference-line-color | (reference-line-color)|reference-line-color list

HAXIS=AXIS<1...99>
HMINOR=number-of-minor-tick-marks

HREF=value-list
HREVERSE
LAUTOHREF=reference-line-type
LHREF=reference-line-type | (reference-line-type) reference-line-type list

WAUTOHREF=reference-line-width
WHREF=reference-line-width|(reference-line-width)| reference-line-width list

XTICKNUM=number-of-major-tick-marks
� vertical axis options:

AUTOVREF
CAUTOVREF=reference-line-color

CVREF=reference-line-color | (reference-line-color) | reference-line-color list
LAUTOVREF=reference-line-type

LVREF=reference-line-type | (reference-line-type) | reference-line-type list
VAXIS=AXIS<1...99>
VMINOR=number-of-minor-tick-marks
VREF=value-list

VREVERSE
WAUTOVREF=reference-line-width

The GCONTOUR Procedure � PLOT Statement 1101

WVREF= reference-line-width|(reference-line-width)|reference-line-width list
YTICKNUM=number-of-major-tick-marks

� contour options:
CLEVELS=color(s)
JOIN
LEGEND=LEGEND<1...99>
LEVELS=value-list
LJOIN
LLEVELS=line-type-list
NLEVELS=number-of-levels
NOLEGEND
PATTERN
SMOOTH

� labeling options:
AUTOLABEL | AUTOLABEL=(autolabel-suboptions)

where autolabel-suboptions can be one or more of these:
CHECK=checking-factor | NONE
MAXHIDE=amount<units>
REVEAL
TOLANGLE=angle

� catalog entry description options:
DESCRIPTION="description"
NAME="name"

Required Arguments

y*x=z
specifies three numeric variables from the input data set:

y is the variable that is plotted on the vertical axis.

x is the variable that is plotted on the horizontal axis.

z is the variable that is plotted as contour lines.

Options
Options in a PLOT statement affect all graphs that are produced by that statement.

You can specify as many options as you want and list them in any order. If you use a
BY statement on the procedure, the options in each PLOT statement affect all graphs
produced by that BY statement.

ANNOTATE= Annotate-data-set
specifies an Annotate data set to enhance the charts produced by the PLOT
statement.
Alias: ANNO=
Restriction: Partially supported by Java and ActiveX
See also: Chapter 33, “The GANNO Procedure,” on page 913 and Chapter 30,

“Annotate Dictionary,” on page 667

1102 PLOT Statement � Chapter 37

AUTOHREF
displays reference lines originating at the major tick marks on the horizontal axis.
Restriction: Not supported by Java

AUTOLABEL | AUTOLABEL=(autolabel_suboptions)
labels the contour lines. Autolabel suboptions enable you to control the appearance of
these labels.

The label for each contour line is the value of the z variable for that contour level.
The labels are displayed in BEST format. The FORMAT statement enables you to
change the display format.

You can also use the SYMBOL statement to control the appearance and text of
contour labels and lines.

When AUTOLABEL is used with the LLEVELS= option, LLEVELS is ignored.
When AUTOLABEL is used with the CLEVELS= option, AUTOLABEL is ignored.

Featured in: Example 2 on page 1116
Restriction: Not supported by Java and ActiveX
See also: “Autolabel Suboptions” on page 1108

AUTOVREF
displays reference lines originating at the major tick marks on the vertical axis.
Restriction: Not supported by Java

CAUTOHREF=reference-line-color
specifies a color for all the reference lines displayed by the AUTOHREF option. The
default color is retrieved from the current style or from the device’s color list if the
NOGSTYLE option is specified.
Style reference: Color attribute of the GraphGridLines element
Restriction: Not supported by Java

CAUTOVREF=reference-line-color
specifies a color for all the reference lines displayed by the AUTOVREF option. The
default color is retrieved from the current style or from the device’s color list if the
NOGSTYLE option is specified
Restriction: Not supported by Java

CAXIS=axis-color
specifies a color for axis lines, axis tick marks, and the frame around the plot. The
default color is retrieved from the current style or from the device’s color list if the
NOGSTYLE option is specified.
Style reference: Color attribute of GraphAxisLines element
Restriction: Partially supported by Java

CFRAME=background-color
fills the axis area with the specified color. The default color is retrieved from the
current style or from the device’s color list if the NOGSTYLE option is specified.
Alias: CFR=
Style reference: Color attribute of the GraphWalls element

CHREF=reference-line-color |(reference-line-color) | reference-line-color list
specifies a color or colors for reference lines drawn with the HREF= option and the
AUTOHREF option as follows:

� specifying a single color without parentheses applies that color to all reference
lines drawn with the HREF= option and the AUTOHREF option

� specifying a single color within parentheses applies the color to the first
reference line drawn with the HREF= option only

The GCONTOUR Procedure � PLOT Statement 1103

� specifying a list of colors within parentheses applies the colors sequentially to
the reference lines drawn with the HREF= option only

The default color is retrieved from the current style or from the device’s color list if
the NOGSTYLE option is specified.
Alias: CH=
Style reference: ContrastColor attribute of the GraphReference element
Restriction: Not supported by Java

CLEVELS=color(s)
specifies a color or list of colors for the contour levels. GCONTOUR substitutes
user-defined colors in the ODS style. If more colors are needed, GCONTOUR uses
the next color in the ODS style until all lines have an associated color. The default
color is retrieved from the current style or from the device’s color list if the
NOGSTYLE option is specified.
Style reference: Color attribute of the GraphData element
Restriction: Not supported by Java and partially supported by ActiveX

COUTLINE=outline-color
specifies a color for outlining filled areas. This option is ignored unless the PATTERN
option is also used. COUTLINE=SAME creates a plot with outlines that are the
same color as the adjacent fill color.

Note: The outline color is the only distinction between empty patterns. Use of
this option makes the patterns look the same when VALUE=EMPTY in PATTERN
definitions. �
Restriction: Not supported by Java and ActiveX
Featured in: Example 4 on page 1120

CTEXT=text-color
specifies a color for the axis labels, axis tick mark values, legend labels, and legend
value descriptions. GCONTOUR uses the first color it finds from the following list:

1 colors specified for labels and values on assigned AXIS and LEGEND
statements.

2 the color specified by the CTEXT= option in the PLOT statement.
3 the color specified by the CTEXT= option in a GOPTIONS statement.
4 the color specified in the current style, or if the NOGSTYLE system option is

specified, the default color is the first color in the color list for each device.
The LEGEND statement’s VALUE= color is used for legend values, and its

LABEL= color is used for legend labels.
The AXIS statement’s VALUE= color is used for legend values, and its LABEL=

color is used for legend labels. However, if the AXIS statement specifies only general
axis colors with its COLOR= option, the CTEXT= color overrides the general
COLOR= specification and is used for axis labels and values; the COLOR= color is
still used for all other axis colors, such as tick marks.

Note: If you use a BY statement in the procedure, the color of the BY variables’
labels is controlled by the CBY= option in the GOPTIONS statement. �
Featured in: Example 4 on page 1120

CVREF=reference-line-color | (reference-line-color) | reference-line-color list
specifies a color or colors for reference lines drawn with the VREF= option and the
AUTOVREF option as follows:

� specifying a single color without parentheses applies that color to all reference
lines drawn with the VREF= option and the AUTOVREF option

1104 PLOT Statement � Chapter 37

� specifying a single color within parentheses applies the color to the first
reference line drawn with the VREF= option only

� specifying a list of colors within parentheses applies the colors sequentially to
the reference lines drawn with the VREF= option only

Alias: CV=
Style reference: ContrastColor attribute of the GraphReference element
Restriction: Not supported by Java

DESCRIPTION=“entry-description”
specifies the description of the catalog entry for the chart. The maximum length for
entry-description is 256 characters. This description does not appear on the chart.
The GCONTOUR procedure assigns a description of the form PLOT OF y*x=z, where
y*x=z is the request specified in the PLOT statement.
Alias: DES=

GRID
draws reference lines at all major tick marks on both axes. This is the same as
specifying both the AUTOHREF and AUTOVREF options.
Restriction: Not supported by Java

HAXIS=AXIS<1...99>
assigns axis characteristics from the corresponding axis definition to the horizontal x
axis. If the AXIS statement specifies the REFLABEL= option, labels are applied in
sequence to all reference lines generated with the HREF= option.
Featured in: Example 2 on page 1116
Restriction: Partially supported by Java and ActiveX
See also: “AXIS Statement” on page 198

HMINOR=number-of-minor-tick marks
specifies the number of minor tick marks to draw between each major tick mark on
the horizontal x axis. The HMINOR= option overrides the MINOR= option in an
AXIS definition assigned to the horizontal axis.
Alias: HM=
Featured in: Example 3 on page 1118

HREF=value-list
displays up to 100 reference lines originating on the horizontal x axis at specified
values within the x axis range. Any values specified beyond the axis range are not
drawn, and a warning is issued to the log. To specify labels for this option, use the
HAXIS= option. The value-listcan be an explicit list of values, a starting value and
an ending value with an interval increment, or a combination of both forms:

� n <... n>.
� n TO n <BY increment >.
� n <... n > TO n <BY increment > n <... n >.

Restriction: Not supported by Java

HREVERSE
specifies that the order of the values on the horizontal x axis be reversed.
Restriction: Not supported by Java

JOIN
combines adjacent grid cells with the same pattern to form a single pattern area.
This option is ignored unless the PATTERN option is also used.
Note: Java and ActiveX support the JOIN option without the pattern option.

The GCONTOUR Procedure � PLOT Statement 1105

LAUTOHREF=reference-line-type
specifies a line type for reference lines specified by the AUTOHREF option. The
reference-line-type value is any integer from 1 to 46. 1 specifies a solid line; values 2
through 46 specify dashed lines.
Default: 1 (solid)

Style reference: LineStyle attribute of the GraphGridLines element
Restriction: Not supported by Java
See also: “Specifying Line Types” on page 276 for available line types

LAUTOVREF=reference-line-type
specifies a line type for reference lines specified by the AUTOVREF option. The
reference-line-type value is any integer from 1 to 46. 1 specifies a solid line; values 2
through 46 specify dashed lines.
Style reference: LineStyle attribute of the GraphGridLines element

Restriction: Not supported by Java
See also: “Specifying Line Types” on page 276 for available line types

LEGEND=LEGEND<1...99>
assigns legend characteristics from the corresponding legend definition to the plot’s
legend. To suppress the legend, use the NOLEGEND option. The LEGEND= option
is ignored if the specified LEGEND definition is not currently in effect.

If you use the SHAPE= option in a LEGEND statement, the value LINE is valid.
If you use the PATTERN option, SHAPE=BAR is also valid.
Restriction: Partially supported by Java (always displayed on the right side of plot)

and ActiveX
See also: “LEGEND Statement” on page 225
Featured in: Example 2 on page 1116

LEVELS=value-list
specifies up to 100 values for the z variable. Because GCONTOUR uses the z
variable to calculate plot contour levels, you can use the LEVELS= option to change
the number of contour levels plotted.

The value-list can be an explicit list of values, a starting and an ending value with
an interval increment, or a combination of both forms:

� n <... n>.

� n TO n <BY increment >.
� n <... n > TO n <BY increment > n <... n >.

If a variable has an associated format, the specified values must be the
unformatted values.

The contour lines on the plot represent the intersection of a plane formed by the
(x,y) variables, and the surface that is formed by the values of the z variable.

LHREF=reference-line-type | (reference-line-type) | reference-line-type list
specifies line types for reference lines originating on the horizontal axis. The
reference-line-type value is any integer from 1 to 46. 1 specifies a solid line; values 2
through 46 specify dashed lines. When using this option, the following is true:

� specifying a single line type without parentheses applies that line type to all
reference lines drawn with the HREF= option and the AUTOHREF option

� specifying a single line type within parentheses applies the line type to the first
reference line drawn with the HREF= option only

� specifying a list of line types within parentheses applies the line types
sequentially to the reference lines drawn with the HREF= option only

1106 PLOT Statement � Chapter 37

� the LAUTOHREF= option overrides the LHREF= (reference-line-type) for lines
drawn with the AUTOHREF option

Alias: LH=
Style reference: LineStyle attribute of the GraphReference element
Restriction: Not supported by Java and partially supported by ActiveX
See also: “Specifying Line Types” on page 276 for available line types

LJOIN
displays filled contour areas with contour lines.
Restriction: Supported by Java and ActiveX only

LLEVELS=line-type-list
lists line types for plot contour lines. Each line type represents one contour level. If
fewer line types are specified than the number of levels in the plot, GCONTOUR
provides additional line types. Valid values for line-type-list are integers from 1 to 46.
1 specifies a solid line; values 2 through 46 specify dashed lines.
Default: 1 (solid)
Restriction: Not supported by Java and partially supported by ActiveX
See also: “Specifying Line Types” on page 276 for the line types represented by

each number.
Featured in: Example 3 on page 1118.

LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
specifies line types for reference lines originating on the vertical axis. Valid values
for line-type-list are integers from 1 to 46. 1 specifies a solid line; values 2 through 46
specify dashed lines. When using this option the following is true:

� specifying a single line type without parentheses applies that line type to all
reference lines drawn with the VREF= option and the AUTOVREF option

� specifying a single line type within parentheses applies the line type to the first
reference line drawn with the VREF= option only

� specifying a list of line types within parentheses applies the line types
sequentially to the reference lines drawn with the VREF= option only

� the LAUTOVREF= option overrides the LVREF= (reference-line-type) for lines
drawn with the AUTOVREF option

Alias: LV=
Style reference: LineStyle attribute of the GraphReference element
Restriction: Partially supported by Java and ActiveX
See also: “Specifying Line Types” on page 276 for the line types represented by

each number

NAME="name"
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase. Periods are converted to underscores. If you specify DEVICE=ACTIXIMG
or DEVICE=JAVAIMG, then the name that you specify is used for the graphics
output file even if the file exists. If the name duplicates an existing GRSEG name,
then SAS/GRAPH adds a number to the name to create a unique entry name—for
example, GCONTOU1.
Default: GCONTOUR
See also: “About Filename Indexing” on page 99
Featured in: Example 3 on page 1118

The GCONTOUR Procedure � PLOT Statement 1107

NLEVELS=number-of-levels
specifies the number of contour levels to plot. Valid values are integers from 1 to 100.

Restriction Partially supported by Java and ActiveX
Featured in: Example 3 on page 1118

NOAXIS
specifies that a plot have no axis values, axis labels, or axis tick marks. The frame is
displayed around the plot unless you use the NOFRAME option.
Alias: NOAXES

Restriction Partially supported by Java

NOFRAME
suppresses the frame that is drawn around the plot area.
Restriction: Not supported by Java

NOLEGEND
suppresses the legend that describes the plot by displaying the z variable name or
label, the legend values, and legend value descriptions.

Default: LEGEND

PATTERN
specifies that the plot contour levels are represented by rectangles filled with
patterns. The pattern for each rectangle is determined by calculating the mean of the
values of the z variable for the four corners of the rectangle and assigning the
pattern for the level closest to the mean.

To explicitly define patterns, use PATTERN definitions for map or plot patterns.

Featured in: Example 4 on page 1120
See also: “PATTERN Statement” on page 240

SMOOTH
produces smooth gradient areas between levels.

Restriction: Supported by Java and ActiveX only

VAXIS=AXIS<1...99>
assigns axis characteristics from the corresponding axis definition to the vertical
yaxis. If the AXIS statement specifies the REFLABEL= option, labels are applied in
sequence to all reference lines generated with the VREF= option.

Restriction: Partially supported by Java and ActiveX
See also: “AXIS Statement” on page 198
Featured in: Example 3 on page 1118

VMINOR=number-of-minor-tick marks
specifies the number of minor tick marks located between each major tick mark on
the vertical y axis. Value labels are not displayed for minor tick marks. The
VMINOR= option overrides the MINOR= option in an AXIS definition that is
assigned to the vertical axis.

Alias: VM=

Featured in: Example 3 on page 1118

VREF=value-list
displays up to 100 reference lines originating on the vertical y axis at specified values
within the y axis range. Any values specified beyond the axis range are not drawn,
and a warning is issued to the log. To specify labels for these reference lines, use the
VAXIS= option. The value-listcan be an explicit list of values, a starting value and an
ending value with an interval increment, or a combination of both forms:

1108 PLOT Statement � Chapter 37

� n <... n>.
� n TO n <BY increment >.
� n <... n > TO n <BY increment > n <... n >.

Restriction: Not supported by Java

VREVERSE
specifies that the order of the values on the vertical axis be reversed.
Restriction Not supported by Java

WAUTOHREF=reference-line-width
specifies a line width for reference lines specified by the AUTOHREF option. The
reference-line-width can be any number greater than zero, and does not need to be an
integer.
Default: Current style setting, 1 if NOGSTYLE
Style reference: LineThickness attribute of the GraphGridLines element
Restriction: Not supported by Java and ActiveX

WAUTOVREF=reference-line-width
specifies a line width for reference lines specified by the AUTOVREF option. The
reference-line-widthcan be any number greater than zero, and does not need to be an
integer.
Default: Current style setting, 1 if NOGSTYLE
Style reference: LineThickness attribute of the GraphGridLines element
Restriction: Not supported by Java and ActiveX

WHREF=reference-line-width
specifies a line width for reference lines specified by the HREF= option. The
reference-line-width can be any number greater than zero, and does not need to be an
integer.
Default: Current style setting, 1 if NOGSTYLE
Style reference: LineThickness attribute of the GraphReference element
Restriction: Not supported by Java and ActiveX

WVREF=reference-line-width
specifies a line width for reference lines specified by the VREF= option. The
reference-line-width can be any number greater than zero, and does not need to be an
integer.
Default: Current style setting, 1 if NOGSTYLE
Style reference: LineThickness attribute of the GraphReference element
Restrictions: Not supported by Java and ActiveX

XTICKNUM=number-of-major-tick-marks
specifies the number of major tick marks on the horizontal x axis. The value of
number-of-major-tick–marks must be greater than or equal to 2. The MAJOR= and
ORDER= options in an AXIS definition that is assigned to the horizontal x axis
overrides the XTICKNUM= option.

YTICKNUM= number-of-major-tick-marks
specifies the number of major tick marks on the vertical y axis. The value of
number-of-major-tick-marks must be greater than or equal to 2. The MAJOR= and
ORDER= options in an AXIS definition that is assigned to the vertical y axis
overrides the YTICKNUM= option.

Autolabel Suboptions
The AUTOLABEL= option accepts the following autolabel suboptions.

The GCONTOUR Procedure � PLOT Statement 1109

CHECK=checking-factor | NONE
specifies a collision checking factor that controls collisions between contour label
text and other contour lines or other labels. Values can be integers from 0 to 100,
inclusive, where 0 provides minimal collision checking and 100 provides maximal
collision checking. Fractional values are permitted.

CHECK=NONE suppresses contour label collision checking and can lessen the
time needed to compute the contour plot.
Default: 75

MAXHIDE=amount <units>
specifies the maximum amount of the contour line that can be hidden by contour
labels. The value of amountmust be greater than zero.

Valid units are CELLS (horizontal character cell positions), CM (centimeters),
IN (inches), or PCT (percentage of the width of the graphics output area). If you
omit units , a unit specification is searched for in this order:

1 The GUNIT= option in a GOPTIONS statement.
2 The default unit, CELLS.
For units that you specify as PCT or CELLS, the MAXHIDE= suboption

calculates the amount of contour line that can be hidden based on the width of the
graphics output area. For example, if you specify MAXHIDE=50 PCT, and if the
graphics output area is 9 inches wide, the maximum amount of the contour line
that can be hidden by labels is 4.5 inches.

This option maintains data integrity. It provides a check for overly small
increments in the STEP= option in the SYMBOL statement. Additionally, the
MAXHIDE= option can prevent small contours from being significantly hidden
even when the value of the STEP= option is sufficiently large.
Default: MAXHIDE=100

REVEAL
specifies that the contour lines are visible through the label text as dashed lines.
Line style 33 is used. This option provides a simple way to see all portions of
labeled contours, and can be used to inspect the label positions with respect to the
contour lines. The REVEAL option is primarily used for debugging. Occasionally,
single-character contour labels can be placed off center from the clipped portion of
the contour line when the contour line is irregular or jagged.

TOLANGLE=angle
specifies the maximum angle (the tolerance angle) between any two adjacent
characters of a contour label. The value of angle must be between 1 and 85
degrees. To force contour labels to fall on very smooth sections, specify a small
tolerance angle.
Default: 30

Selecting Contour Levels
The LEVEL= option enables you to customize your plot, by specifying values for the

contour levels.
The LEVELS= option represents the z variable values as a third dimension, using

uniquely colored contour lines.

1110 PLOT Statement � Chapter 37

Figure 37.2 Selecting Contour Levels

Using the PATTERN option with the LEVELS= option generates a plot with contour
levels that are displayed as solid filled rectangles. The rectangles are formed by points
in the (x, y)grid. The contour pattern of a rectangle, or grid cell, is determined by
average value of the z variable for the four corners of the rectangle. The grid cell is
assigned the pattern for the level closest to the calculated mean. For example, if you
have specified contour levels of 0, 5, and 10, and the plot contains a grid cell with a mean
of 100, it is assigned the pattern for the nearest level: 10. A grid cell with a mean of 7.6
is also assigned the pattern for the 10 level. The same data used with the following
PLOT statement in the GCONTOUR procedure produces a similar contour plot:

plot y*x=z / levels=-7.5 to 7.5 by 2.5/
pattern;

run;

The following contour plot with the PATTERN option uses the same data and contour
levels as Example 4 on page 1120. Contour plots using the same contour levels can
present your data differently, if one plot uses a pattern and the other does not. The
contour pattern boundaries do not correspond to the contour lines shown in Example 4
on page 1120.

The GCONTOUR Procedure � PLOT Statement 1111

Figure 37.3 Contour Plot with the PATTERN Option

Using the data to create a surface plot with the G3D procedure, the contour lines in
a GCONTOUR procedure plot represent the intersection of the plane and the surface.

For example, suppose that you use the G3D procedure, and your data produces a
surface plot like the one shown below.

The contour lines represent the intersection of the surface lines with the plane
parallel to the plane formed by the variables x and y and located at z values of –7.5,
–5.0, –2.5, and so on.

Figure 37.4 G3D Surface Plot

1112 PLOT Statement � Chapter 37

Specifying Axis Order
You can use AXIS statements to modify the text and appearance of plot axes, and

then you can assign the axes to the contour plot with the PLOT statement’s HAXIS=
and VAXIS= options. If the AXIS statement uses an ORDER= option, there are special
considerations for using that AXIS definition with the GCONTOUR procedure.

A list of variable values that are specified with the AXIS statement’s ORDER= option
must contain numbers listed in ascending or descending order; these numbers are
treated as a continuous data range for an axis. Thus, for a contour line or pattern to
span the entire specified range, it is not necessary for the maximum and minimum
values of the list to match exactly with the maximum and minimum data values of the
corresponding x or y variable. For example, suppose that you assign this AXIS
definition to the horizontal (x) axis:

axis1 order=-2.5 to 2.5 by .5

Suppose also that the horizontal axis variable has these values: –5, –4, –3, –2, –1, 0,
1, 2, 3, 4, 5. Depending on the data, contours could extend through the full range of the
ORDER= list rather than from –2 to 2, which are the actual values of the variable
assigned to the horizontal (x) axis. In this case, values are interpolated for the x
variable at any point where the y variable intersects the minimum axis value (–2.5) or
the maximum axis value (2.5). Data values that are outside of the axis range (in this
case, –5, –4, –3, 3, 4, and 5) are clipped from the plot.

When ORDER= lists cause data clipping, internal plotting grids are modified
according to these rules:

� If an ORDER= list causes data clipping on a single axis, linear interpolation
generates the z values of the starting or ending column, or both columns of the
plotting grid. For example, in the previous example, the value of z is interpolated
for –2.5 and 2.5 on the horizontal (x) axis.

� If ORDER= lists cause data clipping on both axes, the response variable values of
the new corners are derived by fitting the new x, y location on a plane formed by
three of the original four points of the corresponding grid square.

� When assigning the following AXIS definition to a plot of the same data, the
contour levels on the plot do not extend beyond the range of the data:

axis1 order=-10 to 10 by 1;

The GCONTOUR Procedure � PLOT Statement 1113

Figure 37.5 The ORDER= option, values match the range of the data values

Figure 37.6 The ORDER= option, values clip the range of data values

1114 PLOT Statement � Chapter 37

Figure 37.7 The ORDER= option, values extend beyond the range of the data
values

Modifying Contour Lines and Labels with the SYMBOL Statement
When you use the AUTOLABEL option, the LLEVELS= and CLEVELS= options are

ignored, and contour-line and label attributes are controlled by the SYMBOL
statement. Defaults are used if not enough SYMBOL statements are specified to match
the number of contour levels.

If a SYMBOL statement does not include a color option, the SYMBOL statement can
be applied to more than one contour level. In this case, the SYMBOL statement is used
once with every color in the color list and generates more than one SYMBOL definition.
See “SYMBOL Statement” on page 252 for details.

Table 37.1 on page 1114 describes how SYMBOL statement options affect contour
plot lines and labels.

Table 37.1 The Effect of SYMBOL Statement Options on Contour Lines and Labels

SYMBOL Statement Option Contour Line or Label Element Affected

LINE=line-type Contour line style

WIDTH=n Contour line thickness

CI=line-color or COLOR=color Contour line color

FONT=font Contour label font

HEIGHT=height Contour label height

CV=color or COLOR=color Contour label color

STEP=distance<units> Minimum distance between labels on the same
contour line

VALUE=’text’ Contour label text

VALUE=NONE Suppresses the contour label text

The GCONTOUR Procedure � Example 1: Simple Contour 1115

The SYMBOL statement option INTERPOL= is not supported by the GCONTOUR
procedure.

The STEP= option specifies the minimum distance between contour labels. The lower
the value, the more labels the procedure uses. A STEP= value of less than 10 percent is
ignored by the GCONTOUR procedure and a value of 10 percent is substituted.

For more information, see “SYMBOL Statement” on page 252.

Specifying Text for Contour Labels
To override the default labels that are displayed by the AUTOLABEL option, you can
specify label text for one or more contour lines. To do so, use both the FONT= and
VALUE= options on the SYMBOL statement that is assigned to the contour level.
Default labels are used for contour levels that you do not label.

For example, this SYMBOL1 statement displays the text string DEEP in the Arial
font on the contour line that it modifies:

symbol1 font="Arial Rounded MT Bold" value="DEEP";

You must specify both FONT= and VALUE= options or the text is not used. For an
example, see Example 2 on page 1116.

Examples

Example 1: Simple Contour
Procedure features: PLOT Statement
Data Set SASHELP.LAKE
Sample library member: GCTLAKE

This simple contour plot displays the various depths of a lake. The dimensions of the
lake are plotted on the x and y axes. The z variable is plotted as the third dimension, as

1116 Example 2: Labeling Contour Lines, Modifying the Horizontal Axis, Modifying the Legend � Chapter 37

levels represented by contour lines. The contour line levels are displayed and labeled in
the legend.

Set the graphics environment. Draw a BORDER around the graphics output area.

goptions reset=all border;

Define titles and footnotes. Add TITLE content. Add FOOTNOTE content and placement.

title "Lake Data";
footnote j=r "GCTLAKE";

Generate contour plot. Generate a simple contour plot using SASHELP.LAKE. Use one PLOT
statement to define the grid and the contour lines.

proc gcontour data=sashelp.lake;
plot length*width=depth;
run;

quit;

Example 2: Labeling Contour Lines, Modifying the Horizontal Axis,
Modifying the Legend

Procedure features: AUTOLABEL, HAXIS, LEGEND
Data Set SASHELP.LAKE
Sample library member: GCTLABEL

The GCONTOUR Procedure � Example 2: Labeling Contour Lines, Modifying the Horizontal Axis, Modifying the Legend 1117

This example modifies Example 1 on page 1115 to label contour levels with the
AUTOLABEL option. The SYMBOL statement used with the AUTOLABEL option
enables you to customize the attributes of the contour lines and labels.

In this example, SYMBOL1 and SYMBOL7 assign text labels, text fonts, text height,
and text and line color for the first and seventh contour level lines.
SYMBOL2–SYMBOL6 define the text height, and the text and line color for contour
level lines 2–6.

Additionally, the LEGEND statement attributes are modified to reposition the legend
closer to the data.

Set the graphics environment. Draw a BORDER around the graphics output area.

goptions reset=all border;

Define title and footnote. Add TITLE content . Add FOOTNOTE content and placement.

title1 "Lake Data";
footnote1 j=r "GCTLABEL";

Define symbol statements. SYMBOL statements define the characteristics of the lines and
labels for the contour lines. Each SYMBOL statement is associated to an individual contour
level starting with the first level displayed in the LEGEND.

symbol1 value="DEEP"
color=red
font="Arial Rounded MT Bold"
height=.6;

symbol2 color=green
height=.45;

symbol3 color=blue
height=.45;

symbol4 color=orange
height=.45;

symbol5 color=purple
height=.45;

symbol6 color=magenta
height=.45;

symbol7 value="Shallow"
color=navy
font="Arial Rounded MT Bold"
height=.7;

Define legend characteristics. The LEGEND statement controls the location and
appearance of the legend. The POSITION= option specifies the position of the legend relative to
the plot; RIGHT specifies the horizontal position; MIDDLE specifies the vertical position. The
LABEL= option modifies the legend label; POSITION=TOP places the legend label relative to
the legend entries; the ACROSS= option defines the number of columns in the legend.

legend1 position=(right middle)
label=(position=top)
across=1;

1118 Example 3: Specifying Contour Levels � Chapter 37

Define axis characteristics. The ORDER= option specifies the order in which the data values
appear on the axis; the ORDER= values will be displayed as the major tick marks values;
MINOR=NONE suppresses all minor tick marks.

axis1 order=(0 to 10 by 2) minor=none;

Generate the contour plot. The AUTOLABEL= option labels the contour lines;
(CHECK=NONE) suppresses contour label collision checking, and might lessen the time needed
to compute the plot. HAXIS=AXIS1 assigns the AXIS1 definition to the horizontal axis.
LEGEND=LEGEND1 assigns the LEGEND1 definition to the LEGEND. The NAME= option
specifies the name of the catalog entry for the graph.

proc gcontour data=sashelp.lake;
plot length*width=depth/

autolabel=(check=none)
haxis=axis1
legend=legend1
name="GCTLABEL";

run;
quit;

Example 3: Specifying Contour Levels

Procedure features: HMINOR, LLEVELS, NAME, NLEVELS, VAXIS, VMINOR
Data Set POLLEN

Sample library member: GCTNLVEL

The GCONTOUR Procedure � Example 3: Specifying Contour Levels 1119

This contour plot shows the amount of pollen in the air for five work days (x–axis) in
a four week series (y-axis). The PLOT statement uses the NLEVELS= option to specify
the number of contour levels to plot for the z variable. The NLEVELS= option enables
you to specify up to 100 levels in your plot.

Set the graphics environment. Draw a border around the graphics output area.

goptions reset=all border;

Create data set. Create the data set.

data pollen;
input Week Workdays Pollen @@;
datalines;
1 1 50 1 2 96 1 3 28 1 4 94 1 5 124 2 1 204 2 2 153 2 3 43 2 4 21 2 5 60
3 1 37 3 2 23 3 3 57 3 4 21 3 5 65 4 1 8 4 2 144 4 3 22 4 4 141 4 5 95
;
run;

Add titles and footnotes. Add TITLE content. Add FOOTNOTE content and placement

title1 "The Amount of Pollen Particles in a Cubic Meter of Air";
footnote1 j=r "GCTNLVEL";

Define an axis statement for the vertical axis. Define an AXIS statement to order and
increment the axis values.

axis1 order=(1 to 4 by 1);

Generate the contour plot. HMINOR=0 sets the number of minor tick marks on the
horizontal axis to 0. The LLEVELS= option lists a line type for each contour line. The number of
line types listed correspond to the number of contour levels specified in the NLEVELS= option.
NLEVELS=6 specifies the number of levels to compute for z. The NAME= option specifies the
name of the catalog entry for the plot. The VAXIS= option assigns the AXIS1 statement to the
vertical axis. VMINOR=0 sets the number of minor tick marks on the vertical axis to 0.

proc gcontour data=pollen;
plot week*workdays=pollen/

hminor=0
llevels= 2 20 21 33 25 41
name="GCTNLVEL"
nlevels=6
vaxis=axis1
vminor=0;

run;
quit;

1120 Example 4: Using Patterns and Joins � Chapter 37

Example 4: Using Patterns and Joins

Procedure features: COUTLINE, CTEXT, HAXIS, JOIN, LEGEND, PATTERN
Data Set SWIRL
Sample library member: GCTPATJN

This example demonstrates the differences between using lines and patterns to
represent contour levels. The first PLOT statement generates a plot with lines
representing contour levels.

Figure 37.8 Line Contour Levels

The second PLOT statement specifies the PATTERN option to fill and color contour
levels. Additional PLOT statement options outline filled areas in gray and specify green
text for all text on the axes and in the legend.

The GCONTOUR Procedure � Example 4: Using Patterns and Joins 1121

Figure 37.9 Pattern Contour Levels

The third PLOT statement uses the JOIN option to combine adjacent grid cells with
the same pattern to form a single pattern area. Additional options enhance the plot by
modifying the axes and framing the legend.

Figure 37.10 Contour Plot with Joined Cells

Set the graphics environment.Draw a border around the graphics output area.

goptions reset=all border;

1122 Example 4: Using Patterns and Joins � Chapter 37

Crate the data set. The data set SWIRL is generated data that produces a symmetric contour
pattern, which is useful for illustrating the pattern option.

data swirl;
do x= -5 to 5 by 0.25;

do y= -5 to 5 by 0.25;
if x+y=0 then z=0;

else z=(x*y)*((x*x-y*y)/(x*x+y*y));
output;

end;
end;

run;

Define the title and the footnote. Add TITLE content. Add FOOTNOTE content, and
placement.

title1 "Line Contour Levels";
footnote1 j=r "GCTPATR1";

Generate the first contour plot. Generate a simple contour plot.

proc gcontour data=swirl;
plot y*x=z;
run;

quit;

Define the title and footnote for the second plot. Add TITLE content for the second plot.
Add FOOTNOTE content and placement for the second plot.

title1 "Pattern Contour Levels";
footnote j=r "GCTPATR2";

Generate the second contour plot. CTEXT=green specifies green for all text on the axes and
legend. COUTLINE=gray specifies gray outlining of filled areas. The PATTERN option specifies
the fill pattern and colors for the contour levels.

proc gcontour data=swirl;
plot y*x=z /

ctext=green
coutline=gray
pattern;

run;
quit;

The GCONTOUR Procedure � References 1123

Define the title and footnote for the third plot. Add TITLE content for the third plot. Add
FOOTNOTE content and placement for the third plot.

title "Contour Plot with Joined Cells";
footnote j=r "GCTPATR3";

Define the axis characteristics. Blanks are used to suppress tick mark labels at positions
-2.5 and 2.5.

axis1 label=none
value=("-5" ’’ "0" ’’ "5")
color=red
width=3;

axis2 label=none
value=("-5" ’’ "0" ’’ "5")
color=red
width=3;

Define the legend characteristics. Add a frame around the legend.

legend1 frame;

Generate the third contour plot. The HAXIS=AXIS1 option assigns an axis definition to the
horizontal axis. The JOIN= option combines adjacent grid cells with the same pattern to form a
single pattern area. LEGEND=LEGEND1 assigns the legend definition. The PATTERN option
specifies the fill pattern and colors for the contour levels. VAXIS=AXIS2 assigns an axis
definition to the vertical axis.

proc gcontour data=swirl;
plot y*x=z /

haxis=axis1
join
legend=legend1
pattern
vaxis=axis2;

run;
quit;

References

Snyder, W.V. (1978), “Contour Plotting [J6] ,” ACM Transactions on Mathematical
Software, 4, 290–294.

1124

1125

C H A P T E R

38
The GDEVICE Procedure

Overview 1126
Concepts 1126

Device Catalogs 1126

The Current Catalog 1126

Search Order of Device Catalogs 1127

Ways to Use the GDEVICE Procedure 1127
Running the GDEVICE Procedure In A Windowing Environment 1127

Running the GDEVICE Procedure In Program Mode 1128

Procedure Syntax 1128

PROC GDEVICE Statement 1129

ADD Statement 1129

COPY Statement 1132
DELETE Statement 1133

FS Statement 1134

LIST Statement 1134

MODIFY Statement 1135

QUIT Statement 1135
RENAME Statement 1136

Using the GDEVICE Procedure 1136

Using the GDEVICE Windows 1136

GDEVICE Window Commands 1137

DIRECTORY Window 1137
Detail window 1138

Parameters window 1138

Gcolors window 1139

Chartype window 1139

Colormap window 1139

Metagraphics window 1140
Gprolog window 1140

Gepilog window 1140

Gstart window 1141

Gend window 1141

Host File Options window 1141
Host Commands window 1141

Creating or Modifying Device Entries 1142

Creating a New Device Entry 1142

Modifying an Existing Device Entry 1142

Changing Device Parameters Temporarily 1143
Examples 1143

Example 1: Creating a Custom Device Entry with Program Statements 1143

1126 Overview � Chapter 38

Overview

The GDEVICE procedure is a tool for examining and changing the parameters of the
graphics device driver catalog entries used with SAS/GRAPH software. With the
GDEVICE procedure, you can use either the GDEVICE windows or GDEVICE
procedure statements to:

� list the device entries stored in any DEVICES catalog

� view the parameters for any device entry

� create and modify new device entries

� copy, modify, rename, or delete existing device entries.

See Chapter 6, “Using Graphics Devices,” on page 67 for a discussion of device
drivers and device entries, as well as directions for selecting device drivers, and
changing the settings of device parameters.

For a complete list of SAS supplied device entries that are supported by your
operating environment, see the SASHELP.DEVICES catalog.

Concepts

Device Catalogs
Device entries are stored in SAS catalogs that are named libref.DEVICES. Device

entries for your operating environment that SAS supplies with SAS/GRAPH software
are stored in the SASHELP.DEVICES.

Custom device entries are typically stored in a catalog named GDEVICEn.DEVICES
(where n can be any number from 0 to 9). However, device entries that have been
created or modified by a system administrator specifically for your site also might be
stored in SASHELP.DEVICES. (On multi-user systems, the administrator is usually the
person who has write access to the SASHELP.DEVICES catalog.)

The Current Catalog
When the GDEVICE procedure determines which catalog it should use, it searches

for the catalog in the following order:

1 the catalog name specified in the CATALOG= option in the PROC GDEVICE
statement

2 the catalog associated with the GDEVICE0 libref, if the libref has been assigned

3 the catalog SAS supplies, SASHELP.DEVICES. (SASHELP.DEVICES is usually
write-protected and is opened in browse mode.)

The first catalog SAS encounters is the current catalog.
Specify the current catalog by;

� using the CATALOG= option in the PROC GDEVICE statement (this is required
to open a driver entry in update mode)

� assigning the GDEVICE0 libref to the appropriate catalog.

The GDEVICE Procedure � Ways to Use the GDEVICE Procedure 1127

Search Order of Device Catalogs
SAS/GRAPH searches only librefs starting with GDEVICE0 through GDEVICE9.

The libraries must contain a catalog named DEVICES for SAS/GRAPH to search for the
device entries for any driver. If you have personal device catalogs in more than one SAS
library, you must assign librefs in the sequence GDEVICE0, GDEVICE1, GDEVICE2,
and so on.

If the libref GDEVICE0 has been assigned to a SAS library, SAS/GRAPH looks in
that library for a catalog named DEVICES. If the GDEVICE0.DEVICES catalog exists,
it is checked for the specified device entry. If the device entry is not there, SAS/GRAPH
looks next for a library with the libref GDEVICE1 and for a catalog named DEVICES
in that library. The search is repeated for the sequence of librefs through GDEVICE9.

The search terminates if:
1 any of the GDEVICE libraries do not contain a DEVICES catalog
2 the librefs do not follow the numeric sequence of GEVICE0, GDEVICE1,

GDEVICE2, and so on, in that order.

If SAS/GRAPH terminates the search for either reasons, or it it does not find the
specified device entry, SAS/GRAPH searches the SASHELP.DEVICES catalog.If the
specified device entry is not found in the SASHELP.DEVICES catalog, an error message
is written to the log.

Note: As stated above, the search for entries terminates if there is a break in the
sequence. For example, the catalog GDEVICE1.DEVICES is not checked if the libref
GDEVICE0 is undefined or if GDEVICE0 does not contain a catalog named DEVICES. �

Ways to Use the GDEVICE Procedure
There are two ways to use the GDEVICE procedure:
� browse or edit the fields in the GDEVICE procedure windows (windowing mode).

See “Running the GDEVICE Procedure In A Windowing Environment” on page
1127

� submit GDEVICE procedure statements in a SAS program (program mode). See
“Running the GDEVICE Procedure In Program Mode” on page 1128

If you run SAS in a windowing environment, you can use either the GDEVICE
procedure windows or the GDEVICE procedure statements. In a windowing
environment, the GDEVICE procedure automatically opens the GDEVICE procedure
windows

If you run SAS in line mode or batch mode, you can use only GDEVICE procedure
statements. In a non-windowing environment, the GDEVICE procedure automatically
uses line mode.

Both methods provide identical functionality and allow you to display or modify
device parameters or create new device entries.

Running the GDEVICE Procedure In A Windowing Environment
In a windowing environment, open the GDEVICE windows by submitting the PROC

GDEVICE statement without the NOFS option:

proc gdevice;

This opens the DIRECTORY window in browse mode. This window lists all of the
device entries in the current catalog. (See “The Current Catalog” on page 1126.)

To open the DIRECTORY window in edit mode, or to specify a different catalog,
include the CATALOG= option in the PROC GDEVICE statement.

1128 Procedure Syntax � Chapter 38

From the DIRECTORY window, you can select the device entry that you want to
work with and open other GDEVICE windows in which you can view or modify device
parameters. For more information, see “Using the GDEVICE Windows” on page 1136.

In a windowing environment, you can switch between the GDEVICE windows and
program statements while you are running the procedure. See “FS Statement” on page
1134 and the NOFS option in “PROC GDEVICE Statement” on page 1129.

To exit the GDEVICE windows, submit the End command or close the window.

Running the GDEVICE Procedure In Program Mode
If you are in a non-windowing or batch environment, the GDEVICE procedure

automatically starts in program mode. If you are in a windowing environment, specify
the NOFS option to start the GDEVICE procedure in program mode:

proc gdevice nofs;

By default, the GDEVICE procedure accesses the current catalog in browse mode and
prompts you in the LOG to enter additional program statements. (See “The Current
Catalog” on page 1126.) To specify the current catalog, include the CATALOG= option
in the PROC GDEVICE statement.

Once you start the GDEVICE procedure, you can enter and run additional
statements without resubmitting the PROC GDEVICE statement. You can exit the
GDEVICE procedure in these three ways:

� submit the END, QUIT, or STOP statement

� submit another PROC statement or DATA step

� exit your SAS session

PROC GDEVICE procedure output is displayed in the Output window.

Procedure Syntax
Requirements: Statements other than the PROC GDEVICE statement can be used only
in a non-windowing or batch environment. In these environments, at least one
statement is required to give GDEVICE an action to perform. In a windowing
environment, the PROC GDEVICE statement is required. In program mode, at least
one statement is required.

Note: You must have write access to the device catalog in order to modify, add, or delete
entries.

PROC GDEVICE <CATALOG=<libref.>SAS-catalog>
<BROWSE>
<NOFS>;

ADD new-device-entry
required-parameters
<optional-parameters>;

COPY device-entry
<FROM=< libref.>SAS-catalog>
<NEWNAME=new-device-entry>;

DELETE device-entry;
FS;

The GDEVICE Procedure � ADD Statement 1129

LIST device-entry | _ALL_ | _NEXT_ | _PREV_ | DUMP>;
MODIFY device-entry

parameter(s)
QUIT | END | STOP;
RENAME device-entry NEWNAME=entry-name;

PROC GDEVICE Statement

Starts the procedure and determines whether it is running in windowing mode or program mode.
Can identify a device catalog and specify how that catalog is opened.

PROC GDEVICE <CATALOG=<libref.>SAS-catalog>
<BROWSE>
<NOFS>;

Options
Options used in the PROC GDEVICE statement affect the way you use the

procedure. They specify how to open the catalog.

BROWSE
opens a catalog in browse mode. You cannot modify a catalog when you open it with
the BROWSE option. If you are running in program mode when you use BROWSE,
you can use only the FS, LIST, QUIT, END, or STOP statements.

CATALOG=<libref.>SAS-catalog
CAT=<libref.>SAS-catalog
C=<libref.>SAS-catalog

specifies the catalog containing device information. If you do not specify a catalog,
the procedure opens the first catalog found in the search order of catalogs in browse
mode. For search order of source catalogs, see “Search Order of Device Catalogs” on
page 1127.

To edit the device entries in a catalog, you must specify the CATALOG= option.

NOFS
specifies that you are using program mode. In windowing environments, the
GDEVICE windows are the default, and you must specify NOFS to start GDEVICE
in program mode.

ADD Statement

Adds a new device entry to the catalog selected by the CATALOG= option in the PROC GDEVICE
statement. The device entry is initialized with NULL values for most parameters.

Requirements: You must have write access to the device catalog in order to add entries,
and use CATALOG= in the PROC GDEVICE statement.
Restriction: Not valid in browse mode.

1130 ADD Statement � Chapter 38

ADD device-entry
required-parameters
<optional-parameters>;

required-parameters are all of these parameters:
MODULE=driver-module
XMAX=width <IN | CM>
YMAX=height <IN | CM>
XPIXELS=width-in-pixels
YPIXELS=height-in-pixels

plus one or both of these parameter pairs:
LCOLS=landscape-columns
LROWS=landscape-rows

or
PCOLS=portrait-columns
PROWS=portrait-rows

optional-parameters can be one or more of these options:
ASPECT=scaling-factor
AUTOCOPY=Y | N
AUTOFEED=Y | N
CBACK=background-color
CELL=Y | N
CHARACTERS=Y | N
CHARREC=(charrec-list(s))
CHARTYPE=hardware-font-chartype
CIRCLEARC=Y | N
CMAP=(’from-color : to-color’ <...,’from-color-n : to-color-n’>)
COLORS=(<colors-list>)
COLORTYPE=NAME | RGB | HLS | GRAY | CMY | CMYK | HSV | HSB
DASH=Y | N
DASHLINE=’dashed-line-hex-string’X
DESCRIPTION=’text-string’
DEVMAP=device-map-name | NONE
DEVOPTS=’hardware-capabilities-hex-string’X
DEVTYPE=device-type
DRVINIT1=’system-command(s)’
DRVINIT2=’system-command(s)’
DRVQRY | NODRVQRY
DRVTERM1=’system-command(s)’
DRVTERM2=’system-command(s)’
ERASE=Y | N
FILECLOSE=DRIVERTERM | GRAPHEND
FILL=Y | N
FILLINC=0...9999

The GDEVICE Procedure � ADD Statement 1131

FORMAT=CHARACTER | BINARY
GACCESS=output-format | ’output-format > destination’
GCOPIES=current-copies
GEND=’string’ <...’string-n’>
GEPILOG=’string’ <...’string-n’>
GPROLOG=’string’ <...’string-n’>
GPROTOCOL=module-name
GSFLEN=record-length
GSFMODE=APPEND | REPLACE | PORT
GSFNAME=fileref
GSIZE=lines
GSTART=’string’ <...’string-n’>
HANDSHAKE=HARDWARE | NONE | SOFTWARE | XONXOFF
HEADER=’command’
HEADERFILE=fileref
HORIGIN=horizontal-offset <IN | CM>
HOSTSPEC=’text string’
HSIZE=horizontal-size <IN | CM>
ID=’description’
INTERACTIVE=USER | GRAPH | PROC
LFACTOR=line-thickness-factor
MAXCOLORS=number-of-colors
MAXPOLY=number-of-vertices
MODEL=model-number
NAK=’negative-handshake-response’X
PAPERFEED=feed-increment <IN | CM>
PATH=angle-increment
PENSORT=Y | N
PIEFILL=Y | N
POLYGONFILL=Y | N
POSTGRAPH1=’system-command(s)’
POSTGRAPH2=’system-command(s)’
PREGRAPH1=’system-command(s)’
PREGRAPH2=’system-command(s)’
PROCESS=’command’
PROCESSINPUT=fileref
PROCESSOUTPUT=fileref
PROMPT=0...7
PROMPTCHARS=’prompt-chars-hex-string’X
QMSG | NOQMSG
RECTFILL=’rectangle-fill-hex-string’X
REPAINT=redraw-factor
ROTATE=LANDSCAPE | PORTRAIT
ROTATION=angle-increment
pen-speed

1132 COPY Statement � Chapter 38

SWAP=Y | N
SYMBOL=Y | N
SYMBOLS=’hardware-symbols-hex-string’X
TRAILER=’command’
TRAILERFILE=fileref
TRANTAB=table | user-defined-table
TYPE= CAMERA | CRT | EXPORT | PLOTTER | PRINTER
UCC=’control-characters-hex-string’X
VORIGIN=vertical-offset <IN | CM>
VSIZE=vertical-size <IN | CM>

Required Arguments

new-device-entry
specifies the one-level name of the new device entry. New-device-entry must be a
valid name for a SAS catalog entry for your operating environment and cannot
already exist in the current catalog.

required-parameters
specify the required parameters for the device. All of the required parameters for the
ADD statement correspond to device parameters of the same name. Refer to Chapter
15, “Graphics Options and Device Parameters Dictionary,” on page 327 for a
description of each parameter.

Options
All optional parameters for the ADD statement correspond to device parameters of

the same name. Refer to Chapter 15, “Graphics Options and Device Parameters
Dictionary,” on page 327 for a description of each parameter.

Note: The COLORS= device parameter is not required; the device entry is created
even if you do not specify it. However, the GDEVICE procedure issues an error message
if you do not specfy at least one color for the COLORS= option. �

Best Practice
The best way to add a new driver is to copy an existing driver and modify the

parameters. The ADD statement initializes all the parameter values to NULL, and you
have to set values for all of the parameters to something other than NULL.

COPY Statement
Copies a device entry and places the copy in the current catalog. The original device entry can be
either in the current catalog or in a different catalog.

Requirements: You must have write access to the catalog where the device entry is being
copied.
Restriction: Not valid in browse mode.
See also: “Creating or Modifying Device Entries” on page 1142
Featured in: Example 1 on page 1143

The GDEVICE Procedure � DELETE Statement 1133

COPY device-entry where;

Where where must be one or both of these options:

FROM=<libref.>SAS catalog

NEWNAME=new-device-entry

Required Arguments

device-entry
specifies the one-level name of the device entry to copy.

Restriction: The entry must exist in the current catalog (the default) or the catalog
specified by FROM= argument.

FROM=<libref.>SAS catalog
names the catalog from which to copy device-entry.

NEWNAME=new-device-entry
specifies a name for the copy of the device entry that is placed in the current catalog.
New-device-entry must be a valid name for a SAS catalog entry and cannot already
exist in the current catalog.

If you copy device entries across catalogs and you do not specify a new name, the
GDEVICE procedure uses the original name for the new device entry.

DELETE Statement

Deletes the device entry from the current catalog.

Requirements: You must have write access to the current catalog to delete a device entry.
You must specify the CATALOG= option in the PROC GDEVICE statement to have
write access to the current catalog.

Restriction: Not valid in browse mode.

Caution: A device entry cannot be restored once it has been deleted. Depending on the
environment in which you are using the GDEVICE procedure, you might be asked to
verify that you really want to delete the entry.

DELETE device-entry;

Required Arguments

device-entry
specifies the one-level name of device entry to delete.

Restriction: The entry must exist in the current catalog.

1134 FS Statement � Chapter 38

FS Statement

Switches from program mode to the GDEVICE windows.

Requirements: You must be running SAS in a windowing environment.

FS;

Options
No options.

LIST Statement

Lists all of the parameters of the specified device entry in the Output window.

Default: _ALL_
See also: “Running the GDEVICE Procedure In Program Mode” on page 1128

LIST <device-entry>
<_ALL_>
<_NEXT_>
<_PREV_>
<DUMP>;

Options

device-entry
specifies the one-level name of the device entry whose contents you want to list.
Restriction: The entry must exist in the current catalog.

ALL
lists only the name, description, and creation date of all device entries in the current
catalog. If no entries exist in the catalog, the GDEVICE procedure issues a message.

NEXT
lists the contents of the next device entry. The GDEVICE procedure lists the first
entry in the catalog if no entries have been previously listed.

PREV
lists the contents of the previous device entry. If you have not previously listed the
contents of a device entry, the GDEVICE procedure issues this message:

No objects preceding current object.

DUMP
lists detailed information on all device entries in the current catalog. Depending on
the number of device entries in the catalog, the DUMP option can create a large
amount of output.

The GDEVICE Procedure � QUIT Statement 1135

MODIFY Statement

Changes the values in a device entry.

Requirements: You must have write access to the current catalog to modify a device entry.
You must specify the CATALOG= option in the PROC GDEVICE statement to have
write access to the current catalog.
Restriction: Not valid in browse mode.
See also: “Creating or Modifying Device Entries” on page 1142
Featured in: Example 1 on page 1143

MODIFY device-entry
parameter(s);

Required Arguments

device-entry
specifies the one-level name of the device entry that you want to modify.
Restriction: The entry must exist in the current catalog.

parameter(s)
are the parameters you want to modify. These can be any of the parameters listed in
the ADD statement, whether listed as required or optional for ADD. See “ADD
Statement” on page 1129 for a complete list. Refer to Chapter 15, “Graphics Options
and Device Parameters Dictionary,” on page 327 for a description of each parameter.

Details
To modify a device entry, create your own catalog and then copy the device entries

you need into it. You can then change your personal copies of the device entries without
affecting the original drivers in SASHELP.DEVICES. (To copy device entries, use the
COPY statement, the COPY command available after you choose Import Device Entry
from the DIRECTORY window’s File menu, or the CATALOG procedure, which is part
of Base SAS.)

CAUTION:
Be careful when modifying device entries in program mode. In program mode, you
cannot cancel any modifications you have just made. To change a value you have
modified, you must use another MODIFY statement to replace the original value or
reset it to its default. (In the GDEVICE windows, you can type the CANCEL
command in the command line to cancel changes you have made to the fields.) �

QUIT Statement

Saves all modifications made to device entries during the procedure. Exits the GDEVICE procedure.

1136 RENAME Statement � Chapter 38

QUIT | END | STOP;

Options
No options.

RENAME Statement

Changes the name of the device entry to the name specified in the statement.

Requirements: You must have write access to the current catalog to rename a device
entry. You must specify the CATALOG= option in the PROC GDEVICE statement to
have write access to the current catalog.

Restriction: Not valid in browse mode.

RENAME device-entry
NEWNAME=entry-name;

Required Arguments

device-entry
specifies the one-level name of the device entry that you want to rename.
Restriction: The entry must exist in the current catalog.

NEWNAME=entry-name
specifies the new entry name. Entry-name must be a valid name for a SAS catalog
entry and cannot already exist in the current catalog. If the name already exists, the
GDEVICE procedure issues an error message.

Using the GDEVICE Procedure

Using the GDEVICE Windows
You can use GDEVICE windows instead of program mode to view, modify, copy,

create, or delete device entries. You can perform tasks in the GDEVICE windows by
entering values in the fields, by using the menus, and by issuing commands from the
command line.

These are the thirteen GDEVICE windows in order of appearance:

� Directory Window
� Detail Window
� Parameters Window
� Gcolors Window
� Chartype Window
� Colormap Window

The GDEVICE Procedure � Using the GDEVICE Windows 1137

� Metagraphics Window

� Gprolog Window

� Gepilog Window

� Gstart Window

� Gend Window

� Host File Options Window

� Host Commands Window

The fields in these windows represent device entry parameters. The GDEVICE
windows group the device parameters by topic. When you open a device entry in edit
mode, you can modify the fields directly. For a description of each field, see the
corresponding parameter in Chapter 15, “Graphics Options and Device Parameters
Dictionary,” on page 327. For a complete list of device parameters, see “ADD
Statement” on page 1129.

Note: The parameters are sometimes an abbreviation of the field names. For
example, in the Detail window, the “Driver query” field corresponds to the DRVQRY
parameter, and the “Queued messages” field corresponds to the QMSG parameter. �

GDEVICE Window Commands
You can navigate and manipulate the GDEVICE windows by entering commands on

the command line, or selecting items from the menus. For a complete description of all
the GDEVICE window commands, open the help for the GDEVICE windows. You can
open the help by entering Help on the command line or by selecting Help � Using This
Window.

Note: In a Windows environment, the GDEVICE commands are presented on
pop-up menus. Click the secondary mouse button on a GDEVICE window to access a
pop-up menu. �

DIRECTORY Window
This window is displayed when you start the GDEVICE procedure in window mode.

It lists all the device entries in the default catalog or the catalog you specified in the
PROC GDEVICE statement. You can use it to

� copy, rename, or delete device entries in the catalog

� select a device entry whose parameters you want to browse or edit.

You can enter these commands in the Directory window selection field:

B | S
open the Detail window and browse (B) or, if you are in edit mode, edit (S) the
selected device entry.

D
delete the selected device entry. You cannot restore a device entry once it has been
deleted.

E
open the Detail window and edit the selected device entry.

R
rename the device entry or the description, or both.

You cannot edit the TYPE and UPDATED fields in the Directory Window.

1138 Using the GDEVICE Windows � Chapter 38

Figure 38.1 The DIRECTORY Window

After the Directory window opens, you can navigate through the GDEVICE windows
by selecting the View � Next Screen.

Detail window
This window contains device parameters that control basic characteristics of the

device, for example, the size of the graphics output area.

Figure 38.2 The Detail Window

Parameters window
This window includes additional device parameters that affect the way graphs are

drawn. For example, you can define the following parameters:
� whether certain graphics primitives are drawn by your hardware or by

SAS/GRAPH
� whether to feed paper to printers or plotters automatically
� whether to have SAS/GRAPH prompt you with messages under certain conditions.

Note: If the device does not support a hardware characteristic, the catalog entry
cannot enable the support. �

The GDEVICE Procedure � Using the GDEVICE Windows 1139

Figure 38.3 The Parameters Window

Gcolors window
This window lists the colors that the device driver uses by default when the

NOGSTYLE option is in effect. When you do not explicitly specify the color of a
graphics feature in your program or in a GOPTIONS statement, SAS/GRAPH uses this
list to determine what color to use.

Figure 38.4 The Gcolors Window (partial view)

Chartype window
This window lists the device-resident fonts that the device can use, along with

information about the size of the characters. The Chartype value is the value to
reference a font in another window. For example, you can enter a Chartype number in
the Parameters window’s Chartype field.

Figure 38.5 The Chartype Window (partial view)

Colormap window
This window enables you to specify a color map for the device. The FROM field

specifies the name to assign to the color designated by the color value. The TO field

1140 Using the GDEVICE Windows � Chapter 38

specifies a predefined SAS/GRAPH color name. Once you have defined the color
mapping, the new color name is available for use in any color option. For example, map
the color name DAFFODIL to the SAS color value PAOY. Specify COLOR=DAFFODIL
anywhere the COLOR= option is supported. The driver substitutes the color value
PAOY. Contact SAS Technical Support for assistance in determining predefined SAS
color names.

Figure 38.6 The Colormap Window (partial view)

Metagraphics window
This window is used by all drivers that support multiple color spaces, for example,

RGB or CMYK. It is also used if the device entry is a Metagraphics (user-written)
driver. Metagraphics drivers are created when a device entry that was provided by SAS
cannot be adapted to support your graphics device. For information about Metagraphics
drivers, contact SAS Technical Support.

CAUTION:
Do not alter the fields in the Metagraphics window unless you are changing the color
scheme (colortype) or building a Metagraphics driver. �

Figure 38.7 The Metagraphics Window

Gprolog window
This window enables you to specify one or more hexadecimal strings sent to the

device before graphics commands are sent. Additional commands can be sent with the
PREGPROLOG= and POSTGPROLOG= graphics options. See Chapter 15, “Graphics
Options and Device Parameters Dictionary,” on page 327 for details.

Gepilog window
This window enables you to specify one or more hexadecimal strings that are sent to

the device after graphics commands are sent. Additional commands can be sent with

The GDEVICE Procedure � Using the GDEVICE Windows 1141

the PREGEPILOG= and POSTGEPILOG= graphics options. See Chapter 15, “Graphics
Options and Device Parameters Dictionary,” on page 327 for details.

Gstart window

This window enables you to specify one or more hexadecimal strings that are placed
at the beginning of each record of graphics data.

Gend window

This window enables you to specify one or more hexadecimal strings that are placed
at the end of each record of graphics data.

Host File Options window

This window controls the output destination and formatting of the data stream
produced by the driver. (Most of these values can also be specified with the GOPTIONS
statement or with the FILENAME statement. See “Specifying the Graphics Output File
Type for Your Graph” on page 91.)

Figure 38.8 The Host File Options Window

Host Commands window

This window stores the host commands issued at driver initialization, before and
after each graph is produced, and at driver termination. These commands are typically
used to send graphics output to a hardcopy device such as a printer or a plotter.

Figure 38.9 The Host Commands Window

1142 Creating or Modifying Device Entries � Chapter 38

Creating or Modifying Device Entries
In order to add, modify, or delete device entries, you must have write access to the

catalog. On multi-user systems, your site administrator is usually the only person who
has write access to the SASHELP.DEVICES catalog and can make any changes.
Therefore, when creating new entries or modifying existing ones, individual users
usually work in a personal catalog. Be sure the catalog in which you store new or
modified device entries is named DEVICES.

To use a device entry stored in a personal catalog, you must assign the GDEVICEn
libref to the library that contains the device catalog. See “Device Catalogs” on page
1126.

It is a good idea to give a new or modified device entry a name that is different from
the original. Then, if you want to use the original device, SAS/GRAPH can find that
device when it searches the device catalogs. Remember that SAS/GRAPH searches the
GDEVICEn libraries before it searches SASHELP.DEVICES and uses the first device it
finds whose name matches the one you have specified. (See “Search Order of Device
Catalogs” on page 1127.)

For example, suppose there is a customized copy of PSCOLOR in your
GDEVICE0.DEVICES catalog as well as the original in SASHELP.DEVICES. If you
specify DEV=PSCOLOR and the libref GDEVICE0 is assigned, SAS/GRAPH searches
GDEVICE0.DEVICES first and uses the copy of PSCOLOR. Unless you cancel the
GDEVICE0 libref, SAS/GRAPH will never find the original device entry in
SASHELP.DEVICES. (To include SASHELP.DEVICES in the search path, you would
need to cancel the GDEVICE0 libref.)

Creating a New Device Entry
Typically, you create a new device entry by copying an existing device and modifying

its parameters to suit your needs. You can copy and modify a device entry in two ways:
� Use the DIR command to open the DIRECTORY window, and then use the COPY

command to make a copy of an existing device entry. Edit the new entry and
modify its parameters. The existing device entry can be from any catalog. (See
help for information on using GDEVICE windows and commands.You can open the
help by entering Help on the command line or by selecting Help � Using This
Window.)

� In program mode, use the COPY statement to make a copy of the device entry. Use
the MODIFY statement to change the parameters (see Example 1 on page 1143).

If you want to start with a blank device entry and fill in values for the parameters,
use the EDIT command from the DIRECTORY window or use the ADD statement with
program mode PROC GDEVICE.

With either method, you provide values for the parameters listed in “Required
Arguments” on page 1132. If you copy and modify an existing entry, all the required
parameters have values. If you create a new entry with GDEVICE windows, you are
prompted to fill in the appropriate fields.

Note: When you change a field in a device entry that was provided by SAS (either
the original device entry in SASHELP.DEVICES or a copy), SAS/GRAPH asks whether
you really want to change the entry. �

Modifying an Existing Device Entry
Typically, you modify an existing device entry when you want to change the device

parameters permanently in order to customize a device entry. The process is similar to
creating a new catalog entry. Copy the device entry you want to modify into your

The GDEVICE Procedure � Example 1: Creating a Custom Device Entry with Program Statements 1143

personal catalog. Change the parameters in the new device entry. See Example 1 on
page 1143 for an example of creating a custom device entry.

Changing Device Parameters Temporarily
You can change some device parameters temporarily by overriding their settings with

graphics options in a GOPTIONS statement. In this case, the settings remain in effect
until you change them or end your SAS session. For details, see “Overriding Style
Attributes With SAS/GRAPH Statement Options” on page 140 and “Precedence of
Appearance Option Specifications” on page 141. See also “Style Attributes Versus
Device Entry Parameters” on page 134.

Examples

Example 1: Creating a Custom Device Entry with Program Statements

COPY statement

MODIFY statement

Figure 38.10 Pie Chart Created with Default WIN Device Entry

This example shows how to use GDEVICE procedure statements to modify a device
entry by copying the original entry into a personal catalog and changing the device
parameters.

This example permanently changes the default color list for the WIN device entry.

1144 Example 1: Creating a Custom Device Entry with Program Statements � Chapter 38

Assign the libref GDEVICE0. The LIBNAME statement assigns the libref to the aggregate
file storage location that contains (or will contain) the DEVICES catalog.

libname gdevice0 "SAS-data-library";

Start the GDEVICE procedure. NOFS causes GDEVICE to use program mode. CATALOG=
assigns GDEVICE0.DEVICES as the current catalog. If the DEVICES catalog does not already
exist in the library, it is automatically created.

proc gdevice nofs catalog=gdevice0.devices;

Copy the original device entry from SASHELP.DEVICES to the current catalog. The
NEWNAME= option specifies a name for the copy of WIN that is placed in
GDEVICE0.DEVICES. The name of a catalog entry cannot exceed eight characters.

copy win from=sashelp.devices newname=mypscol;

Modify the new entry. The DESCRIPTION= option specifies a new device description that
appears in the catalog listing. The COLORS= option defines a new color list.

modify mypscol
description="WIN with new color list"
colors=(black cx95c051 cxA359B2 cxD65259 cx69D6D2 cxFFB74F cx929cff);

Exit the procedure.

quit;

Test the new device entry. The TARGET= option specifies the new device. The GDEVICE0
libref is already defined, so SAS/GRAPH searches GDEVICE0 for the specified device entry. The
GHART procedure generates a pie chart with the new color list.

goptions target=mypscol;
proc gchart data=sashelp.class;

pie age/discrete noheading;
run;
quit;

The GDEVICE Procedure � Example 1: Creating a Custom Device Entry with Program Statements 1145

Figure 38.11 Pie Chart Created with Customized WIN Device Entry

1146

1147

C H A P T E R

39
The GEOCODE Procedure

Overview of the GEOCODE Procedure 1147
Concepts 1149

Output Data Sets 1149

The SASHELP.ZIPCODE Data Set 1149

Alternate ZIP Code and ZIP+4 Lookup Data Sets 1150

U.S. Military ZIP Codes 1151
Data Sets for Range Geocoding 1151

%GCDMEL9 Autocall Macro 1152

Overview of the %GCDMEL9 Autocall Macro 1152

Usage Example for the %GCDMEL9 Autocall Macro 1152

%MAXMIND Autocall Macro 1152

Overview of the %MAXMIND Autocall Macro 1153
Usage Example for the %MAXMIND Autocall Macro 1153

Optimizing Performance 1153

Overview of Enhancing Performance 1153

Indexing your Lookup Data Sets 1154

Loading Data Sets Into Memory 1154
Procedure Syntax 1154

PROC GEOCODE Statement 1154

Street Geocoding 1162

Overview of Street Geocoding 1162

Data Sets for Street Geocoding 1163
Overview of the Required Data Sets 1163

Obtaining Street Lookup Data Sets 1164

Output Variables for Street Geocoding 1164

Street Geocoding Note Values 1165

Examples 1167

Example 1: Geocoding Using Default Values 1167
Example 2: Adding Additional Variables to the Output Data Set 1169

Example 3: Street Geocoding 1171

Overview of the GEOCODE Procedure
Geocoding is the process of adding geographic coordinates (latitude and longitude

values) to an address. The coordinates typically represent the center of a ZIP code, a
city, an address, or any geographic region. After geocoding, the coordinates can be used
to display a point on a map or to calculate distances. Geocoding also enables you to add
attribute values such as census blocks to an address.

1148 Overview of the GEOCODE Procedure � Chapter 39

The GEOCODE procedure requires two types of SAS data sets:

input address data sets
contain variables that relate to specific geographic locations. For example, mailing
address variables such as ZIP codes and street addresses, or custom geographic
variables such as sales regions.

lookup data sets
contain reference variables and geographic coordinates. For example, a lookup
data set for the ZIP method contains ZIP codes and the geographic coordinates
that are associated with the ZIP codes. Some geocoding methods require multiple
lookup data sets.

When the GEOCODE procedure finds a match in the lookup data set, it adds the
associated coordinates to the observation in the output data set. Longitude is stored as
the X variable, and latitude is stored as the Y variable.

The following image shows how the ZIP geocoding method of the GEOCODE
procedure obtains coordinates for the output data set by matching the ZIP code in the
input data set:

Figure 39.1 Geocoding with ZIP Codes

The GEOCODE procedure also adds a variable named _MATCHED_ that indicates
how the coordinates were found. Possible values for the _MATCHED_ variable are as
follows:

Street A match was found for either the street address and ZIP code or the
street address, city, and state.

ZIP A match was found for the ZIP code.

ZIP+4 A match was found for the ZIP code and ZIP+4 extension.

ZIP mean Multiple observations in the lookup data set matched the ZIP code,
and the coordinate values were averaged.

City A match was found for the city and state.

City mean Multiple observations in the lookup data set matched the city and
state, and the coordinate values were averaged.

variable-name For CUSTOM and RANGE geocoding, a variable name indicates
that a match was found for that variable.

None No match was found for the address.

The GEOCODE Procedure � The SASHELP.ZIPCODE Data Set 1149

For each observation in the input data set, the GEOCODE procedure attempts to
match the address variable value to a value in the lookup data set. For most geocoding
methods, the lookup data set is expected to contain only one matching observation. For
example, the SASHELP.ZIPCODE data set contains only one observation for each ZIP
code. If the lookup data set contains multiple matches, then the first matching
observation is returned, except as noted in the following paragraph.

Some geocoding methods do process multiple matches. For example, if you are using
ZIP code geocoding and no match is found, then the GEOCODE procedure attempts to
find a matching city-and-state pair. The SASHELP.ZIPCODE data set contains multiple
observations for many city-and-state pairs. When a ZIP code is not found in this lookup
data set, a matching city-and-state pair is searched for. If one match is found, then the
coordinates for the matching pair are used. However, if multiple matches are found,
then the coordinate values for those matches are averaged. If you are using the STREET
or PLUS4 geocoding method and no match is found for the combined ZIP code and
ZIP+4 values, then the GEOCODE procedure searches for the five-digit ZIP code only.

Concepts

Output Data Sets
By default, the GEOCODE procedure produces an output data set that contains all of

the variables from the input address data set and the X, Y, and _MATCHED_ variables.
You can also choose to add variables from the lookup data set to the output data set by
using the ATTRIBUTEVAR= option. For example, if you are using SASHELP.ZIPCODE
as the lookup data set, then you could assign the county name (COUNTYNM) to each
matched observation in the output data set.

The default name for the output data set is DATAn, where n is the smallest integer
that makes the name unique. For example, if the DATA1 data set already exists, then
the default name for the output data set is DATA2.

The label of the output data set contains the text, "geocoded date" where date is the
date when the output was created. This text is appended to the label from the input
data set, if one exists.

For the STREET geocoding method, additional variables are included in the output
data set. See “Output Variables for Street Geocoding” on page 1164.

The SASHELP.ZIPCODE Data Set
The default lookup data set for ZIP code geocoding and CITY geocoding is

SASHELP.ZIPCODE. This data set is provided with Base SAS, and is updated for each
SAS release.

You can download updated versions of the SASHELP.ZIPCODE data set from the
SAS Maps Online Web site: www.sas.com/mapsonline.

SASHELP.ZIPCODE contains the following variables:

Name: Label:

ZIP The 5-digit ZIP code

Y Latitude (decimal degrees) of the center of the ZIP code. 0.0 for
APO/FPO

1150 Alternate ZIP Code and ZIP+4 Lookup Data Sets � Chapter 39

X Longitude (decimal degrees) of the center of the ZIP code. 0.0 for
APO/FPO

ZIP_CLASS ZIP code classification: M=APO/FPO; P=Post office box; U=Unique
ZIP code used for large organization, businesses, or buildings;
Blank=Standard/non-unique

CITY Name of the city or organization

STATE Two-digit number (FIPS code) for the state or territory

STATECODE Two-character postal code for the state or territory name

STATENAME Full name of the state or territory

COUNTY FIPS county code. Blank for APO/FPO addresses.

COUNTYNM Name of county or parish. Blank for APO/FPO addresses.

MSA Metropolitan Service Area code by common population; no MSA for
rural areas

AREACODE Area code for the ZIP code. Blank for APO/FPO addresses.

AREACODES Multiple area codes for the ZIP code. Blank for APO/FPO addresses.

ALIAS_CITY Alternate names for the city. Each name is separated by “||”.

TIMEZONE Time zone for the ZIP code. Blank for APO/FPO addresses.

GMTOFFSET Difference (hours) between GMT and time zone for the ZIP code.

DST ZIP code observes Daylight Savings Time: Y is Yes N is No

PONAME USPS Post Office name

Alternate ZIP Code and ZIP+4 Lookup Data Sets
While the SASHELP.ZIPCODE data set is the default lookup data set for the ZIP

and CITY geocoding methods, data from other sources can be used as long as it is read
into a SAS data set.

For ZIP code geocoding, any lookup data set must contain the following variables:

Default Name: Description:

ZIP Five-digit ZIP code

X Longitude of the center coordinate

Y Latitude of the center coordinate

For CITY geocoding, these additional variables are required:

CITY Name of the city

STATECODE Two-character postal code for the state or province name

Note: If you use an alternative ZIP code lookup data set, then the variable data
types should match those of the SASHELP.ZIPCODE data set. �

When you use ZIP+4 geocoding, you must specify an alternative lookup data set
because the SASHELP.ZIPCODE data set does not contain any ZIP+4 values. This data
set must contain the following variables:

Default Name: Description:

ZIP Five-digit ZIP code

The GEOCODE Procedure � Data Sets for Range Geocoding 1151

PLUS4 Four-digit ZIP+4 extension

X Longitude of the central coordinate

Y Latitude of the central coordinate

You can specify different names for the variables by using options in the PROC
GEOCODE statement. For example, the LOOKUPPLUS4 option specifies the name of
the ZIP+4 extension variable in the lookup data set.

The ZIP and PLUS4 variables can contain either character data or numeric data.
The data type must match the type of the corresponding variable in your input data set.

Note: The character values in your input and lookup data sets do not need to be a
case-sensitive match. Character value matching in the GEOCODE procedure is not
case sensitive. �

Additional attribute variables can also be in the alternate lookup data set even if
they are not used to find matches. You can add these variables to the output data set by
using the ATTRIBUTEVAR= option in the PROC GEOCODE statement.

You can obtain a lookup data set for ZIP+4 geocoding from the SAS Maps Online Web
site at www.sas.com/mapsonline. On the Downloads page, select Geocoding to access
the downloads that are related to geocoding.

An alternative source for ZIP+4 lookup data is the Geo*Data product from Melissa
Data. You can use the %GCDMEL9 autocall macro to convert Geo*Data files to SAS
data sets. For more information, see “%GCDMEL9 Autocall Macro” on page 1152.

U.S. Military ZIP Codes
ZIP codes for U.S. military post offices are provided in the ZIPMIL data set in the

SASHELP library. You can combine this data set with the ZIPCODE data set to
support military ZIP codes.

Data Sets for Range Geocoding
Note: Range geocoding is for SAS 9.2 Phase 2 and later. �

For Range geocoding, a lookup data set and a range data set are required. The range
data set identifies ranges of IP addresses. The lookup data set contains geographic
coordinates. Both the range data set and the lookup data set must contain a key
variable that identifies locations for each IP range.

The lookup data set must contain the following variables:
� a key variable that corresponds to a key variable in the range data set.
� an X variable that contains the longitude value of the center coordinate. The

default variable name is X.
� a Y variable that contains the latitude value of the center coordinate. The default

variable name is Y.

The range data set must contain the following variables:
� a variable that specifies the beginning value of a range of IP addresses
� a variable that specifies the ending value of a range of IP addresses
� a key variable that corresponds to a key variable in the lookup data set

You can obtain lookup and range data from third-party vendors. One vendor is
MaxMind, Inc. at www.maxmind.com. You can use the %MAXMIND autocall macro to
convert comma-separated value (CSV) files from MaxMind into SAS data sets. For more
information, see “%MAXMIND Autocall Macro” on page 1152.

1152 %GCDMEL9 Autocall Macro � Chapter 39

%GCDMEL9 Autocall Macro

Overview of the %GCDMEL9 Autocall Macro

The %GCDMEL9 autocall macro enables you to directly import Geo*Data files from
Melissa Data as SAS data sets. Geo*Data files contain third-party ZIP+4 lookup data
for use with PLUS4 geocoding.

Geo*Data files are available for each state. The files are provided as text files within
compressed (ZIP) archives. Melissa Data also provides the PKUNZIP utility to extract
the text files.

The %GCDMEL9 macro uses the following macro variables:

DATASETNAME
specifies the name of the output data set.

DATASETPATH
specifies the location where the output data set is created.

DATASETLABEL
(optional) specifies a label for the output data set.

LIBNAME
specifies the name for a new library that is assigned for the location that you
specified in the DATASETPATH macro variable.

UNZIPPEDPATH
specifies the location of the extracted Geo*Data files that you want to import. The
%GCDMEL9 macro attempts to read all of the text (.txt) files in this directory.

WORKPATH (Optional)
specifies the path where temporary files are written. The default path is the path
for the WORK library.

Usage Example for the %GCDMEL9 Autocall Macro

In this example, a Geo*Data file for the state of Delaware (DE.txt) is extracted to
C:\Mydata. The lookup data set is created in the directory C:\Geocode and assigned
the libref ZIP4. The resulting data set is named ZIP4.DELAWARE.

The following code imports the data:

/* Define macro variables */
%let UNZIPPEDPATH=C:\Mydata;
%let DATASETPATH=C:\Geocode;
%let DATASETNAME=Delaware;
%let LIBNAME=ZIP4;
%let DATASETLABEL=ZIP+4 lookup data for Delaware;
/* Submit autocall macro */
%GCDMEL9;

%MAXMIND Autocall Macro

The GEOCODE Procedure � Optimizing Performance 1153

Overview of the %MAXMIND Autocall Macro
The %MAXMIND autocall macro enables you to convert IP geocoding data from

MaxMind, Inc. into SAS data sets. The %MAXMIND autocall macro supports
MaxMind’s IP data in comma-separated value (CSV) format.

Note: This feature is for SAS 9.2 Phase 2 and later. �

The %MAXMIND macro uses the following macro variables:

CSVPATH
specifies the path where the MaxMind CSV files are located. You must extract the
files from the ZIP archive before using the %MAXMIND autocall macro.

IPDATAPATH
specifies the path where the output SAS data sets are created. You must have
write permissions for this path.

CSVBLOCKSFILE
specifies the filename for the CSV file that contains IP address range values. The
file that you specify must contain the startIpNum and endIpNum variables.

CSVLOCATIONFILE
specifies the filename for the CSV file that contains longitude and latitude values.

CSVCOUNTRYFILE (Optional)
specifies the name of the optional MaxMind CSV file that contains country names.

WORKPATH (Optional)
specifies the path where temporary files are written. The default path is the path
for the WORK library.

The %MAXMIND macro creates the CITYBLOCKS and CITYLOCATION data sets
in the path that you specified for the IPDATAPATH variable. The libref IPDATA is
created automatically for this path.

Usage Example for the %MAXMIND Autocall Macro
In this example, data from MaxMind is located in C:\Mydata. The output SAS data

sets are created in the directory C:\Geocode.
The following code imports the data:

%let CSVPATH=C:\Mydata;
%let IPDATAPATH=C:\Geocode;
%let CSVBLOCKSFILE=GeoLiteCity-Blocks.csv;
%let CSVLOCATIONFILE=GeoLiteCity-Location.csv;
%let CSVCOUNTRYFILE=GeoIPCountryWhois.csv;
%maxmind;

The imported data sets are IPDATA.CITYBLOCKS and IPDATA.CITYLOCATION.

Optimizing Performance

Overview of Enhancing Performance
Geocoding often requires very large lookup data sets, which can affect the

performance of the GEOCODE procedure. You can optimize your geocoding
performance by performing the following actions:

1154 Procedure Syntax � Chapter 39

� Index your lookup data sets by using the appropriate variables.
� Load the lookup data sets into memory by using the SASFILE statement.

Indexing your Lookup Data Sets
If you use alternative lookup data sets, then indexing your lookup data sets can

improve performance. You should create an index by using the variables that are
appropriate for your geocoding method.

Note: The SASHELP.ZIPCODE data set and the ZIP4 data set from SAS Maps
Online are optimized for use with the GEOCODE procedure. Additionally, data sets
that you convert by using the %GCDMEL9 and %MAXMIND autocall macros are
indexed automatically. No modifications are needed for any of these data sets. �

Note: The STREET geocoding data sets that are provided by SAS are already
indexed for the GEOCODE procedure. �

For ZIP+4 geocoding, you should create a simple index on the ZIP variable and a
compound index on the ZIP and ZIP+4 variables.

For RANGE geocoding, you should sort your lookup data set by the key variable, and
then create a simple index with the key variable. You should sort the range data set by
the beginning IP address variable, and then create two simple indexes for the beginning
and ending IP address variables.

For more information, see "Understanding SAS Indexes" in the SAS Language
Reference: Concepts.

Loading Data Sets Into Memory
You can load your lookup data sets into memory by using the SASFILE statement.

Loading data into memory reduces I/O processing and can improve the speed of your
geocoding operation. You should test your geocoding operations with the lookup data
sets loaded into memory to determine whether there is sufficient memory and whether
your performance is increased.

For more information, see "SASFILE Statement" in the SAS Language Reference:
Dictionary.

Procedure Syntax
PROC GEOCODE <option(s)>;

PROC GEOCODE Statement

Identifies the data set that contains the address data that you want to geocode. You can also
specify an output data set, the geocoding method, alternate names for geocoding variables, and
additional attributes variables to associate with the matched addresses.

Syntax

PROC GEOCODE <option(s)>;

The GEOCODE Procedure � PROC GEOCODE Statement 1155

option(s) can be one or more of the following:
DATA= address-data-set
ADDRESSCITYVAR= character-variable
ADDRESSPLUS4VAR= variable
ADDRESSSTATEVAR= character-variable
ADDRESSVAR= variable
ADDRESSZIPVAR= variable
ATTRIBUTEVAR= variable-list
BEGINRANGEVAR= numeric-variable
ENDRANGEVAR= numeric-variable
FIPS= FIPS-data-set
LOOKUP= lookup-data-set
LOOKUPCITYVAR= character-variable
LOOKUPKEYVAR= variable
LOOKUPPLUS4VAR= variable
LOOKUPSTATEVAR= character-variable
LOOKUPSTREET= street-matching-data-set
LOOKUPVAR= variable
LOOKUPXVAR= numeric-variable
LOOKUPYVAR= numeric-variable
LOOKUPZIPVAR= variable
METHOD= geocoding-method
NOCITY
NOZIP
NOSTIMER
OUT=output-data-set
RANGEDATA= data-set
RANGEDECIMAL
RANGEKEYVAR= variable
TYPE= street-type-data-set

Options
To facilitate converting existing SAS/GIS batch geocoding programs that use the

%GCBATCH autocall macro to the GEOCODE procedure, the option name from the
%GCBATCH autocall macro is an acceptable alias for most options. For more
information, see the SAS/GIS: Spatial Data and Procedure Guide.

DATA= address-data-set
specifies the SAS data set that contains address observations that you want to
geocode. If you do not specify this option, then the most recently created SAS data
set is used.

Note: The character variables in your input address data set must be left-aligned.
That is, the values must not contain leading spaces. You can use the LEFT function
in a DATA step to align your data if necessary. �

ADDRESSCITYVAR= character-variable
specifies the character variable in the input address data set that contains the city
names.

1156 PROC GEOCODE Statement � Chapter 39

Default: CITY

ADDRESSPLUS4VAR= variable
specifies the variable in the input address data set that contains ZIP+4 extensions.
The variable can be either numeric or character, but it must be the same type as the
ZIP+4 variable in the lookup data set (LOOKUPPLUS4VAR=).
Default: PLUS4

ADDRESSSTATEVAR= character-variable
specifies the character variable in the input address data set. This variable contains
the two-character postal code for state (for example, NY).
Default: STATE

ADDRESSVAR= variable
for STREET geocoding, specifies the variable in the address data set that contains
the street address values (for example, "1229 North Main St.")

For CUSTOM and RANGE geocoding, the ADDRESSVAR= option specifies the
variable in the address data set that contains non-address input values. The variable
can be character or numeric. This is used together with the LOOKUPVAR= option to
geocode with unconventional values. Examples include internal sales territories,
Metropolitan Statistical Areas (MSA), and Internet Protocol (IP) addresses.
Default: For STREET geocoding, the default name is ADDRESS.

ADDRESSZIPVAR= variable
specifies the variable in the input address data set that contains the 5-digit ZIP code
values. The variable can be either numeric or character, but it must be the same
type as the ZIP code variable in the lookup data set (specified by the
LOOKUPZIPVAR= option).

Note: The values for the ZIP code variable must be five digits. You can use the
Z5. format to prepend leading zeros to any ZIP code values that have fewer than five
digits. �
Default: ZIP

ATTRIBUTEVAR= (variable-1, variable-2, ...variable-n)
lists non-geocoding variables in the lookup data set that are to be added to the
output data set. Examples include county, census block, and time zone. Variable
names can be separated by commas or spaces.

Note: The values for additional attribute variables are not added to observations
in output data set where the match type is “City mean” or “ZIP mean”. �

Note: If an attribute variable has the same name as a variable in the address
data set, then that variable is not added to the output data set. �

Note: For the STREET geocoding method, only attribute variables from the street
segment lookup data set can be included. �
Example: ATTRIBUTEVAR=(STATENAME, COUNTYNM)

BEGINRANGEVAR= variable
specifies the numeric variable in the your range data set that contains the beginning
IP address for each range of addresses.

ENDRANGEVAR= variable
specifies the numeric variable in the your range data set that contains the ending IP
address for each range of addresses.

FIPS= FIPS-data-set
specifies a SAS data set that is used STREET geocoding method to convert
two-character postal codes and city names into US FIPS codes.

The GEOCODE Procedure � PROC GEOCODE Statement 1157

Note: The values of the city and state variables in the FIPS data set must be
uppercase. �

Default: The SASHELP.PLFIPS data set.

LOOKUP= lookup-data-set
specifies a SAS data set that associates coordinates with addresses. The data set is
searched for observations that match the address observations. The variables that
are required for your lookup data set depend on your geocoding method. See
“Alternate ZIP Code and ZIP+4 Lookup Data Sets” on page 1150.

The data set can also include other attribute variables (such as COUNTY, TIME
ZONE, AREA CODE) that can be added to the address observation by using the
ATTRIBUTEVAR= option.

Note: The character variables in your lookup data set must be left-aligned. That
is, the values must not contain leading spaces. You can use the LEFT function in a
DATA step to align your data if necessary. �

Default: For the ZIP geocoding method, the SASHELP.ZIPCODE data set is the
default. For other methods, you must specify the LOOKUP= option.

LOOKUPCITYVAR= character-variable
specifies the character variable in the lookup data set that contain the city names.

Default: CITY

LOOKUPKEYVAR= variable
specifies the key variable for the lookup data set. The values of the key variable
correspond to values in the variable that you specify for the RANGEKEYVAR=
option. The data type of the key variable must match the variable that you specify
for the RANGEKEYVAR= option.

LOOKUPPLUS4VAR= variable
specifies the variable in the lookup address data set that contains ZIP+4 extensions.
The variable can be either numeric or character, but it must be the same type as the
ZIP+4 variable in the input address data set (ADDRESSPLUS4VAR=).

Default: PLUS4

LOOKUPSTATEVAR= character-variable
specifies the character variable in the lookup data set that contains the two-character
postal code for the state or province.

Default: STATECODE

LOOKUPSTREET= street-matching-data-set
specifies the street matching data set for associating coordinates with addresses
when performing STREET geocoding.

The GEOCODE procedure expects the street matching data set to have a name
that ends with M. The library must also contain two corresponding datasets whose
names end with S (segment) and P (coordinate). For example, if you specify the
street matching data set MYMAPS.STREETM, then the MYMAPS library must also
contain the STREETS and STREETP data sets.

For more information about the data sets for STREET geocoding, see “Data Sets
for Street Geocoding” on page 1163.

Default: The SASHELP.USM data set. You can download the USM, USS, and USP
data sets for the entire United States from SAS Maps Online Web site at
www.sas.com/mapsonline.

LOOKUPVAR= variable
specifies the variable in the lookup data set that contains non-address values. The
variable can be character or numeric. This is used together with the ADDRESSVAR=

1158 PROC GEOCODE Statement � Chapter 39

option to geocode with unconventional values. Examples include internal sales
territories, Metropolitan Statistical Areas (MSA), and Internet Protocol (IP)
addresses.

LOOKUPXVAR= numeric-variable
specifies the numeric variable in the lookup data set that contains the longitude of
the geocoding location.
Default: X

LOOKUPYVAR= numeric-variable
specifies the numeric variable in the lookup data set that contains the latitude of the
geocoding location.
Default: Y

LOOKUPZIPVAR= variable
specifies the variable in the lookup data set that contains the five-digit ZIP code
values. The variable can be either character or numeric, but it must be the same
type as ZIP code variable in the input address data set (ADDRESSZIPVAR=).

Note: The values for a character ZIP code variable must be five digits. You can
use the Z5. format to prepend leading zeros to any ZIP code values that have fewer
than five digits. �
Default: ZIP

METHOD= geocoding-method
specifies the geocoding method. This parameter is optional. Specify one of the
following:

CITY specifies the CITY geocoding method. The GEOCODE procedure
attempts to match the city and state from the address data set
with the lookup data set. Separate city and state variables are
required in the address and lookup data sets. If multiple matches
are found, then the coordinates of the matches are averaged.

Note: The city and state matching method is case
insensitive. �

Requirements:
CITY geocoding requires the LOOKUP= option.

CITY geocoding also uses the following options:

ADDRESSCITYVAR=
ADDRESSSTATEVAR=
LOOKUPCITYVAR=
LOOKUPSTATEVAR=
LOOKUPXVAR=
LOOKUPYVAR=

If your data does not use the default variable names for any
of these options, then you must specify the options that do not
use the default.

CUSTOM specifies the CUSTOM geocoding method. The GEOCODE
procedure attempts to match custom variables that you specify by
using the LOOKUPVAR= and ADDRESSVAR= variables.
Examples include internal sales territories and Metropolitan
Statistical Areas (MSA).

The GEOCODE Procedure � PROC GEOCODE Statement 1159

Requirements: CUSTOM geocoding requires the following
options:

ADDRESSVAR=
LOOKUP=
LOOKUPVAR=

If your lookup data set does not use the default variable
names for X and Y, then the LOOKUPXVAR= and
LOOKUPYVAR= options are required.

PLUS4 specifies the PLUS4 geocoding method. The GEOCODE procedure
attempts to match the five-digit ZIP code and ZIP+4 extension
from the address data set with the lookup data set. If no match is
found, then the ZIP method is used instead. If multiple ZIP
matches are found, then the coordinates of the matches are
averaged.
Interaction: You can disable the secondary matching by using

the NOZIP option.
Requirements: PLUS4 geocoding requires the LOOKUP= option.

PLUS4 geocoding also uses the following options:

ADDRESSPLUS4VAR=
ADDRESSZIPVAR=
LOOKUPPLUS4VAR=
LOOKUPZIPVAR=
LOOKUPXVAR=
LOOKUPYVAR=

If your data does not use the default variable names for any
of these options, then you must specify the options that do not
use the default.

RANGE specifies the RANGE geocoding method. The GEOCODE
procedure attempts to match an Internet Protocol (IP) address
from the address data set to a range of IP addresses from the
range data set. If a match is found, then a key variable is used to
match the IP address to a set of coordinates in the lookup data set.

Note: This feature is for SAS 9.2 Phase 2 and later. �
Requirements: RANGE geocoding requires the following options:

ADDRESSVAR=
BEGINRANGEVAR=
ENDRANGEVAR=
LOOKUP=
LOOKUPKEYVAR=
RANGEKEYVAR=

If your lookup data set does not use the default variable
names for X and Y, then the LOOKUPXVAR= and
LOOKUPYVAR= options are required.

STREET specifies the STREET geocoding method. The GEOCODE
procedure attempts to match the street name and ZIP code. If no

1160 PROC GEOCODE Statement � Chapter 39

match is found, then the GEOCODE procedure attempts to match
the street name, city name, and two-character postal code. If the
second match fails, then the ZIP method and the CITY method
are used instead.

If a street match is found, X and Y coordinate values are
interpolated by using the house number, street type suffix,
directional prefix, and directional suffix from the input address.

Note: This feature is for the third maintenance release of SAS
9.2 and later. �

For more information about the STREET geocoding method,
see “Street Geocoding” on page 1162.
Interaction: You can disable the secondary ZIP matching by

using the NOZIP option.
You can disable the secondary CITY matching by using the

NOCITY option.
Requirements: STREET geocoding uses the following options:

ADDRESSCITYVAR=
ADDRESSSTATEVAR=
ADDRESSZIPVAR=
ADDRESSVAR=
FIPS=
LOOKUPCITYVAR=
LOOKUPSTATEVAR=
LOOKUPSTREET=
LOOKUPZIPVAR=
LOOKUPXVAR=
LOOKUPYVAR=
TYPE=

If your data does not use the default variable names for any
of these options, then you must specify the options that do not
use the default.

The following options are not required if you specify the
NOCITY option:

ADDRESSCITYVAR=
ADDRESSSTATEVAR=
LOOKUPCITYVAR=
LOOKUPSTATEVAR=

The following options are not required if you specify the
NOZIP option:

ADDRESSZIPVAR=
LOOKUPZIPVAR=

ZIP specifies the ZIP code geocoding method. The GEOCODE
procedure attempts to match the five-digit ZIP code from the
address data set with the lookup data set. If no match is found,
then the CITY method is used instead. If multiple CITY matches
are found, then the coordinates of the matches are averaged.

The GEOCODE Procedure � PROC GEOCODE Statement 1161

Interaction: You can disable the secondary matching by using
the NOCITY option.

Requirements: ZIP geocoding uses the following options:

ADDRESSCITYVAR=
ADDRESSSTATEVAR=
ADDRESSZIPVAR=
LOOKUPCITYVAR=

LOOKUPSTATEVAR=
LOOKUPZIPVAR=
LOOKUPXVAR=
LOOKUPYVAR=

If your data does not use the default variable names for any
of these options, then you must specify the options that do not
use the default.

The following options are not required if you specify the
NOCITY option:

ADDRESSCITYVAR=
ADDRESSSTATEVAR=
LOOKUPCITYVAR=
LOOKUPSTATEVAR=

Default: ZIP
Interaction: If you specify more than one method, then the last method that you

specify is used.

NOCITY
disables the secondary matching attempt by city and state if STREET or ZIP code
geocoding does not find a match.

By default, if ZIP code geocoding does not find a match, or if STREET geocoding
does not find a match for the street address or ZIP code, then the GEOCODE
procedure attempts to match the city and state values and then averages the results.

Interaction: You cannot use the NOCITY option with the CITY geocoding method.

NOSTIMER
disables the informational messages sent to the SAS log that tracks the progress of
the geocoding operation. If the input data set includes 1,000 or more observations,
then the GEOCODE procedure writes periodic messages to the SAS log showing the
percentage completed and estimated time remaining. This option disables those
messages.

Note: If you do not specify this option (because you want the status messages)
and your input data set has 1,000 or more observations, and you are still not
receiving periodic status messages, then check the setting of the LOGPARM system
parameter. Set LOGPARM=“WRITE=IMMEDIATE” to cause messages to be written
immediately to the SAS log rather than buffered for later output. �

NOZIP
disables the secondary matching attempt by ZIP code when PLUS4 or STREET
geocoding do not find a match. By default, if PLUS4 or STREET geocoding do not
find a match, then the GEOCODE procedure attempts to match the five-digit ZIP
code and average each matching ZIP code coordinate.

1162 Street Geocoding � Chapter 39

Note: If your data set contains many missing ZIP+4 values, then the NOZIP
option might improve performance. �

Interaction: You cannot use the NOZIP option with the ZIP geocoding method.

OUT= output-data-set
specifies a data set for the geocoded addresses. All of the variables in the input
address data set are copied to the output data set. Also added to the output data set
are the following:

� X and Y variables for the location of the match

� optional variables specified by the ATTRIBUTEVAR option

� a variable named _MATCHED_ indicating how the match was made (by ZIP
code, by city and state, by averaging coordinates, or no match)

If the output data set that you specify already exists, then it is replaced without
warning. If the output data set is the same as the input data set, then the input data
set is updated by the geocoding operation.

If you omit the OUT= option, then the name of the output data set is DATAn,
where n is the smallest integer that produces a unique name. For example, if the
DATA1 data set exists, then the default name for the output data set is DATA2.

RANGEDATA= data-set
specifies a data set that associates ranges of IP addresses with locations. The data
set should contain variables that identify the starting IP number, ending IP number,
and location ID for each range of IP addresses.

RANGEDECIMAL
specifies that the values of the ADDRESSVAR= variable are in decimal form. By
default, the IP addresses in the ADDRESSVAR= variable are in dotted quad
notation. For example, the IP address 192.168.0.1 is represented as 3232235521 in
decimal form.

RANGEKEYVAR= variable
specifies the key variable for the lookup data set. The values of the key variable
correspond to values in the variable that you specify for the LOOKUPKEYVAR=
option. The data type of the key variable must match the variable that you specify
for the LOOKUPKEYVAR= option.

TYPE= type-data-set
specifies a SAS data set that is used by the STREET geocoding method to
standardize variations of common street address elements. For example, the type
data set might standardize "parkway", "parkwy", and "pkwy" to a standard form
"pkwy" to facilitate matching.

Default: The SASHELP.GCTYPE data set.

Street Geocoding

Overview of Street Geocoding
Note: This feature is for the third maintenance release of SAS 9.2 and later. �

The STREET geocoding method matches street addresses to coordinates on a map.
The GEOCODE procedure attempts to match the street name and ZIP code. If no
match is found, then the GEOCODE procedure attempts to match the street name, city

The GEOCODE Procedure � Data Sets for Street Geocoding 1163

name, and two-character postal code. If the second match fails, then the ZIP method
and the CITY method are used in succession.

If a street match is found, X and Y coordinate values are interpolated by using the
house number, street type suffix, directional prefix, and directional suffix from the input
address.

Note: To obtain the best results from STREET geocoding, use the most complete
street addresses possible in your input data set. For example, "111 North Main Street"
might produce a more accurate result than a "111 Main Street" or "111 North Main."
Also include ZIP code values in the input data set to improve the accuracy of your
results. �

Data Sets for Street Geocoding

Overview of the Required Data Sets
The STREET geocoding method requires five different lookup data sets:

street matching data set
contains street names, ZIP codes, FIPS codes, and references to observation
numbers for the street segment data set. The name of this data set must end with
the letter M.

The STREET geocoding method uses the street matching data set to match the
street name and to determine which observations in the street segment data set
are associated with the matching street.

The FIRST variable identifies the first observation in the street segment data
set and the LAST variable identifies the last observation in the street segment
data set that is associated with the street match.
Default: the SASHELP.USM data set
Tip: The street matching data set is specified by the LOOKUPSTREET= option.

See the documentation for the LOOKUPSTREET= option for more information.

street segment data set
contains variables to identify the street type, street direction prefix, and street
direction suffix. Each street segment is associated with a range of house numbers,
which is specified by the FROMADD and TOADD variables. The START variable
identifies the first observation in the street coordinate data set that is associated
with the street segment. The N variable specifies the number of observations in
the street coordinate data set that are associated with the street segment.

The street segment data sets that are provided by SAS contain attribute
variables with additional information, such as census tracts and county FIPS
codes. The name of this data set must end with the letter S.
Default: the SASHELP.USS data set
Tip: The street segment data set is specified indirectly through the

LOOKUPSTREET= option. See the documentation for the LOOKUPSTREET=
option.

street coordinate data set
contains X and Y coordinates. The name of this data set must end with the letter P.
Default: the SASHELP.USP data set
Tip: The street coordinate data set is specified indirectly through the

LOOKUPSTREET= option. See the documentation for the LOOKUPSTREET=
option.

street FIPS data set

1164 Output Variables for Street Geocoding � Chapter 39

contains city names, two-character postal codes, and FIPS codes. If a match
cannot be found by using the street name and ZIP code, then the STREET
geocoding method uses the FIPS data set to determine the FIPS code for the city
name and two-character postal code of the input address.

Note: If you choose to create a customized version of this data set, then you
must use the same variable names, data types, order, and index that are used in
the SASHELP.PLFIPS data set. �
Default: the SASHELP.PLFIPS data set
Tip: The street FIPS data set is specified by the FIPS= option.

street type data set
contains street type suffixes. The STREET geocoding method uses the street type
data set to convert street type suffixes to standardized forms.

Note: If you choose to create a customized version of this data set, then you
must use the same variable names, data types, order, and index that are used in
the SASHELP.GCTYPE data set. �
Default: the SASHELP.GCTYPE data set
Tip: The street type data set is specified by the TYPE= option.

Obtaining Street Lookup Data Sets
The default street matching data sets (USM, USS, and USP) are not installed with

SAS/GRAPH. These data sets contain address lookup data for the entire United States.
You can download these data sets from the SAS Maps Online Web site at
www.sas.com/mapsonline.

The USM, USS, and USP data sets are created from US Census Bureau TIGER/Line
files. As new TIGER/Line data is released, updated versions of the USM, USS, and
USP data sets will be made available.

The GEOEXM, GEOEXS, and GEOEXP data sets in the SASHELP library are
installed with SAS by default. These data sets contain data for Wake County in North
Carolina in the United States.

Output Variables for Street Geocoding
In addition to the default output variables, the STREET geocoding method creates

the following variables in the output data set:

M_ADDR contains the street address for the match. The M_ADDR value is the
match value from the lookup data set.

M_CITY contains the city name for the match. The M_CITY value is the
match value from the lookup data set.

M_STATE contains the two-character postal code for the match. The M_STATE
value is the match value from the lookup data set.

M_ZIP contains the ZIP code value from the lookup data set.

M_OBS contains the row number for the match in the lookup data set.

STATUS indicates the type of match that was found. The following values are
used with the _STATUS_ variable:

City/State Match
The street address did not match but a match was found for
the city name and two-character postal code.

The GEOCODE Procedure � Street Geocoding Note Values 1165

Found
The street address matched.

ZIP Match
The street address did not match but a match was found for
the ZIP code.

(Blank)
No match was found.

NOTES contains tokens that provide additional information about the
match. For more information, see “Street Geocoding Note Values” on
page 1165.

SCORE Contains a numeric value that indicates an estimate of the relative
accuracy of the match.

Street Geocoding Note Values
The STREET geocoding method creates a _NOTES_ variable in the output data set.

This variable provides details about the quality of the address match by using token
strings. For example, the value "AD ZC NM" contains three tokens that indicate that
the street name, ZIP code, and house number matched.

Each token in the _NOTES_ value has an associated score, and the sum of the scores
make up the value of the _SCORE_ variable.

The following table displays the tokens and their scores:

Table 39.1 Tokens for the _NOTES_ Variable

Token Score Description

AD 20 The street name matched.

CT 5 The city name matched.

DP 10 The street direction prefix
matched.

DS 10 The street direction suffix
matched.

ENDNM 0 The house number was outside
the ranges of values in the
lookup data set for the
matching street. The geocoded
coordinates for the nearest end
of the street were used.

MZC 0 Multiple matches were found
for the street address and ZIP
code.

MZS 0 Multiple matches were found
for the street address and
city-state pair.

NM 20 The house number matched.

1166 Street Geocoding Note Values � Chapter 39

Token Score Description

NMOS 15 The house number matched an
address range in the lookup
data set, but is on the opposite
side of the street from the
matched range.

NOCT -5 The city name and postal code
could not be matched in the
FIPS data set.

NODPA -10 The input address had no
direction prefix but the
matching street did have a
direction prefix. For example,
the input street name was
"Main St." but the matching
street was "N Main St."

NODPM -10 The input address had a
direction prefix but it was not
the same as the direction prefix
of the matching street. For
example, the input street name
was "North Main St." but the
matching street was "Main St."

NODSA -10 The input address had no
direction suffix but the
matching street did have a
direction suffix. For example,
the input street name was
"Johnson Ave" but the
matching street was "Johnson
Ave S."

NODSM -10 The input address had a
direction suffix but it was not
the same as the direction suffix
of the matching street. For
example, the input street name
was "Johnson Ave South" but
the matching street was
"Johnson Ave."

NOLNM 0 The lookup data set contains
missing values for the house
numbers of the matching
street. The geocoded
coordinates for the center of
the matching street were used.

NONM 0 The input address has no
house number. The geocoded
coordinates for the center of
the matching street were used.

The GEOCODE Procedure � Example 1: Geocoding Using Default Values 1167

Token Score Description

NOTYA -5 The input address had no
street type suffix, but the
matching address did have a
street type suffix. For example,
the input address was "110
Main St." but the matching
address was "110 N. Main St."

NOTYM -5 The street type suffix of the
input address was not the
same as the type suffix of the
matching street. For example,
the input street name was
"Park St." but the matching
street name was "Park Ave."

ST 5 The two-character postal code
matched.

TY 5 The street type suffix matched.

ZC 15 The ZIP code matched.

Examples

Example 1: Geocoding Using Default Values
Sample library member: GEOSMPL

The following sample shows the simplest form of the GEOCODE procedure specifying
only the OUT= option to geocode by five-digit ZIP code. The default lookup data set,
SASHELP.ZIPCODE, is used.

Generate the input data set of addresses to geocode.

data CUSTOMERS (label="Customer data for geocoding");
infile datalines dlm=’#’;

length address $ 24 city $ 24 state $ 2;
input address /* House number and street name */

zip /* Customer ZIP code (numeric) */
city /* City name */
state /* Two-character postal code */ ;

cust_ID = _n_; /* Assign customer ID number */
datalines;
555 Junk Street # 99999 # Beverly Hills # CA
115 E. Water St # 19901 # Dover #
760 Moose Lodge Road # 19934 # Camden #
200 S. Madison Str # 19801 # Wilmington # DE
4701 Limestone Road # 19808 # Wilmington #

1168 Example 1: Geocoding Using Default Values � Chapter 39

2117 N 4th St # 19363 # Oxford # PA
1313 Mockingbird Lane # . # Delray # CC
133 Silver Lake Dr # 19971 # Rehoboth Beach # DE
11 SE Front Street # 19963 # Milford # DE
402 Nylon Boulevard # . # Seaford # DE
363 E Commerce St # . # Smyrna # DE
5595 Polly Branch Rd # 19975 # Selbyville # DE
1209 Coastal Highway # 19944 # Fenwick Island # DE
2899 Arthursville Rd # 19953 # Hartly # DE
41 Bramhall St # . # #
9320 Old Racetrack Rd # . # Delmar # DE
281 W Commerce Str # 19955 # Kenton #
211 Blue Ball Road # 21921 # Elkton # MD
3893 Turkey Point Rd # 19980 # Woodside # DE
;
run;

Run the GEOCODE procedure, and then print the output data set.

proc geocode out=geocoded_customers;
run;
proc print data=geocoded_customers noobs;
run;

The result of using all of the default values is that the following is true:
� The input address data set is the most recently created SAS data set (this example

assumes that you have just created WORK.CUSTOMERS).
� The ZIP code geocoding method is used.
� The lookup data set is SASHELP.ZIPCODE.
� No variables are added to the output data set other than the X and Y coordinates,

and a _MATCHED_ variable indicating whether and how the match was made.

The following output from PROC PRINT shows the output data set after running the
GEOCODE procedure. Notice that the following geocoding variables have been added:

� location coordinate variables X and Y from the lookup data set
(SASHELP.ZIPCODE)

� a variable named _MATCHED_ indicating whether the location was found by
matching ZIP codes or by matching City and State (or whether no location was
found because no match was made)

The GEOCODE Procedure � Example 2: Adding Additional Variables to the Output Data Set 1169

Output 39.1 The GEOCODED_CUSTOMERS Data Set

Y X _MATCHED_ address zip city state cust_ID

34.0695 -118.398 City mean 555 Junk Street 99999 Beverly Hills CA 1
39.1500 -75.532 ZIP 115 E. Water St 19901 Dover 2
39.0953 -75.570 ZIP 760 Moose Lodge Road 19934 Camden 3
39.7366 -75.549 ZIP 200 S. Madison Str 19801 Wilmington DE 4
39.7317 -75.669 ZIP 4701 Limestone Road 19808 Wilmington 5
39.7877 -75.961 ZIP 2117 N 4th St 19363 Oxford PA 6

. . None 1313 Mockingbird Lane . Delray CC 7
38.7265 -75.081 ZIP 133 Silver Lake Dr 19971 Rehoboth Beach DE 8
38.9035 -75.432 ZIP 11 SE Front Street 19963 Milford DE 9
38.6387 -75.611 City 402 Nylon Boulevard . Seaford DE 10
39.2912 -75.606 City 363 E Commerce St . Smyrna DE 11
38.4663 -75.150 ZIP 5595 Polly Branch Rd 19975 Selbyville DE 12
38.4593 -75.053 ZIP 1209 Coastal Highway 19944 Fenwick Island DE 13
39.1509 -75.693 ZIP 2899 Arthursville Rd 19953 Hartly DE 14

. . None 41 Bramhall St . 15
38.4557 -75.574 City 9320 Old Racetrack Rd . Delmar DE 16
39.2282 -75.666 ZIP 281 W Commerce Str 19955 Kenton 17
39.6264 -75.850 ZIP 211 Blue Ball Road 21921 Elkton MD 18
39.0695 -75.567 ZIP 3893 Turkey Point Rd 19980 Woodside DE 19

Example 2: Adding Additional Variables to the Output Data Set
Procedure features:

ATTRIBUTEVAR=, DATA=, OUT=
Sample library member: GEOVARS

The following example illustrates using the ATTRIBUTEVAR= option to add
additional variables (from the lookup data set) to the output data set. The example also
illustrates using the DATA= option to specify an input address data set.

Generate the input data set of addresses to geocode.

data CUSTOMERS (label="Customer data for geocoding");
infile datalines dlm=’#’;

length address $ 24 city $ 24 state $ 2;
input address /* House number and street name */

zip /* Customer ZIP code (numeric) */
city /* City name */
state /* Two-character postal code */ ;

cust_ID = _n_; /* Assign customer ID number */
datalines;
555 Junk Street # 99999 # Beverly Hills # CA
115 E. Water St # 19901 # Dover #
760 Moose Lodge Road # 19934 # Camden #
200 S. Madison Str # 19801 # Wilmington # DE
4701 Limestone Road # 19808 # Wilmington #
2117 N 4th St # 19363 # Oxford # PA
1313 Mockingbird Lane # . # Delray # CC
133 Silver Lake Dr # 19971 # Rehoboth Beach # DE

1170 Example 2: Adding Additional Variables to the Output Data Set � Chapter 39

11 SE Front Street # 19963 # Milford # DE
402 Nylon Boulevard # . # Seaford # DE
363 E Commerce St # . # Smyrna # DE
5595 Polly Branch Rd # 19975 # Selbyville # DE
1209 Coastal Highway # 19944 # Fenwick Island # DE
2899 Arthursville Rd # 19953 # Hartly # DE
41 Bramhall St # . # #
9320 Old Racetrack Rd # . # Delmar # DE
281 W Commerce Str # 19955 # Kenton #
211 Blue Ball Road # 21921 # Elkton # MD
3893 Turkey Point Rd # 19980 # Woodside # DE
;

Geocode the data, and then print the output data set.

proc geocode method=ZIP /* Geocoding method */
data=customers /* Address data */
out=geocoded_customers /* Output data set */
attributevar=(statename, countynm); /* Include these variables */

run;

proc print data=geocoded_customers noobs;
var x y _matched_ statename countynm address zip;

run;

The following output from PROC PRINT shows the output data set after running the
GEOCODE procedure. Notice that the following variables have been added to the
output data set:

� location coordinate variables X and Y from the lookup data set
(SASHELP.ZIPCODE)

� a variable named _MATCHED_ indicating whether the location was found by
matching ZIP codes or by matching City and State (or whether no location was
found because no match was made)

� a variable named STATENAME from the lookup data set (that contains the full
name of the state or territory)

� a variable named COUNTYNM from the lookup data set (that contains the name
of the county or parish)

The attribute variables STATENAME and COUNTYNM are missing where the value
for _MATCHED_ is “None.” The attribute variables are also missing where
MATCHED is “City mean”—these observations were matched with multiple
city-and-state observations in the lookup data set, so the correct values for the attribute
variables cannot be determined.

The GEOCODE Procedure � Example 3: Street Geocoding 1171

Output 39.2 The GEOCODED_CUSTOMERS Data Set with Additional Variables

X Y _MATCHED_ STATENAME COUNTYNM address zip

-118.398 34.0695 City mean 555 Junk Street 99999
-75.532 39.1500 ZIP Delaware Kent 115 E. Water St 19901
-75.570 39.0953 ZIP Delaware Kent 760 Moose Lodge Road 19934
-75.549 39.7366 ZIP Delaware New Castle 200 S. Madison Str 19801
-75.669 39.7317 ZIP Delaware New Castle 4701 Limestone Road 19808
-75.961 39.7877 ZIP Pennsylvania Chester 2117 N 4th St 19363

. . None 1313 Mockingbird Lane .
-75.081 38.7265 ZIP Delaware Sussex 133 Silver Lake Dr 19971
-75.432 38.9035 ZIP Delaware Sussex 11 SE Front Street 19963
-75.611 38.6387 City Delaware Sussex 402 Nylon Boulevard .
-75.606 39.2912 City Delaware Kent 363 E Commerce St .
-75.150 38.4663 ZIP Delaware Sussex 5595 Polly Branch Rd 19975
-75.053 38.4593 ZIP Delaware Sussex 1209 Coastal Highway 19944
-75.693 39.1509 ZIP Delaware Kent 2899 Arthursville Rd 19953

. . None 41 Bramhall St .
-75.574 38.4557 City Delaware Sussex 9320 Old Racetrack Rd .
-75.666 39.2282 ZIP Delaware Kent 281 W Commerce Str 19955
-75.850 39.6264 ZIP Maryland Cecil 211 Blue Ball Road 21921
-75.567 39.0695 ZIP Delaware Kent 3893 Turkey Point Rd 19980

Example 3: Street Geocoding
Sample library member: GEOSTRT

The following example illustrates the STREET geocoding method to obtain
coordinates based on street addresses. The ATTRIBUTEVAR= option specifies an
additional variable to include in the output data set.

Create the input data set.

data WORK.CUSTOMERS (label=’Input data for street geocoding’);
infile datalines dlm=’#’;

length address $ 32
city $ 24
state $ 2;

input address /* House number and street name */
zip /* Customer ZIP code (numeric) */
city /* City name */
state; /* Two-character postal code */

datalines;
555 Junk Street # 99999 # Beverly Hills # CA
305 Cross Lake Drive # 27526 # Fuquay-Varina # NC
2525 Banks Road # 27603 # Raleigh # NC
2222 SAS Campus Drive # 27513 # Cary # NC
1150 SE Maynard Rd. # 27511 # Cary # NC
2117 Graceland # 27606 # Raleigh # NC
1313 Mockingbird Lane # # Delray # CC
133 Jade Circle # 27545 # Knightdale # NC
1005 W South St # 27603 # Raleigh # NC
N Winds North Drive # 27591 # Wendell # NC
622 Roundabout Road # 27540 # Holly Springs # NC

1172 Example 3: Street Geocoding � Chapter 39

Johnson Family Rd # 27526 # #
822 Water Plant Road # # Zebulon # NC
502 Possum Track Road # 27614 # # NC
2590 Wolfpack Lane # 27604 # Raleigh # NC
125 Ferris Wheel Ct # 27513 # Cary # NC
;
run;

Geocode the data and then print the output data set.

proc geocode /* Invoke geocoding procedure */
method=STREET /* Specify geocoding method */
data=WORK.CUSTOMERS /* Input data set of addresses */
out=WORK.GEOCODED /* Output data set with X/Y values */
lookupstreet=SASHELP.GEOEXM /* Primary street lookup data set */
attributevar=(TRACTCE00); /* Assign Census Tract to locations */

run;
proc print data=WORK.GEOCODED noobs;

var address m_addr m_zip m_obs _matched_ _status_ _notes_ _score_ x y tractce00;
run;

The following output from the PRINT procedure shows the output data set after
running the GEOCODE procedure. In addition to the default output variables, the
TRACTCE00 attribute variable was added.

The GEOCODE Procedure � Example 3: Street Geocoding 1173

Output 39.3 The GEOCODED Data Set

address M_ADDR M_ZIP M_OBS _MATCHED_ _STATUS_

555 Junk Street . . City mean City/State Match

305 Cross Lake Drive 305 Cross Lake Dr 27526 5098 Street Found

2525 Banks Road 2525 Banks Rd 27603 1189 Street Found

2222 SAS Campus Drive 199 Sas Campus Dr 27513 16786 Street Found

1150 SE Maynard Rd. 1150 SE Maynard Rd 27511 12467 Street Found

2117 Graceland 4400 Graceland Ct 27606 8022 Street Found

1313 Mockingbird Lane . . None

133 Jade Circle 173 Jade Cir 27545 9971 Street Found

1005 W South St 1005 W South St 27603 17643 Street Found

N Winds North Drive 27591 11009 ZIP ZIP match

622 Roundabout Road 530 Roundabout Rd 27540 16395 Street Found

Johnson Family Rd Johnson Family Rd 27526 10151 Street Found

822 Water Plant Road 822 Water Plant Rd 27597 20351 Street Found

502 Possum Track Road 502 Possum Track Rd 27614 15179 Street Found

2590 Wolfpack Lane 2590 Wolfpack Ln 27604 21291 Street Found

125 Ferris Wheel Ct 125 Ferris Wheel Ct 27513 6994 Street Found

NOTES _SCORE_ X Y TRACTCE00

CT ST 10 -118.398 34.0695 .

AD ZC NMOS TY 55 -78.763 35.6061 53104

AD ZC NM TY 60 -78.673 35.6369 53103

AD ZC ENDNM TY 40 -78.763 35.8273 53510

AD ZC NM DP TY 70 -78.764 35.7835 53501

AD ZC ENDNM NOTYA 30 -78.711 35.7889 52402

0 . . .

AD ZC ENDNM TY 40 -78.461 35.8147 54102

AD ZC NM DP TY 70 -78.654 35.7732 51000

ZC 15 -78.388 35.7930 .

AD ZC ENDNM TY 40 -78.831 35.6505 53200

AD ZC NONM TY 40 -78.750 35.5395 53104

AD CT ST NMOS TY 50 -78.339 35.8319 54302

AD ZC NM TY 60 -78.629 35.9520 53801

AD ZC NMOS TY 55 -78.609 35.8234 52705

AD ZC NM TY 60 -78.800 35.7949 53515

1174

1175

C H A P T E R

40
The GFONT Procedure

Overview 1175
About the GFONT Procedure 1175

Displaying Fonts 1175

About Creating Fonts 1176

Concepts 1176

Font Terminology and Characteristics 1176
Storing User-Created Fonts: GFONT0 Libref 1177

Procedure Syntax 1178

PROC GFONT Statement 1178

Creating Fonts 1187

The Font Data Set 1187

Font Data Set Variables 1189
Creating a Font Data Set 1195

The Kern Data Set 1196

Kern Data Set Variables 1196

Creating a Kern Data Set 1196

The Space Data Set 1197
Space Data Set Variables 1197

Creating a Space Data Set 1198

Examples 1199

Example 1: Displaying Fonts with Character Codes 1199

Example 2: Creating Figures for a Symbol Font 1201

Overview

About the GFONT Procedure
The GFONT procedure displays fonts and creates SAS/GRAPH fonts for use in

SAS/GRAPH programs. These fonts can contain standard Roman alphabet characters,
foreign language characters, symbols, logos, or figures.

Displaying Fonts
You can use the GFONT procedure output when you want to do the following tasks:
� review the characters that are available in SAS/GRAPH fonts
� examine the default device-resident font for your device
� see the character codes associated with font characters

1176 About Creating Fonts � Chapter 40

� view the hexadecimal values associated with font characters

� modify the color and height of font characters

� draw reference lines around font characters

See Example 1 on page 1199.

About Creating Fonts
The GFONT procedure enables you to create and store any series of figures or

alphabet fonts that you can digitize, or draw using X and Y coordinates. Font characters
or figures can be displayed with any SAS/GRAPH statement or option that allows for a
font specification and a text string. See “Creating Fonts” on page 1187 for details.

Concepts

Font Terminology and Characteristics
Some specialized terms are associated with font characteristics:

� The capline is the highest point of a normal uppercase letter.

� The baseline is the line upon which the characters rest.

� The font maximum is the highest vertical coordinate.

� The font minimum is the lowest vertical coordinate.

Figure 40.1 Font Characteristics Terminology

Specialized terms are also associated with font types:

� A uniform font is a font in which all of the characters occupy exactly the same
amount of space. Each character in a uniform font is placed in the center of its
space, and a fixed amount of space is added between characters.

� A proportional font is a font in which each character occupies a space that is
relative to its width.

� A stroked font is drawn with discrete line segments or circular arcs. This is a
stroked font with several characters from the Simplex font.

The GFONT Procedure � Storing User-Created Fonts: GFONT0 Libref 1177

Figure 40.2 Characters from a Stroked Font

� A polygon font is drawn with one or more line segments or circular arcs.
� A filled font is a polygon font in which the areas between the lines are solid.

� An outline font is a polygon font in which the areas between the lines are empty.

Here are examples of a filled font and an outline font.

Figure 40.3 Filled and Outline Characters from Polygon Fonts

In the GFONT procedure, the term line segment means a continuous line that can
change direction. All font characters are drawn with line segments. The letter C is
drawn with one line segment, while the letter A can be drawn with two.

Polygon characters can be drawn with one or more line segments. In a polygon font
the following is true:

� A character can be made up of a single polygon. The letter C above is a single
polygon with one line segment

� A character can be made up of multiple polygons. The question mark consists of
two polygons, each drawn with a separate line segment

� A character can include holes. The letter A is a polygon with a hole in it. It is
drawn with one line segment that is broken to form the outer boundary of the
figure and the boundary of the hole.

Storing User-Created Fonts: GFONT0 Libref
The GFONT procedure stores user-created SAS/GRAPH fonts in the location that is

associated with the libref GFONT0. Before you create or display a user-created
SAS/GRAPH font, submit a LIBNAME statement to associate the libref GFONT0 with
a location where the font is stored, as follows:

LIBNAME gfont0 "SAS-data-library";

The GFONT0 library is the first place that SAS/GRAPH software searches for fonts.
Always assign GFONT0 to the library that contains your personal SAS/GRAPH fonts.
If you have personal SAS/GRAPH fonts in more than one SAS library, assign them

1178 Procedure Syntax � Chapter 40

librefs in the sequence GFONT0, GFONT1, GFONT2, and so on. The search for entries
terminates if there is a break in the numbering sequence. If the libref GFONT0 is not
defined, by default SAS/GRAPH software begins searching for fonts in
SASHELP.FONTS.

To cancel or redefine the libref GFONTn, submit the following statement:

LIBNAME GFONTn;

Procedure Syntax
Requirements: One font name is required. To display a font, include NOBUILD. To create
a font, include DATA=.
Global statements: FOOTNOTE, NOTE, TITLE

PROC GFONT NAME=SAS/GRAPH font| device-resident font | system font
mode
<display-option(s)>
<creation-option(s)>;

PROC GFONT Statement

The PROC GFONT statement can either create SAS/GRAPH fonts or display existing SAS/GRAPH
fonts. The GFONT procedure names the font to be created or displayed. If the GFONT procedure
creates a font, then an input data set name is required. You can modify the design and appearance
of the fonts that you create or display, and specify a destination catalog for graphics output.

Syntax

PROC GFONT NAME=SAS/GRAPH font| device resident font | system font
mode
<display-option(s)>
<creation-option(s)>;

� mode must be one of the following:
DATA=font-data-set
NOBUILD

� display-option(s) can be one or more of the following:
CTEXT=text-color
GOUT=<libref.>output-catalog
HEIGHT=character-height<units>
NOKEYMAP
NOROMAN
NOROMHEX
Style element:

REFCOL=reference-line-color

The GFONT Procedure � Displaying Fonts: Required Arguments and Options 1179

REFLINES
ROMCOL=code-color
ROMFONT=font
ROMHEX
ROMHT=height<units>
SHOWALL
SHOWROMAN

� creation-option(s) can be one or more of the following:
BASELINE=y
CAPLINE=y
CHARSPACETYPE=DATA | FIXED | NONE | UNIFORM
CODELEN=1 | 2
FILLED
KERNDATA=kern-data-set
MWIDTH=character-width
NODISPLAY
NOKEYMAP
RESOL=1...4
ROMHEX
SHOWROMAN
SPACEDATA=space-data-set
UNIFORM

For more detail on using the GFONT syntax, see “Displaying Fonts: Required
Arguments and Options” on page 1179 and “Creating Fonts: Required Arguments and
Options” on page 1183.

Displaying Fonts: Required Arguments and Options

Required Arguments for Displaying Fonts

NAME=SAS/GRAPH font| device–resident font| system font
specifies of theSAS/GRAPH font to be displayed. Name can be any of the following
values:

� the name of a SAS/GRAPH font stored in the SASHELP.FONTS catalog, and
fonts created by the user and stored in a GFONTn catalog. These fonts can be
used only by SAS/GRAPH procedures or other procedures that generate
SAS/GRAPH output files.

� the name of a system font that can be used by any SAS procedure and by other
software, such as Microsoft Word. SAS/GRAPH installs and registers a set of
TrueType fonts, and it is recommended that you use these fonts whenever
possible.

� the name of a device-resident font that is burned into the chips in a device’s
hardware. These fonts are specific to the device being used and are not portable
between devices. Some device resident fonts such as Helvetica can also be
present as system fonts.

1180 Displaying Fonts: Required Arguments and Options � Chapter 40

Alias: N=
Note: The device-resident font name must be enclosed in quotes.

NOBUILD
specifies that the GFONT procedure is to display an existing font. The NOBUILD
argument tells the GFONT procedure that no font is being created and not to look for
an input data set.
Alias: NB
Featured in: Example 1 on page 1199.

.

Options for Displaying Fonts
Options that can be used for either font display or font creation are described here

and in “Options for Creating Fonts” on page 1183.
Options to display a font can be used when you create a font if you also display it

(that is, you do not use the NODISPLAY option in the PROC GFONT statement).
However, none of the display options affect the design and appearance of the stored font
except the NOKEYMAP, SHOWROMAN, and ROMHEX options.

When the syntax of an option includes units, specify one of these:

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area

PT points

If you omit units, a unit specification is searched for in the following order:
1 the value of GUNIT= in a GOPTIONS statement
2 the default unit, CELLS

CTEXT=text-color
specifies a color for the body of the characters. If you do not use the CTEXT= option,
a color specification is searched for in the following order:

1 the CTEXT= option in the procedure statement

2 the CTEXT= option in a GOPTIONS statement
3 the color specified in the ODS style
4 the first color in the color list

Alias: CT=
Featured in: Example 2 on page 1201.
Note: The CTEXT= value is not stored as part of the font.

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output generated by the
display of the font. You can use the GREPLAY procedure to view the output that is
stored in the catalog.

If you omit the libref, SAS/GRAPH looks for the catalog in the temporary WORK
library, and creates the catalog if it does not exist.

See also: “Specifying the Catalog Name and Entry Name for Your GRSEGs” on
page 100

The GFONT Procedure � Displaying Fonts: Required Arguments and Options 1181

HEIGHT=character-height<units>
specifies the height of the font characters in number of units, n. Height is measured
from the minimum font measurement to the capline.

Alias: H=

Default: 2

Featured in: Example 1 on page 1199.

NOKEYMAP
specifies that the current key map is ignored when displaying the font and its
character codes or hexadecimal values. If you do not use the NOKEYMAP option
when you display a font, the current key map remains in effect. If any characters in
the font are not available through the current key map, they are not displayed and a
warning is issued in the SAS log. This happens when not all characters in the font
are mapped into the current key map.

Displaying a font using the NOKEYMAP option enables you to see all of the
characters in the font, including those that are not mapped into your current key
map.

Note: Only the characters that are mapped into your current key map are available.

NOROMAN
turns off the automatic display of character codes that are created when you use the
SHOWROMAN option during font creation.

Alias: NR

NOROMHEX
turns off the automatic display of hexadecimal values for single-byte characters that
are created when you use the ROMHEX option during font creation.

Alias: NOHEX

REFCOL=reference-line-color
specifies a color for reference lines. If you do not use the REFCOL= option, a color
specification is searched for in the following order:

1 the CTEXT= option in a GOPTIONS statement

2 the color specified in the ODS style

3 the first color in the color list

REFLINES
draws reference lines around each displayed character. Vertical reference lines show
the width of the character. Horizontal reference lines show the font maximum and
the font minimum, as well as the baseline and the capline.

See: “Font Terminology and Characteristics” on page 1176.

ROMCOL=code-color
specifies the color of the character codes or hexadecimal values that are displayed
with the SHOWROMAN and ROMHEX options. If you do not use the ROMCOL=
option, a color specification is searched for in the following order:

1 the color specified by the CTEXT= option in a GOPTIONS statement

2 the color specified in the current style or, if the NOGSTYLE option is specified,
then the default color is black for the Java and Activex devices and the first
color in the color list for all the other devices

Alias: RC=

Featured in: Example 1 on page 1199.

Note: The ROMCOL= value is not stored as part of the font.

1182 Displaying Fonts: Required Arguments and Options � Chapter 40

ROMFONT=font
specifies the font for character codes and hexadecimal values that are displayed by
the SHOWROMAN and ROMHEX options. If you do not use the ROMFONT= option,
a font specification is searched for in the following order:

1 the value of the ODS STYLE variable

2 the FTEXT= option in a GOPTIONS statement

3 SAS-supplied fonts
4 the device-resident font

Alias: RF=

Featured in: Example 1 on page 1199.

ROMHEX
displays hexadecimal values below the font characters. If you use both the ROMHEX
and SHOWROMAN options, both the character codes and the hexadecimal values are
displayed. You can also use the ROMHEX option when you create a font.

Alias: HEX

See also: the ROMHEX option on page 1186.

ROMHT=height<units>
specifies the height of the character codes and the hexadecimal values that are
displayed with the SHOWROMAN and ROMHEX options in number of units, n. If
you do not use the ROMHT= option, a height specification is searched for in the
following order:

1 the HEIGHT specified in the ODS STYLE

2 the HTEXT= option in a GOPTIONS statement

Alias: RH=
Default: 1

Featured in: Example 1 on page 1199.

SHOWALL
displays the font with a space for every possible character position whether a font
character exists for that position. The characters that are displayed are those
available under your current key map, unless you use the NOKEYMAP option. The
SHOWALL option usually is used in conjunction with the ROMHEX option, to display
all possible hexadecimal values. If, under your current key map, a font character is
available for a position, it displays above the hexadecimal value. If no character is
available for a position, the space above the hexadecimal value is blank. You can use
the SHOWALL option to show where undefined character positions fall in the font.

SHOWROMAN
displays character codes below the font characters even if they are not displayed
automatically with the font. If you use both the SHOWROMAN option, and the
ROMHEX option, both the character codes, and the hexadecimal values are
displayed. You can also use the SHOWROMAN option when you create a font.

Alias: SR
Featured in: Example 1 on page 1199.

Details

proc gfont name=weather nobuild romfont=albany;
run;

The GFONT Procedure � Creating Fonts: Required Arguments and Options 1183

Creating Fonts: Required Arguments and Options

Required Arguments for Creating Fonts

NAME=font-name
assigns a name to the font that you create. Font name is the name of a catalog entry,
and must be a valid SAS name of no more than eight characters. You cannot specify
NONE, or the name of a SAS/GRAPH font that is shipped with SAS/GRAPH software.
Alias: N=
Featured in: Example 2 on page 1201.

DATA=font-data-set
specifies the SAS data set that the GFONT procedure uses to build the font. The
data set must be sorted by the variables CHAR and SEGMENT.
Default: The GFONT procedure uses the most recently created data set.
See also: “SAS Data Sets” on page 54.
Featured in: Example 2 on page 1201.
When you create a font, define the libref GFONT0. See “Storing User-Created Fonts:

GFONT0 Libref” on page 1177.

Note: If a user-created SAS/GRAPH font has the same name as a font supplied by
SAS, and if the libref GFONT0 has been defined, then the user-created SAS/GRAPH
font is used, because GFONT0 is first in the search order. �

Options for Creating Fonts
Options that can be used for either font display or font creation are described here,

and in “Options for Displaying Fonts” on page 1180.
Options to display a font can be used when you create a font if you also display it

(that is, you do not use the NODISPLAY option in the PROC GFONT statement).
However, none of the display options affect the design and appearance of the stored font
except the NOKEYMAP, SHOWROMAN, and ROMHEX options.

When the syntax of an option includes units, specify a unit using one of the following
measures:

CELLS character cells

CM centimeters

IN inches

PCT percentage of the graphics output area

PT points

If you omit units, a unit specification is searched for in the following order:
1 the value of GUNIT= in a GOPTIONS statement
2 the value of units in the ODS STYLE
3 the default unit; CELLS

BASELINE=y
specifies the vertical coordinate in the font data set that is the baseline of the
characters. The baseline is the line upon which the letters rest. If you do not use the

1184 Creating Fonts: Required Arguments and Options � Chapter 40

BASELINE= option, the GFONT procedure uses the lowest vertical coordinate of the
first character in the font data set.

B=

CAPLINE=y
specifies the vertical coordinate in the font data set that is the capline of the
characters. The capline is the highest point of normal that case the capline, and the
font maximum are the same. See Figure 40.1 on page 1176 for an illustration of
capline, and font maximum.

If you use the CAPLINE= option, when the height of a character is calculated, any
part of the character that is above the capline is ignored in the calculation.

You can use this option to prevent an accented capital like A from being shortened
to accommodate the accent. If you do not use the CAPLINE= option, the capline and
the font maximum are the same. The A is shortened to make room for the accent
below the capline. However, if the CAPLINE= option is used, the top of the letter A
is at the capline, and the accent is drawn above the capline, and below the font
maximum.

Alias: C=

CHARSPACETYPE=DATA | FIXED | NONE | UNIFORM
specifies the type of intercharacter spacing. The following are valid values:

DATA
specifies that the first observation for each character sets the width of that
character. When CHARSPACETYPE=DATA, the PTYPE variable is required, and
the observation that specifies the width of the character must have a PTYPE value
of W. See “The Font Data Set” on page 1187 for details on the PTYPE variable.

Intercharacter spacing is included in the character’s width. If the first
observation for the letter A specifies a character width of 10 units, and the A
occupies 8 units, the remaining 2 units serve as intercharacter spacing.

Note: The character can extend beyond the width that you specified in the first
observation if desired. �

FIXED
adds a fixed amount of space between characters based on the font size. The width
of the individual character is determined by the data that generates the character.

NONE
specifies that no space is added between characters. The width of the individual
character is determined by the data that generates the character. This type of
spacing is useful for script fonts in which the characters should appear connected.

UNIFORM
specifies that the amount of space that is used for each character is uniform, not
proportional. Each character occupies the same amount of space. In uniform
spacing the letters m and i occupy the same amount of space, in proportional
spacing m occupies more space than i. In uniform spacing, the character is always
centered in the space, and a fixed space is added between characters.

When UNIFORM is specified, the amount of space that is used for each
character is one of the following:

Alias: CSP=

Default: CHARSPACETYPE=FIXED

Note: Specifying CHARSPACETYPE=UNIFORM is the same as using the
UNIFORM option.

The GFONT Procedure � Creating Fonts: Required Arguments and Options 1185

CODELEN=1 | 2
specifies the length in bytes of the CHAR variable. To specify double-byte character
sets for languages such as Chinese, Japanese, or Korean, use CODELEN=2.

FILLED
specifies that the characters in a polygon font are filled.
Alias: F
Default: 1
Featured in: Example 2 on page 1201.
Restriction: If you specify a double-byte character set, the KERNDATA= option and

SPACEDATA= option are ignored.

KERNDATA=kern-data-set
specifies the data set that contains kerning information. When the KERNDATA=
option is used during font creation, the data that is contained in the kern data set is
applied and stored with the font.
Alias: KERN=
See also: “The Kern Data Set” on page 1196
Restriction: If you specify kerning for a double-byte character set that is created by

using the option CODELEN=2, then the KERNDATA= option is ignored.

MWIDTH=character-width
specifies the width of a character in a uniform font, where character-width is the
number of font units. The MWIDTH= option is valid when you specify uniform
spacing by using the UNIFORM option or when you specify
CHARSPACETYPE=UNIFORM. If you omit the MWIDTH= option, the default is the
width of the widest character in the font (usually the letter m).

The MWIDTH= option is typically used to tighten the spacing between characters.
To do this, specify a smaller value for character-width. Figure 40.4 on page 1185
shows the effect of decreasing the space that is allowed for uniformly spaced
characters.

Figure 40.4 Using the MWIDTH= Option to Modify Spacing

See also: the CHARSPACETYPE= option on page 1184 and the UNIFORM option
on page 1187

NODISPLAY
specifies that the GFONT procedure is not to display the font that it is creating.
Alias: ND

NOKEYMAP
specifies that the current key map is ignored when you create and then use the font
that is created. The character codes you enter are not mapped in any way before

1186 Creating Fonts: Required Arguments and Options � Chapter 40

being displayed. As a result, the created font is never affected by any setting of the
KEYMAP= graphics option.

CAUTION:
Fonts created with the NOKEYMAP option are never affected by any setting of the
KEYMAP= graphics option. �

By default, the NOKEYMAP option is not used; in that case, when you build a
font, the current key map is applied to the values in the CHAR variable.

However, your current key map might not be symmetrical; two or more input
character codes might be mapped to the same output character. For example, if A is
mapped to B, then both A and B map to B, but nothing maps to A. In this case, more
than one code in your input data set can map to the same character in the resulting
font. For example, if A and B are values of CHAR, both map to B. If this happens, a
message that indicates the problem characters is displayed in the SAS log. To solve
this problem, do one of the following tasks:

� change the character code of one of the characters
� eliminate one of the characters
� use the NOKEYMAP option

The NOKEYMAP option works correctly only if the end user’s host or controller
encoding is the same as the encoding used to create the input data set.
See also: the NOKEYMAP= option on page 1181 for Displaying Fonts.

RESOL=1...4
controls the resolution of the fonts by specifying the number of bytes (1 through 4)
for storing coordinates in the font. The GFONT procedure provides three resolution
levels (RESOL=3 produces the same resolution level as RESOL=4). By default,
RESOL=1.

The higher the number, the closer together the points that define the character
can be spaced. A high value specifies a denser set of points for each character so that
the characters approximate smooth curved lines at very large sizes. RESOL=2 works
well for most applications; RESOL=3 or 4 might be too dense to be practical.

The table below shows the resolution number and the maximum number of
distinct points that can be defined horizontally or vertically.

Resolution Number of Distinct Points

2 32,766

3 2,147,483,646

4 2,147,483,646

Alias: R=
Featured in: Example 2 on page 1201.

ROMHEX
specifies that hexadecimal values display automatically below the font characters
when the GFONT procedure displays the font. If you use the ROMHEX option for a
font that you create, you can later use the NOROMHEX option to suppress display of
the hexadecimal values.
Alias: HEX
See also: the SHOWROMAN option on page 1187, the ROMHEX option on page

1182 for Displaying Fonts, and the NOROMHEX option on page 1181.

The GFONT Procedure � The Font Data Set 1187

SHOWROMAN
specifies that character codes display automatically below the font characters when
the GFONT procedure displays the font. If you use the SHOWROMAN option for a
font you create, you can later use the NOROMAN option to suppress display of the
character codes.
Alias: SR
See also: the ROMHEX option on page 1182, the SHOWROMAN option for

Displaying Fonts, and the NOROMAN option on page 1181.

SPACEDATA=space-data-set
specifies the SAS data set that contains font spacing information. When you use the
SPACEDATA= option during font creation, the data contained in the space data set is
applied to the font and stored with it.
Alias: SPACE=
See also: “The Space Data Set” on page 1197.
Restriction: If you specify the SPACEDATA= option for a double-byte character set

that is created by using the option CODELEN=2, then the SPACEDATA= option is
ignored.

UNIFORM
specifies that characters are spaced uniformly rather than proportionately. Using the
UNIFORM option is the same as specifying CHARSPACETYPE=UNIFORM.
Alias: U
See also: the CHARSPACETYPE= option on page 1184 and the MWIDTH= option

on page 1185.

Creating Fonts
To create a font, you must create a data set that contains font information. Typically

you use a DATA step to create a SAS data set from which the GFONT procedure
generates the font. The data set is referred to as the font data set and you can specify it
with the DATA= argument. To produce the font, invoke the GFONT procedure and
specify the data set that contains the font information. In addition you can include
options to modify the design and appearance of the font. For example, the following
statement uses the data set FONTDATA to generate the font MYLOG:

proc gfont data=fontdata name=mylogo;

For a demonstration of the font creation process, see Example 2 on page 1201.
The GFONT procedure uses three types of data sets: the font data set, the kern data

set, and the space data set. Each type of data set must contain certain variables and
meet certain requirements. The following sections explain what each data set contains,
how it is built, and what the requirements of the variables are.

See Example 2 on page 1201.

The Font Data Set
The font data set consists of a series of observations that include the horizontal and

vertical coordinate values. It also includes line segment numbers that the GFONT
procedure uses to generate each character. In addition, each observation must include a
character code that is associated with the font character and is used to specify the font
character in a text string. The font data set also determines whether the font is stroked

1188 The Font Data Set � Chapter 40

or polygon. A font data set that generates a polygon font produces an outline font by
default. You can use the FILLED option with the same data set to generate a filled font.

The variables in the font data set must be assigned certain names and types. The
table below summarizes the characteristics of the variables which are described further
in “Font Data Set Variables” on page 1189

data sashelp. fontdata;
proc gfont data=fontdata name=mylogo;
run;

Specify the font data set with the DATA= argument. The font data set consists of a
series of observations that include detailed characteristics of the variables described in
“Font Data Set Variables” on page 1189.

Table 40.1 Font Data Set Variables

Variable Description Type Length
Valid
Values

With
Stroked
Fonts

With
Polygon
Fonts

CHAR the character
code
associated
with the font
character

character 1 or 2 keyboard
characters
or
hexadecimal
values

required required

LP the type of
line segment
being drawn,
either a line
or a polygon

character 1 L or P optional required

PTYPE the type of
data in the
observation

character 1 V or C or W optional optional

SEGMENT the number
of the line
segment or
polygon being
drawn

numeric number required required

X the
horizontal
coordinate

numeric number required required

Y the vertical
coordinate

numeric number required required

The GFONT Procedure � Font Data Set Variables 1189

Font Data Set Variables

CHAR
provides a code for the character or figure you are creating. CHAR is a character
variable with a length of 1 or 2. CHAR is required for all fonts.

CAUTION:
Using reserved or undefined hexadecimal codes as CHAR values might require the
use of the NOKEYMAP option. �

The CHAR variable takes any character as its value, including keyboard
characters and hexadecimal values from ’00’x to ’FF’x. (If you use hexadecimal
values as CHAR values, your font might not work correctly under a key map that
is different from the one under which the font wax created. Positions that are not
defined in one key map might be defined in another.)

When you specify the code for the character in a text string, the associated font
character is drawn. For example, if you create a Roman alphabet font, typically
the characters you specify for CHAR are keyboard characters that match the
character in the font. All of the observations that build the letter A have a CHAR
value of A. When you specify ’A’ in a text string, this creates an A in the output.

However, If you build a symbol font, the symbols might not have corresponding
keyboard characters. In that case, you select a character or hexadecimal value to
represent each symbol in the font and assign it to CHAR. For example in the
Special font, the letter G is assigned as the code for the fleur-de-lis symbol. When
you specify the code in a text string, the associated symbol displays.

Note: If the CODELEN= option is set to 2, the values for CHAR represent two
characters, such as AA, or a four- digit hexadecimal value, such as ’00A5’x. �

LP
tells the GFONT procedure whether the coordinates of each segment form a line or
a polygon. LP is a character variable with a length of 1. Assign the LP variable
either of the following values:

L lines
Featured in: Figure 40.5 on page 1190.
Note: Optional for stroked fonts.
Note: Observations that do not contain an LP variable create a

shape like the one in Figure 40.5 on page 1190.

P polygons. If the observations do not draw a completely closed
figure then the figure is closed by the GFONT procedure.
Note: Required for polygons.
Featured in: An LP variable with a value of P for all

observations creates a complete box. Figure 40.6 on page
1190

1190 Font Data Set Variables � Chapter 40

OBS CHAR SEG X Y

1 b 1 1 1

2 b 1 1 3

3 b 1 3 3

4 b 1 3 1

Figure 40.5 LP Value of L

LP (continued)
.

OBS CHAR SEG X Y LP

1 b 1 1 1 P

2 b 1 1 3 P

3 b 1 3 3 P

4 b 1 3 1 P

Figure 40.6 LP Value of P

LP (continued)
The LP variable enables you to mix lines and polygons. These observations create
the figure consisting of a polygon and a line segment as shown in Figure 40.7 on
page 1191:

OBS CHAR SEG X Y LP

1 b 1 1 1 P

2 b 1 1 3 P

3 b 1 3 3 P

The GFONT Procedure � Font Data Set Variables 1191

OBS CHAR SEG X Y LP

4 b 1 3 1 P

5 b 2 0 0 L

6 b 2 2 4 L

7 b 2 4 0 L

Figure 40.7 Mixing LP Values of Line and Polygon

PTYPE
tells the GFONT procedure what type of data is in the observation. PTYPE is a
character variable of length 1 that is optional. For each observation, the PTYPE
variable assigns a characteristic to the point that is determined by the X and Y
values. You can assign the PTYPE variable to any of these values:

V normal point in the line segment

Note: If a PTYPE variable is not specified then all points are
assumed to be V-type points.

Note: If the GFONT procedure encounters the sequence V-C-V
in consecutive observations, it draws an arc that connects
the two V points and has its center at the C point. If a circle
cannot be centered at C, and pass through both V points, the
results can be unpredictable.

C center of a circular arc joining two V points

Restriction: Arcs are limited to 106 degrees or less.

Featured in: Figure 40.8 on page 1192.

Note: After the figure was created, a grid was overlaid, to show
the location of the points.

W width value for CHARSPACETYPE=DATA. An observation
with a PTYPE value of W, must always be the first observation
for a character. The observation gives the minimum and
maximum X values for the character. The Y variable
observation contains the maximum X value. Usually, these
values include a little extra space for intercharacter spacing.

1192 Font Data Set Variables � Chapter 40

Restriction: Use a PTYPE of W only if you have specified
CHARSPACETYPE=DATA; otherwise, the points are
ignored.

Featured in: CHARSPACETYPE= option.

OBS CHAR SEG X Y LP PTYPE Comment

1 a 1 40 60 P W define width of
character as 20
font units,
which is the
number of units
from left
margin, 40, to
right margin,
60

2 a 1 45 40 P V start line
segment at
position 45,40

3 a 1 45 50 P V draw a line to
position 45,50,
which is start
point of arc

4 a 1 45 40 P C draw an arc
whose center is
at 45,40

5 a 1 55 40 P V finish drawing
the arc at 55,40

Figure 40.8 Using the PTYPE Variable to Create an Arc

PTYPE (continued)
� Three observations are required to draw an arc: observation 3 and

observation 5 denote the start point and the end point of the arc. Observation
4 locates the center of the arc.

� The figure is closed because the line segments have an LP value of P
(polygon).

� The font that contains the figure of the arc was created with a similar PROC
GFONT statement:

proc gfont data=arc name=arcfig charspacetype=data filled ;

The GFONT Procedure � Font Data Set Variables 1193

The GFONT procedure CHARSPACETYPE= DATA specifies that the first
observation sets the width of the character. The FILLED option fills the area
of the arc.

SEGMENT
numbers the line segments that compose a character or symbol. SEGMENT is a
required numeric variable. All observations for a given line segment have the
same segment number. To start a new line segment, change the segment number.

The GFONT procedure requires special instructions to do the following:
� create a stroked character with more than one line segment (an E)
� create a polygon character with an opening (A)

To indicate when one line stops and where the next line begins you can do either
of the following:

1 Change the segment number when a new line begins. If the value of LP is L
(line), a change in segment number causes the following:

� The last point in line segment 1 ends the line.
� The first point in line segment 2 starts a new line.

1194 Font Data Set Variables � Chapter 40

If the value of LP is P (polygon), a change in segment numbers causes the
following:

� The last point in line segment 1 joins the first point in line segment 1,
which closes the polygon.

� A new polygon starts. If the value of CHAR has not changed, the new
polygon is part of the same character.

Use this method for characters that consist of two polygons such as a
question mark. This method is preferred, unless you are creating a polygon
character with a hole in it.

2 Keep the same segment number for all lines. Insert an observation with
missing values for X and Y. Insert the new observation between the
observation that marks the end of the first line, and the observation that
begins the next line.

The second method is preferred when creating a polygon with a character
with a hole in it. In this case, you should separate the lines with a missing
value and keep the same segment numbers. If you use separate line segments
when you create a polygon with a hole, the results can be unpredictable.

These observations from a data set called BOXES were used to draw the
hollow square in Figure 40.9 on page 1195. The data points that form the
figure are laid out on a grid shown next to the square.

OBS CHAR SEG X Y LP

1 b 1 1 1 P

2 b 1 1 3 P

3 b 1 3 3 P

4 b 1 3 1 P

5 b 1 - - P

6 b 1 0 0 P

7 b 1 0 4 P

8 b 1 4 4 P

9 b 1 4 0 P

Note observation 5 has missing values for X and Y. This separates the
observations that draw the inner box from those that draw the outer box. The
segment number is the same for all the observations. Figure 40.9 on page 1195
was created with a similar GFONT statement:

proc gfont data=boxes name=boxes filled;

Note: The FILLED option is included, and only the space between the two
squares is filled. �

The GFONT Procedure � Creating a Font Data Set 1195

Figure 40.9 Drawing Nested Polygons

X and Y
specify the horizontal and vertical coordinates of the points for each character.
Their values describe the position of the points on the character. These variables
have the following characteristics:

� They must be numeric.

� They must be named X and Y for the horizontal and vertical coordinates,
respectively.

� The values specified by them can be in any range.

� They both must describe the character in the same scale or font units.

� Vertical (Y) coordinates for all characters should be defined on the same
baseline.

Note: When you specify PTYPE=W, both X and Y contain horizontal coordinate
values. �

Creating a Font Data Set
Create a font data set by digitizing the shape of the characters or figures either

manually or with special digitizing equipment. To create a font data set by digitizing
the characters manually:

1 Determine the coordinate points for each line segment by drawing the characters
on a grid.

2 Lay out the observations for each character. Each observation describes a move
from one point to another along a line segment. For each line segment, enter the
coordinate points in the order in which they are drawn. For a stroked font, when
you start a new line segment, change the segment number. For a polygon font,
when you start a new polygon, change the line segment number.

If the polygon has a hole in it, as in the letter O, keep the line segment number
and separate the lines with a missing value. Use the same value for CHAR for all
of the observations that describe one character.

3 Create a SAS data set that contains the variables CHAR, SEGMENT, X, and Y,
and read in the data for each observation. Include the variables LP and PTYPE if
necessary.

4 Sort the data set by CHAR and SEGMENT.

5 Assign the font data set with the DATA= argument.

This process is illustrated in Example 2 on page 1201.

1196 The Kern Data Set � Chapter 40

The Kern Data Set
The kern data set consists of observations that specify how much space to add or

remove between any two characters when they appear in combination. This process,
called kerning, increases or decreases space between the characters. Kerning usually is
applied to certain pairs of characters that have too much space between them.
Reducing the space between characters might result in part of one character extending
over the body of the next. Examples of some combinations that should be kerned are
AT, AV, AW, TA, VA, and WA.

You can apply kerning to the intercharacter spacing that you specify with the
CHARSPACETYPE= option (except for uniform fonts). Assign the kern data set with
the KERNDATA= option.

Kern Data Set Variables
Required kern data set variables:

CHAR1
specifies the first character in the pair to be kerned. CHAR1 is a character
variable with a length of 1.

CHAR2
specifies the second character in the pair to be kerned. CHAR2 is a character
variable with a length of 1.

XADJ
specifies the amount of space to add or remove between the two characters. XADJ
is a numeric variable that uses the same font units as the font data set. The value
of XADJ specifies the horizontal adjustment to be applied to CHAR2 whenever
CHAR1 is followed immediately by CHAR2. Negative numbers decrease the
spacing, and positive numbers increase the spacing.

Creating a Kern Data Set
Each observation in a kern data set names the pair of characters to be kerned. The

amount of space to be added or deleted between them is specified. To create a kern data
set:

1 Select the pairs of characters to be kerned. Specify the space adjustment (in font
units) for each pair.

2 Create a SAS data set that contains the variables CHAR1, CHAR2, and XADJ;
define one observation for each pair of characters and the corresponding space
adjustment as follows:

data kern1;
input char1 $ char2 $ xadj;
datalines;

A T -4
D A -3
T A -4
;

3 Assign the kern data set with the KERNDATA= option as follows:

proc gfont data=fontdata
name=font2

The GFONT Procedure � Space Data Set Variables 1197

charspacetype=data
kerndata=kern1
nodisplay;

run;

“Creating a Kern Data Set” on page 1196 illustrates how to use the KERNDATA=
option to create a font in which the space between specified pairs of letters is reduced.
The characters A, D, and T are shown as the word DATA. The first line uses the
unkerned font, FONT1, and the second line uses the kerned font, FONT2. Note that the
characters in FONT2 are spaced more closely than the characters in FONT1.

These statements specify the kerned and unkerned fonts, and are used with the
GSLIDE procedure to create the fonts:

title2 lspace=6 f=font1 h=10 j=l "DATA";
title3 lspace=4 f=font2 h=10 j=l "DATA";

Figure 40.10 Comparison of Kerned and Unkerned Text

The Space Data Set
As the height (point size) of a font increases, less space is required between letters in

relation to their height. If the height decreases, more space might be needed. The space
data set tells the GFONT procedure how much to increase or decrease the
intercharacter spacing for a given point size. Spacing is added to or subtracted from the
intercharacter spacing that is specified by the CHARSPACETYPE= option. Spacing is
applied uniformly to all characters.

Values that are specified in the space data set are added to the normal intercharacter
spacing and any kerning data. Normal intercharacter spacing is determined by the
CHARSPACETYPE= option.

Space Data Set Variables
Required space data set variables:

SIZE

1198 Creating a Space Data Set � Chapter 40

specifies the point size of the font. SIZE is a numeric variable.

ADJ
specifies the spacing adjustment for the point size in hundredths (1/100) of a point.
(A point is equal to 1/72 of an inch.) ADJ is a numeric variable. Positive values for
ADJ increase the space between characters; negative values for ADJ reduce the
space between characters.

Creating a Space Data Set
Each observation in a space data set specifies the following:
� a point size (SIZE)
� the amount of space (ADJ) to be added or subtracted between characters when a

font of that point size is requested

When you specify a point size that is not in the space data set, the adjustment for the
next smaller size is used. To create a space data set:

1 Determine the amount of adjustment that is required for typical point sizes.
2 Create a data set that contains the variables SIZE and ADJ. Create one

observation for each point size and corresponding space adjustment as follows:

data space1;
input size adj;
datalines;
6 40
12 0
18 -40
24 -90
30 -150
36 -300
42 -620
;

3 Assign the space data set with the SPACEDATA= option as follows:

proc gfont data=fontdata
name=font3
charspacetype=data
spacedata=space1
nodisplay;

run;

Figure 40.11 on page 1199 illustrates how to use the SPACEDATA= option to create
a font in which intercharacter spacing is adjusted according to the height of the
characters. The characters A, D, and T are shown as the word DATA. Each pair of lines
displays the word DATA and at the same size uses first the font with spacing
adjustment (FONT3) and then the original font (FONT1). Note that as the size of the
characters increases, the space between them decreases.

The following title statements are used with the GSLIDE procedure to produce
Figure 40.11 on page 1199:

title2;
title3 f=font3 h=.25in j=l "DATA"; /* 18 points */
title4 f=font1 h=.25in j=l "DATA";
title5;
title6 f=font3 h=.50in j=l "DATA"; /* 36 points */
title7 f=font1 h=.50in j=l "DATA";

The GFONT Procedure � Example 1: Displaying Fonts with Character Codes 1199

title8;
title9 f=font3 h=1.0in j=l "DATA"; /* 72 points */
title10 f=font1 h=1.0in j=l "DATA";

Figure 40.11 Comparison of Text with and without Spacing Adjustments

Examples
These examples illustrate the major features of the GFONT procedure.

Example 1: Displaying Fonts with Character Codes

Procedure features:
GFONT statement options:

HEIGHT=
NOBUILD
ROMCOL=
ROMFONT=
ROMHT=
SHOWROMAN

Sample library member: GFODISFO

1200 Example 1: Displaying Fonts with Character Codes � Chapter 40

This illustrates the SHOWROMAN option, which displays the character codes that
are associated with the font characters that are being displayed. This display shows
which keyboard character you enter to produce the Greek character you want displayed.
The example also illustrates how to modify the appearance of both the font characters,
and the character codes.

Set the graphics environment.

goptions reset=all border;

Define title.

title "The GREEK Font with Character Codes";

Display the GREEK font with character codes. NOBUILD indicates that the font specified
in the NAME= argument is an existing font. HEIGHT= specifies the height of the Greek
characters. ROMCOL=, ROMFONT=, and ROMHT= assign the color, type style, and height of
the character codes. SHOWROMAN displays the character codes.

proc gfont name=greek
nobuild
height=3.7
romcol=red
romfont=swissl
romht=2.7
showroman;

run;
quit;

The GFONT Procedure � Example 2: Creating Figures for a Symbol Font 1201

Example 2: Creating Figures for a Symbol Font

Procedure features:
GFONT statement options:

CTEXT=
DATA=
FILLED
NAME=
RESOL=

Other features:
LIBNAME statement

Sample library member: GFOCRFIG

Create three simple figures for a symbol font. Each figure is laid out on a grid that is
64 font units square. The third figure is a circle with a slash through it. Figure 40.12
on page 1202 shows the figure and some of its coordinate points laid out on a grid.

1202 Example 2: Creating Figures for a Symbol Font � Chapter 40

Figure 40.12 Diagram of Circle with Slash Figure

Assign the librefs and set the graphics environment. The LIBNAME statement associates
the libref GFONT0 with the SAS data library in which the font catalog is stored.

LIBNAME gfont0 "SAS-data-library";
goptions reset=all border;

Create the font data set FIGURES for a triangle, a heart, and a circle with slash. The
first figure, a right-pointing triangle that is assigned the character code A, is a polygon drawn
with three straight lines.

data figures;
input char $ ptype $ x y segment lp $;
datalines;

A W 0 64 0 P /* triangle pointing right */
A V 4 4 1 P
A V 60 32 1 P
A V 4 60 1 P
A V 4 4 1 P

The second figure, a heart that is assigned the character code B, uses the PTYPE variable
combination V-C-V to draw the arcs that make up the top of the heart. Each side requires two
arcs. Because the arcs are continuous, the observation that marks the end of one arc is also the
beginning of the next arc. The heart drawing begins at the bottom point and continues
counterclockwise.

B W 0 64 0 P /* heart */
B V 32 2 1 P
B V 44 17 1 P
B V 58 40 1 P
B C 46 47 1 P
B V 56 58 1 P
B C 46 47 1 P
B V 32 52 1 P
B C 18 47 1 P

The GFONT Procedure � Example 2: Creating Figures for a Symbol Font 1203

B V 8 58 1 P
B C 18 47 1 P
B V 6 40 1 P
B V 20 17 1 P
B V 32 2 1 P

The third figure, a circle with a slash through it, assigned the character code C, consists of three
polygons: a circle and two empty arcs. An observation with missing values separates the
observations defining each of the three polygons. The outer circle is defined by the first group of
observations. The empty arcs are drawn with three continuous arcs using the PTYPE variable
pattern V-C-V-C-V-C-V. The straight line that closes the arc is drawn automatically by the
GFONT procedure in order to complete the polygon. Because all the polygons are part of one
character, the continuous space they define is filled.

C W 0 64 0 P /* circle with slash */
C V 32 64 1 P
C C 32 32 1 P
C V 64 32 1 P
C C 32 32 1 P
C V 32 0 1 P
C C 32 32 1 P
C V 0 32 1 P
C C 32 32 1 P
C V 32 64 1 P
C V . . 1 P
C V 12.4 18.1 1 P
C C 32 32 1 P
C V 8 32 1 P
C C 32 32 1 P
C V 32 56 1 P
C C 32 32 1 P
C V 45.9 51.6 1 P
C V . . 1 P
C V 51.6 45.9 1 P
C C 32 32 1 P
C V 56 32 1 P
C C 32 32 1 P
C V 32 8 1 P
C C 32 32 1 P
C V 18.1 12.4 1 P
;

Define the title.

title "A Font of Three Figures";

1204 Example 2: Creating Figures for a Symbol Font � Chapter 40

Create and display the font FIGURES. DATA= argument names the input data set. The
NAME= the font that the procedure creates. FILLED specifies a filled polygon. HEIGHT= font
height. CTEXT=red the color of the figures. RESOL= 2 improves the resolution of the lines.

proc gfont data=figures
name=figures
filled
height=.75in
ctext=red
showroman
romht=.5in
resol=2;

run;
quit;

1205

C H A P T E R

41
The GINSIDE Procedure

Overview 1205
Procedure Syntax 1205

PROC GINSIDE Statement 1206

ID Statement 1207

Examples 1207

Example 1: Determining Values by Using the GINSIDE Procedure 1207
Example 2: Mapping and Annotating Values from the GINSIDE Procedure 1208

Overview
The GINSIDE procedure compares a data set of X and Y coordinates to a map dataset

containing map polygons. The procedure determines whether the X and Y coordinates
for each point fall inside of or outside of the map polygons. If the point falls inside of a
polygon, then the ID variable is set to the ID value of that polygon. For example, if a
map contains states, then the ID variable of the output data set is set to the state that
contains the point. The GINSIDE procedure can be used with the SAS/GRAPH map
data sets and the results can be used to annotate onto a map with the GMAP procedure.

Note: Points that fall on the border of a polygon might give unpredictable results. �

Procedure Syntax
Requirements: One ID statement is required.

PROC GINSIDE
DATA=points-data-set
MAP=map-data-set
OUT=output-data-set < INSIDEONLY>;

ID id-variable(s) ;

1206 PROC GINSIDE Statement � Chapter 41

PROC GINSIDE Statement

The GINSIDE procedure compares a data set of X and Y coordinates to a map data set containing
map polygons and determines whether the X and Y points fall inside or outside of the map
polygons.

Requirements: Three data sets are required: a data set containing points, a map data set,
and an output data set.

PROC GINSIDE
DATA=points-data-set
MAP=map-data-set
OUT=output-data-set < INSIDEONLY>;

Required Argument

DATA=points-data-set
specifies an input data set that contains the X and Y coordinates of the individual
points that are being compared to the map polygons.

Note: If this data set contains the same ID variable (or variables) as does the
map, the value should be set to MISSING so that the points are not considered to be
part of the boundary of the polygon. �

MAP=map-data-set
specifies the map data set that contains the polygons that you want to compare the
points in the input data set to. This data must conform to the rules for a map data
set and contain variables X and Y and one or more ID variables. The ID statement
should name that variable or variables.

Note: The X and Y values in the input data set must be in the same projection
system and units as the X and Y in the map data set. So, if the map data set has
unprojected X and Y values in radians, then the point data set X and Y variable
values must also be unprojected and in radians. �

OUT=output-data-set
specifies the output data set for the GINSIDE procedure. The output data set
contains all of the observations and variables from the input data set, and an ID
variable is added.

Options

INSIDEONLY
causes the output data set to contain only points that are inside the map polygons.
By default, the data set contains all points.

The GINSIDE Procedure � Example 1: Determining Values by Using the GINSIDE Procedure 1207

ID Statement

Specifies the identification variables in the map data set whose polygons will be checked against
the points from the input data set.

Requirements: At least one id-variable is required.

ID id-variable(s);

Required Arguments

id-variable(s)
specifies one or more identification variables from the map data set. For each X and
Y point in the input data set and each ID variable that you specify, if the point lies
within a polygon in the map data set, then the ID value of that polygon is written to
the output data set. If the point lies outside of all of the polygons, then a missing
value is written to the output data set.

For example, the first observation in an input data set contains the values X=1.37
and Y=.68. In the PROC GINSIDE statement, you specify the MAPS.COUNTIES
data set, and in the ID statement you specify the STATE variable. The point
(1.37,.68) lies within the polygon where STATE=54, so the first value for STATE in
the output data set is 54.

Examples

Example 1: Determining Values by Using the GINSIDE Procedure
Procedure features:

ID statement
Sample library member: GINSIDE2

This example uses the GINSIDE procedure to determine the state and county for
each pair of coordinates in the input data set.

Create the GPS data set. The X and Y variables are converted from decimal degrees to
radians. The X variable is also multiplied by -1 to match the values in the MAPS.COUNTIES
data set.

data gps;
input x y site $;
x=x*arcos(-1)/180;
x=x*(-1);

1208 Example 2: Mapping and Annotating Values from the GINSIDE Procedure � Chapter 41

y=y*arcos(-1)/180;
datalines;
-77.0348 40.0454 a
-78.4437 39.1623 b
-78.4115 39.3751 c
-78.7646 40.6354 d
;
run;

Determine the values of STATE and COUNTY for each data point.

proc ginside data=gps map=maps.counties out=gpscounties;
id state county;

run;

Sort and print the output data set.

proc sort data=gpscounties;
by site;

run;

proc print data=gpscounties;
var site state county x y;

run;

Output 41.1 shows the values of STATE and COUNTY for each observation in the
input data set.

Output 41.1 Proc PRINT Results of Output Data Set

site STATE COUNTY x y

a 42 133 1.34451 0.69892
b 54 27 1.36910 0.68351
c 54 27 1.36854 0.68723
d 42 21 1.37470 0.70922

Example 2: Mapping and Annotating Values from the GINSIDE Procedure

Procedure features:
ID statement

Sample library member: GINSIDE

The GINSIDE Procedure � Example 2: Mapping and Annotating Values from the GINSIDE Procedure 1209

The following example determines which customers are inside Wake County in the
state of North Carolina. It then draws a map and colors the dots (representing
customers) to distinguish customers inside the county from customers outside the
county. This example is featured in the SAS Sample Library under the name GINSIDE.

Set the graphics environment.

goptions reset=global border;

Create the customer data.

data customer;
length city $20;
input lastname$ zip x y city $;

cards;
Smith 27611 1.374164 0.623436 Raleigh
Jones 27560 1.375948 0.625278 Morrisville
Doe 27513 1.375279 0.624922 Cary
Patel 27520 1.369120 0.621970 Clayton
White 27705 1.377910 0.628629 Durham
Short 27587 1.370373 0.627680 WakeForest
Phillips 27591 1.368124 0.624705 Wendell
Jackson 27597 1.367264 0.625629 Zebulon
;

Create a map data set of Wake County in North Carolina.

data states;
set maps.counties(where=(fipstate(state)="NC" and county=183));

run;

1210 Example 2: Mapping and Annotating Values from the GINSIDE Procedure � Chapter 41

Combine the CUSTOMER and STATES data sets.

data combined;
set customer states;

run;

Project the map and points data sets to use the same projection.

proc gproject data=work.combined out=work.combined dupok;
id state county;

run;

/*split the data*/
data work.states customer;

set work.combined;
if missing(zip) = 1 then output work.states;
else output customer;

run;

Determine which customer points fall inside or outside which county.

proc ginside map=work.states data=customer out=mapout;
id state county;

run;
/*see the resulting data*/
proc print;
run;

Create an annotate dataset from the points data and color the points black if inside the map,
and color them red if outside.

data points;
set mapout;
length function style color $ 8 position $ 1 text $ 20 ;
retain xsys ysys "2" hsys "3" when "a" text

"";
retain rotate 360 style "solid" function "pie" position "5";
color=

"black";
size=2;
if missing(county) then color="red";
output;

run;
title "Red dots are outside of Wake County";

Use the GMAP procedure to display the map. The ANNO= option specifies the annotate data set.

proc gmap data=states map=states anno=points;
id county;
choro county / coutline=black nolegend;

The GINSIDE Procedure � Example 2: Mapping and Annotating Values from the GINSIDE Procedure 1211

run;
quit;

Output 41.2 shows the results of PROC PRINT. Notice that the last two observations
have missing values for COUNTY because they are not in Wake County.

Output 41.2 Proc PRINT Results for Output Data Set

X Y SEGMENT COUNTY DENSITY STATE city lastname zip

-.001541860 -.001337843 2 183 . . Raleigh Smith 27611

-.002986277 0.000506523 3 183 . . Morrisville Jones 27560

-.002444482 0.000149461 4 183 . . Cary Doe 27513

0.001531260 0.002906157 5 183 . . WakeForest Short 27587

0.003358790 -.000065627 6 183 . . Wendell Phillips 27591

0.004053658 0.000860235 7 183 . . Zebulon Jackson 27597

0.002555933 -.002802349 8 . . . Clayton Patel 27520

-.004565994 0.003861845 9 . . . Durham White 27705

1212

1213

C H A P T E R

42
The GKPI Procedure

Overview 1213
Slider KPI Charts 1214

Bullet Graph KPI Charts 1214

Dial KPI Charts 1215

Speedometer KPI Charts 1215

Traffic Light KPI Charts 1216
Concepts 1216

Specifying Basic or Raised Mode 1216

Specifying Segment Boundaries and Actual KPI Values 1218

Controlling the Display of Boundary and Tick Mark Values 1219

Controlling Segment Colors 1219

Default Colors 1219
Defining Active and Inactive Color Lists 1221

Example: Specifying an Inactive Color List 1222

Example: Specifying an Active Color List 1222

Specifying Active Colors Only for Specific Segments (Using Null Colors) 1223

Specifying Color Names 1223
Specifying Fonts 1224

Procedure Syntax 1225

PROC GKPI Statement 1225

DIAL, HBULLET, HSLIDER, HTRAFFICLIGHT, SPEEDOMETER, VTRAFFICLIGHT,
VBULLET, and VSLIDER Statements 1226

Examples 1230

Example 1: Using the Default Colors as the Active Colors 1231

Example 2: Creating a Gray Scale Bullet Graph 1232

Example 3: Creating a Dial KPI Chart 1233

Example 4: Defining a Speedometer 1234

Example 5: Defining a Speedometer with Reversed Colors 1235
Example 6: Creating a Traffic Light 1236

Overview
The GKPI procedure creates graphical key performance indicator (KPI) charts. KPIs

are metrics that help a business monitor its performance and measure its progress
toward specific goals. The procedure produces five KPI chart types:

� slider (vertical or horizontal)
� bullet graph (vertical or horizontal)
� dial
� speedometer

1214 Slider KPI Charts � Chapter 42

� traffic light (vertical or horizontal).

The GKPI procedure produces a two or three-dimensional KPI chart based on a
series of segment boundaries and an actual KPI value that you specify. If you specify a
target value, the KPI chart also displays the target value. The procedure uses a set of
default colors for the KPI chart, but you can specify your own colors.

Note: The only device supported for the GKPI procedure is JAVAIMG. If you do not
specify DEVICE=JAVAIMG, then SAS/GRAPH sets the DEVICE option to JAVAIMG. �

Note: To use output from the GKPI procedure in a dashboard generated with the
GREPLAY procedure, you must first create a GRSEG containing the GKPI procedure
output. You can use the IBACK=”gkpiImage.png” option on the GOPTIONS statement
with the GSLIDE or GANNO procedures to generate the GRSEG. �

Slider KPI Charts
Slider KPI charts display a bar divided into segments according to the boundary

values that you specify. The actual value of the KPI is indicated with a triangle pointer
on the top (for a horizontal slider) or the left (for a vertical slider). This actual value
indicator is the same color as the segment that contains the actual KPI value. The
target value, if it is specified, is displayed as a smaller triangle on the bottom (or right
side) of the slider.

Bullet Graph KPI Charts
Bullet graphs display a bar divided into segments according to the boundary values

that you specify. The actual value of the KPI is indicated with a black line, or bullet,
down the center of the graph. The target value, if it is specified, is displayed as a
vertical line (in a horizontal bullet graph) or a horizontal line (in a vertical bullet
graph) across the graph.

The GKPI Procedure � Speedometer KPI Charts 1215

Dial KPI Charts
Dial KPI charts display a dial divided into segments according to the boundary

values. The actual value of the KPI is indicated with a large, white triangle pointer.
The target value, if it is specified, is displayed as a small, black triangle. The center of
the dial is the same color as the segment that contains the actual KPI value.

Speedometer KPI Charts
Speedometer KPI charts display a speedometer with the tick marks evenly spaced

around the dial and colored segments that correspond to the segment boundaries that
you specify. Speedometers can be displayed as a full speedometer, as a half
speedometer, or as a quarter speedometer. The actual value of the KPI is indicated by a
long pointer. The target value, if it is specified, is displayed as a small, black triangle.

1216 Traffic Light KPI Charts � Chapter 42

In each display type, tick marks are evenly spaced but do not correspond to colored
segment boundaries. The numbered band in the full speedometer is always divided into
ten sections (using 11 tick marks). The numbered band in the half speedometer is
divided into five sections (six tick marks), and the quarter speedometer is divided into
three sections (four tick marks).

Traffic Light KPI Charts
Traffic light KPI charts display a traffic light that contains one light for each

segment. The segment that contains the actual value is displayed in color. The
remaining segments are gray. In other words, only one “light” is “turned on” at a time.
Traffic lights do not display target values.

Concepts

Specifying Basic or Raised Mode
Each KPI chart can be displayed in basic mode, which appears flat and

two-dimensional, or in raised mode, which appears raised and three-dimensional. The
default mode is basic mode. You can specify a mode on the PROC GKPI statement:

proc gkpi mode=raised;

The following figures illustrate the difference in appearance between basic mode and
raised mode for each type of KPI chart.

The GKPI Procedure � Specifying Basic or Raised Mode 1217

Figure 42.1 Horizontal Slider in Basic and Raised Modes

Bullet graphs appear similar to sliders.

Figure 42.2 Dial in Basic and Raised Modes

Figure 42.3 Speedometer in Basic and Raised Modes

1218 Specifying Segment Boundaries and Actual KPI Values � Chapter 42

Figure 42.4 Traffic Light in Basic and Raised Modes

Specifying Segment Boundaries and Actual KPI Values
To generate a KPI chart, you must specify a list of segment boundaries using the

BOUNDS= option and an actual KPI value using the ACTUAL= option. The values can
be positive numbers, negative numbers, or missing (ACTUAL=.), but the BOUNDS= list
must be in either ascending or descending order and must contain at least two numbers
(in order to define a single segment). For example, the following code defines a
horizontal slider with segment boundaries in ascending order from –8 to 10 and an
actual KPI value of 6:

goptions device=javaimg;
ods html;
proc gkpi;

hslider actual=6 bounds=(-8 -5 0 3 5 10);
run;
quit;
ods html close;

The boundaries can also be specified in desending order, for example:

hslider actual=6 bounds=(10 5 3 0 -5 -8)

The order in which colors are applied is not affected by whether boundaries are
specified in ascending or descending order. See “Defining Active and Inactive Color
Lists” on page 1221 for information on controlling segment colors.

The actual KPI value can fall outside of the highest or lowest boundaries, but the
GKPI procedure treats such values as if they occur at the edge of the highest or lowest

The GKPI Procedure � Controlling Segment Colors 1219

boundaries. For example, suppose the actual KPI value is –10, but the lowest boundary
value is –8:

hslider actual=-10 bounds=(-8 -5 0 3 5 10)

PROC GKPI displays the actual KPI value indicator at –8.

If you specify a missing value for the actual KPI value (ACTUAL=.), then the GKPI
procedure does not generate a KPI chart.

Controlling the Display of Boundary and Tick Mark Values
In some cases, there might not be enough space to display all of the boundary values

or, for speedometers, tick mark values without some of the values colliding together. In
these cases, the GKPI procedure typically drops some or all of the boundary or tick
mark values, depending on the amount of space available, the font size being used, and
the values that need to be displayed.

If the GKPI procedure drops values, you can try the following solutions:

� increasing the size of the KPI chart using the XPIXELS=/YPIXELS= or HSIZE=/
VSIZE= options on the GOPTIONS statement

� reducing the size of the boundary value font using the BFONT= option

� applying a SAS format to the boundary values using the FORMAT= option.

See Example 3 on page 1233 for an example that uses the XPIXELS=, YPIXELS=,
BFONT=, and FORMAT= options.

Controlling Segment Colors

Default Colors
If you define only one segment or more than five segments, the GKPI procedure uses

the same value of gray (hexadecimal RGB value B2B2B2) for all segments.

Figure 42.5 GKPI Procedure Gray Scale Default

If you define two to five segments, the GKPI procedure uses some or all of the colors
shown in Figure 42.6 on page 1220 as the default colors.

1220 Controlling Segment Colors � Chapter 42

Figure 42.6 GKPI Procedure Default Colors

For example, if you define only three segments, the GKPI procedures uses the red,
yellow, and green colors shown in Figure 42.6 on page 1220.

Table 42.1 on page 1220 lists the hexadecimal values for each of these default colors.

Table 42.1 Hexadecimal Values for GKPI Procedure Default Colors

Color Hexadecimal

RGB Value

Red cxD06959

Orange cxE1A05D

Yellow cxF1DC63

Yellow-Green cxBDCD5F

Green cx84AF5B

The traffic light also uses the default colors, but it applies them slightly differently.
If you define only one segment, then the procedure displays the light for that segment
in gray. If you define two to five segments, the traffic light uses the default color listed
in Table 42.1 on page 1220 only for the light corresponding to the segment that contains
the actual KPI value. All other lights are gray. If you define more than five segments,
all lights are displayed in gray, but the light corresponding to the segment that contains
the actual KPI value is displayed in dark gray. In other words, only one light in a
traffic light is “turned on” at a time. All other lights are “turned off.”

The GKPI Procedure � Controlling Segment Colors 1221

Figure 42.7 Traffic Light Default Colors

Colors are applied in the same direction, regardless of whether the segment
boundaries are in ascending or descending order. Colors for horizontal sliders and
bullet graphs are applied from left to right. Colors for traffic lights, vertical sliders, and
vertical bullet graphs are applied from bottom to top. Colors for dials and speedometers
are applied clockwise.

Defining Active and Inactive Color Lists
You can define two different color lists: a list of active colors and a list of inactive

colors. The active color list is defined with the ACTIVECOLORS= option, and the
inactive color list is defined with the COLORS= option. Neither option is required.

Each color in a list corresponds to a segment in the KPI chart. That is, the first color
is applied to the first segment, the second color is applied only to the second segment,
and so on. A segment is displayed in its active color if the actual KPI value falls in that
segment. All segments that do not contain the actual KPI value are displayed in their
inactive colors. If you do not specify an active color list, then the segment that contains
the actual KPI value is also displayed in its inactive color.

Note: The TRAFFICLIGHT statement supports both the COLORS= option and the
ACTIVECOLORS= option. However, if both options are specified, the COLORS= option
is ignored. All segments that do not contain the actual KPI value appear gray. �

You can specify colors for the segments using any of the color-naming schemes
supported by SAS/GRAPH. See “Specifying Color Names” on page 1223.

If you specify the COLORS= option, then you must specify a color for each segment.
That is, the number of entries in the COLORS= list must be one less than the number

1222 Controlling Segment Colors � Chapter 42

of entries in the BOUNDS= list. If you specify the ACTIVECOLORS= list, you do not
have to specify a color for every segment. See “Specifying Active Colors Only for
Specific Segments (Using Null Colors)” on page 1223 for more information.

Example: Specifying an Inactive Color List
The following example uses color names defined in the SAS registry to specify the

inactive color list. The GKPI procedure uses these colors instead of the default colors
shown in Figure 42.6 on page 1220.

goptions reset=all device=javaimg;
ods html;
proc gkpi mode=raised;

hslider actual=0.28
bounds=(0 .22 .35 .50) /
colors=(PaleTurquoise MediumTurquoise Teal);
run;

quit;
ods html close;

The actual KPI value falls into the second segment, and there are no active colors
specified, so the second color in the COLORS= list, MediumTurquoise, is used for the
second segment and for the actual KPI value indicator.

Example: Specifying an Active Color List
The following example defines the inactive colors for all of the segments to be the

same value of gray, cxB2B2B2. For the active colors, it specifies the default values for
the red, yellow, and green colors listed in Table 42.1 on page 1220.

goptions reset=all device=javaimg;
ods html;
proc gkpi mode=raised;

hslider actual=0.28
bounds=(0 .22 .35 .50) /
colors=(cxB2B2B2 cxB2B2B2 cxB2B2B2)
activecolors=(cxD06959 cxF1DC63 cx84AF5B);

run;
quit;
ods html close;

The actual KPI value is 0.28, which falls into the second segment, so the second color
listed in the ACTIVECOLORS= color list, cxF1DC63, which is yellow, is used as the
color for the second segment instead of gray.

The GKPI Procedure � Controlling Segment Colors 1223

If the actual KPI value is changed to 0.43, then the third color in the ACTIVECOLORS=
color list, cx84AF5B, which is green, is used for the third segment instead of gray.

Specifying Active Colors Only for Specific Segments (Using Null Colors)

If you specify a null color for a segment in the ACTIVECOLORS= list, then either
the default color or the color in the COLORS= list, if one is specified, is used for that
segment even if it contains the actual KPI value.

To specify a null color, you can specify null for the color or enter a comma-delimited
list with no space between the commas. For example, if you have five segments and you
want red to be used only for the lowest and highest segments, then you can specify the
ACTIVECOLORS= list in either of the following forms:

activecolors=(red,null,null,null,red)
activecolors=(red,,,,red)

The default colors (or the color in the COLORS= list) will be used for segments two
through four even if the actual KPI value falls into one of these segments.

The ACTIVECOLORS= list does not have to specify a color for each segment, but the
one-to-one correspondence between the colors that are specified and the segments is
maintained. For example, supposed you define five segments and you specify the
following:

activecolors=(red green)

The GKPI procedure treats this specification as if you had entered the following:

activecolors=(red,green,null,null,null)

Red applies only to the first segment, and green applies only to the second segment.
Default colors (or COLORS= colors) apply to all the other segments.

Specifying Color Names

You can specify colors for the segments using any of the color-naming schemes
supported by SAS/GRAPH. For a complete description of these color-naming schemes,
see “Color-Naming Schemes” on page 170. The following table shows examples of each
of the color naming schemes:

Table 42.2 Examples of Specifying Colors

Color-Naming
Scheme Example

RGB COLORS=(cx98FB98 cxDDA0DD cxFFDAB9 cxDB7093 cxB0E0E6)

CMYK COLORS=("FF00FF00" "00FFFF00" "FFFFFF00")

HLS COLORS=(H14055FF H0F060FF H0B485FF H07880FF)

HSV COLORS=(V0F055FF v010FFFF v03BFFFF v12C55E8)

Gray Scale COLORS=(GRAY4F GRAY6D GRAY8A GRAYC3)

1224 Specifying Fonts � Chapter 42

Color-Naming
Scheme Example

SAS Registry Colors COLORS=(palegreen plum peachpuff palevioletred powderblue)

CNS Color Names COLORS=("very light purplish blue"
"light vivid green" "medium strong yellow"
"dark grayish green")

Specifying Fonts
You can control the fonts that are used to display the boundary and tick mark values,

the actual KPI values, and the labels with the BFONT=, AFONT=, and LFONT=
options, respectively. Each of these options takes a font specification of the following
form:

<FONT="fontname</BOLD></ITALICS>"> <COLOR=color> <HEIGHT=text-height<units>>

FONT= "fontname</BOLD></ITALICS>"
specifies the font name. You can specify only system fonts (such as TrueType and
UNIX system fonts), not SAS/GRAPH fonts. See Chapter 11, “Specifying Fonts in
SAS/GRAPH Programs,” on page 155 for more information.
Alias: F=

COLOR=color
specifies the text color. You can specify the color in any of the color-naming
schemes recognized by SAS/GRAPH.

See “Specifying Color Names” on page 1223 for more information.
Alias: C=

HEIGHT= text-height<units>
specifies the font height in units. You can specify the text height in units of points
(PT), centimeters (CM), inches (IN), or percentage of the graphics output area
(PCT). The default unit is PCT.
Alias: H=

The LFONT= option also enables you to specify the JUSTIFICATION= option:

<FONT="fontname</BOLD></ITALICS>"> <COLOR=color> <HEIGHT=text-height<units>>
<JUSTIFICATION=LEFT|CENTER|RIGHT>

JUSTIFICATION=
specifies whether the text is left-justified, centered, or right-justified within the
graphics output area. You can specify LEFT, RIGHT, or CENTER. The default is
CENTER.

The GKPI Procedure � PROC GKPI Statement 1225

Alias: J=

Procedure Syntax
Type: Template-based (see “Device-Based Graphics and Template-Based Graphics” on
page 6)

Requirements:

� You must specify an ODS HTML or ODS RTF statement.

� The only device supported for the GKPI procedure is JAVAIMG. If you do not
specify DEVICE=JAVAIMG, then the procedure sets this option automatically.

� At least one DIAL, HSLIDER, HBULLET, HTRAFFICLIGHT, SPEEDOMETER,
VTRAFFICLIGHT, VBULLET, or VSLIDER statement is required.

Global Statements: FOOTNOTE , GOPTIONS (BORDER, VSIZE, HSIZE, XPIXEL,
YPIXEL, IBACK, CBACK, CTEXT, HTEXT, FTEXT only), TITLE

Supports: Run-group processing

PROC GKPI <MODE= BASIC | RAISED>;

DIAL|HBULLET|HSLIDER|HTRAFFICLIGHT|SPEEDOMETER|
VTRAFFICLIGHT|VBULLET|VSLIDER ACTUAL=data-value
BOUNDS=bound-value-list </ options>;

PROC GKPI Statement

Identifies the mode of the display design.

Syntax

PROC GKPI <MODE= BASIC | RAISED>;

Options
PROC GKPI statement options affect all graphs produced by the procedure.

MODE=BASIC | RAISED
specifies the display mode of KPI chart images. The two choices are as follows:

BASIC creates a two-dimensional image.

RAISED creates a three-dimensional image.

The default mode is BASIC. See “Specifying Basic or Raised Mode” on page 1216
examples of each mode.

1226 DIAL, HBULLET, HSLIDER, HTRAFFICLIGHT, SPEEDOMETER, VTRAFFICLIGHT, VBULLET, and VSLIDER Statements � Chapter 42

DIAL, HBULLET, HSLIDER, HTRAFFICLIGHT, SPEEDOMETER, VTRAFFICLIGHT,
VBULLET, and VSLIDER Statements

Creates a chart in one of seven display types.

Requirements: The ACTUAL= value and the BOUNDS= list are required.
Global statements: TITLE, FOOTNOTE
Supports: Drill-down functionality

Description
The DIAL, HBULLET, HSLIDER, HTRAFFICLIGHT, SPEEDOMETER,
VTRAFFICLIGHT, VBULLET, and VSLIDER statements specify the type of graphic to
be used to display the key performance indicator. One of the following display types is
required:

DIAL
specifies a dial.

HBULLET | BULLET
specifies a horizontal bullet graph (a horizontal bar with a horizontal line that
represents the actual KPI value).

HSLIDER | SLIDER
specifies a horizontal bar with a triangle that marks the actual KPI value.

HTRAFFICLIGHT
specifies a horizontal traffic light.

SPEEDOMETER
specifies a speedometer.

VTRAFFICLIGHT| TRAFFICLIGHT
specifies a vertical traffic light.

VBULLET
specifies a vertical bullet graph (a vertical bar with a vertical line that represents
the actual KPI value).

VSLIDER
specifies a vertical bar with a triangle that marks the actual KPI value.

See “Overview” on page 1213 for examples of each display type.

Syntax

DIAL|HBULLET|HSLIDER|HTRAFFICLIGHT|SPEEDOMETER|
VTRAFFICLIGHT|VBULLET|VSLIDER ACTUAL=data-value
BOUNDS=(bounds-list) </ options>;

option(s) can be one or more options from any or all of the following categories:
� appearance options

ACTIVECOLORS=(color_1 color_2 color_3 ...color_n-1)
AFONT=(<f=“fontname</BOLD></ITALICS>”> <c=color>

<h=text-height<units>>)

The GKPI Procedure � DIAL, HBULLET, HSLIDER, HTRAFFICLIGHT, SPEEDOMETER, VTRAFFICLIGHT, VBULLET, and VSLIDER

Statements 1227

AVALUE | NOAVALUE
BFONT=(<f=“fontname</BOLD></ITALICS>”> <c=color>

<h=text-height<units>>)
BVALUE | NOBVALUE
COLORS=(color_1 color_2 color_3 ...color_n-1)
FORMAT=“SAS-format”

LABEL= “string”
LFONT=(<f=“fontname</BOLD></ITALICS>”> <c=color>

<h=text-height<units>> <j=justification>)
LOWBOUNDARY | NOLOWBOUNDARY
TARGET= data-value

TYPE=FULL | HALF | QUARTER

� output file description options
DESCRIPTION=“description”
NAME=“name”

Required Arguments

ACTUAL= data-value
specifies the actual value of the key performance indicator. The actual data value can
fall outside the bounds specified with the BOUNDS= option, but the GKPI procedure
will display the actual value indicator at the outermost edge of the KPI chart. If you
specify a missing value (ACTUAL=.), then the GKPI procedure does not generate a
KPI chart.

BOUNDS=(bound_1 bound_2 bound_3 ...bound_n)
specifies a list of defined boundary values. The values can be negative or positive,
but you must specify the list in either ascending or descending order. Separate each
boundary value with a blank space.
See “Specifying Segment Boundaries and Actual KPI Values” on page 1218 for more

information.

Options
You can specify as many options as needed and list them in any order.

ACTIVECOLORS=(color_1 color_2 color_3 ...color_n-1)
specifies the list of active colors for each segment (the colors that you want to use for
each segment when that segment contains the actual KPI value). You do not have to
specify a color for each segment in the KPI chart. The default colors shown in Figure
42.6 on page 1220 (or the colors specified by the COLORS= option) are used for each
segment for which active colors are not specified. The number of entries in the
ACTIVECOLORS= list cannot exceed the number of segments that are defined; that
is, the maximum number of active colors is one less than the number of entries in
the BOUNDS= list. Separate each color with either a blank space or a comma.

See “Controlling Segment Colors” on page 1219 for more information.

AFONT=(<f=“fontname”</BOLD></ITALICS>> <c=color> <h=text-height<units>>)
specifies the name, color, and text height for the font used for the actual KPI value
label. For example AFONT=(f="Comic Sans MS" c=red h=15pt). See “Specifying
Fonts” on page 1224 for more information.

1228 DIAL, HBULLET, HSLIDER, HTRAFFICLIGHT, SPEEDOMETER, VTRAFFICLIGHT, VBULLET, and VSLIDER Statements � Chapter 42

Style reference: Font attribute of the GraphLabelText element

AVALUE | NOAVALUE
specifies whether to display the actual KPI value label.
Alias: AVAL | NOAVAL
Default: AVALUE

BFONT=(<f=“fontname”</BOLD></ITALICS>> <c=color> <h=text-height<units>>)
specifies the name, color, and text height of the font used for the boundary and tick
mark values. For example, BFONT=(font="Arial" color=H14055FF
height=.25in). See “Specifying Fonts” on page 1224 for more information.

If you increase the size of the font to the point where labels would collide, then the
intermediate labels are not displayed. The GKPI procedure displays only the lowest
and highest boundary labels.
Style reference: Font attribute of the GraphValueText element

BVALUE | NOBVALUE
specifies whether to display the boundary values.
Alias: BVAL | NOBVAL
Default: BVALUE

COLORS=(color_1 color_2 color_3 ...color_n-1)
specifies the list of inactive colors for each segment (the colors that you want to be
used for each segment when that segment does not contain the actual KPI value).
You must specify a color for each segment in the KPI chart. That is, the number of
entries in the COLORS= list must be one less than the number of entries in the
BOUNDS= list. Separate each color with either a blank space or a comma.

For all KPI charts except traffic lights, if you define two to five segments, the
GKPI procedure applies a default set of colors ranging from red to green. If you
define only one or more than five segments, the default color for all segments is gray.

For traffic lights, the default color for all segments is gray. This option is ignored
by the TRAFFICLIGHT statement if the ACTIVECOLORS= option is specified.

See “Controlling Segment Colors” on page 1219 for more information.

DESCRIPTION= “description”
specifies the description of the output. The maximum length for the description is
256 characters. The description does not appear on the graph. The default is “Key
performance indicator”.

The descriptive text is shown in the “description” portion of each of the following:
� the Results window.
� the Table of Contents that is generated when you use the CONTENTS= option

on an ODS HTML statement.
� the chart description for Web output. See “Chart Descriptions for Web

Presentations” on page 596 for more information.

Alias: DES=

FORMAT=“SAS-format”
specifies a SAS format for the boundary and actual values. The default format is
BEST. For example, you can use format="percent8.0"to display values as
percentages or format="datetime7." to display SAS datetime values in the format
ddmmmyy.

The GKPI Procedure � DIAL, HBULLET, HSLIDER, HTRAFFICLIGHT, SPEEDOMETER, VTRAFFICLIGHT, VBULLET, and VSLIDER

Statements 1229

See “SAS Formats Supported for Java” on page 472 for more information.

LABEL= “string”
specifies a label for the graphic. The label is displayed at the top of graph, beneath
the title, if a title is specified.

Note: By default, labels are displayed at the top center of the graphics output
area, and the KPI chart is displayed in the center of the output area. To reduce the
space between labels and the KPI chart, reduce the size of the graphics output area
by specifying the XPIXELS=/YPIXELS= or HSIZE=/VSIZE= options on the
GOPTIONS statement. See “The Graphics Output and Device Display Areas” on
page 59 for more information. �

LFONT=(<f=“fontname”</BOLD></ITALICS>> <c=color> <h=text-height<units>>
<j=justification>)

specifies the name, color, and text height of the font to use for the label that is
specified by the LABEL= option. You can also specify whether the label is
left-justified, centered, or right-justified within the graphics output area. For
example: LFONT=(f="Albany AMT/italics" c=cornflowerblue height=.25cm
j=right). See the description of LABEL= and “Specifying Fonts” on page 1224 for
more information.
Style reference: Font attribute of the GraphLabelText element

LOWBOUNDARY | NOLOWBOUNDARY
specifies whether the KPI chart displays as if the KPI value falls in the lower range
segment or the upper range segment when the actual KPI value falls directly on a
segment boundary. This option controls the color that is used for dial centers, traffic
lights, and actual value indicators. It also controls which segment is displayed in the
active color, if an active color list is specified. The default is LOWBOUNDARY, which
tells the GKPI procedure to use the color of the lower range segment. If you specify
NOLOWBOUNDARY, then PROC GKPI uses the color of the higher range segment.
Figure 42.8 on page 1230 illustrates the effect of this option on dial centers and on
the actual KPI value indicator in a horizontal slider when both a segment boundary
and the actual KPI value is 30.

1230 Examples � Chapter 42

Figure 42.8 LOWBOUND And NOLOWBOUND Effect on Indicator Colors

Alias: LOWBOUND | NOLOWBOUND
Default: LOWBOUNDARY

NAME=“name”
specifies the name of the graphics output file. The name can be up to 256 characters
long, and uppercase characters are converted to lowercase. The default name is
graph.png. If the name duplicates an existing name, then SAS/GRAPH adds a
number to the name to create a unique name–for example, graph1.png.
See also: “About Filename Indexing” on page 99

TARGET= data-value
specifies the numeric value of the target key performance indicator. If you specify a
missing value (TARGET=.), then the GKPI procedure generates a KPI chart without
a target value indicator.
Restriction: Not supported by the TRAFFICLIGHT statement

TYPE=FULL | HALF | QUARTER
specifies the size of the display for speedometers. See “Speedometer KPI Charts” on
page 1215 for more information.
Restriction: Valid for SPEEDOMETER statement only
Default: FULL

Examples
The following examples illustrate major features of the GKPI procedure. Each of

these examples uses the XPIXELS and YPIXELS options on the GOPTIONS statement
to scale the KPI charts to a size that would be appropriate for use in a dashboard.
These examples also specify STYLE=LISTING option on the ODS HTML statement,
which produces a white background instead of the default gray background normally
used by the HTML destination.

Note: When using procedures that support RUN-group processing, include a QUIT
statement after the last RUN statement. Using the QUIT statement is especially

The GKPI Procedure � Example 1: Using the Default Colors as the Active Colors 1231

important when the procedure is supposed to completely terminate within the
boundaries of an ODS destination (for example, ODS HTML; procedure-code; ODS
HTML CLOSE;). See “RUN-Group Processing” on page 56 for more information. �

Example 1: Using the Default Colors as the Active Colors

Procedure features:
PROC GKPI statement option: MODE=RAISED
HSLIDER statement options:

ACTUAL=
BOUNDS=
COLORS=
ACTIVECOLORS=

Sample Library Member: GKPGRSLD

The default colors described in “Default Colors” on page 1219 can be used as the
active colors instead of the inactive colors. This example uses the same value of gray for
all segments for the inactive color. It uses the red, orange, yellow-green, and green
colors shown in Figure 42.6 on page 1220 as the active colors.

Set the graphics environment.

goptions reset=all device=javaimg xpixels=180 ypixels=110;

Close the LISTING destination, and open the HTML destination. Closing the LISTING
destination conserves resources. Specifying STYLE=LISTING produces a white background.

ods listing close;
ods html style=listing;

Generate the KPI chart. Specify the segment boundaries, actual KPI value, and colors.
Boundary values can be positive or negative or both, but must be specified in either ascending
or descending order. All colors are specified as hexadecimal RGB values. The same value of gray,
cxB2B2B2, is used as the inactive color for all segments. The default colors listed in Table 42.1
on page 1220 are used as the active colors.

1232 Example 2: Creating a Gray Scale Bullet Graph � Chapter 42

proc gkpi mode=raised;
hslider actual=-6.7 bounds=(-10 -5 0 5 10) /

colors=(cxB2B2B2 cxB2B2B2 cxB2B2B2 cxB2B2B2)
activecolors=(cxD06959 cxE1A05D cxBDCD5F cx84AF5B);

run;

End the procedure, and close the HTML destination. The GKPI procedure supports
RUN-group processing, so it is recommended that you enter the QUIT statement to end the
procedure. You must close the destination to generate output.

quit;
ods html close;

Example 2: Creating a Gray Scale Bullet Graph

Procedure features:
PROC GKPI statement option: MODE=RAISED
VBULLET statement options:

ACTUAL=
BOUNDS=
COLORS=
TARGET=

Sample Library Member: GKPGRBUL

This example creates a vertical bullet graph. It uses a gray scale color scheme that
provides a good contrast between segments. This color scheme can be used in output
that is included in publications that are not in color.

Set the graphics environment.

goptions reset=all device=javaimg xpixels=130 ypixels=250;

The GKPI Procedure � Example 3: Creating a Dial KPI Chart 1233

Close the LISTING destination, and open the HTML destination. Closing the LISTING
destination conserves resources. Specifying STYLE=LISTING produces a white background.

ods listing close;
ods html style=listing;

Generate the KPI chart. Specify the segment boundaries, actual KPI value, target value, and
colors. The gray scale colors are specified using hexadecimal RGB values.

proc gkpi mode=raised;
vbullet

actual=.58 bounds=(0 .22 .38 .52 .68 1) / target=.75
colors=(cx747474 cx8C8C8C cxB2B2B2 cxD2D2D2 cxE6E6E6);

run;

End the procedure, and close the HTML destination. The GKPI procedure supports
RUN-group processing, so it is recommended that you enter the QUIT statement to end the
procedure. You must close the destination to generate output.

quit;
ods html close;

Example 3: Creating a Dial KPI Chart
Procedure features:

PROC GKPI statement option: MODE=RAISED
DIAL statement options:

ACTUAL=
AFONT=
BFONT=
BOUNDS=
FORMAT=
NOLOWBOUND
TARGET=

Sample Library Member: GKPDIAL

1234 Example 4: Defining a Speedometer � Chapter 42

Set the graphics environment.

goptions reset=all device=javaimg xpixels=240 ypixels=200;

Close the LISTING destination, and open the HTML destination. Closing the LISTING
destination conserves resources. Specifying STYLE=LISTING produces a white background.

ods listing close;
ods html style=listing;

Generate the KPI chart. Specify the segment boundaries, actual KPI value, and target value.
In this case, the target value falls on a segment boundary. The NOLOWBOUNDARY option
specifies that the KPI chart behaves as if the actual KPI value falls in the higher range
segment. The AFONT= and BFONT= options specify the fonts for the actual value and the
boundary segment values, respectively. The FORMAT= option specifies the SAS format for the
values in the chart.

proc gkpi mode=raised;
dial actual=.46 bounds=(0 .23 .46 .65 .79 1) /

target=.9 nolowbound format="percent8.0"
afont=(f="Albany AMT" height=.5cm)
bfont=(f="Albany AMT" height=.4cm) ;

run;

End the procedure, and close the HTML destination. The GKPI procedure supports
RUN-group processing, so it is recommended that you enter the QUIT statement to end the
procedure. You must close the destination to generate output.

quit;
ods html close;

Example 4: Defining a Speedometer

Procedure features:
PROC GKPI statement option: MODE=RAISED
SPEEDOMETER statement options:

ACTUAL=
BOUNDS=
COLORS=
FORMAT=
LABEL=
LFONT=
TARGET=

Sample Library Member: GKPSPD

The GKPI Procedure � Example 5: Defining a Speedometer with Reversed Colors 1235

Set the graphics environment. The XPIXELS and YPIXELS graphics options reduce the size
of the graphics output area and, therefore, reduce both the size of the KPI chart and the
distance between the label and the KPI chart.

goptions reset=all device=javaimg xpixels=210 ypixels=200;

Close the LISTING destination, and open the HTML destination. Closing the LISTING
destination conserves resources. Specifying STYLE=LISTING produces a white background.

ods listing close;
ods html style=listing;

Generate the KPI chart. Specify the segment boundaries, actual KPI value, and target value.
The LFONT= option specifies the font for the label. The FORMAT= option specifies the SAS
format for the values in the chart.

proc gkpi mode=raised;
speedometer actual=.72 bounds=(0 .40 .60 1) / target=.85
lfont=(f="Albany AMT" height=.5cm) label="Average Capacity"
format="percent8.0";

run;

End the procedure, and close the HTML destination. The GKPI procedure supports
RUN-group processing, so it is recommended that you enter the QUIT statement to end the
procedure. You must close the destination to generate output.

quit;
ods html close;

Example 5: Defining a Speedometer with Reversed Colors

Procedure features:
PROC GKPI statement option: MODE=BASIC

SPEEDOMETER statement options:

ACTUAL=
BOUNDS=
COLORS=
LABEL=

1236 Example 6: Creating a Traffic Light � Chapter 42

Sample Library Member: GKPSPCLR

Set the graphics environment. The XPIXELS and YPIXELS graphics options reduce the size
of the graphics output area and, therefore, reduce both the size of the KPI chart and the
distance between the label and the KPI chart.

goptions reset=all device=javaimg xpixels=210 ypixels=200;

Close the LISTING destination, and open the HTML destination. Closing the LISTING
destination conserves resources. Specifying STYLE=LISTING produces a white background.

ods listing close;
ods html style=listing;

Generate the KPI chart. Specify the segment boundaries, actual KPI value, target value, and
colors. The green, yellow, and red colors listed in Table 42.1 on page 1220 are specified in
reverse order so that green begins at zero.

proc gkpi mode=basic;
speedometer actual=12 bounds=(0 25 50 100) /

colors=(cx84AF5B cxF1DC63 cxD06959)
label="Cancellations";

run;

End the procedure, and close the HTML destination. The GKPI procedure supports
RUN-group processing, so it is recommended that you enter the QUIT statement to end the
procedure. You must close the destination to generate output.

quit;
ods html close;

Example 6: Creating a Traffic Light

Procedure features:
PROC GKPI statement option: MODE=RAISED
TRAFFICLIGHT statement options:

ACTUAL=
BOUNDS=
COLORS=
LABEL=

The GKPI Procedure � Example 6: Creating a Traffic Light 1237

NOAVALUE

Sample Library Member: GKPTRAFF

This example creates a traffic light that uses primary green, yellow, and red colors.
Colors are applied to vertical KPI charts from the bottom up, so to get red at the top,
you must specify red last in the list of colors.

Set the graphics environment. The XPIXELS and YPIXELS graphics options reduce the size
of the graphics output area and, therefore, reduce both the size of the KPI chart and the
distance between the label and the KPI chart.

goptions reset=all device=javaimg xpixels=120 ypixels=210;

Close the LISTING destination, and open the HTML destination. Closing the LISTING
destination conserves resources. Specifying STYLE=LISTING produces a white background.

ods listing close;
ods html style=listing;

Generate the KPI chart. Specify the segment boundaries, actual KPI value, and colors. The
NOAVALUE option turns off the display of the actual KPI value. The colors are specified as SAS
Registry Color names.

proc gkpi mode=raised;
trafficlight actual=598 bounds=(1500 900 600 0) /
colors=(green yellow red) noavalue
label="New Subscriptions";

run;

End the procedure, and close the HTML destination. The GKPI procedure supports
RUN-group processing, so it is recommended that you enter the QUIT statement to end the
procedure. You must close the destination to generate output.

quit;
ods html close;

1238

1239

C H A P T E R

43
The GMAP Procedure

Overview 1240
About Block Maps 1240

About Choropleth Maps 1241

About Prism Maps 1242

About Surface Maps 1243

Concepts 1244
About Map Data Sets 1244

About Traditional Data Sets 1244

Required Variables 1244

Segment Variable 1245

LONG and LAT Variables 1245

Traditional Map Data Sets Containing X, Y, LONG, and LAT 1245
Traditional Map Data Sets Containing Only X and Y 1246

About Feature Tables 1246

$GEOREF format 1246

Merging Feature Tables with Response Data Sets 1246

The METAMAPS Data Set 1247
Special Data Sets for Annotating Maps 1247

About Response Data Sets 1248

Using the Response Data Set with the Map Data Sets 1248

About Response Variables 1249

About Response Levels 1249
About Identification Variables 1250

Displaying Map Areas and Response Data 1250

Summary of Use 1251

Accessing SAS Maps Online 1251

Importing Maps from ESRI Shapefiles 1251

Procedure Syntax 1251
PROC GMAP Statement 1252

ID Statement 1254

AREA Statement 1255

BLOCK Statement 1259

CHORO Statement 1269
PRISM Statement 1276

SURFACE Statement 1285

Using FIPS Codes and Province Codes 1289

Using Formats for Map Variables 1291

Using SAS/GRAPH Map Data Sets 1294
Accessing Detailed Descriptions of Map Data Sets 1294

Customizing SAS/GRAPH Map Data Sets 1294

Subsetting Traditional Map Data Sets 1295

1240 Overview � Chapter 43

Reducing Traditional Map Data Sets 1295
Projecting Traditional Map Data Sets 1296

Controlling the Display of Lakes 1297

Creating Traditional Map Data Sets 1297

Creating a Unit Area that is a Single Polygon 1298

Creating a Unit Area that Contains Multiple Polygons 1298
Creating a Unit Area that Contains Enclosed Polygons as Holes 1299

Creating a Unit Area that Contains Another Area 1300

Examples 1301

Example 1: Producing a Simple Block Map 1301

Example 2: Specifying Response Levels in a Block Map 1302

Example 3: Assigning a Format to the Response Variable 1304
Example 4: Specifying the Statistic for the Response Variable 1306

Example 5: Producing a Simple Choropleth Map 1307

Example 6: Labeling Provinces on a Map 1308

Example 7: Producing a Simple Prism Map 1309

Example 8: Specifying Midpoints in a Prism Map 1311
Example 9: Producing a Simple Surface Map 1312

Example 10: Rotating and Tilting a Surface Map 1313

Example 11: Creating a Map Using the Feature Table 1314

Overview
The GMAP procedure produces two-dimensional (choropleth) or three-dimensional

(block, prism, and surface) maps that show variations of a variable value with respect
to an area. A wide assortment of map data sets is available with SAS/GRAPH software.

Use the GMAP procedure to perform the following tasks:
� produce maps
� summarize data that vary by physical area
� show trends and variations of data between geographic areas
� highlight regional differences or extremes

About Block Maps
Block maps display a block at the approximate center of each map area to convey

information about response variable values. The height of each block is directly
proportional to the value of the response variable.

Note: If the map area consist of multiple, noncontiguous areas, then the block is
centered over the largest polygon of the set. For example, in the case of Japan the block
is centered over the largest island which is Honshu. �

Figure 43.1 on page 1241 shows a simple block map of the populations of countries in
Asia. The population of each country (the response value) is represented by the height
of the block.

The GMAP Procedure � About Choropleth Maps 1241

Figure 43.1 Block Map

The program for this map is in Example 1 on page 1301. For more information on
producing block maps, see “BLOCK Statement” on page 1259.

You can assign patterns to the areas in a block map by using the AREA statement.
The values of the AREA variable are represented by the pattern of each map area, and
the values of the response variable on the BLOCK statement are represented by the
height of the blocks. For more information, see “AREA Statement” on page 1255.

About Choropleth Maps
Two-dimensional (choropleth) maps indicate levels of magnitude or response levels of

the corresponding response variable by filling map areas with different colors and
patterns.

Figure 43.2 on page 1242 shows a choropleth map of the population of countries in
Europe. The population of each country (the response value) is represented by the
pattern that is assigned to the country.

1242 About Prism Maps � Chapter 43

Figure 43.2 Two-dimensional (Choropleth) Map

The program for this map is in Example 5 on page 1307.
You can also produce a simple choropleth map that shows an outline of a map’s areas

by specifying your map data set as both the map data set and the response data set in a
GMAP statement and adding a PATTERN statement with VALUE=EMPTY. For more
information on the PATTERN statement, see “PATTERN Statement” on page 240. For
more information on producing choropleth maps, see “CHORO Statement” on page 1269.

About Prism Maps
Prism maps use polyhedrons (raised polygons) in the shape of each map area to

convey information about response variable values. The height of each polyhedron, or
prism, is directly proportional to the value of the response variable.

You can alter the perspective of the map by selecting a viewing position (the point in
space from which you view the map). You can also change the position of the light
source so that the shadowing on the prisms enhances the illusion of height.

Figure 43.3 on page 1243 shows a prism map of the populations of countries in
Africa. The population of each country (the response value) is represented by the height
of the country and the color of the country’s map area.

The GMAP Procedure � About Surface Maps 1243

Figure 43.3 Prism Map

The program for this map is in Example 7 on page 1309. For more information on
producing prism maps, see “PRISM Statement” on page 1276.

You can also assign patterns to the areas in a prism map by using the AREA
statement. The values of the AREA variable are represented by the pattern of each
map area, and the values of the response variable on the PRISM statement are
represented by the height of the map areas. For more information, see “AREA
Statement” on page 1255.

About Surface Maps
Surface maps display a spike at the approximate center of each map area to convey

information about response variable values. The height of the spike corresponds to the
relative value of the response variable, not to the actual value of the response variable.
Thus, a spike that represents a value of 100 might not be exactly 10 times higher than
a spike that represents a value of 10. Map area boundaries are not drawn.

Surface maps provide no clear map area boundaries and no legend. Thus, surface
maps provide a simple way to judge relative trends in the response data but are an
inappropriate way to represent specific response values.

Figure 43.4 on page 1244 shows a surface map of the population growth rates of
countries in Europe. The growth rate for each country (the response value) is
represented by the height of the spike for that country.

1244 Concepts � Chapter 43

Figure 43.4 Surface Map

The program for this map is in Example 10 on page 1313. For more information on
producing surface maps, see “SURFACE Statement” on page 1285.

Concepts
Map data sets and response data sets are used in the GMAP procedure. These data

sets must contain the required variables or the procedure stops and you get an error
message. The GMAP procedure can take as input a map data set and a response data
set, provided that both data sets contain the same ID variable. Alternatively, you can
use a single data set as input if it contains either the map data or a variable that
references a map data set.

About Map Data Sets
There are two types of data sets that are provided with SAS/GRAPH for mapping:

traditional map data sets and feature tables. Much of the map data that is delivered
with SAS/GRAPH is available in both the traditional map data set and feature table
formats.

SAS/GRAPH software includes a number of predefined map data sets. These data
sets are described in “The METAMAPS Data Set” on page 1247.

About Traditional Data Sets
A traditional map data set is a SAS data set that contains coordinates that define the

boundaries of map areas, such as states or counties.

Required Variables
A traditional map data set must contain at least these variables:

The GMAP Procedure � About Traditional Data Sets 1245

� a numeric variable named X that contains the horizontal coordinates of the
boundary points. The value of this variable could be either projected or
unprojected. If unprojected, X represents longitude.

� a numeric variable named Y that contains the vertical coordinates of the boundary
points. The value of this variable could be either projected or unprojected. If
unprojected, Y represents latitude.

� one or more variables that uniquely identify the areas in the map. Map area
identification variables can be either character or numeric and are indicated in the
ID statement.

The X and Y variable values in the traditional map data set do not have to be in any
specific units. They are rescaled by the GMAP procedure based on the minimum and
maximum values in the data set. The minimum X and Y values are in the lower-left
corner of the map, and the maximum X and Y values are in the upper-right corner.

Map data sets in which the X and Y variables contain longitude and latitude should
be projected before you use them with PROC GMAP. See Chapter 46, “The GPROJECT
Procedure,” on page 1395 for details.

Segment Variable
The traditional map data set can also contain an optional variable named SEGMENT

to identify map areas that comprise noncontiguous polygons. Each unique value of the
SEGMENT variable within a single map area defines a distinct polygon. If the
SEGMENT variable is not present, each map area is drawn as a separate closed
polygon that indicates a single segment.

The observations for each segment of a map area in the map data set must occur in
the order in which the points are to be joined. The GMAP procedure forms map area
outlines by connecting the boundary points of each segment in the order in which they
appear in the data set, eventually joining the last point to the first point to complete
the polygon. All the segments for each ID value must be contiguous within the map
data set.

LONG and LAT Variables
In addition to the variables described in “Required Variables” on page 1244, some of

the SAS/GRAPH map data sets also contain the following variables:
� a numeric variable named LONG containing the unprojected longitude (in radians

or degrees) of the boundary points
� a numeric variable named LAT containing the unprojected latitude (in radians or

degrees) of the boundary points

The GMAP procedure uses the values of the X and Y variables to draw the map. To
use the unprojected values to produce a custom map, rename LONG and LAT to X and
Y, and then do the following tasks:

1 Rename the LONG and LAT variables to X and Y.
2 Project the coordinates by using the GPROJECT procedure.
3 Use the output data set from GPROJECT as your map data set.

Traditional Map Data Sets Containing X, Y, LONG, and LAT
Most of the traditional map data sets that are provided with SAS/GRAPH software

contain four coordinate variables (X, Y, LONG, and LAT). In that case, X and Y are
always projected values that are used by the SAS/GRAPH procedures (by default). If
you need to use the unprojected values that are contained in the LONG and LAT
variables, then do the following tasks:

1246 About Feature Tables � Chapter 43

1 Drop the existing X and Y variables.
2 Rename the LONG and LAT variables to X and Y.

The MAP= value in the GMAP procedure automatically uses X and Y. See “Input
Map Data Sets that Contain Both Projected and Unprojected Values” on page 1398 for
more details.

Traditional Map Data Sets Containing Only X and Y
The traditional map data sets that contain X and Y variables (and no LONG and

LAT variables), are usually projected maps. However, there are a few traditional map
data sets for the US and Canada that contain X and Y values that are unprojected
longitude and latitude. In this case, you need to use the GPROJECT procedure to
project the map (see Chapter 46, “The GPROJECT Procedure,” on page 1395).

Note: You can determine whether a SAS traditional map data set is projected or
unprojected by looking at the description of each variable that is displayed when you
use the CONTENTS procedure or by browsing the MAPS.METAMAPS data set. �

About Feature Tables
An alternative to using the traditional map data set is the feature table. While the

traditional map data set stores the spatial information across multiple observations, the
feature table uses a data arrangement to store a reference to the spatial information in
a single variable value. The feature table’s data arrangement uses the $GEOREF
SAS/GRAPH format.

$GEOREF format
The $GEOREF format stores spatial information in binary data streams, making it

possible to store as a single variable value all the information needed to draw a map
area. Thus, the feature tables use only a single observation for each map area, and they
treat a field of spatial information just like any other information that can be added to
a data set. Each $GEOREF value contains the name of the map data set and the ID
variable for that map. The traditional map data set associated with the feature table
must be located in the SAS library with the feature table for GMAP to proceed correctly.

The names of the feature tables that are supplied by SAS usually end with the
number 2. For example, the feature table for MAPS.AFRICA is MAPS.AFRICA2. You
can also determine the feature table for your map data set by referring to the
MAPS.METAMAPS data set.

To locate the variable that contains the spatial information, run PROC CONTENTS
on a feature table. In the Output window, the variable containing the spatial
information has $GEOREF as the value in the column labeled Format.

Note: Some feature tables, like MAPS.CANCENS, have more than one $GEOREF
format variable. �

Merging Feature Tables with Response Data Sets
To display response data with a feature table, the feature table must be merged with

a response data set. The merged data set is then specified by the DATA= option in the
PROC GMAP statement.

First, a PROC SORT must be used to sort the response and feature tables by a
variable that is present within both the data sets. Once sorted, the data sets can then
be merged with an SQL or DATA step MERGE with the BY variable being the variable

The GMAP Procedure � Special Data Sets for Annotating Maps 1247

used to sort the data sets. Once the data set is merged, the $GEOREF formatted
variable from the feature table becomes the new data set’s identification variable to be
used in the GMAP procedure. See Example 11 on page 1314 for more details.

The METAMAPS Data Set
In the MAPS library, there is a data set named METAMAPS, which contains

metadata about all of the data sets that are delivered in the library. Among the
metadata in MAPS.METAMAPS are the following four variables, which you can use to
determine which feature table corresponds to a particular geometry table:

Variable Description

MEMNAME Identifies the names of all of the data sets that are delivered in the
MAPS library.

MEMCODE Indicates whether a data set represents a feature table (F) or a
geometry table (G).

F_TABLE Indicates the corresponding feature table for a geometry table. This
variable is blank for rows that contain metadata about a feature
table.

F_GEOCOL Indicates the variable, in the feature table, whose values
encapsulate the geometry object.

For example, consider the data sets MAPS.ASIA, MAPS.STATES, and MAPS.US.
Each of these represents a geometry table, and to locate the corresponding feature
tables, you would look in MAPS.METAMAPS to find the MEMNAME values ASIA,
STATES, and US. Here are the relevant values on those rows:

Table 43.1 Values from the METAMAPS Data Set

MEMNAME MEMCODE F_TABLE F_GEOCOL

Asia G ASIA2 CONT95_GEO

STATES G US2 GEO_STATE

US G US2 _MAP_GEOMETRY_

From these values, you can see that the data sets that are named ASIA, STATES,
and US all represent geometry tables because their MEMCODE values are G. The
feature table corresponding to the ASIA data set is the data set ASIA2, which stores
the spatial information in the variable CONT95_GEO. The feature tables corresponding
to STATES and US are both in the data set US2. The spatial information corresponding
to STATES is stored in the variable GEO_STATE, and the spatial information
corresponding to US is stored in the variable _MAP_GEOMETRY_.

Special Data Sets for Annotating Maps
There are several data sets in the MAPS library that enable you to easily label maps.

These data sets contain coordinates for map features such as cities, but cannot be used
as map data sets.

MAPS.USCENTER
contains the coordinates of the visual center of each state in the U.S. and
Washington, D.C., as well as coordinates in the ocean for states that are too small

1248 About Response Data Sets � Chapter 43

to contain a label. There are two pairs of variables for locating labels using
Annotate data sets. The X and Y variables are projected and can be used with the
MAPS.US and MAPS.USCOUNTY data sets. The LONG and LAT variables are
unprojected longitude and latitude in radians and can be used with the
MAPS.STATES, MAPS.COUNTIES, and MAPS.COUNTY data sets.

MAPS.USCITY
contains the locations of selected cities in the U.S. Many city names occur in more
than one state, so you might have to subset by state to avoid duplication. There
are two pairs of variables for locating labels using Annotate data sets. The X and
Y variables contain projected coordinates and can be used with the MAPS.US and
MAPS.USCOUNTY data sets. The LONG and LAT variables contain the
unprojected longitude and latitude in radians. These can be used to place labels on
the MAPS.STATES, MAPS.COUNTIES, or MAPS.COUNTY data sets.

For details on each of these data sets, see the MAPS.METAMAPS data set.

About Response Data Sets
A response data set is a SAS data set that contains the following variables:
� one or more response variables that contain data values that are associated with

map areas. Each value of the response variable is associated with a map area in
the map data set.

� identification variables that identify the map area to which a response value
belongs. These variables must be the same as those that are contained in the map
data set.

The response data set can contain other variables in addition to these required
variables.

Using the Response Data Set with the Map Data Sets
The traditional map data set and the response data set must be used independently

in the PROC GMAP statement, where the response data set is specified by the DATA=
option and the traditional map data set is specified by the MAP= option. The values of
the map area ID variables in the response data set determine the map areas to be
included on the map. Unless the ALL option is used in the PROC GMAP statement,
only the map areas with response values are shown on the map. As a result, you do not
need to subset your map data set if you are mapping only a small section of the map.
However, if you map the same small section frequently, then create a subset of the map
data set for efficiency.

If you have a response data set named WORK.SITES, then the syntax for using
GMAP might resemble the following:

proc gmap map=maps.us data=work.sites;
id state;
choro region/discrete;

run;
quit;

To use data from both a feature table and response data set, merge the two data sets
by using a variable that is contained in both data sets. The new combined data set
becomes the DATA= value in the PROC GMAP statement. When the response data set
and the feature table are merged into one, do not use MAP=map-data-set in the PROC
GMAP statement. The $GEOREF formatted variable is the ID variable for the
combined data set. See Example 11 on page 1314 for more details.

The GMAP Procedure � About Response Data Sets 1249

Note: Response data that does not correspond to a map feature is included in the
legend. �

About Response Variables
The GMAP procedure can produce block, choropleth, prism, and surface maps for

both numeric and character response variables. Numeric variables fall into two
categories: discrete and continuous.

� Discrete variables contain a finite number of specific numeric values that are to be
represented on the map. For example, a variable that contains only the values
1989 or 1990 is a discrete variable.

� Continuous variables contain a range of numeric values that are to be represented
on the map. For example, a variable that contains any real value between 0 and
100 is a continuous variable.

Numeric response variables are treated as continuous variables unless the
DISCRETE option is used in the action statement.

About Response Levels
Response levels are the values that identify categories of data on the graph. The

categories that are shown on the graph are based on the values of the response
variable. Based on the type of the response variable, a response level can be determined
by any of the following:

� a character value
� the MIDPOINTS= option
� a range of numeric values
� a specific numeric value

When response levels are determined by a character value, the GMAP procedure
treats each unique value as a response level. For example, if the response variable
contains the names of ten regions, each region is a response level, resulting in ten
response levels.

When character response levels are determined by the MIDPOINTS= option, any
response variable values that do not match one of the specified response level values
are ignored.

When response levels are determined by a range of numeric values, each response
level has a similar number of observations. These options are exceptions to this:

� The LEVELS= option specifies the number of response levels to be used on the
map.

� The DISCRETE option causes the numeric variable to be treated as a discrete
variable.

� The MIDPOINTS= option chooses specific response level values as medians of the
value ranges.

If the response variable values are continuous, then the GMAP procedure assigns
response level intervals automatically unless you specify otherwise. The response levels
represent a range of values rather than a single value.

When response levels are determined by specific numeric values, and the DISCRETE
option is specified, one level is created for each value. If the response variable has an
associated format, then each formatted value is represented by a different response
level.

The AREA, BLOCK, CHORO, and PRISM statements assign patterns to response
levels. In CHORO and PRISM maps, response levels are shown as map areas.

1250 About Identification Variables � Chapter 43

However, in BLOCK maps, response levels are shown as blocks. If you specify the
AREA statement on a BLOCK map, then the response levels for AREA variable are
shown as map areas. The default fill pattern for the response level is solid.

PATTERN statements can define the fill patterns and colors for both blocks and map
areas. PATTERN definitions that define valid block patterns are applied to the blocks
(response levels), and PATTERN definitions that define valid map patterns are applied
to map areas.

See “PATTERN Statement” on page 240 for more information on fill pattern values
and default pattern rotation.

About Identification Variables
For traditional map data sets and response data sets, id-variables identify the map

areas (for example, counties, states, or provinces) that make up the map. A unit area or
map area is a group of observations with the same ID value. The GMAP procedure
matches the value of the response variables for each map area in the response data set
to the corresponding map area in the traditional map data set in order to create the
output graphs.

With feature tables, the geo-variable, or $GEOREF formatted variable containing the
spatial information, is the identification variable. Each observation in a feature table
has a unique $GEOREF formatted variable value. When merging the feature table with
the response data set using an SQL or DATA step statement, the identification variable
can be any variable that is contained within both data sets. Once the merged data set
has been created, the geo-variable is used in the PROC GMAP ID statement for the
merged feature table and response data set. See Example 11 on page 1314 for more
details.

Displaying Map Areas and Response Data
Whether the GMAP procedure draws a map area and whether it displays patterns

for response values depends on the contents of the response data set and on the ALL
and MISSING options. The following table describes the conditions under which the
procedure does or does not display map areas and response data.

Table 43.2 Displaying Map Areas and Response Data

If the response data set . . . And if . . . Then the procedure . . .

includes the map area the map area has a response
value

draws the map area and
displays the response data

includes the map area the response value for the map
area is a missing value

draws the map area but leaves
it empty

includes the map area the response value for the map
area is a missing value and the
MISSING option is used in the
map statement

draws the map area and
displays a response level for
the missing value

does not include the map area the ALL option is used in the
PROC GMAP statement

draws the map area but leaves
it empty

does not include the map area the ALL option is not used does not draw the map area

The GMAP Procedure � Procedure Syntax 1251

Summary of Use
To use the GMAP procedure, you must do the following:
1 If using a traditional map data set, determine what processing needs to be done to

the map data set before it is displayed. Use the GPROJECT, GREDUCE, and
GREMOVE procedures or a DATA step to perform the necessary processing.

2 Issue a LIBNAME statement for the SAS data set that contains the response data
set, or use a DATA step to create a response data set.

3 If using a traditional map data set, use the PROC GMAP statement to identify the
map data set as the MAP= value and response data set as the DATA= value.

4 If using a feature table, use PROC SORT to individually sort the feature table and
response data set by a variable common to both data sets. Next, use SQL or the
DATA step MERGE to merge the feature table with the response data set by using
a variable common to both data sets. Use the combined data set as the DATA=
value in the PROC GMAP statement (do not include MAP= in the PROC GMAP
statement).

5 Use the ID statement to specify the id-variables or, if you are using a feature
table, specify the geo-variable.

6 Use a BLOCK, CHORO, PRISM, or SURFACE statement to identify the response
variable and generate the map.

Accessing SAS Maps Online
Visit SAS Maps Online to download data updates, sample SAS/GRAPH programs

that use the map data sets delivered with SAS/GRAPH, and GIF images of maps. SAS
Maps Online is located at the following URL:

http://www.sas.com/mapsonline
After downloading and unzipping map data sets, you must take them out of

transport format by running the CIMPORT procedure using your current version of
SAS. For more information, see Appendix 4, “Transporting and Converting Graphics
Output,” on page 1659.

Importing Maps from ESRI Shapefiles
You can import ESRI shapefiles as traditional map data sets by using the

MAPIMPORT procedure. Depending on the type of coordinates that are in your
shapefile, you might want to perform additional processing. For example, you might
want to project the map with the GPROJECT procedure, or use the GREDUCE
procedure to create a DENSITY variable for reducing your data.

For more information, see Chapter 55, “The MAPIMPORT Procedure,” on page 1593.

Procedure Syntax
Requirements: One ID statement, and at least one CHORO, BLOCK, PRISM, or
SURFACE statement is required.
Global statements: FOOTNOTE, LEGEND, PATTERN, and TITLE
Reminder: The GMAP procedure can include the BY, FORMAT, LABEL, and WHERE
statements as well as the TITLE, NOTE, and FOOTNOTE statements.
Supports: RUN-group processing

http://www.sas.com/mapsonline

1252 PROC GMAP Statement � Chapter 43

PROC GMAP <MAP=map-data-set>
DATA=response-data-set | feature-table
<ALL>
<ANNOTATE=Annotate-data-set>
<DENSITY=0...6 | LOW | MEDIUM | HIGH>
<GOUT=< libref.>output-catalog>
<IMAGEMAP=output-data-set>
<STRETCH>
<UNIFORM>;

ID id-variable(s) | geo-variable;
AREA response-variable </ option(s)>;
BLOCK response-variable(s) </ option(s)>;
CHORO response-variable(s) </ option(s)>;
PRISM response-variable(s)</ option(s)>;
SURFACE response-variable(s) </ option(s)>;

PROC GMAP Statement

Identifies the map data set and the response data set that contain the variables associated with
the map. If the response data set and the feature table have been merged, the statement’s DATA=
option identifies the merged data set. The statement also provides the option to display all map
areas and to specify annotation and an output catalog.

Requirements: Both a map data set and a response data set are required. This can
include a traditional map data set and response data set or a merged response data set
and feature table.

PROC GMAP <MAP=map-data-set>
DATA=response-data-set | feature-table
<ALL>
<ANNOTATE=Annotate-data-set>
<DENSITY=0...6 | LOW | MEDIUM | HIGH>
<GOUT=< libref.>output-catalog>
<IMAGEMAP=output-data-set>
<STRETCH>
<UNIFORM>;

Required Argument

DATA=response-data-set | feature-table
identifies the SAS data set that contains the response values or the response values
and the spatial information that are evaluated and represented on the map. If a
response data set is specified, it must contain the same identification variable or
variables as the map data set, along with the values of the response variable. If a
feature table is specified, it must contain response data information and spatial
geometry information. By default, the GMAP procedure uses the most recently
created SAS data set.
See Also: “Concepts” on page 1244, “SAS Data Sets” on page 54, and “About

Feature Tables” on page 1246.

The GMAP Procedure � PROC GMAP Statement 1253

Options
PROC GMAP statement options affect all of the graphs that are produced by the

procedure.

ALL
specifies that the maps generated by the procedure should include all of the map
areas from the map data set, even if the response data set does not include an
observation for the map area.

When you use the ALL option and a BY statement in a RUN group, the maps
generated for each BY group include every map area from the map data set.
See also: “Displaying Map Areas and Response Data” on page 1250.

ANNOTATE=Annotate-data-set
specifies a data set to annotate all of the maps that are produced by the GMAP
procedure. To annotate individual maps, use the ANNOTATE= option in the action
statement.
Alias: ANNO=
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

DENSITY=0...6 | LOW | MEDIUM | HIGH
for maps that have a DENSITY variable, specifies the density of map observations
that are used. The value that you specify indicates the maximum value that the
DENSITY variable can have for the observation to be displayed. For example, if you
specify DENSITY=5, then only observations in the map data set whose DENSITY
value is less than or equal to 5 are displayed.

Intuitively, the DENSITY variable specifies how close a map point is to other map
points. If there are many map points in close proximity (high density), then it is
possible to eliminate a number of them without seriously degrading the quality of the
map. Many map data sets supplied by SAS contain a DENSITY variable. For map
data sets that do not contain a DENSITY variable, you can add and populate the
variable using the GREDUCE procedure.

You can specify an integer from 0 to 6 for the DENSITY option, or you can specify
one of the following: LOW = 1, MEDIUM = 3, HIGH = 6.

If you do not specify the DENSITY option, then all the observations in a map data
set are displayed, regardless of whether the data set contains a DENSITY variable or
not. This is equivalent to specifying DENSITY=6.
Alias: RESOLUTION=, RES=
Restriction: If the map data set does not contain a column of DENSITY values,

then a warning is issued and the option is ignored.
See also: Chapter 48, “The GREDUCE Procedure,” on page 1447 for information on

the DENSITY variable

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output that is produced by
the GMAP procedure for later replay. You can use the GREPLAY procedure to view
the graphs stored in the catalog. If you do not use the GOUT= option, catalog entries
are written to the default catalog WORK.GSEG, which is erased at the end of your
session.
Restriction: Not supported by Java and ActiveX
See also: “Specifying the Catalog Name and Entry Name for Your GRSEGs” on

page 100

IMAGEMAP=output-data-set
creates a temporary SAS data set that contains information about the graph that is
replayed from the graphics catalog. The information in the image map data set

1254 ID Statement � Chapter 43

includes the shape and coordinates of the elements in the graph, along with values
that were associated with those elements in variables that were identified for that
purpose in the HTML= or HTML_LEGEND= options. The image map data set can be
used to generate an HTML image map in an HTML output file using the
IMAGEMAP macro. The IMAGEMAP macro takes two arguments, the name of the
image map data set and the name or fileref of an HTML output file, as shown in the
following example:

%imagemap(imgmapds, myimgmap.html);

Restriction: Not supported by Java and ActiveX.

MAP=map-data-set
names a SAS traditional map data set that contains the X and Y coordinates for the
boundary points of each map area. The traditional map data set must contain the
same identification variable or variables as the response data set being used. This
statement is required if a feature table is not being used.
See also: “About Traditional Data Sets” on page 1244.

STRETCH
stretches map extents to cover all available space in the device. This might cause the
map to be distorted. When this option is applied to the PROC GMAP statement, it
applies to all statements. If applied to a single statement, it applies only to that
statement.
Restriction: Not supported by Java and ActiveX.

UNIFORM
causes the same legend and coloring to be used for all maps produced by the
procedure instead of being calculated within each BY group for each map. The
UNIFORM option pre-scans the data to generate a categorization across all the data,
regardless of BY grouping, and applies that categorization to all maps in the BY
group. This results in a static legend and color distribution across all maps such that
a single value always has the same color in multiple maps.

When specified on a PROC GMAP statement, UNIFORM applies to all BLOCK,
CHORO, AREA, and PRISM statements included within the GMAP run-group.

When omitted from the PROC GMAP statement, and specified on an individual
BLOCK, AREA, CHORO, or PRISM statement, UNIFORM applies only to the maps
produced by that statement.

Restriction: Not supported by Java.

ID Statement

Identifies the variable or variables in the input data set(s) that define map areas.

Requirements: At least one id-variable or geo-variable is required.

ID id-variable(s) | geo-variable;

The GMAP Procedure � AREA Statement 1255

Required Arguments

id-variable(s)
identifies one or more variables in the map and response data sets that define map
area. This argument is used only when map and response data sets are specified. If
a feature table is specified, then specify a geo-variable instead.

Every variable that is listed in the ID statement must appear in both the map and
response data sets. The variable identified by the id-variable(s) argument can be of
type numeric or character and should have the same name, type, and length in both
the response and map data sets.

Note: If the ID variables in the response data set and map data set do not have
the same length, then your map areas might not be drawn correctly. �
Featured in: Example 1 on page 1301, Example 3 on page 1304, and Example 5 on

page 1307
See also: “About Identification Variables” on page 1250

geo-variable
identifies the $GEOREF formatted variable in the feature table containing the
spatial geometry information for the map. The variable identified by the geo-variable
argument must be of character type.

Featured in: Example 11 on page 1314
See also: “About Identification Variables” on page 1250

AREA Statement

Applies color to the regions in BLOCK and PRISM maps based on values of a specified response
variable.

Requirements: The response variable is required. The AREA statement must be used in
conjunction with either a BLOCK or PRISM statement.

Description
In the case of BLOCK: whereas the BLOCK statement controls the color and
appearance of the blocks, the AREA statement controls the color and appearance of the
regions under the block.

In the case of PRISM: whereas the PRISM statement controls the height of the
prism, the AREA statement controls the color of the region. If you specify an AREA
statement, the PRISM statement controls both the color and height.

AREA response-variable </ option(s)>;

The option(s) argument can be one or more of the following:
DISCRETE

LEGEND=LEGEND<1...99>

LEVELS=number-of-response-levels | ALL
MIDPOINTS=value-list | OLD
MISSING

1256 AREA Statement � Chapter 43

NOLEGEND

PERCENT

RANGE

STATISTIC=FIRST | SUM | FREQUENCY | MEAN

STATFMT= format-specification

UNIFORM

Required Arguments

response-variable
specifies the variable in the response data set or in the merged response and feature
table if they contain response values that are to be represented on the map. Areas
that correspond to response variables with missing values are not colored unless you
use the MISSING option in the AREA statement. This variable is represented in all
BLOCK and PRISM maps in the same RUN group.

See also: “About Response Variables” on page 1249.

Options
Options in an AREA statement affect all of the maps that are produced by that

statement. You can specify as many options as you want and list them in any order.
All of these options are the same as the normal GMAP options except that they apply

to the areas of regions only, and not to the bar heights. Here is an example:

BLOCK ELECT / LEVELS=5;
AREA CANDIDATE / DISCRETE NOLEGEND;

This produces a block map where there are five levels categorized for the blocks.
Regions under the blocks are colored by DISCRETE CANDIDATE. No legend is shown
for the CANDIDATE values, but a legend is shown for the ELECT values.

DISCRETE
generates a separate response level (color and surface pattern) for each different
value of the formatted response variable. The LEVELS= option is ignored when you
use the DISCRETE option.

If you specify the DISCRETE option, then distinct, non-continuous colors are used
for the response values. If you specify the LEVELS= option, then a color ramp is
used to assign each response value a continuous color scheme.

Note: If the data does not contain a value in a particular range of the format,
that formatted range is not displayed in the legend. �

LEGEND=LEGEND<1...99>
specifies the LEGEND statement to associate with the map. The LEGEND= option is
ignored if the specified LEGEND definition is not currently in effect. In the GMAP
procedure, the BLOCK statement produces a legend unless you use the NOLEGEND
option. If you use the SHAPE= option in a LEGEND statement, only the value BAR
is valid. Most of the LEGEND options described in “LEGEND Statement” on page
225 are supported by both Java and ActiveX. If a LEGEND option is not supported
by Java or ActiveX, it is noted in the LEGEND option definition.

Restriction: Partially supported by Java and ActiveX

See also: “LEGEND Statement” on page 225

The GMAP Procedure � AREA Statement 1257

LEVELS=number-of-response-levels | ALL
specifies the number of response levels to be graphed when the response variables
are numeric and the DISCRETE and MIDPOINTS= options are not specified. Each
response level is assigned a different surface pattern and color combination. The
prism and block heights are based on the data value of the corresponding response
variable.

If you specify the LEVELS= option, then a color ramp is used to assign each
response value a continuous color scheme. The response values are assigned lighter
and darker values of a color scheme to express lower and higher response values. If
you specify the DISCRETE option, then distinct, non-continuous colors are used are
used for the response values.

If neither the LEVELS= option nor the DISCRETE option is used, then the GMAP
procedure determines the number of response levels by using the formula
FLOOR(1+3.3 log(n)), where n is the number of response variable values.

By default, an equal-distribution (quantizing) algorithm is used to determine each
level.

The LEVELS= option is ignored when you use the DISCRETE or
MIDPOINTS=value-list option. When MIDPOINTS=OLD is used with the LEVELS=
option, default midpoints are generated using the Nelder algorithm (Applied
Statistics 25:94–7, 1976).

MIDPOINTS=value-list | OLD
specifies the response levels for the range of response values that are represented by
each level (pattern and color combination).

For numeric response variables, value-list is either an explicit list of values or a
starting and an ending value with an interval increment, or a combination of both
forms:

n <...n>
n TO n <BY increment>
n <...n > TO n <BY increment> <n<...n>>
By default, the increment value is 1. You can specify discrete numeric values in

any order. In all forms, n can be separated by blanks or commas. For example,

midpoints=(2 4 6)
midpoints=(2,4,6)
midpoints=(2 to 10 by 2)

If a numeric variable has an associated format, the specified values must be the
unformatted values. With numeric response values, DEVICE=JAVA uses only
midpoints that fall in the range of the data being used. Thus, if your data ranged
from 30–80, but midpoints were specified at 25, 50, 75, and 100, only 50 and 75 are
used.

For character response variables, value-list is a list of unique character values
enclosed in quotes and separated by blanks:

’value-1’ <...’value-n’>

midpoints="Midwest" "Northeast" "Northwest"

Specify the values in any order. If a character variable has an associated format,
the specified values must be the formatted values. Character response values
specified with the MIDPOINTS= option are not supported by DEVICE=JAVA.

You can selectively exclude some response variable values from the map, as shown
here:

midpoints="Midwest"

Only those observations for which the response variable exactly matches one of the
values listed in the MIDPOINTS= option are shown on the map. As a result,

1258 AREA Statement � Chapter 43

observations might be excluded inadvertently if values in the list are misspelled or if
the case does not match exactly.

Specifying MIDPOINTS=OLD generates default midpoints using the Nelder
algorithm (Applied Statistics 25:94–7, 1976).
Restriction: Partially supported by Java
See also: The RANGE option

MISSING
accepts a missing value as a valid level for the response variable.

NOLEGEND
suppresses the legend for the areas.

PERCENT
causes GMAP to collect all response values (or their statistic) and chart each region
as a percentage of the whole. You can use the STATISTICS= option to change how
the percentage is calculated—whether as a percentage of the SUM, FREQUENCY, or
MEAN. If you do not use the STATISTICS= option, then STATISTICS=FIRST is
assumed and the response variable of only the first observation of each region is
counted. If the response variable is a text field, then STATISTIC=FREQUENCY is
used, even if you specify a different value for the STATISTIC= option.
Alias: PERCENTAGE
See also: The STATFMT= option on page 1258, and the STATISTIC= option on page

1258

RANGE
causes GMAP to display, in the legend, the starting value and ending value of the
range around each midpoint specified with the MIDPOINTS= option (instead of
displaying just the midpoints). For example, if MIDPOINTS=15 25 35, then the
legend could show 10-20, 20-30, 30-40.
Restriction The MIDPOINTS= option must be specified for the RANGE option to

have any effect.
Not supported by ActiveX.

STATFMT=format-specification
overrides the GMAP default format for percent of PERCENT8.2. Use this format
when using calculated values. The STATFMT option is typically used when the
STATISTIC=FREQUENCY option or the PERCENT option is used.
Alias: SFMT=, SFORMAT=, STATFORMAT=

STATISTIC=FIRST | SUM | FREQUENCY | MEAN
specifies the statistic for GMAP to chart. For nonnumeric variables, FREQUENCY is
the only allowed value—any other value is changed to FREQUENCY and a warning
is issued. The frequency of a variable does not include missing values unless the
MISSING option is specified.

FIRST GMAP matches the first observation from the DATA= data set
and charts the response value from this observation only. This is
the default. If more rows exist that are not processed, a warning
is issued to the log.

SUM All observations matching a given ID value are added together
and the summed value is charted.

FREQUENCY A count of all rows with non-missing values is charted unless you
specify the MISSING option.

MEAN All observations matching a given ID value are added together
and then divided by the number of non-missing observations

The GMAP Procedure � BLOCK Statement 1259

matched. This value is then charted unless you specify the
MISSING option.

Alias: STAT=

UNIFORM
causes the same legend and coloring to be used for all maps produced by the
procedure instead of being calculated within each BY group for each map. The
UNIFORM option prescans the data to generate a categorization across all the data,
regardless of BY grouping, and applies that categorization to all maps in the BY
group. This results in a static legend and color distribution across all maps such that
a single value always has the same color in multiple maps.

When specified on a PROC GMAP statement, the UNIFORM option applies to all
AREA, BLOCK, CHORO, and PRISM statements included within the GMAP
run-group.

When omitted from the PROC GMAP statement, and specified on an individual
AREA, BLOCK, CHORO, or PRISM statement, the UNIFORM option applies only to
the maps produced by that statement.
Restriction: Not supported by Java.

BLOCK Statement

Creates three-dimensional block maps on which levels of magnitude of the specified response
variables are represented by blocks (bars) of varying height, pattern, and color.

Requirements: At least one response variable is required. The ID statement must be used
in conjunction with the BLOCK statement.
Global statements: FOOTNOTE, LEGEND, PATTERN, TITLE

Description
The BLOCK statement specifies the variable or variables that contain the data that are
represented on the map by blocks of varying height, pattern, and color. This statement
automatically performs the following operations:

� determines the midpoints ranges.
� scales the blocks.
� assigns patterns to the block faces and map areas. (See “About Block Maps and

Patterns” on page 1268 for more information.)

You can use statement options to enhance the appearance of the map. For example,
you can specify the width and shape of the blocks, the outline colors for the blocks and
the map areas, and the angle of view. Other statement options control the response
levels.

In addition, you can use global statements to modify the block patterns, the map
patterns, and the legend, as well as to add titles and footnotes to the map. You can also
use an Annotate data set to enhance the map.

BLOCK response-variable(s) </ option(s)>;

The option(s) argument can be one or more of the following:
� appearance options:

ANNOTATE=Annotate-data-set

1260 BLOCK Statement � Chapter 43

BLOCKSIZE=size
CBLKOUT=block-outline-color | SAME
CDEFAULT=empty-area-fill-color
CEMPTY=empty-area-outline-color
COUTLINE=area-outline-color | SAME
SHAPE=3D-block-shape
STRETCH
UNIFORM
WOUTLINE=block-outline-width
XSIZE=map-width <units>
YSIZE=map-height <units>
XVIEW=x
YVIEW=y
ZVIEW=z

� mapping options:
AREA=n | column-name
DISCRETE
LEVELS=number-of-response-levels | ALL
MIDPOINTS=value-list | OLD
MISSING
PERCENT | PERCENTAGE
RANGE
RELZERO
STATISTIC=FIRST | SUM | FREQUENCY | MEAN
STATFMT=format-specification

� legend options:
CTEXT=text-color
LEGEND=LEGEND<1...99>
NOLEGEND

� description options:
DESCRIPTION=’description’
NAME=’name’

� ODS options
HTML=variable
HTML_LEGEND=variable

Required Arguments

response-variable(s)
specifies one or more variables in the response data set, or in the merged response
and feature table, that contain response values that are to be represented on the
map. Each response variable produces a separate map. All variables must be in the
input data set. Multiple response variables are separated with blanks. Blocks are
not drawn for the response variable with missing values unless you use the
MISSING option in the BLOCK statement.

The GMAP Procedure � BLOCK Statement 1261

See also: “About Response Variables” on page 1249.

Options
Options in a BLOCK statement affect all of the maps that are produced by that

statement. You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
specifies a data set to annotate onto maps that are produced by the BLOCK
statement. Annotate coordinate systems 1, 2, 7, and 8 are not valid with block maps.

Alias: ANNO=

See also: Chapter 29, “Using Annotate Data Sets,” on page 641.

AREA=n | column-name
specifies that a different map pattern be used for the surface of each map area or
group of map areas on the map.

You can specify pattern fills or colors or both with PATTERN statements that
specify map/plot patterns. A separate PATTERN definition is needed for each
specified area.

AREA=n The value of n indicates which variable in the ID statement
determines the groups that are distinguished by a surface
pattern. By default, all map unit areas are drawn using the same
surface fill pattern. If your ID statement has only one map area
identification variable, then use AREA=1 to indicate that each
map area surface uses a different pattern. If you have more than
one variable in your ID statement, then use n to indicate the
position of the variable that defines groups that share a pattern.
When you use the AREA= option, the map data set should be
sorted in order of the variables in the ID statement.

AREA=column-
name

A column name defined in either the MAP= or DATA= data sets
might be indicated with the column-name value. If the column
name exists in both the MAP= and DATA= data sets, the column
in the MAP= data set is used. When column-name is used, the
areas are colored based on the AREA= value. Duplicate AREA=
values might have different patterns assigned.

See also: “AREA Statement” on page 1255, “PATTERN Statement” on page 240.

BLOCKSIZE=size
specifies the width of the blocks. The unit of size is the character cell width for the
selected output device. By default, BLOCKSIZE=2.

Alias: BS=

CBLKOUT=block-outline-color | SAME
outlines all blocks in the specified color. The SAME value specifies that the outline
color of a block, a block segment, or a legend is the same as the interior pattern color.

The default outline color is determined by the current style. If you specified the
NOGSTYLE system option, then the default color is black for Java and ActiveX and
the first color in the color list for all other devices.

The CBLKOUT= option is not valid when SHAPE=CYLINDER.

Note: If you specify empty block patterns (VALUE=EMPTY in a PATTERN
statement), you should not change the outline color from the default value, SAME, to
a single color. Otherwise all the outlines are one color and you can distinguish
between empty areas only by their size. Empty block patterns (VALUE=EMPTY in a
PATTERN statement) are not supported by DEVICE=JAVA. �

1262 BLOCK Statement � Chapter 43

Alias: CBLOCK=
Style reference: The Color attribute of the GraphOutlines style element
Restriction: Partially supported by Java

CDEFAULT=empty-area-fill-color
fills empty map areas in the specified color. This option affects only map areas that
are empty. Empty map areas are generated in block maps only when a map area is
omitted from the response data set and the ALL option is included in the PROC
GMAP statement.

The default is NONE, which draws the polygon empty, showing the background in
the fill area of the polygon.
Alias: CDEF=, DEFCLR=
Restriction: Not supported by Java
See also: The CEMPTY option, the ALL on page 1253 option, and “Displaying Map

Areas and Response Data” on page 1250

CEMPTY=empty-area-outline-color
outlines empty map areas in the specified color. This option affects only map areas
that are empty. Empty map areas are generated in block maps only when a map
area is omitted from the response data set and the ALL option is included in the
PROC GMAP statement.

The default outline color is the same as the default COUTLINE= color.
Alias: CE=
Restriction: Not supported by Java
See also: The ALL option on page 1253 and “Displaying Map Areas and Response

Data” on page 1250

COUTLINE=area-outline-color | SAME
outlines non-empty map areas in the specified color. When
COUTLINE=area-outline-color and DEVICE=JAVA or ACTIVEX, both empty and
nonempty map areas are outlined. The SAME value specifies that the outline color of
a map area is the same as the interior pattern color.

The default outline color is determined by the current style. If you specified the
NOGSTYLE system option, then the default color is black for Java and ActiveX and
the first color in the color list for all other devices.

Note: If you specify empty map patterns (VALUE=EMPTY in a PATTERN
statement), then you should not change the outline color from the default value
SAME. Otherwise all the outlines are one color and you cannot distinguish between
the empty areas. Empty block patterns (VALUE=EMPTY in a PATTERN statement)
are not supported by DEVICE=JAVA. �
Alias: CO=
Style reference: The Color attribute of the GraphOutlines style element
Restriction: Partially supported by Java

CTEXT=text-color
specifies a color for the text in the legend. If you omit the CTEXT= option, a color
specification is searched for in this order:

1 the CTEXT= option in a GOPTIONS statement.
2 the default, the text color that is specified in the current style.
3 if you specify NOGSTYLE, then the default color is black for Java and ActiveX

and the first color in the color list for all other devices.
The CTEXT= color specification is overridden if you also use the COLOR=

suboption of a LABEL= or VALUE= option in a LEGEND definition that is assigned

The GMAP Procedure � BLOCK Statement 1263

to the map legend. The COLOR= suboption determines the color of the legend label
or the color of the legend value descriptions, respectively.
Alias: CT=
Style reference: The Color attribute of the GraphValueText style element

DESCRIPTION=’description’
specifies a descriptive string up to 256 characters long, that appears in the
description field of the catalog entry for the map. The description does not appear on
the map. By default, the GMAP procedure assigns a description of the form BLOCK
MAP OF variable, where variable is the name of the map variable.

The descriptive text is shown in each of the following:
� the “description” portion of the Results window
� the catalog-entry properties that you can view from the Explorer window
� the Table of Contents that is generated when you use CONTENTS= on an ODS

HTML statement, assuming that the procedure output is generated while the
contents page is open

� the Description field of the PROC GREPLAY window
� the chart description for Web output (depending on the device driver). For more

information, see “PROC GANNO Statement” on page 914.

Alias: DES=

DISCRETE
generates a separate response level (color and surface pattern) for each different
value of the formatted response variable. The LEVELS= option is ignored when you
use the DISCRETE option.

If you specify the DISCRETE option, then distinct, non-continuous colors are used
are used for the response values. If you specify the LEVELS= option, then a color
ramp is used to assign each response value a continuous color scheme.

Note: If the data does not contain a value in a particular range of the format,
that formatted range is not displayed in the legend. �

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with an area of
the map and point to the data or graph you want to display when the user drills
down on the area.

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with a legend
value and point to the data or graph you want to display in response to drill-down
input from the user.
Restriction: Not supported by Java and ActiveX

LEGEND=LEGEND<1...99>
specifies the LEGEND statement to associate with the map. The LEGEND= option is
ignored if the specified LEGEND definition is not currently in effect. In the GMAP
procedure, the BLOCK statement produces a legend unless you use the NOLEGEND
option. If you use the SHAPE= option in a LEGEND statement, only the value BAR
is valid. Most of the LEGEND options described in “LEGEND Statement” on page
225 are supported by both Java and ActiveX. If a LEGEND option is not supported
by Java or ActiveX, it is noted in the LEGEND option definition.
Restriction: Partially supported by Java and ActiveX

1264 BLOCK Statement � Chapter 43

See also: “LEGEND Statement” on page 225

LEVELS=number-of-response-levels | ALL
specifies the number of response levels to be graphed when the response variables
are numeric and the DISCRETE and MIDPOINTS= options are not specified. Each
response level is assigned a different surface pattern and color combination. The
block height is based on the data value of the corresponding response variable.

If you specify the LEVELS= option, then a color ramp is used to assign each
response value a continuous color scheme. The response values are assigned lighter
and darker values of a color scheme to express lower and higher response values. If
you specify the DISCRETE option, then distinct, non-continuous colors are used are
used for the response values.

Note: If you specified the NOGSTYLE system option, then non-continuous colors
are used by default. �

If neither the LEVELS= option nor the DISCRETE option is used, then the GMAP
procedure determines the number of response levels by using the formula
FLOOR(1+3.3 log(n)), where n is the number of response variable values.

By default, an equal-distribution (quantizing) algorithm is used to determine each
level.

The LEVELS= option is ignored when you use the DISCRETE or
MIDPOINTS=value-list option. When MIDPOINTS=OLD is used with the LEVELS=
option, default midpoints are generated using the Nelder algorithm (Applied
Statistics 25:94–7, 1976).

MIDPOINTS=value-list | OLD
specifies the response levels for the range of response values that are represented by
each level (pattern and color combination).

For numeric response variables, value-list is either an explicit list of values or a
starting and an ending value with an interval increment, or a combination of both
forms:

n <...n>

n TO n <BY increment>

n <...n > TO n <BY increment> <n<...n>>
By default, the increment value is 1. You can specify discrete numeric values in

any order. In all forms, n can be separated by blanks or commas. For example:

midpoints=(2 4 6)
midpoints=(2,4,6)
midpoints=(2 to 10 by 2)

If a numeric variable has an associated format, the specified values must be the
unformatted values. With numeric response values, DEVICE=JAVA uses only
midpoints that fall in the range of the data being used. Thus, if your data ranged
from 30–80, but midpoints were specified at 25, 50, 75, and 100, only 50 and 75 are
used.

For character response variables, value-list is a list of unique character values
enclosed in quotes and separated by blanks:

’value-1’ <...’value-n’>

midpoints="Midwest" "Northeast" "Northwest"

Specify the values in any order. If a character variable has an associated format,
the specified values must be the formatted values. Character response values
specified with the MIDPOINTS= option are not supported by DEVICE=JAVA.

You can selectively exclude some response variable values from the map, as shown
here:

The GMAP Procedure � BLOCK Statement 1265

midpoints="Midwest"

Only those observations for which the response variable exactly matches one of the
values listed in the MIDPOINTS= option are shown on the map. As a result,
observations might be excluded inadvertently if values in the list are misspelled or if
the case does not match exactly.

Specifying MIDPOINTS=OLD generates default midpoints using the Nelder
algorithm (Applied Statistics 25:94–7, 1976).

Featured in: Example 8 on page 1311

Restriction: Partially supported by Java

See also: The RANGE option

MISSING
accepts a missing value as a valid level for the response variable.

See also: “Displaying Map Areas and Response Data” on page 1250.

NAME=’name’
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default GRSEG name is
GMAP. If the name duplicates an existing name, then SAS/GRAPH adds a number to
the name to create a unique name—for example, GMAP1.

See also: “About Filename Indexing” on page 99

NOLEGEND
suppresses the legend.

PERCENT
causes GMAP to collect all response values (or their statistic) and chart each region
as a percentage of the whole. You can use the STATISTIC= option to change how the
percentage is calculated—whether as a percentage of the SUM, FREQUENCY, or
MEAN. If you do not use the STATISTIC= option, then STATISTIC=FIRST is
assumed and the response variable of only the first observation of each region is
counted. If the response variable is a text field, then STATISTIC=FREQUENCY is
used, even if you specify a different value for the STATISTIC= option.

Alias: PERCENTAGE

See also: The STATFMT= option on page 1266, and the STATISTIC= option on page
1266

RANGE
causes GMAP to display, in the legend, the starting value and ending value of the
range around each midpoint specified with the MIDPOINTS= option (instead of
displaying just the midpoints). For example, if MIDPOINTS=15 25 35, then the
legend could show 10-20, 20-30, 30-40.

Restriction MIDPOINTS= must be specified for the RANGE option to have any
effect. Not supported by ActiveX.

RELZERO
creates bars and regions that are relative to a zero value. By default, GMAP creates
heights that are relative to the minimum value, which might or might not be zero.
With the RELZERO option, zero value bars have no height.

Alias: REL0, RELATIVETOZERO

Restriction This option works only for variables that have no negative values.

1266 BLOCK Statement � Chapter 43

SHAPE=3D-block-shape
specifies the shape of the blocks. Use this option to enhance the look of the block
shape, or to specify a different shape. Unless you specify SHAPE=OLD, only solid fill
patterns are used. The value of 3D-block-shape can be one of the following:

� BLOCK | B

� CYLINDER | C

� HEXAGON | H

� OLDBLOCK | OLD

� PRISM | P

� STAR | S

SHAPE=BLOCK is the default. OLDBLOCK is the same as BLOCK except that
with OLDBLOCK the tops and sides of blocks are colored the same as the
background, as was the case before SAS 9.2.

The CBLKOUT= option is not valid when SHAPE=CYLINDER.

Default: BLOCK

STATFMT=format-specification
overrides the GMAP default format for percent of PERCENT8.2. Use this format
when using calculated values. The STATFMT option is typically used when the
STATISTIC=FREQUENCY option or the PERCENT option is used.

Alias: SFMT=, SFORMAT=, STATFORMAT=

STATISTIC=FIRST | SUM | FREQUENCY | MEAN
specifies the statistic for GMAP to chart. For character variables, FREQUENCY is
the only allowed value—any other value is changed to FREQUENCY and a warning
is issued. The frequency of a variable does not include missing values unless the
MISSING option is specified.

FIRST GMAP matches the first observation from the DATA= data set
and charts the response value from this observation only. This is
the default. If more rows exist that are not processed, a warning
is issued to the log.

SUM All observations matching a given ID value are added together
and the summed value is charted.

FREQUENCY A count of all rows with nonmissing values is charted unless you
specify the MISSING option.

MEAN All observations matching a given ID value are added together
and then divided by the number of nonmissing observations
matched. This value is then charted unless you specify the
MISSING option.

Alias: STAT=

Featured in: Example 4 on page 1306

STRETCH
stretches map extents to cover all available space in the device. This might cause the
map to be distorted. When this option is applied to the PROC GMAP statement, it
applies to all statements. If applied to a single statement, it applies only to that
statement.

Alias: STRETCHTOFIT, STR2FIT

Restriction: Not supported by Java and ActiveX

The GMAP Procedure � BLOCK Statement 1267

UNIFORM
causes the same legend and coloring to be used for all maps produced by the
procedure instead of being calculated within each BY group for each map. The
UNIFORM option prescans the data to generate a categorization across all the data,
regardless of BY grouping, and applies that categorization to all maps in the BY
group. This results in a static legend and color distribution across all maps such that
a single value always has the same color in multiple maps.

When specified on a PROC GMAP statement, the UNIFORM option applies to all
AREA, BLOCK, CHORO, and PRISM statements included within the GMAP
run-group.

When omitted from the PROC GMAP statement, and specified on an individual
AREA, BLOCK, CHORO, or PRISM statement, the UNIFORM option applies only to
the maps produced by that statement.
Restriction: Not supported by Java.

WOUTLINE=block-outline-width
specifies the width, in pixels, of the outline for all outlined blocks and for the outline
of the map areas.
Default: 1

XSIZE=map-width <units>
YSIZE=map-height <units>

specify the physical dimensions of the map to be drawn. By default, the map uses the
entire procedure output area.

Valid units are CELLS (character cells), CM (centimeters), IN (inches), or PCT
(percentage of the graphics output area). The default unit is CELLS.

If you specify values for map-width or map-height that are greater than the
dimensions of the procedure output area, the map is drawn using the default size.
Restriction: Not supported by Java and ActiveX

XVIEW=x
YVIEW=y
ZVIEW=z

specify coordinates of the viewing position in the reference coordinate system. In this
system, the four corners of the map lie on the X-Y plane at coordinates (0,0,0), (0,1,0),
(1,1,0), and (1,0,0). No axes are actually drawn on the maps that are produced by
PROC GMAP. Your viewing position cannot coincide with the viewing reference point
at coordinates (0.5,0.5,0), the center of the map. The value for z cannot be negative.

If you omit the XVIEW=, YVIEW=, and ZVIEW= options, the default coordinates
are (0.5, −2, 3). This viewing position is well above and to the south of the center of
the map. You can specify one, two, or all three of the view coordinates; any that you
do not specify are assigned the default values. While you can use the XVIEW= and
YVIEW= options with DEVICE=JAVA, ZVIEW= cannot be used with DEVICE=JAVA.

Alias: XV=, YV=, ZV=
Restriction: Partially supported by Java

Figure 43.5 on page 1268 shows the position of the viewing reference point, as well
as the default viewing position.

1268 BLOCK Statement � Chapter 43

Figure 43.5 Viewing Position and Viewing Reference Point

viewing
reference point

(0.5, 0.5, 0)

default
viewing position

(0.5, -2, 3)

Z

X

Y

About Block Maps and Patterns

Block maps are different from other maps in that they display two different types of
areas that use patterns:

� the blocks themselves, which represent the response levels

� the map areas from which the blocks rise

By default, block patterns are determined by the current style. If you specify the
AREA statement or the AREA= option, then the map area colors are determined by the
current style and the block colors are determined by the attributes that you specified.

Note: If you specified the NOGSTYLE system option, then solid patterns are used
for blocks and hatch patterns are used for the map areas. The map areas and their
outlines use the first color in the color list. �

The BLOCK statement has the following options that explicitly control the outline
colors used by the blocks and the map areas:

� CBLKOUT=

� CEMPTY=

� COUTLINE=

In addition the AREA= option and AREA statement control how the map areas are
patterned.

When you use PATTERN statements to define the patterns for the map, you must
specify the correct type of pattern for the area. The blocks use bar/block patterns and
the map areas use map/plot patterns. See “PATTERN Statement” on page 240 for more
information on specifying patterns.

Note: If you specify only one PATTERN statement and include only the COLOR=
option, that color is used for both the blocks and the map areas. For example, this
statement makes the blocks solid blue and the map areas blue hatch. �

pattern1 color=blue;

Note: Empty block patterns (VALUE=EMPTY in a PATTERN statement) are not
supported by DEVICE=JAVA. �

The GMAP Procedure � CHORO Statement 1269

CHORO Statement

Creates two-dimensional maps in which values of the specified response variables are
represented by varying patterns and colors.

Requirements: At least one response variable is required. The ID statement must be used
in conjunction with the CHORO statement
Global statements: FOOTNOTE, LEGEND, PATTERN, TITLE

Description
The CHORO statement specifies the variable or variables that contain the data
represented on the map by patterns that fill the map areas. This statement
automatically

� determines the midpoints
� assigns patterns to the map areas

You can use statement options to enhance the appearance of the map, for example,
by selecting the colors and patterns that fill the map areas. Other statement options
control the selection of ranges for the response variable.

In addition, you can use global statements to modify the map area patterns and
legend, as well as add titles and footnotes to the map. You can also use an Annotate
data set to enhance the map.

CHORO response-variable(s) </ option(s)>;

option(s) can be one or more from any of the following categories:
� appearance options:

ANNOTATE=Annotate-data-set
CDEFAULT=empty-area-fill-color
CEMPTY=empty-area-outline-color
COUTLINE=area-outline-color | SAME
STRETCH
UNIFORM
WOUTLINE=area-outline-width
XSIZE=map-width<units>
YSIZE=map-height <units>

� mapping options:
DISCRETE
LEVELS=number-of-response-levels | ALL
MIDPOINTS=value-list | OLD
MISSING
PERCENT | PERCENTAGE
RANGE
STATISTIC=FIRST | SUM | FREQUENCY | MEAN
STATFMT=format-specification

� legend options:
CTEXT=text-color

1270 CHORO Statement � Chapter 43

LEGEND=LEGEND<1...99>

NOLEGEND

� description options:

DESCRIPTION=’description’

NAME=’name’

� ODS options

HTML=variable

HTML_LEGEND=variable

Required Arguments

response-variable(s)
specifies one or more variables in the response data set or in the merged response
and feature table if they contain response values that are represented on the map.
Each response variable produces a separate map. All variables must be in the input
data set. Multiple response variables are separated with blanks.

Missing values for the response variable are not considered valid response values
unless you use the MISSING option in the CHORO statement.

Response variables can be either numeric or character in type. Numeric response
variables are normally grouped into ranges, or response levels, as determined by the
MIDPOINTS= or LEVELS= options. Each response level is assigned a different
combination of pattern and color. Character response variables are assigned unique
response levels, as are numeric variables when the DISCRETE option is specified.

See also: “About Response Variables” on page 1249.

Options
Options in a CHORO statement affect all graphs that are produced by that

statement. You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
specifies a data set to annotate onto maps that are produced by the CHORO
statement.

Alias: ANNO=

Featured in: Example 6 on page 1308.

See also: Chapter 29, “Using Annotate Data Sets,” on page 641.

CDEFAULT=empty-area-fill-color
fills empty map areas in the specified color. This option affects only map areas that
are empty. Empty map areas are generated in choro maps only when there is no
response value for a map area and the MISSING option is not used, or when a map
area is omitted from the response data set and the ALL option is included in the
PROC GMAP statement.

The default is NONE, which draws the polygon empty, showing the background in
the fill area of the polygon.

Alias: CDEF=, DEFCLR=

Restriction: Not supported by Java

See also: The CEMPTY option, the ALL option on page 1253, and “Displaying Map
Areas and Response Data” on page 1250

The GMAP Procedure � CHORO Statement 1271

CEMPTY=empty-area-outline-color
outlines empty map areas in the specified color. This option affects only the empty
map areas, which are generated in choro maps when either of the following is true:

� There is no response value for a map area and the MISSING option is not used.
� A map area is omitted from the response data set and the ALL option is

included in the PROC GMAP statement.

The default outline color is the same as the default COUTLINE= color.
Alias: CE=
Restriction: Not supported by Java
See also: The ALL option on page 1253 and “Displaying Map Areas and Response

Data” on page 1250

COUTLINE=area-outline-color | SAME
outlines non-empty map areas in the specified color. When
COUTLINE=area-outline-color and DEVICE=JAVA or ACTIVEX, both empty and
non-empty map areas are outlined. The value SAME specifies that the outline color
of a map area is the same as the interior pattern color.

The default outline color is determined by the current style. If you specified the
NOGSTYLE system option, then the default color is black for Java and ActiveX and
the first color in the color list for all other devices.

Note: If you specify empty map patterns (VALUE=EMPTY in a PATTERN
statement), then you should not change the outline color from the default value
SAME to a single color. Otherwise all the outlines are one color and you cannot
distinguish between the empty areas. �
Alias: CO=
Style reference: The Color attribute of the GraphOutlines style element

CTEXT=text-color
specifies a color for the text in the legend. If you omit the CTEXT= option, a color
specification is searched for in this order:

1 the CTEXT= option in a GOPTIONS statement.
2 the default, the text color that is specified in the current style.
3 If you specified the NOGSTYLE system option, then the default color is black

for Java and ActiveX and the first color in the color list for all other devices.
The CTEXT= color specification is overridden if you also use the COLOR=

suboption of a LABEL= or VALUE= option in a LEGEND definition that is assigned
to the map legend. The COLOR= suboption determines the color of the legend label
or the color of the legend value descriptions, respectively.
Alias: CT=
Style reference: The Color attribute of the GraphValueText style element

DESCRIPTION=’description’
specifies a descriptive string up to 256 characters long that appears in the
description field of the catalog entry for the map. The description does not appear on
the map. By default, the GMAP procedure assigns a description of the form
CHOROPLETH MAP OF map_variable.

The descriptive text is shown in each of the following:
� the “description” portion of the Results window
� the catalog-entry properties that you can view from the Explorer window
� the Table of Contents that is generated when you use CONTENTS= on an ODS

HTML statement, assuming that the procedure output is generated while the
contents page is open

1272 CHORO Statement � Chapter 43

� the Description field of the PROC GREPLAY window
� the chart description for Web output (depending on the device driver). For more

information, see “PROC GANNO Statement” on page 914.

Alias: DES=

DISCRETE
generates a separate response level (color and surface pattern) for each different
value of the formatted response variable. The LEVELS= option is ignored when you
use the DISCRETE option.

If you specify the DISCRETE option, then distinct, non-continuous colors are used
are used for the response values. If you specify the LEVELS= option, then a color
ramp is used to assign each response value a continuous color scheme.

Note: If the data does not contain a value in a particular range of the format,
that formatted range is not displayed in the legend. �
Featured in: Example 11 on page 1314

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with an area of
the map and point to the data or graph you want to display when you drill down on
the area.
See also: “Adding Links with the HTML= and HTML_LEGEND= Options” on page

601

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with a legend
value and point to the data or graph you want to display when you drill down on the
value.

Restriction: Not supported by Java and ActiveX
See also: “Adding Links with the HTML= and HTML_LEGEND= Options” on page

601

LEGEND=LEGEND<1...99>
assigns the specified LEGEND statement that is to be applied to the map. The
LEGEND= option is ignored if the specified LEGEND definition is not currently in
effect. In the GMAP procedure, the CHORO statement produces a legend by default
unless you specify the NOLEGEND option. If you use the SHAPE= option in a
LEGEND statement, then only the value BAR is valid. Most of the LEGEND options
described in “LEGEND Statement” on page 225 are supported by both Java and
ActiveX. If a LEGEND option is not supported by Java or ActiveX, it is noted in the
LEGEND option definition.

Featured in: Example 3 on page 1304
Restriction: Partially supported by Java and ActiveX
See also: “LEGEND Statement” on page 225.

LEVELS=number-of-response-levels | ALL
specifies the number of response levels to be graphed when the response variables
are numeric and the DISCRETE and MIDPOINTS= options are not specified. Each
response level is assigned a different surface pattern and color combination.

If you specify the LEVELS= option, then a color ramp is used to assign each
response value a continuous color scheme. The response values are assigned lighter
and darker values of a color scheme to express lower and higher response values. If

The GMAP Procedure � CHORO Statement 1273

you specify the DISCRETE option, then distinct, non-continuous colors are used are
used for the response values.

Note: If you specified the NOGSTYLE system option, then non-continuous colors
are used by default. �

If neither the LEVELS= option nor the DISCRETE option is used, then the GMAP
procedure determines the number of response levels by using the formula
FLOOR(1+3.3 log(n)), where n is the number of response variable values.

By default, an equal-distribution (quantizing) algorithm is used to determine each
level.

The LEVELS= option is ignored when you use the DISCRETE or
MIDPOINTS=value-list option. When MIDPOINTS=OLD is used with the LEVELS=
option, default midpoints are generated using the Nelder algorithm (Applied
Statistics 25:94–7, 1976).

Featured in: Example 2 on page 1302

MIDPOINTS=value-list | OLD
specifies the response levels for the range of response values that are represented by
each level (pattern and color combination).

For numeric response variables, the value-list argument is either an explicit list of
values, a starting and an ending value with an interval increment, or a combination
of both forms:

n <...n>

n TO n <BY increment >

n <...n> TO n <BY increment > n <...n>
By default the increment value is 1. You can specify discrete numeric values in

any order. In all forms, n can be separated by blanks or commas. For example:

midpoints=(2 4 6)
midpoints=(2,4,6)
midpoints=(2 to 10 by 2)

If a numeric variable has an associated format, the specified values must be the
unformatted values. With numeric response values, DEVICE=JAVA uses only
midpoints that fall in the range of the data being used. Thus, if your data ranged
from 30–80, but midpoints were specified at 25, 50, 75,and 100, only 50 and 75 are
used.

For character response variables, value-list is a list of unique character values
enclosed in quotation marks and separated by blanks:

’value-1’ <...’value-n’>
The values are character strings enclosed in single quotation marks and separated

by blanks. For example:

midpoints="Midwest" "Northeast" "Northwest"

Specify the values in any order. If a character variable has an associated format,
the specified values must be the formatted values. Character response values
specified with the MIDPOINTS= option are not supported by DEVICE=JAVA.

You can selectively exclude some response variable values from the map, as shown
here:

midpoints="Midwest"

The only observations that are shown on the map are those observations for which
the response variable exactly matches one of the values that are listed in the
MIDPOINTS= option. As a result, observations might be excluded inadvertently if
values in the list are misspelled or if the case does not match exactly.

1274 CHORO Statement � Chapter 43

Specifying MIDPOINTS=OLD generates default midpoints using the Nelder
algorithm (Applied Statistics 25:94–7, 1976).

Featured in: Example 8 on page 1311

Restriction: Partially supported by Java

See also: The RANGE option

MISSING
accepts a missing value as a valid level for the response variable.

See also: “Displaying Map Areas and Response Data” on page 1250

NAME=’name’
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default GRSEG name is
GMAP. If the name duplicates an existing name, then SAS/GRAPH adds a number to
the name to create a unique name—for example, GMAP1.

See also: “About Filename Indexing” on page 99

NOLEGEND
suppresses the legend.

Featured in: Example 6 on page 1308

PERCENT
causes GMAP to collect all response values (or their statistic) and chart each region
as a percentage of the whole. You can use the STATISTIC= option to change how the
percentage is calculated—whether as a percentage of the SUM, FREQUENCY, or
MEAN. If you do not use the STATISTIC= option, then STATISTIC=FIRST is
assumed—the response variable of only the first observation of each region is
counted. If the response variable is a text field, then STATISTIC=FREQUENCY is
used, even if you specify a different value for the STATISTIC= option.

Alias: PERCENTAGE

See also: The STATFMT= option on page 1274 and the STATISTIC= option on page
1274.

RANGE
causes GMAP to display, in the legend, the starting value and ending value of the
range around each midpoint specified with the MIDPOINTS= option (instead of
displaying just the midpoints). For example, if MIDPOINTS=15 25 35, then the
legend could show 10-20, 20-30, 30-40.

Restriction: The MIDPOINTS= option must be specified for the RANGE option to
have any effect.

Not supported by ActiveX.

STATFMT=format-specification
overrides the GMAP default format for percent of PERCENT8.2. Use this format
when using calculated values. The STATFMT option is typically used when the
STATISTIC=FREQUENCY option or the PERCENT option is used.

Alias: SFMT=, SFORMAT=, STATFORMAT=

STATISTIC=FIRST | SUM | FREQUENCY | MEAN
specifies the statistic for GMAP to chart. For character variables, FREQUENCY is
the only allowed value—any other value is changed to FREQUENCY and a warning
is issued. The frequency of a variable does not include missing values unless the
MISSING option is specified.

The GMAP Procedure � CHORO Statement 1275

FIRST GMAP matches the first observation from the DATA= data set
and charts the response value from this observation only. This is
the default. If more rows exist that are not processed, a warning
is issued to the log.

SUM All observations matching a given ID value are added together
and the summed value is charted.

FREQUENCY A count of all rows with nonmissing values is charted unless you
specify the MISSING option.

MEAN All observations matching a given ID value are added together
and then divided by the number of non-missing observations
matched. This value is then charted unless you specify the
MISSING option.

Alias: STAT=

STRETCH
stretches map extents to cover all available space in the device. This might cause the
map to be distorted. When this option is applied to the PROC GMAP statement, it
applies to all statements. If applied to a single statement, it applies only to that
statement.

Alias: STRETCHTOFIT, STR2FIT

Restriction: Not supported by Java and ActiveX

UNIFORM
causes the same legend and coloring to be used for all maps produced by the
procedure instead of being calculated within each BY group for each map. The
UNIFORM option prescans the data to generate a categorization across all the data,
regardless of BY grouping, and applies that categorization to all maps in the BY
group. This results in a static legend and color distribution across all maps such that
a single value always has the same color in multiple maps.

When specified on a PROC GMAP statement, UNIFORM applies to all AREA,
BLOCK, CHORO, and PRISM statements included within the GMAP run-group.

When omitted from the PROC GMAP statement, and specified on an individual
AREA, BLOCK, CHORO, or PRISM statement, UNIFORM applies only to the maps
produced by that statement.

Restriction: Not supported by Java

WOUTLINE=area-outline-width
specifies the width of all map area outlines, in pixels.

Default: 1

XSIZE=map-width <units>
YSIZE=map-height <units>

specify the physical dimensions of the map. By default, the map uses the entire
procedure output area.

Valid units are CELLS (character cells), CM (centimeters), IN (inches), or PCT
(percentage of the graphics output area). The default unit is CELLS.

If you specify values for units that are greater than the dimensions of the
procedure output area, the map is drawn using the default size.

If you specify either the XSIZE= or YSIZE= option without specifying the other
option, the GMAP procedure scales the dimension for the option that was not
specified to retain the original shape of the map.

Restriction: Not supported by Java and ActiveX

1276 PRISM Statement � Chapter 43

PRISM Statement

Creates three-dimensional prism maps in which levels of magnitude of the specified response
variables are represented by polyhedrons (raised polygons) of varying height, pattern, and color.

Requirements: At least one response variable is required. You must use the ID statement
in conjunction with the PRISM statement.
Global statements: FOOTNOTE, LEGEND, PATTERN, TITLE

Description
The PRISM statement specifies the variable or variables that contain the data that are
represented on the map by raised map areas. This statement automatically performs
the following operations:

� determines the midpoints ranges or midpoints
� assigns patterns to the map areas

You can use statement options to control the ranges of the response values, specify
the angle of view, and enhance the appearance of the map.

In addition, you can use global statements to modify the map area patterns and the
legend, as well as add titles and footnotes to the map. You can also use an Annotate
data set to enhance the map.

Note: PRISM maps do not work well with polygons within polygons (holes). It is
recommended that a CHORO or BLOCK map be created for these maps instead. �

PRISM response-variable(s) </ option(s)>;

The option(s) can be one or more options from any or all of the following categories:
� appearance options:

ANNOTATE=Annotate-data-set
CDEFAULT=empty-area-fill-color
CEMPTY=empty-area-outline-color
COUTLINE=area-outline-color | SAME
STRETCH
UNIFORM
WOUTLINE=area-outline-width
XLIGHT=x
YLIGHT=y
XSIZE=map-width <units>
YSIZE=map-height <units>
XVIEW=x
YVIEW=y
ZVIEW=x

� mapping options:
AREA=n | column-name | (area-options)
DISCRETE
LEVELS=number-of-response-levels | ALL
MIDPOINTS=value-list | OLD

The GMAP Procedure � PRISM Statement 1277

MISSING
PERCENT | PERCENTAGE
RANGE
RELZERO
STATISTIC=FIRST | SUM | FREQUENCY | MEAN
STATFMT=format-specification

� legend options:
CTEXT=text-color
LEGEND=LEGEND<1...99>
NOLEGEND

� description options:
DESCRIPTION=’description’
NAME=’name’

� ODS options
HTML=variable
HTML_LEGEND=variable

Required Arguments

response-variable(s)
specifies one or more variables in the response data set, or in the merged response
and feature table, that contain response values that are to be represented on the
map. Each response variable produces a separate map. All variables must be in the
input data set. Multiple response variables are separated with blanks.

Missing values for the response variable are not considered valid unless you use
the MISSING option.

Response variables can be either numeric or character. By default, and as
determined by the LEVELS= or MIDPOINTS= values, numeric response variables
are grouped into ranges, or response levels. Each response level is assigned a
different prism height and a different pattern and color combination.

Character variables and numeric variables (when you use the DISCRETE option)
have a unique response level for each unique response variable value.
See also: “About Response Variables” on page 1249.

Options
Options in a PRISM statement affect all of the graphs that are produced by that

statement. You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
specifies a data set to annotate onto the maps that are produced by the PRISM
statement. Annotate coordinate systems 1, 2, 7, and 8 are not valid with Prism maps.
Alias: ANNO=
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

AREA=n| column-name
specifies that a different map pattern be used for the surface of each map area or
group of map areas on the map.

Note: The AREA statement provides a greater amount of control than the AREA=
option. �

1278 PRISM Statement � Chapter 43

You can specify pattern fills or colors or both with PATTERN statements that
specify map/plot patterns. A separate PATTERN definition is needed for each
specified area.

AREA=n The value of n indicates which variable in the ID statement
determines the groups that are distinguished by a surface
pattern. By default, all map unit areas are drawn using the same
surface fill pattern. If your ID statement has only one map area
identification variable, then use AREA=1 to indicate that each
map area surface uses a different pattern. If you have more than
one variable in your ID statement, then use n to indicate the
position of the variable that defines groups that share a pattern.
When you use the AREA= option, the map data set should be
sorted in order of the variables in the ID statement.

AREA=column-
name

A column name defined in either the MAP= or DATA= data sets
can be indicated with the column-name value. If the column
name exists in both the MAP= and DATA= data sets, the column
in the map= data set is used. When column-name is used, the
areas are colored based on the AREA= value. Duplicate AREA=
values might have different patterns assigned

See also: “AREA Statement” on page 1255, “PATTERN Statement” on page 240.

CDEFAULT=empty-area-fill-color
fills empty map areas in the specified color. This option affects only map areas that
are empty. Empty map areas are generated in prism maps only when there is no
response value for a map area and the MISSING option is not used, or when a map
area is omitted from the response data set and the ALL option is included in the
PROC GMAP statement.

The default is NONE, which draws the polygon empty, showing the background in
the fill area of the polygon.

Alias: CDEF=, DEFCLR=

Restriction: Not supported by Java

See also: The CEMPTY option, the ALL option on page 1253, and “Displaying Map
Areas and Response Data” on page 1250

CEMPTY=empty-area-outline-color
outlines empty map areas in the specified color. Empty map areas are generated in
prism maps either

� when there is no response value for a map area and the MISSING option is not
used, or

� when a map area is omitted from the response data set and the ALL option is
included in the PROC GMAP statement.

The default outline color is the same as the default COUTLINE= color.

Alias: CE=

Restriction: Not supported by Java

See also: ALL on page 1253 and “Displaying Map Areas and Response Data” on
page 1250

COUTLINE=area-outline-color | SAME
outlines nonempty map areas in the specified color. SAME specifies that the outline
color of a map area is the same as the interior pattern color.

The default outline color is determined by the current style. If you specified the
NOGSTYLE system option, then the default color is the first color in the color list.

The GMAP Procedure � PRISM Statement 1279

Note: If you specify empty map patterns (VALUE=EMPTY in a PATTERN
statement), you should not change the outline color from the default value SAME to
a single color. Otherwise, all the outlines are one color and you cannot distinguish
between the empty areas. Empty block patterns (VALUE=EMPTY in a PATTERN
statement) are not supported by DEVICE=JAVA. �
Alias: CO=
Style reference: The Color attribute of the GraphOutlines style element.

CTEXT=text-color
specifies a color for the text in the legend. If you omit the CTEXT= option, a color
specification is searched for in this order:

1 the CTEXT= option in a GOPTIONS statement.
2 the default, the text color that is specified in the current style.

3 If you specified the NOGSTYLE system option, then the default color is black
for Java and ActiveX and the first color in the color list for all other devices.

The CTEXT= color specification is overridden if you also use the COLOR=
suboption of a LABEL= or VALUE= option in a LEGEND definition assigned to the
map legend. The COLOR= suboption determines the color of the legend label or the
color of the legend value descriptions, respectively.
Alias: CT=
Style reference: The Color attribute of the GraphValueText style element

DESCRIPTION=’description’
specifies the description of the catalog entry for the map. The maximum length for
description is 256 characters. By default, the GMAP procedure assigns a description
of the form PRISM MAP OF map_variable.

The descriptive text is shown in each of the following:

� the “description” portion of the Results window
� the catalog-entry properties that you can view from the Explorer window
� the Table of Contents that is generated when you use CONTENTS= on an ODS

HTML statement, assuming that the procedure output is generated while the
contents page is open

� the Description field of the PROC GREPLAY window

� the chart description for Web output (depending on the device driver). For more
information, see “PROC GANNO Statement” on page 914.

Alias: DES=

DISCRETE
generates a separate response level (color and surface pattern) for each different
value of the formatted response variable. The LEVELS= option is ignored when you
use the DISCRETE option.

If you specify the DISCRETE option, then distinct, non-continuous colors are used
are used for the response values. If you specify the LEVELS= option, then a color
ramp is used to assign each response value a continuous color scheme.

Note: If the data does not contain a value in a particular range of the format,
that formatted range is not displayed in the legend. �
Featured in: Example 11 on page 1314

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with an area of

1280 PRISM Statement � Chapter 43

the map and point to the data or graph that are displayed in response to drill-down
input.
See also: “Adding Links with the HTML= and HTML_LEGEND= Options” on page

601

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with legend
values and point to the data or graphs that are displayed in response to drill-down
input.
Restriction: Not supported by Java and ActiveX
See also: “Adding Links with the HTML= and HTML_LEGEND= Options” on page

601

LEGEND=LEGEND<1...99>
specifies the LEGEND definition to associate with the map. LEGEND= is ignored if
the specified LEGEND definition is not currently in effect. In the GMAP procedure,
the PRISM statement produces a legend unless you use the NOLEGEND option. If
you use the SHAPE= option in a LEGEND statement, only the value BAR is valid.
Most of the LEGEND options described in “LEGEND Statement” on page 225 are
supported by both Java and ActiveX. If a LEGEND option is not supported by Java
or ActiveX, it is noted in the LEGEND option definition.
Featured in: Example 8 on page 1311
Restriction: Partially supported by Java and ActiveX
See also: “LEGEND Statement” on page 225

LEVELS=number-of-response-levels | ALL
specifies the number of response levels to be graphed when the response variables
are numeric and the DISCRETE and MIDPOINTS= options are not specified. Each
response level is assigned a different surface pattern and color combination. The
prism height is based on the data value of the corresponding response variable.

If you specify the LEVELS= option, then a color ramp is used to assign each
response value a continuous color scheme. The response values are assigned lighter
and darker values of a color scheme to express lower and higher response values. If
you specify the DISCRETE option, then distinct, non-continuous colors are used are
used for the response values.

If neither the LEVELS= option nor the DISCRETE option is used, then the GMAP
procedure determines the number of response levels by using the formula
FLOOR(1+3.3 log(n)), where n is the number of response variable values.

By default, an equal-distribution (quantizing) algorithm is used to determine each
level.

The LEVELS= option is ignored when you use the DISCRETE or
MIDPOINTS=value-list option. When MIDPOINTS=OLD is used with the LEVELS=
option, default midpoints are generated using the Nelder algorithm (Applied
Statistics 25:94–7, 1976).
Featured in: Example 2 on page 1302

MIDPOINTS=value-list | OLD
specifies the response levels for the range of response values that are represented by
each level (prism height, pattern, and color combination).

For numeric response variables, value-list is either an explicit list of values, or a
starting and an ending value with an interval increment, or a combination of both
forms:

n <...n>
n TO n <BY increment>

The GMAP Procedure � PRISM Statement 1281

n <...n> TO n <BY increment > n <...n>
By default the increment value is 1. You can specify discrete numeric values in

any order. In all forms, n can be separated by blanks or commas. For example,

midpoints=(2 4 6)
midpoints=(2,4,6)
midpoints=(2 to 10 by 2)

If a numeric variable has an associated format, the specified values must be the
unformatted values. With numeric response values, DEVICE=JAVA uses only
midpoints that fall in the range of the data being used. Thus, if your data ranged
from 30–80, but midpoints were specified at 25, 50, 75,and 100, only 50 and 75 are
used.

For character response variables, value-list has this form:

’value-1’ <...’value-n’>
The values are character strings enclosed in single quotation marks and separated

by blanks. For example,

midpoints="Midwest" "Northeast" "Northwest"

Specify the values in any order. If a character variable has an associated format,
the specified values must be the formatted values. Character response values
specified with the MIDPOINTS= option are not supported by DEVICE=JAVA.

You can selectively exclude some response variable values from the map, as shown
here:

midpoints="Midwest"

Only those observations for which the response variable exactly matches one of the
values listed in the MIDPOINTS= option are shown on the map. As a result,
observations might be inadvertently excluded if values in the list are misspelled or if
the case does not match exactly.

Specifying MIDPOINTS=OLD generates default midpoints using the Nelder
algorithm (Applied Statistics 25:94–7, 1976).

Featured in: Example 8 on page 1311

Restriction: Partially supported by Java

See also: The RANGE option

MISSING
accepts a missing value as a valid level for the response variable.

See also: “Displaying Map Areas and Response Data” on page 1250

NAME=’name’
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default GRSEG name is
GMAP. If the name duplicates an existing name, then SAS/GRAPH adds a number to
the name to create a unique name—for example, GMAP1.

See also: “About Filename Indexing” on page 99

NOLEGEND
suppresses the legend.

PERCENT
causes GMAP to collect all response values (or their statistic) and chart each region
as a percentage of the whole. You can use the STATISTIC= option to change how the
percentage is calculated—whether as a percentage of the SUM, FREQUENCY, or

1282 PRISM Statement � Chapter 43

MEAN. If you do not use the STATISTIC= option, then STATISTIC=FIRST is
assumed and the response variable of only the first observation of each region is
counted. If the response variable is a text field, then STATISTIC=FREQUENCY is
used, even if you specify a different value for the STATISTIC= option.
Alias: PERCENTAGE
See also: The STATFMT= option on page 1282, and the STATISTIC= option on page

1282

RANGE
causes GMAP to display, in the legend, the starting value and ending value of the
range around each midpoint specified with the MIDPOINTS= option (instead of
displaying just the midpoints). For example, if MIDPOINTS=15 25 35, then the
legend could show 10-20, 20-30, 30-40.
Restriction MIDPOINTS= must be specified for the RANGE option to have any

effect. Not supported by ActiveX.

RELZERO
creates area heights that are relative to a zero value. By default, GMAP creates
heights that are relative to the minimum value, which might or might not be zero.
With the RELZERO option, zero value areas have no height.
Alias: REL0, RELATIVETOZERO
Restriction This option works only for variables that have no negative values.

STATFMT=format-specification
overrides the GMAP default format for percent of PERCENT8.2. Use this format
when using calculated values. The STATFMT option is typically used when the
STATISTIC=FREQUENCY option or the PERCENT option is used.
Alias: SFMT=, SFORMAT=, STATFORMAT=

STATISTIC=FIRST | SUM | FREQUENCY | MEAN
specifies the statistic for GMAP to chart. For character variables, FREQUENCY is
the only allowed value—any other value is changed to FREQUENCY and a warning
is issued. The frequency of a variable does not include missing values unless the
MISSING option is specified.

FIRST GMAP matches the first observation from the DATA= data set
and charts the response value from this observation only. This is
the default. If more rows exist that are not processed, a warning
is issued to the log.

SUM All observations matching a given ID value are added together
and the summed value is charted.

FREQUENCY A count of all rows with nonmissing values is charted unless you
specify the MISSING option.

MEAN All observations matching a given ID value are added together
and then divided by the number of nonmissing observations
matched. This value is then charted unless you specify the
MISSING option.

Alias: STAT=

STRETCH
stretches map extents to cover all available space in the device. This might cause the
map to be distorted. When this option is applied to the PROC GMAP statement, it
applies to all statements. If applied to a single statement, it applies only to that
statement.
Alias: STRETCHTOFIT, STR2FIT

The GMAP Procedure � PRISM Statement 1283

Restriction: Not supported by Java and ActiveX

UNIFORM
causes the same legend and coloring to be used for all maps produced by the
procedure instead of being calculated within each BY group for each map. The
UNIFORM option prescans the data to generate a categorization across all the data,
regardless of BY grouping, and applies that categorization to all maps in the BY
group. This results in a static legend and color distribution across all maps such that
a single value always has the same color in multiple maps.

When specified on a PROC GMAP statement, the UNIFORM option applies to all
AREA, BLOCK, CHORO, and PRISM statements included within the GMAP
run-group.

When omitted from the PROC GMAP statement, and specified on an individual
AREA, BLOCK, CHORO, or PRISM statement, the UNIFORM option applies only to
the maps produced by that statement.
Restriction: Not supported by Java

WOUTLINE=area-outline-width
specifies the width, in pixels, of all map area outlines.
Default: 1

XLIGHT=x
YLIGHT=y

specify the coordinates of the imaginary light source in the map coordinate system.
The position of the light source affects the way the sides of the map polygons are
shaded. Although you can specify any point for the light source using the XLIGHT=
and YLIGHT= options, the light source is actually placed in one of only four positions.

Table 43.3 on page 1283 shows how the point you specify is positioned.

Table 43.3 Light Source Coordinates

Specified Light Source Light Source Position

in quadrants I or II, or on the X or +Y axis behind the map (point A), and all side polygons
are shadowed

on or within approximately 10 degrees of the Y
axis

the viewing position (point D), and none of the
side polygons are shadowed

in quadrant III (except within 10 degrees of
the Y axis)

to the left of the map (point B), and the
right-facing sides of polygons are shadowed

in quadrant IV (except within 10 degrees of the
Y axis)

to the right of the map (point C), and the
left-facing side polygons are shadowed

Figure 43.6 on page 1284 illustrates the light source positions. Assume that your
viewing position, selected by the XVIEW=, YVIEW=, and ZVIEW= options, is point D.

1284 PRISM Statement � Chapter 43

Figure 43.6 Coordinates of Imagined Light Source in a Map Coordinate System

A

D

B C

III

III IV

X

Y

By default, the light source position is the same as the viewing position specified
by the XVIEW=, YVIEW=, and ZVIEW= options. The light source position cannot
coincide with the viewing reference point (0.5,0.5), which corresponds with the
position directly above the center of the map.
Restriction: Not supported by Java and ActiveX
See also: XVIEW= on page 1284

XSIZE=map-width <units>
YSIZE=map-height <units>

specify the dimensions of the map that you are drawing. By default, the map uses
the entire procedure output area.

Valid units are CELLS (character cells), CM (centimeters), IN (inches), or PCT
(percentage of the graphics output area). The default unit is CELLS.

If you specify values for map-width and map height that are greater than the
dimensions of the procedure output area, the map is drawn using the default size. If
you specify one value and not the other, the dimension is adjusted to maintain the
correct aspect ratio.
Restriction: Not supported by Java and ActiveX

XVIEW=x
YVIEW=y
ZVIEW=z

specify the viewing position coordinates for the map. In this system, the four corners
of the map lie on the X–Y plane at coordinates (0, 0, 0), (0, 1, 0), (1, 1, 0), and (1, 0, 0).

The viewing position cannot coincide with the viewing reference point at
coordinates (0.5, 0.5, 0).

The value for z cannot be negative.
If you omit the XVIEW=, YVIEW=, and ZVIEW= options, the default coordinates

are (0.5, −2,3). This viewing position is well above and to the south of the center of
the map. One, two, or all three view coordinates can be specified; any that are not
specified are assigned the default values.

The GMAP Procedure � SURFACE Statement 1285

Figure 43.5 on page 1268 shows the position of the viewing reference point, as well
as the default viewing position.

To ensure that the polygon edges are distinguishable, the angle from vertical must
be less than or equal to 45 degrees. If you specify a ZVIEW= value such that this
condition cannot be satisfied (that is, a very small value), PROC GMAP increases the
ZVIEW= value automatically so that the angle is 45 degrees or less. While you can
use the XVIEW= and YVIEW= options with DEVICE=JAVA, ZVIEW= cannot be used
with DEVICE=JAVA.
Alias: XV=, YV=, ZV=
Restriction: Partially supported by Java

SURFACE Statement

Creates three-dimensional surface maps in which levels of magnitude of the specified response
variables are represented by spikes of varying height.

Requirements: At least one response variable is required and must be numeric. The ID
statement must be used in conjunction with the SURFACE statement.
Global statements: FOOTNOTE, TITLE
Restriction: Not supported by Java and ActiveX

Description
The SURFACE statement specifies the variable or variables that contain the data that
are represented on the map by raised map areas. This statement automatically
determines the midpoints. You can use statement options to control spike proportions,
specify the angle of view, and modify the general appearance of the map. For example,
you can select the color and number of lines for the representation of the surface area.
You can control the selection of spike heights and base widths.

In addition, you can use global statements to add titles and footnotes to the map.
You can also enhance the map with an Annotate data set.

SURFACE response-variable(s) </ option(s)>;

option(s) can be one or more of the following:
� appearance options:

ANNOTATE=Annotate-data-set
CBODY=surface-map-color
CONSTANT=n
NLINES=number-of-lines
ROTATE=degrees
TILT=degrees
XSIZE=map-width <units>
YSIZE=map-height <units>

� mapping options:
PERCENT | PERCENTAGE
STATISTIC=FIRST | SUM | FREQUENCY | MEAN
STATFMT=format-specification

1286 SURFACE Statement � Chapter 43

� description options:
DESCRIPTION=’description’
NAME=’name’

Required Arguments

response-variable(s)
specifies one or more variables in the response data set, or in the merged response
and feature table, that contain response values that are to be represented on the
map. The response-variable must be numeric and must contain only positive values.
Each response variable produces a separate map. All variables must be in the input
data set. Multiple response variables are separated with blanks.

The GMAP procedure scales response variables for presentation on the map. The
height of the spikes on the map correspond to the relative value of the response
variable, not to the actual value of the response variable. However, when the viewing
angle is changed, the spikes might not appear this way. The spikes in the front might
appear to be higher than the spikes in the back, which represent greater values.
See also: “About Response Variables” on page 1249.

Options
SURFACE statement options affect all maps that are produced by that statement.

ANNOTATE=Annotate-data-set
specifies a data set to annotate onto maps that are produced by the SURFACE
statement. Annotate coordinate systems 1, 2, 7, and 8 are not valid with surface
maps.
Alias: ANNO=
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

CBODY=surface-map-color
specifies the color that is used to draw the surface map. Regardless of the current
ODS style, the default color is the first color in the current color list.
Alias: CB=

CONSTANT=n
specifies a denominator to use in the distance decay function. This function
determines the base width of the spike that is drawn at each map area center.

By default, CONSTANT=10. Values greater than 10 yield spikes that are wider at
the base. Values less than 10 yield spikes that are narrower at the base.

Let xk and yk represent the coordinates, and zk represent the function value at the
center of each map area. The zk values are scaled from 1 to 11. A square grid of x by
y points (where the size of the grid is the NLINES= option value) and the associated
function value f(x,y) are generated from the map area center value using this formula:

� ��� �� �
���

�� ���� � �����

�
�

���

where

�� �
�
�� ��

��
�
�
� � ��

��

The GMAP Procedure � SURFACE Statement 1287

and

�
�
�

�
������ ��	
�� � ���������������� � �

�
� �� � ���	����	�

�

Alias: CON=
Featured in: Example 10 on page 1313

DESCRIPTION=’description’
specifies the description of the catalog entry for the map. The maximum length for
description is 256 characters. By default, the GMAP procedure assigns a description
of the form SURFACE MAP OF variable, where variable is the name of the map
variable.

The descriptive text is shown in each of the following:
� the “description” portion of the Results window
� the catalog-entry properties that you can view from the Explorer window

� the Table of Contents that is generated when you use CONTENTS= on an ODS
HTML statement, assuming that the procedure output is generated while the
contents page is open

� the Description field of the PROC GREPLAY window

� the chart description for Web output (depending on the device driver). For more
information, see “PROC GANNO Statement” on page 914.

Alias: DES=

NAME=’name’
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default GRSEG name is
GMAP. If the name duplicates an existing name, then SAS/GRAPH adds a number to
the name to create a unique name—for example, GMAP1.

See also: “About Filename Indexing” on page 99

NLINES=number-of-lines
specifies the number of lines used to draw the surface map. Values can range from
50 to 100; the higher the value, the more solid the map appears and the more
resources used. By default, NLINES=50.
Alias: N=

Featured in: Example 10 on page 1313

PERCENT
causes GMAP to collect all response values (or their statistic) and chart each region
as a percentage of the whole. You can use the STATISTIC= option to change how the
percentage is calculated—whether as a percentage of the SUM, FREQUENCY, or
MEAN. If you do not use the STATISTIC= option, then STATISTIC=FIRST is
assumed and the response variable of only the first observation of each region is
counted. If the response variable is a text field, then STATISTIC=FREQUENCY is
used, even if you specify a different value for the STATISTIC= option.

Alias: PERCENTAGE

See also: The STATFMT= option on page 1288, and the STATISTIC= option on page
1288

1288 SURFACE Statement � Chapter 43

ROTATE=degrees
specifies the degrees of the angle at which to rotate the map about the Z axis in the
map coordinate system. The degrees argument can be any angle. Positive values
indicate rotation in the counterclockwise direction. By default, ROTATE=70. The
ROTATE= option also affects the direction of the lines that are used to draw the
surface map.

Featured in: Example 10 on page 1313

STATFMT=format-specification
overrides the GMAP default format for percent of PERCENT8.2. Use this format
when using calculated values. The STATFMT option is typically used when the
STATISTIC=FREQUENCY option or the PERCENT option is used.

Alias: SFMT=, SFORMAT=, STATFORMAT=

STATISTIC=FIRST | SUM | FREQUENCY | MEAN
specifies the statistic for GMAP to chart. For character variables, FREQUENCY is
the only allowed value—any other value is changed to FREQUENCY and a warning
is issued. The frequency of a variable does not include missing values unless the
MISSING option is specified.

FIRST GMAP matches the first observation from the DATA= data set
and charts the response value from this observation only. This is
the default. If more rows exist that are not processed, a warning
is issued to the log.

SUM All observations matching a given ID value are added together
and the summed value is charted.

FREQUENCY A count of all rows with non-missing values is charted unless you
specify the MISSING option.

MEAN All observations matching a given ID value are added together
and then divided by the number of non-missing observations
matched. This value is then charted unless you specify the
MISSING option.

Alias: STAT=

TILT=degrees
specifies the degrees of the angle at which to tilt the map about the X axis in the
map coordinate system. The value of degrees can be 0 to 90. Increasing values cause
the map to tilt backward and makes the spikes more prominent. Decreasing values
make the map shape more distinguishable and the spikes less prominent. TILT=90
corresponds to viewing the map edge-on, while TILT=0 corresponds to viewing the
map from directly overhead. By default, TILT=70.

Featured in: Example 10 on page 1313

XSIZE=map-width <units>
YSIZE=map-height <units>

specify the physical dimensions of the map. By default, the map uses the entire
procedure output area.

Valid units are CELLS (character cells), CM (centimeters), IN (inches), or PCT
(percentage of the graphics output area). The default unit is CELLS.

If you specify values for map-width and map-height that are greater than the
dimensions of the procedure output area, the map is drawn using the default size.
And if you specify only one dimension, the other is scaled to maintain the aspect ratio.

The GMAP Procedure � Using FIPS Codes and Province Codes 1289

Using FIPS Codes and Province Codes

The map area identification variable in some SAS/GRAPH map data sets contain
standardized numeric codes. The data sets for the United States contain a variable
whose values are FIPS (Federal Information Processing Standards) codes. The data
sets for Canada contain standard province codes or census division codes. When you
use the GMAP procedure with a traditional map data set, the variables that identify
map areas in your response data set must have the same values as the map area
identification variables in the traditional map data set.

If both a feature table and a response data set contain FIPS Codes or Province
Codes, then once both data sets have been sorted, an SQL or DATA step MERGE can be
used to merge the two data sets using the variable containing the codes. However, with
the merged response and feature table, the identification variable used in the GMAP
procedure must be the $GEOREF formatted variable that contains the spatial
information. See “$GEOREF format” on page 1246 for more information.

If the map area identification variables in your response data set are state or
province names or abbreviations, convert them to FIPS codes or province codes before
using the response data set with one of the map data sets supplied by SAS. Table 43.4
on page 1289 lists the FIPS codes for the United States and Table 43.5 on page 1290
lists the standard codes for Canadian provinces.

Note: Alternatively, you can convert the FIPS code or province codes in your map
data set to match the names in your response data. �

Table 43.4 U.S. FIPS Codes

FIPS Code State FIPS
Code

State

01 Alabama 30 Montana

02 Alaska 31 Nebraska

04 Arizona 32 Nevada

05 Arkansas 33 New Hampshire

06 California 34 New Jersey

08 Colorado 35 New Mexico

09 Connecticut 36 New York

10 Delaware 37 North Carolina

11 District of Columbia 38 North Dakota

12 Florida 39 Ohio

13 Georgia 40 Oklahoma

15 Hawaii 41 Oregon

16 Idaho 42 Pennsylvania

17 Illinois 44 Rhode Island

18 Indiana 45 South Carolina

19 Iowa 46 South Dakota

20 Kansas 47 Tennessee

21 Kentucky 48 Texas

1290 Using FIPS Codes and Province Codes � Chapter 43

FIPS Code State FIPS
Code

State

22 Louisiana 49 Utah

23 Maine 50 Vermont

24 Maryland 51 Virginia

25 Massachusetts 53 Washington

26 Michigan 54 West Virginia

27 Minnesota 55 Wisconsin

28 Mississippi 56 Wyoming

29 Missouri 72 Puerto Rico

Table 43.5 Canadian Province Codes

Province Code Province

10 Newfoundland

11 Prince Edward Island

12 Nova Scotia

13 New Brunswick

24 Quebec

35 Ontario

46 Manitoba

47 Saskatchewan

48 Alberta

59 British Columbia

60 Yukon

61 Northwest Territories

Note: The ID variables in Canadian maps are character. �

The MAPS.CNTYNAME data set contains a cross-reference of names and FIPS codes
for all counties in the United States. The MAPS.CANCENS data set contains a
cross-reference of census district names and codes for Canadian provinces.

Base SAS software provides several functions that convert state names to FIPS codes
and vice versa. The following table lists these functions and a brief description of each.
See SAS Language Reference: Dictionary for more information.

Table 43.6 FIPS and Postal Code Functions

Function Description

STFIPS converts state postal code to FIPS state code

STNAME converts state postal code to state name in upper case

STNAMEL converts state postal code to state name in mixed case

FIPNAME converts FIPS code to state name in upper case

The GMAP Procedure � Using Formats for Map Variables 1291

FIPNAMEL converts FIPS code to state name in mixed case

FIPSTATE converts FIPS code to state postal code

Using Formats for Map Variables
You can specify an output map area name or numeric value using one of the

predefined formats for maps. The following prefixes are used in the names of the
formats for maps:

CONT Continent

CNTRY Country

GLC Geographic Location Code, distributed by Government Services
Administration, USA

ISO International Standard Organization

The formats for maps are located in the SASHELP.MAPFMTS catalog. See the
MAPS.NAMES table to view all the continent and country names and corresponding
GLC, ISO, and numeric representation for the continent values.

To use one of the formats for maps, you must specify the SASHELP.MAPFMTS
catalog on the FMTSEARCH= option on a SAS OPTIONS statement:

options fmtsearch=(sashelp.mapfmts);

In addition to using the PUT statement (as shown in the examples in the following
table), the formats can also be invoked using a FORMAT statement.

Note: If the input to a format is invalid, the format is “**” or “***” . �

Table 43.7 Formats for Maps

FORMAT DESCRIPTION EXAMPLE OUTPUT

contfmt use a continent’s
numeric value to output
the continent’s name

cont= 91

put(cont,contfmt.);

North America

glcna use the country’s GLC
numeric code to output
the country’s GLC alpha
code

id=460

put(id,glcna.);

IR

glcnlu use the GLC numeric
code to output the
country’s long name in
uppercase

id=460

put(id,glcnlu.);

IRAN, ISLAMIC
REPUBLIC OF

glcnsu use the GLC numeric
code to output the
country’s short name in
uppercase

id=460

put(id,glcnsu.);

IRAN

glcnsm use the GLC numeric
code to output the
country’s name in mixed
case

id=460

put(id,glcnsm.);

Iran

1292 Using Formats for Map Variables � Chapter 43

FORMAT DESCRIPTION EXAMPLE OUTPUT

ison2a use the country’s ISO
numeric code to output
the country’s ISO
alpha2 code

iso=364

put(iso,ison2a.);

IR

ison3a use the country’s ISO
numeric code to output
the country’s ISO
alpha3 code

iso=364

put(iso,ison3a.);

IRN

isonlu use the country’s ISO
numeric code to output
the country’s long name
in uppercase

iso=364

put(iso,isonlu.);

IRAN, ISLAMIC
REPUBLIC OF

isonsu use the country’s ISO
numeric code to output
the country’s short
name in uppercase

iso=364

put(iso,isonsu.);

IRAN

$cntrysl use a country’s short
name in uppercase to
output the country’s
long name in uppercase

name=’IRAN’

put(name,$cntrysl.);

IRAN, ISLAMIC
REPUBLIC OF

$glcalu use the GLC alpha code
to output the country’s
long name in uppercase

country=’IR’

put(country,$glcalu.);

IRAN, ISLAMIC
REPUBLIC OF

$glcan use the country’s GLC
alpha code to output the
country’s GLC numeric
code

country=’IR’

put(country,$glcan.);

460

$glcsua use the country’s short
name in uppercase to
output the GLC alpha
code name

name=’IRAN’

put(name,$glcsua.);

IR

$glcsun use the country’s short
name in uppercase to
output the country’s
GLC numeric code

name=’IRAN’

put(name,$glcsun.);

460

$glcsma use the country’s short
name in mixed-case to
output the country’s
GLC alpha code

mixname=’Iran’

put(mixname,$glcsma.);

IR

$glcsmn use the country’s short
name in mixed-case to
output the country’s
GLC numeric code

mixname=’Iran’

put(mixname,$glcsmn.);

460

The GMAP Procedure � Using Formats for Map Variables 1293

FORMAT DESCRIPTION EXAMPLE OUTPUT

$glcprov use a province/city name
appended by || as a
delimiter, followed by
the country’s GLC alpha
code to output a
province||country code,
the province/city code,
and the country’s GLC
alpha numeric code

provname=’TEHRAN||IR’

put(provname,$glcprov.);

8250460

8250 — province/
city code

460 — country GLC
numeric code

$isosu2a use the country’s short
name in uppercase to
output the country’s
ISO alpha2 code

name=’IRAN’

put(name,$isosu2a.);

IR

$isosu3a use the country’s name
in uppercase to output
the country’s ISO
alpha3 code

name=’IRAN’

put(name,$isosu3a.);

IRN

$isosun use the country’s short
name in uppercase to
output the country’s
ISO numeric code

name=’IRAN’

put(name,$isosun.);

364

$isoa2lu use the country’s ISO
alpha2 code to output
the country’s long name
in uppercase

alpha2=’IR’

put(alpha2,$isoa2su.);

IRAN, ISLAMIC
REPUBLIC OF

$isoa2n use the country’s ISO
alpha2 code to output
the country’s ISO
numeric code

alpha2=’IR’

put(alpha2,$isoa2n.);

364

$isoa2su use the country’s ISO
alpha2 code to output
the country’s short
name in uppercase

alpha2=’IR’

put(alpha2,$isoa2lu.);

IRAN

$isoa3lu use the country’s ISO
alpha3 code to output
the country’s long name
in uppercase

alpha3=’IRN’

put(alpha3,$isoa3lu.);

IRAN, ISLAMIC
REPUBLIC OF

$isoa3n use the country’s ISO
alpha3 code to output
the country’s ISO
numeric code

alpha3=’IRN’

put(alpha3,$isoa3n.);

364

$isoa3su use the country’s ISO
alpha3 code to output
the country’s short
name in uppercase

alpha3=’IRN’

put(alpha3,$isoa3su.);

IRAN

1294 Using SAS/GRAPH Map Data Sets � Chapter 43

FORMAT DESCRIPTION EXAMPLE OUTPUT

$isosm2a use the country’s short
name in mixed-case to
output the country’s
ISO alpha2 code

mixname=’Iran’

put(mixname,$isosm2a.);

IR

$isosm3a use the country’s short
name in mixed-case to
output the country’s
ISO alpha3 code

mixname=’Iran’

put(mixname,$isosm3a.);

IRN

$isosmn use the country’s short
name in mixed-case to
output the country’s
ISO numeric code

mixname=’Iran’

put(mixname,$isosmn.);

364

Using SAS/GRAPH Map Data Sets

Accessing Detailed Descriptions of Map Data Sets
You might need detailed information on the map data sets in order to determine their

type, size, the variables they contain, or, in the case of traditional data sets, whether
they are projected or unprojected. You can get this information by using the
CONTENTS or DATASETS procedure, or browsing the MAPS.METAMAPS (see “The
METAMAPS Data Set” on page 1247) data set in the MAPS library (or the library
where your SAS-supplied map data sets reside). If the libref MAPS has automatically
been assigned, you can see a complete list of map data sets by viewing the
MAPS.METAMAPS data set.

These statements list the map data sets in the SAS library that is assigned to the
libref MAPS:

proc datasets lib=maps;
run;

The following statements provide detailed information on a traditional map data set,
including the number of observations, the variables in each data set, and a description
of each variable:

proc contents data=maps.canada3;
run;

To see the contents and descriptions of all of the map data sets supplied by SAS you
can specify DATA=MAPS._ALL_ in the CONTENTS procedure. See the Base SAS
Procedures Guide for more information on the CONTENTS and DATASETS procedures.

Customizing SAS/GRAPH Map Data Sets
You can customize the area that is displayed on your map by using only part of a

particular map data set. There are several ways to accomplish this. You can use
WHERE processing or a DATA step to subset the map data to be used by the GMAP
procedure.

With the traditional map data set, you can also use the GPROJECT procedure to
create a rectangular subset of a map data set by using minimum and maximum

The GMAP Procedure � Customizing SAS/GRAPH Map Data Sets 1295

longitude and latitude values. For more information, see Chapter 46, “The GPROJECT
Procedure,” on page 1395.

You can combine traditional map data sets in either of these situations:
� The map data sets to be combined were originally projected together.
� The map data sets all contain the same type of coordinates. That is, all are in

radians or all are in degrees, and the longitude coordinates are measured in the
same direction.

Traditional map data sets supplied by SAS that have coordinates expressed only as
longitude and latitude, with variable names LONG and LAT, must be renamed X and Y
and should be projected before you use them with the GMAP procedure.

Subsetting Traditional Map Data Sets
Some of the SAS/GRAPH map data sets contain a large number of observations.

Programs that use only a few states or provinces run faster if you exclude the unused
portion of the map data set or use a reduced map data set. SAS provides several ways
to accomplish this. One is to use the WHERE statement or WHERE= data set option
within the GMAP procedure to select only the states or provinces you want.

The WHERE statement and WHERE= data set option are most useful when you
produce a simple map and do not need to make any other changes to the data set. For
example, to use only the observations for Quebec in the CANADA traditional map data
set, begin the GMAP procedure with this statement:

proc gmap map=maps.canada(where=(province="24"));

To use only North Carolina in US2MERGED (a data set created by using SQL or
DATA step MERGE on the feature table US2 and a response data set also containing
the variable STATE) the GMAP procedure would begin with the following statement:

proc gmap data=work.us2merged(where=(STATE=37));

The WHERE= data set option applies only to the data set that you specify in the
argument in which the WHERE= option appears. If you use the WHERE statement,
the WHERE condition applies to the traditional map data set and the response data
sets or the merged response and feature table.

Another approach is to use a DATA step to create a subset of the larger data set.
This code illustrates another way to extract the observations for Quebec from the
CANADA traditional map data set:

data quebec;
set maps.canada(where=(province="24"));

This code illustrates another way to extract North Carolina data from the US2
feature table:

data ncarolina;
set maps.us2(where=(STATE=37));

This approach is most useful when you want to create a permanent subset of a map
data set or when you need to make additional changes to the map data set.

Also see Chapter 49, “The GREMOVE Procedure,” on page 1459 for an example of
how to use GREMOVE to create a regional map from one of the traditional map data
sets that are supplied with SAS/GRAPH.

Reducing Traditional Map Data Sets
A reduced map data set is one that can be used to draw a map that retains the

overall appearance of the original map but that contains fewer points, requires

1296 Customizing SAS/GRAPH Map Data Sets � Chapter 43

considerably less storage space, and can be drawn much more quickly. You can improve
performance by plotting fewer observations for each map area. You reduce a traditional
map data set when you subset it on the variable DENSITY. You can add the variable
DENSITY to a map data set by using the GREDUCE procedure. For more information,
see Chapter 48, “The GREDUCE Procedure,” on page 1447.

Note: Many of the map data sets in the MAPS library are supplied with a
DENSITY variable. �

An unreduced map data set contains all of the coordinates that were produced when
the map was digitized. This type of map data set has more observations than most
graphics output devices can accurately plot. Some unreduced map data sets already
contain a DENSITY variable like the one calculated by the GREDUCE procedure, so it
is not necessary to use the GREDUCE procedure to process these data sets. Values for
DENSITY range from 0 through 6 (the lower the density, the coarser the boundary line).

You can set the DENSITY value by using the DENSITY= option on the PROC GMAP
statement. For example, the following statement excludes all points with a density level
of 2 or greater:

proc gmap map=maps.states density=2;

The resulting map is much coarser than one drawn by using all of the observations
in the data set, but it is drawn much faster.

Another way to create a reduced map data set is to use a DATA step to exclude
observations with larger density values:

data states;
set maps.states(where=(density<2));

Projecting Traditional Map Data Sets
Map data can be stored as unprojected or projected coordinates. Unprojected map

data contains spherical coordinates, that is, longitude and latitude values usually
expressed in radians.*

Many of the map data sets in the MAPS library are projected. However, these map
data sets contain only unprojected coordinates and should be projected before you use
them.

� CANADA3

� CANADA4

� COUNTIES

� COUNTY

� STATES

If the projection supplied with the traditional map data set does not meet your needs,
then you can use the GPROJECT procedure (on unprojected map coordinates) to create
a different projection. For more information on traditional map data sets with
unprojected coordinates, see “Traditional Map Data Sets Containing X, Y, LONG, and
LAT” on page 1245. You should select a projection method that least distorts the
regions that you are mapping. (All projection methods inherently distort map regions.)
See Chapter 46, “The GPROJECT Procedure,” on page 1395 for more information.

Note: Using an unprojected traditional map data set with the GMAP procedure can
cause your map to be reversed. �

* If your data is in degrees, then it can be converted to radians by multiplying by the degree-to-radian constant [atan(1)/45].

The GMAP Procedure � Creating Traditional Map Data Sets 1297

Controlling the Display of Lakes
Some countries contain a lake that is located completely within a single unit area.

Occasionally these lakes can be a problem when mapping traditional map data sets. In
addition, displaying lakes might not be appropriate for some applications. In these
cases, you might want to remove the lakes from the map data set before you proceed.

Traditional map data sets that contain coordinates for a lake that is located within a
single internal division are identified by the presence of the numeric variable LAKE.
The value of LAKE is 1 for points that correspond to lakes and 0 otherwise. The
following statements illustrate how to delete the lakes from your traditional map data
sets using WHERE processing:

proc gmap map=maps.chile(where=(lake=0))
data=maps.chile;

id id;
choro id / levels=1 nolegend;
title box=1 f=none h=4

"Chile with Lakes Removed";
run;

You can also create a new traditional map data set that is a subset of the traditional
map data set:

data nolake;
set maps.chile(where=(lake=0));

run;

Creating Traditional Map Data Sets
In addition to using map data sets that are supplied with SAS/GRAPH software, you

can also create your own map data sets. Map data sets are not limited to geographic
data; you use them to define other spaces such as floor plans.

A unit area is defined by observations in the map data set that have the same
identification (ID) variable value. A unit area might be composed of a single polygon or
a collection of polygons. A polygon is defined by all of the observations that have the
same SEGMENT variable value within the same unit area.

� If the unit area is a single polygon, then all values of SEGMENT are the same
(alternatively, you can omit the SEGMENT variable).

� If the unit area contains multiple polygons, such as islands, then the SEGMENT
variable has multiple values. For example, in the MAPS.US data set, the state of
Hawaii (a unit area) contains six different values in the SEGMENT variable, one
for each island in the state.

� If the unit area contains enclosed polygons (holes), such as lakes, then the
SEGMENT variable has one value but the interior polygon is defined by separate
boundaries. To separate boundaries, a missing X and Y value must be inserted at
the separation point. For example, in the CANADA2 data set supplied with
SAS/GRAPH, the map data for the Northwest Territories (a unit area) use
enclosed polygons for two lakes.

1298 Creating Traditional Map Data Sets � Chapter 43

Creating a Unit Area that is a Single Polygon
This DATA step creates a SAS data set that contains coordinates for a unit area with

a single polygon, a square:

data square;
input id x y;
datalines;

1 0 0
1 0 40
1 40 40
1 40 0
;

This data set does not have a SEGMENT variable.

Creating a Unit Area that Contains Multiple Polygons
Use different values of the SEGMENT variable to create separate polygons within a

single unit area. For example, this DATA step assigns two values to the SEGMENT
variable. The resulting data set produces a single unit area that contains two polygons,
as shown in Figure 43.7 on page 1299:

data map;
input id $ segment x y;
datalines;

square 1 0 0
square 1 0 4
square 1 4 4
square 1 4 0
square 2 5 5
square 2 5 7
square 2 7 7
square 2 7 5
;

The GMAP Procedure � Creating Traditional Map Data Sets 1299

Figure 43.7 Single Unit Area with Two Segments (Polygons)

Creating a Unit Area that Contains Enclosed Polygons as Holes
Use separate boundaries to create an enclosed polygon (that is, a polygon that falls

within the primary polygon for a single segment). The boundary for the hole is
separated from the primary polygon boundary by inserting a missing value for X and Y.
For example, the data set that is created by this DATA step produces the map shown in
Figure 43.8 on page 1300:

data map;
input id $ segment x y;
datalines;

square 1 0 0
square 1 0 4
square 1 4 4
square 1 4 0
square 1 . .
square 1 1 1
square 1 2 2
square 1 3 1
;

1300 Creating Traditional Map Data Sets � Chapter 43

Figure 43.8 Single Unit Area with Hole

Note: A single map segment (a section of a unit area with a single value of the
SEGMENT variable) cannot contain multiple polygons without at least one observation
with missing values for X and Y. All segments within the map data sets that are
supplied by SAS/GRAPH contain a single polygon that can have one or more separate
boundaries, each separated by an observation with missing values for X and Y. �

Creating a Unit Area that Contains Another Area
Sometimes rather than a hole or lake, an enclosed polygon represents a separate

map area. For example, in MAPS.AFRICA, the country of Lesotho is surrounded by the
country of South Africa.

To create an enclosed map area:
1 Create an observation with missing values for X and Y for the surrounding area.
2 Define the boundary as part of the surrounding area by the using ID value for the

surround area.
3 Define the boundary as part of the enclosed area by using the ID value for the

enclosed area.

For example, this DATA step creates a data set that produces the map shown in
Figure 43.9 on page 1301:

data map;
input id $ segment x y;
datalines;

square 1 0 0
square 1 0 4
square 1 4 4
square 1 4 0
square 1 . .
square 1 1 1
square 1 2 2
square 1 3 1
triangle 1 1 1
triangle 1 2 2
triangle 1 3 1

The GMAP Procedure � Example 1: Producing a Simple Block Map 1301

;

Figure 43.9 Unit Area within a Unit Area

Examples

The following examples include features from one or more of the GMAP statements.

Note: When using procedures that support RUN-group processing, include a QUIT
statement after the last RUN statement. Using the QUIT statement is especially
important when the procedure is supposed to completely terminate within the
boundaries of an ODS destination (for example, ODS HTML; procedure-code; ODS
HTML CLOSE;). See “RUN-Group Processing” on page 56 for more information. �

Example 1: Producing a Simple Block Map

Procedure features:
ID statement

BLOCK statement option:

BLOCKSIZE=
RELZERO

Sample library member: GMPSIMPL

1302 Example 2: Specifying Response Levels in a Block Map � Chapter 43

This example produces a block map that shows population of countries in Asia. Since
the DISCRETE option is not used, the response variable is assumed to have a
continuous range of values. Because neither the LEVELS= nor MIDPOINTS= option is
used, the GMAP procedure selects a number of levels based on the number of map
areas and then calculates the appropriate response levels.

Set the graphics environment.

goptions reset=all border;

Define the title and footnote for the map.

title1 "Population in Asia";
footnote1 j=r "GMPSIMPL";

Produce the block map. The ID statement specifies the variable that is in both the map data
set and the response data set and defines map areas. The BLOCK statement specifies the
variable in the response data set that contains the response values for each of the map areas.
The BLOCKSIZE= option specifies the width of the blocks. The RELZERO option specifies that
the block values are relative to zero.

proc gmap data=sashelp.demographics(where=(cont=95))
map=maps.asia all;

id id;
block pop / blocksize=1 relzero;

run;
quit;

Example 2: Specifying Response Levels in a Block Map
Procedure features:

The GMAP Procedure � Example 2: Specifying Response Levels in a Block Map 1303

BLOCK statement options:
CEMPTY=
LEVELS=
SHAPE=
RELZERO

Sample library member: GMPLEVEL

This example uses the LEVELS= option to specify the number of response levels for
the blocks. The LEVELS= option tells GMAP how many response levels and the GMAP
procedure calculates the quantiles.

Set the graphics environment.

goptions reset=all border;

Define the title and footnote for the map.

title1 "Gross National Income per Capita";
title2 "South America";
footnote1 j=r "GMPLEVEL";

Produce the block map. The LEVELS= option specifies the number of response levels for the
graph. The SHAPE= option draws the blocks as prisms. The RELZERO option specifies that the
block values are relative to zero. The CEMPTY= option specifies the outline color for map areas
that have missing data.

proc gmap data=sashelp.demographics(where=(cont=92))
map=maps.samerica all;

id id;

1304 Example 3: Assigning a Format to the Response Variable � Chapter 43

block gni / levels=3 shape=prism
relzero cempty=gray;

run;
quit;

Example 3: Assigning a Format to the Response Variable

Procedure features:
BLOCK statement options:

LEGEND=
RELZERO

AREA statement options:
MIDPOINTS=

Other features:
FORMAT statement
LEGEND statement

Sample library member: GMPFORMT

This example creates formats for the response variables. The format for the POP
variable defines and labels ranges of values. These ranges appear in the legend and
make the map easier to understand.

The example also uses the AREA statement to patterns the map areas by region.

Set the graphics environment.

goptions reset=all border;

The GMAP Procedure � Example 3: Assigning a Format to the Response Variable 1305

Create a format for POP.POPFMT. defines the ranges of values for POP and labels the values.

proc format;
value popfmt low-1000000="0-1"

1000001-10000000="1-10"
10000001-100000000="10-100"
100000001-500000000="100-500"
500000001-high="over 500";

run;

Create a format for REGION.REGIONFMT. labels the values for REGION.

proc format;
value $ regionfmt "SEAR" = "South-East Asia"

"EUR" = "Europe"
"EMR" = "Eastern Mediterranean"
"WPR" = "Western Pacific";

run;

Define the title and footnote for the map.

title1 "Population Data for Asia (2005)";
footnote j=r "GMPFORMT";

Assign the legend label.

legend1 label=("Population (Millions)");

Produce the block maps. The FORMAT statements assign POPFMT. to the POP variable and
$REGIONFMT. to the REGION variable. The AREA statement assigns patterns to the map
areas according to the values of the REGION variable. The RELZERO option specifies that the
blocks values are relative to zero.

proc gmap data=sashelp.demographics(where=(cont=95))
map=maps.asia all;

format pop popfmt.;
format region $regionfmt.;
id id;
area region / midpoints="SEAR" "EUR" "EMR" "WPR";
block pop / levels=all

legend=legend1
relzero;

run;
quit;

1306 Example 4: Specifying the Statistic for the Response Variable � Chapter 43

Example 4: Specifying the Statistic for the Response Variable

Procedure features:
BLOCK statement options:

STATISTIC=
LEVELS=
RELZERO

Sample library member: GMPSTAT

This example specifies the statistic for the response variable that is displayed by the
block map. The STATISTIC= option specifies that the statistic is frequency rather than
the default statistic (sum).

Set the graphics environment.

goptions reset=all border;

Define the title and footnote for the map.

title1 "Number of ZIP Codes per State";
footnote j=r "GMPSTAT";

The GMAP Procedure � Example 5: Producing a Simple Choropleth Map 1307

Produce the block maps. The FORMAT statements assign POPFMT. to the POP variable and
$REGIONFMT. to the REGION variable. The AREA statement assigns patterns to the map
areas according to the values of the REGION variable. The RELZERO option specifies that the
blocks values are relative to zero.

proc gmap map=maps.us data=sashelp.zipcode all;
id state;
block zip / statistic=frequency

levels=5 relzero;
run;
quit;

Example 5: Producing a Simple Choropleth Map
Procedure features:

ID statement
CHORO statement option:

CDEFAULT=
Sample library member: GMPCHORO

This example produces a choropleth (two-dimensional) map that shows the
population of countries in Europe. Since the DISCRETE option is not used, the
response variable is assumed to have a continuous range of values. Because neither the
LEVELS= nor MIDPOINTS= options are used, the GMAP procedure selects a number
of levels based on the number of map areas and then calculates the appropriate
response levels. The legend shows the range of values for each level.

Set the graphics environment.

goptions reset=all border;

1308 Example 6: Labeling Provinces on a Map � Chapter 43

Define the title and footnote for the map.

title1 "Population in Europe";
footnote1 j=r "GMPCHORO";

Produce the choropleth map. The ID statement specifies the variable that is in both the map
data set and the response data set that defines map areas. CDEFAULT= specifies the color for
the map areas that have missing data. The WHERE= clause on the MAP= option excludes the
islands of Greenland and Svalbard, which have no data in DEMOGRAPHICS data set.

proc gmap map=maps.europe(where=(id ne 405 and id ne 845))
data=sashelp.demographics(where=(cont=93)) all;

id id;
choro pop / cdefault=yellow;

run;
quit;

Example 6: Labeling Provinces on a Map
Procedure features:

CHORO statement options:
ANNOTATE=
NOLEGEND

Other features:
Annotate Facility

Sample library member: GMPLABEL

The GMAP Procedure � Example 7: Producing a Simple Prism Map 1309

This example uses the Annotate facility to add labels to each area in a map of
Belarus. The CHORO statement assigns the Annotate data set to the map.

The %MAPLABEL annotate macro is used to create and position the map labels. For
more information about this macro, see “%MAPLABEL Macro” on page 747.

Set the graphics environment.

goptions reset=all border;

Define the title and footnote for the map.

title "Labeling Provinces with the MAPLABEL Macro";
footnote j=r "GMPLABEL";

Define pattern characteristics. PATTERN1 defines a single map pattern that is repeated for
each of the six map areas (provinces). The pattern is an empty fill with a blue border. The
VALUE= option defines a map/plot pattern. Specifying a color causes PATTERN1 to generate
only one pattern definition. The REPEAT= option specifies the number of times to repeat the
pattern definition.

pattern1 value=empty color=blue repeat=6;

Create the Annotate data set. The %ANNOMAC macro enables the annotate macros. The
%MAPLABEL annotate macro creates the annotate data set.

%annomac;
%maplabel (maps.belarus, maps.belarus2, work.labelout, idname, id, font=Arial Black,

color=crimson, size=4, hsys=3);

Produce the choropleth map. The NOLEGEND option suppresses the legend. The
ANNOTATE= option specifies the data set to annotate the map.

proc gmap map=maps.belarus data=maps.belarus;
id id;
choro id / nolegend annotate=labelout;

run;
quit;

Example 7: Producing a Simple Prism Map

Procedure features:
ID statement
PRISM statement option:

CDEFAULT=
RELZERO

Sample library member: GMPPRISM

1310 Example 7: Producing a Simple Prism Map � Chapter 43

This example produces a prism map of the population of countries in Africa. Since
the DISCRETE option is not used, the response variable is assumed to have a
continuous range of values. Because neither the LEVELS= nor MIDPOINTS= option is
used, the GMAP procedure selects a number of levels based on the number of map
areas and then calculates the appropriate response levels.

Since the XVIEW=, YVIEW=, and ZVIEW= options are not used, the default viewing
position, above and to the east and south of the center of the map, is used. Since the
XLIGHT= and YLIGHT= options are not used, none of the side polygons of the prisms
are shadowed. The light source is the same as the viewing position.

Set the graphics environment.

goptions reset=all border;

Define the title and footnote for the map.

title1 "Population in Africa";
footnote1 j=r "GMPPRISM";

Produce the prism map. The ID statement specifies the variable in the map data set and the
response data set that defines map areas. The CDEFAULT= option sets the color of map areas
that have missing data. The RELZERO option makes the prism heights relative to zero.

proc gmap data=sashelp.demographics(where=(cont=94))
map=maps.africa density=low all;

id id;
prism pop / cdefault=yellow relzero;

run;
quit;

The GMAP Procedure � Example 8: Specifying Midpoints in a Prism Map 1311

Example 8: Specifying Midpoints in a Prism Map

Procedure features:
PRISM statement options:

MIDPOINTS=
CDEFAULT=

Sample library member: GMPMIDPT

This example specifies a set of midpoints that are used to create the response levels.

Set the graphics environment.

goptions reset=all border;

Define the title for the map.

title1 "Adult Literacy Rate";

Produce the prism map. The MIDPOINTS= option specifies the response levels for the map.
The CDEFAULT= option sets the color of map areas that have missing data.

proc gmap data=sashelp.demographics(where=(cont=94))
map=maps.africa density=low all;

id id;
format adultliteracypct percentn7.2;
prism adultliteracypct / midpoints=10 to 90 by 20

1312 Example 9: Producing a Simple Surface Map � Chapter 43

cdefault=yellow;
run;
quit;

Example 9: Producing a Simple Surface Map

Procedure features:
SURFACE statement

Sample library member: GMPSURFA

This example produces a surface map that shows the annual population growth rate
of countries in Europe. Because the CONSTANT= and NLINES= options are not used,
the GMAP procedure draws a surface that consists of 50 lines and uses the default
decay function to calculate spike height and base width. And because the ROTATE=
and TILT= options are not used, the map is rotated 70 degrees around the Z axis and
tilted 70 degrees with respect to the X axis.

Set the graphics environment.

goptions reset=all border;

Define the title and footnote for the map.

title1 "Population Annual Growth Rate Percentage";
title2 "Europe (1995--2005)";
footnote1 j=r "GMPSURFA";

The GMAP Procedure � Example 10: Rotating and Tilting a Surface Map 1313

Produce the surface map. The ID statement specifies the variable in the map data set and
the response data set that defines the map areas.

proc gmap map=maps.europe data=sashelp.demographics;
id id;
surface popagr;

run;
quit;

Example 10: Rotating and Tilting a Surface Map

Procedure features:
SURFACE statement options:

CONSTANT=
NLINES=
ROTATE=
TILT=

Sample library member: GMPROSUR

This example tilts and rotates the surface map and uses more lines to draw the
surface.

Set the graphics environment.

goptions reset=all border;

1314 Example 11: Creating a Map Using the Feature Table � Chapter 43

Define the title and footnote for the map.

title1 "Population in Europe (2005)";
footnote1 j=r "GMPROSUR";

Produce the surface map. The CONSTANT= option specifies a value that is less than the
default value so the spikes are narrower at the base. The NLINES= option specifies the
maximum number of map lines, which gives the best map shape resolution. The ROTATE= and
TILT= options adjust the map orientation to make the crowded spikes in the northeast portion
of the map easier to distinguish.

proc gmap map=maps.europe data=sashelp.demographics;
id id;
surface pop / constant=4

nlines=100
rotate=40
tilt=60;

run;
quit;

Example 11: Creating a Map Using the Feature Table
Procedure Features:

ID statement
CHORO statement option:

DISCRETE
ODS Features:

ODS HTML statement:
BODY=

Other Features:
MERGE statement
GOPTIONS statement

Sample library member: GMPSPATL

When you use a feature table with the GMAP procedure, you must merge the feature
table with your response data set before generating a map, storing the combined data
in a new data set. On PROC GMAP, you use the DATA= option to name the combined
data set, and you use the ID statement to identify the variable that contains the spatial
information.

To illustrate the use of a feature table, assume you want to generate a map of the
United States. Rather than using the traditional map data set MAPS.US, you want to
use its corresponding feature table. To determine which feature table corresponds to a
traditional map data set, look in the MAPS.METAMAPS data set:

� The feature table MAPS.US2 corresponds to the traditional map data set
MAPS.US.

The GMAP Procedure � Example 11: Creating a Map Using the Feature Table 1315

� In MAPS.US2, the values of the variable _MAP_GEOMETRY_ encapsulate the
geometry object.

The sample program uses the following procedures and statements:
� PROC SORT sorts WORK.SITES by the values of variable STATE. This prepares

SITES for a merge with the feature table MAPS.US2. The variable STATE
identifies the map areas in both SITES and MAPS.US2.

� PROC SORT sorts the feature table MAPS.US2. The OUT= option specifies that
the sorted data be written to a new data set WORK.MYMAP.

� In the DATA step, the MERGE statement merges the feature table with the
response data. The combined data set is saved to a new data set named BOTH.
The data set BOTH is stored in WORK, a temporary library. To use the combined
data set in other SAS/GRAPH programs, you would need to save the merged data
set to a permanent library.

� On the PROC GMAP statement, the DATA= option points to the combined data
set, BOTH. The ID statement specifies _MAP_GEOMETRY_ as the variable that
contains the spatial data.

The following example creates the response data set SITES and merges it with the
feature table US2. It then uses the combined data set to generate a map.

Create the data set SITES with regional data. Sites contains a region number for each
state and the total number of hazardous waste sites in each state. The STFIPS function
converts the state postal codes to FIPS state codes.

data sites;
length stcode $ 2;

1316 Example 11: Creating a Map Using the Feature Table � Chapter 43

input region stcode $ sites @@;
state=stfips(stcode);
datalines;

6 AR 12 10 AK 7 4 AL 12 9 AZ 10
9 CA 90 8 CO 15 1 CT 15 3 DE 18
4 FL 52 4 GA 15 9 HI 4 7 IA 16
10 ID 8 5 IL 38 5 IN 30 7 KS 10
4 KY 16 6 LA 15 1 MA 30 3 MD 13
1 ME 12 5 MI 72 5 MN 30 7 MO 22
4 MS 1 8 MT 8 4 NC 22 8 ND 0
7 NE 10 1 NH 18 2 NJ 105 6 NM 9
9 NV 1 2 NY 78 5 OH 34 6 OK 10
10 OR 10 3 PA 100 4 PR 56 1 RI 12
4 SC 26 8 SD 2 4 TN 14 6 TX 26
8 UT 12 3 VA 25 1 VT 8 10 WA 49
5 WI 40 3 WV 6 8 WY 3
;
run;

Sort the response and the feature tables in the order of the BY variable. By default,
the first PROC SORT sorts the response data set created in the code above. Both sorted data
sets are stored in the SAS temporary library WORK. To enable the data sets to be merged, the
same BY variable is used to sort both the response and feature tables.

proc sort data=sites out=sites;
by state;

run;

proc sort data=maps.us2 out=mymap;
by state;

run;

Merge the data sets.

data both;
merge mymap sites;
by state;

run;

Specify the ACTIVEX driver and HTML output. To conserve system resources, ODS
LISTING CLOSE closes the Listing destination for procedure output. In the program’s ODS
HTML statement, the BODY= option names the file for storing HTML output.

goptions reset=all border;
ods listing close;
ods html body="hazmat_sites.html";

The GMAP Procedure � Example 11: Creating a Map Using the Feature Table 1317

Define the title and footnote for the map.

title1 "Region Map Created with a Feature Table";
footnote1 j=r "GMPSPATL";

Generate the choropleth map using the merged response data set and feature table.
The ID variable is the $GEOREF formatted variable that associates the feature table data with
its map data set (MAPS.US). DISCRETE specifies that each level of REGION is a separate
response level.

proc gmap data=both;
id _map_geometry_;
choro region/discrete;

run;
quit;

Close the HTML destination and open the listing destination. The HTML destination
must be closed before you can view the output with a browser. ODS LISTING opens the Listing
destination again so that the destination is again available for displaying output during this
SAS session.

ods html close;
ods listing;

1318

1319

C H A P T E R

44
The GOPTIONS Procedure

Overview 1319
Procedure Syntax 1320

PROC GOPTIONS Statement 1320

Examples 1322

Example 1: Displaying TITLE and FOOTNOTE Statements 1322

Example 2: Displaying Graphics Options without the Description 1323

Overview
The GOPTIONS procedure provides information about the values of graphics options

and the global statement definitions that are currently in effect in your session. The
values displayed are either the defaults of the current device driver or user-defined
values that have been assigned in your SAS session. You can use the GOPTIONS
procedure to do the following tasks:

� list the current values of all of the graphics options or of one specified option
� display the values of all of the AXIS, FOOTNOTE, LEGEND, PATTERN,

SYMBOL, and TITLE definitions that are currently in effect

Note: Do not confuse the GOPTIONS procedure with the GOPTIONS statement.
The GOPTIONS procedure lists the values that are defined in a GOPTIONS statement
as well as in any other global statement definitions. See “GOPTIONS Statement” on
page 220 for a list of the graphics options that you can set with the GOPTIONS
statement. See Chapter 15, “Graphics Options and Device Parameters Dictionary,” on
page 327 for a complete description of each graphics option. �

The list of graphics options displays in the SAS Log window and includes the names
of the options, the current values, and a brief description of each one. You can use
PROC GOPTIONS statement options to control what information is listed and where it
appears in the Log window. Output 44.1 contains part of a sample Log listing.

Note: The information returned by the GOPTIONS procedure does not reflect any
style settings that are in effect. �

1320 Procedure Syntax � Chapter 44

Output 44.1 Parital Output from the GOPTIONS Procedure

SAS/GRAPH software options and parameters
(executing in DMS Programming Environment environment)

NOADMGDF GDDM driver output an ADMGDF file
ASPECT= Aspect ratio (width/height) for software characters
NOAUTOCOPY Automatic hardcopy after display
NOAUTOFEED Automatic paper feed after plot
NOAUTOSIZE Change character cell size to preserve device

catalog rows and columns
BINDING=NOBINDING Binding edge
NOBORDER Draw a border around display or plot
CBACK= Background color
CBY= BY line color
CELL Hardware characters must be on cell boundaries
CHARACTERS Use hardware characters
CHARTYPE= Select hardware font
CIRCLEARC Use hardware circle/arc generator
NOCOLLATE Collate output
COLORS=() Default color list
CPATTERN= Default pattern color
CSYMBOL= Default symbol color
CTEXT= Default text color
CTITLE= Default title, footnote and note color
DASH Use hardware dashed line generator
DASHSCALE= Dash pattern scale factor
DELAY= Animation delay time in milliseconds
DEVADDR= IBM Device address, qname, or node name
DEVICE= Default device driver
DEVMAP=DEFAULT Output character map for hardware text
DISPLAY Display graph on device
DISPOSAL=NONE Image animation disposal method
DRVINIT= Host command executed before driver initialization
DRVTERM= Host command executed after driver termination
NODUPLEX Duplex printing
NOERASE Erase graph upon completion
FASTTEXT Use quicker, less precise, integer font rendering

routines; generally unsuitable for multiple device
or templated replay situations.

Note: All of the graphics options that are displayed by the GOPTIONS procedure
are described in Chapter 15, “Graphics Options and Device Parameters Dictionary,” on
page 327. �

Procedure Syntax
PROC GOPTIONS <option(s)>;

PROC GOPTIONS Statement
Lists the graphics options, and their values and descriptions in the Log window. Can also list the
currently defined global statements. By default, each listed item is displayed on a separate line.

Syntax
PROC GOPTIONS <option(s)>;

option(s) can be one or more options from the following categories:

The GOPTIONS Procedure � PROC GOPTIONS Statement 1321

� item request options
AXIS
FOOTNOTE
LEGEND
OPTION=graphics-option

PATTERN
SYMBOL
TITLE

� listing format options
CENTIMETERS
NOLIST
NOLOG
SHORT

Options
You can specify as many options as you want and list them in any order.

AXIS
requests a list of all current AXIS definitions. AXIS also lists the current values for
all graphics options, unless you use the NOLIST option. If you have not defined any
AXIS statements, the GOPTIONS procedure issues a message.
Alias: A

CENTIMETERS
displays the values of the HORIGIN=, HSIZE=, PAPERFEED=, PAPERLIMIT=,
VORIGIN=, and VSIZE= graphics options in units of centimeters (CM). These
graphics options use units of IN or CM only, and their values are always stored as
inches even if you specify CM. Therefore, the GOPTIONS procedure displays these
values in inches, unless you specify the CENTIMETERS option.

Note: The CENTIMETERS option does not affect the graphics options that can
use unit specifications of CELLS, CM, IN, PCT, and PT. �
Alias: CM

FOOTNOTE
requests a list of all of the current FOOTNOTE and TITLE definitions. FOOTNOTE
also lists the current values for all of the graphics options, unless you use the
NOLIST option. If you have not defined any FOOTNOTE or TITLE statements, the
GOPTIONS procedure issues a message.
Alias: F
Featured in: Example 1 on page 1322

LEGEND
requests a list of all of the current LEGEND definitions. LEGEND lists the current
values for all of the graphics options, unless you use the NOLIST option. If you have
not defined any LEGEND statements, the GOPTIONS procedure issues a message.
Alias: L

NOLIST
suppresses the display of graphics options. Use the NOLIST option in conjunction
with the appropriate statement request option when you want to list only the current
AXIS, FOOTNOTE, LEGEND, PATTERN, SYMBOL, or TITLE definitions.

1322 Examples � Chapter 44

Alias: N
Featured in: Example 1 on page 1322

NOLOG
displays the output in the OUTPUT window instead of the Log window.

OPTION=graphics-option
requests information on the specified graphics option. For these options, requesting
the information on one option also displays the value of its corresponding option, as
follows:

� HSIZE= and VSIZE=
� HPOS= and VPOS=
� XMAX= and YMAX=
� XPIXELS= and YPIXELS=

PATTERN
requests a list of all of the current PATTERN definitions. The PATTERN option lists
the current values for all of the graphics options unless you use the NOLIST option.
If you have not defined any PATTERN statements, the GOPTIONS procedure issues
a message.
Alias: P

SHORT
suppresses the descriptions of the graphics options and displays the graphics options
values in an alphabetical list in paragraph form.
Featured in: Example 2 on page 1323

SYMBOL
requests a list of all of the current SYMBOL definitions. The SYMBOL option lists
the current values for all of the graphics options, unless you use the NOLIST option.
If you have not defined any SYMBOL statements, the GOPTIONS procedure issues a
message.
Alias: S

TITLE
requests a list of all of the current TITLE and FOOTNOTE definitions. The TITLE
option lists the current values for all of the graphics options, unless you use the
NOLIST option. If you have not defined any FOOTNOTE or TITLE statements, the
GOPTIONS procedure issues messages.
Alias: T

Examples

Example 1: Displaying TITLE and FOOTNOTE Statements

Procedure features:
PROC GOPTIONS statement:

FOOTNOTE
NOLIST

Sample library member: GOPTIFT

The GOPTIONS Procedure � Example 2: Displaying Graphics Options without the Description 1323

This example uses the FOOTNOTE option to display the current definitions of both
the FOOTNOTE and TITLE statements. It also uses the NOLIST option to suppress the
list of graphics options. Output 44.2 shows the listing that appears in the LOG window.

Output 44.2 Using the NOLIST Option (GOPTIFT)

TITLE1 HEIGHT=6 COLOR=BLUE FONT=SWISSB "Production Quality" ;
TITLE2 HEIGHT=4 COLOR=BLUE FONT=SWISSB "January through June";

FOOTNOTE1 HEIGHT=3 COLOR=GREEN FONT=SWISS "Data from SASDATA.QUALITY" ;

FOOTNOTE2 HEIGHT=3 COLOR=GREEN FONT=SWISS "* denotes approximations" ;

Clear all global statements.

goptions reset=all;

Define titles and footnotes.

title1 h=6 c=blue f=swissb "Production Quality";
title2 h=4 c=blue f=swissb "January through June";
footnote1 h=3 c=green f=swiss "Data from SASDATA.QUALITY";
footnote2 h=3 c=green f=swiss "* denotes approximations";

Produce the listing. The NOLIST and FOOTNOTE options control the information that
appears in the Log window.

proc goptions nolist footnote;
run;

Example 2: Displaying Graphics Options without the Description

Procedure features:
PROC GOPTIONS statement:

SHORT

Sample library member: GOPSHORT

This example uses the SHORT option to display only the values of graphics options
without the description of each graphics option. Output 44.3 shows the listing that
appears in the Log window.

1324 Example 2: Displaying Graphics Options without the Description � Chapter 44

Output 44.3 Using the SHORT Option (GOPSHORT)

SAS/GRAPH software options and parameters

(executing in DMS Process environment)

NOACCESSIBLE NOADMGDF ALTDESC ASPECT= NOAUTOCOPY NOAUTOFEED AUTOSIZE= BINDING=DEFAULTEDGE

NOBORDER CBACK= CBY= CELL CHARACTERS CHARTYPE= CIRCLEARC NOCOLLATE COLORS=() CPATTERN= CSYMBOL=

CTEXT= CTITLE= DASH DASHSCALE= DELAY= DEVADDR= DEVICE= DEVMAP=DEFAULT DISPLAY DISPOSAL=NONE

DRVINIT= DRVTERM= NODUPLEX NOERASE EXTENSION= FASTTEXT FBY= FCACHE=3 FILECLOSE= FILEONLY FILL

FILLINC= FONTRES=NORMAL FTEXT= FTITLE= FTRACK=TIGHT GACCESS= GCLASS=G GCOPIES=(0, 20)

GDDMCOPY=FSCOPY GDDMNICKNAME= GDDMTOKEN= GDEST=LOCAL GEND= GEPILOG= GFORMS= GOUTMODE=APPEND

GPROLOG= GPROTOCOL= GRAPHRC GSFLEN= GSFMODE=PORT GSFNAME= NOGSFPROMPT GSIZE= GSTART= GUNIT=CELLS

GWAIT= GWRITER=SASWTR HANDSHAKE= HBY= HORIGIN= HPOS= HSIZE= HTEXT= HTITLE= IBACK= IMAGEPRINT

IMAGESTYLE=TILE INTERPOL= ITERATION= NONINTERLACED KEYMAP=DEFAULT LFACTOR=

OFFSHADOW=(0.0625 in., -0.0625 in.) PAPERDEST= PAPERFEED= PAPERLIMIT= PAPERSIZE= PAPERSOURCE=

PAPERTYPE= PENMOUNTS= PENSORT PIEFILL NOPCLIP POLYGONCLIP POLYGONFILL POSTGEPILOG= POSTGRAPH=

POSTGPROLOG= PPDFILE= PREGEPILOG= PREGRAPH= PREGPROLOG= PROMPT PROMPTCHARS=’000A010D05000000’X

RENDER=MEMORY RENDERLIB=WORK REPAINT= NOREVERSE NOROTATE SIMFONT= SPEED= NOSWAP

SWFONTRENDER=DEFAULT SYMBOL TARGETDEVICE= NOTRANSPARENCY TRANTAB= UCC= NOUSERINPUT NOV5COMP

NOV6COMP VORIGIN= VPOS= VSIZE= XMAX= XPIXELS= YMAX= YPIXELS=

Set the graphics environment. The values of the graphics options specified in this statement
appear in the Log listing.

goptions reset=all;

Produce the listing. The SHORT option suppresses the display of the description of each
graphics option.

proc goptions short;
run;

1325

C H A P T E R

45
The GPLOT Procedure

Overview 1325
About Plots of Two Variables 1326

About Plots with a Classification Variable 1327

About Bubble Plots 1327

About Plots with Two Vertical Axes 1328

About Interpolation Methods 1329
Concepts 1329

Parts of a Plot 1329

About the Input Data Set 1331

Missing Values 1331

Values Out of Range 1331

Sorted Data 1331
Logarithmic Axes 1331

Procedure Syntax 1332

PROC GPLOT Statement 1332

BUBBLE Statement 1333

BUBBLE2 Statement 1343
PLOT Statement 1347

PLOT2 Statement 1361

Examples 1366

Example 1: Generating a Simple Bubble Plot 1367

Example 2: Labeling and Sizing Plot Bubbles 1368
Example 3: Adding a Right Vertical Axis 1370

Example 4: Plotting Two Variables 1372

Example 5: Connecting Plot Data Points 1375

Example 6: Generating an Overlay Plot 1377

Example 7: Filling Areas in an Overlay Plot 1380

Example 8: Plotting Three Variables 1383
Example 9: Plotting with Different Scales of Values 1386

Example 10: Creating Plots with Drill-down Functionality for the Web 1389

Overview

The GPLOT procedure plots the values of two or more variables on a set of
coordinate axes (X and Y). The coordinates of each point on the plot correspond to two
variable values in an observation of the input data set. The procedure can also generate
a separate plot for each value of a third (classification) variable. It can also generate
bubble plots in which circles of varying proportions representing the values of a third
variable are drawn at the data points.

1326 About Plots of Two Variables � Chapter 45

The procedure produces a variety of two-dimensional graphs including the following
plots:

� simple scatter plots
� overlay plots in which multiple sets of data points display on one set of axes
� plots against a second vertical axis
� bubble plots
� logarithmic plots (controlled by the AXIS statement)

In conjunction with the SYMBOL statement, the GPLOT procedure can produce join
plots, high-low charts, needle plots, and plots with simple or spline-interpolated lines.
The SYMBOL statement can also display regression lines on scatter plots.

The GPLOT procedure is useful for the following tasks:
� displaying a long series of data, showing trends and patterns
� interpolating between data points
� extrapolating beyond existing data with the display of regression lines and

confidence limits.

About Plots of Two Variables
Plots of two variables display the values of two variables as data points on one

horizontal axis (X) and one vertical axis (Y). Each pair of X and Y values forms a data
point.

The following figure shows a simple scatter plot that plots the values of the variable
HEIGHT on the vertical axis and the variable WEIGHT on the horizontal axis. By
default, the PLOT statement scales the axes to include the maximum and minimum
data values and displays a symbol at each data point. It labels each axis with the name
of its variable or an associated label and displays the value of each major tick mark.

Figure 45.1 Scatter Plot of Two Variables (GPLVRBL1(a))

The program for this plot is in Example 4 on page 1372. For more information on
producing scatter plots, see “PLOT Statement” on page 1347.

The GPLOT Procedure � About Bubble Plots 1327

You can also overlay two or more plots (multiple sets of data points) on a single set of
axes and you can apply a variety of interpolation techniques to these plots. See “About
Interpolation Methods” on page 1329.

About Plots with a Classification Variable
Plots that use a classification variable produce a separate set of data points for each

unique value of the classification variable and display all sets of data points on one set
of axes.

The following figure shows multiple line plots that compare yearly temperature
trends for three cities. The legend explains the values of the classification variable,
CITY.

Figure 45.2 Plot of Three Variables with Legend (GPLVRBL2(a))

By default, plots with a classification variable generate a legend. In the code that
generates the plot for Example 8 on page 1383, a SYMBOL statement connects the data
points and specifies the plot symbol that is used for each value of the classification
variable (CITY). For more information on how to produce plots with a classification
variable, see “PLOT Statement” on page 1347.

About Bubble Plots
Bubble plots represent the values of three variables by drawing circles of varying

sizes at points that are plotted on the vertical and horizontal axes. Two of the variables
determine the location of the data points, while the values of the third variable control
the size of the circles.

1328 About Plots with Two Vertical Axes � Chapter 45

Figure 45.3 on page 1328 shows a bubble plot in which each bubble represents a
category of engineer that is shown on the horizontal axis. The location of each bubble in
relation to the vertical axis is determined by the average salary for the category. The
size of each bubble represents the number of engineers in the category relative to the
total number of engineers in the data.

By default, the BUBBLE statement scales the axes to include the maximum and
minimum data values and draws a circle at each data point. It labels each axis with the
name of its variable or an associated label and displays the value of each major tick
mark.

Figure 45.3 Bubble Plot (GPLBUBL1)

The program for this plot is in Example 1 on page 1367. For more information on
producing bubble plots, see “BUBBLE Statement” on page 1333.

About Plots with Two Vertical Axes
Plots with two vertical axes have a right vertical axis that can do the following:
� display the same variable values as the left axis
� display left axis values in a different scale
� plot a second response (Y) variable, thereby producing one or more overlay plots

In the following figure, the right axis displays the values of the vertical coordinates
in a different scale from the scale that is used for the left axis.

The GPLOT Procedure � Parts of a Plot 1329

Figure 45.4 Plot with a Right Vertical Axis (GPLSCVL1)

The program for this plot is in Example 9 on page 1386. For more information on
how to produce plots with a right vertical axis, see “PLOT2 Statement” on page 1361
and “BUBBLE2 Statement” on page 1343.

About Interpolation Methods
In addition to these graphs, you can produce other types of plots such as box plots or

high-low-close charts by specifying various interpolation methods with the SYMBOL
statement. Use the SYMBOL statement to do the following tasks:

� connect the data points with straight lines

� specify regression analysis to fit a line to the points and can display lines for
confidence limits

� connect the data points to the zero line on the vertical axis

� display the minimum and maximum values of Y at each X value and mark the
mean value, display standard deviations that connect the data points with lines or
bars, generate box plots, or plot high-low-close stock market data

� specify that a pattern fills the polygon that is defined by data points

� smooth plot lines with spline interpolation

� use a step function to connect the data points

“SYMBOL Statement” on page 252 describes all interpolation methods.

Concepts

Parts of a Plot
Some terms used with GPLOT procedure are illustrated in Figure 45.5 on page 1330

and Figure 45.6 on page 1330.

1330 Parts of a Plot � Chapter 45

Figure 45.5 GPLOT Procedure Terms

vertical axis
label

(y variable)

horizontal axis label
(x variable)

frame

axis area

reference line

plot line

plot symbol

minor tick
marks

major tick
mark values

major tick
marks

Figure 45.6 Additional GPLOT Procedure Terms

area 3

area 2

area 1

offsetoffset

The GPLOT Procedure � About the Input Data Set 1331

About the Input Data Set
The input data set that is used by the GPLOT procedure must contain at least one

variable to plot on the horizontal axis and one variable to plot on the vertical axis.
Typically, the horizontal axis shows an independent variable (time, for example), and
the vertical axis shows a dependent variable (temperature, for example). With the
exception of the Java and ActiveX device drivers, variables can be either character or
numeric. For the ActiveX and Java device drivers, the horizontal axis can contain
either character or numeric values, but the vertical axis can contain only numeric
variables. Graphs are automatically scaled to the values of the character data or to
include the values of numeric data, but you can control scaling with procedure options
or with associated AXIS statements.

Missing Values
If the value of either of the plot variables is missing, the GPLOT procedure does not

include the observation in the plot. If you specify interpolation with a SYMBOL
definition, the plot is not broken at the missing value. To break the plot line or area fill
at the missing value, use the PLOT statement’s SKIPMISS option. The SKIPMISS
option is enabled only for JOIN interpolations.

Values Out of Range
Data values can be excluded from a graph by restricting the range of axis values

with the VAXIS= or HAXIS= options or with the ORDER= option in an AXIS statement.
When an observation contains a value outside of the specified axis range, the GPLOT
procedure excludes the observation from the plot and issues a message to the log.

If you specify interpolation with a SYMBOL definition, by default values outside of
the axis range are excluded from interpolation calculations and as a result might
change interpolated values for the plot. Values that are omitted from interpolation
calculations have a particularly noticeable effect on the high-low interpolation methods:
HILO, STD, and BOX. In addition, regression lines and confidence limits represent only
part of the original data.

To specify that values out of range are included in the interpolation calculations, use
the MODE= option in a SYMBOL statement. When MODE=INCLUDE, values that fall
outside of the axis range are included in interpolation calculations but excluded from
the plot. The default (MODE=EXCLUDE) omits observations that are outside of the
axis range from interpolation calculations. See the MODE= option of the SYMBOL
statement in “SYMBOL Statement” on page 252 for details.

Sorted Data
Data points are plotted in the order in which the observations are read from the data

set. Therefore, if you use any type of interpolation that generates a line, sort your data
by the horizontal axis variable.

Logarithmic Axes
If your data contain logarithmic values or if the data values vary over a wide range

or contain large values, you might want to specify a logarithmic axis for the horizontal
or vertical axis. Logarithmic axes can be specified with the AXIS statement options
LOGBASE= and LOGSTYLE=. See “AXIS Statement” on page 198 for a complete
discussion.

1332 Procedure Syntax � Chapter 45

Procedure Syntax
Requirements: At least one PLOT or BUBBLE statement is required. A PLOT2 or
BUBBLE2 statement can be used in conjunction with a PLOT or BUBBLE statement.
Global statements: AXIS, FOOTNOTE, LEGEND, PATTERN, TITLE
Reminder: The procedure can include BY, FORMAT, LABEL, WHERE, and NOTE
statements.
Supports:

RUN-group processing

PROC GPLOT <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=< libref.>output-catalog>
<IMAGEMAP=output-data-set >
<UNIFORM>;

BUBBLE plot-request(s) </option(s)>;
BUBBLE2 plot-request(s) </option(s)>;

PLOT plot-request(s) </option(s)>;
PLOT2 plot-request(s) </option(s)>;

PROC GPLOT Statement

Identifies the data set that contains the plot variables. Can specify uniform axis scaling for all
graphs as well as an annotate data set and an output catalog.

Requirements: An input data set is required.

Syntax

PROC GPLOT <DATA=input-data-set>
<ANNOTATE=Annotate-data-set>
<GOUT=< libref.>output-catalog>
<IMAGEMAP=output-data-set >
<UNIFORM>;

Options

ANNOTATE=Annotate-data-set
ANNO=Annotate-data-set

specifies a data set to annotate all graphs that are produced by the GPLOT
procedure. To annotate individual graphs created using a By statement or multiple
action statements, use ANNOTATE= in the action statement.
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

The GPLOT Procedure � BUBBLE Statement 1333

DATA=input-data-set
specifies the SAS data set that contains the variables to plot. By default, the
procedure uses the most recently created SAS data set.

See also: “SAS Data Sets” on page 54 and “About the Input Data Set” on page 1331.

GOUT=< libref. >output-catalog
specifies the SAS catalog in which to save the graphics output that is produced by
the GPLOT procedure. If you omit the libref, SAS/GRAPH looks for the catalog in
the temporary library called WORK and creates the catalog if it does not exist.

See also: “Specifying the Catalog Name and Entry Name for Your GRSEGs” on
page 100.

IMAGEMAP=output-data-set
creates a temporary SAS data set that is used to generate an image map in an
HTML output file. The IMAGEMAP= option can be used only if the PLOT or PLOT2
statements are used, and the PLOT or PLOT2 statement must use the HTML=
option or the HTML_LEGEND= option or both.

If the HTML= option is used in the PLOT or PLOT2 statement, the plot points are
defined as hot zones, unless the AREA= option is also used. In that case there are
not plot points and the areas between plot lines are defined as hot zones. If the
HTML_LEGEND= option is used, the legend symbols are defined as hot zones.
Information for the links is stored in the variables referenced by the HTML= or
HTML_LEGEND= options or both.

The %IMAGEMAP macro generates the image map in the HTML output file. The
macro takes two arguments, the name of the image map data set and the name or
fileref of the HTML output file, as shown in the following example:

%imagemap(imgmapds, myimgmap.html);

UNIFORM
specifies that the same axis scaling is used for all graphs that are produced by the
procedure. By default, the range of axis values for each axis is based on the minimum
and maximum values in the data and, therefore, can vary from graph to graph and
among BY groups. Using the UNIFORM option forces the value range for each axis to
be the same for all graphs. Thus, if the procedure produces multiple graphs with both
left and right vertical axes, the UNIFORM option scales all of the left axes the same
and all of the right axes the same, based on the minimum and maximum data values.

In addition, UNIFORM forces the assignment of SYMBOL statements for the
category variable without regard to the BY-group variable. If a legend is generated,
UNIFORM makes the legend the same across graphs.

Restriction: Partially supported by Java and ActiveX

BUBBLE Statement

Creates bubble plots in which a third variable is plotted against two variables represented by the
horizontal and vertical axes; the value of the third variable controls the size of the bubble.

Requirements: At least one plot request is required.

Global statements: AXIS, FOOTNOTE, TITLE

1334 BUBBLE Statement � Chapter 45

Description
The BUBBLE statement specifies one or more plot requests that name the horizontal
and left vertical axis variables and the variable that controls the size of the bubbles.
This statement automatically does the following:

� centers each circle at a data point that is determined by the values of the vertical
and horizontal axes variables

� scales the axes to include the maximum and minimum data values
� labels each axis with the name of its variable or associated label
� displays each major tick mark value
� draws circles for values that are located within the axes

You can use statement options to control axis scaling, draw reference lines, modify
the appearance of axes, control the display of the bubbles, specify a backplane color or
image, and specify annotation.

In addition, you can use global statements to modify axes (AXIS statement), and add
text to the graph (TITLE, NOTE, and FOOTNOTE statements). You can also use the
Annotate data set to enhance the plot.

Syntax

BUBBLE plot-request(s) </option(s)>;

option(s) can be one or more options from any or all of the following categories:
� bubble appearance options:

BCOLOR=bubble-color
BFILL=SOLID | GRADIENT
BFONT=font
BLABEL
BSCALE=AREA | RADIUS
BSIZE=multiplier

� plot appearance options:
ANNOTATE=Annotate-data-set
CAXIS=axis-color
CFRAME=background-color
CTEXT=text-color
FRAME | NOFRAME
FRONTREF
GRID
IFRAME= fileref | ’external-file’
IMAGESTYLE = TILE | FIT
NOAXIS

� horizontal axis options:
AUTOHREF
CAUTOHREF=reference-line-color
CHREF=reference-line-color | (reference-line-color) | reference-line-color-list
HAXIS=value-list | AXIS<1...99>
HMINOR=number-of-minor-ticks
HREF=value-list
HREVERSE

The GPLOT Procedure � BUBBLE Statement 1335

HZERO
LAUTOHREF=reference-line-type
LHREF=reference-line-type | (reference-line-type) | reference-line-type-list

� vertical axis options:
AUTOVREF
CAUTOVREF=reference-line-color
CVREF=reference-line-color | (reference-line-color) | reference-line-color-list
LAUTOVREF=reference-line-type
LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
VAXIS=value-list | AXIS<1...99>
VMINOR=number-of-minor-ticks
VREF=value-list
VREVERSE
VZERO
WAUTOHREF=
WHREF=

� catalog entry description options:
DESCRIPTION=’entry-description’
NAME=’entry-name’

Required Arguments

plot-request(s)
each specifies the variables to plot and produces a separate graph. All variables must
be in the input data set. Multiple plot requests are separated with blanks. A plot
request must have this form:

y-variable*x-variable=bubble-size
plots the values of two variables and draws a circle (bubble) at each data point.
The value of the third variable determines the size of the bubble.

y-variable
variable plotted on the left vertical axis.

x-variable
variable plotted on the horizontal axis.

bubble-size
variable that specifies the size of the bubbles. Bubble-size must be numeric. If
the value of bubble-size is positive, bubbles are drawn with a solid line; if it is
negative, bubbles are drawn with a dashed line.

Note: If you specify the JAVA, JAVAMETA, JAVAIMG, ACTIVEX, or ACTXIMG
device drivers, then either the x-variable or the y-variable must be numeric.

If you specify the x-variable as a character and the y-variable as numeric,
SAS/GRAPH converts the x-axis to display the character values and the y-axis to
display the numeric values. �

Options
Options in a BUBBLE statement affect all graphs that are produced by that

statement. You can specify as many options as you want and list them in any order.

1336 BUBBLE Statement � Chapter 45

ANNOTATE=Annotate-data-set
specifies a data set to annotate plots that are produced by the BUBBLE statement.

Alias: ANNO=

See also: Chapter 29, “Using Annotate Data Sets,” on page 641

AUTOHREF
draws reference lines at all major tick marks on the horizontal axis. LAUTOHREF=,
CAUTOHREF=, and WAUTOHREF= options can be used to change the line types,
colors, and widths of these reference lines. To specify labels for these reference lines,
use the HAXIS= option.

AUTOVREF
draws reference lines at all major tick marks on the vertical axis. LAUTOVREF=,
CAUTOVREF=, and WAUTOVREF= options can be used to change the line types,
colors, and widths of these reference lines. To specify labels for these reference lines,
use the VAXIS= option.

BCOLOR=bubble-color
specifies the color for the bubbles. If you do not specify the BCOLOR= option, then
the bubble color becomes the color of the default style (GSTYLE) or the color
specified by the current ODS style (if used).

Featured in: Example 2 on page 1368 and Example 3 on page 1370.

Style reference: ContrastColor attribute of the GraphOutline, GraphData1, and
TwoColorAltRamp elements.

BFILL=SOLID|GRADIENT
enables you to generate solid or gradient-filled bubbles. By default, the JAVA and
ActiveX devices create solid bubbles.

BFILL=SOLID fills the bubbles with the color specified by the BCOLOR= option.
If the BFILL option is not specified, then the color is specified by the current
style. If you are using specific ODS style, the color comes from the contrast
color attribute within the GraphData1 style element.

BFILL=GRADIENT starts with the current background color and gradually
transitions to the color specified with the BCOLOR= option or the color of the
current style. If you are using an ODS style, the colors are controlled by the
startcolor and endcolor attributes of the TwoColorAltRamp style element.

Note: The SAS/GRAPH ActiveX control displays negative values as empty
circles. �

Restriction: Not supported by Java and ActiveX

BFONT=font
specifies the font to use for bubble labels. See Chapter 11, “Specifying Fonts in SAS/
GRAPH Programs,” on page 155 for details on how to specify font. If you omit the
BFONT= option, a font specification is searched for in this order:

1 the FTEXT= option in a GOPTIONS statement

2 the font specified by the current style

3 the default hardware font

Featured in: Example 2 on page 1368.

Style reference: Font attribute of the GraphValueText element

Restriction: Not supported by Java and ActiveX

See also: The BLABEL option for information on the location and color of labels

The GPLOT Procedure � BUBBLE Statement 1337

BLABEL
labels the bubbles with the values of the third variable. If the variable has a format,
the formatted value is used. By default, bubbles are not labeled.

The procedure normally places labels directly outside of the circle at 315 degrees
rotation. If a label in this position does not fit in the axis area, other 45-degree
placements (that is, 45, 135, and 225 degrees) are attempted. If the label cannot be
placed at any of the positions (45, 135, 225, or 315 degrees) without being clipped,
the label is omitted. However, labels can collide with other bubbles or previously
placed labels.

Labels display in the color specified by the CTEXT= option. If you omit the
CTEXT=option, the default is the color of the current style.
Featured in: Example 2 on page 1368

BSCALE=AREA | RADIUS
specifies whether the bubble-scaling proportion is based on the area of the circles or
the radius measure. By default, BSCALE=AREA.

The value that is assigned to the BSCALE= option affects how large the bubbles
appear in relation to each other. For example, suppose the third variable value is
twice as big for one bubble as it is for another. If BSCALE=AREA, the area of the
larger bubble is twice the area of the smaller bubble. If BSCALE=RADIUS, the
radius of the larger bubble is twice the radius of the smaller bubble and the larger
bubble has more than twice the area of the smaller bubble.
Restriction: Not supported by Java and ActiveX

BSIZE=multiplier
specifies an overall scaling factor for the bubbles so that you can increase or decrease
the size of all bubbles by this factor. By default, BSIZE=5. If you specify BSIZE=0,
then the default size is used instead.

In Web output, the Java applets and the ActiveX Control override the default
value. To prevent this override, specify a value for the BSIZE= option, rather than
relying on the default value.
Featured in: Example 2 on page 1368
Restriction: Partially supported by Java and ActiveX

CAUTOHREF=reference-line-color
specifies colors for reference lines drawn at major tick marks on the horizontal axis,
as specified by the AUTOHREF option. The default color is either the value of the
CAXIS= option or the first color in the color list.
Style reference: Color attribute of the GraphGridLines element

CAUTOVREF=reference-line-color
specifies the color of reference lines drawn at major tick marks on the vertical axis,
as determined by the AUTOVREF option. If you do not specify the CAUTOREF
option, the default color is the value of the CAXIS= option. If neither option is
specified, the default color is retrieved from the current style or from the device’s
color list if the NOGSTYLE option is specified.
Style reference: Color attribute of the GraphGridLines element.

CAXIS=axis-color
specifies the color for the axis line and all major and minor tick marks. By default,
the procedure uses the color of the current style.

The CAXIS= option is overridden by the COLOR= option in an AXIS definition.
The COLOR= option in an AXIS definition is overridden by the COLOR= suboption
of the MAJOR= and MINOR= options in an AXIS definition.
Alias: CA=
Style reference: Color attribute of the GraphAxisLines attribute

1338 BUBBLE Statement � Chapter 45

CFRAME=background-color
fills the axis area with the specified color. If the FRAME option is also in effect, the
procedure determines the color of the frame according to the precedence list given for
the FRAME option description. If the IFRAME= option is in effect, the specified
image fills the axis area instead of the specified color.
Style reference: Color attribute of the GraphWalls element

CHREF=reference-line-color | (reference-line-color)
specifies the color of reference lines drawn perpendicular to the horizontal axis. This
option affects reference lines drawn with the AUTOHREF, HREF, and GRID options.
Specifying a single color without parentheses applies that color to all reference lines.
The CAUTOHREF= option overrides the CHREF= option for lines drawn with the
AUTOHREF option. Specifying a single color in parentheses applies that color only to
the first reference line drawn with the HREF= option. Specifying a color list applies
colors sequentially to successive reference lines drawn with the HREF= option. The
syntax of the color list is of the form (color1 color2... colorN). If you do not specify the
CHREF= option, the GPLOT procedure uses the color specified by the CAXIS=
option. If neither option is specified, the default color is retrieved from the current
style or from the first color in the color list if the NOGSTYLE option is specified.
Alias: CH=
Style reference: Color attribute of the GraphReference element

CTEXT=text-color
specifies the color for all text on the axes, including tick mark values, axis labels, and
bubble labels.

The GPLOT procedure searches for a color specification in this order:
1 colors specified for labels and values on assigned AXIS and LEGEND

statements, which override the CTEXT= option specified in the PLOT statement.
2 the color specified by the CTEXT= option in the PLOT statement.
3 the color specified by the CTEXT= option in the GOPTIONS statement.
4 the color specified in the current style, or, if the NOGSTYLE option is specified,

then the default color is black for the Java and ActiveX devices and the first
color in the color list for all other devices.

The COLOR= suboption of a LABEL= option in an AXIS definition overrides the
CTEXT= option and determines the color of the axis label. Likewise, the COLOR=
suboption of a VALUE= option in an AXIS definition overrides the CTEXT= option
and determines the color of the tick marks.

or VALUE= option in an AXIS definition, then that COLOR= suboption determines
the color of the axis label or the color of the tick mark values, respectively.

Alias: C=
Style reference: Color attributes of the GraphValueText and the GraphLabelText

elements

CVREF=reference-line-color | (reference-line-color) | reference-line-color-list
specifies the color of reference lines drawn perpendicular to the vertical axis. This
option affects reference lines drawn with the AUTOVREF, VREF, and GRID options.
Specifying a single color without parentheses applies that color to all reference lines.
The CAUTOVREF= option overrides the CVREF= option for lines drawn with the
AUTOVREF option. Specifying a single color in parentheses applies that color only to
the first reference line drawn with the VREF= option. Specifying a color list applies
colors sequentially to successive reference lines drawn with the VREF= option. The
syntax of the color list is of the form (color1 color2... colorN). If you do not specify the
CVREF= option, the GPLOT procedure uses the color specified by the CAXIS=

The GPLOT Procedure � BUBBLE Statement 1339

option. If neither option is specified, the default color is retrieved from the current
style or from the first color in the color list if the NOGSTYLE option is specified.
Alias: CV=
Style reference: Color attribute of the GraphGridLines element.

DATAORDER=’entry-description’
plots character of midpoint-type data in data order instead of the default alphabetical
order.
Restriction: Supported by Java and ActiveX only

DESCRIPTION=’description’
specifies the description of the catalog entry for the plot. The maximum length for
entry-description is 256 characters. The description does not appear on the plot. By
default, the procedure assigns a description of the form BUBBLE OF
variable*variable=variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. For more information, refer to the discussion of “Substituting BY
Line Values in a Text String” on page 294. The 256-character limit applies before the
substitution takes place for these options; thus, if in the SAS program the
entry-description text exceeds 256 characters, it is truncated to 256 characters, and
then the substitution is performed.

The descriptive text is shown in each of the following locations:
� in the Results window.
� among the catalog-entry properties that you can view from the Explorer window
� in the Description field of the PROC GREPLAY window.
� the data tip text for Web output (depending on the device driver you are using).

See “Data Tips for Web Presentations” on page 598 for details.

Alias: DES=

FRAME | NOFRAME
specifies whether a frame is drawn around the axis area. The default is FRAME. If
you also use a BUBBLE2 or PLOT2 statement and your plotting statements have
conflicting frame specifications, FRAME is used.

For the frame color, a specification is searched for in this order:
1 the CAXIS= option
2 the COLOR= option in the AXIS definition assigned to the vertical axis
3 the COLOR= option in the AXIS definition assigned to the horizontal axis
4 the default, which is the color defined by the current style.
To fill the axis area with a background color, use the CFRAME= option.
To fill the axis area with a background image, use the IFRAME= option.
specifies the color of error bars in bar charts. The default is the color of the

response axis, which is controlled by the CAXIS= option.
Alias: FR|NOFR=

FRONTREF
specifies that reference lines drawn by the AUTOREF or REF= options should be
drawn in front of the bars. By default, reference lines are drawn on the back plane of
the axis.

GRID
draws reference lines at all major tick marks on both axes. You get the same result
when you use all of these options in a BUBBLE statement: AUTOHREF,
AUTOVREF, FRAME, LVREF=34, and LHREF=34. The line type for GRID is 34.

1340 BUBBLE Statement � Chapter 45

The line color is the color of the axis.

HAXIS=value-list | AXIS<1 . . . 99>
specifies major tick mark values for the horizontal axis or assigns an axis definition.
For a description of value-list, see the HAXIS= option on page 1354 for the PLOT
statement. To assign labels to horizontal reference lines, specify an axis definition
that contains the REFLABEL= option. Labels are applied in sequence to all
reference lines drawn with the AUTOHREF and HREF= options.

If you assign an axis definition that does not currently exist, the option is ignored.
By default, the procedure scales the axis and provides an appropriate number of tick
marks.

If data values fall outside of the range that is specified by the HAXIS= option,
then by default the outlying data values are not used in interpolation calculations.

For Web output that is generated with a Java or ActiveX device driver, certain
options of the AXIS statement are not supported. For details, see “AXIS Statement”
on page 198.

Featured in: Example 2 on page 1368

Restriction: Partially supported by Java and ActiveX

See also: “About the Input Data Set” on page 1331 for more information on values
out of range

HMINOR=number-of-minor-ticks
specifies the number of minor tick marks that are drawn between each major tick
mark on the horizontal axis. Minor tick marks are not labeled. The HMINOR=
option overrides the NUMBER= suboption of the MINOR= option in an AXIS
definition. You must specify a positive number.

Alias: HM=

Featured in: Example 2 on page 1368

HREF=value-list
draws one or more reference lines perpendicular to the horizontal axis at points that
are specified by value-list. For a description of value-list HAXIS= option on page
1354 HAXIS for the PLOT statement. LHREF=, CHREF=, and WHREF= options can
be used to change the line types, colors, and widths of these reference lines. To
specify labels for these reference lines, use the HAXIS= option.

HREVERSE
specifies that the order of the values on the horizontal axis be reversed. For Web
output that is generated with a Java device driver, the horizontal axis data must be
numeric.

Restriction: Partially supported by Java and ActiveX

HZERO
specifies that tick marks on the horizontal axis begin in the first position with a
value of zero. The HZERO request is ignored if negative values are present for the
horizontal variable or if the horizontal axis has been specified with the HAXIS=
option.

IFRAME=fileref | ’external-file’
identifies the image file you want to apply to the backplane of the plot. See also the
IMAGESTYLE= option and “Displaying Images on Data Elements” on page 185. The
IFRAME= option is overridden by the NOIMAGEPRINT goption. For more
information about the NOIMAGEPRINT option, see “IMAGEPRINT” on page 387.

Restriction: Not supported by Java

The GPLOT Procedure � BUBBLE Statement 1341

IMAGESTYLE= TILE | FIT
specifies whether to tile multiple instances of the image to fill the backplane (TILE)
or to stretch the image to fit the backplane frame (FIT). The TILE value is the
default. For more information see the IFRAME= option.

LAUTOHREF=reference-line-type
specifies the line type for reference lines at major tick marks on the horizontal axis,
as specified by the AUTOHREF option. Line types are specified as whole numbers
from 1 to 46, with 1 representing a solid line and the other values representing
dashed lines. The default line type is retrieved from the current style, or if the
NOGSTYLE option is specified, the default value is 1, which draws a solid line.

Style reference: LineStyle attribute of the GraphGridLines element

LAUTOVREF=reference-line-type
specifies a line type for reference lines drawn at major tick marks on the vertical
axis, as specified by the AUTOVREF option. The reference-line-type value can be a
whole number from 1 to 46. A value of 1 specifies a solid line; values 2 through 46
specify dashed lines. The default line type is retrieved from the current style, or if
the NOGSTYLE option is specified, the default value is 1, which draws a solid line.

Style reference: LineStyle attribute of the GraphGridLines element

LHREF=reference-line-type | (reference-line-type) | reference-line-type-list
specifies line types for reference lines drawn perpendicular to the horizontal axis.
The reference-line-type value can be a whole number from 1 to 46. A value of 1
specifies a solid line; values 2 through 46 specify dashed lines. This option affects
reference lines drawn with the AUTOHREF, HREF, and GRID options. Specifying a
single line type without parentheses applies that line type to all reference lines. The
LAUTOHREF= option overrides the LHREF= option for lines drawn with the
AUTOHREF option. Specifying a single line type in parentheses applies that line
type only to the first reference line drawn with the HREF= option. Specifying a
line-type list applies line types in sequence to successive reference lines drawn with
the HREF= option. The syntax of the line type list is of the form (type1 type2...
typeN). The default line type is retrieved from the current style, or if the NOGSTYLE
option is specified, the default value is 1, which draws a solid line.

Alias: LH=

Style reference: LineStyle attribute of the GraphGridLines element

LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
specifies line types for reference lines drawn perpendicular to the vertical axis. The
reference-line-type value can be a whole number from 1 to 46. A value of 1 specifies a
solid line; values 2 through 46 specify dashed lines. This option affects reference lines
drawn with the AUTOVREF, VREF, and GRID options. Specifying a single line type
without parentheses applies that line type to all reference lines. The LAUTOVREF=
option overrides the LVREF= option for lines drawn with the AUTOVREF option.
Specifying a single line type in parentheses applies that line type only to the first line
drawn by the VREF= option. Specifying a line-type list applies line types in sequence
to successive reference lines drawn with the VREF= option. The syntax of the line
type list is of the form (type1 type2... typeN). The default line type is retrieved from
the current style, or if the NOGSTYLE option is specified, the default value is 1,
which draws a solid line. To specify colors for these references lines, use the CVREF=
option. To specify labels for these reference lines, use the VAXIS= option.

Alias: LV=

Style reference: LineStyle attribute of the GraphGridLines element

1342 BUBBLE Statement � Chapter 45

NAME=’entry-name’
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default name is GPLOT. If
the name duplicates an existing name, then SAS/GRAPH adds a number to the name
to create a unique name-for example, GPLOT1.

See also: “About Filename Indexing” on page 99

NOAXIS
suppresses the axes, including axis lines, axis labels, all major and minor tick marks,
and tick mark values.

Alias: NOAXES

VAXIS=value-list | AXIS<1...99>
specifies the major tick mark values for the vertical axis or assigns an axis definition.
For a description of the value-list, see the HAXIS= option on page 1354. To assign
labels to reference lines, specify an axis definition that contains the REFLABEL=
option. The labels are applied in sequence to all reference lines defined with the
AUTOVREF and VREF= options.

For Web output that is generated with a Java or ActiveX device driver, certain
options of the AXIS statement are not supported. For details, see “AXIS Statement”
on page 198.

Featured in: Example 2 on page 1368 and Example 3 on page 1370

Restriction: Partially supported by Java and ActiveX

VMINOR=number-of-minor-ticks
specifies the number of minor tick marks that are drawn between each major tick
mark on the vertical axis. Minor tick marks are not labeled. The VMINOR= option
overrides the NUMBER= suboption of the MINOR= option in an AXIS definition. You
must specify a positive number.

Alias: VM=

Featured in: Example 2 on page 1368

VREF=value-list
draws one or more reference lines perpendicular to the vertical axis at points that
are specified by value-list. For a description of the value-list, see the HAXIS= option
on page 1354. LVREF=, CVREF=, and WVREF= options can be used to change the
line types, colors, and widths of these reference lines. To specify labels for these
reference lines, use the VAXIS= option.

VREVERSE
specifies that the order of the values on the vertical axis should be reversed.

VZERO
specifies that tick marks on the vertical axis begin in the first position with a zero.
The VZERO request is ignored if the vertical variable either contains negative values
or has been ordered with the VAXIS= option or the ORDER= option in an AXIS
statement.

WAUTOHREF=N
specifies the line width for all reference lines at major tick marks on the horizontal
axis as determined by the AUTOHREF option. Line widths are specified as whole
numbers with the default value being 1. To specify a color for these reference lines,
use the CAUTOREF= option.

Style reference: LineThickness attribute of the GraphGridLines element

The GPLOT Procedure � BUBBLE2 Statement 1343

WAUTOVREF=N
specifies the line width for all reference lines at major tick marks on the vertical axis
as determined by the AUTOVREF option. Line widths are specified as whole
numbers with the default value being 1. To specify a color for these reference lines,
use the CAUTOREF= option.
Style reference: LineThickness attribute of the GraphGridLines element

WHREF=N
specifies line widths for reference lines as determined by the horizontal axis. Line
widths are specified as whole numbers. To specify colors for these reference lines, use
the CREF= option.
Style reference: LineThickness attribute of the GraphGridLines element

WVREF=N
specifies line widths for reference lines as determined by the vertical axis. Line
widths are specified as whole numbers. To specify colors for these reference lines, use
the CREF= option.
Style reference: LineThickness attribute of the GraphGridLines element

Controlling the Display of Bubbles
The BUBBLE statement draws circles only for values that are located within the

axes. Observations with values that lie outside of the axis area are not plotted. If a
bubble size value causes a bubble to overlap the axis, the bubble is clipped against the
axis line. The bubbles for the highest axis value and lowest axis value might be clipped
unless you modify the axes in either of the following ways:

� by offsetting the first and last values
� by adding values to the range that is represented by the axis.

Specify the range of values on an axis with the HAXIS= or VAXIS= option, or with
AXIS definitions.

To add a right vertical axis, use a BUBBLE2 statement.

BUBBLE2 Statement

Creates a second vertical axis on the right side of a graph produced by an accompanying BUBBLE
or PLOT statement. A second variable can be plotted against this axis.

Requirements: You cannot use the BUBBLE2 statement alone. You can use it only with
a BUBBLE or PLOT statement. At least one plot request is required.
Global statements: AXIS, FOOTNOTE, TITLE

Description
The BUBBLE2 statement specifies one or more plot requests that name the horizontal
and right vertical axis variables and the variable that controls the size of the bubbles.
This statement automatically does the following:

� scales the axes to include the maximum and minimum data values
� labels each axis with the name of its variable or an associated label
� displays each major tick mark value
� draws circles for values that are located within the axes.

1344 BUBBLE2 Statement � Chapter 45

You can use statement options to control right vertical axis scaling, draw reference
lines on the right vertical axis, control the display of the bubbles, display a background
color or image, and specify annotation.

In addition, you can use global statements to modify the axes (AXIS statement), and
add text to the graph (TITLE, NOTE, and FOOTNOTE statements). You can also use
the Annotate data set to enhance the plot.

Syntax

BUBBLE2 plot-request(s) </option(s)>;

option(s) can be one or more options from any or all of the following categories:
� bubble appearance options:

BCOLOR=bubble-color
BFILL=SOLID | GRADIENT
BFONT=font
BLABEL
BSCALE=AREA | RADIUS
BSIZE=multiplier

� plot appearance options:
ANNOTATE=Annotate-data-set
CAXIS=axis-color

CFRAME=background-color
CTEXT=text-color
FRAME | NOFRAME
GRID
NOAXIS | NOAXES

� vertical axis options:
AUTOVREF
CAUTOVREF=reference-line-color
CVREF=reference-line-color | (reference-line-color) | reference-line-color-list
LAUTOVREF=reference-line-type

LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
VAXIS=value-list | AXIS<1...99>
VMINOR=number-of-minor ticks

VREF=value-list
VREVERSE
VZERO

The GPLOT Procedure � BUBBLE2 Statement 1345

Required Arguments

plot-request(s)
each specifies the variables to plot and produces a separate graph. All variables must
be in the input data set. Multiple plot requests are separated with blanks. A plot
request must have this form:

y-variable*x-variable=bubble-size
plots the values of two variables and draws a circle (bubble) at each data point.
The value of the third variable determines the size of the bubble. All of these
variables must be in the input data set:

y-variable
variable plotted on the right vertical axis; typically it is different from y-variable
in the accompanying BUBBLE or PLOT statement.

x-variable
variable plotted on the horizontal axis; it is the same as x-variable in the
accompanying BUBBLE or PLOT statement.

bubble-size
specifies the size of the bubbles. Bubble-size must be numeric. If the value of
bubble-size is positive, bubbles are drawn with a solid line; if it is negative,
bubbles are drawn with a dashed line.

Options
Options for the BUBBLE2 statement are identical to the options for the BUBBLE

statement with exception of the following, which are ignored if specified:
AUTOHREF
CAUTOHREF=
CHREF=
DESCRIPTION=
HAXIS=
HMINOR=
HREF=
HZERO=
IFRAME=
IMAGESTYLE =
LAUTOHREF=
LHREF=
NAME=
WAUTOHREF=
WHREF=

See “BUBBLE Statement” on page 1333 for complete descriptions of options used
with the BUBBLE2 statement.

Coordinating BUBBLE and BUBBLE2 Plot Requests
The BUBBLE2 statement draws circles only for values that are located within the

axes. Bubbles are not drawn for values that lie outside of the axis range. If a bubble
size value causes a bubble to overlap the axis, the bubble is clipped against the axis line.

1346 BUBBLE2 Statement � Chapter 45

In the BUBBLE2 statement, either the y-variable or bubble-size can differ from the
variables in the BUBBLE statement. Here are some possible combinations of plot
requests for BUBBLE and BUBBLE2 statement pairs and how they affect the plot:

� The vertical axis variables Y and Y2 are different, but the bubble size variable, S,
is the same in both:

bubble y*x=s;
bubble2 y2*x=s;

These plot requests generate a plot in which both sets of bubbles have the same
value (size) but different locations on the graph.

� The vertical axis variables are the same, Y, but the bubble size variables, S and
S2, are different:

bubble y*x=s;
bubble2 y*x=s2;

The resulting plot has two identical vertical axes and two sets of concentric
bubbles of different sizes.

� Both the vertical axis variables, Y and Y2, and the bubble size variables, S and S2,
are different:

bubble y*x=s;
bubble2 y2*x=s2;

These plot requests produce the equivalent of an overlay plot in which two
different sets of bubbles plotted against different vertical axes are displayed on the
same graph.

The plot requests on the BUBBLE and BUBBLE2 statements must be evenly
matched, for example:

bubble y*x=s b*a=c;
bubble2 y2*x=s b2*a=c2;

These statements produce two graphs each with two vertical axes. The first pair of
plot requests (Y*X=S and Y2*X=S) produce one graph in which the variable X is plotted
on the horizontal axis, the variable Y is plotted on the left axis, and the variable Y2 is
plotted on the right axis. In this pair, the value of S is the same for both requests. The
second pair of plot requests (B*A=C and B2*A=C2) produce another graph in which the
variable A is plotted on the horizontal axis, the variable B is plotted on the left axis,
and the variable B2 is plotted on the right axis.

Any modifications to horizontal axes specifications must be identical for both
statements; if they are different, the BUBBLE2 axis specification is ignored.

If the scale of values for the left and right vertical axes is the same and you want
both axes to represent the same range of values, specify the range with a VAXIS=
option in both the BUBBLE and BUBBLE2 statements.

The GPLOT Procedure � PLOT Statement 1347

PLOT Statement

Creates plots in which one variable is plotted on the horizontal axis and a second variable is
plotted on the left vertical axis.

Requirements: At least one plot request is required.
Global statements: AXIS, FOOTNOTE, LEGEND, PATTERN, SYMBOL, TITLE
Supports: Drill-down functionality

Description
The PLOT statement specifies one or more plot requests that name the horizontal and
left vertical axis variables, and can specify a third classification variable. This
statement automatically does the following:

� scales the axes to include the maximum and minimum data values
� plots data points within the axes
� labels each axis with the name of its variable and displays each major tick mark

value.

You can use statement options to manipulate the axes, modify the appearance of your
graph, and describe catalog entries. You can use SYMBOL definitions to modify plot
symbols for the data points, join data points, draw regression lines, plot confidence
limits, or specify other types of interpolations. For more information on the SYMBOL
statement, see “About SYMBOL Definitions” on page 1360.

In addition, you can use global statements to modify the axes; add titles, footnotes,
and notes to the plot; or modify the legend if one is generated by the plot. You can also
use an Annotate data set to enhance the plot.

Syntax

PLOT plot-request(s) </option(s)>;

option(s) can be one or more options from any or all of the following categories:
� plot options:

AREAS=n
GRID
LEGEND | LEGEND=LEGEND<1...99>
NOLEGEND
OVERLAY
REGEQN
SKIPMISS

� appearance options:
ANNOTATE=Annotate-data-set
CAXIS=axis-color
CFRAME=background-color
COUTLINE=outline-color
CTEXT=text-color

1348 PLOT Statement � Chapter 45

FRAME | NOFRAME
FRONTREF
IFRAME= fileref | ’external-file’
IMAGESTYLE = TILE | FIT
NOAXIS | NOAXES

� horizontal axis options:
AUTOHREF
CAUTOHREF=reference-line-color
CHREF=reference-line-color | (reference-line-color) | reference-line-color-list
HAXIS=value-list | AXIS<1...99>
HMINOR=number-of-minor-ticks
HREF=value-list
HREVERSE
HZERO
LAUTOHREF=reference-line-type
LHREF=reference-line-type | (reference-line-type) | reference-line-type-list

� vertical axis options:
AUTOVREF
CAUTOVREF=reference-line-color
CVREF=reference-line-color | (reference-line-color) | reference-line-color-list
LAUTOVREF=reference-line-type
LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
VAXIS=value-list | AXIS<1...99>
VMINOR=number-of-minor-ticks
VREF=value-list
VREVERSE
VZERO
WAUTOVREF
WVREF

� catalog entry description options:
DESCRIPTION=’entry-description’
NAME=’entry-name’

� ODS options:
HTML=variable
HTML_LEGEND=variable

Required Arguments

plot-request(s)
each specifies the variables to plot and produces a separate graph, unless you specify
OVERLAY. All variables must be in the input data set. Multiple plot requests are
separated with blanks. You can plot character or numeric variables. A plot request
can be any of these:

y-variable*x-variable<=n>
plots the values of two variables and can assign a SYMBOL definition to the plot.

The GPLOT Procedure � PLOT Statement 1349

y-variable
variable plotted on the left vertical axis.

x-variable
variable plotted on the horizontal axis.

n
number of the nth generated SYMBOL definition.

Note: The nth generated SYMBOL definition is not necessarily the same as the
nth SYMBOL statement. Plot requests of the form y-variable*x-variable=n assign
the SYMBOL definition that is designated by n to the plot that is produced by
y-variable*x-variable. For more information, see “About Plot Requests that Assign
a SYMBOL Definition” on page 1361. �

(y-variable(s))*(x-variable(s))
plots the values of two or more variables and produces a separate graph for each
combination of Y and X variables. That is, each Y*X pair is plotted on a separate
set of axes unless you specify OVERLAY.

y-variable(s)
variables plotted on the left vertical axes.

x-variable(s)
variables plotted on the horizontal axes.
If you use only one y-variable or only one x-variable, omit the parentheses for

that variable, for example:

plot (temp rain)*month;

This plot request produces two plots, one of TEMP and MONTH and one of
RAIN and MONTH.

y-variable*x-variable=third-variable
plots the values of two variables against a third classification variable

y-variable
variable plotted on the left vertical axis.

x-variable
variable plotted on the horizontal axis.

third-variable
classification variable against which y-variable and x-variable are plotted.
Third-variable can be character or numeric, but numeric variables should
contain discrete rather than continuous values, or should be formatted to
provide discrete values.
A separate plot (set of data points) is produced for each unique value of

third-variable; that is, all plots are drawn on the same set of axes, and a legend is
automatically generated to show the plot symbol and color for each value of the
classification variable.

Note: If a BY statement is used to produce multiple plots, you can make the
legend identical across graphs by specifying the UNIFORM option in the PROC
GPLOT statement. �

The following plot request produces a graph with a plot line for each
department and a legend that shows the plot symbol for each department:

plot sales*weekday=dept;

For an example of a plot that specifies a third-variable, see Example 8 on page
1383.

1350 PLOT Statement � Chapter 45

You can use more than one type of plot request in a single PLOT statement (provided
that you do not specify OVERLAY), for example:

plot temp*month rain*month=2;

Options
Options in a PLOT statement affect all graphs that are produced by that statement.

You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
specifies a data set to annotate plots that are produced by the PLOT statement.
Alias: ANNO=
See also: Chapter 29, “Using Annotate Data Sets,” on page 641.

AREAS=n
fills all the areas below plot line n with a pattern. The value of n specifies which
areas to fill:

� AREAS=1 fills the first area.
� AREAS=2 fills both the first and second areas, and so on.

If you specify a value for the AREAS= option that is greater than the number of
bounded areas in the plot, the area between the top plot line and the axis frame is
filled.

Before an area can be filled, the data points that border the area must be joined by
a line. Use a SYMBOL statement with one of these interpolation methods to join the
data points:

INTERPOL=JOIN
INTERPOL=STEP
INTERPOL=Rseries
INTERPOL=SPLINE | SM | L
See “SYMBOL Statement” on page 252 for details on interpolation methods.
By default, the AREAS= option fills areas by rotating a solid fill through the list of

colors defined in the current style. If the NOGSTYLE option is specified, the areas
are filled by rotating a solid fill through the device’s color list. If the graph needs
more patterns, it rotates hatch patterns, beginning with the M2N0 pattern. See
“PATTERN Statement” on page 240 for more information on map/plot patterns.
However, if color is limited to a single color with the CPATTERN= or COLORS=
graphic options, the solid pattern is skipped and the first default pattern is M2N0. If
the COLORS= graphic option specifies a single color, use as many SYMBOL
statements as you have areas to fill because the INTERPOL= setting does not
automatically apply to multiple symbol definitions.

Note: If you have specified the NOGSTYLE option and the first color in your
device’s default color list is black, color rotation begins with the second color in the
list; that is, there are no solid black patterns. See “How Default Patterns and
Outlines Are Generated” on page 248 for more information. �

You can alter the default pattern behavior by specifying patterns and colors on
PATTERN statements that specify map and plot patterns. A separate PATTERN
definition is needed for each specified area.

If you specify the PATTERN statements, the AREAS= option uses the lowest
numbered PATTERN statement first. If it runs out of patterns, it uses the default
behavior for map and plot patterns. See “PATTERN Statement” on page 240 for
details.

Pattern definitions are assigned to the areas below the plot lines in the order the
plots are drawn. The first area is that between the horizontal axis and the plot line

The GPLOT Procedure � PLOT Statement 1351

that is drawn first. The second area is that above the first plot line and below the
plot line that is drawn second, and so on. If the line that is drawn second lies below
the line that is drawn first, the second area is hidden when the first is filled. The
plots with the lower line values must be drawn first to prevent one area fill from
overlaying another. If the lines cross, only the part of an area that is above the
previous line is visible.

Therefore, when creating multiple plots in combination with the OVERLAY option,
the PLOT statements must be ordered so that the plot request that produces the
lowest line value is first (leftmost), the plot request that produces the next lowest
line value is second plot request, and so on.

If you produce multiple plots with a y-variable*x-variable=third-variable plot
request, the lines are plotted in order of increasing third variable values. Therefore,
the data must be recoded so that the lowest value of the third variable produces the
lowest plot line, the next lowest value produces the next lowest plot line, and so on.

The AREAS= option works only if all plot lines are generated by the same PLOT
or PLOT2 statement.

If you use the VALUE= option in the SYMBOL statement, some symbols might be
hidden. If reference lines are also specified with the AREAS= option, they are drawn
behind the pattern fill.

Featured in: Example 7 on page 1380.

Restriction: Partially supported by Java

AUTOHREF
draws reference lines at all major tick marks on the horizontal axis. If the AREAS=
option is also used, the filled areas cover the reference lines. To draw lines on top of
the filled areas, use the FRONTREF option. LAUTOHREF=, CAUTOHREF=, and
WAUTOHREF= options can be used to change the line types, colors, and widths of
these reference lines. To specify labels for these reference lines, use the HAXIS=
option.

AUTOVREF
draws reference lines at all of the major tick marks on the vertical axis. If you also
use the AREAS= option, the filled areas cover the reference lines. To draw lines on top
of the filled areas, use the FRONTREF option in either the PROC GPLOT statement
or the PLOT statement. LAUTOVREF=, CAUTOVREF=, and WAUTOVREF=
options can be used to change the line types, colors, and widths of these reference
lines. To specify labels for these reference lines, use the VAXIS= option.

CAUTOHREF=reference-line-color
specifies colors for reference lines drawn at major tick marks on the horizontal axis,
as specified by the AUTOHREF option. The default color is either the value of the
CAXIS= option or the first color in the color list.

CAUTOVREF=reference-line-color
specifies the color of reference lines drawn at major tick marks on the vertical axis,
as determined by the AUTOVREF option. If you do not specify the CAUVTOREF
option, the default color is the value of the CAXIS= option. If neither option is
specified, the default color is retrieved from the current style or from the device’s
color list if the NOGSTYLE option is specified.

CAXIS=axis-color
specifies the color for the axis line and all major and minor tick marks. The default
color is retrieved from the current style or from the device’s color list if the
NOGSTYLE option is specified.

Alias: CA=

1352 PLOT Statement � Chapter 45

CFRAME=background-color
fills the axis area with the specified color. If the FRAME option is also in effect, the
procedure determines the color of the frame according to the precedence list given
later in the FRAME option description. If the IFRAME= option is in effect, an image
appears in the background instead of the color.
Style reference: Color attribute of the GraphWalls element.

CHREF=reference-line-color | (reference-line-color) | reference-line-color-list
specifies the color of reference lines drawn perpendicular to the horizontal axis. This
option affects reference lines drawn with the AUTOHREF, HREF, and GRID options.
Specifying a single color without parentheses applies that color to all reference lines.
The CAUTOHREF= option overrides the CHREF= option for reference lines drawn
with the AUTOHREF option. Specifying a single color in parentheses applies that
color only to the first reference line drawn with the HREF= option. Specifying a color
list applies colors sequentially to successive reference lines drawn with the HREF=
option. The syntax of the color list is of the form (color1 color2 ...colorN). If you do
not specify the CHREF= option, the GPLOT procedure uses the color specified by the
CAXIS= option. If neither option is specified, the default color is retrieved from the
current style of from the first color in the color list if the NOGSTYLE option is
specified.
Alias: CH=
Style reference: Color attribute of the GraphGridLines element

COUTLINE=outline-color
specifies the color of the outline that is drawn around filled areas. The filled areas
are generated when the SYMBOL statement specifies the INTERPOL=map/
plot-pattern option or the GOPTIONS statement specifies the INTERPOL=
option“INTERPOL” on page 389. The default outline color is specified in the current
style. However, if the NOGSTYLE option is specified, then the default color is the
first color in the device’s color list (the foreground color), and the default slice outline
color is determined as follows:

� If you do not specify a PATTERN statement, the default outline color is the
color defined in the current style.

� If you specify the NOGSTYLE option and no PATTERN statement, the default
outline color is black for the Java or ActiveX devices. Otherwise, the default
outline color is the foreground color. If you specify an EMPTY PATTERN
statement, then the default outline color is the same as the fill color.

The COUTLINE= option overrides the SYMBOL statement option CO=.
Restriction: Not supported by Java
Style reference: Color attribute of the GraphOutlines element

CTEXT=text-color
specifies a color for all text on the axes and legend, including axis labels, tick mark
values, legend labels, and legend value descriptions. The GPLOT procedure searches
for a color specification in this order:

1 colors specified for labels and values on assigned AXIS and LEGEND
statements, which override the CTEXT= option specified in the PLOT statement.

2 the color specified by the CTEXT= option in the PLOT statement.
3 the color specified by the CTEXT= option in the GOPTIONS statement.
4 the color specified in the current style, or, if the NOGSTYLE option is specified,

then the default color is black for the Java and ActiveX devices and the first
color in the color list for all other devices.

The LEGEND statement’s VALUE= color is used for legend values, and its
LABEL= color is used for legend labels.

The GPLOT Procedure � PLOT Statement 1353

The AXIS statement’s VALUE= color is used for axis values, and its LABEL= color
is used for axis labels. However, if the AXIS statement specifies only general axis
colors with its COLOR= option, the CTEXT= color overrides the general COLOR=
specification and is used for axis labels and values; the COLOR= color is still used for
all other axis colors, such as tick marks.

Note: If you use a BY statement in the procedure, the color of the BY variable
labels is controlled by the CBY= option in the GOPTIONS statement. �
Alias: C=
Style reference: Color attributes of the GraphValueText and the GraphLabelText

elements

CVREF=reference-line-color | (reference-line-color) | reference-line-color-list
specifies the color of reference lines drawn perpendicular to the vertical axis. This
option affects reference lines drawn with the AUTOVREF, VREF, and GRID options.
Specifying a single color without parentheses applies that color to all reference lines.
The CAUTOVREF= option overrides the CVREF= option for lines drawn with the
AUTOVREF option. Specifying a single color in parentheses applies that color only to
the first reference line drawn with the VREF= option. Specifying a color list applies
colors sequentially to successive reference lines drawn with the VREF= option. The
syntax of the color list is of the form (color1 color2... colorN). If you do not specify the
CVREF= option, the GPLOT procedure uses the color specified by the CAXIS=
option. If neither option is specified, the default color is retrieved from the current
style of from the first color in the color list if the NOGSTYLE option is specified.
Alias: CV=
Style reference: Color attribute of the GraphGridLines element

DESCRIPTION=’description’
specifies the description of the catalog entry for the plot. The maximum length for
entry-description is 256 characters. The description does not appear on the plot. By
default, the procedure assigns a description of the form PLOT OF
variable*variable=variable.

The entry-description can include the #BYLINE, #BYVAL, and #BYVAR
substitution options, which work as they do when used on TITLE, FOOTNOTE, and
NOTE statements. For more information, refer to the discussion of “Substituting BY
Line Values in a Text String” on page 294. The 256-character limit applies before the
substitution takes place for these options; thus, if in the SAS program the
entry-description text exceeds 256 characters, it is truncated to 256 characters, and
then the substitution is performed.

The descriptive text is shown in each of the following locations:
� in the Results window.
� among the catalog-entry properties that you can view from the Explorer window.
� in the Description field of the PROC GREPLAY window.
� the data tip text for Web output (depending on the device driver you are using).

See “Data Tips for Web Presentations” on page 598 for details.

Alias: DES=

FRAME | NOFRAME
specifies whether a frame is drawn around the axis area. The default is FRAME. If
you also use a BUBBLE2 or PLOT2 statement and your plotting statements have
conflicting frame specifications, FRAME is used.

For the frame color, a specification is searched for in this order:
1 the CAXIS= option
2 the COLOR= option in the AXIS definition assigned to the vertical axis

1354 PLOT Statement � Chapter 45

3 the COLOR= option in the AXIS definition assigned to the horizontal axis
4 the default, which is the color defined by the current style.
To fill the axis area with a background color, use the CFRAME= option.
To fill the axis area with a background image, use the IFRAME= option.
specifies the color of error bars in bar charts. The default is the color of the

response axis, which is controlled by the CAXIS= option.
Alias: FR|NOFR=

FRONTREF
specifies that reference lines drawn by the AUTOREF or REF= options should be
drawn in front of the bars. By default, reference lines are drawn on the back plane of
the axis.

GRID
draws reference lines at all major tick marks on both axes. The line color is the color
of the axis. When specified in a PLOT2 statement, the reference lines are drawn on
the vertical axis on the right side of the plot.

HAXIS=value-list | AXIS<1 . . . 99>
specifies major tick mark values for the horizontal axis or assigns an axis definition.
By default, the procedure scales the axis and provides an appropriate number of tick
marks. To assign labels to reference lines, use an axis definition that contains the
REFLABEL= option. The labels are applied in sequence to all reference lines defined
with the AUTOHREF and HREF= options.

The way you specify value-list depends on the type of variable:
� For numeric variables, value-list is either an explicit list of values, or a starting

and an ending value with an interval increment, or a combination of both forms:
n <...n>
n TO n <BY increment>
n <...n> TO n <BY increment > <n <...n> >
If a numeric variable has an associated format, the specified values must be

the unformatted values.
� For date-time values, value-list includes any SAS date, time, or datetime value

described for the SAS functions INTCK and INTNX, shown here as SAS-value:
’SAS-value’i < ...’SAS-value’i>
’SAS-value’i TO ’SAS-value’ i<BY interval>

� For character variables, value-list is a list of unique character values enclosed
in quotation marks and separated by blanks:

’value-1’ < ...’value-n’>
If a character variable has an associated format, the specified values must be

the formatted values.

For a complete description of value-list, see the ORDER= option on page 205 in the
AXIS statement.

If data values fall outside of the range that is specified by the HAXIS= option, then
by default the outlying data values are not used in interpolation calculations. See
“About the Input Data Set” on page 1331 for more information on values out of range.

For Web output that is generated with a Java or ActiveX device driver, certain
options of the AXIS statement are not supported. For details, see “AXIS Statement”
on page 198.

Featured in: Example 4 on page 1372, Example 5 on page 1375, and Example 9 on
page 1386

Restriction: Partially supported by Java and ActiveX

The GPLOT Procedure � PLOT Statement 1355

HMINOR=number-of-minor-ticks
specifies the number of minor tick marks drawn between each major tick mark on
the horizontal axis. Minor tick marks are not labeled. The HMINOR= option
overrides the NUMBER= suboption of the MINOR= option in an AXIS definition. You
must specify a positive number.
Alias: HM=
Featured in: Example 2 on page 1368

HREF=value-list
draws one or more reference lines perpendicular to the horizontal axis at points that
are specified by value-list. See the HAXIS= option for a description of value-list. If
the AREAS= option is also used, the filled areas cover the reference lines. To draw
lines on top of the filled areas, use the FRONTREF option. LHREF=, CHREF=, and
WHREF= options can be used to change the line types, colors, and widths of these
reference lines. To specify labels for these reference lines, use the HAXIS= option.

HREVERSE
specifies that the order of the values on the horizontal axis be reversed. For Web
output that is generated with a Java device driver, the horizontal axis data must be
numeric. To specify line widths for these reference lines, use the WAUTOHREF=
option.
Restriction: Partially supported by Java and ActiveX

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
output file that is generated by ODS. These links are associated with the plot points,
or if the AREA= option is used, with the areas between plot lines. The links point to
the data or graph that you want to display when the user drills down on the plot
point or area. There is no limit on the length of the variable.

Restriction: Partially supported by Java and ActiveX for the PLOT statement and
not supported by Java and ActiveX for the PLOT2 statement.

See also: “Overview of Enhancing Web Presentations” on page 596.

HTML_LEGEND=variable
identifies the variable in the input data set whose values are used to create links in
the HTML output file that is generated by ODS. When the HTML output file is
displayed in a Web browser, clicking on an element in the legend displays the URL
that was specified for that legend element, based on the value of the variable that is
named as the value of the HTML_LEGEND option. The maximum length for the
value of this variable is 1024 characters. To see an example that generates a
drill-down graph using ODS, see Example 10 on page 1389.

Restriction: Not supported by Java and ActiveX.
See also: “Overview of Enhancing Web Presentations” on page 596.

HZERO
specifies that tick marks on the horizontal axis begin in the first position with a
value of zero. The HZERO request is ignored if negative values are present for the
horizontal variable or if the horizontal axis has been specified with the HAXIS=
option.

IFRAME=fileref | ’external-file’
identifies the image file you want to apply to the backplane frame of the plot. See
also the IMAGESTYLE= option and “Displaying an Image in Graph Frame” on page
184. The IFRAME= option is overridden by the NOIMAGEPRINT goption. For more
information about the NOIMAGEPRINT option, see “IMAGEPRINT” on page 387.

For Web output that is generated with the ACTIVEX or ACTXIMG device drivers,

1356 PLOT Statement � Chapter 45

Restriction: Not supported by Java

IMAGESTYLE= TILE | FIT
specifies whether to tile multiple instances of the image to fill the backplane frame
(TILE) or to stretch a single instance of the image to fill the backplane frame (FIT).
The TILE value is the default. See also the IFRAME= option.

Restriction: Not supported by Java

LAUTOHREF=reference-line-type
specifies a line type for reference lines drawn at major tick marks on the horizontal
axis, as specified by the AUTOHREF option. The reference-line-type value can be a
whole number from 1 to 46. A value of 1 specifies a solid line; values 2 through 46
specify dashed lines. The default line type is retrieved from the current style, or if
the NOGSTYLE option is specified, the default value is 1, which draws a solid line.

LAUTOVREF=reference-line-type
specifies a line type for reference lines drawn at major tick marks on the vertical
axis, as specified by the AUTOVREF option. The reference-line-type value can be a
whole number from 1 to 46. A value of 1 specifies a solid line; values 2 through 46
specify dashed lines. The default line type is retrieved from the current style, or if
the NOGSTYLE option is specified, the default value is 1, which draws a solid line.

Style reference: LineStyle attribute of the GraphGridLines element.

LEGEND | LEGEND=LEGEND<1...99>
generates a legend or specifies the legend to use for the plot.

� a PLOT statement that includes the OVERLAY option does not automatically
generate a legend. In these plot types, use LEGEND to produce a default
legend, or LEGEND=LEGENDn to assign a defined LEGEND statement to the
plot. The default legend is centered below the axis frame and identifies which
colors and plot symbols represent the y-variables that you specify for the plots.
To control the order of the legend entries for overlaid plots, use the ORDER=
option in the LEGEND statement and specify the list of variables in quotes in
the preferred order. For example, the following causes the legend entry for y3 to
be displayed first, y1 next, and y2 last:

legend1 order=(’y3’ ’y1’ ’y2’);
proc gplot data=mydata2;
plot (y1 y2 y3)*x / overlay legend=legend1;

run;

� a plot request of the form y-variable*x-variable=third-variable automatically
generates a default legend that identifies which colors and plot symbols
represent each value of the classification variable. In these plot types, override
the default by using LEGEND=LEGENDn to assign a defined LEGEND
statement to the plot.

If you use the SHAPE= option in a LEGEND statement, the value SYMBOL is
valid. If you use the PLOT statement’s AREAS= option, SHAPE=BAR is also valid.

Featured in: Example 6 on page 1377

See also: “LEGEND Statement” on page 225

LHREF=reference-line-type | (reference-line-type) | reference-line-type-list
specifies line types for reference lines drawn perpendicular to the horizontal axis.
The reference-line-type value can be a whole number from 1 to 46. A value of 1
specifies a solid line; values 2 through 46 specify dashed lines. This option affects
reference lines drawn with the AUTOHREF, HREF, and GRID options. Specifying a

The GPLOT Procedure � PLOT Statement 1357

single line type without parentheses applies that line type to all reference lines. The
LAUTOHREF= option overrides the LHREF= option for lines drawn with the
AUTOHREF option. Specifying a single line type in parentheses applies that line
type only to the first reference line drawn with the HREF= option. Specifying a
line-type list applies line types in sequence to successive reference lines drawn with
the HREF= option. The syntax of the line type list is of the form (type1 type2...
typeN). The default line type is retrieved from the current style, or if the NOGSTYLE
option is specified, the default value is 1, which draws a solid line. To specify colors
for these references lines, use the CHREF= option. To specify labels for these
reference lines, use the HAXIS= option.

Alias: LH=

Style reference: LineStyle attribute of the GraphGridLines element

LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
specifies line types for reference lines drawn perpendicular to the vertical axis. The
reference-line-type value can be a whole number from 1 to 46. A value of 1 specifies a
solid line; values 2 through 46 specify dashed lines. This option affects reference lines
drawn with the AUTOVREF, VREF, and GRID options. Specifying a single line type
without parentheses applies that line type to all reference lines. The LAUTOVREF=
option overrides the LVREF= option for lines drawn with the AUTOVREF option.
Specifying a single line type in parentheses applies that line type only to the first
line drawn with the VREF= option. Specifying a line-type list applies line types in
sequence to successive reference lines drawn with the VREF= option. The syntax of
the line type list is of the form (type1 type2... typeN). The default line type is retrieved
from the current style, or if the NOGSTYLE option is specified, the default value is 1,
which draws a solid line. To specify colors for these references lines, use the CVREF=
option. To specify labels for these reference lines, use the VAXIS= option.

For needle plots that are generated with a Java or ActiveX device driver, the value
of the LVREF= option is not applied to the default reference line that is drawn at
zero when the minimum value of the vertical axis is less than zero. This line is solid
(not dashed).

Alias: LV=

Featured in: Example 5 on page 1375

Style reference: LineStyle attribute of the GraphGridLines element

Restriction: Partially supported by Java and ActiveX

NAME=’entry-name’
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default name is GPLOT. If
the name duplicates an existing name, then SAS/GRAPH adds a number to the name
to create a unique name-for example, GPLOT1.

See also: “About Filename Indexing” on page 99

NOAXIS
suppresses the axes, including axis lines, axis labels, all major and minor tick marks,
and tick mark values.

Alias: NOAXES

NOLEGEND
suppresses the legend that is generated by a plot request of the type
y-variable*x-variable=third-variable.

1358 PLOT Statement � Chapter 45

OVERLAY
places all the plots that are generated by the PLOT statement on one set of axes.
The axes are scaled to include the minimum and maximum values of all of the
variables, and the variable names or labels associated with the first pair of variables
label the axes.

The OVERLAY option produces a legend if you include the LEGEND or the
LEGEND=n option in the PLOT statement.

OVERLAY is not enabled with plot requests of the form
y-variable*x-variable=third-variable. However, you can achieve an overlay effect by
using a PLOT and PLOT2 statement.

When generating output for the Web with the JAVA, JAVAMETA, or JAVAIMG
device drivers, the OVERLAY option cannot be used in the PLOTor PLOT2 statement
under these conditions:

� if the PLOT or PLOT2 statement is combined with the global SYMBOL
statement when the SYMBOL statement uses the INTERPOL= BOX, HILO, or
STD.

� or for JAVA output using the PLOT2 statement, in a SYMBOL statement when
the SYMBOL statement uses theINTERPOL= BOX, HILO, or STD, with or
without the OVERLAY option.

Featured in: Example 6 on page 1377 and Example 7 on page 1380
Restriction: Partially supported by Java

REGEQN
displays the regression equation that is specified in the INTERPOL= option of the
SYMBOL statement in the lower left hand corner of the plot. You cannot modify the
format that is used for the equation.

The GPLOT regression equation is computed from the screen coordinates of the
markers. Therefore, a graph might not display if the chart area for the plot becomes
so small that markers cannot be drawn because there are no coordinates from which
to build the regression equation. In such cases, the regression equation is no longer
meaningful.
Featured in: Example 4 on page 1372
Restriction: Not supported by ActiveX

SKIPMISS
breaks a plot line or an area fill at occurrences of missing values of the Y variable.
By default, plot lines and area fills are not broken at missing values. The SKIPMISS
option is available only with JOIN interpolation. If the SKIPMISS option is used,
observations should be sorted by the independent (horizontal axis) variable. If the
plot request is y-variable*x-variable=third-variable, observations should also be
sorted by the values of the third variable.
See also: “About the Input Data Set” on page 1331

VAXIS=value-list | AXIS<1...99>
specifies the major tick mark values for the vertical axis or assigns an axis definition.
See the HAXIS= option for a description of the value-list. To assign labels to
reference lines, use an axis definition that contains the REFLABEL= option. The
labels are applied in sequence to all reference lines defined with the AUTOVREF and
VREF= options.

For Web output that is generated with a Java or ActiveX device driver, certain
options of the AXIS statement are not supported. For details, see “AXIS Statement”
on page 198.
Featured in: Example 4 on page 1372 and Example 5 on page 1375
Restriction: Partially supported by Java and ActiveX

The GPLOT Procedure � PLOT Statement 1359

VMINOR=number-of-minor-ticks
specifies the number of minor tick marks that are drawn between each major tick
mark on the vertical axis. Minor tick marks are not labeled. The VMINOR= option
overrides the NUMBER= suboption of the MINOR= option in an AXIS definition. You
must specify a positive number.
Alias: VM=
Featured in: Example 2 on page 1368

VREF=value-list
draws one or more reference lines perpendicular to the vertical axis at points that are
specified by the value-list. See the HAXIS= option for a description of the value-list.
If the AREAS= option is also used, the filled areas cover the reference lines. To draw
lines on top of the filled areas, use the FRONTREF option. LVREF=, CVREF=, and
WVREF= options can be used to change the line types, colors, and widths of these
reference lines. To specify labels for these reference lines, use the VAXIS= option.
Featured in: Example 5 on page 1375.

VREVERSE
specifies that the order of the values on the vertical axis be reversed.

VZERO
specifies that tick marks on the vertical axis begin in the first position with a zero.
The VZERO request is ignored if the vertical variable either contains negative values
or has been ordered with the VAXIS= option or the ORDER= option in an AXIS
statement.

WAUTOHREF=reference-line-type
specifies the line width for all reference lines at major tick marks on the horizontal
axis as determined by the AUTOHREF option. Line widths are specified as whole
numbers with the default value being 1. To specify a color for these reference lines,
use the CAUTOREF= option.
Style reference: LineThickness attribute of the GraphGridLines element

WAUTOVREF=value-list
specifies the line width for all reference lines at major tick marks on the vertical axis
as determined by the AUTOVREF option. Line widths are specified as whole
numbers with the default value being 1. To specify a color for these reference lines,
use the CAUTOREF= option.
Style reference: LineThickness attribute of the GraphGridLines element

WHREF=value-list
specifies line widths for reference lines as determined by the horizontal axis. Line
widths are specified as whole numbers. To specify a color for these reference lines,
use the CAUTOREF= option.
Style reference: LineThickness attribute of the GraphGridLines element

WVREF=value-list
specifies line widths for reference lines as determined by the vertical axis. Line
widths are specified as whole numbers. To specify a color for these reference lines,
use the CAUTOREF= option.
Style reference: LineThickness attribute of the GraphGridLines element

Plot Requests with Multiple Variables
Plot requests with multiple variables produce a separate plot for every Y*X pair,

unless you specify OVERLAY. For example, this statement produces four plots (the
actual plots are produced on separate pages). See Figure 45.7 on page 1360.

1360 PLOT Statement � Chapter 45

plot (y b)*(x a);

Figure 45.7 Graphs Generated by Multiple Plot Requests

About SYMBOL Definitions
SYMBOL statements control the appearance of plot symbols and lines, and define

interpolation methods. They can specify the following:
� the shape, size, and color of the plot symbols that mark the data points
� plot line style, color, and width
� an interpolation method for plotting data
� how missing values are treated in interpolation calculations

SYMBOL definitions are assigned either by default by the GPLOT procedure or
explicitly with a plot request.

If no SYMBOL definition is currently in effect, the GPLOT procedure produces a
scatter plot of the data points using the default plot symbol. If you need more than one
SYMBOL definition, the procedure rotates through the colors defined by the current
style, or if the NOGSTYLE option is specified, through the device color list. If the
current color list contains only one color, or if all the colors are used, additional plot
symbols are used.

If SYMBOL definitions have been defined but not explicitly assigned by a plot
request of the form y-variable*x-variable=n, the procedure assigns them in the order in
which they are generated. For example, this statement creates three plots:

plot y*x b*a s*r;

The procedure assigns the first generated SYMBOL definition to Y*X, the second
generated SYMBOL definition to B*A, and the third to S*R.

If more SYMBOL definitions are needed than have been defined, the procedure uses
the default definitions for the plots that remain.

The GPLOT Procedure � PLOT2 Statement 1361

See “SYMBOL Statement” on page 252.

About Plot Requests that Assign a SYMBOL Definition
Plot requests of the form y-variable*x-variable=n are useful when you use the

OVERLAY option to produce multiple plots on one graph and you want to assign a
particular SYMBOL definition to each plot.

With plot requests of this type it is important to remember that a single SYMBOL
statement can generate multiple SYMBOL definitions, so that the SYMBOL definition
that is designated by n might not be the same as the SYMBOL statement of the same
number. That is, the third SYMBOL definition is not necessarily the same as the
SYMBOL3 statement. See “SYMBOL Statement” on page 252 for more information on
the SYMBOL statement.

PLOT2 Statement

Produces one or more plots with the vertical axis on the right side of the graph against which a
second variable can be plotted.

Requirements: You cannot use the PLOT2 statement alone. It can be used only with a
PLOT or BUBBLE statement. At least one plot request is required.
Global statements: AXIS, FOOTNOTE , LEGEND , PATTERN, SYMBOL, TITLE

Description
The PLOT2 statement specifies one or more plot requests that name the horizontal and
right vertical axis variables. This statement automatically does the following:

� plots data points within the axes
� scales the axes to include the maximum and minimum data values
� labels each axis with the name of its variable and displays each major tick mark

value

You can use statement options to manipulate the axes and modify the appearance of
your graph. You can use SYMBOL definitions to modify plot symbols for the data
points, join data points, draw regression lines, plot confidence limits, or specify other
types of interpolation. For more information on the SYMBOL statement see “About
SYMBOL Definitions” on page 1360.

Note: When using the PLOT2 statement to generate output with the Java or
ACTIVEX device drivers, and when the global statement SYMBOL is used, the value of
the SYMBOL statement option INTERPOL= cannot be BOX, STD, or HILO. �

In addition, you can use global statements to modify the axes; to add titles, footnotes,
and notes to the plot; or to modify the legend if one is generated by the plot. You can
also use an Annotate data set to enhance the plot.

Syntax

PLOT2 plot-request(s) </option(s)>;

option(s) can be one or more options from any or all of the following categories:
� plot options:

1362 PLOT2 Statement � Chapter 45

AREAS=n
GRID
LEGEND | LEGEND=LEGEND<1...99>
NOLEGEND
OVERLAY
REGEQN
SKIPMISS

� appearance options:
ANNOTATE=Annotate-data-set
CAXIS=axis-color
CFRAME=background-color
COUTLINE=outline-color
CTEXT=text-color

FRAME | NOFRAME
NOAXIS | NOAXES

� vertical axis options:
AUTOVREF
CAUTOVREF=reference-line-color
CVREF=reference-line-color | (reference-line-color) | reference-line-color-list
LAUTOVREF=reference-line-type

LVREF=reference-line-type | (reference-line-type) | reference-line-type-list
VAXIS=value-list | AXIS<1...99>
VMINOR=n
VREF=value-list
VREVERSE
VZERO

� ODS options:
HTML=variable
HTML_LEGEND=variable

Required Arguments

plot-request(s)
each specifies the variables to plot and produces a separate graph, unless you specify
the OVERLAY option. All variables must be in the input data set. Multiple plot
requests are separated with blanks. A plot request can be any of these:

y-variable*x-variable<=n>
plots the values of two variables and can assign a SYMBOL definition to the plot.

y-variable
variable plotted on the right vertical axis.

x-variable
variable plotted on the horizontal axis.

n
number of the nth generated SYMBOL definition.

The GPLOT Procedure � PLOT2 Statement 1363

(y-variable(s))*(x-variable(s))
plots the values of two or more variable and produces a separate graph for each
combination of Y and X variables.

y-variable(s)
variables plotted on the right vertical axes.

x-variable(s)
variables plotted on the horizontal axes.

y-variable*x-variable=third-variable
plots the values of two variables against a third classification variable

y-variable
variable plotted on the right vertical axis.

x-variable
variable plotted on the horizontal axis.

third-variable
classification variable against which y-variable and x-variable are plotted.
Third-variable can be character or numeric, but numeric variables should
contain discrete rather than continuous values, or should be formatted to
provide discrete values.

For more information about plot requests, see “PLOT Statement” on page 1347.
In a PLOT2 plot request, the X variable for the horizontal axis must be the same

as in the accompanying PLOT or BUBBLE statement. Typically, the Y variable for
the right vertical axis is different.
Use the same types of plot requests with a PLOT2 statement that you use with a

PLOT statement, but a PLOT2 statement always plots the values of y-variable on the
right vertical axis.

Options
Options for the PLOT2 statement are identical to the options for the PLOT

statement except for these options, which are ignored if you specify them:
AUTOHREF
CAUTOHREF=
CHREF=
DESCRIPTION=
HAXIS=
HMINOR=
HREF=
HREVERSE=
HZERO=
IFRAME=
IMAGESTYLE =
LAUTOHREF=
LHREF=
NAME=
WHREF=
WAUTOHREF=

See “PLOT Statement” on page 1347 for descriptions of options that you can use with
the PLOT2 statement.

1364 PLOT2 Statement � Chapter 45

Matching Plot Requests
The plot requests in both the PLOT and PLOT2 statements must be evenly matched

as in this example:

plot y*x b*a;
plot2 y2*x b2*a;

These statements produce two graphs, each with two vertical axes. The first pair of
plot requests (Y*X and Y2*X) produce one graph in which X is plotted on the horizontal
axis, Y is plotted on the left axis, and Y2 is plotted on the right axis. The second pair of
plot requests (B*A and B2*A) produce another graph in which A is plotted on the
horizontal axis, B is plotted on the left axis, and B2 is plotted on the right axis.

Using Multiple Plot Requests
Plot requests of the form (y-variable(s))*(x-variable(s)). Both the PLOT and PLOT2
statements generate multiple graphs (the actual plots are produced on separate pages).
See Figure 45.8 on page 1364.

plot (y b)*(x a);
plot2 (y2 b2)*(x a);

Figure 45.8 Graphs Produced by Multiple Plot Requests in PLOT and PLOT2
Statements

Requesting Plots of Three Variables with a Legend
When both the PLOT and PLOT2 statements use plot requests of the form
y-variable*x-variable=third-variable, each statement generates a separate legend. If the
third variable has two values, these statements produce one graph with four sets of
data points. See Figure 45.9 on page 1365. The figure assumes that SYMBOL
statements are used to specify the plot symbols that are shown and to connect the data
points with straight lines.

The GPLOT Procedure � PLOT2 Statement 1365

plot y*x=z;
plot2 y2*x=z;

Figure 45.9 Multiple Plots on One Graph

Using a Second Vertical Axis

Displaying the Same Values in a Different Scale
If your data contain the same variable values in two different scales, such as height in
inches and height in centimeters, you can display one scale of values on the left axis
and the other scale of values on the right axis. If both vertical axes are calibrated so
that they represent the same range of values, then for each observation of X the data
points for Y and Y2 are the same.

For example, if Y is height in inches and Y2 is height in centimeters and if the Y axis
values range from 0 to 84 inches and the Y2 axis values range from 0 to 213.36
centimeters, the plot is like Figure 45.10 on page 1365.

Figure 45.10 Right Axis with Different Scale of Values

For these types of plots, the PLOT2 statement should use a SYMBOL statement that
specifies INTERPOL=NONE and VALUE=NONE.

Displaying Different Values
If your data contain variables with different data values (such as height and weight),
you can display one type of data on the left axis and another type of data on the right

1366 Examples � Chapter 45

axis. Because the Y variable and the Y2 variable contain different data, two sets of
data points are displayed on the graph. For example, if Y is height and Y2 is weight,
the plot is like Figure 45.11 on page 1366.

Figure 45.11 Right Axis with Different Values and Different Scale

Displaying the Same Scale on Both Axes
If your data contain two sets of values for the same type of data, you can use the
PLOT2 statement to generate a right axis that is calibrated the same as the left axis so
that the data points on the right of the graph are easier to read. For example, if Y is
high temperatures and Y2 is low temperatures, you can create a graph like Figure
45.12 on page 1366.

Figure 45.12 Right Axis with Same Scale of Values

To scale both axes the same, specify the same range of values either with the VAXIS=
option in both the PLOT and PLOT2 statements, or with AXIS statements.

Using PATTERN and SYMBOL Definitions
The PLOT2 statement uses PATTERN and SYMBOL definitions in the same way the

PLOT statement does. These definitions are assigned in order first to the PLOT
statement and then to the PLOT2 statement.

For more information, see “About SYMBOL Definitions” on page 1360.

Examples

The GPLOT Procedure � Example 1: Generating a Simple Bubble Plot 1367

Note: When using procedures that support RUN-group processing, include a QUIT
statement after the last RUN statement. Using the QUIT statement is especially
important when the procedure is supposed to completely terminate within the
boundaries of an ODS destination (for example, ODS HTML; procedure-code; ODS
HTML CLOSE;). See “RUN-Group Processing” on page 56 for more information. �

Example 1: Generating a Simple Bubble Plot

Procedure features:
BUBBLE statement option:

HAXIS=
Other features:

GOPTIONS statement option:
BORDER

AXIS statement
FORMAT statement

Sample library member: GPLBUBL1

This example shows a bubble plot in which each bubble represents a category of
engineer. The plot shows engineers on the horizontal axis and average salaries on the
vertical axis. Each bubble’s vertical location is determined by the average salary for the
category. Each bubble’s size is determined by the number of engineers in the category:
the more engineers, the larger the bubble.

Set the graphics environment.

goptions reset=all border;

1368 Example 2: Labeling and Sizing Plot Bubbles � Chapter 45

Create the data set. The data set JOBS contains average salary data for several categories of
engineer. It also indicates the number of engineers in each category.

data jobs;
length eng $5;
input eng dollars num;
datalines;

Civil 27308 73273
Aero 29844 70192
Elec 22920 89382
Mech 32816 19601
Chem 28116 25541
Petro 18444 34833
;

Define titles and footnote.

title1 "Member Profile"
title2 "Salaries and Number of Member Engineers";
footnote j=r "GPLBUBL1";

Define axis characteristics. The OFFSET= option specifies an offset for the tick marks so
that bubbles near an axis are not clipped.

axis1 offset=(5,5);

Generate bubble plot. The HAXIS= option assigns the AXIS1 statement to the horizontal
axis. The salary averages are assigned a dollar format.

proc gplot data=jobs;
format dollars dollar9.;
bubble dollars*eng=num / haxis=axis1;

run;
quit;

Example 2: Labeling and Sizing Plot Bubbles
Procedure features:

BUBBLE statement options:
BCOLOR
BLABEL
BSIZE
HAXIS=
VAXIS=
VMINOR

Other features:
GOPTIONS statement option:

BORDER

The GPLOT Procedure � Example 2: Labeling and Sizing Plot Bubbles 1369

AXIS statement
Sample library member: GPLBUBL2

This example modifies the code in Example 1. It shows how BUBBLE statement
options control the appearance of bubbles and their labels. It also shows how AXIS
statements can modify the plot axes.

Set the graphics environment.

goptions reset=all border;

Create the data set. The data set JOBS contains average salary data for several categories of
engineer. It also indicates the number of engineers in each category.

data jobs;
length eng $5;
input eng dollars num;
datalines;

Civil 27308 73273
Aero 29844 70192
Elec 22920 89382
Mech 32816 19601
Chem 28116 25541
Petro 18444 34833
;

Define titles and footnote.

title1 "Member Profile";
title2 "Salaries and Number of Member Engineers";

1370 Example 3: Adding a Right Vertical Axis � Chapter 45

Define axis characteristics. AXIS1 suppresses the horizontal axis label and uses the
OFFSET= option to move the first and last major tick mark values away from the vertical axes
so bubbles are not clipped. AXIS2 uses the ORDER= option to set major tick mark intervals.
This could be done with the VAXIS= option on the BUBBLE statement, but then you could not
suppress the axis label and alter other axis characteristics.

axis1 label=none
offset=(5,5);

axis2 order=(0 to 40000 by 10000)
label=none;

Generate bubble plot. The VMINOR= option specifies one minor tick mark for the vertical
axis. The BLABEL option labels each bubble with the value of variable NUM. Thne BCOLOR=
option specifies the color for the bubbles. The BLABEL option labels the bubbles with the value
of the third variable, which in this case is the number of engineers in the job category. The
BSIZE option specifies the size of the bubbles.

proc gplot data=jobs;
format dollars dollar9. num comma7.0;
bubble dollars*eng=num / haxis=axis1

vaxis=axis2
vminor=1
bcolor=darkred
blabel
bsize=3;

run;
quit;

Example 3: Adding a Right Vertical Axis

Procedure features:
BUBBLE statement options:

VAXIS=
HAXIS=
HMINOR=
VMINOR=
BLABEL

Other features:
AXIS statement

FORMAT statement

GOPTIONS statement option:

BORDER

Sample library member: GPLAXIS1

The GPLOT Procedure � Example 3: Adding a Right Vertical Axis 1371

This example modifies Example 2 on page 1368 to show how a BUBBLE2 statement
generates a right vertical axis that displays the values of the vertical coordinates in a
different scale from the scale that is used for the left vertical axis. Salary values are
scaled by dollars on the left vertical axis and by yen on the right vertical axis.

BUBBLE and BUBBLE2 statement options control the appearance of the graph. In
particular, the VAXIS options calibrate the axes so that the data points are identical
and only one set of bubbles appears.

Note: If the data points are not identical, two sets of bubbles are displayed. �

Set the graphics environment.

goptions reset=all border;

Create the data set JOBS2 and calculate variable YEN. The DATA step uses a SET
statement to read the JOBS data set.

data jobs2;
set jobs;
yen=dollars*125;

run;

Define titles and footnote.

title1 "Member Profile";
title2 "Salaries and Number of Member Engineers";
footnote j=r "GPLAXIS1 ";

1372 Example 4: Plotting Two Variables � Chapter 45

Define horizontal-axis characteristics.

axis1 offset=(5,5);

Generate bubble plot with second vertical axis. In the BUBBLE statement, the HAXIS=
option specifies the AXIS1 definition and the VAXIS= option scales the left axis. In the
BUBBLE2 statement, the VAXIS= option scales the right axis. Both axes represent the same
range of monetary values. The BUBBLE and BUBBLE2 statements ensure that the bubbles
generated by each statement are identical by coordinating specifications on any options in these
statements.

proc gplot data=jobs2;
format dollars dollar7. num yen comma9.0;
bubble dollars*eng=num / haxis=axis1

vaxis=10000 to 40000 by 10000
hminor=0
vminor=1
blabel;

bubble2 yen*eng=num / vaxis=1250000 to 5000000 by 1250000
vminor=1;

run;
quit;

Example 4: Plotting Two Variables

Procedure features:
PLOT statement options:

HAXIS=
HMINOR=
REGEQN
VAXIS=

Other features:
GOPTIONS statement option:

BORDER
SYMBOL statement

Sample library member: GPLVRBL1

The GPLOT Procedure � Example 4: Plotting Two Variables 1373

In this example, the PLOT statement uses a plot request of the type
y-variable*x-variable to plot the variable HEIGHT against the variable WEIGHT. The
plot shows that weight generally increases with size.

This example then requests the same plot with some modifications. As shown by the
following output, the second plot request specifies a regression analysis with confidence
limits, and scales the range of values along the vertical and horizontal axes. It also
displays the regression equation specified for the SYMBOL statement. Because the
procedure supports RUN-group processing, you do not have to repeat the PROC GPLOT
statement to generate the second plot.

1374 Example 4: Plotting Two Variables � Chapter 45

Set the graphics environment.

goptions reset=all border;

Define title and footnotes.

title "Study of Height vs Weight";
footnote1 j=l "Source: T. Lewis & L. R. Taylor";
footnote2 j=l "Introduction to Experimental Ecology"

j=r "GPLVRBL1(a) ";

Generate a default scatter plot.

proc gplot data=sashelp.class;
plot height*weight;

run;

Redefine footnotes to make room for the regression equation.

footnote1; /* this clears footnote1 */

The GPLOT Procedure � Example 5: Connecting Plot Data Points 1375

Define symbol characteristics. The INTERPOL= option specifies a cubic regression analysis
with confidence limits for mean predicted values. The VALUE=and CV= options specify a plot
symbol and color. The CI=, CO=, and WIDTH= options specify colors and a thickness for the
interpolation and confidence-limits lines.

symbol1 interpol=rcclm95
value=circle
cv=darkred
ci=black
co=blue
width=2;

Generate scatter plot with regression line. The HAXIS= and VAXIS= options define the
range of axes values. The HMINOR= option specifies one minor tick mark between major tick
marks. The REGEQN option displays the regression equation specified on the SYMBOL1
statement.

plot height*weight / haxis=45 to 155 by 10
vaxis=48 to 78 by 6
hminor=1
regeqn;

run;
quit;

Example 5: Connecting Plot Data Points

Procedure features:
PLOT statement option:

HMINOR=
LVREF=
VAXIS=
VMINOR=
VREF=

Other features:
GOPTIONS statement option:

BORDER
SYMBOL statement

Sample library member: GPLDTPT1

1376 Example 5: Connecting Plot Data Points � Chapter 45

In this example, the PLOT statement uses a plot request of the type
y-variable*x-variable to plot the variable HIGH against the variable YEAR to show the
annual highs of the Dow Jones Industrial Average over several decades.

This example uses a SYMBOL statement to specify a plot symbol and connect data
points with a straight line. In addition, the example shows how PLOT statement
options can add reference lines and modify the axes (AXIS statements are not used).

Set the graphics environment.

goptions reset=all border;

Create the data set. STOCKS contains yearly highs and lows for the Dow Jones Industrial
Average and the dates of the high and low values each year.

data stocks;
input year high low @@;

datalines;
1956 521.05 462.35 1957 520.77 419.79
1958 583.65 436.89 1959 679.36 574.46
1960 685.47 568.05 1961 734.91 610.25
1962 726.01 535.76 1963 767.21 646.79
1964 891.71 768.08 1965 969.26 840.59
1966 995.15 744.32 1967 943.08 786.41
1968 985.21 825.13 1969 968.85 769.93
1970 842.00 631.16 1971 950.82 797.97
1972 1036.27 889.15 1973 1051.70 788.31
1974 891.66 577.60 1975 881.81 632.04
1976 1014.79 858.71 1977 999.75 800.85
1978 907.74 742.12 1979 897.61 796.67

The GPLOT Procedure � Example 6: Generating an Overlay Plot 1377

1980 1000.17 759.13 1981 1024.05 824.01
1982 1070.55 776.92 1983 1287.20 1027.04
1984 1286.64 1086.57 1985 1553.10 1184.96
1986 1955.57 1502.29 1987 2722.42 1738.74
1988 2183.50 1879.14 1989 2791.41 2144.64
1990 2999.75 2365.10 1991 3168.83 2470.30
1992 3413.21 3136.58 1993 3794.33 3241.95
1994 3978.36 3593.35 1995 5216.47 3832.08
;

Define title and footnote.

title1 "Dow Jones Yearly Highs";
footnote1 j=l "Source: 1997 World Almanac"

j=r " GPLDTPT1 ";

Define symbol characteristics. Specifying INTERPOL=JOIN joins the data points with
straight lines and the VALUE= option specifies the type of symbol used.

symbol1 interpol=join
value=dot;

Generate the plot and modify the axis values. The VAXIS= option sets major tick marks
for the vertical axis. The HMINOR= and VMINOR= options specify the number of tick marks
between major tick marks.

proc gplot data=stocks;
plot high*year / haxis=1955 to 1995 by 5

vaxis=0 to 6000 by 1000
hminor=3
vminor=1

Add reference lines. The VREF= option draws reference lines on the vertical axis at three
marks. TheLVREF= option specifies the line style (dashed) for the lines.

vref=1000 3000 5000
lvref=2;

run;
quit;

Example 6: Generating an Overlay Plot

Procedure features:
PLOT statement options:

COLOR=
HAXIS=

1378 Example 6: Generating an Overlay Plot � Chapter 45

HMINOR=
LEGEND=
LVREF=
OVERLAY
VAXIS=
VMINOR=
VREF=

Other features:
GOPTIONS statement options:

BORDER
RESET=

LEGEND statement
SYMBOL statement

Sample library member: GPLOVRL1

In this example, one PLOT statement plots both the HIGH and LOW variables
against the variable YEAR using two plot requests. The OVERLAY option on the PLOT
statement determines that both plot lines appear on the same graph. The other PLOT
options scale the vertical axis, add a reference line to the plot, and specify the number
of minor tick marks on the axes. The SYMBOL, AXIS, and LEGEND statements modify
the plot symbols, axes, and legend.

Note: If the OVERLAY option is not specified, each plot request generates a
separate graph. �

Set the graphics environment.

goptions reset=all border;

The GPLOT Procedure � Example 6: Generating an Overlay Plot 1379

Create the data set. STOCKS contains yearly highs and lows for the Dow Jones Industrial
Average and the dates of the high and low values each year.

data stocks;
input year high low @@;

datalines;
1956 521.05 462.35 1957 520.77 419.79
1958 583.65 436.89 1959 679.36 574.46
1960 685.47 568.05 1961 734.91 610.25
1962 726.01 535.76 1963 767.21 646.79
1964 891.71 768.08 1965 969.26 840.59
1966 995.15 744.32 1967 943.08 786.41
1968 985.21 825.13 1969 968.85 769.93
1970 842.00 631.16 1971 950.82 797.97
1972 1036.27 889.15 1973 1051.70 788.31
1974 891.66 577.60 1975 881.81 632.04
1976 1014.79 858.71 1977 999.75 800.85
1978 907.74 742.12 1979 897.61 796.67
1980 1000.17 759.13 1981 1024.05 824.01
1982 1070.55 776.92 1983 1287.20 1027.04
1984 1286.64 1086.57 1985 1553.10 1184.96
1986 1955.57 1502.29 1987 2722.42 1738.74
1988 2183.50 1879.14 1989 2791.41 2144.64
1990 2999.75 2365.10 1991 3168.83 2470.30
1992 3413.21 3136.58 1993 3794.33 3241.95
1994 3978.36 3593.35 1995 5216.47 3832.08
;

Define titles and footnote.

title1 "Dow Jones Yearly Highs and Lows";
footnote1 j=l " Source: 1997 World Almanac"

;

Define symbol characteristics. Each SYMBOL statement specifies a symbol type for the plot
symbols, and connects the data points with a straight line.

symbol1 interpol=join
value=dot
color=_style_;

symbol2 interpol=join
value=C
font=marker
color=_style_ ;

Define axis characteristics.

axis1 order=(1955 to 1995 by 5) offset=(2,2)
label=none

1380 Example 7: Filling Areas in an Overlay Plot � Chapter 45

major=(height=2)
minor=(height=1)
;

axis2 order=(0 to 6000 by 1000) offset=(0,0)
label=none
major=(height=2)

minor=(height=1)
;

Define legend characteristics. The LABEL= option suppresses the legend label. The
POSITION= option centers the legend inside the top of the axis frame. The MODE= option
shares the legend area with other graphics elements.

legend1 label=none
position=(top center inside)
mode=share;

Generate two plots and display them on the same set of axes. The OVERLAY option
specifies that both plot lines appear on the same graph. The LEGEND= option assigns the
LEGEND1 definition to the graph. The VAXIS= option sets major tick marks for the vertical
axis. The HMINOR= and VMINOR= options specify the number of tick marks between major
tick marks.

proc gplot data=stocks;
plot high*year low*year / overlay legend=legend1

vref=1000 to 5000 by 1000
lvref=2
haxis=axis1 hminor=4
vaxis=axis2 vminor=1;

run;
quit;

Example 7: Filling Areas in an Overlay Plot

Procedure features:
PLOT statement options:

AREAS=
HAXIS=
HMINOR=
VAXIS=
VMINOR=
CAXIS=
OVERLAY

Other features:
GOPTIONS statement option:

BORDER

The GPLOT Procedure � Example 7: Filling Areas in an Overlay Plot 1381

SYMBOL statement

Sample library member: GPLFILL1

This example uses the AREAS= option in the PLOT statement to fill the areas that
are under the plot lines. As in the previous example, two plots are overlaid on the same
graph.

Set the graphics environment. BORDER draws a border around the graph.

goptions reset=all border;

Define title and footnote.

title1 "Dow Jones Yearly Highs and Lows";
footnote1 j=l " Source: 1997 World Almanac"

j=r "GPLFILL1 ";

Set the graphics environment.

goptions reset=all border;

Create the data set. STOCKS contains yearly highs and lows for the Dow Jones Industrial
Average and the dates of the high and low values each year.

data stocks;
input year high low @@;

1382 Example 7: Filling Areas in an Overlay Plot � Chapter 45

datalines;
1956 521.05 462.35 1957 520.77 419.79
1958 583.65 436.89 1959 679.36 574.46
1960 685.47 568.05 1961 734.91 610.25
1962 726.01 535.76 1963 767.21 646.79
1964 891.71 768.08 1965 969.26 840.59
1966 995.15 744.32 1967 943.08 786.41
1968 985.21 825.13 1969 968.85 769.93
1970 842.00 631.16 1971 950.82 797.97
1972 1036.27 889.15 1973 1051.70 788.31
1974 891.66 577.60 1975 881.81 632.04
1976 1014.79 858.71 1977 999.75 800.85
1978 907.74 742.12 1979 897.61 796.67
1980 1000.17 759.13 1981 1024.05 824.01
1982 1070.55 776.92 1983 1287.20 1027.04
1984 1286.64 1086.57 1985 1553.10 1184.96
1986 1955.57 1502.29 1987 2722.42 1738.74
1988 2183.50 1879.14 1989 2791.41 2144.64
1990 2999.75 2365.10 1991 3168.83 2470.30
1992 3413.21 3136.58 1993 3794.33 3241.95
1994 3978.36 3593.35 1995 5216.47 3832.08
;

Define symbol characteristics. The INTERPOL= option specifies a line to connect data
points. The line creates the fill boundary.

symbol1 interpol=join;

Define axis characteristics.

axis1 order=(1955 to 1995 by 5) offset=(2,2)
label=none
major=(height=2)
minor=(height=1);

axis2 order=(0 to 6000 by 1000) offset=(0,0)
label=none
major=(height=2)
minor=(height=1);

Generate a plot with filled areas. The plot requests are ordered to draw the lowest plot first.
Area 1 occupies the space between the lowest (first) plot line and the horizontal axis, and area 2
is below the highest (second) plot line. This arrangement prevents the pattern for area 1 from
overlaying the pattern for area 2. AREAS=2 fills all the areas below the second plot line.

proc gplot data=stocks;
plot low*year high*year / overlay

haxis=axis1
hminor=4
vaxis=axis2
vminor=1

The GPLOT Procedure � Example 8: Plotting Three Variables 1383

caxis=black
areas=2;

run;
quit;

Example 8: Plotting Three Variables

Procedure features:
PLOT classification variable
PLOT statement options:
HAXIS=
HMINOR=
LEGEND=
VAXIS=
VMINOR=

Other features:
GOPTIONS statement option:

BORDER
AXIS statement
SYMBOL statement
RUN-group processing

Sample library member: GPLVRBL2

This example shows that when your data contain a classification variable that groups
the data, you can use a plot request of the form y-variable*x-variable=third-variable to
generate a separate plot for every value of the classification variable, which in this case
is CITY. With this type of request, all plots are drawn on the same graph and a legend

1384 Example 8: Plotting Three Variables � Chapter 45

is automatically produced which identifies the values of third-variable. The default
legend uses the variable name CITY for the legend label and the variable values for the
legend value descriptions.

This example then modifies the plot request. As shown in the following output, the
plot is enhanced by using different symbol definitions and colors for each plot line,
changing axes labels, and scaling the vertical axes differently.

Set the graphics environment.

goptions reset=all border;

Create the data set. CITYTEMP contains the average monthly temperatures of three cities:
Raleigh, Minneapolis, and Phoenix.

data citytemp;
input month faren city $ @@;
datalines;
1 40.5 Raleigh 1 12.2 Minn
1 52.1 Phoenix 2 42.2 Raleigh
2 16.5 Minn 2 55.1 Phoenix
3 49.2 Raleigh 3 28.3 Minn
3 59.7 Phoenix 4 59.5 Raleigh
4 45.1 Minn 4 67.7 Phoenix
5 67.4 Raleigh 5 57.1 Minn
5 76.3 Phoenix 6 74.4 Raleigh
6 66.9 Minn 6 84.6 Phoenix
7 77.5 Raleigh 7 71.9 Minn
7 91.2 Phoenix 8 76.5 Raleigh
8 70.2 Minn 8 89.1 Phoenix
9 70.6 Raleigh 9 60.0 Minn
9 83.8 Phoenix 10 60.2 Raleigh

The GPLOT Procedure � Example 8: Plotting Three Variables 1385

10 50.0 Minn 10 72.2 Phoenix
11 50.0 Raleigh 11 32.4 Minn
11 59.8 Phoenix 12 41.2 Raleigh
12 18.6 Minn 12 52.5 Phoenix

;

Define title and footnote.

title1 "Average Monthly Temperature";
footnote1 j=l " Source: 1984 American Express";
footnote2 j=l " Appointment Book"

;

Define symbol characteristics. This statement specifies that a straight line connect data
point. Because no color is specified, the default color behavior is used and each line is a different
color.

symbol1 interpol=join
value=dot
;

Generate a plot of three variables that produces a legend. The plot request draws one
plot on the graph for each value of CITY and produces a legend that defines CITY values.

proc gplot data= citytemp;
plot faren*month=city / hminor=0;

run;

Modify FOOTNOTE2 to reference new output.

footnote2 j=l "Appointment Book"
;

Define new symbol characteristics. SYMBOL statements are assigned to the values of CITY
in alphabetical order. For example, the value Minn is assigned SYMBOL1.

symbol1 interpol=spline width=2 value=triangle c=steelblue
;

symbol2 interpol=spline width=2 value=circle c=indigo
;

symbol3 interpol=spline width=2 value=square c=orchid
;

1386 Example 9: Plotting with Different Scales of Values � Chapter 45

Define new axis characteristics. AXIS1 suppresses the axis label and specifies month
abbreviations for the major tick mark labels. AXIS2 specifies a two-line axis label and scales the
axis to show major tick marks at every 10 degrees from 0 to 100 degrees.

axis1 label=none
value=("JAN" "FEB" "MAR" "APR" "MAY" "JUN"

"JUL" "AUG" "SEP" "OCT" "NOV" "DEC")
order = 1 to 12 by 1
offset=(2)
;

axis2 label=("Degrees" justify=right "Fahrenheit")
order=(0 to 100 by 10)
;

Enhance the legend.

legend1 label=none value=(tick=1 "Minneapolis");

Generate the enhanced plot. Because the procedure supports RUN-group processing, you do
not have to repeat the PROC GPLOT statement to generate the second plot.

plot faren*month=city /
haxis=axis1 hminor=0
vaxis=axis2 vminor=1
legend=legend1;

run;
quit;

Example 9: Plotting with Different Scales of Values

Procedure features:
PLOT statement options:

HAXIS=
HMINOR=

PLOT and PLOT2 statement options:

VAXIS=
VMINOR=

Other features:
GOPTIONS statement option:

BORDER

AXIS statement

SYMBOL statement

Sample library member: GPLSCVL1

The GPLOT Procedure � Example 9: Plotting with Different Scales of Values 1387

This example shows how a PLOT2 statement generates a right axis that displays the
values of the vertical coordinates in a different scale from the scale that is used for the
left axis.

In this plot of the average monthly temperature for Minneapolis, temperature
variables that represent degrees centigrade (displayed on the left axis) and degrees
Fahrenheit (displayed on the right axis) are plotted against the variable MONTH.
Although the procedure produces two sets of data points, it calibrates the axes so that
the data points are identical and it displays only one plot.

This example uses SYMBOL statements to define symbol definitions. By default, the
SYMBOL1 statement is assigned to the plot that is generated by the PLOT statement,
and SYMBOL2 is assigned to the plot generated by the PLOT2 statement.

Set the graphics environment.

goptions reset=all border;

Create the data set and calculate centigrade temperatures. MINNTEMP contains
average monthly temperatures for Minneapolis.

data minntemp;
input @10 month

@23 f2; /* fahrenheit temperature for Minneapolis */
c2=(f2-32)/1.8; /* calculate centigrade temperature */

/* for Minneapolis */
output;
datalines;

01JAN83 1 1 40.5 12.2 52.1
01FEB83 2 1 42.2 16.5 55.1
01MAR83 3 2 49.2 28.3 59.7
01APR83 4 2 59.5 45.1 67.7
01MAY83 5 2 67.4 57.1 76.3
01JUN83 6 3 74.4 66.9 84.6
01JUL83 7 3 77.5 71.9 91.2

1388 Example 9: Plotting with Different Scales of Values � Chapter 45

01AUG83 8 3 76.5 70.2 89.1
01SEP83 9 4 70.6 60.0 83.8
01OCT83 10 4 60.2 50.0 72.2
01NOV83 11 4 50.0 32.4 59.8
01DEC83 12 1 41.2 18.6 52.5
;

Define title and footnote.

title1 "Average Monthly Temp for Minneapolis";
footnote1 j=l " Source: 1984 American Express";
footnote2 j=l " Appointment Book"

j=r "GPLSCVL1 ";

Define symbol characteristics. INTERPOL=NEEDLE generates a horizontal reference line
at zero on the left axis and draws vertical lines from the data points to the reference line. CI=
specifies the color of the interpolation line and CV= specifies the color of the plot symbol.

symbol1 interpol=needle ci=blue cv=red value=star
;

Define symbol characteristics for PLOT2. SYMBOL2 suppresses interpolation lines and
plotting symbols; otherwise, they would overlay the lines or symbols displayed by SYMBOL1.

symbol2 interpol=none
value=none;

Define axis characteristics. In the AXIS2 and AXIS3 statements, the ORDER= option
controls the scaling of the axes. Both axes represent exactly the same range of temperature, and
the distance between the major tick marks on both axes represent an equivalent quantity of
degrees (10 for centigrade and 18 for Fahrenheit).

axis1 label=none
value=("JAN" "FEB" "MAR" "APR" "MAY" "JUN"

"JUL" "AUG" "SEP" "OCT" "NOV" "DEC")
order=(1 to 12 by 1)
offset=(2)
;

axis2 label=("Degrees" justify=right " Centigrade")
order=(-20 to 30 by 10)

;
axis3 label=("Degrees" justify=left "Fahrenheit")

order=(-4 to 86 by 18)

;

The GPLOT Procedure � Example 10: Creating Plots with Drill-down Functionality for the Web 1389

Generate a plot with a second vertical axis. The HAXIS= option specifies the AXIS1
definition. The VAXIS= option specifies AXIS2 and AXIS3 definitions in the PLOT and PLOT2
statements. Axis labels and major tick mark values use the default color. The VMINOR= option
specifies the number of minor tick marks for each axis.

proc gplot data= minntemp;
plot c2*month / haxis=axis1 hminor=0

vaxis=axis2 vminor=1;
plot2 f2*month / vaxis=axis3 vminor=1;

run;
quit;

Example 10: Creating Plots with Drill-down Functionality for the Web
Procedure features:

PLOT statement options:
HTML=
HTML_LEGEND=

ODS features:
ODS HTML statement:

BODY=
NOGTITLE
PATH=

Other features:
GOPTIONS statement option:

BORDER
BY statement
GOPTIONS statement

Sample library member: GPLDRIL1

This example shows how to create a plot with simple drill-down functionality for the
Web. If you display the plot in a Web browser, you can select any plot point or legend
symbol to display a report on monthly temperatures for the selected city.

The example explains how to use an ODS statement such as ODS HTML to generate
a graph with drill-down links. It shows how to do the following actions:

� explicitly name the HTML files and direct the different types of output to different
files

� use BY-group processing with ODS, and determine the anchor names for the
different pieces of output

� use the PATH= option to specify the destination for the HTML and GIF files
created by the ODS statement

� add an HTML HREF string to a data set to define a link target
� assign link targets with the HTML= and HTML_LEGEND= procedure options
� suppress the titles in the GIF files and display them in the HTML file

For more information on drill-down graphs, see “Adding Links with the HTML= and
HTML_LEGEND= Options” on page 601.

1390 Example 10: Creating Plots with Drill-down Functionality for the Web � Chapter 45

This program modifies the code from sample GPLVRBL2, which shows how to
generate separate plots for the formatted values of a classification variable. In this
example, the code implements drill-down capability for the plot, enabling you to select
any plot point or legend symbol to drill down to a report on the yearly temperatures for
the corresponding city. The following figure shows the drill-down plot as it is viewed in
a browser.

The following figure shows the report that appears when you select any plot point or
legend symbol that corresponds to the data for Raleigh.

The GPLOT Procedure � Example 10: Creating Plots with Drill-down Functionality for the Web 1391

Close the ODS listing destination for output. To conserve system resources, use ODS
LISTING to close the Listing destination for procedure output. Thus, the graphics output is not
displayed in the GRAPH window, although it is written to the catalog.

ods listing close;

Define graphics output location.

filename odsout "c:\";

Set the graphics environment.

goptions reset=all border device=gif;

Open an HTML output file in ODS.

ods html path=odsout gpath=odsout
body="city_plots.html"
nogtitle;

Create the data set CITYTEMP. CITYTEMP contains the average monthly temperatures for
three cities.

data citytemp;
input Month Fahrenheit City $ @@;

1392 Example 10: Creating Plots with Drill-down Functionality for the Web � Chapter 45

datalines;
1 40.5 Raleigh 1 12.2 Minn
1 52.1 Phoenix 2 42.2 Raleigh
2 16.5 Minn 2 55.1 Phoenix
3 49.2 Raleigh 3 28.3 Minn
3 59.7 Phoenix 4 59.5 Raleigh
4 45.1 Minn 4 67.7 Phoenix
5 67.4 Raleigh 5 57.1 Minn
5 76.3 Phoenix 6 74.4 Raleigh
6 66.9 Minn 6 84.6 Phoenix
7 77.5 Raleigh 7 71.9 Minn
7 91.2 Phoenix 8 76.5 Raleigh
8 70.2 Minn 8 89.1 Phoenix
9 70.6 Raleigh 9 60.0 Minn
9 83.8 Phoenix 10 60.2 Raleigh
10 50.0 Minn 10 72.2 Phoenix
11 50.0 Raleigh 11 32.4 Minn
11 59.8 Phoenix 12 41.2 Raleigh
12 18.6 Minn 12 52.5 Phoenix

;

Add the HTML variable to CITYTEMP and create the NEWTEMP data set. The HTML
variable CITYDRILL contains the target locations to associate with the different values of the
variable CITY. Each location for CITYDRILL references the file city_reports.html, which this
program will create. Each location ends with the default anchor name (IDX1, IDX2, and IDX3)
that ODS assigns to the target output when it creates that output in file city_reports.html.

data newtemp;
set citytemp;
length citydrill $ 40;

if city="Minn" then
citydrill="HREF=’citciy_reports.html#IDX1’";

else if city="Phoenix" then
citydrill="HREF=’city_reports.html#IDX2’";

else if city="Raleigh" then
citydrill="HREF=’city_reports.html#IDX3’";

Define a title and footnote and a symbol definition for the plots.

title1 "Average Monthly Temperature";
footnote1 j=l " Click a data point or legend symbol"

j=r "GPLDRIL1 ";

symbol1 interpol=join
value=dot;

Generate the plot. Both HTML= and HTML_LEGEND= specify CITYDRILL as the variable
that contains the targets for the drill-down links. The HTML= option determines that each plot
point will be a hot zone that links to target output, and the HTML_LEGEND= option
determines that the legend symbols will be hot zones that link to target output. This GPLOT
procedure generates the first piece of output in this program; thus, the plot receives the first
default anchor name, which is IDX.

proc gplot data=newtemp;
plot fahrenheit*month=city / hminor=0

The GPLOT Procedure � Example 10: Creating Plots with Drill-down Functionality for the Web 1393

html=citydrill
html_legend=citydrill;

run;
quit;

Change the HTML file.The BODY= option opens a new HTML file for storing the reports for
city temperatures. The new file is assigned the name city_reports.html, which is the filename
assigned above to variable CITYDRILL as part of its target-link locations. The reports that are
generated later in this program are all written to this one HTML file.

ods html close;
ods html path=odsout
body="city_reports.html";

Sort data set NEWTEMP in order by city.

proc sort data=newtemp;
by city month;

run;
quit;

Clear the footnotes, and suppress the default BY-line.

goptions reset=footnote;
option nobyline;

Print a report of monthly temperatures for each city. The BY statement determines that a
separate report is generated for each city. Thus, the REPORT procedure generates three pieces
of output. To assign anchor locations to this new output, ODS increments the last anchor name
that was used (IDX), and therefore assigns the anchor names IDX1, IDX2, and IDX3 to the
output. These are the anchor locations that were specified above as the anchor locations for
variable CITYDRILL.

title1 "Monthly Temperatures in #byval(city)";
proc report data=newtemp nowindows;
by city;
column city month fahrenheit;
define city / noprint group;
define month / display group;
define Fahrenheit / display group;

run;

Close the HTML destination, and open the LISTING destination.

ods html close;
ods listing;

1394

1395

C H A P T E R

46
The GPROJECT Procedure

Overview 1395
Concepts 1397

About the Input Map Data Set 1397

Input Map Data Sets that Contain Only Unprojected Values 1398

Input Map Data Sets that Contain Both Projected and Unprojected Values 1398

About Coordinate Values 1398
About Types of Map Projections 1399

Albers’ Equal-Area Projection 1400

Lambert’s Conformal Projection 1401

Gnomonic Projection 1402

Procedure Syntax 1402

PROC GPROJECT Statement 1403
ID Statement 1407

Using the GPROJECT Procedure 1407

Selecting Projections 1407

Controlling Projection Criteria 1408

Clipping Map Data Sets 1408
Examples 1409

Example 1: Using Default Projection Specifications 1409

Example 2: Emphasizing Map Areas 1412

Example 3: Clipping an Area from the Map 1414

Example 4: Projecting an Annotate Data Set 1416
References 1418

Overview
The GPROJECT procedure processes traditional map data sets by converting

spherical coordinates (longitude and latitude) into Cartesian coordinates for use by the
GMAP procedure. The process of converting coordinates from spherical to Cartesian is
called projecting. Many of the map data sets that are available with SAS/GRAPH
contain unprojected longitude and latitude coordinates. When these coordinates are
plotted by the GMAP procedure, which is designed to plot points on a two-dimensional
plane, the resulting map is often reversed and distorted as a result of forcing the
spherical map coordinates onto a flat plane.

The GPROJECT procedure enables you to use one of several map projection
techniques to project the latitude and longitude coordinates onto a two-dimensional
plane while attempting to minimize the distortion of area, distance, direction, and
shape properties of the original sphere. The output map data set that is produced by
the GPROJECT procedure contains Cartesian coordinates that can be displayed
correctly using the GMAP procedure.

1396 Overview � Chapter 46

The GPROJECT procedure can also create a rectangular subset of the input map
data set by excluding all points with longitude and latitude values that fall outside of a
specified range. This provides a simple way to reduce the size of the map data set if you
need only a portion of a larger map.

The GPROJECT procedure does not produce any graphics output. Instead, it
produces an output map data set, which can be used as the input map data set for the
GMAP procedure (see Chapter 43, “The GMAP Procedure,” on page 1239).

Figure 46.1 on page 1396 and Figure 46.2 on page 1397 illustrate the effect of using
GPROJECT defaults (Albers projection with standard parallels that are calculated by
the procedure) to project a typical map data set with coordinates that are stored as
longitude and latitude.

The program for the following maps can be seen in Example 1 on page 1409.

Figure 46.1 Map before Projection (GPJDEFLT(a))

The GPROJECT Procedure � About the Input Map Data Set 1397

Figure 46.2 Map after Projection (GPJDEFLT(b))

Concepts

About the Input Map Data Set
The input map data set must be in traditional map data set format (see “About

Traditional Data Sets” on page 1244), and it must contain these variables:
� a numeric variable named X that contains the longitude coordinates of the map

boundary points.
� a numeric variable named Y that contains the latitude coordinates of the map

boundary points.
� one or more identification variables that uniquely identify the unit areas in the

map. These variables are listed in the ID statement.

The X and Y variables contain the values that are to be projected.
In addition, the input map data set can also contain these variables:
� a numeric variable named SEGMENT that distinguishes nonconterminous

segments of the unit areas.
� a numeric variable named DENSITY that can be used to affect the output from

PROC GPROJECT. See “Clipping Map Data Sets” on page 1408 for more
information.

Other variables in the input map data set do not affect the GPROJECT procedure.

1398 About Coordinate Values � Chapter 46

Input Map Data Sets that Contain Only Unprojected Values
The following is a list of all of the data sets supplied by SAS that contain X and Y

variables whose values are unprojected:
CANADA3
CANADA4
COUNTIES
COUNTY
STATES

See Example 1 on page 1409 for an illustration of this type of input map data set and
the variables it contains.

Note: Projection is appropriate for map data sets in which the X and Y variable
values represent longitude and latitude. Some of the map data sets that are supplied
with SAS/GRAPH have already been projected; such data set should not be projected
again. �

Input Map Data Sets that Contain Both Projected and Unprojected Values
Most traditional map data sets contain both sets of variables (X, Y and LONG, LAT)

for projected and unprojected maps. In these cases, the X and Y variables produce a
projected map so you do not need to use the GPROJECT procedure. However, you
might want to use the LONG and LAT variables to reproject the map using a different
projection type. To do this you must first rename the LONG and LAT variables as X
and Y. It is necessary to rename the LONG and LAT variables because the GPROJECT
procedure looks for variables that are named X and Y by default. You can create a new
map data set using the OUT= option, drop the current X and Y variables, and rename
the LONG and LAT variables as X and Y. Your new data set then contains unprojected
values in X and Y. The following statements illustrate how to do this:

proc gproject data=maps.austral
(drop=x y rename=(long=x lat=y))
out=newaust;

id id;
run;

For additional information on the supplied SAS/GRAPH map data sets, see “About
Map Data Sets” on page 1244 and the METAMAPS data set in your maps data set
directory.

About Coordinate Values
Figure 46.3 on page 1399 shows the standard coordinate system for map data sets

with coordinates in longitude and latitude. For the longitude and latitude values (below
and to the right of the figure, respectively) the upper value is expressed in degrees and
the lower value is expressed in radians. A radian is approximately 57.3 degrees.

The GPROJECT Procedure � About Types of Map Projections 1399

Figure 46.3 Longitude and Latitude Coordinates

By default, the GPROJECT procedure assumes that the units for the input
coordinate values are radians and that values for the horizontal coordinate increase
from east to west across the map. If your map coordinates are stored as degrees of arc,
use the DEGREE option in the PROC GPROJECT statement. If the horizontal
coordinate values in the map increase west-to-east rather than east-to-west, use the
EASTLONG option in the PROC GPROJECT statement. See “Options” on page 1403
for details about the DEGREE and EASTLONG options.

The unprojected map data sets that are provided with SAS/GRAPH can be projected
if you use the default procedure characteristics: coordinate units in the data sets are
radians, and horizontal values increase east-to-west.

About Types of Map Projections
The GPROJECT procedure performs three different types of projection: Albers’

equal-area projection with two standard parallels (the default method), Lambert’s
conformal projection with two standard parallels, or the gnomonic projection (an
azimuthal equidistant projection).

1400 About Types of Map Projections � Chapter 46

Albers’ Equal-Area Projection

Figure 46.4 Albers’ Projection

The Albers’ projection is a conic projection from the surface of the sphere to a cone
secant to the sphere, cutting it at two standard parallels of latitude. The axis of the cone
coincides with an extension of the polar axis of the sphere. Each section of the resulting
map bears a constant ratio to the area of the sphere. In general, distortion in shape
tends to increase toward the poles in latitudes outside of the two standard parallels.

Figure 46.4 on page 1400 illustrates an Albers’ equal-area projection of the northern
hemisphere.*

The Albers’ projection is suitable for portraying areas of large and small east-to-west
extent and produces satisfactory results in most cases. However, both standard
parallels must lie on the same side of the equator, so this method might not be suitable
for map data sets of large north-to-south extent that span the equator. For those map
data sets, use the gnomonic projection method.

* The projection examples in this topic include grid lines that were added with the Annotate facility. See the Samples area at
support.sas.com for an example of adding latitude and longitude lines to a map.

The GPROJECT Procedure � About Types of Map Projections 1401

Lambert’s Conformal Projection

Figure 46.5 Lambert’s Projection

The Lambert’s projection is obtained from a secant cone in the same manner as
Albers’ projection. In the Lambert’s projection, meridians of longitude are straight lines
that radiate from the apex of the cone, while parallels of latitude are concentric circles.
The Lambert’s projection is somewhat better than the Albers’ projection at representing
the original shape of projected unit areas, while the Albers’ projection is somewhat
better at representing relative sizes of projected unit areas.

Figure 46.5 on page 1401 illustrates a Lambert’s conformal projection of Europe.
The Lambert’s projection is ideal for navigational charts and maps of relatively small

east-to-west extent. However, as in the Albers’ projection, both standard parallels must
lie on the same side of the equator, so this method might not be suitable for map data
sets that span the equator. For those map data sets, use the gnomonic projection
method.

1402 Procedure Syntax � Chapter 46

Gnomonic Projection

Figure 46.6 Gnomonic Projection

The gnomonic projection is a planar projection from the surface of the sphere directly
onto an imaginary plane tangent to the sphere at the map projection pole. By default,
the projection pole is placed at the center of the map data set that is to be projected, but
you can specify the projection pole to be anywhere on the surface of the sphere. (See the
POLELAT= and POLELONG= option on page 1406.)

Figure 46.6 on page 1402 illustrates a gnomonic projection of Africa.
In the gnomonic projection, distortion increases as the distance from the map pole

increases. Because of this distortion, the PROC GPROJECT procedure deletes all of the
observations that lie more than 85 degrees from the map pole. The gnomonic projection
is best suited for mapping areas of small east-to-west extent.

Procedure Syntax
Requirements: Exactly one ID statement is required.

PROC GPROJECT <option(s)>;

ID id-variable(s);

The GPROJECT Procedure � PROC GPROJECT Statement 1403

PROC GPROJECT Statement

Identifies the input and output map data sets. Can specify the type of projection, and the criteria
for clipping and projection.

Requirements: An input map data set is required.

Syntax

PROC GPROJECT <option(s)>;

option(s) can be one or more options from any or all of the following categories:

� data set options:

DATA=input-map-data-set

OUT=output-map-data-set

� projection options:

PARADIV=n

PARALLEL1=latitude

PARALLEL2=latitude

POLELAT=latitude

POLELONG=longitude

PROJECT=ALBERS | GNOMON | LAMBERT | NONE

� coordinate options:

DEGREES

DUPOK

EASTLONG

NODATELINE

� clipping options:

LATMIN=min-latitude

LATMAX=max-latitude

LONGMIN=min-longitude

LONGMAX=max-longitude

Options

DATA=input-map-data-set
identifies the map data set to be processed. By default, the procedure uses the most
recently created SAS data set.

See also: “About the Input Map Data Set” on page 1397 and “SAS Data Sets” on
page 54

Featured in: Example 4 on page 1416

1404 PROC GPROJECT Statement � Chapter 46

DEGREES
specifies that the units for the longitude (X variable) and latitude (Y variable)
coordinates are degrees. By default, coordinate units are considered to be radians.
The GPROJECT procedure stops processing the data set if coordinates are out of
range.
Alias: DEG

DUPOK
specify that observations be retained when their projected X and Y values are
identical to those in the previous observation. By default, successive identical
observations are deleted.

Note: This option is useful when you want to add annotation to a map that
contains duplicate coordinates. �
Alias: ASIS

EASTLONG
specifies that the longitude (X variable) values in the input map data set increase to
the east (that is, positive longitude values are east of the prime meridian.) By
default, longitude values increase to the west.
Alias: EAST

LATMAX=max-latitude
specify the maximum latitude that is included in the projection. Any unit areas that
cross the selected latitude are clipped and closed along the specified parallels. The
LATMAX= and LATMIN= options do not have to be paired; you can specify a
maximum latitude without specifying a minimum.

When PROJECT=ALBERS, LAMBERT, or GNOMON, the GPROJECT procedure
treats the value of max-latitude as degrees. When PROJECT=NONE, the procedure
treats the value as a Cartesian coordinate.
Featured in: Example 3 on page 1414

LATMIN=min-latitude
specify the minimum latitude that is included in the projection. Any unit areas that
cross the selected latitude are clipped and closed along the specified parallels. The
LATMAX= and LATMIN= options do not have to be paired; you can specify a
minimum latitude without specifying a maximum.

When PROJECT=ALBERS, LAMBERT, or GNOMON, the GPROJECT procedure
treats the value of min-latitude as degrees. When PROJECT=NONE, the procedure
treats the value as a Cartesian coordinate.
Featured in: Example 3 on page 1414

LONGMAX=max-longitude
specify the maximum longitude to be included in the projection. Any unit areas that
cross the selected longitude are clipped and closed along the specified meridians. The
LATMAX= and LATMIN= options do not have to be paired; you can specify a
maximum longitude without specifying a minimum.

When PROJECT=ALBERS, LAMBERT, or GNOMON, the GPROJECT procedure
treats the value of max-longitude as degrees. When PROJECT=NONE, the procedure
treats the value as a Cartesian coordinate.
Featured in: Example 3 on page 1414

LONGMIN=min-longitude
specify the minimum longitude to be included in the projection. Any unit areas that
cross the selected longitude are clipped and closed along the specified meridians. The
LATMAX= and LATMIN= options do not have to be paired; you can specify a
minimum longitude without specifying a maximum.

The GPROJECT Procedure � PROC GPROJECT Statement 1405

When PROJECT=ALBERS, LAMBERT, or GNOMON, the GPROJECT procedure
treats the value of min-longitude as degrees. When PROJECT=NONE, the procedure
treats the value as a Cartesian coordinate.
Featured in: Example 3 on page 1414

NODATELINE
enables contiguous projections for maps that cross the line between 180 degrees and
-180 degrees longitude. For example, if you project a map of Asia, then the eastern
tip of the continent might be projected on the left side of the map by default. The
NODATELINE option enables the entire continent to be projected as a contiguous
area.

OUT=output-map-data-set
names the new map data set, which contains the coordinates of the new unit areas
that are created by the GPROJECT procedure.

By default, the GPROJECT procedure names the new data set that uses the
DATAn naming convention. That is, the procedure uses the name WORK.DATAn,
where n is the next unused number in sequence. Thus, the first automatically named
data set is DATA1, the second is DATA2, and so on.
Featured in: Example 4 on page 1416

PARADIV=n
specifies the divisor that computes the values used for standard parallels for the
Albers’ or Lambert’s projections when explicit values are not provided. By default
PARADIV=4, which causes the standard parallels to be set at 1/4 and 3/4 of the
range of latitude values in the input map data set.

See also: PARALLEL1= and PARALLEL2= option

PARALLEL1=latitude
PARALLEL2=latitude

specify values for the standard parallels that are used in the Albers’ or Lambert’s
projection. Latitude must be in degrees. Positive values indicate north of the equator,
and negative values indicate south of the equator. These options are ignored for the
gnomonic projection.

By default, the GPROJECT procedure calculates values for the standard parallels.
The defaults are chosen to minimize the distortion inherent in the projection process.
The algorithm used is as follows:

PARALLEL1 = minlat + R / PD

PARALLEL2 = maxlat - R / PD

where:

R
is the range of latitude values in the input map data set.

PD

is the PARADIV= value (see the discussion of the PARADIV= option).

minlat
is the minimum latitude value in the input map data set.

maxlat
is the maximum latitude value in the input map data set.
If you do not use PARALLEL1= or PARALLEL2=, or you omit either option, the

GPROJECT procedure uses the calculated value for the missing parameter.
The standard parallels, whether explicitly specified or supplied by the procedure,

must lie on the same side of the equator. If they do not, PROC GPROJECT prints an
error message and stops (the procedure might calculate standard parallels that lie on
opposite sides of the equator). When projecting a map data set that contains unit

1406 PROC GPROJECT Statement � Chapter 46

areas that cross the equator, you might have to explicitly specify standard parallels
that both lie on the same side of the equator. If this causes excessive distortion of the
map, you might be able to use the gnomonic projection instead of the Albers’ or
Lambert’s projection because the gnomonic technique has no such limitations at the
equator.
Alias: PARALEL1, PARALEL2

POLELAT=latitude
POLELONG=longitude

specify a projection pole to use for the gnomonic projection. The projection pole is the
point at which the surface of the sphere touches the surface of the imaginary plane
onto which the map is projected. The POLELAT= option specifies the latitude of the
projection point.

Units for latitude are degrees; positive values indicate north of the equator, and
negative values indicate south of the equator. The POLELONG= option gives the
longitude for the projection point. Units for longitude are degrees; positive values
indicate west of the prime meridian, and negative values indicate east of the prime
meridian (unless EASTLONG also has been used in the PROC GPROJECT
statement).

If you do not use the POLELAT= or POLELONG= option, or you omit either
option, PROC GPROJECT uses values for the position of the center of the unit areas
that are defined by the DATA= data set for the missing parameter.

Note: The map that is defined by the input map data set should not contain
points more than 85 degrees (1.48353 radians) from the projection pole; all points
that exceed this value are deleted from the output map data set. �
Featured in: Example 2 on page 1412

PROJECT=ALBERS | LAMBERT | GNOMON | NONE
specifies the projection method to apply to the map data set. Values for the
PROJECT= option are as follows:

ALBERS
specifies Albers’ equal-area projection with two standard parallels.

LAMBERT
specifies Lambert’s conformal projection with two standard parallels.

GNOMON
specifies the gnomonic projection, which is an azimuthal projection.

NONE
specifies that no projection should be performed. Use this option in conjunction
with the LATMIN=, LATMAX=, LONGMIN=, and LONGMAX= options to perform
clipping without projection.
By default, PROJECT=ALBERS.

Note: There are several additional projections available. They are: ADAMS,
AITOFF, APIANUS, ARAGO, BEHRMANN, BRAUN, CYLINDRI, ECKERT1,
ECKERT3, ECKERT5, EQUIRECT or MARINUS, GALL, HAMMER, KVRSKY7,
MILLER1, MILLER2 , ORTHO, PARABOLI, PETERS, PUTNINS4, ROBINSON,
STEREO, WINKEL2. �
See also: “About Types of Map Projections” on page 1399
Featured in: Example 2 on page 1412

The GPROJECT Procedure � Selecting Projections 1407

ID Statement

Identifies the variable or variables that define the hierarchy of the current unit areas in the input
map data set.

Requirements: At least one id-variable is required.
Featured in: Example 1 on page 1409.

Syntax

ID id-variable(s);

Required Arguments

id-variable(s)
specifies one or more variables in the input map data set that identify unit areas.
Id-variable can be either numeric or character.

Each group of observations with a different ID variable value is evaluated as a
separate unit area.

Using the GPROJECT Procedure
You can use PROC GPROJECT statement options to do the following actions:
� select the map projection method
� specify the map projection criteria
� create a rectangular subset of the input map data set

The following sections describe how you can use PROC GPROJECT statement
options to select your own projection method and projection criteria.

Selecting Projections
Except when projecting map data sets that cover large areas, all three types of

projections (Albers’, Lambert’s, and gnomonic) produce relatively similar results when
you use default projection criteria, so you usually do not need to be concerned about
which projection method to use when you produce maps of small regions.

However, the default projection criteria might be unsuitable in some circumstances.
In particular, the default specifications fail when the map that is being projected
extends on both sides of the equator. On other occasions, you might want to select a
projection method to achieve a particular effect.

For the Albers’ and Lambert’s projections, the two standard parallels must both lie
on the same side of the equator. PROC GPROJECT stops and gives an error message if
this condition is not met, regardless of whether you explicitly specify parallel values or
let the procedure calculate default values. See the descriptions of the PARALEL1= and
PARALEL2= options on page 1405 for more information on how to specify the two
standard parallels.

1408 Controlling Projection Criteria � Chapter 46

Controlling Projection Criteria
For both the Albers’ and Lambert’s projections, PROC GPROJECT calculates

appropriate standard parallels. You can override either or both of these selections if you
explicitly specify values for the PARALEL1= or PARALEL2= option. You can influence
the selection of default parallels if you use the PARADIV= option. See “Options” on
page 1403 for more information on these options.

For the gnomonic projection, PROC GPROJECT determines the longitude and
latitude of the approximate center of the input map data set area. You can override
either or both of these selections if you explicitly specify values for the POLELAT= or
POLELONG= option. See “Options” on page 1403 for more information.

The clipping options, discussed in “Clipping Map Data Sets” on page 1408, can also
influence the calculations of the default standard parallels by changing the minimum
and maximum coordinate values.

Clipping Map Data Sets
The GPROJECT procedure can create rectangular subsets of the input map data set.

This capability provides a way to extract a portion of a larger map if you do not need all
the original unit areas for your graph. The procedure enables you to clip unit area
boundaries at specified latitude values, longitude values, or both. Unit areas that fall
completely outside of the specified clipping limits are excluded from the output map
data set. Unit areas bisected by the clipping limits are closed along the clipping
parallels and meridians, and all points outside of the clipping limits are excluded.

If the input map data set contains the DENSITY variable, any new vertex points and
corners that are created by PROC GPROJECT are assigned a DENSITY value of 0 in
the output map data set. This enables you to use a subset of the clipped map without
using PROC GREDUCE to assign new DENSITY values. (See Chapter 48, “The
GREDUCE Procedure,” on page 1447 for information on how to reduce the number of
points that you need to draw a map.)

You can specify the minimum latitude to be retained in the output map data set with
the LATMIN= option and the maximum latitude with LATMAX= option. Minimum and
maximum longitude values are specified with the LONGMIN= and LONGMAX=
options, respectively. See “Options” on page 1403 for more details on these options.

This is how the PROC GPROJECT interprets the clipping longitude and latitude
values:

� If you specify PROJECT=NONE in the PROC GPROJECT statement, the
procedure assumes that the input map data set is already projected and the
clipping longitude and latitude values are Cartesian coordinates. In this case, the
LATMAX= and LATMIN= options specify the top and bottom edges, respectively, of
the area that you want to extract, and the LONGMAX= and LONGMIN= options
specify right and left edges, respectively.

You must be familiar with the range of values in the X and Y variables in order
to select appropriate clipping limits. Use the MEANS or SUMMARY procedure in
Base SAS to determine the range of values in X and Y. See the Base SAS
Procedures Guide for more information.

� If PROJECT=ALBERS, LAMBERT, or GNOMON, the clipping values are treated
as degrees.

Depending on the size and position of the clipped area and the type of projection that
is performed, the resulting map might not be exactly rectangular. PROC GPROJECT
performs clipping before projection, so the clipped area might be distorted by the
projection process.

The GPROJECT Procedure � Example 1: Using Default Projection Specifications 1409

To produce a clipped area with a rectangular shape, use PROC GPROJECT in two
steps:

1 Project the map using the appropriate projection method and projection criteria.
2 Project the map using PROJECT=NONE, and use the LATMIN=, LATMAX=,

LONGMIN=, and LONGMAX= options to clip the map.

See Example 3 on page 1414, for an example of clipping an area from an unprojected
map data set.

Examples
The following examples illustrate major features of the GPROJECT procedure.

Example 1: Using Default Projection Specifications

Procedure features:
ID statement

Sample library member: GPJDEFLT

This example demonstrates the effect of using PROC GPROJECT on an unprojected
map data set without specifying any options. Because the PROJECT= option is not
used in the PROC GPROJECT statement, the Albers’ equal-area projection method is
used by default. PROC GPROJECT supplies defaults for the standard parallels that
minimize the distortion of the projected map areas.

Figure 46.7 Map before Projection (GPJDEFLT(a))

1410 Example 1: Using Default Projection Specifications � Chapter 46

Figure 46.7 on page 1409 illustrates the output produced by the US48 map data set,
which contains unprojected values in the X and Y variables. Output 46.1 shows the
variables in the data set.

Output 46.1 The US48 Data Set

US48 Data Set

OBS STATE SEGMENT DENSITY X Y

1 1 1 3 1.48221 0.56286
2 1 1 3 1.48226 0.56234
3 1 1 3 1.48304 0.56231
.
.
.

The GPROJECT procedure is used with the US48 map data set as input to create the
projected map data set, US48PROJ. The values for X and Y in this new data set are
projected (Cartesian). Output 46.2 shows the variables in the data set.

Output 46.2 The US48PROJ Data Set

US48PROJ Data Set

OBS X Y DENSITY STATE SEGMENT

1 0.16068 -0.073470 3 1 1
2 0.16069 -0.073993 3 1 1
3 0.16004 -0.074097 3 1 1
.
.
.

The new projected map data set, US48PROJ, is used to create the projected map,
Figure 46.8 on page 1411.

The GPROJECT Procedure � Example 1: Using Default Projection Specifications 1411

Figure 46.8 Map after Projection (GPJDEFLT(b))

Set the graphics environment.

goptions reset=all border;

Create a reduced continental U.S. map data set and remove Alaska, Hawaii, and
Puerto Rico.

data us48;
set maps.states;
if state ne 2 and state ne 15 and state ne 72;

run;

Define the title for the unprojected map.

title "United States Map";

Define the pattern characteristics.

pattern value=mempty color=blue;

1412 Example 2: Emphasizing Map Areas � Chapter 46

Show the unprojected map.

proc gmap map=us48 data=us48 all density=4;
id state;
choro state / nolegend levels=1;

run;

Project the map data set using all default criteria. The ID statement identifies the
variable in the input map data set that defines unit areas.

proc gproject data=us48
out=us48proj;

id state;
run;

Show the projected map.

proc gmap map=us48proj
data=us48proj all density=4;

id state;
choro state / nolegend levels=1;

run;
quit;

Example 2: Emphasizing Map Areas

Procedure features:
PROC GPROJECT options:

POLELAT=
POLELONG=
PROJECT=

Sample library member: GPJEMPHS

The GPROJECT Procedure � Example 2: Emphasizing Map Areas 1413

This example uses the gnomonic projection method to create a map in which the east
coast of the United States appears disproportionately large compared to the west coast.

Set the graphics environment.

goptions reset=all border;

Create a reduced continental U.S. map data set and remove Alaska, Hawaii, and
Puerto Rico.

data us48;
set maps.states;
if state ne 2 and state ne 15 and state ne 72;
if density<4;

run;

Project the map onto a plane centered in the Pacific. The PROJECT= option specifies the
projection method for the map data set. The POLELONG= and POLELAT= option specify a
projection pole for the gnomonic projection. In this example, the pole is positioned in the Pacific
Ocean.

proc gproject data=us48
out=skew
project=gnomon
polelong=160
polelat=45;

id state;
run;

1414 Example 3: Clipping an Area from the Map � Chapter 46

Define the title and footnote for the map.

title "United States Map";
footnote j=r "GPJEMPHS ";

Define the pattern characteristics.

pattern value=mempty color=blue;

Show the projected map.

proc gmap map=skew data=skew all;
id state;
choro state / nolegend levels=1;

run;
quit;

Example 3: Clipping an Area from the Map

Procedure features:
PROC GPROJECT options:

LONGMAX=
LONGMIN=
LATMAX=
LATMIN=

Sample library member: GPJCLIPP

The GPROJECT Procedure � Example 3: Clipping an Area from the Map 1415

This example uses the clipping capabilities of PROC GPROJECT to create a map of
the states in the United States that border the Gulf of Mexico. Because the PROJECT=
option is not used in the GPROJECT procedure, the Albers’ equal-area projection
method is used by default.

Set the graphics environment.

goptions reset=all border;

Clip and project a rectangular subset of the map. The LONGMIN= and LONGMAX=
options specify the minimum and maximum longitudes to be included in the map projection.The
LATMIN= and LATMAX= options specify the minimum and maximum latitudes to be included
in the map projection.

proc gproject data=maps.states
out=gulf
longmin=81
longmax=98
latmin=25
latmax=33;

where density<5;
id state;

run;

Define the title and footnote for the map.

title "Northern Gulf Coast";
footnote j=r "GPJCLIPP ";

Define the pattern characteristics.

pattern value=mempty color=blue;

Show the clipped map.

proc gmap map=gulf data=gulf all;
id state;
choro state / nolegend levels=1;

run;
quit;

1416 Example 4: Projecting an Annotate Data Set � Chapter 46

Example 4: Projecting an Annotate Data Set
Procedure features:

PROC GPROJECT options:
DATA=
OUT=

ID statement
Other features:

CHORO statement
Annotate data set

Sample library member: GPJANNOT

This example illustrates how to project an Annotate data set for use with a map data
set. It labels the locations of Charleston, Boston, and Bangor on the map shown in the
second example. Because the X and Y variables in the USCITY data set already have
been projected to match the US data set, they cannot be used with the map that is
produced by the second example. To properly label the projected map, the example uses
the same projection method for the city coordinates that is used for the map coordinates.
This example illustrates how to use the same projection method for both data sets.

Set the graphics environment.

goptions reset=all border;

Create a reduced continental U.S. map data set and remove Alaska, Hawaii, and
Puerto Rico.

data us48;
set maps.states;

The GPROJECT Procedure � Example 4: Projecting an Annotate Data Set 1417

if state ne 2 and state ne 15 and state ne 72;
if density<4;

run;

Create the Annotate data set CITIES from the MAPS.USCITY data set. The unprojected
LONG and LAT variable values are converted to radians and substituted for the projected X and
Y variable values. LONG and LAT are converted by multiplying them by the arccosine of -1 and
dividing that amount by 180. The value of STATE is modified for each label to insure that it is
unique.

data cities;
set maps.uscity(keep=lat long city state);
length function style color $ 8

position $ 1 text $ 20;
retain function "label" xsys ysys "2"

hsys "1" when "a";
if (state=45 and city="Charleston") or

(state=25 and city="Boston") or
(state=23 and city="Bangor");

state+100; color="black"; size=8; text="V";
position="5";
style="marker"; x=long*arcos(-1)/180;
y=lat*arcos(-1)/180; output;

state+1; color="black"; size=5;
text=" "||city;
position="6"; style="swissb"; output;

run;

Create the data set ALL by combining the data set US48 and the data set CITIES.

data all;
set us48 cities;

run;

Project the ALL data set. The DATA= option specifies the data set to be projected. The OUT=
option specifies the name of the new projected data set that is created. The ID statement
identifies the variable in the input map data set that defines map areas.

proc gproject data=all
out=allp
project=gnomon
polelong=160
polelat=45;

id state;
run;

1418 References � Chapter 46

Separate the projected data set into the CITIESP Annotate data set and the US48P
map data set. The annotate observations have STATE values that are greater than 100.

data citiesp us48p;
set allp;
if state > 100 then output citiesp;
else output us48p;

run;

Define the title and footnote for the map.

title1 "Distribution Center Locations";
title2 "East Coast";
footnote j=r "GPJANNOT ";

Define the pattern characteristics.

pattern value=mempty color=blue;

Show the annotated map. The CHORO statement displays the projected map and annotates
it using the projected Annotate data set.

proc gmap data=us48p map=us48p all;
id state;
choro state

/ nolegend levels=1
annotate=citiesp;

run;
quit;

References

Pearson, F., II (1977), “Map Projection Equations,” Report Number TR-3624, Naval
Surface Weapons Center, Dahlgren Laboratory, March, 1977.

Richardus, P. and Adler, R.K. (1972), Map Projections, Amsterdam: North-Holland
Publishing Company; New York: American Elsevier Publishing Company.

Robinson, A.H. (1978), Elements of Cartography, New York: John Wiley & Sons, Inc.

1419

C H A P T E R

47
The GRADAR Procedure

Overview 1419
Calculating Weighted Statistics 1420

Procedure Syntax 1421

PROC GRADAR Statement 1421

CHART Statement 1422

Examples 1435
Example 1: Generating the Data Set for the GRADAR Examples 1435

Example 2: Producing a Basic Radar Chart 1437

Example 3: Overlaying Radar Charts 1438

Example 4: Tiling Radar Charts 1439

Example 5: Using Multiple Classification Variables in Radar Charts 1440

Example 6: Modifying the Appearance of Radar Charts 1441
Example 7: Creating a Windrose Chart 1443

Example 8: Creating a Calendar Chart 1444

Overview
The GRADAR procedure creates radar charts that show the relative frequency of

data measures in quality control or market research problems. Radar charts are
sometimes also called star charts.

On a radar chart, the chart statistics are displayed along spokes that radiate from
the center of the chart. The charts are often stacked on top of one another with
reference circles, thus giving them the look of a radar screen. By default, the chart
vertices—the points where the statistical values intersect the spokes—are based on the
frequencies associated with the levels of a single numeric variable. Non-integer values
of the chart variable are truncated to integers. The measures can be displayed in
decreasing order, the order in which they appear in the input data, increasing order of
internal values, or lexicographic order of variable names.

Note: The GRADAR procedure is not supported by the Java device drivers. �

1420 Calculating Weighted Statistics � Chapter 47

Calculating Weighted Statistics
By default, each observation is counted only once in the calculation of the chart

statistics. To calculate weighted statistics in which an observation can be counted more
than once, use the FREQ= option. This option identifies a variable whose values are
used as a multiplier for the observation in the calculation of the statistic. If the value of
the FREQ= variable is missing, 0, or negative, the observation is excluded from the
calculation.

If you use the SUMVAR= option, then for each observation, the value of the
SUMVAR= variable is multiplied by the value of the FREQ= variable in calculating the
chart statistic.

For example, to use a variable called COUNT to produce weighted statistics, assign
FREQ=COUNT. If you also assign the variable HEIGHT to the SUMVAR= option, then
the following table shows how the values of COUNT and HEIGHT would affect the
statistic calculation:

Value of
COUNT

Value of
HEIGHT

Number of times the
observation is used

Value used for
HEIGHT

1 55 1 55

5 65 5 325

. 63 0 -

-3 60 0 -

The GRADAR Procedure � PROC GRADAR Statement 1421

Procedure Syntax
Requirements: At least one CHART statement is required.
Global Statements: AXIS, FOOTNOTE, GOPTIONS, TITLE
Reminder: The procedure can include the BY, FORMAT, LABEL, and WHERE
statements as well as SAS/GRAPH NOTE statement.
Supports: RUN-group processing
Restriction: Not supported by Java

PROC GRADAR <DATA=input-data-set>
<GOUT=< libref.>output-catalog>
<ANNOTATE=Annotate-data-set>;

CHART chart-variable </ option(s)>;

PROC GRADAR Statement

Identifies the data set that contains the plot variables. Specifies an output catalog (optional).

Requirements: An input data set is required.

Syntax

PROC GRADAR <DATA=input-data-set>
<GOUT=< libref.>output-catalog>
<ANNOTATE=Annotate-data-set>;

Options
PROC GRADAR statement options affect all graphs produced by the procedure.

ANNOTATE=Annotate-data-set
specifies a data set to add annotate elements to all graphs that are produced by the
GRADAR procedure. To add annotate elements to individual graphs, use
ANNOTATE= in the CHART statement.
Alias: ANNO=
Restriction: The GRADAR procedure does not support coordinate systems 2 or 8.

See “Coordinate Systems” on page 650.
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

DATA=input-data-set
specifies the SAS data set that contains the variable(s) to chart. By default, the
procedure uses the most recently created SAS data set.

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output produced by the
GRADAR procedure.

1422 CHART Statement � Chapter 47

CHART Statement

Creates the radar charts in which the length of the vertices along the spines represent the values
of the chart statistic for the data categories.

Requirements: At least one chart variable is required.
Global statements: AXIS, FOOTNOTE, and TITLE as well as the SAS/GRAPH NOTE
statement

Syntax

CHART chart-variable </ option(s)>;

option(s) can be one or more options from any or all of the following categories:
� chart options

ACROSSVAR=variable
CALENDAR
DOWNVAR=variable
FREQ=variable
MODE=SHARE | PROTECT | RESERVE
MISSING
NCOLS=n
NLEVELS=n
NROWS=n
NZEROREF
ORDERACROSS=FREQ | DATA | INTERNAL | FORMATTED | EXTERNAL
OTHER=“variable”
OVERLAY=overlay-variable
STARTYPE=CORONA | POLYGON | RADIAL | SPOKE | WEDGE
SPEED=speed-variable
SUMVAR=summary-variable
WINDROSE

� axis options
STARAXIS= (AXIS<1...99><, . . . ,AXIS<1...99>>)
WAXIS=n

� appearance options
ANNOTATE=Annotate-data-set
CAXIS=grid-color
CFRAME=background-color | (variable)
CFRAMESIDE=color
CFRAMETOP=color
CSPOKES=spoke-color
CSTARCIRCLES=color | (colors-list)
CSTARFILL=color | (colors-list)

The GRADAR Procedure � CHART Statement 1423

CSTARS=color | (colors-list)

CTEXT=text-color

CTILES=(variable) | color

FONT=font

FRAME | NOFRAME

HEIGHT=height

IFRAME=fileref | “external-image-file”

IMAGESTYLE=TILE | FIT

INBORDER

INHEIGHT=value

INTERTILE=value

LSPOKE=linetype

LSTARCIRCLES=(linetypes)

LSTARS=(linetypes)

MAXNVERT=n

MAXVERT=n

NOLEGEND

SPIDERWEB

SPKLABEL=CATEGORY | NONE

SPOKESCALE = CATEGORY | VERTEX

STARCIRCLES=(values)

STARFILL= lists of (SOLID | EMPTY) one for each star

STARINRADIUS=value

STARLEGEND=CLOCK | CLOCK0 | NUMBER | DEGREES | NONE

STARLEGENDLAB=“legend-label”

STAROUTRADIUS=value

STARSTART=value

TILELEGEND=variable

TILELEGLABEL=“label”

WFRAME=n

WINDROSECIRCLES=

WSPOKES=n

WSTARCIRCLES=(line-widths)

WSTARS=line-widths | (line-widths)

� catalog entry description options

DESCRIPTION=“description”

NAME=“name”

� ODS options

HTML=variable

HTML_LEGEND=variable

1424 CHART Statement � Chapter 47

Required Arguments

chart-variable(s)
specifies one or more variables that define the categories of data to be charted. The
values of the chart variable determine the spokes in the corresponding radar chart.
These values are the observations in the input data set for the chart variable. You
must have at least three observations in the data set as it takes three points to
define a plane. Technically, you can create a GRADAR chart with only one or two
observations, but a true radar chart is not displayed.

Options
Options in a CHART statement affect all graphs produced by that statement. You

can specify as many options as needed and list them in any order.

ACROSSVAR=variable
generates a radar chart for each value of the specified variable and displays the
charts from left-to-right across the output area. If used with the DOWN= option, the
charts are drawn in left-to-right and top-to-bottom order. To limit the number of
columns or rows that are displayed, specify the NCOLS= and NROWS= options.
Alias: ACROSS=
Restriction: This option is not valid with CALENDAR charts—use the OVERLAY

option instead.
See also: DOWNVAR=, NCOLS=, NROWS=, ORDERACROSS=
Featured in: Example 4 on page 1439 and Example 5 on page 1440

ANNOTATE=Annotate-data-set
specifies a data set to add annotate elements to charts produced by the CHART
statement.
Alias: ANNO=
Restriction: The GRADAR procedure does not support coordinate systems 2 or 8.

See “Coordinate Systems” on page 650.
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

CALENDAR
produces a radar chart displaying 12 equal-sized segments, one for each month of the
year January through December. The color shading of each segment represents the
magnitude of the frequency variable. Use the OVERLAY variable to subdivide each
segment, for example, by year.
Restriction: When you specify the CALENDAR option, you must also specify the

OVERLAYVAR= option.
See also: NLEVELS=, OVERLAYVAR=
Featured in: Example 8 on page 1444

CAXIS=grid-color
specifies a color for the chart frame outline and the spokes or grid lines of the chart.
The specified color must be a valid SAS/GRAPH color name. If you omit the CAXIS=
option, the default color is retrieved from the current style or from the first color in
the color list if the NOGSTYLE system option is specified.
Alias: CAXES=, CA=
Style reference: Color attribute of the GraphAxisLines element
See also: CFRAME=
Restriction: Not supported by ActiveX

The GRADAR Procedure � CHART Statement 1425

CFRAME=background-color | (variable)
fills the frame area with the specified color. You can specify a valid SAS/GRAPH color
name, or a character variable of length eight whose value is the background color.

Alias: CFR=

See also: CAXIS=

CFRAMESIDE=color | (variable)
specifies the color for filling the frame area for the row labels displayed along the left
side of a chart. The specified color must be a valid SAS/GRAPH color name or a
character variable of length eight whose value is a valid SAS/GRAPH color name. If
a label is associated with the classification variable, the specified color is also used to
fill the frame area for this label. By default, these areas are not filled.

Restriction: The CFRAMESIDE= option is ignored unless you also specify the
DOWNVAR= option.

CFRAMETOP=color | (variable)
specifies the color for filling the frame area for the column labels that are displayed
across the top of a chart. The specified color must be a valid SAS/GRAPH color
name, or a character variable of length eight whose value is a valid SAS/GRAPH
color name. If a label is associated with the classification variable, the specified color
is also used to fill the frame area for this label. By default, these areas are not filled.

Restriction: The CFRAMESIDE= option is ignored unless you also specify the
ACROSSVAR= option.

CSPOKES=spoke-color | (variable)
specifies a color to use for the spokes in a chart. The specified color must be a valid
SAS/GRAPH color name, or a character variable of length eight whose value is the
color. The default color is specified by the current style or is the first color in the
color list if the NOGSTYLE option is specified.

Alias: CSPOKE=

CSTARCIRCLES=color | (colors-list)
specifies a color or list of colors for the circles that are requested with the
STARCIRCLES= option. All specified colors must be valid SAS/GRAPH color names,
or a character variable of length eight whose value is the color. By default, the color
specified with the CSTARS= option is used. If the CSTARS= option is omitted, the
default color is specified by the current style or is the first color in the color list if the
NOGSTYLE option is specified.

Alias: CSTARCIRCLE=

Featured in: Example 3 on page 1438

CSTARFILL=color | (color-list)
specifies a color or colors for filling the interior of stars when STARFILL= is set to
SOLID. All specified colors must be valid SAS/GRAPH color names.

If STARFILL is set to SOLID, the GRADAR procedure fills the stars with the first
set of colors it finds from the following list:

1 the color(s) specified on the CSTARFILL= option

2 the color(s) specified on the CSTARS= option

3 the color(s) specified by the current style or, if the NOGSTYLE option is
specified, the colors in the device color list.

The number of colors that you specify depends on the number of stars in the chart.

� If the OVERLAY= option is not used, all stars are filled with the same color.
Specify a single fill color. If the ACROSSVAR= option or the DOWNVAR= option
are used, the specified color is applied to each star in the tiled display.

1426 CHART Statement � Chapter 47

� If the OVERLAY= option is used, the chart contains multiple overlaid stars. In
that case, specify a list of colors in parentheses. Make sure that there are at
least as many colors in the list as there are stars in the chart. If you do not
specify enough colors for each star to have a different color, the GRADAR
procedure assigns colors from the current style (or the device color list) to the
remaining stars. (If the NOGSTYLE option is specified, the color for the star
positioned at subgroup n on the chart is the value of the color corresponding to
the color at position n in the device color list.)

If the CSTARFILL= option is specified and the CSTARS= option is not specified for
the outline, then the outline is the same as the CSTARFILL option.

If the STARFILL= option is not set or is set to EMPTY, then the CSTARFILL=
option sets only the outline color. You can also use the CSTARS= option to set the
outline color.
See also: CSTARS=

CSTARS=color | (color-list)
specifies a color or list of colors for the outlines of stars. All specified colors must be
valid SAS/GRAPH color names. The GRADAR procedure uses the first set of colors it
finds from the following list:

1 the color(s) specified on the CSTARS= option
2 the color(s) specified on the CSTARFILL= option
3 the color(s) specified by the current style or, if the NOGSTYLE option is

specified, the colors in the device color list, starting with the second color.
The number of colors that you specify depends on the number of stars in the chart.
� If the OVERLAY= option is not used, all stars are filled with the same color.

Specify a single fill color. If the ACROSSVAR= option or the DOWNVAR= option
are used, the specified color is applied to each star in the tiled display.

� If the OVERLAY= option is used, the chart contains multiple overlaid stars. In
that case, specify a list of colors in parentheses. Make sure that there are at
least as many colors in the list as there are stars in the chart. If you do not
specify enough colors for each star to have a different color, the GRADAR
procedure assigns colors from the current style (or the device color list) to the
remaining stars. (If the NOGSTYLE option is specified, the color for the star
positioned at subgroup n on the chart is the value of the color corresponding to
the color at position n in the device color list.)

Alias: CSTAR=
See also: CSTARFILL=
Featured in: Example 6 on page 1441

CTEXT=color
specifies a color for all text on the chart. The specified color must be a valid SAS/
GRAPH color name. If you omit the CTEXT= option, the GRADAR procedure uses
the first color it finds in the following list.

1 the CTEXT= option in a GOPTIONS statement
2 the color specified by the current style or, if the NOGSTYLE option is specified,

then the default color is black for the ActiveX devices and the second color in
the color list for all other devices

Style reference: Color attribute of the GraphValueText element

CTILES=(variable) | color
specifies either a character variable of length eight whose values are the fill colors for
the tiles or a single color that is the fill color for all tiles. By default, the tiles are not
filled.

The GRADAR Procedure � CHART Statement 1427

If you specify a variable, the values of the specified variable must be identical for
all observations with the same level of the classification variables. The same color
can be used to fill more than one tile. Use the special value, EMPTY, to indicate that
a tile is not to be filled.

The CTILES= option cannot be used in conjunction with the NOFRAME option or
the CFRAME= option. You can use the TILELEGEND= option in conjunction with
the CTILES= option to add an explanatory legend for the CTILES= option colors at
the bottom of the chart.
Alias: CTILE=
Restriction: Not supported by ActiveX

DESCRIPTION=“description”
specifies a description of the output. The maximum length for description is 256
characters. The description does not appear in the output. The descriptive text is
shown in each of the following:

� the chart description for Web output (depending on the device driver). See
“Chart Descriptions for Web Presentations” on page 596 for more information.

� the Table of Contents that is generated when you use the CONTENTS= option
on an ODS HTML statement, assuming the output is generated while the
contents page is open.

� the description and the properties for the output in the Results window.
� the description and properties for the catalog entry in the Explorer.
� the Description field of the PROC GREPLAY window.

The description can include the #BYLINE, #BYVAL, and #BYVAR substitution
options, which work as they do when used on TITLE, FOOTNOTE, and NOTE
statements. The 256-character limit applies before the substitution takes place for
these options; thus, if in the SAS program the entry-description text exceeds 256
characters, it is truncated to 256 characters, and then the substitution is performed.
Alias: DES=
Default: RADAR CHART OF chart-variable

DOWNVAR=variable
generates a radar chart for each value of the specified variable, and displays the
charts from top-to-bottom. If used with the ACROSS= option, the charts are drawn
in left-to-right and top-to-bottom order. To limit the number of columns or rows that
are displayed, use the NCOLS= option or the NROWS= option.
Alias: DOWN=
Restriction: This option is not valid with CALENDAR charts—use OVERLAY

instead.
Featured in: Example 5 on page 1440

FONT=font
specifies the font for all text strings in the radar chart. If you omit the FONT=
option, the font that is specified by the FTEXT= graphics option is used. If neither
option is specified, the default font is specified by the current style or, if the
NOGSTYLE option is specified, by the current device.
Style reference: Font attribute of the GraphValueText elements

FRAME | NOFRAME
specifies whether a frame is drawn around the chart. FRAME draws a frame inside
the border specified by INBORDER (if INBORDER is specified). NOFRAME
suppresses the frame.

By default, the frame color is specified by the current style or, if the NOGSTYLE
option is specified, is the first color in the color list. If you want to specify a different

1428 CHART Statement � Chapter 47

color for the frame, use the CFRAME= option for a filled frame and CAXIS= for only
the frame outline color.
Default: FRAME
Restriction: The NOFRAME option cannot be specified with the CFRAME= option

or the CTILES= option. This option is not supported by ActiveX.
See also: CAXIS=, CFRAME=
Featured in: Example 7 on page 1443

FREQ=numeric-variable
specifies a variable whose values weight the contribution of each observation in the
computation of the chart statistic. Each observation is counted the number of times
that are specified by the value of numeric-variable for that observation. If the value of
numeric-variable is missing, 0, or negative, the observation is not used in the statistic
calculation. Non-integer values of numeric-variable are truncated to integers.

The statistics are not affected by applying a format to numeric-variable.
See also: “Calculating Weighted Statistics” on page 1420
Featured in: Example 2 on page 1437, Example 3 on page 1438, andExample 4 on

page 1439

HEIGHT=height
specifies the height in cells for labels and legends. The HEIGHT= option overrides
the HTEXT= option in a GOPTIONS statement. This does not change the size of
titles or footnotes
Alias: HLABEL=

HTML=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement.
See also: “Adding Custom Data Tips with the HTML= Option” on page 598 and

“Adding Links with the HTML= and HTML_LEGEND= Options” on page 601

HTML_LEGEND=variable
identifies the variable in the input data set whose values create links in the HTML
file created by the ODS HTML statement. These links are associated with a legend
value and point to the data or graph you want to display when the user drills down
on the value. The maximum length for the value of this variable is 1024 characters.
See also: “Adding Links with the HTML= and HTML_LEGEND= Options” on page

601

IFRAME=fileref | “external-image-file”
specifies an image file to use on the chart’s frame. Fileref must be a valid SAS fileref
up to eight characters long and must have been previously assigned with a
FILENAME statement. External-image-file must specify the complete filename of the
image file you want to use. The format of external-image-file varies across operating
environments. For more information, see “Displaying an Image in Graph Frame” on
page 184.
Restriction: Not supported by ActiveX

IMAGESTYLE=TILE | FIT
specifies the way to display the image file that is specified on the IFRAME= option.
TILE copies the image as many times as needed to fit the frame. FIT stretches the
image so that a single copy fits within the frame.

Note: When used with the IFRAME option, the IMAGESTYLE option must be
within the PROC statement. When used with the IBACK option , the IMAGESTYLE
option goes on the GOPTIONS statement. �

The GRADAR Procedure � CHART Statement 1429

INBORDER
generates a inside border around the chart. This border is inside the border created
by the BORDER option on the GOPTIONS statement, if it is specified.

Restriction: Not supported by ActiveX

INHEIGHT=value
specifies the height for spoke labels. The default unit is PCT, which is percentage of
graphics output area. The INHEIGHT= option overrides the HTEXT= option in a
GOPTIONS statement. This option does not change the size of titles or footnotes.

Restriction: Not supported by ActiveX

INTERTILE=value
specifies the distance (in cells) between tiles in a chart, and is used only with the
ACROSSVAR= option and the DOWNVAR= option. By default, the tiles are
contiguous (value=0).

Alias: INTERCHART=

Default: 0

Featured in: Example 5 on page 1440

LSPOKES=linetype
specifies a line type for the spokes in a radar chart.

Default: 1 (solid line)

LSTARCIRCLES=linetypes | (linetypes)
specifies one or more line types for the circles requested with the STARCIRCLES=
option. If the number of line types specified with LSTARCIRCLES= matches the
number of circles requested with STARCIRCLES=, then the line types are paired
with the circles in the order specified. If you request more circles than you specify
lines types for, SAS/GRAPH uses the line types that you specify and defaults to 1
(solid) for the remaining circles.

Alias: LSTARCIRCLE=

Default: 1 (solid line)

LSTARS=(linetypes)
specifies the line types for the outlines of stars that are produced for a radar chart.
By default, the outlines rotate through the list of line types. The default line type for
the star positioned at subgroup n is the value of the line type corresponding to the
position n in the list of line types.

The number of line types that you specify depends on the number of stars in the
chart.

� If the OVERLAY= option is not used, all stars use the same line type. Specify a
single fill line type. If the ACROSSVAR= option or the DOWNVAR= option are
used, the specified line type is applied to each star in the tiled display.

� If the OVERLAY= option is used, the chart contains multiple overlaid stars. In
that case, specify a list of line types in parentheses. Be sure that there are at
least as many line types in the list as there are stars in the chart.

To specify line colors, use the CSTARS= option.

Alias: LSTAR=

Featured in: Example 6 on page 1441

MAXNVERT=n
specifies the maximum number of vertices, from 1 to 360, in the radar chart.

Alias: MAXVERT=

1430 CHART Statement � Chapter 47

MISSING
accepts a missing value as a valid midpoint for the chart variable. By default,
observations with missing values are ignored. Missing values are always valid for
the overlay variables.

MODE=SHARE | PROTECT | RESERVE
specifies the display mode for a radar chart.

SHARE shares the drawing space between the text and the graph.

PROTECT shares the drawing space but maintains a solid rectangle (using
the background color) behind the text. This is useful when the
text is illegible because of the image specified with the IFRAME=
option or the color specified with the CFRAME= option.

RESERVE reduces the size of the text and graph in order to accommodate
both.

Default: RESERVE

NAME=“name”
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default name is RADAR. If
the name duplicates an existing name, then SAS/GRAPH adds a number to the name
to create a unique name—for example, RADAR1.

See also: “About Filename Indexing” on page 99

NCOLS=n
specifies the number of columns in a chart. You can use the NCOLS= option in
conjunction with the NROWS= option. NCOLS=2 and NROWS=2 if two classification
variables are specified. If used with the ACROSSVAR= or DOWNVAR= options, the
default number of columns or rows is calculated from the number of classifications
for the variables that are listed on the ACROSSVAR= or DOWNVAR= options. In
that case, you can use the NCOLS= option and NROWS= option to limit the number
of columns and rows that are specified.

Alias: NCOL=

Default: 1 if one classification variable is specified

Restriction: Not supported by ActiveX

See also: NROWS=

Featured in: Example 5 on page 1440

NLEVELS=n
specifies the number of colors used in the calendar chart to represent the magnitude
of the frequency variable. The colors are shown in the legend as a color ramp ranging
from white to the full intensity of one color.

Default: 6

NOLEGEND
suppresses the legend that is otherwise automatically displayed.

NOZEROREF
turns off the zero reference circle when negative values are plotted. When a negative
value is plotted, a dashed circle indicates the zero position. You cannot change the
appearance of this zero reference circle, but you can turn it off with the

The GRADAR Procedure � CHART Statement 1431

NOZEROREF option. The zero reference circle does not appear if there are no
negative values plotted.

NROWS=n
specifies the number of rows in a chart. You can use the NROWS= option in
conjunction with the NCOLS= option. See NCOLS= for details.
Alias: NROW=
Default: 1
Restriction: Not supported by ActiveX
See also: NCOLS=
Featured in: Example 5 on page 1440

ORDERACROSS=FREQ | DATA | INTERNAL | FORMATTED | EXTERNAL
specifies the display order for the values of the ACROSS= option variable.
Restriction: Not supported by ActiveX

OTHER=“category”
specifies a new category that merges all categories not selected because of the
MAXNVERT= option. The category should be specified as a formatted value of the
chart variable.
Restriction: The OTHER= option is ignored unless you also specify the

MAXNVERT= option.

OVERLAYVAR=overlay-variable
creates a comparative radar chart using the levels of the overlay variable. All charts
are displayed in the same set of spokes. A maximum of 24 overlays can be displayed
in a single radar chart.
Alias: OVERLAY=
Restriction: This option cannot be used with the ACROSSVAR= option or the

DOWNVAR= options.
Featured in: Example 3 on page 1438, Example 7 on page 1443, and Example 8 on

page 1444

SPEED=speed-variable
specifies the wind speed in windrose charts.

SPIDERWEB
displays lines connecting the points where tick marks would be instead of displaying
the tick marks, using the same number of points for all axes as for the first axis. The
default number of web lines is three.

If there is an AXIS statement in effect, then the web gets its values (such as
number, thickness, and color) from the MAJOR= values for the axis drawn at the
first position. (The default first position is 12 o’clock.)
Alias: SPIDER

SPKLABEL=CATEGORY | NONE
labels the chart spokes with the category of the variable that is being charted.
NONE suppresses the labels. The default is CATEGORY; however, if the
STARLEGEND= option is specified, the default is NONE.
Default: CATEGORY

SPOKESCALE=CATEGORY | VERTEX
specifies whether every spoke is drawn to the same scale, or whether each spoke is
drawn to a different scale. When you specify the SPOKESCALE=CATEGORY option
(or you do not specify the SPOKESCALE option), the GRADAR procedure determines
the minimum and maximum value of all the spokes. Then, the vertices of all the

1432 CHART Statement � Chapter 47

spokes have that same maximum value and minimum value. When you specify the
SPOKESCALE=VERTEX option, each vertex has its own maximum value and
minimum value, and each vertex is labeled at the tick marks.
Restriction: If you specify SPOKESCALE=VERTEX, you should also specify the

OVERLAYVAR= option.

STARAXIS= (AXIS<1...99><, . . . ,AXIS<1...99>>)
assigns one or more axis definitions to the axis spokes in the radar chart. GRADAR
displays axis spokes clockwise, starting at the 12 o’clock position. The axis
definitions that are specified using the STARAXIS= option are assigned consecutively
to the spokes, starting from the first spoke. AXIS statements are assigned in
clockwise order. For example, the STARAXIS=(AXIS3, AXIS1, AXIS2) option assigns
the AXIS3 statement’s definition to the first axis spoke (at the 12 o’clock position),
the AXIS1 statement’s definition to the second axis spoke, and the AXIS2 statement’s
definition to the third axis spoke.

The axis definitions are assigned consecutively, and you cannot skip a spoke. For
example, to assign a definition to the seventh spoke, you must also assign definitions
to the first six spokes. However, you do not have to assign definitions to all of the
spokes. Any remaining axis spokes on the GRADAR chart are displayed with the
default settings. For example, if the STARAXIS= option specifies three definitions
and the chart has more than three axis spokes, the fourth and remaining spokes are
displayed with the default settings. If there are more definitions specified than there
are axis spokes in the chart, the excess definitions are ignored.
Alias: STARAXES=

STARCIRCLES=(values)
specifies reference circles that are superimposed on the stars that are produced for a
radar chart. All of the circles are displayed and centered at each point plotted on the
primary chart. The value determines the diameter of the circle. A value of 0.0
specifies a circle with the inner radius, which displays a circle at the minimum data
value. A value of 1.0 specifies a circle with the outer radius, which is the length of
the spokes in the chart. In general, a value of h specifies a circle with a radius equal
to inradius + h�(outradius - inradius).

For example, the values 0.0 and 1.0 correspond to an inner circle and an outer
circle. The value 0.5 specifies a circle with a radius of inradius + 0.5�(outradius -
inradius), or a circle halfway between the inner circle and the outer circle. Likewise,
the value 0.25 specifies a circle one-fourth of the way from the inner circle to the
outer circle.

To specify the line types for the circles, use the LSTARCIRCLES= option. To
specify colors for the circles, use the CSTARCIRCLES= option.
Alias: STARCIRCLE=
Featured in: Example 3 on page 1438

STARFILL= lists of (SOLID | EMPTY) one for each star
determines whether the stars in the radar chart are empty or filled with a solid color.
Valid values are EMPTY (the default) and SOLID. If there are multiple stars in the
chart, specify, in parentheses, a separate value for each star.

If the STARFILL=(SOLID) option and the CSTARFILL= option are not specified,
then each star is filled with the colors specified on the CSTARS= option. If the
CSTARS= option is not specified, then the fill colors are determined by the current
style or, if the NOGSTYLE option is specified, by the device color list.

If STARFILL= is not set or is set to EMPTY, then CSTARFILL= is ignored.

STARINRADIUS=percent
specifies inner radius of stars as a percent from 0 to 100. The inner radius of a star
is the distance from the center of the star to the circle that represents the lower limit

The GRADAR Procedure � CHART Statement 1433

of the standardized vertex variables. The lower limit can correspond to the minimum
value, a multiple of standard deviations below the mean, or a lower specification
limit. The value must be less than the value that is specified with the
STAROUTRADIUS= option. The default value is one-third of the outer radius.

Restriction: Not supported by ActiveX

See also: STAROUTRADIUS=

STARLEGEND=CLOCK | CLOCK0 | NUMBER | DEGREES | NONE
specifies the style of the legend used to identify the vertices of stars that are
produced for a radar chart.

CLOCK identifies the vertex variables by their positions on the clock
(starting with 12:00).

CLOCK0 identifies the vertex variables by their positions on the clock
(starting with 0:00 corresponding to 12:00).

NUMBER identifies the vertex variables by numbers, with 1 corresponding
to 12 o’clock. Legend entries are assigned in clockwise order.

DEGREES identifies the vertex variables by angles in degrees, with 0
degrees corresponding to 12 o’clock.

NONE suppresses the legend. This is the default.

Featured in: Example 4 on page 1439

STARLEGENDLAB=“legend-label”
specifies the label displayed to the left of the legend for stars requested with the
STARLEGEND= option. The label can be up to 16 characters and must be enclosed
in quotes. The default label is Vertices:.

Featured in: Example 4 on page 1439

STAROUTRADIUS=value
specifies outer radius of stars as a percent up to 100. The value must be greater than
the value of the STARINRADIUS= option. The inner radius of a star is the distance
from the center of the star to the circle that represents the lower limit of the
standardized vertex variables. The lower limit can correspond to the minimum value,
a multiple of standard deviations below the mean, or a lower specification limit.

Restriction: Not supported by ActiveX

See also: STARINRADIUS=

STARSTART=value
specifies the vertex angle for the first variable that is specified on the CHART
statement. Vertex angles for the remaining variables are uniformly spaced clockwise
and assigned in the order listed. You can specify the value in the following ways:

� Clock position: If you specify the value as a time literal (between ’0:00’T and
’12:00’T), the corresponding clock position is used for the first vertex variable.
For example, ’12:00’T indicates the 12 o’clock position, ’03:00’T the 3 o’clock
position (90 degrees), and ’09:00’T the 9 o’clock position (270 degrees).

� Degrees: To specify a value in degrees you must specify a negative number.
(This is to distinguish degrees from clock values, which are stored internally as
positive numbers.) If you specify a negative number, the absolute value is used
for the first vertex angle in degrees. Here, 0 degrees corresponds to 12:00, −90
degrees to 3:00, and −270 degrees to 9:00. Always specify the value in degrees
as a negative number.

The default value is zero, so the first vertex variable is positioned at 12:00.

1434 CHART Statement � Chapter 47

STARTYPE=CORONA | POLYGON | RADIAL | SPOKE | WEDGE
specifies the style of the stars that are produced for a radar chart. The following
keywords are available:

CORONA polygon with star-vertices emanating from the inner circle

POLYGON closed polygon

RADIAL rays emanating from the center

SPOKE rays emanating from the inner circle

WEDGE closed polygon with rays from the center to the full spoke length.
Default: WEDGE

SUMVAR=summary-variable
specifies a numeric variable to be used to construct weighted radar charts. The
values of summary-variable can be positive, negative, zero, or missing. If SUMVAR=
is not specified, the weights applied to the chart variable are assumed to be one. The
chart is not affected by applying a format to numeric-variable.
See also: “Calculating Weighted Statistics” on page 1420

TILELEGEND=(variable)
specifies a variable used to add a legend for CTILES= colors. The variable can have a
formatted length less than or equal to 32. If a format is associated with the variable,
then the formatted value is displayed. The TILELEGEND= option must be used in
conjunction with the CTILES= option for filling the tiles in a chart. If CTILES= is
specified and TILELEGEND= is not specified, a color legend is not displayed.

The values of the CTILES= and TILELEGEND= variables should be consistent for
all observations with the same level of the classification variables. The value of the
TILELEGEND= variable is used to identify the corresponding color value of the
CTILES= variable in the legend.

Restriction: Not supported by ActiveX

TILELEGLABEL="label"
specifies a label displayed to the left of the legend that is created when you specify a
TILELEGEND= variable. The label can be up to 16 characters and must be enclosed
in quotes. The default label is Tiles:.
Restriction: Not supported by ActiveX

WFRAME=n
specifies the width in pixels for the frame lines.
Alias: WAXIS=
Default: 1
Restriction: Not supported by ActiveX

WINDROSE
specifies creation of a windrose chart. The windrose chart is named for charts of
wind speed and direction. Windrose charts are a type of histogram which are useful
when the extreme values of the histogram’s midpoint variable are related. Typical
applications include histograms involving direction, clock time, or other cyclical
values.
Featured in: Example 7 on page 1443

WINDROSECIRCLES=n
specifies the number of reference circles.

WSPOKES=line-width
specifies the width in pixels of the spokes in a radar chart.

The GRADAR Procedure � Example 1: Generating the Data Set for the GRADAR Examples 1435

Alias: WSPOKE=
Default: 1

WSTARCIRCLES=(line-widths)
specifies the width in pixels of the outline of circles requested by the
STARCIRCLES= option.
Alias: WSTARCIRCLE=
Default: 1
Restriction: This option is ignored unless the STARCIRCLES= option is specified.

WSTARS=line-width | (line-widths)
specifies the width in pixels of the outline of stars that are produced for a radar chart.
Alias: WSTAR=
Default: 1
Featured in: Example 6 on page 1441

Examples

Note: When using procedures that support RUN-group processing, include a QUIT
statement after the last RUN statement. Using the QUIT statement is especially
important when the procedure is supposed to completely terminate within the
boundaries of an ODS destination (for example, ODS HTML; procedure-code; ODS
HTML CLOSE;). See “RUN-Group Processing” on page 56 for more information. �

Example 1: Generating the Data Set for the GRADAR Examples

Procedure features: Data set generation
Sample library member: GRRDATA

Most of the GRADAR procedure examples use the FAILURE data set. You must
submit this code before you can run any of the examples that use the FAILURE data set.

During the manufacture of a metal-oxide semiconductor (MOS) capacitor, different
cleaning processes were used by two manufacturing systems that were operating in
parallel. Process A used a standard cleaning solution, while Process B used a different
cleaning mixture that contained less particulate matter. For five consecutive days the
causes of failure with each process were observed, recorded, and saved in the SAS data
set called FAILURE.

data failure;
label Cause = "Cause of Failure" ;
input Process $ 1-9 Day $ 13-19 Cause $ 23-36 Count 40-41;
datalines;

Process A March 1 Contamination 15
Process A March 1 Corrosion 2
Process A March 1 Doping 1
Process A March 1 Metallization 2

1436 Example 1: Generating the Data Set for the GRADAR Examples � Chapter 47

Process A March 1 Miscellaneous 3
Process A March 1 Oxide Defect 8
Process A March 1 Silicon Defect 1
Process A March 2 Contamination 16
Process A March 2 Corrosion 3
Process A March 2 Doping 1
Process A March 2 Metallization 3
Process A March 2 Miscellaneous 1
Process A March 2 Oxide Defect 9
Process A March 2 Silicon Defect 2
Process A March 3 Contamination 20
Process A March 3 Corrosion 1
Process A March 3 Doping 1
Process A March 3 Metallization 0
Process A March 3 Miscellaneous 3
Process A March 3 Oxide Defect 7
Process A March 3 Silicon Defect 2
Process A March 4 Contamination 12
Process A March 4 Corrosion 1
Process A March 4 Doping 1
Process A March 4 Metallization 0
Process A March 4 Miscellaneous 0
Process A March 4 Oxide Defect 10
Process A March 4 Silicon Defect 1
Process A March 5 Contamination 23
Process A March 5 Corrosion 1
Process A March 5 Doping 1
Process A March 5 Metallization 0
Process A March 5 Miscellaneous 1
Process A March 5 Oxide Defect 8
Process A March 5 Silicon Defect 2
Process B March 1 Contamination 8
Process B March 1 Corrosion 2
Process B March 1 Doping 1
Process B March 1 Metallization 4
Process B March 1 Miscellaneous 2
Process B March 1 Oxide Defect 10
Process B March 1 Silicon Defect 3
Process B March 2 Contamination 9
Process B March 2 Corrosion 0
Process B March 2 Doping 1
Process B March 2 Metallization 2
Process B March 2 Miscellaneous 4
Process B March 2 Oxide Defect 9
Process B March 2 Silicon Defect 2
Process B March 3 Contamination 4
Process B March 3 Corrosion 1
Process B March 3 Doping 1
Process B March 3 Metallization 0
Process B March 3 Miscellaneous 0
Process B March 3 Oxide Defect 10
Process B March 3 Silicon Defect 1
Process B March 4 Contamination 2
Process B March 4 Corrosion 2

The GRADAR Procedure � Example 2: Producing a Basic Radar Chart 1437

Process B March 4 Doping 1
Process B March 4 Metallization 0
Process B March 4 Miscellaneous 3
Process B March 4 Oxide Defect 7
Process B March 4 Silicon Defect 1
Process B March 5 Contamination 1
Process B March 5 Corrosion 3
Process B March 5 Doping 1
Process B March 5 Metallization 0
Process B March 5 Miscellaneous 1
Process B March 5 Oxide Defect 8
Process B March 5 Silicon Defect 2
run;

Example 2: Producing a Basic Radar Chart

Procedure features:
FREQ=

Data set: FAILURE (see Example 1 on page 1435)
Sample library member: GRRBASIC

In a radar chart, the vertices are determined by the levels of a single variable, which
is specified on the CHART statement. In this example, the variable CAUSE is specified
as the chart variable. The spokes in the chart start at the twelve o’clock position and go
in a clockwise order. The output shows that Contamination and Oxide Defects are the
most frequently occurring problems.

The FREQ= option specifies variable COUNT to score vertex lengths. Thus, the
values of COUNT weigh the contribution of each observation in the computation of the
chart statistic.

1438 Example 3: Overlaying Radar Charts � Chapter 47

goptions reset=all;

proc gradar data=failure;
chart cause / freq=count;

run;
quit;

Example 3: Overlaying Radar Charts

Procedure features:
FREQ=
OVERLAYVAR=

Data set: FAILURE (see Example 1 on page 1435)
Sample library member: GRROVER

The most typical way that radar charts are displayed is to overlay the charts on top
of each other. To produce an overlay chart, use the OVERLAY= option on the CHART
statement. On the OVERLAY= option, specify the classification variable whose values
determine the charts to be overlaid. This example shows two blocks of code. For overlay
charts with multiple stars, the lines for the stars are rotated through different line
styles and colors so that the different stars can be easily seen.

In the following example, the OVERLAY= option specifies variable DAY as the
overlay variable.

goptions reset=all border;

proc gradar data=failure;

The GRADAR Procedure � Example 4: Tiling Radar Charts 1439

chart cause / freq=count
overlayvar=day;

run;
quit;

Example 4: Tiling Radar Charts

Procedure features:
ACROSSVAR=

FREQ=

STARLEGEND=

STARLEGENDLAB=

Data set: Example 1 on page 1435

Sample library member: GRRTILE

As an alternative to overlaying multiple radar charts (see Example 3 on page 1438),
you can tile charts horizontally, vertically, or in both directions (see Example 5 on page
1440) using the ACROSSVAR= or DOWNVAR= options. Each cell in the output
corresponds to a level of the classification variable. By default, the cells are arranged in
alphabetical order of the values of the variable from top to bottom. The key cell is the
left cell (corresponding to PROCESS = Process A in this example).

The output in this example shows that the main difference in the frequencies for
Process A and Process B is a drop in contamination using Process B.

This example features the following options:

� ACROSSVAR= specifies variable PROCESS as the categorical variable whose
values determine the number of charts that are tiled.

1440 Example 5: Using Multiple Classification Variables in Radar Charts � Chapter 47

� STARLEGEND=CLOCK generates a legend that identifies spoke positions. Value
CLOCK determines that the positions are identified using a clock metaphor.

� STARLEGENDLAB= specifies the category-legend label Failure Causes.

goptions reset=all border;

proc gradar data=failure;
chart cause / acrossvar=process

freq=count
starlegend=clock
starlegendlab="Failure Causes";

run;
quit;

Example 5: Using Multiple Classification Variables in Radar Charts

Procedure features:
ACROSSVAR=
DOWNVAR=
FREQ=
STARTYPE=
NCOLS=
NROWS=
STARLEGEND=

Data set: FAILURE (see Example 1 on page 1435)

Sample library member: GRRTWOWY

The GRADAR Procedure � Example 6: Modifying the Appearance of Radar Charts 1441

You can study the effects of two classifications simultaneously with a two-way
comparative radar chart. This arrangement provides the opportunity to discover both
one-way marginal effects and interaction effects. To produce the chart, use both the
ACROSSVAR= and DOWNVAR= options.

This example features the following options:
� The ACROSSVAR= option specifies variable DAY as the variable whose values

determine the rows in the chart matrix.
� DOWNVAR= specifies variable PROCESS as the variable whose values determine

the columns in the chart matrix.
� STARTYPE= determines that the stars are displayed with rays emanating from

the inner circle.
� NROWS= and NCOLS= specify the number of rows and columns in the chart.
� STARLEGEND= CLOCK generates a legend that identifies spoke positions. Value

CLOCK determines that the positions are identified using a clock metaphor.

goptions reset=all border;

proc gradar data=failure;
chart cause / acrossvar=day

downvar=process
freq=count
startype=spoke
nrows=2 ncols=5
starlegend=clock;

run;
quit;

Example 6: Modifying the Appearance of Radar Charts

Procedure features:
CSTARS=
FREQ=
LSTARS=
OVERLAYVAR=
STARCIRCLES=
WSTARS=

Data set: FAILURE (see Example 1 on page 1435)
Sample library member: GRRAPEAR

1442 Example 6: Modifying the Appearance of Radar Charts � Chapter 47

For overlay charts with multiple stars, the lines for the stars are rotated through
different line styles and colors so that the different stars can be easily seen. Rather
than relying on the default rotation patterns, you can control the line colors, widths,
and styles with the CSTARS=, LSTARS=, and WSTARS= options.

This example features the following options:
� CSTARS= specifies a different color for each of the star outlines in the chart.
� WSTARS= specifies the width of the line for each star outline.
� LSTARS= specifies a solid line as the line style for each star outline.
� STARCIRCLES= determines that two reference circles are superimposed on the

star charts. The value 1.0 determines that a circle with a radius equal to the
spoke length is displayed. The value 0.5 determines that a circle is displayed half
way between the outer circle and the smallest circle (value 0.0) that could be
drawn for the chart. The value 0.0 would display a circle at the minimum data
value, which does not mean that it is actually 0. For example, for data values of 4,
8, 10, and 12, STARCIRCLES=(0.0 1.0) would draw circles at 4 and 12.

goptions reset=all border;

proc gradar data=failure;
chart cause / freq=count

overlayvar=process
cstars=(red, blue)
wstars=2 2
lstars=1 1
starcircles=(0.5 1.0);

run;
quit;

The GRADAR Procedure � Example 7: Creating a Windrose Chart 1443

Example 7: Creating a Windrose Chart
Procedure features:

NOFRAME
SPEED=
SUMVAR=
WINDROSE

Sample library member: GRRWNDRS

The windrose chart is named for charts of wind speed and direction. Windrose charts
are a type of histogram which are useful when the extreme values of the histogram’s
midpoint variable are related. Typical applications include histograms involving
direction, clock time, or other cyclical values.

goptions reset=all border;

data wind;
input Direction $ Speed $ Percent @@;

datalines;
N 1-9 1.7 N 10-19 1.0 NE 1-9 1.4
NE 10-19 .8 E 1-9 2.4 E 10-19 1.4
SE 1-9 1.2 SE 10-19 .4 S 1-9 2.7
S 10-19 1.6 SW 1-9 3.7 SW 10-19 3.2
W 1-9 3.1 W 10-19 3.4 NW 1-9 2.1
NW 10-19 1.7
run;

proc gradar data=wind;
chart direction / sumvar=percent

1444 Example 8: Creating a Calendar Chart � Chapter 47

windrose
speed=speed
noframe;

run;
quit;

Example 8: Creating a Calendar Chart
Procedure features:

FREQ=
CALENDAR
CSTARS=
OVERLAYVAR=

Sample library member: GRRCALEN

The CALENDAR option produces a radar chart displaying 12 equal-sized segments,
one for each month of the year JAN through DEC. The color shading of each segment
represents the magnitude of the frequency variable. Use the OVERLAY variable to
subdivide each segment, for example, by year.

goptions reset=all border;

data climate;
input Year Month $ Temperature @@;

datalines;
2006 Jan 16 2006 Feb 19 2006 Mar 22 2006 Apr 33
2006 May 41 2006 Jun 60 2006 Jul 55 2006 Aug 41
2006 Sep 38 2006 Oct 30 2006 Nov 27 2006 Dec 20

The GRADAR Procedure � Example 8: Creating a Calendar Chart 1445

2007 Jan 18 2007 Feb 23 2007 Mar 20 2007 Apr 27
2007 May 33 2007 Jun 52 2007 Jul 55 2007 Aug 38
2007 Sep 38 2007 Oct 27 2007 Nov 26 2007 Dec 19
run;

proc gradar data=climate;
chart month / freq=temperature

calendar
overlayvar=year
cstars=red;

run;
quit;

1446

1447

C H A P T E R

48
The GREDUCE Procedure

Overview 1447
Concepts 1449

About the Input Map Data Set 1449

About Unmatched Area Boundaries 1449

Procedure Syntax 1450

PROC GREDUCE Statement 1450
ID Statement 1452

Using the GREDUCE Procedure 1452

Specifying Density Levels 1452

Subsetting a Map Data Set 1454

Examples 1454

Example 1: Reducing the Map of Canada 1454
References 1457

Overview
The GREDUCE procedure processes map data sets so that they can draw simpler

maps with fewer boundary points. It creates an output map data set that contains all of
the variables in the input map data set plus a new variable named DENSITY. For each
observation in the input map data set, the procedure determines the significance of that
point for maintaining a semblance of the original shape and gives the observation a
corresponding DENSITY value.

You can then use the value of the DENSITY variable to create a subset of the
original map data set. The observations in the subset can draw a map that retains the
overall appearance of the original map but contains fewer points, requires considerably
less storage space, and can be drawn much more quickly.

GREDUCE does not produce any graphics output. Instead, it produces an output
map data set that can become either

� the input map data set for the GMAP procedure
� the input map data set for a DATA step that removes points from the map.

Figure 48.1 on page 1448 and Figure 48.2 on page 1448 illustrate the effect of
reduction on a typical map data set. Figure 48.1 on page 1448 uses observations with
all DENSITY values as input to the GMAP procedure.

1448 Overview � Chapter 48

Figure 48.1 CANADA2 Map before Reduction (GRDCANAD(a))

Figure 48.2 on page 1448 uses only those observations with a DENSITY value of 0 to
2 as input to the GMAP procedure.

Figure 48.2 CANADA2 Map after Reduction (GRDCANAD(b))

The program for these maps is in Example 1 on page 1454.
The reduced map shown in Figure 48.2 on page 1448 retains the overall shape of the

original but requires only 463 observations compared to the 4302 observations that are
needed to produce the map in Figure 48.1 on page 1448.

The GREDUCE Procedure � About Unmatched Area Boundaries 1449

Note: Many of the map data sets that are supplied by SAS Institute already have
been processed by GREDUCE. If the map data set contains a DENSITY variable, you
do not need to process the data set using GREDUCE. �

See also Chapter 49, “The GREMOVE Procedure,” on page 1459 for more information
on how to

� combine groups of unit areas into larger unit areas to create regional maps
� remove some of the boundaries in a map and create a subset of a map that

combines the original areas.

Concepts

About the Input Map Data Set
The input map data set must be a traditional map data set and contain these

variables:

� a numeric variable named X that contains the horizontal coordinates of the map
boundary points.

� a numeric variable named Y that contains the vertical coordinates of the map
boundary points.

� one or more identification variables that uniquely identify the unit areas in the
map. These variables are listed in the ID statement.

It also can contain
� one or more variables that identify groups of unit areas (for BY-group processing)
� the variable SEGMENT, which distinguishes nonconterminous segments of the

unit areas.

Any other variables in the input map data set do not affect the GREDUCE procedure.

About Unmatched Area Boundaries
If you are using map data sets in which area boundaries do not match precisely (for

example, if the boundaries were digitized with a different set of points), PROC
GREDUCE will not be able to identify common boundaries properly, and this results in
abnormalities in your maps. These abnormalities include mismatched borders, missing
vertex points, stray lines, gaps, and distorted polygons.

If the points in the area boundaries match up except for precision differences, round
each X and Y value in your map data set accordingly, using the DATA step function
ROUND before using PROC GREDUCE. (See SAS Language Reference: Dictionary for
information on the ROUND function.)

For example, if the map data set APPROX has horizontal and vertical coordinate
values for interior boundaries of unit areas that are exactly equal only to three decimal
places, then this DATA step creates a new map data set, EXACT, that will be better
suited for use with PROC GREDUCE:

data exact;
set approx;
if x ne . then x=round(x,.001);
if y ne . then y=round(y,.001);

1450 Procedure Syntax � Chapter 48

run;

See “About Map Data Sets” on page 1244 for additional information on map data sets.

Procedure Syntax
Requirements: Exactly one ID statement is required.

Reminder: The procedure can include the BY statement.

PROC GREDUCE <option(s)>;

ID id-variable(s);

PROC GREDUCE Statement

Identifies the input and output map data sets. Optionally specifies the reduction criteria.

Requirements: An input map data set is required.

Syntax

PROC GREDUCE <option(s)>;

option(s) can be one or more options from any or all of the following categories:

� data set options:

DATA=input-map-data-set

OUT=output-map-data-set

� level options:

E1=min-distance

E2=min-distance

E3=min-distance

E4=min-distance

E5=min-distance

N1=max-points

N2=max-points

N3=max-points

N4=max-points

N5=max-points

The GREDUCE Procedure � PROC GREDUCE Statement 1451

Options

DATA=input-map-data-set
identifies the map data set that you want to process. By default, the procedure uses
the most recently created SAS data set.

See also: “About the Input Map Data Set” on page 1449 and “SAS Data Sets” on
page 54.

E1=min-distance
E2=min-distance
E3=min-distance
E4=min-distance
E5=min-distance

specify the minimum distance that a point must lie from a straight line segment to
be included at density level 1, 2, 3, 4, or 5, respectively. That is, in a reduced curve of
three points, the middle point is at least a distance that is min-distance from a
straight line between the two outside points.

Express min-distance values in the units for the coordinate system of the input
map data set. For example, if the input map data set contains coordinates that are
expressed in radians, express the min-distance values in radians.

Specify the En= values in decreasing order. For example, the E2= value should be
less than the E1= value and so on.

N1=max-points
N2=max-points
N3=max-points
N4=max-points
N5=max-points

specify that for density level 1, 2, 3, 4, or 5, the boundary of a unit area should
contain no more than max-points points.

Specify the Nn= values in increasing order. For example, the N2= value should be
greater than or equal to the N1= value and so on.

By default, if you omit Nn= and En = , the GREDUCE procedure calculates values
for the five Nn = parameters using this formula:

�� � �� ��������

Here Nmax is the maximum number of points in any unit area in the input map
data set. However, the restriction that the number of points for any level cannot be
less than the number of points in level 0 still applies.

OUT=output-data-set
names the new map data set, which contains all of the observations and variables in
the original map data set plus the new DENSITY variable. If the input map data set
contains a variable named DENSITY, the GREDUCE procedure replaces the values
of the variable in the output map data set. The original values of the DENSITY
variable from the input map data set are not included in the output map data set.

By default, the GREDUCE procedure names the new data set that uses the
DATAn naming convention. That is, the procedure uses the name WORK.DATAn,
where n is the next unused number in sequence. Thus, the first automatically named
data set is DATA1, the second is DATA2, and so on.

1452 ID Statement � Chapter 48

ID Statement

Identifies the variable or variables that define the hierarchy of the current unit areas in the input
map data set.

Requirements: At least one id-variable is required.
Featured in: Example 1 on page 1454.

Syntax

ID id-variable(s);

Required Arguments

id-variable(s)
specifies one or more variables in the input map data set that identify unit areas.
Id-variable(s) can be either numeric or character.

Each group of observations with a different ID variable value is evaluated as a
separate unit area.

Using the GREDUCE Procedure

Specifying Density Levels
GREDUCE uses default criteria for determining the appropriate DENSITY variable

value for each observation in the input map data set. If you do not want to use the
default criteria, use PROC GREDUCE options to select

� the maximum number of observations for each DENSITY level
� the minimum distance that an intermediate point must lie from a line between

two end points to be included in the level.

If you do not explicitly specify criteria, the procedure computes and uses default
values.

GREDUCE creates seven density levels, numbered 0 through 6. Specify criteria for
density levels 1 through 5. You cannot define criteria for level 0, which is reserved for
map vertex points, such as common corners of unit areas. You also cannot define
criteria for level 6, which is assigned to those points that do not meet the criteria for
any lower level.

Specify the maximum number of observations per density level using Nn= in the
PROC GREDUCE statement, and specify the minimum point distance using En= . You
must have knowledge of the X and Y variable values in the particular input map data
set to determine appropriate values for En=. See the En= and Nn= option on page 1451
for details.

Figure 48.3 on page 1453 illustrates how to use the minimum distance parameter to
determine which points belong in a particular density level. At density level n, only
point C lies at a distance greater than the En= value (70) from a line between points A

The GREDUCE Procedure � Specifying Density Levels 1453

and B. Thus, after reduction only point C remains between points A and B at density
level n, and the resulting reduced boundary is shown in Figure 48.4 on page 1453. See
Douglas and Peucker (1973) for details of the algorithm used.

Figure 48.3 Points in Data Set before Reduction

B(60,10)

(45,30)

(40,35)

(57,42)
(55,40)

(52,45)

(35,60)

(30,45)

C(50,90)

A(10,10)
En=70

Figure 48.4 Points in Data Set at Density n after Reduction

B(60,10)

C(50,90)

A(10,10)
En=70

GREDUCE uses the usual Euclidean distance formula to determine the distance
between points. For example, the distance d between the points (x0,y0) and (x1,y1) is
GREDUCE uses the usual Euclidean distance formula to determine the distance
between points. For example, the distance d between the points (x0,y0) and (x1,y1) is

� �

�
��� � ���

�
� ��� � ���

�

If this distance function is not suitable for the coordinate system in your input map
data set, transform the X and Y values to an appropriate coordinate system before
using GREDUCE. An example of inappropriate coordinates is latitude and longitude
values around one of the poles. In this case, the data values should be projected before
they are reduced. See Chapter 46, “The GPROJECT Procedure,” on page 1395 for more
information on map projection.

If you specify both Nn= and En= values for a density level, GREDUCE attempts to
satisfy both criteria. However, the number of points for any level is never reduced

1454 Subsetting a Map Data Set � Chapter 48

below the number of points in density level 0. If you specify a combination of Nn= or
En= values such that the resulting DENSITY values are not in order of increasing
density, a note is printed in the SAS log, and the DENSITY values are calculated in
increasing order of density.

Subsetting a Map Data Set
A map data set that is processed by GREDUCE does not automatically result in a

map that uses fewer points. By default, the GMAP procedure produces a map that uses
all of the points in the map data set, even if the data set has been processed by the
GREDUCE procedure. To decrease the number of points that produce the map, you
must create a subset of the original data set using a DATA step or the WHERE= data
set option. For example, to create a subset of a map that uses only the DENSITY
values 0, 1, and 2, use this DATA step:

data smallmap;
set map;
if density <= 2;

run;

Alternatively, you can use WHERE= in the PROC GMAP statement:

proc gmap map=map(where=(density<=2))
data=response;

Note: GREDUCE does not reduce the size of the output map data set compared to
the input map data set. By default, the output map data set from PROC GREDUCE
will be larger than the input map data set because it contains all of the variables and
observations from the original data set, with the addition of the DENSITY variable if it
was not present in the original data set. If the input map data set already had a
DENSITY variable, the output map data set will be the same size as the input map
data set. �

Examples
The following example illustrates major features of the GREDUCE procedure.

Because the example uses one of the map data sets that are supplied with SAS/GRAPH,
you may need to replace SAS-data-library in the LIBNAME statement with the actual
location of the SAS data library that contains the Institute-supplied map data sets on
your system. Contact your SAS Software Consultant for the location of the map data
sets at your site. If your site automatically assigns the libref MAPS to the SAS data
library that contains the Institute-supplied map data sets, delete the LIBNAME
statement in this example.

Example 1: Reducing the Map of Canada
Procedure features:

ID statement
Sample library member: GRDCANAD

The GREDUCE Procedure � Example 1: Reducing the Map of Canada 1455

In this example, the GREDUCE procedure creates the DENSITY variable for the
CANADA2 map data set that is provided with SAS/GRAPH. First, the map is
displayed at its original density by using the GMAP procedure. Second, the map is
displayed by using density values of 0 to 2.

1456 Example 1: Reducing the Map of Canada � Chapter 48

Set the graphics environment.

goptions reset=all border;

Define titles and footnotes for the first map.

title1 "Canada";
title2 "Using all DENSITY values";
footnote j=r "GRDCANAD(a) ";

Define pattern characteristics.

pattern value=mempty repeat=12 color=blue;

Show the unreduced map. The ID statement specifies the variable in the map data set that
defines unit areas.

proc gmap map=maps.canada2 data=maps.canada2 all;
id province;
choro province / nolegend;

run;

The GREDUCE procedure creates a new map data set, CAN2, containing a DENSITY
variable. The ID statement specifies the variable in the map data set that defines unit areas.

proc greduce data=maps.canada2 out=can2;
id province;

run;

Define title and footnote for the second map.

title2 h=4 "Using only DENSITY values 0 to 2";
footnote2 j=r "GRDCANAD(b) ";

Show reduced map with density levels 0-2. The DENSITY= option specifies the density
levels that are used.

proc gmap map=can2
data=can2 all density=2;

id province;
choro province / nolegend;

run;
quit;

The GREDUCE Procedure � References 1457

References

Douglas, D.H. and Peucker, T.K. (1973), “Algorithms for the Reduction of the Number
of Points Required to Represent a Digitized Line or Its Caricature,” The Canadian
Cartographer, 10, 112–122.

1458

1459

C H A P T E R

49
The GREMOVE Procedure

Overview 1459
Concepts 1460

About the Input Map Data Set 1461

About the Output Map Data Set 1461

About Unmatched Area Boundaries 1461

Procedure Syntax 1462
PROC GREMOVE Statement 1462

BY Statement 1464

ID Statement 1465

Examples 1465

Example 1: Removing State Boundaries from U.S. Map 1465

Example 2: Creating an Outline Map of Africa 1469

Overview
The GREMOVE procedure processes a map data set that is used as input. It does

not produce any graphics output. Instead, it produces an output data set that typically
becomes the input map data set for the GMAP procedure (see Chapter 43, “The GMAP
Procedure,” on page 1239). The GREMOVE procedure combines unit areas defined in a
map data set into larger unit areas by removing shared borders between the original
unit areas. For example, Figure 49.1 on page 1460 and Figure 49.2 on page 1460 show
combined unit areas in a typical map data set by removing state boundaries to create
regional census divisions.

1460 Concepts � Chapter 49

Figure 49.1 Map before Removing Borders (GRMUSMAP(a))

Figure 49.2 Map after Removing Borders (GRMUSMAP(b))

The program for these maps is shown in Example 1 on page 1465.

Concepts

The GREMOVE procedure processes the input map data set to remove internal
boundaries and creates a new map data set. The PROC GREMOVE statement

The GREMOVE Procedure � About Unmatched Area Boundaries 1461

identifies the input and output map data sets. The ID statement identifies the variable
or variables in the input map data set that define the current unit areas. The BY
statement identifies the variable or variables in the input map data set that define the
new unit areas.

About the Input Map Data Set
The input map data set must be in traditional map data set format (see “About Map

Data Sets” on page 1244) and it must contain these variables:

� a numeric variable named X that contains the horizontal coordinates of the map
boundary points.

� a numeric variable named Y that contains the vertical coordinates of the map
boundary points.

� one or more variables that uniquely identify the current unit areas in the map.
These variables are listed in the ID statement. Each group of observations with a
different ID variable value is evaluated as a separate unit area.

� one or more variables that identify the new unit areas to be created in the output
map data set. These variables are listed in the BY statement.

It might also contain the variable SEGMENT, which is used to distinguish
non-conterminous segments of the same unit areas. Other variables might exist in the
input map data set, but they do not affect the GREMOVE procedure and they will not
be carried into the output map data set.

About the Output Map Data Set
The output map data set contains the newly defined unit areas. These new unit

areas are created by removing all interior line segments from the original unit areas.
All variables in the input map data set except X, Y, SEGMENT, and the variables listed
in the BY statement are omitted from the output map data set.

The output map data set might contain missing X, Y coordinates to construct any
polygons that have enclosed boundaries (like lakes or combined regions that have one or
more hollow interior regions).

The SEGMENT variable in the output map data set is ordered according to the size
of the bounding box around the polygon that it describes. A SEGMENT value of 1
describes the polygon whose bounding box is the largest in the unit area, and each
additional SEGMENT value describes a smaller polygon. This information is useful for
removing small polygons that clutter up maps.

All current unit areas with common BY-variable value(s) are combined into a single
unit area in the output map data set. The new unit area contains

� all boundaries that are not shared, such as islands and lakes

� all boundaries that are shared by two different BY groups.

About Unmatched Area Boundaries
If you are using map data sets in which area boundaries do not match precisely (for

example, if the boundaries were digitized with a different set of points), PROC
GREMOVE will not be able to identify common boundaries properly, resulting in
abnormalities in your output data set.

If the points in the area boundaries match up except for precision differences, before
using PROC GREMOVE round each X and Y value in your map data set accordingly,

1462 Procedure Syntax � Chapter 49

using the DATA step function ROUND. See SAS Language Reference: Dictionary for
information on the ROUND function.

For example, if you have a map data set named APPROX in which the horizontal
and vertical coordinate values for interior boundaries of unit areas are exactly equal
only to three decimal places, this DATA step creates a new map data set, EXACT, that
is better suited for use with the GREMOVE procedure:

data exact;
set approx;
if x ne . then x=round(x,.001);
if y ne . then y=round(y,.001);

run;

You can also use the FUZZ option to specify a level of tolerance so that the
boundaries do not need to match precisely.

Procedure Syntax
Requirements: The BY and ID statements are required.

PROC GREMOVE <DATA=input-map-data-set>
<FUZZ=fuzz-factor>
<OUT=output-map-data-set>
<NODECYCLE>;

BY <DESCENDING>variable-l
<...<DESCENDING>variable-n>
<NOTSORTED>;

ID variable(s);

PROC GREMOVE Statement

Identifies the input and output map data sets.

Requirements: An input map data set is required.

Syntax

PROC GREMOVE <DATA=input-map-data-set>
<FUZZ=fuzz-factor>
<OUT=output-map-data-set>
<NODECYCLE>;

The GREMOVE Procedure � PROC GREMOVE Statement 1463

Options

DATA=input-map-data-set
specifies the map data set that is to be processed. By default, the procedure uses the
most recently created SAS data set. The GREMOVE procedure expects the
observations in the input map data set to be sorted in ascending order of the
BY-variable values.
See also: “About the Input Map Data Set” on page 1461 and “SAS Data Sets” on

page 54.
Featured in: Example 2 on page 1469.

FUZZ=fuzz-factor
specifies a tolerance for possible error in the data. This allows for points that are
very close but not quite equal to be considered as the same point. The fuzz-factor can
be any non-negative number. A fuzz-factor of 0.0 would indicate that the points have
to be exactly the same. The unit represented by the fuzz-factor (degrees, radians,
feet, meters, kilometers, miles) is the same as that represented by the X and Y
values of the points.

The error is computed the same in both X and Y directions using the following
formula:

Point_is_equal = (ABS(x1 - x2) <= fuzz-factor) && (ABS(y1 - y2) <= fuzz-factor)

NODECYCLE | NC
tells PROC GREMOVE to use a topological algorithm for closing the resulting
polygons. By default, PROC GREMOVE simply removes internal boundaries without
using any polygon information. This might cause errors in closing the resulting
polygons in certain cases—specifically when two resulting polygons intersect at a
single point. Using a topological algorithm allows PROC GREMOVE to traverse the
resulting polygons for proper closure of the polygons. When the single point
intersection is encountered, the algorithm uses the topology to correctly interpret
which existing segment to choose in closing the polygon. The use of NODECYCLE,
thus, requires that the data be topologically correct (that is, polygons do not overlap
themselves or each other and there are no anomalies in the boundaries such as a
repeated series of points).

Certain SAS/GRAPH procedures, such as PROC GREDUCE, which have no
knowledge of topology and do not maintain topology, can produce topologically
incorrect polygons. Therefore, it is recommended that you not use PROC GREDUCE
if you are going to use PROC GREMOVE with NODECYCLE specified.

OUT=output-data-set
names the new map data set, which contains the coordinates of the new unit areas
created by the GREMOVE procedure. By default, the GREMOVE procedure names
the new data set using the DATAn naming convention. That is, the procedure uses
the name WORK.DATAn, where n is the next unused number in sequence. Thus, the
first automatically named data set is DATA1, the second is DATA2, and so on.
See also: “About the Output Map Data Set” on page 1461.
Featured in: Example 2 on page 1469.

1464 BY Statement � Chapter 49

BY Statement

Lists the variable or variables that identify the new unit areas.

Requirements: At least one variable is required.
See also: “BY Statement” on page 216.

Featured in: Example 1 on page 1465.

Syntax

BY <DESCENDING>variable-l
<...<DESCENDING>variable-n>
<NOTSORTED>;

Required Arguments

variable(s)
identifies one or more variables in the input map data set that define the new unit
areas. Variable(s) can be either numeric or character.

The BY variables in the input map data set become the ID variables for the output
map data set.

Options

DESCENDING
indicates that the input map data set is sorted in descending order. By default, the
GREMOVE procedure expects all BY-variable values to appear in ascending order.

This option affects only the variable that immediately follows the option.

NOTSORTED
indicates that observations with the same BY-variable values are to be grouped as
they are encountered without regard for whether the values are in alphabetical or
numerical order. NOTSORTED can appear anywhere in the BY statement. It affects
all of the variables that are specified in the statement. NOTSORTED overrides
DESCENDING if both appear in the same BY statement.

Ordering Observations
To sort the input map data set, use the SORT procedure in Base SAS, for example

/* arrange the observations in desired order */
proc sort data=mapdata out=mapsort;

by state;
run;

/* remove the county boundaries */
proc gremove data=mapsort out=newmap;

by state;

The GREMOVE Procedure � Example 1: Removing State Boundaries from U.S. Map 1465

id county;
run;

Notice that the GREMOVE procedure uses the same BY statement as the SORT
procedure.

See the Base SAS Procedures Guide for further information on the SORT procedure.

Note: If an observation is encountered for which the BY-variable value is out of the
proper order, the GREMOVE procedure stops and issues an error message. �

ID Statement

Identifies the variable or variables that define the hierarchy of the current unit areas in the input
map data set.

Requirements: At least one id-variable is required.
Featured in: Example 1 on page 1465.

Syntax

ID id-variable(s);

Required Arguments

id-variable(s)
specifies one or more variables in the input map data set that identify the unit areas
to be combined. These variables are not included in the output map data set.
Id-variable(s) can be either numeric or character.
See also: “About the Input Map Data Set” on page 1461.

Examples
The following examples illustrate major features of the GREMOVE procedure.

Example 1: Removing State Boundaries from U.S. Map
Procedure features:

BY statement
ID statement

Other features:
SORT procedure
MERGE statement

1466 Example 1: Removing State Boundaries from U.S. Map � Chapter 49

LIBNAME statement

Sample library member: GRMUSMAP

This example processes the MAPS.US map data set, supplied with SAS/GRAPH, to
produce a new map data set containing boundaries for the U.S. Bureau of the Census
divisions. Because the MAPS.US map data set does not contain a variable to identify
any unit area other than states, this example creates a map data set that contains the
census divisions and that can be processed with the GREMOVE procedure.

The STATE variable in the MAPS.US data set, containing numeric FIPS codes for
each state, is used as the BY-variable to merge the CBSTATES and MAPS.US data
sets. Output 49.1 shows some of the variables that are present in the data set before
using the GREMOVE procedure:

Output 49.1 The MAPS.US Data Set

MAPS.US Data Set
OBS STATE SEGMENT X Y

1 1 1 0.16175 -0.10044
2 1 1 0.12305 -0.10415
3 1 1 0.12296 -0.10678
.
.
.

1524 56 1 -0.18757 0.15035
1525 56 1 -0.10158 0.13997
1526 56 1 -0.10398 0.11343

Figure 49.3 on page 1466 shows the map before processing:

Figure 49.3 Map before Removing Borders (GRMUSMAP(a))

The GREMOVE Procedure � Example 1: Removing State Boundaries from U.S. Map 1467

Output 49.2 shows the variables that are present in the data set after you use the
GREMOVE procedure. Notice that the new map data set contains a new variable called
DIVISION:

Output 49.2 The REMSTATE Data Set

REMSTATE Data Set
OBS X Y SEGMENT DIVISION

1 0.29825 0.17418 1 1
2 0.29814 0.17820 1 1
3 0.30206 0.18045 1 1
.
.
.

1082 -0.18715 -0.16010 8 9
1083 -0.18747 -0.15971 8 9
1084 -0.18747 -0.15951 8 9

Figure 49.4 on page 1467 shows the new map after PROC GREMOVE has removed
interior state boundaries.

Figure 49.4 Map after Removing Borders (GRMUSMAP(b))

Set the graphics environment.

goptions reset=all border;

1468 Example 1: Removing State Boundaries from U.S. Map � Chapter 49

Create data set CBSTATES. This data set includes a variable, DIVISION, that contains the
number of the U.S. Bureau of the Census division for the state. This data step converts letter
codes to numeric FIPS codes that match those in the STATE variable of MAPS.US.

data cbstates;
length state 8 stcode $ 2 division 4;
input stcode division @@;
state=stfips(stcode);
drop stcode;
datalines;

CT 1 MA 1 ME 1 NH 1 RI 1 VT 1 PA 2 NJ 2 NY 2 IL 3 IN 3 MI 3 OH 3 WI 3 IA 4 KS 4
MN 4 MO 4 ND 4 NE 4 SD 4 DC 5 DE 5 FL 5 GA 5 MD 5 NC 5 PR 5 SC 5 VA 5 WV 5
AL 6 KY 6 MS 6 TN 6 AR 7 LA 7 OK 7 TX 7 AZ 8 CO 8 ID 8 MT 8 NM 8 NV 8 UT 8
WY 8 AK 9 CA 9 HI 9 OR 9 WA 9
;

Sort data set in FIPS-code order. Create a sorted data set, CBSORT. It can be properly
match-merged with the MAPS.US map data set, which is already sorted in FIPS-code order.

proc sort data=cbstates out=cbsort;
by state;

run;

Add DIVISION variable to map data set by merging the CBSORT data set with
MAPS.US. Create a new map data set, USCB, that contains all of the state boundary
coordinates from the MAPS.US data set plus the added variable DIVISION.

data uscb;
merge cbsort maps.us;
by state;

run;

Sort data set in DIVISION order. Sort USCB by the DIVISION variable to create the
DIVSTATE data set.

proc sort data=uscb out=divstate;
by division;

run;

Remove interior boundaries within divisions. BY specifies the variable, DIVISION, in the
input map data set that identifies the new unit areas. ID specifies the variable, STATE, in the
input map data set that identifies the current unit areas.

proc gremove data=divstate out=remstate;
by division;
id state;

run;

The GREMOVE Procedure � Example 2: Creating an Outline Map of Africa 1469

Define title and footnote for map.

title "U.S. State Map";
footnote j=r "GRMUSMAP(a) ";

Define pattern characteristics.

pattern value=mempty color=blue;

Show the original map.

proc gmap map=maps.us data=maps.us all;
id state;
choro state / nolegend levels=1;

run;

Define new title and footnote for map.

title "U.S. Census Division Map";
footnote j=r "GRMUSMAP(b) ";

Show the regional map. ID specifies the variable, DIVISION, that identifies the unit areas in
the processed data set. CHORO specifies DIVISION as the response variable.

proc gmap map=remstate data=remstate all;
id division;
choro division / nolegend levels=1;

run;
quit;

Example 2: Creating an Outline Map of Africa

Procedure features:
PROC GREMOVE options:

DATA=
OUT=

Other features:
GMAP procedure

Sample library member: GRMAFRIC

This example processes the MAPS.AFRICA map data set, supplied with SAS/
GRAPH, to produce a new map data set that contains no internal boundaries. This is
done by adding a new variable, REGION, to the map data set and setting it equal to 1.
Unit areas from the input map data set that have the same BY-variable value are

1470 Example 2: Creating an Outline Map of Africa � Chapter 49

combined into one unit area in the output map data set. Output 49.3 shows some of the
variables that are present in the original map data set:

Output 49.3 The MAPS.AFRICA Data Set

MAPS.AFRICA Data Set
OBS ID SEGMENT X Y

1 125 1 0.57679 1.43730
2 125 1 0.57668 1.43467
3 125 1 0.58515 1.42363
.
.
.

3462 990 1 1.04249 0.50398
3463 990 1 1.04184 0.50713
3464 990 1 1.04286 0.50841

Figure 49.5 on page 1470 shows the map before processing:

Figure 49.5 Map before Removing Borders (GRMAFRIC(a))

The new AFRICA map data set is created with a new variable, REGION. Output
49.4 shows the variables that are present in the new map data set created by the
GREMOVE procedure:

The GREMOVE Procedure � Example 2: Creating an Outline Map of Africa 1471

Output 49.4 The AFRICA Data Set

AFRICA Data Set
OBS X Y SEGMENT REGION

1 0.24826 1.02167 1 1
2 0.25707 1.02714 1 1
3 0.26553 1.03752 1 1
.
.
.

982 1.19071 1.30043 3 1
983 1.18675 1.30842 3 1
984 1.18518 1.32822 3 1

Figure 49.6 on page 1471 shows the new map after PROC GREMOVE has removed
all of the interior boundaries:

Figure 49.6 Map after Removing Borders (GRMAFRIC(b))

Set the graphics environment.

goptions reset=all border;

Create the NEWAF data set. This new map data set contains all the variables in the SAS/
GRAPH supplied MAPS.AFRICA map data set plus the added variable REGION.

data newaf;
set maps.africa;
region=1;

run;

1472 Example 2: Creating an Outline Map of Africa � Chapter 49

Remove the unit areas from the AFRICA data set. DATA= specifies the input map data set
and OUT= specifies the output map data set. The input map data set has a variable called
REGION that is used as the BY-variable to identify the new unit areas. The ID statement
specifies the current unit areas from the input map data set.

proc gremove data=newaf out=africa;
by region;
id id;

run;

Define the title and footnote.

title "Africa with Boundaries";
footnote j=r "GRMAFRIC(a) ";

Define pattern characteristics.

pattern value=mempty color=blue;

Display the original map.

proc gmap map=maps.africa data=maps.africa all;
id id;
choro id / nolegend levels=1;

run;

Define a new title and footnote for the map.

title "Africa without Boundaries";
footnote j=r "GRMAFRIC(b) ";

Display the map with no boundaries. ID specifies the variable, REGION, that identifies the
unit areas in the processed data set.

proc gmap data=africa map=africa;
id region;
choro region / nolegend levels=1;

run;
quit;

1473

C H A P T E R

50
The GREPLAY Procedure

Overview 1474
Concepts 1475

Catalog Entries 1475

Displaying the List of Templates Provided By SAS/GRAPH 1476

Duplicate Entry Names 1476

Ways to Use the GREPLAY Procedure 1477
Sizing and Naming Your Graphs for Replay (Best Practice) 1477

Procedure Syntax 1477

PROC GREPLAY Statement 1479

? Statement 1481

BYLINE Statement 1482

CC Statement 1482
CCOPY Statement 1483

CDEF Statement 1484

CDELETE Statement 1485

CMAP Statement 1485

COPY Statement 1486
DELETE Statement 1486

DEVICE Statement 1487

FS Statement 1487

GOUT Statement 1488

GROUP Statement 1488
IGOUT Statement 1489

LIST Statement 1489

MODIFY Statement 1490

MOVE Statement 1491

NOBYLINE Statement 1491

PREVIEW Statement 1492
QUIT Statement 1492

REPLAY Statement 1493

TC Statement 1493

TCOPY Statement 1494

TDEF Statement 1495
TDELETE Statement 1498

TEMPLATE Statement 1498

TREPLAY Statement 1499

Using the GREPLAY Procedure Windows 1500

GREPLAY Window Commands 1500
PROC GREPLAY Window 1501

PRESENTATION Window 1501

DIRECTORY Window 1501

1474 Overview � Chapter 50

TEMPLATE DESIGN Window 1502
COLOR MAPPING Window 1502

Commands For Using The GREPLAY Procedure Windows 1503

Running the GREPLAY Procedure Using Code-based Statements 1504

Managing Catalogs, Color Maps, and Templates 1504

Managing GRSEG Catalog Entries 1505
Replaying Catalog Entries 1505

Creating Custom Templates 1506

Replaying Graphics Output in a Template 1506

Creating Color Maps 1507

Examples 1508

Example 1: Creating a Template 1508
Example 2: Replaying GSLIDE Procedure Output in a Template 1510

Example 3: Replaying Graphs Into a Template 1512

Example 4: Creating a Color Map 1514

Overview
The GREPLAY procedure displays and manages graphics output that is stored in

SAS catalogs. The GREPLAY procedure also creates templates and color maps that you
can use when you replay your graphics output. The GREPLAY procedure operates in
line mode, batch mode, and in the SAS windowing environments.

With the GREPLAY procedure, you can perform any of the following actions:
� Layout multiple graphs on one page; this output can be used to create dashboards.
� Select one or more catalog entries from the same catalog for replay, and direct this

output to your display or other devices such as plotters and printers.
� Use, create, or modify templates. Use templates to describe positioning on a single

display, for graphics output stored in one or more graph catalog entries.
� Create new graphics output by replaying one or more catalog entries into panels

within a template.
� Use, create, or modify color maps. Use color maps to map current colors to

different colors.
� List templates in SASHELP.TEMPLT.
� Manage GRSEG, TEMPLATE, and CMAP entries in SAS catalogs by doing the

following:
� Rearranging or creating logical groupings of catalog entries that contain

graphics output.
� Renaming, deleting, or copying catalog entries that contain graphics output,

templates, and color maps.

Figure 50.1 on page 1475 shows four catalog entries that were replayed into a template
and displayed as a single graph.

The GREPLAY Procedure � Catalog Entries 1475

Figure 50.1 Graphics Output in a Template

Concepts

Catalog Entries
The GREPLAY procedure can perform actions on three types of catalog entries:

GRSEG entries
store output from SAS/GRAPH procedures. The GREPLAY procedure uses two
types of graphics catalogs: the input-catalog and the output-catalog. The
input-catalog is the catalog that contains the graphics output that you want to
replay. The output-catalog is the catalog in which graphics output that is produced
by the template facility is stored. Both of these catalogs are GSEG catalogs. The
same GSEG catalog can be used as the input-catalog and the output-catalog.

TEMPLATE entries
store templates created with the GREPLAY procedure. The catalog in which
template entries are stored is referred to as the template catalog. SAS provides
sample templates in SASHELP.TEMPLT. TEMPLATE entries can also be stored in
GSEG catalogs.

You can use templates directly from SASHELP.TEMPLT to replay your graphics
output, or you can copy these templates to a different catalog and edit the copied
entries. Graphics output replayed using a template creates a new GRSEG entry.

1476 Displaying the List of Templates Provided By SAS/GRAPH � Chapter 50

CMAP entries
store color maps created with the GREPLAY procedure. The catalog in which color
map entries are stored is referred to as the color map catalog. CMAP entries can
be stored in GSEG catalogs. They can also be stored in other catalogs. You can
copy, edit, or use these color maps to replay your graphics output. Graphics output
replayed using a color map does not create a GRSEG entry.

You can store all of the previous entry types in a single SAS catalog, or you can store
them in separate catalogs and use a different catalog for each type of entry. A single
SAS catalog may contain graphics output, color maps, and templates.

Because the GREPLAY procedure operates on catalog entries, you must assign at
least one catalog before you perform any tasks. The GREPLAY procedure has several
ways to assign catalogs shown in Table 50.1 on page 1476.

Table 50.1 Assigning Catalogs

Catalog How to Assign

input IGOUT= option in the PROC GREPLAY statement

IGOUT statement

IGOUT field in the PROC GREPLAY window

output GOUT= option in the PROC GREPLAY statement

GOUT statement

GOUT field in the PROC GREPLAY window

template TC= option in the PROC GREPLAY statement

TC statement

TC field in the PROC GREPLAY window

color map CC= option in the PROC GREPLAY statement

CC statement

CC field in the PROC GREPLAY window

Note: Image entries can exist in catalogs, but are not recognized by the GREPLAY
procedure. �

Displaying the List of Templates Provided By SAS/GRAPH
To write the list of templates stored in SASHELP.TEMPLT to the SAS log, submit

the following code:

proc greplay nofs
tc=sashelp.templt;

list tc;
run;

Duplicate Entry Names
The GREPLAY procedure uses the following naming conventions to prevent

duplication of names, or overwriting entries:
� For entry names with fewer than eight characters, the procedure adds a numeric

suffix to the entry’s name. The total number of characters is limited to eight.

The GREPLAY Procedure � Procedure Syntax 1477

� For entry names greater than or equal to eight characters, the procedure drops the
number of characters needed to add a numeric suffix. The total number of
characters is limited to eight. For example, if you copy an entry TITLEONE to a
catalog that already contains an entry with that name, the procedure assigns the
name TITLEON1 to the copied entry.

Note: The GREPLAY procedure uses the same naming conventions for entries
created by the template facility. �

Note: See also “About Filename Indexing” on page 99. �

Ways to Use the GREPLAY Procedure
You can view, replay or manage catalog entries in two ways:

� by submitting code-based GREPLAY procedure statements. The GREPLAY
procedure automatically uses code-based statements if you are running in batch
mode or in line mode in a non-windowing environment. See “Running the
GREPLAY Procedure Using Code-based Statements” on page 1504.

� by browsing or editing the fields in the GREPLAY procedure windows (if you are
running SAS in a windowing environment). For more information, see “Using the
GREPLAY Procedure Windows” on page 1500.

If you are in the SAS windowing environment, you can toggle between the windows
and code-based statements while you run the GREPLAY procedure.

For more information, see the “FS Statement” on page 1487 and the NOFS option.

Sizing and Naming Your Graphs for Replay (Best Practice)
To replay your graphics output using the GREPLAY procedure, it is recommended

that you do the following:
� Select or create a template to replay your graphs. Determine the size of each

panel contained in the template. Define the size of each graph to correspond to the
size of a panel contained in the template. Size each graph with GOPTIONS such
as the XPIXELS= and YPIXELS= options or the HSIZE= and VSIZE= options. If
the graphs that you are replaying are too large for the panels in the template,
SAS/GRAPH attempts to resize the images.

� Ensure that the GRSEG entry names that you want to replay match the names in
your GREPLAY procedure statements. If you run a procedure multiple times
without updating your GREPLAY statements, the original output is replayed, not
the most current output. See “Duplicate Entry Names” on page 1476 and Example
3 on page 1512.

Procedure Syntax
Requirement: Use the NOFS option in the PROC GREPLAY statement when running in
a non-windowing environment, batch mode, or in line mode in a windowing
environment. At least one statement is required.
Note: Write access to a catalog is needed to modify, add, or delete catalog entries. Only
GRSEG entry types can be replayed with the GREPLAY procedure.
Restriction: Not supported by Java or ActiveX
Supports: RUN-group processing

1478 Procedure Syntax � Chapter 50

PROC GREPLAY <BYLINE>
<CC=color-map-catalog>
<CMAP=color-map-entry>
<FS>
<GOUT=< libref.>output-catalog>
<IGOUT=< libref.>input-catalog>
<IMAGEMAP=output-data-set>
<NOBYLINE>
<NOFS>
<PRESENTATION>
<TC=template-catalog>
<TEMPLATE=template-entry>;

? required-argument;

BYLINE;

CC color-map-catalog;

CCOPY <color-map-catalog.>color-map-entry<.CMAP>;

CDEF color-map-entry
<color-definition(s)>
<DES="description">;

CDELETE color-map-entry(s) | _ALL_ ;

CMAP color-map-entry;

COPY entry-id(s) | _ALL_ ;

DELETE entry-id(s) | _ALL_ ;

DEVICE device-name;

FS;

GOUT <libref.>output-catalog;

GROUP entry-id(s);

IGOUT <libref.>input-catalog ;

LIST required-argument;

MODIFY modify-pair(s);

MOVE entry-id-1 AFTER | BEFORE entry-id-2;

NOBYLINE;

PREVIEW template-entry(s) | _ALL_ ;

QUIT | END | STOP;

REPLAY entry-id(s) | _FIRST_ | _LAST_ | _ALL_ ;

TC template-catalog;

TCOPY <template-catalog.>template-entry<.TEMPLATE>;

TDEF template-entry
< panel definition(s)>
<DES="description">;

TDELETE template-entry(s) | _ALL_ ;

TEMPLATE template-entry;

TREPLAY select-pair(s);

The GREPLAY Procedure � PROC GREPLAY Statement 1479

PROC GREPLAY Statement

Determines whether the procedure starts in a windowing or non-windowing environment. Defines
whether the session is used for catalog management or output presentation.

Syntax

PROC GREPLAY <BYLINE>
<CC=color-map-catalog>
<CMAP=color-map-entry-type>
<FS>
<GOUT=<libref.>output-catalog>
<IGOUT=<libref.>input-catalog>
<IMAGEMAP=output-data-set>
<NOBYLINE>
<NOFS>
<PRESENTATION>
<TC=template-catalog>
<TEMPLATE=template-entry>;

Options

BYLINE
specifies that the BY statement information for the SAS catalog entries should be
displayed.
Default: BY statement information is displayed

CC=color-map-catalog
specifies the color map catalog where the color map entries are stored.
Note: To replay graphics output using a color map, you must specify a color map

catalog with the CC= option and a color map entry with the CMAP= option.
Featured in: Example 4 on page 1514

CMAP=color–map-entry-type
specifies the type of catalog entry to use with the GREPLAY procedure. A color map
entry option must have a catalog entry type of CMAP.
Note: To replay graphics output using a color map entry, you must specify a color

map catalog with the CC= option and a color map entry with the CMAP= option.
Featured in: Example 4 on page 1514

FS
specifies that the GREPLAY procedure should use full-screen windows.
Default: If your device supports windows, the GREPLAY procedure uses windows.

If your device does not support windows, the procedure begins execution in line
mode, and the FS option has no effect.

GOUT=<libref.>output-catalog
specifies the graphics output catalog. New GRSEG entries or GRSEG entries from
other catalogs can be copied to an output catalog. If you omit the libref, SAS/GRAPH
looks for the catalog in the temporary WORK library, and creates the GSEG catalog
if it does not exist.

1480 PROC GREPLAY Statement � Chapter 50

Note: The output catalog can be the same catalog specified in the IGOUT= option.
See also: “Catalog Entries” on page 1475

IGOUT=<libref.>input-catalog
specifies the input catalog that stores the graphics output that you want to use with
the GREPLAY procedure. If you omit the libref, SAS/GRAPH looks for the catalog in
the temporary WORK library.

Note: The input catalog can be the same catalog specified in the GOUT= option.
Featured in: Example 2 on page 1510

IMAGEMAP=output-data-set
used with the REPLAY statement (see “REPLAY Statement” on page 1493). The
IMAGEMAP= option creates a temporary SAS data set that contains information
about the graph. The graph is replayed from the graphics catalog. The image map
data set contains the following information about the graph:

� the shapes of the elements

� the coordinates of the elements
� the values that are associated with those element; in variables that are

identified in the HTML= option
� the values that are associated with those element; in variables that are

identified in the HTML_LEGEND= option

The image map data set can be used to generate an HTML image map in an HTML
output file using the IMAGEMAP macro. The IMAGEMAP macro takes two
arguments: the image map data set name and the name or fileref of an HTML
output file, as shown in this example:

%imagemap(imgmapds, myimgmap.html);

See also: “Adding Links with the HTML= and HTML_LEGEND= Options” on page
601

NOBYLINE
specifies that the BY statement information for the SAS catalog entries should be
suppressed.
Default: BY statement information is displayed

NOFS
specifies that the GREPLAY procedure should use line mode.
Default: If your device does not support windows: NOFS

Featured in: Example 1 on page 1508

PRESENTATION
specifies that the GREPLAY procedure should open the PRESENTATION window,
and use the catalog specified by the IGOUT= option as the input catalog. The
PRESENTATION option is often used in applications to prevent the application users
from deleting or reordering catalog entries. You can only replay graphics output from
the PRESENTATION window.

Note: The PRESENTATION option overrides the NOFS option on full-screen
devices.

TC=template-catalog
specifies the template catalog to use with the GREPLAY procedure, and identifies the
template catalog where the template entry is stored to replay your graphics.

Note: To replay graphics output using a template catalog, you must also assign the
template entry with the TEMPLATE= option.

The GREPLAY Procedure � ? Statement 1481

Featured in: Example 1 on page 1508

TEMPLATE=template-entry
identifies the template entry to use with the GREPLAY procedure. The template
entry must have a catalog entry type of TEMPLATE.
Note: To replay graphics output using a template entry, you must also assign a

current template catalog with the TC= option. If the template entry is not in the
template catalog, an error message is written to the SAS log.

Featured in: Example 2 on page 1510

Invoking the GREPLAY Procedure
The mode of operation for the PROC GREPLAY statement depends on both the

environment in which the statement is submitted and whether the NOFS option is
included.

Table 50.2 Ways of Invoking the GREPLAY Procedure

Environment Statement Result

windowing PROC GREPLAY; GREPLAY
procedure
windows

windowing PROC GREPLAY NOFS; line mode

nonwindowing PROC GREPLAY; line mode

You can toggle back and forth between windows and line mode within a session.

? Statement

Writes the current value of certain PROC GREPLAY options, or of the current device driver to the
SAS log. If the value is not assigned, the GREPLAY procedure issues a message to the SAS log.

Syntax

? required–argument(s);

CC
CMAP
DEVICE
GOUT
IGOUT
TC
TEMPLATE

1482 BYLINE Statement � Chapter 50

Required Arguments

CC
writes the name of the current color map catalog.

CMAP
writes the name of the current color map.

DEVICE
writes the name of the current device driver.
Alias: DEV

GOUT
writes the name of the output catalog.

IGOUT
writes the name of the input catalog.

TC
writes the name of the current template catalog.

TEMPLATE
writes the name of the current template.

BYLINE Statement

Displays BY statement information directly beneath the primary description of the catalog entries
when you list the input catalog contents.

Note: BY statement information is displayed by default.

See also: “NOBYLINE Statement” on page 1491

Syntax

BYLINE;

CC Statement

Specifies a color map catalog, and enables you to change the color map catalog without exiting
the procedure.

The GREPLAY Procedure � CCOPY Statement 1483

Syntax

CC libref.color-map-catalog;

Required Arguments

color-map catalog
identifies the SAS catalog where color map entries are stored.

Style element:

CCOPY Statement

Copies a color map from one color map catalog to another color map catalog. Creates a duplicate
color map within the color map catalog.

Requirements: Assign a color map catalog before using the CCOPY statement.

Syntax

CCOPY < libref.><color–map-catalog.>color-map-entry.<.CMAP>;

Required Arguments

<libref.><color-map-catalog.>color-map-entry<.CMAP>
identifies the color map entry to be copied.

color map catalog
is the color map catalog that contains the color map to be copied.

color map entry
is the name of the color map entry.

CMAP
is the color map entry type.

See also: “CC Statement” on page 1482
If a color map entry with the same name exists in the color map catalog, duplicate

entry names are resolved as described in “Duplicate Entry Names” on page 1476.

Details
To copy a color map from one catalog to another catalog, use the CC statement to

identify the target catalog. The following statements copy HP.CMAP from the catalog
named ONE.CCAT to the catalog named TARGET.CLRMAP:

LIBNAME target "SAS library";
LIBNAME one "SAS library";

proc greplay nofs;

1484 CDEF Statement � Chapter 50

cc target.clrmap;
ccopy one.ccat.hp.cmap;

quit;

To create a duplicate color map, omit the name of the color map catalog from your
CCOPY statement. The following statement creates a duplicate of hp.cmap named
hp2.cmap:

ccopy hp.cmap;

CDEF Statement

Defines or modifies a color map in the color map catalog.

Requirements: Assign a color map catalog before using the CDEF statement.

Syntax

CDEF color map entry
<color-definition(s)>
<DES="description">;

color-definition has the following form:

color-number / from-color:to-color

color-definition has the following form: color-number / from-color:to-color

Required Arguments

color-map-entry
identifies a color map entry.

If the color map entry is not in the color map catalog, then the procedure creates a
color map entry. If the color map entry exists in the color map catalog, then the
GREPLAY procedure modifies or adds to that color map entry.

See also: CC statement

Featured in: Example 4 on page 1514

Options

color-number / from-color:to-color
specifies a color pair and how it is defined.

color-number
specifies the number of a color pair.

from-color:to-color
defines the colors that are being mapped.

The GREPLAY Procedure � CMAP Statement 1485

from-color
is the color to be mapped.

to-color
is the new color that replaces from-color in the replayed graphics output.

DES="description"
specifies a catalog entry description for the color map entry. Maximum length for the
description is 256 characters.
Default: NEW COLOR MAP

CDELETE Statement

Deletes one or more color map entries from the current color map catalog.

Caution: The GREPLAY procedure does not prompt you to confirm your request to delete
color maps entries.

Syntax

CDELETE color map entry(s) | _ALL_ ;

Required Arguments

color map entry(s)
identifies one or more color map entries to delete from the color map catalog. You can
submit one entry, or a list of entries in one delete statement.

ALL
deletes all of the color map entries from the color map catalog.
Alias: CDEL

CMAP Statement

Assigns a color map entry to be used when replaying graphics output.

Requirements: Assign a color map catalog before using the CMAP statement.
See also: CC
Featured in: Example 4 on page 1514.

Syntax

CMAP color-map-entry;

1486 COPY Statement � Chapter 50

Required Arguments

color-map-entry
identifies the color map entry, contained in the current color map catalog, to use
when replaying your graphics output. If the color map entry is not in the current
color map catalog, the GREPLAY procedure issues an error message.

COPY Statement

Copies one or more GRSEG catalog entries from the input catalog to the output catalog.

Requirements: Assign an input catalog and an output catalog before using the COPY
statement.
Note: The COPY statement cannot create a duplicate catalog entry that contains
graphics output in the same catalog.
See also: “GOUT Statement” on page 1488 and“IGOUT Statement” on page 1489

Syntax

COPY entry-id(s) | _ALL_ ;

Required Arguments

entry-id(s)
is the number (in the order in which they were created) or name of a catalog entry or
group of entries to be copied from the input catalog to the output catalog. Entries
must contain graphics output. Multiple catalog entries can contain both numbers
and names.

ALL
copies all graphics output entries in the input catalog to the output catalog.

DELETE Statement

Deletes SAS catalog entries containing graphics output from the current input catalog.

Caution: The GREPLAY procedure does not prompt you to confirm your request to delete
an entry containing graphics output.

Syntax

DELETE entry-id(s) | _ALL_ ;

The GREPLAY Procedure � FS Statement 1487

Required Arguments

entry-id(s)
is the number (in the order in which they were created) or name of a catalog entry or
a group of entries to be deleted from the input catalog. Entries must contain
graphics output. Multiple catalog entries can contain both numbers and names.

ALL
deletes all graphics output entries in the input catalog.
Alias: DEL

DEVICE Statement

Specifies the device driver.

Requirements: You must specify a device driver that your graphics device can support,
and is available to your SAS session.

Syntax

DEVICE device-name;

Required Arguments

device-name
specifies the device driver to use when you replay graphics output. The device driver
that you specify becomes the current device. It is used for subsequent replays and
the output of other graphics procedures.. This device driver remains in effect until
you change the device driver.
Alias: DEV

FS Statement

Toggles from line mode to the GREPLAY procedure windows.

Requirements: Device must support windows
See also: NOFS on page 1480

Syntax

FS;

1488 GOUT Statement � Chapter 50

GOUT Statement

Assigns the SAS output catalog used by the GREPLAY procedure.

Note: You can change the output catalog without exiting the procedure by using the
GOUT statement.

Syntax

GOUT <libref.>output-catalog;

Required Arguments

<libref.>output-catalog
identifies the SAS catalog to use as an output catalog.

Default: WORK.GSEG

GROUP Statement

Creates groups of entries in the current input catalog.

Syntax

GROUP entry-id(s);

Required Arguments

entry-id(s)
is the number (in the order in which they were created) or name of a catalog entry.
All entries specified in the GROUP statement are included in one group, and
identified with a group header. You can submit one catalog entry or a list of catalog
entries with one GROUP statement. A list of catalog entries can contain both catalog
entry numbers and catalog entry names.

Details
Only one group can be created per group statement. The default name for a group

header is GROUP. The default description for the group header is REPLAY GROUP.

The GREPLAY Procedure � LIST Statement 1489

Duplicate entry names are resolved as described in “Duplicate Entry Names” on page
1476.

To change the name or description of a group, use the MODIFY statement. To manage
and display groups of entries use the DELETE, COPY, and REPLAY statements.

IGOUT Statement

Assigns the SAS input catalog used by the GREPLAY procedure.

Note: You can change the input catalog without exiting the procedure by using the
IGOUT statement.

Syntax

IGOUT <libref.>input-catalog;

Required Arguments

<libref.>input-catalog
identifies the SAS catalog with entries that contain graphics output that you want to
replay.

LIST Statement

Lists entries in the input, template, and color map catalogs, as well as the contents of templates
and color maps in the SAS log.

Note: Entries are listed in creation date order.

Featured in: Example 4 on page 1514

Syntax

LIST required-argument;

required-argument must be one of the following:

CC

CMAP

IGOUT

TC

TEMPLATE

1490 MODIFY Statement � Chapter 50

Required Arguments

CC
lists the color maps that are in the current color map catalog.

CMAP
lists the From and To values in the current color map.

IGOUT
lists the number, name, and description of the entries in the input catalog that
contain graphics output. In addition, the type of graphics output (dependent or
independent) is shown.

TC
lists the templates in the current template catalog.

TEMPLATE
lists the panel definition values of the current template.

MODIFY Statement

Changes the name, description, and BY statement information of entries or group headers in the
input catalog.

Syntax

MODIFY modify-pair(s);

modify-pair or pairs has the following form:

entry-id / description(s)

Required Arguments

entry-id / description(s)
specifies the entry to modify.

entry-id
specifies the number (in the order in which they were created) or name of a catalog
entry or a group of entries in the input catalog. Entries must contain graphics
output. Multiple entry ids can contain both numbers and names.

description(s)

BYLINE="character-string"
specifies a character string that can be used for additional information or for BY
statement information. A character string can be up to 40 characters long, and
must be enclosed in quotation marks. BY statement information appears
directly beneath the primary description of the catalog entry.

The GREPLAY Procedure � NOBYLINE Statement 1491

NAME="entry-name"
specifies the entry name. Maximum length for an entry name is eight
characters. Duplicate entry names are resolved as described “Duplicate Entry
Names” on page 1476.
See also: “About Filename Indexing” on page 99

DES="description"
specifies the graph’s description. Maximum length for entry description is 256
characters. The description does not appear on the graph.

MOVE Statement

Rearranges entries in the input catalog by moving entries before or after other entries.

Syntax

MOVE entry-id-1 AFTER | BEFORE entry-id-2;

Required Arguments

entry-id-1
specifies the number (in the order in which they were created) or name of a catalog
entry or a group header that is to be moved.

entry-id-2
is the number (in the order in which they were created) or name of a catalog entry or
a group header.

AFTER | BEFORE
specifies whether entry-id-1 should be moved before or after entry-id-2.

Details
To move an entire group, use the group name for entry-id-1. To move an entry into a

group, move the entry after a group header, or before or after an entry in the group.
This statement moves the entry CHART3 into the group named NEW_SALES:

move chart3 after new_sales;

NOBYLINE Statement

Suppresses BY statement information.

See also: “BYLINE Statement” on page 1482

1492 PREVIEW Statement � Chapter 50

Syntax

NOBYLINE;

PREVIEW Statement

Displays the panel outlines for one or more templates using the current device. Use the TC
statement to specify the template catalog before using the PREVIEW statement.

Tip: When previewing templates, press END or ENTER, to move to the next template
in the list.

Note: When a template is previewed, graphics output is produced, and stored in a
catalog named WORK.GTEM. The temporary catalog is deleted when you end your
session.

Syntax

PREVIEW template-entry(s) | _ALL_ ;

Required Arguments

template-entry(s)
identifies one or more template entries contained in the template catalog. You can
preview one entry or a list of entries with one PREVIEW statement.

ALL
previews all templates in the current template catalog.

QUIT Statement

Exits the GREPLAY procedure.

Aliases: END, STOP

Syntax

QUIT;

The GREPLAY Procedure � TC Statement 1493

REPLAY Statement

Identifies one or more entries for replay from the input catalog.

Note: If any entry specified in a REPLAY statement is not found in the input catalog,
the GREPLAY procedure issues a message to the SAS log. The GREPLAY procedure
continues to replay valid entries.

Alias: PLAY

Syntax

REPLAY entry-id(s) | _FIRST_ | _LAST_ | _ALL_ ;

Required Arguments

entry-id(s)
is the number (in the order in which they were created) or name of a catalog entry or
a group of entries in the input catalog. Entries must contain graphics output.
Multiple entries can contain both numbers and names. This statement specifies both
the entry named GRAPH, and the third entry in the catalog:

replay graph 3;

ALL
replays all entries in the input catalog.

FIRST
replays the first entry in the input catalog.

LAST
replays the last entry in the input catalog.

TC Statement

Specifies the template catalog for the GREPLAY procedure.

Tip: Use the TC statement to change the template catalog without exiting the
procedure.

Note: SAS supplies several templates in the SASHELP.TEMPLT catalog.

Syntax

TC template-catalog;

1494 TCOPY Statement � Chapter 50

Required Arguments

template-catalog
identifies the SAS catalog where templates are to be stored or identifies the name of
a SAS catalog that contains templates.

TCOPY Statement
Copies templates from a catalog to the template catalog, or creates a duplicate of a template
within the template catalog.

Requirements: Assign a template catalog before using the TCOPY statement.
See also: “TC Statement” on page 1493.

Syntax

TCOPY < template-catalog.>template-entry<.TEMPLATE>;

Required Arguments

<template-catalog.>template-entry<.TEMPLATE>
identifies the template entry to be copied.

template-catalog
is the SAS catalog that contains the template to be copied.

template-entry
is the template entry name.

TEMPLATE
is the catalog entry type. Duplicate entry names are resolved as described in
“Duplicate Entry Names” on page 1476.

Details
To copy a template from one catalog to another catalog, specify template-catalog as the

source catalog. To copy NEWTEMP.TEMPLATE from the catalog named ONE.TEMPLT
to the catalog named TARGET.TEMPLT submit the following statements:

LIBNAME target "SAS-data-library";
LIBNAME one "SAS-data-library";

proc greplay nofs;
tc target.templt;
tcopy one.templt.newtemp.template;

quit;

To create a duplicate of a template, simply omit template-catalog from your TCOPY
statement. For example, to create a duplicate of a template named NEWTEMP within
the TEMPLAT catalog, submit the following:

The GREPLAY Procedure � TDEF Statement 1495

tcopy newtemp.template;

TDEF Statement

Defines or modifies templates in the template catalog.

Requirements: Assign a template catalog before using the TDEF statement.
See also: TC statement
Featured in: Example 1 on page 1508

Syntax

TDEF template-entry
<panel-definition(s)>
<DES="description">;

panel-definition has the following form:
panel-number / <panel-option(s)>
panel-option(s) can be one or more of the following:

CLIP
COLOR=border-color
COPY=panel-number
DEF
DELETE
LLX=x
LLY=y
LRX=x
LRY=y
PANEL NUMBER=
ROTATE=degrees
SCALEX=factor
SCALEY=factor
ULX=x
ULY=y
URX=x
URY=y
XLATEX=distance
XLATEY=distance

Required Arguments

template-entry
identifies an existing or new template. If the template is not in the template catalog,
it is created by the GREPLAY procedure. If the template-entry is in the template
catalog, it is modified by the procedure.

Only one template entry is required, but if you specify only the template name
without any option, modifications are not made, and a template is not created.

1496 TDEF Statement � Chapter 50

Options

CLIP
specifies that any panel behind this panel should be clipped. Only the graphics
output to be placed in the CLIP panel can appear in the space that the panel
occupies. If a previous panel occupies all or part of that space, CLIP is ignored.

COLOR=border-color
specifies the panel border color. If you do not specify a border color, then no border is
displayed around the panel when you replay graphics output in the panel. A
template that contains a panel without a border color is assigned a color when
previewed. The GREPLAY procedure creates output with borders.

COPY=panel-number
specifies the panel number definition to be copied to this panel.

DEF
specifies a default panel with these coordinates:

Panel Corner Coordinates

lower left (0,0)

upper left (0,100)

upper right (100,100)

lower right (100,0)

DELETE
deletes the panel.

Alias: DEL

DES="description"
specifies the template entry description. The maximum length for the template entry
description is 256 characters. By default, the procedure uses *** new template ***
for the description.

LLX=x
specifies the X coordinate of the lower-left corner of the panel. Units for x are a
percentage of the graphics output area.

LLY=y
specifies the Y coordinate of the lower-right corner of the panel. Units for y are a
percentage of the graphics output area.

LRX=x
specifies the X coordinate of the lower-right corner of the panel. Units for x are a
percentage of the graphics output area.

LRY=y
specifies the Y coordinate of the lower-right corner of the panel. Units for y are a
percentage of the graphics output area.

PANEL-NUMBER=
identifies the panel number being defined or modified.

The GREPLAY Procedure � TDEF Statement 1497

ROTATE=degrees
specifies the rotation angle for the panel. Panel corner coordinates are automatically
adjusted.

SCALEX=factor
specifies the scale factor for the X coordinates in the panel. Use this scale factor to
increase or decrease the panel size in the X direction, or to reverse the X coordinates
for the panel.

SCALEY=factor
specifies the scale factor for Y coordinates in the panel. Use this scale factor to
increase or decrease the panel size in the Y direction, or to reverse the Y coordinates
for the panel.

ULX=x
specifies the X coordinate upper-left corner of the panel. Units for x are a percentage
of the graphics output area.

ULY=y
specifies the Y coordinate upper-left corner of the panel. Units for y are a percentage
of the graphics output area.

URX=x
specifies the X coordinate upper-rignt corner of the panel. Units for x are a
percentage of the graphics output area.

URY=y
specifies the Y coordinate upper-rignt corner of the panel. Units for y are a
percentage of the graphics output area.

XLATEX=distance
specifies the distance to move the X coordinates of the panel. Units for distance are a
percentage of the graphics output area.

XLATEY=distance
specifies the distance to move the Y coordinates of the panel. Units for distance are a
percentage of the graphics output area.

Details
To zoom in on the graphics output, use coordinate values less than 0 and greater

than 100. These values can be used with the LLX= option, LLY= option, LRX= option,
LRY= option, ULX= option, ULY= option, URX= option, and the URY= option. You can
see the replayed graphics output portion in the graphics output area in the range from
0 to 100 percent.

The values that you specify for the SCALEX= option, and the SCALEY= option are
used to change the size and panel orientation. The scale factors are used for the
corresponding X and Y panel coordinates. If you submit:

scalex=.5
scaley=2

the X coordinates are scaled to half the original size, and the Y coordinates are scaled to
twice the original size.

If you supply a scale factor of 0, all of the coordinates are set to the same value. If
you use a scale factor of 1, nothing happens. If you use a scale factor greater than 1,
the values of the coordinates are increased and hence the size of the panel increases. If
you use a scale factor less than 1 but greater than 0, the values of the coordinates are
reversed, and the panel (and any graphics output replayed in the panel) is reversed.

1498 TDELETE Statement � Chapter 50

TDELETE Statement

Deletes templates from the template catalog.

Alias: TDEL

Caution: The GREPLAY procedure does not prompt you to confirm your request to delete
templates.

Syntax

TDELETE template-entry(s) | _ALL_ ;

Required Arguments

template-entry(s)
identifies a template entry to be deleted from the template entry catalog. You can
submit one entry or a list of entries in one TDELETE statement.

ALL
deletes all template entries in the template entry catalog.

TEMPLATE Statement

Assigns a template to use when replaying graphics output.

Requirements: Assign a template catalog before using the TEMPLATE statement.

Note: If you specify a template that is not in the template catalog, before you assign a
template entry catalog, the GREPLAY procedure issues an error message.

Syntax

TEMPLATE template-entry;

Required Arguments

template-entry
identifies an existing template to use when replaying graphics output. Use the
TREPLAY statement to replay graphics output in the template.

Featured in: Example 1 on page 1508

The GREPLAY Procedure � TREPLAY Statement 1499

TREPLAY Statement

Replays graphics entries into template panels. TREPLAY copies one or more entries from the
graphics input catalog into a template-entry in the graphics output catalog, using positioning
information provided by the template.

Requirements: Before issuing the TREPLAY statement, specify a graphics input catalog
with the “IGOUT Statement” on page 1489, assign a template entry catalog with the
“TC Statement” on page 1493, and choose a template with the “TEMPLATE Statement”
on page 1498.

Alias: TPLAY

Featured in: Example 2 on page 1510

Syntax

TREPLAY select-pairs<DES="description" NAME="entry-name">;

select-pairs follow this form:

template-panel-number1:entry-id1 < ...template-panel-numberN:entry-idN>

Required Arguments

template-panel-number:entry-id
specifies the template panel number and the name of the template entry.

template-panel-number
specifies the number of the panel in the template into which you want to replay
the entry. This number determines the position of the graph in the new entry in
the graphics output catalog.

entry-id
specifies the name or number of the entry in the graphics input catalog that is to
be added to the new entry in the graphics output catalog.

Options

DES="entry–description"
adds a description to the entry in the graphics output catalog. Descriptions are
truncated after 256 characters.

NAME="entry-name"
names the entry in the graphics output catalog. The name must begin with a letter,
and continue with up to seven more letters, numbers, or underscores. Duplicate
entry names are resolved as described in “Duplicate Entry Names” on page 1476.

Default: TEMPLATE

See also: “About Filename Indexing” on page 99

1500 Using the GREPLAY Procedure Windows � Chapter 50

Details
When you replay GRSEG entries in a template, the GREPLAY procedure creates and

stores graphics output in the designated output catalog.
You can replay multiple entries in one TREPLAY statement as shown here:

treplay 1:plot1 2:plot2 3:chart1;

PLOT1 is placed in panel 1 of the current template. PLOT2 is placed in panel 2.
CHART1 is placed in panel 3. Specify the entry name or entry number.

Using the GREPLAY Procedure Windows
You can use the GREPLAY windows instead of code-based statements to replay and

manage catalog entries. You perform tasks that use the GREPLAY procedure windows
by entering values in the fields that are displayed in the windows and by issuing
commands from the command line. To open the GREPLAY windows, submit the PROC
GREPLAY statement without the NOFS option:

proc greplay;

SAS/GRAPH then opens the PROC GREPLAY window. The GREPLAY procedure has
five windows:

� PROC GREPLAY window
� PRESENTATION window
� DIRECTORY window
� TEMPLATE DESIGN window
� COLOR MAPPING window

Figure 50.2 on page 1500 shows how these windows relate to each other. Each window
can be scrolled backward or forward as needed to display additional fields and
information.

Figure 50.2 GREPLAY Procedure Windows

PROC
GREPLAY

DIRECTORY

CC
TC

COLOR
MAPPING

TEMPLATE
DESIGN

PRESENTATION

EDIT.entry
BROWSE.entry

PRESENTATION

EDITentry.TEMPLATE
BROWSEentry.TEMPLATE

EDITentry.CMAP
BROWSEentry.CMAP

GREPLAY Window Command

GREPLAY Window Commands
When using GREPLAY windows, tasks are performed by entering values in the

fields. Each window can be scrolled forward, or backward to display additional fields

The GREPLAY Procedure � DIRECTORY Window 1501

and information. You can navigate, and manipulate GREPLAY windows by entering
commands on the command line. For a complete description of each window and its
fields, open the help for the GREPLAY windows. You can open the help by pressing the
F1 key or by selecting Help � Using This Window. For information on navigating
among these windows, see “Commands For Using The GREPLAY Procedure Windows”
on page 1503.

PROC GREPLAY Window
This window is displayed when you submit the PROC GREPLAY statement on a

windowing device without the PRESENTATION or NOFS option. The PROC GREPLAY
window can be used to replay graphics output, and to manage catalogs that contain
graphics output.

Figure 50.3 PROC GREPLAY Window

PRESENTATION Window
This window replays graphics output without modifying or deleting entries,

templates, or color maps. Once you have created and organized your catalog, you can
use the PRESENTATION window in an application for replaying graphics output.

DIRECTORY Window
This window lists the catalog entry names, gives a brief description of each entry,

and indicates the date each entry was created or last modified. Although all catalog
entry types are displayed in the DIRECTORY window, you can manage only entries of
the type CMAP and TEMPLATE from this window.

1502 TEMPLATE DESIGN Window � Chapter 50

Figure 50.4 Directory Window

TEMPLATE DESIGN Window
This window enables you to design templates that are used to present graphics.

Templates are designed by specifying the coordinates of its panels and assigning the
order in which panels are filled. Once you’ve entered the coordinates of a panel , you
can modify them by using the Scale, Xlate (translate), and Rotate utility fields. These
utility fields recalculate the coordinate values automatically.

Figure 50.5 Template Design Window

COLOR MAPPING Window
This window enables you to map colors in existing graphics output to new colors

when you replay the graphics output. Any color in the graphics output that appears in
the From column of the color map, is mapped to the corresponding color in the To
column of the color map. Using a color map does not change the contents of the
replayed graphic output. Using a color map does not produce new graphics output. You
can replay your graphics output and assign a current color map.

The GREPLAY Procedure � Commands For Using The GREPLAY Procedure Windows 1503

Figure 50.6 Color Mapping Window

Commands For Using The GREPLAY Procedure Windows

Table 50.3 Commands for Using the GREPLAY Procedure Windows

Location Task Command

PROC GREPLAY statement Open PROC GREPLAY
window.

Submit the PROC GREPLAY
statement without using the
PRESENTATION or NOFS
options.

Open PRESENTATION
window.

Submit the PROC GREPLAY
statement and include the
PRESENTATION and IGOUT=
options.

PROC GREPLAY window Open PRESENTATION
window.

Specify a catalog and issue the
PRES command.

Open DIRECTORY window. Specify a template catalog and
issue the TC command.

OR

Specify a color map catalog and
issue the CC command.

Open TEMPLATE DESIGN
window.

Specify a template catalog and
issue the following command:
edit template-name.template

Open COLOR MAPPING
window.

Specify a color map catalog and
issue the following command:
edit color-map-name.cmap

1504 Running the GREPLAY Procedure Using Code-based Statements � Chapter 50

Location Task Command

DIRECTORY window Open TEMPLATE DESIGN
window.

Place an S beside the name of
an existing template.

OR

Issue the following command:

edit template-name.template

Open COLOR MAPPING
window.

Place an S beside the name of
an existing color map.

OR

Issue the following command:

edit color-map-name.cmap

Running the GREPLAY Procedure Using Code-based Statements
If you prefer to run code-based statements in a windowing environment, invoke the

GREPLAY procedure with the NOFS option as follows:

proc greplay nofs;

Once you submit the PROC GREPLAY statement, you can enter and submit
statements without resubmitting the PROC GREPLAY statement.

To exit the GREPLAY procedure you can submit any of the following:
� an END, QUIT, or STOP statement
� another PROC statement or DATA step

Managing Catalogs, Color Maps, and Templates
You can replay entries, manage color maps and templates, or perform catalog

management tasks with GREPLAY code-based statements. This section lists several
common tasks, and the statements to perform them.

Table 50.4 GREPLAY Procedure Statements For Managing Color Maps, Templates,
and Catalogs

Task Statement

assign a color map catalog CC statement

copy a color map from another catalog, or within the same catalog CCOPY statement

define or modify a color map in the current catalog CDEF statement

assign a color map to use when you replay graphics output CMAP statement

delete unneeded GRSEG entries DELETE statement

assign a template catalog TC statement

copy a template from another catalog, or within the same catalog TCOPY statement

delete a template TDELETE statement

define a template TDEF statement

display the panel outlines for a template PREVIEW statement

The GREPLAY Procedure � Replaying Catalog Entries 1505

Task Statement

assign a template to use when you replay graphics output TEMPLATE statement

replay an entry in a template panel TREPLAY statement

Managing GRSEG Catalog Entries
You can replay entries or perform a variety of catalog management tasks with

GREPLAY code-based statements. The following table lists several common tasks and
the statements that you use to perform them.

Table 50.5 GREPLAY Procedure Statements For Managing GRSEG Catalog Entries

Task Statement

copy GRSEG entries from an input catalog to an output catalog* COPY statement

group GRSEG entries GROUP statement

move GRSEG entries MOVE statement

delete GRSEG entries DELETE statement

modify GRSEG entry names or descriptions in an input catalog MODIFY statement

replay GRSEG entries from an input catalog REPLAY statement

replay GRSEG entries into template panels TREPLAY statement

* You must assign an output catalog before copying graphics output.

Replaying Catalog Entries

To select catalog entries for replay, first assign an input catalog that contains the
graphics output that is to be replayed. Then assign the entry with the REPLAY
statement. To select a catalog entry or entries for replay:

1 Start the GREPLAY procedure.
2 Define the input catalog that contains the graphics to be replayed with the

IGOUT= option.
3 Specify the entry or entries you want to replay (GCHART in the example that

follows) with the REPLAY statement.

4 End the GREPLAY procedure with the QUIT statement.

For example, the following statements replay the GRSEG entry named GCHART
from the catalog WORK.GSEG, which is assigned with the IGOUT= option:

proc greplay igout=work.gseg nofs;
replay gchart;

quit;

1506 Creating Custom Templates � Chapter 50

To replay all the graphics output stored in the WORK.GSEG catalog submit this code:

proc greplay nofs;
igout work.gseg;
replay _all_ ;

quit;

Note: Graphics output is created only when you use the GREPLAY procedure with a
template. �

Creating Custom Templates
You can use the GREPLAY procedure to create custom templates. Custom templates

are typically used to perform the following actions:

� control the layout of multiple graphs on one page, which is useful for dashboards

� replay graphics output from several catalog entries, or from the same catalog, on
one display or page

� change the shape of your graphics output

� change the size of your graphics output

To define and view a custom template:

1 Start the GREPLAY procedure with the NOFS option.
2 Assign a template catalog with the TC= option.

3 Define a template with the TDEF statement.

4 Preview the template with the PREVIEW statement.

5 End the GREPLAY procedure with the QUIT statement.

Before you create a template, you must assign a template catalog. If you are use the
GREPLAY procedure in line mode, use the TDEF statement to define a template and
the PREVIEW statement to preview a template. For example, the following statements
define and preview a template named TEMPLT:

proc greplay nofs tc=sasuser.cat;
tdef templt 1/def;
preview templt;

quit;

Replaying Graphics Output in a Template
You can use the GREPLAY procedure to create new graphics output by replaying

existing graphics output in templates. Templates are often used to replay several
graphics entries from the same catalog on one display or page. The GREPLAY
procedure creates new graphics output when replaying graphics output with a template.

You can create your own templates, or you can use the templates provided with
SAS/GRAPH that are stored in the SASHELP.TEMPLT catalog.

The following guidelines describe how to generate two graphs, and replay the
graphics output on one page using a SASHELP.TEMPLT entry:

1 Generate two graphs with PROC GCHART using the default names (GCHART
GCHART1).

2 Start the GREPLAY procedure with the NOFS option specified.

The GREPLAY Procedure � Creating Color Maps 1507

3 Define the input catalog with the IGOUT= option (WORK.GSEG).
4 Assign the template catalog with the TC= option (SASHELP.TEMPLT contains the

template entries).
5 Assign a template to replay your graphs with the TEMPLATE statement (V2).

6 Assign the graphs you want to replay with the TREPLAY statement (GCHART
GCHART1).

7 End the GREPLAY procedure with the QUIT statement.

For example, the following statements replay the entries GRAPH1 and GRAPH2 into
the V2 template, which is stored in the catalog SASHELP.TEMPLT. The TC statement
specifies the catalog that contains the template, and the TEMPLATE statement
specifies the template. The TREPLAY statement assigns each entry to a panel. (The V2
template has two panels, so there is an assignment for panel 1 and panel 2.)

proc gchart data=sashelp.class;
hbar age/discrete;

run;
hbar height;

run;
quit;
proc greplay igout=work.gseg nofs;

tc sashelp.templt;
template v2;
treplay 1:gchart 2:gchart1;

quit;

Note: If the GOUT= option is not specified when creating the charts, then the
output is stored in the temporary WORK.GSEG catalog. �

When you replay graphics output in a template, the new GRSEG output that is
created by the GREPLAY procedure is automatically provided a default name,
Template, and it is stored in the output catalog WORK.GSEG. The default GRSEG
description is “Graphics Replay”.

Creating Color Maps
Color maps are useful for assigning unavailable colors on your current device to your

graph. A color map is a list of up to 256 pairs of colors. By mapping the original colors
to a different list of colors, you can change the colors in your graphics output.

To create a color map named CLRMAP, perform the following actions:
1 Start the GREPLAY procedure with the NOFS option.

2 Assign a color map catalog with the CC= option.
3 Define the output catalog with the GOUT= option.

4 Define a color map with the CDEF statement.
5 Remap your colors.
6 End the GREPLAY procedure with the QUIT statement.

Before you create a color map, you must assign a color map catalog. The following
example defines a color map named CLRMAP:

proc greplay cc=clrmap gout=work nofs;
cdef clrmap 1 / cyan : blue;

quit;

1508 Examples � Chapter 50

When you assign a color map and replay graphics output the following occurs:
� The stored GRSEG entry or entries, retain the original foreground colors.
� The colors used to replay the graphics are not saved with the original graphics

output.
� Graphics output is not created when you replay graphics output using a color map.

Examples
The following examples illustrate major GREPLAY procedure features.

Note: When using procedures that support RUN-group processing, include a QUIT
statement after the last RUN statement. Using the QUIT statement is especially
important when the procedure is supposed to completely terminate within the
boundaries of an ODS destination (for example, ODS HTML; procedure-code; ODS
HTML CLOSE;). See “RUN-Group Processing” on page 56 for more information. �

Example 1: Creating a Template
Procedure features:

GREPLAY statement options:
NOFS
TC= option

TDEF statement
TEMPLATE statement

Sample library member: GRECRTM1

This example creates a template with five panels. Four panels are small and equal in
size. The fifth panel is a larger, full-size panel that can be used to display a common
title or footnote for the entire template. In this example, the LIST statement displays
the template contents in the SAS log. Output 50.1 shows the template definition written
to the SAS log file. The template defined here is also used in Example 2 on page 1510.

Set the graphics environment.

goptions reset=all border;

Start the GREPLAY procedure. NOFS starts the procedure in line-mode. The TC= option
assigns TEMPCAT as the template catalog.

proc greplay tc=work.tempcat nofs;

Define a template with five panels. The TDEF statement defines a template named
NEWTEMP, and places it in the previously defined template catalog. Each definition identifies
the panel number, and specifies the four corner’s coordinates. The COLOR= option draws a
border for each panel in the specified color.

tdef newtemp des="Five panel template"
Panel 1: Lower Left Quadrant

The GREPLAY Procedure � Example 1: Creating a Template 1509

1/llx=0 lly=10
ulx=0 uly=50
urx=50 ury=50
lrx=50 lry=10
color=navy

Panel 2: Upper Left Quadrant
2/llx=0 lly=50

ulx=0 uly=90
urx=50 ury=90
lrx=50 lry=50
color=lime

Panel 3: Upper Right Quadrant
3/llx=50 lly=50

ulx=50 uly=90
urx=100 ury=90
lrx=100 lry=50
color=yellow

Panel 4: Lower Right Quadrant
4/llx=50 lly=10

ulx=50 uly=50
urx=100 ury=50
lrx=100 lry=10
color=cyan

Panel 5: Container for Title and Panels 1--4
5/llx=0 lly=0

ulx=0 uly=100
urx=100 ury=100
lrx=100 lry=0
color=lipk;

Assign the template. The TEMPLATE statement assigns the created template NEWTEMP as
the template.

template newtemp;

Write the template contents to the SAS log.

list template;
quit;

1510 Example 2: Replaying GSLIDE Procedure Output in a Template � Chapter 50

Output 50.1 Defining a Template

.

.

.

64 /* list template contents */
65 list template;

NEWTEMP Five panel template

Pan Clp Color Ll-x Ll-y Ul-x Ul-y Ur-x Ur-y Lr-x Lr-y

1 NAVY 0.0 10.0 0.0 50.0 50.0 50.0 10.0
2 LIME 0.0 50.0 0.0 90.0 50.0 90.0 50.0 50.0
3 YELLOW 50.0 50.0 50.0 90.0 100.0 90.0 100.0 50.0
4 CYAN 50.0 10.0 50.0 50.0 100.0 50.0 100.0 10.0
5 LIPK 0.0 0.0 0.0 100.0 100.0 100.0 100.0 0.0

66 quit;
.
.
.

Example 2: Replaying GSLIDE Procedure Output in a Template

Procedure features:
GREPLAY statement options:

GOUT= option
IGOUT= option
TEMPLATE= option

TREPLAY statement
Other features:

PROC GSLIDE
Sample library member: GRERGOT1

The TREPLAY statement replays into the template GRFTMPLT, the four catalog
entries that contain graphics output. It contains four equally sized panels, and one
large, full-size panel. Note that assignments are made to all but one panel. Because the
fourth panel is not listed in the TREPLAY statement, it does not appear in the graphics
output. The HSIZE= option, and the VSIZE= option are adjusted, to reflect the overall
output dimension. Alternatively, you could use XPIXELS= and YPIXELS= to adjust the
graphics output size.

The GREPLAY Procedure � Example 2: Replaying GSLIDE Procedure Output in a Template 1511

Figure 50.7 Replayed Output in a Graphics Template (grergot1)

Set the graphics environment.The HSIZE= option, and the VSIZE= option are set for the
overall output dimensions.

goptions reset=all border hsize=5.14in vsize=4.13in;

Generate three graphs in the WORK.GRAFCAT catalog. The GSLIDE procedure creates
three text slides, and stores them in GRAFCAT as specified by the GOUT= option. These are
stored as GSLIDE, GSLIDE1, and GSLIDE2.

proc gslide gout=grafcat;
title c=navy "Graph Number Three";

run;
title c=lime "Graph Number One";

run;
title c=orange "Graph Number Two";

run;

Generate a text slide with PROC GSLIDE and output to GRAFCAT. Define a title and a
footnote for the container output.

proc gslide gout=grafcat;
title c=purple "Common Title";
footnote c=blue "Common Footnote";

run;

1512 Example 3: Replaying Graphs Into a Template � Chapter 50

Start the GREPLAY procedure. The IGOUT= option, assigns GRAFCAT as the input catalog.
The GOUT= option assigns EXCAT as the output catalog. The TC=TEMPCAT option assigns the
template catalog for the GREPLAY procedure. The TEMPLATE=NEWTEMP option assigns
NEWTEMP as the current template.

proc greplay igout=grafcat gout=excat tc=tempcat nofs;
template=newtemp;

Replay three graphs into template. The TREPLAY statement assigns three entries to panels
in the NEWTEMP template. Each assignment is a panel number, and the name of a graphics
output entry. Names are the default names assigned by the GSLIDE procedure.

treplay 1:gslide
2:gslide1
3:gslide2
5:gslide3;

quit;

Example 3: Replaying Graphs Into a Template

Procedure Features:
GREPLAY statement options:

GOUT=
IGOUT=
NOFS
TC=
TEMPLATE=

DEVICE statement
TREPLAY statement

Sample library member: GREGRSEG

The GREPLAY Procedure � Example 3: Replaying Graphs Into a Template 1513

Display 50.1 SAS/GRAPH Graphs Replayed into a Template

Prepare the data for the graphs. Drop variables NAME and SEX, and add a variable called
GENDER. Change variable values, and sort the data for the line graph.

data sasuser.class (drop=name);
length Gender $ 6;
set sashelp.class;
if sex="F" then Gender="Female";

else Gender="Male";
run;
proc sort data=sasuser.class out=sasuser.class;

by weight height;
run;

Define the size of each individual graph. Each graph is replayed into a separate panel in
the template.

goptions reset=all hsize=2.75in vsize=2.06in;

Create axes definitions for the graphs.

axis1 label=none style=0 major=none value=none;
axis2 label=("Age");
axis3 label=("Height") order=50 to 75 by 5;
axis4 label=("Weight") order=50 to 150 by 25 minor=(n=1);

Create legend definitions for the graphs.

legend1 label=none value=("Male" "Female") Position=(right middle outside) across=1;
legend2 label=none value=("Male" "Female");

Create a symbol definition for the plot.

symbol i=join;

1514 Example 4: Creating a Color Map � Chapter 50

Generate the graphs, and store them in the SASUSER.EXCAT catalog. Generate a
vertical bar chart, a horizontal bar chart, a pie chart, and a subgrouped plot.

proc gchart data=sasuser.class gout=sasuser.excat;
vbar age/discrete hminor=0 subgroup=gender

inside=freq raxis=axis1 maxis=axis2
noframe legend=legend1;

run;
hbar age/ discrete sumvar=height mean

meanlabel="Avg.Height" vminor=0
raxis=axis1 maxis=axis2;

run;
pie gender/ noheading legend=legend1 percent=inside;

run;
proc gplot data=sasuser.class gout=sasuser.excat;

plot height*weight=gender/ vminor=1 vaxis=axis3
haxis=axis4 legend=legend2;

run;
quit;

Define the size of each the template. Each graph is replayed into a separate panel in the
template. The template size accommodates the four smaller graphs.

goptions reset=all hsize=5.5in vsize=4.12in;

Replay the graphs with a template to create one graph. The graphs stored in
SASUSER.EXCAT are replayed to create one graph. The graph is also stored in the
SASUSER.EXCAT catalog.

proc greplay gout=sasuser.excat igout=sasuser.excat nofs
tc=sashelp.templt template=l2r2;
device win;
treplay 1:gchart 2:gchart1 3:gchart2 4:gplot;

quit;

Example 4: Creating a Color Map

Procedure features:
GREPLAY statement options:

CC= option
GOUT= option

CDEF statement
CMAP statement
LIST statement

Sample library member: GRECRCM1

This example uses the CDEF statement to define a color map. The LIST statement is
used in this example to display the color map definition in the SAS log. Output 50.2
shows a partial SAS log listing.

The GREPLAY Procedure � Example 4: Creating a Color Map 1515

Set the graphics environment.

goptions reset=all border;

Start the GREPLAY procedure. The CC= option assigns CLRMAP as the color map catalog.
The GOUT= option assigns EXCAT as the graphics output catalog. Both options must be
assigned for the color map to be created.

proc greplay cc=clrmap gout=excat nofs;

Define a color map. The CDEF statement defines a color map named MYCOLOR that
contains three color pairs.

cdef mycolor des="Special Color Map"
1 / pink : red
2 / cyan : blue
3 / lig : green;

Specify a current color map, and write contents to the SAS log. The CMAP statement
assigns MYCOLOR as the current color map. The contents of CMAP are listed in the SAS log.

cmap mycolor;
list cmap;

quit;

Output 50.2 Defining a Color Map (GRECRCM1)

.

.
75 /* list color map contents */
76 list cmap;

MYCOLOR Special Color Map

FROM TO

1 PINK RED
2 CYAN BLUE
3 LIG GREEN

77 quit;
.

1516

1517

C H A P T E R

51
The GSLIDE Procedure

Overview 1517
About Text Slides 1517

About Annotate Output 1518

Procedure Syntax 1518

PROC GSLIDE Statement 1519

Examples 1522
Example 1: Producing Text Slides 1522

Example 2: Displaying Annotate Graphics 1524

Overview

The GSLIDE procedure is useful for creating text slides for presentations. You can
overlay text slides on other graphics output with the GREPLAY procedure. The
GSLIDE procedure produces graphics output that consists of text and straight lines
that are generated by TITLE, FOOTNOTE, and NOTE statements. In addition, the
procedure provides an easy way to add titles, notes, and footnotes to output that is
produced entirely with an Annotate data set.

About Text Slides
Text slides contain text and graphics that are generated by SAS/GRAPH statements.
Figure 51.1 on page 1517 shows a slide containing text that was produced with

TITLE, FOOTNOTE, and NOTE statements.

Figure 51.1 Text Slide Produced by the GSLIDE Procedure (GSLTEXTS)

1518 About Annotate Output � Chapter 51

The program for this slide is in Example 1 on page 1522.

About Annotate Output
Annotate output is generated by commands that are stored in an Annotate data set.

Use the GSLIDE procedure to display Annotate output when you want to include
TITLE and FOOTNOTE statements on the output and use certain graphics options
such as the BORDER option. To display Annotate graphics without these, use the
GANNO procedure. See Chapter 29, “Using Annotate Data Sets,” on page 641 for more
information on creating and displaying Annotate data sets.

Figure 51.2 on page 1518 shows output from an Annotate data set that is displayed
with titles and footnotes that were generated by TITLE and FOOTNOTE statements.

Figure 51.2 Output from an Annotate Data Set Displayed with the GSLIDE
Procedure (GSLANNOT)

The program for this slide is in Example 2 on page 1524.

Procedure Syntax
Requirements: At least one of these is required: a TITLE, FOOTNOTE, or NOTE
statement; an appearance option; the BORDER graphics option.
Global statements: FOOTNOTE, TITLE
Reminder: The procedure can include the SAS/GRAPH NOTE statement.

PROC GSLIDE <option(s)>;

The GSLIDE Procedure � PROC GSLIDE Statement 1519

PROC GSLIDE Statement

Creates a text slide. Can also provide a border, specify annotation, and assign an output catalog.
This is the only statement in the procedure.

Syntax

PROC GSLIDE <option(s)>;

option(s) can be one or more options from any or all of the following categories:

� appearance options:

ANNOTATE=Annotate-data-set

BORDER

CFRAME=frame-color

FRAME

IFRAME= fileref | ’external-file’

IMAGESTYLE = TILE | FIT

LFRAME=line-type

WFRAME=n

� description options:

DESCRIPTION=’entry-description’

GOUT=<libref.>output-catalog

NAME=’entry-name’

� HTML option:

<IMAGEMAP=output-data-set>

Options
You can specify as many options as you want and list them in any order.

ANNOTATE=Annotate-data-set
specifies a data set that includes Annotate variables that identify graphics commands
and parameters.

See also: Chapter 29, “Using Annotate Data Sets,” on page 641

Alias: ANNO=Annotate-data-set

Featured in: Example 2 on page 1524

BORDER
draws a border around the graphics output area, which includes the title area, the
footnote area, and the procedure output area. A color specification for the border is
searched for in the following order:

1 the CTITLE= option in a GOPTIONS statement.

2 the CTEXT= option in a GOPTIONS statement.

3 the color of the current style. If the NOGSTYLE option is specified, then the
color is the first color in the device’s color list

1520 PROC GSLIDE Statement � Chapter 51

See also: “Adding Frames, Borders, and Images” on page 1521
Featured in:

CFRAME=frame-color
draws a frame around the procedure output area in the specified color. If you use
both the CFRAME= and FRAME options, the FRAME option is ignored. If you use
the IFRAME= option, the specified image fills the background of the slide.

Note: The CFRAME= option does not color the background of the slide. �
See also: “Adding Frames, Borders, and Images” on page 1521.
Featured in: Example 1 on page 1522.

DESCRIPTION=’entry-description’
specifies the description of the catalog entry for the slide . The maximum length for
entry-description is 256 characters. By default, the GSLIDE procedure assigns the
description GRAPHICS TEXT SLIDE.

The descriptive text is shown in each of the following:
� the “description” portion of the Results window
� the catalog-entry properties that you can view from the Explorer window
� the Description field of the PROC GREPLAY window

Alias: DES=’entry-description’

FRAME
draws a frame around the procedure output area. By default, the frame color is the
color of the current style; if the NOGSTYLE option is specified, then the color is the
first color in the device’s color list. If you want to specify a different color for the
frame, use the CFRAME= option instead. The FRAME option is overridden by the
IFRAME= option, which fills the backplane frame with an image.
See also: “Adding Frames, Borders, and Images” on page 1521

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output produced by the
GSLIDE procedure. If you omit the libref, SAS/GRAPH looks for the catalog in the
temporary library called WORK and creates the catalog if it does not exist.
See also: “Specifying the Catalog Name and Entry Name for Your GRSEGs” on

page 100

IFRAME=fileref | ’external-file’
identifies the image file you want to apply to the backplane of the plot. See also the
IMAGESTYLE= option. The IFRAME= option is overridden by the NOIMAGEPRINT
goption.

IMAGEMAP=output-data-set
creates a temporary SAS data set that is used to generate an image map in an
HTML output file. The information in the image map data set includes the shape
and coordinates of the elements in the graph and drill-down URLs that have been
associated with those elements. The drill-down URLs are provided by one or two
variables in the input data set. These variables are identified to the GSLIDE
procedure with the HTML= or HTML_LEGEND= options or both.

The %IMAGEMAP macro generates the image map in the HTML output file. The
macro takes two arguments, the name of the image map data set and the name or
fileref of the HTML output file, as shown in the following example:

%imagemap(imgmapds, myimgmap.html);

See also: “Adding Links with the HTML= and HTML_LEGEND= Options” on page
601 and “HTML Variable” on page 709

The GSLIDE Procedure � PROC GSLIDE Statement 1521

IMAGESTYLE=TILE | FIT
specifies whether to tile the image specified with the IFRAME= option to fill the
backplane or to stretch the image to fit the backplane. The TILE value is the default.
See also the IFRAME= option.

LFRAME=line-type
specifies the line type for a frame and draws a frame around the procedure output
area. Values for line-type are 1 through 46. Line types are shown in Figure 14.22 on
page 277. By default, the line type is specified by the current style. LFRAME=1,
which produces a solid line, is the default.

NAME=’entry-name’
specifies the name of the GRSEG catalog entry and the name of the graphics output
file, if one is created. The name can be up to 256 characters long, but the GRSEG
name is truncated to eight characters. Uppercase characters are converted to
lowercase, and periods are converted to underscores. The default GRSEG name is
GSLIDE. If the name duplicates an existing name, then SAS/GRAPH adds a number
to the name to create a unique name—for example, GSLIDE1.
See also: “About Filename Indexing” on page 99

WFRAME=n
specifies the width of the frame where n is a number. The thickness of the frame
increases directly with n, but the thickness of the line can vary from device to device.
By default, the line width is specified by the current style. WFRAME=1, which is the
thinnest line, is the default. The WFRAME= option also draws the frame.
See also: “Adding Frames, Borders, and Images” on page 1521
Featured in: Example 1 on page 1522

Adding Frames, Borders, and Images
Like the BORDER option in a GOPTIONS statement, the BORDER option in the

PROC GSLIDE statement draws a box around the graphics output area. However, the
border generated by the GSLIDE procedure remains in effect only for the duration of
the procedure.

Both BORDER options use the color specified by the CTITLE= or CTEXT= graphics
option if either of these options is used; otherwise, the border color is the color specified
by the current style. If the NOGSTYLE option is specified, then the color is the first
color in the device’s color list.

While the BORDER option draws a box around the graphics output area, the
FRAME option draws a box or frame around the procedure output area. In this case,
titles and footnotes are outside of the frame. (See “Overview” on page 59 for a
description of the procedure output area.) Use the FRAME option to draw a frame in
the default color, line type, and width. Otherwise, use one or more of the CFRAME=,
LFRAME=, or WFRAME= options.

You can specify a colored frame with the CFRAME= option. Note that the CFRAME=
option does not fill the procedure output area with color. However, you can use the
CBACK= graphics option to provide a background color for the graphics output area.
You can specify the type of line for the frame with the LFRAME= option and the width
of the frame with the WFRAME= option.

You can also use the IFRAME= option to fill the background of your slide with an
image. If an image is specified, it completely fills the background of the slide, obscuring
any frame or border specifications.

Using Data-Dependent Coordinates
If you use the GSLIDE procedure with Annotate data sets that contain

data-dependent coordinates, the resulting coordinate values can exceed the range of the

1522 Examples � Chapter 51

graphics output area. The range is 0 to 100. Some of the output might not be displayed.
In this case, use the GANNO procedure, which can scale the output to fit the available
space. See also Chapter 33, “The GANNO Procedure,” on page 913 for details

Using RUN Groups
Although the GSLIDE procedure has no action statements, it can use RUN-group

processing. This displays all currently defined titles, footnotes, notes, and specified
annotation, each time you submit a RUN statement. TITLE and FOOTNOTE
statements that are defined while the GSLIDE procedure is active remain in effect after
the procedure ends. NOTE definitions remain in effect until the GSLIDE procedure
ends, at which time they are canceled. To cancel NOTE definitions while the procedure
is active, specify RESET=NOTE in a GOPTIONS statement or submit a null NOTE
statement. See “RUN-Group Processing” on page 56 for details.

Examples

Note: When using procedures that support RUN-group processing, include a QUIT
statement after the last RUN statement. Using the QUIT statement is especially
important when the procedure is supposed to completely terminate within the
boundaries of an ODS destination (for example, ODS HTML; procedure-code; ODS
HTML CLOSE;). See “RUN-Group Processing” on page 56 for more information. �

Example 1: Producing Text Slides

Procedure features:
PROC GSLIDE options:

BORDER
CFRAME=
WFRAME=

Other features: NOTE Statement
Sample library member: GSLTEXTS

The GSLIDE Procedure � Example 1: Producing Text Slides 1523

This example uses FOOTNOTE, NOTE, and TITLE statements to produce a text
slide. PROC GSLIDE statement options add both a border and a frame.

Set the graphics environment.

goptions reset=all cback=blue
border;

Define titles and footnotes.

title color=red "New Directions";
footnote1 j=l " ABC Engineering, Inc";
footnote2 j=l " January 1998" ;

Generate the slide and define additional text. The BORDER option draws a box around the
entire graphics output area. The CFRAME= option draws a red box around the procedure
output area. The WFRAME= option specifies the thickness of the frame. The COLOR= option
specifies the color of the note text. The first NOTE statement, which has no text, simply leaves a
large blank line above the text specified by the second NOTE statement. The second JUSTIFY=
option causes a line break.

proc gslide border
cframe=red
wframe=4;

note height=5;
note height=3

justify=center
color="white"

"Goals and strategies"
justify=center

"for the coming year";
run;
quit;

1524 Example 2: Displaying Annotate Graphics � Chapter 51

Example 2: Displaying Annotate Graphics

Procedure features:
PROC GSLIDE option:

ANNOTATE=
Other features:

Annotate data set

Sample library member: GSLANNOT

In this example, the GSLIDE procedure displays Annotate graphics along with
current TITLE and FOOTNOTE definitions. See Chapter 29, “Using Annotate Data
Sets,” on page 641 for information on creating Annotate data sets.

Set the graphics environment.

goptions reset=all border;

Create the Annotate data set, ART. ART contains the commands that draw the design of
triangles.

data art;
length function color style $ 8;
input function $ x y color $ style $;
xsys="5"; ysys="5";
datalines;

poly 30 20 blue solid
polycont 50 20 . .
polycont 40 50 . .
poly 50 20 green x1
polycont 70 50 . .
polycont 60 50 . .

The GSLIDE Procedure � Example 2: Displaying Annotate Graphics 1525

poly 40 50 red l1
polycont 60 50 . .
polycont 50 80 . .
;

Define the title and footnotes displayed by the procedure. FOOTNOTE statements 4 and
5 have no text and are angled vertically to add space on the left and right sides between the
border of the output and the frame that surrounds the procedure output area.

title "Number 17";
footnote1 h=2 "’Art is anything you can get away with.’";
footnote2 j=r "D. H. Benson ";
footnote4 angle=90;
footnote5 angle=-90;

Display the annotate graphics on the slide with the title and footnotes. The GSLIDE
procedure displays the graphics elements drawn by the commands in the Annotate data set
specified by the ANNOTATE= option.

proc gslide annotate=art
border
wframe=6
cframe=red;

run;
quit;

1526

1527

C H A P T E R

52
The GTILE Procedure

Overview 1527
Concepts 1527

Chart Variables 1527

Missing Values, Negative Values, and Zero Values 1528

Assigning Colors 1528

Procedure Syntax 1529
PROC GTILE Statement 1529

FLOW, TILE, and TOGGLE Statements 1530

Examples 1536

Example 1: Simple GTILE with the COLORVAR= Option 1536

Example 2: Specifying the COLORRAMP= Option, and Setting the DETAILLEVEL= Option 1538

Overview
The GTILE procedure creates charts that consist of a rectangle or a square divided

into tile-shaped segments. These charts represent the relative sizes of tiles to one
another and to the whole. The GTILE procedure provides three statements you can use
to define the layout in order to visualize your data. The statements require one numeric
variable. This variable defines the top level of the chart.

The TILEBY= statement is followed by any number of numeric or character variables
that are delineated by a comma or a blank space. By providing multiple TILEBY
variables, and specifying either a JAVA or ACTIVEX device with the DEVICE= option,
you can use the GTILE procedure to create interactive charts.These charts enable you
to display subsets (or levels) of your data. You can assign an additional numeric
variable as a color variable using the COLORVAR= option.

Concepts

Chart Variables
The GTILE procedure produces charts based on the values of the chart’s size

variable, and the values of a TILEBY level variable. The chart’s sizevariable must be
numeric. All the values are treated as discrete. The sum of the chart’s size variable
variable determines the size of each tile. The chart’s size variable is also used to color
each tile, unless a color variable is specified with the COLORVAL= option.

1528 Missing Values, Negative Values, and Zero Values � Chapter 52

At least one TILEBY= variable is required. The values of this variable or variable
list determine the tile categories, as well as the chart levels (or subsets).

The levels are visually represented in the chart by line colors and line style. The top
level is indicated by a thick line and the darkest color. The next level is represented by
a thinner line and the darkest color. The third level and any subsequent levels are
represented by the thickest line and the darkest color. Each level is also represented in
the navigation status bar in the top-left corner of the chart.

Note: For Java, an indicator to the left of the legend identifies the name of the
chart’s size variable. �

Missing Values, Negative Values, and Zero Values
When the GTILE procedure finds missing values, negative values, or zero values, it

does the following:

� The chart’s size variable requires non-missing, positive values to create a tile for
that observation. If the value of the size variable is missing, a negative value, or a
zero value, the observation is not included in the chart.

� The TILEBY= variable displays tiles with missing values, negative values, and
zero values. Each tile is included in the chart, with its value displayed on the tile
and in the chart’s data tip.

� The COLORVAR= variable displays missing values in a color that can be
distinguished from the colors in the color ramp.

Note: For Java, an indicator to the right of the legend identifies the color assigned
to missing values. �

Assigning Colors
The COLORRAMP= option enables you to customize the chart’s colors. You can

specify colors for the tiles using any of the color-naming schemes supported by
SAS/GRAPH.

Table 52.1 Examples of Specifying Colors

Color-Naming
Scheme Example

RGB COLORS=(cx98FB98 cxDDA0DD cxFFDAB9 cxDB7093 cxB0E0E6)

CMYK COLORS=("FF00FF00" "00FFFF00" "FFFFFF00")

HLS COLORS=(H14055FF H0F060FF H0B485FF H07880FF)

HSV COLORS=(V0F055FF v010FFFF v03BFFFF v12C55E8)

Gray Scale COLORS=(GRAY4F GRAY6D GRAY8A GRAYC3)

SAS Registry Colors COLORS=(palegreen plum peachpuff palevioletred powderblue)

CNS Color Names COLORS=("very light purplish blue"
"light vivid green" "medium strong yellow"
"dark grayish green")

Color Naming Schemes

The GTILE Procedure � PROC GTILE Statement 1529

For information about color naming schemes, see Chapter 12, “SAS/GRAPH Colors
and Images,” on page 167.

Procedure Syntax
Requirements:

� a GOPTIONS statement with a JAVA, JAVAIMG, ACTIVEX or ACTXIMG device
specified

� an ODS statement to close the listing destination

� an ODS statement to open the output destination

� at least one FLOW, TILE or TOGGLE statement

� at least one TILEBY= variable

� an ODS statement to close the output destination

� an ODS statement to open the listing destination

Global Graph Statements: FOOTNOTE, GOPTIONS , TITLE

Global Procedure Statements: FORMAT, LABEL, WHERE, ODS

Supports: Activex devices and Java devices, RUN-Group Processing

PROC GTILE<DATA=input-data-set>;

FLOW | TILE | TOGGLE size-variable TILEBY=(variable) | (variable-list) </
option(s)>;

PROC GTILE Statement

Identifies the data set containing the chart variables.

Requirements: An input data set is required.

Syntax

PROC GTILE<DATA=input-data-set>;

Options

PROC GTILE statement options affect all graphs produced by the procedure.

DATA=input-data-set
specifies the SAS data set that contains the variables to chart. By default, the
procedure uses the most recently created SAS data set.

See: “SAS Data Sets” on page 54

1530 FLOW, TILE, and TOGGLE Statements � Chapter 52

FLOW, TILE, and TOGGLE Statements

Create a tile chart in one of the three display layouts.

Requirements: At least one numeric chart sizevariable and one TILEBY= variable is
required.
Global Graph Statements: FOOTNOTE, GOPTIONS, TITLE
Supports: Drill-down functionality

Description
The FLOW, TILE, and TOGGLE statements specify the type of layout, the variables
that define the chart levels, and the tile sizes used to display the data. One of the
following display layouts is required:

FLOW
creates a chart that honors data order and can be read from left to right.

TILE
creates a chart that orders data by value, descending from left-bottom to top-right.

TOGGLE
creates a chart that honors data order and can be read from left to right. When
changing levels, the display toggles from one row to one column.

Syntax

FLOW | TILE | TOGGLE size-variable TILEBY=(levels-variable) | (levels-list)
variable list delimiter can be either a blank space or a comma </option(s)>;

option(s) can be one or more of the options from any or all of the following categories:
� appearance options:

� CMISSING=missing-value-color
� COLORRAMP=color-ramp-color-list
� COLORVAR=data-set-variable
� DETAILLEVEL=number-of-levels-to-show-in-detail
� LABELLEVEL=number-of-levels-to-label

� midpoint option:
� BASELINE=midpoint-value

� description options:
� DESCRIPTION="description"
� NAME="name"

Required Arguments

SIZE VARIABLE
specifies a numeric variable from the input data set. The values of this variable are
used to determine the size of each tile. If the COLORVAR= option is not specified,
then the sizevariable is used to assign a color to each tile.

The GTILE Procedure � FLOW, TILE, and TOGGLE Statements 1531

TILEBY=(levels-variable)|(levels-variable-list)
specifies the variable, or a list of variables, that define the tile-segments and the
chart levels. The variables can be character or numeric. Variable must be enclosed in
parenthesis and you can use either commas or blank spaces as delimiters.

Options
The options in a GTILE statement affect all chart levels. Specify as many options as

you want and list them in any order.

BASELINE=midpoint
specifies the midpoint value for the tiles.

CMISSING=missing-value-color
specifies the color to be assigned to tiles when the COLORVAR= value is missing.
The color used to identify missing values is represented by a missing color indicator
to the right of the legend.

Figure 52.1 CMISSING=yellow

Alias: CMISS=
Restriction: Partially supported by Activex.

COLORRAMP=(color-ramp color-list)
specifies the colors to be distributed continuously across the range of data values.
The three-color gradient legend provides a key to the value of the colors plotted on
the chart. The legend label is the variable used to color the tiles. The legend displays
the variable’s minimum value, the maximum value, and the midpoint value. Two
colors are required to create a color ramp; however, the number of colors that can be
provided is not limited. These values specify the minimum, and the maximum values
of the color ramp. If only two colors are specified, the legend midpoint is not be
labeled. The delimiter can be either blank spaces or commas. All of the color-naming
schemes supported by SAS/GRAPH are valid.

1532 FLOW, TILE, and TOGGLE Statements � Chapter 52

Figure 52.2 COLORRAMP=(cxbcd3aa cxae9aeb)

Figure 52.3 COLORRAMP=(cxbcd3aa cx5f8e97 cxae9aeb)

Alias: RAMP=
Style reference: Color attribute of the ThreeColorRamp element

COLORVAR=color-variable
specifies a numeric variable whose values determine the color of the tiles. The
smallest value of this variable is assigned to the first color in the color ramp. The
largest value of this variable is assigned the last color in the color ramp. Each value
is assigned a color from the gradient list of colors between the first, and the last
colors in the color ramp.

The GTILE Procedure � FLOW, TILE, and TOGGLE Statements 1533

Figure 52.4 COLORVAR=cylinders

DESCRIPTION="description"
specifies the description of the chart. The maximum length for description is 256
characters.

The descriptive text is displayed as follows:
� the description in the Results window
� the description in the Table of Contents that is generated when you use the

CONTENTS= ODS option
� the chart description in the HTML file when the output destination is ODS

HTML and DEVICE=ACTXIMG or DEVICE=JAVAIMG

Alias: DES=
Default: Tile chart of tileby
Restriction: Partially supported by Activex and Java.

DETAILLEVEL=1-to-the-number-of-variables-specified-by-TILEBY=
specifies the number of levels to display. The valid values for the DETAILLEVEL=
option are from one to the number of variables listed in the TILEBY= levels list. Each
level has a unique outline. As you drill down through the levels, the second level lines
are thinner in weight and lighter in color. As you drill down to the third and lower
levels, the outlines are the same as the top level. The levels are listed above the chart
on the left. The DETAILLEVEL= option does not affect the drill-down functionality.

1534 FLOW, TILE, and TOGGLE Statements � Chapter 52

Figure 52.5 DETAILLEVEL= Option is Omitted

If the DETAILLEVEL=1, only the first level of detail is initially displayed. Only
the details of the current level are displayed at any given point in the navigation.

Figure 52.6 DETAILLEVEL=1

Alias: DLEVEL=

Default: 3

LABELLEVEL=1-to-the-number-of-levels-variables-specified-by-TILEBY=
specifies the number that corresponds to the level of labels to display. The valid
values for the LABELLEVEL= option are from one to the number of variables listed
in the TILEBY=levels list. The levels are listed above the chart, on the left. The
LABELLEVEL= option does not affect the drill-down functionality.

If the LABELLEVEL= option is omitted, level 1 labels are initially displayed.

The GTILE Procedure � FLOW, TILE, and TOGGLE Statements 1535

Figure 52.7 LABELLEVEL= Option is Not Used

if LABELLEVEL=3, the third level labels are displayed. Once you navigate past
the LABELLEVEL specified, subsequent levels display their respective labels.

Figure 52.8 LABELLEVEL=3

Alias: LLEVEL=

Default: 1

NAME=“entry”
specifies the name of any graphics output file created. The name can be up to 256
characters long. If the name duplicates an existing filename, SAS/GRAPH adds a
number, or increments the last number used to create a unique graph name—for
example, graph1.png.

Default: graph.png

See also: “About Filename Indexing” on page 99

1536 Examples � Chapter 52

Examples

Example 1: Simple GTILE with the COLORVAR= Option

Procedure features:
PROC GTILE statement
TILE statement
TILEBY=(levels-list)
COLORVAR= option

Data Set: SASHELP.SHOES
Sample Library Member: GTLSIMPL

PROC GTILE generates a chart for the SASHELP.SHOES data set. The size of each
tile represents the number of stores. The COLORVAR=SALES option specifies that the
color of each tile represents the sales revenue for that tile. The visualization of the data
with the GTILE procedure makes it easy to see the data extremes for sales revenue
relative to the number of stores.

Display 52.1 GTILE Chart of SASHELP.SHOES (gtlsimpl)

The following chart shows the result of drilling down on the region labeled “Canada”.
The region was selected to further explore the data. This region displayed the largest
area of red, indicating a greater amount of shoe sales.

The GTILE Procedure � Example 1: Simple GTILE with the COLORVAR= Option 1537

Display 52.2 Subset of SASHELP.SHOES where Region=“Canada” (gtlsimpl)

Close the LISTING destination.

ods listing close;

Open the HTML destination.

ods html file="shoe_sales.html";

Set the graphics options.

goptions reset=all device=java;

The chart variable STORES specifies the size of the tiles.

The TILE layout arranges the tiles.

The TILEBY=(levels-list) variable list defines the tile segments and the chart levels.

The COLORVAR=SALES option specifies the variable to use to color the tiles.

proc gtile data=sashelp.shoes;
tile stores tileby=(region subsidiary)
/ colorvar=sales ;

run;

quit;

Close the HTML output destination.

ods html close;

1538 Example 2: Specifying the COLORRAMP= Option, and Setting the DETAILLEVEL= Option � Chapter 52

Open the listing destination.

ods listing;

Example 2: Specifying the COLORRAMP= Option, and Setting the
DETAILLEVEL= Option

Procedure features:
PROC GTILE statement

FLOW statement

COLORVAR=

COLORRAMP=

DETAILLEVEL=

Data Set: SASHELP.ORSALES Subset

Sample Library Member: GTLCOLOR

PROC GTILE generates this chart displaying a subset of the SASHELP.ORSALES
data set. The FLOW statement defines the layout of the data. The size of each tile
indicates the number of items sold. The color of each tile indicates the profit. The
visualization of the data with the GTILE procedure makes it easy to see the data
extremes for profit relative to the number of items sold.

Display 52.3 Tile Chart of a Subset of SASHELP.ORSALES (gtlcolor)

Clicking on the "Skates" product_group subsets the "Skates" observations by year.
The updated display provides information on the "Skates" profits by year.

The GTILE Procedure � Example 2: Specifying the COLORRAMP= Option, and Setting the DETAILLEVEL= Option 1539

Display 52.4 Subset of SASHELP.ORSALES where Product_Group="Skates" (gtlcolor)

Close the listing destination.

ods listing close;

Open the HTML output destination.

ods html file="sport_sales.html";

Set the graphics options.

goptions reset=all device=java;

Subset the data, format the quantity variable, and the profit variable.

data sports_only;
set sashelp.orsales;
if product_line="Sports";
format profit dollar12.;
format quantity comma12.;

run;

1540 Example 2: Specifying the COLORRAMP= Option, and Setting the DETAILLEVEL= Option � Chapter 52

The chart variable QUANTITY specifies the size of the tiles.

The FLOW layout arranges the tiles.

The TILEBY=(levels-list) variable list defines the tile segments and the chart levels.

The COLORVAR=PROFIT option specifies the variable to use to color the tiles.

The DETAILLEVEL=1 option defines the level of display detail.

The COLORRAMP= option reverses the colors. Blue represents the highest value. Red
represents the lowest value.

proc gtile data=sports_only;
flow quantity tileby=(product_group year) /

colorvar=profit
/* display less details */
detaillevel=1
/* reverse the colors so that blue is highest */
colorramp=(CXDD6060 CXFFFFFF CX6497EB);

run;
quit;

Close the HTML output destination.

ods html close;

Open the listing destination.

ods listing;

1541

C H A P T E R

53
The G3D Procedure

Overview 1541
Surface Plots 1541

Scatter Plots 1542

Concepts 1543

G3D Procedure Terms 1543

The Input Data Set 1544
Data for Surface Plots 1544

Data for Scatter Plots 1544

Changing Data Ranges 1545

Rotating and Tilting the Plot 1545

Controlling the Axes 1545

Procedure Syntax 1546
PROC G3D Statement 1546

PLOT Statement 1547

SCATTER Statement 1554

Examples 1560

Example 1: Generating A Surface Plot 1560
Example 2: Generating a Rotated Surface Plot 1561

Example 3: Generating a Tilted Surface Plot 1563

Example 4: Generating a Scatter Plot 1564

Example 5: Generating a Scatter Plot with Modified Shapes 1565

Example 6: Generating a Scatter Plot with Modified Shapes and a Grid 1566
Example 7: Generating a Rotated Scatter Plot with Modified Axes 1568

References 1570

Overview

The G3D procedure enables you to produce three-dimensional plots. The surface plot
in the following section displays various depths of a lake. The dimensions of the lake
are plotted on the X-Y axes. The Z variable is plotted as the third dimension. The
coordinates of each point correspond to the values of the three numeric variable values
in an observation from the selected input data set.

Surface Plots
Surface plots represent the shape of the surface that is described by the values of

three variables, X, Y, and Z. The values of the X and Y variables are plotted to form a
horizontal plane. The values of the Z variable, create a vertical axis that is

1542 Scatter Plots � Chapter 53

perpendicular to the X-Y plane. Combined, these three axes, form a three-dimensional
surface.

Figure 53.1 G3D Surface Plot

With the PLOT statement, you can do the following actions:
� show the three-dimensional shape of your data (useful for examining data trends).
� change the data ranges that are displayed.
� rotate and tilt the plot to enhance viewing angles.
� customize the axes.

Featured in Example 1 on page 1560. For more information on producing surface
plots, see the “PLOT Statement” on page 1547.

Scatter Plots
Scatter plots represent the data as points. As with surface plots, the values of the X

and Y variables are plotted to form a horizontal plane. The values of the Z variable
create a vertical axis that is perpendicular to the X-Y horizontal plane. The values of
the Z variable are represented as individual symbols. By default, these symbols are
connected to the horizontal plane with lines, referred to as needles.

The G3D Procedure � G3D Procedure Terms 1543

Figure 53.2 G3D Scatter Plot

With the SCATTER statement, you can do the following actions:
� change the symbols used to represent your data points
� categorize your data with colors, shapes, sizes
� change the data ranges that are displayed
� rotate and tilt the plot to enhance the viewing angles
� customize the axes

For more information on producing scatter plots, see the “SCATTER Statement” on
page 1554.

Concepts

G3D Procedure Terms
The following illustration provides the terminology used to describe the elements of

the three-dimensional plots generated with G3D.

1544 The Input Data Set � Chapter 53

Figure 53.3 Elements of a Three-Dimensional Plot

vertical axis variable
(axis label)

tick mark
value

major
tick mark

horizontal
axis variables
(axis labels)

vertical
axis

grid

X - Y plane

The Input Data Set
The G3D procedure requires three numeric variables to produce a plot. The input

data set forms a rectangular grid from the values of X and Y. One value of Z is required
for each X-Y grid location. If multiple observations have the same Z value for any X-Y
combination, only the last observation is plotted.

Note: The Java and ActiveX drivers support multiple points with identical X-Y
combinations. �

Data for Surface Plots

The G3D procedure requires non-missing Z values for at least 50 percent of the grid
cells. When the procedure cannot produce a satisfactory surface plot because of missing
Z values, a warning message is issued and a graph might not be produced. To correct
this problem, you can grid the data set with the G3GRID procedure. The G3GRID
procedure interpolates the necessary values to produce a data set with non-missing Z
values for every X-Y combination. The G3GRID procedure can also smooth data for use
with the G3D procedure. The output data set produced by the G3GRID procedure can
be used as the input data set for the G3D procedure. See Chapter 54, “The G3GRID
Procedure,” on page 1571 for more information.

Data for Scatter Plots

In order to properly scale the axes, the G3D procedure requires at least two
observations. These observations must contain unique values for each of the three
variables that are specified in the plot request. If these requirements are not met, an
error message is issued, and a graph is not produced.

The G3D Procedure � Controlling the Axes 1545

Changing Data Ranges
For both surface plots and scatter plots, the range of the Z axis is defined by the

minimum and maximum data values for Z. To increase or decrease the range of the Z
axis, you can use the ZMIN= option and the ZMAX= option in the PLOT or SCATTER
statements. To restrict the range of an X axis or a Y axis, you can use a WHERE clause
in the PROC step to subset the data. A DATA Step with a WHERE clause, or an IF
statement can also be used to subset the data.

Note: See the “SCATTER Statement” on page 1554 for information on controlling
axis labels and tick mark values with SCATTER statement options. �

Rotating and Tilting the Plot
For both surface plots and scatter plots, you can rotate the X-Y plane around the Z

axis, or tilt the X-Y plane toward you. When you rotate a plot, you can view data from
any angle around the three-dimensional graph. Rotating a plot is useful for bringing
into view data points that might be obscured by other data points. Tilting a plot
enables you to accentuate the location of data points.

The following diagram illustrates how the TILT= option, and the ROTATE= option
change the viewing angles of a plot.

Figure 53.4 Rotating and Tilting a Plot

Note: Certain combinations of the TILT= option, and the ROTATE= option can
cause the tick mark values to overlap. �

Controlling the Axes
Because the relationship between a plot’s surface and the actual data values can be

difficult to interpret, the readability of the plot can be enhanced by; changing the
number of tick marks on the axes, or restricting the vertical axis range.

1546 Procedure Syntax � Chapter 53

The G3D procedure supports AXIS definitions for Java and ActiveX only; however,
you can use the functionality of PLOT and SCATTER statements to:

� suppress the axes

� suppress axis labels

� suppress tick mark values

� specify the number of tick marks

� specify minimum and maximum values for the Z axis

� specify whether grid lines connect axis tick marks

The font and height of the graph’s text can be changed with the GOPTIONS FTEXT=
option and the GOPTIONS HTEXT= option, respectively. The GOPTIONS FBY= option
can be used to specify the font for the BY-labels for BY-group graphs.

Procedure Syntax
Requirements: At least one PLOT or SCATTER statement is required.

Global statements: AXIS, BY, FOOTNOTE, GOPTIONS, NOTE, TITLE

Reminder: The procedure can include the FORMAT, LABEL, and WHERE statements.

Restriction: The AXIS statement is partially supported by the Java and ActiveX devices
only.

PROC G3D <DATA=input-data-set>
<ANNOTATE=annotate-data-set>
<GOUT=< libref.>output-catalog>;

PLOT plot-request</option(s)>;

SCATTER plot-request</option(s)>;

PROC G3D Statement

Can identify the data set that contains the plot variables. Can also specify an annotate data set
and an output catalog.

Syntax

PROC G3D <DATA=input-data-set>
<ANNOTATE=annotate-data-set>
<GOUT=< libref.>output-catalog>;

Options
Proc G3D statement options affect all graphs produced by the procedure.

The G3D Procedure � PLOT Statement 1547

ANNOTATE=annotate-data-set
specifies an annotate data set to annotate all of the graphs that are produced by the
G3D procedure. To annotate individual graphs, use the ANNOTATE= option in the
action statement.
Alias: ANNO=
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

DATA=input-data-set
specifies the SAS data set that contains the variables to plot. By default, the G3D
procedure uses the most recently created SAS data set.
See also: “SAS Data Sets” on page 54 and “The Input Data Set” on page 1544

GOUT=<libref.>output-catalog
specifies the SAS catalog in which to save the graphics output that is produced by the
G3D procedure. If you omit the libref, the output is placed in the temporary catalog
WORK.GSEG. The temporary output catalog is created if it doesn’t already exist.
See also: Chapter 7, “SAS/GRAPH Output,” on page 87

PLOT Statement

Creates three-dimensional surface plots using values of three numeric variables from the input
data set.

Requirements: One plot request is required.
Global statements: AXIS, BY, FOOTNOTE, GOPTIONS, NOTE, TITLE
Reminder: The procedure can include the FORMAT, LABEL, and WHERE statements.
Restriction: The AXIS statement is partially supported by the Java and ActiveX devices
only.

Description
The PLOT statement specifies one plot request that identifies the three numeric
variables to plot. The statement also does the following actions:

� scales the axes to include the minimum data values and the maximum data values
for each of the plotted variables X, Y, and Z

� labels each axis with the name of the variable or its associated label
� derives its colors from the ODS style

In addition to the Global statement options, the following Plot statement options
enable you to specify the appearance of many of the plot’s elements.

Syntax

PLOT y*x=z </option(s)>;

Option(s) can be one or more options from any or all of the following categories:
� appearance options:

ANNOTATE=annotate-data-set

CBOTTOM=bottom-surface-color
CTOP=top-surface-color

1548 PLOT Statement � Chapter 53

ROTATE=angle-list
SIDE
TILT=angle-list
XYTYPE=0 |1 | 2 | 3

� axes options:
CAXIS=axis-color
CTEXT=text-color
GRID
NOAXIS | NOAXES
NOLABEL
XAXIS=axis <1...99>
XTICKNUM=number-of-major-tick-marks
YAXIS=axis <1...99>
YTICKNUM=number-of-major-tick-marks
ZAXIS=axis <1...99>
ZMAX=maximum-value
ZMIN=minimum-value
ZTICKNUM=number-of-major-tick-marks

� catalog entry description options:
DESCRIPTION=“entry-description"
NAME=“name"

Required Arguments

y*x=z;
specifies the three numeric variables from the input data set:

Y
is the horizontal variable whose values are plotted on the Y axis

X
is the horizontal variable whose values are plotted on the X axis

Z
is the vertical variable whose values are plotted on the Z axis

Options
Options in a PLOT statement affect all graphs that are produced by that statement.

You can specify as many options as you want, and list them in any order.

ANNOTATE=annotate-data-set
specifies an annotate data set to annotate plots that are produced by the PLOT
statement.
Alias: ANNO=
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

CAXIS=axis-color
specifies a color for all the axes lines and tick marks.
Style reference: Color attribute of the GraphAxisLines element

The G3D Procedure � PLOT Statement 1549

Restriction: The AXIS statement is partially supported by Java and ActiveX. If the
AXIS statement specifies general axis colors with the COLOR= option; the CAXIS=
option overrides the AXIS statement general COLOR= option.

CBOTTOM=bottom-surface-color
specifies a color for the bottom of the plot surface.

Style reference: Color attribute of the GraphData2 element

Restriction: Not supported by Java

CTEXT=text-color
specifies a color for the axis labels and axis tick mark values. The G3D procedure
uses the first color it finds from the following list:

1 colors specified for labels and values on assigned AXIS statements, which
override the CTEXT= option on the PLOT statement. (Colors specified on AXIS
statements are supported by the Java and ActiveX devices only.)

2 the color specified by the CTEXT= option in the PLOT statement

3 the color specified by the CTEXT= option in a GOPTIONS statement

4 the color specified in the current style, or the first color in the color list for all of
the other devices

if the NOGSTYLE system option is specified, the CTEXT= option color is assigned
as follows:

� for the Java and ActiveX devices the default color is black

� for all other devices, the first color in the device’s color list

Note: If you use a BY statement in the procedure, the color of the BY variable
label is controlled by the CBY= option in the GOPTIONS statement. �

Note: For Java and ActiveX, specific text options specified in the AXIS statement
override the CTEXT= option. �

Style reference: Color attribute of the GraphValueText and the GraphLabelText
elements

CTOP=top-surface-color
specifies a color for the top of the plot surface.

Style reference: Color attribute of the GraphData1 element

Featured in: Example 2 on page 1561

DESCRIPTION=“description”
specifies the description of the plot. The maximum length for description is 256
characters.

The descriptive text is displayed as follows:

� the description in the Results window

� the description in the Explorer view of the catalog entry

� the description field of the PROC GREPLAY window

� the ALT= text in the HTML file when the output destination is ODS HTML

� customized by inserting BY variable values with #BYLINE, #BYVAL(n), and
#BYVAR(n)

Alias: DES=

Default: 3D surface plot of z by x and y

See also: “Substituting BY Line Values in a Text String” on page 294

Restriction: Partially supported for ActiveX and Java

1550 PLOT Statement � Chapter 53

GRID
draws reference lines at the major tick marks on all axes.
Featured in: Example 2 on page 1561.
Restriction: Not supported by Java

NAME=“name”
specifies the name of the GRSEG catalog entry, and the name of any graphics output
file created. The name can be up to 256 characters long. If the name duplicates an
existing name, SAS/GRAPH adds a number, or increments the last number used to
create a unique graph name–for example G3D1.

For GRSEG entries:
� the name is truncated to eight characters
� the first character is always represented in upper case
� all other characters are represented in lower case
� periods and blanks are converted to underscores

For Graphics Output files:
� SAS/GRAPH adds a number to the NAME= value, or increments the last

number used.

Default: Procedure name
See also: “About Filename Indexing” on page 99

NOAXIS
specifies that the plot has no axes, axes labels, or tick mark values. Use this option if
you want to generate axis labels and tick mark values with an annotate data set, or
with the AXIS statement for Java and ActiveX.
Alias: NOAXES

NOLABEL
specifies that the plot has no axis labels or tick mark values. Use this option if you
want to generate axis labels and tick mark values with an annotate data set, or with
the AXIS statement for Java and ActiveX.

ROTATE=angle-list
specifies one or more angles at which to rotate the X-Y plane around the
perpendicular Z axis. Specify the values in degrees. The values specified in the
angle-list can be negative or positive. If you specify a sequence of angles, separate
graphs are produced for each angle. The angles that are specified in the ROTATE=
option are paired with any angles that are specified with the TILT= option. If one
option contains fewer values than the other, the last value in the shorter list is
paired with the remaining values in the longer list. The angle-list list is in one of the
following forms:

� an explicit list of values: n <...n>

� a starting and an ending value with an interval increment: n TO n <BY
increment>

� a combination of both forms: n <...n> TO n <BY increment > <n <...n> >

Default: 70 degrees
Featured in: Example 2 on page 1561
Restriction: Not supported by ActiveX

SIDE
produces a surface graph with a side wall.
Featured in: Example 3 on page 1563

The G3D Procedure � PLOT Statement 1551

Restriction: Partially support by Java

TILT=angle-list
specifies one or more angles to tilt the graph toward you. The values must be
specified in degrees. The valid values specified in the angle-list are 0 through 90. To
generate a sequence of graphs, specify multiple angles, a graph is generated for each
angle. The angles that are specified in the TILT= option are paired with any angles
that are specified in the ROTATE= option. If one option contains fewer values than
the other, the last value in the shorter list is paired with the remaining values in the
longer list. The angle-list is in one of the following forms:

� an explicit list of values: n <...n>
� a starting and an ending value with an interval increment: n TO n <BY

increment>
� a combination of both forms: n <...n> TO n <BY increment > <n <...n> >

Default: 70 degrees
Featured in: Example 3 on page 1563

XAXIS= AXIS<1...<99>
assigns an axis definition.
Restriction: Partially supported by Java and ActiveX only

XTICKNUM=number-of-major-tick–marks
specifies the number of major tick marks that are located on a plot’s x axis. At least
two values are needed to generate the axis.
Default: 4 (except Java and ActiveX are 5)
Restriction: Not supported by Java and ActiveX

XYTYPE=0 | 1 | 2 | 3
specifies the direction of lines that are used to represent the plot’s surface. Both X
and Y are displayed by default. The valid values for the XYTYPE= option are as
follows:

1 XYTYPE=0 (Java and ActiveX only) No lines are displayed. The plot is
displayed as a solid surface.

2 XYTYPE=1 draws lines that are parallel to the X axis. The surface is displayed
by using lines that represent Y axis values.

3 XYTYPE=2 draws lines that are parallel to the Y axis. The surface is displayed
by using lines that represent X axis values.

4 XYTYPE=3 draws lines that are parallel to both the X and Y axes. Displays the
surface by using lines that represent values for both X and Y.

Featured in: “Changing the Surface Appearance” on page 1552
Restriction: Not supported by Java

YAXIS=AXIS <1...<99>
assigns an axis definition.
Restriction: Partially supported by Java and ActiveX only

YTICKNUM=number-of-major-tick-marks
specifies the number of major tick marks that are located on a plot’s Y axis. At least
two values are needed to generate the axis.
Default: 4 (except Java and ActiveX are 5)
Restriction: Not supported by Java

ZAXIS= AXIS<1...<99>
assigns an axis definition.

1552 PLOT Statement � Chapter 53

Restriction: Partially supported by Java and ActiveX only

ZMAX=maximum-axis-value
specifies the maximum value that is displayed on a plot’s Z axis. Defining the
ZMAX= option value greater than the data that is in the input data set, extends the
plot’s Z axis. Defining the ZMAX= option value less than the maximum value in the
input data set displays all Z values in the range of ZMIN-to-ZMAX, and might cause
data clipping.

The value of the ZMAX= option must be greater than the value of the ZMIN=
option.
Default: The maximum value of the Z variable
Featured in: Example 2 on page 1561
Restriction: Not supported by Java

ZMIN=minimum-axis-value
specifies the minimum value that is displayed on a plot’s Z axis. Defining the ZMIN=
option value less than the minimum value in the input data set extends the plot’s Z
axis. Defining the ZMIN= value greater than the minimum value in the input data
set displays all Z values in the range of ZMIN-to-ZMAX, and might cause data
clipping.

The value of the ZMIN= option must be less than the value of the ZMAX= option.
Default: The minimum value of the Z variable
Featured in: Example 2 on page 1561
Restriction: Not supported by Java

ZTICKNUM=number-of-major-tick-marks
specifies the number of major tick marks that are located on a plot’s Z axis. At least
two values are needed to generate the axis.
Default: 4 (except ActiveX is 5)
Restriction: Not supported by Java

Changing the Surface Appearance
The XYTYPE= option specifies the direction of the lines that form the surface plot.

The following plots show examples of each type of plot surface.

The G3D Procedure � PLOT Statement 1553

Figure 53.5 Surface Appearance for XYTYPE=1

Figure 53.6 Surface Appearance for XYTYPE=2

1554 SCATTER Statement � Chapter 53

Figure 53.7 Surface Appearance for XYTYPE=3

SCATTER Statement

Creates three-dimensional scatter plots using values of three numeric variables from the input
data set.

Requirements: One plot request is required.

Global statements: AXIS, BY, FOOTNOTE, GOPTIONS, NOTE, TITLE

Reminder: The procedure can include the FORMAT, LABEL, and WHERE statements.

Restriction: The AXIS statement is partially supported by Java and ActiveX devices only.

Alias: SCAT

Description
The SCATTER statement specifies one plot request that identifies the three numeric
variables to plot. The statement also does the following actions:

� scales the axes to include the minimum and maximum values for each of the
plotted variables X, Y, and Z

� labels each axis with the name of the plotted variable or its associated label

� uses reference lines to mark the major tick marks on the X and Y axes, creating a
grid on the horizontal plane

� represents each data point with a pyramid that is connected to the horizontal
plane with a needle

� derives its colors from the ODS style

In addition to the Global Statement options, the following Scatter statement options
enable you to specify the appearance of many of the plot’s elements.

The G3D Procedure � SCATTER Statement 1555

Syntax

SCATTER y*x=z </option(s)>;

Option(s) can be one or more options from any or all of the following categories:
� appearance options:

ANNOTATE=annotate-data-set
COLOR=“data-point-color" | data-point-color-variable
NONEEDLE
ROTATE=angle-list
SHAPE=“symbol-name" | shape-variable
SIZE=symbol-size | size-variable
TILT=angle-list

� axes options:
CAXIS=axis-color
CTEXT=text-color
GRID
NOAXIS | NOAXES
NOLABEL
XAXIS=axis <1...99>
XTICKNUM=number-of-major-tick-marks
YAXIS=axis <1...99>
YTICKNUM=number-of-major-tick-marks
ZAXIS=axis <1...99>
ZMAX=maximum-value
ZMIN=minimum-value
ZTICKNUM=number-of-major-tick-marks

� catalog entry description options:
DESCRIPTION=“description"
NAME=“name"

Required Arguments

y*x=z;
specifies three numeric variables from the input data set:

Y
specifies a horizontal variable whose values are plotted on the Y axis

X
specifies a horizontal variable whose values are plotted on the X axis

Z
specifies a vertical variable whose values are plotted on the Z axis

Note: The SCATTER statement does not require a full grid of observations to
generate a plot. �

Options
Options in a SCATTER statement affect all graphs that are produced by that

statement. You can specify as many options as you want and list them in any order.

1556 SCATTER Statement � Chapter 53

ANNOTATE=annotate-data-set
specifies an annotate data set to annotate plots that are produced by the SCATTER
statement.
Alias: ANNO=
Restriction: Partially supported by Java and ActiveX
See also: Chapter 29, “Using Annotate Data Sets,” on page 641

CAXIS=axis-color
specifies a color for axis lines, tick marks, and horizontal grid lines.
Style reference: Color attribute of the GraphAxisLines element
Restriction: The AXIS statement is partially supported by Java and ActiveX. When

the AXIS statement specifies only general axis colors with its COLOR= option, it is
overridden by the CAXIS= color option.

COLOR=“data-point-color” | data-point-color-variable
specifies a color name or a character variable in the input data set whose values are
color names. These color values determine the color or colors of the shapes that
represent a plot’s data points. Color values must be valid color names for the device
that is used.

Using a list of colors in the value of the data-point-color-variable enables you to
assign different colors to the shapes to classify data.
Style reference: Color attribute of the GraphData1 element

CTEXT=text-color
specifies a color for all text on the axes, including tick mark values and axis labels.
The G3D procedure uses the first color it finds from the following list:

1 colors specified for labels and values on assigned axis statement
2 the color specified by the CTEXT= option in a SCATTER statement
3 the color specified by the CTEXT= option in a GOPTIONS statement
if the NOGSTYLE system option is specified, the CTEXT= option color is assigned

as follows:
� for the Java and ActiveX devices the default color is black
� for all other devices, the first color in the device’s color list

Note: If you use a BY statement in the procedure, the color of the BY variable
label is controlled by the CBY= option in the GOPTIONS statement. �

Note: For Java and ActiveX only, specific text options specified in the AXIS
statement override the CTEXT= option. �
Style reference: Color attribute of the GraphValueText and GraphLabelText

elements

DESCRIPTION=“description”
specifies the description of the plot. The maximum length for description is 256
characters.

The descriptive text is displayed as follows:
� the description in the Results window
� the properties that you view form the Explorer window
� the description in the Explorer view of the catalog entry
� the Table of Contents that is generated when you use CONTENTS= on an ODS

HTML statement, assuming the G3D output is generated while the contents
page is open

� the description field of the PROC GREPLAY window
� the ALT= text in the HTML file when the output destination is ODS HTML

The G3D Procedure � SCATTER Statement 1557

� customized by inserting BY variable values with #BYLINE, #BYVAL(n), and
#BYVAR(n)

Alias: DES=
Default: 3D surface plot of z by x and y

See also: “Substituting BY Line Values in a Text String” on page 294

GRID
draws reference lines at the major tick marks on all axes.

NAME=“name”
specifies the name of the GRSEG catalog entry, and the name of any graphics output
file created. The name can be up to 256 characters long. If the name duplicates an
existing name, SAS/GRAPH adds a number, or increments the last number used to
create a unique graph name–for example G3D1.

For GRSEG entries:
� the name is truncated to eight characters
� the first character is always represented in uppercase
� all other characters are represented in lower case
� periods and blanks are converted to underscores

For Graphics Output files:
� SAS/GRAPH adds a number to the NAME= value, or increments the last

number used.

Default: Procedure name
See also: “About Filename Indexing” on page 99

NOAXIS
specifies that a plot has no axes, including labels, tick marks, and values. Use this
option if you want to generate axes with an annotate data set.
Alias: NOAXES

NOLABEL
specifies that a plot has no axes labels or tick mark values. Use this option if you
want to generate axis labels and tick mark values with an annotate data set.

NONEEDLE
specifies that a plot has no lines that connect the shapes representing data points to
the X-Y plane.
Restriction: The NONEEDLE option has no effect when SHAPE=“PILLAR” or

when SHAPE=“PRISM”

ROTATE=angle-list
specifies one or more angles at which to rotate the X-Y plane around the
perpendicular Z axis. Specify the value in degrees. The values specified in the
angle-list can be negative or positive. The value can be greater than 360 degrees. If
you specify a sequence of angles, separate graphs are produced for each angle. The
angles that are specified in the ROTATE= option are paired with any angles that are
specified with the TILT= option. If one option contains fewer values than the other,
the last value in the shorter list is paired with the remaining values in the longer
list. The angle-list list is in one of the following forms:

� an explicit list of values: n <...n>

� a starting and an ending value with an interval increment: n TO n <BY
increment>

� a combination of both forms: n <...n> TO n <BY increment > <n <...n> >

1558 SCATTER Statement � Chapter 53

Default: 70 degrees

SHAPE=“symbol-name” | shape-variable
specifies a symbol name or a character variable whose values are symbol names.
Symbols represent data points for scatter plots.

If you specify SHAPE=“symbol-name”, all data points are drawn in that shape.
If you specify SHAPE=shape-variable, the shape of the data point is determined by

the value of the shape variable, in the input data set, for that observation. For
example, the procedure uses the value of the variable CLASS for a particular
observation as the shape for that data point when you specify:

shape=class

Using a list of values in the variable named in SHAPE=shape-variable enables you
to assign different shapes to the data points, to categorize your data.

Valid values for symbol-name are as follows:
� BALLOON
� CLUB
� CROSS
� CUBE
� CYLINDER
� DIAMOND
� FLAG
� HEART
� PILLAR
� POINT
� PRISM
� PYRAMID
� SPADE
� SQUARE
� STAR

Figure 53.8 Scatter Plot Symbols

The G3D Procedure � SCATTER Statement 1559

Default: Pyramid
Restriction: These symbols might vary for Java and ActiveX

SIZE=symbol-size | size-variable
specifies either a constant or a numeric variable, the values of which determine the
size of symbol shapes on the scatter plot.

If you specify SIZE=symbol-size, all data points are drawn in that size.
If you specify SIZE=size-variable, the size of the data point is determined by the

value of the size variable, in the input data set for that observation. For example,
when you specify SIZE=CLASS, the procedure uses the value of the variable CLASS,
for each observation in the input data set as the size of that data point. If you use a
list of sizes as the value of the variable named in SIZE=size-variable, you can assign
different sizes to the data points to categorize your data.

TILT=angle-list
specifies one or more angles at which to tilt the graph toward you. The value must be
specified in degrees. The valid values specified in the angle-list are 0 through 90. To
generate a sequence of graphs, specify different angles, and a graph is generated for
each angle. The angles that are specified in the TILT= option are paired with any
angles that are specified with the ROTATE= option. If one option contains fewer
values than the other, the last value in the shorter list is paired with the remaining
values in the longer list. The angle-list is in one of the following forms:

� an explicit list of values: n <...n>

� a starting and an ending value with an interval increment: n TO n <BY
increment>

� a combination of both forms: n <...n> TO n <BY increment > <n <...n> >

Default: 70 degrees

XAXIS= AXIS<1...<99>
assigns an axis definition.
Restriction: Partially supported by Java and ActiveX

XTICKNUM=number-of-tick-marks
specify the number of major tick marks that are located on a plot’s X axis. At least
two values are needed to generate the axis.
Default: 4 (except Java and ActiveX are 5)

YAXIS= AXIS<1...<99>
assigns an axis definition.
Restriction: Partially supported by Java and ActiveX only

YTICKNUM=number-of-tick-marks
specify the number of major tick marks that are located on a plot’s Y axis. At least
two values are needed to generate the axis.
Default: 4 (except Java and ActiveX are 5)

ZAXIS= AXIS<1...<99>
assigns an axis definition.
Restriction: Partially supported by Java and ActiveX

ZMAX=maximum-value
specify the maximum data value that is displayed on a plot’s Z axis. You can use the
ZMAX= option to extend the Z axis beyond the value range. The value that is
specified by the ZMAX= option must be greater than that specified by the ZMIN=
option. If you specify the ZMAX= option within the range of the Z variable values,
the plot’s data values are clipped at the level you specified.

1560 Examples � Chapter 53

Default: Maximum value of Z variable

ZMIN=minimum-value
specifies the minimum value that is displayed on a plot’s Z axis. Defining the ZMIN=
value less than the minimum value in the input data set extends the plot’s Z axis.
Defining the ZMIN= value greater than the minimum value in the input data set
displays all Z values in the range of ZMIN-to-ZMAX, and might cause data clipping.

The value of the ZMIN= option must be less than the value of the ZMAX= option.
Default: The minimum value of the Z variable

ZTICKNUM=number-of-tick-marks
specify the number of major tick marks that are located on a plot’s Z axis. At least
two values are needed to generate the axis.
Default: 4 (except ActiveX is 5)

Changing the Appearance of the Data Points
Use the COLOR=, SHAPE=, and SIZE= options to change the appearance of your

scatter plot or to classify data using color, shape, size, or any combination of these
features. Figure 53.8 on page 1558 illustrates the shape names that you can specify in
the SHAPE= option. To make all of the data points red balloons at twice the normal
size, use the following code:

scatter y*x=z /color="red" shape="balloon" size=2;

To size your points according to the values of the variable TYPE in your input data
set, use the following code:

scatter y*x=z / size=type;

Examples

Example 1: Generating A Surface Plot

Procedure features:
PLOT statement

Sample library member: GTDSURFA

The G3D Procedure � Example 2: Generating a Rotated Surface Plot 1561

This surface plot reveals the shape of a generated data set named LAKE. The axes
are scaled to include all data values. Each axis is labeled with the name or label of the
corresponding variable. The tick marks on the axes are divided into three even
intervals. The horizontal plane is rotated 70� around the Z axis. The graph is tilted 70
degrees toward you. The colors are derived from the ODS style.

Set the graphics environment.

goptions reset=all border;

Define the title and footnote.

title "Surface Plot";
footnote j=r "GTDSURFA";

Generate the surface plot.

proc g3d data=sashelp.lake;
plot length*width=depth;

run;
quit;

Example 2: Generating a Rotated Surface Plot

Procedure Features
PLOT statement options:

CTOP=
GRID

1562 Example 2: Generating a Rotated Surface Plot � Chapter 53

ROTATE=
ZMAX=
ZMIN=

Data set: SASHELP.LAKE
Sample library member: GTDROTAT

The surface plot shown in this example illustrates enhancements to the axes and the
presentation. The plot illustrates a grid originating from the tick marks. A Z– axis
range increase raised the plot above the horizontal X-Y plane. CTOP= green changed
the top color and ROTATE= rotated the plot 45 degrees toward the viewer.

Set the graphics environment.

goptions reset=all border;

Define the title and footnote.

title "Rotated Surface Plot";
footnote j=r "GTDROTAT";

Generate the surface plot.CTOP=green changes the color of the plot’s top surface. The GRID
option draws reference lines originating from the tick marks on all the axes. The ROTATE=
option specifies a rotation angle of 45�. ZMAX=5 specifies the maximum value for the Z axis.
ZMIN= –50 specifies the minimum value for the Z axis. Specifying a ZMIN= value that is below
the minimum value in the input data set raises the plot above the horizontal plane. Data is not
displayed if it exceeds the range specified by the ZMIN= and ZMAX= options.

proc g3d data=sashelp.lake;
plot length*width=depth/

The G3D Procedure � Example 3: Generating a Tilted Surface Plot 1563

ctop=green
grid
rotate=45
zmax=5
zmin=-50;

run;
quit;

Example 3: Generating a Tilted Surface Plot
Procedure features:

PLOT statement options:
SIDE
TILT=

Data set: SASHELP.LAKE
Sample library member: GTDTILT

Simple modifications displayed in Example 1 on page 1560 are generated by tilting
the surface plot 30 degrees toward you, and adding a side wall.

Set the graphics environment.

goptions reset=all border;

Define title and footnote.

title "Tilted Surface Plot";
footnote j=r "GTDTILT";

1564 Example 4: Generating a Scatter Plot � Chapter 53

Generate the surface plot. The SIDE option draws a side wall for the graph. The TILT=
option specifies a tilt angle of 15� for the plot. The initial rotation of 70� is not affected by the
TILT= option.

proc g3d data=sashelp.lake;
plot length*width=depth/

side
tilt=30;

run;
quit;

Example 4: Generating a Scatter Plot

Procedure features:
Scatter statement

Sample library member: GTDSCAT

This scatter plot examines the results of measuring the petal length, petal width,
and sepal length for the flowers of three species of irises. The Scatter statement in this
example relies on the procedure defaults to:

� scale the axes to include all the data values
� label the axes with the variable’s labels
� divide the axes into three even intervals
� rotate the horizontal plane 70 degrees around the vertical axis
� tilt the plot 70 degrees toward you
� display the plot with the default ODS style

The G3D Procedure � Example 5: Generating a Scatter Plot with Modified Shapes 1565

Set the graphics environment.

goptions reset=all border;

Define the titles and footnote.

title1 "Iris Species Classification";
title2 "Physical Measurement";
title3 "Source: Fisher (1936) Iris Data";
footnote1 j=r "Sepal Width not Shown";

Generate the surface plot.

proc g3d data=sashelp.iris;
scatter PetalLength*PetalWidth=SepalLength;

run;
quit;

Example 5: Generating a Scatter Plot with Modified Shapes
Procedure features:

Scatter statement
COLOR=
SHAPE=
DATA Step
NOTE statement

Sample library member: GTDSHAPA

1566 Example 6: Generating a Scatter Plot with Modified Shapes and a Grid � Chapter 53

This scatter plot modifies the results of measuring the petal length, petal width, and
sepal length for the flowers of three species of irises by:

� using a DATA step to add a color variable and a shape variable to the data set
� using shapes to distinguish iris species
� using colors to distinguish iris species
� using a Note statement to simulate a legend

Set the graphics environment.

goptions reset=all border;

Define the titles and footnote.

title1 "Iris Species Classification";
title2 "Physical Measurement";
title3 "Source: Fisher (1936) Iris Data";
footnote1 j=l "Sepal Width not Shown";

Add variables to original data set.

data=iris;
set sashelp.iris;
length color shape $8.;
if species="Setosa" then do; shape="club"; color="blue"; end
if species="Versicolor" then do; shape="diamond"; color="red"; end;
if species="Virginica" then do; shape="spade"; color="green"; end’

run;

Generate the surface plot.

proc g3d data=iris;
note j=r f="Albany AMT/bo" "Species: : c=green "Virginica "

j=r c=red "Versicolor "
j=r c=blue "Setosa ";

scatter PetalLength*PetalWidth=SepalLength/
color=color
shape=shape;

run;
quit;

Example 6: Generating a Scatter Plot with Modified Shapes and a Grid

Procedure features:
Scatter statement
COLOR=

The G3D Procedure � Example 6: Generating a Scatter Plot with Modified Shapes and a Grid 1567

GRID
NONEEDLE
SHAPE=
DATA Step

Sample library member: GTDSHAPB

This scatter plot modifies the results of measuring the petal length, petal width, and
sepal length for the flowers of three species of irises by:

� using a DATA step to add a color variable and a shape variable to the data set
� using shapes to distinguish iris species
� using colors to distinguish iris species
� removing needles from data points
� adding a grid

Set the graphics environment.

goptions reset=all border;

Define the titles and footnote.

title1 "Iris Species Classification";
title2 "Physical Measurement";
footnote1 j=r f="Albany AMT/it" "Source: Fisher (1936) Iris Data";

Add variables to original data set.

data=iris;
set sashelp.iris;
length color shape $8.;

1568 Example 7: Generating a Rotated Scatter Plot with Modified Axes � Chapter 53

if species="Setosa" then do; shape="club"; color="blue"; end
if species="Versicolor" then do; shape="diamond"; color="red"; end;
if species="Virginica" then do; shape="spade"; color="green"; end’

run;

Generate the surface plot.

proc g3d data=iris;
scatter PetalLength*PetalWidth=SepalLength/

color=color
shape=shape
noneedle
grid;

run;
quit;

Example 7: Generating a Rotated Scatter Plot with Modified Axes

Procedure features:
Scatter statement
CAXIS=
COLOR=
ROTATE=
SHAPE=
SIZE=
XTICKNUM=
YTICKNUM=
ZTICKNUM=
ZMAX=
ZMIN=

Sample library member: GTDROTSC

The G3D Procedure � Example 7: Generating a Rotated Scatter Plot with Modified Axes 1569

This scatter plot modifies the procedure defaults to:
� specify a shape for the data points
� classify the data by color
� specify blue as the axis color
� rotates the X-Y plane –15 degrees around the perpendicular Z axis.
� specifies five major tick marks for the Y-axis
� specifies two major tick marks for the X-axis
� specifies five major tick marks for the Z-axis
� specifies the zero as the minimum axis value for the Z-axis
� specifies the one hundred as the maximum axis value for the Z-axis

Set the graphics environment.

goptions reset=all border;

Define the titles and footnote.

title1 "Relative Humidity in Percent";
footnote1 j=r f="Albany ANT/it"

"Source: William L. Donn, Meteorology, Fourth Edition";

Generate the surface plot.

proc g3d data=sashelp.humid;
scatter airtemp*bulbtemp=humidity/

shape=pillar
color=colorvar
caxis=blue
rotate=-15
yticknum=5

1570 References � Chapter 53

xticknum=2
zticknum=4
zmin=0
zmax=100

run;
quit;

References

Fisher, R.A. (1936), “The Use of Multiple Measurements in Taxonomic Problems,”
Annals of Eugenics, 7, 179–188.

Watkins, S.L. (1974), “Algorithm 483, Masked Three-Dimensional Plot Program with
Rotations (J6),” in Collected Algorithms from ACM, New York: Association for
Computing Machinery.

1571

C H A P T E R

54
The G3GRID Procedure

Overview 1571
Concepts 1573

The Input Data Set 1573

Multiple Vertical Variables 1573

Horizontal Variables Along a Nonlinear Curve 1573

The Output Data Set 1573
Interpolation Methods 1574

Bivariate Interpolation 1574

Spline Interpolation 1574

Spline Smoothing 1575

Procedure Syntax 1576

PROC G3GRID Statement 1576
GRID Statement 1577

Examples 1581

Example 1: Using the Default Interpolation Method 1581

Example 2: Spline and Smoothing Interpolations 1584

Example 3: Partial Spline Interpolation 1586
Example 4: Spline Interpolation 1588

References 1590

Overview
The G3GRID procedure processes an existing SAS data set to create a data set that

the G3D procedure or the GCONTOUR procedure can use to produce a
three-dimensional surface plot or a contour plot. The procedure creates a data set
whose horizontal X-Y variable values form a complete grid, and it interpolates the
values of the vertical Z variable for each point on the X-Y plane.

Using the G3GRID procedure, you can do the following actions:
� create a rectangular grid of interpolated or smoothed values from irregularly

spaced observations for use in a three-dimensional surface or contour plot
� complete a rectangular grid of interpolated or smoothed values for an input data

set that has an insufficient number of observations to produce a three-dimensional
surface or contour plot

� interpolate or smooth data for a three-dimensional plot

The G3GRID procedure does not produce graphics output. Proc G3GRID produces an
output data set that you can use as the input data set for Proc G3D or Proc
GCONTOUR.

Figure 54.1 on page 1572, and Figure 54.2 on page 1572 illustrate the effect of the
G3GRID procedure on data.

1572 Overview � Chapter 54

This figure shows a collection of data points, where z=f(x,y). These points are
randomly distributed, and cannot be displayed with a G3D surface plot, although they
can be displayed with a scatter plot.

Figure 54.1 Scatter Plot of Data Set Before G3GRID Processing (gtgdefin)

The following figure shows a surface plot of the data set that is created by a G3GRID
interpolation of the original data set shown in the preceding figure. The evenly
distributed horizontal (x,y) data points form a grid for the three-dimensional plot.

Figure 54.2 Surface Plot of Data Set After G3GRID Processing (gtdefin)

The G3GRID Procedure � The Output Data Set 1573

Concepts

The Input Data Set
The input data set must contain at least three numeric variables:
� two horizontal variables (x, y)
� one or more vertical variables, z through z-n, that is interpolated or smoothed as if

it were a function of the two horizontal variables

The G3GRID procedure can process multiple vertical variables for each pair of
horizontal variables that you specify:

� if you specify more than one vertical variable, the G3GRID procedure performs a
separate analysis, and produces interpolated or smoothed values for each vertical
variable

� if more than one observation in the input data set has the same values for both
horizontal variables, x and y, only the first observation is used in the interpolation.
A warning message is printed to the log.

� by default, the interpolation is performed after both variables are similarly scaled,
because the interpolation methods assume that the scales of x and y are
comparable

Multiple Vertical Variables
The GRID statement, enables you to name multiple vertical variables (z – z-n), to

produce a data set that contains two horizontal variables, and multiple vertical
variables. The resulting data set enables you to produce plots of the relationships of the
two horizontal variables, to different vertical variables.

Horizontal Variables Along a Nonlinear Curve
If the points that are generated by the horizontal variables tend to lie along a curve,

a poor interpolation or spline can result. In such cases, the vertical variable(s), and one
of the horizontal variables should be modeled as a function of the remaining horizontal
variable. A scatter plot of the two horizontal variables enable you to determine the
appropriate function.

If the horizontal variable points are collinear, the procedure interpolates the function
as constant, along lines perpendicular to the line in the plane that is generated by the
input data points.

The Output Data Set
The output data set contains:
� the two horizontal variables

� the interpolated or smoothed vertical variables
� any BY variables

1574 Interpolation Methods � Chapter 54

G3Grid enables you to control both the number of x and y values in the output data
set, and the values themselves. In addition, you can specify an interpolation method.

Interpolation Methods
The G3GRID procedure can use one of three interpolation methods: bivariate

interpolation (the default), spline interpolation, and smoothing spline interpolation.

Bivariate Interpolation
Unless you specify the SPLINE option, the G3GRID procedure is an interpolation

procedure. It calculates the z values for x, y points that are missing from the input data
set. The surface that is formed by the interpolated data passes precisely through the
data points in the input data set.

This method of interpolation works best for fairly smooth functions, with values
given at uniformly distributed points in the plane. If the data points in the input data
set are erratic, the default interpolated surface can be erratic.

This default method is a modification of that described by Akima (1978). This
method consists of the following actions:

1 dividing the plane into non-overlapping triangles that use the positions of the
available points

2 fitting a bivariate fifth degree polynomial within each triangle
3 calculating the interpolated values by evaluating the polynomial at each grid point

that falls in the triangle

The coefficients for the polynomial are computed based on the following criteria:
� the values of the function at the vertices of the triangle
� the estimated values for the first, and second derivatives of the function at the

vertices

The estimates of the first, and second derivatives are computed using the n nearest
neighbors of the point, where n is the number specified in the GRID statement’s
NEAR= option. A Delauney triangulation (Ripley 1981, p. 38), is used for the default
method. The coordinates of the triangles are available in an output data set, if
requested by the OUTTRI= option, in the PROC G3GRID statement. This is the default
interpolation method.

Spline Interpolation
If you specify the SPLINE option, a method is used that produces either an

interpolation. or smoothing that is optimally smooth. See (Harder and Desmarais 1972,
Meinguet 1979, Green and Silverman 1994). The surface that is generated can be
thought of as one that would be formed if a stiff, thin metal plate were forced through,
or near the given data points. For large data sets, this method is substantially more
expensive than the default method.

The function u, formed when you specify the SPLINE option, is determined by letting:

�� � ���� ���

� � ��� ��

The G3GRID Procedure � Interpolation Methods 1575

and

��� ��� �
�
��� ���

�
� �� � ���

�

����

� ��� �� � ��
������ ��� ��� � �� � ���� ���

where

� ��� �� � ��� �� ��	 ���� ���

The coefficients c1, c2,..., cn, and d1, d2, d3 of this polynomial are determined by the
following equations:

��� ���� ��� � � �

, and

�
�
� � �

where

E
is the n � n matrix E(ti, tj)

I
is the n � n identity matrix

�

is the smoothing parameter that is specified in the SMOOTH= option

c
is (c1 ,..., cn)

z
is (z1 ,..., zn)

d
is (d1, d2, d3)

T
is the n � three matrix whose ith row is (1, xi, yi).

See Wahba (1990) for more detail.

Spline Smoothing
Using the SMOOTH= option on the GRID statement with the SPLINE option,

enables you to produce a smoothing spline. See Eubank (1988) for a general discussion
of spline smoothing. The value or values specified in the SMOOTH= option are
substituted for � in the equation that is described in “Spline Interpolation” on page
1574. A smoothing spline trades closeness to the original data points for smoothness.

1576 Procedure Syntax � Chapter 54

To find a value that produces the best balance between smoothness, and fit to the
original data, several values for the SMOOTH= option can be run.

Procedure Syntax
Requirements: Exactly one GRID statement is required.

Reminder: The procedure can include the BY statement.

PROC G3GRID <DATA=input-data-set>
<OUT=output-data-set>
<OUTTRI=output-data-set>;

GRID grid-request </option(s)>;

PROC G3GRID Statement

Identifies the input data set. Can also specify one, or two output data sets.

Requirements: An input data set is required.

Syntax

PROC G3GRID <DATA=input-data-set>
<OUT=output-data-set>
<OUTTRI=output-data-set>;

Options

DATA=input-data-set
specifies the SAS data set that contains the variables to process. By default, the
procedure uses the most recently created SAS data set.

See also: “SAS Data Sets” on page 54 and “The Input Data Set” on page 1573.

OUT=output-data-set
specifies the output data set. The data set contains any BY variables that you
specify, the interpolated or smoothed values of the vertical variables (z through z-n),
and the coordinates for all grid positions on the horizontal (x-y) plane. If you specify
smoothing, the output data set also contains a variable named _SMTH_, whose value
is a smoothing parameter. The observations in this data set are ordered by any
variables that you specify with a BY statement. By default, the output of PROC
G3GRID creates WORK.DATA1.

Depending on the shape of the original data, and the options you use, the output
data set can contain values for the vertical (z through z-n) values that are outside of
the range of the original values in the data set.

Featured in: Example 1 on page 1581.

The G3GRID Procedure � GRID Statement 1577

OUTTRI=output-data-set
specifies an additional output data set that contains triangular coordinates. The data
set will contain any BY variables that you specify, the two horizontal variables giving
the horizontal (x -y) plane coordinates of the input points, and a variable named
TRIANGLE that uses the integer values to label the triangles. The observations in
this data set are ordered by any variables that you specify with a BY statement.

The data set contains three observations for each value of the variable
TRIANGLE. The three observations give the coordinates of the three vertices of the
triangle. Points on the convex hull of the input data set of points are also assumed to
lie in degenerate triangles, whose other vertices are at infinity. The points in the
convex hull can be recovered by keeping only those triangles with exactly two
missing vertices.

By default, no OUTTRI= data set is produced. OUTTRI= is not valid when you
specify the SPLINE option in the GRID statement.

GRID Statement

Specifies the three numeric variables for interpolation or for smoothing. Can also specify the
number of observations (x and y values), in the output data set; output values for the two
horizontal variables x-y; and the interpolation method for the vertical variables.

Requirements: Exactly one grid request is required.

Syntax

GRID grid-request </option(s)>;

grid-request must be:

y*x=z(s)

option(s) can be one or more options from any or all of the following categories:

� grid options:

AXIS1=ascending-value-list

AXIS2=ascending-value-list

NAXIS1=n

NAXIS2=n

� interpolation options:

JOIN

NEAR=n

PARTIAL

SCALE | NOSCALE

SMOOTH=ascending-value-list

SPLINE

1578 GRID Statement � Chapter 54

Required Arguments

y*x=z(s)
specifies three or more numeric variables from the input data set:

y
is one of the variables that forms the horizontal (x-y) plane

x
is another of the variables that forms the horizontal (x-y) plane

z(s)
is one or more of the vertical variables for the interpolation
Although the GRID statement can specify only two horizontal variables, it can

include multiple vertical variables. Separate vertical variables with blanks:

grid x*y=z w u v;

Options

AXIS1=ascending-value-list
specifies a list of numeric values to assign to the first (y) variable in the grid request
for the output data set. Numbers that you specify with this option determine the
number of values for y, and override a value that you specify with the NAXIS1=
option. The ascending-value-list must be arranged in ascending order. The value list
can be in any of the following forms:

� n <...n>
� n TO n <BY increment>
� n <...n> TO n <BY increment > <n <...n> >

Featured in: Example 1 on page 1581 and Example 4 on page 1588.

AXIS2=ascending-value-list
specifies a list of numeric values to assign to the second (x) variable in the grid
request for the output data set. Numbers that you specify with this option determine
the number of values for x and override a value that you specify with the NAXIS2=
option. The ascending-value-list must be arranged in ascending order. The value list
can be in any of the following forms:

� n <...n>
� n TO n <BY increment>
� n <...n> TO n <BY increment > <n <...n> >

Featured in: Example 1 on page 1581 and Example 4 on page 1588.

JOIN
uses a linear interpolation within a set of triangular regions that are formed from
the input data set. This interpolation method creates values in the range of the
initial values of the vertical variable, but the resulting interpolated surface might not
be smooth.

NAXIS1=n
specifies the number of values for the first (y) variable in the grid request for the
output data set. You can determine the actual values used for y by taking the
minimum and the maximum values of y and dividing the range into n- one equal
sections.

The G3GRID Procedure � GRID Statement 1579

A value specified with NAXIS1= is ignored if values are also specified with AXIS1=.

Default: 11

NAXIS2=n
specifies the number of values for the second (x) variable in the grid request for the
output data set. You can determine the actual values that are used for x by taking
the minimum value and the maximum value of x, and dividing the range into n- one
equal sections.

A value specified with NAXIS2= is ignored if values are also specified with AXIS2=.

Default: 11

NEAR=n
specifies the number of the nearest data points to use for computing the estimates of
the first derivative, and the second derivative. As NEAR= values become larger, time
and computation costs increase significantly. NEAR= is ignored if you specify
SPLINE. The value of n must be greater than or equal to 3.

If the number of input data points is insufficient for the number that you specify
with NEAR=, a smaller number of data points is used.

Default: 3

Featured in: Example 3 on page 1586.

NOSCALE
specifies that the x and y variables not be scaled to the same range before
interpolation. By default, the interpolation is performed after both variables are
similarly scaled because the interpolation methods assume that the scales of x and y
are comparable.

Default: SCALE

PARTIAL
specifies that a spline be used to estimate the derivatives for the biquintic polynomial
interpolation. A bivariate spline is fit to the nearest neighbors, and is used to
estimate the needed derivatives. This option produces results that are less smooth
than those produced by the SPLINE option and uses fewer computer resources.
However, the results produced by PARTIAL are smoother than those that are
produced by the default. If you use both the PARTIAL option and the SPLINE
option, the PARTIAL option is ignored.

Featured in: Example 3 on page 1586.

SCALE
specifies that the x and y variables be scaled to the same range before interpolation.
The interpolation is performed after both variables are similarly scaled because the
interpolation methods assume that the scales of x and y are comparable.

Default: SCALE

SMOOTH=ascending-value-list
specifies a list of numbers for smoothing parameters. Use the SMOOTH= option only
when you also use the SPLINE option. The ascending-value-list must be arranged in
ascending order. The value list can be in any of the following forms:

� n <...n>

� n TO n <BY increment>

� n <...n> TO n <BY increment > <n <...n> >

For each value � of the smoothing parameter, a function u (x, y) is formed that
minimizes

1580 GRID Statement � Chapter 54

�

�

��
���

�� ���� ���� ���
� � �

�
�

��

�
�

��

��
���

���

��
� �

�
���

����

��
�

�
���

���

���
	�	�

where n is the number of data points, and the pairs (xj, yj)are the available points,
with corresponding function values zj (Wahba 1990).

The higher the value of the smoothing parameter, the smoother the resulting
interpolation. The lower the smoothing parameter, the closer the resulting surface is
to the original data points. A smoothing parameter of 0 produces the same results as
the SPLINE option without the SMOOTH= option.

This procedure repeats for each value of the smoothing parameter. The output
data set that you specify in the OUT= option contains:

� the interpolated values

� the values of the grid points

� the values of the smoothing parameter in the variable _SMTH_

� a separate grid for each value of the smoothing parameter

Featured in: Example 2 on page 1584.

SPLINE
specifies the use of a bivariate spline (Harder and Desmarais 1972, Meinguet 1979,
Green and Silverman 1994) to interpolate, or to form a smoothed estimate, if you also
use the SMOOTH= option. The SPLINE option results in the use of an order n3

algorithm, where n is the number of input data points. Consequently, this method
can be time-consuming. If you use more than 100 input points, the procedure can use
excessive time.

Featured in: Example 2 on page 1584 and Example 4 on page 1588.

Controlling Observations in the Output Data Set
The G3GRID procedure produces a data set with 121 observations for combinations

of eleven values for each of the horizontal variables, x and y. To create a data set with a
different number of observations, use the GRID statement’s NAXIS1= option, or the
NAXIS2= option to specify the number of the values of y or x, respectively. You can use
the GRID statement’s AXIS1= option or the AXIS2= option to specify the actual values
for y or x, respectively.

The following table shows the number of observations that will be in the output data
set if you use any of these options.

If you specify multiple smoothing parameters, the number of observations in the
output data set will be the number shown in the table, multiplied by the number of
smoothing values that you specify in the SMOOTH= option. If you use BY-group
processing, multiply the number in the table by the number of BY groups.

Table 54.1 Number of Observations Contained in the Output Data Set

Options Specified Number of Observations in Output Data Set

None 121

AXIS1= (number of values for AXIS1=) * 11

AXIS2= (number of values for AXIS2=) * 11

The G3GRID Procedure � Example 1: Using the Default Interpolation Method 1581

Options Specified Number of Observations in Output Data Set

NAXIS1= (value of NAXIS1=) * 11

NAXIS2= (value of NAXIS2=) * 11

AXIS1=, AXIS2= (number of values for AXIS1=) * (number of values for AXIS2=)

AXIS1=, NAXIS1= (number of values for AXIS1=) * 11

AXIS1=, NAXIS2= (number of values for AXIS1=) * (value of NAXIS2=)

AXIS2=, NAXIS1= (number of values for AXIS2=) * (value of NAXIS1=)

AXIS2=, NAXIS2= (number of values for AXIS2=) * 11

NAXIS1=, NAXIS2= (value of NAXIS1=) * (value of NAXIS2=)

Depending on the shape of the original data, and the options that you specify, the
output data set can contain values for the vertical (z) values that are outside of the
range of the original values in the data set.

Examples

Example 1: Using the Default Interpolation Method

Procedure features:
G3GRID statement options:

OUT=
GRID statement options:

AXIS1=
AXIS2=

Other features:
DATA step
G3D procedure

Sample library member: GTGDEFIN

1582 Example 1: Using the Default Interpolation Method � Chapter 54

Figure 54.3 Scatter Plot of NUMS Data Set (gtgdefin)

This example demonstrates the default interpolation method that is used by the
GRID statement. The example first generates a scatter plot of random data to show the
concentration of data values before processing the data set with the G3GRID procedure.
The original data does not contain enough combinations of x, y and z values to:

� generate a surface plot with the G3D procedure
� generate a contour plot with the GCONTOUR procedure

The example then runs the G3GRID procedure to interpolate additional x, y, and z
values. Because no interpolation method is specified, the default interpolation method
is used. The resulting output data set is used as input to the G3D procedure, which
generates the surface plot shown in the following output.

The G3GRID Procedure � Example 1: Using the Default Interpolation Method 1583

Figure 54.4 Surface Plot using Interpolated Data Set (gtgdefin)

Set the graphics environment.

goptions reset=all border;

Create data set. NUMS uses a set of randomly sampled points to create the data used in this,
and all remaining examples in this chapter.

data nums;
keep x y z;
do i=1 to 30;

x=10*ranuni(33)-5;
y=10*ranuni(35)-5;
z=sin(sqrt(x*x+y*y));
output;

end;
run;

Define the title for the plot.

title "Scatter Plot of NUMS Data Set";

1584 Example 2: Spline and Smoothing Interpolations � Chapter 54

Generate the scatter plot with Proc G3D.

proc g3d data=nums;
scatter y*x=z;
run;

quit;

Grid the data with PROC G3GRID. The OUT= option on Proc G3GRID specifies a name for
the temporary output data set. The GRID option specifies the variables Y*X=Z for the output
data set. The AXIS statements define axes ranges.

proc g3grid data=nums out=default;
grid y*x=z /

axis1=-5 to 5 by .5
axis2=-5 to 5 by .5;

run;
quit;

Define the title for the plot.

title "Surface Plot using Interpolated Data Set";

Generate the surface plot. The G3D procedure using the G3GRID procedure’s output data set
as the input data set.

proc g3d data=default;
plot y*x=z;

run;
quit;

Example 2: Spline and Smoothing Interpolations

Procedure features:
GRID statement options:

SMOOTH=
SPLINE

Data set: NUMS (see Example 1 on page 1581)
Sample library member: GTGSISS

This example extends Example 1 on page 1581 to specify the SPLINE option on the
GRID statement. The output data set, when used in PROC G3D, generates a smoother
surface plot.

The G3GRID Procedure � Example 2: Spline and Smoothing Interpolations 1585

Figure 54.5 Surface Plot using Spline Interpolation (gtgsiss)

The following plot extends Example 1 on page 1581 to specify the SPLINE option,
and the SMOOTH= option on the GRID statement. The SMOOTH= option is set to .05
for additional smoothing. The output data set, when used in PROC G3D, generates a
smoother surface plot.

Figure 54.6 Surface Plot using Spline Interpolation and .05 Smoothing (gtgsiss)

Set the graphics environment.

goptions reset=all border;

Define the title for the plot.

title "Surface Plot using Spline Interpolation";

1586 Example 3: Partial Spline Interpolation � Chapter 54

Process points with PROC G3GRID. The SPLINE option specifies the bivariate spline
method for the data set interpolation.

proc g3grid data=nums out=spline;
grid y*x=z / spline

axis1=-5 to 5 by .5
axis2=-5 to 5 by .5;

run;

Generate the surface plot.

proc g3d data=spline;
plot y*x=z ;

run;
quit;

Define the title for the plot.

title "Surface Plot using Spline Interpolation and .05 Smoothing";

Process the data with PROC G3GRID.The SMOOTH=.05 option specifies the smoothing
parameter to use during spline interpolation.

proc g3grid data=nums out=smoothed;
grid y*x=z / spline

smooth=.05
axis1=-5 to 5 by .5
axis2=-5 to 5 by .5;

run;
quit;

Generate the surface plot.

proc g3d data=smoothed;
plot y*x=z;

run;
quit;

Example 3: Partial Spline Interpolation

Procedure features:
GRID statement options:

NEAR
PARTIAL

The G3GRID Procedure � Example 3: Partial Spline Interpolation 1587

Data set: NUMS (see Example 1 on page 1581)

Sample library member: GTGPART

This example specifies a partial spline interpolation on the GRID statement, using
the eight nearest neighbors for computing the estimates of the first, and second
derivatives. The output data set, when used in PROC G3D:

� generates a more smooth surface plot than the surface plot that results from the
default interpolation shown in Example 1 on page 1581

� does not generate the smoothness of the surface plot that results from the spline
interpolation shown in Example 2 on page 1584

Figure 54.7 Surface Plot using Partial Spline Interpolation (gtgpart)

Set the graphics environment.

goptions reset=all border;

Process data with PROC G3GRID. The PARTIAL option specifies that a spline be used to
estimate the derivatives for the biquintic polynomial interpolation. The NEAR= option specifies
the number of nearest neighbors to be used for computing the estimates of the first, and the
second derivatives.

proc g3grid data=nums out=partial;
grid y*x=z / partial

near=8
axis1=-5 to 5 by .5
axis2=-5 to 5 by .5;

run;

1588 Example 4: Spline Interpolation � Chapter 54

Define title for the plot.

title "Surface Plot using Partial Spline Interpolation";

Generate the surface plot.

proc g3d data=partial;
plot y*x=z;

run;
quit;

Example 4: Spline Interpolation
Procedure features:

GRID statement options:
AXIS1=
AXIS2=
SPLINE

Data set: NUMS (see Example 1 on page 1581)
Sample library member: GTGSPLIN

This example demonstrates the default interpolation method when used by the
GCONTOUR procedure to generate a contour plot from the resulting output data set.

Figure 54.8 Contour Plot Using Default Interpolation (gtgsplin)

The second plot, demonstrates the spline interpolation method when used by the
GCONTOUR procedure to generate a contour plot from the resulting output data set.

The G3GRID Procedure � Example 4: Spline Interpolation 1589

Figure 54.9 Contour Plot Using Spline Interpolation (gtgsplin)

Set the graphics environment.

goptions reset=all border;

Define the title for the plot.

title "Contour Plot using Default Interpolation";

Define the axis characteristics.

axis1 width=3;

Process data with PROC G3GRID.

proc g3grid data=nums out=numdef;
grid y*x=z /

axis1=-5 to 5 by .5
axis2=-5 to 5 by .5;

run;

Generate the contour after default interpolation.

proc gcontour data=numdef;
plot y*x=z /

haxis=axis1

1590 References � Chapter 54

vaxis=axis1;
run;

quit;

Define the title for the plot.

title "Contour Plot using Spline Interpolation";

Process data with PROC G3GRID. The SPLINE option specifies the bivariate spline method
for the interpolation.

proc g3grid data=nums out=numspl;
grid y*x=z / spline

axis1=-5 to 5 by .5
axis2=-5 to 5 by .5;

run;

Generate the contour plot using the spline interpolation.

proc gcontour data=numspl;
plot y*x=z /

haxis=axis1
vaxis=axis1;

run;
quit;

References

Akima, Hiroshi (1978), “A Method of Bivariate Interpolation and Smooth Surface
Fitting for Irregularly Distributed Data Points,” ACM Transaction on Mathematical
Software, 4, 148–159.

Eubank, R.L. (1988), Spline Smoothing and Nonparametric Regression, New York:
Marcel Dekker.

Green, P.J. and Silverman, B.W. (1994), Nonparametric Regression and Generalized
Linear Models, London: Chapman & Hall.

Harder, R.L. and Desmarais, R.N. (1972), “Interpolation Using Surface Splines,”
Journal of Aircraft, 9, 189–191.

Meinguet, Jean (1979), “Multivariate Interpolation at Arbitrary Points Made
Simple,” Journal of Applied Mathematics and Physics, 30, 292–304.

The G3GRID Procedure � References 1591

Ripley, B.D. (1981), Spatial Statistics, New York: John Wiley & Sons, Inc.

Wahba, G. (1990), Spline Models for Observational Data, Philadelphia: SIAM.

1592

1593

C H A P T E R

55
The MAPIMPORT Procedure

Overview 1593
Procedure Syntax 1594

PROC MAPIMPORT Statement 1594

EXCLUDE Statement 1595

ID Statement 1595

RENAME Statement 1596
SELECT Statement 1596

Examples 1597

Example 1: Including All Variables from the SHP Shapefile 1597

Example 2: Including Selected Variables from the SHP Shapefile 1597

Example 3: Excluding a Variable from the SHP Shapefile 1598

Example 4: Using the ID Statement 1598
Example 5: Including Selected Variables from the DBF Shapefile 1598

Overview
The MAPIMPORT procedure enables you to import ESRI shapefiles (spatial data

formats) and process the SHP files into SAS/GRAPH traditional map data sets. See
“About Traditional Data Sets” on page 1244 for more information.

The MAPIMPORT procedure does not produce any graphics output. Instead, it
produces an output map data set, which can be used with the GMAP procedure.

The shapefiles file types are described in the following table:

Table 55.1 Shapefiles File Types

File Extension Description

.dbf identification information (field-identifier names and values)
assigned to specific polygon(s)

.shx shape information for the polygon(s) that compose the map.

Note: These files are used with SHP files and
cannot be imported by themselves. �

.shp combines the shape information for the polygon(s) that compose
the map and the identification information (field-identifier names
and values) assigned to the specific polygon(s)

Note: If you import a very highly-detailed map, then the GMAP procedure might
produce extraneous lines when drawing it. To avoid this issue, use the GREDUCE
procedure to reduce the number of map points. �

1594 Procedure Syntax � Chapter 55

Procedure Syntax
Requirements: The name and location of an output data set and the complete path for the
input data file.

Reminder: The single quotes surrounding field identifiers are optional when the field
identifiers follow the SAS naming convention. Single quotes are required for field
identifiers that are non-standard SAS names. When field identifiers placed in single
quotes are non-standard SAS names, the field identifiers are converted to a standard
SAS name in the traditional map data set. For more information about the standard
SAS naming convention, see names in the SAS Language in the SAS Language
Reference: Concepts. For more information on how invalid field identifiers placed in
single quotes are renamed, see the SAS System option VALIDVARNAME in the
SAS/ACCESS for Relational Databases: Reference.

PROC MAPIMPORT OUT= map-data-set DATAFILE= ’path-to-shapefile’
<CONTENTS> <CREATE_ID_>;

EXCLUDE ’field-identifier(s)’;

ID ’field-identifier(s)’;

RENAME ’field-identifier-1’ = variable-name-1 < ... ’field-identifier-n’ =
variable-name-n>;

SELECT ’field-identifier(s)’;

PROC MAPIMPORT Statement

Identifies the input ESRI shapefile and converts this map into a SAS/GRAPH map data set.

Requirements: The name and location of an output data set and the complete path for the
input data file.

PROC MAPIMPORT OUT= map-data-set DATAFILE= ’path-to-shapefile’
<CONTENTS> <CREATE_ID_>;

Required Arguments

OUT= map-data-set
specifies the name of the output map data set that is created.

DATAFILE= ’path-to-shapefile’
specifies the path and filename of the shapefile that is read and processed.

Alias: INFILE=

Note: By default, all of the fields in a shapefile are included in the output map data
set. To include only specific fields in the output map data set, use the SELECT
statement. To exclude specific fields from the output map data set, use the EXCLUDE
statement. �

The MAPIMPORT Procedure � ID Statement 1595

Options

CONTENTS
displays information about the shapefile, including field identifier names and types.

CREATE_ID_
creates a map ID variable named _ID_ with a unique value for each polygon in the
map. This variable is created automatically if the DBF file is missing.

Interaction: This statement has no effect if you also specify the ID statement.

EXCLUDE Statement

Specifies one or more fields from the shapefile thatare excluded from the output map data set.

Requirements: At least one field-identifier is required.

Restriction: If you specify conflicting values for the EXCLUDE and SELECT statements,
then the MAPIMPORT procedure produces an error.

Restriction: If you specify the same field identifier on the EXCLUDE statement and on
the ID statement, then the MAPIMPORT procedure produces an error.

EXCLUDE ’field-identifier(s)’;

Required Arguments

’field-identifier(s)’
specifies one or more fields from the shapefile that are excluded from the output map
data set. All of the fields that you do not specify are included in the output map data
set.

If you do not specify the EXCLUDE statement or the SELECT statement, then all
of the fields from the shapefile are included in the output map data set.

ID Statement

Reorders the map polygons by one or more identifier fields.

Requirements At least one field-identifier is required.

Interaction: The CREATE_ID option on the PROC MAPIMPORT statement has no effect
when you also specify the ID option.

ID ’field-identifier(s)’;

1596 RENAME Statement � Chapter 55

Required Arguments

’field-identifier(s)’
specifies one or more fields in the shape file that identify the polygons in the map.
The values of the fields that you specify are used to reorder the map polygons and
assign segment numbers in the output map data set.

When you do not specify the ID statement, the MAPIMPORT procedure uses the
existing polygon order for the output map data set.

You might want to use the ID statement when the default output map data set does
not draw properly in the GMAP procedure. If the ID variable that you specify in the
GMAP procedure is not unique for each polygon, then extraneous lines might appear
in your GMAP output. To ensure that the ID variable is unique for each polygon,
specify the same ID statement in both the MAPIMPORT and GMAP procedures.

RENAME Statement
Renames variables in the output map data set that correspond to specific fields in the shapefile.

Requirements: At least one field-identifier and variable-name pair are required.

RENAME ’field-identifier-1’ = variable-name–1 <... ’field-identifier-n’ = SAS-variable-n>

Required Arguments

’field-identifier’ = variable-name
assigns a variable name in the output map data set for a field in the shapefile. You
can specify multiple field identifier and variable name pairs, separated by a space.

For example, the following code renames the STNAME field to STATE, and the
FIPSTATE field to STATE_FIPS:

rename "stname" = state "fipstate" = state_fips;

By default, when you do not specify the RENAME statement, the MAPIMPORT
procedure uses the field name in the shapefile as the variable name in the output
map data set. However, if the field name is not a valid SAS variable name, then the
variable name is modified in the output map data set. For more information about
valid SAS variable names, see the “Rules for Words and Names in the SAS
Language” chapter of SAS Language Reference: Concepts.

SELECT Statement

Selects the fields from the shapefile that are included in the output map data set.

Requirements: At least one field-identifier is required.
Restriction: If you specify conflicting values for the EXCLUDE and SELECT statements,
then the MAPIMPORT procedure produces an error.

The MAPIMPORT Procedure � Example 2: Including Selected Variables from the SHP Shapefile 1597

SELECT ’field-identifier(s)’;

Required Arguments

’field-identifier(s)’
specifies one or more fields from the shapefile that are included in the output map
data set. If you do not use the SELECT statement or the EXCLUDE statement, then
all of the fields from the shapefile are included in the output map data set.

For field identifiers that are not valid SAS variable names, the MAPIMPORT
procedure changes the name of the variable in the output map data set automatically.
For more information about valid SAS variable names, see the “Rules for Words and
Names in the SAS Language” chapter of SAS Language Reference: Concepts.

Examples
The following examples use shapefiles with the .shp and .dbf extensions. Replace the

shapefiles locations, filenames, and field-identifiers with information from your
shapefiles to run these examples.

Example 1: Including All Variables from the SHP Shapefile

In the following example,World30.shp contains polygons that compose a political
boundary world map. All the field identifiers in the World30.shp file are included in the
traditional map data set, MYWORLD.

PROC MAPIMPORT OUT=myworld DATAFILE="C:\world30.shp";
run;

Example 2: Including Selected Variables from the SHP Shapefile

In the following example, the STATES.SHP file contains polygons that compose the
political boundaries of a U.S. states map. Only the STATE_FIPS (the state FIPS codes),
STATE_NAME (the state name), and STATE_ABBR (the two letter state abbreviation)
variables are included in the traditional map data set, MYSTATES. STATE_FIPS is
renamed FIPS, STATE_NAME is renamed STATE, and STATE_ABBR is renamed
ABBREV in the MYSTATES map data set.

PROC MAPIMPORT OUT=mystates DATAFILE="C:\states.shp";
SELECT STATE_FIPS STATE_NAME STATE_ABBR;
RENAME STATE_FIPS=FIPS STATE_NAME=STATE STATE_ABBR=ABBREV;

run;

1598 Example 3: Excluding a Variable from the SHP Shapefile � Chapter 55

Example 3: Excluding a Variable from the SHP Shapefile

In the following example, the STATES.SHP file contains polygons that compose the
political boundaries of a U.S. state map. The variable OTHER is excluded from the
traditional map data set, MYSTATES2.

PROC MAPIMPORT OUT=mystates2 DATAFILE="C:\states.shp";
EXCLUDE OTHER;

run;

Example 4: Using the ID Statement

In the following example, the shapefile is a ZCTA file from the US Census Bureau
that contain polygons that are based on ZIP codes. The ZCTA field is the identifier that
you want to use, but the polygons in the shapefile do not have unique values for ZCTA.
If you do not specify the ID statement, then the GMAP procedure draws extra lines
between the map areas for ZCTA.

By identifying the ZCTA field in the ID statement, you ensure that the polygons for
each value of ZCTA are grouped together and assigned different SEGMENT values in
the output map data set. The GMAP procedure can now draw the map areas for ZCTA
correctly.

proc mapimport out=myzcta datafile="c:\zt06_d00.shp";
id zcta;

run;

Example 5: Including Selected Variables from the DBF Shapefile

In the following example, the STATES.DBF file contains the identification
information (field-identifier names and values) applied to the U.S. states polygon map.
Only the STATE_FIPS (the state FIPS codes), STATE_NAME (the state names), and
STATE_ABBR (the two letter state abbreviations) variables are included in the
traditional map data set, MYDATA. STATE_FIPS is renamed FIPS, STATE_NAME is
renamed STATE, and STATE_ABBR is renamed ABBREV in the MYDATA map data
set.

PROC MAPIMPORT OUT=mydata DATAFILE="C:\states.dbf";
SELECT STATE_FIPS STATE_NAME STATE_ABBR;
RENAME STATE_FIPS=FIPS STATE_NAME=STATE STATE_ABBR=ABBREV;

run;

1599

P A R T6

Appendixes

Appendix 1.Summary of ActiveX and Java Support 1601

Appendix 2.Using SAS/GRAPH Fonts 1643

Appendix 3.Using Device-Resident Fonts 1655

Appendix 4.Transporting and Converting Graphics Output 1659

Appendix 5.GREPLAY Procedure Template Code 1663

Appendix 6.Recommended Reading 1675

1600

1601

A P P E N D I X

1
Summary of ActiveX and Java
Support

Introduction 1602
Global Statements 1602

AXIS Statement 1602

Text Description Suboptions 1603

Tick Mark Description Suboptions 1603

GOPTIONS Statement 1604
LEGEND Statement 1608

LEGEND Statement Text Description Suboptions 1609

PATTERN Statement 1609

SYMBOL Statement 1610

POINTLABEL= Label Description Options 1611

TITLE and FOOTNOTE Statements 1612
PROC GAREABAR 1612

PROC GBARLINE 1613

PROC GCHART 1615

Text Description Suboptions 1620

PROC GCONTOUR 1620
PROC GMAP 1622

PROC GPLOT 1625

PROC GRADAR 1630

PROC GTILE 1633

PROC G3D 1633
Annotate Functions 1635

ARROW 1635

BAR 1635

DRAW 1636

DRAW2TXT 1636

FRAME 1637
IMAGE 1637

LABEL 1637

MOVE 1638

PIE 1639

PIECNTR 1639
PIEXY 1640

POINT 1640

POLY 1640

POLYCONT 1641

SYMBOL 1641

1602 Introduction � Appendix 1

Introduction
The following tables summarize which options and annotate variables are supported

or partially supported by the Java and ActiveX devices. Partial support for options that
refer to global statements, such as the GAXIS= option, indicates that some but not all
AXIS statement options are supported. Partial support may also indicate that an option
works differently for the other devices than it does for the Java and ActiveX device
drivers, or that an option works for one or more applets but not for all. For a complete
description of each option or variable, refer to the documentation for the option or
variable.

Global Statements

AXIS Statement

Table A1.1 ActiveX and Java Support for the AXIS Statement

Option Supported by ActiveX? Supported by Java?

COLOR=
C=

Yes Yes

INTERVAL= No No

LABEL= Yes (partial) Yes (partial)

LENGTH= Yes No

LOGBASE= Yes No

LOGSTYLE= Yes No

MAJOR= Yes (partial) Yes (partial)

MINOR= Yes (partial) Yes (partial)

NOBRACKETS No No

NOPLANE Yes Yes

OFFSET= Yes No

ORDER= Yes (partial) Yes (partial)

ORIGIN= No No

REFLABEL= No No

SPLIT= No No

STYLE= Yes Yes

� AXIS Statement 1603

Option Supported by ActiveX? Supported by Java?

VALUE= Yes Yes (partial)

WIDTH= Yes (partial) No

Text Description Suboptions
Text description suboptions are used by the LABEL=, REFLABEL=, and VALUE=

options.

Table A1.2 ActiveX and Java Support for AXIS Text Description Suboptions

Option Supported by ActiveX? Supported by Java?

ANGLE=
A=

Yes Yes (partial)

AUTOREF No No

COLOR=
C=

Yes Yes

FONT=
F=

Yes Yes (partial)

HEIGHT=
H=

Yes Yes

JUSTIFY=
J=

Yes No

POSITION= No No

ROTATE=
R=

Yes Yes (partial)

TICK=
T=

No No

Tick Mark Description Suboptions
Tick mark description suboptions are used by the MAJOR= and MINOR= options to

change the color, height, width, and number of the tick marks to which they apply.

Table A1.3 ActiveX and Java Support for Tick Mark Description Suboptions

Option Supported by ActiveX? Supported by Java?

COLOR=
C=

Yes Yes

HEIGHT=
H=

No No

1604 GOPTIONS Statement � Appendix 1

Option Supported by ActiveX? Supported by Java?

NUMBER=
N=

Yes Yes

WIDTH=
W=

Yes Yes (partial)

GOPTIONS Statement
You must specify the ODS USEGOPT statement for the CTEXT=, CTITLE=, FTEXT=,

FTITLE=, HTEXT=, and HTITLE= options to work for the Java and ActiveX devices.
See “Using Graphics Options with ODS (USEGOPT)” on page 195 for more information.

Table A1.4 ActiveX and Java Support for the GOPTIONS Statement

Option Supported by ActiveX? Supported by Java?

ACCESSIBLE Yes Yes

ADMGDF
NOADMGDF

No No

ASPECT= No No

AUTOCOPY
NOAUTOCOPY

No No

AUTOFEED
NOAUTOFEED

No No

AUTOSIZE= No No

BINDING= No No

BORDER Yes Yes

CBACK= Yes Yes

CBY= No No

CELL No No

CHARACTERS
NOCHARCTERS

No No

CHARTYPE= No No

CIRCLEARC
NOCIRCLEARC

No No

COLLATE
NOCOLLATE

No No

COLORS= Yes Yes

CPATTERN= No No

CSYMBOL= No No

CTEXT= Yes Yes (partial)

CTITLE= Yes Yes

DASH
NODASH

No No

� GOPTIONS Statement 1605

Option Supported by ActiveX? Supported by Java?

DASHSCALE= No No

DELAY= No No

DEVADDR= No No

DEVICE= Yes Yes

DEVMAP= No No

DISPLAY
NODISPLAY

No No

DISPOSAL= No No

DRVINIT= No No

DRVTERM= No No

DUPLEX
NODUPLEX

No No

ERASE
NOERASE

No No

EXTENSION No No

FASTTEXT
NOFASTTEXT

No No

FBY= No No

FCACHE= No No

FILECLOSE= No No

FILEONLY
NOFILEONLY

No No

FILL
NOFILL

No No

FILLINC= No No

FONTRES= No No

FTEXT= Yes (partial) Yes (partial)

FTITLE= Yes Yes

FTRACK= No No

GACCESS= No No

GCLASS= No No

GCOPIES= No No

GDDMCOPY= No No

GDDMNICKNAME= No No

GDDMTOKEN= No No

GDEST= No No

GEND= No No

GEPILOG= No No

GFORMS= No No

1606 GOPTIONS Statement � Appendix 1

Option Supported by ActiveX? Supported by Java?

GOUTMODE= No No

GPROLOG= No No

GPROTOCOL= No No

GRAPHRC
NOGRAPHRC

No No

GSFLEN= No No

GSFMODE= No No

GSFNAME= No No

GSFPROMPT
NOGSFPROMPT

No No

GSIZE= No No

GSTART= No No

GUNIT= Yes (partial) Yes (partial)

GWAIT= No No

GWRITER= No No

HANDSHAKE= No No

HBY= No No

HORIGIN= No No

HPOS= No No

HSIZE= Yes (partial) Yes (partial)

HTEXT= Yes Yes (partial)

HTITLE= Yes Yes

IBACK= Yes Yes (partial)

IMAGEPRINT
NOIMAGEPRINT

No No

IMAGESTYLE= Yes No

INTERLACED
NOINTERLACED

No No

INTERPOL= No No

ITERATION= No No

KEYMAP= No No

LFACTOR= No No

OFFSHADOW= No No

PAPERDEST= No No

PAPERFEED= No No

PAPERLIMIT= No No

PAPERSIZE= No No

PAPERSOURCE= No No

� GOPTIONS Statement 1607

Option Supported by ActiveX? Supported by Java?

PAPERTYPE= No No

PCLIP
NOPCLIP

No No

PENMOUNTS= No No

PENSORT
NOPENSORT

No No

PIEFILL
NOPIEFILL

No No

POLYGONCLIP
NOPOLYGONCLIP

No No

POLYGONFILL
NOPOLYGONFILL

No No

POSTGEPILOG= No No

POSTGPROLOG= No No

POSTGRAPH= No No

PPDFILE= No No

PREGEPILOG= No No

PREGPROLOG= No No

PREGRAPH= No No

PROMPT
NOPROMPT

No No

PROMPTCHARS= No No

RENDER= No No

RENDERLIB= No No

REPAINT= No No

RESET Yes Yes

REVERSE
NOREVERSE

No No

ROTATE= No No

ROTATE
NOROTATE

No No

SIMFONT= No No

SPEED= No No

SWAP
NOSWAP

No No

SWFONTRENDER No No

SYMBOL
NOSYMBOL

No No

TARGETDEVICE= No No

1608 LEGEND Statement � Appendix 1

Option Supported by ActiveX? Supported by Java?

TRANSPARENCY
NOTRANSPARENCY

Yes (partial) No

TRANTAB= No No

UCC= No No

USERINPUT
NOUSERINPUT

No No

VORIGIN= No No

VPOS= No No

VSIZE= Yes (partial) Yes (partial)

V6COMP
NOV6COMP

Yes (partial) Yes (partial)

XMAX= No No

XPIXELS= Yes (partial) Yes (partial)

YMAX= No No

YPIXELS= Yes (partial) Yes (partial)

LEGEND Statement

Table A1.5 ActiveX and Java Support for the LEGEND Statement

Option Supported by ActiveX? Supported by Java?

ACROSS= Yes Yes

CBLOCK= Yes No

CBORDER= Yes Yes

CFRAME= Yes Yes

CSHADOW= Yes Yes

DOWN= Yes Yes

FRAME Yes Yes

FWIDTH= No No

LABEL= Yes (partial) Yes (partial)

MODE= No No

OFFSET= No No

ORDER= No No

ORIGIN= No No

POSITION= Yes Yes (partial)

� PATTERN Statement 1609

Option Supported by ActiveX? Supported by Java?

SHAPE= No No

VALUE= Yes (partial) Yes (partial)

LEGEND Statement Text Description Suboptions
Text description suboptions are used by the LABEL= and VALUE= options to change

the color, height, justification, font, and angle of either default text or specified text
strings. See LABEL= and VALUE=.

Table A1.6 ActiveX and Java Support for LEGEND Text Description Suboptions

Option Supported by ActiveX? Supported by Java?

COLOR=
C=

Yes Yes

FONT=
F=

Yes Yes

HEIGHT=
H=

Yes Yes

JUSTIFY=
J=

Yes Yes

POSITION= Yes (partial) No

TICK=
T=

Yes Yes

PATTERN Statement

Table A1.7 ActiveX and Java Support for the PATTERN Statement

Option Supported by ActiveX? Supported by Java?

COLOR=
C=

Yes (partial) Yes (partial)

IMAGE= Yes (partial) Yes (partial)

IMAGESTYLE= Yes (partial) Yes (partial)

REPEAT=
R=

Yes (partial) Yes (partial)

VALUE=bar/block-pattern
V=bar/block-pattern

Yes (partial) Yes (partial)

1610 SYMBOL Statement � Appendix 1

Option Supported by ActiveX? Supported by Java?

VALUE=map/plot-pattern
V=map/plot-pattern

Yes (partial) Yes (partial)

VALUE=pie/star-pattern
V=pie/star-pattern

Yes (partial) Yes (partial)

SYMBOL Statement

Table A1.8 ActiveX and Java Support for the SYMBOL Statement

Option Supported by ActiveX? Supported by Java?

BWIDTH= Yes Yes

CI= Yes Yes

CO= Yes Yes

COLOR=
C=

Yes (GPLOT and GBARLINE)
No (GCONTOUR)

Yes (GPLOT and GBARLINE)
No (GCONTOUR)

CV= Yes (GPLOT)
No (GCONTOUR)

Yes (GPLOT)
No (GCONTOUR)

FONT= No No

HEIGHT=
H=

Yes (GPLOT)
No (GCONTOUR)

Yes (GPLOT)
No (GCONTOUR)

INTERPOL=BOX
I=BOX

Yes Yes (partial)

INTERPOL=HILO
I=HILO

Yes Yes (partial)

INTERPOL=JOIN
I=JOIN

Yes Yes

INTERPOL=L
I=L

Yes Yes

INTERPOL=map/plot-pattern
I=map/plot-pattern

Yes Yes (partial)

INTERPOL=NEEDLE
I=NEEDLE

Yes Yes

INTERPOL=NONE
I=NONE

Yes Yes

INTERPOL=R
I=R

Yes Yes (partial)

INTERPOL=SM
I=SM

Yes No

INTERPOL=SPLINE
I=SPLINE

Yes Yes

� SYMBOL Statement 1611

Option Supported by ActiveX? Supported by Java?

INTERPOL=STD
I=STD

Yes Yes (partial)

INTERPOL=STEP
I=STEP

Yes Yes

LINE=
L=

Yes (GPLOT)
No (GCONTOUR)

Yes (GPLOT)
No (GCONTOUR)

MODE= Yes Yes (partial)

POINTLABEL= Yes (partial) Yes (partial)

REPEAT=

R=

Yes (GPLOT)
No (GCONTOUR)

Yes (GPLOT)
No (GCONTOUR)

STEP=
S=

No No

VALUE=
V=

Yes (partial for GPLOT)
No (GCONTOUR)

Yes (partial for GPLOT)
No (GCONTOUR)

WIDTH=
W=

Yes (partial for GPLOT)
No (GCONTOUR)

Yes (partial for GPLOT)
No (GCONTOUR)

POINTLABEL= Label Description Options

Table A1.9 ActiveX and Java Support for POINTLABEL Description Suboptions

Option Supported by ActiveX? Supported by Java?

COLOR=
C=

Yes No

FONT=
F=

Yes No

HEIGHT=
H=

Yes No

JUSTIFY=
J=

No No

POSITION= No No

"#var" | "#x:#y <$char>" "#y:#x
$<char>"

Yes (partial) Yes (partial)

1612 TITLE and FOOTNOTE Statements � Appendix 1

TITLE and FOOTNOTE Statements

Table A1.10 ActiveX and Java Support for TITLE and FOOTNOTE Statements

Option Supported by ActiveX? Supported by Java?

ANGLE= No No

BCOLOR= Yes Yes

BLANK= No No

BOX= No No

BSPACE= No No

COLOR= Yes Yes

DRAW= No No

FONT= Yes Yes

HEIGHT= Yes (partial) Yes (partial)

JUSTIFY= Yes Yes

LANGLE= No No

LINK= Yes Yes

LSPACE= No No

MOVE= No No

ROTATE= No No

UNDERLIN= Yes (partial) Yes (partial)

PROC GAREABAR

Table A1.11 ActiveX and Java Support for GAREABAR

Statement Option Supported by
ActiveX?

Supported by Java?

PROC GAREABAR DATA= Yes No

HBAR and VBAR CFR
FRAME=

Yes No

CTEXT= Yes No

DISCRETE Yes No

FRAME
NOFRAME

Yes No

NAME= Yes No

� PROC GBARLINE 1613

Statement Option Supported by
ActiveX?

Supported by Java?

RSTAT=
RESPSTAT=
RESPONSESTAT=

Yes No

SUBGROUP= Yes No

SUMVAR= Yes No

WSTAT=
WIDTHSTAT=

Yes No

PROC GBARLINE

Table A1.12 ActiveX and Java Support for PROC GBARLINE

Statement Option Supported by
ActiveX?

Supported by Java?

PROC GBARLINE ANNOTATE=
ANNO=

Yes No

DATA= Yes No

IMAGEMAP= No No

BAR ANNOTATE=
ANNO=

Yes No

ASCENDING Yes No

AUTOREF Yes No

AXIS= Yes No

CAUTOREF= Yes No

CAXIS= Yes No

CERROR= Yes No

CFRAME=
CFR=

Yes No

CFREQ Yes No

CLIPREF Yes No

CLM= Yes No

COUTLINE= Yes No

CPERCENT
CPCT

Yes No

CREF= Yes No

CTEXT= Yes No

DESCENDING Yes No

1614 PROC GBARLINE � Appendix 1

Statement Option Supported by
ActiveX?

Supported by Java?

DESCRIPTION=
DES=

Yes No

DISCRETE Yes No

ERRORBAR= Yes No

FRAME
NOFRAME
FR
NOFR

Yes No

FREQ Yes No

FREQ=numeric-
variable

No No

FRONTREF Yes No

HTML= Yes No

HTML_LEGEND No No

INSIDE= Yes No

LAUTOREF= Yes No

LEGEND Yes (partial) No

LEVELS= Yes No

LREF=
LR=

Yes No

MAXIS= Yes No

MEAN Yes No

MIDPOINTS=value-
list

Yes No

MIDPOINTS=OLD Yes No

MINOR= Yes No

MISSING Yes No

NAME= Yes No

NOAXIS Yes No

NOBASEREF Yes No

NOZERO Yes No

OUTSIDE= Yes No

PATTERNID= Yes No

PERCENT

PCT

Yes No

RANGE Yes No

RAXIS=
AXIS=

Yes (partial) No

REF= Yes No

� PROC GCHART 1615

Statement Option Supported by
ActiveX?

Supported by Java?

SPACE= Yes No

SUM Yes No

SUMVAR= Yes No

TYPE= Yes No

WIDTH= Yes No

WOUTLINE= Yes No

PLOT ASCENDING Yes No

AXIS= Yes No

FREQ=numeric-
variable

No No

HTML= No No

MINOR= Yes No

NOLINE Yes No

NOMARKER Yes No

RAXIS=
AXIS=

Yes No

SUMVAR= Yes No

TYPE= Yes No

PROC GCHART

Table A1.13 ActiveX and Java Support for PROC GCHART

Statement Option Supported by
ActiveX?

Supported by Java?

PROC GCHART ANNOTATE=
ANNO=

Yes Yes

DATA= Yes Yes

GOUT= Yes Yes

IMAGEMAP= No No

BLOCK ANNOTATE=
ANNO=

Yes Yes

BLOCKMAX= No No

CAXIS= Yes Yes

COUTLINE= Yes (partial) Yes (partial)

CTEXT= Yes Yes

1616 PROC GCHART � Appendix 1

Statement Option Supported by
ActiveX?

Supported by Java?

DESCRIPTION=
DES=

Yes Yes

DISCRETE Yes Yes

FREQ= Yes Yes

G100 Yes Yes

GROUP= Yes Yes

HTML= Yes Yes

HTML_LEGEND= No No

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

MIDPOINTS=value-
list

Yes Yes

MIDPOINTS=OLD Yes Yes

MISSING Yes Yes

NAME= Yes Yes

NOHEADING No No

NOLEGEND Yes Yes

PATTERNID= Yes Yes

SUBGROUP= Yes Yes

SUMVAR= Yes Yes

TYPE= Yes Yes

WOUTLINE= Yes No

HBAR, HBAR3D,
VBAR, and VBAR3D

ANNOTATE=
ANNO=

Yes Yes

ASCENDING Yes Yes

AUTOREF Yes Yes

AXIS= Yes Yes

CAUTOREF= Yes Yes

CAXIS= Yes Yes

CFRAME=
CFR=

Yes Yes

CERROR= Yes Yes

CFREQ Yes Yes

CFREQLABEL= No No

CLIPREF Yes Yes

CLM= Yes Yes

COUTLINE= Yes Yes

� PROC GCHART 1617

Statement Option Supported by
ActiveX?

Supported by Java?

CPERCENT
CPCT

Yes Yes

CPERCENTLABEL= No No

CREF= Yes Yes

CTEXT= Yes Yes

DESCENDING Yes Yes

DESCRIPTION=
DES=

Yes Yes

DISCRETE Yes Yes

ERRORBAR= Yes Yes

FRAME
NOFRAME
FR
NOFR

Yes Yes

FREQ Yes Yes

FREQLABEL= No No

FREQ=numeric-
variable

Yes Yes

FRONTREF Yes Yes

G100 Yes Yes

GAXIS= Yes (partial) Yes (partial)

GROUP= Yes Yes

GSPACE= Yes Yes

HTML= Yes Yes

HTML_LEGEND= No No

IFRAME= Yes No

IMAGESTYLE= Yes No

INSIDE= Yes Yes

LAUTOREF= Yes Yes

LEGEND= Yes Yes

LEVELS= Yes Yes

LREF=
LR=

Yes No

MAXIS= Yes (partial) Yes (partial)

MEAN Yes Yes

MEANLABEL= No No

MIDPOINTS=value-
list

Yes Yes

MIDPOINTS=OLD Yes Yes

1618 PROC GCHART � Appendix 1

Statement Option Supported by
ActiveX?

Supported by Java?

MINOR= Yes Yes

MISSING Yes Yes

NAME= Yes Yes

NOAXIS Yes Yes

NOBASEREF Yes Yes

NOLEGEND Yes Yes

NOSTATS Yes No

NOZERO Yes Yes

OUTSIDE= Yes Yes

PATTERNID= Yes Yes

PERCENT

PCT

Yes Yes

PERCENTLABEL= No No

RANGE Yes Yes

RAXIS=
AXIS=

Yes (partial) Yes (partial)

REF= Yes Yes

SHAPE= Yes Yes

SPACE= Yes Yes

SUBGROUP= Yes Yes

SUM Yes Yes

SUMLABEL= No No

SUMVAR= Yes Yes

TYPE= Yes Yes

WIDTH= Yes Yes

WOUTLINE= Yes No

PIE, PIE3D, and
DONUT

ACROSS= Yes Yes

ANGLE= Yes Yes

ANNOTATE=
ANNO=

Yes Yes

ASCENDING Yes Yes

CFILL= Yes Yes

CLOCKWISE Yes Yes

COUTLINE= Yes Yes

CTEXT= Yes Yes

DESCENDING Yes Yes

� PROC GCHART 1619

Statement Option Supported by
ActiveX?

Supported by Java?

DESCRIPTION=
DES=

Yes Yes

DETAIL= Yes Yes

DETAIL_PERCENT= Yes Yes

DETAIL_RADIUS= Yes Yes

DETAIL_SLICE= Yes Yes

DETAIL_THRESHOLD= Yes Yes

DETAIL_VALUE= Yes Yes

DISCRETE Yes Yes

DONUTPCT= Yes Yes

DOWN= Yes Yes

EXPLODE= Yes Yes

FILL= Yes (partial) Yes (partial)

FREQ= Yes Yes

GROUP= Yes Yes

HTML= Yes Yes

HTML_LEGEND= No No

INVISIBLE= Yes Yes

JSTYLE Yes Yes

LABEL= Yes (partial) Yes (partial)

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

MATCHCOLOR Yes Yes

MIDPOINTS=value-
list

Yes Yes

MIDPOINTS=OLD Yes Yes

MISSING Yes Yes

NAME= Yes Yes

NOGROUPHEADING Yes Yes

NOHEADING No No

NOLEGEND Yes Yes

OTHER= Yes Yes

OTHERCOLOR= Yes Yes

OTHERLABEL= Yes Yes

PERCENT= Yes Yes

SLICE= Yes Yes

SUBGROUP= Yes Yes

1620 Text Description Suboptions � Appendix 1

Statement Option Supported by
ActiveX?

Supported by Java?

SUMVAR= Yes Yes

TYPE= Yes Yes

VALUE= Yes Yes

WOUTLINE= Yes No

STAR No No

Text Description Suboptions
Text description suboptions are used by the LABEL= option in the DONUT

statement.

Table A1.14 ActiveX and Java Support for LABEL Text Description Suboptions

Option Supported by ActiveX? Supported by Java?

ANGLE=
A=

Yes No

COLOR=
C=

Yes Yes

FONT=
F=

Yes (partial) Yes (partial)

HEIGHT=
H=

Yes Yes

JUSTIFY=
J=

No No

ROTATE=
R=

Yes No

PROC GCONTOUR

Table A1.15 ActiveX and Java Support for PROC GCONTOUR

Statement Option Supported by
ActiveX?

Supported by Java?

PROC GCONTOUR ANNOTATE=
ANNO=

Yes (partial) Yes (partial)

DATA= Yes Yes

GOUT= No No

INCOMPLETE No No

PLOT ANNOTATE=
ANNO=

Yes (partial) Yes (partial)

� PROC GCONTOUR 1621

Statement Option Supported by
ActiveX?

Supported by Java?

AUTOHREF Yes No

AUTOLABEL= No No

AUTOVREF Yes No

CAUTOHREF= Yes No

CAUTOVREF= Yes No

CAXIS= Yes Yes (partial)

CFRAME=
CFR=

No No

CHREF=
CH=

Yes No

CLEVELS= Yes (partial) No

COUTLINE= No No

CTEXT= Yes Yes

CVREF=
CV=

Yes No

DESCRIPTION=
DES=

Yes Yes

GRID Yes No

HAXIS= Yes (partial) Yes (partial)

HMINOR=
HM=

Yes No

HREF= Yes No

HREVERSE= Yes No

JOIN Yes (partial) Yes (partial)

LAUTOHREF= Yes No

LAUTOVREF= Yes No

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

LHREF=
LH=

Yes (partial) No

LLEVELS= Yes No

LVREF=
LV=

Yes (partial) Yes (partial)

NAME= Yes Yes

NLEVELS= Yes Yes

NOAXIS
NOAXES

Yes Yes

NOFRAME Yes Yes

NOLEGEND Yes Yes

1622 PROC GMAP � Appendix 1

Statement Option Supported by
ActiveX?

Supported by Java?

PATTERN Yes (partial) Yes (partial)

VAXIS= Yes (partial) Yes (partial)

VMINOR=
VM=

Yes Yes

VREF= Yes No

VREVERSE Yes No

XTICKNUM=
YTICKNUM=

Yes Yes

PROC GMAP

Table A1.16 ActiveX and Java Support for PROC GMAP

Statement Option Supported by
ActiveX?

Supported by Java?

PROC GMAP MAP= Yes Yes

ALL Yes Yes

ANNOTATE= Yes Yes

DATA= Yes Yes

GOUT= No No

IMAGEMAP= No No

STRETCH No No

UNIFORM Yes No

AREA Yes Yes

DISCRETE Yes Yes

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

MIDPOINTS= Yes Yes (partial)

MISSING Yes Yes

NOLEGEND Yes Yes

PERCENT Yes Yes

RANGE Yes Yes

STATFMT= Yes Yes

STATISTIC= Yes Yes

UNIFORM Yes No

ID Yes Yes

� PROC GMAP 1623

Statement Option Supported by
ActiveX?

Supported by Java?

BLOCK ANNOTATE= Yes Yes

AREA= Yes Yes

BLOCKSIZE= Yes Yes

CBLKOUT= Yes Yes

CDEFAULT= Yes No

CEMPTY= Yes No

COUTLINE= Yes Yes

CTEXT= Yes Yes

DESCRIPTION= Yes Yes

DISCRETE Yes Yes

HTML= Yes Yes

HTML_LEGEND= No No

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

MIDPOINTS= Yes Yes (partial)

MISSING Yes Yes

NAME= Yes Yes

NOLEGEND Yes Yes

PERCENT Yes Yes

RANGE Yes Yes

RELZERO Yes Yes

SHAPE= Yes Yes

STATISTIC= Yes Yes

STRETCH No No

UNIFORM Yes No

WOUTLINE= Yes Yes

XSIZE=
YSIZE=

No No

XVIEW=
YVIEW=
ZVIEW=

Yes Yes (partial)

CHORO ANNOTATE= Yes Yes

CDEFAULT= Yes No

CEMPTY= Yes No

COUTLINE= Yes Yes

CTEXT= Yes Yes

DESCRIPTION= Yes Yes

1624 PROC GMAP � Appendix 1

Statement Option Supported by
ActiveX?

Supported by Java?

DISCRETE Yes Yes

HTML= Yes Yes

HTML_LEGEND= No No

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

MIDPOINTS= Yes Yes (partial)

MISSING Yes Yes

NAME= Yes Yes

NOLEGEND Yes Yes

PERCENT Yes Yes

RANGE Yes Yes

STATFMT= Yes Yes

STATISTIC= Yes Yes

STRETCH No No

UNIFORM Yes No

WOUTLINE= Yes Yes

XSIZE=
YSIZE=

No No

PRISM ANNOTATE= Yes Yes

AREA= Yes Yes

CDEFAULT= Yes No

CEMPTY= Yes No

COUTLINE= Yes Yes

CTEXT= Yes Yes

DESCRIPTION= Yes Yes

DISCRETE Yes Yes

HTML= Yes Yes

HTML_LEGEND= No No

LEGEND= Yes (partial) Yes (partial)

LEVELS= Yes Yes

MIDPOINTS= Yes Yes (partial)

MISSING Yes Yes

NAME= Yes Yes

NOLEGEND Yes Yes

PERCENT Yes Yes

RANGE Yes Yes

STATFMT= Yes Yes

� PROC GPLOT 1625

Statement Option Supported by
ActiveX?

Supported by Java?

STATISTIC= Yes Yes

STRETCH No No

UNIFORM Yes No

WOUTLINE= No Yes

XLIGHT=
YLIGHT=

No No

XSIZE=
YSIZE=

No No

XVIEW=
YVIEW=
ZVIEW=

Yes Yes (partial)

SURFACE No No

PROC GPLOT
When used with the JAVA or JAVAMETA device driver, the BUBBLE statement must

have at least one axis that is assigned to a numeric variable.

Table A1.17 ActiveX and Java Support for PROC GPLOT

Statement Option Supported by
ActiveX?

Supported by Java?

PROC GPLOT ANNOTATE=
ANNO=

Yes Yes

DATA= Yes Yes

GOUT= Yes Yes

IMAGEMAP= Yes Yes

UNIFORM Yes (partial) No

BUBBLE ANNOTATE=
ANNO=

Yes Yes

AUTOHREF Yes Yes

AUTOVREF Yes Yes

BCOLOR= Yes Yes

BFILL= No No

BFONT= No No

BLABEL Yes Yes

BSCALE= No No

BSIZE= Yes (partial) Yes (partial)

CAUTOHREF= Yes Yes

CAUTOVREF= Yes Yes

1626 PROC GPLOT � Appendix 1

Statement Option Supported by
ActiveX?

Supported by Java?

CAXIS=
CA=

Yes Yes

CFRAME=
CFR=

Yes Yes

CHREF=
CH=

Yes Yes

CTEXT=
C=

Yes Yes

CVREF=
CV=

Yes Yes

DESCRIPTION=
DES=

Yes Yes

FRAME
NOFRAME
FR
NOFR

Yes Yes

GRID Yes Yes

HAXIS= Yes (partial) Yes (partial)

HMINOR=
HM=

Yes Yes

HREF= Yes Yes

HREVERSE Yes (partial) Yes (partial)

HZERO Yes Yes

IFRAME= Yes No

IMAGESTYLE= Yes Yes

LAUTOHREF= Yes Yes

LAUTOVREF= Yes Yes

LHREF=
LH=

Yes Yes

LVREF=
LV=

Yes Yes

NAME= Yes Yes

NOAXIS
NOAXES

Yes Yes

VAXIS= Yes (partial) Yes (partial)

VMINOR=
VM=

Yes Yes

VREF= Yes Yes

VREVERSE Yes Yes

VZERO Yes Yes

� PROC GPLOT 1627

Statement Option Supported by
ActiveX?

Supported by Java?

BUBBLE2 ANNOTATE=
ANNO=

Yes Yes

AUTOVREF Yes Yes

BCOLOR= Yes Yes

BFILL= No No

BFONT= No No

BLABEL Yes Yes

BSCALE= No No

BSIZE= Yes (partial) Yes (partial)

CAUTOVREF= Yes Yes

CAXIS=
CA=

Yes Yes

CFRAME=
CFR=

Yes Yes

CTEXT=
C=

Yes Yes

CVREF=
CV=

Yes Yes

FRAME
NOFRAME
FR
NOFR

Yes Yes

GRID Yes Yes

HAXIS Yes (partial) Yes (partial)

HREVERSE Yes (partial) Yes (partial)

IFRAME Yes Noc

LAUTOVREF= Yes Yes

LVREF=
LV=

Yes Yes

NOAXIS
NOAXES

Yes Yes

VAXIS= Yes (partial) Yes (partial)

VMINOR=
VM=

Yes Yes

VREF= Yes Yes

VREVERSE Yes Yes

VZERO Yes Yes

PLOT ANNOTATE= Yes Yes

AREAS= Yes Yes (partial)

AUTOHREF Yes Yes

1628 PROC GPLOT � Appendix 1

Statement Option Supported by
ActiveX?

Supported by Java?

AUTOVREF Yes Yes

CAUTOHREF= Yes Yes

CAUTOVREF= Yes Yes

CAXIS=
CA=

Yes Yes

CFRAME=
CFR=

Yes Yes

CHREF=
CH=

Yes Yes

COUTLINE= Yes No

CTEXT=
C=

Yes Yes

CVREF=
CV=

Yes Yes

DESCRIPTION=
DES=

Yes Yes

FRAME
NOFRAME
FR
NOFR

Yes Yes

GRID Yes Yes

HAXIS= Yes (partial) Yes (partial)

HMINOR=
HM=

Yes Yes

HREF= Yes Yes

HREVERSE Yes (partial) Yes (partial)

HTML= Yes (partial) Yes (partial)

HTML_LEGEND= No No

HZERO Yes Yes

IFRAME= Yes No

IMAGESTYLE= Yes No

LAUTOHREF= Yes Yes

LAUTOVREF= Yes Yes

LEGEND= Yes Yes

LHREF=
LH=

Yes Yes

LVREF=
LV=

Yes (partial) Yes (partial)

NAME= Yes Yes

� PROC GPLOT 1629

Statement Option Supported by
ActiveX?

Supported by Java?

NOAXIS
NOAXES

Yes Yes

NOLEGEND Yes Yes

OVERLAY Yes Yes (partial)

REGEQN No Yes

SKIPMISS Yes Yes

VAXIS= Yes (partial) Yes (partial)

VMINOR=
VM=

Yes Yes

VREF= Yes Yes

VREVERSE Yes Yes

VZERO Yes Yes

PLOT2 With INTERPOL=
BOX, HILO, or STD

No No

ANNOTATE=
ANNO=

Yes Yes

AREAS= Yes Yes (partial)

AUTOVREF Yes Yes

CAUTOVREF= Yes Yes

CAXIS=
CA=

Yes Yes

CFRAME=
CFR=

Yes Yes

COUTLINE= Yes No

CTEXT=
C=

Yes Yes

CVREF=
CV=

Yes Yes

FRAME
NOFRAME
FR
NOFR

Yes Yes

GRID Yes Yes

HTML= Yes (partial) Yes (partial)

HTML_LEGEND= No No

LAUTOVREF= Yes Yes

LEGEND= Yes Yes

LVREF=
LV=

Yes Yes

NAME= Yes Yes

1630 PROC GRADAR � Appendix 1

Statement Option Supported by
ActiveX?

Supported by Java?

NOAXIS
NOAXES

Yes Yes

NOLEGEND Yes Yes

OVERLAY Yes Yes (partial)

REGEQN No Yes

SKIPMISS Yes Yes

VAXIS= Yes (partial) Yes (partial)

VMINOR=
VM=

Yes Yes

VREF= Yes Yes

VREVERSE Yes Yes

VZERO Yes Yes

PROC GRADAR

Table A1.18 ActiveX and Java Support for PROC GRADAR

Statement Option Supported by
ActiveX?

Supported by Java?

PROC GRADAR ANNOTATE= Yes No

DATA= Yes No

GOUT= Yes No

CHART ACROSS=
ACROSSVAR=

Yes No

ANNOTATE=
ANNO=

No No

CALENDAR= Yes No

CAXIS=
CAXES=
CA=

No No

CFRAME=
CFR=

Yes No

CFRAMESIDE= Yes No

CFRAMETOP= Yes No

CSPOKES=
CSPOKE=

Yes No

CSTARCIRCLES=
CSTARCIRCLE=

Yes No

� PROC GRADAR 1631

Statement Option Supported by
ActiveX?

Supported by Java?

CSTARFILL= Yes No

CSTARS=
CSTAR=

Yes No

CTEXT= Yes No

CTILES=
CTILE=

No No

DESCRIPTION=
DES=

Yes No

DOWN=
DOWNVAR=

Yes No

FONT= Yes No

FRAME Yes No

FREQ= Yes No

HEIGHT=
HLABEL=

Yes No

HTML= Yes No

HTML_LEGEND= Yes No

IFRAME= No No

IMAGESTYLE= Yes No

INBORDER No No

INHEIGHT= No No

INTERTILE=
INTERCHART=

Yes No

LSPOKEs= Yes No

LSTARCIRCLES=
LSTARCIRCLE=

Yes No

LSTARS=
LSTAR=

Yes No

MAXNVERT=
MAXVERT=

Yes No

MISSING No No

MODE= Yes No

NAME= Yes No

NCOLS=
NCOL=

No No

NLEVELS= Yes No

NOLEGEND Yes No

NOZEROREF Yes No

NROWS=
NROW=

No No

1632 PROC GRADAR � Appendix 1

Statement Option Supported by
ActiveX?

Supported by Java?

ORDERACROSS= No No

OTHER= Yes No

OVERLAY=
OVERLAYVAR=

Yes No

SPEED Yes No

SPIDERWEB
SPIDER

Yes No

SPKLABEL= Yes No

SPOKESCALE= Yes No

STARAXIS=
STARAXES=

Yes No

STARCIRCLES=
STARCIRCLE=

Yes No

STARFILL= Yes No

STARINRADIUS= No No

STARLEGEND= Yes No

STARLEGENDLAB= Yes No

STAROUTRADIUS= No No

STARSTART= Yes No

STARTYPE= Yes No

SUMVAR= Yes No

TILELEGEND= No No

TILELEGLABEL= No No

WFRAME= WAXIS= No No

WINDROSE Yes No

WINDROSECIRCLES= Yes No

WSPOKES=
WSPOKE=

Yes No

WSTARCIRCLES=
WSTARCIRCLE=

Yes No

WSTARS=
WSTAR=

Yes No

� PROC G3D 1633

PROC GTILE

Table A1.19 ActiveX and Java Support for PROC GTILE

Statement Option Supported by
ActiveX?

Supported by Java?

PROC TILE DATA= Yes Yes

TILEBY Yes Yes

FLOW Yes Yes

BASELINE Yes Yes

CMISSING= Yes (partial) Yes

COLORRAMP= Yes Yes

COLORVAR= Yes Yes

DESCRIPTION= Yes Yes

DETAILLEVEL= Yes Yes

LABELLEVEL= Yes Yes

NAME= Yes Yes

TILE

TOGGLE

PROC G3D

Table A1.20 ActiveX and Java Support for PROC G3D

Statement Option Supported by
ActiveX?

Supported by Java?

PROC G3D ANNOTATE=

ANNO=

Yes Yes

DATA= Yes Yes

GOUT= Yes Yes

PLOT ANNOTATE=

ANNO=

Yes Yes

CAXIS= Yes Yes

CBOTTOM= Yes No

CTEXT= Yes Yes

CTOP= Yes Yes

1634 PROC G3D � Appendix 1

Statement Option Supported by
ActiveX?

Supported by Java?

DESCRIPTION=

DES=

Yes (partial) Yes (partial)

GRID Yes No

NAME= Yes Yes

NOAXIS

NOAXES

Yes Yes

NOLABEL Yes Yes

ROTATE= Yes (partial) Yes (partial)

SIDE Yes Yes

TILT= Yes (partial) Yes (partial)

XAXIS Yes (partial) Yes (partial)

XTICKNUM= Yes (partial) No (partial)

XYTYPE Yes No

YAXIS= Yes (partial) Yes (partial)

YTICKNUM= Yes No

ZAXIS Yes (partial) No (partial)

ZMAX= Yes No

ZMIN= Yes No

ZTICKNUM= Yes (partial) No

SCATTER ANNOTATE=

ANNO=

Yes Yes

CAXIS= Yes Yes

COLOR= Yes Yes

CTEXT= Yes Yes

DESCRIPTION=

DES=

Yes Yes

GRID Yes Yes

NAME= Yes Yes

NOAXIS

NOAXES

Yes Yes

NOLABEL Yes Yes

NONEEDLE Yes Yes

ROTATE= Yes (partial) No

SHAPE= Yes Yes

SIZE= Yes Yes

TILT= Yes No

� BAR 1635

Statement Option Supported by
ActiveX?

Supported by Java?

XTICKNUM=

YTICKNUM=

ZTICKNUM=

Yes Yes

ZMAX=

ZMIN=

Yes Yes (partial)

Annotate Functions

ARROW

Table A1.21 ActiveX and Java Support for the ARROW Function

Variable Supported by ActiveX? Supported by Java?

ANGLE Yes Yes

COLOR Yes Yes

GROUP Yes Yes

HSYS Yes Yes

LINE Yes Yes

MIDPOINT Yes Yes

SIZE Yes Yes

STYLE Yes Yes

SUBGROUP Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

BAR

Table A1.22 ActiveX and Java Support for the BAR Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes Yes

GROUP Yes Yes

HTML Yes No

1636 DRAW � Appendix 1

Variable Supported by ActiveX? Supported by Java?

LINE Yes Yes (Partial)

MIDPOINT Yes Yes

SIZE Yes Yes

STYLE Yes (Partial) Yes (Partial)

SUBGROUP Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

DRAW

Table A1.23 ActiveX and Java Support for the DRAW Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes Yes

GROUP Yes Yes

HSYS Yes Yes

LINE Yes Yes

MIDPOINT Yes Yes

SIZE Yes Yes

SUBGROUP Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

DRAW2TXT

Table A1.24 ActiveX and Java Support for the DRAW2TXT Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes Yes

HSYS Yes Yes

LINE Yes Yes

� LABEL 1637

Variable Supported by ActiveX? Supported by Java?

SIZE Yes Yes

WHEN Yes Yes

FRAME

Table A1.25 ActiveX and Java Support for the FRAME Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes No

HSYS Yes No

HTML Yes No

LINE Yes No

SIZE Yes No

STYLE Yes No

WHEN Yes No

XSYS, YSYS Yes No

IMAGE

Table A1.26 ActiveX and Java Support for the IMAGE Function

Variable Supported by ActiveX? Supported by Java?

HTML Yes Yes

IMGPATH Yes Yes

STYLE Yes Yes

WHEN Yes Yes

X, Y Yes Yes

XSYS, YSYS Yes Yes

LABEL

Table A1.27 ActiveX and Java Support for the LABEL Function

Variable Supported by ActiveX? Supported by Java?

ANGLE Yes No

CBORDER Yes Yes

1638 MOVE � Appendix 1

Variable Supported by ActiveX? Supported by Java?

CBOX Yes Yes

COLOR Yes Yes

GROUP Yes Yes

HSYS Yes No

HTML Yes No

MIDPOINT Yes Yes

POSITION Yes Yes (Partial)

ROTATE Yes No

SIZE Yes Yes

STYLE Yes No

SUBGROUP Yes Yes

TEXT Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

MOVE

Table A1.28 ActiveX and Java Support for the MOVE Function

Variable Supported by ActiveX? Supported by Java?

GROUP Yes Yes

MIDPOINT Yes Yes

SUBGROUP Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

� PIECNTR 1639

PIE

Table A1.29 ActiveX and Java Support for the PIE Function

Variable Supported by ActiveX? Supported by Java?

ANGLE Yes Yes

COLOR Yes Yes

GROUP Yes Yes

HSYS Yes Yes

HTML Yes No

LINE Yes Yes (Partial)

MIDPOINT Yes Yes

ROTATE Yes Yes

SIZE Yes Yes

STYLE Yes (Partial) Yes (Partial)

SUBGROUP Yes Yes

WHEN Yes Yes

WIDTH Yes (Partial) Yes (Partial)

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

PIECNTR

Table A1.30 ActiveX and Java Support for the PIECNTR Function

Variable Supported by ActiveX? Supported by Java?

GROUP Yes Yes

HSYS Yes Yes

MIDPOINT Yes Yes

SIZE Yes Yes

SUBGROUP Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes

1640 PIEXY � Appendix 1

Variable Supported by ActiveX? Supported by Java?

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

PIEXY

Table A1.31 ActiveX and Java Support for the PIEXY Function

Variable Supported by ActiveX? Supported by Java?

ANGLE Yes Yes

SIZE Yes Yes

WHEN Yes Yes

POINT

Table A1.32 ActiveX and Java Support for the POINT Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes Yes

GROUP Yes Yes

MIDPOINT Yes Yes

SUBGROUP Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes (Partial)

XC, YC Yes Yes (Partial)

XSYS, YSYS, ZSYS Yes Yes (Partial)

POLY

Table A1.33 ActiveX and Java Support for the POLY Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes Yes

GROUP Yes Yes

HTML Yes No

LINE Yes No

� SYMBOL 1641

Variable Supported by ActiveX? Supported by Java?

MIDPOINT Yes Yes

SUBGROUP Yes Yes

SIZE Yes Yes

STYLE Yes (Partial) Yes (Partial)

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

POLYCONT

Table A1.34 ActiveX and Java Support for the POLYCONT Function

Variable Supported by ActiveX? Supported by Java?

COLOR Yes Yes

GROUP Yes Yes

MIDPOINT Yes Yes

SUBGROUP Yes Yes

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

SYMBOL

Table A1.35 ActiveX and Java Support for the SYMBOL Function

Variable Supported by ActiveX? Supported by Java?

CBOX Yes No

CBORDER Yes No

COLOR Yes Yes

GROUP Yes Yes

SUBGROUP Yes Yes

HSYS Yes Yes

HTML Yes No

MIDPOINT Yes Yes

1642 SYMBOL � Appendix 1

Variable Supported by ActiveX? Supported by Java?

SIZE Yes Yes

STYLE Yes(Partial) Yes (Partial)

TEXT Yes (Partial) Yes (Partial)

WHEN Yes Yes

X, Y, Z Yes Yes

XC, YC Yes Yes

XSYS, YSYS, ZSYS Yes Yes

1643

A P P E N D I X

2
Using SAS/GRAPH Fonts

Introduction 1643
Rendering Bitstream Fonts 1643

Listing or Displaying SAS/GRAPH Fonts on Your System 1644

SAS/GRAPH Font Lists 1644

The SIMULATE Font 1652

Font Locations And the Default Search Path 1653

Introduction

SAS/GRAPH fonts are the entries in the SASHELP.FONTS catalog. Information on
these fonts is provided for special purposes only. For example, some specialized devices
do not support system fonts. Or, you might want to use special symbols in the Marker
font to display solid symbols for data points in a plot. If you specify the NOGSTYLE
system option and one of the Z device drivers (see “Devices” on page xvii), SAS/GRAPH
uses SAS/GRAPH fonts.

In general, it is recommended that you use the system fonts supplied by SAS
whenever possible. See “SAS/GRAPH, System, and Device-Resident Fonts” on page 155
and “TrueType Fonts That Are Supplied by SAS” on page 156 for more information.

Note: The Java and ActiveX devices do not support SAS/GRAPH fonts. SAS/GRAPH
fonts cannot be used with template-based graphics (see “Device-Based Graphics and
Template-Based Graphics” on page 6). �

Rendering Bitstream Fonts

SAS/GRAPH includes methods of storing rendered versions of Bitstream fonts, along
with three graphics options to control how the fonts are rendered.

When your graphics output uses one of the Bitstream fonts that are provided with
SAS/GRAPH, SAS/GRAPH must process information contained in corresponding
FONTS catalog entries to determine how to draw characters of the specified size and
typeface. The process of calculating the character shapes and sizes is known as
rendering the font. Bitstream fonts that are available with SAS/GRAPH include the
Century, Swiss, and Zapf families.

SAS/GRAPH can store rendered versions of the Bitstream fonts in memory or in
special SAS files. Using these rendered versions of the fonts can provide a speed
improvement when characters of the same size and style are used again during the SAS
session. SAS/GRAPH can read the rendered version of the characters from memory or

1644 Listing or Displaying SAS/GRAPH Fonts on Your System � Appendix 2

from the rendered font file instead of performing the rendering calculations each time
the characters are used. If you store the rendered fonts in files in a permanent SAS
data set, SAS/GRAPH can use the rendered font files again in subsequent SAS sessions.

Note: Because the rendered font files use a special utility member type, they do not
appear in the list of library members that is displayed in the DIRECTORY window. �

You control whether and how rendered versions of fonts are stored using the
FONTRES=, RENDER=, and RENDERLIB= graphics options. See Chapter 15,
“Graphics Options and Device Parameters Dictionary,” on page 327 for details.

Listing or Displaying SAS/GRAPH Fonts on Your System
The SASHELP.FONTS catalog contains information about the fonts available on your

system. To list the SAS/GRAPH fonts that can be used in your application, submit the
following SAS code:

proc catalog catalog=sashelp.fonts entrytype=font;
contents out=work.swfonts(keep=name);

run;
quit;
data work.swfonts;

set work.swfonts;
if name =:’HW’ then delete;

run;
proc print data=work.swfonts;
run;

You can display these fonts with the GFONT procedure. See Example 1 on page 1199.

SAS/GRAPH Font Lists
The SAS/GRAPH fonts available with SAS/GRAPH are listed in the following tables.
All of the SAS/GRAPH fonts are stored in the catalog SASHELP.FONTS. For many

fonts, the last letter or letters of the font name indicates weight or spacing of the font:

B bold (thicker)

E empty (outline) versions of their counterparts

I italic (slanted)

L light (thin)

U uniformly spaced versions of their counterparts; most of the
SAS/GRAPH fonts that do not end in U are proportionately spaced;
however, the kanji fonts are always uniform.

X expanded (wider characters and extra space between characters).

CAUTION:
Empty and uniform versions of fonts cannot be used if you have deleted their filled or
proportionally spaced counterparts. �

If the label of a font in SASHELP.FONTS is “Depends on,” it is possible to delete it.
However, empty and uniform versions of fonts are generated from their regular, bold, or

� SAS/GRAPH Font Lists 1645

italic counterparts. Therefore, if you delete any of these fonts, you cannot use the
uniform or empty version of that font. For example, you must have the CENTB
(Century Bold) font in order to use the CENTBE (Century Bold Empty) font.

Table A2.1 Roman Alphabet Text Fonts

Type Style Font Name Type Sample Uniform Font

Brush BRUSH

Century

Bold CENTB CENTBU

Bold Empty CENTBE

Bold Italic CENTBI CENTBIU

Bold Italic Empty CENTBIE

Expanded CENTX CENTXU

Expanded Empty CENTXE

Expanded Italic CENTXI CENTXIU

Expanded Italic
Empty

CENTXIE

German GERMAN GERMANU

German Italic GITALIC GITALICU

Hershey

Sans Serif SIMPLEX SIMPLEXU

Sans Serif Bold DUPLEX DUPLEXU

Serif COMPLEX COMPLEXU

Serif Bold TRIPLEX TRIPLEXU

Serif Bold Italic TITALIC TITALICU

Serif Italic ITALIC ITALICU

Old English OLDENG OLDENGU

Script SCRIPT

Cscript CSCRIPT

Swiss SWISS SWISSU

Empty SWISSE

Bold SWISSB SWISSBU

Bold Empty SWISSBE

Bold Italic SWISSBI SWISSBIU

Bold Italic Empty SWISSBIE

1646 SAS/GRAPH Font Lists � Appendix 2

Type Style Font Name Type Sample Uniform Font

Expanded SWISSX SWISSXU

Expanded Empty SWISSXE

Expanded Bold SWISSXB SWISSXBU

Expanded Bold
Empty

SWISSXBE

Italic SWISSI SWISSIU

Italic Empty SWISSIE

Light SWISSL SWISSLU

Light Empty SWISSLE

Zapf ZAPF ZAPFU

Empty ZAPFE

Bold ZAPFB ZAPFBU

Bold Empty ZAPFBE

Bold Italic ZAPFBI ZAPFBIU

Bold Italic Empty ZAPFBIE

Italic ZAPFI ZAPFIU

Italic Empty ZAPFIE

Table A2.2 Non-Roman Alphabet Fonts

Type Style Font Name
Uniform Font
Name

Arabic ARABIC

Arabic Empty ARABICE

Cyrillic CYRILLIC CYRILLIU

David DAVID

Davidb DAVIDB

Fsong FSONG FSONGU

Greek GREEK GREEKU

Greek (serif) CGREEK CGREEKU

Hebrew HEBREW

Hebrew NHEBREW*

Hebrewb HEBREWB

Hebrew Empty HEBREWE

� SAS/GRAPH Font Lists 1647

Type Style Font Name
Uniform Font
Name

Hei HEI HEIU

Hiragana HIRA

Hiragana NHIRA*

Kanji KANJI

Kanji KANSJIS

Kanji Subset

Kanji 1 KAN1

Kanji 2 KAN2

Kanji 3 KAN3

Kanji 4 KAN4

Kanji 5 KAN5

Kanji 6 KAN6

Kanji 7 KAN7

Kanji 8 KAN8

Katakana KATA

Katakana NKATA*

Korean KGOTHB1

Mincho MINCHO MINCHOE

*This font requires a special keyboard and is
host-dependent. If you are not equipped to use this
font, use the host-independent version listed
directly above.

1648 SAS/GRAPH Font Lists � Appendix 2

Figure A2.1 Greek (GREEK)

� SAS/GRAPH Font Lists 1649

Figure A2.2 Greek Serif (CGREEK) Font

Table A2.3 Symbol Fonts

Type Style
Font
Name

Uniform Font
Name

Cartographic CARTOG CARTOGU

Electronic ELECTRON ELECTROU

Marker MARKER

Marker
Empty

MARKERE
*

Math MATH MATHU

Music MUSIC MUSICU

Special SPECIAL SPECIALU

Weather WEATHER WEATHERU

*MARKERE is not displayed in the figures.

1650 SAS/GRAPH Font Lists � Appendix 2

Figure A2.3 Cartographic Font

Figure A2.4 Electronic Font

Note: Figure A2.5 on page 1650 shows the MARKER font. The MARKERE font
produces the same symbols but in empty (outline) form. �

Figure A2.5 Marker Font

� SAS/GRAPH Font Lists 1651

Figure A2.6 Math Font

Figure A2.7 Music Font

1652 The SIMULATE Font � Appendix 2

Figure A2.8 Special Font

Figure A2.9 Weather Font

The SIMULATE Font
In some cases, the device’s device-resident font cannot be used and the SIMULATE

font is used instead. The SIMULATE font is a SAS/GRAPH font that simulates the
device’s resident characters by allowing the same amount of space for the text that the
device-resident characters use. The SIMULATE font is used whenever the default
device-resident font is unavailable, including the following situations:

� FONT=NONE or FONT=HWxxxnnn or no font is specified, and one of the
following conditions or sets of conditions is also met:

� Font Locations And the Default Search Path 1653

� GOPTIONS NOCHARACTERS is specified.
� The device driver does not support device-resident text.
� You request a device-resident font for a different device.
� You specify an angle or rotation for the characters that the device does not

support.
� The device does not have a scalable font (characters can be generated only in

the proportions specified with the font), and one of the following conditions is
also met:

� The values of the HPOS= and VPOS= graphics options do not match the
values displayed in the LCOLS or PCOLS field or the LROWS or
PROWS field in the Detail window of the device entry.

� The HSIZE= or VSIZE= graphics option is set to values that are not the
default.

� You replay a graph in a template that is not the same size as the full
size of the graphics output area, or you use a device driver other than
the one you used to create the graph.

� The target device and the display device have different values for the
HPOS= and VPOS= graphics options.

� You use any height specification, including the HEIGHT=, HTEXT=,
HTITLE=, and HBY= graphics options, that is not equal to 1.

You should never delete the SIMULATE font from the fonts catalog.

Note: You can change the font that is used as the SIMULATE font with the
SIMFONT= graphics option. If you use the SIMFONT= option, it is better to specify a
uniform font. Do not specify a device-resident font as a substitute for SIMULATE. See
“SIMFONT” on page 420 for more information on the SIMFONT= option. �

Font Locations And the Default Search Path
SAS/GRAPH fonts are stored in catalogs. SAS/GRAPH looks only into catalogs with

certain librefs and names to find fonts. By default, SAS/GRAPH searches for the font in
the catalog SASHELP.FONTS, which contains SAS/GRAPH fonts, key maps, and device
maps.

If you want to specify fonts that you have created locally, submit a LIBNAME
statement that associates the libref GFONT0 with the location of your font catalog. If
you have specified more than one libref in the sequence GFONT0 through GFONT9,
SAS/GRAPH performs a sequential search of these catalogs when locating the font that
you have specified.

When you specify a font name, SAS/GRAPH searches for the font in the following
order:

1 If a SAS library with the libref GFONT0 exists, then SAS/GRAPH looks there for
a catalog named FONTS. If GFONT0.FONTS exists, it is checked for the specified
font. If the font is not there, then SAS/GRAPH looks next for a library with the
libref GFONT1 and for a catalog named FONTS in that library. The search is
repeated for the sequence of librefs through GFONT9.

2 SAS/GRAPH searches for the font in SASHELP.FONTS if the following situations
occur.

a It fails to find the specified font in any FONTS catalog in the libraries
GFONT0 to GFONT9.

1654 Font Locations And the Default Search Path � Appendix 2

b It finds a GFONTn libref without a FONTS catalog.
c It encounters an undefined libref in that sequence before locating the

specified font.

(SASHELP is one of the standard librefs defined automatically whenever you
start your SAS session; you do not need to issue a LIBNAME statement to define
it.)

3 If the specified font is not found in SASHELP.FONTS, then a warning is issued
and the SIMULATE font is used. The SIMULATE font is the default SAS/GRAPH
font and should never be deleted from the fonts catalog. See “The SIMULATE
Font” on page 1652 for more information.

See Chapter 40, “The GFONT Procedure,” on page 1175 for additional information on
specifying the libref GFONT0.

1655

A P P E N D I X

3
Using Device-Resident Fonts

Introduction 1655
Default Device-Resident Fonts 1655

Using a GOPTIONS Statement to Change the Default Device-Resident Font 1656

Using the GDEVICE Procedure to Change the Default Device-Resident Font 1656

Specifying the Full Font Name 1657

Specifying Alternative Device-Resident Fonts 1657

Introduction
You can use device-resident fonts with SAS/GRAPH output in four ways.
� by using the CHARTYPE= graphics option in a GOPTIONS statement to specify

the default device-resident font. Assign the number of a font listed in the
Chartype window of your device entry as the default device-resident font. See
“Using a GOPTIONS Statement to Change the Default Device-Resident Font” on
page 1656 for details.

� by using the GDEVICE procedure to specify the number of the font you want to
use as the default device-resident font. See “Using the GDEVICE Procedure to
Change the Default Device-Resident Font” on page 1656 for details.

� by specifying the full font name as it appears on the Chartype window of the
device driver entry. See “Specifying the Full Font Name” on page 1657 for details.

� by explicitly specifying a device-resident font name of the type HWxxxnnn. See
“Specifying Alternative Device-Resident Fonts” on page 1657 for details.

There are several advantages to using device-resident fonts instead of SAS/GRAPH
fonts. Device-resident fonts often are produced faster than SAS/GRAPH fonts and
produce smaller output files. Also, some devices, such as laser printers with
device-resident fonts, might produce better quality output with device-resident fonts
than with SAS/GRAPH fonts.

Default Device-Resident Fonts
SAS/GRAPH uses a device’s default device-resident font to draw characters when

both of the following conditions are true:
� No font specification is made in the SAS/GRAPH program, or FONT=NONE is

specified.
� The device-resident font can be used. See “Default Fonts” on page 157 for details

on when device-resident fonts cannot be used.

1656 Using a GOPTIONS Statement to Change the Default Device-Resident Font � Appendix 3

Every available device-resident font for a particular device has a number associated
with it. This number and the corresponding font name are listed in the Chartype
window of the device entry for your device. The default device-resident font is the font
whose number is entered in the Chartype field in the Parameters window of the device
entry. When FONT=NONE or no font is specified, SAS/GRAPH uses the font assigned
to this field.

If your device has more than one device-resident font, you can assign a different
default device-resident font in two ways:

� by specifying the font with the CHARTYPE= option in a GOPTIONS statement.
See “Using a GOPTIONS Statement to Change the Default Device-Resident Font”
on page 1656.

� by using the GDEVICE procedure to modify the value of the Chartype field in the
Parameters window of your device entry. See “Using the GDEVICE Procedure to
Change the Default Device-Resident Font” on page 1656 for more details.

If your device has only one device-resident font (this is often the case), the Chartype
field has a value of 0.

Using a GOPTIONS Statement to Change the Default Device-Resident
Font

To assign the default device-resident font for your current SAS session, use the
CHARTYPE= option in a GOPTIONS statement. Assign it the actual number of the
device-resident font as listed in the Chartype field in the Chartype window of the device
entry for your device.

Using the CHARTYPE= option changes the default font only for the duration of your
SAS session; using the CHARTYPE= option does not change the value of the field in the
device entry. (See “CHARTYPE” on page 338 for a complete description of the
CHARTYPE= option.)

When you specify a device-resident font by using the graphics option CHARTYPE=n
and the font specification NONE, the size of the character cells is determined by the
current values for the HPOS= and VPOS= options. This means that the font is drawn
using the current cell size. As a result, the aspect ratio of the displayed font might be
different and the height of the characters, if displayed in cells, might be affected.

CAUTION:
Specifying a nonscalable device-resident font with the CHARTYPE= option might cause the
SIMULATE font to be used. �

In addition, the SIMULATE font is substituted if both of the following conditions are
true.

� The font selected with CHARTYPE= is not scalable.

� The values of the HPOS= and VPOS= options do not match the values of the Rows
and Cols fields in the Chartype window.

Using the GDEVICE Procedure to Change the Default Device-Resident
Font

To change the default device-resident font with the GDEVICE procedure, change the
Chartype field in the Parameters window for the device:

1 Invoke the GDEVICE procedure and select the entry for your device.

2 Go to the Chartype window and review the available fonts.

� Specifying Alternative Device-Resident Fonts 1657

3 Note the number of the font that you want to use as the default font and go to the
Parameters window.

4 Enter the number of the font in the Chartype field.

5 Close the window and exit the procedure.

Note: If you change the number in the Chartype field in the Parameters window of
the device entry, the change remains in effect until you change the entry again. �

(See Chapter 38, “The GDEVICE Procedure,” on page 1125 for information on
viewing device entries and changing device parameters.)

Specifying the Full Font Name

You can specify the full font name in any SAS statement where a font specification is
valid. For example, you can specify the full font name in the FTEXT=font graphics
option or the FONT=font specification on a TITLE statement. For the value font,
specify the full font name exactly as it appears in the Chartype window of the device
entry. For example, to specify the Times-Roman font on a TITLE statement when you
use the PS300 device, use this code:

title font="Times-Roman" "Testing the Times-Roman font";

SAS allows up to 255 characters for the font name. The font name might contain
spaces. If the font name is longer than 40 characters, PROC GDEVICE in fullscreen
mode only displays the first 37 characters, followed by an ellipsis (...). To see the
complete font name when the name is longer than 40 characters, use PROC GDEVICE
with the NOFS (no fullscreen) option as follows:

proc gdevice c=sashelp.devices nofs;
list driver-name;

run;
quit;

When a font is quoted, SAS first looks at the Chartype window of the device driver
entry to determine whether it is a valid device-resident font. If the font is not found in
the Chartype window, SAS then checks to determine whether the quoted font is a valid
SAS/GRAPH font. If the font is not recognized as either a valid device-resident font or a
valid SAS/GRAPH font, the SIMULATE font is used.

Specifying Alternative Device-Resident Fonts

An alternative device-resident font can be specified in any SAS statement where a
font specification is valid. You can use more than one device-resident font in a single
graph or even in a single statement. All of the fonts that you specify must exist on your
device. If you specify a device-resident font, make sure that the font is available on the
device and that there is a corresponding Chartype value for the font. If you request a
device-resident font that does not have a Chartype defined, SAS/GRAPH substitutes
the SIMULATE font.

These are the three ways to specify alternative device-resident fonts:

� In the font specification, explicitly assign a device-resident font using the following
form:

1658 Specifying Alternative Device-Resident Fonts � Appendix 3

HWxxxnnn

HW identifies the font as a device-resident font. The font
name must begin with the characters HW.

xxx are the last two or three characters of the module name in
the Module field in the Detail window of your device entry.
If the module name has eight characters (SASGDPSL, for
example), use the last three characters (PSL). If the
module name has only seven characters (SASGDVT, for
example), use the last two characters (VT).

nnn is the Chartype number of the device-resident font that
you want to use as listed in the Chartype window in the
device entry. This value should be a three-digit decimal
number, with leading zeros if necessary.

� In the font specification, explicitly assign a device-resident font using the following
form:

device-resident-font-name
identifies the name of the device-resident font that is listed in the Chartype
window of the device entry. Device-resident-font-name must be enclosed in
quotation marks and the maximum length is 256 characters. The specified
font name is converted internally to the HWxxxnnn name. Note that in
Annotate, the specified font name must be enclosed in both double quotes and
single quotes (see Chapter 30, “Annotate Dictionary,” on page 667 for details).

� Assign one of the fonts listed in the Chartype window of your device entry as the
default device-resident font with the CHARTYPE= graphics option. You can also
change the default device-resident font by modifying the value of the Chartype
field in the Parameters window of your device entry. Then you can use
FONT=NONE in your SAS/GRAPH procedure or statement to specify the new
default device-resident font.

When you specify FONT=HWxxxnnn or device-resident-font-name, the size of the
character cells is determined by the values in the Rows and Cols fields in the Chartype
window of the device entry. The values of the HPOS= and VPOS= options are ignored
for the font. Consequently, the font retains its original proportions. In addition, with
this method the font catalog is checked for proportional spacing information. This
information is used by SAS/GRAPH to determine how much space to reserve for
proportional text. See Chapter 15, “Graphics Options and Device Parameters
Dictionary,” on page 327 for additional information.

1659

A P P E N D I X

4
Transporting and Converting
Graphics Output

About Transporting and Converting Graphics Output 1659
Transporting Catalogs across Operating Environments 1659

Example of Transporting GRSEGs 1660

Example of Transporting Color Maps and Templates 1661

Example of Transporting Fonts 1661

Example of Transporting Device Attributes and Device Entries 1662
Converting Catalogs to a Different Version of SAS 1662

About Transporting and Converting Graphics Output
You can use the following methods to transport and convert graphics output within

the SAS System:
� Use the CPORT and CIMPORT procedures in Base SAS software to transport

catalogs that contain graphics output to other operating environments that are
running the same version of SAS/GRAPH software.

� Use a LIBNAME statement and the CATALOG procedure to convert catalogs from
Version 6 to Version 7 or later.

Transporting Catalogs across Operating Environments
Use the CPORT and CIMPORT procedures to transport catalogs and catalog entries

from one machine to another machine running in a different operating environment. In
addition to graphics output stored in GRSEG catalog entries, SAS/GRAPH software
produces several other files that you can transport from host environment to host
environment. These other files include

� colors maps
� templates
� fonts
� device descriptions.

To transport catalog entries that contain graphics output (catalog entries of type
GRSEG), follow these steps:

1 Use the CPORT procedure to create a transport file from the catalog entries in the
current host environment. A transport file is a sequential file that contains the
catalog in SAS transport format. To create a transport file, you must specify a
catalog to be converted and a fileref for the transport file.

To retain the original order of the GRSEG entries in the catalog, use SELECT=
in the PROC CPORT statement to export individual graphs in the order they were

1660 Example of Transporting GRSEGs � Appendix 4

created. Otherwise, when you use the GREPLAY procedure to list the graphics
entries in the imported catalog, the procedure will list the entries in alphabetical
order, rather than the order in which they were created.

Note: Only the GREPLAY procedure can list catalog entries in the order they
were created. All other procedures list entries in alphabetical order. �

To export a catalog that contains groups of entries created using the GREPLAY
procedure, you must use SELECT= in the PROC CPORT statement to select the
names of the groups, rather than the names of individual graphs, to be included in
the transport file. If you export the entire catalog without using SELECT=, the
groups are not maintained in the catalog created when you import the transport
file in the new host environment.

When you use the CPORT procedure, messages in the SAS log identify the
catalog entries that have been placed in the transport file. If the catalog entry was
created by replaying several graphs into a template, the log messages list the
names of all of the entries that contributed to the templated graph.

2 Move the transport file to the target machine, if necessary. You must move the
transport file in binary format. If you do not move the transport file in binary
format, the CIMPORT procedure cannot read the file you create.

3 Once you have moved the transport file to the target machine, import the
transport file into a catalog in the new host environment using the CIMPORT
procedure. The entries are imported in the order specified in SELECT= in the
PROC CPORT statement used to create the transport file.

The SELECT= option in the PROC CIMPORT statement does not affect the
order of the imported entries.

Note: You must use the CIMPORT procedure from the current version of the SAS
System. The CIMPORT procedure in a previous release cannot read a transport file
created by the CPORT procedure in the current version. �

For details on using the CPORT and CIMPORT procedures, see the Base SAS
Procedures Guide.

Example of Transporting GRSEGs
This example shows how to port three entries from the catalog MYLIB.GRAPHS.
First, the CPORT procedure writes selected graphs from MYLIB.GRAPHS to the

transport file TRANFILE. The SELECT option names the graphs to be ported.

libname mylib "SAS-data-library";
filename tranfile "external-file";

proc cport file=tranfile
catalog=mylib.graphs
select=(GPLOT.GRSEG GPLOT1.GRSEG GPLOT3.GRSEG);

run;

Once the transport file has been moved to the new host environment using
communications software or tape, the CIMPORT procedure creates a new catalog called
MYLIB.GRAPHS on the new machine.

libname mylib "SAS-data-library";
filename tranfile "external-file";

� Example of Transporting Fonts 1661

proc cimport catalog=mylib.graphs
infile=tranfile
select=(GPLOT.GRSEG GPLOT1.GRSEG GPLOT3.GRSEG);

run;

Example of Transporting Color Maps and Templates
To transport color maps (catalog entries of type CMAP) and templates (catalog

entries of type TEMPLATE) from one host environment to another, use the CPORT and
CIMPORT procedures. For example, you could export a color map from the
NEWLIB.CMAPS catalog using the following statements:

filename tranfile "external-file";
libname newlib "SAS-data-library";

proc cport file=tranfile catalog=newlib.cmaps select=(mymap.cmap);
run;

After moving the transport file to the new host environment, you can import the color
map using the following statements:

filename tranfile "external-file";
libname newlib "SAS-data-library";

proc cimport infile=tranfile catalog=newlib.cmaps;
run;

Example of Transporting Fonts
To transport fonts (catalog entries of type FONT) from one operating system to

another, use the CPORT and CIMPORT procedures. For example, you could export a
font from the GFONT0.FONTS catalog using the following statements:

filename tranfile "external-file";
libname gfont0 "SAS-data-library";

proc cport file=tranfile
catalog=gfont0.fonts
select=(figures.font);

run;

After moving the transport file to the new host environment, you can import the font
using the following statements:

filename tranfile "external-file";
libname gfont0 "SAS-data-library";

proc cimport infile=tranfile catalog=gfont0.fonts;
run;

1662 Example of Transporting Device Attributes and Device Entries � Appendix 4

Example of Transporting Device Attributes and Device Entries
To transport device entries (catalog entries of type DEV) from one operating

environment to another, use the CPORT and CIMPORT procedures. For example, you
could export a device entry from the GDEVICE0.DEVICES catalog using the following
statements:

filename tranfile "external-file";
libname gdevice0 "SAS-data-library";

proc cport file=tranfile
catalog=gdevice0.devices
select=(cgm.dev);

run;

After moving the transport file to the new host environment, you can import the
device entry using the following statements:

filename tranfile "external-file";
libname gdevice0 "SAS-data-library";

proc cimport infile=tranfile catalog=gdevice0.devices;
run;

Converting Catalogs to a Different Version of SAS
To convert catalogs to a different version of SAS, for example from Version 6 to

Version 8, use the LIBNAME statement and the CATALOG procedure.

Note: You will not be able to use your old catalogs without transporting them first. �

Before using PROC CATALOG, you must assign librefs to both catalogs and specify
the Version 6 Compatibility Engine (saseb) on the input catalog LIBNAME. Then use
PROC CATALOG with a COPY statement to convert a catalog from Version 6 to Version
7 or later. For details on using the CATALOG procedure, see the Base SAS Procedures
Guide.

For example, the following statements can be submitted from Version 8 to assign the
Version 6 Compatibility Engine and convert a catalog from Version 6 to Version 8.

libname v6lib saseb "SAS-data-library";
libname v8lib "SAS-data-library";

proc catalog catalog=v6lib.v6cat;
copy out=v8lib.v8cat;

run;

1663

A P P E N D I X

5
GREPLAY Procedure Template
Code

Overview 1663
H2: One Box Left and One Box Right 1663

H2S: One Box Left and One Box Right with Space 1664

H3: Three Boxes Across 1664

H3S: Three Boxes Across with Space 1665

H4: Four Boxes Across 1665
H4S: Four Boxes Across with Space 1666

L1R2: One Box Left and Two Boxes Right 1666

L1R2S: One Box Left and Two Boxes Right with Space 1667

L2R1: Two Boxes Left and One Box Right 1667

L2R1S: Two Boxes Left and One Box Right with Space 1668

L2R2: Two Boxes Left and Two Boxes Right 1668
L2R2S: Two Boxes Left and Two Boxes Right with Space 1669

U1D2: One Box Up and Two Boxes Down 1670

U1D2S: One Box Up and One Box Down with Space 1670

U2D1: Two Boxes Up and One Box Down 1671

U2D1S: Two Boxes Up and One Box Down with Space 1671
V2: One Box Up and One Box Down 1672

V2S: One Box Up and One Box Down with Space 1672

V3: Three Boxes Vertically 1672

V3S: Three Boxes Vertically with Space 1673

Whole: Entire Screen Template 1673

Overview

This SAS/GRAPH code can be used to re-create the templates stored in
SASHELP.TEMPLT. You can modify the code to create custom templates. For detailed
information on using, creating, and modifying templates, refer to Chapter 50, “The
GREPLAY Procedure,” on page 1473.

H2: One Box Left and One Box Right

Start the GREPLAY procedure in line mode. The TC statement specifies the catalog
where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

1664 H2S: One Box Left and One Box Right with Space � Appendix 5

tdef H2 des= "1 BOX LEFT, 1 BOX RIGHT"
1/llx=0 lly=0

ulx=0 uly=100
urx=50 ury=100
lrx=50 lry=0
color=black

2/llx=50 lly=0
ulx=50 uly=100
urx=100 ury=100
lrx=100 lry=00
color=black;

quit;

H2S: One Box Left and One Box Right with Space
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef H2S des="1 BOX LEFT, 1 BOX RIGHT (WITH SPACE)"
1/llx=0 lly=0
ulx=0 uly=100
urx=48 ury=100
lrx=48 lry=0
color=black

2/llx=52 lly=0
ulx=52 uly=100
urx=100 ury=100
lrx=100 lry=00
color=black;

quit;

H3: Three Boxes Across
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef H3 des=" 3 BOXES ACROSS"
1/llx=0 lly=0

ulx=0 uly=100
urx=33.3 ury=100
lrx=33.3 lry=0
color=black

2/llx=33.3 lly=0
ulx=33.3 uly=100
urx=66.6 ury=100
lrx=66.6 lry=00

� H4: Four Boxes Across 1665

color=black
3/llx=66.6 lly=0

ulx=66.6 uly=100
urx=100 ury=100
lrx=100 lry=00
color=black;

quit;

H3S: Three Boxes Across with Space
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef H3S des=" 3 BOXES ACROSS (WITH SPACE)"
1/llx=0 lly=0
ulx=0 uly=100
urx=30 ury=100
lrx=30 lry=0
color=black

2/llx=35 lly=0
ulx=35 uly=100
urx=65 ury=100
lrx=65 lry=00
color=black

3/llx=70 lly=0
ulx=70 uly=100
urx=100 ury=100
lrx=100 lry=00
color=black;

quit;

H4: Four Boxes Across
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef H4 des= "4 BOXES ACROSS"
1/llx=0 lly=0
ulx=0 uly=100
urx=25 ury=100
lrx=25 lry=0
color=black

2/llx=25 lly=0
ulx=25 uly=100
urx=50 ury=100
lrx=50 lry=00

1666 H4S: Four Boxes Across with Space � Appendix 5

color=black
3/llx=50 lly=0

ulx=50 uly=100
urx=75 ury=100
lrx=75 lry=00
color=black

4/llx=75 lly=0
ulx=75 uly=100
urx=100 ury=100
lrx=100 lry=00
color=black;

quit;

H4S: Four Boxes Across with Space
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef H4S des= "4 BOXES ACROSS (WITH SPACE)"
1/llx=0 lly=0

ulx=0 uly=100
urx=22 ury=100
lrx=22 lry=0
color=black

2/llx=26 lly=0
ulx=26 uly=100
urx=48 ury=100
lrx=48 lry=00
color=black

3/llx=52 lly=0
ulx=52 uly=100
urx=74 ury=100
lrx=74 lry=00

4/llx=78 lly=0
ulx=78 uly=100
urx=100 ury=100
lrx=100 lry=00
color=black;

quit;

L1R2: One Box Left and Two Boxes Right
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef L1R2 des= "1 BOX LEFT, 2 BOXES RIGHT"

� L2R1: Two Boxes Left and One Box Right 1667

1/llx=0 lly=0
ulx=0 uly=100
urx=50 ury=100
lrx=50 lry=0
color=black

2/llx=50 lly=50
ulx=50 uly=100
urx=100 ury=100
lrx=100 lry=50
color=black

3/llx=50 lly=0
ulx=50 uly=50
urx=100 ury=50
lrx=100 lry=00
color=black;

quit;

L1R2S: One Box Left and Two Boxes Right with Space
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef L1R2S des= "1 BOX LEFT, 2 BOXES RIGHT (WITH SPACE)"
1/llx=0 lly=0
ulx=0 uly=100
urx=48 ury=100
lrx=48 lry=0
color=black

2/llx=52 lly=52
ulx=52 uly=100
urx=100 ury=100
lrx=100 lry=52
color=black

3/llx=52 lly=0
ulx=52 uly=48
urx=100 ury=48
lrx=100 lry=00
color=black;

quit;

L2R1: Two Boxes Left and One Box Right
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef L2R1 des= "2 BOXES LEFT, 1 BOX RIGHT"

1668 L2R1S: Two Boxes Left and One Box Right with Space � Appendix 5

1/llx=0 lly=50
ulx=0 uly=100
urx=50 ury=100
lrx=50 lry=50
color=black

2/llx=0 lly=0
ulx=0 uly=50
urx=50 ury=50
lrx=50 lry=0
color=black

3/llx=50 lly=0
ulx=50 uly=100
urx=100 ury=100
lrx=100 lry=00
color=black;

quit;

L2R1S: Two Boxes Left and One Box Right with Space
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef L2R1S des= "2 BOXES LEFT, 1 BOX RIGHT (WITH SPACE)"
1/llx=0 lly=52

ulx=0 uly=100
urx=48 ury=100
lrx=48 lry=52
color=black

2/llx=0 lly=0
ulx=0 uly=48
urx=48 ury=48
lrx=48 lry=0
color=black

3/llx=52 lly=0
ulx=52 uly=100
urx=100 ury=100
lrx=100 lry=00
color=black;

quit;

L2R2: Two Boxes Left and Two Boxes Right
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef l2r2 des="2 BOXES LEFT, 2 BOXES RIGHT"

� L2R2S: Two Boxes Left and Two Boxes Right with Space 1669

1/llx=0 lly=50
ulx=0 uly=100
urx=50 ury=100
lrx=50 lry=50
color=black

2/llx=0 lly=0
ulx=0 uly=50
urx=50 ury=50
lrx=50 lry=0
color=black

3/llx=50 lly=50
ulx=50 uly=100
urx=100 ury=100
lrx=100 lry=50
color=black

4/llx=50 lly=0
ulx=50 uly=50
urx=100 ury=50
lrx=100 lry=0
color=black;

quit;

L2R2S: Two Boxes Left and Two Boxes Right with Space
Start the GREPLAY procedure in linemode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
tdef L2R2S des="2 BOXES LEFT, 2 BOXES RIGHT (WITH SPACE)"

1/llx=0 lly=52
ulx=0 uly=100
urx=48 ury=48
lrx=48 lry=52
color=black

2/llx=0 lly=0
ulx=0 uly=48
urx=48 ury=48
lrx=48 lry=00
color=black

3/llx=52 lly=52
ulx=52 uly=100
urx=100 ury=100
lrx=100 lry=52
color=black

4/llx=52 lly=0
ulx=52 uly=48
urx=100 ury=48
lrx=100 lry=0
color=black;

quit;

1670 U1D2: One Box Up and Two Boxes Down � Appendix 5

U1D2: One Box Up and Two Boxes Down

Start the GREPLAY procedure in line mode. The TC statement specifies the catalog
where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef U1D2 des= "1 BOX UP, 1 BOX DOWN"
1/llx=0 lly=50

ulx=0 uly=100
urx=100 ury=100
lrx=100 lry=50
color=black

2/llx=0 lly=0
ulx=0 uly=50
urx=50 ury=50
lrx=50 lry=0
color=black

3/llx=50 lly=0
ulx=50 uly=50
urx=100 ury=50
lrx=100 lry=00
color=black;

quit;

U1D2S: One Box Up and One Box Down with Space

Start the GREPLAY procedure in line mode. The TC statement specifies the catalog
where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef U1D2S des= "1 BOX UP, 2 BOXES DOWN, with SPACE"
1/llx=0 lly=52

ulx=0 uly=100
urx=100 ury=100
lrx=100 lry=52
color=black

2/llx=0 lly=0
ulx=0 uly=48
urx=48 ury=48
lrx=48 lry=0
color=black

3/llx=52 lly=0
ulx=52 uly=48
urx=100 ury=48
lrx=100 lry=00
color=black;

quit;

� U2D1S: Two Boxes Up and One Box Down with Space 1671

U2D1: Two Boxes Up and One Box Down

Start the GREPLAY procedure in line mode. The TC statement specifies the catalog
where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef U2D1 des= "2 BOXES UP, 1 BOX DOWN"
1/llx=0 lly=50
ulx=0 uly=100
urx=50 ury=100
lrx=50 lry=50
color=black

2/llx=50 lly=50
ulx=50 uly=100
urx=100 ury=100
lrx=100 lry=50
color=black

3/llx=00 lly=0
ulx=00 uly=50
urx=100 ury=50
lrx=100 lry=00
color=black;

quit;

U2D1S: Two Boxes Up and One Box Down with Space

Start the GREPLAY procedure in line mode. The TC statement specifies the catalog
where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef U2D1S des= "2 BOXES UP, 1 BOX DOWN (WITH SPACE)"
1/llx=0 lly=52
ulx=0 uly=100
urx=48 ury=100
lrx=48 lry=52
color=black

2/llx=52 lly=52
ulx=52 uly=100
urx=100 ury=100
lrx=100 lry=52
color=black

3/llx=0 lly=0
ulx=0 uly=48
urx=100 ury=48
lrx=100 lry=00
color=black;

quit;

1672 V2: One Box Up and One Box Down � Appendix 5

V2: One Box Up and One Box Down
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef V2 des= "1 BOX UP, 1 BOX DOWN"
1/llx=0 lly=50

ulx=0 uly=100
urx=100 ury=100
lrx=100 lry=50
color=black

2/llx=00 lly=00
ulx=00 uly=50
urx=100 ury=50
lrx=100 lry=0
color=black;

quit;

V2S: One Box Up and One Box Down with Space
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef V2S des= "1 BOX UP, 1 BOX DOWN (WITH SPACE)"
1/llx=0 lly=52

ulx=0 uly=100
urx=100 ury=100
lrx=100 lry=52
color=black

2/llx=00 lly=00
ulx=00 uly=48
urx=100 ury=48
lrx=100 lry=0
color=black;

quit;

V3: Three Boxes Vertically
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef V3 des= "Three Boxes Vertically"

� Whole: Entire Screen Template 1673

/* define panel 1 */
1/llx=0 lly=66.6
ulx=0 uly=100
urx=100 ury=100
lrx=100 lry=66.6
color=black

2/llx=0 lly=33.3
ulx=0 uly=66.6
urx=100 ury=66.6
lrx=100 lry=33.3
color=black

3/llx=0 lly=0
ulx=0 uly=33.3
urx=100 ury=33.3
lrx=100 lry=00
color=black;

quit;

V3S: Three Boxes Vertically with Space
Start the GREPLAY procedure in line mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

tdef V3S des="3 BOXES VERTICALLY (WITH SPACE)"
1/llx=0 lly=70
ulx=0 uly=100
urx=100 ury=100
lrx=70 lry=0
color=black

2/llx=00 lly=35
ulx=00 uly=65
urx=100 ury=65
lrx=100 lry=35
color=black

3/llx=00 lly=00
ulx=00 uly=30
urx=100 ury=30
lrx=100 lry=00
color=black;

quit;

Whole: Entire Screen Template
Start the GREPLAY procedure in line-mode. The TC statement specifies the catalog

where the template is stored. The TDEF statement defines the name and description of
each catalog entry.

proc greplay tc=tempcat
nofs;

1674 Whole: Entire Screen Template � Appendix 5

tdef WHOLE des="ENTIRE SCREEN TEMPLATE"
1/llx=0 lly=0

ulx=0 uly=100
urx=100 ury=100
lrx=100 lry=0
color=white;

quit;

1675

A P P E N D I X

6
Recommended Reading

Recommended Reading 1675

Recommended Reading

Here is the recommended reading list for this title:
� Annotate: Simply the Basics
� Forecasting Examples for Business and Economics Using SAS
� Maps Made Easy Using SAS
� Multiple-Plot Displays: Simplified with Macros
� Output Delivery System: The Basics and Beyond
� Quick Results with SAS/GRAPH Software
� SAS/GRAPH: Graph Template Language Reference
� SAS/GRAPH: Graph Template Language User’s Guide
� SAS/GRAPH: Network Visualization Workshop User’s Guide
� SAS/GRAPH: ODS Graphics Designer User’s Guide
� SAS/GRAPH: ODS Graphics Editor User’s Guide
� SAS/GRAPH: Statistical Graphics Procedures Guide
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary
� SAS Output Delivery System: User’s Guide
� The How-To Book for SAS/GRAPH Software

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

1676

1677

Glossary

$GEOREF format
a geometric coordinate data arrangement that stores all the spatial information as a
geometry object contained in a single variable. This format, which is used by feature
tables, references the geometry objects that encapsulate the points, lines, and
polygons necessary to render a map.

absolute coordinate
a coordinate that is measured from the origin of a coordinate system.

ActiveX
a Microsoft proprietary (COM) component used to display an interactive graph. The
output is stored in a single file.

ActiveX control
a type of Web application that is developed specifically for the Windows operating
environment. ActiveX controls can provide Web users with interactive capabilities.

area bar chart
a bar chart that applies an additional magnitude of width to the bars that results in
categorized bars each with a height measure and a width measure that can be
independent of each other.

aspect ratio
the ratio of a shape’s width to its height in an output area such as a display, plotter,
or film recorder.

attribute
a characteristic of a graphics element such as color, line type, text font, text
justification, and fill pattern.

axis
a line with data values indicated by tick marks as a reference to a data value or
range of values. Graphs can support more than one axis, in which case, the axes are
usually perpendicular. Axis refers collectively to the axis line, the major and minor
tick marks, the major tick mark values, and the axis label. See also Cartesian
coordinate system.

axis area
an area bounded by axes. In SAS/GRAPH software, this area might be enclosed by
an axis frame.

1678 Glossary

background
a plane on which graphics are displayed such that they appear behind or beneath
objects in the foreground.

baseline
in a font, the imaginary line upon which the characters rest.

block map
a three-dimensional map that uses blocks of varying heights to represent the value of
a variable for each map area.

border
a line that is drawn around an entire graphics output area. This area usually
includes the title and footnote areas as well as the procedure output area. See also
frame.

boundary
in the GMAP procedure, a separating line or point that distinguishes between two or
more unit areas or segments.

capline
the highest point of a normal uppercase letter. In some fonts, the capline might be
above the top of the letter to allow room for an accent.

Cartesian coordinate system
the two- or three-dimensional coordinate system in which perpendicular axes meet at
the origin (0,0) or (0,0,0). Typically, Cartesian coordinate axes are called X, Y, and Z.

cell
in traditional SAS/GRAPH procedures, a unit of measure that is defined by the
number of rows and the number of columns in the graphics output area. In ODS
Graphics, a cell refers to a distinct rectangular sub-region of a graph that contains
plots, text, or legends. See also aspect ratio.

center point
the location in the GRAPH window that, in conjuction with a radius point, defines
the placement and shape of an ellipse or a pie.

CGM
See computer graphics metafile.

character up vector
in SAS/GRAPH software, the angle at which a character is positioned. The character
up vector has two components, x and y, which determine the angle.

chart
a graph in which graphical elements, such as bars or pie slices, represent a view of
the data.

chart statistic
the statistical value calculated for the chart variable: frequency, cumulative
frequency, percentage, cumulative percentage, sum, or mean.

chart variable
a variable in the input data set whose values are categories of data represented by
bars, blocks, slices, or spines.

chart vertices
points on a radar chart where the statistical values intersect the spokes.

choropleth map
a two-dimensional map that uses color and fill pattern combinations to represent
different categories or levels of magnitude.

Glossary 1679

classification variable
a variable that is used to group (or classify) data. A classification variable can be
either character or numeric values. Classification variables include group, subgroup,
category, and BY variables.

CMYK
A color coding scheme that specifies a color in terms of the levels of cyan, magenta,
yellow, and black components. The level of each component ranges from 0 to 255.

color list
in SAS/GRAPH software, the list of foreground colors available for the graphics
output. The color list is either the default list established from the style, the list
created from the device entry, or the list established from the colors specified with
the COLORS= graphics option.

color map
in SAS/GRAPH software, a table that is used to translate the original colors in
graphics output to different colors when replaying graphics output using the
GREPLAY procedure. The table is contained in a catalog entry.

color, predefined
one of the set of colors for which SAS/GRAPH software defines and recognizes names
(for example, BLACK, BLUE, and CYAN).

color, user-defined
in SAS/GRAPH software, a color expressed in RGB, HLS, or gray-scale format.

computer graphics metafile
a graphics output file written in the internationally recognized format for describing
computer graphics images. This standardization allows any image in a CGM to be
imported and exported among different systems without error or distortion. Short
form: CGM.

confidence limits
the upper and lower values of a (usually 95%) confidence interval. In repeated
sampling, approximately (1-alpha) 100% of the resulting intervals would contain the
true value of the parameter that the interval estimates (where alpha is the
confidence level associated with the interval).

contour plot
a three-variable plot that uses line styles or patterns to represent levels of magnitude
of z corresponding to x and y coordinates.

coordinate
a value that represents the location of a data point or a graphics element with
respect to a coordinate system.

coordinate system
the context in which to interpret coordinates. Coordinate systems vary according to
their origin, limits, and units.

data area
the portion of the graphics output area in which data values are displayed. The data
area is bounded by axes or map areas. In the Annotate facility, the data area defines
a coordinate system. See also graphics output area, procedure output area, and
coordinate system.

data tip
data or other detailed information that is displayed when a user positions a mouse
pointer over an element in a graph. For example, a data tip typically displays the
data value that is represented by a bar, a plot point, or some other element.

1680 Glossary

density value
a value assigned to each observation in a map data set reflecting the amount of detail
(resolution) contributed by the observation.

dependent variable
a variable (response variable) whose value is determined by the value of another
variable or by the values of a set of variables in a statistical model.

device driver
in SAS/GRAPH software, a routine that generates the specific machine-language
commands needed to display graphics output on a particular device. SAS/GRAPH
device drivers take device-independent graphics information produced by SAS/
GRAPH procedures and create the commands required to produce the graph on the
particular device.

device entry
a SAS catalog entry that stores the values of device parameters (or the
characteristics) that are used with a particular output device. A device entry is a
SAS catalog entry of type DEV.

device map
a catalog entry used to convert the SAS/GRAPH internal encoding for one or more
characters to the device-specific encoding needed to display the characters in
hardware text on a particular graphics output device. See also hardware character
set.

device parameter
a value in a device entry that defines a default behavior or characteristic of a device
driver. Some device parameters can be overridden by graphics options. See also
graphics option.

device-independent catalog entry
a SAS catalog entry that contains graphics output in a generic format (not
device-specific). A device-independent catalog entry can be replayed on any device
supported by SAS/GRAPH software. See also device-dependent catalog entry.

device-resident font
a font stored in an output device.

document file
a file output by the Output Delivery System (ODS) that contains an image or is used
to view an image. Examples include HTML, PDF, RTF, SVG, and PostScript files.

drill down
to select an element in an image in order to display additional information about that
element, generally by displaying another Web page or another section in the same
Web page.

end angle
for an ellipse, the measure in degrees from the major axis to the trailing edge.

export
in SAS/GRAPH software, to put a SAS catalog entry containing graphics output into
a format that can be moved to another software product.

feature table
A SAS data set that uses the $GEOREF format to store geometric coordinates for
each unique map area in a single variable value.

fill color
the color of a pattern in a filled, closed graphics object, such as a bar segment, a pie
slice, or a map area.

Glossary 1681

font
a complete set of all the characters of the same design and style. The characters in a
font can be figures or symbols as well as alphanumeric characters. See also type style.

font maximum
in the GFONT procedure, the highest vertical coordinate in a font.

font minimum
in the GFONT procedure, the lowest vertical coordinate in a font.

font units
in the GFONT procedure, units defined by the range of coordinates specified in the
font data set. For example, a font in which the vertical coordinates range from 10 to
100 has 90 font units.

font, device-resident
a font stored in an output device.

font, SAS/GRAPH
a font stored in the SASHELP.FONTS catalog, and a font created by the user and
stored in a GFONTn catalog. These fonts can be used only by SAS/GRAPH
procedures or other procedures that generate GRSEG output files. Examples of SAS/
GRAPH fonts include Swiss, Simulate, and Marker. These fonts are provided for
specialized purposes only.

font, system
a font that can be used by any SAS procedure and by other software, such as
Microsoft Word.

frame
in SAS/GRAPH software, a box enclosing a group of graphics elements. In GSLIDE
procedure output, the frame encloses the procedure output area. In GPLOT,
GCHART, GBARLINE, and GCONTOUR procedure output, the frame encloses the
axis area. In a legend, the frame encloses the legend label and entries. See also
border.

FreeType font-rendering
a method of rendering fonts that uses the FreeType engine to access the content of
font files in order to render high-quality fonts for ODS and SAS/GRAPH. The
FreeType engine can be used in all SAS operating environments.

geocoding
the process of adding geographic coordinates (latitude and longitude values) to an
address. Each pair of coordinates can represent either the center of a region or a
specific point.

geo-variable
in a feature table, the $GEOREF formatted variable that stores the spatial
information as a geometry object. When a feature table is used, this variable is
specified in the ID statement of the GMAP procedure.

global statement
a SAS statement that you can specify anywhere in a SAS program.

graph
a visual representation of data showing the variation of a variable in comparison to
one or more other variables.

graphics element
a discrete visual part of a picture. For example, a bar in a chart and a plot’s axis
label are both graphics elements.

1682 Glossary

graphics object
a discrete visual element of a graph or picture (for example, a bar in a chart, a
polygon, a plot’s axis, and so on).

graphics option
in a SAS GOPTIONS statement, an option that controls some attribute of the
graphics output. The specified value remains in effect only for the duration of the
SAS session. Some graphics options override parameters that have been specified for
a graphics output device.

graphics output
output from a graphics program that can be stored as a catalog GRSEG entry or as a
graphics stream file. Graphics output can be displayed or printed on a graphics
output device. See also device-dependent catalog entry, device-independent catalog
entry, and graphics output device.

graphics output area
the area of a graphics output device where the graphics output is displayed or drawn.
Typically, the graphics output area occupies the full drawing area of the device, but
the dimensions of the graphics output area can be changed with graphics options or
device parameters. See also procedure output area and graphics output device.

graphics output device
any terminal, printer, or other output device that is capable of displaying or
producing graphical output.

graphics output file
a file that contains bitmapped or vector graphic information.

graphics primitive
a function that draws a graphics element.

graphics stream file
a file that contains device-dependent graphics commands from a SAS/GRAPH device
driver. This file can be sent to a graphics device or to other software applications.
Short form: GSF.

gray scale
a color-coding scheme that specifies a color in terms of gray components. Gray-scale
color codes are commonly used with some laser printers and PostScript devices.

grid point
a grid location in the GRAPH window that is marked by a dot. Grid points are used
for precision placement of objects.

grid request
in the G3GRID procedure, the request specified in a GRID statement that identifies
the horizontal variables that identify the x, y plane and one or more z variables for
the interpolation.

group variable
a variable in the input data set used to categorize chart variable values into groups.

GRSEG
a SAS catalog entry that contains graphic output in a generic format (not
device-specific).

Glossary 1683

GSF
See graphics stream file.

handshaking
the exchange of signals between two devices over an interface for control or
synchronization purposes. Data flow control is needed to ensure that data are not
sent faster than the receiving device can process them. Handshaking usually
involves sending signals between the device and the host computer in order to start
and stop transmission of data.

hardware (or hardwire) handshaking
a method of data flow control in which the flow of data between the computer and
device is regulated by signals sent over separate wires in the connecting cable. See
also handshaking.

hardware character set
a set of character definitions held internally in a graphics output device. When a
hardware character set is used, SAS/GRAPH software does not have to send the
device all the commands to draw characters, only the corresponding character codes.
Some devices have more than one hardware character set. See also font and
device-resident.

hatch
a fill pattern consisting of parallel lines at any specified angle.

HLS
a color-coding scheme that specifies a color in terms of its hue, lightness, and
saturation components. Hue is the color, lightness is the percentage of white, and
saturation is the attribute of a color that determines its relative strength and its
departure from gray. Lightness and saturation added to the hue produce a specific
shade. See also RGB.

host computer
a workstation or minicomputer accessed by a terminal or another workstation.

host font-rendering
a method of rendering fonts that relies on the capabilities of the operating
environment.

HSV (HSB)
a color-coding scheme that specifies a color in terms of its hue, saturation, and value
(brightness) components. Hue is the color. Saturation is the aspect of a color that
determines its relative strength and departure from gray. And value (brightness) is
the color’s departure from black.

identification variable
a variable common to both the map data set and the response data set that the
GMAP procedure uses to associate each pair of map coordinates and each response
value with a unique map area.

image file
a file that contains bitmapped graphic information. Examples include GIF, PNG,
TIFF, and JPEG files. Image files are a subset of graphics output files.

image map
a diagram that associates graphic elements with HTML links to implement
drill-down functionality. The graphic elements are represented by sets of coordinates.
SAS/GRAPH software generates image maps on demand with the IMAGEMAP=
option or with the IMAGEMAP macro.

1684 Glossary

import
to restore a SAS transport file to its original form (a SAS library, a SAS catalog, or a
SAS data set) in the format that is appropriate for the host operating system. You
use the CIMPORT procedure to import a SAS transport file that was created by the
CPORT procedure.

include
in the graphics editor, to read in or link to a graph other than the one currently
being edited.

independent variable
in SAS/GRAPH software, a variable whose value, in part, determines the value of a
dependent (or response) variable. In a plot, an independent variable typically
appears on the X (or horizontal) axis.

interactive graph
SAS/GRAPH output that features user controls such as menus, buttons, and pictures
that a user can manipulate. The controls are driven by a Java applet or an ActiveX
control.

interpolate
to estimate values that are between two or more known values.

Joint Photographic Experts Group
a file format that is used for storing noninteractive images. If you generate a chart or
graph in JPEG format, you cannot subsequently change its appearance. This format
is best suited to complex graphics that have many colors, because it supports 16
million colors. Short form: JPEG.

JPEG
See Joint Photographic Experts Group.

justify
to position text in relation to the left or right margin or the center of the line.

key map
a SAS catalog entry used to translate the codes generated by the keys on a keyboard
into their corresponding SAS/GRAPH internal character encoding. See also device
map.

label
(1) descriptive text associated with a variable. By default, this text is the name of a
variable or of a label previously assigned with the LABEL= option. (2) in special
cases of pie charts and star charts in the GCHART procedure, the label is the
midpoint value and the value of the chart statistics for a slice or spine.

latitude
used with maps, the angular measure between the equator and the circle of parallel
on which a point lies.

legend
a visual key to graphic elements in a graph. The legend consists of the legend value,
the legend value description, the legend label, and the legend frame.

link to
in the graphics editor, to include one graph into another by placing a template of that
graph in the current graph. The template acts as a placeholder and can be resized; it
creates a connection between the graph being edited and the linked-to graph such
that any changes made to the linked-to graph are reflected in the graph where a
template is placed.

Glossary 1685

longitude
used with maps, the angular measure between the reference meridian and the plane
intersecting both poles and a point. The reference meridian, called the prime
meridian, is assigned a longitude of 0, and other longitude values are measured from
there in appropriate angular units (degrees or radians, for example).

major axis
in the graphics editor, the longest axis of a graphics object.

major tick marks
the points on an axis that mark the major divisions of the axis scale. See also minor
tick marks.

map
a graphic representation of an area. The area is often a geographic area, but it can
also be any other area of any size. See also device map and key map.

map area
a polygon or group of polygons on a map. For example, states, provinces, and
countries are typical map areas. In a map data set, a map area consists of all the
observations that have the same values for the identification variable or variables. A
map area is sometimes referred to as a unit area. See also identification variable.

map data set
a SAS data set that contains information that the GMAP procedure uses to draw a
map. Each observation in the data set contains variables whose values are the x, y
coordinates of a point on the boundary of a map area. In addition, each observation
contains an identification variable whose value identifies the map area that the point
belongs to.

mapping
in the GMAP procedure, the process of displaying data values on a map.

marker
a symbol such as a dot, a cross, or a diamond, that is used to indicate the location of
a data point on a plot or graph.

meridian
an imaginary circle of constant longitude around the surface of the earth
perpendicular to the equator. See also parallel.

metafile
a file, produced by the Metagraphics facility internal driver, that contains
device-independent graphics commands in a special format. A user-written external
driver routine is required to read and process the metafile.

Metagraphics driver
a type of SAS/GRAPH device driver that can be written by users. A Metagraphics
driver consists of an internal driver (supplied with SAS/GRAPH software), which
writes a metafile in a special format, and an external driver (written by the user),
which decodes the metafile and writes device-specific commands.

midpoint
a value that represents the middle of a range of data values.

minor axis
in the graphics editor, the shortest axis of a graphics object.

minor tick marks
the divisions of an axis scale that fall between major tick marks. See also major tick
marks.

1686 Glossary

needle plot
a plot in which data points are connected by a vertical line which connects to a
horizontal baseline. The baseline intersects the 0 value, or the minimum value on
the vertical axis.

node
a connection point between two or more links. In a node-line graph, nodes are
typically represented as a box and enable you to access information and possibly to
traverse the graph by drilling up or down in the structure.

offset
the distance between a graphics object’s original position and its new position when
it is moved. Offsets can be specified for legends, axes, an entire graph, or other
graphics object.

origin
in a three-dimensional graph, the point at which the X, Y, and Z axes intersect. In a
two-dimensional graph, the point at which the X and Y axes intersect.

panel
in the GREPLAY procedure, a part of the template in which one or more pictures can
be displayed. A template can contain one or more panels.

parallel
an imaginary circle of constant latitude around the surface of the earth parallel to
the equator. See also meridian.

pattern type
in SAS/GRAPH software, the set of fill patterns that are valid for a particular type of
graph. The PATTERN statement supports three pattern types: bar and block
patterns, map and plot patterns, and pie and star patterns. See also fill pattern.

pie chart
a circular chart that is divided into slices by radial lines. Each slice represents the
relative contribution of each part to the whole.

pixel
an element of an electronic image. A pixel is the smallest element on a display that
can be assigned a separate color.

plot
a graph in which graphics elements such as markers or lines represent a view of the
data. See also coordinates.

plot line
the line joining the data points in a plot.

plotter
a class of graphics devices that typically use pens to draw hard-copy output.

PNG
See Portable Network Graphic.

polygon font
a SAS/GRAPH font in which the characters are drawn with enclosed areas that can
be either filled or empty. See also stroked font.

polyline
in SAS/GRAPH software, a graphics object composed of connected line segments that
might have attributes. A polyline is not a closed object; therefore, it cannot be filled
with a pattern.

Glossary 1687

Portable Network Graphic
a file format that returns the graphical output in separate files and that produces a
static image. This format is similar to the GIF format, but has additional features,
such as support for true-color images and better compression. Short form: PNG.

PostScript
a device-independent page description language for printing high-resolution
integrated text and graphics.

prism map
a three-dimensional map that uses prisms (polyhedrons with two parallel surfaces) of
varying height to indicate the ordinal magnitude of a response variable.

procedure output area
the portion of the graphics output area where the output from a graphics procedure
is displayed. See also graphics output area and data area.

projection
in SAS/GRAPH software, a two-dimensional map representation of unit areas on the
surface of a sphere (for example, geographic regions on the surface of the Earth).

prompt character
a character sent by the host computer to a device to signal that the host has finished
transmitting data and is ready for a response from the device.

protocol
a set of rules that govern data communications between computers and peripheral
devices.

radar chart
a chart that shows the relative frequency of data measures with statistics displayed
along spokes that radiate from the center of the chart. The charts are often stacked
on top of one another with circular reference lines, thus giving them the look of a
radar screen. See also star chart.

rasterizer
a device that accepts commands (such as moves and draws) as input and that
converts those commands into a bit-map. Rasterizers are connected between host
computers and graphics output devices that require bitmapped input.

region
in the graphics editor, an area in the GRAPH window containing more than one
graphics objects.

regression analysis
an analysis that models a dependent (or response) variable as a function of one or
more independent (or predictor) variables. The regression line, which is the set of
predictions from the model, appears as a line or curve in a plot of the dependent
variable against an independent variable.

relative coordinate
a coordinate that is measured from a point other than the origin. In the Annotate
facility, this point is usually the endpoint of the last graphics element that was
drawn. See also absolute coordinate.

replay
in SAS/GRAPH software, to display graphics output that is stored in a catalog entry
using the GREPLAY procedure.

1688 Glossary

response data set
a SAS data set used by the GMAP procedure that contains data values associated
with map areas and one or more identification variables. See also identification
variable, response values, and response variable.

response levels
the individual values or ranges of values into which the GMAP or GCHART
procedure divides the response variable. See also midpoint.

response values
values of a response variable that the GMAP procedure represents on a map as
different pattern/color combinations, or as raised map areas (prisms), spikes, or
blocks of different heights. The GCHART procedure represents response values as
bars, slices, spines, or blocks. See also midpoint.

response variable
(1)in the GMAP procedure, a variable in the response data set that contains data
values that are associated with a map area. (2) In the GCHART, GBARLINE, and
GCONTOUR procedures, a variable whose value is determined by the value of
another variable or by the values of a set of variables. See also chart variable,
response data set, response levels, and response values.

RGB
a color-coding scheme that specifies a color in terms of amounts of red, green, and
blue components. See also HLS.

SAS/GRAPH font
a font stored in the SASHELP.FONTS catalog, and a font created by the user and
stored in a GFONTn catalog. These fonts can be used only by SAS/GRAPH
procedures or other procedures that generate GRSEG catalog entries. Examples of
SAS/GRAPH fonts include Swiss, Simulate, and Marker. These fonts are provided for
specialized purposes only.

scatter plot
a two- or three-dimensional plot that shows the joint variation of two (or three)
variables from a group of observations. The coordinates of each point in the plot
correspond to the data values for a single observation.

segment
in the GMAP procedure, a polygon that is a part of a unit area consisting of more
than one polygon. For example, the representation of the state of Hawaii is a single
unit area which consists of a group of individual segments representing the islands,
each of which is a separate polygon. In the GFONT procedure, a segment is a single
continuous line that forms part of all of a character or symbol. In the DATA Step
Graphics Interface (DSGI), a segment is one or more graphics primitives that can be
manipulated as a unit.

select
in the graphics editor, to choose an action or a graphics object. Once a graphics object
has been selected, it can be copied, deleted, or otherwise manipulated.

snap
in the graphics editor, to automatically place graphics objects in the grid display area
with precision.

software handshaking
a method of data flow control in which a device and a computer exchange predefined
sequences of characters to indicate when data should be transmitted between the
two. See also handshaking and hardware (or hardwire) handshaking.

Glossary 1689

spine
a line on a star chart used to represent the relative value of the chart statistic for a
midpoint. Spines are drawn outward from the center of the chart.

spline
in SAS/GRAPH software, a method of interpolation in which a smooth line or surface
connects data points.

spokes
lines that radiate from the center of a radar or star chart. These lines represent
statistical information.

standard deviation
a statistical measure of the variability of a group of data values. This measure,
which is the most widely used measure of the dispersion of a frequency distribution,
is equal to the square root of the variance.

star chart
a chart that shows the values of chart statistics as either spines of varying lengths or
slices of varying sizes. Star charts display statistics in a circle surrounding the
spines or slices. See radar chart.

static graph
SAS/GRAPH output in the form of an image.

stroked font
in SAS/GRAPH software, a font in which the characters are drawn with discrete line
segments or circular arcs. See also polygon font.

style attribute
A visual property such as color, font properties, and line characteristics that have
reserved names and values defined in ODS. Style attributes are collectively
referenced by a style element.

subgroup variable
the variable in the input data set for a chart that is used to proportionally fill areas
of the bars or blocks on a bar chart, or to identify separate rings of a pie chart.

summary variable
a variable in an input data set whose values some SAS/GRAPH procedures total or
average to produce the sum or mean statistics, respectively.

surface map
a three-dimensional map that uses spikes of varying heights to indicate levels of
relative magnitude.

surface plot
a three-dimensional graph that displays a grid-like surface formed by the values of
the vertical (Z) variable plotted on a plane specified by the X and Y variables.

system font
a font that can be used by any SAS procedure and by other software, such as
Microsoft Word. These fonts include TrueType and Type1 fonts. Examples of system
fonts include Albany AMT, Monotype Sorts, and Arial. Some system fonts, such as
Helvetica, can also be present as device-resident fonts. System fonts generally
provide the highest quality output.

template
(1) in the GRSEG graphics editor, a representation of a graph being linked to; a
template is considered a single graphics object. (2) in the GREPLAY procedure, a
framework that enables you to display one or more pictures on a page. (3) in ODS

1690 Glossary

graphics (template-based graphics), a description of how output should appear when
it is formatted.

templated graph
(1) in the GRSEG graphics editor, the graph to which a template links. (2) in the
GREPLAY procedure, graphics output that is created by replaying one or more
catalog entries of type GRSEG (graphics output) into panels in a template.

thumbnail
a small image that can be selected in order to display a larger image.

TIFF
Tagged Image File Format. An industry-standard file format for storing compressed
images. The Tagged Image File Format specifies compression routines and file
formats for a variety of image types, including bilevel, grayscale, and color.

tile chart
a graph that represents the relative values of data by using rectangular areas. The
color of each area represents the value of one measure in the query. The size of each
area represents the value of the another measure in the query. The academic term
for a tile chart is ’treemap.’

tilt angle
the measure in degrees from the horizontal axis to the major axis of an object.

tool palette
in the graphics editor, the collection of icons that represent functions in the interface.

traditional map data set
a map data set that defines the boundaries of map areas by using X and Y
coordinates. Each observation contains an identification variable whose value
identifies the map area for that point. See also identification variable, map area, map
data set, and spatial map data set.

transformation
in the DATA Step Graphics Interface (DSGI), a mapping of the window coordinates to
the viewport coordinates.

translate
to change the location of a graphics object.

type style
a typeface design and its variations (for example, Swiss, Swiss Bold, and Swiss
Italic). See also font.

unit
a single quantity of measuremen. In SAS/GRAPH software, units can have one of the
following scales assigned: centimeters, percentages, points, inches, or cells.

unit area
See map area.

user-definable colors
the colors that can be defined using SAS color names, RGB (red, green, blue), HLS
(hue, lightness, saturation), or gray-scale color equivalents.

viewport
in the DATA Step Graphics Interface (DSGI), a section of the display into which you
place graphics elements or graphics output.

Web server
a server machine and software that enable organizations to share information
through intranets and through the Internet.

Glossary 1691

window
in the DATA Step Graphics Interface (DSGI), a coordinate system that is used with a
viewport and that can be defined by the user.

XON/XOFF handshaking
a method of data flow control in which the flow of data between a computer and a
device is regulated by the transmission of XON (DC1) and XOFF (DC3) control
characters between the device and the computer.

1692

1693

Index

(pound sign), variables as plot point labels 267
? statement

GREPLAY procedure 1482

Numbers
3-D charts

3-D bar charts 204
3-D pie charts 9
3-D vertical bar charts

subgrouping 1072

A
A= option

AXIS statement 210, 293
TITLE, FOOTNOTE, and NOTE statements 281, 293

abbreviations
for states 1156, 1157

access permissions, browsers 636
ACROSS= option

CHART statement (GRADAR) 1424
LEGEND statement options 227
PIE, PIE3D, DONUT statements (GCHART) 1041
STAR statement (GCHART) 1057

ACROSSVAR= option
CHART statement (GRADAR) 1424

ACTION= macro argument 579
active color lists 1221, 1222
ACTIVECOLORS= option

GKPI procedure 1227
ActiveX Control 440, 453

authentication 637
drill-down links 460
drill-down tags 608
embedded graphics in Microsoft Word 461
examples 461
formats supported by 459
generating interactive output for 453
generating output for 457
installing 455
installing manually 455
interactive contour plots 463
internationalization 458
JavaScript drill-down with 464, 466
languages 458
procedures and statements generating output for 454
prompting users to install 456
prompts for installing 456

special fonts and symbols 459
uninstalling 457

ActiveX control file (.exe file)
location of 486

ACTIVEX device 93
when to use 454

ACTIVEX device driver 450
ActiveX devices 73
ActiveX parameters and attributes 485
ActiveX support 1602

Annotate functions 1635
AXIS statement 1602
G3D procedure 1633
GAREABAR procedure 1612
GBARLINE procedure 1613
GCHART procedure 1615
GCONTOUR procedure 1620
GMAP procedure 1622
GOPTIONS statement 1604
GPLOT procedure 1625
GRADAR procedure 1630
LEGEND statement 1608
PATTERN statement 1609
SYMBOL statement 1610
TITLE and FOOTNOTE statements 1612

ACTUAL= argument
GKPI procedure 1227

ACTXIMG device 94, 454
ACTXIMG device driver 446, 450

GIF, JPEG, SVG, PNG vs. 506
sample programs for static images 512
Web presentations, developing 510

ADD statement
GDEVICE procedure 1130

additional fonts 156
address data sets 1148

abbreviations for states 1156
city names 1155
non-address input values 1156
ZIP + 4 extensions 1156
ZIP code variables 1156

ADDRESSCITYVAR= option
PROC GEOCODE statement 1155

addresses
coordinates associated with 1157

ADDRESSPLUS4VAR= option
PROC GEOCODE statement 1156

ADDRESSSTATEVAR= option
PROC GEOCODE statement 1156

1694 Index

ADDRESSVAR= option
PROC GEOCODE statement 1156

ADDRESSZIPVAR= option
PROC GEOCODE statement 1156

admgdf 330
ADMGDF option 330
AFONT= option

GKPI procedure 1227
Africa

outline map of 1469
AFTER argument

MOVE statement (GREPLAY) 1491
AHUNITS= macro argument 569
Albers’ equal-area projection 1400

clipping map areas 1414
default projection specifications 1409
projection criteria 1408
specifying 1406
when to use 1407

ALIGN= macro argument 570
alignment

axis labels 201, 208, 209, 211
axis values 211
character cells 336
legend labels 228
legend text 233, 234
legend values 233
legends 230, 237
plot print labels 267
text in graphics output 286

ALL option
PROC GMAP statement 1253

ALL option
LIST statement (GDEVICE) 1134

ALL option, GMAP statement 219
ALT= macro argument 570
alternative device-resident fonts 1657
AMBIENT= parameter, JAVA and ActiveX 491
anchors 239, 325
angle, rotation

angling text in pie charts 797
axis labels 201, 208, 209, 210
hardware text rotation 399
landscape orientation of graphics output area 391, 392,

418
portrait orientation of graphics output area 401, 413, 418
print orientation 418
printing orientation 418
text in graphics output 281, 287, 290
text in pie charts 797

ANGLE= macro argument 579
ANGLE= option

AXIS statement 210, 293
PIE, PIE3D, DONUT statements (GCHART) 1041
STAR statement (GCHART) 1057
TITLE, FOOTNOTE, and NOTE statements 281, 293

angle rotation
donut chart labels 1051

ANGLE= suboption
LABEL= option, DONUT statement (GCHART) 1051

ANGLE variable, Annotate facility 701
animated GIFs

creating with BY-group processing 522
creating with GREPLAY procedure 527
creating with RUN-group processing 524

animated sequences
body of 520
creating 520
header for 520
trailer 520

animation 447, 519
delay between graphs 347
graphics options for 521
repeating as loop 390

ANNO= option
GSLIDE procedure 1519, 1524

%ANNOMAC macro, Annotate facility 739
ANNOTATE= argument

PROC GANNO statement 914
annotate data sets

projecting 1416
Annotate data sets 641, 654

applying to web output 540
missing values 655
observation and structure of 643
producing graphics output 655
producing multiple graphs 921
scaling data-dependent output 916

Annotate DATA step 34
Annotate facility 23, 642, 669

ActiveX and Java support for 1635
coordinates 650
debugging 658
drill-down links, generating 540
DSGI vs. 770
error messages, list of 761
examples 651
functions 647, 669
graphic elements and formatting 649
images, displaying 187
in text slides 1518, 1524
internal coordinates 737
macros, how to use 759
macros for 738, 759
processing details 656
projecting annotate data sets 1416
scaling graphs 916
variables 645, 653, 656, 700
Web output, generating 539

Annotate graphics
in drill-down graphs 925
storing 919

Annotate macro data set 30
Annotate macros 655
ANNOTATE= option 540, 655

BAR statement (GBARLINE) 961
BLOCK statement (GCHART) 1007
BLOCK statement (GMAP) 1261
BUBBLE statement (GPLOT) 1336
CHART statement (GRADAR) 1424
CHORO statement (GMAP) 1270
G3D procedure 1547
GSLIDE procedure 1519, 1524
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1018
PIE, PIE3D, DONUT statements (GCHART) 1041
PLOT statement (G3D) 1548
PLOT statement (GCONTOUR) 1101
PLOT statement (GPLOT) 1350
PRISM statement (GMAP) 1277
PROC GBARLINE statement 958

Index 1695

PROC GCHART statement 1004
PROC GCONTOUR statement 1099
PROC GMAP statement 1253
PROC GPLOT statement 1332
PROC GRADAR statement 1421
PROC statement 219
SCATTER statement (G3D) 1556
STAR statement (GCHART) 1057
SURFACE statement (GMAP) 1286

annotating values
from GINSIDE procedure 1208

appearance differences between devices 638
appearance of graphs 133

graphical style element reference for device-based graph-
ics 144

modifying styles 142
overriding style attributes 140
precedence of appearance option specifications 141
specifying styles 139
style attributes versus device entry parameters 134
style templates 135
turning off styles 153
viewing list of styles provided by SAS 141

APPLET element (HTML), macro arguments for 569
APPLETLOC= system option 487
arc-drawing capability, device 339
ARC function (DSGI) 856
ARCHIVE= macro argument 570
ARCHIVE= option 486
arcs

drawing with Annotate facility 689, 690
drawing with DSGI 856
writing in, DSGI for 864

area bar charts 11, 931
ActiveX and Java support for 1612
generating 938
with numeric chart variable 940
with subgroups 942
with subgroups and variable percentages 944

area boundaries
unmatched 1449, 1461

AREA element (HTML) 326
AREA= option

BLOCK statement (GMAP) 1261
PRISM statement (GMAP) 1277

AREA statement
GMAP procedure 1255

areas, Annotate graphics 650
AREAS= option

PLOT statement (GPLOT) 1350
AREAS= option, PLOT statement 1380
ARROW function, Annotate facility 670
%ARROW macro, Annotate facility 739
ASCENDING option

BAR statement (GBARLINE) 962
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1018
PIE, PIE3D, DONUT statements (GCHART) 1041
PLOT statement (GBARLINE) 976
STAR statement (GCHART) 1057

ASCII-to-EBCDIC translation 427
ASF function (DSGI) 817, 872
ASIS option

PROC GPROJECT statement 1404
aspect 331
ASPECT function (DSGI) 819, 873

ASPECT= option 331
aspect ratio 331
attributes, JAVA and ActiveX parameters and attributes 485
ATTRIBUTES= option, ODS statements 485
ATTRIBUTEVAR= option

PROC GEOCODE statement 1156
audience for presentations, considering 449
autocopy 332
AUTOCOPY option 332
AUTOFEED 333
AUTOFEED option 333
AUTOHREF option

BUBBLE statement (GPLOT) 1336
PLOT statement (GCONTOUR) 1102
PLOT statement (GPLOT) 1351

AUTOLABEL option
PLOT statement (GCONTOUR) 1102

AUTOLABEL= suboptions
PLOT statement (GCONTOUR) 1108

automatic data set locking 56
automatic paper feed 333, 396
AUTOREF option

BAR statement (GBARLINE) 962
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1019
PLOT statement (GBARLINE) 976

AUTOREF option, AXIS statement options 210
AUTOSIZE 333
AUTOSIZE= graphics option 333
AUTOVREF option

BUBBLE statement (GPLOT) 1336
PLOT statement (GCONTOUR) 1102
PLOT statement (GPLOT) 1351

AVALUE option
GKPI procedure 1228

AWUNITS= macro argument 574
axes 199

bar-line charts 949
chart statistic and response axis 973
color of 957, 962, 976
color of, bar charts 1038
color of, block charts 1014
colors 1102, 1337, 1351, 15
contour plots 1112
fill color 962
frame around axis area 966
labels 201, 207
line type 209
logarithmic 202, 297, 973, 1036,
major tick mark values 971, 979
midpoint axis 968
offset 205
origins 207
plots with two vertical axes 1328, 1365, 1370
suppressing 969, 979, 1030, 1107
suppressing, NOAXES option for 1550, 1557
suppressing, NOAXIS option for 1550, 1557
surface and scatter plots 1545
tick marks 203, 204
tick marks, ordering 294

AXIS 199
AXIS definitions

displaying values of 1319
AXIS option

PROC GOPTIONS statement 1321
BAR statement (GBARLINE) 971

1696 Index

BLOCK statement (GCHART) 1012
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1019, 1032
PLOT statement (GBARLINE) 979

AXIS statement 33, 197, 199
ActiveX and Java support for 1602
assigning AXIS definitions 215
logarithmic axes 297
ordering datetime tick marks 294
text description suboptions 214
using 215

AXIS1= option
GRID statement (G3GRID) 1578

AXIS2= option
GRID statement (G3GRID) 1578

B
background color

graphics output area 335
image transparency 426
legends 227
text in graphics output 283

background images 182, 386, 388
BACKGROUNDCOLOR= parameter, Metaview Ap-

plet 534
backplane images 184
bar 671
%BAR, %BAR2 macro, Annotate facility 741
bar charts 8, 991

See also area bar charts
See also bar-line charts
See also horizontal bar charts
See also vertical bar charts
3-D plane 204
adding images 1038
drill-down functionality in 618
group brackets on axis 204, 1030
horizontal 991, 1016
horizontal, error bars in 1078
horizontal, midpoints and statistics in 1075
images on bars of 185
ordering and selecting midpoints 1037
outlines 1037
patterns 1037, 1038
patterns, outlines, and colors 241, 242
plane 1030
specifying sum statistic 1070
subgroup labels 661
subgrouping a 3-D vertical chart 1072
terminology 996
vertical 991, 1016
with Web drill-down (example) 321

BAR function, Annotate facility 671, 1635
BAR function, DSGI 857
bar-line charts 10, 948

ActiveX and Java support for 1613
adding images to 957
axes 949
creating 981
displaying statistics in 973
parts of 949
plot overlays 974
vertical 959

BAR statement, GBARLINE procedure 959, 1613
chart statistic and response axis 973

displaying statistics 973
logarithmic axes 973
options 961
ordering and selecting midpoints 974
required arguments 961
syntax 960

bars
order of 962, 964
outline width 973
subgrouping 971, 985
width of 973

bars, drawing with DSGI 857
Base SAS language statements 35
baseline 1176
baseline, text in graphics output 281, 287

rotating characters from 290
underlining 291

BASELINE= option
FLOW, TILE, TOGGLE statements (GTILE) 1531
PROC GFONT statement 1183

basic mode
GKPI procedure 1216, 1225

batch mode 53
BC= option, TITLE, FOOTNOTE, and NOTE state-

ments 283, 293
BCOLOR= option

BUBBLE statement (GPLOT) 1336
TITLE, FOOTNOTE, and NOTE statements 283, 293

BDCLASS= macro argument 585
BEFORE argument

MOVE statement (GREPLAY) 1491
BEGINRANGEVAR= option

PROC GEOCODE statement 1156
BFILL= option

BUBBLE statement (GPLOT) 1336
BFONT= option

BUBBLE statement (GPLOT) 1336
GKPI procedure 1228

BG= macro argument 585
BGTYPE= macro argument 585
BINDING 334
BINDING= option 334
Bitstream fonts, rendering 362, 415, 1643

spacing between letters 364
bivariate interpolation 1574
BL= option, TITLE, FOOTNOTE, and NOTE state-

ments 293
BLABEL option

BUBBLE statement (GPLOT) 1337
black and white, reversing 421
BLANK= option, TITLE, FOOTNOTE, and NOTE state-

ments 283, 293
blanks

removing from data values 611
block charts 7, 990

creating 1005
grouping and subgrouping 1067
negative or zero values 1015
patterns, outlines, and colors 1014
sum statistic in 1066
text 1015

block effects for legends 227, 238
block maps 18, 1240

annotating 1261
bars and regions relative to zero 1265
color for empty map areas 1262

Index 1697

color for legend text 1262
color for outlining blocks 1261
color for outlining empty map areas 1262
color for outlining non-empty map areas 1262
color for regions 1255
creating 1259
description for catalog entry 1263
distinct colors for response values 1263
drill down 1263
drill-down legend 1263
legends 1263
midpoint ranges 1265
midpoints 1264
missing values 1265
name of GRSEG catalog entry 1265
patterns 1261, 1268
percentages 1265
percentages, overriding default format 1266
physical dimension of 1267
producing a simple map 1301
response levels 1264, 1303
shape of blocks 1266
statistics 1266
stretching 1266
suppressing legends 1258, 1265
uniform legend and coloring 1267
viewing position 1267
width of blocks 1261
width of outlines 1267

BLOCK statement
GCHART procedure 1005
GMAP procedure 1259

BLOCK statement, GCHART procedure
ActiveX and Java support for 1615

BLOCK statement, GMAP procedure
ActiveX and Java support for 1622

BLOCKMAX= option
BLOCK statement (GCHART) 1007

BLOCKMAX= option, BLOCK statement 218
BLOCKSIZE= option

BLOCK statement (GMAP) 1261
BO= option, TITLE, FOOTNOTE, and NOTE state-

ments 283, 293
bookmarks

PDF graphs 124, 125
BORDER 334
BORDER= graphics option 334
BORDER= macro argument 580
BORDER option, GSLIDE procedure 1519, 1521
borders

Annotate facility to draw 679
graphics output area 335, 1521
legends 227
removing from maps 1459

boundaries
removing internal boundaries from maps 1459
removing state boundaries from U.S. map 1465
unmatched area boundaries 1449, 1461

boundary points 1447
boundary values

GKPI procedure 1219
BOUNDS= argument

GKPI procedure 1227
BOX= option, TITLE, FOOTNOTE, and NOTE state-

ments 283, 293

box plots 254, 256
creating and modifying (example) 302
line width 270

boxes around graphics output text 283, 284
brackets, bar charts 204
browse mode

GDEVICE procedure 1129
BROWSE option

PROC GDEVICE statement 1129
browser permissions 636
browsers

supporting SVG 83
BRTITLE= macro argument 585
BS= option, TITLE, FOOTNOTE, and NOTE state-

ments 284, 293
BSCALE= option

BUBBLE statement (GPLOT) 1337
BSIZING= option

BUBBLE statement (GPLOT) 1337
BSPACE= option, TITLE, FOOTNOTE, and NOTE state-

ments 284, 293
bubble plots 16, 1327

adding right vertical axis (example) 1370
controlling bubble display 1343
creating 1334
generating simple bubble plots (example) 1367
labeling and sizing plot bubbles (example) 1368

BUBBLE statement, GPLOT procedure 1334
ActiveX and Java support for 1625
coordinating with BUBBLE2 statements 1345
generating simple bubble plots (example) 1367
labeling and sizing plot bubbles (example) 1368
options 1335
required arguments 1335
syntax 1334

BUBBLE2 statement, GPLOT procedure 1343
ActiveX and Java support for 1625
adding right vertical axis (example) 1370
coordinating with BUBBLE statements 1345
options 1345
required arguments 1345
syntax 1344

bullet graph KPI charts 1214
gray scale 1232

bundling attributes, DSGI 789
BVALUE option

GKPI procedure 1228
BWIDTH= option, SYMBOL statement 254
BY 216
BY-group processing

creating animated GIFs with 522
creating multiple-page PDF files 129

BY lines 217
BY statement 198, 216

Annotate facility with 657
color of BY lines 336
fonts FOR BY lines 358
generating chart series (example) 309
GREMOVE procedure 1464
height of BY lines 381
RUN-group processing with 57
using 218

BYLINE option
PROC GREPLAY statement 1479

#BYLINE option, text string specifications 291

1698 Index

BYLINE statement
GREPLAY procedure 1482

#BYVAL option, text string specifications 291
#BYVAR option, text string specifications 291, 294

C
C= option

AXIS statement options 200, 211, 214
LEGEND statement options 233
POINTLABEL= specification 266
SYMBOL statement 254, 275
TITLE, FOOTNOTE, and NOTE statements 284

calendar charts 1444
CALENDAR option

CHART statement (GRADAR) 1424
Canada

Province Codes 1289, 1308
reducing map of 1454

capline 1176
CAPLINE= option

PROC GFONT statement 1184
carriage return at record ends 369
Cartesian coordinates 1395

clipping map areas 1414
default projection specifications 1409
emphasizing map areas 1412
GPROJECT procedure 1407
input map data sets 1397
map projection types 1399
projecting annotate data sets 1416
projecting spherical coordinates into 1395

Cartographic font 1650
catalog entries 1475

BY line 218
copying or duplicating 1499
description of 964
duplicate entry names 1476
managing 1505
replaying 1505

CATALOG function (DSGI) 819, 874
CATALOG= option

PROC GDEVICE statement 1129
catalogs

adding device entries to 1130
deleting device entries from 1133
device catalogs 1126
managing 1504

CATEXT= macro argument 580
CAUTOHREF= option

BUBBLE statement (GPLOT) 1337
PLOT statement (GCONTOUR) 1102
PLOT statement (GPLOT) 1351

CAUTOREF= option
BAR statement (GBARLINE) 962
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1019
PLOT statement (GBARLINE) 976

CAUTOVREF= option
BUBBLE statement (GPLOT) 1337
PLOT statement (GCONTOUR) 1102
PLOT statement (GPLOT) 1351

CAXIS= option
BAR statement (GBARLINE) 962
BLOCK statement (GCHART) 1007
BUBBLE statement (GPLOT) 1337

CHART statement (GRADAR) 1424
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1019
PLOT statement (G3D) 1548
PLOT statement (GBARLINE) 976
PLOT statement (GCONTOUR) 1102
PLOT statement (GPLOT) 1351
SCATTER statement (G3D) 1556

CBACK 335
CBACK function (DSGI) 820, 875
CBACK= macro argument 580
CBACK= option 335
CBLKOUT= option

BLOCK statement (GMAP) 1261
CBLOCK= option, LEGEND statement 227, 238
CBODY= option

SURFACE statement (GMAP) 1286
CBORDER= option, LEGEND statement options 227
CBORDER variable, Annotate facility 701
CBOTTOM= option

PLOT statement (G3D) 1549
CBOX variable, Annotate facility 702
CBY 336
CBY= graphics option 336
CC argument

? statement (GREPLAY) 1482
LIST statement (GREPLAY) 1490

CC= option
PROC GREPLAY statement 1479

CC statement
GREPLAY procedure 1483

CCOPY statement
GREPLAY procedure 1483

CDEF statement
GREPLAY procedure 1484

CDEFAULT= option
BLOCK statement (GMAP) 1262
CHORO statement (GMAP) 1270
PRISM statement (GMAP) 1278

CDELETE statement
GREPLAY procedure 1485

CELL 336
CELL option 336
cells

changing size of 63
in device display area 62
in graphics output area 62

CEMPTY= option
BLOCK statement (GMAP) 1262
CHORO statement (GMAP) 1271
PRISM statement (GMAP) 1278

CENTER= macro argument 586
CENTIMETERS option

PROC GOPTIONS statement 1321
%CENTROID macro, Annotate facility 741
CERROR= option

BAR statement (GBARLINE) 962
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1019
CFILL= option

PIE, PIE3D, DONUT statements (GCHART) 1041
STAR statement (GCHART) 1057

CFRAME= option
BAR statement (GBARLINE) 962
BUBBLE statement (GPLOT) 1338
CHART statement (GRADAR) 1425

Index 1699

GSLIDE procedure 1520, 1521
HBAR, HBAR3D, VBAR, VBAR3D statements 935
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1019
LEGEND statement options 227
PLOT statement (GCONTOUR) 1102
PLOT statement (GPLOT) 1352

CFRAMESIDE= option
CHART statement (GRADAR) 1425

CFRAMETOP= option
CHART statement (GRADAR) 1425

CFREQ option
BAR statement (GBARLINE) 962
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1020
CFREQLABEL= option

HBAR, HBAR3D statements (GCHART) 1020
CGM filter

default for Microsoft Office 120
CGM transparency limitation

Microsoft Office 119
CHANDLE= macro argument 580
character cells 62

alignment 336
size of 333

character chart variables 998
character codes 160

displaying 1199
character formats

supported by ACTIVEX 459
character midpoints 950
character response variables 1249
character transcoding 593
characters

as axis values 206
as legend values 230
HTML entities 636
prefixing output records 378
prompts 411
special plot symbols 269

CHARACTERS 337
CHARACTERS option 337
CHARREC 338
CHARREC= option, GDEVICE procedure 338
CHARSET= macro argument 593
CHARSPACETYPE= option

PROC GFONT statement 1184
CHART statement

GRADAR procedure 1422
CHART statement, GRADAR procedure

ActiveX and Java support for 1630
chart statistics 953

cumulative frequency 953
cumulative percentage 953
frequency 953
GBARLINE procedure 953
GCHART procedure 996, 1000
mean 953
percentage 953
response axis and 973, 1035
specifying 972
sum 953
weighted statistics 954

chart variables
bar-line charts 950
character 998

GAREABAR procedure 932
GCHART procedure 996, 997
GTILE procedure 1527
midpoints and 950
numeric 940

charts 7
See also area bar charts
See also bar charts
See also bar-line charts
See also block charts
See also donut charts
See also GCHART procedure
See also KPI charts
See also pie charts
See also radar charts
See also star charts
See also tile charts
calendar charts 1444
windrose charts 1434, 1443

CHARTYPE 338
CHARTYPE= graphics option 338, 1656
Chartype window (GDEVICE) 1139
CHORO statement

GMAP procedure 1269
CHORO statement, GMAP procedure

ActiveX and Java support for 1622
choropleth maps 19, 1241

annotating 1270
color for filling empty map areas 1270
color for legend text 1271
color for outlining empty map areas 1271
color for outlining non-empty map areas 1271
creating 1269
description of 1271
distinct colors for response values 1272
drill down 1272
drill-down legend 1272
legends 1272
midpoint ranges 1274
midpoints 1273
missing values 1274
name of GRSEG catalog entry 1274
percentages 1274
percentages, overriding default format 1274
physical dimensions 1275
producing a simple map 1307
response levels 1272
statistics 1274
stretching 1275
suppressing legends 1274
uniform legends and coloring 1275
width of outlines 1275

CHREF= option
BUBBLE statement (GPLOT) 1338
PLOT statement (GCONTOUR) 1102
PLOT statement (GPLOT) 1352

CI= option, SYMBOL statement 254, 275
CIMPORT procedure 1659
circle-drawing capability, device 339
%CIRCLE macro, Annotate facility 742
circle of stars, drawing (example) 664
CIRCLEARC 339
CIRCLEARC option 339
circles, writing in (DSGI) 864
CITY geocoding method 1158
city map data (U.S.) 1248

1700 Index

city names 1155, 1157
classification variables

multiple, in radar charts 1440
classification variables, plotting 1327
CLASSPATH environmental variables 637
CLEAR function (DSGI) 866
CLEVELS= option

PLOT statement (GCONTOUR) 1103
CLINK= macro argument 580
CLIP function (DSGI) 821, 875
CLIP option

TDEF statement (GREPLAY) 1496
clipped polygons 400, 404
clipping around viewports (DSGI) 793
clipping map areas 1414
clipping map data sets 1408

example 1414
CLIPREF option

BAR statement (GBARLINE) 963
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1020
PLOT statement (GBARLINE) 976

CLIPTIPS= parameter, JAVA 491
CLM= option

BAR statement (GBARLINE) 963
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1020
CLOCKWISE option

PIE, PIE3D, DONUT statements (GCHART) 1042
closed destinations, ODS 192
closing

GSF (graphics stream file) 359
CMAP 339
CMAP argument

? statement (GREPLAY) 1482
LIST statement (GREPLAY) 1490

CMAP entries 1476
CMAP= option

PROC GREPLAY statement 1479
CMAP= option, GREPLAY procedure 339
CMAP statement

GREPLAY procedure 1485
CMISSING= option

FLOW, TILE, TOGGLE statements (GTILE) 1531
CMYK color codes 171
%CMYK macro 178
CNODE= macro argument 580
%CNS macro 178
CNS (SAS Color Naming Scheme) 176
cntl2txt 674
CNTL2TXT function, Annotate facility 674
CO= option, SYMBOL statement 254, 275
CODEBASE attribute, OBJECT element (HTML) 488
CODEBASE= macro argument 574
CODEBASE= option 486
CODELEN= option

PROC GFONT statement 1185
COLINDEX function (DSGI) 821
COLLATE 340
COLLATE option 340
collating printed output 340
COLMAJOR option

LEGEND statement options 231
color

applying to block and prism map regions 1255

color depth
exporting graphs to Microsoft Office 114

color lists
building with GOPTIONS statement 169
device driver 169
GKPI procedure 1221

COLOR MAPPING window 1502
color maps 1476

creating 1507, 1514
managing 1504
specifying/assigning 339
transporting 1661

COLOR= option
AXIS statement options 200, 211, 214
GKPI procedure 1224
LEGEND statement options 233
PATTERN statement 241
POINTLABEL= specification 266
SCATTER statement (G3D) 1556
SYMBOL statement 254, 275
TDEF statement (GREPLAY) 1496
TITLE, FOOTNOTE, and NOTE statements 284

COLOR= suboption
LABEL= option, DONUT statement (GCHART) 1051

COLOR variable, Annotate facility 703
COLORMAP= macro argument 580
Colormap window (GDEVICE) 1139
COLORNAMELIST= parameter, JAVA 491
COLORNAMES= parameter, JAVA 491
COLORRAMP= option

FLOW, TILE, TOGGLE statements (GTILE) 1531, 1538
colors 167

active, number of (plotters) 402
assigning with GTILE procedure 1528
axes 200, 211, 957, 962,,
axes, CAXIS= option for 1548, 1556
axis area fill 962
axis area frame 976
axis labels 200, 201, 208, 209,
axis tick marks 200, 203, 204, 214
axis values 211
block charts 1014
borders 344, 345
bubble plots 1336
BY lines 217, 336
CMYK codes 171
Color Naming System values 176
default, specifying 168, 341
donut chart labels 1051
error bars 962
GBARLINE procedure 955
graphics output area 335
gray-scale codes 175
HLS codes 172
HSB codes 174
HSV codes 174
image quality across devices and 65
image transparency 426
KPI segments 1219
legend label 228
legend text 233
legend values 233
legends 227
maximum display at once 392
modifying when specified by styles 143
naming schemes 170

Index 1701

outlines 963
patterns 343
pie and donut chart slices 1053
plot print labels 266
plot symbols 254, 275, 299, 344
plotting in order of 403
precedence of specifications 141
processing limitations 180
reference lines 962, 963, 976, 1102,
reversing black and white 421
RGB codes 171
SAS color names and RGB values 175
specifying in SAS/GRAPH programs 168
text 963, 977
text in graphics output 283, 284
tick marks 976
titles, footnotes, and notes 195, 344, 345
utility macros for 177

COLORS 341
COLORS= graphics option 249, 341
COLORS= option

GKPI procedure 1228
COLORSCHEME= parameter, JAVA and ActiveX 491
COLORTYPE 342
COLORTYPE= option, GDEVICE procedure 342
COLORVAR= option

FLOW, TILE, TOGGLE statements (GTILE) 1532
COLREP function (DSGI) 822, 876
COLS 343
columns, legends 227
columns in graphics output area 343, 384, 391, 401
commands

GDEVICE window commands 1137
comment 675
COMMENT function, Annotate facility 675
%COMMENT macro, Annotate facility 743
comments 348
communications ports, how output is written to 375
compression level

for PDF files 125
concepts 24
confidence intervals 1022

for error bars 963, 965
confidence limits 261
conformal projection 1401, 1407, 1408
CONSTANT= option

SURFACE statement (GMAP) 1286
Constellation applet 443, 553

chart with simple arcs (example) 560
chart with weighted arcs (example) 562
DS2CONST macro with 555
hotspots 566
when to use 554
XML written to external file (example) 564

CONTENTS option
PROC MAPIMPORT statement 1595

continuous numeric midpoints 951
continuous numeric variables 999
CONTINUOUS option

HBAR, HBAR3D, VBAR, VBAR3D statements 935
continuous output stream 365
continuous paper feed 333, 396
continuous variables 997, 1249
Contour applet 441, 469

parameters for, list of 488
contour labels, size of 256

contour lines
colors for 254, 275
distance between labels 268
fonts 256
labeling 1116
size of 270
type of 265, 276

contour plots 17, 1095
ActiveX and Java support for 1620
axis order 1112
contour levels 1105, 1109, 1119
interactive, with ActiveX 463
labeling contour lines 1116
modifying contour lines and labels with SYMBOL state-

ment 1114
modifying horizontal axis 1116
modifying legend 1116
PATTERN statement, GCONTOUR procedure 240
patterns 244
patterns and joins 1120
simple 1115
terminology 1097
text for contour labels 1115

control characters, device 428
conventions 25
converting

graphics output 1659, 1662
coordinates

See also Cartesian coordinates
associated with addresses 1157
comparing to map data set 1205
longitude and latitude 1398

coordinates and coordinate systems
Annotate facility 650
data-dependent, GSLIDE with 1521

COPY function (DSGI) 867
COPY= option

TDEF statement (GREPLAY) 1496
COPY statement

GDEVICE procedure 1133
GREPLAY procedure 1486

copying
catalog entries 1499
numbers of print copies 367

COUTLINE= option
BAR statement (GBARLINE) 963
BLOCK statement (GCHART) 1007
BLOCK statement (GMAP) 1262
CHORO statement (GMAP) 1271
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1020
patterns 250
PIE, PIE3D, DONUT statements (GCHART) 1042
PLOT statement (GCONTOUR) 1103
PLOT statement (GPLOT) 1352
PRISM statement (GMAP) 1278
STAR statement (GCHART) 1058

CPATTERN 343
CPATTERN= graphics option 242, 343

patterns 249
patterns and 250

CPERCENT option
BAR statement (GBARLINE) 963
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1020

1702 Index

CPERCENTLABEL= option
HBAR, HBAR3D statements (GCHART) 1021

CPORT procedure 1659
CREATE_ID_ option

PROC MAPIMPORT statement 1595
CREF= option

BAR statement (GBARLINE) 963
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1021
PLOT statement (GBARLINE) 976

CSELECT= macro argument 581
CSHADOW= option, LEGEND statement options 227, 238
CSPOKES= option

CHART statement (GRADAR) 1425
CSTARCIRCLES= option

CHART statement (GRADAR) 1425
CSTARFILL= option

CHART statement (GRADAR) 1425
CSTARS= option

CHART statement (GRADAR) 1426
CSYMBOL 344
CSYMBOL= graphics option 276, 344
CTEXT 344
CTEXT= macro argument 586
CTEXT= option

BAR statement (GBARLINE) 963
BLOCK statement (GCHART) 1007
BLOCK statement (GMAP) 1262
BUBBLE statement (GPLOT) 1338
CHART statement (GRADAR) 1426
CHORO statement (GMAP) 1271
HBAR, HBAR3D, VBAR, VBAR3D statements 935
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1021
PIE, PIE3D, DONUT statements (GCHART) 1042
PLOT statement (G3D) 1549
PLOT statement (GBARLINE) 977
PLOT statement (GCONTOUR) 1103
PLOT statement (GPLOT) 1352
PRISM statement (GMAP) 1279
PROC GFONT statement 1180
SCATTER statement (G3D) 1556
STAR statement (GCHART) 1058

CTEXT= options, GOPTIONS statement 293, 344
CTILES= option

CHART statement (GRADAR) 1426
CTITLE 345
CTITLE= graphics option 293, 345
CTOP= option

PLOT statement (G3D) 1549
cumulative frequency statistic 953, 962, 1000
cumulative percentage statistic 953, 963, 1001
current catalog 1126
current window system, DSGI 776
curve-drawing capability, device 339
curves, nonlinear

horizontal variables along 1573
CUSTOM geocoding method 1158

non-address input values 1156
custom graphics 23
custom graphs, creating with DSGI 773
CUTOFF= macro argument 581
CV= option

SYMBOL statement 255, 275
CVREF= option

BUBBLE statement (GPLOT) 1338

PLOT statement (GCONTOUR) 1103
PLOT statement (GPLOT) 1353

D
D= option, TITLE, FOOTNOTE, and NOTE state-

ments 285
DASH 346
DASH option 346
dashed lines

hardware-generated 346
lengths of dashes, scaling 347

DASHLINE 346
DASHLINE= option, GDEVICE procedure 346
DASHSCALE 347
DASHSCALE= graphics option 347
DATA= argument

PROC GFONT statement 1183
PROC GINSIDE statement 1206

data-dependent coordinates with GSLIDE procedure 1521
data library for rendered fonts 416
DATA= option

PROC G3D statement 1547
PROC G3GRID statement 1576
PROC GAREABAR statement 933
PROC GBARLINE statement 958
PROC GCHART statement 1004
PROC GCONTOUR statement 1099
PROC GEOCODE statement 1155
PROC GMAP statement 1252
PROC GPLOT statement 1333
PROC GPROJECT statement 1403
PROC GRADAR statement 1421
PROC GREDUCE statement 1451
PROC GREMOVE statement 1463
PROC GTILE statement 1529

data sets 54
See also map data sets
See also response data sets
address data sets 1148
DSGI data sets 775
font data set 1187
for annotating maps 1247
for Range geocoding 1151
input data sets 54
kern data sets 1196
loading into memory 1154
lookup data sets 1148
METAMAPS 1247
SASHELP.ZIPCODE 1149
space data sets 1197

DATA sets
Annotate DATA set 34

DATA step
Annotate data sets 654
DSGI functions and routines in 34

DATA Step Graphics Interface
See DSGI (DATA Step Graphics Interface)

data tips
GBARLINE procedure 985

data values
formatting 617

DATAORDER= option
BUBBLE statement (GPLOT) 1339

DATASYS option
PROC GANNO statement 914, 916

Index 1703

scaling graphs 916
DATATIPHIGHLIGHTCOLOR= parameter, Metaview Ap-

plet 534
DATATIPSTYLE= parameter, Metaview Applet 534
DATATYPE= macro argument 571
date and time formats

supported by ACTIVEX 459
date-time information

as axis values, ordering 206
ordering axis tick marks (example) 294

dateline 1405
DBF shapefiles

including selected variables from 1598
%DCLANNO macro, Annotate facility 743
DDLEVEL# applet parameter 613
DDLEVEL= parameter, JAVA and ActiveX 492
debug 676
DEBUG function, Annotate facility 676
debugging

Annotate facility 658
DSGI programs 776

DEF option
TDEF statement (GREPLAY) 1496

default fonts 157
DEFAULTTARGET= graphics option 534
DEGREES option

PROC GPROJECT statement 1404
DEL option

TDEF statement (GREPLAY) 1496
DELAY 347
delay between displayed graphs 347, 379
DELAY= graphics option 521
DELETE function (DSGI) 868
DELETE option

TDEF statement (GREPLAY) 1496
DELETE statement

GDEVICE procedure 1133
GREPLAY procedure 1486

deleting
graphics output, after display 353, 356
polygon overlap 400, 404

density levels 1452
density of map observations 1253
DENSITY= option

PROC GMAP statement 1253
DENSITY variable 1296, 1447
DEPTH= macro argument 581
DES= option

CDEF statement (GREPLAY) 1485
GSLIDE procedure 1520
TDEF statement (GREPLAY) 1496
TREPLAY statement (GREPLAY) 1499

DESCENDING option
BAR statement (GBARLINE) 964
BY statement 216
BY statement (GREMOVE) 1464
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1021
PIE, PIE3D, DONUT statements (GCHART) 1042
PLOT statement (GBARLINE) 977
STAR statement (GCHART) 1058

DESCRIPTION 348
DESCRIPTION= option

BAR statement (GBARLINE) 964
BLOCK statement (GCHART) 1008
BLOCK statement (GMAP) 1263

BUBBLE statement (GPLOT) 1339
CHART statement (GRADAR) 1427
CHORO statement (GMAP) 1271
FLOW, TILE, TOGGLE statements (GTILE) 1533
GDEVICE procedure 348
GKPI procedure 1228
GSLIDE procedure 1520
HBAR, HBAR3D, VBAR, VBAR3D statements 936
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1022
PIE, PIE3D, DONUT statements (GCHART) 1043
PLOT statement (G3D) 1549
PLOT statement (GCONTOUR) 1104
PLOT statement (GPLOT) 1353
PRISM statement (GMAP) 1279
PROC GANNO statement 915
SCATTER statement (G3D) 1556
STAR statement (GCHART) 1059
SURFACE statement (GMAP) 1287

destinations 40
closing to save system resources 51
controlling graphics output format 48
default 49
sending output to multiple open destinations 51
specifying devices and styles with 51

destinations, ODS 191
DETAIL= option

PIE, DONUT statements (GCHART) 1043
detail pie charts 993

creating 1092
Detail window (GDEVICE) 1138
DETAILLEVEL= option

FLOW, TILE, TOGGLE statements (GTILE) 1533, 1538
DETAIL_PERCENT= option

PIE, DONUT statements (GCHART) 1043
DETAIL_RADIUS= option

PIE, DONUT statements (GCHART) 1043
DETAIL_SLICE= option

PIE, DONUT statements (GCHART) 1043
DETAIL_THRESHOLD= option

PIE, DONUT statements (GCHART) 1043
DETAIL_VALUE= option

PIE, DONUT statements (GCHART) 1043
DEVADDR 348
DEVADDR= option

GOPTIONS statement 348
DEVICE 349
DEVICE argument

? statement (GREPLAY) 1482
device catalogs 1126

current catalog 1126
search order of 1127

device display area 59
cells 62
dimensions 60
image quality across devices 65
resolution 61
size 61
sizing errors 66
units 62

device drivers 68
color list 169
comparisons between 506
Web output 439

device entries 68, 1126
adding to catalogs 1130

1704 Index

changing values in 1135
copying 1133
creating or modifying 1142
creating with program statements 1143
deleting from current catalog 1133
listing parameters of 1134
modifying parameters 85
parameters versus style attributes 134
renaming 1136
saving modifications 1136
transporting 1662
viewing and modifying 85
viewing contents of 85

DEVICE function (DSGI) 823, 877
device-generated graphics

circles and arcs 339
dashed lines 346
line thickness 391
pie filling 403
plot symbols 423
polygon-fill 405
rectangle-fill 414
vertices, maximum drawn 393

DEVICE= graphics option 349
controlling graphics output format 48
specifying 49
static graphics 503

device maps
specifying 349

device parameters 328
complete list of, alphabetical 328

device-resident fonts 156, 1655
alternative 1657
default 1655

DEVICE statement
GREPLAY procedure 1487

devices 67, 68
ActiveX 73
appearance differences among graphs 638
capabilities of, listing 350
categories of 72
commonly used 68
controlling graphics output format 48
creating 86
default 49
defaults for ODS destinations 69
how output is written to 375
identifying type of 352
image quality across devices 65
interface devices 73
Java 73
location of, for output 348
model numbers 393
modifying default output attributes 72
native SAS/GRAPH 72
nicknames for 368
overriding 72
related topics 86
Scalable Vector Graphics 77
selecting 71
sending strings to 370, 371
specifying type of 427
specifying with multiple open destinations 51
SVG output 79
Universal Printer shortcut 73, 75
user input, enabling 429

viewing list of all available devices 70
DEVMAP 349
DEVMAP= graphics option 349
DEVMAP= option, GDEVICE procedure 349
DEVOPTS= 350, 350
DEVOPTS= option, GDEVICE procedure 350
DEVTYPE 352
DEVTYPE= option, GDEVICE procedure 352
diagnostic messages, Annotate facility 761
dial KPI charts 1215, 1233
DIAL statement

GKPI procedure 1226
DIRECT= parameter, JAVA and ActiveX 492
DIRECTORY window 1501
DIRECTORY window (GDEVICE) 1137
DISABLE DRILLDOWN applet parameter 618
discrete numeric chart variables 964
discrete numeric midpoints 950
discrete numeric variables 998

in star charts 1089
DISCRETE option

AREA statement (GMAP) 1256
BAR statement (GBARLINE) 964
BLOCK statement (GCHART) 1008
BLOCK statement (GMAP) 1263
CHORO statement (GMAP) 1272
HBAR, HBAR3D, VBAR, VBAR3D statements 936
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1022
PIE, PIE3D, DONUT statements (GCHART) 1043
PRISM statement (GMAP) 1279
STAR statement (GCHART) 1059

discrete variables 997, 1249
DISPLAY 353
DISPLAY option 353
display size (lines) 377
DISPOSAL 353
DISPOSAL= graphics option 521
DISPOSAL option 353
DOCTYPE= macro argument 586
document files 88
document formats

versus graphics formats 113
DOCUMENT procedure

replaying output 107
donut charts 9, 993

creating 1038
labels 1051
outlines 1053
selecting and positioning slice labels 1052
slice patterns and colors 1053
statistic and group headings 1048, 1054
subgrouping 1083
text description suboptions 1050

DONUT statement
GCHART procedure 1038

DONUT statement, GCHART procedure
ActiveX and Java support for 1615

DONUTPCT= option
DONUT statement (GCHART) 1044

DOWN= option
LEGEND statement options 228
PIE, PIE3D, DONUT statements (GCHART) 1044
STAR statement (GCHART) 1059

DOWNVAR= option
CHART statement (GRADAR) 1427

Index 1705

draw 676
DRAW function, Annotate facility 676, 1636
%DRAW macro, Annotate facility 744
DRAW= option, TITLE, FOOTNOTE, and NOTE state-

ments 285
DRAW2TXT function, Annotate facility 677, 1636
%DRAW2TXT macro, Annotate facility 744
DRAWIMAGE= parameter, JAVA 492
drawing areas, Annotate graphics 650
DRAWMISSING= parameter, JAVA 492
DRAWSIDES= parameter, JAVA 492
drill-down

ActiveX 460
adding to Web presentations 511
configuring for Java output 475
customizing levels for 613
disabling 618
GIF output with 515
HTML mode for Java 482
JavaScript, with ActiveX 464, 466
local mode for Java 475
script mode for Java 477
URL mode for Java 479

drill-down functionality
Annotate facility for 540
bar charts with (example) 321, 618
constellation charts 566
creating plots with (example) 1389
treeview diagrams 550

drill-down graphs
Annotate graphics in 925

drill-down tags 608, 612
drill-down URLs 985
DRILLDOWN= parameter, JAVA and ActiveX 492
DRILLDOWNMODE= parameter, JAVA and ActiveX 492
DRILLFUNC= parameter, JAVA and ActiveX 492
DRILLPATTERN= parameter, JAVA and ActiveX 493
DRILLTARGET applet parameter 613, 615
DRILLTARGET= parameter, JAVA and ActiveX 493
DRILTARG= macro argument 581
driver modules 394
driver termination 355
drivers, initializing 354
drop shadows, legends 227, 238
DROPCOLLISIONS option

SYMBOL statement 266
DRVINIT 354
DRVINIT1 354
DRVINIT1= and DRVINIT2= options, GDEVICE proce-

dure 354
DRVINIT1= and DRVINIT2= options, GOPTIONS state-

ment 354
DRVINIT2 354
DRVQRY 354
DRVQRY= option, GDEVICE procedure, executing before

driver initialization 354
DRVTERM 355
DRVTERM1 355
DRVTERM1= and DRVTERM2= options, GDEVICE proce-

dure 355
DRVTERM1= and DRVTERM2= options, GOPTIONS

statement 355
DRVTERM2 355
DS2CONST macro 451, 555

arguments of 560, 569
arguments of, character transcoding 593

arguments of, data definition 571
arguments of, diagram appearance 579
arguments of, file generation 578
arguments of, page formatting 585
arguments of, titles and footnotes formatting 589
chart with simple arcs (example) 560
chart with weighted arcs (example) 562
enhancing presentations for 559
hotspots 566
stylesheets, macro arguments for 587
XML written to external file (example) 564

DS2TREE macro 451
arguments of 547, 569
arguments of, character transcoding 593
arguments of, data definition 571
arguments of, diagram appearance 579
arguments of, file generation 578
arguments of, page formatting 585
arguments of, titles and footnotes formatting 589
enhancing presentations for 546
stylesheets, macro arguments for 587

DSGI (DATA Step Graphics Interface) 23, 770, 813
Annotate facility vs. 770
attributes for graphics elements 784, 789
creating simple graphics 783
examples of using 797
functions and routines 776, 777
GASK routines 809, 816
GDRAW functions, list of 855
global statements with 775
GRAPH functions, list of 866
GSET functions, list of 870
how to use 774
images, displaying 188
inserting graphs into DSGI output 794
operating states 775, 785, 814
processing statements in loops 796
return codes, list of 908
syntax 772
utility functions, list of 814
viewports and windows 791, 801

DSGI functions and routines 34
DUMP option

LIST statement (GDEVICE) 1134
DUPCHECK= macro argument 581
DUPLEX 355
duplex printing 334, 355
DUPLICATEVALUES= parameter, JAVA 493
DUPOK option

PROC GPROJECT statement 1404

E
E1= option

PROC GREDUCE statement 1451
E2= option

PROC GREDUCE statement 1451
E3= option

PROC GREDUCE statement 1451
E4= option

PROC GREDUCE statement 1451
E5= option

PROC GREDUCE statement 1451
EASTLONG option

PROC GPROJECT statement 1404
EBCDIC-to-ASCII translation 427

1706 Index

editable output 365
Electronic font 1650
ELLARC function (DSGI) 858
ELLIPSE function (DSGI) 859
ellipses, drawing with DSGI 858, 859
EMF transparency limitation

Microsoft Office 119
EMPTY variable, Annotate facility 721
ENCODE= macro argument 586
encoding

Unicode 159
engines 56
enhancement variables

in Web presentations 601
environments 53
equal-area map projections

See Albers’ equal-area projection
ERASE 356
ERASE= graphics option 356
ERASE= option, GDEVICE procedure 356
erasing

graphics output, after display 353, 356
error bars

color of 962
confidence intervals for 963, 965
in horizontal bar charts 1078

ERRORBAR= option
BAR statement (GBARLINE) 965
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1022
errors

sizing errors 66
errors and error messages, Annotate facility 761
ESRI files

importing as map data sets 1593, 1594
ESRI shapefiles

importing maps from 1251
Euclidean distance formula 1453
examples 28

Annotate macro data set 30
conventions for 27
map data sets and 30
sample programs 28
support personnel for 28

executable driver modules 394
EXPLODE= option

PIE, PIE3D, DONUT statements (GCHART) 1044
exporting graphics output 111
exporting graphs

color depth 114
comparison of output 116
default CGM filter for Microsoft Office 120
editing graphs 115
EMF and CGM transparency limitation 119
enhancing graphs 120
fonts 115
graphics formats versus document formats 113
image resolution and size 114
multiple-image graphics files 115
to Microsoft Office 113
vector versus raster formats 115

EXTENSION 357
EXTENSION= graphics option 357
external files

file extensions for 357

F
F= option

AXIS statement options 211
LEGEND statement options 233
POINTLABEL= specification 266
SYMBOL statement 256
TITLE, FOOTNOTE, and NOTE statements 285

FACHE= graphics option 358
FACTOR= macro argument 581
FASTTEXT 358
FASTTEXT= graphics option 357
FBY 358
FBY= graphics option 358
FCACHE 358
FCLASS= macro argument 589
FCOLOR= macro argument 589
feature tables 1246

creating maps with 1314
$GEOREF format 1246
merging with response data sets 1246

FFACE= macro argument 589
FILCOLOR function (DSGI) 824, 877
file extensions 357

graphics output files 93
file specifications

specifying input data sets 55
FILECLOSE 359
FILECLOSE= graphics option 359
FILECLOSE= option, GDEVICE procedure 359
FILENAME 383
filename indexing 99
FILENAME statement 35, 36

storing in device entry 383
filenames

output 102
FILEONLY 360
FILEONLY= graphics option 360
FILEREP function (DSGI) 825
files

image file types 181
sending output to 44
sending strings to 370, 371
storing graphics output as 360

FILINDEX function (DSGI) 824, 878
filing images 183
FILL 360
FILL function (DSGI) 860
FILL= graphics option 360
FILL= option

PIE, PIE3D, DONUT statements (GCHART) 1044
STAR statement (GCHART) 1059

FILL= option, GDEVICE procedure 360
filled fonts 1177
FILLED option

PROC GFONT statement 1185
FILLINC 361
FILLINC= graphics option 361
FILLINC= option, GDEVICE procedure 361
FILLPOLYGONEDGES= parameters, JAVA and Ac-

tiveX 494
FILREP function (DSGI) 879
FILSTYLE function (DSGI) 826, 880
FILTYPE function (DSGI) 827, 880
FIPS codes 1289

functions for 1290
FISHEYE= macro argument 581

Index 1707

fixed-length output records 365
flow control, device 380
FLOW statement

GTILE procedure 1530
FNTNAME= macro argument 582
FNTSIZE= macro argument 582
FNTSTYL= macro argument 582
font data sets 1187

creating 1195
variables 1189

font maximum 1176
font minimum 1176
font modifiers 159
FONT NAME 361
FONT= option 233

AXIS statement options 211
CHART statement (GRADAR) 1427
GKPI procedure 1224
POINTLABEL= specification 266
SYMBOL statement 256
TITLE, FOOTNOTE, and NOTE statements 285

FONT= suboption
LABEL= option, DONUT statement (GCHART) 1051

FONTRES 362
FONTRES= graphics option 362
fonts 155, 1176

ActiveX and 458
additional 156
axis labels 201, 208, 211
axis values 211
baseline 1176
bubble plots 1336
BY lines 217, 358
capline 1176
changing specifications used by styles 165
complete list of 1644
creating 1176, 1183, 1187
creating figures for symbol font 1201
default 157, 337, 338, 1655
determining available fonts 157
device-resident fonts 156
displaying 1175, 1179, 1180
displaying with character codes 1199
donut chart labels 1051
exporting graphs to Microsoft Office 115
filled 1177
full names for 1657
GFONT procedure 1175
GKPI procedure 1224
graphics output text 363
in ACTIVEX 459
international characters 159
kern data sets 1196
legend label 228
legend text 233
legend values 233
line segments 1177
methods for specifying 163
modifying when specified by styles 143
open at one time 358
outline 1177
parts of 1176
PDF files 123
plot point label 266
plot symbols 256
polygon 1177

precedence of specifications 165
proportional 1176
registry subkeys 159
rendering 358, 364, 415, 422,
rendering, data library for 416
resolution 362
SAS/GRAPH fonts 155
scaling in graphics output 343, 419, 420
space data sets 1197
special characters 160
special Java fonts 472
specifying 159
specifying in GraphFonts style element 146
specifying modifiers 159
specifying with global statement options 164
specifying with GOPTIONS statement 164
stroked 1176
system fonts 156
terminology 1176
text in graphics output 285
titles and footnotes 195, 364
transporting 1661
troubleshooting 638
TrueType 156
TrueType fonts supplied by SAS 156
types of 155, 1176
uniform 1176
user-created 1177
viewing specifications in SAS registry 158
where stored 1644, 1653

FOOTNOTE 280
FOOTNOTE definitions

displaying values of 1319
FOOTNOTE element (HTML), macro arguments for 589
FOOTNOTE option

PROC GOPTIONS statement 1321
FOOTNOTE statement 33, 198, 280, 292

ActiveX and Java support for 1612
BY statement with 219
displaying with GOPTIONS procedure 1322

footnotes 292
angle of rotation 281, 287, 290
boxes around 283, 284
colors for 283, 284, 344, 345
default characteristics, setting 293
defining text of 290, 294
fonts for 285
hyperlinks for 288
justification 286
ODS output 194, 195
placement in graphics output area 65
positioning 289
size of 286, 385
spacing around 289
text breaks 293
underlining 291

footnotes macro, arguments for 589
foreground colors

default, defining 341
reversing black and white 421

FORMAT 363
FORMAT= option

GKPI procedure 1228
FORMAT= option, GDEVICE procedure 363
FORMAT statement 35

1708 Index

formats
assigning to response variables 1304
for map variables 1291
supported by ACTIVEX 459
supported for Java 472

formatting
axis labels 201, 208, 209, 210
axis tick marks 203, 204, 214
axis values 210
BY lines 217
legend label 228
legend values 233
legends 225

FRAME function, Annotate facility 1637
frame. legend 228
%FRAME macro, Annotate facility 745
FRAME option

BAR statement (GBARLINE) 966
BUBBLE statement (GPLOT) 1339
CHART statement (GRADAR) 1427
GSLIDE procedure 1520
HBAR, HBAR3D, VBAR, VBAR3D statements 936
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1024
PLOT statement (GPLOT) 1353

FRAME= option, LEGEND statement options 228
frames

around axis area 966
backplane images 184
images on 184, 1026, 1340, 135

frames, drawing 1521
FREQ option

BAR statement (GBARLINE) 966
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1024
BAR statement (GBARLINE) 966
BLOCK statement (GCHART) 1008
CHART statement (GRADAR) 1428
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1024
PIE, PIE3D, DONUT statements (GCHART) 1044
PLOT statement (GBARLINE) 977
STAR statement (GCHART) 1060

FREQLABEL= option
HBAR, HBAR3D statements (GCHART) 1024

FREQNAME= parameters, JAVA and ActiveX 494
frequency statistic 953, 966, 1000
frequency variable

for plot statistic 977
FRONTREF option

HBAR, HBAR3D, VBAR, VBAR3D statements
(GCHART) 1024

FS option
PROC GREPLAY statement 1479

FS statement
GDEVICE procedure 1134
GREPLAY procedure 1487

FSIZE= macro argument 589
FTEXT 363
FTEXT= option

GOPTIONS statement 293, 363
FTITLE 363
FTITLE= graphics option 293, 364
FTRACK 364
FTRACK= graphics option 364
FUNCTION variable, Annotate facility 649, 704

functions
DSGI 34
FIPS and postal codes 1290

functions, Annotate 647, 669
FUZZ= option

PROC GREMOVE statement 1463
FWIDTH= option, LEGEND statement options 228

G
G_ COLOR= parameters, JAVA and ActiveX 494
G_ COLORV= parameters, JAVA and ActiveX 494
G_ DEP= parameters, JAVA and ActiveX 494
G_ DEPTH= parameters, JAVA and ActiveX 494
G_ DEPTHV= parameters, JAVA and ActiveX 494
G_ DEPV= parameters, JAVA and ActiveX 494
G_ GROUP= parameters, JAVA and ActiveX 495
G_ GROUPV= parameters, JAVA and ActiveX 495
G_ INDEP= parameters, JAVA and ActiveX 495
G_ INDEPV= parameters, JAVA and ActiveX 495
G_ LABEL= parameters, JAVA and ActiveX 495
G_ LABELV= parameters, JAVA and ActiveX 495
G_ SUBGR= parameters, JAVA and ActiveX 495
G100 option

BLOCK statement (GCHART) 1009
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1025
g3d 1546
G3D procedure 1541

ActiveX and Java support for 1633
axes 1545
concepts 1543
input data sets 1544
PLOT statement 1547
PROC G3D statement 1546
rotating and tilting plots 1545
scatter plots 1542
SCATTER statement 1554
surface plots 1541, 1560, 1564, 15
surface plots, rotated 1561
surface plots, tilted 1563
syntax 1546
terminology 1543

G3GRID 1576
G3GRID procedure 1571

concepts 1573
controlling observations in output data set 1580
default interpolation method 1581
GRID statement 1577
horizontal variables along nonlinear curve 1573
input data set 1573
interpolation methods 1574
multiple vertical variables 1573
output data set 1573
partial spline interpolation 1586
PROC G3GRID statement 1576
spline and smoothing interpolations 1584
spline interpolation 1588
syntax 1576

GACCESS 365
GACCESS= graphics option 365
GACCESS= option, GDEVICE procedure 365
GANNO 913, 914
GANNO procedure 656, 913

Annotate graphics in drill-down graphs 925
compared with GSLIDE procedure 913

Index 1709

PROC GANNO statement 914
producing multiple graphs 921
scaling data-dependent output 916
scaling graphs 916
storing Annotate graphics 919
syntax 914
Web output, generating 540

GAREABAR 931, 933
GAREABAR procedure 931

ActiveX and Java support for 1612
area bar charts 938
area bar charts with numeric chart variable 940
area bar charts with subgroups 942, 944
concepts 932
examples 937
HBAR and HBAR3D statements 934
PROC GAREABAR statement 933
syntax 933
VBAR and VBAR3D statements 934

GASK routines
DSGI 809
list of, reference 816

GAXIS= option
BLOCK statement (GCHART) 1009
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1025
GBARLINE 947
GBARLINE procedure 947

ActiveX and Java support for 1613
BAR statement 959
calculating weighted statistics 983
chart statistics 953
chart variables 950
concepts 949
creating bar-line charts 981
data tips 985
drill-down URLs 985
midpoints 950
missing values 954
multiple plots 985
patterns, outlines, colors, and images 955
PLOT statement 974
plot variable values out of range 955
PROC GBARLINE statement 958
response variables 952
subgroups 985

%GCBATCH autocall macro 1155
%GCDMEL9 autocall macro 1152
GCHART 1004
GCHART procedure 990, 1003, 1332

3-D vertical bar charts, subgrouping 1072
ActiveX and Java support for 1615
bar charts 991
bar charts, sum statistic in 1070
block charts 990
block charts, grouping and subgrouping 1067
block charts, sum statistic in 1066
BLOCK statement 1005
BY-group processing with (example) 309
BY statement 218
chart statistics 1000
chart variables 997
concepts 996
detail pie charts 993, 1092
donut charts 993
donut charts, subgrouping 1083

DONUT statement 1038
drill-down functionality in bar chart (example) 618
DSGI viewport with (example) 801
HBAR, HBAR3D statements 1016
horizontal bar charts, error bars in 1078
horizontal bar charts, midpoints and statistics in 1075
midpoints 998
missing values 998
PATTERN statement 240
patterns 242, 1002
patterns and outlines 245
PIE, PIE3D statements 1038
pie charts 993
pie charts, grouping and arranging 1086
pie charts, ordering and labeling slices 1084
pie charts, subgrouping 1083
pie charts, sum statistic in 1080
PROC GCHART statement 1004
star charts 995
star charts, discrete numeric variable in 1089
star charts, sum statistic in 1088
STAR statement 1055
subgroup labels (example) 661
syntax 1003, 1332
VBAR, VBAR3D statements 1016

GCLASS 366
GCLASS= graphics option 367
Gcolors window (GDEVICE) 1139
GCONTOUR 1095, 1099
GCONTOUR procedure 1095

ActiveX and Java support for 1620
concepts 1097
contour levels 1109, 1119
contour plots 1097, 1114
contour plots, modifying 1116
contour plots, simple 1115
data ranges 1097
input data 1097
interpolating data 1098
missing values 1098
PATTERN statement 240
patterns 244
patterns and joins 1120
PLOT statement 1099
PROC GCONTOUR statement 1098
syntax 1098

GCOPIES 367
GCOPIES= graphics option 367
GCOPIES= option, GDEVICE procedure 367
GDDM device driver

device nicknames 368
writing ADMGDF or GDF files 330

GDDMCOPY 367
GDDMCOPY= graphics option 367
GDDMNICKNAME 368
GDDMTOKEN 368
GDDMTOKEN= graphics option 368
GDEST 368
GDEST= graphics option 368
GDEVICE 1126, 1129
GDEVICE procedure 1126

ADD statement 1130
browse mode 1129
concepts 1126
COPY statement 1133
creating device entries with program statements 1143

1710 Index

creating or modifying device entries 1142
default device-resident fonts 1656
DELETE statement 1133
device catalogs 1126
exiting 1128, 1136
FS statement 1134
LIST statement 1134
MODIFY statement 1135
PROC GDEVICE statement 1129
program mode 1127, 1128, 1129
QUIT statement 1136
RENAME statement 1136
switching modes 1134
syntax 1129
windowing mode 1127

GDEVICE windows 327, 1136
commands 1137
switching from program mode to 1134

GDF files, writing with GDM driver 330
GDRAW function, DSGI 188, 855
G_drill-down tags 608
GEND 369
GEND= graphics option 369
GEND= option, GDEVICE procedure 369
Gend window (GDEVICE) 1141
geo-variables 1250
GEOCODE 1155
GEOCODE procedure 1147

alternate lookup data sets 1150
concepts 1149
data sets for Range geocoding 1151
%GCDMEL9 autocall macro 1152
geocoding with default values 1167
indexing lookup data sets 1154
loading data sets into memory 1154
MATCHED variable 1148
%MAXMIND autocall macro 1153
optimizing performance 1153
output data sets 1149
output data sets, adding additional variables to 1169
PROC GEOCODE statement 1154
SASHELP.ZIPCODE data set 1149
syntax 1154
U.S. military ZIP codes 1151

geocoding 1147
data set for geocoded addresses 1162
disabling informational log messages 1161
disabling secondary matching 1161
latitude of location 1158
longitude of location 1158
matches 1149
methods for 1158
multiple matches 1149
with default values 1167
with ZIP codes 1148

Geo*Data 1152
$GEOREF format 1246
GEPILOG 370
Gepilog field, device entries 405, 407, 408
GEPILOG= graphics option 370
GEPILOG= option, GDEVICE procedure 370
Gepilog window (GDEVICE) 1140
Geprolog field, device entries 406
GFONT 1178
GFONT procedure 1175

concepts 1176

creating figures for symbol font 1201
creating fonts 1176, 1187
displaying fonts 1175
displaying fonts and character codes 1199
font terminology and characteristics 1176
options for creating fonts 1183
options for displaying fonts 1180
PROC GFONT statement 1178
required arguments for creating fonts 1183
required arguments for displaying fonts 1179
storing user-created fonts 1177
syntax 1178

GFONT0 libref 1177
GFOOTNOTE= option, ODS HTML statement 194
GFORMS 370
GFORMS= graphics option 370
GIF device

data tips for 598
GIF device driver 451

ACTXIMG, JAVAIMG vs. 506
developing web presentations 508
HTML files, generating 509

GIF output
drill-down in 515

GIF presentations 446
GIFANIM device 519

creating animated sequences 520
GOPTIONS for presentations 521

GIFANIM device driver 447
developing Web presentations 519
sample programs 522

GIFs
creating animated GIFs with BY-group processing 522
creating animated GIFs with GREPLAY procedure 527
creating animated GIFs with RUN-group processing 524

GINIT function (DSGI) 814
GINSIDE 1205
GINSIDE procedure 1205

determining values with 1207
ID statement 1207
mapping and annotating values from 1208
PROC GINSIDE statement 1206
syntax 1206

GKPI 1225
GKPI procedure 1213

actual KPI values 1218
basic or raised mode 1216, 1225
boundary values 1219
bullet graph charts 1214
bullet graph charts, gray scale 1232
concepts 1216
default colors as active colors 1231
device for 1214
dial charts 1215, 1233
DIAL statement 1226
display types 1226
examples 1230
fonts 1224
HBULLET statement 1226
HSLIDER statement 1226
HTRAFFICLIGHT statement 1226
PROC GKPI statement 1225
segment boundaries 1218
segment colors 1219
slider charts 1214
speedometer charts 1215, 1234, 1235

Index 1711

SPEEDOMETER statement 1226
syntax 1225
tick mark values 1219
traffic light charts 1216, 1236
VBULLET statement 1226
VSLIDER statement 1226
VTRAFFICLIGHT statement 1226

global statement options
specifying fonts with 164

global statements 23, 33, 197, 775
RUN-group processing and 56

GMAP 1240
GMAP procedure 240, 1240

ActiveX and Java support for 1622
AREA statement 1255
BLOCK statement 1259
BY statement 218
CHORO statement 1269
concepts 1244
examples 1301
ID statement 1255
input map data sets for 1459
PRISM statement 1276
PROC GMAP statement 1252
summary of use 1251
SURFACE statement 1285
syntax 1252

gnomonic projection 1402
emphasizing map areas 1412
projection criteria 1408
projection pole for 1406
specifying 1406
when to use 1407

GOPTIONS 224, 1319
GOPTIONS procedure 1319

compared with GOPTIONS statement 1319
displaying graphics options without descriptions 1323
displaying TITLE and FOOTNOTE statements 1322
PROC GOPTIONS statement 1320
syntax 1320

GOPTIONS statement 33, 198, 224, 327, 3
ActiveX and Java support for 1604
building color lists 169
compared with GOPTIONS procedure 1319
graphics option processing 225
resetting options 417
specifying fonts with 164
using 224

GOUT argument
? statement (GREPLAY) 1482

GOUT= option
GSLIDE procedure 1520
PROC G3D statement 1547
PROC GANNO statement 915
PROC GCHART statement 1004
PROC GCONTOUR statement 1099
PROC GFONT statement 1180
PROC GMAP statement 1253
PROC GPLOT statement 1333
PROC GRADAR statement 1421
PROC GREPLAY statement 1479

GOUT statement
GREPLAY procedure 1488

GOUTMODE 371
GOUTMODE= graphics option 371
GPLOT 1332

GPLOT procedure 240, 1325
ActiveX and Java support for 1625
adding right vertical axis (example) 1370
BUBBLE statement 1334
BUBBLE2 statement 1343
BY statement 219
connecting plot data points (example) 1375
different scales of values (example) 1386
filling areas in overlay plot (example) 1380
generating overlay plot (example) 1377
generating simple bubble plots (example) 1367
input data set 1331
labeling and sizing plot bubbles (example) 1368
PATTERN definitions 1366
plot basics 1329
PLOT statement 1347
PLOT2 statement 1361
plots with drill-down for Web (example) 1389
plotting three variables (example) 1383
plotting two variables (example) 1372
PROC GPLOT statement 1332
scaling graphs with DSGI windows (example) 804
SYMBOL definitions 1360, 1366
SYMBOL statement 274
syntax 1332

GPRINT function (DSGI) 815
GPROJECT 1395
GPROJECT procedure 1395

clipping map areas 1414
clipping map data sets 1408, 1414
concepts 1397
coordinate values 1398
default projection specifications 1409
emphasizing map areas 1412
examples 1409
ID statement 1407
input map data sets 1397
map projections 1399
PROC GPROJECT statement 1403
projecting annotate data sets 1416
projection criteria 1408
projection methods 1406
selecting projections 1407
syntax 1403
usage 1407

GPROLOG 371
GPROLOG= graphics option 371
GPROLOG= option, GDEVICE procedure 371
Gprolog window (GDEVICE) 1140
GPROTOCOL 372
GPROTOCOL= graphics option 372
GPROTOCOL= option, GDEVICE procedure 372
GRADAR 1419
GRADAR procedure 1419

ActiveX and Java support for 1630
calculating weighted statistics 1420
CHART statement 1422
creating calendar charts 1444
creating radar charts 1437
creating windrose charts 1443
data set for examples 1435
modifying appearance of radar charts 1441
multiple classification variables in radar charts 1440
overlaying radar charts 1438
PROC GRADAR statement 1421
syntax 1421

1712 Index

tiling radar charts 1439
GRADIENTBACKGROUND= parameters, JAVA and Ac-

tiveX 495
GRADIENTENDCOLOR= parameters, JAVA and Ac-

tiveX 496
GRADIENTSTARTCOLOR= parameters, JAVA and Ac-

tiveX 496
Graph applet 441, 469

disabling drill-down 618
drill-down tags 608
local drill-down mode 609, 613
parameters for, list of 488

GRAPH functions, DSGI 865
Graph-N-Go 24
GRAPH window

sending output to 43
GraphColors

modifying style elements 143
GraphColors style element 144
GraphFonts

modifying style elements 143
GraphFonts style element 145

font specifications in 146
graphics catalogs

converting 1662
duplicate entry names 1476

graphics devices
See devices

graphics elements 59, 88
placement in graphics output area 65

graphics elements, creating DSGI 188, 855
graphics files

multiple-image 115
graphics formats 88

versus document formats 113
graphics options 23, 224, 328

complete list of, alphabetical 328
displaying without descriptions 1323
for GIFANIM presentations 521
listing 1319, 1320
ODS output with 195
resetting 417
storing multiple graphs in one output file 105

graphics output 59, 88, 638
Annotate data sets 655
Annotate graphics with 655
appending strings to records 369
appending to or replacing catalogs 371
background images 386, 388
catalog name and entry name for GRSEGs 100
comparison of, for Microsoft Office 116
controlling format with DEVICE= option 48
conventions for 27
default destinations for 360
destination for 376
device variants to set size of resolution 97
display size, in lines 377
displaying images in 387
enhancing 23
erasing after display 353, 356
examples, using different styles 136
exporting 111
generating for ActiveX 457
generating output for Java 470
GRSEG names 102
GRSEGs 89

how written, specifying 375
name and location of ODS output 97
output filenames 102
output types 89
prefixing records 378
previewing 109
previewing as if on different device 425
printing 110
process of 93
protocol module, specifying 372
queuing for log messages 413
replaying 106
replaying in templates 1506
resolution 95, 97
reversing black and white 421
saving and printing 110
sending directing to printer 110
size of graph 94, 97
storage of 97
supported graphics formats 88
suppressing display of 353
terminology 88
transporting and converting 1659
what you can do with 90

graphics output area 59
Annotate facility 652
border around 335
cells 62
columns in 343, 391, 401
dimensions 60
display area size 61
image quality across devices 65
maximum colors allowed 392
offset between graphs and 383, 429
placement of graphics elements in 65
resolution 61
rows in 392, 413, 419, 430
size of 384, 431, 432, 433,,
sizing errors 66
units 62

graphics output devices 93
ACTIVEX 93
graphics output files and 91
JAVA 93

graphics output files 88
file extensions 93
filename indexing 99
name and location of 98
name of 969
ODS and 91
output devices and 91
replacing with GSFMODE= graphics option 104
specifying type of 91
storing multiple graphs in one file 104

graphics output text
colors for 345
fonts 363
size of 385

GRAPHLIST function (DSGI) 828
GRAPHRC 374
GRAPHRC= graphics option 374
graphs 7

See also appearance of graphs
appearance differences among devices 638
background images 386
box plots 254, 256, 270, 302

Index 1713

BY lines 217
custom graphics 23
displaying in timed series 379
editing 115
enhancing 23
enhancing for Microsoft Office 120
enhancing with DSGI 773
exporting to Microsoft Office 113
importing into Microsoft Excel 121
importing into Microsoft Office 120
importing into Microsoft PowerPoint 122
importing into Microsoft Word 120
placement in graphics output area 65
producing multiple (GANNO) 921
redrawing (overdrawing) 416
replaying into templates 1512
scaling 916
slide presentations of 21
suppressing display of 353
templated 22
writing to PDF files 123

gray scale bullet graph KPI charts 1232
gray-scale color codes 175
GREDUCE 1447
GREDUCE procedure 1447

concepts 1449
density levels 1452
ID statement 1452
input map data sets 1449
PROC GREDUCE statement 1450
reducing map of Canada 1454
subsetting map data sets 1454
syntax 1450
unmatched area boundaries 1449

GREMOVE 1459
GREMOVE procedure 1459

BY statement 1464
concepts 1460
creating outline map of Africa 1469
ID statement 1465
input map data sets 1461
ordering observations 1464
output map data sets 1461
PROC GREMOVE statement 1462
removing state boundaries from U.S. map 1465
syntax 1462
unmatched area boundaries 1461

GREPLAY 1474
GREPLAY procedure 1474

? statement 1482
BYLINE statement 1482
catalog entries 1475
catalog entries, managing 1505
CC statement 1483
CCOPY statement 1483
CDEF statement 1484
CDELETE statement 1485
CMAP statement 1485
code-based statements 1477
concepts 1475
COPY statement 1486
creating animated GIFs 527
creating color maps 1507, 1514
creating multiple-page PDF files 129
creating templates 1506, 1508
DELETE statement 1486

DEVICE statement 1487
FS statement 1487
GOUT statement 1488
GROUP statement 1488
IGOUT statement 1489
invoking 1481
LIST statement 1489
managing catalogs, color maps, and templates 1504
MODIFY statement 1490
MOVE statement 1491
NOBYLINE statement 1492
PREVIEW statement 1492
PROC GREPLAY statement 1479, 1481
QUIT statement 1492
REPLAY statement 1493
replaying catalog entries 1505
replaying graphics output in templates 1506
replaying graphs into templates 1512
replaying GSLIDE procedure output in a template 1510
replaying output 106
sizing and naming graphs for replay 1477
storing multiple graphs in one output file 105
syntax 1479
TC statement 1493
TCOPY statement 1494
TDEF statement 1495
TDELETE statement 1498
template code 1663
TEMPLATE statement 1498
TREPLAY statement 1499
ways to use 1477
window commands 1500, 1503
windowing environment 1477
windows 1500

grid of values
See G3GRID procedure

GRID option
BUBBLE statement (GPLOT) 1339
PLOT statement (G3D) 1550
PLOT statement (GCONTOUR) 1104
PLOT statement (GPLOT) 1354
SCATTER statement (G3D) 1557

GRID statement
G3GRID procedure 1577

group brackets, bar charts 204
group headings

pie and donut charts 1048, 1054
star charts 1062, 1065

GROUP= option
BLOCK statement (GCHART) 1009
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1025
PIE, PIE3D, DONUT statements (GCHART) 1045
STAR statement (GCHART) 1060

GROUP statement
GREPLAY procedure 1488

GROUP variable, Annotate facility 705
grouping

block charts 1067
pie charts 1086

grouping abbreviations 216
GRSEG catalog entries 1475

name of 969
GRSEGs 89

catalog name and entry name for 100
names for 102

1714 Index

storage with multiple ODs destinations 102
GSET functions, DSGI 870
GSF (graphics stream file)

closing 359
how output is written to 375
output format and destination 365
prompt messages to 377
protocol module, specifying 372
record length 374
where written, specifying 376

GSFLEN 374
GSFLEN= graphics option 374
GSFMODE 375
GSFMODE= graphics option 375, 521

replacing graphics output files 104
GSFMODE= option, GDEVICE procedure 375
GSFNAME 376
GSFNAME= graphics option 376, 521
GSFNAME= option, GDEVICE procedure 376
GSFPROMPT 377
GSFPROMPT= graphics option 377
GSIZE 377
GSIZE= graphics option 377
GSLIDE 1517
GSLIDE procedure 656, 1517

Annotate graphics, displaying 1518, 1524
compared with GANNO procedure 913
data-dependent coordinates 1521
producing text slides (example) 1522
replaying output in a template 1510
syntax and options 1519

GSPACE= option
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1025
GSTART 378
GSTART= graphics option 378
GSTART= option, GDEVICE procedure 378
Gstart window (GDEVICE) 1141
GSTYLE system option 134
GTERM function (DSGI) 815
GTILE 1529
GTILE procedure 1527

assigning colors 1528
chart variables 1527
concepts 1527
creating tile charts 1530, 1536
FLOW statement 1530
missing values 1528
negative values 1528
PROC GTILE statement 1529
syntax 1529
TILE statement 1530
TOGGLE statement 1530
zero values 1528

GTITLE= option, ODS HTML statement 194
GUNIT 378
GUNIT= graphics option 378
GWAIT 379
GWAIT= graphics option 378
GWRITER 380
GWRITER= graphics option 380

H
H= option

AXIS statement 211, 214

LEGEND statement options 233
POINTLABEL= specification 267
SYMBOL statement 256
TITLE, FOOTNOTE, and NOTE statements 286

HANDSHAKE 380
HANDSHAKE= graphics option 380
HANDSHAKE= option, GDEVICE procedure 380
handshaking 380, 394
hardware fonts

default 337, 338
device map, specifying 349
scaling in graphics output 343, 419, 420
specifying for device 338, 361
when not found 420

hardware-generated graphics
circles and arcs 339
dashed lines 346
line thickness 391
pie filling 403
plot symbols 423
polygon-fill 405
rectangle-fill 360, 414
vertices, maximum drawn 393

HAXIS= option
BUBBLE statement (GPLOT) 1340
PLOT statement (GCONTOUR) 1104
PLOT statement (GPLOT) 1354

HBAR and HBAR3D statements
GAREABAR procedure 934
GCHART procedure 1615

HBAR statement
GCHART procedure 1016

HBAR3D statement
GCHART procedure 1016

HBULLET statement
GKPI procedure 1226

HBY 381
HBY= graphics option 381
HEADER 382
HEADER= option, GDEVICE procedure 382
HEADER records 382
HEADERFILE 382
HEADERFILE= option, GDEVICE procedure 382
headers

for animated sequences 520
HEIGHT= macro argument 570
HEIGHT= option

AXIS statement 211, 214
CHART statement (GRADAR) 1428
GKPI procedure 1224
LEGEND statement options 233
POINTLABEL= specification 267
PROC GFONT statement 1181
SYMBOL statement 256
TITLE, FOOTNOTE, and NOTE statements 286

HEIGHT= suboption
LABEL= option, DONUT statement (GCHART) 1051

hexadecimal values
specifying special characters 160

high-low plots 15, 258
HITEXT= graphics option 293
HLS color codes 172
HMINOR= option

BUBBLE statement (GPLOT) 1340
PLOT statement (GCONTOUR) 1104
PLOT statement (GPLOT) 1355

Index 1715

HONORASPECT= parameter, JAVA 496
HORIGIN 383
HORIGIN= graphics option 383
HORIGIN= option, GDEVICE procedure 383
horizontal axis

contour plots 1116
horizontal bar charts 8, 991

creating 1016
error bars in 1078
GAREABAR procedure 934
midpoints and statistics in 1075
statistics in 1036

horizontal variables
along nonlinear curve 1573
G3GRID procedure 1573

host commands, executing
after driver initialization 355
after graph production 406
before graph production 408

Host Commands window (GDEVICE) 1141
Host File Options window (GDEVICE) 1141
HOSTSPEC 383
HOSTSPEC= option, GDEVICE procedure 383
HPOS 384
HPOS function (DSGI) 828, 882
HPOS= graphics option 384
HREF attribute 325
HREF= option

BUBBLE statement (GPLOT) 1340
PLOT statement (GCONTOUR) 1104
PLOT statement (GPLOT) 1355

HREVERSE option
BUBBLE statement (GPLOT) 1340
PLOT statement (GCONTOUR) 1104
PLOT statement (GPLOT) 1355

HSB color codes 174
HSIZE 384
HSIZE function (DSGI) 829, 883
HSIZE= graphics option 384

setting size of graphics area 94
HSIZE= option, GDEVICE procedure 384
HSLIDER statement

GKPI procedure 1226
HSPACE 571
HSV color codes 174
HSYS variable, Annotate facility 708
HTEXT 385
HTEXT= graphics option 385
HTITLE 386
HTITLE= graphics option 293, 386
HTML character entities 636
HTML destination, ODS 191
HTML drill-down mode 482, 610, 613
HTML files, creating with ODS HTML (example) 313
HTML function (DSGI) 830, 884
HTML= option

adding data tips 598
BAR statement (GBARLINE) 966
BLOCK statement (GCHART) 1009
BLOCK statement (GMAP) 1263
CHART statement (GRADAR) 1428
CHORO statement (GMAP) 1272
drop-down links 601
GCHART procedure 326
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1026

PIE, PIE3D, DONUT statements (GCHART) 1045
PLOT statement (GBARLINE) 977
PLOT statement (GPLOT) 1355
PRISM statement (GMAP) 1279
STAR statement (GCHART) 1060

HTML output
Java 471

HTML pages
bar chart with drill-down (example) 321
combining graphs and reports (example) 315

HTML variable, Annotate facility 709
HTMLFILE= macro argument 578
HTMLFREF= macro argument 578
HTML_LEGEND= option

BAR statement (GBARLINE) 967
BLOCK statement (GCHART) 1010
BLOCK statement (GMAP) 1263
CHART statement (GRADAR) 1428
CHORO statement (GMAP) 1272
drop-down links 601
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1026
PIE, PIE3D, DONUT statements (GCHART) 1045
PLOT statement (GBARLINE) 978
PLOT statement (GPLOT) 1355
PRISM statement (GMAP) 1280
STAR statement (GCHART) 1060

HTRAFFICLIGHT statement
GKPI procedure 1226

hyperlinks
titles and footnotes as 288

HZERO option
BUBBLE statement (GPLOT) 1340
PLOT statement (GPLOT) 1355

I
I= option, SYMBOL statement 256
IBACK 386
IBACK= graphics option 182, 386
IBACKLOG= macro argument 582
IBACKPOS= macro argument 582
IBACKURL= macro argument 582
IBACKX=, IVBACKY= macro arguments 582
IBM printers

external writes with 380
JES form name 370
JES SYSOUT destination 368
output class 366

ID 387
ID= option, GDEVICE procedure 387
ID statement

GINSIDE procedure 1207
GMAP procedure 1255, 1622
GPROJECT procedure 1407
GREDUCE procedure 1452
GREMOVE procedure 1465
MAPIMPORT procedure 1596, 1598

identification variables 1250
IFRAME= option 184

BUBBLE statement (GPLOT) 1340
CHART statement (GRADAR) 1428
GSLIDE procedure 1520
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1026
PLOT statement (GPLOT) 1355

1716 Index

IGOUT argument
? statement (GREPLAY) 1482
LIST statement (GREPLAY) 1490

IGOUT= option
PROC GREPLAY statement 1480

IGOUT statement
GREPLAY procedure 1489

image files 88
IMAGE function, Annotate facility 1637
IMAGE function, DSGI 861
image map data sets

GMAP procedure 1253
image maps 326
IMAGE= option, PATTERN statement 185, 241
image quality

across devices 65
image resolution and size

exporting graphs to Microsoft Office 114
IMAGEMAP= option

GSLIDE procedure 1520
PROC GANNO statement 915
PROC GBARLINE statement 959
PROC GCHART statement 1004
PROC GMAP statement 1253
PROC GPLOT statement 1333
PROC GREPLAY statement 1480

IMAGEPOSX= parameter, JAVA 496
IMAGEPRINT 387
IMAGEPRINT GOPTIONS statement 387
images 181

adding to bar charts 1038
adding to bar-line charts 957
Annotate facility to draw 682
as graph background 386, 388
as pattern fills 241
background 182
backplane 184
disabling as output 387
displaying with Annotate facility 187
displaying with DSGI 188, 861
file types, list of 181
GBARLINE procedure 955
in text slides 1521
interlacing 389
on chart bars 185
transparent 426

IMAGESTYLE 388
IMAGESTYLE= graphics option 183, 388
IMAGESTYLE= option

BUBBLE statement (GPLOT) 1341
CHART statement (GRADAR) 1428
GSLIDE procedure 1521
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1026
PATTERN statement 242
PLOT statement (GPLOT) 1356

IMGPATH variable, Annotate facility 710, 720
importing

maps from ESRI shapefiles 1251
importing graphs

into Microsoft Excel 121
into Microsoft Office 120
into Microsoft PowerPoint 122
into Microsoft Word 120

inactive color lists 1221, 1222

INBORDER option
CHART statement (GRADAR) 1429

INCOMPLETE option
PROC GCONTOUR statement 1099

indexing
filename 99
lookup data sets 1154

INHEIGHT= option
CHART statement (GRADAR) 1429

initializing drivers, executing before 354
input data sets

automatic locking 56
G3D procedure 1544
G3GRID procedure 1573
requirements for 55
specifying 54
specifying with file specification 55
specifying with library reference 54

input map data sets
GREDUCE procedure 1449
GREMOVE procedure 1461
hierarchy of current unit areas 1407
ordering observations 1464
output data sets as 1459

input (user), enabling 429
INSERT function (DSGI) 868
INSIDE= option

BAR statement (GBARLINE) 967
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1026
INSIDEONLY option

PROC GINSIDE statement 1206
installation

ActiveX Control 455
installing Java plug-in 488
integer-based font rendering 358
INTERACTIVE 388
interactive contour plots

generating in ActiveX 463
interactive line mode 53
interactive Metagraphics output 426, 531

character rotation angle 419
description string 387
enhancing Web presentations for 533
hardware text rotation angle 399
interactivity of 388
negative handshaking response 394
ODS with 532
run-time controls 534
sample programs 536
TRAILER records 425
translating metafile into device commands 408
user-written part, files for 409, 410

INTERACTIVE= option, GDEVICE procedure 388
interactive output

Java 469
interface devices 73
INTERLACED 389
INTERLACED GDEVICE procedure 389
INTERLACED GOPTIONS statement 389
interlacing images 389
internal coordinates, Annotate facility 652, 737
international characters 159
internationalization

ActiveX and 458
Java and 472

Index 1717

Metaview Applet 533
INTERPOL 389
INTERPOL= graphics option 389
INTERPOL= option, SYMBOL statement 254, 256
interpolation

box plots 254, 256, 270, 302
connecting data points with straight lines 259
data value inclusion 266
default method, specifying 275
default value for 389
high-low plots 258
language 259
needle plots 260
partial spline 1586
regression analysis 261
regression analysis plots 261
smoothing plot lines 259
spline interpolation 263, 275
step plots 265

interpolation methods
bivariate 1574
default method 1581
G3GRID procedure 1574
plot overlays 981
plots 1329
spline 1574, 1588
spline smoothing 1575, 1584

INTERTILE= option
CHART statement (GRADAR) 1429

INTERVAL= option, AXIS statement options 201
INVISIBLE= option

PIE, PIE3D, DONUT statements (GCHART) 1045
IP geocoding data

converting from MaxMind, Inc. 1153
ITERATION 390
ITERATION= graphics option 390, 521

J
J= option

AXIS statement options 211
LEGEND statement options 233
POINTLABEL= specification 267
TITLE, FOOTNOTE, and NOTE statements 286, 293

Java applets 440, 441
authentication 637
CLASSPATH environmental variables 637

Java archive files
location of 486

JAVA device 93
for interactive output 470
special fonts and symbols 472

JAVA device driver 450
Java devices 73
Java output

configuring drill-down 475
examples of interactive output 475
generating 470
HTML 471
HTML drill-down mode 482
interactive 469
JAVA device for 470
languages and 472
local drill-down mode 475
SAS formats supported for 472
script drill-down mode 477

special fonts and symbols 472
URL drill-down mode 479

Java parameters and attributes 485
Java plug-in

installing 488
location of 488

Java Runtime Environment (JRE) plug-in
HTML output and 471

Java support 1602
Annotate functions 1635
G3D procedure 1633
GAREABAR procedure 1612
GBARLINE procedure 1613
GCHART procedure 1615
GCONTOUR procedure 1620
GMAP procedure 1622
GOPTIONS statement 1604
GPLOT procedure 1625
GRADAR procedure 1630
LEGEND statement 1608
PATTERN statement 1609
SYMBOL statement 1610
TITLE and FOOTNOTE statements 1612

JAVAIMG device 94
JAVAIMG device driver 446, 451

GIF, JPEG, SVG, PNG vs. 506
Web presentations, developing 510

JAVAMETA device driver 451, 531, 532
enhancing Web presentations for 533
run-time controls 534
sample programs 536

JavaScript
drill-down with ActiveX 464, 466

JOIN option
GRID statement (G3GRID) 1578
PLOT statement (GCONTOUR) 1104

joins
contour plots 1120

JPEG device
data tips for 598

JPEG device driver 451
ACTXIMG, JAVAIMG vs. 506
developing web presentations 508
HTML files, generating 509

JPEG presentations 446
JSTYLE option

PIE, PIE3D, DONUT statements (GCHART) 1045
justification

axis labels 201, 208, 209
donut chart labels 1051
legend label 228
legend text 233
legend values 233
plot print labels 267
text in graphics output 286

JUSTIFICATION= option
GKPI procedure 1224

JUSTIFY= option
AXIS statement options 211
LEGEND statement options 233
POINTLABEL= specification 267
TITLE, FOOTNOTE, and NOTE statements 286, 293

JUSTIFY= suboption
LABEL= option, DONUT statement (GCHART) 1051

1718 Index

K
kern data sets 1196

creating 1196
variables 1196

KERNDATA= option
PROC GFONT statement 1185

kerning 1196
key performance indicators

See KPIs
KEYMAP 390
KEYMAP= graphics option 390
KPI charts 21
KPIs 1213

actual values 1218
boundary values 1219
bullet graph charts 1214, 1232
chart types 1213
color lists 1221
dial charts 1215, 1233
fonts 1224
segment boundaries 1218
segment colors 1219
slider charts 1214
speedometer charts 1215, 1234, 1235
tick mark values 1219
traffic light charts 1216, 1236

L
L= option, SYMBOL statement 265, 276
LA= option, TITLE, FOOTNOTE, and NOTE state-

ments 287
LABEL function, Annotate facility 1637
%LABEL macro, Annotate facility 746
LABEL= option

AXIS statement 1603
AXIS statement options 201
DONUT statement 1620
DONUT statement (GCHART) 1045
GKPI procedure 1229
LEGEND statement 1609
LEGEND statement options 228

LABEL statement 35
labeling maps

data sets for 1247
LABELLEVEL= option

FLOW, TILE, TOGGLE statements (GTILE) 1534
labels

axes 201, 207
bubbles in bubble plots 1336
BY lines 217
contour lines 268, 1116
contour plots 1114, 1115
donut charts 1051
legends 228
pie chart slices 1052, 1084
plot bubbles (example) 1368
plot points 266
star charts 1063

LABELS= macro argument 571
lakes 1297
Lambert’s conformal projection 1401, 1407, 1408

specifying 1406
landscape orientation 391, 392, 418
language, interpolation 259

language elements
used by programs 31

LANGUAGE= option, TITLE, FOOTNOTE, and NOTE
statements 287

languages
ActiveX and 458
in Java 472

LAT variable 1245
example 1245

latitude
See also geocoding
coordinate values 1398
maximum, for projections 1404
minimum, for projections 1404
of geocoding location 1158
projection pole for gnomonic projection 1406
units as degrees 1404

LATMAX= option
PROC GPROJECT statement 1404

LATMIN= option
PROC GPROJECT statement 1404

LAUTOHREF= option
BUBBLE statement (GPLOT) 1341
PLOT statement (GCONTOUR) 1105
PLOT statement (GPLOT) 1356

LAUTOREF= option
BAR statement (GBARLINE) 967
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1027
PLOT statement (GBARLINE) 978

LAUTOVREF= option
BUBBLE statement (GPLOT) 1341
PLOT statement (GCONTOUR) 1105
PLOT statement (GPLOT) 1356

LAYOUT= macro argument 571
LCOLFMT= macro argument 572
LCOLOR= macro argument 572
LCOLS 391
LCOLS= option, GDEVICE procedure 391
LCOLVAL= macro argument 572
LDATA= macro argument 572
LEFTMARGIN GDEVICE procedure 384
LEFTMARGIN GOPTIONS statement 384
LEGEND 226
LEGEND definitions

displaying values of 1319
LEGEND option

PLOT statement (GPLOT) 1356
PROC GOPTIONS statement 1321
AREA statement (GMAP) 1256
BAR statement (GBARLINE) 967
BLOCK statement (GCHART) 1010
BLOCK statement (GMAP) 1263
CHORO statement (GMAP) 1272
HBAR, HBAR3D, VBAR, VBAR3D statements 936
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1027
PIE, PIE3D, DONUT statements (GCHART) 1046
PLOT statement (GBARLINE) 978
PLOT statement (GCONTOUR) 1105
PRISM statement (GMAP) 1280
STAR statement (GCHART) 1060

LEGEND statement 33, 198, 226, 386
ActiveX and Java support for 1608
filling areas in overlay plot (example) 1380
generating overlay plot (example) 1377

Index 1719

using 236
LEGENDFONT= parameter, JAVA 496
LEGENDHEIGHTPERCENT= parameter, JAVA 496
LEGENDIT= parameter, JAVA 496
LEGENDPERCENT= parameter, JAVA 496
legends

bar-line charts 967
contour plots 1116
drop shadows 394
formatting 225
offset 229, 237
origins 230, 238
placement in graphics output area 66
plots 978
plots with three variables 1364
spacing around 228, 238
suppressing 970

LEGENDWIDTHPERCENT= parameter, JAVA 496
LENGTH= option, AXIS statement options 202
LEVELOFDETAIL= parameter, JAVA 497
LEVELS= option

AREA statement (GMAP) 1257
BAR statement (GBARLINE) 968
BLOCK statement (GCHART) 1010
BLOCK statement (GMAP) 1264
CHORO statement (GMAP) 1272
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1028
PIE, PIE3D, DONUT statements (GCHART) 1046
PLOT statement (GCONTOUR) 1105
PRISM statement (GMAP) 1280
STAR statement (GCHART) 1061

LFACTOR 391
LFACTOR= graphics option 391
LFACTOR= option, GDEVICE procedure 391
LFONT= option

GKPI procedure 1224, 1229
LFRAME= option, GSLIDE procedure 1521
LFROM= macro argument 572
LHREF= option

BUBBLE statement (GPLOT) 1341
PLOT statement (GCONTOUR) 1105
PLOT statement (GPLOT) 1356

LIBNAME statement 35, 36
librefs

GFONT0 1177
specifying input data sets 54

LIFO stack 657, 697
light source coordinates

prism maps 1283
LIGHTING= parameter, JAVA 497
LINCOLOR function (DSGI) 831, 885
LINE function (DSGI) 862
%LINE macro, Annotate facility 747
LINE option

LEGEND statement options 231
LINE= option, SYMBOL statement 265, 276
line plots 14
line segments 1177
line smoothing 259

language, interpolation 259
spline interpolation 263, 275

line type
for reference lines 967, 968, 978

line types
axis 209

default line thickness 391
plots 265, 276

LINE variable, Annotate facility 711
lines

dashed, hardware-generated 346
dashed, length of 347
displaying with DSGI 862
GBARLINE procedure 955, 956
in graphics output area 285

lines, drawing with Annotate facility 677
LININDEX function (DSGI) 831, 886
LINK element (HTML) 587
LINK= option, TITLE, FOOTNOTE, and NOTE state-

ments 288
link variables

in Web presentations 601
links

bar-line charts 966
plots 977

LINKTYPE= macro argument 572
LINREP function (DSGI) 832, 886
LINTYPE function (DSGI) 833, 887
LINWIDTH function (DSGI) 834, 888
LIST statement

GDEVICE procedure 1134
GREPLAY procedure 1489

LISTING destination 40, 41
sending output to GRAPH window 43

listing destination, ODS 191
LJOIN option

PLOT statement (GCONTOUR) 1106
LLEVELS= option

PLOT statement (GCONTOUR) 1106
LLX= option

TDEF statement (GREPLAY) 1496
LLY= option

TDEF statement (GREPLAY) 1496
LOADFUNC= parameter, JAVA 497
local drill-down mode 475, 609

customizing levels 613
local fonts 1653
local statements

RUN-group processing and 56
LOCALE= parameter, JAVA 497
locking input data sets 56
LODCOUNT= parameter, JAVA 497
log, writing in (DSGI) 864
log messages, waiting to display 413
logarithmic axes 202, 297, 973, 1036

plots 1331
LOGBASE= option, AXIS statement 202, 297
LOGRESOURCES= graphics option 535
LOGRESOURCES parameter, Metaview Applet 533
LOGSTYLE= option, AXIS statement 202
LOGSTYLE= option, TITLE, FOOTNOTE, and NOTE

statements 297
LONG variable 1245

example 1245
longitude

See also geocoding
coordinate values 1398
maximum, for projections 1404
minimum, for projections 1404
of geocoding location 1158
projection pole for gnomonic projection 1406
units as degrees 1404

1720 Index

values increase to east 1404
LONGMAX= option

PROC GPROJECT statement 1404
LONGMIN= option

PROC GPROJECT statement 1404
lookup data sets 1148

alternate 1150
attribute variables 1156
city names 1157
default 1149
indexing 1154
latitude of geocoding location 1158
longitude of geocoding location 1158
non-address values 1157
postal abbreviation for states 1157
ZIP + 4 extensions 1157
ZIP code values 1158

LOOKUP= option
PROC GEOCODE statement 1157

LOOKUPCITYVAR= option
PROC GEOCODE statement 1157

LOOKUPKEYVAR= option
PROC GEOCODE statement 1157

LOOKUPPLUS4VAR= option
PROC GEOCODE statement 1157

LOOKUPSTATEVAR= option
PROC GEOCODE statement 1157

LOOKUPVAR= option
PROC GEOCODE statement 1157

LOOKUPXVAR= option
PROC GEOCODE statement 1158

LOOKUPYVAR= option
PROC GEOCODE statement 1158

LOOKUPZIPVAR= option
PROC GEOCODE statement 1158

looping animation 390
LOWBOUNDARY option

GKPI procedure 1229
LPT= macro argument 572
LREF= option

BAR statement (GBARLINE) 968
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1028
PLOT statement (GBARLINE) 978

LROWS 392
LROWS= option, GDEVICE procedure 392
LRX= option

TDEF statement (GREPLAY) 1496
LRY= option

TDEF statement (GREPLAY) 1496
LS= option, TITLE, FOOTNOTE, and NOTE state-

ments 289
LSPACE= option, TITLE, FOOTNOTE, and NOTE state-

ments 289
text break and 293

LSPOKES= option
CHART statement (GRADAR) 1429

LSTARCIRCLES= option
CHART statement (GRADAR) 1429

LSTARS= option
CHART statement (GRADAR) 1429

LSTIP= macro argument 572
LSTIPFAC= macro argument 573
LTIP= macro argument 573
LTIPFMT= macro argument 573
LTO= macro argument 573

LVALUE= macro argument 573
LVREF= option

BUBBLE statement (GPLOT) 1341
PLOT statement (GCONTOUR) 1106
PLOT statement (GPLOT) 1357

LWHERE= macro argument 573
LWIDTH= macro argument 573

M
M= option, TITLE, FOOTNOTE, and NOTE state-

ments 289, 293
macro variables, names for 594
macros

color utility macros 177
macros, Web output 439
MAJOR= option, AXIS statement 203, 1603
major tick marks 203, 213

formatting 214
offset 205
scatter plots 1559
suboptions, list of 1603
surface plots 1551
with datetime values (example) 294

MAKEHTML= macro argument 578
MAKEXML= macro argument 578
Map applet 441, 469

drill-down tags 608
parameters for, list of 488

map areas 1250
clipping 1414
defining 1255
displaying 1250
emphasizing 1412

MAP= argument
PROC GINSIDE statement 1206

map data sets 1244
See also feature tables
accessing descriptions of 1294
clipping 1408, 1414
combining unit areas 1459
comparing X and Y coordinates to 1205
containing X, Y, LONG, and LAT 1245
containing X and Y 1246
creating 1297
customizing 1294
GPROJECT procedure and 1407
importing ESRI files as 1593, 1594
input map data sets 1397
lakes and 1297
LONG and LAT variables 1245
projecting 1296
projecting coordinates from spherical to Cartesian 1395
reducing 1295
removing internal boundaries 1459
required variables 1244
response data sets with 1248
running examples and 30
SEGMENT variable 1245
subsetting 1295, 1454
traditional 1244
used as input 1459

MAP element (HTML) 326
MAP= option

PROC GMAP statement 1254

Index 1721

map polygons
reordering 1596

mapimport 1594
MAPIMPORT procedure 1593

excluding variables from SHP shapefiles 1598
ID statement 1598
including all variables from SHP shapefiles 1597
including selected variables from DBF shapefiles 1598
including selected variables from SHP shapefiles 1597
PROC MAPIMPORT statement 1594
reordering map polygons 1596
syntax 1594

%MAPLABEL macro, Annotate facility 748
mapping values

from GINSIDE procedure 1208
maps 18

See also block maps
See also choropleth maps
See also prism maps
See also surface maps
block 1240
choropleth 1241
contiguous projections 1405
creating color maps 1507
creating with feature tables 1314
data sets for annotating 1247
default projection specifications 1409
emphasizing map areas 1412
formats for 1291
GMAP procedure 1240
importing from ESRI shapefiles 1251
labeling provinces 1308
outline map of Africa 1469
prism 1242
reducing 1447
reducing map of Canada 1454
removing borders 1459
removing internal boundaries from 1459
removing state boundaries from U.S. map 1465
SAS Maps Online 1251
surface 1243

MARCOLOR function (DSGI) 834, 889
MARINDEX function (DSGI) 835, 889
Marker font 1650
marker symbol

suppressing 979
MARREP function (DSGI) 836, 890
MARSIZE function (DSGI) 837, 891
MARTYPE function (DSGI) 837, 892
MATCHCOLOR option

PIE, PIE3D, DONUT statements (GCHART) 1046
STAR statement (GCHART) 1061

MATCHED variable 1148
Math font 1646
MAXCOLORS 392
MAXCOLORS= option, GDEVICE procedure 392
MAXDISP function (DSGI) 838
MAXIS= option

BAR statement (GBARLINE) 968
BLOCK statement (GCHART) 1010
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1028
MaxMind, Inc.

converting IP geocoding data from 1153
%MAXMIND autocall macro 1153

MAXNVERT= option
CHART statement (GRADAR) 1429

MAXPOLY 393
MAXPOLY= option, GDEVICE procedure 393
MEAN option

BAR statement (GBARLINE) 968
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1028
mean statistic 953, 968, 1001

numeric variable for 972
MEANLABEL= option

HBAR, HBAR3D statements (GCHART) 1028
Melissa Data 1152
memory

loading data sets into 1154
memory, open software fonts 358
MENUREMOVE= parameter, JAVA 497
MESSAGE function (DSGI) 893
message queuing 413
messages, writing in, DSGI for 864
metacodes 531

outputting with HTML from ODS (example) 536
METACODES= graphics option 535
metacodes zoom control 535
METACODESLABEL= graphics option 535
metadata

adding to PDF files 124, 125
metagraphics device drivers

translation command 409
Metagraphics device drivers

color space specification 342
header generation 382
metacode file format 363

Metagraphics output, interactive 426, 531
character rotation angle 419
description string 387
enhancing Web presentations for 533
hardware text rotation angle 399
interactivity of 388
negative handshaking response 394
ODS with 532
run-time controls 534
sample programs 536
TRAILER records 425
translating metafile into device commands 408
user-written part, files for 409, 410

Metagraphics window (GDEVICE) 1140
METAMAPS data set 1247
Metaview applet 444, 531, 532

enhancing Web presentations for 533
non-English resources and fonts 533
parameters, list of 534
run-time controls 534
sample programs 536

Microsoft Excel
importing graphs into 121

Microsoft Office
default CGM filter for 120
exporting graphs to 113
importing graphs into 120

Microsoft PowerPoint
importing graphs into 122

Microsoft Word
generating ActiveX graphs for 461
importing graphs into 120
sending output to RTF files 46

1722 Index

midpoint axes 968
MIDPOINT variable, Annotate facility 712
midpoints

character 950
continuous numeric 951
discrete numeric 950
for numeric chart variable 968
GBARLINE procedure 950
GCHART procedure 996, 998
in horizontal bar charts 1075
in prism maps 1311
missing values and 969
ordering and selecting 952, 974, 999
ordering and selecting for bar charts 1037
suppressing 970
values for bars 968

MIDPOINTS= option
AREA statement (GMAP) 1257
BAR statement (GBARLINE) 968
BLOCK statement (GCHART) 1010
BLOCK statement (GMAP) 1264
CHORO statement (GMAP) 1273
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1029
PIE, PIE3D, DONUT statements (GCHART) 1047
PRISM statement (GMAP) 1280
STAR statement (GCHART) 1061

MIDPOINTS=OLD option
BLOCK statement (GCHART) 1011
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1029
PIE, PIE3D, DONUT statements (GCHART) 1047
STAR statement (GCHART) 1062

military ZIP codes 1151
MINILEGENDFONTSIZE= parameter, JAVA 497
MINLNKWT= macro argument 574
MINOR= option

AXIS statement 204, 1603
BAR statement (GBARLINE) 969
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1030
PLOT statement (GBARLINE) 979

minor tick marks 204, 213, 969
formatting 214
plot overlays 979
suboptions, list of 1603
with datetime values (example) 294

MISSING option
AREA statement (GMAP) 1258
BAR statement (GBARLINE) 969
BLOCK statement (GCHART) 1011
BLOCK statement (GMAP) 1265
CHART statement (GRADAR) 1430
CHORO statement (GMAP) 1274
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1030
PIE, PIE3D, DONUT statements (GCHART) 1047
PRISM statement (GMAP) 1281
STAR statement (GCHART) 1062

missing values
GBARLINE procedure 954
GCHART procedure 998
GCONTOUR procedure 1098
GTILE procedure 1528
in Annotate data sets 655
midpoints and 969

plot data sets 1331, 1358
MISSINGCOLOR= parameter, JAVA 498
MODE= option

CHART statement (GRADAR) 1430
LEGEND statement 228, 238
PROC GKPI statement 1225
SYMBOL statement 266

MODEL 393
model number, output device 393
MODEL= option, GDEVICE procedure 393
modes 53
MODIFY statement

GDEVICE procedure 1135
GREPLAY procedure 1490

MODULE 394
MODULE= option, GDEVICE procedure 394
MOVE function, Annotate facility 685, 1638
%MOVE macro, Annotate facility 748
MOVE= option, TITLE, FOOTNOTE, and NOTE state-

ments 289, 293
MOVE statement

GREPLAY procedure 1491
multiline

axis values 208
legend labels 234

Music font 1651
MWIDTH= option

PROC GFONT statement 1185

N
N= option

AXIS statement options 214
N1= option

PROC GREDUCE statement 1451
N2= option

PROC GREDUCE statement 1451
N3= option

PROC GREDUCE statement 1451
N4= option

PROC GREDUCE statement 1451
N5= option

PROC GREDUCE statement 1451
NACTION= macro argument 574
NAK 394
NAK= option, GDEVICE procedure 394
NAME= argument

PROC GFONT statement 1179, 1183
NAME= macro argument 571
NAME= option

BAR statement (GBARLINE) 969
BLOCK statement (GCHART) 1011
BLOCK statement (GMAP) 1265
BUBBLE statement (GPLOT) 1342
CHART statement (GRADAR) 1430
CHORO statement (GMAP) 1274
FLOW, TILE, TOGGLE statements (GTILE) 1535
GKPI procedure 1230
GSLIDE procedure 1521
HBAR, HBAR3D, VBAR, VBAR3D statements 936
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1030
PIE, PIE3D, DONUT statements (GCHART) 1047
PLOT statement (G3D) 1550
PLOT statement (GCONTOUR) 1106
PLOT statement (GPLOT) 1357

Index 1723

PRISM statement (GMAP) 1281
PROC GANNO statement 915, 921
SCATTER statement (G3D) 1557
STAR statement (GCHART) 1062
SURFACE statement (GMAP) 1287
TREPLAY statement (GREPLAY) 1499

NAME= parameter, JAVA 498
names

Annotate facility 645, 653, 656
BY line catalog entries 218
color-naming schemes 170
colors 176
device nicknames 368
executable driver modules 394
filename extensions 357
fonts 1657, 1658
GRSEGs 102
macro variables 594
output filenames 102
paper type 399

native SAS/GRAPH devices 72
NAVIGATERENDERMODE= parameter, JAVA 498
NAXIS1= option

GRID statement (G3GRID) 1578
NAXIS2= option

GRID statement (G3GRID) 1579
NCOLS= option

CHART statement (GRADAR) 1430
NCOLVAL= macro argument 574
NDATA= macro argument 574
NEAR= option

GRID statement (G3GRID) 1579
needle plots 260
negative values

block charts 1015
GTILE procedure 1528

NEXT option
LIST statement (GDEVICE) 1134

NFNTNAME= macro argument 574
NFNTSIZE= macro argument 575
NFNTSTYL= macro argument 575
NID= macro argument 575
NLABEL= macro argument 575
NLEVELS= option

CHART statement (GRADAR) 1430
PLOT statement (GCONTOUR) 1107

NLINES= option
SURFACE statement (GMAP) 1287

noadmgdf 330
NOADMGDF option 330
noautocopy 332
NOAUTOCOPY option 332
NOAUTOFEED option 333
NOAVALUE option

GKPI procedure 1228
NOAXES option

PLOT statement (GPLOT) 1357
NOAXIS option

BAR statement (GBARLINE) 969
BUBBLE statement (GPLOT) 1342
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1030
PLOT statement (G3D) 1550
PLOT statement (GBARLINE) 979
PLOT statement (GCONTOUR) 1107
PLOT statement (GPLOT) 1357

SCATTER statement (G3D) 1557
NOBASEREF option

BAR statement (GBARLINE) 970
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1030
NOBRACKETS option, AXIS statement options 204
NOBUILD argument

PROC GFONT statement 1180
NOBVALUE option

GKPI procedure 1228
NOBYLINE option

PROC GREPLAY statement 1480
NOBYLINE statement

GREPLAY procedure 1492
NOCELL option 336
NOCHARACTERS option 337
NOCIRCLEARC option 339
NOCITY option

PROC GEOCODE statement 1161
NOCOLLATE option 340
NOCONNECT option

STAR statement (GCHART) 1062
NODASH option 346
NODATELINE option

PROC GPROJECT statement 1405
node-link diagrams 443, 543, 553

chart with simple arcs (example) 560
chart with weighted arcs (example) 562
DS2CONST macro with 555
hotspots 566
when to use 554
XML written to external file (example) 564

NODEBDR= macro argument 583
NODECYCLE option

PROC GREMOVE statement 1463
NODESHAP= macro argument 583
NODISPLAY 353
NODISPLAY option 353

PROC GFONT statement 1185
NODROPCOLLISIONS option

SYMBOL statement 266
NODRVQRY= option, GDEVICE procedure, executing be-

fore driver initialization 354
NOERASE= graphics option 356
NOERASE= option, GDEVICE procedure 356
NOFASTTEXT= graphics option 357
NOFILEONLY= graphics option 360
NOFILL= graphics option 360
NOFILL= option, GDEVICE procedure 360
NOFRAME option

BAR statement (GBARLINE) 966
BUBBLE statement (GPLOT) 1339
CHART statement (GRADAR) 1427
HBAR, HBAR3D, VBAR, VBAR3D statements 936
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1024
PLOT statement (GCONTOUR) 1107
PLOT statement (GPLOT) 1353

NOFS option
PROC GDEVICE statement 1129
PROC GREPLAY statement 1480

NOGFOOTNOTE= option, ODS HTML statement 194
NOGRAPHRC= graphics option 374
NOGROUPHEADING option

PIE, PIE3D, DONUT statements (GCHART) 1048
STAR statement (GCHART) 1062

1724 Index

NOGTITLE= option, ODS HTML statement 194
NOHEADING option

BLOCK statement (GCHART) 1011
PIE, PIE3D, DONUT statements (GCHART) 1048
STAR statement (GCHART) 1062

NOIMAGEPRINT GOPTIONS statement 190, 387
NOIMAGEPRINT graphics option 190, 387
NOJSOOBJECT= parameter, JAVA 498
NOKEYMAP option

PROC GFONT statement 1181, 1185
NOLABEL option

PLOT statement (G3D) 1550
SCATTER statement (G3D) 1557

NOLEGEND option
AREA statement (GMAP) 1258
BAR statement (GBARLINE) 970
BLOCK statement (GCHART) 1012
BLOCK statement (GMAP) 1265
CHART statement (GRADAR) 1430
CHORO statement (GMAP) 1274
HBAR, HBAR3D, VBAR, VBAR3D statements 937
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1030
PIE, PIE3D, DONUT statements (GCHART) 1048
PLOT statement (GCONTOUR) 1107
PLOT statement (GPLOT) 1357
PRISM statement (GMAP) 1281
STAR statement (GCHART) 1062

NOLINE option
PLOT statement (GBARLINE) 979

NOLIST option
PROC GOPTIONS statement 1321

NOLOG option
PROC GOPTIONS statement 1322

NOLOWBOUNDARY option
GKPI procedure 1229

NOMARKER option
PLOT statement (GBARLINE) 979

non-roman alphabet fonts 1646
NONEEDLE option

SCATTER statement (G3D) 1557
noninteractive line mode 53
NONINTERLACED GDEVICE procedure 389
NONINTERLACED GOPTIONS statement 389
nonlinear curves

horizontal variables along 1573
NOPCLIP 400
NOPIEFILL GDEVICE procedure 403
NOPIEFILL GOPTIONS statement 403
NOPLANE option

HBAR, HBAR3D, VBAR, VBAR3D statements
(GCHART) 1030

NOPLANE option, AXIS statement options 204
NOPROMPT= graphics option 378
NOROMAN option

PROC GFONT statement 1181
NOROMHEX option

PROC GFONT statement 1181
NOSCALE option

GRID statement (G3GRID) 1579
NOSTATS option

HBAR, HBAR3D statements (GCHART) 1031
NOSTIMER option

PROC GEOCODE statement 1161
NOTE 280

NOTE statement 33, 198, 280, 292
BY statement with 219

notes 292
angle of rotation 281, 287, 290
boxes around 283, 284
colors for 283, 284, 344, 345
default characteristics, setting 293
defining text of 290, 294
fonts for 285
justification 286
positioning 289
size of 286, 385
spacing around 289
text breaks 293
underlining 291

NOTRANSPARENCY GOPTIONS statement 426
NOTRANSPARENCY= graphics option 521
NOTSORTED option

BY statement (GREMOVE) 1464
NOTSORTED= option, BY statement 217
NOZERO option

BAR statement (GBARLINE) 970
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1031
NOZEROREF option

CHART statement (GRADAR) 1430
NOZIP option

PROC GEOCODE statement 1161
NPARENT= macro argument 575
NPW= macro argument 575
NROWS= option

CHART statement (GRADAR) 1431
NSCBACK= macro argument 575
NSCTEXT= macro argument 575
NSDATA= macro argument 575
NSFNTNAM= macro argument 576
NSFNTSIZ= macro argument 576
NSFNTSTY= macro argument 576
NSHAPE= macro argument 576
NSID= macro argument 576
NSIZE= macro argument 576
NSPW= macro argument 576
NSTYLE= macro argument 576
NSWHERE= macro argument 577
NTEXTCOL= macro argument 577
NTIP= macro argument 577
NTIPFMT= macro argument 577
NUMBER= option, AXIS statement options 214
numeric chart variables 940, 998

discrete 998
numeric formats

supported by ACTIVEX 459
numeric response variables 1249
numeric values

continuous 999
NUMGRAPH function (DSGI) 839
NURL= macro argument 577
NVALUE= macro argument 577
NWHERE= macro argument 577
NX=, NY= macro arguments 578

O
OBJECT element (HTML) 485
observations

in Annotate data sets 643

Index 1725

in output data set (G3GRID) 1580
ordering for input map data sets 1464

ODS destinations 40, 191
changing current style with STYLE= option 139
default devices for 69
default styles and 135
LISTING destination 41
opening and closing 40
storing GRSEGs with multiple destinations 102

ODS documents
replaying 108

ODS HTML 239
ODS HTML statement 198, 239

bar chart with drill-down (example) 321
multiple graphs and reports in Web page (example) 315
Web page, creating (example) 313

ODS output
graphic options with 195
JAVAMETA driver with 532
metacodes (example) 536
name and location of 97
RUN-group processing 194
static graphics 504
titles and footnotes, controlling 194

ODS (Output Delivery System)
graphics output files and 91

ODS statement 35
ODS statements 34

generating presentations 451
JAVA and ActiveX parameters and attributes 485
ODS USEGOPT statement 195
PARAMETERS= statement for applet parameters 536

ODS styles 40, 41
specifying 42

offset
angle of rotation 290
axes 205
between Bitstream font letters 364
between display area and graphic 429
between displayed area and graph 383
between fill lines 361
between graphs and display 383, 429
legend 229, 237
legends 228, 238
text in graphics output 284, 289

OFFSET= option
AXIS statement options 205
LEGEND statement options 229, 237

OFFSHADOW 394
OFFSHADOW= graphics option 394
one-level names 55
open destinations, ODS 192
OPENGRAPH function (DSGI) 840
OPENMODE= macro argument 578
OPTION= option

PROC GOPTIONS statement 1322
OPTIONS statement 35
ORDER= option

AXIS statement options 205, 209
LEGEND statement options 230

ORDERACROSS= option
CHART statement (GRADAR) 1431

ordering
axis values 205
legend values 230

ORIGIN= option, AXIS statement options 207

ORIGIN= option, LEGEND statement options 230, 238
origins

axes 207
legends 230, 238

OTHER= option
CHART statement (GRADAR) 1431
PIE, PIE3D, DONUT statements (GCHART) 1048

OTHERCOLOR= option
PIE, PIE3D, DONUT statements (GCHART) 1048

OTHERLABEL= option
PIE, PIE3D, DONUT statements (GCHART) 1048

OUT= argument
PROC GINSIDE statement 1206

out-of-range plot variables 955, 1331
OUT= option

PROC G3GRID statement 1576
PROC GEOCODE statement 1162
PROC GPROJECT statement 1405
PROC GREDUCE statement 1451
PROC GREMOVE statement 1463

outline fonts 1177
outline maps

of Africa 1469
outlines

bar charts 1037
block charts 1014
color for 963
colors 250
default 248
donut charts 1053
GBARLINE procedure 955
GCHART procedure 1002
pie charts 1053
slice colors and patterns 1053
star charts 1064

OUTLINES= parameter, JAVA 498
output

See also graphics output
generating with procedures 43
Java interactive output 469
sending to a file 44
sending to GRAPH window 43
sending to multiple open destinations 51
sending to PDF files 47
sending to RTF files 46
sending to Web pages 45
SVG 79

output data sets
as input map data set 1459
controlling observations in (G3GRID) 1580
G3GRID procedure 1573
GEOCODE procedure 1149

output filenames 102
output formats

exporting graphs to Microsoft Office 113
output map data sets

GREMOVE procedure 1461
output printer bins 395
OUTSIDE= option

BAR statement (GBARLINE) 970
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1031
OUTTRI= option

PROC G3GRID statement 1577
overdrawing graphs 416
OVERFLOWCOLOR= parameters, JAVA and ActiveX 498

1726 Index

OVERLAY option
PLOT statement (GPLOT) 1358
PLOT statement, GPLOT procedure 1377, 1380

overlay plots 1377, 1380
overlaying graphics, Annotate facility 656
overlaying radar charts 1438
OVERLAYVAR= option

CHART statement (GRADAR) 1431
overriding devices 72

P
page layout

PDF files 124
PAGEPART= macro argument 586
paints, plot 259
paper feed 333, 396
paper size 396, 397
paper type, specifying 399
PAPERDEST 395
PAPERDEST= graphics option 395
PAPERFEED 396
PAPERFEED= graphics option 396
PAPERFEED= option, GDEVICE procedure 396
PAPERLIMIT 396
PAPERLIMIT= graphics option 396
PAPERSIZE 397
PAPERSIZE= graphics option 397
PAPERSOURCE 398
PAPERSOURCE= graphics option 398
PAPERTYPE 399
PAPERTYPE= graphics option 399
PARADIV= option

PROC GPROJECT statement 1405
PARALLEL1= option

PROC GPROJECT statement 1405
PARALLEL2= option

PROC GPROJECT statement 1405
parallels

calculating 1408
divisor for computing 1405
specifying values for 1405

parameters
JAVA and ActiveX 485, 491

PARAMETERS= option, ODS statements 485
PARAMETERS= statement, ODS statement 536
Parameters window (GDEVICE) 1138
parametric language interpolation 259
PARTIAL option

GRID statement (G3GRID) 1579
partial spline interpolation 1586
PATH 399
PATH= option, GDEVICE procedure 399
PATREP function (DSGI) 906, 908
PATTERN 240
PATTERN definitions 1366

displaying values of 1319
PATTERN definitions, BY statement with 220
PATTERN option

PLOT statement (GCONTOUR) 1107
PROC GOPTIONS statement 1322

PATTERN statement 33, 198, 240
ActiveX and Java support for 1609
altering/canceling 247
images on bar chart bars 185
using 247

PATTERNID= option
BAR statement (GBARLINE) 970
BLOCK statement (GCHART) 1012
BY line 218
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1031
patterns

assigning 970
bar charts 1037, 1038
block charts 1014
block maps 1268
changing 957
contour plots 1120
GBARLINE procedure 955
GCHART procedure 1002
pie and donut chart slices 1053
plots 1366
star charts 1064
user-defined 1003, 1014, 1037
when patterns change 1014, 1038

patterns and fills 240
bar charts 242
built-in pie-fill capability 403
built-in polygon-fill capability 405
built-in rectangle capability 414
built-in rectangle-fill capability, device 360
color for 343
contour plots 244
default 248
fill color 241
filling area between plot lines (example) 304
for symbol plots 260
images as fill elements 241
images on bar chart bars 185
outline colors 250
pattern sequences 251
pie and star charts 245
spacing between fill lines 361

PATTERNSTRIP applet parameter 611, 613
PATTERNSTRIP= parameters, JAVA and ActiveX 498
PCLIP 400
PCLIP= graphics option 400
PCOLS 401
PCOLS= option, GDEVICE procedure 401
PDF files

adding bookmarks 124
adding metadata to 124
changing page layout 124
default compression level 125
examples 125
fonts 123
multipage, with bookmarks and metadata 125
multiple-page, using BY-group processing 129
multiple-page, using GREPLAY procedure 129
PDF/A-1b compliant, with multiple graphs per page 127
sending output to 47
writing graphs to 123

PEMPTY variable, Annotate facility 721
pen speed, plotters 421
PENMOUNTS 402
PENMOUNTS= graphics option 180, 402
pens, active 402
PENSORT 403
PENSORT= graphics option 403
PENSORT= option, GDEVICE procedure 403

Index 1727

PERCENT option
AREA statement (GMAP) 1258
BAR statement (GBARLINE) 970
BLOCK statement (GMAP) 1265
CHORO statement (GMAP) 1274
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1032
SURFACE statement (GMAP) 1287
PIE, PIE3D, DONUT statements (GCHART) 1048
STAR statement (GCHART) 1062

percentage statistic 953, 1001
percentages

overriding default format 1258
percentiles, box plots 254, 256, 270, 302
PERCENTLABEL= option

HBAR, HBAR3D statements (GCHART) 1032
PERCENTSUM option

HBAR, HBAR3D, VBAR, VBAR3D statements
(GCHART) 1032

performance
GEOCODE procedure 1153

permanent data sets
one-level names 55

PIE and PIE3D statements
GCHART procedure 1038

PIE and PIE3D statements, GCHART procedure
ActiveX and Java support for 1615

pie charts 9, 993
3-D 9
angling text in (example) 797
creating 1038
detail pie charts 993, 1092
grouping and arranging 1086
ordering and labeling slices 1084
outlines 1053
patterns 245
selecting and positioning slice labels 1052
slice patterns and colors 1053
statistic and group headings 1048, 1054
subgrouping 1083
sum statistic in 1080
terminology 997

pie-fill capability, device 403
PIE function, Annotate facility

ActiveX and Java support for 1639
pie slices, drawing with Annotation facility 686

PIE statement, BY statement with 218
PIECNTR function, Annotate facility 1639
PIEFILL 403
PIEFILL GDEVICE procedure 403
PIEFILL GOPTIONS statement 403
PIEXY function, Annotate facility 1640
%PIEXY macro, Annotate facility 749
PLABEL= option

PIE, PIE3D, DONUT statements (GCHART) 1049
PLAY function (DSGI) 869
plot data sets 1331
plot lines 265, 276

filling area between plot lines (example) 304
type of 265

plot overlays
bar-line charts 974
interpolation methods 981
legends for 978
multiple plots 985
SYMBOL definitions 981

variable to plot 980
PLOT statement

G3D procedure 1547
PLOT statement, G3D procedure

ActiveX and Java support for 1633
PLOT statement, GBARLINE procedure 974

ActiveX and Java support for 1613
interpolation methods 981
options 976
SYMBOL definitions 981
syntax 975

PLOT statement, GCONTOUR procedure 1099
ActiveX and Java support for 1620
AUTOLABEL= suboptions 1108
axis order 1112
contour levels 1109
options 1101
required arguments 1101
syntax 1100

PLOT statement, GPLOT procedure 1347
ActiveX and Java support for 1625
connecting plot data points (example) 1375
different scales of values (example) 1386
filling areas in overlay plot (example) 1380
generating overlay plot (example) 1377
matching plot requests 1364
multiple plot requests 1364
options 1350
plots with drill-down for Web (example) 1389
plotting three variables (example) 1383
plotting two variables (example) 1372
required arguments 1348
syntax 1347

plot statistic
frequency variable for 977
specifying 980

plot symbols 1360, 1366
altering or canceling 272
built-in drawing capability 423
colors for 254, 275, 344
colors for, rotating through (example) 299
default 278
displaying with DSGI 863
fonts of 256
GBARLINE procedure 981
in Annotate graphics output 698
interpolation 389
scatter plots 1558
size of 256, 270
specifying for plot points 274
suppressing the line connecting 979

plot variables
out-of-range 955

PLOT2 statement, GPLOT procedure 1361
ActiveX and Java support for 1625
different scales of values (example) 1386
matching plot requests 1364
multiple plot requests 1364
options 1363
required arguments 1362
syntax 1361

plots
See also bubble plots
See also contour plots
See also G3D procedure
See also high-low plots

1728 Index

See also line plots
See also regression plots
See also scatter plots
See also surface plots
See also three-dimensional plots
See also two-dimensional plots
basics of 1329
box plots 254, 256, 270, 302
classification variables with 1327
connecting plot data points (example) 1375
different scales of values in (example) 1386
drill-down functionality (example) 1389
filling areas in overlay plot (example) 1380
generating overlay plot (example) 1377
generating simple bubble plots (example) 1367
high-low plots 258
interpolation methods 1329
labeling and sizing plot bubbles (example) 1368
legends in 978
links in 977
matching plot requests 1364
missing values 1331, 1358
multiple plot requests 1364
needle plots 260
order of points 976, 977
overlay plots 1377, 1380
patterns 1366
plotting three variables (example) 1383
plotting two variables (example) 1372
regression analysis 261
regression analysis plots 261
right vertical axis to bubble plot (example) 1370
standard deviations 264
step plots 265
symbols in 1360, 1366
three variables and legend 1364
two variables 1326
two vertical axes 1328, 1365, 1370
with multiple variables 1359

plotters
active pens or colors 402
drawing elements in color order 403
paper size 396
pen speed 421

PLUS4 geocoding method 1158
no matches 1161

PNG device
data tips for 598

PNG device driver 451
ACTXIMG, JAVAIMG vs. 506
developing web presentations 508
HTML files, generating 509

PNG output
sample programs for static images 514

PNG presentations 446
POINT function, Annotate facility 1640
POINTLABEL= option, SYMBOL statement 266, 1611
points, drawing with Annotate facility 691
points, plot

labels for 266
specifying for plot points 269
symbols for, specifying 269, 274

POLELAT= option
PROC GPROJECT statement 1406

POLELONG= option
PROC GPROJECT statement 1406

%POLY, %POLY2 macro, Annotate facility 750
POLY function, Annotate facility 1640
POLYCONT function, Annotate facility 1641
%POLYCONT macro, Annotate facility 751
polygon-fill capability, device 405
polygon fonts 1177
POLYGONCLIP 404
POLYGONCLIP= graphics option 404
POLYGONFILL 405
POLYGONFILL= graphics option 405
POLYGONFILL= option, GDEVICE procedure 405
polygons

clipped (intersecting) 400, 404
drawing with Annotate facility 693
drawing with DSGI 860
enclosed, as holes 1299
map data sets and 1297
multiple 1298
reordering 1596
single 1298
vertices, maximum drawn 393

%POP macro, Annotate facility 751
portrait orientation 401, 413, 418
ports, how output is written to 375
POSITION= option

AXIS statement options 212
LEGEND statement options 230, 234, 237, 238
POINTLABEL= specification 267

POSITION variable, Annotate facility 714
positioning

Annotate graphics 650, 651
axis labels 201, 208, 209, 212
BY lines 217
legend label 228
legend text 234
legends 230, 237
plot point labels 267
text in graphics output 289
titles and footnotes, ODS output 194

postal abbreviations 1156, 1157
postal codes

functions for 1290
POSTGEPILOG 405
POSTGEPILOG= graphics option 405
POSTGPROLOG 406
POSTGRAPH= graphics option 406
POSTGRAPH= option, GDEVICE procedure 406
POSTGRAPH1 406
POSTGRAPH2 406
pound sign #, variables as plot point labels 267
PPD file, location of 407
PPDFILE 407
PPDFILE= graphics option 407
PREGEPILOG 407
PREGEPILOG= graphics option 407
PREGPROLOG 408
PREGPROLOG= graphics option 408
PREGRAPH= graphics option 408
PREGRAPH= option, GDEVICE procedure 408
PREGRAPH1 408
PREGRAPH2 408
presentation graphics 21

Graph-N-Go for 24
PRESENTATION option

PROC GREPLAY statement 1480
PRESENTATION window 1501

Index 1729

PREV option
LIST statement (GDEVICE) 1134

PREVIEW statement
GREPLAY procedure 1492

previewing device output 425
previewing output 109
printers

sending graphs directly to 110
printing 110

automatic 332
collating output 340
copies to print 367
duplex 355
duplex, binding edge for 334
flow control 380
graph orientation 418
IBM printers 366, 368, 370, 380
output bin, specifying 395
paper feed 333, 396
paper size 396, 397
paper tray, specifying 398
paper type, specifying 399
PPD file, location of 407
previewing output 425
protocol module, specifying 372
redrawing (overdrawing) graphs 416
reverse printing 418
saving and printing graphs 110

prism maps 19, 1242
annotating 1277
area heights relative to zero 1282
color for empty map areas 1278
color for legend text 1279
color for outlining empty map areas 1278
color for outlining non-empty map areas 1278
color for regions 1255
creating 1276
description of catalog entry 1279
dimensions of 1284
distinct colors for response values 1279
drill down 1279
drill-down legend 1280
legends 1280
light source coordinates 1283
midpoint ranges 1282
midpoints in 1280, 1311
missing values 1281
name of GRSEG catalog entry 1281
pattern for map areas 1277
percentages 1281
percentages, overriding default format 1282
producing a simple map 1309
response levels 1280
statistics 1282
stretching 1282
suppressing legends 1258, 1281
uniform legends and coloring 1283
viewing position 1284
width of map area outlines 1283

PRISM statement
GMAP procedure 1276

PRISM statement, GMAP procedure
ActiveX and Java support for 1622

PROC G3D statement 1546
PROC G3GRID statement 1576
PROC GANNO statement 914

PROC GAREABAR statement 933
PROC GBARLINE statement 958
PROC GCHART statement 1004
PROC GCONTOUR statement 1098
PROC GDEVICE statement 1129
PROC GEOCODE statement 1154

options 1155
PROC GFONT statement 1178
PROC GINSIDE statement 1206
PROC GKPI statement 1225
PROC GMAP statement 1252
PROC GOPTIONS statement 1320
PROC GPLOT statement 1332
PROC GPROJECT statement 1403

options 1403
PROC GRADAR statement 1421
PROC GREDUCE statement 1450
PROC GREMOVE statement 1462
PROC GREPLAY statement 1479, 1481
PROC GREPLAY window 1501
PROC GTILE statement 1529
PROC MAPIMPORT statement 1594
PROC steps 32
procedure output area

Annotate facility 652
placement of graphics in 65

procedure statements 32
procedure termination, step code at 374
procedures

generating output with 43
PROC steps 32
statements 32
subordinate statements 32

PROCESS 409
PROCESSINPUT 409
PROCESSINPUT= option, GDEVICE procedure 409
PROCESSOUTPUT 410
PROCESSOUTPUT= option, GDEVICE procedure 409
product codes 28
program mode

GDEVICE procedure 1127, 1128, 1129
switching from 1134

programs 31
a typical program 31
Annotate DATA set 34
Base SAS language statements 35
DSGI functions and routines in DATA step 34
global statements 33
language elements used by 31
ODS statements 34
other statements and options 32
PROC steps 32
procedure statements 32
RUN-group processing 56
running 53
subordinate statements 32

PROJECT= option
PROC GPROJECT statement 1406

projecting coordinates from spherical to Cartesian
See Cartesian coordinates

projecting map data sets 1296
projection methods 1406
PROJECTION= parameter, JAVA 498
projection pole 1406
PROJECTIONRATIO= parameter, JAVA 498
PROMPT 410

1730 Index

PROMPT= graphics option 410
prompt messages to GSF 377, 521
PROMPTCHARS 411
PROMPTCHARS= graphics option 411
PROMPTCHARS= option, GDEVICE procedure 411
prompts

characters for, specifying 411
for installing ActiveX Control 456
specifying if used 410

proportion
image quality across devices and 65

proportional fonts 1176
protocol module, specifying 372
Province Codes 1289, 1308
PROWS 413
PROWS= option, GDEVICE procedure 413
%PUSH macro, Annotate facility 752

Q
QMSG 413
QMSG= option, GDEVICE procedure 413
quality of images

across devices 65
QUIT statement 35

GDEVICE procedure 1136
GREPLAY procedure 1492
RUN-group processing 194

R
R= option

PATTERN statement 242, 252
POINTLABEL= specification 268
SYMBOL statement 279
TITLE, FOOTNOTE, and NOTE statements 290

radar charts 12, 1419
creating 1422, 1437
modifying appearance of 1441
multiple classification variables in 1440
overlaying 1438
tiling 1439

radar charts (star charts)
ActiveX and Java support for 1630
patterns 245

RADIUS= option
PIE, PIE3D, DONUT statements (GCHART) 1049

raised mode
GKPI procedure 1216, 1225

Range geocoding
data sets for 1151

range of values 971
RANGE option

AREA statement (GMAP) 1258
BAR statement (GBARLINE) 971
BLOCK statement (GMAP) 1265
CHORO statement (GMAP) 1274
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1032
PRISM statement (GMAP) 1282

RANGEDATA= option
PROC GEOCODE statement 1162

RANGEDECIMAL option
PROC GEOCODE statement 1162

RANGEKEYVAR= option
PROC GEOCODE statement 1162

raster formats 115
RAXIS= option

BAR statement (GBARLINE) 971
BLOCK statement (GCHART) 1012
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1032
HBAR statement 218
PLOT statement (GBARLINE) 979
VBAR statement 218

RBSIZING= macro argument 583
reading direction of text, changing (example) 800
record length, GSF, origins 374
%RECT macro, Annotate facility 752
rectangle-fill capability, device 360, 414
rectangles, drawing with Annotate facility 671
RECTFILL 414
RECTFILL= option, GDEVICE procedure 414
redrawing graphs 416
reduced map data sets 1295
reducing maps 1447

map of Canada 1454
REF= option

BAR statement (GBARLINE) 971
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1033
PLOT statement (GBARLINE) 979

REFCOL= option
PROC GFONT statement 1181

reference-line labels, axis 207, 210
reference lines 971

at major tick marks 962, 976
clipping at bars 963, 976
color of 962, 963, 976
colors 1102, 1103, 1338, 13
for plot overlays 979
line type for 967, 968, 978
suppressing 970
width of 972, 973, 980

REFLABEL= option, AXIS statement options 207, 210,
1603

REFLINES option
PROC GFONT statement 1181

REGEQN option
PLOT statement (GPLOT) 1358

registry subkeys
specifying fonts 159

regression analysis plots 261
regression plots 14
RELZERO option

BLOCK statement (GMAP) 1265
PRISM statement (GMAP) 1282

RENAME function (DSGI) 869
RENAME statement

GDEVICE procedure 1136
RENDER 415
RENDER= graphics option 415
rendering fonts 358, 1643

Bitstream fonts 364, 415
resolution, setting 362
software fonts 422
storing font files 416

RENDERLIB 416
RENDERLIB= graphics option 416
RENDERMODE= parameter, JAVA 498
RENDEROPTIMIZE= parameter, JAVA 499
RENDERQUALITY= parameter, JAVA 499

Index 1731

REPAINT 416
REPAINT= graphics option 416
REPAINT= option, GDEVICE procedure 416
REPEAT= option

LEGEND statement options 231
REPEAT= option, PATTERN statement 242, 252
REPEAT= option, SYMBOL statement 279
repeating animation loops 390
REPLAY statement

GREPLAY procedure 1493
replaying output 106

DOCUMENT procedure 107
GREPLAY procedure 106
ODS documents 108

reserved names, macro variables 594
RESET 417
RESET= graphics option 417
resetting graphics options 225, 417
RESOL= option

PROC GFONT statement 1186
resolution 61, 95, 97

display device 432, 433, 434, 435
exporting graphs to Microsoft Office 114
image interlacing 389
software fonts 362

RESOURCESFONTNAME= graphics option 535
response axis

chart statistic and 973, 1035
response data

displaying 1250
response data sets 1248

map data sets with 1248
merging with feature tables 1246

response levels 1249
in block maps 1303

response variables 1249
assigning formats to 1304
GBARLINE procedure 952
statistics for 1306

RESPONSESTAT= option
HBAR, HBAR3D, VBAR, VBAR3D statements 937

RETAIN statement 654
return characters at record ends 369
return codes 374, 908
REVERSE 418
REVERSE= graphics option 418
reversing black and white 421
RGB color codes 171

SAS color names 175
RIGHTMARGIN= option, GDEVICE procedure 384
RIGHTMARGIN= option, GOPTIONS statement 384
roles 610
Roman alphabet text fonts 1646
ROMCOL= option

PROC GFONT statement 1181
ROMFONT= option

PROC GFONT statement 1182
ROMHEX option

PROC GFONT statement 1182, 1186
ROMHT= option

PROC GFONT statement 1182
ROTATE 418
ROTATE= graphics option 418
ROTATE= option

AXIS statement options 213
GDEVICE procedure 418

PLOT statement (G3D) 1550
SCATTER statement (G3D) 1557
SURFACE statement (GMAP) 1288
TDEF statement (GREPLAY) 1497
TITLE, FOOTNOTE, and NOTE statements 290

ROTATE= suboption
LABEL= option, DONUT statement (GCHART) 1051

ROTATE variable, Annotate facility 717
rotating

surface maps 1313
rotating graphs for printing 418
rotating plot symbols through colors (example) 299
rotating plots 1545, 1561
ROTATION 419
ROTATION= option, GDEVICE procedure 419
ROWMAJOR option

LEGEND statement options 231
rows

in graphics output area 392, 419, 430
legends 228

ROWS 419
ROWS= option, GDEVICE procedure 419
RSTAT= option, HBAR and VBAR statements 944
RTF files

sending output to 46
RUN-group processing 56

BY statements with 57
creating animated GIFs with 524
global and local statements with 56
GSLIDE procedure 1522
ODS and 194
WHERE statement with 57

RUN statement 35, 219
RUNMODE= macro argument 578
running programs 53

data sets and 54
engines and 56
environments and modes 53
RUN-group processing and 56
specifying input data set 54

S
sample programs 28

product codes for 28
SAS Color Naming Scheme (CNS) 176
SAS/GRAPH 4, 39

concepts table 24
product codes 28

SAS/GRAPH device 40
SAS/GRAPH fonts 155
SAS/GRAPH programs

See programs
SAS Maps Online 1251
SAS output 88
SAS registry

changing default style in 139
viewing font specifications in 158

SAS windowing environment 53
SASHELP.ZIPCODE data set 1149
SASPOWER= macro argument 587
SCALABLE 420
SCALABLE= option, GDEVICE procedure 420
Scalable Vector Graphics

See SVG documents
Scalable Vector Graphics devices 77

1732 Index

%SCALE macro, Annotate facility 753
SCALE option

GRID statement (G3GRID) 1579
%SCALET macro, Annotate facility 755
SCALEX= option

TDEF statement (GREPLAY) 1497
SCALEY= option

TDEF statement (GREPLAY) 1497
scaling

dash length in lines 347
data-dependent output 916
graphs 916
graphs with DSGI windows 804
hardware fonts 343, 419, 420

scatter plots 17, 1542
appearance of points 1560
axes, controlling 1545
connecting plot data points (example) 1375
data ranges 1545
input data sets 1544
plotting three variables (example) 1383
plotting two variables (example) 1372
rotating and tilting 1545
three-dimensional, syntax for 1554
two-dimensional 13

SCATTER statement
G3D procedure 1554

SCATTER statement, G3D procedure
ActiveX and Java support for 1633

SCLNKWT= macro argument 583
SCLWIDTH= macro argument 583
SCNSIZE= macro argument 583
script drill-down mode 477, 610, 617
search order

of device catalogs 1127
segment boundaries 1218
segment colors 1219
SEGMENT variable

creating map data sets and 1297
map data sets 1245

SEPCLASS= macro argument 587
SEPLOC= macro argument 587
SEPTYPE= macro argument 587
%SEQUENCE macro, Annotate facility 756
shadow color, legends 227
shadowing, legend frames 394
shape, legend values 231
SHAPE= option

BLOCK statement (GMAP) 1266
HBAR3D, VBAR3D statements (GCHART) 1033
LEGEND statement options 231
SCATTER statement (G3D) 1558

shapefiles 1593
excluding variables from 1598
file types 1593
including all variables from 1597
including selected variables from 1597, 1598

shapes in scatter plots 1558
SHORT option

PROC GOPTIONS statement 1322
SHOWALL option

PROC GFONT statement 1182
SHOWBACKDROP= parameter, JAVA 499
SHOWLINKS= macro argument 584
SHOWROMAN option

PROC GFONT statement 1182, 1187

SHP files 1593
excluding variables from 1598
including all variables from 1597
including selected variables from 1597

SIDE option
PLOT statement (G3D) 1550

SIMFONT 420
SIMFONT= graphics option 420
simple line plots 14
SIMPLEDEPTHSORT= parameter, JAVA 499
SIMPLETHRESHOLD= parameter, JAVA 500
SIMULATE font 1652
SINGULAR= option, POINTLABEL= specification 268
singularities, checking for 268
size

aspect ratio 331
axis labels 201, 208, 209, 211
axis tick marks 203, 204, 214
axis values 211
boxes in box plots 254
BY lines 217, 381
character cells 333
contour labels 256
contour lines 270
dash length in lines 347
display, in lines 377
enlarging graph areas with DSGI windows (exam-

ple) 806
fonts 338
graphics output text 385
legend frame 228
legend frame drop shadows 394
legend label 228
legend values 231, 233
line thickness, default 391
paper 396, 397
paper feed increments 396
plot bubbles (example) 1368
plot print labels 267
plot symbols 256, 270
record length, to GSF 374
scatter plot points 1559, 1560
text in graphics output 286
titles and footnotes 195, 386
units of measurement 378

size, graphics output area 384, 431, 432, 433,,
columns in 343, 384, 391, 401
rows in 392, 419, 430

SIZE= option
SCATTER statement (G3D) 1559

SIZE variable, Annotate facility 718
sizing

bubbles in bubble plots 1337
sizing errors 66
SKIPMISS option

PLOT statement (GPLOT) 1358
slice labels 1063
%SLICE macro, Annotate facility 757
SLICE= option

PIE, PIE3D, DONUT statements (GCHART) 1049
STAR statement (GCHART) 1062

slices
ordering and labeling 1084

slider KPI charts 1214
smooth line fit 262

Index 1733

SMOOTH option
PLOT statement (GCONTOUR) 1107
GRID statement (G3GRID) 1579

smoothing
spline smoothing 1575

smoothing plot lines 259
software fonts 420

open at one time 358
rendering 422
resolution 362
where stored 1644

sorting
grouped observations 216
plot data set observations 1331

space
between bars 971

space data sets 1197
creating 1198
variables 1197

SPACE= option
BAR statement (GBARLINE) 971
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1033
SPACEDATA= option

PROC GFONT statement 1187
spacing

angle of rotation 290
between Bitstream font letters 364
between display area and graphic 429
between displayed area and graph 383
between fill lines 361
legends 228, 238
text in graphics output 284, 289

spatial data formats 1593
SPCLASS= macro argument 587
special characters 160

HTML entities 636
Special font 1652
special plot symbols 269
SPEED 421
SPEED= graphics option 421
speed of plotter pens 421
SPEED= option

CHART statement (GRADAR) 1431
SPEED= option, GDEVICE procedure 421
speedometer KPI charts 1215, 1234

reversed colors 1235
SPEEDOMETER statement

GKPI procedure 1226
spherical coordinates, converting to Cartesian

See Cartesian coordinates
SPIDERWEB option

CHART statement (GRADAR) 1431
spine labels 1063
SPKLABEL= option

CHART statement (GRADAR) 1431
spline interpolation 263, 275, 1574, 1588

partial 1586
SPLINE option

GRID statement (G3GRID) 1580
spline smoothing 1575, 1584
SPLIT= option, AXIS statement options 208
SPOKESCALE= option

CHART statement (GRADAR) 1431
SPREAD= macro argument 584
SSFILE1=, ..., SSFILE5= macro arguments 588

SSFREF1=, ..., SSFREF5= macro arguments 588
SSHREF1=, ..., SSHREF5= macro arguments 588
SSMEDIA1=, ..., SSMEDIA5= macro arguments 588
SSREL1=, ..., SSREL5= macro arguments 588
SSREV1=, ..., SSREV5= macro arguments 588
SSTITLE1=, ..., SSTITLE5= macro arguments 588
SSTYPE1=, ..., SSTYPE5= macro arguments 589
STACKED= parameter, JAVA 500
STACKPERCENT= parameter, JAVA 500
STAGGER option

AXIS statement 208
standard deviations 264
star charts 10, 995

See also radar charts
creating 1055
discrete numeric variables in 1089
patterns and outlines 1064
spine and slice labels 1063
statistic and group headings 1062, 1065
sum statistic in 1088

STAR statement
GCHART procedure 1055

STAR statement, GCHART procedure
BY statement with 218

STARAXIS= option
CHART statement (GRADAR) 1432

STARCIRCLES= option
CHART statement (GRADAR) 1432

STARFILL= option
CHART statement (GRADAR) 1432

STARINRADIUS= option
CHART statement (GRADAR) 1432

STARLEGEND= option
CHART statement (GRADAR) 1433

STARLEGENDLAB= option
CHART statement (GRADAR) 1433

STARMAX= option
STAR statement (GCHART) 1062

STARMIN= option
STAR statement (GCHART) 1063

STAROUTRADIUS= option
CHART statement (GRADAR) 1433

stars, drawing circle of (example) 664
STARSTART= option

CHART statement (GRADAR) 1433
STARTYPE= option

CHART statement (GRADAR) 1434
state boundaries

removing from U.S. map 1465
STATE function (DSGI) 841
state map data (U.S.)

visual center of state 1247
state postal abbreviations 1156, 1157
statement options

overriding style attributes with 140
statements 197

Base SAS language statements 35
global 33
ODS 34, 35

STATFMT= option
AREA statement (GMAP) 1258
BLOCK statement (GMAP) 1266
CHORO statement (GMAP) 1274
PRISM statement (GMAP) 1282
SURFACE statement (GMAP) 1288

1734 Index

static graphics 503
adding drill-down to Web presentations 511
creating with ODS 504
developing presentations with GIF, JPEG, SVG,

PNG 508
presentations developed with ACTXIMG, JAVAIMG 510
sample programs for 512

static images in presentations 440, 441, 445
statistic headings

pie and donut charts 1048, 1054
star charts 1062, 1065

STATISTIC= option
AREA statement (GMAP) 1258
BLOCK statement (GMAP) 1266
CHORO statement (GMAP) 1274
PRISM statement (GMAP) 1282
SURFACE statement (GMAP) 1288

statistics
See also chart statistics
displaying above bars 970
displaying inside bars 967
for response variables 1306
in bar-line charts 973
in horizontal bar charts 1036, 1075
in vertical bar charts 1036
weighted 1001
weighted (GBARLINE) 983
weighted (GRADAR) 1420

step codes 374
STEP= option, SYMBOL statement 268
step plots 265
stock market high, low, close data 258
storing

Annotate graphics 919
clipped polygons 400
DSGI graphs 774
fonts 1653
graphics catalogs 1662
graphics output as files 360
Java plug-in 488
PPD file 407
rendered font files 415, 416

STRETCH option
BLOCK statement (GMAP) 1266
CHORO statement (GMAP) 1275
PRISM statement (GMAP) 1282
PROC GMAP statement 1254

stretching maps
GMAP procedure 1254

strings
appending to graphics data records 369
prefixing output records 378
sending to devices or files 370, 371

stroked fonts 1176
style attribute

versus device entry parameters 134
style attributes 135

overriding with statement options 140
style elements 135

for device-based output 146
GraphColors 144
GraphFonts 145
modifying 143

STYLE= option
ODS destination statements 139

STYLE= option, AXIS statement options 209

style templates 135
STYLE variable, Annotate facility 718
styles 41, 133

See also appearance of graphs
changing current style with STYLE= option 139
changing default style in SAS registry 139
changing font specifications used by 165
default 49
examples of output using different styles 136
modifying 142
modifying fonts or colors 143
modifying GraphFonts and GraphColors style ele-

ments 143
ODS destinations and default styles 135
precedence of appearance option specifications 141
recommended 136
specifying 139
specifying with multiple open destinations 51
turning off 153
viewing list of styles provided by SAS 141

stylesheets, macro arguments for 587
SUBGROUP= option

BAR statement (GBARLINE) 971
BLOCK statement (GCHART) 1013
HBAR, HBAR3D, VBAR, VBAR3D statements 937
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1033
HBAR and VBAR statements 944
PIE, PIE3D, DONUT statements (GCHART) 1049

SUBGROUP variable, Annotate facility 722
subgrouping

3-D vertical bar charts 1072
area bar charts 942, 944
block charts 1067
donut or pie charts 1083

subordinate statements 32
subsetting

map data sets 1295, 1454
subsetting map data sets 1408, 1414

example 1414
substitution strings

drill-down tags as 612
removing blanks from data values 611
variables as 613

SUM option
BAR statement (GBARLINE) 972
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1034
sum statistic 953, 972, 1001

in bar charts 1070
in block charts 1066
in pie charts 1080
in star charts 1088
numeric variable for 972

SUMLABEL= option
HBAR, HBAR3D statements (GCHART) 1034

SUMVAR= option
BAR statement (GBARLINE) 972
BLOCK statement (GCHART) 1013
CHART statement (GRADAR) 1434
HBAR, HBAR3D, VBAR, VBAR3D statements 937
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1034
PIE, PIE3D, DONUT statements (GCHART) 1050
PLOT statement (GBARLINE) 980
STAR statement (GCHART) 1063

Index 1735

suppressing axes 1107
BUBBLE statement 1342
PLOT statement, G3D procedure 1550
PLOT statement, GPLOT procedure 1357
SCATTER statement, G3D procedure 1557

surface maps 20, 1243
annotating 1286
axes, controlling 1545
color for drawing 1286
creating 1285
description of catalog entry 1287
distance decay function 1286
name of graphics output file 1287
name of GRSEG catalog entry 1287
number of lines for drawing 1287
percentages 1287
percentages, overriding default format 1288
physical dimensions of 1288
producing a simple map 1312
rotating 1288
rotating and tilting 1313, 1545
statistics 1288
tilting 1288

surface plots 16, 1541, 1560, 1564
appearance of surface 1552
data ranges 1545
input data sets 1544
rotating 1561
three-dimensional, syntax for 1547
tilting 1563

SURFACE statement
GMAP procedure 1285

SURFACESIDECOLOR= parameter, JAVA 500
SVG device driver

ACTXIMG, JAVAIMG vs. 506
developing web presentations 508
HTML files, generating 509

SVG documents 77
browser support for 83
output from devices 79
reasons for creating 78
system options for 84
terminology 77

SWAP 421
SWAP function, Annotate facility 698
SWAP= graphics option 421
%SWAP macro, Annotate facility 758
SWAP= option, GDEVICE procedure 421
SWFONTRENDER 422
SWFONTRENDER= graphics option 422
SYMBOL 253, 423
SYMBOL definitions 1360, 1366

displaying values of 1319
GBARLINE procedure 981
plot requests assigning 1361

SYMBOL definitions, BY statement with 220
symbol fonts

creating figures for 1201
SYMBOL function, Annotate facility 1641
SYMBOL= graphics option 423
SYMBOL option

LEGEND statement options 232
PROC GOPTIONS statement 1322

SYMBOL= option, GDEVICE procedure 423
SYMBOL statement 33, 198, 253

ActiveX and Java support for 1610

altering or canceling 272
box plots, modifying (example) 302
contour plots and 1114
rotating plot symbols through colors (example) 299
using 272

symbols
GBARLINE procedure 955, 956
in ACTIVEX 459
special Java symbols 472

SYMBOLS 423
SYMBOLS= option, GDEVICE procedure 423
syntax conventions 25
system fonts 156
%SYSTEM macro, Annotate facility 758
system options

SVG documents and 84
system resources

closing destinations to save 51

T
T= option, AXIS statement options 213
T= option, LEGEND statement options 235
TARGET= option

GKPI procedure 1230
TARGETDEVICE 425
TARGETDEVICE= graphics option 423
TC argument

? statement (GREPLAY) 1482
LIST statement (GREPLAY) 1490

TC= option
PROC GREPLAY statement 1480

TC statement
GREPLAY procedure 1493

TCOPY statement
GREPLAY procedure 1494

TDEF statement
GREPLAY procedure 1495

TDELETE statement
GREPLAY procedure 1498

TEMPLATE argument
? statement (GREPLAY) 1482
LIST statement (GREPLAY) 1490

TEMPLATE DESIGN window 1502
TEMPLATE entries 1475
TEMPLATE= option

PROC GREPLAY statement 1481
TEMPLATE procedure

modifying styles 142
viewing list of styles provided by SAS 141

TEMPLATE statement
GREPLAY procedure 1498

templated graphs 22
templates 1475

assigning 1498
copying or duplicating 1494
creating 1506, 1508
defining or modifying in catalogs 1495
deleting 1498
GREPLAY template code 1663
managing 1504
replaying graphics output in 1506
replaying graphs into 1512
replaying GSLIDE procedure output in 1510
style templates 135
transporting 1661

1736 Index

Templates window
viewing list of styles provided by SAS 141

terminating drivers 355
terminology

fonts 1176
graphics output 88

TEXALIGN function (DSGI) 841, 894
TEXCOLOR function (DSGI) 842, 896
TEXEXTENT function (DSGI) 843
TEXFONT function (DSGI) 844, 897
TEXHEIGHT function (DSGI) 845, 898
TEXINDEX function (DSGI) 846, 898
TEXPATH function (DSGI) 846, 899
TEXREP function (DSGI) 847, 900
text 865

angle of 399
as axis values 206, 208, 209
as legend values 230, 232
axis text, formatting 210
block charts 1015
BY lines 217
color of 963, 977
donut chart labels 1051
for contour labels 1115
HTML entities 636
in Annotate graphics output 683
reading direction, changing (example) 800

text color 344
text description suboptions

AXIS statement 214
text slides 21

combining output onto one slide 22
enhancing 23
templated graphs 22

text slides for presentations 1517
Annotate graphics, displaying 1518, 1524
producing (example) 1522

TEXT variable, Annotate facility 724
TEXUP function (DSGI) 848, 901
three-dimensional plots 16

contour 17
scatter 17
surface 16

tick mark values
GKPI procedure 1219

tick marks
color of 976
minor 969, 979

tick marks, axes 203, 204, 213
formatting 214
offset 205
scatter plots 1559
suboptions, list of 1603
surface plots 1551
with datetime values (example) 294

TICK= option, AXIS statement options 213
TICK= option, LEGEND statement options 235
Tile applet 469
tile charts 12

creating 1530, 1536
TILE statement

GTILE procedure 1530
TILELEGEND= option

CHART statement (GRADAR) 1434
TILELEGLABEL= option

CHART statement (GRADAR) 1434

tiles 1527
tiling radar charts 1439
TILT= option

PLOT statement (G3D) 1551
SCATTER statement (G3D) 1559
SURFACE statement (GMAP) 1288

tilting
surface and scatter plots 1545
surface maps 1313
surface plots 1563

TIPBACKCOLOR= parameter, JAVA 500
TIPBORDERCOLOR= parameter, JAVA 500
TIPMODE= parameters, JAVA and ActiveX 500
TIPS= macro argument 584
TIPS= parameters, JAVA and ActiveX 500
TIPSTEMSIZE= parameters, JAVA and ActiveX 501
TIPTEXTCOLOR= parameters, JAVA and ActiveX 501
TIPTYPE= macro argument 584
TITLE 280
TITLE definitions

displaying values of 1319
TITLE option

PROC GOPTIONS statement 1322
TITLE statement 33, 198, 280, 292

ActiveX and Java support for 1612
BY statement with 219
displaying with GOPTIONS procedure 1322
enhancing titles (example) 307

titles 292
angle of rotation 281, 287
boxes around 283, 284
colors for 283, 284, 344, 345
default characteristics, setting 293
defining text of 290, 294
enhancing (example) 307
fonts 364
fonts, color, and size (ODS output) 195
fonts for 285
hyperlinks for 288
justification 286
ODS output 194
placement in graphics output area 65
positioning 289
size of 286, 385, 386
spacing around 289
text breaks 293
underlining 291

titles macro, arguments for 589
TOGGLE statement

GTILE procedure 1530
tokens, GDDM 368
traditional map data sets

See also map data sets
clipping 1408, 1414

traditional map data sets, projecting coordinates from spheri-
cal to Cartesian

See Cartesian coordinates
traffic light KPI charts 1216, 1236
TRAILER 425
TRAILER= option, GDEVICE procedure 425
TRAILER records 425, 426
TRAILERFILE 426
TRAILERFILE= option, GDEVICE procedure 426
trailers

for animated sequences 520
TRANLIST= macro argument 594

Index 1737

TRANS function (DSGI) 849
transformations, DSGI 793
translation table, ASCII-to-EBCDIC 427
TRANSNO function (DSGI) 849, 904
TRANSPARENCY 426
transparency, image 426
TRANSPARENCY GOPTIONS statement 426
TRANSPARENCY= graphics option 521
transporting and converting graphics output 1659
TRANTAB 427
TRANTAB= graphics option 427
TRANTAB= option, GDEVICE procedure 427
tray, paper 398
TREEDIR= macro argument 584
TREESPAN= macro argument 585
Treeview applet 442, 543

DS2TREE macro with 545
enhancing presentations for 546
hotspots 550
when to use 544
XML embedded in HTML file (example) 547
XML written to external file (example) 549

TREPLAY statement
GREPLAY procedure 1499

troubleshooting
Annotate data sets 658
Web output 633

TrueType fonts
supplied by SAS 156

TTAG= macro argument 589
two-dimensional bar charts 185
two-dimensional plots 13

bubble 16
high-low 15
regression 14
scatter 13
simple line 14

two-dimensional scatter plots 13
two-sided printing 334, 355
TXT2CNTL function, Annotate facility 700
%TXT2CNTL macro, Annotate facility 759
TYPE 427
TYPE= option

BAR statement (GBARLINE) 972
BLOCK statement (GCHART) 1013
GDEVICE procedure 427
GKPI procedure 1230
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1034
PIE, PIE3D, DONUT statements (GCHART) 1050
PLOT statement (GBARLINE) 980
STAR statement (GCHART) 1063

U
U= option, TITLE, FOOTNOTE, and NOTE state-

ments 291, 293
UCC 428
UCC= graphics option 428
UCC= option, GDEVICE procedure 428
UCC values 428
ULX= option

TDEF statement (GREPLAY) 1497
ULY= option

TDEF statement (GREPLAY) 1497
unclipped polygons, storing 400

UNDERFLOWCOLOR= parameters, JAVA and Ac-
tiveX 501

UNDERLIN= option, TITLE, FOOTNOTE, and NOTE
statements 291, 293

underlining in titles, footnotes, and notes 291
unicode code points 160
Unicode encoding 159
Unicode references for character data 593
uniform fonts 1176
UNIFORM option

AREA statement (GMAP) 1259
BLOCK statement, GMAP procedure 1275
BLOCK statement (GMAP) 1267
CHORO statement (GMAP) 1275
GPLOT procedure 219
PRISM statement (GMAP) 1283
PROC GFONT statement 1187
PROC GMAP statement 1254
PROC GPLOT statement 1333

unit area 1250
containing another area 1300
enclosed polygons as holes 1299
multiple polygons 1298
single polygon 1298

unit areas
combining, in map data sets 1459

units of measurement 378
Annotate graphics 651

Universal Printer shortcut devices 73, 75
unmatched area boundaries 1449, 1461
unreduced map data sets 1296
UPDATE function (DSGI) 870
URL drill-down mode 479, 610
URLs

drill-down 985
URX= option

TDEF statement (GREPLAY) 1497
URY= option

TDEF statement (GREPLAY) 1497
U.S. city map data 1248
U.S. map

removing state boundaries from 1465
U.S. state map data

visual center of state 1247
user-created fonts

storing 1177
user-defined control characters, device 428
user-defined patterns 1003, 1014, 1037
user input, enabling 429
USERFMT= parameters, JAVA and ActiveX 501
USERINPUT 429

V
V= option, SYMBOL statement 269, 274
V6COMP 431
V6COMP graphics option 431
VALUE= option

AXIS statement 209, 1603
LEGEND statement 1609
LEGEND statement options 232
PATTERN statement 242
PIE, PIE3D, DONUT statements (GCHART) 1050
STAR statement (GCHART) 1063
SYMBOL statement 269, 274

1738 Index

values on axes 209
order of 205
splitting (multiline) 208

values on legends
order of 230
size and shape of 231

variable roles 610
variables

Annotate facility 645, 653, 656, 700
as substitution strings 613
classification, plotting 1327
declaring as plot point labels 267
DENSITY 1447
identification variables 1250
link and enhancement variables in presentations 601
macro variable names 594
plotting three variables (example) 1383
plotting two variables (example) 1372
response variables 1249

variance 264
VAXIS= option

BUBBLE statement (GPLOT) 1342
PLOT statement (GCONTOUR) 1107
PLOT statement (GPLOT) 1358

VBAR and VBAR3D statements
drill-down functionality in bar chart (example) 618
GAREABAR procedure 934
GCHART procedure 1615

VBAR statement
GCHART procedure 1016

VBAR3D statement
GCHART procedure 1016

VBULLET statement
GKPI procedure 1226

vector formats 115
vector graphics files, rendering software fonts 422
Version 6, SAS/GRAPH

defaults for programs 431
vertical axes

multiple in plots 1365
vertical axes, multiple in plots 1328, 1370
vertical bar charts 8, 991

BAR statement, GBARLINE procedure 1613
creating 1016
GAREABAR procedure 934
statistics in 1036
subgroup labels (example) 661
subgrouping 3-D charts 1072

vertical bar-line charts 959
vertical variables

G3GRID procedure 1573
vertices, maximum drawn 393
VIEW2D= parameters, JAVA and ActiveX 501
VIEWPOINT=2D= parameter, JAVA 501
VIEWPORT function (DSGI) 850, 904
viewports, DSGI 791, 801
VMINOR= option

BUBBLE statement (GPLOT) 1342
PLOT statement (GCONTOUR) 1107
PLOT statement (GPLOT) 1359

VORIGIN 429
VORIGIN= graphics option 429
VPOS 430
VPOS function (DSGI) 851, 905
VREF= option

BUBBLE statement (GPLOT) 1342

PLOT statement (GCONTOUR) 1107
PLOT statement (GPLOT) 1359

VREVERSE option
BUBBLE statement (GPLOT) 1342
PLOT statement (GCONTOUR) 1108
PLOT statement (GPLOT) 1359

VSIZE 431
VSIZE function (DSGI) 852, 906
VSIZE= graphics option 431

setting size of graphics area 94
VSIZE= option, GDEVICE procedure 431
VSLIDER statement

GKPI procedure 1226
VSPACE= macro argument 571
VTRAFFICLIGHT statement

GKPI procedure 1226
VZERO option

BUBBLE statement (GPLOT) 1342
PLOT statement (GPLOT) 1359

W
W= option, AXIS statement options 214
W= option, SYMBOL statement 270
WAUTOHREF= option

BUBBLE statement (GPLOT) 1342
PLOT statement (GCONTOUR) 1108
PLOT statement (GPLOT) 1359

WAUTOREF= option
BAR statement (GBARLINE) 972
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1035
PLOT statement (GBARLINE) 980

WAUTOVREF= option
BUBBLE statement (GPLOT) 1343
PLOT statement (GCONTOUR) 1108
PLOT statement (GPLOT) 1359

Weather font 1652
Web output

Annotate facility for 539
Annotate variables for 656
developing for Metaview Applet 531
developing with ACTXIMG and JAVAIMG drivers 510
enhancing with GIF, JPEG, SVG, PNG drivers 508
generating presentations 451
HTML files, generating with GIF, PNG, SVG, JPEG 509
page formatting, macro arguments for 585
presentation features 448
presentation types 440, 447
static graphics 503
stylesheets, macro arguments for 587
troubleshooting 633

Web pages
bar chart with drill-down (example) 321
combining graphs and reports (example) 315
creating with ODS HTML (example) 313
sending output to 45

Web presentations
adding drill-down links to 511
developing with GIFANIM device 519

weighted statistics
calculating (GBARLINE) 954, 966
calculating (GRADAR) 1420
GBARLINE procedure 983
GCHART procedure 1001

Index 1739

WFRAME= option
CHART statement (GRADAR) 1434
GSLIDE procedure 1521

WHEN variable, Annotate facility 656, 725
WHERE statement 35

RUN-group processing with 57
white and black, reversing 421
WHREF= option

BUBBLE statement (GPLOT) 1343
PLOT statement (GCONTOUR) 1108
PLOT statement (GPLOT) 1359

WIDTH= macro argument 571
WIDTH= option

AXIS statement 210
AXIS statement options 214
BAR statement (GBARLINE) 973
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1035
SYMBOL statement 270

WIDTH variable, Annotate facility 726
width variables

GAREABAR procedure 932
WIDTHSTAT= option

HBAR, HBAR3D, VBAR, VBAR3D statements 937
wind speed and direction charts 1443
WINDOW function (DSGI) 853, 907
windowing environment 53
windowing mode

GDEVICE procedure 1127
windows, DSGI 791

enlarging graph areas with DSGI windows (exam-
ple) 806

scaling graphs with (example) 804
windrose charts 1434, 1443
WINDROSE option

CHART statement (GRADAR) 1434
WINDROSECIRCLES= option

CHART statement (GRADAR) 1434
WOUTLINE= option

BAR statement (GBARLINE) 973
BLOCK statement (GCHART) 1014
BLOCK statement (GMAP) 1267
CHORO statement (GMAP) 1275
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1035
PIE, PIE3D, DONUT statements (GCHART) 1050
PRISM statement (GMAP) 1283
STAR statement (GCHART) 1063

WREF= option
BAR statement (GBARLINE) 973
HBAR, HBAR3D, VBAR, VBAR3D statements

(GCHART) 1035
PLOT statement (GBARLINE) 980

WSACTIVE function (DSGI) 854
WSOPEN function (DSGI) 854
WSPOKES= option

CHART statement (GRADAR) 1434
WSTARCIRCLES= option

CHART statement (GRADAR) 1435
WSTARS= option

CHART statement (GRADAR) 1435
WSTAT= option, HBAR and VBAR statements

chart with subgroups and variable percentages 944
WVREF= option

BUBBLE statement (GPLOT) 1343
PLOT statement (GCONTOUR) 1108

PLOT statement (GPLOT) 1359

X
X and Y coordinates

comparing to map data set 1205
X variable

example 1245
map data sets 1244

X variable, Annotate facility 727
XAXIS= option

PLOT statement (G3D) 1551
SCATTER statement (G3D) 1559

XBINS= parameter, JAVA 501
XC variable, Annotate facility 728
XLAST variable, Annotate facility 738
XLATEX= option

TDEF statement (GREPLAY) 1497
XLATEY= option

TDEF statement (GREPLAY) 1497
XLIGHT= option

PRISM statement (GMAP) 1283
XLSTT variable, Annotate facility 738
XMAX 432
XMAX= graphics option 432

setting resolution 96
XMAX= option, GDEVICE procedure 432
XMLFILE= macro argument 579
XMLFREF= macro argument 579
XMLTYPE= macro argument 579
XMLURL= macro argument 579
XPIXELS 433
XPIXELS= graphics option 433

setting resolution 96
setting size of graph 95

XPIXELS= option, GDEVICE procedure 433
XSIZE= option

BLOCK statement (GMAP) 1267
CHORO statement (GMAP) 1275
PRISM statement (GMAP) 1284
SURFACE statement (GMAP) 1288

XSYS variable, Annotate facility 730
XTICKNUM= option

PLOT statement (G3D) 1551
PLOT statement (GCONTOUR) 1108
SCATTER statement (G3D) 1559

XVIEW= option
BLOCK statement (GMAP) 1267
PRISM statement (GMAP) 1284

XYTYPE= option
PLOT statement (G3D) 1551

Y
Y and X coordinates

comparing to map data set 1205
Y variable

example 1245
map data sets 1244

Y variable, Annotate facility 732
YAXIS= option

PLOT statement (G3D) 1551
SCATTER statement (G3D) 1559

YBINS= parameter, JAVA 501
YC variable, Annotate facility 733
YLAST variable, Annotate facility 738

1740 Index

YLIGHT= option

PRISM statement (GMAP) 1283
YLSTT variable, Annotate facility 738

YMAX 434
YMAX= graphics option 434

setting resolution 96
YMAX= option, GDEVICE procedure 434

YPIXELS 435
YPIXELS= graphics option 434, 435

setting resolution 96
setting size of graph 95

YPIXELS= option, GDEVICE procedure 434, 435
YSIZE= option

BLOCK statement (GMAP) 1267
CHORO statement (GMAP) 1275

PRISM statement (GMAP) 1284
SURFACE statement (GMAP) 1288

YSYS variable, Annotate facility 734
YTICKNUM= option

PLOT statement (G3D) 1551
PLOT statement (GCONTOUR) 1108

SCATTER statement (G3D) 1559
YVIEW= option

BLOCK statement (GMAP) 1267
PRISM statement (GMAP) 1284

Z
z/OS

JAVAIMG driver in 511

Z variable, Annotate facility 736

ZAXIS= option

PLOT statement (G3D) 1551
SCATTER statement (G3D) 1559

zero values
block charts 1015
GTILE procedure 1528

ZIP + 4 extensions 1156, 1157
alternative source for 1152

ZIP code variables 1156, 1158
ZIP codes

geocoding with 1148
U.S. military 1151

ZIP geocoding method 1158
ZMAX= option

PLOT statement (G3D) 1552
SCATTER statement, G3D procedure 1559

ZMIN= option
PLOT statement (G3D) 1552
SCATTER statement (G3D) 1560

zoom controls 535

ZOOM= macro argument 585
ZOOMCONTROLENABLED= graphics option 535
ZOOMCONTROLMAX= graphics option 535
ZOOMCONTROLMIN= graphics option 535
ZSYS variable, Annotate facility 736
ZTICKNUM= option

PLOT statement (G3D) 1552
SCATTER statement (G3D) 1560

ZVIEW= option

BLOCK statement (GMAP) 1267
PRISM statement (GMAP) 1284

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

66

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

	Contents
	What’s New
	Overview
	The SAS/GRAPH Statistical Graphics Suite
	The SAS/GRAPH Network Visualization Workshop
	Support for Multiple Open ODS Destinations
	Support for ODS Styles
	Devices
	Colors
	Fonts and Font Rendering
	Changing the Appearance of Output to Match That of Earlier SAS
	Releases
	Procedures
	Support for Long Filenames
	GAREABAR Procedure
	GBARLINE Procedure
	GCHART Procedure
	GCONTOUR Procedure
	GEOCODE Procedure
	GINSIDE Procedure
	GKPI Procedure
	GMAP Procedure
	GPLOT Procedure
	GPROJECT Procedure
	GRADAR Procedure
	GREMOVE Procedure
	GTILE Procedure
	MAPIMPORT Procedure

	Global Statements
	Graphics Options
	Transparent Overlays
	ActiveX Control
	Java Map Applet
	Java Tilechart Applet
	The Annotate Facility
	New Map Data Sets
	Updated Map Data Sets
	Map Data Set Descriptions
	New Data Set for Military ZIP Codes
	Changes in SAS/GRAPH Documentation

	Part 1 SAS/GRAPH Concepts
	Introduction to SAS/GRAPH Software
	Overview
	Components of SAS/GRAPH Software
	Device-Based Graphics and Template-Based Graphics
	Graph Types
	Charts
	Bar-line Charts
	Area Bar Charts
	Tile Charts
	Radar Charts
	Two-Dimensional Plots
	Three-Dimensional Plots
	Maps
	KPI Charts
	Creating Text Slide and Presentation Graphics
	Enhancing Graphics Output (graphs and text slides)
	Creating Custom Graphics

	About this Document
	Audience
	Prerequisites

	Conventions Used in This Document
	Syntax Conventions
	Conventions for Examples and Output

	Information You Should Know
	Support Personnel
	Sample Programs
	Map Data Sets
	Annotate Macros Data Set

	Elements of a SAS/GRAPH Program
	Overview
	A Typical SAS/GRAPH Program
	SAS/GRAPH PROC Step
	Global Statements
	Annotate DATA Set
	DSGI Functions and Routines in a DATA Step
	ODS Statements
	Base SAS Language Elements
	Other Resources

	Getting Started With SAS/GRAPH
	Introduction
	Introduction to ODS Destinations and Styles
	Opening And Closing Destinations
	The LISTING Destination
	Introduction to Styles
	Specifying a Style

	Generating Output With SAS/GRAPH Procedures
	Sending Output to the GRAPH Window (LISTING Destination)
	Sending Output to a File
	Sending Output to a Web Page
	Sending Output to an RTF File (Microsoft Word Document)
	Sending Output to a PDF File

	Controlling the Graphics Output Format With the DEVICE= Option
	Overview of Devices and Destinations
	Specifying the DEVICE= Graphics Option

	Summary of Default Destinations, Styles, and Devices
	Sending Output To Multiple Open Destinations
	Closing Destinations To Save System Resources
	Specifying Devices And Styles With Multiple Open Destinations

	Related Topics

	SAS/GRAPH Processing
	Running SAS/GRAPH Programs
	SAS Data Sets
	Specifying an Input Data Set
	Using a Library Reference
	Using a File Specification
	Input Data Set Requirements
	Automatic Data Set Locking

	Using Engines with SAS/GRAPH Software
	RUN-Group Processing
	RUN-group Processing with global and local statements
	RUN-group Processing with BY statements
	RUN-group Processing with the WHERE Statement

	The Graphics Output Environment
	Overview
	The Graphics Output and Device Display Areas
	Controlling Dimensions
	Controlling Display Area Size and Image Resolution
	Units
	Cells
	Other Units

	Maintaining the Quality of Your Image Across Devices
	Maintaining Proportions
	Getting the Colors You Want
	Previewing Your Output

	How Graphic Elements are Placed in the Graphics Output Area
	How Errors in Sizing Are Handled

	Using Graphics Devices
	Overview
	What Is a SAS/GRAPH Device?
	Commonly Used Devices
	Default Devices For ODS Destinations
	Viewing The List Of All Available Devices
	Deciding Which Device To Use
	Overriding the Default Device
	Device Categories And Modifying Default Output Attributes
	Using Universal Printer Shortcut Devices
	Using Scalable Vector Graphics Devices
	What Is an SVG Document?
	Why Create SVG Documents?
	The SVG Devices and the Output That They Create
	Example: Placing Images Behind SVG Documents
	Example: Generating A Single SVG Document With Multiple Pages and Page Controls
	Implementing Drill-Down Functionality With the SVG Devices
	Web Server Content Type for SVG Documents
	Browsers That Support SVG Documents
	Controlling Graph Resolution With The SVG Devices
	Controlling Graph Size With the SVG Devices
	SAS System Options and SVG Output

	Viewing and Modifying Device Entries
	Viewing the Contents of a Device Entry
	Modifying Device Entry Parameters

	Creating a Custom Device
	Related Topics

	SAS/GRAPH Output
	About SAS/GRAPH Output
	SAS/GRAPH Output Terminology
	Supported Graphics Formats
	Output Types
	About GRSEGs
	What You Can Do With SAS/GRAPH Output

	Specifying the Graphics Output File Type for Your Graph
	About the Output Delivery System (ODS)
	About the Graphics Output Devices

	The SAS/GRAPH Output Process
	All Devices Except JAVA, JAVAIMG, ACTIVEX, and ACTXIMG
	JAVA or ACTIVEX Device
	JAVAIMG or ACTXIMG Device

	Setting the Size of Your Graph
	Using the HSIZE= and VSIZE= Graphics Options to Set the Size of Your Graphics Area
	Using the XPIXELS= and YPIXELS= Graphics Options to Set the Size of Your Graph

	Setting the Resolution of Your Graph
	Using the XPIXELS=, XMAX=, YPIXELS=, and YMAX= Graphics Options to Set the Resolution for Device-Based Graphics
	Using a Device Variant to Set the Size or Resolution of Your Graph

	Controlling Where Your Output is Stored
	Specifying the Name and Location of Your ODS Output
	Specifying the Name and Location of Your Graphics Output File
	About Filename Indexing
	Specifying the Catalog Name and Entry Name for Your GRSEGs
	Summary of How Output Filenames and GRSEG Names are Handled

	Replacing an Existing Graphics Output File Using the GSFMODE= Graphics Option
	Storing Multiple Graphs in a Single Graphics Output File
	Using Graphics Options to Store Multiple Graphs in One Graphics Output File
	Using the GREPLAY Procedure to Store Multiple Graphs in One Graphics Output File

	Replaying Your SAS/GRAPH Output
	Replaying Your Output Using the GREPLAY Procedure
	Replaying Output Using the DOCUMENT Procedure

	Previewing Output
	Printing Your Graph
	Sending Your Graph Directly to a Printer
	Saving and Printing Your Graph

	Exporting Your Output

	Exporting Your Graphs to Microsoft Office Products
	What to Consider When Choosing an Output Format
	Graphics Formats Versus Document Formats
	Image Resolution and Size
	Color Depth
	Fonts
	Multiple-Image Graphics Files
	Ability to Edit: Vector Versus Raster Formats

	Comparison of the Graphics Output
	Working Around the EMF and CGM Transparency Limitation
	About the Default CGM Filter for Microsoft Office

	Enhancing Your Graphs
	Importing Your Graphs into Microsoft Office
	Importing Graphs into Microsoft Word
	Importing Graphs into Microsoft Excel
	Importing Graphs into Microsoft PowerPoint

	Writing Your Graphs to a PDF File
	About Writing Your Graphs to a PDF File
	Changing the Page Layout
	Adding Metadata to Your PDF File
	Adding Bookmarks for Your Graphs
	Changing the Default Compression Level for Your PDF File
	Examples
	Creating a Multipage PDF File with Bookmarks and Metadata
	Creating a PDF/A-1b-Compliant File that Contains Multiple Graphs Per Page
	Creating a Multiple-Page PDF File Using BY-Group Processing
	Creating a Multiple-Page PDF File Using the GREPLAY Procedure

	Controlling The Appearance of Your Graphs
	Overview
	Style Attributes Versus Device Entry Parameters
	About Style Templates
	ODS Destinations and Default Styles
	Recommended Styles
	Examples of Output Using Different Styles

	Specifying a Style
	Changing the Current Style by Using the STYLE= Option in ODS Destination Statements
	Changing the Default Style in the SAS Registry

	Overriding Style Attributes With SAS/GRAPH Statement Options
	Precedence of Appearance Option Specifications
	Viewing the List of Styles Provided by SAS
	Using The TEMPLATE Procedure
	Using the Templates Window

	Modifying a Style
	Using the TEMPLATE Procedure
	Example: Modifying a Style Element
	Ways to Modify Graph Fonts Or Colors Specified By Styles
	Modifying the GraphFonts And GraphColors Style Elements

	Graphical Style Element Reference for Device-Based Graphics
	The GraphColors Style Element
	The GraphFonts Style Element
	Font Specifications In The GraphFonts Style Element
	Style Elements For Use With Device-Based SAS/GRAPH Output

	Turning Off Styles
	Changing the Appearance of Output to Match That of Earlier SAS Releases

	Specifying Fonts in SAS/GRAPH Programs
	Introduction: Specifying Fonts in SAS/GRAPH Programs
	SAS/GRAPH, System, and Device-Resident Fonts
	TrueType Fonts That Are Supplied by SAS
	Determining What Fonts Are Available
	Default Fonts
	Viewing Font Specifications in the SAS Registry
	Specifying a Font
	Specifying Font Modifiers (/bold, /italic, and /unicode)
	Using a Registry Subkey
	Specifying International Characters (Unicode Encoding)
	Specifying Special Characters Using Character and Hexadecimal Codes

	Methods For Specifying Fonts
	Using SAS/GRAPH Global Statement Options to Specify Fonts
	Using GOPTIONS to Specify Fonts
	Changing The Font Specifications Used By a Style
	Precedence of Font Specifications

	SAS/GRAPH Colors and Images
	Using SAS/GRAPH Colors and Images
	Specifying Colors in SAS/GRAPH Programs
	Specifying Colors in a GOPTIONS Statement
	Defining and Using a Color List
	Color-Naming Schemes
	Processing Limitations For Colors

	Specifying Images in SAS/GRAPH Programs
	Image File Types Supported by SAS/GRAPH
	Displaying an Image in a Graph Background
	Displaying an Image in Graph Frame
	Displaying Images on Data Elements
	Displaying Images Using Annotate
	Displaying Images using DSGI
	Disabling and Enabling Image Output

	Managing Your Graphics With ODS
	Introduction
	Managing ODS Destinations
	Specifying a Destination
	ODS Destination Statement Options
	ODS and Procedures that Support RUN-Group Processing
	Controlling Titles and Footnotes with Java and ActiveX Devices in HTML Output
	Controlling Where Titles and Footnotes are Rendered
	Controlling the Text Font, Size, and Color
	Using Graphics Options with ODS (USEGOPT)

	SAS/GRAPH Statements
	Overview
	Example 1. Ordering Axis Tick Marks with SAS Date Values
	Example 2. Specifying Logarithmic Axes
	Example 3. Rotating Plot Symbols Through the Color List
	Example 4. Creating and Modifying Box Plots
	Example 5. Filling the Area between Plot Lines
	Example 6. Enhancing Titles
	Example 7. Using BY-group Processing to Generate a Series of Charts
	Example 8. Creating a Simple Web Page with the ODS HTML Statement
	Example 9. Combining Graphs and Reports in a Web Page
	Example 10. Creating a Bar Chart with Drill-Down Functionality for the Web
	Details
	Building an HREF value
	Creating an image map
	Referencing SAS/GRAPH Output

	Graphics Options and Device Parameters Dictionary
	Introduction
	Specifying Graphics Options and Device Parameters
	Specifying Units of Measurement

	Dictionary of Graphics Options and Device Parameters

	Part 2 Bringing SAS/GRAPH Output to the Web
	Introducing SAS/GRAPH Output for the Web
	Which Device Driver or Macro Do I Use?
	Types of Web Presentations Available
	Presentations That Use The ActiveX Control
	Presentations That Use Java Applets
	Presentations that Use Static Images

	Selecting a Type of Web Presentation
	How is the graphical output produced?
	What features are supported for each type of presentation?
	What does your audience need to view the presentation?
	Recommendations

	Generating Web Presentations
	Using ODS HTML with a SAS/GRAPH Procedure
	Using DS2TREE and DS2CONST Macros

	Creating Interactive Output for ActiveX
	Overview
	When to Use the ACTIVEX Device
	Installing the SAS/GRAPH ActiveX Control
	Manually Installing the SAS/GRAPH ActiveX Control
	Configuring Your Program to Prompt Users to Install the SAS/GRAPH ActiveX Control
	Configuring an Existing ActiveX Presentation to Prompt Users to Install the SAS/GRAPH ActiveX Control
	Uninstalling the SAS/GRAPH ActiveX Control

	Generating Output for ActiveX
	About Languages in ACTIVEX
	About Special Fonts and Symbols in ACTIVEX
	SAS Formats Supported by ACTIVEX
	Configuring Drill-Down Links with ACTIVEX
	ActiveX Examples
	Generating an ActiveX Graph for a Microsoft Word Document
	Generating an Interactive Contour Plot in ActiveX
	Providing JavaScript Drill-Down with ActiveX
	Providing More JavaScript Drill-Down with ActiveX

	Creating Interactive Output for Java
	Overview
	When to Use the JAVA Device
	Generating Output for Java
	About the Java HTML Output and the Java Runtime Environment Plug-In
	About Languages in JAVA
	About Special Fonts and Symbols in JAVA
	SAS Formats Supported for Java

	Configuring Drill-Down Links for Java
	Examples of Interactive Java Output
	Local Drill-Down Mode with Java
	Script Drill-Down Mode with Java
	URL Drill-Down Mode with Java
	HTML Drill-Down Mode

	Attributes and Parameters for Java and ActiveX
	Specifying Parameters and Attributes for Java and ActiveX
	Specifying the Location of Control and Applet Files (CODEBASE= and ARCHIVE= Options)
	Specifying the Location of the Java Plug-In (CODEBASE= Attribute)

	Parameter Reference for Java and ActiveX
	Parameter Definitions

	Generating Static Graphics
	What is a Static Graphic?
	Creating a Static Graphic
	ACTXIMG and JAVAIMG Devices Compared to GIF, JPEG, SVG, and PNG Devices
	GIF, JPEG, SVG, and PNG Devices
	ACTXIMG and JAVAIMG Devices
	Output From Different Devices and the GSTYLE/NOGSTYLE System Options

	Developing Web Presentations with the GIF, JPEG, SVG, and PNG Devices
	About the GIF, JPEG, SVG, and PNG Devices
	When to Use the GIF, JPEG, SVG, and PNG Devices
	Generating an HTML Output File Using the GIF, PNG, SVG, or JPEG Device

	Developing Web Presentations with the JAVAIMG and ACTXIMG Devices
	About the JAVAIMG and the ACTXIMG Devices
	When to Use the JAVAIMG or ACTXIMG Device
	Using JAVAIMG in the z/OS Environment
	Generating an HTML Output File Using the JAVAIMG or the ACTXIMG Device

	Adding Drill-Down Links to Web Presentations Generated with a Static-Graphic Device
	Sample Programs for Static Images
	Using the ACTXIMG Device
	Generating PNG Output
	GIF Output with Drill-Down Links

	Generating Web Animation with GIFANIM
	Developing Web Presentations with the GIFANIM Device
	When to Use the GIFANIM Device
	Creating an Animated Sequence
	Preparing the Header
	Preparing the Body
	Preparing the Trailer

	GOPTIONS for Controlling GIFANIM Presentations
	Sample Programs: GIFANIM
	Creating an Animated GIF with BY-Group Processing
	Creating an Animated GIF with RUN-Group Processing
	Creating an Animated GIF with the GREPLAY Procedure

	Generating Interactive Metagraphics Output
	Developing Web Presentations for the Metaview Applet
	Advantages of Using the JAVAMETA Device
	Using ODS With the JAVAMETA Device
	Enhancing Web Presentations for the Metaview Applet
	Specifying Non-English Resource Files and Fonts
	Metaview Applet Parameters
	Specifying Applet Parameters Using the ODS PARAMETERS= Statement

	Example: Generating Metacode Output With the JAVAMETA Driver

	Generating Web Output with the Annotate Facility
	Overview of Generating Web Output with the Annotate Facility
	Generating Web Output with the Annotate Facility
	When to Use PROC GANNO to Generate Web Output
	When to Apply Annotate Data Sets to Web Output
	Generating Web Links with the Annotate Facility

	Examples

	Creating Interactive Treeview Diagrams
	Creating Treeview Diagrams
	When to Use the Treeview Applet
	Interactivity Enabled by the Treeview Applet
	Programming with the DS2TREE Macro for the Treeview Applet

	Enhancing Presentations for the Treeview Applet
	DS2TREE Macro Arguments
	Sample Programs: Treeview Macro
	Sample Treeview with XML Embedded in the HTML File
	Sample Treeview with XML Written to an External File
	Treeview with Hotspots

	Creating Interactive Constellation Diagrams
	Creating Constellation Diagrams
	When to Use the Constellation Applet
	Programming with the DS2CONST Macro for the Constellation Applet

	Enhancing Presentations for the Constellation Applet
	DS2CONST Macro Arguments
	Sample Programs: Constellation Macro
	Constellation Chart with DATATYPE=ARCS
	Constellation Chart with DATATYPE=ASSOC
	Constellation Chart with XML Written to an External File
	Constellation Chart with Hotspots

	Macro Arguments for the DS2CONST and DS2TREE Macros
	Macro Arguments
	Arguments for the APPLET Tag
	DS2TREE and DS2CONST Arguments for Data Definition
	Arguments for Generating HTML and XML Files
	DS2TREE and DS2CONST Arguments for Diagram Appearance
	Arguments for Page Formatting
	Arguments for Stylesheets
	Arguments for the SAS TITLE and FOOTNOTE Tags
	Arguments for Character Transcoding
	Reserved Names

	Enhancing Web Presentations with Chart Descriptions, Data Tips, and Drill-Down Functionality
	Overview of Enhancing Web Presentations
	Chart Descriptions for Web Presentations
	What Is a Chart Description?
	Example: Adding Custom Chart Descriptions
	Chart Descriptions in GIF, JPG, PNG, ACTXIMG, and JAVAIMG Presentations
	Chart Descriptions in SVG, SVGT, SVGView, and SVGZ Presentations

	Data Tips for Web Presentations
	What Is a Data Tip?
	Adding Custom Data Tips with the HTML= Option
	Data Tips in GIF, JPEG, PNG, JAVAMETA, SVG, SVGT, SVGView, and SVGZ Presentations
	Data Tips in ACTIVEX, ACTXIMG, JAVA, and JAVAIMG Presentations

	Adding Links with the HTML= and HTML_LEGEND= Options
	Working with Link and Enhancement Variables
	Links in GIF, JPEG, PNG, and SVG Presentations
	Links in ACTXIMG and JAVAIMG Presentations
	Links in ACTIVEX Presentations
	Links in JAVA Presentations
	Links in Metaview Applet Presentations
	Links in Animated GIF Presentations

	Controlling Drill-Down Behavior For ActiveX and Java Using Parameters
	Using Drill-Down Tags
	Specifying the Drill-Down Mode
	Understanding Variable Roles
	Removing Blank Spaces from Data Values In Substitution Strings
	Using Variables as Substitution Strings
	Configuring HTML Drill-Down Mode
	Configuring the Drill-Down Response In HTML and URL Modes
	Configuring Script Drill-Down Mode
	Disabling Drill-Down Functionality

	Example: Creating Bar Charts with Drill-Down for the Web
	Example Part A
	Example Part B
	Example Part C
	Example Part D

	Troubleshooting Web Output
	Troubleshooting Web Output
	Checking Browser Permissions
	Using HTML Character Entities
	Connecting to Web Servers that Require Authentication
	Removing CLASSPATH Environment Variables
	Setting the SAS_ALT_DISPLAY Variable for X Window Systems on UNIX
	Correcting Text Fonts
	Resolving Differences Between Graphs Generated with Different Technologies

	Part 3 The Annotate Facility
	Using Annotate Data Sets
	Overview
	Enhancing Existing Graphs
	Creating Custom Graphs
	Creating Annotate Graphics

	About the Annotate Data Set
	Structure of An Annotate Data Set
	Annotate Variables
	Annotate Functions

	About Annotate Graphics
	Graphics Elements
	Coordinates
	Coordinate Systems
	Internal Coordinates
	Attribute Variables

	Creating an Annotate Data Set
	Using the DATA Step
	Using Annotate Macros in the DATA Step
	Effect of Missing Values

	Producing Graphics Output from Annotate Data Sets
	Including Annotate Graphics with Procedure Output
	Producing Only Annotate Graphics Output
	Using the Annotate Variables for Web Output

	Annotate Processing Details
	Order in Which Graphics Elements Are Drawn
	Using BY-Group Processing with the Annotate Facility
	Using the LIFO Stack
	Debugging

	Examples
	Labeling Cities on a Map
	Labeling Subgroups in a Vertical Bar Chart
	Drawing a Circle of Stars

	Annotate Dictionary
	Annotate Dictionary Overview
	Annotate Functions
	ARROW Function
	BAR Function
	CNTL2TXT Function
	COMMENT Function
	DEBUG Function
	DRAW Function
	DRAW2TXT Function
	FRAME Function
	IMAGE Function
	LABEL Function
	MOVE Function
	PIE Function
	PIECNTR Function
	PIEXY Function
	POINT Function
	POLY Function
	POLYCONT Function
	POP Function
	PUSH Function
	SWAP Function
	SYMBOL Function
	TXT2CNTL Function

	Annotate Variables
	ANGLE Variable
	CBORDER Variable
	CBOX Variable
	COLOR Variable
	FUNCTION Variable
	GROUP Variable
	HSYS Variable
	HTML Variable
	IMGPATH Variable
	LINE Variable
	MIDPOINT Variable
	POSITION Variable
	ROTATE Variable
	SIZE Variable
	STYLE Variable (Fonts)
	STYLE Variable (Images)
	STYLE Variable (Arrows)
	STYLE Variable (Patterns)
	SUBGROUP Variable
	TEXT Variable
	WHEN Variable
	WIDTH Variable
	X Variable
	XC Variable
	XSYS Variable
	Y Variable
	YC Variable
	YSYS Variable
	Z Variable
	ZSYS Variable

	Annotate Internal Coordinates
	XLAST, YLAST Variables
	XLSTT, YLSTT Variables

	Annotate Macros
	%ANNOMAC Macro
	%ARROW Macro
	%BAR, %BAR2 Macros
	%CENTROID Macro
	%CIRCLE Macro
	%CNTL2TXT Macro
	%COMMENT Macro
	%DCLANNO Macro
	%DRAW Macro
	%DRAW2TXT Macro
	%FRAME Macro
	%LABEL Macro
	%LINE Macro
	%MAPLABEL Macro
	%MOVE Macro
	%PIEXY Macro
	%POLY, %POLY2 Macro
	%POLYCONT Macro
	%POP Macro
	%PUSH Macro
	%RECT Macro
	%SCALE Macro
	%SCALET Macro
	%SEQUENCE Macro
	%SLICE Macro
	%SWAP Macro
	%SYSTEM Macro
	%TXT2CNTL Macro

	Using Annotate Macros
	Macro Structure
	Making the Macros Available
	Annotate Macro Task Summary

	Annotate Error Messages

	Part 4 The Data Step Graphics Interface
	The DATA Step Graphics Interface
	Overview
	DSGI Funtions
	DSGI Statements
	Syntax
	Requirements

	Applications of the DATA Step Graphics Interface
	Enhancing Existing Graphs
	Creating Custom Graphs

	Using the DATA Step Graphics Interface
	Summary of Use
	Producing and Storing DSGI Graphs
	Structure of DSGI Data Sets
	SAS/GRAPH Global Statements with DSGI
	Operating States
	The Current Window System
	Debugging DSGI Programs

	DSGI Graphics Summary
	DSGI Functions
	DSGI Routines
	Creating Simple Graphics with DSGI
	Bundling Attributes
	Using Viewports and Windows
	Inserting Existing Graphs into DSGI Graphics Output
	Generating Multiple Graphics Output in One DATA Step
	Processing DSGI Statements in Loops
	Examples
	See Also

	DATA Step Graphics Interface Dictionary
	Overview
	Operating States
	Utility Functions

	GASK Routines
	GDRAW Functions
	GRAPH Functions
	GSET Functions
	Return Codes for DSGI Routines and Functions
	See Also
	References

	Part 5 SAS/GRAPH Procedures
	The GANNO Procedure
	Overview
	Procedure Syntax
	PROC GANNO Statement

	Examples
	Example 1: Scaling Data-Dependent Output
	Example 2: Storing Annotate Graphics
	Example 3: Using the NAME= Option to Produce Multiple Graphs
	Example 4: Using Annotate Graphics in a Drill-Down Graph

	The GAREABAR Procedure
	Overview
	Concepts
	Procedure Syntax
	PROC GAREABAR Statement
	HBAR, HBAR3D, VBAR, and VBAR3D Statements

	Examples
	Example 1: Generating an Area Bar Chart
	Example 2: Generating an Area Bar Chart with a Numeric Chart Variable
	Example 3: Generating an Area Bar Chart with Subgroups
	Example 4: Area Bar Chart with Subgroups; Using the RSTAT= option and the WSTAT= option to Calculate Statistics as Percentages

	The GBARLINE Procedure
	Overview
	About Bar-Line Charts

	Concepts
	About the Chart Variable
	About Midpoints
	About Response Variables
	About Chart Statistics
	Missing Values
	Plot Variable Values Out of Range
	Controlling Patterns, Outlines, Colors, and Images

	Procedure Syntax
	PROC GBARLINE Statement
	BAR Statement
	PLOT Statement

	Examples
	Example 1: Producing a Basic Bar-Line Chart
	Example 2: Calculating Weighted Statistics
	Example 3: Specifying Subgroups, Multiple Plots, Data Tips, and Drill-Down URLs

	The GCHART Procedure
	Overview
	About Block Charts
	About Bar Charts
	About Pie, Detail Pie, and Donut Charts
	About Star Charts

	Concepts
	About Chart Variables
	About Midpoints
	About Chart Statistics
	About Patterns

	Procedure Syntax
	PROC GCHART Statement
	BLOCK Statement
	HBAR, HBAR3D, VBAR, and VBAR3D Statements
	PIE, PIE3D, and DONUT Statements
	STAR Statement

	Examples
	Example 1: Specifying the Sum Statistic in a Block Chart
	Example 2: Grouping and Subgrouping a Block Chart
	Example 3: Specifying the Sum Statistic in Bar Charts
	Example 4: Subgrouping a Three-Dimensional Vertical Bar Chart
	Example 5: Controlling Midpoints and Statistics in a Horizontal Bar Chart
	Example 6: Generating Error Bars in a Horizontal Bar Chart
	Example 7: Specifying the Sum Statistic for a Pie Chart
	Example 8: Subgrouping a Donut or Pie Chart
	Example 9: Ordering and Labeling Slices in a Pie Chart
	Example 10: Grouping and Arranging Pie Charts
	Example 11: Specifying the Sum Statistic in a Star Chart
	Example 12: Charting a Discrete Numeric Variable in a Star Chart
	Example 13: Creating a Detail Pie Chart

	References

	The GCONTOUR Procedure
	Overview
	Concepts
	CONTOUR Plot
	Input Data
	Data Ranges
	Missing Values
	Interpolating Data

	Procedure Syntax
	PROC GCONTOUR Statement
	PLOT Statement

	Examples
	Example 1: Simple Contour
	Example 2: Labeling Contour Lines, Modifying the Horizontal Axis,
	Modifying the Legend
	Example 3: Specifying Contour Levels
	Example 4: Using Patterns and Joins

	References

	The GDEVICE Procedure
	Overview
	Concepts
	Device Catalogs
	Ways to Use the GDEVICE Procedure

	Procedure Syntax
	PROC GDEVICE Statement
	ADD Statement
	COPY Statement
	DELETE Statement
	FS Statement
	LIST Statement
	MODIFY Statement
	QUIT Statement
	RENAME Statement

	Using the GDEVICE Procedure
	Using the GDEVICE Windows
	Creating or Modifying Device Entries

	Examples
	Example 1: Creating a Custom Device Entry with Program Statements

	The GEOCODE Procedure
	Overview of the GEOCODE Procedure
	Concepts
	Output Data Sets
	The SASHELP.ZIPCODE Data Set
	Alternate ZIP Code and ZIP+4 Lookup Data Sets
	U.S. Military ZIP Codes
	Data Sets for Range Geocoding
	%GCDMEL9 Autocall Macro
	%MAXMIND Autocall Macro
	Optimizing Performance

	Procedure Syntax
	PROC GEOCODE Statement

	Street Geocoding
	Overview of Street Geocoding
	Data Sets for Street Geocoding
	Output Variables for Street Geocoding
	Street Geocoding Note Values

	Examples
	Example 1: Geocoding Using Default Values
	Example 2: Adding Additional Variables to the Output Data Set
	Example 3: Street Geocoding

	The GFONT Procedure
	Overview
	About the GFONT Procedure
	Displaying Fonts
	About Creating Fonts

	Concepts
	Font Terminology and Characteristics
	Storing User-Created Fonts: GFONT0 Libref

	Procedure Syntax
	PROC GFONT Statement
	Displaying Fonts: Required Arguments and Options
	Creating Fonts: Required Arguments and Options

	Creating Fonts
	The Font Data Set
	Font Data Set Variables
	Creating a Font Data Set
	The Kern Data Set
	Kern Data Set Variables
	Creating a Kern Data Set
	The Space Data Set
	Space Data Set Variables
	Creating a Space Data Set

	Examples
	Example 1: Displaying Fonts with Character Codes
	Example 2: Creating Figures for a Symbol Font

	The GINSIDE Procedure
	Overview
	Procedure Syntax
	PROC GINSIDE Statement
	ID Statement

	Examples
	Example 1: Determining Values by Using the GINSIDE Procedure
	Example 2: Mapping and Annotating Values from the GINSIDE Procedure

	The GKPI Procedure
	Overview
	Slider KPI Charts
	Bullet Graph KPI Charts
	Dial KPI Charts
	Speedometer KPI Charts
	Traffic Light KPI Charts

	Concepts
	Specifying Basic or Raised Mode
	Specifying Segment Boundaries and Actual KPI Values
	Controlling the Display of Boundary and Tick Mark Values
	Controlling Segment Colors
	Specifying Fonts

	Procedure Syntax
	PROC GKPI Statement
	DIAL, HBULLET, HSLIDER, HTRAFFICLIGHT, SPEEDOMETER, VTRAFFICLIGHT,
	VBULLET, and VSLIDER Statements

	Examples
	Example 1: Using the Default Colors as the Active Colors
	Example 2: Creating a Gray Scale Bullet Graph
	Example 3: Creating a Dial KPI Chart
	Example 4: Defining a Speedometer
	Example 5: Defining a Speedometer with Reversed Colors
	Example 6: Creating a Traffic Light

	The GMAP Procedure
	Overview
	About Block Maps
	About Choropleth Maps
	About Prism Maps
	About Surface Maps

	Concepts
	About Map Data Sets
	About Traditional Data Sets
	About Feature Tables
	The METAMAPS Data Set
	Special Data Sets for Annotating Maps
	About Response Data Sets
	About Identification Variables
	Displaying Map Areas and Response Data
	Summary of Use
	Accessing SAS Maps Online
	Importing Maps from ESRI Shapefiles

	Procedure Syntax
	PROC GMAP Statement
	ID Statement
	AREA Statement
	BLOCK Statement
	CHORO Statement
	PRISM Statement
	SURFACE Statement

	Using FIPS Codes and Province Codes
	Using Formats for Map Variables
	Using SAS/GRAPH Map Data Sets
	Accessing Detailed Descriptions of Map Data Sets
	Customizing SAS/GRAPH Map Data Sets
	Creating Traditional Map Data Sets

	Examples
	Example 1: Producing a Simple Block Map
	Example 2: Specifying Response Levels in a Block Map
	Example 3: Assigning a Format to the Response Variable
	Example 4: Specifying the Statistic for the Response Variable
	Example 5: Producing a Simple Choropleth Map
	Example 6: Labeling Provinces on a Map
	Example 7: Producing a Simple Prism Map
	Example 8: Specifying Midpoints in a Prism Map
	Example 9: Producing a Simple Surface Map
	Example 10: Rotating and Tilting a Surface Map
	Example 11: Creating a Map Using the Feature Table

	The GOPTIONS Procedure
	Overview
	Procedure Syntax
	PROC GOPTIONS Statement

	Examples
	Example 1: Displaying TITLE and FOOTNOTE Statements
	Example 2: Displaying Graphics Options without the Description

	The GPLOT Procedure
	Overview
	About Plots of Two Variables
	About Plots with a Classification Variable
	About Bubble Plots
	About Plots with Two Vertical Axes
	About Interpolation Methods

	Concepts
	Parts of a Plot
	About the Input Data Set

	Procedure Syntax
	PROC GPLOT Statement
	BUBBLE Statement
	BUBBLE2 Statement
	PLOT Statement
	PLOT2 Statement

	Examples
	Example 1: Generating a Simple Bubble Plot
	Example 2: Labeling and Sizing Plot Bubbles
	Example 3: Adding a Right Vertical Axis
	Example 4: Plotting Two Variables
	Example 5: Connecting Plot Data Points
	Example 6: Generating an Overlay Plot
	Example 7: Filling Areas in an Overlay Plot
	Example 8: Plotting Three Variables
	Example 9: Plotting with Different Scales of Values
	Example 10: Creating Plots with Drill-down Functionality for the Web

	The GPROJECT Procedure
	Overview
	Concepts
	About the Input Map Data Set
	About Coordinate Values
	About Types of Map Projections

	Procedure Syntax
	PROC GPROJECT Statement
	ID Statement

	Using the GPROJECT Procedure
	Selecting Projections
	Controlling Projection Criteria
	Clipping Map Data Sets

	Examples
	Example 1: Using Default Projection Specifications
	Example 2: Emphasizing Map Areas
	Example 3: Clipping an Area from the Map
	Example 4: Projecting an Annotate Data Set

	References

	The GRADAR Procedure
	Overview
	Calculating Weighted Statistics
	Procedure Syntax
	PROC GRADAR Statement
	CHART Statement

	Examples
	Example 1: Generating the Data Set for the GRADAR Examples
	Example 2: Producing a Basic Radar Chart
	Example 3: Overlaying Radar Charts
	Example 4: Tiling Radar Charts
	Example 5: Using Multiple Classification Variables in Radar Charts
	Example 6: Modifying the Appearance of Radar Charts
	Example 7: Creating a Windrose Chart
	Example 8: Creating a Calendar Chart

	The GREDUCE Procedure
	Overview
	Concepts
	About the Input Map Data Set
	About Unmatched Area Boundaries

	Procedure Syntax
	PROC GREDUCE Statement
	ID Statement

	Using the GREDUCE Procedure
	Specifying Density Levels
	Subsetting a Map Data Set

	Examples
	Example 1: Reducing the Map of Canada

	References

	The GREMOVE Procedure
	Overview
	Concepts
	About the Input Map Data Set
	About the Output Map Data Set
	About Unmatched Area Boundaries

	Procedure Syntax
	PROC GREMOVE Statement
	BY Statement
	ID Statement

	Examples
	Example 1: Removing State Boundaries from U.S. Map
	Example 2: Creating an Outline Map of Africa

	The GREPLAY Procedure
	Overview
	Concepts
	Catalog Entries
	Displaying the List of Templates Provided By SAS/GRAPH
	Duplicate Entry Names
	Ways to Use the GREPLAY Procedure
	Sizing and Naming Your Graphs for Replay (Best Practice)

	Procedure Syntax
	PROC GREPLAY Statement
	? Statement
	BYLINE Statement
	CC Statement
	CCOPY Statement
	CDEF Statement
	CDELETE Statement
	CMAP Statement
	COPY Statement
	DELETE Statement
	DEVICE Statement
	FS Statement
	GOUT Statement
	GROUP Statement
	IGOUT Statement
	LIST Statement
	MODIFY Statement
	MOVE Statement
	NOBYLINE Statement
	PREVIEW Statement
	QUIT Statement
	REPLAY Statement
	TC Statement
	TCOPY Statement
	TDEF Statement
	TDELETE Statement
	TEMPLATE Statement
	TREPLAY Statement

	Using the GREPLAY Procedure Windows
	GREPLAY Window Commands
	PROC GREPLAY Window
	PRESENTATION Window
	DIRECTORY Window
	TEMPLATE DESIGN Window
	COLOR MAPPING Window
	Commands For Using The GREPLAY Procedure Windows

	Running the GREPLAY Procedure Using Code-based Statements
	Managing Catalogs, Color Maps, and Templates
	Managing GRSEG Catalog Entries

	Replaying Catalog Entries
	Creating Custom Templates
	Replaying Graphics Output in a Template
	Creating Color Maps
	Examples
	Example 1: Creating a Template
	Example 2: Replaying GSLIDE Procedure Output in a Template
	Example 3: Replaying Graphs Into a Template
	Example 4: Creating a Color Map

	The GSLIDE Procedure
	Overview
	About Text Slides
	About Annotate Output

	Procedure Syntax
	PROC GSLIDE Statement

	Examples
	Example 1: Producing Text Slides
	Example 2: Displaying Annotate Graphics

	The GTILE Procedure
	Overview
	Concepts
	Chart Variables
	Missing Values, Negative Values, and Zero Values
	Assigning Colors

	Procedure Syntax
	PROC GTILE Statement
	FLOW, TILE, and TOGGLE Statements

	Examples
	Example 1: Simple GTILE with the COLORVAR= Option
	Example 2: Specifying the COLORRAMP= Option, and Setting the DETAILLEVEL= Option

	The G3D Procedure
	Overview
	Surface Plots
	Scatter Plots

	Concepts
	G3D Procedure Terms
	The Input Data Set
	Rotating and Tilting the Plot
	Controlling the Axes

	Procedure Syntax
	PROC G3D Statement
	PLOT Statement
	SCATTER Statement

	Examples
	Example 1: Generating A Surface Plot
	Example 2: Generating a Rotated Surface Plot
	Example 3: Generating a Tilted Surface Plot
	Example 4: Generating a Scatter Plot
	Example 5: Generating a Scatter Plot with Modified Shapes
	Example 6: Generating a Scatter Plot with Modified Shapes and a Grid
	Example 7: Generating a Rotated Scatter Plot with Modified Axes

	References

	The G3GRID Procedure
	Overview
	Concepts
	The Input Data Set
	Multiple Vertical Variables
	Horizontal Variables Along a Nonlinear Curve
	The Output Data Set
	Interpolation Methods

	Procedure Syntax
	PROC G3GRID Statement
	GRID Statement

	Examples
	Example 1: Using the Default Interpolation Method
	Example 2: Spline and Smoothing Interpolations
	Example 3: Partial Spline Interpolation
	Example 4: Spline Interpolation

	References

	The MAPIMPORT Procedure
	Overview
	Procedure Syntax
	PROC MAPIMPORT Statement
	EXCLUDE Statement
	ID Statement
	RENAME Statement
	SELECT Statement

	Examples
	Example 1: Including All Variables from the SHP Shapefile
	Example 2: Including Selected Variables from the SHP Shapefile
	Example 3: Excluding a Variable from the SHP Shapefile
	Example 4: Using the ID Statement
	Example 5: Including Selected Variables from the DBF Shapefile

	Part 6 Appendixes
	Summary of ActiveX and Java Support
	Introduction
	Global Statements
	AXIS Statement
	GOPTIONS Statement
	LEGEND Statement
	PATTERN Statement
	SYMBOL Statement
	TITLE and FOOTNOTE Statements

	PROC GAREABAR
	PROC GBARLINE
	PROC GCHART
	Text Description Suboptions

	PROC GCONTOUR
	PROC GMAP
	PROC GPLOT
	PROC GRADAR
	PROC GTILE
	PROC G3D
	Annotate Functions
	ARROW
	BAR
	DRAW
	DRAW2TXT
	FRAME
	IMAGE
	LABEL
	MOVE
	PIE
	PIECNTR
	PIEXY
	POINT
	POLY
	POLYCONT
	SYMBOL

	Using SAS/GRAPH Fonts
	Introduction
	Rendering Bitstream Fonts
	Listing or Displaying SAS/GRAPH Fonts on Your System
	SAS/GRAPH Font Lists
	The SIMULATE Font
	Font Locations And the Default Search Path

	Using Device-Resident Fonts
	Introduction
	Default Device-Resident Fonts
	Using a GOPTIONS Statement to Change the Default Device-Resident Font
	Using the GDEVICE Procedure to Change the Default Device-Resident Font

	Specifying the Full Font Name
	Specifying Alternative Device-Resident Fonts

	Transporting and Converting Graphics Output
	About Transporting and Converting Graphics Output
	Transporting Catalogs across Operating Environments
	Example of Transporting GRSEGs
	Example of Transporting Color Maps and Templates
	Example of Transporting Fonts
	Example of Transporting Device Attributes and Device Entries

	Converting Catalogs to a Different Version of SAS

	GREPLAY Procedure Template Code
	Overview
	H2: One Box Left and One Box Right
	H2S: One Box Left and One Box Right with Space
	H3: Three Boxes Across
	H3S: Three Boxes Across with Space
	H4: Four Boxes Across
	H4S: Four Boxes Across with Space
	L1R2: One Box Left and Two Boxes Right
	L1R2S: One Box Left and Two Boxes Right with Space
	L2R1: Two Boxes Left and One Box Right
	L2R1S: Two Boxes Left and One Box Right with Space
	L2R2: Two Boxes Left and Two Boxes Right
	L2R2S: Two Boxes Left and Two Boxes Right with Space
	U1D2: One Box Up and Two Boxes Down
	U1D2S: One Box Up and One Box Down with Space
	U2D1: Two Boxes Up and One Box Down
	U2D1S: Two Boxes Up and One Box Down with Space
	V2: One Box Up and One Box Down
	V2S: One Box Up and One Box Down with Space
	V3: Three Boxes Vertically
	V3S: Three Boxes Vertically with Space
	Whole: Entire Screen Template

	Recommended Reading

	Glossary
	Index

