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Overview

SAS/Genetics includes two new experimental procedures, the BTL procedure and the
GENESELECT procedure.

Several enhancements have been made to the ALLELE procedure, and a format of genotype
columns not previously supported can now be accommodated by the ALLELE, CASECONTROL,
FAMILY, and HAPLOTYPE procedures.

Accommodating a New Data Format

If your genotypes are represented by one character for each of their two alleles with no delimiting
character separating them (such as “AB”), the GENOCOL and DELIMITER="" options allow the
inclusion of such columns in the VAR statement of the ALLELE, CASECONTROL, FAMILY, and
HAPLOTYPE procedures. Note that there is no space between the two quotation marks in the
DELIMITER= option.
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ALLELE Procedure

The new POP statement enables you to specify a variable that defines populations. Various F
statistics can be computed that serve to describe the genetic structure of the population hierarchy.

The MAXDIST= option of the PROC ALLELE statement can now be specified in terms of the unit
used to define markers’ locations. A LOCATION variable can be included in the NDATA= data set,
containing a numeric value that represents each marker’s location, and the MAXDIST= option is
applied to the distance between markers (the absolute value of the difference of the two LOCATION
values) for determining whether linkage disequilibrium (LD) measures are to be calculated for
that particular pair. When the NDATA= option is not specified or the data set does not contain
a LOCATION variable, the MAXDIST= option functions as it did previously, calculating the distance
between markers as the number of markers apart they are.

The upper bound for the LD measure D, used in the denominator of the D’ measure, is now calcu-
lated according to Hamilton and Cole (2004) and Zaykin (2004) when HAPLO=NONE or NONE-
HWD.

The new RHO option in the PROC ALLELE statement requests that the LD measure p and its
information K, (Morton et al. 2001) be included in the “Linkage Disequilibrium Measures” table.
This table now also includes a column containing the number of individuals genotyped at each pair
of markers.

BTL Procedure

The experimental BTL procedure performs mixed model analysis of variance and maximum likeli-
hood estimation on genetic marker data from experimental populations in order to find and charac-
terize binary trait loci (BTL).

GENESELECT Procedure

The experimental GENESELECT procedure creates a model to predict a qualitative or quantitative
phenotype from interactions of genetic and environmental variables. The procedure generates useful
interactions from a potentially large number of candidates.
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Overview of SAS/Genetics Software

Statistical analyses of genetic data are now central to medicine, agriculture, evolutionary biology,
and forensic science. The inherent variation in genetic data, together with the substantial increase in
the scale of genetic data following the human genome project, has created a need for reliable com-
puter software to perform these analyses. The procedures offered by SAS/Genetics and described
here represent an initial response of SAS Institute to this need.

Although many of the statistical techniques used in the new procedures are standard, others have had
to be developed to reflect the genetic nature of the data. All the procedures are designed to operate
on data sets that have a familiar structure to geneticists, and that mirror those used in existing
software. The syntax for these genetic analyses follows that familiar to SAS users, and the output
can be tabular or graphical. The objective of the procedures is to bring the full power of SAS
analyses to bear on the characterization of fundamental genetic parameters, and most importantly
on the detection of associations between genetic markers and disease status.
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Most of the analyses in SAS/Genetics are concerned with detecting patterns of covariation in genetic
marker data. These data generally consist of pairs of discrete categories; this pairing derives from
the underlying biology, namely the fact that complex organisms have pairs of chromosomes. Each
marker refers to the genetic status of a locus, each marker type is called an allele, and each pair
of alleles in an individual is called a genotype. A set of alleles present on a single chromosome
is called a haplotype. Genetic markers can be single nucleotide polymorphisms (SNPs), which
are sites in the DNA where the nucleotide varies among individuals, usually with only two alleles
possible; microsatellites, which are simple sequence repeats that generate usually between 2 and 20
categories; and other classes of DNA variation.

Two of the procedures in SAS/Genetics are concerned solely with the analysis of genetic marker
data. The ALLELE procedure calculates descriptive statistics such as the frequency and variance
of alleles and genotypes, as well as estimating measures of marker informativeness, and testing
whether genotype frequencies are consistent with Hardy-Weinberg equilibrium (HWE). This pro-
cedure also supports four methods for calculation of the degree and significance of linkage dise-
quilibrium (LD) among markers at pairs of loci, where LD refers to the propensity of alleles to
co-segregate. The HAPLOTYPE procedure is used to infer the most likely multilocus haplotype
frequencies in a set of genotypes. Since genetic markers are usually measured independently of
one another, there is no direct way to determine which two alleles were on the same chromosome.
The algorithm implemented in this procedure converges on the haplotype frequencies that have the
highest probability of generating the observed genotypes. These estimated haplotype frequencies
can be used as inputs to the HTSNP procedure where haplotype-tagging SNPs (htSNPs) that explain
much of the haplotype diversity in a block or region can be identified.

Many genetic data sets are now used to study the relationship between genetic markers and com-
plex phenotypes, particularly disease susceptibility. In general terms, traits can be measured as
continuous variables (for example, weight or serum glucose concentration), as discrete numerical
categories (for example, meristic measures or psychological class), or as affected/unaffected indi-
cator variables. The two procedures CASECONTROL and FAMILY both take simple dichotomous
indicators of disease status and use standard algorithms to compute statistics of association between
these indicators and the genetic markers. The CASECONTROL procedure is designed to contrast
allele and genotype frequencies between affected and unaffected populations, using three types of
chi-square tests and options for controlling correlation of allele frequencies among members of the
same subpopulation. Significant associations can indicate that the marker is linked to a locus that
contributes to disease susceptibility, though population structure in conjunction with environmental
or cultural variables can also lead to associations, and the statistical results must be interpreted with
caution. The FAMILY procedure employs several transmission/disequilibrium tests of nonrandom
association between disease status and linkage to markers transmitted from heterozygous parents
to affected offspring (TDT) or pairs of affected and unaffected siblings (S-TDT and SDT). A joint
analysis known as the reconstruction-combined TDT (RC-TDT) can also accommodate missing
parental genotypes and families lacking unaffected children under some circumstances.

The output of these procedures can be further explored by using the PSMOOTH procedure to adjust
p-values from association tests performed on large numbers of markers obtained in a genome scan,
or by creating a graphical representation of the procedures’ output, namely p-values from tests for
LD, HWE, and marker-disease associations, using the % TPLOT macro.

In addition to testing for associations between traits and single markers, testing for effects of multi-
ple markers or epistatic effects between two or more markers might be of interest. PROC HAPLO-
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TYPE can perform testing between a binary trait and several markers at the haplotype level, either
looking across all haplotypes at a set of markers or testing each possible haplotype separately. The
GENESELECT procedure can determine the best subset of markers, phenotypic variables, and their
interactions to include in a model for predicting a trait.

Experimental Software

Experimental software is sometimes included as part of a production-release product. It is provided
to (sometimes targeted) customers in order to obtain feedback. All experimental uses are marked
Experimental in this document. Whenever an experimental procedure, statement, or option is used,
a message is printed to the SAS log to indicate that it is experimental.

The design and syntax of experimental software might change before any production release. Exper-
imental software has been tested prior to release, but it has not necessarily been tested to production-
quality standards, and so should be used with care.

About This Book

Since SAS/Genetics software is a part of the SAS System, this book assumes that you are familiar
with Base SAS software and with the books SAS Language Reference: Dictionary, SAS Language
Reference: Concepts, and the Base SAS Procedures Guide. It also assumes that you are familiar with
basic SAS System concepts, such as creating SAS data sets with the DATA step and manipulating
SAS data sets with the procedures in Base SAS software (for example, the PRINT and SORT
procedures).

Chapter Organization

This book is organized as follows.

Chapter 2, this chapter, provides an overview of SAS/Genetics software and summarizes related
information, products, and services. The next ten chapters describe the SAS procedures and macro
that make up SAS/Genetics software. These chapters appear in alphabetical order by procedure
name. They are followed by a chapter documenting a SAS macro provided with SAS/Genetics
software.

The chapters documenting the SAS/Genetics procedures are organized as follows:

e The Overview section provides a brief description of the analysis provided by the procedure.
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o The Getting Started section provides a quick introduction to the procedure through a simple

example.

e The Syntax section describes the SAS statements and options that control the procedure.

e The Details section discusses methodology and miscellaneous details.

e The Examples section contains examples that use the procedure.

e The References section contains references for the methodology and examples of the proce-

dure.

Typographical Conventions

This book uses several type styles for presenting information. The following list explains the mean-
ing of the typographical conventions used in this book:

roman

UPPERCASE ROMAN

UPPERCASE BOLD

oblique

helvetica

bold

italic

monospace

is the standard type style used for most text.

is used for SAS statements, options, and other SAS language elements
when they appear in the text. However, you can enter these elements in
your own SAS programs in lowercase, uppercase, or a mixture of the
two.

is used in the “Syntax” sections’ initial lists of SAS statements and op-
tions.

is used for user-supplied values for options in the syntax definitions. In
the text, these values are written in italic.

is used for the names of variables and data sets when they appear in the
text.

is used to refer to matrices and vectors.

is used for terms that are defined in the text, for emphasis, and for refer-
ences to publications.

is used for example code. In most cases, this book uses lowercase type
for SAS code.

Options Used in Examples

Output of Examples

For each example, the procedure output is numbered consecutively starting with 1, and each output
is given a title. Each page of output produced by a procedure is enclosed in a box. Most of the
output shown in this book is produced with the following SAS System options:
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options linesize=80 pagesize=200 nonumber nodate;

In some cases, if you run the examples, you get slightly different output depending on the SAS
system options you use and the precision used for floating-point calculations by your computer.
This does not indicate a problem with the software. In all situations, any differences should be
minor.

Graphics Options

The examples that contain graphical output are created with a specific set of options and symbol
statements. The code you see in the examples creates the color graphics that appear in the online
(CD) version of this book. A slightly different set of options and statements is used to create the
black-and-white graphics that appear in the printed version of the book.

If you run the examples, you might get slightly different results. This can occur because not all
graphic options for color devices translate directly to black-and-white output formats. For com-
plete information about SAS/GRAPH software and graphics options, see SAS/GRAPH Software:
Reference.

The following GOPTIONS statement is used to create the online (color) version of the graphic
output.

filename GSASFILE ’<file-specification>’;

goptions gsfname=GSASFILE gsfmode =replace

fileonly

transparency dev = gif
ftext = swiss lfactor =1
htext = 4.0pct htitle = 4.5pct
hsize = 5.625in vsize = 3.5in
noborder cback = white
horigin = 0in vorigin = 0Oin ;

The following GOPTIONS statement is used to create the black-and-white version of the graphic
output, which appears in the printed version of this manual.

filename GSASFILE ’<file-specification>’;

goptions gsfname=GSASFILE gsfmode =replace
gaccess = sasgaedt fileonly

dev = pslepsf

ftext = swiss lfactor =1
htext = 3.0pct htitle = 3.5pct
hsize = 5.625in vsize = 3.5in
border cback = white
horigin = 0Oin vorigin = 0Oin ;

In most of the online examples, the plot symbols are specified as follows:
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symboll value=dot color=white height=3.5pct;

The SYMBOL~R statements used in online examples order the symbol colors as follows: white,
yellow, cyan, green, orange, blue, and black.

In the examples appearing in the printed manual, symbol statements specify COLOR=BLACK and
order the plot symbols as follows: dot, square, triangle, circle, plus, x, diamond, and star.

Where to Turn for More Information

This section describes other sources of information about SAS/Genetics software.

Online Help System

You can access online Help for SAS/Genetics software in two ways. You can select SAS System
Help from the Help menu and then select SAS/Genetics Software from the list of available topics.
Or you can bring up a command line and issue the command help Genetics to access an index to the
statistical procedures, or issue the command help ALLELE (or another procedure name) to access
the Help for that particular procedure. Note that the online Help includes syntax and some essential
overview and detail material.

SAS Technical Support Services

As with all SAS Institute products, the SAS Technical Support staff is available to respond to prob-
lems and answer technical questions regarding the use of SAS/Genetics software.

Related SAS Software

Many features not found in SAS/Genetics software are available in other parts of the SAS System.
If you do not find something you need in SAS/Genetics software, try looking for the feature in the
following SAS software products.
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Base SAS Software

The features provided by SAS/Genetics software are in addition to the features provided by Base
SAS software. Many data management and reporting capabilities you will need are part of Base
SAS software. Refer to SAS Language Reference: Concepts, SAS Language Reference: Dictionary,
and the Base SAS Procedures Guide for documentation of Base SAS software.

SAS DATA Step

The DATA step is your primary tool for reading and processing data in the SAS System. The
DATA step provides a powerful general-purpose programming language that enables you to perform
all kinds of data processing tasks. The DATA step is documented in SAS Language Reference:
Concepts.

Base SAS Procedures

Base SAS software includes many useful SAS procedures. Base SAS procedures are documented
in the Base SAS Procedures Guide. The following is a list of Base SAS procedures you might find

useful:

CHART for printing charts and histograms

CONTENTS for displaying the contents of SAS data sets

CORR for computing correlations

FREQ for computing frequency crosstabulations

MEANS for computing descriptive statistics and summarizing or collapsing data over
Cross sections

PRINT for printing SAS data sets

SORT for sorting SAS data sets

TABULATE for printing descriptive statistics in tabular format

TRANSPOSE for transposing SAS data sets
UNIVARIATE  for computing descriptive statistics

SAS/GRAPH Software

SAS/GRAPH software includes procedures that create two- and three-dimensional high-resolution
color graphics plots and charts. You can generate output that graphs the relationship of data values
to one another, enhance existing graphs, or simply create graphics output that is not tied to data.
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SAS/IML Software

SAS/IML software gives you access to a powerful and flexible programming language (Interactive
Matrix Language) in a dynamic, interactive environment. The fundamental object of the language
is a data matrix. You can use SAS/IML software interactively (at the statement level) to see results
immediately, or you can store statements in a module and execute them later. The programming is
dynamic because necessary activities such as memory allocation and dimensioning of matrices are
done automatically. SAS/IML software is of interest to users of SAS/Genetics software because it
enables you to program your own methods in the SAS System.

SAS/INSIGHT Software

SAS/INSIGHT software is a highly interactive tool for data analysis. You can explore data through
a variety of interactive graphs including bar charts, scatter plots, box plots, and three-dimensional
rotating plots. You can examine distributions and perform parametric and nonparametric regression,
analyze general linear models and generalized linear models, examine correlation matrices, and
perform principal component analyses. Any changes you make to your data show immediately in
all graphs and analyses. You can also configure SAS/INSIGHT software to produce graphs and
analyses tailored to the way you work.

SAS/INSIGHT software might be of interest to users of SAS/Genetics software for interactive
graphical viewing of data, editing data, exploratory data analysis, and checking distributional as-
sumptions.

SAS/STAT Software

SAS/STAT software includes procedures for a wide range of statistical methodologies including the
following:

e logistic and linear regression

e censored regression

e principal component analysis

e variance component analysis

e cluster analysis

e contingency table analysis

e categorical data analysis: log-linear and conditional logistic models

e general linear models



SAS/STAT Software 4 13

e linear and nonlinear mixed models
e generalized linear models

e multiple hypothesis testing

SAS/STAT software is of interest to users of SAS/Genetics software because many statistical meth-
ods for analyzing genetics data not included in SAS/Genetics software are provided in SAS/STAT
software.
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Overview: ALLELE Procedure

The ALLELE procedure performs preliminary analyses on genetic marker data. These analyses
serve to characterize the markers themselves or the population from which they were sampled,
and can also serve as the basis for joint analyses on markers and traits. A genetic marker is any
heritable unit that obeys the laws of transmission genetics, and the analyses presented here assume
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the marker genotypes are determined without error. With an underlying assumption of random
sampling, the analyses rest on the multinomial distribution of marker alleles, and many standard
statistical techniques can be invoked with little modification. The ALLELE procedure uses the
notation and concepts described by Weir (1996); this is the reference for all equations and methods
not otherwise cited.

Data are usually collected at the genotypic level, but interest is likely to be centered on the con-
stituent alleles, so the first step is to construct tables of allele and genotype frequencies. When alleles
are independent within individuals—that is, when there is Hardy-Weinberg equilibrium (HWE)—
analyses can be conducted at the allelic level. For this reason the ALLELE procedure allows for
Hardy-Weinberg testing, although testing is also recommended as a means for detecting possible
errors in data.

PROC ALLELE calculates the PIC, heterozygosity, and allelic diversity measures that serve to
give an indication of marker informativeness. Such measures can be useful in determining which
markers to use for further linkage or association testing with a trait. High values of these measures
are a sign of marker informativeness, which is a desirable property in linkage and association tests.

Associations between markers might also be of interest. PROC ALLELE provides tests and various
statistics for the association, also called the linkage disequilibrium, between each pair of markers.
These statistics can be formed either by using haplotypes that are given in the data, by estimating
the haplotype frequencies, or by using only genotypic information.

Population structure can also be analyzed using the F statistics that are reported by PROC ALLELE
to describe functions of the various covariance components related to the population group effects.

Getting Started: ALLELE Procedure

Example

Suppose you have genotyped 25 individuals at five markers. You want to examine some basic
properties of these markers, such as whether they are in HWE, how many alleles each has, what
genotypes appear in the data, and whether there is linkage disequilibrium between any pairs of
markers. You have ten columns of data, with the first two columns containing the set of alleles at
the first marker, the next two columns containing the set of alleles for the second marker, and so on.
There is one row per each individual. You input your data as follows:



data markers;
input (al-al0) ($);
datalines;

A
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mOoQwOAOwAOwPPQCOATOOCQACOQAEPOOOAQAEOOQ®E

Example 4 17

You can now use PROC ALLELE to examine the frequencies of alleles and genotypes in your
data, and see if these frequencies are occurring in proportions you would expect. The following
statements perform the analysis you want:

proc allele data=markers outstat=1d prefix=Marker

perms=10000 boot=1000 seed=123;

var al-alo;

run;

proc print data=1d;

run;

This analysis is using 10,000 permutations to approximate an exact p-value for the HWE test, as
well as 1,000 bootstrap samples to obtain the confidence interval for the allele frequencies and
one-locus Hardy-Weinberg disequilibrium (HWD) coefficients. The starting seed for the random
number generator is 123. The PREFIX= option requests that the five markers be named Marker1-
Marker5. Since the BOOTSTRAP= option is specified but the ALPHA= option is omitted, a 95%
confidence interval is calculated by default.

All five markers are included in the analysis since the ten variables containing the alleles for those
five markers were specified in the VAR statement.
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The marker data can alternatively be read in as columns of genotypes instead of columns of alleles
by using the GENOCOL and DELIMITER= options in the PROC ALLELE statement, with just
one column per each marker. The following DATA step and SAS code could be used to produce the
same output by using data in this alternative format:

data markers;
input (gl-g5) ($);
datalines;
B/B A/B B/B A/A B/B
A/A B/B A/B A/B C/C

. more lines

B/B A/B A/B A/A A/C
A/B A/A A/B A/B A/C
A/B B/B B/B A/B B/B

’

proc allele data=markers outstat=1d prefix=Marker
perms=10000 boot=1000 seed=123 genocol delimiter='/’;
var gl-g5;
run;

proc print data=ld;
run;

Note that the DELIMITER= option, which indicates the character or string that separates the alleles
that compose a genotype, could have been omitted in this example since ’/’ is the default.

The results from the analysis are shown in Figure 3.1 through Figure 3.4.

Figure 3.1 Marker Summary for the ALLELE Procedure

The ALLELE Procedure

Marker Summary

Number Number

of of Hetero- Allelic Chi- Pr > Prob
Locus Indiv Alleles PIC zygosity Diversity Square DF Chisq Exact
Markerl 25 2 0.3714 0.4800 0.4928 0.0169 1 0.8967 1.0000
Marker2 25 2 0.3685 0.3600 0.4872 1.7041 1 0.1918 0.2262
Marker3 25 2 0.3546 0.4800 0.4608 0.0434 1 0.8350 1.0000
Marker4 25 2 0.3648 0.4800 0.4800 0.0000 1 1.0000 1.0000
Marker5 25 3 0.5817 0.4400 0.6552 9.3537 3 0.0249 0.0106

Figure 3.1 displays information about the five markers. From this output, you can conclude that
Marker?5 is the only one showing significant departure from HWE.
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Figure 3.2 Allele Frequencies for the ALLELE Procedure

Allele Frequencies

Standard 95% Confidence

Locus Allele Count Frequency Error Limits
Markerl A 22 0.4400 0.0711 0.3000 0.5800
B 28 0.5600 0.0711 0.4200 0.7000
Marker2 A 29 0.5800 0.0784 0.4200 0.7400
B 21 0.4200 0.0784 0.2600 0.5800
Marker3 A 32 0.6400 0.0665 0.5200 0.7600
B 18 0.3600 0.0665 0.2400 0.4800
Marker4 A 30 0.6000 0.0693 0.4600 0.7400
B 20 0.4000 0.0693 0.2600 0.5400
Marker5 A 14 0.2800 0.0637 0.1400 0.4200
B 15 0.3000 0.0800 0.1600 0.4600
(o} 21 0.4200 0.0833 0.2800 0.6000

Figure 3.2 displays the allele frequencies for each marker with their standard errors and the lower
and upper limits of the 95% confidence interval.

Figure 3.3 Genotype Frequencies for the ALLELE Procedure

Genotype Frequencies

HWD Standard 95% Confidence

Locus Genotype Count Frequency Coeff Error Limits
Markerl A/A 5 0.2000 0.0064 0.0493 -0.0916 0.0956
A/B 12 0.4800 0.0064 0.0493 -0.0916 0.0956
B/B 8 0.3200 0.0064 0.0493 -0.0916 0.0956
Marker2 A/A 10 0.4000 0.0636 0.0477 -0.0336 0.1484
A/B 9 0.3600 0.0636 0.0477 -0.0336 0.1484
B/B 6 0.2400 0.0636 0.0477 -0.0336 0.1484
Marker3 A/A 10 0.4000 -0.0096 0.0457 -0.1044 0.0800
A/B 12 0.4800 -0.0096 0.0457 -0.1044 0.0800
B/B 3 0.1200 -0.0096 0.0457 -0.1044 0.0800
Marker4 A/A 9 0.3600 0.0000 0.0480 -0.0916 0.0864
A/B 12 0.4800 0.0000 0.0480 -0.0916 0.0864
B/B 4 0.1600 0.0000 0.0480 -0.0916 0.0864
Marker5 A/A 2 0.0800 0.0016 0.0405 -0.0756 0.0816
A/B 4 0.1600 0.0040 0.0337 -0.0664 0.0636
A/C 6 0.2400 -0.0024 0.0380 -0.0736 0.0680
B/B 5 0.2000 0.1100 0.0445 0.0144 0.1884
B/C 1 0.0400 0.1060 0.0282 0.0440 0.1564
c/c 7 0.2800 0.1036 0.0453 0.0096 0.1884
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Figure 3.3 displays the genotype frequencies for each marker with the associated disequilibrium
coefficient, its standard error, and the 95% confidence limits.

Figure 3.4 Testing for Disequilibrium Using the ALLELE Procedure

Obs Locusl Locus2 NIndiv Distance Test Chisq DF ProbChi ProbEx
1 Markerl Markerl 25 0 HWE 0.01687 1 0.89667 1.0000
2 Markerl Marker2 25 1 LD 1.05799 1 0.30367 0.4882
3 Markerl Marker3 25 2 LD 1.42074 1 0.23328 0.8544
4 Markerl Marker4 25 3 LD 0.33144 1 0.56481 0.9885
5 Markerl Marker5 25 4 LD 2.29785 2 0.31698 0.0940
6 Marker2 Marker2 25 0 HWE 1.70412 1 0.19175 0.2262
7 Marker2 Marker3 25 1 LD 0.13798 1 0.71030 0.5096
8 Marker2 Marker4 25 2 LD 1.34100 1 0.24686 0.6455
9 Marker2 Marker5 25 3 LD 1.13574 2 0.56673 0.0126

10 Marker3 Marker3 25 0 HWE 0.04340 1 0.83497 1.0000
11 Marker3 Marker4 25 1 LD 0.46296 1 0.49624 0.9712
12 Marker3 Marker5 25 2 LD 0.95899 2 0.61909 0.0261
13 Marker4 Marker4 25 0 HWE 0.00000 1 1.00000 1.0000
14 Marker4 Marker5 25 1 LD 6.16071 2 0.04594 0.1281
15 Marker5 Marker5 25 0 HWE 9.35374 3 0.02494 0.0106

Figure 3.4 displays the output data set created using the OUTSTAT= option of the PROC ALLELE
statement. This data set contains the statistics for testing individual markers for HWE and marker
pairs for linkage disequilibrium.

Syntax: ALLELE Procedure

The following statements are available in PROC ALLELE.

PROC ALLELE < options> ;
BY variables ;
POP variable </ options > ;
VAR variables ;
WITH variables ;

Items within angle brackets (< >) are optional, and statements following the PROC ALLELE state-
ment can appear in any order. The VAR statement is required.
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PROC ALLELE Statement

PROC ALLELE < options> ;

You can specify the following options in the PROC ALLELE statement.

ALLELEMIN=number

AMIN=number
indicates that only alleles with a frequency greater than or equal to number should be included
in the “Allele Frequencies” table. By default, any allele that appears in a nonmissing genotype
in the sample is included in the table. The value of number must be between 0 and 1.

ALPHA=number
specifies that a confidence level of 100(1—number )% is to be used in forming bootstrap
confidence intervals for estimates of allele frequencies and disequilibrium coefficients. The
value of number must be between 0 and 1, and is set to 0.05 by default.

BOOTSTRAP=number

BOOT=number
indicates that bootstrap confidence intervals should be formed for the estimates of allele fre-
quencies and one-locus disequilibrium coefficients by using number random samples. One
thousand samples are usually recommended to form confidence intervals. If this statement is
omitted, no confidence limits are reported.

CORRCOEFF
requests that the “Linkage Disequilibrium Measures” table be displayed and contain the cor-
relation coefficient r, a linkage disequilibrium measure.

DATA=SAS-data-set
names the input SAS data set to be used by PROC ALLELE. The default is to use the most
recently created data set.

DELIMITER=string’
indicates the string that is used to separate the two alleles that compose the genotypes con-
tained in the variables specified in the VAR statement. This option is ignored if GENOCOL
is not specified.

DELTA
requests that the “Linkage Disequilibrium Measures” table be displayed and contain the
population attributable risk §, a linkage disequilibrium measure. This option is ignored if
HAPLO=NONE or NONEHWD.

DPRIME
requests that the “Linkage Disequilibrium Measures” table be displayed and contain Lewon-
tin’s D’, a linkage disequilibrium measure.
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GENOCOL
indicates that columns specified in the VAR statement contain genotypes instead of alleles.
When this option is specified, there is one column per marker. The genotypes must consist of
the two alleles separated by a delimiter. For a genotype with one missing allele, use a blank
space to indicate a missing value; if both alleles are missing, either use a single missing value
for the entire genotype or use the delimiter alone.

GENOMIN=number

GMIN=number
indicates that only genotypes with a frequency greater than or equal to number should be
included in the “Genotype Frequencies” table. By default, any genotype that appears at least
once in the sample is included in the table. The value of number must be between 0 and 1.

HAPLO=NONE
HAPLO=EST
HAPLO=GIVEN

HAPLO=NONEHWD

indicates whether haplotype frequencies should not be used, haplotype frequencies should be
estimated, or observed haplotype frequencies in the data should be used. This option affects
all linkage disequilibrium tests and measures. By default or when HAPLO=NONE or NONE-
HWD is specified, the composite linkage disequilibrium (CLD) coefficient is used in place
of the usual linkage disequilibrium (LD) coefficient. In addition, the composite haplotype
frequencies are used to form the linkage disequilibrium measures indicated by the options
CORRCOEFF and DPRIME. When HAPLO=EST, the maximum likelihood estimates of the
haplotype frequencies are used to calculate the LD test statistic as well as the LD measures.
The HAPLO=GIVEN option indicates that the haplotypes have been observed, and thus the
observed haplotype frequencies are used in the LD test statistic and measures.

When HAPLO=GIVEN, haplotypes are denoted in the data in the following manner accord-
ing to the type of input data used:

e If you omit the TALL option in the PROC ALLELE statement, then all alleles contained
in one of an individual’s two haplotypes must be in the first of the two variables listed
for each marker, and alleles of the other haplotype must be in the second of the two
variables listed for each marker. Similarly, if the GENOCOL option is used, the alleles
composing one haplotype should all be the first allele listed in each genotype, and alleles
of the other haplotype should be listed second.

e If you specify the TALL option, then the alleles that compose one haplotype for an
individual must all be in the first variable in the VAR statement, and all the alleles in
the other haplotype must be in the second variable in the VAR statement. When the
GENOCOL option is also specified, the alleles of one haplotype should all be the first
allele listed in the genotype, and alleles of the other haplotype should be listed second.

HAPLOMIN=number

HMIN=number
indicates that only haplotypes with a frequency greater than or equal to number should be
included in the “Linkage Disequilibrium Measures” table. By default, any haplotype that
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appears in the sample (or is estimated to appear at least once) is included in the table. The
value of number must be between 0 and 1.

INDIVIDUAL=variable

INDIV=variable
specifies the individual ID variable when using the TALL option. This variable can be char-
acter or numeric.

LOGNOTE
requests that notes be written to the log indicating the status of the LD calculations.

MARKER=variable
specifies the marker ID variable when using the TALL option. This variable contains the
names of the markers that are used in all output and can be character or numeric.

MAXDIST=number

specifies the maximum distance possible between a pair of markers in order for linkage dis-
equilibrium calculations to be performed on that pair. If the NDATA= option is not specified
or the NDATA= data set does not contain a LOCATION variable, then the distance between
a pair of markers is the number of markers apart that they are, assuming that markers are
specified in the VAR statement in the physical order in which they appear on a chromosome.
For example, if MAXDIST=1 is specified, linkage disequilibrium measures and statistics are
calculated only for pairs of markers that are one marker apart, such as M1 and M2, M2 and
M3, and so on. If there is an NDATA= data set specified that contains a LOCATION variable,
then distances between markers are calculated as differences between values of this variable.
Note that markers with missing values for the LOCATION variable are paired with all other
markers for LD calculations. The default value is MAXDIST=50.

NDATA=SAS-data-set

names the input SAS data set containing names, or identifiers, for the markers used in the
output. There must be a NAME variable in this data set, which should contain the same
number of rows as there are markers in the input data set specified in the DATA= option.
When there are fewer rows than there are markers, markers without a name are named using
the PREFIX= option. Likewise, if there is no NDATA= data set specified, the PREFIX=
option is used. Note that this data set is ignored if the TALL option is specified in the PROC
ALLELE statement. In that case, the marker variable names are taken from the marker ID
variable specified in the MARKER= option.

If there is a LOCATION variable in the NDATA= data set, the value given for the MAXDIST=
option for LD measures and testing is applied to distances between markers based on values
of this variable.

NOFREQ
suppresses the display of the “Allele Frequencies” and the “Genotype Frequencies” tables.

See the section “Displayed Output” on page 35 for a detailed description of these tables.

NOPRINT
suppresses the normal display of results. Note that this option temporarily disables the Output
Delivery System (ODS).
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OUTSTAT=SAS-data-set

names the output SAS data set containing the disequilibrium statistics, for both within-marker
and between-marker disequilibria.

PERMS=number
EXACT=number

indicates that Monte Carlo estimates of the exact p-values for the disequilibrium tests should
be calculated using number permutations. Large values of number (10,000 or more) are
usually recommended for accuracy, but long execution times can result, particularly with
large data sets. When this option is omitted, no permutations are performed and asymptotic
p-values are reported. If HAPLO=EST, then only the exact tests for Hardy-Weinberg equi-
librium are performed; the exact tests for linkage disequilibrium cannot be performed since
haplotypes are unknown.

PREFIX=prefix

specifies a prefix to use in constructing names for marker variables in all output. For example,
if PREFIX=VAR, the names of the variables are VAR, VAR2, ..., VARn. Note that this
option is ignored when the NDATA= option is specified, unless there are fewer names in the
NDATA data set than there are markers; it is also ignored if the TALL option is specified,
in which case the marker variable names are taken from the marker ID variable specified in
the MARKER= option. Otherwise, if this option is omitted, PREFIX=M is the default when
variables contain alleles; if GENOCOL is specified, then the names of the variables specified
in the VAR statement are used as the marker names.

PROPDIFF

RHO

requests that the “Linkage Disequilibrium Measures” table be displayed and contain the
proportional difference d, a linkage disequilibrium measure. This option is ignored if
HAPLO=NONE or NONEHWD.

requests that the “Linkage Disequilibrium Measures” table be displayed and contain p,
a linkage disequilibrium measure, and its information K,. This option is ignored if
HAPLO=NONE or NONEHWD.

SEED=number

TALL

specifies the initial seed for the random number generator used for permuting the data in
the exact tests and for the bootstrap samples. The value for number must be an integer; the
computer clock time is used if the option is omitted or the integer specified is less than or
equal to 0. For more details about seed values, see SAS Language Reference: Concepts.

indicates that the input data set is of an alternative format. This format contains the following
columns: two containing marker alleles (or one containing marker genotypes if GENOCOL is
specified), one for the marker identifier, and one for the individual identifier. The MARKER=
and INDIV= options must also be specified for this option to be in effect. Note that when this
option is used, the DATA= data set must first be sorted by any BY variables, then sorted by
the marker ID variable, and then sorted by the individual ID variable.
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YULESQ
requests that the “Linkage Disequilibrium Measures” table be displayed and contain Yule’s
0, a linkage disequilibrium measure. This option is ignored if HAPLO=NONE or NONE-
HWD.

BY Statement

BY variables ;

You can specify a BY statement with PROC ALLELE to obtain separate analyses on observations
in groups defined by the BY variables. When a BY statement appears, the procedure expects the
input data set to be sorted in the order of the BY variables. The variables are one or more variables
in the input data set.

If your input data set is not sorted in ascending order, use one of the following alternatives:

e Sort the data by using the SORT procedure with a similar BY statement.

e Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
the ALLELE procedure. The NOTSORTED option does not mean that the data are unsorted
but rather that the data are arranged in groups (according to values of the BY variables) and
that these groups are not necessarily in alphabetical or increasing numeric order.

e Create an index on the BY variables by using the DATASETS procedure (in Base SAS soft-
ware).

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.

POP Statement

POP variable </ options > ;

One variable can be specified in the POP statement to designate population groups of individuals.
By default, the appropriate F statistics, combined across all alleles and loci, are reported in the
“Combined F Statistics” table. This statement is ignored if the TALL option is used.

The following options can be specified after a slash (/):

FPERMS=number
indicates that number permutations of the data should be used to calculate p-values for testing
that the F statistics are significantly greater than 0. Large values of number (10,000 or more)
are usually recommended for accuracy, but long execution times can result, particularly with
large data sets. When FPERMS=0 (the default) or the option is omitted, no p-values are
reported.
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INDIVLOCI
requests that the F' statistics be reported for each individual marker locus that is represented
in the VAR statement. When this option is specified, the “Marker F Statistics” table is created.

ZEROF
indicates that HWE should be assumed at all loci for the calculation of the F statistics, thus
reducing the number of parameters to be estimated.

VAR Statement

VAR variables ;

The VAR statement identifies the variables containing either the marker alleles or, if GENOCOL
is specified, the marker genotypes. The following number of variables should be specified in this
statement for a data set containing m markers according to whether the options GENOCOL and
TALL are used:

e When both GENOCOL and TALL are specified, there should be one variable named contain-
ing marker genotypes.
e When only TALL is specified, there should be two variables named containing marker alleles.

e When only GENOCOL is specified, there should be m variables named, one for each marker
containing marker genotypes.

e When neither option is specified, there should be 2m variables named, two for each marker
containing marker alleles.

All variables specified must be of the same type, either character or numeric.

WITH Statement

WITH variables ;

The WITH statement has the same syntax as the VAR statement. It contains variables of alleles,
or genotypes if GENOCOL is specified, from markers that you want to pair with those specified in
the VAR statement for linkage disequilibrium calculations. Each marker from the VAR statement is
paired with each marker from the WITH statement for these two-marker statistics when the WITH
statement is specified. The markers represented by variables in this statement are not included in
any of the single-marker calculations (marker summary statistics, allele frequencies, or genotype
frequencies) and the associated ODS tables. This statement facilitates the parallelization of the LD
calculations.

When the WITH statement is used, the MAXDIST= option is ignored. It cannot be used for data in
the tall format.
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Details: ALLELE Procedure

Statistical Computations
Frequency Estimates

A marker locus M can have a series of alleles My, u = 1,...,k. A sample of n individuals
can therefore have several different genotypes at the locus, with n,, copies of type M,,/M,. The
number n,, of copies of allele M,, can be found directly by summation: n,, = 2ny,, + Zwéu Nyyp-
The sample frequencies are written as p, = n,/(2n) and 13uv = nyy/n. The Isuv’s are unbiased
maximum likelihood estimates (MLEs) of the population proportions P,,,.

The variance of the sample allele frequency py, is calculated as

- 1
Var(py) = E(Pu + Pyy — 2P5)

and can be estimated by replacing Pu and P, with their sample values p, and ﬁuu. The variance
of the sample genotype frequency P, is not generally calculated; instead, an MLE of the HWD
coefficient d,,, for alleles M,, and M, is calculated as

dA _{ ﬁuv_ﬁuﬁv, u="v
uv = ~ o~ 5
PuDv — %Puva uF#v

and the MLE’s variance is estimated using one of the following formulas, depending on whether
the two alleles are the same or different:

~ 1r. » 5 ~ ~
Vardi) = [ = 5 + (1= 2 dus — 43,
~ 1 (. . B B A A A
Var(duo) = A Pubo(l = p)U=po) + Y (Prdvw + Frduw)
wFu,v

—[(= Fu— ) = 2B — )] duw + 5252 — 242,

The standard error, the square root of the variance, is reported for the sample allele frequencies and
the disequilibrium coefficient estimates. When the BOOTSTRAP= option of the PROC ALLELE
statement is specified, bootstrap confidence intervals are formed by resampling individuals from the
data set and are reported for these estimates, with the 100(1 — )% confidence level given by the
ALPHA=¢ option (or o = 0.05 by default).
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Measures of Marker Informativeness

Polymorphism Information Content

The polymorphism information content (PIC) measures the probability of differentiating the allele
transmitted by a given parent to its child given the marker genotype of father, mother, and child
(Botstein et al. 1980). It is computed as

k k—1 k
PIC=1-) pu=D 2. 2%uh
u=1 u=1v=u+1

Heterozygosity

The heterozygosity, sometimes called the observed heterozygosity, is simply the proportion of het-
erozygous individuals in the data set and is calculated as

Pyy
1

Het=1—

k
u=

Allelic Diversity

The allelic diversity, sometimes called the expected heterozygosity, is the expected proportion of
heterozygous individuals in the data set when HWE holds. It is calculated as

k
Div=1-)p
u=1

Testing for Hardy-Weinberg Equilibrium

Under ideal population conditions, the two alleles an individual receives, one from each parent,
are independent so that Py, = p2 and Pyy = 2py py,u # v. The factor of 2 for heterozygotes
recognizes the fact that M,,/ M,, and M,/ M,, genotypes are generally indistinguishable. This state-
ment about allelic independence within loci is called Hardy-Weinberg equilibrium (HWE). Forces
such as selection, mutation, and migration in a population or nonrandom mating can cause depar-
tures from HWE. Two methods are used here for testing a marker for HWE, both of which can
accommodate any number of alleles. Both methods are testing the hypothesis that Py, = p2 and
Pyy =2pypy,u #vforallu,v=1,... k.
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Chi-Square Goodness-of-Fit Test

The chi-square goodness-of-fit test can be used to test markers for HWE. The chi-square statistic

X72~ _ Z (nuu — ”135)2 n Z Z (nuy — Z”ﬁuﬁv)z
u

npy W ome M Pubu

has k(k — 1)/2 degrees of freedom (df), where k is the number of alleles at the marker locus.

Permutation Version of Exact Test

The permutation version of the exact test given by Guo and Thompson (1992) is based on the condi-
tional probability of genotype counts given allelic counts and the hypothesis of allelic independence.
The probability of the observed genotype counts under this hypothesis is

ol 2M [, !
!y nuv!

where h = 3, >, Ny is the number of heterozygous individuals. Significance levels are
calculated by the Monte Carlo permutation procedure. The 2n alleles are randomly permuted the
number of times indicated in the PERMS= option to form new sets of n genotypes. The significance
level is then calculated as the proportion of times the value of T for each set of permuted data does
not exceed the value of T for the actual data. You can indicate the random seed used to randomly
permute the data in the SEED= option of the PROC ALLELE statement.

Linkage Disequilibrium (LD)

The set of genetic material an individual receives from each parent contains an allele at every locus,
and statements can be made about these allelic combinations, or haplotypes. The probability p,,
(called the gametic or haplotype frequency) that an individual receives the haplotype My N, for
marker loci M and N can be compared to the product of the probabilities that each allele is received.
The difference is the linkage, or gametic, disequilibrium (LD) coefficient D,,,, for those two alleles:
Dyy = puv — pupv. There is a general expectation that the amount of linkage disequilibrium is
inversely related to the distance between the two loci, but there are many other factors that can affect
disequilibrium. There can even be disequilibrium between alleles at loci that are located on different
chromosomes. Note that these tests and measures are calculated only for pairs of markers at most
d markers (or the unit used in the LOCATION variable of the NDATA= data set) apart, where d is
the value specified in the MAXDIST= option of the PROC ALLELE statement (or 50 by default)
when the WITH statement is omitted; otherwise, all pairs of markers containing one marker from
the VAR statement and one from the WITH statement are examined.

Table 3.1 displays how the HAPLO= option of the PROC ALLELE statement interacts with the
linkage disequilibrium calculations. These calculations are discussed in more detail in the following
two sections.
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Table 3.1 Interaction of HAPLO= Option with LD Calculations

HAPLO= LD Test Estimate of
Option Statistic LD Exact Test Haplotype Freq
GIVEN Duv Permutes alleles to form Observed freq, fuy

new 2-locus haplotypes
EST 15,“, Not performed Estimated freq, pyy
NONE Ay Permutes alleles to form Composite freq, p,
new 2-locus genotypes

NONEHWD Auw Permutes genotypes to form Composite freq, p,
new 2-locus genotypes

Tests

When haplotypes are known, the HAPLO=GIVEN option should be included in the PROC AL-
LELE statement so that the linkage disequilibrium can be computed directly by substituting the
observed frequencies pyy, Py, and p, into the equation in the preceding section for D,,,. This
creates the MLE, ﬁuv, of the LD coefficient between a pair of alleles at different markers. PROC
ALLELE calculates an overall chi-square statistic to test that all of the D,,;,’s between two markers
are zero as follows:

which has (k — 1)(/ — 1) degrees of freedom for markers with k& and [ alleles, respectively.

There is also a Monte Carlo estimate of the exact test available when haplotypes are known. An
estimate of the exact p-value for testing the hypothesis in the preceding paragraph can be calculated
by conditioning on the allele counts as with the permutation version of the exact test for HWE. The
conditional probability of the haplotype counts is then

B [ L, nu!TT, 70!
(2n)! Hu,v yy

and the significance level is obtained again by permuting the alleles at one locus to form 27 new
two-locus haplotypes. You can indicate the number of permutations that are used in the PERMS=
option of the PROC ALLELE statement and the random seed used to randomly permute the data in
the SEED= option of the PROC ALLELE statement.

When it is requested that haplotype frequencies be estimated with the HAPLO=EST option, D, is
estimated using 15,“, = Puv — PuPv, Where Py, is the MLE of py, assuming HWE. The estimate
Puv 1s calculated according to the method described by Weir and Cockerham (1979). Again, a chi-
square test statistic can be calculated to test that all of the D,,,,’s between a pair of markers are zero
as
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which has (k — 1)(! — 1) degrees of freedom for markers with k and [ alleles, respectively. No exact
test is available when haplotype frequencies are estimated.

The HAPLO=NONE and HAPLO=NONEHWD options indicate that haplotypes are unknown and
Dy should not be used in the tests for LD between pairs of markers. Instead of using the estimated
haplotype frequencies which assumes HWE, a test can be formed using the composite linkage
disequilibrium (CLD) coefficient A, that does not require this assumption and uses only allele
and two-locus genotype frequencies. The MLE Ay of Ayy can be calculated as described by Weir
(1979), and a chi-square statistic that tests all A, s between a pair of markers are zero can be
formed as follows:

k1 X

which has (k — 1)(/ — 1) degrees of freedom for markers with k and [ alleles, respectively. This
statistic is used when HAPLO=NONE is specified. When each marker in the pair being analyzed
is biallelic, a correction in this test statistic for departures from HWE can be requested with the
HAPLO=NONEHWD option. The 1 df chi-square statistic is then represented as

nAz,
[ﬁu(l - p~u) =+ duu][ﬁv(l - ﬁv) + dvv]

withu =v = 1.

X2 =

Permutation versions of exact tests for CLD are given by Zaykin, Zhivotovsky, and Weir (1995),
either assuming HWE or accounting for departures from HWE. The conditional probability of the
two-locus genotypes given the one-locus alleles assuming HWE is

n' 1_[7‘ nr! Hu I’lu! Hr’s’u’v 2anuvHrsuu
(2n ')2 l_[r,s,u,v ”rsuv!

where n,g4yy is the count of M, MgN, N, genotypes, n, and n, are the counts of M, and N,
alleles, respectively, and H,gy, represents the number of loci that are heterozygous for genotype
M, MgNy N, (0, 1, or 2). An estimate of the exact significance level is obtained by permuting the
alleles at both of the loci and counting a permuted sample toward the p-value when its probability
T is not larger than for the observed sample.

T =

When departures from HWE are accounted for, the conditional probability of the two-locus geno-
types given the one-locus genotypes is

Hr,s I’lrs! Hu,v nuv!

| |
n: Hr,s,u,v Nrsuv:

Tuwp =

with n,s and n,,, as the counts of M, /Mg and N,/ N, genotypes, respectively. An estimate of the
exact significance level is obtained by permuting the genotypes at one of the loci and calculating
the probability Ty wp for each permuted sample. When HAPLO=NONEHWD is specified, the p-
value is reported as the proportion of samples that have a T wp less than or equal to the one from
the original sample. NOTE: Ty wp can be used for multiallelic markers, while the formula for the
chi-square statistic cannot. When HAPLO=NONEHWD, the chi-square statistic and asymptotic p-
value that are reported for a marker with more than two alleles do not account for departures from
HWE; however, the estimate of the exact p-value does make this adjustment as expected.
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Measures

PROC ALLELE offers several linkage disequilibrium measures to be calculated for each pair of
alleles M, and N, located at loci M and N, respectively. Devlin and Risch (1995) discuss the cor-
relation coefficient r, the population attributable risk §, Lewontin’s D’, the proportional difference
d, and Yule’s Q; Morton et al. (2001) define p and its information K, which is calculated under
the null hypothesis that D = 0 and also included in the “Linkage Disequilibrium Measures” table
when the RHO option is specified. Since these measures are designed for biallelic markers, the
measures are calculated for each allele at locus M with each allele at locus N, where all other alleles
at each loci are combined to represent one allele. Thus for each allele M,, in turn, p; is used as the
frequency of allele M,,, and p, represents the frequency of “not M,,”; similarly for each N, in turn,
g1 represents the frequency of allele Ny, and g, represents the frequency of “not N,.” All measures
have the same numerator, D = pi11p22 — p12p21, the LD coefficient, which can be directly es-
timated using the observed haplotype frequencies p,, when HAPLO=GIVEN, or estimated using
the MLE:s of the haplotype frequencies py, assuming HWE when HAPLO=EST. The computations
for the measures are as follows:

D
r el e —
(P1P2611Q2)1/2
D
5§ =
qi1p22
p - 2 5 :{ min(p1g2.q1p2), D >0
Dmax” 0 min(p191.92p2), D <0
D
d = —
q19>2
p = D denom:{ min(p1, p2) X max(qi,q2), min(py, p2) < min(g1,¢2)
denom’ min(q1, g2) X max(p1, p2), min(p1, p2) > min(q1, g2)
D
0 =

P11P22 + p12p21

with estimates of measures calculated by replacing parameters with their appropriate estimates.
Under the option HAPLO=NONE (the default) or HAPLO=NONEHWD, the numerator D can be
replaced by the CLD coefficient A, described in the preceding section, for measures r and D’. The
bounds for A (Amax) given by Hamilton and Cole (2004) and Zaykin (2004) are used in place of
the preceding formula for the denominator of D’. The denominator of the correlation coefficient
r is adjusted for departures from HWE when HAPLO=NONEHWD in the same manner as the
corresponding chi-square statistic, so that r = Ayy/{[pu(l — pu) + dunllge(1 — gv) + dyo]}/2.
The measures 6, d, p, and Q cannot be calculated for either of these two options. The information
K, is estimated by nQ(1 — R)/(R(1 — Q)), where Q = min(p1, p2,¢1,q2) and R is the smaller
allele frequency (min(p1, p2) or min(q1, g2)) at the locus not used for Q.

Population Structure

The genetic structure of populations can be characterized by Wright’s F statistics (1951) measuring
the degree of relatedness between different types of allele pairs. Cockerham (1969, 1973) defines
these same quantities in an analysis-of-variance (ANOVA) framework. For a population hierarchy
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defined by the variable in the POP statement, these measures include 6p and, when HWE is not
assumed, F and f, corresponding to Wright’s Fsr, FyT, and Fjg, respectively. A weighted aver-
age of these measures over loci can be reported as an overall measure, and measures for individual
loci can be requested as well. The estimates of these parameters are calculated using an ANOVA
structure along with a method-of-moments approach.

For genotypic data with unknown phase from r populations, variation can be partitioned into three
sources: between populations, between individuals within populations, and within individuals, with
respective observed mean squares M SP, MSI, and MSG. Using the method of moments to
equate estimates of the variance components with functions of the observed mean squares, the
coancestry coefficients can be estimated as follows:

P o1- 2n:.MSG
MSP + (nc — )MSI + ncMSG
éP _ MSP —MSI
MSP + (nc —1)MSI +n.MSG
L
1—-F

where n, = %(ZLI ni — %—”f) for r populations.

If HWE is assumed in a two-level population hierarchy, the data can be treated as haploid data
where allele, not genotype, frequencies are used in the calculations. Also, in this scenario, p
and F are equal and f = 0. Thus, there is only one parameter to estimate, 6 p, which represents
the covariance of alleles from the same population relative to the covariance between alleles from
different populations, estimated as follows:

. MSP —MSG
"~ MSP + (n — 1)MSG

where the counts used in n,. are now in terms of alleles instead of individuals.

Tests of hypotheses that these parameters are 0 can be executed via permutation tests. A differ-
ent permutation scheme is used for each parameter under each population structure scenario. The
schemes displayed in Table 3.2, “Permutation Schemes for Population Structure Parameters,” are
derived from Schneider, Roessli, and Excoffier (2000).

Table 3.2 Permutation Schemes for Population Structure Parameters

Parameter f =0? Permutation Scheme

Op Yes Individuals among populations
Op No Individuals among populations
F No Alleles among populations

f No Alleles within populations
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Missing Values

An individual’s genotype for a marker is considered missing if at least one of the alleles at the
marker is missing. Any missing genotypes are excluded from all calculations, including the linkage
disequilibrium statistics for all pairs that include the marker. However, the individual’s nonmissing
genotypes at other markers can be used as part of the calculations.

If the BOOTSTRAP= option is specified, any individuals with missing genotypes for all markers
are excluded from resampling. All other individuals are included, which could result in different
numbers of individuals with nonmissing genotypes for the same marker across different samples.

When the POP statement is used, individuals with a missing value for the variable specified are ex-
cluded from the calculation of the population F statistics, but they are included in all other analyses.

OUTSTAT= Data Set

The OUTSTAT= data set contains the following variables:

the BY variables, if any

Locus1 and Locus2, which contain the pair of markers for which the disequilibrium statistics
are calculated

Nindiv, which contains the number of individuals that have been genotyped at both the markers
listed in Locus1 and Locus?2 (that is, the number of individuals that have no missing alleles for
the two loci)

Test, which indicates which disequilibrium test is performed, HWE for individual markers
(when Locus1 and Locus2 contain the same value) or LD for marker pairs

ChiSq, which contains the chi-square statistic for testing for disequilibrium. If Locus1 and
Locus2 contain the same marker, the test is for HWE within that locus. Otherwise, the test is
for linkage disequilibrium between the two loci.

DF, which contains the degrees of freedom for the chi-square test
ProbChi, which contains the p-value for the chi-square test

ProbEx, which contains an estimate of the exact p-value for testing the pair of markers in
Locus1 and Locus2 for disequilibrium. This variable is included in the OUTSTAT= data set
only when the PERMS= parameter in the PROC ALLELE statement is a positive integer and
HAPLO=EST is not specified.
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Displayed Output

This section describes the displayed output from PROC ALLELE. See the section “ODS Table
Names” on page 37 for details about how this output interfaces with the Output Delivery System.

Marker Summary

The “Marker Summary” table lists information about each of the markers, including the following:

Nlndiv, the number of individuals genotyped at the marker

NAllele, the number of alleles at the marker

PIC, the polymorphism information content (PIC) measure

Het, the heterozygosity measure

Div, the allelic diversity measure
The table also contains the following columns for the test for HWE:

e ChiSq, the chi-square statistic
e DF, the degrees of freedom for the chi-square test
e ProbChiSq, the p-value for the chi-square test

e ProbExact, an estimate of the exact p-value for the HWE test (only if the PERMS= option is
specified in the PROC ALLELE statement)

Allele Frequencies

The “Allele Frequencies” table lists all the observed alleles for each marker, with the observed allele
count and frequency, the standard error of the frequency, and when the BOOTSTRAP= option is
specified, the bootstrap lower and upper limits of the confidence interval for the frequency based on
the confidence level determined by the ALPHA= option of the PROC ALLELE statement (0.95 by
default).

Genotype Frequencies

The “Genotype Frequencies” table lists all the observed genotypes (denoted by the two alleles
separated by a “/”’) for each marker, with the observed genotype count and frequency, an estimate
of the disequilibrium coefficient d, the standard error of the estimate, and when the BOOTSTRAP=
option is specified, the lower and upper limits of the bootstrap confidence interval for d based on
the confidence level determined by the ALPHA= option of the PROC ALLELE statement (0.95 by
default).



36 4 Chapter 3: The ALLELE Procedure

Linkage Disequilibrium Measures

The “Linkage Disequilibrium Measures” table lists for each marker pair the number of in-
dividuals with nonmissing genotypes, frequency of each haplotype (observed frequency when
HAPLO=GIVEN and estimated frequency otherwise), an estimate of the LD coefficient D,,, and
the linkage disequilibrium measures corresponding to the options included in the PROC ALLELE
statement (CORRCOEFF, DELTA, DPRIME, PROPDIFF, RHO, and YULESQ). Haplotypes are
represented by the allele at the marker locus listed in Locus1 and the allele at the marker locus listed
in Locus2, separated by a “-.” Note that this table can be quite large when there are many markers
or markers with many alleles. For a data set with m markers, each having k; alleles,i = 1,...,m,
the number of rows in the table is Z;":_ll Z']’-’:i 41 kikj. The MAXDIST= option of the PROC
ALLELE statement or the WITH statement can be used to keep this table to a manageable size.

Population Summary

When the POP statement is specified, the “Population Summary” table displays the number and
names of populations defined by the population variable.

Combined F Statistics

When the POP statement is specified, the “Combined F Statistics” table displays the estimated
values of the following statistics combined over all marker loci:

o WithinPopf and OverallF, the inbreeding coefficients within populations and over all popula-
tions, respectively, when the ZEROF option is omitted

e PopTheta, the degree of relatedness between individuals within populations

When the value specified for FPERMS is greater than 0, corresponding p-values for each of these
estimates are also reported.

Marker F Statistics

When the POP statement is specified with the INDIVLOCI option, the “Marker F Statistics” table
displays the same columns as those in the “Combined F Statistics” table for each of the marker
variables represented in the VAR statement.
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ODS Table Names

PROC ALLELE assigns a name to each table it creates, and you must use this name to reference
the table when using the Output Delivery System (ODS). These names are listed in Table 3.3.

Table 3.3 ODS Tables Created by the ALLELE Procedure

ODS Table Name Description Statement Option

MarkerSumm Marker summary

AlleleFreq Allele frequencies

GenotypeFreq Genotype frequencies

LDMeasures Linkage disequilibrium PROC CORRCOEFF, DELTA,
measures DPRIME, PROPDIFF,

RHO, or YULESQ
PopulationSummary Population summary POP
CombinedFStats Combined F statistics POP

MarkerFStats Marker F statistics POP INDIVLOCI




38 4 Chapter 3: The ALLELE Procedure

Examples: ALLELE Procedure

Example 3.1: Using the NDATA= Option with Microsatellites

The following is a subset of data from GAW12 (Wijsman et al. 2001) and contains 17 individuals’
genotypes at 14 microsatellite markers.

data gaw;
input id ml-ml4 / ml15-m28;

datalines;
111 14 6 8 2 5 9 4 6 1 9 9 9 7
3 510 1 4 6 5 9 1 1 3 5 6 2
2 212 1 4 6 6 3 3 2 111 11 4 11
2 21311 2 1 9 9 1 5 6 1 2 5
3 210 4 8 4 9 2 7 7 1 9 2 1710
2 2 7 7 6 8 9 4 5 1 7 2 6 2
4 514 7 3 913 4 2 2 411 5 4 7
4 5 7 6 8 2 9 9 1 6 4 1 8 9
51212 3 8 6 2 1 7 3 5 611 6 9
5 21316 7 1 9 4 1 1 7 1 1 2
6 4 7 7 8 712 4 2 6 5 511 5 11
2 41511 1 1 9 2 6 5 7 6 1 5
7 210 6 8 7 1 2 3 6 2 5 8 5 6
5 61310 1 8 9 3 1 6 7 7 2 6
8 211 6 2 7 1 2 3 6 610 11 11 &6
4 21111 4 511 2 3 2 1 4 1 2
9 2 7 1 1 3 1 5 7 2 5 511 11 11
2 611 2 1 6 4 9 5 5 4 2 5 9
10 1112 2 413 3 1 2 4 9 510 7 5
4 4 1 6 8 1 610 1 1 2 5 1 1
1111 2 7 8 1 5 4 6 4 7 511 11 &6
5 41613 7 4 5 6 6 1 1 4 1 1
12 212 6 8 2 7 3 2 7 5 2 8 9 6
2 4 716 7 110 9 5 1 1 4 9 1
131314 8 31213 7 4 3 2 610 9 5
4 4 214 8 8 3 6 5 1 1 6 6 2
14 710 6 51013 8 3 5 5 9 911 &6
5 41314 1 1 6 9 2 1 5 3 1 2
151011 4 3 9 7 6 3 4 610 1 7 9
2 2 214 6 1 9 2 1 1 6 7 5 2
16 2 5 2 7 7 2 2 9 2 2 2 6 9 5
2 2 7 1 1 2 6 2 1 1 1 1 9 &6
1711 4 4 4 9 1 7 8 5 3 5 111 5
6 5 212 1 5 9 9 1 5 7 7 6 1

’

The actual names of the markers can be used, by creating a data set with the variable NAME con-
taining these names.
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data map;
input name $ location;
datalines;
D22G001 0.50
D22G002 0.79
D22G003 0.88
D22G004 1.02
D22G005 1.24
D22G006 2.20
D22G007 4.27
D22G008 5.85
D22G009 6.70
D22G010 9.36
D22G011 10.87
D22G012 11.67
D22G013 12.66
15.89

D22G014

4

Now an analysis using PROC ALLELE can be performed as follows:

proc allele data=gaw ndata=map nofreq perms=10000 seed=456;
var ml-m28;
run;

This analysis produces summary statistics of the 14 markers and is using 10,000 permutations to
approximate an exact p-value for the HWE test. The allele and genotype frequency output tables
are suppressed with the NOFREQ option.

The results from the analysis are shown in Output 3.1.1. Note the names of the markers that are
used.
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Output 3.1.1 Summary of Microsatellites for the ALLELE Procedure

Number
of
Locus Indiv
D22G001 17
D22G002 17
D22G003 17
D22G004 17
D22G005 17
D22G006 17
D22G007 17
D22G008 17
D22G009 17
D22G010 17
D22G011 17
D22G012 17
D22G013 17
D22G014 17
Locus
D22G001
D22G002
D22G003
D22G004
D22G005
D22G006
D22G007
D22G008
D22G009
D22G010
D22G011
D22G012
D22G013
D22G014

The ALLELE Procedure

Marker Summary

Allelic
Diversity
0.8547
0.8478
0.8858
0.8443
0.8460
0.8443
0.8253
0.7163
0.8893
0.7820
0.7509
0.6142
0.8201
0.7837
Prob
Exact
.8581
.3868
.7050
.8361
.9413
.1102
.5745
.2525
.3866
.8624
.8898
.5122
.0390
.4651

Number

of Hetero-

Alleles PIC zygosity

9 0.8384 0.9412

8 0.8296 0.8824

11 0.8749 0.9412

9 0.8259 0.9412

8 0.8272 0.8235

8 0.8257 0.8235

7 0.8012 0.9412

5 0.6665 0.6471

11 0.8788 0.8824

7 0.7572 0.8235

8 0.7274 0.8235

5 0.5661 0.6471

7 0.7965 0.8235

6 0.7507 0.8824

Marker Summary
—————————————— Test for HWE-—————————————

Chi- Pr >
Square DF Chisq
32.5172 36 0.6350
28.5222 28 0.4370
48.2139 55 0.7295
24.9692 36 0.9166
20.9416 28 0.8278
32.0018 28 0.2744
19.7625 21 0.5363
11.4619 10 0.3227
52.1333 55 0.5849
14.7227 21 0.8366
19.0400 28 0.8969
17.3473 10 0.0670
38.8062 21 0.0104
17.2802 15 0.3024

O OO0 O0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOo




Example 3.2: Computing Linkage Disequilibrium Measures for SNP Data 4 41

Example 3.2: Computing Linkage Disequilibrium Measures for SNP
Data

The following data set contains 44 individuals’ genotypes at five SNPs.

data snps;
input sl1-s10;

datalines;
2221211122
2222211122
2222212122
222 2 . 1122
2222121222
222 2 . 212 2
2222212122
2222 . .2122
2222111122
2211222122
2221222122
2222111122

. more lines

2221222122
2222222122
2222211122
2222221122
2222212122
2222222222
2222222122
2222222122

~.

Now an analysis using PROC ALLELE can be performed as follows:

proc allele data=snps prefix=SNP nofreq haplo=est
corrcoeff dprime;
var sl-sl0;
run;

This analysis produces summary statistics of the five SNPs as well as the “Linkage Disequilibrium
Measures” table, which contains estimated two-locus haplotype frequencies and disequilibrium co-
efficients, and the linkage disequilibrium measures r and D’. The allele and genotype frequency
output tables are suppressed with the NOFREQ option.

The results from the analysis are shown in Output 3.2.1 and Output 3.2.2. Note the names of the
markers that are used.
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Output 3.2.1 Summary of SNPs for the ALLELE Procedure

SNP1
SNP2
SNP3
SNP4
SNP5

Locus

Number
of
Indiv

44
44
41
43
44

Number
of
Alleles

R DNNMNDNR

O O o0 oo

PIC

.0000
.1190
.3283
.3728
.0000

The ALLELE Procedure

Marker Summary

Hetero-
zygosity

O O o0 oo

.0000
.0909
.4390
.4884
.0000

Allelic
Diversity

O O o oo

.0000
.1271
.4140
.4957
.0000

Chi-
Square

.0000
.5627
.1493
.0093
.0000

O O o Wwo

DF

oOoRr R RO

Pr >
Chisq

0.0591
0.6992
0.9231

There are two SNPs that have only one allele appearing in the data.




Example 3.2: Computing Linkage Disequilibrium Measures for SNP Data 4 43

Output 3.2.2 Linkage Disequilibrium Measures for SNPs Using the ALLELE Procedure

Linkage Disequilibrium Measures
Number

of LD Corr Lewontin’s
Locusl Locus2 Indiv Haplotype Frequency Coeff Coeff D’
SNP1 SNP2 44 2-1 0.0682 0.0000
SNP1 SNP2 44 2-2 0.9318 0.0000
SNP1 SNP3 41 2-1 0.2927 0.0000
SNP1 SNP3 41 2-2 0.7073 0.0000
SNP1 SNP4 43 2-1 0.5465 0.0000
SNP1 SNP4 43 2-2 0.4535 0.0000
SNP1 SNP5 44 2-2 1.0000 0.0000
SNP2 SNP3 41 1-2 0.0732 0.0214 0.1807 1.0000
SNP2 SNP3 41 2-1 0.2927 0.0214 0.1807 1.0000
SNP2 SNP3 41 2-2 0.6341 -0.0214 -0.1807 -1.0000
SNP2 SNP4 43 1-1 0.0331 -0.0050 -0.0398 -0.1322
SNP2 SNP4 43 1-2 0.0367 0.0050 0.0398 0.1322
SNP2 SNP4 43 2-1 0.5134 0.0050 0.0398 0.1322
SNP2 SNP4 43 2-2 0.4168 -0.0050 -0.0398 -0.1322
SNP2 SNP5 44 1-2 0.0682 0.0000
SNP2 SNP5 44 2-2 0.9318 0.0000
SNP3 SNP4 40 1-1 0.2221 0.0608 0.2661 0.4382
SNP3 SNP4 40 1-2 0.0779 -0.0608 -0.2661 -0.4382
SNP3 SNP4 40 2-1 0.3154 -0.0608 -0.2661 -0.4382
SNP3 SNP4 40 2-2 0.3846 0.0608 0.2661 0.4382
SNP3 SNP5 41 1-2 0.2927 0.0000
SNP3 SNP5 41 2-2 0.7073 0.0000
SNP4 SNP5 43 1-2 0.5465 0.0000
SNP4 SNP5 43 2-2 0.4535 0.0000

In Output 3.2.2, the values for the linkage disequilibrium measures are missing for several haplo-
types; this occurs when there is only one allele at one of the markers contained in the haplotype, and
thus the denominators for these measures are zero. Also note that when the markers are biallelic,
the gametic disequilibria have the same absolute values for all four possible haplotypes.
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Overview: BTL Procedure

The BTL procedure analyzes marker and trait data in order to find and characterize binary trait loci
(BTL). Mixed model analysis of variance is used to find a locus or loci associated with a trait, and
a maximum likelihood model is used to estimate the recombination and penetrance parameters for
a given set of BTL.

The data consist of marker genotype and a binary trait for a set of individuals. Marker genotypes
can be of single nucleotide polymorphisms (SNPs), microsatellite data, or any other kind of marker
as long as it is a heritable unit that obeys the laws of transmission genetics. However, only biallelic
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markers can be used to estimate BTL parameters; multiallelic markers can be used to find BTL but
not to estimate parameters.

The output of PROC BTL is a “Model Statistics” table that contains a sorted list of the BTL mod-
els evaluated by a user-specified model selection criterion (p-value by default). Additionally, the
maximum likelihood parameter estimates for a selected BTL model are written to a “Parameter Es-
timates” table if the PARMEST statement is used. The penetrance parameters can be calculated for
a specified set of recombination parameters, or alternatively, a grid search can be performed over a
specified range of possible recombination parameters. Finally, a 100(1 — )% confidence interval
can be computed for the parameter estimates of a given model.

Getting Started: BTL Procedure

Example

Suppose you have genotyped 20 members of an experimental backcross population at five markers
spanning two chromosomes, and you have also recorded the disease resistance status of each subject
as resistant or not resistant. You are interested in finding whether there are BTL in the genetic region
spanned by your marker set, and if so, where those BTL are and how strongly linked they are to
the disease resistance locus. The first step is to input the data, and then to use PROC BTL with
the appropriate options to request all single-marker models of the data to be calculated, as in the
following program:

data MarkerDat;
input (ml-m5) ($) trait;

datalines;
ABBABI1
BABBAI1l
ABABBI1
AABBA1l
ABABBI1
BAAABI1
AABAALl
BBABAI1l
AABBAl1l
AAABA1l
ABAABDO
BABAADO
BAAABDO
BBABBDO
BAABBDO
BBAABDO
ABBAAO
BABAAO
ABAABDO
BABABDO

~.
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proc btl data=MarkerDat;
marker ml-m5 /all=1;
model trait;

run;

The results from the analysis are shown in Figure 4.1.

Figure 4.1 Single-Marker Model Statistics

The BTL Procedure
Model Statistics
Marker Chi- Pr >
Effect DF Square Chisq AIC AICC BIC
M4 1 6.8470 0.0089 29.2 30.7 32.2
M1l 1 4.5129 0.0336 31.5 33.0 34.5
M5 1 2.9321 0.0868 33.1 34.6 36.1
M2 1 1.2289 0.2676 34.8 36.3 37.8
M3 1 1.2289 0.2676 34.8 36.3 37.8
The BTL Procedure
Marker Class Means
Marker Marker Standard
Class Genotype N Mean Error
pill BB 9 0.3333 0.0247
pil2 BA 6 0.0000 0.0000
pi21 AB 8 0.2500 0.0234
pi22 AA 8 1.0000 0.0000
Parameter Estimates
95% Confidence
Parameter Estimate Limits
rl 0.0000
r2 0.0000
pll 1.3333 0.0000 2.6667
pl2 0.0000 0.0000 0.0000
p21 1.0000 0.0000 2.4000
p22 4.0000 4.0000 4.0000
theta 0.5000
NOTE: The r and theta parameters are fixed.

Similarly, all two-marker models can be calculated as follows, with the results shown in Figure 4.2.
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proc btl data=MarkerDat;
marker ml-m5 /all=2;
model trait;

run;

Figure 4.2 Two-Marker Model Statistics

The BTL Procedure

Model Statistics
Marker Chi- Pr >
Effect DF Square Chisq AIC AICC BIC
M1xM4 3 11.0214 0.0116 29.0 33.3 34.0
M4 xM5 3 10.0860 0.0178 30.0 34.3 35.0
M3xM4 3 8.3508 0.0393 31.7 36.0 36.7
M1xM2 3 7.6224 0.0545 32.4 36.7 37.4
M2xM4 3 7.1383 0.0676 32.9 37.2 37.9
M1xM5 3 6.3399 0.0962 33.7 38.0 38.7
M1xM3 3 5.0764 0.1663 35.0 39.3 40.0
M3xM5 3 4.4450 0.2172 35.6 39.9 40.6
M2 xM5 3 3.6150 0.3061 36.4 40.7 41.4
M2xM3 3 1.3136 0.7259 38.7 43.0 43.7

Since m1xm4 appears to be the best two-marker effect, you can then estimate the recombination
and penetrance parameters for this BTL model. First you have to enter the mapping information for
the markers as follows:

data MarkerMap;
input marker $ chromosome position location;

datalines;
ml 110
m2 1 2 4.3
m3 1 3 16
md 210
m5 2 2 5.5

4

Now you can use the PARMEST statement to request the parameter estimates to be calculated, as
in the following code. PROC BTL estimates penetrance values with each recombination parameter
r setto 0.5.

proc btl data=MarkerDat map=MarkerMap;
marker ml m4 /group=chromosome;
model trait;
parmest cross=b gen=1 r=0.5;

run;
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Figure 4.3 displays information about the model that includes the two-marker effect m1xm4. The
“Parameter Estimates” table shows that penetrance values are not in the valid range (between 0 and
1) for this model with the given values of r.

Figure 4.3 Model Statistics, Marker Class Means, and Parameter Estimates for m1*m4 Model

Marker
Effect

M1xM4

DF

Marker
Class

pill
pil2
pi21
pi22

The BTL Procedure

Model Statistics

Chi- Pr >
Square Chisq AIC
11.0214 0.0116 29.0

Marker Class Means

Marker

Genotype N Mean
AA 5 0.4000
AB 5 1.0000
BA 6 0.1667
BB 4 0.5000

Parameter Estimates

Parameter Estimate
rl 0.0000
r2 0.0000
pll 1.6000
pl2 4.0000
p21 0.6667
p22 2.0000
theta 0.5000

NOTE: The r and theta
parameters are fixed.

AICC

33.3

Standard
Error

0.0480
0.0000
0.0231
0.0625

BIC

34.0
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Syntax: BTL Procedure

The following statements are available in PROC BTL.

PROC BTL < options> ;
BY variables ;
CLASS variables ;
MARKER variables </ options > ;
MODEL dependent < = fixed-effects > </ options > ;
PARMEST < options> ;
PARMS (value-list) . ..</ options> ;
RANDOM random-effects </ options > ;
REPEATED < repeated-effect> </ options> ;
WEIGHT variable ;

Items within angle brackets (< > ) are optional. The RANDOM statements can appear multiple
times; all other statements can appear only once.

The PROC BTL, MARKER, and MODEL statements are required, and the MODEL statement must
appear after the CLASS and/or MARKER statement if either or both statements are included. The
RANDOM and REPEATED statements must follow the MODEL statement.

PROC BTL Statement

PROC BTL < options > ;

The PROC BTL statement invokes the procedure. You can specify the following options.

DATA=SAS-data-set
names the SAS data set to be used by PROC BTL. The default is the most recently created
data set.

MAP=SAS-data-set

names the marker map data set to be used. It can include the variables Marker, Location, and
Name and a user-designated linkage group variable. The user can specify the name of the
numeric linkage group variable in the GROUP= option in the MARKER statement, and this
data set must be sorted by this variable. The variable Marker must contain the names of the
variables specified in the MARKER statement. If this variable is not in the MAP= data set,
the order of the markers in the MARKER statement is used. The Name variable, if present
in this data set, is displayed in the “Model Statistics” table when ALL=1 is specified in the
MARKER statement. If the Location variable is in the data set, it is used for calculating the
recombination parameters between pairs of markers, 8, when the PARMEST statement is
given.

For a backcross, A is the default value for the homozygous genotype and B is the default
value for the heterozygous genotype. For an F cross, A is the default value for the genotype
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homozygous in parent 1’s allele, B is the default value for the heterozygous genotype, and
C is the default value for the genotype homozygous in parent 2’s allele. If values other than
these are used, they need to be specified using the HOMOZYGOUS=, HETEROZYGOUS=,
and HOMOZY GOUS2= options in the PARMEST statement.

NOMCMPR
suppresses the display of the “Marker Class Means” table.

NOPARMPR
suppresses the display of the “Parameter Estimates” table.

NOPRINT
suppresses all output.

NOREGPR
suppresses the display of the “Model Statistics” table.

ORDER=DATA
ORDER=FORMATTED
ORDER=FREQ

ORDER=INTERNAL
specifies the sorting order for the levels of all CLASS variables. This ordering determines
which parameters in the model correspond to each level in the data.

The default is ORDER=FORMATTED. When the default ORDER=FORMATTED is in ef-
fect for numeric variables for which you have supplied no explicit format, the levels are
ordered by their internal values.

The following table shows how PROC BTL interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order
INTERNAL unformatted value

For FORMATTED and INTERNAL, the sort order is machine dependent.

For more information about sorting order, see the chapter on the SORT procedure in the
Base SAS Procedures Guide and the discussion of BY-group processing in SAS Language
Reference: Concepts.
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BY Statement

BY variables ;

You can specify a BY statement with PROC BTL to obtain separate analyses on observations in
groups defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in the order of the BY variables. The variables are one or more variables in the
input data set.

If your input data set is not sorted in ascending order, use one of the following alternatives:

e Sort the data by using the SORT procedure with a similar BY statement.

o Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
the BTL procedure. The NOTSORTED option does not mean that the data are unsorted but
rather that the data are arranged in groups (according to values of the BY variables) and that
these groups are not necessarily in alphabetical or increasing numeric order.

e Create an index on the BY variables by using the DATASETS procedure (in Base SAS soft-
ware).

Because sorting the data changes the order in which PROC BTL reads observations, the sorting
order for the levels of the CLASS variable might be affected if you have specified ORDER=DATA
in the PROC BTL statement.

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.

CLASS Statement

CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis. If the CLASS
statement is used, it must appear before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined
from the entire formatted values of the CLASS variables. You can use formats to group values into
levels. See the discussion of the FORMAT procedure in the Base SAS Procedures Guide and the
discussions of the FORMAT statement and SAS formats in SAS Language Reference: Dictionary.
You can adjust the order of CLASS variable levels by using the ORDER= option in the PROC BTL
statement.

You can specify the following option in the CLASS statement after a slash (/):

TRUNCATE
specifies that class levels should be determined using only the first 16 characters of the for-
matted values of CLASS variables.
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MARKER Statement

MARKER variables </ options > ;

The MARKER statement lists the genetics marker variables used in constructing the BTL model.
This statement is required, and at least one marker variable must be listed or an error will be gen-
erated. The MARKER statement is similar to a class statement, except the interaction effect for all
the marker variables listed is implicitly added to the model, as in the following code:

proc btl;
marker ml m2 m3;
model trait;
run;

The model trait = m1xm2xm3 is fit by PROC BTL. Additionally, if the PARMEST statement is
used, these markers are included in the calculated BTL model and the model recombination and
penetrance parameters are estimated.

You can specify the following options in the MARKER statement after a slash (/).

ALL=number
requests that regression models be calculated for all combinations of number markers from
the marker statement, where number is a positive integer. NOTE: If the ALL option is used,
the PARMEST statement is ignored if specified. If this option and the ALLUPTO= option
are omitted, then only a model including all markers is fit. This option cannot be used if
ALLUPTO= is specified.

ALLUPTO=number
requests that regression models be calculated for all combinations of number and fewer mark-
ers from the marker statement; e.g., ALLUPTO=3 calculates all combinations of 3, 2, and 1
markers, where number is a positive integer. NOTE: If the ALLUPTO option is used, the
PARMEST statement is ignored if specified. If this option and the ALL= option are omit-
ted, then only a model including all markers is fit. This option cannot be used if ALL= is
specified.

BEST=number
requests that only the top number models be included in the output, where number is a positive
integer. By default, all models are displayed. If the GROUP= option is used, number specifies
the number of models per linkage group to include in the output. The ranking of the models is
determined using the model selection criterion selected using the MC= option or the p-value
of the likelihood ratio test by default.

GROUP=variable
specifies the name of the linkage group variable in the map data set to be used in grouping
the models in the “Model Statistics” output if the output contains single-gene models only.
The output contains the models sorted by linkage group and by the criterion specified in the
MC= option (or the likelihood ratio p-value by default). If the s are not specified using the
THETA option but are calculated using the MAP= data set, then fs between markers from
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different linkage groups are set to 0.5. NOTE: If this variable is specified, markers in the
MAP= data set from the same linkage group must be in consecutive observations. Values for
this variable must be nonnegative numbers; any negative values are treated as missing.

MC=P
MC=LRCHI
MC=AIC
MC=BIC

MC=AICC
specifies the model selection criterion used to sort models. The default value is the p-value
from the likelihood ratio test (MC=P).

MODEL Statement

MODEL dependent < = fixed-effects> < / options > ;

The MODEL statement names a single dependent variable and the fixed effects. These user-
specified fixed effects, along with the interaction effect of all the markers in the MARKER statement
(that is implicitly added to the model if the MARKER statement is used), determine the X matrix of
the mixed model. The specification of effects is the same as in the GLM procedure; however, unlike
PROC GLM, you do not specify random effects in the MODEL statement. The MODEL statement
is required.

An intercept is included in the fixed-effects model by default. If no fixed effects or markers are
specified, only this intercept term is fit. The intercept can be removed by using the NOINT option.

The dependent variable can be of any type for the computation of model statistics; however, it needs
to be a binary variable if the PARMEST statement is used with values 0 and 1.

You can specify the following option in the MODEL statement after a slash (/):

NOINT
requests that no intercept be included in the model. An intercept is included by default.

PARMEST Statement

PARMEST < options> ;

The PARMEST statement requests that PROC BTL estimate the recombination and penetrance
parameters for a BTL model containing the markers listed in the MARKER statement. The marker
class means are calculated from the input data and written to a table. By default a grid search over
the range of all possible values of the recombination parameters is performed, and the resulting
penetrance values that are in range for each set of rs are displayed. Alternatively, a specific set of r
values can be specified using the R option.
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NOTE: A grid search over the range of all values of r performed for a model with several markers (>
4) can be lengthy and computationally intensive. The computational time increases as n¥ increases,
where n is the number of increments of r and k is the number of markers. For this reason, it
is recommended that a model with several markers use consecutive grid searches with very few
increments (small ) in order to zero in on the correct values of r.

The BTL model that is estimated is specified by the CROSS= option (backcross is the default) and
the GEN= option (1 is the default). The 8 parameters are calculated from the map data set by using
whichever model is specified in the LINKMOD= option (Haldane is the default). Alternatively, a
specific set of 6 values can be specified using the THETA option. A confidence interval of signifi-
cance level o can be requested by using the BOOT= option and specifying the number of bootstrap
iterations.

You can specify the following options in the PARMEST statement.

ALPHA=number

specifies that a confidence level of 100(1—number )% is to be used in forming bootstrap
confidence intervals for the penetrance parameters when the BOOT= option is given. This
value of number must be between 0 and 1 and is set to 0.05 by default.

BOOT=number

requests that confidence intervals be calculated for the penetrance parameters by using num-
ber iterations of the bootstrap. You must input which recombination parameters (rs) to use in
the calculation by using the R option or an error is generated.

CROSS=BACK | B | DH
CROSS=INTER | F

specifies the type of cross for the input data set. The options include BACK or B for a
backcross or, equivalently, DH for a doubled-haploid population. The other option is INTER
or F for an F intercross. The default is backcross.

GEN=number

specifies the generation number of the offspring in the input data set. Valid values include
any integer greater than or equal to one. The default is 1.

HETEROZYGOTE-="heterozygote”
HE="heterozygote”

specifies the value for the heterozygous genotype used in the input data set. The default value
is “B”

HOMOZYGOTE="homozygote”
HO="homozygote”

specifies the value for the homozygous genotype used in the input data set. The default value
is “A.” If the experimental design is an F cross, then this is the genotype homozygous for the
parent 1 allele.

HOMOZYGOTE2="homozygote2”
HO2="homozygote2”

specifies the value for the genotype homozygous in the parent 2 allele used in the input data
set. The default value is “C.”
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LINKMOD=HALDANE | H

LINKMOD=KOSAMBI | K
specifies the model to be used to calculate the marker recombination parameters from the
marker location values in the map data set. The options include Haldane and Kosambi. The
default value is Haldane.

LINKUNIT=CM | C

LINKUNIT=RECDIST | R
specifies the units used for the marker location variable in the marker data set. The options
include centimorgans or recombination distance (kilobases). The default value is centimor-
gans.

OUTSTAT=SAS-data-set
names the SAS data set to be used for the parameter estimates and, when the BOOT= option
is specified, confidence intervals.

PMAX=number
specifies the highest penetrance value that is considered in range and included in the output.
Any real number is a valid value as long as it is greater than PMIN. The PMAX option is
ignored if the R option, which precludes a grid search, is used. By default, there is no upper
limit for the range of penetrance values included in the output.

PMIN=number
specifies the lowest penetrance value that is considered in range and included in the output.
Any real number is a valid value as long as it is less than PMAX. The PMIN option is ignored
if the R option, which precludes a grid search, is used. By default, there is no lower limit for
the range of penetrance values included in the output.

R=number-list

specifies the values of r (recombination parameters) used to estimate the penetrance param-
eters. There is one r for each of the k adjacent marker/BTL pairs, where k is the number
of markers in the MARKER statement. A list of values can be given to specify a different r
for each pair, or a single value can be specified to be used for all r. If there are fewer than
k values specified, the last value given is used for the remaining r. If the R option is used
to specify r, the grid search parameters (RSTART, REND, and RINC) are ignored. The R
option is required if the BOOT= option is specified. These rs are used to calculate the con-
fidence intervals of the penetrance parameters in the bootstrap calculation. Each r must be a
real number greater than or equal to 0 and less than 0.5, and invalid values are replaced by
the default value of 0.

REND=number
specifies the ending value for each recombination parameter in the grid search. The default
value is 0.5. REND must be a real number greater than 0 and less than or equal to 0.5.

RINC=number
specifies the increment to be used for the recombination parameter grid search. The default
value is 0.1. Any real number greater than 0 and less than or equal to 0.5 is valid.
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RSTART=number
specifies the starting value for each recombination parameter in the grid search. The default
value is 0. RSTART must be a real number from O to (but not including) 0.5.

SEED=number
specifies the initial seed for the random number generator used for creating the bootstrap
samples when the BOOT= option is given. The value for number must be an integer; the
computer clock time is used if the option is omitted or the integer specified is less than or
equal to 0. For more details about seed values, see SAS Language Reference: Concepts.

THETA=number-list

specifies the values of recombination probabilities between adjacent pairs of markers listed
in the MARKER statement. There is one 6 for each of the k — 1 pairs of adjacent markers,
where k is the number of markers specified in the MARKER statement. A list of values can
be given to specify a different 6 for each pair, or a single value can be specified to be used
for all 6s. If there are fewer than k — 1 values specified, the last value given is used for the
remaining 6. NOTE: If the MAP= data set is specified and contains the variable Location, the
0 values are calculated using these distances and this option is ignored. If locations are not
provided in the MAP= data set and this option is omitted, then default values of 6 of 0.5 are
used. Each 6 must be a real number between 0 and 0.5, and invalid values are replaced by the
default value of 0.5.

PARMS Statement

PARMS (value-list) ...</ options> ;

The PARMS statement specifies initial values for the covariance parameters, or it requests a grid
search over the range of several values of these parameters.

The value-list specification can take any of several forms:

m a single value
mi,my,...,m, several values
mton a sequence where m equals the starting value, n equals the ending value, and the

increment equals 1

mtonbyi a sequence where m equals the starting value, n equals the ending value, and the
increment equals i

mi, mp to ms mixed values and sequences

You can use the PARMS statement to input known parameters. You can also specify known param-
eters of G by using the GDATA= option in the RANDOM statement.

If you specify more than one set of initial values, PROC BTL performs a grid search of the likeli-
hood surface and uses the best point on the grid for subsequent analysis. Specifying a large number
of grid points can result in long computing times. The grid search feature is also useful for exploring
the likelihood surface.
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The results from the PARMS statement are the values of the parameters on the specified grid (de-
noted by CovP1-CovPn ), the residual variance (possibly estimated) for models with a residual
variance parameter, and various functions of the likelihood.

You can specify the following options in the PARMS statement after a slash (/).

HOLD=value-list

EQCONS=value-list
specifies which parameter values PROC BTL should hold to equal the specified values. For
example, the statement

parms (5) (3) (2) (3) / hold=1,3;
constrains the first and third covariance parameters to equal 5 and 2, respectively.

LOWERB=value-list
enables you to specify lower boundary constraints on the covariance parameters. The value-
list specification is a list of numbers or missing values (.) separated by commas. You must list
the numbers in the order that PROC BTL uses for the covariance parameters, and each number
corresponds to the lower boundary constraint. A missing value instructs PROC BTL to use
its default constraint, and if you do not specify numbers for all of the covariance parameters,
PROC BTL assumes that the remaining ones are missing.

An example for which this option is useful is when you want to constrain the G matrix to
be positive definite in order to avoid the more computationally intensive algorithms required
when G becomes singular. The corresponding code for a random coefficients model is as
follows:

proc btl;
class person;
model y = time;
random int time / type=fal(2) sub=person;
parms / lowerb=le-4,.,le-4;
run;

Here the FAO(2) structure is used in order to specify a Cholesky root parameterization for the
2x2 unstructured blocks in G. This parameterization ensures that the G matrix is nonnegative
definite, and the PARMS statement then ensures that it is positive definite by constraining the
two diagonal terms to be greater than or equal to 1E—4.

NOBOUND
requests the removal of boundary constraints on covariance parameters. For example, vari-
ance components have a default lower boundary constraint of 0, and the NOBOUND option
allows their estimates to be negative.

NOITER
requests that no Newton-Raphson iterations be performed and that PROC BTL use the best
value from the grid search to perform inferences. By default, iterations begin at the best value
from the PARMS grid search.
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NOPROFILE
specifies a different computational method for the residual variance during the grid search. By
default, PROC BTL estimates this parameter by using the profile likelihood when appropriate.
The NOPROFILE option suppresses the profiling and uses the actual value of the specified
variance in the likelihood calculations.

oLS
requests starting values corresponding to the usual general linear model. Specifically, all
variances and covariances are set to zero except for the residual variance, which is set equal to
its ordinary least-squares (OLS) estimate. This option is useful when the default MIVQUEO
procedure produces poor starting values for the optimization process.

PARMSDATA=SAS-data-set

PDATA=SAS-data-set
reads in covariance parameter values from a SAS data set. The data set should contain the
EST or COVP1-COVPn variables.

RATIOS
indicates that ratios with the residual variance are specified instead of the covariance param-
eters themselves. The default is to use the individual covariance parameters.

UPPERB=value-list
enables you to specify upper boundary constraints on the covariance parameters. The value-
list specification is a list of numbers or missing values (.) separated by commas. You must list
the numbers in the order that PROC BTL uses for the covariance parameters, and each number
corresponds to the upper boundary constraint. A missing value instructs PROC BTL to use
its default constraint, and if you do not specify numbers for all of the covariance parameters,
PROC BTL assumes that the remaining ones are missing.

RANDOM Statement

RANDOM random-effects </ options > ;

The RANDOM statement defines the random effects constituting the y vector in the mixed model.
It can be used to specify traditional variance component models (as in the VARCOMP procedure)
and to specify random coefficients. The random effects can be classification or continuous variables,
and multiple RANDOM statements are possible.

The purpose of the RANDOM statement is to define the Z matrix of the mixed model, the random
effects in the y vector, and the structure of G. The Z matrix is constructed exactly like the X matrix
for the fixed effects, and the G matrix is constructed to correspond with the effects constituting Z.
The structure of G is defined by using the TYPE= option described on page 61.

You can specify INTERCEPT (or INT) as a random effect to indicate the intercept. PROC BTL does
not include the intercept in the RANDOM statement by default as it does in the MODEL statement.

You can specify the following options in the RANDOM statement after a slash (/).
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GDATA=SAS-data-set
requests that the G matrix be read in from a SAS data set. This G matrix is assumed to
be known; therefore, only R-side parameters from effects in the REPEATED statement are
included in the Newton-Raphson iterations. If no REPEATED statement is specified, then
only a residual variance is estimated.

The information in the GDATA= data set can appear in one of two ways. The first is a
sparse representation for which you include ROW, COL, and VALUE variables to indicate
the row, column, and value of G. All unspecified locations are assumed to be 0. The second
representation is for dense matrices. In it you include ROW and COL1-COL#n variables
to indicate the row and columns of G, which is a symmetric matrix of order n. For both
representations, you must specify effects in the RANDOM statement that generate a Z matrix
that contains n columns.

If you have more than one RANDOM statement, only one GDATA= option is required in any
one of them, and the data set you specify must contain the entire G matrix defined by all of
the RANDOM statements.

If the GDATA= data set contains variance ratios instead of the variances themselves, then use
the RATIOS option.

Known parameters of G can also be input using the PARMS statement with the HOLD=
option.

GROUP=effect

GRP=effect

defines an effect specifying heterogeneity in the covariance structure of G. All observations
having the same level of the group effect have the same covariance parameters. Each new
level of the group effect produces a new set of covariance parameters with the same struc-
ture as the original group. You should exercise caution in defining the group effect, because
strange covariance patterns can result from its misuse. Also, the group effect can greatly
increase the number of estimated covariance parameters, which can adversely affect the opti-
mization process.

Continuous variables are permitted as arguments to the GROUP= option. PROC BTL does
not sort by the values of the continuous variable; rather, it considers the data to be from a
new subject or group whenever the value of the continuous variable changes from the pre-
vious observation. Using a continuous variable decreases execution time for models with a
large number of subjects or groups and also prevents the production of a large “Class Levels
Information” table.

LDATA=SAS-data-set
reads the coefficient matrices associated with the TYPE=LIN(number ) option. The data set
must contain the variables PARM, ROW, COL1-COLn, or PARM, ROW, COL, VALUE.
The PARM variable denotes which of the number coefficient matrices is currently being con-
structed, and the ROW, COL1-COLn, or ROW, COL, VALUE variables specify the matrix
values, as they do with the GDATA= option. Unspecified values of these matrices are set
equal to 0.

RATIOS
indicates that ratios with the residual variance are specified in the GDATA= data set instead of
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the covariance parameters themselves. The default GDATA= data set contains the individual
covariance parameters.

SUBJECT=effect

SUB=effect
identifies the subjects in your mixed model. Complete independence is assumed across sub-
jects; thus, for the RANDOM statement, the SUBJECT= option produces a block-diagonal
structure in G with identical blocks. The Z matrix is modified to accommodate this block-
diagonality. In fact, specifying a subject effect is equivalent to nesting all other effects in the
RANDOM statement within the subject effect.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC BTL does
not sort by the values of the continuous variable; rather, it considers the data to be from a new
subject or group whenever the value of the continuous variable changes from the previous
observation. Using a continuous variable decreases execution time for models with a large
number of subjects or groups.

When you specify the SUBJECT= option and a classification random effect, computations
are usually much faster if the levels of the random effect are duplicated within each level of
the SUBJECT= effect.

TYPE=covariance-structure
specifies the covariance structure of G. Although a variety of structures are available, most
applications call for either TYPE=VC or TYPE=UN. The TYPE=VC (variance components)
option is the default structure, and it models a different variance component for each random
effect.

The TYPE=UN (unstructured) option is useful for correlated random coefficient models. For
example,

random intercept age / type=un subject=person;

specifies a random intercept-slope model that has different variances for the intercept and
slope and a covariance between them. You can also use TYPE=FAO(2) here to request a G
estimate that is constrained to be nonnegative definite.

If you are constructing your own columns of Z with continuous variables, you can use the
TYPE=TOEP(1) structure to group them together to have a common variance component. If
you want to have different covariance structures in different parts of G, you must use multiple
RANDOM statements with different TYPE= options.

REPEATED Statement

REPEATED < repeated-effect> < / options> ;

The REPEATED statement is used to specify the R matrix in the mixed model. Its syntax is different
from that of the REPEATED statement in PROC GLM. If no REPEATED statement is specified, R
is assumed to be equal to 1.
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For many repeated measures models, no repeated effect is required in the REPEATED statement.
Simply use the SUBJECT= option to define the blocks of R and use the TYPE= option to define
their covariance structure. In this case, the repeated measures data must be similarly ordered for
each subject, and you must indicate all missing response variables with periods in the input data
set unless they all fall at the end of a subject’s repeated response profile. These requirements are
necessary in order to inform PROC BTL of the proper location of the observed repeated responses.

Specifying a repeated effect is useful when you do not want to use periods to indicate missing values
in the input data set. The repeated effect must contain only classification variables. Make sure that
the levels of the repeated effect are different for each observation within a subject; otherwise, PROC
BTL constructs identical rows in R corresponding to the observations with the same level. This
results in a singular R and an infinite likelihood.

Whether you specify a REPEATED effect or not, the rows of R for each subject are constructed in
the order in which they appear in the input data set.

You can specify the following options in the REPEATED statement after a slash (/).

GROUP=effect

GRP=effect

defines an effect specifying heterogeneity in the covariance structure of R. All observations
having the same level of the GROUP effect have the same covariance parameters. Each new
level of the GROUP effect produces a new set of covariance parameters with the same struc-
ture as the original group. You should exercise caution in properly defining the GROUP
effect, because strange covariance patterns can result from its misuse. Also, the GROUP ef-
fect can greatly increase the number of estimated covariance parameters, which can adversely
affect the optimization process.

Continuous variables are permitted as arguments to the GROUP= option. PROC BTL does
not sort by the values of the continuous variable; rather, it considers the data to be from a
new subject or group whenever the value of the continuous variable changes from the pre-
vious observation. Using a continuous variable decreases execution time for models with a
large number of subjects or groups and also prevents the production of a large “Class Levels
Information” table.

LDATA=SAS-data-set
reads the coefficient matrices associated with the TYPE=LIN(number ) option. The data set
must contain the variables PARM, ROW, COL1-COLn, or PARM, ROW, COL, VALUE.
The PARM variable denotes which of the number coefficient matrices is currently being con-
structed, and the ROW, COL1-COLn, or ROW, COL, VALUE variables specify the matrix
values, as they do with the RANDOM statement option GDATA=. Unspecified values of
these matrices are set equal to 0.

LOCAL
LOCAL=EXP(< effects>)
LOCAL=POM(POM-data-set)
requests that a diagonal matrix be added to R. With just the LOCAL option, this diagonal

matrix equals 021, and 02 becomes an additional variance parameter that PROC BTL profiles
out of the likelihood provided that you do not specify the NOPROFILE option in the PROC
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BTL statement. The LOCAL option is useful if you want to add an observational error to a
time series structure (Jones and Boadi-Boateng 1991) or a nugget effect to a spatial structure
(Cressie 1991).

The LOCAL=EXP(<effects> ) option produces exponential local effects, also known as dis-
persion effects, in a log-linear variance model. These local effects have the form

o2diag[exp(U<)]

where U is the full-rank design matrix corresponding to the effects that you specify, and <
are the parameters that PROC BTL estimates. An intercept is not included in U because it
is accounted for by 02. PROC BTL constructs the full-rank U in terms of 1s and —1s for
classification effects. Be sure to scale continuous effects in U sensibly.

The LOCAL=POM(POM-data-set ) option specifies the power-of-the-mean structure. This
structure possesses a variance of the form 02|x§ B* |9 for the ith observation, where x; is the
ith row of X (the design matrix of the fixed effects), and B* is an estimate of the fixed-effects
parameters that you specify in POM-data-set.

The SAS data set specified by POM-data-set contains the numeric variable Estimate (in pre-
vious releases, the variable name was required to be EST), and it has at least as many obser-
vations as there are fixed-effects parameters. The first p observations of the Estimate variable
in POM-data-set are taken to be the elements of B*, where p is the number of columns of
X. You must order these observations according to the non-full-rank parameterization of the
BTL procedure.

LOCALW
specifies that only the local effects and no others be weighted. By default, all effects are
weighted. The LOCALW option is used in connection with the WEIGHT statement and the
LOCAL option in the REPEATED statement.

NONLOCALW
specifies that only the nonlocal effects and no others be weighted. By default, all effects are
weighted. The NONLOCALW option is used in connection with the WEIGHT statement and
the LOCAL option in the REPEATED statement.

SUBJECT=effect

SUB-=effect
identifies the subjects in your mixed model. Complete independence is assumed across sub-
jects; therefore, the SUBJECT= option produces a block-diagonal structure in R with iden-
tical blocks. When the SUBJECT= effect consists entirely of classification variables, the
blocks of R correspond to observations sharing the same level of that effect. These blocks are
sorted according to this effect as well.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC BTL does
not sort by the values of the continuous variable; rather, it considers the data to be from a new
subject or group whenever the value of the continuous variable changes from the previous
observation. Using a continuous variable decreases execution time for models with a large
number of subjects or groups.
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If you want to model nonzero covariance among all of the observations in your SAS data set,
specify SUBJECT=INTERCEPT to treat the data as if they are all from one subject. However,
be aware that, in this case, PROC BTL manipulates an R matrix with dimensions equal to
the number of observations. If no SUBJECT= effect is specified, then every observation is
assumed to be from a different subject and R is assumed to be diagonal. For this reason, you
usually want to use the SUBJECT= option in the REPEATED statement.

TYPE=covariance-structure
specifies the covariance structure of the R matrix. The SUBJECT= option defines the blocks
of R, and the TYPE= option specifies the structure of these blocks. The default structure is
VC. See PROC MIXED for details about the available covariance structures.

WEIGHT Statement

WEIGHT variable ;

If you do not specify a REPEATED statement, the WEIGHT statement operates exactly like the one
in PROC GLM. In this case PROC BTL replaces X'X and Z'Z with X’WX and Z'WZ, where W is
the diagonal weight matrix. If you specify a REPEATED statement, then the WEIGHT statement
replaces R with LRL, where L is a diagonal matrix with elements W~1/2 Observations with
nonpositive or missing weights are not included in the PROC BTL analysis.

Details: BTL Procedure

Statistical Computations

The model specified using the MARKER, MODEL, RANDOM, and REPEATED statements is
estimated using mixed model theory, and the resulting model statistics are printed in the “Model
Statistics” table. For more details about these calculations, see the “Mixed Models Theory” section
in “The MIXED Procedure” chapter in the SAS/STAT User’s Guide.

If the PARMEST statement is used, a BTL model will be fit to the input data. This section describes
the formulation of the BTL model and the procedure for estimating model parameters for the given
data set. The section has been adapted from Coffman et al. (2005).

PROC BTL fits the input data to a probability model for multiple binary trait loci (Simonsen 2004).
The assumed genetic map contains alternating markers (M;) and binary trait loci (G;), with at least
one marker associated with each binary trait locus: MGy M,G5 - -- M Gj.. One allele is fixed in
backcross populations, so there are K = 2k unique marker classes or BTL k-locus genotypes. In
an F, population with phase unknown, each locus has three possible genotypes, giving a total of
K =3k genotypes across the k markers or BTL. The recombination rate between two loci is the
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probability that a crossover occurs between the loci, ranging from 0 (complete linkage) to 0.5 (no
linkage). This value is represented by r; for the loci G; and M;,i = 1,...,k, and 6; for markers
M; and M, 1, so there are k — 1 marker recombination parameters. Each penetrance parameter,
Pm, 1s the probability that a binary trait is present for the mth BTL genotype (MclIntyre, Coffman,
and Doerge 2001). Similarly, 7, denotes the penetrance parameter for the mth marker genotype.

The joint probabilities of the BTL genotypes (G), the marker classes (M), and the trait (¥') can be
expressed in matrix form in terms of r, ,,, and p, assuming no selection, interference, or mutation,
as shown by Simonsen (2004). These probabilities provide a likelihood equation for r, ,,, and
p. From this likelihood, the maximum likelihood estimate (MLE) for m,,, 7y, is given by the
observed binomial proportion of individuals with marker genotype m in whom the trait is present.
The invariance property of MLEs (Casella and Berger 1990) can be applied to obtain the MLE of
penetrance parameters p as the product of 1 and a function of the recombination rates r. By entering
a known set of r or performing a grid search over a range of possible values of r, unique estimates
of penetrance parameters p can be computed.

Displayed Output

This section describes the displayed output from PROC BTL. See the section “ODS Table Names”
on page 66 for details about how this output interfaces with the Output Delivery System.

Model Statistics

The “Model Statistics” table is displayed by default and contains the following information about
the fitted model:

e LinkageGroup, the linkage group of a marker (displayed for single marker effects only if the
GROUP= option is given in the MARKER statement)

e MarkerEffect, the marker(s) constituting the fixed marker effect

e Name, the name of the marker (displayed for single marker effects only if a Name variable is
contained in the MAP= data set)

e DF, the degrees of freedom for the chi-squared test statistic

e ChiSquare, the test statistic for the likelihood ratio of the full model to the null model
e ProbChiSq, the p-value of the chi-squared test statistic

e AIC, Akaike’s information criterion (Akaike 1974)

e AICC, a finite-sample corrected version of AIC (Burnham and Anderson 1998)

e BIC, Bayesian information criterion (Schwarz 1978)
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Marker Class Means

The “Marker Class Means” table is displayed by default if the PARMEST statement is used and
contains the average binary trait for each marker class. It contains the following:

e Parameter, the marker class parameter
o MarkerGenotype, the marker class genotype
e N, the number of individuals in the marker class

e Mean, the MLE of the marker class mean, which is the proportion of individuals in the marker
class with trait 1

e StdErr, the standard error of the marker class mean estimate

Parameter Estimates

The “Parameter Estimates” table is displayed by default if the PARMEST statement is used and
contains the estimated recombination and penetrance parameters for the estimated BTL model. It
contains the model number, the parameter name, the parameter estimate, and the 100(1 — «)%
confidence interval for the estimate if the BOOT= option is used.

ODS Table Names

PROC BTL assigns a name to each table it creates, and you must use this name to reference the
table when using the Output Delivery System (ODS). These names are listed in Table 4.1.

Table 4.1 ODS Tables Created by the BTL Procedure

ODS Table Name Description PROC BTL Statement
ModelStatistics Model Statistics default
MarkerClassMeans Marker Class Means PARMEST

ParmEst Parameter Estimates PARMEST
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Example: BTL Procedure

Example 4.1: Performing BTL Model Selection and Estimation

In the following data taken from Coffman et al. (2005), a sample of trout from an experimental back-
cross population were genotyped at markers spanning 38 chromosomes, and the disease resistance
of each trout was recorded concomitantly. In a prior analysis, single-marker tests were performed
with each marker, and the marker most strongly associated with the trait for each chromosome was
kept. This reduced set of data along with the corresponding map data is input in the following code.
“A” corresponds to the homozygous genotype, and “B” corresponds to the heterozygous genotype;
these are the default values for PROC BTL.

data TroutDat;
input (ml-ml17) ($) trait;
datalines;
AAABAABBAAABBAABADOD
ABAABBABAAAABBERBRAABDO

. more lines

BBABBABABBABABBBEBEBI

BBBAABABAAAAAAABALIL

data TroutMap;
input marker $ location name $ chromosome;
datalines;

ml 0 agcagec3 1

m2 0 acgattll 2

m3 0 agcagc5 3

m4 11.6 agcagc6 4

m5 0 accaag22 5

mé 0 agcaca5 6

m7 43 agcagt27 7

m8 9.3 acgagt8 8

m9 52.8 agcactlO 9

ml0 2.3 agccagll 10

mll 0 accatec3 11

ml2 0 accaag8 12

ml3 14 accaagl3 13

ml4 7 acgaag8 14

ml5 7 acgatc9 15

mlé 0 agcagt26 16

ml7 18.4 acccca20 17

4

First, the single-marker models are tested as shown in the following code. The ALL=1 option in
the MARKER statement requests the single-marker model tests for each marker in the MARKER
statement. The GROUP= option indicates that chromosome is the linkage group variable in the map
data set.
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proc btl data=TroutDat map=TroutMap;
marker ml-ml7 /all=1l group=chromosome;
model trait;

run;

The single-marker model results are shown in Output 4.1.1.

Output 4.1.1 Single-Marker Model Statistics

The BTL Procedure
Model Statistics
Linkage Marker Chi- Pr >

Group Effect Name DF Square Chisq AIC AICC BIC
1 M1 agcagc3 1 2.9479 0.0860 48.3 49.1 52.6
2 M2 acgattll 1 1.0612 0.3029 50.1 51.0 54.4
3 M3 agcagc5 1 2.9479 0.0860 48.3 49.1 52.6
4 M4 agcagcé6 1 2.1504 0.1425 49.0 49.9 53.3
5 M5 accaag22 1 1.2346 0.2665 50.0 50.9 54.3
6 M6 agcaca5s 1 1.6173 0.2035 49.6 50.5 53.9
7 M7 agcagt27 1 3.5413 0.0599 47.7 48.5 52.0
8 M8 acgagt8 1 1.2158 0.2702 50.0 50.9 54.3
9 M9 agcactl0 1 3.5413 0.0599 47.7 48.5 52.0
10 M10 agccagll 1 2.9479 0.0860 48.3 49.1 52.6
11 M11 accatc3 1 1.2848 0.2570 49.9 50.8 54.2
12 Ml12 accaag8 1 7.3678 0.0066 43.8 44.7 48.1
13 M13 accaagl3 1 5.1787 0.0229 46.0 46.9 50.3
14 M14 acgaag8 1 2.6072 0.1064 48.6 49.5 52.9
15 Mi15 acgatc9 1 1.7060 0.1915 49.5 50.4 53.8
16 Mlé6 agcagt26 1 2.3491 0.1254 48.8 49.7 53.2
17 M17 acccca20 1 3.5413 0.0599 47.7 48.5 52.0

Next, all two-marker models are estimated with the following code. Note that only the five best
models are requested using the BEST= option, and the model selection criterion is selected to be
the p-value from using the MC= option.

proc btl data=TroutDat map=TroutMap;
marker ml-ml7 /all=2 best=5 mc=p group=chromosome;
model trait;

run;

The two-marker model results are shown in the Output 4.1.2.
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Output 4.1.2 Two-Marker Model Statistics

The BTL Procedure

Model Statistics

Marker Chi- Pr >

Effect DF Square Chisqg AIC AICC BIC
M12+M17 3 24.8422 <.0001 30.4 32.8 37.5
M12xM14 3 15.1226 0.0017 40.1 42.5 47.2
M8xM12 3 13.6663 0.0034 41.5 43.9 48.7
M7%M12 3 12.9359 0.0048 42.3 44.7 49.4
M9xM12 3 11.6006 0.0089 43.6 46.0 50.8

It looks like m12 xm17 is the best two-marker effect. You can try to estimate parameters for a BTL
model by using the following code. The parameter estimation is requested using the PARMEST
statement. The linkage units of the location variable from the map data set are specified to be CM
(centimorgans) by using the LINKUNIT option. The linkage model used to create the inputted
linkage map is specified as Haldane by using the LINKMOD= option.

Now that the experimental design has been specified, by default PROC BTL performs a grid search
over a range of possible recombination values and displays penetrance estimates that are found to
be within the range of valid values. The default grid search for the r uses values from 0 to 0.5 in
increments of 0.1. In the following code, a finer grid search is requested by specifying the increment
to be 0.05 in the RINC= option. Also, the penetrance parameter limits are set to be —0.1 and 1.1
using the options PMIN= and PMAX=, respectively (the default values are 0 and 1). The SAS code
follows.

proc btl data=TroutDat map=TroutMap;

marker ml2 ml7 /group=chromosome;

model trait;

parmest r=0 linkmod=H linkunit=cm boot=1000;
run;

The average penetrance value for each marker class is shown in the “Marker Class Means” table in
Output 4.1.3, and the BTL penetrance estimates found using 0 for the marker-BTL recombination
rates are shown in the “Parameter Estimates” table in Output 4.1.4. The confidence limits for the
penetrance parameters from using the bootstrap technique are displayed in Output 4.1.4 as well.
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Output 4.1.3 Marker Class Means

The BTL Procedure

Marker Class Means

Marker Marker Standard
Class Genotype N Mean Error
pill AA 8 1.0000 0.0000
pil2 AB 8 0.2500 0.0234
pi2l BA 6 0.0000 0.0000
pi22 BB 9 0.3333 0.0247

Output 4.1.4 Parameter Estimates

Parameter Estimates

95% Confidence

Parameter Estimate Limits

rl 0.0000

r2 0.0000

pll 4.0000 4.0000 4.0000
pl2 1.0000 0.0000 2.4000
p21 0.0000 0.0000 0.0000
p22 1.3333 0.0000 2.6667
theta 0.5000

NOTE: The r and theta parameters are fixed.

Suppose your input data were coded differently, and “A” signified heterozygote and “B” signified
homozygote. Since this coding is different from the default, you can specify the genotype values by
using the HOMOZY GOTE= (or HO=) and HETEROZY GOTE= (or HE=) options.

proc btl data=TroutDat map=TroutMap;

marker ml2 ml7 /group=chromosome;

model trait;

parmest ho="B" he="A" r=0 linkmod=H linkunit=cm boot=1000;
run;

In Outputs 4.1.5 and 4.1.6, notice that the marker class mean values are reversed and different
penetrance estimates are obtained.
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Output 4.1.5 Marker Class Means with Different Genotype Coding

The BTL Procedure

Marker Class Means

Marker Marker Standard
Class Genotype N Mean Error
pill BB 9 0.3333 0.0247
pil2 BA 6 0.0000 0.0000
pi2l AB 8 0.2500 0.0234
pi22 AA 8 1.0000 0.0000

Output 4.1.6 Parameter Estimates with Different Genotype Coding

Parameter Estimates

95% Confidence

Parameter Estimate Limits

rl 0.0000

r2 0.0000

pll 1.3333 0.0000 2.6667
pl2 0.0000 0.0000 0.0000
p21 1.0000 0.0000 2.4000
p22 4.0000 4.0000 4.0000
theta 0.5000

NOTE: The r and theta parameters are fixed.
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Overview: CASECONTROL Procedure

Marker information can be used to help locate the genes that affect susceptibility to a disease. The
CASECONTROL procedure is designed for the interpretation of marker data when random samples
are available from the populations of unrelated individuals who are either affected or unaffected by
the disease. Several tests are available in PROC CASECONTROL that compare marker allele and/or
genotype frequencies in the two populations, with frequency differences indicating an association
of the marker with the disease. Although such an association can point to the proximity of the
marker and disease genes in the genome, it can also reflect population structure, so care is needed

in interpreting the results; association does not necessarily imply linkage.
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The three chi-square tests available for testing case-control genotypic data are the genotype case-
control test, which tests for dominant allele effects on the disease penetrance, and the allele case-
control test and linear trend test, which test for additive allele effects on the disease penetrance.
Since the allele case-control test requires the assumption of Hardy-Weinberg equilibrium (HWE),
it might be desirable to run the ALLELE procedure on the data to perform the HWE test on each
marker (see Chapter 3, “The ALLELE Procedure,” for more information) prior to applying PROC
CASECONTROL.

Getting Started: CASECONTROL Procedure

Example

Here are some sample SNP data on which the three case-control tests can be performed using PROC
CASECONTROL.:

data cc;
input affected $
datalines;
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The following SAS code can be used to perform the analysis:

proc casecontrol data=cc prefix=Marker;

var ml-mlé6;
trait affected;
run;

proc print heading=h;

format probgenotype proballele probtrend pvalue5.4;

format chisqgenotype chisqgallele chisqtrend 5.3;

run;
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All three case-control tests are performed by default. The output data set created by default appears

in Figure 5.1.

Figure 5.1 Statistics for Case-Control Tests
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Figure 5.1 displays the statistics for the three tests. The genotype case-control statistic has more
degrees of freedom than the other two because it is testing for both dominance genotypic effects
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and additive allelic effects, while the other statistics are testing for the significant additive effects
alone. Using the standard significance level of 0.05, none of the p-values, shown in the last three
columns, would be considered significant since they are all above this significance level. Thus, you
would conclude that none of the markers show a significant association with the binary trait. The
p-values for Marker7 are missing because the genotypes of all the affected individuals are missing
at that marker.

Syntax: CASECONTROL Procedure

The following statements are available in PROC CASECONTROL.

PROC CASECONTROL < options> ;
BY variables ;
STRATA variables </ options > ;
TRAIT variable ;
VAR variables ;

Items within angle brackets (< >) are optional, and statements following the PROC CASECON-
TROL statement can appear in any order. The TRAIT and VAR statements are required.

PROC CASECONTROL Statement

PROC CASECONTROL < options> ;

You can specify the following options in the PROC CASECONTROL statement.

ALLELE
requests that the allele case-control test be performed. If none of the three test options (AL-
LELE, GENOTYPE, or TREND) are specified, then all three tests are performed by default.

ALPHA=number
specifies that a confidence level of 100(1—number )% is to be used in forming confidence
intervals for odds ratios. The value of number must be between 0 and 1, and is set to 0.05 by
default.

DATA=SAS-data-set
names the input SAS data set to be used by PROC CASECONTROL. The default is to use
the most recently created data set.

DELIMITER=string’
indicates the string that is used to separate the two alleles that compose the genotypes con-
tained in the variables specified in the VAR statement. This option is ignored if GENOCOL
is not specified.
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GENOCOL
indicates that columns specified in the VAR statement contain genotypes instead of alleles.
When this option is specified, there is one column per marker. The genotypes must consist of
the two alleles separated by a delimiter. For a genotype with one missing allele, use a blank
space to indicate a missing value; if both alleles are missing, either use a single missing value
for the entire genotype or use the delimiter alone.

GENOTYPE
requests that the genotype case-control test be performed. If none of the three test options
(ALLELE, GENOTYPE, or TREND) are specified, then all three tests are performed by
default.

INDIVIDUAL=variable

INDIV=variable
specifies the individual ID variable when using the TALL option. This variable can be char-
acter or numeric.

MARKER=variable
specifies the marker ID variable when using the TALL option. This variable contains the
names of the markers that are used in all output and can be character or numeric.

NDATA=SAS-data-set

names the input SAS data set containing names, or identifiers, for the markers used in the
output. There must be a NAME variable in this data set, which should contain the same number
of rows as there are markers in the input data set specified in the DATA= option. When there
are fewer rows than there are markers, markers without a name are named using the PREFIX=
option. Likewise, if there is no NDATA= data set specified, the PREFIX= option is used. Note
that this data set is ignored if the TALL option is specified in the PROC CASECONTROL
statement. In that case, the marker variable names are taken from the marker ID variable
specified in the MARKER= option.

NULLSNPS=(variable list )

names the markers to be used in calculating the variance inflation factor for genomic control
that is applied to the chi-square statistic(s) from the trend test. Only biallelic markers that
are listed are used. Note that if GENOCOL is specified, there should be one variable for
each marker listed; otherwise, there should be two variables per marker. By default, if VIF
is specified in the PROC CASECONTROL statement, all biallelic markers listed in the VAR
statement are used. This option must be specified if both the VIF option and the PERMS=
option are used; otherwise the variance inflation factor is not applied. This option is ignored
if the VIF option is not specified or if the TALL option is used.

OR
requests that odds ratios based on allele counts for biallelic markers be included in the OUT-
STAT= data set, along with (1-o)% confidence limits for the value specified in the ALPHA=
option. Odds ratios are not reported for markers with more than two alleles.

OUTSTAT=SAS-data-set
names the output SAS data set containing counts for the two trait values, the chi-square statis-
tics, degrees of freedom, and p-values for the tests performed. When this option is omitted,
an output data set is created by default and named according to the DATAn convention.
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PERMS=number
indicates that Monte Carlo estimates of exact p-values for the case-control tests should be
calculated instead of the p-values from the asymptotic y? distribution. In each of the num-
ber permutation samples, the trait values are permuted among the individuals in the sample.
Large values of number (10,000 or more) are usually recommended for accuracy, but long
execution times can result, particularly with large data sets. When this option is omitted, no
permutations are performed and p-values from the asymptotic y? distribution are reported.

PREFIX=prefix

specifies a prefix to use in constructing names for marker variables in all output. For example,
if PREFIX=VAR, the names of the variables are VAR1, VAR2, ..., VARn. Note that this
option is ignored when the NDATA= option is specified, unless there are fewer names in the
NDATA data set than there are markers; it is also ignored if the TALL option is specified,
in which case the marker variable names are taken from the marker ID variable specified in
the MARKER= option. Otherwise, if this option is omitted, PREFIX=M is the default when
variables contain alleles; if GENOCOL is specified, then the names of the variables specified
in the VAR statement are used as the marker names.

SEED=number
specifies the initial seed for the random number generator used for permuting the data to
calculate estimates of exact p-values. This option is ignored if PERMS= is not specified. The
value for number must be an integer; the computer clock time is used if the option is omitted
or an integer less than or equal to 0 is specified. For more details about seed values, see SAS
Language Reference: Concepts.

TALL
indicates that the input data set is of an alternative format. This tall-skinny format contains
the following columns: two containing marker alleles (or one containing marker genotypes if
GENOCOL is specified), one for the marker identifier, and one for the individual identifier.
The MARKER= and INDIV= options must also be specified in order for this option to be in
effect. Note that when this option is used, the DATA= data set must first be sorted by any BY
variables, then sorted by the marker ID variable, and then sorted by the individual ID variable.

TREND
requests that the linear trend test for allelic effects be performed. If none of the three test
options (ALLELE, GENOTYPE, or TREND) are specified, then all three tests are performed
by default.

VIF
specifies that the variance inflation factor A should be applied to the trend chi-square statistic
for genomic control. This adjustment is applied only when the trend test is performed and to
markers in the VAR statement that are biallelic.
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BY Statement

BY variables ;

You can specify a BY statement with PROC CASECONTROL to obtain separate analyses on ob-
servations in groups defined by the BY variables. When a BY statement appears, the procedure
expects the input data set to be sorted in the order of the BY variables. The variables are one or
more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alternatives:

e Sort the data by using the SORT procedure with a similar BY statement.

e Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
the CASECONTROL procedure. The NOTSORTED option does not mean that the data
are unsorted but rather that the data are arranged in groups (according to values of the BY
variables) and that these groups are not necessarily in alphabetical or increasing numeric
order.

e Create an index on the BY variables by using the DATASETS procedure (in Base SAS soft-
ware).

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.

STRATA Statement

STRATA variables </ options > ;

The STRATA statement names the variables defining strata or representing matched or nested sets
of individuals in a case-control study. Each STRATA variable can be either character or numeric,
and the formatted values of the STRATA variables determine the levels. Thus, you can also use
formats to group values into levels. See the discussion of the FORMAT procedure in the Base SAS
Procedures Guide. At least one variable must be specified in order to invoke the stratified analysis.
See the section “Stratified Analysis” on page 82 for more information.

The following options can be specified after a slash (/):

INFO
displays the “Strata Information” table, which includes the stratum number, levels of the
STRATA variables that define the stratum, total number of individuals, and counts for the two
trait values that define cases and controls in each stratum. Since the number of strata can be
very large, this table is displayed only on request.

MISSING

treats missing values (., “A’,...,°Z’ for numeric variables and blanks for character vari-
ables) as valid STRATA variable values.
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TRAIT Statement

TRAIT variable ;

The TRAIT statement identifies a binary variable indicating which individuals are cases and which
are controls or a binary variable representing a dichotomous trait. This variable can be character or
numeric, but it must have only two nonmissing levels.

VAR Statement

VAR variables ;

The VAR statement identifies the variables containing either the marker alleles or, if GENOCOL
is specified, the marker genotypes. The following number of variables should be specified in this
statement for a data set containing m markers according to whether the options GENOCOL and
TALL are used:

e When both GENOCOL and TALL are specified, there should be 1 variable named containing
marker genotypes.
e When only TALL is specified, there should be 2 variables named containing marker alleles.

e When only GENOCOL is specified, there should be m variables named, one for each marker
containing marker genotypes.

e When neither option is specified, there should be 2m variables named, two for each marker
containing marker alleles.

All variables specified must be of the same type, either character or numeric.

Details: CASECONTROL Procedure

Statistical Computations

Biallelic Markers

PROC CASECONTROL offers three statistics to test for an association between a biallelic marker
and a binary variable, typically affection status of a particular disease. Table 5.1 displays the quan-
tities that are used for the three case-control tests for biallelic markers (Sasieni 1997).
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Table 5.1 Genotype Distribution for Case-Control Sample
Number of M/ Alleles

0 1 2 Total
Case ro ri ro R
Control ) S1 S2 S
Total no ni ny N

The three statistical methods for testing a marker for association with a disease locus are Armitage’s
trend test (1955), the allele case-control test, and the genotype case-control test. The trend test and
allele case-control test are most useful when there is an additive allele effect on the disease sus-
ceptibility. When Hardy-Weinberg equilibrium (HWE) holds in the combined sample of cases and
controls, these statistics are approximately equal and have an asymptotic X% distribution. However,
if the assumption of HWE in the combined sample is violated, then the variance for the allele case-
control statistic is incorrect; only the trend test remains valid under this violation. The statistics for
the trend and allele case-control test, respectively, are given by Sasieni (1997) as

v2 _ _ NING1+2r) = R+ 2n0)
T 7 R(N — R)[N(ny + 4n2) — (n1 + 2n,)?]
vr o AN[2N(r1 + 2r2) = 2R(n1 + 2n2)]?
2

(2R)2(N — R)[2N(n1 + 27’12) — (7’11 + 21’!2)2]

Devlin and Roeder (1999) describe a genomic control method that adjusts the trend test
statistic for correlation between alleles from members of the same subpopulation. Assuming
the variance inflation factor A is constant across the genome, it can be estimated by A =
max([median(X1, ..., X,»)/0.675]%, 1), where X; = X for the ith biallelic marker,i = 1,...,m
(Devlin and Roeder 1999; Bacanu, Devlin, and Roeder 2000). The adjusted trend statistic,
X %a =X %/ A, is approximately distributed as X%- This variance correction is made to biallelic
markers when the VIF option is specified in the PROC statement. By default, any biallelic markers
that are specified in the VAR statement are used in computing A Alternatively, the NULLSNPS=
option can be used to specify biallelic markers other than those in the VAR statement to be used
to calculate A. This enables markers that are assumed to have no effect on disease susceptibility or
to not be in linkage disequilibrium with a disease-susceptibility locus to be used in calculating the
inflation factor (Bacanu, Devlin, and Roeder 2000).

If dominance effects of alleles are also suspected to contribute to disease susceptibility, the genotype
case-control test can be used. The standard 2x3 contingency table analysis is used to form the X%
statistic for the genotype case-control test as

2
Nri — Rn;)? Ns; — Sn;)?
Xé — Z |:( l l) + ( 1 l) ]
i—o NRn i NSn i
which tests for both additive and dominance (nonadditive) allelic effects (Nielsen and Weir 1999).
When the OR option is specified in the PROC CASECONTROL statement, odds ratios for biallelic
markers are calculated based on the 2x2 table of allele-by-trait counts. Using the values given in
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Table 5.1 to form the cell counts a = 2rp + rq, b =2sg+s1,¢ =2rg+r1,and d = 255 + 51,
the odds ratio can be estimated as 6 = ab/(cd). The asymptotic (1 — &)% confidence limits for
the estimated odds ratio 6 are

(6 exp (—2+/v).8 - exp (/1))

where
1 1 1

1
v—;+g+z+g

and z is the 100(1 — «/2) percentile in the standard normal distribution. If any of the four cell
frequencies are zero, the limits are not computed. The order of rows and columns is determined
by the formatted values of the alleles and trait. Also note that if there are no heterozygous geno-
types, 2v is used in place of v in the formula for the confidence limits so that each individual is
counted only once. This provides the correct limits when combining the heterozygous genotype
with a homozygous genotype to obtain odds ratios for dominant or recessive disease models (see
Example 5.3).

Multiallelic Markers

When there are multiple alleles of interest at a marker, the same three tests can be performed, except
that Devlin and Roeder’s genomic control adjustment is not applied to any markers with more than
two alleles. To construct the test statistic for the multiallelic trend test for a marker with k alleles
(Slager and Schaid 2001), the p x (k — 1) matrix X is created such that each element X;,, represents
the number of times the M, allele appears in the ith genotype,i = 1,...,pandu =1,...,k — 1,
where p = k(k + 1)/2, the number of possible genotypes. Vectors r and s of length p contain the
genotype counts for the cases and controls, respectively, and ¢ = R/N, the proportion of cases
in the sample. The multiallelic trend test statistic can then be expressed as U’[Var(U)]~!U, where
the vector U = X'[(1 — ¢)r — ¢s]. Var(U) is calculated under the assumption of independent
(or unrelated) subjects in the sample by using Var(r) and Var(s). These matrices contain elements
oii = Rnj(N —n;)/N? and oij = —Rn,-nj/Nz, where i, j = 1,..., p (the R is replaced by S
for Var(s)). This statistic has an asymptotic )(,%_1 distribution.

Another way to test for additive allele effects at the disease or trait locus is the allele case-control
test, executed using a contingency table analysis similar to the genotype case-control test described
in the preceding section, assuming HWE (Nielsen and Weir 1999). For a marker with k alleles, a
2xk contingency table is formed with one row for cases, one for controls, and a column for each
allele. The )(,%_1 statistic is formed by summing (O — E)?/E over all cells in the table, where O
is the observed count for the cell and E is the expected count, the cell’s column total multiplied by
R/N (or S§/N) for a cell in the case (or control) row.

The genotypic case-control test statistic is calculated in a similar manner, with columns now repre-
senting the p observed genotype classes instead of alleles. Significance of this test statistic based
on the )(f,_l distribution indicates dominance and/or additive allelic effects on the disease or trait
(Nielsen and Weir 1999).

Stratified Analysis

A stratified case-control test can be performed to adjust for categorical covariates, such as gender
or treatment; to analyze a sample from a matched or nested case-control design; or to accommodate
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the analysis of X-linked markers. The generalized Cochran-Mantel-Haenszel (CMH) test statistic
given by Agresti (1990) can be used to test whether there is an association between the trait and
marker alleles or genotypes in any of the strata, still with the same chi-square distribution and
degrees of freedom as the test statistic from the nonstratified analysis. For the allele and genotype
tests, which are based on contingency tables, the statistic is formed with the following quantities
that use observed cell counts ¢; i, from the i th row (corresponding to one of the two trait categories),
jthout of J columns (corresponding to the jth allele or genotype), and Ath stratum:

¢, = (C11h-C12h> - --vcl,J—l,h),

ep = (C1+hCt1h> - - -,C1+hc+,J—1,h)//C++h
C14h(Cin — C14n)C+jn (87 C4n — C4 )

Cov(cyip, Cr1itp) =

( 1jhsC1j h) Ci+h(c++h — 1)
with covariance matrix Vy, of ¢;, comprising these covariance terms forall Zzand j, j' =1,...,J —
1 and §;;7 = 1 when j = j’ and O otherwise. Note that cell counts for i = 2 are omitted
from the vectors and matrix since they are completely dependent on the cell counts from the first
row and column totals. For the stratified trend test, which is based on the Mantel score test of
conditional independence (Agresti 1990), a trend test vector Uy and the covariance matrix V; =
c++nVar(Up)/(c44n — 1) are calculated within each stratum with Uy and Var(Uy,) defined as in
the previous section for the multiallelic trend test. All three test statistics can then be represented as

X3, =S'VIs
with a )(3_1 distribution under the null hypothesis, where J represents the number of genotypes for

the genotype test or the number of alleles for the allele and trend tests,

> n(cp —ep), genotype and allele tests
> nUn, trend test

and V=73, V.

S =

The Mantel-Haenszel estimate of the common odds ratio across strata (Agresti 1990) for biallelic
markers is reported when the STRATA statement is used along with the OR option in the PROC
CASECONTROL statement. For a contingency table with two columns representing the two alleles
at a marker, the estimate in terms of the observed cell counts is

A Yon(ciincaon/cy+n)
OMH =

Yon(Ci2ncain/cy4n)

The asymptotic (1 — @)% confidence limits for the estimate of the odds ratio éMH are again given
by Agresti (1990) as

(OnH - exp (=2 v/0). Oy - exp (2v/0))

now with

Yon(ciin + caan)(crincazn)/cs 4y,
23 5 C11hC22n/C++0)?
Sopllerin + eaan)(cr1anearn) + (cran + can)(€rincaan)l/es 4y,
205 c11nC22h/C++n) (Xop C121C210/ C4++1)
>oncizn + 021h)(012h021h)/ci+h
23 5 Cr2ncain/c++n)?
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Again, if all of the strata contain no heterozygous genotypes, v is replaced by 2v in the confidence
limits formula.

Permutation Tests

By default, the p-values from the y? distribution with the appropriate degrees of freedom are re-
ported for all three case-control tests. However, if the PERMS= option is specified in the PROC
CASECONTROL statement, then Monte Carlo estimates of exact p-values are computed instead
using the permutation procedure. For the genotype and trend tests, new samples of individuals are
formed by permuting the trait value of the individuals in the sample; permutations for the allele test
treat the two marker alleles per individual as separate observations each with the same trait, and the
trait value is then permuted across these observations. If there are any STRATA variables, permuta-
tions are performed within each stratum. For p permutations, the exact p-value is estimated as the
proportion of times the chi-square statistic from one of the p new samples is equal to or exceeds the
chi-square statistic from the original sample (Westfall and Young 1993).

Missing Values

An individual’s genotype for a marker is considered missing if at least one of the alleles at the marker
is missing. Any missing genotypes are excluded from all calculations. However, the individual’s
nonmissing genotypes at other loci can be used as part of the calculations. If an individual has a
missing trait value, then that individual is excluded from all calculations.

When the STRATA statement is used, missing stratum levels are handled in one of two ways: when
the MISSING option is specified, missing values are treated as another stratum level; otherwise,
individuals with a missing value for any of the STRATA variables are excluded from the analysis.

OUTSTAT= Data Set

The output data set specified in the OUTSTAT= option of the PROC CASECONTROL statement
contains the following variables for each marker:

e the BY variables, if any
e Locus

o the counts of genotyped individuals for the two values of the TRAIT variable: NumTrait1 and
NumTrait2 , where 1 and 2 are replaced by the values of the TRAIT variable

o the odds ratio AlleleOddsRatio and its confidence limits LowerCL and UpperCL if the OR option
is used

e the chi-square statistic for each test performed: ChiSqgAllele, ChiSqGenotype, and ChiSqTrend
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o the degrees of freedom for each test performed: dfAllele, dfGenotype, and dfTrend

e the p-value for each test performed: ProbAllele, ProbGenotype, and ProbTrend

Displayed Output

This section describes the displayed output from PROC CASECONTROL. See the section “ODS
Table Names” on page 85 for details about how this output interfaces with the Output Delivery
System.

Strata Levels

The “Strata Levels” table is displayed by default when the STRATA statement is used and contains
the number of levels and the formatted names of the levels for each STRATA variable.

Strata Information

The “Strata Information” table is displayed when the INFO option is specified in the STRATA
statement. This table reports each stratum as defined by a unique combination of levels of the
STRATA variables, the total count for each stratum, and the number of cases and controls as defined
by the TRAIT variable in the strata.

ODS Table Names

PROC CASECONTROL assigns a name to each table it creates, and you must use this name to ref-
erence the table when using the Output Delivery System (ODS). These names are listed in Table 5.2.

Table 5.2 ODS Tables Created by the CASECONTROL Procedure

ODS Table Name Description Statement / Option

Stratalevels Strata levels STRATA
Stratalnfo Strata information STRATA / INFO
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Examples: CASECONTROL Procedure

Example 5.1: Performing Case-Control Tests on Multiallelic Markers

The following data are taken from GAW9 (Hodge 1995). A sample of 60 founders was taken from
200 nuclear families, 30 affected with a disease and 30 unaffected. Each founder was genotyped at
two marker loci.

data founders;
input id disease al-a4 (@@;

datalines;
4 16437 17 2 47 27
39 26877 41 2 4 4 47
46 18415 50 242317
54 2 4876 56 27477
62 24173 69 26827
79 16 687 80 26473
83 28427 85 15662
95 1 3237 101146 7 7
1061 2172 107112717
1152 42 75 116 1 41 7 3
12021 6 2 7 123 2 4 4 7 2
1301 52 3 7 133186 36
1341 8422 13926 47 6
142 2 3 6 7 7 1511 4 6 4 3
152 1 6 7 6 7 1531517 6
154 1 4 6 6 6 168 11 4 3 7
178 2 4171 187 1181 2
189 2 6 4 57 190 2 4 4 3 7
195 2 4 4 7 2 207 216 717
216 1 7 415 222 2 4 2 7 3
225 287 76 23416 422
244 1 4 47 6 249 2 6 8 7 2
26318237 26722227
276 21 6 71 284 2 4 8 2 2
286 1 8 821 289126 6 3
2901 2457 294 21867
297 25476 3131177 2
33712676 3662227177
368 2 3172 38116453
384 1 6227 3961457 2

’

The multiallelic versions of the association tests are performed since each marker has more than
two alleles. The following code invokes the three case-control tests to find out whether there is a
significant association between either of the markers and disease status. Note that the same output
could be produced by omitting the three tests, ALLELE, GENOTYPE, and TREND, from the PROC
CASECONTROL statement.
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proc casecontrol data=founders genotype allele trend;
trait disease;
var al-a4;

run;

proc print noobs heading=h;
format ProbAllele ProbGenotype ProbTrend pvalue6.5;
format ChiSgAllele ChiSgGenotype ChiSqTrend 6.3;
run;

An output data set is created by default, and the output from the PRINT procedure is displayed in
Output 5.1.1.

Output 5.1.1 Output Data Set from PROC CASECONTROL for Multiallelic Markers

Num Num Chisqg Chisqg Chisq df
Locus Traitl Trait2 Genotype Allele Trend Genotype

M1 30 30 27.333 4.441 5.039 24

M2 30 30 18.077 8.772 13.244 15
df df Prob Prob Prob
Allele Trend Genotype Allele Trend
7 7 0.2892 0.7278 0.6552
7 7 0.2586 0.2694 0.0664

This analysis finds no significant association between disease status and either of the markers. Sup-
pose, however, that allele 7 of the second marker had been identified by previous studies as an allele
of interest for this particular disease, and thus there is concern that its effect is swamped by the
other seven alleles. The data set can be modified as follows so that the second marker is considered
a biallelic marker with alleles 7 and “not 7.”

data marker2;
set founders;
if a3 ne 7 then a3=1;
if a4 ne 7 then ad=1;
keep id a3 a4 disease;

Now all three tests can be performed on the marker in the new data set, as follows:

proc casecontrol data=marker2;
trait disease;
var a3 a4;

run;

proc print noobs heading=h;
format ProbAllele ProbGenotype ProbTrend pvalueé6.5;
format ChiSgAllele ChiSqgGenotype ChiSqTrend 6.3;
run;
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PROC CASECONTROL performs all three tests by default since none were specified. The output
data set for this analysis is displayed in Output 5.1.2.

Output 5.1.2 Output Data Set from PROC CASECONTROL for a Biallelic Marker

Num Num Chisq Chisg Chisqg df
Locus Traitl Trait2 Genotype Allele Trend Genotype
M1 30 30 12.193 6.599 10.103 2
df df Prob Prob Prob
Allele Trend Genotype Allele Trend
1 1 0.0023 0.0102 0.0015

With just the single allele of interest, there is now a significant association (using a significance
level of @ = 0.05) according to all three case-control tests between the marker (specifically, allele
7) and disease status. Note that the allele and trend tests, both of which are testing for additive allele
effects, produce quite different p-values, which could be an indication that HWE does not hold for
allele 7. This is in fact the case, which can be checked by running the ALLELE procedure on data
set marker2 to test for HWE (see Chapter 3, “The ALLELE Procedure,” for more information). The
excess of heterozygotes forces X 31 to be smaller than X % and only X % remains a valid chi-square
statistic under the HWE violation.

Example 5.2: Analyzing Data in the Tall-Skinny Format

This example demonstrates how data in the tall-skinny format can be analyzed using PROC
CASECONTROL with the options TALL, MARKER=, and INDIV=. Here, the same data that
were used in the “Getting Started” example are used, but in this alternative format.
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input affected $ id snpname $ allelel allele2;
datalines;
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Note how all marker alleles are contained in two columns, and there are identifiers for the markers
and individuals sampled. The data set is first sorted by the marker ID, then by the individual ID.
One advantage of this data format is that there is no restriction on the number of markers analyzed



90 4 Chapter 5: The CASECONTROL Procedure

since, unlike the columns, there is no limit on the number of rows in a SAS data set. The following
code can be used to analyze this data set:

proc casecontrol data=talldata tall marker=snpname indiv=id;
var allelel allele2;
trait affected;

run;

proc print;
format ProbAllele ProbGenotype ProbTrend pvalueé6.5;
format ChiSgAllele ChiSgGenotype ChiSqTrend 6.3;
run;

Applying this code to the data in this format produces the same output shown in the “Getting
Started” example, Figure 5.1.

Example 5.3: Producing Odds Ratios for Various Disease Models

In addition to the chi-square test statistics between a marker and a disease, you might be interested
in inferences about the odds ratios based on the table of allele-by-disease counts for each marker.
You can use the OR option in the PROC CASECONTROL statement to have the odds ratios from
these tables included in the OUTSTAT= data set along with confidence limits based on the level
specified in the ALPHA= option (or 0.05 by default).

This data set contains 20 individuals genotyped at five SNPs, as follows.

data genotypes;

input (gl-g5) ($) disease;

datalines;
B/B B/A B/A A/A A/A
B/B B/B B/A A/A B/B
A/B B/B B/A B/A B/B
B/B A/B B/A A/A B/B
B/B B/B A/B A/B B/B
A/A B/B A/A B/A B/B
B/B B/B B/A B/A A/B
B/B B/B A/A B/A A/B
B/B B/B A/A A/A B/B
B/B A/A B/B B/A B/B
B/B B/A B/B B/A A/B
B/B B/B A/A A/A B/B
B/B B/A B/B B/B B/B
B/B B/B B/B A/A B/B
B/B B/B B/A B/A B/B
A/A B/B B/B B/B B/B
B/B B/B B/B B/A B/B
B/B B/B B/B B/B B/B
B/B B/B B/A A/A B/A
B/B B/B A/A B/A B/B

HOFRKRPRHOHOKFKROHKRKHRHOORHKOHR
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An output data set containing the odds ratios and respective confidence limits can be produced with
the following code:

proc casecontrol data=genotypes genocol or;
var gl-g5;
trait disease;

run;

proc print heading=h;
var Locus NumTraitO NumTraitl AlleleOddsRatio LowerCL UpperCL;
run;

Note that the GENOCOL option is used since columns contain genotypes, not individual alleles.
The columns listed in the VAR statement of PROC PRINT are shown in Output 5.3.1. Since the
odds ratios are based on the allele counts, an additive disease model is assumed.

Output 5.3.1 Output Data Set from PROC CASECONTROL Containing Odds Ratios: Additive

Model
Allele
Num Num Odds
Obs Locus Trait0 Traitl Ratio LowerCL UpperCL
1 gl 7 13 1.27778 0.18724 8.72011
2 g2 7 13 0.91667 0.14597 5.75651
3 g3 7 13 0.87500 0.23620 3.24146
4 g4 7 13 0.83333 0.22242 3.12219
5 g5 7 13 0.91667 0.14597 5.75651

What if you want to look at odds ratios for genotypes assuming a dominant or recessive disease
model? You can use PROC FORMAT to group together genotypes, such as the heterozygous geno-
type with one of the homozygous genotypes. In the following code, two formats are created for the
genotypes: $DOM_B. for a model where allele B is dominant (or A is recessive) and SREC_B. for
a model where allele B acts in a recessive manner.
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proc format;

value $dom B 'A/A’'='A/A’

'B/B’'='B/B’
IA/BI=I B/BI
IB/AI=IB/BI

4

value $rec_ B 'A/A’'='A/A’

'B/B’'='B/B’
IA/BI=IA/AI
IB/AI=IA/AI

7
run;

proc casecontrol data=genotypes genocol or;

var gl-g5;

format gl-g5 $dom b.;

trait disease;
run;

proc print heading=h;

var Locus NumTraitO0 NumTraitl AlleleOddsRatio LowerCL UpperCL;

run;

In this code, the FORMAT statement is used in PROC CASECONTROL to request odds ratios for
a disease model where allele B is dominant; that is, the genotypes A/B and B/B are grouped
into one category. The odds ratios for genotype A/A versus A/B and B/B are now shown in
Output 5.3.2. Similarly, a disease model with B as the recessive allele could be tested instead using

the $SREC_B. format in the FORMAT statement.

Output 5.3.2 Output Data Set from PROC CASECONTROL Containing Odds Ratios:
Dominance Model

Obs Locus

gl
g2
g3
g4
g5

b WD R

Num
TraitO

B S BN

Num
Traitl

13
13
13
13
13

Allele
Odds
Ratio

.000
.000
.375
. 640
.000

OoooN

LowerCL
0.10574

0.03326
0.08798

UpperCL
37.8296

4.2281
4.6554
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Overview: FAMILY Procedure

Family genotype data, though more difficult to collect, often provide a more effective way of test-
ing markers for association with disease status than case-control data. Case-control data can un-
cover significant associations between markers and a disease that could be caused by factors other
than linkage, such as population structure. Analyzing family data by using the FAMILY proce-
dure ensures that any significant associations found between a marker and disease status are due
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to linkage between the marker and disease locus. This is accomplished by using the transmis-
sion/disequilibrium test (TDT) and several variations of it that can accommodate different types
of family data. One type of family consists of parents, at least one heterozygous, and an affected
child who have all been genotyped. This family structure is suitable for the original TDT. Families
having at least one affected and one unaffected sibling from a sibship that have both been geno-
typed can be analyzed using the sibling tests: the sib TDT (S-TDT) or the nonparametric sibling
disequilibrium test (SDT). Both types of families can be jointly analyzed using the combined ver-
sions of the S-TDT and SDT and the reconstruction-combined TDT (RC-TDT). The RC-TDT can
additionally accommodate families with no unaffected children and missing parental genotypes in
certain situations.

When the trait of interest is quantitative, regression and variance component analyses can be used
to test for marker associations (Allison 1997; Fulker et al. 1999; Rabinowitz 1997). These models
were extended to accommodate any size nuclear family with or without parental genotypes (Abeca-
sis, Cardon, and Cookson 2000; Monks and Kaplan 2000) and then to general pedigrees (Abecasis,
Cookson, and Cardon 2000). The strength of many procedures in SAS/STAT in these areas can be
applied to these statistical tests, though some data manipulation is required to form the correct in-
puts. In order to simplify the data preparation steps, PROC FAMILY can produce an output data set
containing the pair of allelic transmission scores at each marker allele. This data set can be used in
the MIXED procedure, for example, to test for association and linkage between marker genotypes
and a quantitative trait via the method of Abecasis, Cookson, and Cardon (2000).

Getting Started: FAMILY Procedure

Example

The following example demonstrates how you can use PROC FAMILY to perform one of several
family-based tests, the TDT. You have collected the following family genotypic data that you input
into a SAS data set:



data example;

input ped indiv

datalines;
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The first column of the data set contains the pedigree ID, followed by an individual ID and the
two parental IDs. The fifth column is a variable representing affection status of a disease. The last
four columns of this data set contain the two alleles at each of two markers for each individual.
Since there are no missing parental genotypes in this data set, the TDT is a reasonable test to
perform in order to determine whether either of the two markers is significantly linked to the disease
locus whose location you are trying to pinpoint. Furthermore, close inspection of the data reveals
that there is only one affected child (which corresponds to a value of ‘“2” for the disease affection
variable) per each family. Thus, the TDT is also a valid test for association with the disease locus.

To perform the analysis, you would use the following statements:
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proc family data=example prefix=Marker outstat=stats tdt contcorr;
id ped indiv father mother;
trait disease / affected=2;
var al-a4;

run;

proc print data=stats;
format ProbTDT pvalue6.5;
run;

This code creates an output data set stats, which contains the chi-square statistic, degrees of freedom,
and p-value for testing each marker for linkage and association with the disease locus by using
the TDT. The PREFIX= option in the PROC FAMILY statement specifies that the two markers
be named Markerl and Marker?2 in the output data set. The CONTCORR option indicates that the
continuity correction of 0.5 should be used in calculating the chi-square statistic. The AFFECTED=
option of the TRAIT statement specifies which value of the variable disease should be considered
“affected.” Note that the pedigree ID variable is listed in the ID statement; however, it is not
necessary for this data set, since all the individual IDs are unique. The same results would be
obtained if this variable were omitted.

Figure 6.1 shows the output data set that is produced.

Figure 6.1 Statistics for the TDT

Chisq df Prob

Obs Locus TDT TDT TDT
1 Markerl 1.57143 6 0.9546

2 Marker2 5.79861 5 0.3263

Figure 6.1 displays the statistics for the TDT. Since both markers are multiallelic, a joint test of
all alleles at each marker is performed by default. The degrees of freedom (in the dfTDT column)
indicate that there are seven alleles at Marker] and six alleles at Marker2, since df= k—1, where k is
the number of marker alleles. The ProbTDT column shows that neither of the markers is significantly
linked and associated with the disease locus.
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Syntax: FAMILY Procedure

The following statements are available in PROC FAMILY.

PROC FAMILY < options> ;
BY variables ;
ID variables ;
TRAIT variable </ AFFECTED= value> ;
VAR variables ;
XLVAR variables ;

Items within angle brackets (< >) are optional, and statements following the PROC FAMILY state-
ment can appear in any order. The ID and the VAR and/or XLVAR statements are required.

PROC FAMILY Statement

PROC FAMILY < options> ;

You can specify the following options in the PROC FAMILY statement.

COMBINE
specifies that the combined versions of the S-TDT and SDT be performed. Thus, families
containing parental genotypes can be analyzed under certain conditions by using the TDT;
otherwise the specified sibling test is performed. Note that if TDT is also being performed,
the TDT is done independently of any other tests. By default, the combined versions are not
used.

CONTCORR
CcC

specifies that a continuity correction of 0.5 should be used for the TDT, S-TDT, and RC-TDT
tests in their asymptotic normal approximations. By default, no correction is used.

DATA=SAS-data-set
names the input SAS data set to be used by PROC FAMILY. The default is to use the most
recently created data set.

DELIMITER=string’
indicates the string that is used to separate the two alleles that compose the genotypes con-
tained in the variables specified in the VAR statement. This option is ignored if GENOCOL
is not specified.

GENOCOL
indicates that columns specified in the VAR statement contain genotypes instead of alleles.
When this option is specified, there is one column per marker. The genotypes must consist of
the two alleles separated by a delimiter.
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MULT=JOINT

MULT=MAX

specifies which multiallelic version of the TDT, S-TDT, SDT, and RC-TDT tests should be
performed. The joint version of the multiallelic tests combines the analyses for each allele
at a marker into one overall test statistic, with degrees of freedom (df) corresponding to the
number of alleles at the marker. The max version of the multiallelic tests determines whether
there is at least one allele with a significant test statistic, using the maximum 1 df statistic
over all alleles with a multiple testing adjustment made. By default, the joint version of the
multiallelic tests is performed. This option has no effect on biallelic markers.

NDATA=SAS-data-set

names the input SAS data set containing names, or identifiers, for the markers used in the
output. There must be a NAME variable in this data set, which should contain the same number
of rows as there are markers in the input data set specified in the DATA= option. When there
are fewer rows than there are markers, markers without a name are named using the PREFIX=
option. Likewise, if there is no NDATA= data set specified, the PREFIX= option is used. If
both the VAR and XLVAR statements are specified, names are first used for the markers in
the VAR statement, then for the X-linked markers.

OUTQ=SAS-data-set
names the output SAS data set containing all the variables from the input data set in addition
to the allelic transmission scores at each marker allele to be used in testing for association
and linkage with a quantitative trait. When this option is used, the TRAIT statement is not
required.

OUTSTAT=SAS-data-set
names the output SAS data set containing the p-values for the tests specified in the PROC
FAMILY statement. When this option is omitted, an output data set is created by default and
named according to the DATAn convention.

PERMS=number
indicates that Monte Carlo estimates of exact p-values for the family-based tests should be
calculated using permutation samples instead of the p-values from the asymptotic y? distri-
bution. Large values of number (10,000 or more) are usually recommended for accuracy, but
long execution times can result, particularly with large data sets. When this option is omitted,
no permutations are performed and p-values from the asymptotic y? distribution are reported.

PREFIX=prefix
specifies a prefix to use in constructing names for marker variables in all output. For example,
if PREFIX=VAR, the names of the variables are VAR1, VAR2, ..., VARxn. Note that this
option is ignored when the NDATA= option is specified, unless there are fewer names in the
NDATA data set than there are markers. If this option is omitted, PREFIX=M is the default
when variables contain alleles; if GENOCOL is specified, then the names of the variables
specified in the VAR statement are used as the marker names.

RCTDT
requests that the reconstruction-combined TDT (RC-TDT) be performed. If none of the four
test options (RCTDT, SDT, STDT, or TDT) are specified, then all four tests are performed
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by default. Note that error checking is always performed on families with at least one un-
typed parent in order to determine whether or not reconstruction of parental genotypes can be
attempted.

SDT
requests that the SDT, a nonparametric alternative to the S-TDT, be performed. If none of
the four test options (RCTDT, SDT, STDT, or TDT) are specified, then all four tests are
performed by default. The COMBINE option can be used with this test to indicate that the
combined version of the SDT should be performed.

SEED=number
specifies the initial seed for the random number generator used for permuting the data to
calculate estimates of exact p-values. This option is ignored if PERMS= is not specified. The
value for number must be an integer; the computer clock time is used if the option is omitted
or an integer less than or equal to 0 is specified. For more details about seed values, see SAS
Language Reference: Concepts.

SHOWALL
indicates that all families and markers should be included in the “Family Summary” table.
When this option is omitted, a family is included in the table only for a marker where there is
a genotype error according to a Mendelian inconsistency.

STDT
requests that the sibling TDT (S-TDT), which analyzes data from sibships, be performed. If
none of the four test options (RCTDT, SDT, STDT, or TDT) are specified, then all four tests
are performed by default. The COMBINE option can be used with this test to indicate that
the combined version of the S-TDT should be performed.

TDT
requests that the original TDT be performed. If none of the four test options (RCTDT, SDT,
STDT, or TDT) are specified, then all four tests are performed by default.

BY Statement

BY variables ;

You can specify a BY statement with PROC FAMILY to obtain separate analyses on observations
in groups defined by the BY variables. When a BY statement appears, the procedure expects the
input data set to be sorted in the order of the BY variables. The variables are one or more variables
in the input data set.

If your input data set is not sorted in ascending order, use one of the following alternatives:

e Sort the data by using the SORT procedure with a similar BY statement.

e Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
the FAMILY procedure. The NOTSORTED option does not mean that the data are unsorted
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but rather that the data are arranged in groups (according to values of the BY variables) and
that these groups are not necessarily in alphabetical or increasing numeric order.

e Create an index on the BY variables by using the DATASETS procedure (in Base SAS soft-
ware).

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.

ID Statement

ID variables ;

The ID statement is required and must contain, in the following order, either of these sequences of
IDs:

o the pedigree ID, the individual ID, then the two parental ID variables

o the individual ID, then the two parental IDs

Thus if only three variables are specified in the ID statement, it is assumed that the pedigree iden-
tifier has been omitted. The pedigree ID is not necessary if all the individual identifiers are unique.
The individual and two parental ID variables can be either numeric or character, but all three must be
of the same type. The pedigree variable, if specified, can be either numeric or character regardless
of the type of the other three identifiers.

TRAIT Statement

TRAIT variable </ AFFECTED=value > ;

The TRAIT statement identifies the trait variable and is required when the OUTQ= option is omit-
ted. This variable must be binary, but it can be either character or numeric. By default, the second
value of the TRAIT variable that appears in the input data set is considered to be “affected” for the
tests. To specify a different value for “affected,” add the /AFFECTED=value option to the TRAIT
statement. For a variable with a numeric format, the number that corresponds to “affected” should
be specified (AFFECTED=1); if the variable has a character format, the level that corresponds to
“affected” should be specified in quotes (AFFECTED="a").
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VAR Statement

VAR variables ;

The VAR statement identifies the variables containing either the marker alleles or, if GENOCOL is
specified, the marker genotypes. By default, the VAR statement should contain 2m variable names,
where m is the number of markers in the data set. Note that variables containing alleles for the same
marker should be listed consecutively. When GENOCOL is specified, there should be one variable
per marker.

XLVAR Statement

XLVAR variables< / SEX=variable > ;

The XLVAR statement identifies the variables containing either the X-linked marker alleles or, if
GENOCOL is specified, genotypes. By default, the XLLVAR statement should contain 2m variable
names, where m is the number of X-linked markers in the data set. Note that variables containing
alleles for the same marker should be listed consecutively. The second allele variable for males in
the data set must be nonmissing but is ignored since males have only one allele at markers on the
X-chromosome. When GENOCOL is specified, there should be one variable per marker. When
X-linked markers are analyzed, there must be a SEX variable in the data set indicating whether
individuals are male (1 or “M”) or female (2 or “F”). If this variable is named something other than
SEX, the /SEX=variable option must be added to the XLVAR statement in order to indicate the
name of the variable containing individuals’ sex. See “X-Linked Version of Tests” on page 107 for
more information about X-linked tests.

Details: FAMILY Procedure

Statistical Computations

For all tests, it is assumed that the marker has two alleles, M1 and M,. Extensions to multiallelic
markers are made by performing the tests on each allele in turn, with the current allele being consid-
ered to be M and all other alleles considered to be M>. When the CONTCORR option is specified
in the PROC FAMILY statement, the z score statistics of all versions of the TDT, S-TDT, and RC-
TDT can be continuity corrected by subtracting 0.5 from the absolute value of the numerator. The
two-sided p-value for each z score using the normal distribution is equivalent to using the p-value
from the )(% distribution for the square of the z score, and this chi-square form of the statistic is
reported in the output data set.
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DT

The TDT (Spielman, McGinnis, and Ewens 1993) is implemented using a normal approximation.
This test includes families where both parents have been genotyped for the marker and at least one is
heterozygous. If only one parent has been genotyped, that parent is heterozygous, and the affected
child is not homozygous and does not have the same genotype as the typed parent, then the TDT
can be applied to this family as well (Curtis and Sham 1995). The TDT tests for equality between
the proportion of times a heterozygous parent transmits the M allele to an affected child and the
proportion of times a heterozygous parent transmits the M, allele to an affected child. The normal
approximation to the binomial is used to form the z score statistic

b+
st
btc
4
where b is the number of M; alleles in affected children from heterozygous parents and ¢ is the
number of M> alleles in affected children from heterozygous parents.

Two extensions to a multiallelic TDT are available. The first, which is performed by default or
when MULT=JOINT is specified in the PROC FAMILY statement, combines the TDT for each of
k alleles at a marker into one statistic as follows (Spielman and Ewens 1996):

k
k—1
T,=TZZg
v=1

where Z, is simply the Z defined in the preceding paragraph, with allele M, treated as M; and
all other alleles as M5 for each v = 1,...,k. Ty and the continuity-corrected form T} have an
asymptotic )(i_l distribution, and the corresponding p-value is reported.

Alternatively, if the MULT=MAX option is specified, either z,, or z,, (when the CONTCORR
option is specified) is used, where z,, = maxj<y,<x |Zy|. The equivalent one degree of freedom
chi-square statistic is reported, and a Bonferroni correction is applied to its p-value.

NOTE: The TDT is a valid test of linkage and association only when the data consist of unrelated
nuclear families and each family contains only one affected child. Otherwise, it is a valid test of
linkage only.

S-TDT

The z score procedure given by Spielman and Ewens (1998) is used to calculate p-values for the
S-TDT. This test can be applied to families where there are at least one affected sibling and one
unaffected sibling, and not all siblings have the same genotype. The z score, whose two-sided
p-value is approximated using the normal distribution, is calculated as z = (Y — A)/ V.Y
represents the total observed number of M, alleles in the affected siblings. For ¢ total siblings in
the family, a affected and u unaffected, and r that are M;/M; and s that are M;/M,, summing
over families gives

A= Z(Zr + s)a/t
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and

V=Y auldr(t —r—s)+ st —9)]/[t*(t = )]
as the expected value and variance of Y, respectively.

When the COMBINE option is specified in the PROC FAMILY statement, the S-TDT and TDT are
combined as follows: the TDT is applied to all alleles within a family that meet the requirements
described in the preceding section. The S-TDT is then applied to the remaining alleles within a
family that meet its requirements described in the preceding paragraph. Using the notation already
given for these tests, the z score for the combined test can then be written as

_ (Y +b) = (445

JV+ e

For multiallelic markers, the same extensions can be made to the S-TDT and combined S-TDT that
were made to the TDT (Monks, Kaplan, and Weir 1998); that is, either a joint test over all alleles
(using Tcomb) ©f the maximum z score of all the alleles with the p-value being Bonferroni-
corrected.

Z

NOTE: The S-TDT is a valid test of linkage and association only when the data consist of unrelated
nuclear families and each family contains only one affected and one unaffected sibling. Otherwise,
it is a valid test of linkage only.

SDT

The SDT (Horvath and Laird 1998) is a sign test used on discordant sibling pairs. As with the
S-TDT, one affected sibling and one unaffected sibling are required to be in each family, but unlike
the S-TDT, the SDT remains a valid test of linkage and association when the sibship is larger.

The notation from the S-TDT is used, except now the quantities a, u, r, s, and Y are defined for each
sibship/family, so, for example, there are a affected siblings in the family and u unaffected siblings
in the family. Treating each allele M, in turn as M and all other alleles as M»,v = 1,..., k, define
for each family in the data the average number of v alleles among affected siblings and unaffected
siblings respectively as

mi =Y/a

m

(SN

=[Qr+s)-Y]/u

Then d, = m% — m¥ for each family, and summing over families gives S, = > sgn(dy), where
sgn(dy) = 1 ford, > 0,0 for d, = 0, and —1 for d, < 0. The joint multiallelic SDT statistic
(mSDT) is then defined by Czika and Berry (2002) as T = S'W~S, where S’ = (S1,...,S¢)" and
Wow = Y _sgn(dy)sgn(dy), v,w = 1,...,k, and W™ is the Moore-Penrose generalized inverse
of W. T has an asymptotic Xlzc/ distribution, where kK = rank(W), and this distribution is used to
obtain p-values for the SDT (Czika and Berry 2002). When there are only two alleles at the marker,
this joint multiallelic version of the SDT reduces to the biallelic version of the SDT.

This sibship test is also combined with the TDT when the COMBINE option in the PROC FAMILY
statement is specified, creating a test that can potentially use more of the data (Horvath and Laird
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1998; Curtis, Miller, and Sham 1999). In order to maintain the test’s validity as a test of association
in families with more than one affected and one unaffected sibling, a nonparametric multiallelic
TDT is used, which is in the same S'W™S form as the SDT. This test statistic for the joint test
also has an asymptotic Xi/ distribution (Czika and Berry 2002), and the corresponding p-value is
reported.

When the MULT=MAX option is specified in the PROC FAMILY statement, then the SDT chi-
square statistic is simply max <, <k (Sg Wv_vl) and has one degree of freedom. This applies to the
SDT when used alone or combined with the TDT. As with the other tests, a Bonferroni correction
is made to the p-value.

RC-TDT

The RC-TDT (Knapp 1999a) takes the combined S-TDT a step further by reconstructing missing
parental genotypes when possible in order to use more families. The RC-TDT can be applied to
families with at least one affected child that meet one of the following conditions:

e Both parents are typed with at least one heterozygous for M.

e One parent is typed, the other can be reconstructed, and at least one parent is heterozygous
for M;.

e Both parents’ genotypes are missing but can be reconstructed, and at least one parent is het-
erozygous for M.

e At least one parental genotype is missing and cannot be reconstructed, but the conditions for
the S-TDT are met.

e One parental genotype is missing and cannot be reconstructed, the other parent is heterozy-
gous for M1, and at least one affected child is heterozygous for M; and an allele not in the
typed parent (Knapp 1999b).

Reconstruction of parental genotypes is attempted only when there are no genotyping errors in the
family for the marker being tested. As with the S-TDT, a z score is created using the statistic Y,
but Knapp (1999a) calculates a different expected value e and variance v of Y, which takes into
account the bias created by the genotype reconstruction, to form the z score over all families:

Z=(@-¢)/Vv

For multiallelic markers, the same extensions can be made to the RC-TDT that were made to the
TDT and S-TDT-that is, either a joint test over all alleles, or the maximum z score of all the alleles
with the p-value being Bonferroni-corrected.

NOTE: The RC-TDT is a valid test of linkage and association only when the data consist of un-
related nuclear families and each family contains only one affected and one unaffected sibling.
Otherwise, it is a valid test of linkage only.
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X-Linked Version of Tests

For markers from the X-chromosome that are specified in the XLVAR statement, the preceding tests
are not applicable since females have two alleles at such markers and males have only one. Horvath,
Laird, and Knapp (2000) present X-linked versions of the TDT, S-TDT, combined S-TDT, and RC-
TDT to accommodate these markers. For the X-TDT, the only difference in calculating the values
b and c is that for X-linked markers, transmissions only from heterozygous mothers, instead of
heterozygous parents, are used. Note that even though the paternal genotype is not directly used, it
must be nonmissing except for when including transmissions to sons in the family, or for daughters
who are heterozygous but with a different genotype than their mother (not possible for a biallelic
marker).

For the XS-TDT, each sibship is divided into two subsibships so that female sibs and male sibs are
analyzed separately. The statistic is then constructed treating the subsibships independently. For
female sibs, the parameters A and V' are the same as those defined for the S-TDT. For male sibs, the
X-linked expected value and variance of the number of M), alleles in affected siblings is calculated
across male subsibships as

A= Zac/t
and
V= Zauc(l —¢)/[t%(t = 1)]

where c is the number of M, alleles among all males in a subsibship. The X-linked version of the
combined S-TDT is calculated analogously to the combined S-TDT for autosomal markers by using
the X-linked versions of the TDT and S-TDT.

The X-linked RC-TDT can be divided into four situations:

e Both parents are typed and the X-TDT can be applied.

e Only the maternal genotype is missing.

e Only the paternal genotype is missing.

e Both parental genotypes are missing.
(Note that the first situation also includes the preceding exception when the maternal genotype
is nonmissing). Horvath, Laird, and Knapp (2000) show, as with the original RC-TDT, expected
values and variances of the number of M alleles in affected children when reconstructing parental

genotypes in each of the last three situations listed. Using these values, the XRC-TDT can be
formed identically to the statistic for the RC-TDT shown in the preceding section.

Permutation Tests

By default, p-values from the asymptotic y? distribution with appropriate degrees of freedom are
reported for all tests. However, if the PERMS= option is specified in the PROC FAMILY statement,
then Monte Carlo estimates of exact p-values are calculated using the permutation procedure for
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the TDT, S-TDT, SDT, and combined S-TDT and SDT. When the TDT is being performed, includ-
ing when it is performed in the combined tests, new samples are formed by permuting the alleles
that are transmitted to the offspring from the parents and those that are not transmitted (Kaplan,
Martin, and Weir 1997). Each affected child in a nuclear family is assigned a genotype comprising
one allele from each parent, with each allele being randomly selected from the pair possessed by
an individual parent. When the sibling tests are used and the parental information is ignored, the
permutation procedure involves randomly permuting the affection status of siblings within each sib-
ship (Spielman and Ewens 1998; Monks, Kaplan, and Weir 1998). For each test, the corresponding
test statistic is calculated for the original sample as well as each of the permuted samples. The
approximation to the exact p-value is then calculated as the number of times the test statistic from
a permuted sample exceeds the test statistic from the original sample.

Creating Allelic Transmission Scores

Abecasis, Cookson, and Cardon (2000) define a pair of orthogonal allelic transmission scores, b
and w, the expected genotype and deviate, respectively, for each individual at each marker. To
create these scores, the genotype in terms of allele M, must first be defined as g, = m;, — 1 for
individual j, where m ;, represents the number of M, alleles that the genotype comprises. For any
founder j, an individual whose parents are not observed, in the sample, these scores are defined as
bjy = gjv and wj, = 0. Otherwise, let M; and F; be the respective indices of the mother and
father of individual j. Then for any nonfounder, assuming scores for an individual’s ancestors are
calculated before his or her own,

by = (bm;v +DF;v)/2, bm;v a'nd bF ;v are nonmissing
J ZkeSj 8kv/|Sjl, otherwise

where S; = {k : My = M;, F;, = Fj, and k genotyped}, and then w;, = gjy — bjy. These

scores are calculated for all alleles at the markers specified in the VAR statement and are included

in the OUTQ= data set.

Missing Values

An individual’s genotype for a marker is considered missing if at least one of the alleles at the marker
is missing. Any missing genotypes are excluded from all calculations. However, the individual’s
nonmissing genotypes at other loci can be used as part of the calculations. If a child has a missing
trait value, then that individual is excluded from the statistical tests; allelic transmission scores can
still be calculated for such children. Missing trait values of individuals used only as parents do
not affect the analysis. See the following section for information about missing values in the ID
variables.
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DATA= Data Set

The DATA= data set has columns representing markers, ID variables, and a trait, and rows repre-
senting the individuals. There must be one binary trait variable listed in the TRAIT statement; the
three ID variables consisting of the individual’s ID and the two parental IDs, all of the same type,
must be listed in the ID statement, and optionally the pedigree ID if the individual identifiers are not
unique. Note that only individuals with both parents appearing in the data, even if all the parents’
genotypes are missing, can be used as affected children or in sib pairs for analysis. However, if the
individual is used only as a parent, then that individual’s parents need not appear in the data. An
individual’s parents must occur in the data set before the individual does, and full siblings must be
in consecutive observations. If a pedigree ID variable is specified in the ID statement, any individ-
ual with a missing value for that variable is excluded from the analysis, as a parent and as a child.
There are two columns for each marker, representing the two alleles at that marker carried by the
individual. These two columns must be listed consecutively in the VAR statement. These marker
variables must all be of the same type, but can be either character or numeric variables.

OUTQ= Data Set

The OUTQ= data set contains all the variables from the input data set, as well as the variables
B_marker_allele and W_marker_allele for each allele at the loci specified in the VAR statement con-
taining the allelic transmission scores.

OUTSTAT= Data Set

When the TRAIT statement is specified, the OUTSTAT= data set is created and contains the fol-
lowing variables:

e the BY variables, if any

e Locus

e X_Linked when there is at least one marker specified in the XLLVAR statement. This variable
contains an “X” for X-linked markers and is blank for markers from the VAR statement.

e the chi-square statistics for each test performed: ChiSqTDT, ChiSqSTDT, ChiSqSDT, and
ChiSqRCTDT

o the degrees of freedom for each test performed: dfTDT, dfSTDT, dfSDT, and dfRCTDT

e the p-values for each test performed: ProbTDT, ProbSTDT, ProbSDT, and ProbRCTDT



110 4+ Chapter 6: The FAMILY Procedure

Displayed Output

This section describes the displayed output from PROC FAMILY. See the section “ODS Table
Names” on page 111 for details about how this output interfaces with the Output Delivery System.

Family Summary

The “Family Summary” table lists information about the nuclear families, including the pedigree
ID (if listed in the ID statement) and the two parental IDs, and then the following information for
each marker locus:

e number of typed parents

e number of affected and unaffected children with nonmissing genotypes (when TRAIT state-
ment is used)

e number of children with nonmissing genotypes (when TRAIT statement is omitted)

e error code

Note that when SHOWALL is specified in the PROC FAMILY statement, all families and all mark-
ers are displayed in the table. Otherwise, only families with a Mendelian genotype error and the
marker at which they have the error are included in the table. The error code is an integer that
represents a particular type of genotype error that is described in the “Description of Error Codes”
table.

Description of Error Codes

The “Description of Error Codes” table provides descriptions for the error codes listed in the
“Family Summary” table. The descriptions of the family genotype errors all refer to Mendelian
inconsistencies in the child(ren)’s genotypes with the parental genotypes. Error codes 1 through
5 can occur when neither of the parental genotypes for that marker is available (the sibship is the
family unit). Codes 6 and 7 can occur for families with exactly one parent genotyped, and error
code 8 can occur for families with both parents genotyped.

Family X-Linked Summary

The “Family X-linked Summary” table lists information about the nuclear families at each of the
X-linked markers, including the pedigree ID (if listed in the ID statement) and the father and mother
IDs, and then the following information for each marker locus:

e which, if either, of the parents is typed

e number of affected and unaffected sons with nonmissing genotypes
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e number of affected and unaffected daughters with nonmissing genotypes

e error code

Note that when SHOWALL is specified in the PROC FAMILY statement, all families and all X-
linked markers are displayed in the table. Otherwise, only families with a Mendelian genotype
error and the marker at which they have the error are included in the table. The error code is an
integer that represents a particular type of genotype error that is described in the “Description of
X-linked Error Codes” table.

Description of X-Linked Error Codes

The “Description of X-linked Error Codes” table provides descriptions for the error codes listed in
the “Family X-linked Summary” table. The descriptions of the family genotype errors all refer to
Mendelian inconsistencies in the child(ren)’s genotypes with the parental genotypes. Error codes 1
through 4 can occur when neither of the parental genotypes for that marker is available (the sibship
is the family unit); codes 5 and 6 can occur for families with only the maternal genotype missing;
codes 7 and 8 can occur for families with only the paternal genotype missing; and error code 9 can
occur in families with both parents genotyped. If both parents have the same value for the SEX
variable, an error code of 10 is reported.

ODS Table Names

PROC FAMILY assigns a name to each table it creates, and you must use this name to reference the
table when using the Output Delivery System (ODS). These names are listed in Table 6.1.

Table 6.1 ODS Tables Created by the FAMILY Procedure
ODS Table Name  Description PROC FAMILY Option Statement

FamilySummary Family summary = SHOWALL or at least one VAR
family with a genotype error

ErrorCodeDesc Description of er- SHOWALL or at least one VAR
ror codes family with a genotype error

FamilyXLSummary Family X-linked SHOWALL or at least one XLVAR
summary family with a genotype error

XLErrorCodeDesc ~ Description of X- SHOWALL or at least one XLVAR
linked error codes family with a genotype error
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Examples: FAMILY Procedure

Example 6.1: Performing Tests with Missing Parental Data

The following data are from GAW9 (Hodge 1995) and contain 20 nuclear families that are geno-
typed at two markers. The data have been modified so that each mother’s genotype is missing.

data gaw;
input ped id f_id m_id sex disease mll ml2 m21 m22;

420
421
422
423

L
(LG
e
o o o

datalines;

1 1 0 o011 7 8 7 2
1 2 0 021 . . .
1 401 1 211 7 2 7 6
1 402 1 211 8 2 7 6
1 403 1 211 7 2 2 17
1 404 1 222 8 2 7 17
2 3 0 011 4 4 1 3
2 4 0 021 .

2 405 3 421 4 6 1 7
2 406 3 422 4 4 3 17
3 5 0 011 6 7 7 2
3 6 0 021 .

3 407 5 622 7 4 7 17
4 7 0 o011 1 8 7 3
4 8 0 o021 . . .
4 408 7 822 8 4 7 3
4 409 7 811 1 2 3 3
4 410 7 821 8 2 7 3
4 411 7 811 8 2 7 5
5 9 0 011 7 1 6 2
5 10 0 021 .

5 412 9 1022 7 6 6 2
5 413 9 1011 1 6 6 2
6 11 0 011 8 4 2 3
6 12 0 021 .

6 414 11 1212 8 1 2 17
6 415 11 1211 8 6 3 17
7 13 0 011 4 6 2 2
7 14 0 021 . ..

7 416 13 1411 4 5 2 17
7 417 13 14 22 6 4 2 17
7 418 13 1421 6 5 2 6
7 419 13 1411 6 5 2 6
8 15 0 011 6 8 2 7
8 16 0 021

8 21

8 21

8 2 2

8 21
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9 17 0 012 4 7 2 7

9 18 0 o21 . . .

9 424 17 1822 4 5 7 2

9 425 17 1821 7 4 2 7

9 426 17 1811 4 5 2 2
10 19 0 011 6 4 2 7
10 20 0 021 .
10 427 19 2022 4 4 7 2
11 21 0 o011 4 7 7 17
11 22 0 o221 . . . .
11 428 21 2211 7 6 7 2
11 429 21 2222 7 4 7 2
11 430 21 2221 7 6 7 3
12 23 0 011 7 6 7 5
12 24 0 021
12 431 23 2412 6 4 7 7
13 25 0 011 4 1 2 8
13 26 0 o021 . . . .
13 432 25 2611 4 8 2 6
13 433 25 26 12 1 8 8 6
13 434 25 2611 1 4 2 6
14 27 0 011 7 6 3 2
14 28 0 o021 . . .
14 435 27 2811 6 2 3 3
14 436 27 2811 7 4 3 7
14 437 27 2811 6 2 2 7
14 438 27 2811 7 4 2 7
14 439 27 2822 6 2 2 7
14 440 27 2811 6 4 3 7
15 29 0 011 2 4 7 4
15 30 0 o021 . . .
15 441 29 3011 4 2 7 17
15 442 29 3022 4 8 4 7
15 443 29 3021 4 2 7 5
15 444 29 3021 4 2 7 5
15 445 29 3011 2 8 7 5

Since there are missing parental data, the original TDT might not be the best test to perform on this
data set. The following analysis uses the S-TDT, SDT, and RC-TDT to test markers for linkage with
the disease locus.

proc family data=gaw prefix=Marker sdt stdt rctdt;
id id £ id m_id;
var mll ml2 m21 m22;
trait disease / affected=2;

run;

proc print;

format Probsdt probstdt probrctdt pvalue5.4;
run;

The output data set, which is created by default, is displayed in Output 6.1.1.
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Output 6.1.1 Output Data Set from PROC FAMILY

Chisqg Chisqg Chisqg df df df Prob Prob Prob

Obs Locus STDT SDT RCTDT STDT SDT RCTDT STDT SDT RCTDT
1 Markerl 5.6179 4.0083 4.7398 6 7 6 0.467 0.779 0.578
2 Marker2 12.6191 10.7500 11.9388 7 8 7 0.082 0.216 0.103

Since only one parent is missing genotype information in each nuclear family, the TDT might be
applicable to some of the families. The COMBINE option can be specified, as in the following
code, to use the TDT in the appropriate families, and the S-TDT or SDT for all other families. This
option does not apply to the RC-TDT, so that test is omitted from this analysis.

proc family data=gaw prefix=Marker tdt sdt stdt combine;
id id £ _id m_id;
var mll ml2 m21 m22;
trait disease / affected=2;

run;

proc print;

format Probsdt probstdt probtdt pvalue5.4;
run;

The output data set is displayed in Output 6.1.2.

Output 6.1.2 Output Data Set from PROC FAMILY Using COMBINE Option

Chisqg Chisqg Chisqg df df df Prob Prob Prob

Obs Locus TDT STDT SDT TDT STDT SDT TDT STDT SDT
1 Markerl 4.44444 6.3692 4.2380 5 6 7 0.487 0.383 0.752
2 Marker2 2.00000 11.6489 10.7500 3 7 8 0.572 0.113 0.216

Note that the test statistics for the TDT and the S-TDT and SDT are not the same; this implies that
not all families meet the requirements for the TDT. In this case, the S-TDT, SDT, and RC-TDT use
more of the data than the TDT alone. However, since there is only one affected child in each nuclear
family, the TDT is a valid test of association; since there is at least one occasion when there is more
than one unaffected child in a nuclear family, the S-TDT and RC-TDT are not valid for testing
for association of the marker with the disease locus (the SDT is always a valid test of association
when the data consist of unrelated nuclear families). Both of these considerations, the amount of
information that can be used and the validity for testing association, should be taken into account in
deciding which test(s) to perform.

Another type of analysis can be performed using the MULT=MAX option in the PROC FAMILY
statement. This option indicates that instead of doing a joint test over all the alleles at each marker,
you want to perform a test to see if any of the alleles at a marker are significantly linked with the
disease locus. This analysis is invoked with the following code, using only the SDT and RC-TDT:
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proc family data=gaw prefix=Marker sdt rctdt combine mult=max;
id id £ id m_id;
var mll ml2 m21 m22;
trait disease / affected=2;

run;

proc print;

format Probsdt Probrctdt pvalue6.5;
run;

The output data set produced by this code is displayed in Output 6.1.3.

Output 6.1.3 Output Data Set from PROC FAMILY Using MULT=MAX Option

Chisq Chisq df df Prob Prob
Obs Locus SDT RCTDT SDT RCTDT SDT RCTDT
1 Markerl 2.66667 2.90050 1 1 0.7173 0.6199
2 Marker2 3.57143 3.86422 1 1 0.4703 0.3946

The chi-square statistics for the tests always have one degree of freedom when the MULT=MAX
option is used. Note, however, that the p-values are not the corresponding right-tailed probabilities
for a X% statistic; this is because the p-values are Bonferroni-corrected in order to account for taking
the maximum of several chi-square statistics.

Example 6.2: Checking for Genotyping Errors

This example demonstrates the different kinds of family genotype errors (that is, Mendelian in-
consistencies within a nuclear family) that can be detected by PROC FAMILY, and the output that
displays this information. Here is a sample data set that contains genotype errors:

data ped_samp;
input id pl p2 al a2 dis;
datalines;
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301 0 0
302 0 o . .
303 301 302 1 2
304 301 302 1 3
305 301 302 1 4
401 0 0
402 0 0

403 401 402 1 1
404 401 402 2 2
405 401 402 3 3
501 0 0

502 0 o . .
503 501 502 11
504 501 502 2 2
505 501 502 1 3
601 0 0

602 0 o . .
603 601 602 1 1
604 601 602
605 601 602
701 0 0
702 0 0
703 701 702
704 701 702
705 701 702
707 701 702
801 0 0
802 0 0
804 801 802
805 801 802
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In addition to the usual output data set that is created, the SHOWALL option, used in the following
code, requests that all families be included in the “Family Summary” table. Since there are families
with genotype errors, this table would have been created by default, but only the families in error
would be displayed in it.

proc family data=ped_samp showall;
id id pl p2;
trait dis;
var al a2;

run;

proc print;
run;

The “Family Summary” table shown in Output 6.2.1 includes an error code, which is explained in
the “Description of Error Codes” table in Output 6.2.2. The statistics shown in Output 6.2.3 are
based only on the last family since all the other families have some sort of genotype error and thus
are excluded from the analyses. The analysis would need to be performed again after genotyping
errors have been corrected.
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Output 6.2.1 Summary of Family/Marker Information

The FAMILY Procedure
Family Summary

Number Typed

of Children
Typed  —-——————————- Error
Parentl Parent2 Locus Parents Aff Unaff Code
1 2 M1l 2 1 1 8
101 102 M1l 1 2 0 6
201 202 Ml 1 2 1 7
301 302 M1 0 1 2 5
401 402 M1l 0 2 1 4
501 502 M1 0 1 2 3
601 602 M1l 0 1 2 2
701 702 M1l 0 2 2 1
801 802 M1 1 2 0 0

Output 6.2.2 Description of Error Codes

Description of Error Codes
Code Description
0 No errors
1 More than 4 alleles
2 1 homozygous genotype and more than 3 alleles
3 2 homozygous genotypes and more than 2 alleles
4 More than 2 homozygous genotypes
5 An allele occurs in more than 2 heterozygous genotypes
6 At least one genotype does not contain a parental allele
7 More than 2 alleles from missing parent
8 At least one genotype incompatible with parental genotypes

Output 6.2.3 Output Data Set from PROC FAMILY

Chi Chi
Chi Sq Chi Sq df df df df Prob Prob Prob Prob
Obs Locus SqTDT STDT SqgSDT RCTDT TDT STDT SDT RCTDT TDT STDT SDT RCTDT

1 M1 0 0 0 0 1 0 0 1 1 . . 1
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Example 6.3: Using Allelic Transmission Scores for Association Tests

Abecasis, Cookson, and Cardon (2000) show how the allelic transmission scores, which are in-
cluded in the OUTQ= data set, can be used to form various family-based tests for both discrete and
quantitative traits. For example, the statistic for the Rabinowitz TDT for quantitative traits (1997)
can be calculated using the deviates w and weights based on the quantitative trait of interest. The
following data set and SAS code demonstrate how this test statistic can be computed from these
quantities.

data fam_q;
input ped ind father mother gtrt al-alo;
datalines;

1 0 0 30.79
15.80
23.98
22.73
18.60
18.80
25.63
17.40
28.35
18.61
19.83
24.09
22.40
28.46
27.72
13.76
16.08
30.79
16.23
25.03
28.74
23.02
26.35
19.01
21.52
22.14
12.33

8.66
11.88
15.65
15.14
25.32
23.38
24.31
29.97
22.76
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This data set contains five biallelic markers and a quantitative trait along with the pedigree identifiers
for trios consisting of genotyped parents and a single offspring. Note in the following code for
PROC FAMILY that there is no TRAIT statement since there is no dichotomous trait, but that
the OUTQ= option is used in the PROC FAMILY statement to identify a data set containing the
allelic transmission scores. The deviates that are used for creating the Rabinowitz test statistic are
contained in the variables that begin with “W_~. PROC MEANS is used to obtain the sample mean
of the quantitative trait gtrt among the offspring. A test statistic for each of the five markers is then
calculated using the formulas given in Rabinowitz (1997); a general form of these formulas that
uses the deviates w is shown in Abecasis, Cookson, and Cardon (2000).

proc family data=fam g outg=w(drop=al-a2 b:);
var al-aloO;
id ped ind father mother;

run;

proc means data=w noprint;
var qtrt;
output out=stats (keep=gbar) mean=gbar;
where ind > 2;

run;

data _null_;

set stats;

call symput ('gbar’,trim(left (gbar)));
run;

data rab_test;

set w end=last;

where ind > 2;

array w{l0} w:;

array num{5};

array var{5};

array t{5};

array pvalt{5};

a = gtrt - %sysevalf (&gbar);

do i=1 to §5;

aw = w{2xi-1} * a;

num{i} + aw;

var{i} + (awxaw);

if last then do;
t{i}=num{i}/sqrt (var{i});
pvalt{i}=2x (1-probnorm(abs(t{i})));
if i=5 then output;

end;

end;

keep tl-t5 pvaltl-pvalt5;

run;

proc print data=rab_test noobs;
title ’'Test Statistics and P-Values for 5 Markers’;
run;
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The data set containing the test statistic and corresponding p-value for each marker is displayed in
Output 6.3.1. From this output, you can conclude that there are no markers significantly linked and
associated with the QTL for this quantitative trait.

Output 6.3.1 Rabinowitz Test Statistics

Test Statistics and P-Values for 5 Markers

tl t2 t3 t4 t5 pvaltl pvalt2 pvalt3 pvaltd4d pvalts

—-0.53461 0.72887 1 0.17060 0.95693 0.59292 0.46608 0.31731 0.86454 0.33860
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Overview: GENESELECT Procedure

The GENESELECT procedure identifies influential genetic and environmental variables and their
interactions by fitting a model to predict a trait and then evaluating the influence that the predictor
variables and their interactions have on the model.

The GENESELECT procedure does the following:

e allows qualitative and quantitative variables

e allows a large number of predictor variables

e minimizes bias from missing values

e outputs an influence measure for single variables and interactions
e outputs an influence measure of a variable for each observation

e outputs predictions, including probabilities for qualitative traits

e outputs a matrix of similarities between predictor variables
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The procedure can handle a large number of variables because only one variable enters the model
at a time. The procedure usually stops before using all the available variables.

If two variables are highly correlated, the model might use only one of the variables. The other vari-
able would therefore not appear influential, although it might actually be the biologically relevant
variable. The GENESELECT procedure estimates how similar the model would be if a variable in
the model were replaced by another, and then outputs the set of estimates as a similarity matrix. The
matrix includes variables not in the model. Thus, when the model identifies one variable, the sim-
ilarity matrix identifies the set of similar variables, one of which might be biologically important.
Note that similar variables need not be correlated.

If two variables are highly correlated and the model uses both of them, the credit for influence is
shared between them. Neither of them gets the credit it would if one of them were replaced by the
other. To correctly estimate the influence of a variable, avoid using similar variables in the model.

A predictive model is likely to find fewer influential variables than a set of association tests would.
For example, the GENESELECT procedure is likely to find fewer influential variables than the
CASECONTROL procedure. The reason is simple: once a predictive model is sufficiently fit, other
variables are not needed, not even ones that are associated with the trait.

The GENESELECT procedure minimizes bias from missing values in two ways. When entering
a variable into the fit of the model, the procedure uses all observations with nonmissing values on
the variable, and ignores all observations missing that variable value. When applying the model
for prediction, the procedure replaces the value by the distribution of nonmissing values among all
observations used during the fit.

The GENESELECT procedure fits a model by recursively partitioning the data. A partitioning
procedure is one that searches for an optimal partition of the data. The partitioning or splitting rule
is defined in terms of the values of a single variable. Optimality depends on the distribution of
the trait into the partition segments. The more similar the trait values are within the segments, the
better the partition. Decision trees are the most common type of recursive partitioning model. The
GENESELECT procedure fits a boosted series of decision trees by default.

A recursive partitioning procedure partitions the data into subsets and then partitions each of the
subsets, and so on. In the terminology of the tree metaphor, the partition subsets are nodes, the
original data set is the roof node, and the final, unpartitioned subsets are terminal nodes or leaves.
Nodes that are not terminal nodes are sometimes called internal nodes. The subsets of a single
partition are commonly called child nodes, thereby mixing the metaphor with genealogy, which
also provides the terms descendant and ancestor nodes. A branch of a node consists of a child node
and its descendants.
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Syntax: GENESELECT Procedure

The following statements are available in PROC GENESELECT.

PROC GENESELECT < options> ;
FREQ variable ;
PERFORMANCE < options > ;
TRAIT variable </ options > ;
VAR variables </ options> ;

IMPORTANCE < options> ;
PARTIALDEP < options> ;
SAVE < options > ;

SCORE < options> ;

The FREQ, PERFORMANCE, TRAIT, and VAR statements describe the data and performance op-
tions. They must appear before the IMPORTANCE, PARTIALDEP, SAVE, and SCORE statements.

Table 7.1 summarizes what each statement (other than the PROC statement) in the GENESELECT
procedure enables you to do.

Table 7.1 Statements in the GENESELECT Procedure

Statement Description

FREQ specify a frequency variable
PERFORMANCE specify memory size and where to locate data
TRAIT specify the response variable

VAR specify input variables with common options

IMPORTANCE output estimates of variable influence

PARTIALDEP  output partial dependency for plots and interaction detection
SAVE output data sets containing model results

SCORE output model predictions

PROC GENESELECT Statement

PROC GENESELECT < options> ;

The PROC GENESELECT statement starts the GENESELECT procedure. Either the DATA= op-
tion or the INMODEL-= option must appear, but not both. The DATA= option must appear in order
to fit a model. The INMODEL= option specifies a previously saved model. Table 7.2 summarizes
the options available in the PROC GENESELECT statement.
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Table 7.2 PROC GENESELECT Statement Options

Option Description Default
DATA= data set

INMODEL= data set containing model information

LEAFFRACTION= LEAFSIZE as fraction of data 0.001
LEAFSIZE= minimum number of observations in a branch
MAXDEPTH= maximum depth of a tree 6
MAXSURROGATES= maximum number of surrogates rules in a node 10
MINCATSIZE= observations needed for each category 5
MODELTYPE= type of model to fit TREEBOOST
SEED= seed for pseudo-random number generator 8976153
SPLITSIZE= minimum number of observations to splitanode 10

DATA=SAS-data-set
specifies data. Either the DATA= or INMODEL= option must be specified, but not both.

INMODEL=SAS-data-set
names a data set created from the SAVE MODEL= option. When using the INMODEL=
option, the VAR, TRAIT, and FREQ statements are prohibited, as are the DATA= option and
other model parameters.

ITERATIONS=n
specifies the number of terms in a boosted series of trees. For quantitative and binary traits,
the number of iterations equals the number of trees. For a qualitative, nonbinary trait, a
separate tree is created for each trait category in each iteration, resulting in nJ trees, where J
is the number of trait values and » is an integer from 1 to 1000. The default value of 7 is 50.

LEAFFRACTION=p

specifies the smallest number of observations a new branch can have, expressed as the pro-
portion of the number N of available observations in the DATA= data set specified in the
PROC statement. N can be less than the total number of observations in the data set because
observations with a missing trait or nonpositive value of the variable specified in the FREQ
statement are excluded from N. The LEAFSIZE= option specifies the same quantity as an
absolute number. The procedure uses the larger of the two. P can be any number from zero
through one. The default value equals 0.001.

LEAFSIZE=n

specifies the smallest number of observations a new branch can have. The LEAFFRAC-
TION= option specifies the same quantity as a proportion of the original data. The procedure
uses the larger of the two. The default value equals the number N of available observations
in the DATA= data set specified in the PROC statement, divided by 1,000, or 5, if 5 is larger,
or 5,000, if 5,000 is smaller. N can be less than the total number of observations in the data
set because observations with a missing trait or nonpositive value of the variable specified in
the FREQ statement are excluded from N. The LEAFSIZE= option does not use the values
of the variable in the FREQ statement to adjust the count of observations in the leaf.
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MAXDEPTH=n | MAX
specifies the maximum depth of a node that the PROC statement creates automatically. The
depth of a node equals the number of splitting rules needed to define the node. The root node
has a depth of zero. The children of the root have a depth of one, and so on.

The MAXDEPTH=MAX option specifies n = 50, the largest possible value of n. The small-
est acceptable value of n is 0. Specify MAXDEPTH=0 to avoid creating a model. The default
value of n depends on the MODELTYPE= option. The default value of 7 is six for MODEL-
TYPE=TREE, and two for MODELTYPE= TREEBOOST.

MAXSURROGATES | MAXSURRS=n
specifies the number of surrogate rules sought for each internal node. A surrogate rule is
one that emulates the splitting rule. The measure of agreement between a surrogate and the
splitting rule is used to compute the interchangeability of two variables. The GENESELECT
procedure does not use surrogate rules to predict observations with missing values. The
default value of n is 10.

MINCATSIZE=n
specifies the minimum number of observations that a given qualitative variable value must
have in order to use the value in a split search. The GENESELECT procedure handles qual-
itative values that appear in fewer than n observations in the same way it handles missing
values. The default value of n is 5.

MODELTYPE=type
specifies the type of model to create. Table 7.3 summarizes the types available.

Table 7.3 Types of Models

Type Description
TREEBOOST Boosted series of trees
TREE Decision tree

SEED=n
specifies the seed for generating random numbers. The value specified for » must be a non-
negative integer. Set n to O to use the internal default.

SPLITSIZE=n
specifies the requisite number of observations a node must have in order for the procedure
to consider splitting it. By default, n is twice the value of the LEAFSIZE= option. For the
LEAFFRACTION=, LEAFSIZE=, MINCATSIZE=, and SPLITSIZE= options in the PROC
statement, and for the NODESIZE= option in the PERFORMANCE statement, the procedure
counts the number of observations in a node without adjusting the number with the values of
the variable specified in the FREQ statement.
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FREQ Statement

FREQ variable ;

The FREQ statement names a variable that contains the frequency of occurrence of each observa-
tion. The GENESELECT procedure treats an observation as if it appears n times, where n is the
value of the FREQ variable for the observation. The value of n can be fractional to indicate a partial
observation. If the value of 7 is close to zero, negative, or missing, the observation is ignored. When
the FREQ statement is not specified, each observation is assigned a frequency of one.

PERFORMANCE Statement

PERFORMANCE < options> ;

The PERFORMANCE statement specifies options affecting the speed of computations with little or
no impact on the results.

WORKDATALOCATION=RAM | DISK | SOURCE
specifies the location where a working copy of the data will be stored. The RAM location
requests that the working copy be stored in memory if enough memory is available for it and
still allows for minimal calculations in one pass of the data.

The DISK location requests that the working copy be stored in a disk utility file. Storing the
copy on disk can free a considerable amount of memory for calculations, possibly speeding
up the program.

The SOURCE location requests that the data be read multiple times instead of being copied to
memory or a disk utility file. SOURCE is slower than DISK because the DISK copy is con-
verted to encodings directly usable in the calculations. The SOURCE location is preferable
only when the data do not fit in RAM or in a disk utility file.

MEMSIZE=m<B |K|M|G>
specifies the maximum amount of memory to allocate for the computations and the working
copy of the data if the data are stored in memory. The optional suffix, B, K, M, or G, specifies
bytes, kilobytes, megabytes, or gigabytes, respectively. Without a suffix, m specifies the
number of bytes. M can be fractional.

The default value depends on the computer and can considerably prolong the execution time
if SAS cannot distinguish physical memory from virtual memory.

The SAS MEMSIZE system option sets an upper limit to the number of bytes.
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TRAIT Statement

TRAIT variable </ option> ;

The TRAIT statement names the variable that the model tries to predict.

VARTYPE=QUALITATIVE | QUANTITATIVE
specifies whether the trait is qualitative or quantitative. The default is QUANTITATIVE for a
numeric variable and QUALITATIVE for a character variable.

VAR Statement

VAR variables </ options> ;

The VAR statement names variables with common options. The VAR statement can be repeated.

VARTYPE=QUALITATIVE | QUANTITATIVE
specifies whether the variables are qualitative or quantitative. The defaultis QUANTITATIVE
for a numeric variable and QUALITATIVE for a character variable.

IMPORTANCE Statement

IMPORTANCE </ options > ;

The IMPORTANCE statement implements an observation-based approach to evaluate the impor-
tance of a variable or of a pair of variables to the predictions of the model.

For each observation, the value of the variable or pair of variables being evaluated is rendered
uninformative. The IMPORTANCE statement outputs the prediction once using the actual value and
a second time using the uninformative value. The difference between the two predictions shows the
dependence of the prediction on the variable or pair of variables being evaluated. The differences
for all the observations can be plotted against the actual variable value or observation number to
explore where the dependence is stronger or weaker.

The observation-based importance differs from the split-based importance computed in the IM-
PORTANCE-= option of the SAVE statement. The latter importance is based on the contribution a
variable makes in reducing the residual sum of squares.

The IMPORTANCE statement can be repeated.

DATA=SAS-data-set
names the input data set. If the DATA= option is absent, the procedure uses the training data.
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N2WAY=m n
requests to evaluate the best m variables paired with the best n variables, where the term
“best” here refers to the split-based variable importance rankings computed in the IMPOR-
TANCE-= option of the SAVE statement. If »n is missing, then n is set to m. The default
value of m and n is 0. When the procedure evaluates a pair of variables, it also evaluates the
two variables individually and outputs results as if the variables were specified in the VAR=
option.

NVARS=n
requests to evaluate the best n variables as ranked by the split-based variable importance
computed in the IMPORTANCE= option of the SAVE statement. If the N2WAY=, NVARS=,
and VAR= options are absent, then the procedure assumes NVARS=5.

OUT=SAS-data-set
names the output data set to contain the scored data. If the OUT= option is absent, the
procedure creates a data set name using the DATA#n convention.

The OUT= data set in the IMPORTANCE has the same variables as the OUT= data set in
the SCORE data set, plus one or two more, _INPUT1_ and _INPUT2_, that contain the name
of a variable whose values were treated as uninformative when making the predictions. If
_INPUT1_ is blank, then _INPUT2_ is blank and the predictions are the same as in the OUT=
data set of the SCORE statement.

The OUT= data set becomes very large if many variables are being evaluated. The number of
observations in the OUT= data set equals the number of variables and pairs of variables being
evaluated plus one times the number of observations in the data set. Specify OUT=_NULL_
to avoid creating a scored data set.

OUTFIT=SAS-data-set
names the output data set to contain the fit statistics. The number of observations in the
OUTFIT= data set equals the number of variables and pairs of variables being evaluated plus
one.

The OUTFIT= data set in the IMPORTANCE has the same variables as the OUTFIT= data set
in the SCORE data set, plus one or two more, _INPUT1_ and _INPUT2_, that contain the name
of a variable whose values were treated as uninformative when computating the statistics. If
_INPUT1_ is blank, then INPUT2_ is blank and the statistics are the same as in the OUTFIT=
data set of the SCORE statement.

VAR=(varlist)
specifies variables and pairs of variables to evaluate. Varlist is a list of variable names op-
tionally containing asterisks to indicate a pair of variables. Variables on the left or right of
an asterisk may be grouped within square brackets. Brackets may not be nested. Parentheses
must enclose the list, varlist.

When a procedure evaluates a pair of variables, it also evaluates the two variables individually
and outputs the results. For example, the following varlist would specify variables A, B, C, D,
E, and pairs of variables, B-C, D-E, D-C, and E-C:

A B*C[DE]*[EC]
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PARTIALDEP Statement

PARTIALDEP < DATA=> < OUT=> VAR=(varlist) ;

The PARTIALDEP statement outputs a partial dependency function for plots and interaction detec-
tion.

DATA=SAS-data-set
names the input data set. If the DATA= option is absent, the procedure uses the data. Only
the variables listed in the VAR= option are used.

OUT=SAS-data-set
names the output data set to contain the partial dependency function. If the OUT= option
is absent, the GENESELECT procedure creates a data set name by using the DATAn con-
vention. The output variables are the same as output with the OUT= option to the SCORE
statement.

VAR=(varlist)
specifies the variable or pair of variables for which to compute the partial dependency. Paren-
theses must enclose the list, varlist. The PARTIALDEP statement requires at least one vari-
able and at most two variables. The procedure ignores the value of all other variables.

SAVE Statement

SAVE < options > ;

The SAVE statement outputs model information into SAS data sets.

DISSIMILARITY=SAS-data-set
names the output data set to contain a dissimilarity statistic for pairs of input variables. The
data set has the type DISTANCE and is suitable for input to the DATA= option of the CLUS-
TER procedure. The data set includes an ID variable, _VAR_. The dissimilarity matrix equals
one minus the similarity matrix output in the SIMILARITY= option. Similarity relies on sur-
rogate rules. Use the MAXSURROGATES= option in the PROC statement to create surrogate
rules when the model is fit.

IMPORTANCE=SAS-data-set
names the output data set to contain the split-based variable importance.

MODEL=SAS-data-set
names the output data set to encode the information necessary for use with the INMODEL=
option in a subsequent invocation of the GENESELECT procedure.

SIMILARITY=SAS-data-set
names the output data set to contain a similarity statistic for pairs of input variables. The
data set contains a variable for every input variable used in a primary splitting rule, and an
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additional identification variable, _VAR_, whose value is the name of an input variable. Simi-
larity relies on surrogate rules. Use the MAXSURROGATES= option in the PROC statement
to create surrogate rules when the model is fit. The similarity matrix equals one minus the
dissimilarity matrix that is created by using the DISSIMILARITY= option. The DISSIMI-
LARITY= option creates a DISTANCE matrix suitable for input to the CLUSTER procedure.

SCORE Statement

SCORE < options > ;

The SCORE statement reads a data set containing the input variables used in the model and then out-
puts a data set containing the original variables plus new variables to contain predictions, residuals,
decisions, and leaf assignments. The SCORE statement can be repeated.

DATA=SAS-data-set
names the input data set. If the DATA= option is absent, the procedure uses the data.

PREDICTION | NOPREDICTION
indicates whether prediction variables, such as P_*, should be generated. The default is PRE-
DICTION, requesting prediction variables.

OUT=SAS-data-set
names the output data set to contain the scored data. If the OUT= option is absent, the
procedure creates a data set name by using the DATA#n convention. Specify OUT=_NULL_
to avoid creating a scored data set.

OUTFIT=SAS-data-set
names the output data set to contain the fit statistics.

ROLE=TRAIN | VALID | TEST | SCORE
specifies the role of the input data set and determines the fit statistics to compute. For
ROLE=TRAIN, VALID, or TEST, observations without a trait value are ignored.
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Overview: HAPLOTYPE Procedure

A haplotype is a combination of alleles at multiple loci on a single chromosome. A pair of haplo-
types constitutes the multilocus genotype. Haplotype information has to be inferred because data
are usually collected at the genotypic, not haplotype pair, level. For homozygous markers, there is
no problem. If one locus has alleles A and a, and a second locus has alleles B and b, the observed
genotype AABB must contain two haplotypes of type AB; genotype Aa BB must contain hap-
lotypes AB and a B, and so on. Haplotypes and their frequencies can be obtained directly. When
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both loci are heterozygous, however, there is ambiguity; a variety of combinations of haplotypes can
generate the genotype, and it is not possible to determine directly which two haplotypes constitute
any individual genotype. For example, the genotype Aa Bb might be of type A B/ab with haplo-
types AB and ab, or of type Ab/aB with haplotypes Ab and a B. The HAPLOTYPE procedure
uses the expectation-maximization (EM) algorithm to generate maximum likelihood estimates of
haplotype frequencies given a multilocus sample of genetic marker genotypes under the assumption
of Hardy-Weinberg equilibrium (HWE). These estimates can then be used to assign the probabil-
ity that each individual possesses a particular haplotype pair. A Bayesian approach for haplotype
frequency estimation is also implemented in PROC HAPLOTYPE.

Estimation of haplotype frequencies is important for several applications in genetic data analysis.
One application is determining whether there is linkage disequilibrium (LD), or association, be-
tween loci. PROC HAPLOTYPE performs a likelihood ratio test to test the hypothesis of no LD
between marker loci. Another application is association testing of disease susceptibility. Since
sites that affect disease status are embedded in haplotypes, it has been postulated that the power of
case-control studies might be increased by testing for haplotype rather than allele or genotype asso-
ciations. One reason is that haplotypes might include two or more causative sites whose combined
effect is measurable, particularly if they show synergistic interaction. Another reason is that fewer
tests need to be performed, although if there are a large number of haplotypes, this advantage is
offset by the increased degrees of freedom of each test. PROC HAPLOTYPE can use case-control
data to calculate test statistics for the hypothesis of no association between alleles composing the
haplotypes and disease status; such tests are carried out across all haplotypes at the loci specified,
or for individual haplotypes.

Getting Started: HAPLOTYPE Procedure

Example

Assume you have a random sample with 25 individuals genotyped at four markers. You want to
infer the gametic phases of the genotypes and estimate their frequencies. There are eight columns
of data, with the first two columns containing the pair of alleles at the first marker, the next two
columns containing the pair of alleles for the second marker, and so on. Each row represents an
individual. The data can be read into a SAS data set as follows:

data markers;
input (ml1-m8) ($);

datalines;
B B A B B B A A
A A B B A B A B
B B A A B B B B
A B A B A B A B
A A A B A B B B
B B A A A B A B
A B B B A B A A
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You can now use PROC HAPLOTYPE to infer the possible haplotypes and estimate the four-locus
haplotype frequencies in this sample. The following statements perform these calculations:

proc haplotype data=markers out=hapout init=random prefix=SNP seed=51220;
var ml-m8;
run;

proc print data=hapout noobs round;
run;

This analysis uses the EM algorithm to estimate the haplotype frequencies from the sample. The
standard errors and a confidence interval are estimated, by default, under a binomial assumption for
each haplotype frequency estimate. A more precise estimate of the standard error can be obtained
through the jackknife process by specifying the option SE=JACKKNIFE in the PROC HAPLO-
TYPE statement, but this takes considerably more computations (see the “Methods of Estimating
Standard Error” on page 145 section for more information). The option INIT=RANDOM indi-
cates that initial haplotype frequencies are randomly generated, using a random seed created by
the system clock since the SEED= option is omitted. The default confidence level 0.95 is used,
since the ALPHA= option of the PROC HAPLOTYPE statement was omitted. Also by default, the
convergence criterion of 0.00001 must be satisfied for one iteration, and the maximum number of
iterations is set to 100. The PREFIX= option requests that the four markers, indicated by the eight
allele variables in the VAR statement, be named SNP1-SNP4.

The results from the procedure are shown in Figures 8.1 through 8.3.
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Figure 8.1 Analysis Information for the HAPLOTYPE Procedure

The HAPLOTYPE Procedure

Analysis Information
Loci Used SNP1 SNP2 SNP3 SNP4
Number of Individuals 25
Number of Starts 1
Convergence Criterion 0.00001
Iterations Checked for Conv. 1
Maximum Number of Iterations 100
Number of Iterations Used 15
Log Likelihood —-95.94742
Initialization Method Random
Random Number Seed 51220
Standard Error Method Binomial
Haplotype Frequency Cutoff 0

Figure 8.1 displays a table with information about several of the settings used to perform the HAP-
LOTYPE procedure as well as information about the EM algorithm. Note that you can obtain from
this table the random seed that was generated by the system clock if you need to replicate this
analysis.

Figure 8.2 Haplotype Frequencies from the HAPLOTYPE Procedure

Haplotype Frequencies
Standard 95% Confidence
Number Haplotype Freq Error Limits
1 A-A-A-A 0.14302 0.05001 0.04500 0.24105
2 A-A-A-B 0.07527 0.03769 0.00140 0.14914
3 A-A-B-A 0.00000 0.00000 0.00000 0.00000
4 A-A-B-B 0.00000 0.00010 0.00000 0.00020
5 A-B-A-A 0.09307 0.04151 0.01173 0.17442
6 A-B-A-B 0.05335 0.03210 0.00000 0.11627
7 A-B-B-A 0.00002 0.00061 0.00000 0.00122
8 A-B-B-B 0.07526 0.03769 0.00140 0.14913
9 B-A-A-A 0.08638 0.04013 0.00772 0.16504
10 B-A-A-B 0.08792 0.04046 0.00863 0.16722
11 B-A-B-A 0.07921 0.03858 0.00359 0.15482
12 B-A-B-B 0.10819 0.04437 0.02122 0.19517
13 B-B-A-A 0.10098 0.04304 0.01662 0.18534
14 B-B-A-B 0.00000 0.00001 0.00000 0.00002
15 B-B-B-A 0.09732 0.04234 0.01433 0.18030
16 B-B-B-B 0.00000 0.00001 0.00000 0.00002

Figure 8.2 displays the possible haplotypes in the sample and their estimated frequencies with stan-
dard errors and the lower and upper limits of the 95% confidence interval.
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Figure 8.3 Output Data Set from the HAPLOTYPE Procedure

_ID ml m2 m3 m4 m5 mé m7 m8 HAPLOTYPE1l HAPLOTYPE2 PROB
1 B B A B B B A A B-A-B-A B-B-B-A 1.00
2 A A B B A B A B A-B-A-A A-B-B-B 1.00
2 A A B B A B A B A-B-A-B A-B-B-A 0.00
3 B B A A B B B B B-A-B-B B-A-B-B 1.00
4 A B A B A B A B A-A-A-B B-B-B-A 0.26
4 A B A B A B A B A-B-A-A B-A-B-B 0.36
4 A B A B A B A B A-B-A-B B-A-B-A 0.15
4 A B A B A B A B A-B-B-A B-A-A-B 0.00
4 A B A B A B A B A-B-B-B B-A-A-A 0.23
5 A A A B A B B B A-A-A-B A-B-B-B 1.00
6 B B A A A B A B B-A-A-A B-A-B-B 0.57
6 B B A A A B A B B-A-A-B B-A-B-A 0.43
7 A B B B A B A A A-B-A-A B-B-B-A 1.00
7 A B B B A B A A A-B-B-A B-B-A-A 0.00
8 A B A A A A A A A-A-A-A B-A-A-A 1.00
9 B B A A A A A B B-A-A-A B-A-A-B 1.00

10 A B A B A B B B A-B-A-B B-A-B-B 0.47
10 A B A B A B B B A-B-B-B B-A-A-B 0.53
11 A B A B A B A A A-A-A-A B-B-B-A 0.65
11 A B A B A B A A A-B-A-A B-A-B-A 0.35
11 A B A B A B A A A-B-B-A B-A-A-A 0.00
12 B B A B A B A A B-A-A-A B-B-B-A 0.51
12 B B A B A B A A B-A-B-A B-B-A-A 0.49
13 A B A A A B A B A-A-A-A B-A-B-B 0.72
13 A B A A A B A B A-A-A-B B-A-B-A 0.28
14 A B B B B B A B A-B-B-B B-B-B-A 1.00
15 A A A B A A A B A-A-A-A A-B-A-B 0.52
15 A A A B A A A B A-A-A-B A-B-A-A 0.48
16 B B A B A B A B B-A-A-B B-B-B-A 0.44
16 B B A B A B A B B-A-B-B B-B-A-A 0.56
17 A B B B A A A B A-B-A-B B-B-A-A 1.00
18 B B B B A A A A B-B-A-A B-B-A-A 1.00
19 A B A A A B A A A-A-A-A B-A-B-A 1.00
20 A B A A A B A B A-A-A-A B-A-B-B 0.72
20 A B A A A B A B A-A-A-B B-A-B-A 0.28
21 B B A A A A A B B-A-A-A B-A-A-B 1.00
22 A A A B A A A B A-A-A-A A-B-A-B 0.52
22 A A A B A A A B A-A-A-B A-B-A-A 0.48
23 A B A A A A B B A-A-A-B B-A-A-B 1.00
24 A A A A A A A A A-A-A-A A-A-A-A 1.00
25 A B B B A A A A A-B-A-A B-B-A-A 1.00

Figure 8.3 displays each individual’s genotype with each of the possible haplotype pairs that the
genotype can comprise, and the probability that the genotype can be resolved into each of the
possible haplotype pairs.
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Syntax: HAPLOTYPE Procedure

The following statements are available in PROC HAPLOTYPE.

PROC HAPLOTYPE < options > ;
BY variables ;
ID variables ;
TRAIT variable </ options > ;
VAR variables ;

Items within angle brackets (< >) are optional, and statements following the PROC HAPLOTYPE
statement can appear in any order. Only the VAR statement is required.

PROC HAPLOTYPE Statement

PROC HAPLOTYPE < options > ;

You can specify the following options in the PROC HAPLOTYPE statement.

ALPHA=number
specifies that a confidence level of 100(1—number )% is to be used in forming the confidence
intervals for estimates of haplotype frequencies. The value of number must be between 0 and
1, inclusive, and 0.05 is used as the default value if it is not specified.

BURNIN=number
Experimental indicates that number iterations are discarded as burn-in when EST=BAYESIAN is specified.
The value of number cannot be greater than the value specified in the TOTALRUN= option
and must be greater than 0. The default is min(5000, ¢ /2), where ¢ is the number of total runs.

CONV=number
specifies the convergence criterion for iterations of the EM algorithm, where 0 < number
< 1. The iteration process is stopped when the ratio of the change in the log likelihoods
to the former log likelihood is less than or equal to number for the number of consecutive
iterations specified in the NLAG= option (or 1 by default), or after the number of iterations
specified in the MAXITER= option has been performed. The default value is 0.00001.

CUTOFF=number
specifies a lower bound on a haplotype’s estimated frequency in order for that haplotype to be
included in the “Haplotype Frequencies” table. The value of number must be between 0 and
1, inclusive. By default, all possible haplotypes from the sample are included in the table.

DATA=SAS-data-set
names the input SAS data set to be used by PROC HAPLOTYPE. The default is to use the
most recently created data set.
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DELIMITER=string’
indicates the string that is used to separate the two alleles that compose the genotypes con-
tained in the variables specified in the VAR statement. This option is ignored if GENOCOL
is not specified.

EST=BAYESIAN
EST=EM

EST=STEPEM
indicates the method to be used for estimating haplotype frequencies. By default or when
EST=EM is specified, the EM algorithm is used. When EST=STEPEM, the stepwise EM
algorithm is used to calculate estimates of haplotype frequencies. When EST=BAYESIAN, a
Bayesian method is used for estimating haplotype frequencies.

GENOCOL
indicates that columns specified in the VAR statement contain genotypes instead of alleles.
When this option is specified, there is one column per marker. The genotypes must consist of
the two alleles separated by a delimiter. For a genotype with one missing allele, use a blank
space to indicate a missing value; if both alleles are missing, either use a single missing value
for the entire genotype or use the delimiter alone.

INDIVIDUAL=variable

INDIV=variable
specifies the individual ID variable when using the TALL option. This variable can be char-
acter or numeric.

INIT=LINKEQ
INIT=RANDOM

INIT=UNIFORM
indicates the method of initializing haplotype frequencies to be used in the EM algorithm.
INIT=LINKEQ initializes haplotype frequencies assuming linkage equilibrium by calculating
the product of the frequencies of the alleles that compose the haplotype. INIT=RANDOM
initializes haplotype frequencies with random values from a Uniform(0,1) distribution, and
INIT=UNIFORM assigns equal frequency to all haplotypes. By default, INIT=LINKEQ.

INTERVAL=number
indicates that the non-burn-in iterations of the Bayesian estimation method when
EST=BAYESIAN is specified are thinned by only recording the result from every num-
ber iterations. The value of number must be greater than O, and the default is 1 (every
iteration is used).

ITPRINT
requests that the “Iteration History” table be displayed. This option is ignored if the
NOPRINT option is specified.

LD
requests that haplotype frequencies be calculated under the assumption of no LD, in addition
to being calculated using the EM algorithm. When this option is specified, the “Test for
Allelic Associations” table is displayed, which contains statistics for the likelihood ratio test
for allelic associations. This option is ignored if the NOPRINT option is specified.

Experimental
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MARKER=variable
specifies the marker ID variable when using the TALL option. This variable contains the
names of the markers that are used in all output and can be character or numeric.

MAXITER=number
specifies the maximum number of iterations to be used in the EM algorithm. The number must
be a nonnegative integer. Iterations are carried out until convergence is reached according to
the convergence criterion or until number iterations have been performed. The default is

MAXITER=100.

NDATA=SAS-data-set

names the input SAS data set containing names, or identifiers, for the markers used in the
output. There must be a NAME variable in this data set, which should contain the same
number of rows as there are markers in the input data set specified in the DATA= option.
When there are fewer rows than there are markers, markers without a name are named using
the PREFIX= option. Likewise, if there is no NDATA= data set specified, the PREFIX=
option is used. Note that this data set is ignored if the TALL option is specified in the PROC
HAPLOTYPE statement. In that case, the marker variable names are taken from the marker
ID variable specified in the MARKER= option.

NLAG=number
specifies the number of consecutive iterations that must meet the convergence criterion spec-
ified in the CONV= option (0.00001 by default) for the iteration process of the EM algorithm
to stop. The number must be a positive integer. If this option is omitted, one iteration must
satisfy the convergence criterion by default.

NOPRINT
suppresses the display of the “Analysis Information,” “Iteration History,” ‘“Haplotype Fre-
quencies,” and “Test for Allelic Associations” tables. Either the OUT= option, the TRAIT
statement, or both must be used with the NOPRINT option.

NSTART=number

specifies the number of different starts used for the EM algorithm. When this option is spec-
ified, PROC HAPLOTYPE starts the iterations with different random initial values number
—2 times as well as once with uniform frequencies for all the haplotypes and once using
haplotype frequencies assuming linkage equilibrium (independence). Results on the analysis,
using the initial values that produce the best log likelihood, are then reported. The number
must be a positive integer. If this option is omitted or NSTART=1, only one start with initial
frequencies generated according to the INIT= option is used.

OUT=SAS-data-set
names the output SAS data set containing the probabilities of each genotype being resolved
into all of the possible haplotype pairs.

OUTCUT=number
specifies a lower bound on a haplotype pair’s estimated probability given the individual’s
genotype in order for that haplotype pair to be included in the OUT= data set. The value of
number must be between 0 and 1, inclusive. By default, number = 0.00001. In order to be
able to view all possible haplotype pairs for an individual’s genotype, OUTCUT=0 can be
specified.
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indicates that the variable _ID_ created by PROC HAPLOTYPE should be included in the
OUT= data set in addition to the variable(s) listed in the ID statement. When the ID statement
is omitted, this variable is automatically included. This option is ignored when the TALL
option is used.

PREFIX=prefix

specifies a prefix to use in constructing names for marker variables in all output. For example,
if PREFIX=VAR, the names of the variables are VAR1, VAR2, ..., VARn. Note that this
option is ignored when the NDATA= option is specified, unless there are fewer names in the
NDATA data set than there are markers; it is also ignored if the TALL option is specified,
in which case the marker variable names are taken from the marker ID variable specified in
the MARKER= option. Otherwise, if this option is omitted, PREFIX=M is the default when
variables contain alleles; if GENOCOL is specified, then the names of the variables specified
in the VAR statement are used as the marker names.

SE=BINOMIAL
SE=JACKKNIFE

specifies the standard error estimation method when the EM or stepwise EM algorithm is
used for estimating haplotype frequencies. There are two methods available: the BINOMIAL
option, which gives a standard error estimator from a binomial distribution and is the default
method, and the JACKKNIFE option, which requests that the jackknife procedure be used to
estimate the standard error.

SEED=number

specifies the initial seed for the random number generator used for creating the ini-
tial haplotype frequencies when INIT=RANDOM and/or to permute the data when the
PERMUTATION= option of the TRAIT statement is specified. The value for number must
be an integer; the computer clock time is used if the option is omitted or an integer less than
or equal to 0 is specified. For more details about seed values, see SAS Language Reference:
Concepts.

STEPTRIM=number

TALL

indicates the cutoff to be used for the stepwise EM algorithm when trimming the haplotype
table, where 0 < number < 1. This option is implemented only when EST=STEPEM is
specified. By default, this number is set to min(0.001, 1/(2n)), where n is the number of
individuals in the data set.

indicates that the input data set is of an alternative format. This format contains the following
columns: two containing marker alleles (or one containing marker genotypes if GENOCOL is
specified), one for the marker identifier, and one for the individual identifier. The MARKER=
and INDIV= options must also be specified in order for this option to be in effect. Note that
when this option is used, the DATA= data set must first be sorted by any BY variables, then
sorted by the marker ID variable, and then sorted by the individual ID variable.

THETA=number

requests that number be used as the scaled mutation rate & when EST=BAYESIAN instead

Experimental
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of the default, whichis 8 = 1/ leifl 1/i for a sample of n individuals. This value must be
positive.

TOTALRUN=number

Experimental — TQT=number
indicates the total number of iterations to use when EST=BAYESIAN, including the burn-in.
The value of number must be greater than 0, and the default is 10,000.

BY Statement

BY variables ;

You can specify a BY statement with PROC HAPLOTYPE to obtain separate analyses on observa-
tions in groups defined by the BY variables. When a BY statement appears, the procedure expects
the input data set to be sorted in the order of the BY variables. The variables are one or more
variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alternatives:

e Sort the data by using the SORT procedure with a similar BY statement.

o Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
the HAPLOTYPE procedure. The NOTSORTED option does not mean that the data are un-
sorted but rather that the data are arranged in groups (according to values of the BY variables)
and that these groups are not necessarily in alphabetical or increasing numeric order.

e Create an index on the BY variables by using the DATASETS procedure (in Base SAS soft-
ware).

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.

ID Statement

ID variables ;

The ID statement identifies the variable(s) from the DATA= data set to be included in the OUT=
data set. When this statement is omitted, PROC HAPLOTYPE creates in the OUT= data set the
variable _ID_ that contains a unique numeric identifier for each individual. When the TALL option
is used, this statement is ignored, and the INDIVIDUAL variable is automatically included in the
OUT= data set along with the trait variable if the TRAIT statement is specified.
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TRAIT Statement

TRAIT variable </ options > ;

The TRAIT statement identifies the binary variable that indicates which individuals are cases and
which are controls, or that represents a dichotomous trait. This variable can be character or numeric,
but it must have only two nonmissing levels. When this statement is used and the original or
stepwise EM algorithm is implemented to estimate haplotype frequencies, the “Test for Marker-
Trait Association” table is included in the output.

There are two options you can specify in the TRAIT statement:

PERMS=number

PERMUTATION=number
specifies the number of permutations to be used to calculate the empirical p-value of the hap-
lotype case-control tests. This number must be a positive integer. By default, no permutations
are used and the p-value is calculated using the chi-square test statistic. Note that this option
can greatly increase the computation time.

TESTALL
specifies that each individual haplotype should be tested for association with the TRAIT vari-
able. When this option is included in the TRAIT statement, the “Tests for Haplotype-Trait
Association” table is included in the output.

VAR Statement

VAR variables ;

The VAR statement identifies the variables containing either the marker alleles or, if GENOCOL
is specified, the marker genotypes. The following number of variables should be specified in this
statement for a data set containing m markers according to whether the options GENOCOL and
TALL are used:

e When both GENOCOL and TALL are specified, there should be one variable named contain-
ing marker genotypes.

e When only TALL is specified, there should be two variables named containing marker alleles.

e When only GENOCOL is specified, there should be m variables named, one for each marker
containing marker genotypes.

e When neither option is specified, there should be 2m variables named, two for each marker
containing marker alleles.

All variables specified must be of the same type, either character or numeric.
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Details: HAPLOTYPE Procedure

Statistical Computations
The EM Algorithm

The EM algorithm (Excoffier and Slatkin 1995; Hawley and Kidd 1995; Long, Williams, and Ur-
banek 1995) iteratively furnishes the maximum likelihood estimates (MLEs) of m-locus haplotype
frequencies, for any integer m > 1, when a direct solution for the MLE is not readily feasible.
The EM algorithm assumes HWE; it has been argued (Fallin and Schork 2000) that positive in-
creases in the Hardy-Weinberg disequilibrium coefficient (toward excess heterozygosity) can in-
crease the error of the EM estimates, but negative increases (toward excess homozygosity) do not
demonstrate a similar increase in the error. The iterations start with assigning initial values to the
haplotype frequencies. When the INIT=RANDOM option is included in the PROC HAPLOTYPE
statement, uniformly distributed random values are assigned to all haplotype frequencies; when
INIT=UNIFORM, each haplotype is given an initial frequency of 1/k, where A is the number of
possible haplotypes in the sample. Otherwise, the product of the frequencies of the alleles that con-
stitute the haplotype is used as the initial frequency for the haplotype. Different starting values can
lead to different solutions since a maximum that is found could be a local maximum and not the
global maximum. You can try different starting values for the EM algorithm by specifying a number
greater than 1 in the NSTART= option to get better estimates. The expectation and maximization
steps (E step and M step, respectively) are then carried out until the convergence criterion is met
or the number of iterations exceeds the number specified in the MAXITER= option of the PROC
HAPLOTYPE statement.

For a sample of n individuals, suppose the i th individual has genotype G;. The probability of this
genotype in the population is P;, so the log likelihood is

n
logL = Zlog P;

i=1

which is calculated after each iteration’s E step of the EM algorithm, described in the following
paragraphs.

Let /; be the jth possible haplotype, and let f; be its frequency in the population. For genotype
G;, the set H; is the collection of pairs of haplotypes, /; and its “complement” h;i , that constitute
that genotype. The haplotype frequencies f; used in the E step for iteration O of the EM algorithm
are given by the initial values; all subsequent iterations use the haplotype frequencies calculated
by the M step of the previous iteration. The E step sets the genotype frequencies to be products of
these frequencies:
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P = Z fiff!

JEH;

When G; has m heterozygous loci, there are 27! terms in this sum. The number of times haplotype
hj occurs in the sum is written as m;;, which is 2 if G; is completely homozygous, and either 1 or
0 otherwise.

The M step sets new haplotype frequencies from the genotype frequencies:

1 & mij fi ff!
/i =_Z—P,~ /

The EM algorithm increases the likelihood after each iteration, and multiple starting points can
generally lead to the global maximum.

When the option EST=STEPEM is specified in the PROC HAPLOTYPE statement, a stepwise
version of the EM algorithm is performed. A common difficulty in haplotype analysis is that the
number of possible haplotypes grows exponentially with the number of loci, as does the computa-
tion time, which makes the EM algorithm infeasible for a large number of loci. However, the most
common haplotypes can still be estimated by trimming the haplotype table according to a given
cutoff (Clayton 2002). The two-locus haplotype frequencies are first estimated, and those below
the cutoff are discarded from the table. The remaining haplotypes are expanded to the next locus
by forming all possible three-locus haplotypes, and the EM algorithm is then invoked for this hap-
lotype table. The trimming and expanding process is performed repeatedly, adding one locus at a
time, until all loci are considered.

After the EM or stepwise EM algorithm has arrived at the MLEs of the haplotype frequencies,
each individual i ’s probability of having a particular haplotype pair (h, hi’) given the individual’s
genotype Gj is calculated as ‘

S
Prih; 151G} = =
1

for each j € H;. These probabilities are displayed in the OUT= data set.

Methods of Estimating Standard Error

Typically, an estimate of the variance of a haplotype frequency is obtained by inverting the estimated
information matrix from the distribution of genotype frequencies. However, it often turns out that
in a large multilocus system, a certain proportion of haplotypes have ML frequencies equal or close
to zero, which makes the sample information matrix nearly singular (Excoffier and Slatkin 1995).
Therefore, two approximation methods are used to estimate the variances, as proposed by Hawley
and Kidd (1995).
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The binomial method estimates the standard error by calculating the square root of the binomial
variance, as if the haplotype frequencies are obtained by direct counting:

varg (fy) = 20200

The jackknife method is a simulation-based method that can be used to estimate the standard errors
of haplotype frequencies. Each individual is in turn removed from the sample, and all the haplotype
frequencies are recalculated from this “delete-1” sample. Let 7,,—1; be the haplotype frequency
estimator from the ith “delete-1" sample; then the jackknife variance estimator has the following
formula:

n

n
Vary(fj) = z ; 1 Z (Tn—l,i - % Z Tn—l,j)2
j=1

i=1

and the square root of this variance estimate is the estimate of standard error. The jackknife is less
dependent on the model assumptions; however, it requires computing the statistic n times.

Confidence intervals with confidence level 1 — « for the haplotype frequency estimates from the
final iteration are then calculated using the following formula:

Ji £ z1—a/2+/ Var(f)

where z;_g/> is the value from the standard normal distribution that has a right-tail probability of
a/2.

Testing for Allelic Associations

When the LD option is specified in the PROC HAPLOTYPE statement, haplotype frequencies are
calculated using the EM algorithm as well as by assuming no allelic associations among loci—that
is, no LD. Under the null hypothesis of no LD, haplotype frequencies are simply the product of
the individual allele frequencies. The log likelihood under the null hypothesis, log Ly, is calculated
based on these haplotype frequencies with degrees of freedom dfy = > -, (k; — 1), where m is
the number of loci and k; is the number of alleles for the ith locus (Zhao, Curtis, and Sham 2000).
Under the alternative hypothesis, the log likelihood, log L, is calculated from the EM estimates of
the haplotype frequencies with degrees of freedom df; = number of haplotypes — 1. A likelihood
ratio test is used to test this hypothesis as follows:

2(log L1 —log Lg) ~ X%

where v = df; — dfy is the difference between the number of degrees of freedom under the null
hypothesis and the alternative.
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Testing for Trait Associations

When the TRAIT statement is included in PROC HAPLOTYPE, case-control tests are performed to
test for association between the dichotomous trait (often, an indicator of individuals with or without
a disease) and the marker loci by using haplotypes. In addition to an omnibus test that is performed
across all haplotypes, when the TESTALL option is specified in the TRAIT statement, a test for
association between each individual haplotype and the trait is performed. Note that the individual
haplotype tests should be performed only if the omnibus test statistic is significant.

Chi-Square Tests The test performed over all haplotypes is based on the log likelihoods: under
the null hypothesis, the log likelihood over all the individuals in the sample, regardless of the value
of their trait variable, is calculated as described in “The EM Algorithm” on page 144; the log like-
lihood is also calculated separately for the two sets of individuals within the sample as determined
by the trait value under the alternative hypothesis of marker-trait association. A likelihood ratio test
(LRT) statistic can then be formed as follows:

X2 =2(log Ly + log Ly —log Ly)

where log Lo, log L1, and log L, are the log likelihoods under the null hypothesis, for individuals
with the first trait value, and for individuals with the second trait value, respectively (Zhao, Curtis,
and Sham 2000). Defining degrees of freedom for each log likelihood similarly, this statistic has an
asymptotic chi-square distribution with (df; + dfy — dfp) degrees of freedom.

An association between individual haplotypes and the trait can also be tested. To do so, a con-
tingency table (Table 8.1) is formed where T = 2n = t; + t = h; + h», the total number of
haplotypes in the sample, “Hap 1” refers to the current haplotype being tested, “Hap 2” refers to all
other haplotypes, and ¢;; is the pseudo-observed count of individuals with trait i and haplotype j
(note that these counts are not necessarily integers since haplotypes are not actually observed; they
are calculated based on the estimated haplotype frequencies). The column totals /2 ; are not calcu-
lated in the usual fashion, by summing the cells in each column; rather, /1 and h; are calculated as
T x fjand T —T x f;, respectively, where f; is the estimated frequency of “Hap 1” in the overall
sample.

Table 8.1 Haplotype-Trait Counts

Hap1 Hap?2 | Total
Trait 1 C11 C12 51
Trait 2 21 Co2 1)
Total h 1 h 2 T

The usual contingency table chi-square test statistic has a 1 df chi-square distribution:

(cij = tih;/T)?
Z Z tl'hj/T

i=1,2j=1.2
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Permutation Tests Since the assumption of a chi-square distribution in the preceding section
might not hold, estimates of exact p-values via Monte Carlo methods are recommended. New
samples are formed by randomly permuting the trait values, and either of the chi-square test statistics
shown in the previous section can be calculated for each of these samples. The number of new
samples created is determined by the number given in the PERMS= option of the TRAIT statement.
The exact p-value approximation is then calculated as m/ p, where m is the number of samples with
a test statistic greater than or equal to the test statistic in the actual sample and p is the total number
of permutation samples. This method is used to obtain empirical p-values for both the overall and
the individual haplotype tests (Zhao, Curtis, and Sham 2000; Fallin et al. 2001).

Bayesian Estimation of Haplotype Frequencies

The Bayesian algorithm for haplotype reconstruction incorporates coalescent theory in a Markov
chain Monte Carlo (MCMC) technique (Stephens, Smith, and Donnelly 2001; Lin et al. 2002). The
algorithm starts with a random phase assignment for each multilocus genotype and then uses a Gibbs
sampler to assign a haplotype pair to a randomly picked phase-unknown genotype. The algorithm
implemented in PROC HAPLOTYPE is from Lin et al. (2002), which has several variations from
that of Stephens, Smith, and Donnelly (2001).

Initially, gamete pairs are randomly assigned to each genotype, and the assignment set is denoted
as H = (Hy, ..., Hy). Anindividual i is then randomly picked, and its two current haplotypes are
removed from H. The remaining assignment set is denoted H_;. Let Y be the positions where the
diplotypic sequence of individual i is ambiguous, and let /2 (Y') be the partial sequence of the jth
haplotype at Y. From H_;, a list of partial haplotypes A(Y) = [h1(Y), ..., hm(Y)] is made, with
corresponding counts [r1, ..., ] sampled from H_;.

The next step is to reassign a haplotype pair to individual 7 and add to H_;. The probability vector,
p = (p1,..., pm), of sampling each partial haplotype % ;(Y') from 2(Y) is calculated as follows:
let d;(Y') be the partial genotype of individual i at Y. For j = 1,...,m, check whether d;(Y)
can comprise 4 ;(Y) plus a complementary haplotype h’j (Y) (note that h/j (Y) can bear missing
alleles if d; (Y') is incomplete). If not, set p; = 0; if so, with all 1z (Y") in ~(Y’) that are compatible
with h’j(Y), set pj = Y plrjrk + (rj + re)0/M], where 6 = 1/ Z?ﬁ;l 1/i by default (or this
value can be set in the THETA= option), n is the number of individuals in the sample, and M is
the number of distinct haplotypes possible in the population. If no such /(YY) can be found, set

pj =r;j0/M).

With probability 2€ (8/M)2/[3 jpit 2K(6/ M)?], k being the number of ambiguous sites in indi-
vidual i, randomly reconstruct phases for individual i. Missing alleles are assigned proportional to
allele frequencies at each site. Otherwise, with probability p;/ > jr pjsassign i j(Y) to individual
i and the corresponding complementary haplotype. The new assignment is then added back to H_;.

These steps are repeated ¢ times, where ¢ is the value specified in the TOTALRUN= option. The
first b times are discarded as burn-in when BURNIN=b. The results are then thinned by recording
every rth assignment specified by the INTERVAL=r option so that (1 —b)/r iterations are used for
the estimates.

The probability of each individual i having a particular haplotype pair (/, hj.i ) given the individ-
ual’s genotype G; for each j € H; is given in the OUT= data set as the proportion of iterations
after burn-in that are recorded which have that particular haplotype pair assigned to the individual.
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Missing Values

An individual’s m-locus genotype is considered to be partially missing if any, but not all, of the
alleles are missing. Genotypes with all missing alleles are dropped from calculations for haplotype
frequencies, although these individuals can still be used as described in the following paragraph.
Also, if there are any markers with all missing values in a BY group (or the entire data set if there is
no BY statement), no calculations are performed for that BY group. Partially missing genotypes are
used in the EM algorithm and the jackknife procedure. In calculating the allele frequencies, missing
alleles are dropped and the frequency of an allele u at a marker is obtained as the number of u alleles
in the data divided by the total number of nonmissing alleles at the marker in the data. In the E step
of the EM algorithm, the frequency of a partially missing genotype is updated for every possible
genotype. In the M step, haplotypes resulting from a missing genotype can bear some missing
alleles. Such a haplotype is not considered as a new haplotype, but rather all existing haplotypes
that have alleles identical to the nonmissing alleles of this haplotype are updated. Dealing with
missing genotypes involves looping through all possible genotypes in the E step and all possible
haplotypes in the M step. The stepwise EM algorithm performs a series of two-step processes
involving EM estimation followed by trimming the set of haplotypes. Thus, in the EM estimation
step, missing values are handled as described for the EM algorithm. Depending on the input data
set, missing genotypes can increase the computation time substantially for either estimation method.

When the TRAIT statement is specified, any observation with a missing trait value is dropped from
calculations used in the tests for marker-trait association and haplotype-trait associations. However,
observations with missing trait values are included in calculating the frequencies shown in the “Hap-
lotype Frequencies” table, which are then used in the OUT= data set. The combined frequencies
listed in the “Tests for Haplotype-Trait Association” table might therefore be different from these
frequencies in this situation. Also, if an individual is missing all alleles but has a nonmissing trait
value, the individual is included in the permutations of the trait value when PERMS= is specified in
the TRAIT statement.

OUT= Data Set

The OUT= data set contains the following variables: the BY variables (if any), _ID_ that identifies
the individual and/or any variables listed in the ID statement, the pair of alleles at each marker
analyzed, HAPLOTYPE1 and HAPLOTYPE2 that contain the pair of haplotypes that each genotype
can comprise, and PROB containing the probability of each individual’s genotype being resolved
into that haplotype pair. Note that when GENOCOL or the option TALL is specified, the pair of
alleles at a marker are contained in a single column separated by the delimiter ‘/* or the character

given in the DELIMITER= option.
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Displayed Output

This section describes the displayed output from PROC HAPLOTYPE. See “ODS Table Names”
on page 152 for details about how this output interfaces with the Output Delivery System.

Analysis Information

The “Analysis Information” table lists information about the following settings used in PROC HAP-
LOTYPE for all of the estimation methods:

Loci Used, the loci used to form haplotypes

Number of Individuals

Random Number Seed, the value specified in the SEED= option or generated by the system
clock

Haplotype Frequency Cutoff, the value specified in the CUTOFF= option or the default (0)

When EST=EM or EST=STEPEM is specified in the PROC HAPLOTYPE statement, the following
information is also included in the table:

e Number of Starts, the value specified in the NSTART= option or the default (1)
e Convergence Criterion, the value specified in the CONV= option or the default (0.00001)
e Iterations Checked for Conv., the value specified in the NLAG= option or the default (1)

e Maximum Number of Iterations, the value specified in the MAXITER= option or the default
(100)

Number of Iterations Used, as determined by the CONV= or MAXITER= option

Log Likelihood, from the last iteration performed

Initialization Method, the method specified in the INIT= option or “Linkage Equilibrium” by
default

Standard Error Method, the method specified in the SE= option or “Binomial” by default

If EST=BAYESIAN is specified in the PROC HAPLOTYPE statement, then these rows are included
in the table:

e Scaled Mutation Rate, the 6 parameter used in the algorithm

e Recorded Iterations, the number of iterations of the algorithm actually recorded, which is
(total runs — burn-in)/interval
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Iteration History

The “Iteration History” table displays the log likelihood and the ratio of change for each iteration
of the EM algorithm.

Haplotype Frequencies

The “Haplotype Frequencies” table lists all the possible m-locus haplotypes in the sample (where
2m variables are specified in the VAR statement), with an estimate of the haplotype frequency, the
standard error of the frequency, and the lower and upper limits of the confidence interval for the
frequency based on the confidence level determined by the ALPHA= option of the PROC HAPLO-
TYPE statement (0.95 by default). When the LD option is specified in the PROC HAPLOTYPE
statement and EST=EM or STEPEM, haplotype frequency estimates are calculated both under the
null hypothesis of no allelic association by taking the product of allele frequencies, and under the
alternative, which allows for associations, using the EM algorithm.

Test for Allelic Associations

The “Test for Allelic Associations” table displays the degrees of freedom and log likelihood calcu-
lated using the EM algorithm for the null hypothesis of no association and the alternative hypothesis
of associations between markers. The chi-square statistic and its p-value are also shown for the test
of these hypotheses.

Test for Marker-Trait Association

The “Test for Marker-Trait Association” table displays the number of observations, degrees of free-
dom, and log likelihood for both trait values as well as the combined sample when EST=EM or
STEPEM. The chi-square test statistic and its corresponding p-value from performing the case-
control test, testing the hypothesis of no association between the trait and the marker loci used in
PROC HAPLOTYPE, are also given. When the PERMS= option is included in the TRAIT state-
ment, estimates of exact p-values are provided as well.

Tests for Haplotype-Trait Association

The “Tests for Haplotype-Trait Association” table displays statistics from case-control tests per-
formed on each individual haplotype when the TESTALL option is included in the TRAIT statement
and EST=EM or STEPEM. A significant p-value indicates that there is an association between the
haplotype and the trait. When the PERMS= option is also given in the TRAIT statement, estimates
of exact p-values are provided as well.



152 4 Chapter 8: The HAPLOTYPE Procedure

ODS Table Names

PROC HAPLOTYPE assigns a name to each table it creates, and you must use this name to refer-
ence the table when using the Output Delivery System (ODS). These names are listed in Table 8.2.

Table 8.2 ODS Tables Created by the HAPLOTYPE Procedure

ODS Table Name Description Statement or Option
AnalysisInfo Analysis information default
IterationHistory Iteration history ITPRINT
EST=EM or STEPEM
ConvergenceStatus  Convergence status EST=EM or STEPEM
HaplotypeFreq Haplotype frequencies default
LDTest Test for allelic associations LD and EST=EM or STEPEM
CCTest Test for marker-trait association EST=EM or STEPEM
TRAIT statement
HapTraitTest Tests for haplotype-trait association EST=EM or STEPEM
TRAIT / TESTALL

Examples: HAPLOTYPE Procedure

Example 8.1: Estimating Three-Locus Haplotype Frequencies

Here is an example of 227 individuals genotyped at three markers, data that were created based on
genotype frequency tables from the Lab of Statistical Genetics at Rockefeller University (2001).
Note that when reading in the data, there are four individuals’ genotypes per line, except for the
last line of the DATA step, which contains three individuals’ genotypes. The SAS data set that is
created using the following code contains one individual per row with six columns representing the
two alleles at each of three marker loci.

data ehdata;
input ml-mé Q@Q;

datalines;
111113111113111113111113
111113111113111113111113
111113111113111113111113
111123111123111123111133
111133111133111133111133
111133111133111133111133
111211111211111212111212
111212111212111212111212
111212111212111212111212
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111212111212111222111222
111213111213111223111223
111223111233111233111233
111233112211112211112211

112211112211112212112212
112212112212112222112222

112222112222112213112213

112233112233112233112233
112233112233112233112233

112233112233112233112233

112233112233112233112233

112233112233121111121111

121111121111121111121111
121111121112121112121113
121113121123121123121123
121123121123121123121133
121133121133121211121211

121211121211121211121211
121211121211121211121213
121213121213121223121223
121223121223121233121233
122211122211122211122211

122211122211122211122211

122211122211122212122212
122212122213122213122223
122223122223122233122233
122233122233122233122233

122233122233221111221112

221112221122221122221122
221122221122221122221122
221122221122221122221113

221113221123221123221123

221123221123221123221123
221123221123221133221133

221133221133221211221211

221211221211221211221212
221212221212221222221222
221222221222221213221213

22121322121322121322121S3
221223221223221223221223
221223221223221223221233

221233221233222211222211

222211222211222211222211

222211222211222211222212
222212222212222223222223
222223222233222233222233

222233222233222233222233

222233222233222233

The haplotype frequencies can be estimated using the EM algorithm and their standard errors esti-

mated using the jackknife method by implementing the following code:
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proc haplotype data=ehdata se=jackknife maxiter=20 itprint nlag=4;
var ml-mé6;
run;

This produces the ODS output shown in Outputs 8.1.1 through 8.1.4.

Output 8.1.1 Analysis Information for the HAPLOTYPE Procedure

The HAPLOTYPE Procedure

Analysis Information

Loci Used M1 M2 M3
Number of Individuals 227
Number of Starts 1
Convergence Criterion 0.00001
Iterations Checked for Conv. 4
Maximum Number of Iterations 20
Number of Iterations Used 11
Log Likelihood -934.97918
Initialization Method Linkage Equilibrium
Standard Error Method Jackknife

Haplotype Frequency Cutoff 0
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Output 8.1.1 continued

The HAPLOTYPE Procedure
Tests for Haplotype-Trait Association
Individual

ID disease A B C ABc aBC aBc AbC Abc abc ablydcCc
1 1 0.29 0.21 0.21 0.29 0.00 0.00 0.00 0.00
2 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
3 0 0.00 0.27 0.00 0.23 0.00 0.23 0.27 0.00
4 1 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
5 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
6 0 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
7 1 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
8 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
9 1 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00
10 0 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00
11 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
13 0 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00
14 1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
16 0 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
17 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
18 1 0.00 0.27 0.00 0.23 0.00 0.23 0.27 0.00
19 1 0.29 0.21 0.21 0.29 0.00 0.00 0.00 0.00
20 0 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
21 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
23 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
24 0 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
25 0 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00
26 1 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
27 0 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
28 1 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
29 1 0.01 0.00 0.49 0.00 0.49 0.00 0.00 0.01
30 1 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
31 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
32 1 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00
33 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
34 1 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
35 1 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00
36 1 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00
37 0 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
38 0 0.01 0.00 0.49 0.00 0.49 0.00 0.00 0.01
39 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
40 0 0.00 0.27 0.00 0.23 0.00 0.23 0.27 0.00
41 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
42 1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
43 1 0.29 0.21 0.21 0.29 0.00 0.00 0.00 0.00
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Output 8.1.1 continued

The HAPLOTYPE Procedure
Tests for Haplotype-Trait Association
The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 6.1962 1 0.0128
Score 6.3995 1 0.0114
Wald 4.9675 1 0.0258

Output 8.1.1 displays information about several of the settings used to perform the HAPLOTYPE
procedure on the ehdata data set. Note that although the MAXITER= option was set to 20 itera-
tions, convergence according to the criterion of 0.00001 was reached for four consecutive iterations
prior to the 20th iteration, at which point the estimation process stopped. To obtain more precise
frequency estimates, a lower convergence criterion can be used.

Output 8.1.2 Iteration History for the HAPLOTYPE Procedure

Iteration History

Ratio
Iter LogLike Changed

0 -953.89697
1 -937.92181 0.01675
2 -935.91870 0.00214
3 -935.35775 0.00060
4 -935.13050 0.00024
5 -935.03710 0.00010
6 -935.00051 0.00004
7 -934.98679 0.00001
8 -934.98180 0.00001
9 -934.98002 0.00000
10 -934.97940 0.00000
11 -934.97918 0.00000

Output 8.1.3 Convergence Status for the HAPLOTYPE Procedure

Algorithm converged.

Because the ITPRINT option was specified in the PROC HAPLOTYPE statement, the iteration his-
tory of the EM algorithm is included in the ODS output. Output 8.1.2 contains the table displaying
this information. By default, the “Convergence Status” table is displayed (Output 8.1.3), which
consists of only one line indicating whether convergence was met.
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Output 8.1.4 Haplotype Frequencies from the HAPLOTYPE Procedure

Haplotype Frequencies
Standard 95% Confidence
Number Haplotype Freq Error Limits
1 1-1-1 0.09170 0.01505 0.06221 0.12119
2 1-1-2 0.02080 0.00952 0.00214 0.03946
3 1-1-3 0.11509 0.01766 0.08048 0.14971
4 1-2-1 0.07904 0.01696 0.04580 0.11228
5 1-2-2 0.06768 0.01546 0.03738 0.09799
6 1-2-3 0.12788 0.02094 0.08685 0.16891
7 2-1-1 0.05521 0.01227 0.03115 0.07926
8 2-1-2 0.11700 0.01782 0.08207 0.15193
9 2-1-3 0.07376 0.01495 0.04446 0.10307
10 2-2-1 0.11766 0.01831 0.08177 0.15355
11 2-2-2 0.03020 0.00899 0.01257 0.04782
12 2-2-3 0.10397 0.01833 0.06805 0.13989
The HAPLOTYPE Procedure
Analysis Information
Loci Used SNP1 SNP2 SNP3 SNP4
Number of Individuals 25
Number of Starts 5
Convergence Criterion 0.00001
Iterations Checked for Conv. 1
Maximum Number of Iterations 100
Number of Iterations Used 19
Log Likelihood -95.94742
Initialization Method Random
Random Number Seed 499887544
Standard Error Method Binomial
Haplotype Frequency Cutoff 0

Output 8.1.4 displays the 12 possible three-locus haplotypes in the data and their estimated haplo-
type frequencies, standard errors, and bounds for the 95% confidence intervals for the estimates.

To see how the CUTOFF= option affects the “Haplotype Frequencies” table, suppose you want to
view only the haplotypes with an estimated frequency of at least 0.10. The following code creates
such a table:

proc haplotype data=ehdata se=jackknife cutoff=0.10 nlag=4;
var ml-m6;
run;

Now the “Haplotype Frequencies” table is displayed as in Output 8.1.5.
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Output 8.1.5 Haplotype Frequencies from the HAPLOTYPE Procedure Using the CUTOFF=

Option
The HAPLOTYPE Procedure
Haplotype Frequencies
Standard 95% Confidence
Number Haplotype Freq Error Limits
1 1-1-3 0.11509 0.01766 0.08048 0.14971
2 1-2-3 0.12788 0.02094 0.08685 0.16891
3 2-1-2 0.11700 0.01782 0.08207 0.15193
4 2-2-1 0.11766 0.01831 0.08177 0.15355
5 2-2-3 0.10397 0.01833 0.06805 0.13989

Output 8.1.5 displays only the five 3-locus haplotypes with estimated frequencies of at least 0.10.
This option is especially useful for keeping the “Haplotype Frequencies” table to a manageable size
when many marker loci or loci with several alleles are used and when many of the haplotypes have
estimated frequencies very near zero. Using CUTOFF=1 suppresses the “Haplotype Frequencies”
table.

Example 8.2: Using Multiple Runs of the EM Algorithm

Continuing the example from the section “Getting Started: HAPLOTYPE Procedure” on page 134,
suppose you are concerned that the likelihood reached a local and not a global maximum. You can
request that PROC HAPLOTYPE use several different sets of initial haplotype frequencies to ensure
that you find a global maximum of the likelihood. The following code invokes the EM algorithm
with five different sets of initial values, including the set used in the “Getting Started” example:

proc haplotype data=markers prefix=SNP init=random seed=51220
nstart=5;
var ml-m8;
run;

The NSTART=5 option requests that the EM algorithm be run three times with randomly gener-
ated initial frequencies, including once using the seed 51220 that was previously used, once using
uniform initial frequencies, and once using haplotype frequencies given by the product of the allele
frequencies. The two tables in Output 8.2.1 are from the run that produced the best log likelihood:
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Output 8.2.1 Output from PROC HAPLOTYPE

The HAPLOTYPE Procedure

Analysis Information

Loci Used SNP1 SNP2 SNP3 SNP4
Number of Individuals 25
Number of Starts 5
Convergence Criterion 0.00001
Iterations Checked for Conv. 1
Maximum Number of Iterations 100
Number of Iterations Used 19
Log Likelihood —-95.94742
Initialization Method Random
Random Number Seed 499887544
Standard Error Method Binomial
Haplotype Frequency Cutoff 0

Haplotype Frequencies

Standard 95% Confidence
Number Haplotype Freq Error Limits
1 A-A-A-A 0.14324 0.05005 0.04515 0.24133
2 A-A-A-B 0.07507 0.03764 0.00129 0.14885
3 A-A-B-A 0.00000 0.00001 0.00000 0.00001
4 A-A-B-B 0.00000 0.00010 0.00000 0.00019
5 A-B-A-A 0.09295 0.04148 0.01165 0.17425
6 A-B-A-B 0.05349 0.03214 0.00000 0.11649
7 A-B-B-A 0.00001 0.00052 0.00000 0.00103
8 A-B-B-B 0.07523 0.03768 0.00138 0.14909
9 B-A-A-A 0.08644 0.04014 0.00776 0.16512
10 B-A-A-B 0.08784 0.04044 0.00859 0.16710
11 B-A-B-A 0.07904 0.03854 0.00350 0.15459
12 B-A-B-B 0.10836 0.04441 0.02133 0.19540
13 B-B-A-A 0.10097 0.04304 0.01661 0.18533
14 B-B-A-B 0.00000 0.00000 0.00000 0.00000
15 B-B-B-A 0.09735 0.04235 0.01435 0.18035
16 B-B-B-B 0.00000 0.00000 0.00000 0.00000

Example 8.3: Testing for Linkage Disequilibrium

Again looking at the data from the Lab of Statistical Genetics at Rockefeller University (2001), if
you request the test for linkage disequilibrium by specifying the LD option in the PROC HAPLO-
TYPE statement as follows, the “Test for Allelic Associations” table containing the test statistics is
included in the output.

proc haplotype data=ehdata 1d;
var ml-mé6;
run;
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The “Haplotype Frequencies” table (Output 8.3.1) now contains an extra column of the haplotype
frequencies under the null hypothesis.

Output 8.3.1 Haplotype Frequencies under the Null and Alternative Hypotheses

The HAPLOTYPE Procedure
Haplotype Frequencies
Standard 95% Confidence
Number Haplotype HO Freq Hl1l Freq Error Limits
1 1-1-1 0.08172 0.09124 0.01353 0.06472 0.11775
2 1-1-2 0.05605 0.02124 0.00677 0.00796 0.03452
3 1-1-3 0.10006 0.11501 0.01499 0.08563 0.14439
4 1-2-1 0.09084 0.07952 0.01271 0.05461 0.10443
5 1-2-2 0.06231 0.06726 0.01177 0.04419 0.09032
6 1-2-3 0.11122 0.12794 0.01569 0.09718 0.15870
7 2-1-1 0.08100 0.05540 0.01075 0.03433 0.07647
8 2-1-2 0.05556 0.11690 0.01510 0.08732 0.14649
9 2-1-3 0.09918 0.07378 0.01228 0.04971 0.09785
10 2-2-1 0.09005 0.11746 0.01513 0.08781 0.14711
11 2-2-2 0.06176 0.03028 0.00805 0.01450 0.04606
12 2-2-3 0.11025 0.10398 0.01434 0.07587 0.13209

Note that since the INIT= option was omitted from the PROC HAPLOTYPE statement, the initial
haplotype frequencies used in the EM algorithm are identical to the frequencies that appear in the
HO FREQ column in Output 8.3.1. The frequencies in the H1 FREQ column are those calculated
from the final iteration of the EM algorithm, and these frequencies’ standard errors and confidence
limits are included in the table as well.

Output 8.3.2 displays the log likelihood under the null hypothesis assuming independence among
all the loci and the alternative, which allows for associations between markers. The empiri-
cal chi-square test statistic of the likelihood ratio test is calculated as X2 = 2[—934.98180 —
(—953.89697)] = 37.8303 with degrees of freedom v = 11 —4 = 7 that gives a p-value < 0.0001.
The test indicates significant linkage disequilibrium among the three loci, as shown in the online
documentation from the Lab of Statistical Genetics at Rockefeller University (2001).

Output 8.3.2 Testing for Linkage Disequilibrium Using the LD Option

Test for Allelic Associations

Chi- Pr >
Hypothesis DF LogLike Square Chisq

HO: No Association 4 -953.89697
Hl: Allelic Associations 11 -934.98180 37.8303 <.0001
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ions

for Marker-Trait Associati

ing

Testi

Example 8.4

To demonstrate how the TRAIT statement can be used, a subset of data from GAW12 (Wijsman et
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A87313644334 106581141 10225 2
U28664843439 1 1123442 6 239 7
U98437384438 8 6645345 5 18101
U9351865332132 3582131 103 3 10 12
U29167499418 1 3258443 1 33127
U88623224346 123172445 9 231 10

4

This data set contains 12 markers. Suppose you are interested in testing three of the marker loci at
a time for association with the trait (status in this case: “A” for affected or “U” for unaffected with
a particular disease) over all of their haplotypes. That is, assuming the markers are numbered in the
order in which they appear on the chromosome, haplotypes at marker loci 1 through 3 are analyzed,
then haplotypes at marker loci 4 through 6 are analyzed, and so on. These tests can be performed
in addition to, or in place of, single-marker case-control tests (see Chapter 5 for more information).
In order to reduce the amount of SAS code needed for this analysis, a SAS macro can be used as
follows:

$macro hap_trait;

%do firsta=1 %to 19 %by 6;
%$let lasta=%eval (&firsta+5);
%$let firstm=%eval((&firsta+l)/2);
%$let lastm=%eval (&lasta/2);

proc haplotype data=gaw noprint;
var a&firsta-a&lasta;
trait status;

run;

%$end;
$mend;
%$hap_trait

Since the NOPRINT option is specified, this code produces only the “Test for Marker-Trait Associ-
ation” table each of the four times PROC HAPLOTYPE is invoked.

Output 8.4.1 Testing for Marker-Trait Associations Using Haplotypes

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square Chisq
1 U 36 156 —-245.18487
2 A 14 68 -69.90500

Combined 50 181 -355.16139 80.1430 0.0005
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Output 8.4.1 continued

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square Chisqg
1 U 36 140 -236.78471
2 A 14 62 -78.22280
Combined 50 162 -349.30084 68.5867 0.0033

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square Chisq
1 U 36 119 -242.53993
2 A 14 56 -68.34854
Combined 50 139 -348.95917 76.1414 0.0001

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square Chisq
1 U 36 180 -268.92245
2 A 14 75 -85.15400
Combined 50 233 -395.70275 83.2526 <.0001

Output 8.4.1 displays the four tables that are created by this macro. The first corresponds to test-
ing the three-locus haplotypes at the first three marker loci with the TRAIT variable, the second
corresponds to the second set of three markers, and so on. From the LRTs that are performed and
summarized in the output, it can be concluded that out of the four sets of marker loci tested, the
haplotypes at markers 10, 11, and 12 show the most significant association with the trait variable
status. The chi-square statistic for testing the haplotypes at these markers for association with dis-
ease status is calculated as 83.2526 = 2(—268.92245 — 85.15400 + 395.70275) with degrees of
freedom 22 = 180 + 75 — 233, which has a p-value < 0.0001.

Suppose you want to further explore the association between these three markers and the trait. You
can also perform tests of association between each individual haplotype at these marker loci and
disease status by using the following code:
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ods output haplotype.haptraittest=outhap;
proc haplotype data=gaw noprint;

var al9-a24;

trait status / testall perms=100;
run;

proc print data=outhap (obs=20) noobs;

title ’'The HAPLOTYPE Procedure’;

title2 ' ’;

title3 'Tests for Haplotype-Trait Association’;
run;

The TESTALL option indicates that a test for trait association should be performed on each hap-
lotype by using a chi-square test statistic, which is performed by default. In addition, since the
PERMS=100 option is included, an empirical p-value is calculated. Because of the number of al-
leles at each marker in this example, this option increases the computation time substantially, even
with this small number of permutations.

Output 8.4.2 Using the TESTALL Option on Markers 10-12

The HAPLOTYPE Procedure

Tests for Haplotype-Trait Association
Combined Prob Prob
Number Haplotype TraitlFreq Trait2Freq Freq Chisq Chisq Exact
1 1-1-2 0.00000 0.03571 0.00000 0 1.0000 1.0000
2 1-1-7 0.00000 0.00000 0.01000 1.0101 0.3149 0.3800
3 1-1-10 0.00000 0.00000 0.01950 1.9883 0.1585 0.3400
4 1-2-1 0.00000 0.01786 0.03000 2.3686 0.1238 0.3000
5 1-2-2 0.00000 0.05357 0.01000 6.0967 0.0135 0.0500
6 1-2-3 0.00000 0.00000 0.00000 0.001666 0.9674 0.6500
7 1-2-5 0.00000 0.00000 0.01000 1.0101 0.3149 0.3400
8 1-2-7 0.00000 0.05357 0.00000 0 1.0000 1.0000
9 1-2-10 0.00000 0.01786 0.00000 0 1.0000 1.0000
10 1-2-12 0.00000 0.00000 0.00000 0 1.0000 1.0000
11 1-3-1 0.00694 0.00000 0.00000 0 1.0000 1.0000
12 1-3-2 0.00000 0.01786 0.01000 0.9019 0.3423 0.4000
13 1-3-3 0.02777 0.00000 0.02000 0.7934 0.3731 0.7700
14 1-3-4 0.00000 0.00000 0.00000 0 1.0000 1.0000
15 1-3-7 0.04167 0.00000 0.02045 2.2035 0.1377 0.1000
16 1-3-9 0.00000 0.01786 0.00000 0 1.0000 1.0000
17 1-3-10 0.00000 0.00000 0.00000 7.8011E-8 0.9998 0.9500
18 1-3-12 0.01389 0.00000 0.01006 0.3905 0.5320 0.8700
19 1-4-1 0.01389 0.00000 0.00000 0 1.0000 1.0000
20 1-4-12 0.00000 0.00000 0.00000 0 1.0000 1.0000

Output 8.4.2 displays the table “Test for Haplotype-Trait Association” as a SAS data set by using the
ODS system in order to show only the first 20 rows. The table contains haplotypes at markers 10, 11,
and 12 and their estimated frequencies among individuals with the first trait value, individuals with
the second trait value, and all individuals. The chi-square statistic testing whether the frequencies
between the two trait groups are significantly different is also shown, along with its 1 df p-value.
Note that none of the haplotypes shown here have an association with disease status significant at
the 0.05 level according to the approximations of exact p-values.
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Example 8.5: Creating a Data Set for a Regression Model

Another approach to testing haplotypes for association with a phenotype uses a regression model,
which can be more powerful than the omnibus chi-square test performed in PROC HAPLOTYPE
(Schaid et al. 2002; Zaykin et al. 2002). The output data set produced by PROC HAPLOTYPE
can easily be transformed into one that can be used by one of the regression procedures offered by
SAS/STAT. This approach can be used for quantitative traits as well as binary or ordinal traits.

Here is an example data set that can be analyzed using PROC HAPLOTYPE:

data alleles;
input (al-a6)
datalines;

B
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The following code creates an output data set containing individuals’ probabilities of having partic-
ular haplotype pairs, with the ID statement and OUTID option indicating that this data set includes
the disease variable from the input data set and a unique identifier for each individual assigned by
PROC HAPLOTYPE, respectively. An omnibus test for association between the three markers and
disease status is also performed.

proc haplotype data=alleles out=out outid;
var al-a6;
trait disease;
id disease;

run;

This code executes the omnibus marker-trait association test whose p-value is given by the chi-
square distribution.

Output 8.5.1 Testing for an Overall Marker-Trait Association

The HAPLOTYPE Procedure

Tests for Haplotype-Trait Association

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square Chisqg
1 1 29 7 -68.11558
2 0 14 7 -37.28544
Combined 43 7 -115.48338 20.1647 0.0052

Output 8.5.1 shows that there is a significant overall association between the markers and the trait,
disease status. However, the more powerful score test for regression can be implemented by using
the following code to perform a test for additive effects of the marker haplotypes.
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data outl;

set out;

haplotype=tranwrd (haplotypel,’'-",’'_");
run;

data out2;

set out;

haplotype=tranwrd (haplotype2,’'-',’_");
run;

data outnew;
set outl out2;
run;

proc sort data=outnew;
by haplotype;
run;

data outnew2;
set outnew;
lagh=1lag (haplotype) ;
if haplotype ne lagh then num+l;
hapname=compress ("H" | |[num,’ ');
run;

proc sort data=outnew2;
by _id_ haplotype;
run;

data outt;
set outnew2;
by _id_ haplotype;
if first.haplotype then totprob=prob/2;
else totprob+prob/2;
if last.haplotype;
run;

proc transpose data=outt out=outreg(drop=_NAME ) ;
id hapname;
idlabel haplotype;
var totprob;
by _id_ disease;
run;

data htr;

set outreg;

array h{8};

do i=1 to 8;

if h{i}=. then h{i}=0;

end;

keep _id_disease hl-h8;
run;



168 4 Chapter 8: The HAPLOTYPE Procedure

proc print data=htr noobs round label;
run;

proc logistic data=htr descending;
model disease = hl-h8 / selection=stepwise;
run;

This SAS code produces a data set htr from the output data set of PROC HAPLOTYPE that contains
the variables needed to be able to perform a regression analysis. There is now one column for
each possible haplotype in the sample, with each column containing the haplotype’s frequency, or
probability, within an individual.

The data set shown in Output 8.5.2 can now be used in one of the regression procedures offered
by SAS/STAT. In this example, since the trait is binary, the LOGISTIC procedure can be used to
perform a regression on the variable disease. The REG procedure could be used in a similar manner
to analyze a quantitative trait.
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Output 8.5.2 Regression Data Set

The HAPLOTYPE Procedure
Tests for Haplotype-Trait Association
Individual

ID disease A B C ABc aBC aBc AbC Abc abc ablydcCc
1 1 0.29 0.21 0.21 0.29 0.00 0.00 0.00 0.00
2 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
3 0 0.00 0.27 0.00 0.23 0.00 0.23 0.27 0.00
4 1 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
5 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
6 0 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
7 1 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
8 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
9 1 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00
10 0 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00
11 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
13 0 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00
14 1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
16 0 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
17 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
18 1 0.00 0.27 0.00 0.23 0.00 0.23 0.27 0.00
19 1 0.29 0.21 0.21 0.29 0.00 0.00 0.00 0.00
20 0 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
21 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
23 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
24 0 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
25 0 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00
26 1 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
27 0 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
28 1 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
29 1 0.01 0.00 0.49 0.00 0.49 0.00 0.00 0.01
30 1 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
31 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
32 1 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00
33 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
34 1 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
35 1 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00
36 1 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00
37 0 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
38 0 0.01 0.00 0.49 0.00 0.49 0.00 0.00 0.01
39 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
40 0 0.00 0.27 0.00 0.23 0.00 0.23 0.27 0.00
41 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
42 1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
43 1 0.29 0.21 0.21 0.29 0.00 0.00 0.00 0.00

Output 8.5.3 shows two of the tables produced by PROC LOGISTIC. The first one displays the
test of the global null hypothesis, , = 0. You can see that the score test indicates a significant
association between the haplotypes at the three markers and disease status. In particular, the second
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table shows that as a result of the stepwise selection, the haplotype H8 (a-b-c) has a statistically
significant effect on disease status. This is an example of how a regression analysis can be used to
detect association in a similar manner to the LRT implemented by PROC HAPLOTYPE.

Output 8.5.3 PROC LOGISTIC Output

The HAPLOTYPE Procedure
Tests for Haplotype-Trait Association
The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSqg
Likelihood Ratio 6.1962 1 0.0128
Score 6.3995 1 0.0114
Wald 4.9675 1 0.0258

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSqg
Intercept 1 1.1986 0.4058 8.7224 0.0031
H8 1 -6.3249 2.8378 4.9675 0.0258

Example 8.6: Using the Tall-Skinny Data Format

This example uses the data from the example Testing for Marker-Trait Associations, with the data
now in the tall-skinny format. When this format is used, BY groups can be created in order to
estimate haplotype frequencies in nonoverlapping windows of marker loci instead of using a macro
as shown in the other example; here four sets of three loci are examined, but in general, loci with
the same value of the BY variable are included in the same analysis, so sets of varying sizes can be
used as well. The following DATA step is used to input the data.
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data gaw_tall;
input hap_win markername $ id status $ allelel allele2;

datalines;
1 markerl 1 U 8 4
1 markerl 2 U 5 9
1 markerl 3 A 8 2
1 markerl 4 U 7 8
1 markerl 5 U 9 2
1 markerl 6 U 2 7
1 markerl 7 U 7 7

. more lines
4 markerl2 43 U 3 10
4 markerl2 44 U 12 6
4 markerl2 45 A 5 2
4 markerl2 46 U 9 7
4 markerl2 47 U 10 1
4 markerl2 48 U 10 12
4 markerl2 49 U 12 7
4 markerl2 50 U 1 10

’

Using the options TALL, MARKER=, and INDIV=, along with the BY statement to indicate the
BY variable representing haplotype windows, the same analysis shown in Testing for Marker-Trait
Associations can be performed on the 50 individuals typed at 12 markers by using the following
code, where sets of three loci at a time are tested for an association with the trait.
proc haplotype data=gaw_tall tall marker=markername indiv=id noprint;

var allelel allele2;

by hap_win;

trait status;

run;

This produces the same numerical results as those shown in Output 8.4.1.
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Overview: HTSNP Procedure

Single nucleotide polymorphism (SNP) is the most abundant form of genetic variation and accounts
for about 90% of human DNA polymorphism. There is roughly one SNP per 1 kilobase in the human
genome. Studies of human haplotype variations that use SNPs over large genomic regions suggest
the presence of discrete blocks with limited haplotype diversity punctuated by recombination hot
spots. The intrablock linkage disequilibrium (LD) decreases only gradually with distance, while the
interblock LD decays much more rapidly. Within each block, because of high LD, some allele(s)
might always be coexistent with a particular allele at another locus such that (1) little haplotype
diversity exists in the block, and (2) not all SNPs will be essential in characterizing the haplotype
structure in the block. Therefore, the most common haplotypes could usually be captured by a small
subset of SNPs, termed haplotype tagging SNPs (htSNPs) by Johnson et al. (2001).

The selection of such a SNP subset that distinguishes all haplotypes, however, is known as the
minimum test set problem and is NP-complete. The search space of choosing & SNPs out of M
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is (A,;I ) = %, for which enumerating all possible k-SNP combinations becomes impracti-
cal even for moderate numbers of M and k. The HTSNP procedure implements some heuristic
algorithms for fast identification of an optimal subset of SNPs without mining through all possible
combinations. An exhaustive search algorithm throughout the (A];I) search space is also provided in

PROC HTSNP.

Getting Started: HTSNP Procedure

Example

The following haplotypes from markers at the CTLA4 locus (Johnson et al. 2001) can be read into a
SAS data set as follows:

data ctla4;
input (ml-ml2) ($) freq;

datalines;
CTAAGCCACCAGDO0.333
TTAGGCCGCTGG 0.224
TCAGGCCGCTGG 0.058
TTAAGCCGCTGG 0.020
CTAAGTCACCAG0.080
CTAGGTCACCAG 0.017
CTAGGCCACCAGDO0.045
TTAGGCCACCAGO0.018
CTGGACTATCGAO0.086
CTGGACCATCGAO0.054
CTGGACCACCGADO.021

~.

You can now use PROC HTSNP to search a subset of markers that explains most of the haplotype
diversity in this sample. The following statements perform the search:

proc htsnp data=ctla4 size=5 method=im
cutoff=0.05 seed=244 conv=0.99;
var ml-ml2;
freq freq;
run;

The iterative maximization algorithm is selected as the search method with the METHOD=IM
option. The SIZE=5 option indicates that only subsets containing exactly five SNPs are considered
in the search. All haplotypes in the data set with a frequency below 0.05 are excluded from the
search process because the CUTOFF=0.05 option was specified. The search continues until the
convergence criterion of 0.99 is met as specified in the CONV= option. The iterative maximization



Example 4 175

algorithm randomly selects an initial set of markers, so using different seeds can produce different

results.

The results from the procedure are shown in Figures 9.1 and 9.2.

Figure 9.1 Marker Summary for PROC HTSNP
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The HTSNP Procedure

Marker Summary

Allele Frequency Diversity
Cc 0.6653 0.4454
T 0.3347 0.4454
Cc 0.0607 0.1140
T 0.9393 0.1140
A 0.8316 0.2801
G 0.1684 0.2801
A 0.4529 0.4956
G 0.5471 0.4956
A 0.1684 0.2801
G 0.8316 0.2801
Cc 0.8985 0.1823
T 0.1015 0.1823
Cc 0.9100 0.1637
T 0.0900 0.1637
A 0.6841 0.4322
G 0.3159 0.4322
Cc 0.8536 0.2500
T 0.1464 0.2500
Cc 0.6841 0.4322
T 0.3159 0.4322
A 0.5157 0.4995
G 0.4843 0.4995
A 0.1684 0.2801
G 0.8316 0.2801

Figure 9.1 displays the summary of the marker loci for this sample. This includes the frequency of
each allele and the gene diversity at each marker.
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Figure 9.2 htSNP Evaluation

htSNP Evaluation

Rank HTSNP1 HTSNP2 HTSNP3 HTSNP4 HTSNP5 PDE

1 m2 m3 mé m7 m8 1.0000

Figure 9.2 displays the ODS table containing the set of five SNPs that were selected as the htSNPs;
these five markers correspond to those selected by Johnson et al. (2001).

Syntax: HTSNP Procedure

The following statements are available in PROC HTSNP.

PROC HTSNP < options> ;
BY variables ;
FREQ variable ;
VAR variables ;

Items within angle brackets (< >) are optional, and statements following the PROC HTSNP state-
ment can appear in any order. Only the VAR statement is required.

PROC HTSNP Statement

PROC HTSNP < options > ;

You can specify the following options in the PROC HTSNP statement.

BEST=number

specifies the number of the best selections displayed in the “htSNP Evaluation” table during
an exhaustive or simulated annealing search process when METHOD=EX or SA, respec-
tively, is specified. The number must be a positive integer. By default, only one best selection
is reported. Note that sets of SNPs with the same value of the criterion measure as the last
displayed set(s) are not necessarily all shown since number indicates the number of sets actu-
ally displayed. If number is greater than the number of possible sets when METHOD=EX or
greater than the number of sets examined when METHOD=SA, there are fewer than number
sets displayed.

CONV=number
specifies the convergence criterion for search of htSNPs, where 0 < number < 1. The search
process is stopped when the haplotype criterion is greater than or equal to number specified
in the CONV= option. The default value is 0.90. When METHOD=SA or METHOD=EX
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is specified, the CONV= option is ignored and the searching continues until the annealing
schedule is finished or the whole search space is traversed.

CRITERION=PDE | RSQH

CRIT=PDE | RSQH
indicates the criterion to use for evaluating candidate sets of htSNPs. By default or when
CRITERION=PDE is specified, the proportion of diversity explained (PDE) is used (Clayton
2002). When CRITERION=RSQH, Stram et al.’s R% is used to measure haplotype richness
(2003). See the section “Evaluating Sets of htSNPs” on page 180 for more information about
these measures.

CUTOFF=number
specifies a lower bound on a haplotype’s frequency in order for that haplotype to be included
in the search process for sets of htSNPs. The value of number must be between 0 and 1. By
default, all haplotypes from the sample are included in the search process.

DATA=SAS-data-set
names the input SAS data set to be used by PROC HTSNP. The default is to use the most
recently created data set.

MAXSIZE=number
specifies the maximum number of markers to be included in the subset for incremental search
by default or when METHOD=INCR is specified. The number must be a positive integer
that is less than or equal to the number of markers specified in the VAR statement. Searching
is carried out until convergence is reached according to the convergence criterion, or until
number of markers have been included in the subset.

METHOD=INCR | INCREMENTAL
METHOD=DECR | DECREMENTAL
METHOD=EX | EXHAUSTIVE
METHOD=IM | ITERMAX

METHOD=SA | SIMANNEAL
indicates the method used for core marker set selection. By default or when METHOD=INCR
is specified, the incremental search algorithm is used. When METHOD=DECR, the decre-
mental algorithm is used. When METHOD=EX, the exhaustive search algorithm is used.
When METHOD=IM, the iterative maximization algorithm is used. When METHOD=SA,
the simulated annealing search algorithm is used. See the section “Search Algorithms” on
page 181 for more information about these methods.

NOSUMMARY

NOSUMM
suppresses the display of the “Marker Summary” table.

SCHEDULE=number
specifies the number of reconfigurations used in each annealing step when METHOD=SA.
The value for number must be a positive integer. The default value is 100 x (number of
variables specified in the VAR statement).
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SEED=number
specifies the initial seed for the random number generator used for the sampling of markers.
The value for number must be an integer; the computer clock time is used if the option is
omitted or an integer less than or equal to O is specified. For more details about seed values,
see SAS Language Reference: Concepts.

SIZE=number
specifies the size of the subset of markers to select. The value for number must be a positive
integer that is less than or equal to the number of markers specified in the VAR statement.
The SIZE= option must be specified for an exhaustive search, iterative maximization search,
and simulated annealing search.

STEP=number
specifies the steps used for simulated annealing search when METHOD=SA. The value for
number must be a positive integer. The default value is 1.

TEMPERATURE=number

T=number
specifies the temperature used for the simulated annealing search when METHOD=SA is
specified. The value for number must be a positive number. The default value is 1.

TFACTOR=number
specifies the factor by which the temperature is reduced for each annealing step during simu-
lated annealing search when METHOD=SA. The value for number must satisfy 0 < number
< 1. The default value is 0.90.

BY Statement

BY variables ;

You can specify a BY statement with PROC HTSNP to obtain separate analyses on observations in
groups defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in the order of the BY variables. The variables are one or more variables in the
input data set.

If your input data set is not sorted in ascending order, use one of the following alternatives:

o Sort the data by using the SORT procedure with a similar BY statement.

o Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
the HTSNP procedure. The NOTSORTED option does not mean that the data are unsorted
but rather that the data are arranged in groups (according to values of the BY variables) and
that these groups are not necessarily in alphabetical or increasing numeric order.

e Create an index on the BY variables by using the DATASETS procedure (in Base SAS soft-
ware).
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For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.

FREQ Statement

FREQ variable ;

The FREQ statement identifies the variable that indicates the frequency for each haplotype. If there
is no FREQ statement, the frequency of each distinct haplotype is calculated by dividing its count
by the total haplotype count. When a frequency value is missing or negative, the corresponding
haplotype is ignored.

VAR Statement

VAR variables ;

The VAR statement identifies the variables, one for each marker, containing the marker alleles that
construct the haplotypes. Two or more variables must be specified.

Details: HTSNP Procedure

Statistical Computations

Diversity
Let f1,..., fn represent the proportional frequencies of the n unique M -locus haplotypes in the
input data set. The locus or allelic diversity D1, ..., Dy for the M individual loci and the overall

haplotype diversity D can be calculated as

D = 3.5 fifi Whim # hjm)

i=1j=1

M
D = ZDm
m=1

where h;,, is the allele of the ith haplotype observed at the mth locus and the indicator function I()
equals 1 when true and 0 otherwise (Clayton 2002).
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Based on a selected subset of k¥ SNPs, the n observed haplotypes can be partitioned into 7" distinct
groups. Let 7; represent the set of haplotypes in group t = 1,...,7, where each set contains
all haplotypes that have identical alleles at the k selected loci. The residual diversity is calculated
by Clayton (2002) by summing the within-group diversity over the T groups, again both for the
individual loci and over all haplotypes:

T
Ru = Y 3 > fifi Whim # hjm)

t=1i€7; jeT;

M
R:ZRm

m=1
where m =1, ..., M. Note that R,, = 0 if locus m is one of the k selected SNPs.

Evaluating Sets of htSNPs

One of two criteria for finding the optimal set of htSNPs can be selected with the CRITERION= op-
tion. Using the diversity measures previously defined, the proportion of diversity explained (PDE)
by a candidate SNP set can be calculated to evaluate the goodness of the set (Clayton 2002):

R
PDE=1- —
D

The higher (that is, closer to 1) the value of PDE is, the better the set of htSNPs is for explaining
the diversity among the haplotypes.

Alternatively, the approach of Stram et al. (2003) is implemented when CRITERION=RSQH. For
these computations, define &5 (H;) to be the actual number of copies of haplotype /4 that an indi-
vidual with the M -locus haplotype pair H; (usually unknown) and genotype G; carries. Assuming
Hardy-Weinberg equilibrium, this can be estimated as

> jem; Su(hy hS) f7 1
ZjGHl’ f] fJCl

E[8,(H:)IGi] =

where H; is the set of haplotype pairs, /; and its complement h;i , compatible with genotype G;.
Then RI% can be defined as follows for each haplotype &:

> VarlE[§u(H)IGily _ XAlEGR(H)IGHI Pr(Gi)} — 4f;2

h 2/p(1 = fn) 2fp(L = fa)
with G; representing each possible k-locus genotype at the selected SNPs and Pr(G;) =
Yjen Jif ]f”. The set of k& SNPs with the highest (that is, closest to 1) value of miny, Ri is

selected as the best set of htSNPs, for it optimizes the predictability of the common haplotypes
(Stram et al. 2003).
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Search Algorithms
Incremental Search

The incremental search algorithm starts with finding a first marker that has maximum locus richness
and then goes through the remaining markers to find the next one that brings the greatest increase in
the criterion measure, PDE or R,Zl. The selected markers are kept and the search process is continued
using the remaining ones, one marker being added at a time, until a convergence criterion is met.

Decremental Search

The decremental search operates in an opposite manner from the incremental search. Starting with
all M markers, one marker that causes the smallest loss in the criterion measure is excluded each
time and the rest of the markers are kept. The exclusion process is continued until the criterion
measure falls below a predefined criterion; the last set with the measure above the criterion is
reported.

lterative Maximization Search

The iterative maximization search (Gouesnard et al. 2001) is a fast algorithm for choosing an op-
timal k-subset from M accessions. The algorithm starts from a random selection of £ markers for
which all the core collections of size k — 1 are tested. The subset with the highest criterion measure
is retained. Among the other M — k markers, one that brings the greatest increase in the goodness
criterion is selected and a new k-locus set is obtained. Exclusion and inclusion of one marker in
the new k-locus set are repeated until convergence. Each iteration needs to evaluate the criterion
measure k times for k — 1 markers and M — k times for k markers.

Simulated Annealing Search

Simulation annealing (Kirkpatrick, Gelatt, and Vecchi 1983) has been adopted in many combinato-
rial optimization problems. The global optimum could be approximated with simulated annealing
by using a proper annealing schedule. Starting from a selection of k markers (the selection could
be random or obtained from a previously mentioned algorithm), one marker is randomly swapped
with another from the unselected markers. The change of haplotype goodness is evaluated using an
energy function for the marker exchange. Acceptance of the exchange is judged with the Metropolis
criterion (Metropolis et al. 1953), and

A<0

Pr{new point is accepted} = e)’ip(—A/ r), A>0

where A is the change of energy function and 7 is the annealing temperature.
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Exhaustive Search

An exhaustive search of k markers from M involves traversal of all (Akl ) possible selections once
and only once. The traversal is implemented in lexicographical order (Nijenhuis and Herbert 1978).
Let S; = (s1,52,...,5%) denote a selection i, where 1 < s;; < M is the index of the jth ele-
ment in selection i. Lexicographical traversal of all k subsets then starts with (1,2,...,k — 1,k),
(1,2,....,.k—1,k+1),andends with (M —k +1, M -k +2,....M —1,M).

Missing Values

An M -locus haplotype is considered to be partially missing if any, but not all, of the alleles are
missing. A haplotype that is missing all the alleles is dropped from any analysis.

Displayed Output

This section describes the displayed output from PROC HTSNP. See the “ODS Table Names” on
page 183 section for details about how this output interfaces with the Output Delivery System.

Marker Summary

The “Marker Summary” table lists the following information for each marker allele:

e [ocus, the name of the marker locus
o Allele, the allele
e Frequency, the frequency of the allele

e Diversity, the gene diversity of the marker

HTSNP Evaluation

The “htSNP Evaluation” table displays the best set(s) of htSNPs according to the criterion specified
in the CRITERION= option.
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ODS Table Names

PROC HTSNP assigns a name to each table it creates, and you must use this name to reference the
table when using the Output Delivery System (ODS). These names are listed in Table 9.1.

Table 9.1 ODS Tables Created by the HTSNP Procedure

ODS Table Name Description Statement or Option
MarkerSummary ~ Marker Summary default
HTSNPEvaluation htSNP Evaluation default

Example: HTSNP Procedure

Example 9.1: Using the HAPLOTYPE and HTSNP Procedures Together

Before using PROC HTSNP, you might need to run PROC HAPLOTYPE (see Chapter 8, “The
HAPLOTYPE Procedure,” for more details) if you have data with unknown phase in order to esti-
mate the haplotype frequencies. This example demonstrates how output from PROC HAPLOTYPE
can be manipulated to be in the appropriate form for an input data set for PROC HTSNP.

The following data set contains 150 individuals with genotypes at 13 SNPs that were simulated to
mimic the frequencies of SNPs in the CASP8 gene (Johnson et al. 2001).

data caspS8;

input id (ml-ml13) ($);

datalines;
1Tt/TT/T A/G G/G C/G A/G A/G G/C C/C G/G A/A A/G A/C
2 g/T T/T A/G T/G C/G G/G G/G Cc/C Cc/C G/G A/A A/G C/C
3r/T C/T G/A G/G C/C G/A G/G C/G C/C G/G A/A A/A C/A

. more lines ...

150 T/T T/T A/A G/G C/C A/A A/G G/G C/C G/G A/A A/A A/A

4

The following code can be used to first estimate haplotype frequencies by using the EM algorithm,
and then to identify the haplotype tag SNPs.
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ods output haplotypefreqg=freqout (keep=haplotype freq);
proc haplotype data=casp8 genocol cutoff=0.0075;

var ml-ml3;
run;

data hapfreq;
set freqout;
array m{13} $ 1;
do i =1 to 13;
m{i} = substr (haplotype, 2*i-1, 1);
end;
drop haplotype i;
run;

proc htsnp data=hapfreq size=4 method=sa best=5 cutoff=0.05
seed=123 nosumm;
var ml-ml3;
freq freq;
run;

The ODS statement is used to create a data set from the “Haplotype Frequencies” ODS table, which
is displayed in its table form in Output 9.1.1.

Output 9.1.1 ODS Table Containing Haplotype Frequencies

The HAPLOTYPE Procedure
Haplotype Frequencies
Standard 95% Confidence
Number Haplotype Freq Error Limits

1 G-T-A-T-C-G-G-C-C-G-A-A-C 0.01988 0.00807 0.00406 0.03570
2 T-C-G-G-C-G-G-C-C-G-A-A-C 0.09173 0.01669 0.05902 0.12445
3 T-T-A-G-C-A-A-G-C-G-A-A-A 0.16666 0.02155 0.12442 0.20890
4 T-T-A-G-C-A-G-G-C-G-A-A-A 0.05667 0.01337 0.03046 0.08287
5 T-T-A-G-C-A-G-G-C-G-G-A-A 0.03663 0.01086 0.01534 0.05793
6 T-T-G-G-C-A-G-G-C-G-A-A-A 0.01579 0.00721 0.00166 0.02992
7 T-T-G-G-C-G-G-C-C-G-A-A-C 0.40576 0.02840 0.35011 0.46142
8 T-T-G-G-C-G-G-G-T-C-A-A-A 0.02667 0.00932 0.00841 0.04493
9 T-T-G-G-C-G-G-G-T-G-A-A-A 0.00861 0.00534 0.00000 0.01908
10 T-T-G-G-G-G-G-C-C-G-A-G-C 0.16250 0.02133 0.12069 0.20432

With this table in the form of a SAS data set, the preceding DATA step code can be used to convert it
to an input data set for PROC HTSNP, using the estimated frequencies from PROC HAPLOTYPE
as the FREQ variable. In this example, the simulated annealing search method is specified for
finding the best sets of size four. The “htSNP Evaluation” table that is created by PROC HTSNP is
displayed in Output 9.1.2 to show the best five sets of SNPs that were selected.
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Output 9.1.2 Candidate Sets of htSNPs from PROC HTSNP

The HTSNP Procedure

htSNP Evaluation

Rank HTSNP1 HTSNP2 HTSNP3 HTSNP4 PDE
1 m2 m5 m7 ml3 1.0000
1 m2 m7 m8 ml2 1.0000
1 m2 m5 m7 m8 1.0000
1 m2 m7 ml2 ml3 1.0000
1 m2 m5 mé m7 1.0000

Note that the last selection shown in Output 9.1.2 matches the set of htSNPs found by Johnson et
al. (2001).
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Overview: INBREED Procedure

The INBREED procedure calculates the covariance or inbreeding coefficients for a pedigree. PROC
INBREED is unique in that it handles very large populations.

The INBREED procedure has two modes of operation. One mode carries out analysis on the as-
sumption that all the individuals belong to the same generation. The other mode divides the popu-
lation into nonoverlapping generations and analyzes each generation separately, assuming that the
parents of individuals in the current generation are defined in the previous generation.
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PROC INBREED also computes averages of the covariance or inbreeding coefficients within sex
categories if the sex of individuals is known.

Getting Started: INBREED Procedure

This section demonstrates how you can use the INBREED procedure to calculate the inbreeding
or covariance coefficients for a pedigree, how you can control the analysis mode if the population
consists of nonoverlapping generations, and how you can obtain averages within sex categories.

For you to use PROC INBREED effectively, your input data set must have a definite format. The
following sections first introduce this format for a fictitious population and then demonstrate how
you can analyze this population by using the INBREED procedure.

The Format of the Input Data Set

The SAS data set used as input to the INBREED procedure must contain an observation for each
individual. Each observation must include one variable identifying the individual and two variables
identifying the individual’s parents. Optionally, an observation can contain a known covariance
coefficient and a character variable defining the gender of the individual.

For example, consider the following data:

data Population;
input Individual $ Parentl $ Parent2 §$
Covariance Sex $ Generation;

datalines;
Mark George Lisa . M 1
Kelly Scott Lisa F 1
Mike George Amy . M 1
. Mark Kelly 0.50 . 1
David Mark Kelly M 2
Merle Mike Jane . F 2
Jim Mark Kelly 0.50 M 2
Mark Mike Kelly M 2

’

It is important to order the pedigree observations so that individuals are defined before they are used
as parents of other individuals. The family relationships between individuals cannot be ascertained
correctly unless you observe this ordering. Also, older individuals must precede younger ones. For
example, ‘Mark’ appears as the first parent of ‘David’ at observation 5; therefore, his observation
needs to be defined prior to observation 5. Indeed, this is the case (see observation 1). Also, ‘David’
is older than ‘Jim’, whose observation appears after the observation for ‘David’, as is appropriate.
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In populations with distinct, nonoverlapping generations, the older generation (parents) must pre-
cede the younger generation. For example, the individuals defined in Generation=1 appear as parents
of individuals defined in Generation=2.

PROC INBREED produces warning messages when a parent cannot be found. For example, ‘Jane’
appears as the second parent of the individual ‘Merle’ even though there are no previous observa-
tions defining her own parents. If the population is treated as an overlapping population, that is, if
the generation grouping is ignored, then the procedure inserts an observation for ‘Jane’ with missing
parents just before the sixth observation, which defines ‘Merle’ as follows:

Jane . F 2
Merle Mike Jane F 2
However, if generation grouping is taken into consideration, then ‘Jane’ is defined as the last obser-

vation in Generation=1, as follows:

Mike George Amy . M 1
Jane . . . F 1

In this latter case, however, the observation for ‘Jane’ is inserted after the computations are reported
for the first generation. Therefore, she does not appear in the covariance/inbreeding matrix, even
though her observation is used in computations for the second generation (see Figure 10.2).

If the data for an individual are duplicated, only the first occurrence of the data is used by the
procedure, and a warning message is displayed to note the duplication. For example, individual
‘Mark’ is defined twice, at observations 1 and 8. If generation grouping is ignored, then this is
an error and observation 8 is skipped. However, if the population is processed with respect to two
distinct generations, then ‘Mark’ refers to two different individuals, one in Generation=1 and the
other in Generation=2.

If a covariance is to be assigned between two individuals, then those individuals must be defined
prior to the assignment observation. For example, a covariance of 0.50 can be assigned between
‘Mark’ and ‘Kelly’ since they are previously defined. Note that assignment statements must have
different formats depending on whether the population is processed with respect to generations
(see the section “DATA= Data Set” on page 198 for further information). For example, while
observation 4 is valid for nonoverlapping generations, it is invalid for a processing mode that ignores
generation grouping. In this latter case, observation 7 indicates a valid assignment, and observation
4 is skipped.

The latest covariance specification between any given two individuals overrides the previous one
between the same individuals.
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Performing the Analysis

To compute the covariance coefficients for the overlapping generation mode, use the following
statements:

proc inbreed data=Population covar matrix init=0.25;
run;

Here, the DATA= option names the SAS data set to be analyzed, and the COVAR and MATRIX
options tell the procedure to output the covariance coefficients matrix. If you omit the COVAR
option, the inbreeding coefficients are output instead of the covariance coefficients.

Note that the PROC INBREED statement also contains the INIT= option. This option gives an
initial covariance between any individual and unknown individuals. For example, the covariance
between any individual and ‘Jane’ would be 0.25, since ‘Jane’ is unknown, except when ‘Jane’
appears as a parent (see Figure 10.4).
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Figure 10.1 Analysis for an Overlapping Population

The INBREED Procedure

Covariance Coefficients

Individual Parentl Parent2 George Lisa Mark Scott Kelly
George 1.1250 0.2500 0.6875 0.2500 0.2500
Lisa 0.2500 1.1250 0.6875 0.2500 0.6875
Mark George Lisa 0.6875 0.6875 1.1250 0.2500 0.5000
Scott 0.2500 0.2500 0.2500 1.1250 0.6875
Kelly Scott Lisa 0.2500 0.6875 0.5000 0.6875 1.1250
Amy 0.2500 0.2500 0.2500 0.2500 0.2500
Mike George Amy 0.6875 0.2500 0.4688 0.2500 0.2500
David Mark Kelly 0.4688 0.6875 0.8125 0.4688 0.8125
Jane 0.2500 0.2500 0.2500 0.2500 0.2500
Merle Mike Jane 0.4688 0.2500 0.3594 0.2500 0.2500
Jim Mark Kelly 0.4688 0.6875 0.8125 0.4688 0.8125

Covariance Coefficients

Individual Parentl Parent2 Amy Mike David Jane Merle
George 0.2500 0.6875 0.4688 0.2500 0.4688
Lisa 0.2500 0.2500 0.6875 0.2500 0.2500
Mark George Lisa 0.2500 0.4688 0.8125 0.2500 0.3594
Scott 0.2500 0.2500 0.4688 0.2500 0.2500
Kelly Scott Lisa 0.2500 0.2500 0.8125 0.2500 0.2500
Amy 1.1250 0.6875 0.2500 0.2500 0.4688
Mike George Amy 0.6875 1.1250 0.3594 0.2500 0.6875
David Mark Kelly 0.2500 0.3594 1.2500 0.2500 0.3047
Jane 0.2500 0.2500 0.2500 1.1250 0.6875
Merle Mike Jane 0.4688 0.6875 0.3047 0.6875 1.1250
Jim Mark Kelly 0.2500 0.3594 0.8125 0.2500 0.3047

Covariance Coefficients

Individual Parentl Parent2 Jim
George 0.4688
Lisa 0.6875
Mark George Lisa 0.8125
Scott 0.4688
Kelly Scott Lisa 0.8125
Amy 0.2500
Mike George Amy 0.3594
David Mark Kelly 0.8125
Jane 0.2500
Merle Mike Jane 0.3047
Jim Mark Kelly 1.2500
Number of Individuals 11

In the previous example, PROC INBREED treats the population as a single generation. However,
you might want to process the population with respect to distinct, nonoverlapping generations. To
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accomplish this, you need to identify the generation variable in a CLASS statement, as shown by
the following statements:

proc inbreed data=Population covar matrix init=0.25;
class Generation;
run;

Note that, in this case, the covariance matrix is displayed separately for each generation (see
Figure 10.5).

Figure 10.2 Analysis for a Nonoverlapping Population

The INBREED Procedure
Generation =1
Covariance Coefficients
Individual Parentl Parent2 Mark Kelly Mike
Mark George Lisa 1.1250 0.5000 0.4688
Kelly Scott Lisa 0.5000 1.1250 0.2500
Mike George Amy 0.4688 0.2500 1.1250
Number of Individuals 3
The INBREED Procedure
Generation = 2
Covariance Coefficients
Individual Parentl Parent2 David Merle Jim Mark
David Mark Kelly 1.2500 0.3047 0.8125 0.5859
Merle Mike Jane 0.3047 1.1250 0.3047 0.4688
Jim Mark Kelly 0.8125 0.3047 1.2500 0.5859
Mark Mike Kelly 0.5859 0.4688 0.5859 1.1250
Number of Individuals 4

You might also want to see covariance coefficient averages within sex categories. This is accom-
plished by indicating the variable defining the gender of individuals in a GENDER statement and
by adding the AVERAGE option to the PROC INBREED statement. For example, the following
statements produce the covariance coefficient averages shown in Figure 10.3:

proc inbreed data=Population covar average init=0.25;
class Generation;
gender Sex;

run;
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Figure 10.3 Averages within Sex Categories for a Nonoverlapping Generation

The INBREED Procedure

Generation =1

On Diagonal

Male X Male 1.1250
Male X Female .

Female X Female 1.1250
Over Sex 1.1250

Number of Males
Number of Females
Number of Individuals

The INBREED Procedure

Generation = 2

On Diagonal

Male X Male 1.2083
Male X Female .

Female X Female 1.1250
Over Sex 1.1875

Number of Males
Number of Females
Number of Individuals

Averages of Covariance Coefficient Matrix in Generation 1

Averages of Covariance Coefficient Matrix in Generation 2

Below Diagonal

0.4688
0.3750
0.0000
0.4063

2

1

3

Below Diagonal

0.6615
0.3594
0.0000
0.5104

=

Syntax: INBREED Procedure

The following statements are available in PROC INBREED:

PROC INBREED < options> ;
BY variables ;
CLASS variable ;
GENDER variable ;

MATINGS individual-list1 / mate-list1 <,. .., individual-listn / mate-listn> ;

VAR variables ;

The PROC INBREED statement is required. Items within angle brackets (< >) are optional. The

syntax of each statement is described in the following sections.
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PROC INBREED Statement

PROC INBREED < options> ;
The options listed in Table 10.1 are available in the PROC INBREED statement.

Table 10.1 INBREED Procedure Options

Task Option
Specify Data Sets DATA=
OUTCOV=
Control Type of Coefficient COVAR
Control Displayed Tables AVERAGE
IND
MATRIX
Specify Default Covariance Value INIT=
Suppress Output INDL
MATRIXL
NOPRINT

AVERAGE

A
produces a table of averages of coefficients for each pedigree of offspring. The AVERAGE
option is used together with the GENDER statement to average the inbreeding/covariance
coefficients within sex categories.

COVAR

C
specifies that all coefficients output consist of covariance coefficients rather than inbreeding
coefficients.

DATA=SAS-data-set
names the SAS data set to be used by PROC INBREED. If you omit the DATA= option, the
most recently created SAS data set is used.

IND

I
displays the individuals’ inbreeding coefficients (diagonal of the inbreeding coefficients ma-
trix) for each pedigree of offspring.
If you also specify the COVAR option, the individuals’ covariance coefficients (diagonal of
the covariance coefficients matrix) are displayed.

INDL

displays individuals’ coefficients for only the last generation of a multiparous population.
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INIT=cov
specifies the covariance value cov if any of the parents are unknown; a value of 0 is assumed
if you do not specify the INIT= option.

MATRIX

M
displays the inbreeding coefficient matrix for each pedigree of offspring.

If you also specify the COVAR option, the covariance matrices are displayed instead of in-
breeding coefficients matrices.

MATRIXL
displays coefficients for only the last generation of a multiparous population.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output
Delivery System (ODS). For more information on ODS, see Chapter 20, “Using the Output
Delivery System” (SAS/STAT User’s Guide).

OUTCOV=SAS-data-set
names an output data set to contain the inbreeding coefficients. When the COVAR option is
also specified, covariance estimates are output to the OUTCOV= data set instead of inbreed-
ing coefficients.

BY Statement

BY variables ;

You can specify a BY statement with PROC INBREED to obtain separate analyses on observations
in groups defined by the BY variables. When a BY statement appears, the procedure expects the
input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

e Sort the data by using the SORT procedure with a similar BY statement.

e Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
PROC INBREED. The NOTSORTED option does not mean that the data are unsorted but
rather that the data are arranged in groups (according to values of the BY variables) and that
these groups are not necessarily in alphabetical or increasing numeric order.

e Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.
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CLASS Statement

CLASS variable ;

To analyze the population within nonoverlapping generations, you must specify the variable that
identifies generations in a CLASS statement. Values of the generation variable, called generation
numbers, must be integers, but generations are assumed to occur in the order of their input in the
input data set rather than in numerical order of the generation numbers. The name of an individual
needs to be unique only within its generation.

When the MATRIXL option or the INDL option is specified, each generation requires a unique
generation number in order for the specified option to work correctly. If generation numbers are
not unique, all the generations with a generation number that is the same as the last generation’s are
output.

GENDER Statement

GENDER variable ;

The GENDER statement specifies a variable that indicates the sex of the individuals. Values of the
sex variable must be character beginning with ‘M’ or ‘F’, for male or female. The GENDER state-
ment is needed only when you specify the AVERAGE option to average the inbreeding/covariance
coefficients within sex categories or when you want to include a gender variable in the OUTCOV=
data set.

PROC INBREED makes the following assumptions regarding the gender of individuals:

e The first parent is always assumed to be the male. See the section “VAR Statement” on
page 197.

e The second parent is always assumed to be the female. See the section “VAR Statement” on
page 197.

o If the gender of an individual is missing or invalid, this individual is assumed to be a female
unless the population is overlapping and this individual appears as the first parent in a later
observation.

Any contradictions to these rules are reported in the SAS log.
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MATINGS Statement

MATINGS individual-list1 / mate-list1 <,. .., individual-listn / mate-listn> ;

You can specify the MATINGS statement with PROC INBREED to specify selected matings of
individuals. Each individual given in individual-list is mated with each individual given in mate-
list. You can write multiple mating specifications if you separate them by commas or asterisks. The
procedure reports the inbreeding coefficients or covariances for each pair of mates. For example,
you can use the following statement to specify the mating of an individual named ‘David’ with an
individual named ‘Jane’:

matings david / jane;

VAR Statement

VAR individual parent1 parent2 < covariance > ;

The VAR statement specifies three or four variables: the first variable contains an individual’s name,
the second variable contains the name of the individual’s first parent, and the third variable contains
the name of the individual’s second parent. An optional fourth variable assigns a known value to
the covariance of the individual’s first and second parents in the current generation.

The first three variables in the VAR statement can be either numeric or character; however, only the
first 12 characters of a character variable are recognized by the procedure. The fourth variable, if
specified, must be numeric.

If you omit the VAR statement, then the procedure uses the first three unaddressed variables as the
names of the individual and its parents. (Unaddressed variables are those that are not referenced in
any other PROC INBREED statement.) If the input data set contains an unaddressed fourth variable,
then it becomes the covariance variable.

Details: INBREED Procedure

Missing Values

A missing value for a parent implies that the parent is unknown. Unknown parents are assumed to
be unrelated and not inbred unless you specify the INIT= option.

When the value of the variable identifying the individual is missing, the observation is not added
to the list of individuals. However, for a multiparous population, an observation with a missing
individual is valid and is used for assigning covariances.
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Missing covariance values are determined from the INIT=cov option, if specified. Observations
with missing generation variables are excluded.

If the gender of an individual is missing, it is determined from the order in which it is listed on the
first observation defining its progeny for an overlapping population. If it appears as the first parent,
it is set to ‘M’; otherwise, it is set to ‘F’. When the gender of an individual cannot be determined, it
is assigned a default value of ‘F’.

DATA= Data Set

Each observation in the input data set should contain necessary information such as the identification
of an individual and the first and second parents of an individual. In addition, if a CLASS statement
is specified, each observation should contain the generation identification; and, if a GENDER state-
ment is specified, each observation should contain the gender of an individual. Optionally, each
observation might also contain the covariance between the first and the second parents. Depending
on how many statements are specified with the procedure, there should be enough variables in the
input data set containing this information.

If you omit the VAR statement, then the procedure uses the first three unaddressed variables in the
input data set as the names of the individual and his or her parents. Unaddressed variables in the
input data set are those variables that are not referenced by the procedure in any other statements,
such as CLASS, GENDER, or BY statements. If the input data set contains an unaddressed fourth
variable, then the procedure uses it as the covariance variable.

If the individuals given by the variables associated with the first and second parents are not in the
population, they are added to the population. However, if they are in the population, they must be
defined prior to the observation that gives their progeny.

When there is a CLASS statement, the functions of defining new individuals and assigning covari-
ances must be separated. This is necessary because the parents of any given individual are defined
in the previous generation, while covariances are assigned between individuals in the current gen-
eration.

Therefore, there could be two types of observations for a multiparous population:

e one to define new individuals in the current generation whose parents have been defined in
the previous generation, as in the following, where the missing value is for the covariance

variable:
Mark George Lisa . M 1
Kelly Scott Lisa . F 1

e one to assign covariances between two individuals in the current generation, as in the follow-
ing, where the individual’s name is missing, ‘Mark’ and ‘Kelly’ are in the current generation,
and the covariance coefficient between these two individuals is 0.50:

Mark Kelly 0.50 . 1
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Note that the observations defining individuals must precede the observation assigning a covariance
value between them. For example, if a covariance is to be assigned between ‘Mark’ and ‘Kelly’,
then both of them should be defined prior to the assignment observation.

Computational Details

This section describes the rules that the INBREED procedure uses to compute the covariance and
inbreeding coefficients. Each computational rule is explained by an example referring to the ficti-
tious population introduced in the section “Getting Started: INBREED Procedure” on page 188.

Coancestry (or Kinship Coefficient)

To calculate the inbreeding coefficient and the covariance coefficients, use the degree of relationship
by descent between the two parents, which is called coancestry or kinship coefficient (Falconer and
Mackay 1996, p.85), or coefficient of parentage (Kempthorne 1957, p.73). Denote the coancestry
between individuals X and Y by fxy. For information on how to calculate the coancestries among
a population, see the section “Calculation of Coancestry” on page 200.

Covariance Coefficient (or Coefficient of Relationship)

The covariance coefficient between individuals X and Y is defined by
Cov(X,Y) = 2 fxy

where fxy is the coancestry between X and Y. The covariance coefficient is sometimes called the
coefficient of relationship or the theoretical correlation (Falconer and Mackay (1996, p.153); Crow
and Kimura (1970, p.134)). If a covariance coefficient cannot be calculated from the individuals in
the population, it is assigned to an initial value. The initial value is set to O if the INIT= option is
not specified or to cov if INIT=cov. Therefore, the corresponding initial coancestry is set to O if the
INIT= option is not specified or to %cov if INIT=cov.

Inbreeding Coefficients

The inbreeding coefficient of an individual is the probability that the pair of alleles carried by
the gametes that produced it are identical by descent (Falconer and Mackay (1996, Chapter 5),
Kempthorne (1957, Chapter 5)). For individual X, denote its inbreeding coefficient by Fx. The
inbreeding coefficient of an individual is equal to the coancestry between its parents. For example,
if X has parents A and B, then the inbreeding coefficient of X is

Fx = faB
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Calculation of Coancestry

Given individuals X and Y, assume that X has parents A and B and that Y has parents C and D. For
nonoverlapping generations, the basic rule to calculate the coancestry between X and Y is given by
the following formula (Falconer and Mackay 1996, p.86):

fxy = % (fac + fap + fBc + fBD)

And the inbreeding coefficient for an offspring of X and Y, called Z, is the coancestry between X
and Y:

F7 = fxy

Figure 10.4 Inbreeding Relationship for Nonoverlapping Population

Scott Lisa George Amy

Zeneration 1

B A el
\ ______ é_éﬁeratiaﬂﬁ
Jim David Mark  Merle

For example, in Figure 10.4, ‘Jim’ and ‘Mark’ from Generation 2 are progenies of ‘Mark’ and
‘Kelly’ and of ‘Mike’ and ‘Kelly’ from Generation 1, respectively. The coancestry between ‘Jim’
and ‘Mark’ is

1

Fark,Mike + fMark,Kelly + fKelly,Mike + fKelly,Kelly)

fJim,Mark = (

From the covariance matrix for Generation=1 in Figure 10.4 and the relationship that coancestry is
half of the covariance coefficient,

0.5

0.25

+ + +1'125 = 0.29298
2 2 2 2 o

1 £0.4688
fJim,Mark = (

4
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For overlapping generations, if X is older than Y, then the basic rule can be simplified to

Fz = fxy = %(fxc + fxp)

That is, the coancestry between X and Y is the average of coancestries between older X with
younger Y’s parents. For example, in Figure 10.5, the coancestry between ‘Kelly’ and ‘David’
is

Sxelty,pavid = = (fKelly,Mark + fKelly,Kelly)

| =

Figure 10.5 Inbreeding Relationship for Overlapping Population

— George
——LBa-—;:
Mark —
— Scoft

Kelly —

— Amy
—— Mike
David —

— Jane

Merle

Jim ——
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This is so because ‘Kelly’ is defined before ‘David’; therefore, ‘Kelly’ is not younger than
‘David’, and the parents of ‘David’ are ‘Mark’ and ‘Kelly’. The covariance coefficient values
Cov(Kelly,Mark) and Cov(Kelly,Kelly) from the matrix in Figure 10.5 yield that the coancestry
between ‘Kelly’ and ‘David’ is

1705 1.125

a=—-[=+—=) =0.40625
fKelly,Dawd ) ( ) + ) )

The numerical values for some initial coancestries must be known in order to use these rule. Either
the parents of the first generation have to be unrelated, with f = 0 if the INIT= option is not
specified in the PROC statement, or their coancestries must have an initial value of %cov, where
cov is set by the INIT= option. Then the subsequent coancestries among their progenies and the
inbreeding coefficients of their progenies in the rest of the generations are calculated by using these
initial values.

Special rules need to be considered in the calculations of coancestries for the following cases.

Self-Mating

The coancestry for an individual X with itself, fxx, is the inbreeding coefficient of a progeny that
is produced by self-mating. The relationship between the inbreeding coefficient and the coancestry
for self-mating is

Jxx = %(1 + Fx)

The inbreeding coefficient Fx can be replaced by the coancestry between X’s parents A and B, fag,
if A and B are in the population:

fxx = %(1 + faB)

If X’s parents are not in the population, then Fx is replaced by the initial value %cov if cov is set
by the INIT= option, or Fx is replaced by 0 if the INIT= option is not specified. For example, the
coancestry of ‘Jim’ with himself is

1

fJim,Jim = 5 (1 + fMark,Kelly)

where ‘Mark’ and ‘Kelly’ are the parents of ‘Jim’. Since the covariance coefficient Cov(Mark,Kelly)
is 0.5 in Figure 10.5 and also in the covariance matrix for GENDER=1 in Figure 10.4, the coancestry
of ‘Jim’ with himself is



Computational Details 4 203

1 0.5
Srm,Jim = 3 (1 + 7) = 0.625

When INIT=0.25, then the coancestry of ‘Jane’ with herself is

1 0.25
fJane,Jane = 5 1+ T = 0.5625

because ‘Jane’ is not an offspring in the population.

Offspring and Parent Mating

Assuming that X’s parents are A and B, the coancestry between X and A is

fxa = %(fAB + faa)

The inbreeding coefficient for an offspring of X and A, denoted by Z, is

Fz = fxa = %(fAB + faa)

For example, ‘Mark’ is an offspring of ‘George’ and ‘Lisa’, so the coancestry between ‘Mark’ and
‘Lisa’ is

fMark,Lisa = (fLisa,George + fLisa,Lisa)

N =

From the covariance coefficient matrix in Figure 10.5, frisa,George = 0.25/2 = 0.125, flisa,Lisa =
1.125/2 = 0.5625, so that

1
SMark,Lisa = 3 (0.125 + 0.5625) = 0.34375

Thus, the inbreeding coefficient for an offspring of ‘Mark’ and ‘Lisa’ is 0.34375.

Full Sibs Mating

This is a special case for the basic rule given at the beginning of the section “Calculation of Coances-
try” on page 200. If X and Y are full sibs with same parents A and B, then the coancestry between
Xand Y is
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fxy = % (2faB + faa + fBB)

and the inbreeding coefficient for an offspring of A and B, denoted by Z, is

Fz = fxy = % (2faB + faa + fBB)

For example, ‘David’ and ‘Jim’ are full sibs with parents ‘Mark’ and ‘Kelly’, so the coancestry
between ‘David’ and ‘Jim’ is

(2 fMark,Kelly + fMark,Mark + fKelly,Kelly)

F -

JDavid,Jim =

Since the coancestry is half of the covariance coefficient, from the covariance matrix in Figure 10.5,

JDavid,Jim =

1 ) 0.5 1.125 1.125
2 2

“(2x =2 22 4 222 ) = 040625
P2 T +2)

Unknown or Missing Parents

When individuals or their parents are unknown in the population, their coancestries are assigned by
the value %cov if cov is set by the INIT= option or by the value 0 if the INIT= option is not specified.
That is, if either A or B is unknown, then

1
SaB = €0V

For example, ‘Jane’ is not in the population, and since ‘Jane’ is assumed to be defined just before
the observation at which ‘Jane’ appears as a parent (that is, between observations 4 and 5), then
‘Jane’ is not older than ‘Scott’. The coancestry between ‘Jane’ and ‘Scott’ is then obtained by using
the simplified basic rule (see the section “Calculation of Coancestry” on page 200):

(fScott,- + fScott,~)

fScott,Jane =

| =

Here, dots (-) indicate Jane’s unknown parents. Therefore, fscoy,. is replaced by %cov, where cov is
set by the INIT= option. If INIT=0.25, then

17025 0.25
fScott,Jane = 5 T + T =0.125

For a more detailed discussion on the calculation of coancestries, inbreeding coefficients, and co-
variance coefficients, refer to Falconer and Mackay (1996), Kempthorne (1957), and Crow and
Kimura (1970).
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OUTCOV= Data Set

The OUTCOV= data set has the following variables:

e alist of BY variables, if there is a BY statement
o the generation variable, if there is a CLASS statement
e the gender variable, if there is a GENDER statement

e _Type_, a variable indicating the type of observation. The valid values of the _Type_ variable
are ‘COV’ for covariance estimates and ‘INBREED’ for inbreeding coefficients.

e _Panel_, a variable indicating the panel number used when populations delimited by BY
groups contain different numbers of individuals. If there are n individuals in the first
BY group and if any subsequent BY group contains a larger population, then its covari-
ance/inbreeding matrix is divided into panels, with each panel containing #» columns of data.
If you put these panels side by side in increasing _Panel_ number order, then you can recon-
struct the covariance or inbreeding matrix.

e _Col_, a variable used to name columns of the inbreeding or covariance matrix. The values
of this variable start with ‘COL’, followed by a number indicating the column number. The
names of the individuals corresponding to any given column i can be found by reading the
individual’s name across the row that has a _Col_ value of ‘COLi’. When the inbreeding or
covariance matrix is divided into panels, all the rows repeat for the first n columns, all the
rows repeat for the next n columns, and so on.

o the variable containing the names of the individuals, that is, the first variable listed in the VAR
statement

e the variable containing the names of the first parents, that is, the second variable listed in the
VAR statement

e the variable containing the names of the second parents, that is, the third variable listed in the
VAR statement

e a list of covariance variables Col1—Coln, where n is the maximum number of individuals in
the first population

The functions of the variables _Panel_and _Col_ can best be demonstrated by an example. Assume
that there are three individuals in the first BY group and that, in the current BY group (Byvar=2),
there are five individuals with the following covariance matrix.
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Cov 1 2 3 4 5

1 Cov(1,1) Cov(1,2) Cov(1,3) Cov(1,4) Cov(l,5)

2 Cov(2,1) Cov(2,2) Cov(2,3) Cov(2,4) Cov(2,5)

3 Cov(3,1) Cov(3,2) Cov(3,3) Cov(3,4) Cov(3,5)

4 Cov(4,1) Cov(4,2) Cov(4,3) Cov(4,4) Cov(4,5)

5 Cov(5,1) Cov(5,2) Cov(5,3) Cov(5,4) Cov(5,5)

_ Pamell _____ __ _Panel 2 ___
Then the OUTCOV= data set appears as follows.
Byvar _Panel_ _Col_ Individual Parent Parent2 Col1 Col2 Col3

2 1 COL1 1 Cov(1,1) Cov(1,2) Cov(1,3)
2 1 COL2 2 Cov(2,1) Cov(2,2) Cov(2,3)
2 1 COL3 3 Cov(3,1) Cov(3,2) Cov(3,3)
2 1 4 Cov(4,1) Cov(4,2) Cov(4,3)
2 1 5 Cov(5,1) Cov(5,2) Cov(5,3)
2 2 1 Cov(1,4) Cov(l1,5)
2 2 2 Cov(2,4) Cov(2,5)
2 2 3 Cov(3,4) Cov(3,5)
2 2 COL1 4 Cov(4,4) Cov(4,5)
2 2 COL2 5 Cov(5,4) Cov(5,5)

Notice that the first three columns go to the first panel (_Panel_=1), and the remaining two go to the
second panel (_Panel_=2). Therefore, in the first panel, ‘COL1’, ‘COL2’, and ‘COL3’ correspond
to individuals 1, 2, and 3, respectively, while in the second panel, ‘COL1’ and ‘COL2’ correspond

to individuals 4 and 5, respectively.

Displayed Output

The INBREED procedure can output either covariance coefficients or inbreeding coefficients. Note

that the following items can be produced for each generation if generations do not overlap.

The output produced by PROC INBREED can be any or all of the following items:

e a matrix of coefficients

e coefficients of the individuals

e coefficients for selected matings
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ODS Table Names

PROC INBREED assigns a name to each table it creates. You can use these names to reference the
table when using the Output Delivery System (ODS) to select tables and create output data sets.
These names are listed in Table 10.2. For more information on ODS, see Chapter 20, “Using the
Output Delivery System” (SAS/STAT User’s Guide).

Table 10.2 ODS Tables Produced by PROC INBREED

ODS Table Name Description Statement Option

AvgCovCoef Averages of covariance GENDER COVAR and AVERAGE
coefficient matrix

AvglnbreedingCoef Averages of inbreeding GENDER AVERAGE
coefficient matrix

CovarianceCoefficient Covariance coefficient PROC COVAR and MATRIX
table

InbreedingCoefficient Inbreeding  coefficient PROC MATRIX
table

IndividualCovCoef Covariance coefficients PROC IND and COVAR
of individuals

IndividuallnbreedingCoef Inbreeding coefficients PROC IND
of individuals

MatingCovCoef Covariance coefficients MATINGS COVAR
of matings

MatinglnbreedingCoef Inbreeding coefficients MATINGS
of matings

NumberOfObservations Number of observations PROC

Examples: INBREED Procedure

Example 10.1: Monoecious Population Analysis

The following example shows a covariance analysis within nonoverlapping generations for a mo-
noecious population. Parents of generation 1 are unknown and therefore assumed to be unrelated.
The following statements produce Output 10.1.1 through Output 10.1.3:
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data Monoecious;
input Generation Individual Parentl Parent2 Covariance @@;

datalines;
11 . 12 . . 13 .
2111 2212 2323
3112 3213 . 3321
3413 3 2 3 0.50 3 4 3 1.135

title ’'Inbreeding within Nonoverlapping Generations’;
proc inbreed ind covar matrix data=Monoecious;

class Generation;
run;

Output 10.1.1 Monoecious Population Analysis, Generation 1

Inbreeding within Nonoverlapping Generations
The INBREED Procedure
Generation =1

Covariance Coefficients

Individual Parentl Parent2 1 2 3
1 1.0000

2 . 1.0000 .

3 . . 1.0000

Covariance Coefficients of Individuals

Individual Parentl Parent2 Coefficient
1 1.0000
2 1.0000
3 1.0000

Number of Individuals 3
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Output 10.1.2 Monoecious Population Analysis, Generation 2

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation 2

Covariance Coefficients

Individual Parentl Parent2 1 2 3
1 1 1 1.5000 0.5000 .
2 1 2 0.5000 1.0000 0.2500
3 2 3 0.2500 1.0000
Covariance Coefficients of Individuals
Individual Parentl Parent2 Coefficient
1 1 1 1.5000
2 1 2 1.0000
3 2 3 1.0000
Number of Individuals 3
Output 10.1.3 Monoecious Population Analysis, Generation 3
Inbreeding within Nonoverlapping Generations
The INBREED Procedure
Generation = 3
Covariance Coefficients
Individual Parentl Parent2 1 2 3 4
1 1 2 1.2500 0.5625 0.8750 0.5625
2 1 3 0.5625 1.0000 1.1349 0.6250
3 2 1 0.8750 1.1349 1.2500 1.1349
4 1 3 0.5625 0.6250 1.1349 1.0000

Covariance Coefficients of Individuals

Individual Parentl Parent2 Coefficient

1 1 2 1.2500

2 1 3 1.0000

3 2 1 1.2500

4 1 3 1.0000
Number of Individuals 4
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Note that, since the parents of the first generation are unknown, off-diagonal elements of the co-
variance matrix are all Os and on-diagonal elements are all 1s. If there is an INIT=cov value, then
the off-diagonal elements would be equal to cov, while on-diagonal elements would be equal to
1 + cov/2.

In the third generation, individuals 2 and 4 are full siblings, so they belong to the same family.
Since PROC INBREED computes covariance coefficients between families, the second and fourth
columns of inbreeding coefficients are the same, except that their intersections with the second and
fourth rows are reordered. Notice that, even though there is an observation to assign a covariance
of 0.50 between individuals 2 and 3 in the third generation, the covariance between 2 and 3 is set to
1.135, the same value assigned between 4 and 3. This is because families get the same covariances,
and later specifications override previous ones.

Example 10.2: Pedigree Analysis

In the following example, an inbreeding analysis is performed for a complicated pedigree. This
analysis includes computing selective matings of some individuals and inbreeding coefficients of
all individuals. Also, inbreeding coefficients are averaged within sex categories. The following
statements produce Output 10.2.1:

data Swine;
input Swine_Number $ Sire $ Dam $ Sex §;
datalines;
3504 2200 2501
3514 2521 3112
3519 2521 2501
2501 2200 3112
2789 3504 3514
3501 2521 3514
3712 3504 3514
3121 2200 3501

4

Ha R R

title 'Least Related Matings’;
proc inbreed data=Swine ind average;
var Swine_ Number Sire Dam;
matings 2501 / 3501 3504 ,
3712 / 3121;
gender Sex;
run;

Note the following from Output 10.2.1:
e Observation 4, which defines Swine_Number=2501, should precede the first and third obser-

vations where the progeny for 2501 are given. PROC INBREED ignores observation 4 since
it is given out of order. As a result, the parents of 2501 are missing or unknown.
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e The first column in the “Inbreeding Averages” table corresponds to the averages taken over
the on-diagonal elements of the inbreeding coefficients matrix, and the second column gives
averages over the off-diagonal elements.

Output 10.2.1 Pedigree Analysis

Least Related Matings

The INBREED Procedure

Inbreeding Coefficients of Individuals

Swine_

Number Sire Dam Coefficient
2200

2501

3504 2200 2501

2521

3112

3514 2521 3112

3519 2521 2501

2789 3504 3514 .
3501 2521 3514 0.2500
3712 3504 3514

3121 2200 3501

Inbreeding Coefficients of Matings

Sire Dam Coefficient
2501 3501 .

2501 3504 0.2500
3712 3121 0.1563

Averages of Inbreeding Coefficient Matrix

Inbreeding Coancestry
Male X Male 0.0625 0.1042
Male X Female . 0.1362
Female X Female 0.0000 0.1324
Over Sex 0.0227 0.1313
Number of Males 4
Number of Females 7

Number of Individuals 11
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Example 10.3: Pedigree Analysis with BY Groups

This example demonstrates the structure of the OUTCOV= data set created by PROC INBREED.
Note that the first BY group has three individuals, while the second has five. Therefore, the co-
variance matrix for the second BY group is broken up into two panels. The following statements
produce Output 10.3.1.

data Swine;
input Group Swine_ Number $ Sire $ Dam $ Sex §;
datalines;
2789 3504 3514 F
2501 2200 3112
3504 2501 3782 M

NN PR

4
proc inbreed data=Swine covar noprint outcov=Covariance
init=0.4;
var Swine_ Number Sire Dam;
gender Sex;
by Group;
run;

title ’'Printout of OUTCOV= data set’;
proc print data=Covariance;

format Coll-Col3 4.2;
run;

Output 10.3.1 Pedigree Analysis with BY Groups

Printout of OUTCOV= data set
Swine_

Obs Group Sex _TYPE__PANEL__COL_ Number Sire Dam COL1l COL2 COL3
1 1 M cov 1 COL1 3504 1.20 0.40 0.80
2 1 F cov 1 COL2 3514 0.40 1.20 0.80
3 1 F cov 1 COL3 2789 3504 3514 0.80 0.80 1.20
4 2 M cov 1 COL1 2200 1.20 0.40 0.80
5 2 F cov 1 COL2 3112 0.40 1.20 0.80
6 2 M cov 1 COL3 2501 2200 3112 0.80 0.80 1.20
7 2 F cov 1 3782 0.40 0.40 0.40
8 2 M cov 1 3504 2501 3782 0.60 0.60 0.80
9 2 M cov 2 2200 0.40 0.60

10 2 F cov 2 3112 0.40 0.60
11 2 M cov 2 2501 2200 3112 0.40 0.80
12 2 F cov 2 COL1l 3782 1.20 0.80
13 2 M cov 2 COL2 3504 2501 3782 0.80 1.20
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Overview: PSMOOTH Procedure

In the search for complex disease genes, linkage and/or association tests are often performed on
markers from a genome-wide scan or SNPs from a finely scaled map. This means hundreds or even
thousands of hypotheses are being simultaneously tested. Plotting the negative log p-values of all
the marker tests will reveal many peaks that indicate significant test results, some of which are false
positives. In order to reduce the number of false positives or improve power, smoothing methods
can be applied that take into account p-values from neighboring, and possibly correlated, markers.
That is, the peak length can be used to indicate significance in addition to the peak height. The
PSMOQOTH procedure offers smoothing methods that implement Simes’ method (1986), Fisher’s
method (1932), and/or the truncated product method (TPM) (Zaykin et al. 2002) for multiple hy-
pothesis testing. These methods modify the p-value from each marker test by using a function of its
original p-value and the p-values of the tests on the nearest markers. Since the number of hypothe-
sis tests being performed is not reduced, adjustments to correct the smoothed p-values for multiple
testing are available as well.
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PROC PSMOOTH can take any data set containing any number of columns of p-values as an input
data set, including the output data sets from the CASECONTROL and FAMILY procedures (see
Chapter 5 and Chapter 6 for more information).

Getting Started: PSMOOTH Procedure

Example

Suppose you want to test the 16 markers represented in the following data for association with a
disease by using the genotype case-control and trend tests in PROC CASECONTROL. You are con-
cerned about the multiple hypothesis testing issue, and so you also want to run PROC PSMOOTH
on the output data set from PROC CASECONTROL in order to eliminate the number of false posi-
tives found using the individual p-values from the marker-trait association tests.

data in;

input affected (ml-mlé6) ($);

datalines;

1/2 2/2 2/2 2/2 1/1 2/2 1/2 1/2 1/1 1/2 1/2 2/2 2/2 2/2 2/2 1/2
i/2 1/1 1/2 1/2 1/1 1/1 1/2 1/1 1/2 1/2 1/1 2/2 1/1 1/2 1/1 1/2
i/1 2/2 1/2 1/2 1/1 1/2 1/1 1/2 1/2 2/2 2/2 1/2 1/2 1/2 2/2 1/2
i/11/2 2/2 1/2 1/2 1/1 1/2 1/2 1/2 1/1 1/1 1/2 2/2 1/2 1/1 1/1
i/2 1/1 1/1 1/2 2/2 1/1 1/1 1/2 1/1 2/2 1/2 2/2 2/2 2/2 1/2 1/1

H R R RR

. more lines ...
02/21/11/2 1/1 1/2 1/2 1/2 2/2 1/1 1/2 1/1 1/1 1/1 2/2 1/1 1/2

Note that the columns marker1-marker16 contain genotypes at each of the markers, so the GENO-
COL option must be used in PROC CASECONTROL as follows to correctly read in the data.

proc casecontrol data=in outstat=cc_tests genotype trend genocol;
trait affected;
var ml-mlé6;

run;

proc psmooth data=cc_tests simes fisher tpm bw=2 adjust=sidak

out=adj_p;
var ProbGenotype ProbTrend;
id Locus;
run;

proc print data=adj_p heading=h;
run;
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This code modifies the p-values contained in the output data set from PROC CASECONTROL,
first by smoothing the p-values by using Simes’ method, Fisher’s method, and the TPM with a
bandwidth of 2, then by applying Sidak’s multiple testing adjustment to the smoothed p-values.

Figure 11.1 PROC PSMOOTH Output Data Set
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Figure 11.1 displays the original and modified p-values.
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Syntax: PSMOOTH Procedure

The following statements are available in PROC PSMOOTH.

PROC PSMOOTH < options > ;
BY variables ;
ID variables ;
VAR variables ;

Items within angle brackets (< >) are optional, and statements following the PROC PSMOOTH
statement can appear in any order. The VAR statement is required.

PROC PSMOOTH Statement

PROC PSMOOTH < options > ;

You can specify the following options in the PROC PSMOOTH statement.

ADJUST=NONE
ADJUST=BON | BONFERRONI
ADJUST=FDR

ADJUST=SIDAK
indicates which adjustment for multiple testing to apply to the set(s) of p-values in the output
data set. This adjustment is applied after any smoothing has occurred. ADJUST=NONE is
the default.

BANDWIDTH=number-list

BW=number-list
gives the values for the bandwidths to use in combining p-values. A bandwidth of w indicates
that w p-values on each side of the original p-value are included in the combining method to
create a sliding window of size 2w + 1. The number list can contain any combination of the
following forms, with the forms separated by commas:

w1, Wa,..., Wy, alist of several values

w1 to wo a sequence where wg is the starting value, w, is the ending value, and the
increment is 1.

wi to wp by i  a sequence where w; is the starting value, w, is the ending value, and the
increment is i.

All numbers in the number list must be integers, and any negative numbers are ignored. An
example of a valid number list is

bandwidth = 1,2, 5 to 15 by 5, 18
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which would perform the combining of p-values by using bandwidths 1, 2, 5, 10, 15, and 18,
which create sliding windows of size 3, 5, 11, 21, 31, and 37, respectively.

DATA=SAS-data-set
names the input SAS data set to be used by PROC PSMOOTH. The default is to use the most
recently created data set.

FISHER
requests that Fisher’s method for combining p-values from multiple hypotheses be applied to
the original p-values.

NEGLOG
requests that all p-values, original and combined, be transformed to their negative log (base
e) in the output data set; that is, for each p-value, —log(p-value) is reported in the OUT=
data set. This option is useful for graphing purposes.

NEGLOG10
requests that all p-values, original and combined, be transformed to their negative log (base
10) in the output data set; that is, for each p-value, —log,,(p-value) is reported in the OUT=
data set. This option is useful for graphing purposes.

OUT=SAS-data-set
names the output SAS data set containing the original p-values and the new combined p-
values. When this option is omitted, an output data set is created by default and named
according to the DATAn convention.

SIMES
requests that Simes’ method for combining p-values from multiple hypotheses be applied to
the original p-values.

TAU=number
indicates the value of t to be used in the TPM. The significance level for the tests can be used
as the value for number, although this is not the only possibility. The value of number must
be greater than O and less than or equal to 1. By default, number is set to 0.05. This option is
ignored if the TPM option is not specified.

TPM
requests that the TPM for combining p-values from multiple hypotheses be applied to the
original p-values.

BY Statement

BY variables ;

You can specify a BY statement with PROC PSMOOTH to obtain separate analyses on observations
in groups defined by the BY variables. When a BY statement appears, the procedure expects the
input data set to be sorted in the order of the BY variables. The variables are one or more variables
in the input data set.
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If your input data set is not sorted in ascending order, use one of the following alternatives:

e Sort the data by using the SORT procedure with a similar BY statement.

o Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
the PSMOOTH procedure. The NOTSORTED option does not mean that the data are un-
sorted but rather that the data are arranged in groups (according to values of the BY variables)
and that these groups are not necessarily in alphabetical or increasing numeric order.

e Create an index on the BY variables by using the DATASETS procedure (in Base SAS soft-
ware).

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.

ID Statement

ID variables ;

The ID statement identifies the variables from the DATA= data set that should be included in the
OUT= data set.

VAR Statement

VAR variables ;

The VAR statement identifies the variables containing the original p-values on which the combining
methods should be performed.

Details: PSMOOTH Procedure

Statistical Computations

Methods of Smoothing p-Values

PROC PSMOOTH offers three methods of combining p-values over specified sizes of sliding win-
dows. For each value w listed in the BANDWIDTH= option of the PROC PSMOOTH statement,
a sliding window of size 2w + 1 is used; that is, the p-values for each set of 2w + 1 consecutive
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markers are considered in turn, for each value w. The approach described by Zaykin et al. (2002) is
implemented, where the original p-value at the center of the sliding window is replaced by a func-
tion of the original p-value and the p-values from the w nearest markers on each side to create a new
sequence of p-values. Note that for markers less than w from the beginning or end of the data set
(or BY group if any variables are specified in the BY statement), the number of hypotheses tested,
L, is adjusted accordingly. The three methods of combining p-values from multiple hypotheses are
Simes’ method, Fisher’s method, and the TPM, described in the following three sections. Plotting
the new p-values versus the original p-values reveals the smoothing effect this technique has.

Simes’ Method

Simes’ method of combining p-values (1986) is performed as follows when the SIMES option is
specified in the PROC PSMOOTH statement: let p; be the original p-value at the center of the
current sliding window, which contains p;_y, ..., pj+w. From these L = 2w + 1 p-values, the
ordered p-values, p(1), ..., p(r) are formed. Then the new value for p; is miny<; <z (Lp()/1).

This method controls the Type I error rate even when hypotheses are positively correlated (Sarkar
and Chang 1997), which is expected for nearby markers. Thus if dependencies are suspected among
tests that are performed, this method is recommended due to its conservativeness.

Fisher’s Method

When the FISHER option is issued in the PROC PSMOOTH statement, Fisher’s method of combin-
ing p-values (1932) is applied by replacing the p-value at the center of the current sliding window
p; with the p-value of the statistic 7, where

jtw
t=-2 %" log(pi)

i=j—w
which has a )(% ;, distribution under the null hypothesis of all L = 2w + 1 hypotheses being true.

CAUTION: ¢ has a y? distribution only under the assumption that the tests performed are mutually
independent. When this assumption is violated, the probability of Type I error can exceed the
significance level «.

TPM

The TPM is a variation of Fisher’s method that leads to a different alternative hypothesis when ,
the value specified in the TAU= option, is less than 1 (Zaykin et al. 2002). With the TPM, rejection
of the null hypothesis implies that there is at least one false null hypothesis among those with p-
values < 7. To calculate a combined p-value by using the TPM for the p-value at the center of the
sliding window, p ;, the quantity ¥ must first be calculated as

jtw

u = l_[ piI(PiST)
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Then the formula for the new value for the p-value at the center of the sliding window of L markers
is

L k—1 K
Z (i) (1— r)L_k (u Z (k log ts—' logu) Tu < ‘(k) i rkl(u S rk))
k=1 )

s=0

When TAU=1 is specified, the TPM and Fisher’s method are equivalent and the previous formula
simplifies to

L—-1

(—logu)®
! Z s!

s=0

Multiple Testing Adjustments for p-Values

While the smoothing methods take into account the p-values from neighboring markers, the num-
ber of hypothesis tests performed does not change. Therefore, the Bonferroni, false discovery rate
(FDR), and Sidak methods are offered by PROC PSMOOTH to adjust the smoothed p-values for
multiple testing. The number of tests performed, R, is the number of valid observations in the cur-
rent BY group if any variables are specified in the BY statement, or the number of valid observations
in the entire data set if there are no variables specified in the BY statement. Note that these adjust-
ments are not applied to the original column(s) of p-values; if you would like to adjust the original
p-values for multiple testing, you must include a bandwidth of 0 in the BANDWIDTH= option of
the PROC PSMOOTH statement along with one of the smoothing methods (SIMES, FISHER, or
TPM).

For R tests, the p-value p; results in an adjusted p-value of s; according to these methods:
Bonferroni adjustment: s; = min(Rp;,1.0),i =1,..., R

Sidak adjustment (Sidak 1967): s; =1 —(1—p))R.i=1,...,R
FDR adjustment (Benjamini and Hochberg 1995):

S(R) = P
s(r—1y = min(sgy. [R/(R—D]pr-1))
S(R—2) = min(s(r—1). [R/(R —2)]p(r-2))

where the R p-values have been ordered as p(1) < pz) < --- < p(r). The Bonferroni and Sidak
methods are conservative for controlling the family-wise error rate; however, often in the association
mapping of a complex trait, it is desirable to control the FDR instead (Sabatti, Service, and Freimer
2003).

Missing Values

Missing values in a sliding window, even at the center of the window, are simply ignored, and the
number of hypotheses L is reduced accordingly. Thus the smoothing methods can be applied to
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any window that contains at least one nonmissing value. Any p-values in the input data set that fall

outside the interval [0,1] are treated as missing.

OUT= Data Set

The output data set specified in the OUT= option of the PROC PSMOQOTH statement contains any
BY variables and ID variables. Then for each variable in the VAR statement, the original column is
included along with a column for each method and bandwidth specified in the PROC PSMOOTH
statement. These variable names are formed by adding the suffixes “_Sw”, “_Fw”, and “_Tw”
for Simes’ method, Fisher’s method, and the TPM, respectively, and a bandwidth of size w. For
example, if the options BANDWIDTH=1,4 and SIMES, FISHER, and TPM are all specified in
the PROC PSMOOTH statement, and RawP is the variable specified in the VAR statement, the
OUT= data set includes RawP, RawP_S1, RawP_F1, RawP_T1, RawP_S4, RawP_F4, and RawP_T4.
If the NEGLOG or NEGLOG10 option is specified in the PROC PSMOOTH statement, then these
columns all contain the negative logs (base e or base 10, respectively) of the p-values.

Example: PSMOOTH Procedure

Example 11.1: Displaying Plot of PROC PSMOOTH Output Data Set

Data other than the output data sets from the CASECONTROL and FAMILY procedures can be
used in PROC PSMOQOTH; here is an example of how to use p-values from another source, read

into a SAS data set by using the following DATA step.

data tests;
input Marker Pvalue @QQ;

SJ oWk

o

13
15
17
19
21
23
25
27
29
31

datalines;

0.
.32147
.27377
.40131
.57585
.01531
.69397
.97265
.88397
.13570
.99467
.86459
.19372
.32078
.00655
.65339

O 0O 0O 00000000 O0OOoOOoOOo

72841

o &N

12
14
16
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20
22
24
26
28
30
32

O OO0 00000000 O0OO0OOoOOoOOo

.40271
.91616
.48943
.25555
.20925
.23306
.33040
.53639
.03188
.79138
.37831
.97092
.85339
.31806
.82401
.36115
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33 0.92704 34 0.49558
35 0.64842 36 0.43606
37 0.67060 38 0.87520
39 0.78006 40 0.27252
41 0.28561 42 0.80495
43 0.98159 44 0.97030
45 0.53831 46 0.78712
47 0.88493 48 0.36260
49 0.53310 50 0.65709
51 0.26527 52 0.46860
53 0.55465 54 0.54956
55 0.44477 56 0.04933
57 0.12016 58 0.76181
59 0.80158 60 0.18244
61 0.01382 62 0.15100
63 0.04713 64 0.52655
65 0.59368 66 0.94420
67 0.60104 68 0.32848
69 0.90195 70 0.21374
71 0.95471 72 0.14145
73 0.95215 74 0.70330
75 0.19921 76 0.99086
77 0.75736 78 0.23761
79 0.87260 80 0.91472
81 0.33650 82 0.26160
83 0.41948 84 0.62817
85 0.48721 86 0.67093
87 0.53089 88 0.13623
89 0.44344 90 0.41172

’

The following code applies Simes’ method for multiple hypothesis testing in order to adjust the
p-values.

proc psmooth data=tests out=pnew simes bandwidth=3 to 9 by 2 neglog;
var Pvalue;
id Marker;

run;

proc sgplot data=pnew;
series x=Marker y=Pvalue / lineattrs=(pattern=solid);
series x=Marker y=Pvalue_S3 / lineattrs=(pattern=solid);
series x=Marker y=Pvalue_S5 / lineattrs=(pattern=solid);
series x=Marker y=Pvalue_S7 / lineattrs=(pattern=solid);
series x=Marker y=Pvalue_S9 / lineattrs=(pattern=solid);
refline 3.0 / axis=y;
discretelegend;

run;

The NEGLOG option is used in the PROC PSMOQOTH statement to facilitate plotting the p-values
by using the GPLOT procedure of SAS/GRAPH. The plot in Output 11.1.1 demonstrates the effect
of the different window sizes that are implemented.



References 4 225

Output 11.1.1 Line Plot of Negative Log p-Values
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Pvalue_S9

Note how the plots become progressively smoother as the window size increases. Points above the
horizontal reference line represent significant p-values at the 0.05 level. While six of the markers
have significant p-values before adjustment, only the method that uses a bandwidth of 3 finds any
significant markers, all in the 26-32 region. This can be an indication that the other five markers
are significant only by chance; that is, they might be false positives.
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Overview: TPLOT Macro

The %TPLOT macro creates a triangular plot that graphically displays genetic marker test results.
The plot has colors and shapes representing p-value ranges for tests of the following quantities:
linkage disequilibrium between pairs of markers, Hardy-Weinberg equilibrium (HWE) for individ-
ual markers, and associations between markers and a dichotomous trait (such as disease status).
This is a convenient way of combining information contained in output data sets from two separate
SAS/Genetics procedures and summarizing it in an easily interpretable plot. Thus, insights can be
gleaned by simply studying a plot rather than having to search through many rows of data or writing
code to attempt to summarize the results.

The %TPLOT macro is a part of the SAS Autocall library, and it is automatically available for use
in your SAS program provided that the SAS system option MAUTOSOURCE is in effect. For more
information about autocall libraries, see SAS Macro Language: Reference, Version 8 (2000).

Syntax: TPLOT Macro

The %TPLOT macro has the following form:
%TPLOT (SAS-data-set, SAS-data-set, variable < ,ALPHA=number>) ;

The first argument, SAS-data-set, specifies the name of the SAS data set that is the output data set
from the ALLELE procedure (see Chapter 3), containing the linkage disequilibrium test and HWE
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test p-values. A user-created data set can be used instead, but it is required to contain the variables
Locus1 and Locus2 and a variable ProbChi containing the p-values from the disequilibrium tests.
The order in which the Locus1 and Locus2 variables are sorted is the order in which the values are
displayed on the vertical and horizontal axes, respectively.

The second argument, SAS-data-set, specifies the name of the SAS data set that contains the p-
values for the marker-trait association tests. This data set can be the output data set from the
CASECONTROL procedure, the FAMILY procedure, or the PSMOOTH procedure, or it can be
created by the user. A user-created data set must contain a Locus variable for the values on the axes
and a variable containing p-values that is specified in the third argument, discussed in the following
paragraph. The Locus variable must be in the same sorted order as the Locus1 variable in the data
set named in the first argument.

The third argument, variable, names the variable that contains the marker-trait association p-values
in the SAS data set that is specified in the second argument.

The first three arguments are required. The following option can be used with the %TPLOT macro.
The option must follow the three required arguments.

ALPHA=number
specifies the significance level for the marker-trait association test. This level is used as a
cut-off for the p-value range corresponding to the symbol shape on the plot. This number
must be between 0 and 1. The default is ALPHA=0.05.

Results

Plot

Running the %TPLOT macro creates a window displaying a graphical representation of the marker
test results.

Figure 12.1 shows an example of the TPLOT results window.
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Figure 12.1 Results Window for TPLOT Macro
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This plot contains a grid of points with symbols that represent the p-values for various marker tests.
Colors and shapes of the data points are used to symbolize p-value ranges. The Show Info About
Points button on the toolbar enables the p-values to be displayed. If you hold down the left mouse
button while positioning the mouse pointer on any point in the plot, the pop-up window appears for
off-diagonal points, displaying the two markers being tested for linkage disequilibrium and the p-
value of the test; the window displays the marker and its p-values for the HWE test and marker-trait
association test for points on the diagonal, as shown in Figure 12.1.

Disequilibrium Tests

The p-values from the linkage disequilibrium tests between all pairs of markers (or all markers
within a certain range of each other) are represented by the color of the squares on the off-diagonal
of the plot. For the points on the diagonal, the results from the Hardy-Weinberg equilibrium test are
displayed instead of the linkage disequilibrium tests since the same marker locus is on the horizontal
and vertical axes.

The three ranges of p-values that correspond to different colored symbols in the plot are as follows:

Red [0, 0.01]

Orange  (0.01, 0.05]

Yellow (0.05, 1]

The disequilibrium test p-values that are plotted can be provided by the output data set from PROC

ALLELE, or by a user-created data set meeting the requirements described in the “Syntax: TPLOT
Macro” section.



230 4 Chapter 12: The TPLOT Macro

Marker-Trait Association Tests

Points on the diagonal also display p-values from marker-trait association tests, using the shape
of the symbol to correspond to two categories of p-values, significant and not significant. The
significance level is set to 0.05 by default, but can be modified using the ALPHA= option in the
9% TPLOT macro. Thus, for a significance level of «, the following shapes represent the following
ranges:

Plus + [0, ]
Triangle & (o, 1]

Note that the square shape I of the off-diagonal points does not represent a marker-trait association
p-value since there are two different marker loci represented on the horizontal and vertical axes.
These p-values can be provided by the output data set of PROC CASECONTROL, PROC FAMILY,
or PROC PSMOOTH. Alternatively, a user-created data set that meets the conditions described in
the “Syntax: TPLOT Macro” section can be used.

Menu Bar
The results window contains the following drop-down lists:

File Close closes the results window.

Print Setup  opens the printer setup utility.

Print prints the plot as it is currently shown.
Exit exits the current SAS session.
Edit Copy copies the plot to the clipboard.

Format Rescale Axes when selected, changes the scale of the axes to fit the entire plot in the
window.

You can also access these menus by right-clicking anywhere in the TPLOT results window.

Toolbar

A toolbar (Figure 12.2) is displayed at the top of the TPLOT results window. Use the toolbar
to display information about points on the plot or to modify the plot’s appearance. Tool tips are
displayed when you place your mouse pointer over an icon in the toolbar.

Figure 12.2 Toolbar for the % TPLOT Results Window
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Tool icons from left to right are as follows:

1. Print - prints the plot.

2. Copy - copies the plot to the clipboard.

3. Select a Node or Point - activates a point on the plot.

4. Show Info About Points - displays a text box with information about the selected point.

5. Scroll Data - scrolls across data points within the plot. Use this tool when the plot is not able
to display all of the points in a single frame.

6. Move Graph - moves the plot within the window.
7. Zoom In/Out - increases or decreases the size of the plot.
8. Reset - returns the plot to its default settings.

9. What’s This? - displays the Help for the results window.

Example: TPLOT Macro

The following is an example of the code that can be used to create the triangular plot of p-values
for the data set pop22. This data set is in the proper form for a PROC ALLELE input data set,
containing columns of alleles for 150 markers.

proc allele data=pop22 outstat=ldstats noprint maxdist=150;
var al-a300;
run;

proc casecontrol data=pop22 outstat=assocstats genotype;
trait affected;
var al-a300;

run;

proc psmooth data=assocstats out=sm_assocstats bw=5 simes;
id Locus;
var ProbGenotype;

run;

$tplot (ldstats, sm_assocstats, ProbGenotype_S5);
Note that the output data set from PROC CASECONTROL can be used in place of the output data

set from PROC PSMOOTH if you want to use unadjusted p-values. This code creates the plot in
the TPLOT window shown in Figure 12.3.
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Figure 12.3 Results Window for TPLOT Macro
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Figure 12.3 displays the bottom-left corner of the plot. The pop-up window is displayed by selecting
Show Info About Points from the toolbar and holding the mouse pointer over the point shown. The
orange color of this point indicates that the p-value for testing that there is no linkage disequilibrium
between M9 and M18 is between 0.01 and 0.05. The pop-up window provides the exact value of

this p-value.

Other parts of the plot can be viewed by selecting Scroll Data from the toolbar. Alternatively, the
entire plot can be viewed in the window by selecting Format— Rescale Axes from the menu bar.
This creates the view of the plot shown in Figure 12.4.
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Figure 12.4 Results Window for TPLOT Macro
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The view shown in Figure 12.4 displays all the data points at once.
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Subject Index

allele case-control test input data sets, 50
CASECONTROL procedure, 80 intercept effect, 54, 59
allele frequencies log-linear variance model, 63
ALLELE procedure, 27, 35 model selection criterion, 54
ALLELE procedure non-full-rank parameterization, 63
allele frequencies, 27, 35 nugget effect, 62
allelic diversity, 28 ODS table names, 66
bootstrap confidence intervals, 27 ordering of effects, 51
displayed output, 35 output data set, 56
F statistics, 32 parameter constraints, 58
genotype frequencies, 27, 35 power-of-the-mean model, 63
haplotypes, 29, 41 profiling residual variance, 59, 62
Hardy-Weinberg equilibrium, 28 R matrix, 61
heterozygosity, 28 random effects, 59
linkage disequilibrium, 29, 36, 41 repeated measures, 61
marker informativeness, 28 statement positions, 50
missing values, 34 subject effect, 61, 63
ODS table names, 37 variance ratios, 58, 61
OUTSTAT= data set, 34 weighting, 64
PIC, 28
population structure, 32 case-control tests
allelic diversity HAPLOTYPE procedure, 143, 147, 161
ALLELE procedure, 28 CASECONTROL procedure
allelic transmission scores allele case-control test, 80
FAMILY procedure, 108, 118 displayed output, 85
ancestor node, 124 genomic control, 81
genotype case-control test, 81
Base SAS software, 11 missing values, 84
Bayesian estimation odds ratios, 81
HAPLOTYPE procedure, 148 ODS table names, 85
Bonferroni adjustment output data set, 84
PSMOOTH procedure, 222 stratified analysis, 82
bootstrap confidence intervals trend test, 80
ALLELE procedure, 27 child node, 124
boundary constraints classification variables
BTL procedure, 58, 59 BTL procedure, 52
branch, 124 coefficient
BTL procedure of relationship (INBREED), 199
bootstrap confidence interval calculation, 55 constraints
boundary constraints, 58, 59 boundary (BTL), 58, 59
classification variables, 52 correlated tests, see dependent tests
continuous effects, 60—63 covariance coefficients, see INBREED procedure
displayed output, 65
G matrix, 59 DATA step, 11

grid search, 57 DATA= data set

heterogeneity, 60, 62 FAMILY procedure, 109

infinite likelihood, 62 decremental search

initial values, 57 HTSNP procedure, 181
dependent tests
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PSMOOTH procedure, 221
descendant node, 124
displayed output
HAPLOTYPE procedure, 150
HTSNP procedure, 182

EM algorithm

HAPLOTYPE procedure, 144
exhaustive search

HTSNP procedure, 182

F statistics
ALLELE procedure, 32
FAMILY procedure
allelic transmission scores, 108, 118
DATA= data set, 109
displayed output, 110
Mendelian inconsistencies, 110, 111
missing values, 108
ODS table names, 111
output data set, 109
OUTQ data set, 109
permutation tests, 107
RC-TDT, 106
SDT, 105
S-TDT, 104
TDT, 104
X-linked analysis, 107
FDR adjustment
PSMOOTH procedure, 222
Fisher’s method
PSMOOTH procedure, 221
full sibs mating
INBREED procedure, 203, 204

generation (INBREED)
nonoverlapping, 187, 191, 192
number, 196
overlapping, 187, 190
variable, 196
genomic control
CASECONTROL procedure, 81
genotype case-control test
CASECONTROL procedure, 81
genotype frequencies
ALLELE procedure, 27, 35

haplotype diversity
HTSNP procedure, 179
haplotype frequencies
HAPLOTYPE procedure, 144
HAPLOTYPE procedure
Bayesian estimation, 148
case-control tests, 143, 147, 161
displayed output, 150

EM algorithm, 144
haplotype frequencies, 144
haplotype trend regression (HTR), 165
jackknife method, 146
linkage disequilibrium, 146, 159
missing values, 149
ODS table names, 152
OUT= data set, 149
permutation tests, 148
score test, 165
standard error estimation, 141, 145
haplotype trend regression (HTR)
HAPLOTYPE procedure, 165
haplotypes
ALLELE procedure, 29, 41
Hardy-Weinberg equilibrium
ALLELE procedure, 28
help system, 10
heterogeneity
BTL procedure, 60, 62
heterozygosity
ALLELE procedure, 28
HTSNP procedure
decremental search, 181
displayed output, 182
exhaustive search, 182
haplotype diversity, 179
incremental search, 181
iterative maximization search, 181
missing values, 182
ODS table names, 183
simulated annealing search, 181

INBREED procedure
coancestry, computing, 200

coefficient of relationship, computing, 199
covariance coefficients, 187, 190, 192, 194,

197, 199

covariance coefficients matrix, output, 195

first parent, 196, 197

full sibs mating, 203, 204
generation number, 196
generation variable, 196

generation, nonoverlapping, 187, 191, 192

generation, overlapping, 187, 190

inbreeding coefficients, 188, 190, 194, 197,

199

inbreeding coefficients matrix, output, 195

individuals, outputting coefficients, 194
individuals, specifying, 192, 196, 197
initial covariance value, 197

initial covariance value, assigning, 195
initial covariance value, specifying, 190
kinship coefficient, 199



last generation’s coefficients, output, 194,
195
mating, offspring and parent, 203
mating, self, 202
matings, output, 197
monoecious population analysis, example,
207
offspring, 194, 195, 202
ordering observations, 188
OUTCOV= data set, 195, 205
output table names, 207
panels, 205, 212
pedigree analysis, 187, 188
pedigree analysis, example, 210, 212
population, monoecious, 207
population, multiparous, 194, 195, 198
population, nonoverlapping, 196
population, overlapping, 189, 190, 201
progeny, 198, 200, 202, 203, 210
second parent, 196, 197
selective matings, output, 197
specifying gender, 192
theoretical correlation, 199
unknown or missing parents, 204
variables, unaddressed, 197, 198
incremental search
HTSNP procedure, 181
infinite likelihood
BTL procedure, 62
initial covariance value
assigning (INBREED), 195
INBREED procedure, 197
specifying (INBREED), 190
initial values
BTL procedure, 57
internal node, 124
iterative maximization search
HTSNP procedure, 181

jackknife method
HAPLOTYPE procedure, 146

leaves, 124
linkage disequilibrium
ALLELE procedure, 29, 36, 41
HAPLOTYPE procedure, 146, 159
log-linear variance model
BTL procedure, 63

marker informativeness
ALLELE procedure, 28

mating
offspring and parent (INBREED), 203
self INBREED), 202

Mendelian inconsistencies

Subject Index 4 237

FAMILY procedure, 110, 111
missing values
ALLELE procedure, 34
CASECONTROL procedure, 84
FAMILY procedure, 108
HAPLOTYPE procedure, 149
HTSNP procedure, 182
PSMOQTH procedure, 222
monoecious population analysis
example (INBREED), 207
multiple testing adjustments
PSMOOTH procedure, 222

non-full-rank parameterization
BTL procedure, 63
nugget effect
BTL procedure, 62

odds ratios

CASECONTROL procedure, 81
ODS table names

HAPLOTYPE procedure, 152

HTSNP procedure, 183
offspring

INBREED procedure, 194, 195, 202
ordering observations

INBREED procedure, 188
OUT= data set

HAPLOTYPE procedure, 149
output data set

CASECONTROL procedure, 84

FAMILY procedure, 109

PSMOQTH procedure, 223
output data sets

OUTCOV= data set INBREED), 195, 205
output table names

INBREED procedure, 207
OUTQ data set

FAMILY procedure, 109
OUTSTAT= Data Set

ALLELE procedure, 34

panels

INBREED procedure, 205, 212
parameter constraints

BTL procedure, 58
pedigree analysis

example (INBREED), 210, 212

INBREED procedure, 187, 188
permutation tests

FAMILY procedure, 107

HAPLOTYPE procedure, 148
PIC

ALLELE procedure, 28
population (INBREED)
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monoecious, 207
multiparous, 194, 195, 198
nonoverlapping, 196
overlapping, 189, 190, 201
population structure
ALLELE procedure, 32
power-of-the-mean model
BTL procedure, 63
progeny
INBREED procedure, 198, 200, 202, 203,
210
PSMOOTH procedure
Bonferroni adjustment, 222
dependent tests, 221
FDR adjustment, 222
Fisher’s method, 221
missing values, 222
multiple testing adjustments, 222
output data set, 223
Sidak adjustment, 222
Simes’ method, 221
truncated product method (TPM), 221

random effects

BTL procedure, 59
RC-TDT

FAMILY procedure, 106
repeated measures

BTL procedure, 61
root node, 124

SAS data set

DATA step, 11
SAS/GRAPH software, 11
SAS/IML software, 12
SAS/INSIGHT software, 12
SAS/STAT software, 12
score test

HAPLOTYPE procedure, 165
SDT

FAMILY procedure, 105
Sidak adjustment

PSMOQTH procedure, 222
Simes’ method

PSMOQTH procedure, 221
simulated annealing search

HTSNP procedure, 181
standard error estimation

HAPLOTYPE procedure, 141, 145
S-TDT

FAMILY procedure, 104
stratified analysis

CASECONTROL procedure, 82
subject effect

BTL procedure, 61, 63

TDT
FAMILY procedure, 104
terminal node, see leaves
theoretical correlation
INBREED procedure, 199
TPLOT Results Window, 228
trend test
CASECONTROL procedure, 80
truncated product method (TPM)
PSMOQTH procedure, 221

unknown or missing parents
INBREED procedure, 204

variables, unaddressed

INBREED procedure, 197, 198
variance ratios

BTL procedure, 58, 61

weighting
BTL procedure, 64

X-linked analysis
FAMILY procedure, 107
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ADJUST= option

PROC PSMOOTH statement, 218, 222

ALL= option
MARKER statement (BTL), 53
ALLELE option

PROC CASECONTROL statement, 76, 80

ALLELE procedure, 20
syntax, 20
ALLELE procedure, BY statement, 25
ALLELE procedure, POP statement, 25
FPERMS= option, 25
INDIVLOCT option, 26
ZEROF option, 26

ALLELE procedure, PROC ALLELE statement,

21
ALLELEMIN= option, 21
ALPHA= option, 21
BOOTSTRAP= option, 21
CORRCOEFF option, 21
DATA= option, 21
DELIMITER= option, 21
DELTA option, 21
DPRIME option, 21
EXACT= option, 24
GENOCOL option, 22
GENOMIN-= option, 22
HAPLO-= option, 22, 29
HAPLOMIN= option, 22
INDIV= option, 23
LOGNOTE option, 23
MARKER= option, 23
MAXDIST= option, 23
NDATA= option, 23, 38
NOFREQ option, 23
NOPRINT option, 23
OUTSTAT= option, 24
PERMS= option, 24
PREFIX= option, 24
PROPDIFF option, 24
RHO option, 24
SEED= option, 24
TALL option, 24
YULESQ option, 25
ALLELE procedure, PROC HAPLOTYPE
statement
GENOCOL option, 139
ALLELE procedure, VAR statement, 26
ALLELE procedure, WITH statement, 26

ALLELEMIN= option

PROC ALLELE statement, 21
ALLUPTO= option

MARKER statement (BTL), 53
ALPHA-= option

PARMEST statement (BTL), 55

PROC ALLELE statement, 21

PROC CASECONTROL statement, 76

PROC HAPLOTYPE statement, 138
TPLOT macro, 228

AVERAGE option
PROC INBREED statement, 194

BANDWIDTH= option
PROC PSMOOTH statement, 218
BEST= option
MARKER statement (BTL), 53
PROC HTSNP statement, 176
BOOT= option
PARMEST statement (BTL), 55
BOOTSTRAP= option
PROC ALLELE statement, 21
BTL procedure, 50
syntax, 50
BTL procedure, BY statement, 52
BTL procedure, CLASS statement, 52
TRUNCATE option, 52
BTL procedure, MARKER statement, 53
ALL= option, 53
ALLUPTO= option, 53
BEST= option, 53
GROUP= option, 53
MC-= option, 54
BTL procedure, MODEL statement, 54
NOINT option, 54
BTL procedure, PARMEST statement, 54
ALPHA-= option, 55
BOOT= option, 55
CROSS= option, 55
GEN= option, 55
HETEROZYGOTE= option, 55
HOMOZYGOTE2= option, 55
HOMOZYGOTE-= option, 55
LINKMOD-= option, 56
LINKUNIT= option, 56
OUTSTAT= option, 56
PMAX= option, 56
PMIN= option, 56
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R option, 56 CASECONTROL, 73
REND-= option, 56 CASECONTROL procedure, 73, 76
RINC= option, 56 syntax, 76
RSTART= option, 57 CASECONTROL procedure, BY statement, 79
SEED= option, 57 CASECONTROL procedure, PROC
THETA option, 57 CASECONTROL statement, 76
BTL procedure, PARMS statement, 57 ALLELE option, 76, 80
EQCONS= option, 58 ALPHA= option, 76
HOLD= option, 58 DATA= option, 76
LOWERB= option, 58 DELIMITER= option, 76
NOBOUND option, 58 GENOCOL option, 77
NOITER option, 58 GENOTYPE option, 77
NOPROFILE option, 59 INDIV= option, 77
OLS option, 59 MARKER= option, 77
PARMSDATA-= option, 59 NDATA= option, 77
PDATA= option, 59 NULLSNPS= option, 77
RATIOS option, 59 OR option, 77, 81, 90
UPPERB-= option, 59 OUTSTAT= option, 77
BTL procedure, PROC BTL statement, 50 PERMS= option, 78
DATA= option, 50 PREFIX= option, 78
MAP= option, 50 SEED= option, 78
NOMCMPR option, 51 TALL option, 78
NOPARMPR option, 51 TREND option, 78, 80
NOPRINT option, 51 VIF option, 78, 81
NOREGPR option, 51 CASECONTROL procedure, STRATA
ORDER= option, 51 statement, 79
BTL procedure, RANDOM statement, 59 CASECONTROL procedure, TRAIT statement,
GDATA= option, 60 80
GROUP= option, 60 CASECONTROL procedure, VAR statement, 80
LDATA= option, 60 CLASS statement
RATIOS option, 60 BTL procedure, 52
SUBJECT= option, 61 INBREED procedure, 196

TYPE= option, 61 COMBINE option
BTL procedure, REPEATED statement, 61 PROC FAMILY statement, 99
GROUP= option, 62 CONTCORR option

LDATA= option, 62
LOCAL= option, 62
LOCALW option, 63

PROC FAMILY statement, 99

CONV=option

PROC HAPLOTYPE statement, 138

NONLOCALW option, 63
SUBJECT= option, 63
TYPE= option, 64

BTL procedure, WEIGHT statement, 64
BURNIN= option

PROC HAPLOTYPE statement, 138

BY statement

ALLELE procedure, 25

BTL procedure, 52
CASECONTROL procedure, 79
FAMILY procedure, 101
HAPLOTYPE procedure, 142
HTSNP procedure, 178
INBREED procedure, 195
PSMOOTH procedure, 219

PROC HTSNP statement, 176
CORRCOEFF option

PROC ALLELE statement, 21
COVAR option

PROC INBREED statement, 194
CRITERION= option

PROC HTSNP statement, 177
CROSS= option

PARMEST statement (BTL), 55
CUTOFF= option

PROC HAPLOTYPE statement, 138, 157

PROC HTSNP statement, 177

DATA= option
IMPORTANCE statement, 129
PARTIALDEP statement, 131



PROC ALLELE statement, 21

PROC BTL statement, 50

PROC CASECONTROL statement, 76

PROC FAMILY statement, 99

PROC GENESELECT statement, 126

PROC HAPLOTYPE statement, 138

PROC HTSNP statement, 177

PROC INBREED statement, 194

PROC PSMOOTH statement, 219

SCORE statement, 132
DELIMITER= option

PROC ALLELE statement, 21

PROC CASECONTROL statement, 76

PROC FAMILY statement, 99

PROC HAPLOTYPE statement, 139
DELTA option

PROC ALLELE statement, 21
DISSIMILARITY = option

SAVE statement, 131
DPRIME option

PROC ALLELE statement, 21

EQCONS= option

PARMS statement (BTL), 58
EST= option

PROC HAPLOTYPE statement, 139
EXACT= option

PROC ALLELE statement, 24

FAMILY procedure, 99

syntax, 99
FAMILY procedure, BY statement, 101
FAMILY procedure, ID statement, 102
FAMILY procedure, PROC FAMILY statement,

99

COMBINE option, 99

CONTCORR option, 99

DATA= option, 99

DELIMITER= option, 99

GENOCOL option, 99

MULT= option, 100

NDATA= option, 100

OUTQ= option, 100

OUTSTAT= option, 100

PERMS= option, 100, 107

PREFIX= option, 100

RCTDT option, 100, 106

SDT option, 101, 105

SEED= option, 101

SHOWALL option, 101

STDT option, 101, 104

TDT option, 101, 104
FAMILY procedure, TRAIT statement, 102
FAMILY procedure, VAR statement, 103
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FAMILY procedure, XLVAR statement, 103
FISHER option

PROC PSMOOTH statement, 219, 221
FPERMS= option

POP statement (ALLELE), 25
FREQ statement, 128

HTSNP procedure, 179

GDATA= option

RANDOM statement (BTL), 60
GEN= option

PARMEST statement (BTL), 55
GENDER statement, INBREED procedure, 196
GENOCOL option

PROC ALLELE statement, 22

PROC CASECONTROL statement, 77

PROC FAMILY statement, 99

PROC HAPLOTYPE statement, 139
GENOMIN-= option

PROC ALLELE statement, 22
GENOTYPE option

PROC CASECONTROL statement, 77
GROUP= option

MARKER statement (BTL), 53

RANDOM statement (BTL), 60

REPEATED statement (BTL), 62

HAPLO= option

PROC ALLELE statement, 22, 29
HAPLOTYPE procedure, 138

syntax, 138
HAPLOTYPE procedure, BY statement, 142
HAPLOTYPE procedure, ID statement, 142, 166
HAPLOTYPE procedure, PROC HAPLOTYPE

statement, 138

ALPHA-= option, 138

BURNIN= option, 138

CONV=option, 138

CUTOFF= option, 138, 157

DATA= option, 138

DELIMITER= option, 139

EST= option, 139

INDIV= option, 139

INIT= option, 139

INTERVAL-= option, 139

ITPRINT option, 139, 156

LD option, 139, 146, 159

MARKER= option, 140

MAXITER= option, 140

NDATA= option, 140

NLAG= option, 140

NOPRINT option, 140

NSTART= option, 140, 158

OUT= option, 137, 140
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OUTCUT= option, 140
OUTID option, 141, 166
PREFIX= option, 141
SE= option, 141

SEED= option, 141
STEPTRIM= option, 141
TALL option, 141
THETA= option, 142
TOTALRUN-= option, 142

HAPLOTYPE procedure, TRAIT statement, 143,

161

PERMS= option, 143

TESTALL option, 143
HAPLOTYPE procedure, VAR statement, 143
HETEROZYGOTE-= option

PARMEST statement (BTL), 55
HOLD-= option

PARMS statement (BTL), 58
HOMOZYGOTE2= option

PARMEST statement (BTL), 55
HOMOZYGOTE-= option

PARMEST statement (BTL), 55
HTSNP procedure, 176

syntax, 176
HTSNP procedure, BY statement, 178
HTSNP procedure, FREQ statement, 179

HTSNP procedure, PROC HTSNP statement, 176

BEST= option, 176
CONV= option, 176
CRITERION= option, 177
CUTOFF= option, 177
DATA= option, 177
MAXSIZE= option, 177
METHOD-= option, 177
NOSUMMARY option, 177
SCHEDULE-= option, 177
SEED= option, 178
SIZE= option, 178
STEP= option, 178
TEMPERATURE-= option, 178
TFACTOR= option, 178
HTSNP procedure, VAR statement, 179

ID statement
FAMILY procedure, 102
HAPLOTYPE procedure, 142, 166
PSMOQTH procedure, 220

IMPORTANCE statement, 129
DATA= option, 129
N2WAY= option, 130
NVARS= option, 130
OUT= option, 130
OUTFIT= option, 130
VAR= option, 130

IMPORTANCE= option

SAVE statement, 131
INBREED procedure

syntax, 193
INBREED procedure, BY statement, 195
INBREED procedure, CLASS statement, 196
INBREED procedure, GENDER statement, 196
INBREED procedure, MATINGS statement, 197
INBREED procedure, PROC INBREED

statement, 194

AVERAGE option, 194

COVAR option, 194

DATA= option, 194

IND option, 194

INDL option, 194

INIT= option, 195

MATRIX option, 195

MATRIXL option, 195

NOPRINT option, 195

OUTCOV= option, 195
INBREED procedure, VAR statement, 197
IND option

PROC INBREED statement, 194
INDIV= option

PROC ALLELE statement, 23

PROC CASECONTROL statement, 77

PROC HAPLOTYPE statement, 139
INDIVLOCT option

POP statement (ALLELE), 26
INDL option

PROC INBREED statement, 194
INIT= option

PROC HAPLOTYPE statement, 139

PROC INBREED statement, 195
INMODEL-= option

PROC GENESELECT statement, 126
INTERVAL-= option

PROC HAPLOTYPE statement, 139
ITERATIONS= option

PROC GENESELECT statement, 126
ITPRINT option

PROC HAPLOTYPE statement, 139, 156

LD option

PROC HAPLOTYPE statement, 139, 146,

159

LDATA= option

RANDOM statement (BTL), 60

REPEATED statement (BTL), 62
LEAFFRACTION= option

PROC GENESELECT statement, 126
LEAFSIZE= option

PROC GENESELECT statement, 126
LINKMOD-= option



PARMEST statement (BTL), 56
LINKUNIT= option

PARMEST statement (BTL), 56
LOCAL-= option

REPEATED statement (BTL), 62
LOCALW option

REPEATED statement (BTL), 63
LOGNOTE option

PROC ALLELE statement, 23
LOWERB-= option

PARMS statement (BTL), 58

MAP= option

PROC BTL statement, 50
MARKER statement

BTL procedure, 53
MARKER= option

PROC ALLELE statement, 23

PROC CASECONTROL statement, 77

PROC HAPLOTYPE statement, 140
MATINGS statement, INBREED procedure, 197
MATRIX option

PROC INBREED statement, 195
MATRIXL option

PROC INBREED statement, 195
MAXDEPTH= option

PROC GENESELECT statement, 127
MAXDIST= option

PROC ALLELE statement, 23
MAXITER= option

PROC HAPLOTYPE statement, 140
MAXSIZE= option

PROC HTSNP statement, 177
MAXSURROGATES= option

PROC GENESELECT statement, 127
MC-= option

MARKER statement (BTL), 54
MEMSIZE-= option

PERFORMANCE statement, 128
METHOD-= option

PROC HTSNP statement, 177
MINCATSIZE= option

PROC GENESELECT statement, 127
MODEL statement

BTL procedure, 54
MODEL-= option

SAVE statement, 131
MODELTYPE=type

PROC GENESELECT statement, 127
MULT= option

PROC FAMILY statement, 100

N2WAY= option
IMPORTANCE statement, 130
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NDATA= option

PROC ALLELE statement, 23, 38

PROC CASECONTROL statement, 77

PROC FAMILY statement, 100

PROC HAPLOTYPE statement, 140
NEGLOG option

PROC PSMOOTH statement, 219
NEGLOG10 option

PROC PSMOOQOTH statement, 219
NLAG= option

PROC HAPLOTYPE statement, 140
NOBOUND option

PARMS statement (BTL), 58
NOFREQ option

PROC ALLELE statement, 23
NOINT option

MODEL statement (BTL), 54
NOITER option

PARMS statement (BTL), 58
NOMCMPR option

PROC BTL statement, 51
NONLOCALW option

REPEATED statement (BTL), 63
NOPREDICTION option

SCORE statement, 132
NOPRINT option

PROC ALLELE statement, 23

PROC BTL statement, 51

PROC HAPLOTYPE statement, 140

PROC INBREED statement, 195
NOPROFILE option

PARMS statement (BTL), 59
NOREGPR option

PROC BTL statement, 51
NORPARMPR option

PROC BTL statement, 51
NOSUMMARY option

PROC HTSNP statement, 177
NSTART= option

PROC HAPLOTYPE statement, 140, 158
NULLSNPS= option

PROC CASECONTROL statement, 77, 81
NVARS= option

IMPORTANCE statement, 130

OLS option
PARMS statement (BTL), 59
OR option
PROC CASECONTROL statement, 77, 81,
90
ORDER= option
PROC BTL statement, 51
OUT= option
IMPORTANCE statement, 130
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PARTIALDEP statement, 131

PROC HAPLOTYPE statement, 137, 140

PROC PSMOOQOTH statement, 219

SCORE statement, 132
OUTCOV= option

PROC INBREED statement, 195
OUTCUT= option

PROC HAPLOTYPE statement, 140
OUTFIT= option

IMPORTANCE statement, 130

SCORE statement, 132
OUTID option

PROC HAPLOTYPE statement, 141, 166
OUTQ= option

PROC FAMILY statement, 100
OUTSTAT= option

PARMEST statement (BTL), 56

PROC ALLELE statement, 24

PROC CASECONTROL statement, 77

PROC FAMILY statement, 100

PARMEST statement
BTL procedure, 54
PARMS statement
BTL procedure, 57
PARMSDATA= option
PARMS statement (BTL), 59
PARTIALDEP statement
DATA= option, 131
OUT= option, 131
VAR= option, 131
PDATA= option
PARMS statement (BTL), 59
PERFORMANCE statement, 128
MEMSIZE= option, 128
WORKDATALOCATION=location, 128
PERMS= option
PROC ALLELE statement, 24
PROC CASECONTROL statement, 78
PROC FAMILY statement, 100
PROC FAMILY statement (FAMILY), 107
TRAIT statement (HAPLOTYPE), 143
PMAX= option
PARMEST statement (BTL), 56
PMIN= option
PARMEST statement (BTL), 56
POP statement
ALLELE procedure, 25
PREFIX= option
PROC ALLELE statement, 24
PROC CASECONTROL statement, 78
PROC FAMILY statement, 100
PROC HAPLOTYPE statement, 141

PROC ALLELE statement, see ALLELE
procedure
PROC BTL statement, see BTL procedure
PROC CASECONTROL statement, see
CASECONTROL procedure
PROC FAMILY statement, see FAMILY
procedure
PROC GENESELECT statement, 125
DATA= option, 126
INMODEL-= option, 126
ITERATIONS= option, 126
LEAFFRACTION= option, 126
LEAFSIZE= option, 126
MAXDEPTH= option, 127
MAXSURROGATES= option, 127
MINCATSIZE= option, 127
MODELTYPE=type, 127
SEED= option, 127
SPLITSIZE= option, 127
PROC HAPLOTYPE statement, see
HAPLOTYPE procedure
PROC HTSNP statement, see HTSNP procedure
PROC INBREED statement, see INBREED
procedure
PROC PSMOOTH statement, see PSMOOTH
procedure
PROPDIFF option
PROC ALLELE statement, 24
PSMOOTH procedure, 218
syntax, 218
PSMOQOTH procedure, BY statement, 219
PSMOQOTH procedure, ID statement, 220
PSMOOQOTH procedure, PROC PSMOOTH
statement, 218
ADJUST= option, 218, 222
BANDWIDTH= option, 218
DATA= option, 219
FISHER option, 219, 221
NEGLOG option, 219
NEGLOGI10 option, 219
OUT= option, 219
SIMES option, 219, 221
TAU= option, 219
TPM option, 219, 221
PSMOOTH procedure, VAR statement, 220

R option
PARMEST statement (BTL), 56
RANDOM statement
BTL procedure, 59
RATIOS option
PARMS statement (BTL), 59
RANDOM statement (BTL), 60
RCTDT option



PROC FAMILY statement, 100

PROC FAMILY statement (FAMILY), 106
REND-= option

PARMEST statement (BTL), 56
REPEATED statement

BTL procedure, 61
RHO option

PROC ALLELE statement, 24
RINC= option

PARMEST statement (BTL), 56
ROLE-= option

SCORE statement, 132
RSTART= option

PARMEST statement (BTL), 57

SAVE statement, 131

DISSIMILARITY= option, 131

IMPORTANCE-= option, 131

MODEL-= option, 131

SIMILARITY= option, 131
SCHEDULE-= option

PROC HTSNP statement, 177
SCORE statement, 132

DATA= option, 132

NOPREDICTION option, 132

OUT= option, 132

OUTFIT= option, 132

ROLE-= option, 132
SDT option

PROC FAMILY statement, 101

PROC FAMILY statement (FAMILY), 105
SE= option

PROC HAPLOTYPE statement, 141
SEED= option

PARMEST statement (BTL), 57

PROC ALLELE statement, 24

PROC CASECONTROL statement, 78

PROC FAMILY statement, 101

PROC GENESELECT statement, 127

PROC HAPLOTYPE statement, 141

PROC HTSNP statement, 178
SHOWALL option

PROC FAMILY statement, 101
SIMES option

PROC PSMOOTH statement, 219, 221
SIMILARITY= option

SAVE statement, 131
SIZE= option

PROC HTSNP statement, 178
SPLITSIZE= option

PROC GENESELECT statement, 127
STDT option

PROC FAMILY statement, 101, 104
STEP= option

Syntax Index 4 245

PROC HTSNP statement, 178
STEPTRIM= option

PROC HAPLOTYPE statement, 141
STRATA statement

CASECONTROL procedure, 79
SUBJECT= option

RANDOM statement (BTL), 61

REPEATED statement (BTL), 63

TALL option

PROC ALLELE statement, 24

PROC CASECONTROL statement, 78

PROC HAPLOTYPE statement, 141
TAU= option

PROC PSMOOTH statement, 219
TDT option

PROC FAMILY statement, 101, 104
TEMPERATURE-= option

PROC HTSNP statement, 178
TESTALL option

TRAIT statement (HAPLOTYPE), 143
TFACTOR= option

PROC HTSNP statement, 178
THETA option

PARMEST statement (BTL), 57
THETA= option

PROC HAPLOTYPE statement, 142
TOTALRUN-= option

PROC HAPLOTYPE statement, 142
TPLOT, 227
TPLOT macro, 227

ALPHA-= option, 228

syntax, 227
TPM option

PROC PSMOOTH statement, 219, 221
TRAIT statement, 129

CASECONTROL procedure, 80

FAMILY procedure, 102

HAPLOTYPE procedure, 143, 161
TREND option

PROC CASECONTROL statement, 78, 80
TYPE= option

RANDOM statement (BTL), 61

REPEATED statement (BTL), 64

UPPERB-= option
PARMS statement (BTL), 59

VAR statement, 129
ALLELE procedure, 26
CASECONTROL procedure, 80
FAMILY procedure, 103
HAPLOTYPE procedure, 143
HTSNP procedure, 179
INBREED procedure, 197
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PSMOOTH procedure, 220
VARTYPE-= option, 129
VAR= option
IMPORTANCE statement, 130
PARTIALDEP statement, 131
VARTYPE-= option
VAR statement, 129
VIF option
PROC CASECONTROL statement, 78, 81

WEIGHT statement
BTL procedure, 64
WITH statement
ALLELE procedure, 26
WORKDATALOCATION=location
PERFORMANCE statement, 128

XLVAR statement
FAMILY procedure, 103

YULESQ option
PROC ALLELE statement, 25

ZEROF option
POP statement (ALLELE), 26
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