
SAS® 9.2
Foundation Services
Administrator’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 Foundation Services: Administrator’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.2 Foundation Services: Administrator’s Guide
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-849-2
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009
1st printing, March 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � Concepts 1
Overview of SAS Foundation Services 1

Understanding Service Deployments 4

Understanding Service Deployment Configuration 6

Chapter 2 � Managing Service Deployments 9
Defining Service Deployments 9

Importing Service Deployments 12

Exporting Service Deployments 12

Duplicating Service Deployments 13

Redistributing Service Deployments 13

Chapter 3 � Installing and Running Foundation Services as a Windows Service 15
Overview of Installing and Running Foundation Services as a Windows Service 15

Configuring the Java Service Wrapper 15

Executing the Java Service Wrapper 17

Chapter 4 � Understanding How Applications Interact with Foundation Services 19
Understanding How Applications Deploy Foundation Services 19

Understanding How Applications Locate Foundation Services 20

Understanding How Applications Share SAS Foundation Services 26

Chapter 5 � Modifying Service Configurations 27
Overview of Modifying Service Configurations 27

Understanding the Event Broker Service 28

Understanding Events and Process Flows 30

Modifying an Event Broker Service Configuration 34

Creating Events and Process Flows 35

Modifying the Information Service Configuration 36

Modifying the Logging Service Configuration 40

Layout Formats 43

Modifying the Session and User Service Configurations 44

Index 47

iv

1

C H A P T E R

1
Concepts

Overview of SAS Foundation Services 1
Understanding Service Deployments 4

Overview of Service Deployments 4

Service Dependencies 6

Understanding Service Deployment Configuration 6

Overview of SAS Foundation Services
SAS Foundation Services includes tools to enable application development and

service administration for the SAS Foundation Services. Depending on the components
that you choose to install, SAS Foundation Services includes one or more of the
following components:

� SAS Management Console plug-ins, which enable you to administer configuration
metadata in a metadata repository. The following plug-ins can be installed with
the SAS Foundation Services:

� Application Monitor, which enables administrators to monitor the
performance and activities of a foundation service-enabled application.

� Foundation Services Manager, which enables administrators to define and
manage service deployments and service configurations.

� Publishing Framework Manager, which enables administrators to set up
metadata for users and applications to do the following:

� publish SAS files to a variety of destinations
� receive and process published information

For more information about SAS Foundation Services administration, see the
online Help for the appropriate administrative plug-in.

� SAS Foundation Services, which is a set of platform infrastructure and extension
services for programmers who want to write applications that are integrated with
the SAS platform. For information about coding applications that use the SAS
Foundation Services, see "Using SAS Foundation Services" in the SAS Integration
Technologies: Java Client Developer’s Guide.

The following table presents the function and related documentation for each of
the SAS Foundation Services:

2 Overview of SAS Foundation Services � Chapter 1

Table 1.1 SAS Foundation Services

Service Java Class Function
Related
Documentation

Connection
Service

com.sas.services.connection.platform IOM connection
management

For details about
administering the SAS
servers that you connect to
with the Connection Service,
see the SAS Intelligence
Platform: Application Server
Administration Guide. For
development information
and coding examples, see
the "Using the Java
Connection Factory" chapter
in the SAS Integration
Technologies: Java Client
Developer’s Guide.

Discovery Service com.sas.services.discovery locating and
binding to
deployed services

For details about how
applications use the
Discovery Service, see
“Understanding How
Applications Locate
Foundation Services” on
page 20.

Event Broker
Service

com.sas.services.events.broker asynchronous
event notification
and request
management to
support dynamic,
event-driven
processes

For details about editing the
Event Broker Service
configuration, see “Modifying
the Session and User Service
Configurations” on page 44.

For information about using
the Publishing Framework
to generate and publish
events, see SAS Publishing
Framework: Developer’s
Guide.

Information
Service

com.sas.services.information repository
federation,
searching
repositories, a
common entity
interface, and
creating personal
repositories

For details about editing the
Information Service
configuration, see “Modifying
the Information Service
Configuration” on page 36.

Logging Service com.sas.services.logging runtime execution
tracing, response
metric and
resource
utilization
reporting, and
error tracking

For details about editing the
logging service
configuration, see “Modifying
the Logging Service
Configuration” on page 40 .

Concepts � Overview of SAS Foundation Services 3

Service Java Class Function
Related
Documentation

Publish Service com.sas.services.publish access to the
publication
framework

For details about the
Publishing Framework, see
the SAS Publishing
Framework: Developer’s
Guide.

Security Service com.sas.services.security user
authentication,
propagation of
user identity
context across
distributed
security domains,
and
protected-resource
access policy
administration
and enforcement

For detailed information
about implementing security
in your environment, see the
SAS Intelligence Platform:
Security Administration
Guide.

Session Service com.sas.services.session context
management,
resource
management, and
context passing

For details about editing the
session service configuration,
see “Modifying the Session
and User Service
Configurations” on page 44.

Stored Process
Service

com.sas.services.storedprocess access to stored
process execution
and package
navigation

For details about stored
processes, see the SAS
Stored Processes: Developer’s
Guide.

User Service com.sas.services.user access to
authenticated
user context,
access to global,
solution-wide, and
application-
specific profiles,
and access to
personal objects

For details about editing the
User Service configuration,
see “Modifying the Session
and User Service
Configurations” on page 44.

In addition, you use the deployment utilities (com.sas.services.deployment) to
deploy the services.

This document covers the following SAS Foundation Services topics:

service deployments
In order to use the foundation services in your applications, you must deploy the
services. To deploy the services, you must configure a service deployment. To
understand service deployments and service deployment configuration, see
“Understanding Service Deployments” on page 4 and “Understanding Service
Deployment Configuration” on page 6.

service deployment definitions
To define and manage service deployments, see the Managing Service Deployments
topics.

4 Understanding Service Deployments � Chapter 1

installing and running SAS Foundation Services as a Windows service
The Java Service Wrapper from Tanuki Software is provided with SAS Foundation
Services. You can use this software to install and run SAS Foundation Services as
a Windows service for use with any application that uses SAS Foundation
Services. For details, see “Overview of Installing and Running Foundation
Services as a Windows Service” on page 15.

applications that are enabled for SAS Foundation Services
To understand how applications deploy, locate, and share services, see the
following topics:

“Understanding How Applications Deploy Foundation Services” on page 19
“Understanding How Applications Locate Foundation Services” on page 20
“Understanding How Applications Share SAS Foundation Services” on page 26

service configurations
To understand how to modify the configurations of certain foundation services, see
“Overview of Modifying Service Configurations” on page 27.

Understanding Service Deployments

Overview of Service Deployments
A service deployment is a configuration of a collection of SAS Foundation Services

that specifies the data that is necessary to instantiate the services, as well as
dependencies on other services. You create service deployments for applications that
deploy or access the services. You can store the service deployment configuration in the
following locations:

SAS Metadata Repository
You can use the Foundation Services Manager plug-in (of SAS Management
Console) to administer service deployment metadata that is stored in a SAS
Metadata Repository. The SAS Metadata Server controls access to the metadata.

XML file
You can export service deployment metadata from the SAS Metadata Server to an
XML file. You can then use the XML file to import service deployment metadata
into another SAS Metadata Repository. If you use an XML file to store service
deployment metadata, then there is no administration or access control for the
metadata in the XML file.

container deployment file:
You can export service deployment metadata from the SAS Metadata Repository to
a container deployment file. You can then deploy the SAS Foundation Services
configuration in a Spring Framework container.

Note: It is recommended that you store the service deployment metadata on a SAS
Metadata Repository. Storing the service deployment metadata in a SAS Metadata
Repository enables it to be updated and queried from one centralized location. �

To enable your application to deploy and access the foundation services, you can
create local or remote service deployments:

local service deployment
supports exclusive access to a set of services deployed within a single Java Virtual
Machine (JVM). Use a local service deployment when you want your application to
have its own exclusive set of foundation services.

Concepts � Overview of Service Deployments 5

remote service deployment
supports shared access to a set of services that are deployed within a single JVM,
but are available to other JVM processes. Use a remote service deployment when
you want to share a foundation service deployment among multiple applications.
When you create services for remote service deployments, you must specify that
the services will be accessed remotely. In order to allow remote access to the
services, you must also create a service registry and associate named services with
the named components for the remote services.

A service deployment contains:

service deployment groups
When you create service deployments (local or remote), you can also create groups
within the service deployment in order to organize services within a deployment
hierarchy.

services and service initialization data
Within each service deployment group, you must define the services for that group.
Service definitions contain the following information:

service types (interfaces)
designate which service interfaces are implemented by the service. The
Discovery Service is locates services according to their service interfaces. For
example, if you want to locate a service that implements a Logging Service
interface, have the Discovery Service search for a service that implements
com.sas.services.logging.LoggingServiceInterface.

Note: All SAS Foundation Services (including local services) implement
the Remote Service interface. �

service configuration
specifies the Java class that is used to create the service, the service’s
optional configuration data, and the service’s configuration user interface.
The service configuration user interface defines the Java class used by the
Foundation Services Manager to configure the service’s configuration details.

service dependencies
specify other services on which the service depends. When they are deployed,
foundation services might depend on the availability of one or more other
foundation services. When you define a service, you must specify the other
services on which that service depends. For example, the Authentication
Service uses the Logging Service. Therefore, when you define the
Authentication Service in a service deployment, you must specify the Logging
Service as a dependency.

service names (for remote access only)
specify named services for remote access. if a foundation service is to be
made available for remote clients, you must enable the service for remote
access and define named services (service names) that specify the service’s
name bindings to one or more service registries.

consumers (application configurations)
group the resources that are associated with a specific application. If several
applications share a single service configuration, then you can group the
resources in your service configurations by defining consumers. Consumers
enable you to install and uninstall the specific parts of a service configuration
that are associated with a specific application. For example, if your Logging
Service configuration contains a renderer that is specific to SAS Web Report
Studio and you uninstall SAS Web Report Studio, then the consumer

6 Service Dependencies � Chapter 1

definition can be used to remove that specific renderer while leaving the rest
of the Logging Service configuration intact.

authorization permissions
enable you to specify which user or group identities can perform which
actions on a particular resource.

Note: If a service depends on other services, then you must define those
services before defining the service that depends on them. For details about service
dependencies and order of definition, see “Service Dependencies” on page 6. �

service registries and associated named services (remote service deployments only)
To enable services for remote access, you must define a service registry to use in
locating remote services. (A service registry is a searchable registry of service
descriptions that is used to register named service bindings). You must then
register the services with the service registry by creating or associating named
services that define how each service is to be used within the context of the
Discovery Service.

To understand where service deployments are defined, see “Understanding Service
Deployment Configuration” on page 6.

Service Dependencies
If a service has a dependency on another service, you must first create the service on

which it depends. The following table shows the service dependencies and the relative
order in which you must define the services.

Table 1.2 Service Dependencies Table

Service Service Dependencies

Logging Service

Authentication Service Logging Service

Information Service Logging Service

User Service Logging Service

Authentication Service

Information Service

Session Service Logging Service

Discovery Service Logging Service

Event Broker Service Logging Service

Authentication Service

Information Service

User Service

Session Service

Stored Process Service Logging Service

Understanding Service Deployment Configuration
The following figure shows the SAS Management Console Foundation Services

Manager connected to a SAS Metadata Repository that contains a service deployment

Concepts � Understanding Service Deployment Configuration 7

named Remote Services. The figure also points to the service deployment group,
services, and service registry defined within the Remote Services service deployment.

Figure 1.1 SAS Foundation Services Deployment

You can define a service deployment in a SAS Metadata Repository in one of the
following ways:

� Use the Foundation Services Manager Plug-in of SAS Management Console to
create a service deployment. For details, see “Defining Service Deployments” on
page 9.

� Import an XML file that contains the service deployment. If your application’s
service deployment configuration is contained in an XML file, you can import it
into a SAS Metadata Repository. For details, see “Importing Service Deployments”
on page 12.

After you import or create a service deployment, you can do the following:

� Export the service deployment to an XML file. If an application does not have
access to a SAS Metadata Repository in its runtime environment, you can export
the service deployment configuration to an XML file that the application can
access for service deployment configuration information. For details, see
“Exporting Service Deployments” on page 12.

� Export the service deployment to a container deployment file. You can export the
service deployment configuration to a container deployment file that can be
deployed in a Spring Framework container. For details, see “Exporting Service
Deployments” on page 12.

� Duplicate the service deployment. If you need to use a service deployment that is
similar to an existing service deployment, you can duplicate an existing service
deployment configuration. For details, see “Duplicating Service Deployments” on
page 13.

In addition, you might need to update the prototypes that define the foundation
services. (To update prototypes, select the Foundation Services Manager and select
Actions � Update Prototypes). For further information about using the Foundation
Services Manager to create service deployments, see the Foundation Services Manager
Help.

8

9

C H A P T E R

2
Managing Service Deployments

Defining Service Deployments 9
Step 1: Create a Service Deployment 9

Step 2: Create Service Deployment Groups 10

Step 3: Create a Service 10

Step 4: Create a Service Registry and Named Services 11

Importing Service Deployments 12
Exporting Service Deployments 12

Duplicating Service Deployments 13

Redistributing Service Deployments 13

Defining Service Deployments

You create service deployments for applications to deploy and access SAS Foundation
Services. Applications deploy service deployments by using the service deployment
name that is configured in a SAS Metadata Repository or XML file. To understand the
components of service deployments, see “Understanding Service Deployments” on page
4.

To create a service deployment:

1 Create a service deployment.

2 Create service deployment groups for your service deployment.

3 Create services within each service deployment group.

4 For services that can be accessed remotely, create a service registry and associated
named services.

Step 1: Create a Service Deployment
To create a service deployment by using the Foundation Services Manager, perform

the following steps:

1 Open SAS Management Console and connect to a metadata repository.

2 In the navigation tree, select Foundation Services Manager and then select
Actions � New Service Deployment from the main menu. The New Service
Deployment window appears.

3 Enter a name and an optional description, and then click Next.

4 (Optional) Specify name and value pairs that can be used to look up services.

5 Click Finish to define the service deployment.

10 Step 2: Create Service Deployment Groups � Chapter 2

Step 2: Create Service Deployment Groups
To create service deployment groups, perform the following steps:

1 In the SAS Management Console navigation tree, select the service deployment in
which you want to create a new service deployment group. Select Actions � New
Service Development Group. The New Service Deployment Group window
appears.

2 Enter a name and an optional description, and then click Next.

3 (Optional) Specify name and value pairs that can be used to look up services.
Click Next.

4 Click Finish to create the new service deployment group.

After you create the deployment group, you can select the deployment group and do
one of the following:

� For local service deployments, create new services within that service deployment
group

� For remote service deployments, create the services registry within that service
deployment group.

Step 3: Create a Service
If a service is dependent upon other services, you must define those services before

defining the service which depends on them. For details about service dependencies and
order of definition, see “Service Dependencies” on page 6.

To create a new service, perform the following steps:

1 Open SAS Management Console and connect to a metadata repository.

2 In the navigation tree, locate and select the service deployment group where you
want to create a new service. Select Actions � New Service. The New Service
wizard appears.

3 Select a service to use as a prototype. Click Next.

4 Enter a name and an optional description, and then click Next.
5 The service interfaces that are associated with the selected service are displayed.

Click Next.

6 If the service has customizable configuration data, then click Configuration to
supply the configuration information. For details, see “Overview of Modifying
Service Configurations” on page 27.

When you have finished editing the service configuration, click Next.

7 (Optional) To make this service a remote service, select the Enable remote
clients to access service capabilities check box and then click Service
Names. The Service Names window appears.

To create a named service, perform the following steps:

a Click New to create a new named service.
b Enter the name and an optional description. Click Next.
c In the New Named Service wizard, enter the name of the binding and then

select the type of binding (bind or rebind). If you are creating an Event
Broker Service, then enter a codebase. If you are creating a new named
service for a service registry, click Select to select the named component
that is associated with this named service.

Managing Service Deployments � Step 4: Create a Service Registry and Named Services 11

If you want to associate the named service with a service registry, then
move that service registry from the Available pane to the Used pane.

Click Next.
d Review the named service definition, and then click Finish to save the

named service definition and return to the Service Names window.
e When you have finished creating named services, click OK.
f Click Next.

8 Select the services that your new service requires. Click Next.
9 (Optional) Specify name and value pairs that can be used to look up services.

Click Next.
10 Select the services that your new service requires by moving the services from the

Available Services pane to the Required Services pane. For more
information about service dependencies, see “Service Dependencies” on page 6.

Click Next.
11 If you are creating a new Event Broker Service, perform the following steps:

a Enter the default event name for the Event Broker Service. Click Next.
b Specify the resources for the Event Broker Service. Click Next.
c Specify the administrator port and transport monitors for the Event Broker

Service. Click Next.
12 Review the service definition, and then click Finish to save the new service.

You can create additional services for your service deployment. If the service is
enabled for remote access, you must create a new service registry.

Step 4: Create a Service Registry and Named Services
To create a service registry and named services, perform the following steps:
1 Open SAS Management Console and connect to a metadata repository.
2 In the navigation tree, locate and select the service deployment group where you

want to create a new service registry. Select Actions � New Service Registry
from the main menu. The New Service Registry wizard appears.

3 Select the type of service registry you want to define. Click Next. The New Service
Registry wizard appears.

4 Enter a name and an optional description, and then click Next.
5 The service interfaces that are satisfied by this definition of a service registry are

displayed. Click Next.
6 Specify the host name and port number that is used to bind to the service registry.

Click Next.
7 If you have not already defined the appropriate remote accessible service, then

perform the following steps to define named services:
a Click New to define a new named service. The New Named Service wizard

appears.
b Enter a name and an optional description, and then click Next.
c Enter the name of the binding and select the type of binding (bind or rebind).

If you are creating an Event Broker Service, then enter a codebase. Click
Select to select the named component that is associated with this named
service. Click Next.

d Review the named service definition, and then click Finish to save the
named service and return to the New Service Registry wizard.

When you are finished creating new named services, click Next.

12 Importing Service Deployments � Chapter 2

8 Review the service registry definition, and then click Finish to create the service
registry.

After you create the service registry, you can select the service deployment group for
the registry and create the services, including the named services associated with the
service registry.

Importing Service Deployments
The Foundation Services Manager enables you to import an XML file that contains

the metadata necessary to create a service deployment in the Foundation Services
Manager. To import a service deployment, perform the following steps:

1 Open SAS Management Console and connect to a metadata repository.
2 In the navigation tree, select Foundation Services Manager, and then select

Actions � Import Service Development from the main menu.
3 A file selector window appears. Select the deployment file that you want to import,

and then click Open.
4 The Import Service Deployment window appears. Specify the name for the service

deployment, and then click OK.

Exporting Service Deployments
You can export the metadata for a service deployment to an external file. You can

select either of the following file types:

service deployment file
an XML file that contains foundation services metadata. You can use this file to
import your deployment into SAS Management Console, or you can use the service
deployment metadata directly from the XML.

container deployment file
an XML file that enables you to deploy SAS Foundation Services in a Spring
Framework Container.

To export a service deployment XML file, perform the following steps:
1 Open SAS Management Console and connect to a metadata repository.
2 In the navigation tree, select the service deployment that you want to export.

Select Actions � Export Service Deployment to � Service Deployment File
from the main menu. The Export Service Deployment window appears.

3 Select the service deployment that you want to export in the Application
Service Deployments field. Specify an output file in the Export File field.

4 Click OK to export the file and close the window.

To export a container deployment file, perform the following steps:
1 Open SAS Management Console and connect to a metadata repository.
2 In the navigation tree, select the service deployment that you want to export.

Select Actions � Export Service Deployment to � Container Deployment File
from the main menu. The Create Service Deployment wizard appears.

3 Select the container type, and then click Next.
4 Specify whether you want to select specific deployment groups. Click Next.

Managing Service Deployments � Redistributing Service Deployments 13

5 If you specified that you want to select specific deployment groups, then select the
deployment groups that you want to include. Click Next.

6 Select whether the foundation services metadata is stored in the SAS Metadata
Repository or in an XML file (URL). Click Next.

7 Depending on where the metadata is stored, specify one of the following:
� If your metadata is stored in the SAS Metadata Repository, then specify the

connection information for the server. Click Next.
� If your metadata is stored in an XML file, then specify the location where the

XML file is located, and then click Next.

8 Review your configuration information in the Properties panel, and then specify
the filename for the container deployment file in the File field. Click Finish to
create the container deployment file.

Duplicating Service Deployments
The Foundation Services Manager plug-in of the SAS Management Console enables

you to duplicate an existing service deployment under a new name. To duplicate a
service deployment, perform the following steps:

1 Open SAS Management Console and connect to a metadata repository.
2 In the navigation tree, select the service deployment that you want to duplicate.

Select Actions � Duplicate Service Deployment from the main menu. The
Duplicate Foundation Service Deployment window appears.

3 The Name field contains the name of the service deployment you are duplicating.
You must change this name to a unique deployment name. Enter a new
description in the Description field, if needed.

4 Click OK to duplicate the service deployment. The new deployment appears in the
navigation tree under the Foundation Services Manager.

Redistributing Service Deployments
After you have configured a remote service deployment, you might need to move your

remote service deployment or service registry to a different machine.

Note: If the service deployment exists in an XML file instead of on the SAS
Metadata Repository, then you must first import the service deployment before you can
redistribute service deployments or service registries. See “Importing Service
Deployments” on page 12. �

You can use SAS Management Console to reconfigure parameters as follows:
� move the remote service deployment to another machine. To move a remote

service deployment to another machine, you must use the Foundation Services
Manager to reconfigure any machine-specific service configuration data. For
example, the logging service might be configured to send its output to a file in the
directory c:\original\log.txt on a Windows machine. If you move the remote
service deployment to a UNIX machine, you must edit the logging service
configuration and change the log file directory to /newmachine/log.txt.

Note: If the application that deploys the remote services is starting the
service registry, the service registry must be located on the same machine as the
remote services deployment. �

14 Redistributing Service Deployments � Chapter 2

� move the service registry to another machine. To move a service registry to
another machine, perform the following steps:

� Reconfigure the Service Registry definition in the service deployment. To
reconfigure the service registry, use the Foundation Services Manager to
update the service registry’s host name and port number.

Note: If the service registry’s host name is configured as localhost, you
do not need to update the configuration when you move the service registry to
a different machine. �

Note: You must ensure that the port that is configured for the service
registry does not conflict with a port that is already in use on the new
machine. �

� For Event Broker Service definitions only, reconfigure any codebase property
changes in the Named Services definition. To reconfigure the codebase
properties, use the Foundation Services Manager to update the named
service definitions on the service registry or in the service definition.

� Ensure that the application that starts the service registry is coded to call the
correct host name. For details, see the SAS Foundation Services class
documentation for the Deployment Service at http://support.sas.com/
92api.

After you have finished using SAS Management Console to re-configure the service
deployment, if the service deployment was imported into the SAS Management Console
from an XML file, use SAS Management Console to export the service deployment back
to an XML file. You must export or copy the file to the location where the application
accesses the XML file.

http://support.sas.com/

15

C H A P T E R

3
Installing and Running
Foundation Services as a
Windows Service

Overview of Installing and Running Foundation Services as a Windows Service 15
Configuring the Java Service Wrapper 15

Overview of the Java Service Wrapper 15

Setting a Dependency for the Metadata Server Service 16

Changing Timeout Intervals 16

Executing the Java Service Wrapper 17

Overview of Installing and Running Foundation Services as a Windows
Service

The Java Services Wrapper from Tanuki Software (wrapper.tanukisoftware.org)
is provided with SAS Foundation Services. You can use this software to install and run
SAS Foundation Services as a Windows service for use with any foundation
services-enabled application. The Java Service Wrapper handles user logouts, and it
also provides automatic restarts when they are required.

Note: The SAS Web Infrastructure Platform includes a separate implementation of
the Java Service Wrapper that enables you to easily install the SAS Services
application (which is provided with the SAS Web Infrastructure Platform) as a Windows
service. For more information about using this implementation, see the SAS
Intelligence Platform: Web Application Administration Guide. �

Configuring the Java Service Wrapper

Overview of the Java Service Wrapper
When you install SAS Foundation Services, a master wrapper.conf file is created in

your SASHOME directory. Additional application-specific wrapper.conf files are
created for any programs that use the Java Service Wrapper.

16 Setting a Dependency for the Metadata Server Service � Chapter 3

In most cases, you can use the default wrapper.conf files without making any
changes. Instead, you can use command-line arguments in the executable scripts to
override the configuration settings. The wrapper.conf file contains the following
configuration directives:

wrapper.java.command
specifies the fully qualified path to java.exe.

wrapper.java.mainclass
specifies the name of the class that will be instantiated by wrapper.exe. This class
must contain a main method and must implement WrapperListener. In the sample
configuration file wrapper.conf, this directive specifies a class called
com.sas.services.deployment.servicewrapper.ServiceWrapperImpl, which
is provided with SAS Foundation Services. When this class is instantiated by
wrapper.exe, it registers itself as an event listener and takes action whenever the
native wrapper signals an event. For more information, see the class
documentation at http://support.sas.com/92api.

wrapper.java.classpath1
specifies the location of the java archives that you want to load.

wrapper.app.parameter.1
specifies the metadata source configuration file, which specifies the location of the
deployment configuration for remote foundation services.

wrapper.java.library.path
specifies the location of the wrapper.dll or wrapper.so file.

wrapper.java.additional.1
specifies additional java parameters.

Setting a Dependency for the Metadata Server Service

If your deployment metadata is stored in a SAS Metadata Repository, and the SAS
Metadata Server has been installed as a service on the same machine as the SAS
Services application, then you need to specify a service dependency to ensure that the
services start in the correct order. You can specify the service dependency by adding the
following line to wrapper.conf:

wrapper.ntservice.dependency.1=Metadata-Service-Name

Changing Timeout Intervals

If the Java Service Wrapper is timing out while starting up or shutting down, it
might be necessary to increase the timeout intervals from the default values. Add the
following parameters to wrapper.conf as appropriate.

wrapper.startup.timeout
specifies the startup timeout interval in seconds. The default value is 30.

wrapper.shutdown.timeout
specifies the shutdown timeout interval in seconds. The default value is 30.

http://support.sas.com/92api

Installing and Running Foundation Services as a Windows Service � Executing the Java Service Wrapper 17

Executing the Java Service Wrapper
To use the Java Service Wrapper to install and run SAS Foundation Services as a

Windows service, execute the following scripts. In these scripts, you can use
command-line arguments to override any of the configuration directives that are
contained in the wrapper.conf configuration file.

InstallRemoteServices
installs SAS Foundation Services as a Windows service.

UninstallRemoteServices
uninstalls the Windows service after it has been installed.

StartRemoteServices
executes SAS Foundation Services as a Java Service Wrapper console application.

18

19

C H A P T E R

4
Understanding How Applications
Interact with Foundation
Services

Understanding How Applications Deploy Foundation Services 19
Understanding How Applications Locate Foundation Services 20

Overview of How Applications Locate Foundation Services 20

Scenario: Stand-alone Application 21

Scenario: Services that Can be Accessed Remotely 23

Scenario: Local and Remote-accessible Services 24
Understanding How Applications Share SAS Foundation Services 26

Understanding How Applications Deploy Foundation Services

Applications can access service deployments from a SAS Metadata Repository or an
XML file (that contains exported metadata). Applications deploy services as follows:

� For a local service deployment, the application uses a service loader utility to
instantiate and initialize the SAS Foundation Services for a local service
deployment and to register the deployed services with a local Discovery Service.
The application then has exclusive access to these locally deployed services. For a
stand-alone deployment, you do not need to configure a Discovery Service.

� For a remote service deployment that is shared between applications, one of the
applications must deploy the remote service deployment. The application uses a
service loader utility to instantiate and initialize the foundation services for a
remote service deployment and to register the deployed services with a local
Discovery Service. The application then has local access to the services. To enable
the services for remote access, the remote service deployment specifies a remote
Discovery Service that registers with the service registry. The remote service
deployment also contains a distributable configuration for any service that remote
clients access. These remote services are registered with a remote Discovery
Service. Other applications can then use the remote Discovery Service to access
the remote services.

Note: A foundation service-enabled application can be either a standard client
application or a Web client application that runs in a servlet container. �

Your application must install the appropriate JAR files (for example, sas.svc.core.jar)
in a location that is accessible only to its own classloader. This installation restriction is
due to the inheritance hierarchy of classloaders. This inheritance hierarchy enables
multiple applications to access classes that are available to higher level class loaders.
Therefore, each foundation service-enabled application should not install the required
JAR files in a location that is accessible to a class loader that might be shared among
multiple applications. For details about coding client applications for service

20 Understanding How Applications Locate Foundation Services � Chapter 4

deployment, see the SAS Foundation Services class documentation for
com.sas.services.deployment and com.sas.services.discovery at http://
support.sas.com/92api and the SAS Integration Technologies: Java Client
Developer’s Guide.

The following figure shows these components and how they work together.

Figure 4.1 A Remote Service Configuration

In the figure, Applications 1 through 4 all access their local and remote service
deployment configurations from a SAS Metadata Repository.

If Application 1 deploys the remote service deployment, the services are registered
with a local Discovery Service and a remote Discovery Service. Applications 2, 3, and 4
can then use the remote Discovery Service to locate and access the deployed remote
services. All of the applications share the same remote service deployment. In addition,
each application has exclusive access to its own local service deployment. For
information about how applications locate and access services, see “Understanding How
Applications Locate Foundation Services” on page 20.

The different components in the preceding figure might exist on the same Web server
or on different Web servers. You can install your applications and deploy your services
on separate machines as required by the needs of your implementation. For
information about distributing service deployments, see “Redistributing Service
Deployments” on page 13.

Understanding How Applications Locate Foundation Services

Overview of How Applications Locate Foundation Services
Applications can access services that are deployed locally or remotely.

http://support.sas.com/92api
http://support.sas.com/92api

Understanding How Applications Interact with Foundation Services � Scenario: Stand-alone Application 21

Note: Your application can be either a standard client application or a Web client
application that runs in a servlet container. �

To locate local and remote services, perform the following steps:
1 The application uses a service loader to instantiate and initialize local services,

including its local Discovery Service.
2 The application initializes and registers the local Discovery Service with a remote

Discovery Service. The application locates the remote Discovery Service by
obtaining the Remote Method Invocation (RMI) registry location from a SAS
Metadata Repository (or XML file that contains exported metadata) and performing
an RMI name lookup on the remote Discovery Service. The remote Discovery
Service enables the client to locate remotely deployed SAS Foundation Services.

3 When the application requests a service, its local Discovery Service first checks
whether the service is a locally registered service.

� If the requested service is a locally registered service, then the application
binds to the local service.

� If the requested service is not a locally registered service, then the local
Discovery Service uses the remote Discovery Service to search the remote
services deployment for the requested service.

� If the requested service is not registered with the remote Discovery
Service, an error is returned.

� If the requested service is registered with the remote Discovery Service,
a stub to the remote service is returned and the application can then
use the remote service.

For example, in Figure 4.1 on page 20, if an application requests the Logging Service,
the application binds to the local Logging Service. If an application requests the
Session Service, the application uses the remote Discovery Service to locate and bind to
the remote Session Service.

Note: If the application that deploys the remote services also starts the service
registry, then the service registry must exist on the same machine as that application. �

The following scenarios show examples of local and remote service deployment and
access.

� “Scenario: Stand-alone Application” on page 21
� “Scenario: Services that Can be Accessed Remotely” on page 23
� “Scenario: Local and Remote-accessible Services” on page 24

Scenario: Stand-alone Application
A stand-alone application deploys services locally, uses the services, and terminates

the services when they are no longer needed. If an application does not need to interact
with any other applications, then it can be a stand-alone application with its own
exclusive local service deployment. Services locally deployed by this application are not
available to any other application; in addition, no remote services are available.

Note: An application can be either a standard client application or a Web client
application that runs in a servlet container. �

To deploy local services for its own exclusive use, the application does the following:
1 uses the service loader to query service deployment metadata from either a SAS

Metadata Server or XML file (that contains exported metadata)

22 Scenario: Stand-alone Application � Chapter 4

2 uses the service loader to instantiate services that are defined in the service
deployment metadata and registers them with the local Discovery Service

3 uses the local Discovery Service to find services according to their service
interfaces and optional service attributes

When the application no longer needs the services or is ready to exit, it terminates
the local Discovery Service. The local Discovery Service then destroys all locally
instantiated services.

The following figure shows a stand-alone application that accesses a service
deployment from a local SAS Metadata Repository:

Figure 4.2 Stand-alone Application Accessing Local Deployment from a SAS
Metadata Repository

The following figure shows a stand-alone application that accesses a service
deployment from an XML file:

Figure 4.3 Stand-alone Application Accessing Local Deployment from an XML File

The following figure shows two stand-alone Web applications that access their service
deployments from a SAS Metadata Repository and each deploy their own local services
for their own exclusive use:

Understanding How Applications Interact with Foundation Services � Scenario: Services that Can be Accessed Remotely 23

Figure 4.4 Two Stand-alone Web Applications Accessing Local Deployments from
a SAS Metadata Repository

Scenario: Services that Can be Accessed Remotely
To enable applications to access remote services, one application must deploy the

remote services. (The application that deploys the remote services can then access the
services as local services). Instead of deploying their own set of local services, other
applications can access the remote services. To access the remote service deployment,
applications locate the deploying application’s remote Discovery Service in order to
locate and access the deployed remote services. This scenario is useful if one or more
client applications need to use the same set of services.

In this scenario, Application 1 deploys the remote services and accesses them as local
services. Applications 2, 3, and 4 locate Application 1’s remote Discovery Service in
order to access the remote services. Note that Applications 2 and 3 are Web client
applications that run in the same servlet container and each deploy their own local
services for their own exclusive use.

Figure 4.5 Applications Accessing SAS Foundation Services Remotely

24 Scenario: Local and Remote-accessible Services � Chapter 4

To deploy remote services, Application 1 does the following:

1 uses the service loader to query service deployment metadata from either a SAS
Metadata Server or an XML file (that contains exported metadata).

2 uses the service loader to instantiate services that are defined in the service
deployment metadata and to register them with the local Discovery Service.

Note: In this scenario, these services must be configured as accessible to
remote applications. �

3 uses its local Discovery Service to find services according to their service interfaces
and optional service attributes.

To locate the remote-accessible services (that were deployed by Application 1),
Applications 2, 3, and 4 do the following:

1 Use the service loader to query service deployment metadata from either a SAS
Metadata Server or an XML file (that contains exported metadata).

2 Use the service loader to obtain a name binding to the remote-accessible Discovery
Service instantiated by Application 1.

3 Register the remote Discovery Service with their own local Discovery Service.

4 Use their own local Discovery Service to find services according to their service
interfaces and optional service attributes. The local Discovery Service uses the
remote Discovery Service to locate the remote-accessible services.

Note: In this scenario, Applications 2, 3 and 4 do not deploy any services
themselves. They locate only services that are instantiated by Application 1. �

5 When Applications 2, 3, and 4 no longer need the services, they each terminate
their own local Discovery Service.

When Application 1 exits, it terminates its local Discovery Service. The local
Discovery Service then terminates all locally instantiated services. After all services are
terminated, no services are available to any other applications.

Scenario: Local and Remote-accessible Services
To enable other applications to access remote services, one application must deploy

the remote services. (The application that deploys the remote services can then access
the services as local services). Instead of deploying their own set of local services, other
applications can access the remote service deployment. To access the remote service
deployment, applications locate the deploying application’s remote Discovery Service in
order to locate and access the deployed remote services. In addition, these applications
can each have their own set of locally deployed services to which each application has
its own exclusive access. This example is useful when client applications need to have
both of the following:

� services deployed locally for exclusive use

� use of the same set of remote services

Note: A foundation service-enabled application can be either a standard client
application or a Web client application that runs in a servlet container. �

In this scenario, Application 1 deploys the remote services and accesses them as local
services. Application 2 locates Application 1’s remote Discovery Service in order to
access the remote services. Application 2 also deploys local services for its own
exclusive use.

Understanding How Applications Interact with Foundation Services � Scenario: Local and Remote-accessible Services 25

Figure 4.6 A Scenario in which Applications Access Both Local and Remote
Service Deployments

To deploy remote services and access these services locally, Application 1 does the
following:

1 uses the service loader to query service deployment metadata from either a SAS
Metadata Server or an XML file (that contains exported metadata).

2 uses the service loader to instantiate services that are defined in the metadata and
to register them with the local Discovery Service.

Note: These services must be configured for remote access. �
3 uses its local Discovery Service to find services according to their service interfaces

and optional service attributes.

To deploy local services and access remote services, Application 2 does the following:
1 uses the service loader to query service deployment metadata from either a SAS

Metadata Server or an XML file (that contains exported metadata).
2 uses the service loader to instantiate services that are defined in the metadata and

to register them with the local Discovery Service.

Note: Because these services are used only by Application 2, they are not
configured for remote access. �

3 uses the service loader to query service deployment metadata from either a SAS
Metadata Server or an XML file (that contains exported metadata).

4 uses the service loader to obtain a binding to the remote Discovery Service that is
instantiated by Application 1.

5 uses its local Discovery Service to find services based on their service interfaces
and optional service attributes.

Note: Application 2 has access to both local services and remote services.
When services are located, the local Discovery Service first tries to find a service
locally before it looks for a remote-accessible service. �

6 When Application 2 no longer needs the services it terminates its local Discovery
Service. This causes its locally instantiated services to be destroyed and its
bindings to Application 1’s remote services to be terminated.

When Application 1 exits, it terminates the local Discovery Service. The local
Discovery Service then terminates all locally instantiated services. After all services are
terminated, no services are available to any applications.

26 Understanding How Applications Share SAS Foundation Services � Chapter 4

Understanding How Applications Share SAS Foundation Services
An application can use the SAS Foundation Services to access another application’s

session context.

Note: A foundation service-enabled application can be either a standard client
application or a Web client application that runs in a servlet container. �

Figure 4.7 Shared Services

In the preceding figure, Applications 1 through 4 use the same remotely deployed
Session Service. When Application 1 launches Application 2, it passes its session ID to
Application 2. Application 2 can then bind to the remote Session Service and obtain and
use Application 1’s session and user context information. This allows the user to
seamlessly pass through to Application 2 without requiring a separate login definition.

27

C H A P T E R

5
Modifying Service
Configurations

Overview of Modifying Service Configurations 27
Understanding the Event Broker Service 28

Overview of the Event Broker Service 28

Understanding Events and Process Flows 30

Overview of Events 30

Additional Security Configuration 32
Overview of Process Flows 33

Modifying an Event Broker Service Configuration 34

Creating Events and Process Flows 35

Create a New Event 35

Create a New Process and Process Flow 35

Modifying the Information Service Configuration 36
Overview of the Information Service Configuration 36

Configure the Information Service 37

Modifying the Logging Service Configuration 40

Overview of the Logging Service 40

Configure the Logging Service 40
Layout Formats 43

Modifying the Session and User Service Configurations 44

Understanding and Editing the User Service 44

Configure the User Service 45

Understanding and Editing the Session Service 46
Configure the Session Service 46

Overview of Modifying Service Configurations

After you define a service deployment and its associated services, you might want to
edit the configuration information for particular services. You can use the Foundation
Services Manager to modify the configuration data for the following services:

� Event Broker Service. For details, see “Understanding Events and Process Flows”
on page 30 and “Modifying an Event Broker Service Configuration” on page 34.

� Information Service. For details, see “Modifying the Information Service
Configuration” on page 36.

� Logging Service. For details, see “Modifying the Logging Service Configuration” on
page 40.

� Session Service. For details, see “Modifying the Session and User Service
Configurations” on page 44.

28 Understanding the Event Broker Service � Chapter 5

� User Service. For details, see “Modifying the Session and User Service
Configurations” on page 44.

Understanding the Event Broker Service

Overview of the Event Broker Service
The Event Broker Service enables you to receive external event notifications and

process them based on the name of the event that is received. Events can be structured
or unstructured as follows:

� A structured event is specified as well-formed XML and conforms to the event
message specification. (For details about the event message specification, see the
SAS Foundation Services class documentation for the Event Broker Service at
http://support.sas.com/92api.) It contains information such as the name of
the event, the associated properties, and the message body.

� An unstructured event must also be specified as well-formed XML; however, it
does not conform to the event message specification. For unstructured events, the
entire event is parsed as the message body.

Note: The Event Broker Service handles unstructured events only if default
event handlers have been configured. �

For details about the event message specification, see the class documentation for
com.sas.services.events.broker in the SAS Foundation Services class
documentation at http://support.sas.com/92api.

The following figure shows the components of the Event Broker Service:

Figure 5.1 Components of the Event Broker Service

The Event Broker Service works as follows:

http://support.sas.com/92api
http://support.sas.com/92api

Modifying Service Configurations � Overview of the Event Broker Service 29

1 Listens for incoming events via transports or applications. The
Event Broker Service can monitor for and receive events via the following
transports:

RMI
If the RMI transport is enabled, the Event Broker Service registers itself to
one or more RMI registries.

To enable the event broker service to be accessed via RMI, you must enable
remote access in the service configuration. Enabling remote access registers
the service to the RMI Registry. Remote access to the Event Broker Service
enables the following:

� Java clients that are sending can use the appropriate RMI registry to
locate the Event Broker Service in order to send events.

� Java clients that are listening can use the appropriate RMI registry to
locate the Event Broker Service and register to listen for particular
events.

HTTP
listens for events that are sent from HTTP clients. Clients can also be
SOAP-enabled.

JMS
listens for events that are sent from any JMS-compliant messaging client.
This transport uses administered objects to isolate client applications from
the proprietary aspects of a provider. When you configure this transport, you
specify whether the administered objects are on the local file system or an
LDAP directory server. The transport then uses JNDI to look up the
administered objects on the local files system or LDAP directory server.

MQJMS
listens for events that are sent from WebsphereMQ (formerly MQSeries)
messaging clients.

JMQ
listens for events that are sent from SunONEMQ (formerly iPlanet Message
Queue) messaging clients.

Mail
listens for events that are sent to IMAP or POP3 mail servers.

IOM
listens for events that are sent from SAS servers.

2 Determines the event name to use for event configuration
information. The Event Broker Service parses the event XML to determine the
event name (or names if a naming hierarchy is used) to use for event configuration
information. If an unstructured event is received, the Event Broker Service uses
the service configuration information to map the unstructured event to a default
event name.

3 Forwards the event to the appropriate event handling agents, based
on the configured event type. The Event Broker Service uses configuration
information defined for the event name or default event names to determine
appropriate actions to take for the event.

For a broadcast event type, the Event Broker Service notifies all handling
agents (process flows and listening applications) of the event as follows:

� If an application is a registered listener for an event, the Event Broker
Service notifies the listening application of the event.

30 Understanding Events and Process Flows � Chapter 5

� If the event configuration contains process flows, the Event Broker Service
instantiates a flow engine for each configured process flow in order to process
the event message.

For a request/response event type, the Event Broker Service notifies only one
handling agent (listening application or process flow) as follows:

� If an application is a registered listener for an event, the registered listener
has precedence over a process flow. Only one process flow can be defined for
request/response types. Therefore, the Event Broker Service forwards the
event to the listening application.

� If the event configuration contains a process flow and there is no application
that is a registered listener, the Event Broker Service instantiates a flow
engine to process the event message.

4 Sends a response based on the event response type. The Event Broker
Service uses the event configuration to determine whether to send a response to
an event.

� If the event sender does not require a reply, the event request should specify
a response type of none or ack (acknowledge). To configure an event for no
response or acknowledge, you specify broadcast as the event type. For
acknowledge response types, the Event Broker Service sends an acknowledge
receipt to the event sender.

� If the event sender requires a reply, the event request should specify a
response type of result. To configure an event for a response, you specify
request/response as the event type. For request/response types, the Event
Broker Service sends a response to the event sender.

Note: Unstructured event requests are automatically assigned a response type of
none. Therefore, for event definitions that are used to handle unstructured event
requests, you must configure the response type as broadcast. �

Note: An event is completely qualified by its name and type. Therefore, the
Event Broker Service views events as separate events if they are sent or
configured with the same name, but different event types. For example, if you
send an event named AlertHigh with a response type of none to an event broker
that contains an event definition named AlertHigh that is configured as a
request/response type of event, then an error is returned. �

Applications can send and receive events using either of the following:

� transport monitors

� RMI

Understanding Events and Process Flows

Overview of Events
The Event Broker Service configuration allows you to configure one or more events.

When an event is received, the Event Broker Service maps the event name to a
configured event name. If an unstructured event is received, the Event Broker Service
maps the unstructured event to a configured default event name.

An Event configuration consists of the following information:

Modifying Service Configurations � Overview of Events 31

name
the name of the event in the incoming XML request maps to the configured event
name. You can also name events so that they are part of a naming hierarchy.
Events in a naming hierarchy are separated by a period. For example: Animals,
Animals.Dogs, Animals.Dogs.Retriever. Naming hierarchies are handled
differently based on the event type:

� If a broadcast event for Animals.Dogs.Lab is received, the event is delivered
to all handling agents (process flow or application) that are registered for
Animals.Dogs.Lab, Animals.Dogs, and Animals.

� If a request/response event is received, it is delivered to a single handling
agent. If the incoming request contains an event name that does not exactly
match an event name in the Event Broker Service configuration, the naming
hierarchy is searched for the best possible event name match that is also
configured as a request/response event type.

type
events can be one of the following types:

� Broadcast, where a notification is sent to all handling agents, and either no
response or an acknowledge receipt, is sent to the originating client.

� Request/Response, where notification is sent to one handling agent and a
response is sent to the originating client.

Configure the event type as follows:

� If the incoming XML request specifies a response type of none or ack
(acknowledge), the event sender does not require a reply. To configure
an event for no response or acknowledge, you specify Broadcast as the
event type. For unstructured events, specify Broadcast as the event
type.

� If the incoming XML request specifies a response type of result, the
event sender requires a reply. To configure an event for a response,
specify Request/Response as the event type.

Table 5.1 on page 32 contains information about event types.

Note: If the event configuration does not match the incoming event request
response type, then an error is returned (Event not configured). �

� Security: you can specify different security attributes for each event:

� To authenticate and authorize the sender’s credential, select the Check
sender’s authorization. If you select the Check sender’s
authorization property, then the event’s process flows will not run
unless the sender’s credentials are successfully authenticated by the
SAS Metadata Server’s authentication provider and then authorized by
the SAS Metadata Server’s authorization facility as having the Execute
permission for the event.

Note: The sender’s event request must contain the sender’s user ID
and password, and can also contain the authentication domain. You can
configure a default authentication domain in the configuration for the
User Service (see “Additional Security Configuration” on page 32). If you
configure a default authentication domain in the User Service, then the
sender is not required to specify the authentication domain in the event
request. �

32 Additional Security Configuration � Chapter 5

� To run event process flows under a particular identity, you must
configure the events to run under one of the following:

� the sender’s identity
� the broker’s identity

Note: You can configure event process flows to run under the
broker’s identity only if the Event Broker Service is deployed using
a SAS Metadata Server (instead of an XML file) as the metadata
source. �

� an identity that you supply in the configuration

You can also specify that the event run with no security.

The following table summarizes information about the incoming event request/
response type and configured event type.

Table 5.1 Event Types

Event Request/
Response Type

Configured
Event Response
Type

Event
Notifications Event Response

none Broadcast Notification sent to all
process flows
configured for the
event and all listening
applications registered
for the event.

No response sent.

ack Broadcast Notification sent to all
process flows
configured for the
event and all listening
applications registered
for the event.

Acknowledge receipt
sent to the event
sender.

result Request/Response Notification sent to
only one handling
agent (listening
application or process
flow). If there is a
listening application,
it takes precedence
over the process flow.

Response sent to the
event sender.

Additional Security Configuration
To set up security for sender’s credentials or event process flows, you must do the

following:

� Use the User Manager plug-in to SAS Management Console to define user or
group identities in the SAS Metadata Repository.

� Create, configure, and deploy the User Service (of the SAS Foundation Services).
You must configure and deploy the User Service as part of the Event Broker

Modifying Service Configurations � Overview of Process Flows 33

Service’s service deployment. The User Service must be available to the Event
Broker Service at run time.

To authenticate users, the User Service requires an appropriate login module
configuration file. In addition, other Java 2 policy and JAAS policy files might be
required. For example, to run an event’s process flows under a particular security
context, you must set up subject-based security with the JAAS policy configuration
file in order to restrict access to the appropriate resources. For details about
required User Service configuration, see the SAS Foundation Services class
documentation at http://support.sas.com/92api.

For details about additional User Service configuration in the Foundation
Services Manager, see “Modifying the Session and User Service Configurations” on
page 44.

In addition, to set up authorization for sender credentials, you must grant the sender
the Execute permission for the event. To grant the Execute permission, perform the
following steps:

1 Use the Authorization Manager plug-in to SAS Management Console to define the
Execute permission.

2 From the Foundation Services Manager, open the event properties.
3 On the event’s Authorization tab, click Add to add the appropriate user or group

for the sender.
4 Also on the event’s Authorization tab, select the sender’s user or group identity

and grant the Execute permission.

After you define an event, you can define your process flows.

Overview of Process Flows
Process flows are used to process event messages. Process flows contain process

nodes, which contain logic to process messages, and message nodes, which encapsulate
the inputs and outputs for the process nodes.

For broadcast events, you can configure one or more process flows for an event. For
request/response events, you can configure only one process flow for an event.

You can configure a process flow by using the Process Flow Editor to define a Process
Flow Diagram (PFD). A process flow configuration consists of the following elements:

� Name and description: the process name and an optional description.
� Process nodes: a process node is a Java class that can have one or more inputs

and outputs. You diagram these inputs and outputs as message nodes. When an
event is received and a process flow needs to be instantiated for the event, a
runtime flow engine is instantiated. The runtime flow engine calls a process node
by instantiating the Java class associated with that node. Currently, all process
nodes are executed synchronously. A process node configuration consists of the
following:

� A name and description: the process node name and an optional
description.

� A class: the Java class is used to instantiate the process node. You can
then generate the skeleton for the class, define your logic for the class, and
compile the class.

� Attributes for the class: attributes are name/value pairs for the class.

Note: If a process node has no predecessors, then it is the starting node for the
process flow. Each process flow can have only one starting node. �

http://support.sas.com/92api

34 Modifying an Event Broker Service Configuration � Chapter 5

� Message nodes: a message node encapsulates the outputs and inputs to process
nodes in a process flow. A message node configuration consists of the following:

� Name and description: the message node name and an optional
description.

� Details: details specify whether a message is required from the previous
process node in order to make a process node eligible for firing.

The following display shows an example of a portion of a process flow diagram:

Display 5.1 Process Flow Diagram

Modifying an Event Broker Service Configuration
After you create an Event Broker Service in your service deployment, you can modify

its service configuration.
To modify the Event Broker Service configuration, perform the following steps:
1 Open SAS Management Console and connect to a metadata repository.
2 In the navigation tree, locate the Event Broker Service that you want to modify.
3 Right-click the service that you want to modify, and select Properties from the

pop-up menu. The object’s properties are displayed.
4 Select the Service Configuration tab and click Configuration. The

EventBroker Service Configuration window appears.
5 On the Defaults tab, enter the Default event name to use for unstructured

events.
6 On the Resources tab, enter the event management and thread pool information

for the service.
7 On the Connections tab, specify an Administrator Port and click Insert to

create a new transport, or select a transport and click Edit to edit a transport’s
properties. For details about creating and editing transports, see the Foundation
Services Manager help. When you are finished editing a transport, click OK.

8 To enable a service for remote access, perform the following steps:

a On the Connections tab, select the RMI_Transport, and click Edit to edit
the RMI transport’s properties.

Modifying Service Configurations � Create a New Process and Process Flow 35

b On the General tab, to configure a new default event name for RMI
transports that overrides the default Event Broker Service event name, enter
a Default event name.

c On the RMI Details tab, select the Enable remote clients to access
service capabilities check box and click Service Names to define a new
named service. When you are finished creating named services and editing
the transport, click OK.

9 When you are finished creating or editing a transport, click OK to save the Event
Broker Service configuration to the metadata repository.

After you edit the Event Broker Service configuration, you can select the Event
Broker Service in the navigation tree and create event definitions for the Event Broker
Service. The event definitions you create can then be used to hold process flow
definitions that you create.

Creating Events and Process Flows

Create a New Event
To create a new event, perform the following steps:
1 Open SAS Management Console and connect to a metadata repository.
2 In the navigation tree, locate the Event Broker Service for which you want to

define a new event.
3 Right-click on the Event Broker Service, and select New Event from the pop-up

menu. The New Event wizard appears.
4 Enter a name and an optional description. Click Next.
5 Select the type of event that you want to create. Click Next.
6 Select the type of security to use when running the event. Click Finish to save

the event definition.

After you define an event, you can select the event definition in the navigation tree
and create process definitions for the event.

Create a New Process and Process Flow
To create a new process and process flow, perform the following steps:
1 Open SAS Management Console and connect to a metadata repository.
2 In the navigation tree, locate the event for which you want to define a new process

flow.
3 Right-click on the event and select New Process from the pop-up menu. The New

Process wizard appears.
4 Enter a name and an optional description. Click Next.
5 Select whether the execution for the process is single-threaded or multi-threaded.

Click Finish to save the process definition.
6 In the navigation tree, right-click the process flow that you just defined and select

Process Editor from the pop-up menu. The Process Editor appears.

7 From the toolbar, drag the Process Node () into the drawing area of the Process
Editor. The New Process Node wizard appears.

36 Modifying the Information Service Configuration � Chapter 5

8 Enter a name and an optional description. Click Next.
9 Enter the class to instantiate for this process node, and then click Generate

skeleton to generate skeleton code for the class. Click Compile to compile the
class. Specify the output directory for the code. Click Next.

10 (Optional) Add name/value pairs for the process node. When you have finished
entering your name/value pairs, click Finish. The Process Node definition is
saved. You can now create a message node for outputs and inputs.

11 In Process Flow Editor toolbar, drag the message node () into the drawing
area. The Process Message wizard appears.

12 Enter a name and an optional description. Click Next.
13 Select the Usage drop-down list and choose whether the input is required or

optional for downstream process nodes. You can also specify the format for the
node. Click Finish to define the message node.

14 To create a connection between the process node and the message node, position
your cursor on the process or message node so that a pencil icon appears. Drag the
cursor to the node to which you are making the connection.

15 Create other process nodes, message nodes, and connections as required for the
process flow.

16 Click to save the process flow.

Modifying the Information Service Configuration

Overview of the Information Service Configuration
The Information Service does the following:

� provides a mechanism to perform a federated search of any repositories that a
user has a connection to. The term federated means connected and treated as one.
The classes in the Information Service package enable the creation of a single
filter which can search disparate repositories (for example, SAS Metadata
Repositories and LDAP repositories).

� allows repository-specific searches to be performed, so that efficient searching can
be achieved.

� provides a convenient method for fetching an item from a repository by using a
URL.

� can be used in conjunction with the User Services and the Authentication Service
to authenticate users, create User Contexts, locate servers that the user has access
to, and create repository definitions to use in making server connections.

For more information about the Information Service, see
com.sas.services.information in the SAS Foundation Services class documentation
at http://support.sas.com/92api.

The Information Service configuration consists of the following items:

protocols
map the repository protocol to a Java class that implements the
com.sas.services.information.RepositoryInterface interface. When

http://support.sas.com/92api

Modifying Service Configurations � Configure the Information Service 37

connecting to a repository, the protocol class definition is used to create the new
repository object.

repositories
are persistent storage mechanisms for metadata and content. The repository
definitions specify how to connect to the repository and how to allow client
software to connect to a repository by name. You must create a repository
definition for each repository that your application accesses. (You must also define
a repository when using the getPathUrl method of the MetadataInterface.)

repository groups
identify a set of repositories that can be searched together.

smart objects
act as wrappers for metadata entries in order to hide the details of
repository-specific metadata types. A smart object definition consists of the
following:

� the protocol of the repository that contains the metadata
� the interface for the smart object
� the repository-specific type of metadata
� the action to take in order to implement the object
� the filter class to use in order to search for this type of object

You can use smart objects to specify implementations (smart object action
definition) for one or more repositories. You must specify an implementation
(smart object action definition) for at least one repository type. In the smart object
action definition, you can also specify a filter to use for implementing different
smart objects for the same repository type.

factories
act as wrappers for metadata entries in order to hide the details of
repository-specific metadata types. However, with factories, you cannot specify an
interface or filter to use when creating the object. In addition, within each factory,
you can specify implementations (factory object action definitions) for only one
type of repository. A factory definition consists of the following:

� the protocol of the repository that contains the metadata
� the repository-specific type of metadata
� the action to take in order to implement the factory

You must use smart object definitions if you want to specify the following:
� an interface for the object
� a filter to use when implementing the object
� multiple repositories for the actions of an object

Configure the Information Service
To configure the Information Service, perform the following steps:
1 Open SAS Management Console and connect to a metadata repository.
2 In the navigation tree, locate and select the Information Service that you want to

modify.
3 Right-click the Information Service and select Properties. The Information

Service properties window appears.
4 On the Service Configuration tab, click Configuration. The Information

Service Configuration window appears.

38 Configure the Information Service � Chapter 5

5 On the Protocols tab, click New to add a protocol, or select a protocol and click
Edit to edit a protocol. Enter the following information:

Protocol specifies the protocol for the information service.

Class lists the fully qualified Java class for the selected protocol.
When requesting a connection to a new repository, this class is
used in the connect method.

6 (Optional) Define a server on the Servers tab. Click New to add a server, or select
a server and click Edit to edit a server. Enter the appropriate information for
accessing the server. Click OK.

7 (Optional) Define repositories on the Repositories tab. Click New to add a
repository, or select a repository and click Edit to edit a repository. Enter the
appropriate information for accessing the repository, and then click Finish.

8 (Optional) Define repository groups on the Groups tab. Click New to add a
repository group, or select a repository group and click Edit to edit a repository
group. Enter the following information:

Name specifies the repository group name.

Member
Repositories

specifies the repositories that are members of the repository
group. Select a repository from the Available Repositories
panel and click the arrow button to move it to the Member
Repositories panel.

9 (Optional) Define smart objects on the Smart Objects tab. Click New to add a
smart object or select a smart object and click Edit to edit a smart object. Enter
the following information:

Name specifies the smart object type name. This string should exactly
match the string that is returned from the smart object
implementation’s getType() method.

Interface
Class

specifies the fully qualified Java interface that objects of this
type will implement.

Filter Class specifies the fully qualified Java class to use to most effectively
search for objects of this type. This class probably contains
specific extensions to the
com.sas.services.information.Filter class to make
searches more efficient.

Creation
Actions

defines how and when objects of this type are created. An
action definition contains a protocol, a repository-specific type, a
fully qualified Java class for the implementation to instantiate
when that type is encountered, and an optional filter to run
against an object which it must match for the action to be
taken. Click Add to define a new action, or click Edit to change
an existing action and enter the following information:

Protocol
specifies the repository protocol that this action applies to.
Select omi for SAS Open Metadata Interface, ldap for
LDAP directory server, or dav for WebDAV server.

Type
specifies the repository-specific type to look for when
creating this type of object.

Class
specifies the fully qualified Java class to create when
encountering this type in the repository.

Modifying Service Configurations � Configure the Information Service 39

Filter
specifies an optional filter, which an object must validate
against before this action is taken. The format of the filter
is

[*association/]@attribute=’value’

association specifies the name of an association
from the specified repository type; the
objects in the association will be tested
against the attribute portion of the
filter.

attribute specifies an attribute to test for
validation. The attribute can be an
attribute on the objects in the
association or, if no association is
specified, an attribute can be an
attribute on the object itself.

value specifies the attribute value to test the
object against to be sure it is the
correct type.

10 (Optional) Define factory definitions on the Factories tab. Select the Protocol
for the factory, and then click New to add a factory, or select a factory and click
Edit to edit a factory. Enter the following information:

Type specifies the factory types that are associated with the
Information Service and the selected protocol. Specify Class (a
class to generate the smart object), Constructor (a constructor
for a Java class that implements the smart object), or Service
(a Foundation Service).

Action specifies the action that is associated with the selected factory.
The Action table lists the type, class, method, and filter for
each action. Click Add to define a new action, or click Edit to
change an existing action and enter the following information:

Class
specifies the fully qualified Java class to instantiate for
the action.

Filter
specifies the fully qualified Java class to use to search for
objects of this type. The class probably contains extensions
to the com.sas.services.information.Filter class to
make searches more efficient.

11 (Optional) Define consumers on the Consumers tab. For each consumer, specify a
name for the consumer, and then select which resources in the service
configuration are consumed.

12 Click OK to save the Information Service configuration to the metadata repository.

40 Modifying the Logging Service Configuration � Chapter 5

Modifying the Logging Service Configuration

Overview of the Logging Service
The Logging Service enables applications to do the following:

� send runtime messages to one or more output destinations, including consoles,
files, and socket connections.

� configure and control the format of information that is sent to a particular
destination. Configuration can be performed through static configuration files or
by invoking runtime methods that control logging output.

� perform remote logging, which involves sending log messages that are generated
in one Java virtual machine (JVM) to another JVM.

� perform logging either by user session or by JVM.

For more information about the Logging Service, see com.sas.services.logging in
the SAS Foundation Services class documentation at http://support.sas.com/92api.

When a service deployment is defined and deployed, a base logging configuration is
used to determine the appropriate output destinations. However, you can use SAS
Management Console Foundation Services Manager to modify the Logging Service
configuration and configure additional logging contexts and output destinations. The
Logging Service configuration consists of the following items:

contexts
specify the name and outputs for a specific logging context. In your application,
you code the Logging Service to send information to a specific logging context.
(The RootLoggingContext is used for any logging context that is not configured.)
When naming the logging context, you can specify the logging context name as
part of a naming hierarchy. In a naming hierarchy, the logging context names are
separated by a period (for example, com.sas.services.event). If a call to a
logging context named com.sas.services.event is made and there is no logging
context for com.sas.services.event, then the Logging Service looks for a
logging context of com.sas.services. If there is no logging context for
com.sas.services, then com.sas is used. When you define a logging context, you
associate outputs with the logging context in order to specify where to send logging
messages for that particular logging context.

Note: To associate outputs with a logging context, you must first create the
output definition. �

outputs
specify an output destination for the logging messages. The Logging Service can
send the log messages to a file, console, or socket.

renderers
specify a custom renderer that is used to format logging messages for a specific
class. The custom renderer enables you to format logging output when you specify
an object as the message parameter in a logging call.

Configure the Logging Service
To configure the Logging Service, perform the following steps:

http://support.sas.com/92api

Modifying Service Configurations � Configure the Logging Service 41

1 In the SAS Management Console navigation tree, locate and select the Logging
Service that you want to modify. Right-click on the Logging Service and select
Properties. The Logging Service Properties window appears.

2 Select the Service Configuration tab and click Configuration. The Logging
Service Configuration window appears.

3 On the Outputs tab, click New to add an output, or select an output and click Edit
to edit an output. Enter the following information:

ID
specifies the name or identifier for the output.

Layout Pattern
specifies how to format the log message. For details about specifying layout
patterns, see “Layout Formats” on page 43.

Async
specifies whether asynchronous logging is activated.

Type
specifies the output type. Select one of the following:

Console
sends the logging output to the system console.

File
writes the logging output to a file.

Socket
sends the logging output to a network socket.

ARM
sends the logging output to an ARM appender.

� If Console is selected, then the window contains these items:

Target
specifies the output destination. Valid values are System.out or System.err.

ImmediateFlush
specifies whether the contents of the log are sent out after each logging
statement.

� If File is selected, then the window contains these items:

File
specifies the file to use for output.

ImmediateFlush
specifies whether the contents of the log are sent out after each logging
statement.

Append
specifies whether to append the logging output to the existing output in
the file. If Append is not selected, then any existing data in the file will be
overwritten.

File Rollover
specifies the type of rollover that is used for the log. Select one of the
following:

None specifies that file rollover is not used.

Size specifies that the log file rolls over (starts a new file)
when the file reaches a specific size. The Maximum

42 Configure the Logging Service � Chapter 5

Backup Index field specifies the number of backup files
that are maintained. The Maximum File Size field
specifies the maximum file size for the log file before
rollover occurs.

Frequency specifies that the log file rolls over (starts a new file) at
a specific time interval. The Frequency Pattern field
specifies the time pattern. For more information about
frequency patterns, see the Foundation Services
Manager Help.

� If Socket is selected, the window contains these items:

Host
specifies the socket host (machine name).

Port
specifies the socket port number.

� If ARM is selected, then the window does not contain any additional items.

Click OK to return to the Logging Service Configuration window.

4 On the Context tab, click New to add a context, or select a context and click Edit
to edit a context. Enter the following information:

Name specifies the name of the context.

Priority specifies the priority level of the logging context. The priority
levels are

DEBUG
displays the informational events that are most useful for
debugging an application.

INFO
displays informational messages that highlight the
progress of the application.

WARN
displays potentially harmful situations.

ERROR
displays error events that might allow the application to
continue to run.

FATAL
displays very severe error events that will probably cause
the application to terminate.

Chained specifies whether the context is chained. Chaining designates
that the log message is processed by both the current context
and also by logging contexts higher in the logging context
hierarchy.

Outputs specifies the output destinations for the context. Move the
outputs that you want to associate with this context from the
Available pane to the Selected pane.

Click OK to return to the Logging Service Configuration window.

5 (Optional) Specify custom renderers for the Logging service. On the Renderers
tab, click New to add a renderer, or select a renderer and click Edit to edit a
renderer. Enter the following information:

Modifying Service Configurations � Layout Formats 43

Rendered Class
specifies the fully qualified name of a Java class that you want to associate with
a custom renderer.

Note: Any descendents of the rendered class will also be associated with the
custom renderer, following the Java class hierarchy. �

Rendering Class
specifies a Java class that implements
com.sas.services.logging.RendererInterface. The rendering class is used
to format the output for any logging calls where an object of the specified
Rendered Class is passed in as the message parameter.

6 (Optional) Specify consumers for the Logging service. On the Consumers tab,
specify a Name for each consumer and then select which resources in the service
configuration are consumed.

7 Click OK to save the new Logging Service configuration to the metadata repository.

Layout Formats

The layout specifies how the output is formatted before it is sent to the output device.
The layout is specified as a pattern string. The following table shows the characters
available for use within layout pattern strings:

The following table shows the special conversion characters available for use within
layout pattern strings:

Table 5.2 Conversion Characters for Layout Patterns

Conversion
Character Result

c Used to output the logging context. The logging context conversion specifier can
be followed by precision specifier, that is a decimal constant in brackets
or braces. The precision specifier specifies the number of rightmost components of
the logging context name that will be printed. For example, for the logging
context name a.b.c the pattern %c{2} outputs b.c.

If you do not specify a precision specifier, the logging context name is printed in
full.

d Used to output the date of the logging event. The date conversion specifier can be
followed by a date format specifier enclosed between braces. For
example, %d{HH:mm:ss,SSS} or %d{dd MMM yyyy HH:mm:ss,SSS}. If no date
format specifier is given, then ISO8601 format is assumed.

l Used to output location information of the caller that generated the logging event.
The location information depends on the JVM implementation, but usually
consists of the fully qualified name of the calling method followed by the caller’s
source, the filename, and line number all within parentheses. The location
information can be very useful, but its generation can cause performance issues.

m Used to output the application-supplied message that is associated with the
logging event.

n Used to output the platform-dependent line separator characters. This conversion
character offers similar performance to using non-portable line separator strings
such as "\n", or "\r\n". Thus, it is the preferred way of specifying a line separator.

44 Modifying the Session and User Service Configurations � Chapter 5

Conversion
Character Result

p Used to output the priority of the logging event.

r Used to output the number of milliseconds elapsed since the start of the
application until the creation of the logging event.

s Used to output the session ID that is associated with this logging event. The
output for this conversion character is an empty string if the Logger being used
does not have an associated SessionContext.

t Used to output the name of the thread that generated the logging event.

u Used to output the user name that is associated with this logging event. The
output for this conversion character is an empty string if the Logger being used
does not have an associated SessionContext, or if that SessionContext does not
have an associated UserContext.

% The sequence %% outputs a single percent sign.

For more information about layout formats, see the log4j documentation at http://
logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
on the Apache Web site.

Modifying the Session and User Service Configurations

Understanding and Editing the User Service
The User Service enables applications to do the following:

� create, locate, maintain, and aggregate information about users of the SAS
Foundation Services.

� store and retrieve User Context objects for sharing between applications. The User
Context contains the user’s active repository connections, identities, and profile.

� manage and access user profiles. A profile is a collection of name/value pairs that
specify preferences and configuration or initialization data for a user for a
particular application.

� access group profiles. A group profile specifies preferences and configuration or
initialization data for a group of users for a particular application.

For more information, see com.sas.services.user in the SAS Foundation Services
class documentation at http://support.sas.com/92api.

The User Service uses a user context to hold the user’s information for connections,
identities, and profile. The profile then contains application profile data for the user.
The User Service configuration consists of the following:

users
specify the credentials that are associated with this User Service. The user
definition consists of the user ID, password, and authentication domain of the user.

profiles
contain a collection of name/value pairs that specify preferences and initialization
data for a user of an application. The profile definition contains the name of the

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://support.sas.com/92api

Modifying Service Configurations � Configure the User Service 45

associated application, where the profile is located, the class and type of the
profile, and a filter used to locate the profile.

Configure the User Service
To configure the User Service, perform the following steps:
1 In the SAS Management Console navigation tree, locate and select the User

Service that you want to modify. Right-click the User Service, and select
Properties from the pop-up menu. The User Service properties window appears.

2 Select the Service Configuration tab. Click Configuration. The User Service
Configuration window appears.

3 On the Authentication tab, specify the default authentication domain.
4 On the Users tab, and click Add to add a user, or select a user and click Edit to

edit a user. Click Select login to select a metadata login definition, or enter the
following information:

ID specifies the user ID of the user.

Password specifies the password needed for the user to log on to the
specified authentication domain.

Confirm
Password

confirms the password that you specified in the Password field.

Domain specifies the authentication domain for which the user ID is
valid.

Click OK to return to the User Service Configuration window.
5 On the Profiles tab, click Add to add a profile, or select a profile and click Edit

to edit a profile. Enter the following information:

Application specifies the application whose profile is specified.

Domain URL specifies the location of the repository where the application
profile is stored.

Class specifies the class associated with the profile.

Type specifies the profile type. If you are NOT using a custom profile
class, leave this field blank.

Filter specifies information to help locate the correct profile. If you
are NOT using a custom profile class, leave this field blank.

Click OK to return to the User Service Configuration window.
6 (Optional) Enter the following information on the LDAP tab:

People
specifies the distinguished name (DN) for the context in LDAP that contains
user metadata.

Groups
specifies the DN for the context in LDAP that contains group metadata.

Credentials
specifies the location in LDAP that contains credential information.

7 (Optional) Specify consumers for the User service. On the Consumers tab, specify
a name for each consumer and then select which resources in the service
configuration are consumed.

46 Understanding and Editing the Session Service � Chapter 5

8 When you are finished adding User Service configuration information, click OK to
save the User Service configuration to a metadata repository.

Understanding and Editing the Session Service
The Session Service enables applications to do the following:

� create a session context. A session context is a control structure that maintains
state information within a bound session, facilitating resource management, and
context passing.

� bind objects to a session context.
� use the session context as a convenience container for passing multiple contexts.
� use the session context as a convenience container for passing other services, such

as User Services and Logging Services.
� notify bound objects when they are removed from the session context or when the

session context is destroyed, so that objects can perform any necessary cleanup.

For more information, see com.sas.services.session in the SAS Foundation
Services class documentation at http://support.sas.com/92api.

When the Session Service initializes, it discovers the Logging Service, and obtains a
default logging context. The Session Service then uses the Session Service configuration
to determine whether to bind to a user context when creating the root session context:

� If the Session Service deployment configuration specifies a user context name, the
Session Service discovers the User Service and obtains the default user context.
The Session Service then creates a default root session context that is bound to
this default user context.

� If the Session Service deployment configuration does not specify a user context
name, then the Session Service creates a default root session context that is not
bound to any user context.

Applications can then use the root session context to track shared resources that are
global to the application and to obtain the initialized logging context and default user
context (if one was specified).

Configure the Session Service
To configure the Session Service, perform the following steps:
1 In the SAS Management Console navigation tree, locate and select the Session

Service that you want to modify. Right-click the Session Service and select
Properties from the pop-up menu. The Session Service properties window
appears.

2 Select the Service Configuration tab and click Configuration. The Session
Service Configuration window appears.

3 On the General tab, specify the default name for the user context. Specify the
timeout for the session context.

4 (Optional) Specify consumers for the Session service. On the Consumers tab,
specify a name for each consumer and then select which resources in the service
configuration are consumed.

5 Click OK to return to the Session Service Configuration window.

6 Click OK to save the Session Service configuration to the metadata repository.

http://support.sas.com/92api

47

Index

A
applications

configurations 5

deploying services 19

local service deployments 19

locating services 20

remote service deployments 19

sharing SAS Foundation Services 26

stand-alone 21

Authentication Service 36

authorization permissions 6

B
broadcast events 29, 33

C
configurations

applications 5

Event Broker Service 34

Information Service 36, 37

Java Service Wrapper 15

Logging Service 40

security configuration 32

service configuration 5, 27

service deployment 6

service deployment, storing 4

Session Service 46

User Service 45

consumers 5

container deployment files 12

storing service deployment configuration 4

contexts 40

session context 46

conversion characters

for layout patterns 43

D
dependencies 5, 6

for Metadata Server service 16

documentation 1

duplicating service deployments 7, 13

E
Event Broker Services 28

creating 11
modifying a configuration 34

event process flows
See process flows

event types 32
events 30

broadcast events 29, 33
creating 35
process flows 33
request/response events 30, 33
security configuration 32
structured 28
unstructured 28

exporting service deployments 7, 12

F
factories 37
federated search 36
fetching items, using a URL 36

I
importing service deployments 7, 12
information format 40
Information Service configuration 37

modifying 36
overview 36

interfaces 5

J
JAR files 19
Java Service Wrapper 15

changing timeout intervals 16
configuring 15
executing 17
overview 15
setting a dependency for Metadata Server service 16

L
layout formats 43
local service deployments 4

deployed by applications 19

48 Index

local services
located by applications 24

locating services 20
local and remote-accessible services 24
services that can be accessed remotely 23
stand-alone applications 21

logging, remote 40
Logging Service 40

configuring 40
modifying configuration 40

M
messages, runtime 40

N
named services 5

creating 10, 11

O
outputs 40

P
permissions 6
process flows 33

creating 35
security configuration 32

processes
creating 35

profiles 44
protocols 36
prototypes

updating 7

R
redistributing service deployments 13
registries 6

creating 11
remote logging 40
remote service deployments 5

deployed by applications 19
Remote Service interface 5
remote services

creating 10
located by applications 23, 24

renderers 40
repositories 37
repository groups 37
request/response events 30, 33
runtime messages 40

S
SAS Foundation Services 1

components 1
function and documentation 1
installing and running as Windows service 15
sharing 26

SAS Management Console plug-ins 1
SAS Metadata Repository

storing service deployment configuration 4

SAS Metadata Server
setting a dependency for 16

SAS Web Infrastructure Platform
Java Service Wrapper implementation 15

searches 36
federated 36

security configuration 32
service configurations 5

modifying 27
service definitions 5, 7
service dependencies 5, 6

for Metadata Server service 16
service deployment configuration 6

storing in container deployment files 4
storing in SAS Metadata Repository 4
storing in XML files 4

service deployment files 12
service deployment groups 5

creating 10
service deployments 4

content of 5
creating 7, 9
defining 9
duplicating 7, 13
exporting 7, 12
importing 7, 12
local 4
local, deployed by applications 19
redistributing 13
remote 5
remote, deployed by applications 19
service dependencies 6
storing configuration 4

service names 5
service registries 6

creating 11
service types 5
services

creating 10
deployed by applications 19
local 24
located by applications 20
named 5, 10, 11
remote 10, 23, 24

session context 46
Session Service 46

configuring 46
editing 46

sharing SAS Foundation Services 26
smart objects 37
stand-alone applications 21
structured events 28

T
timeout intervals 16

U
unstructured events 28
updating prototypes 7
URLs, fetching items with 36
User Service 36, 44

configuring 45
editing 44

users 44

Index 49

W
Windows service

installing and running Foundation Services as 15

X
XML files

storing service deployment configuration 4

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

mailto:yourturn@sas.com
mailto:suggest@sas.com

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Contents
	Concepts
	Overview of SAS Foundation Services
	Understanding Service Deployments
	Overview of Service Deployments
	Service Dependencies

	Understanding Service Deployment Configuration

	Managing Service Deployments
	Defining Service Deployments
	Step 1: Create a Service Deployment
	Step 2: Create Service Deployment Groups
	Step 3: Create a Service
	Step 4: Create a Service Registry and Named Services

	Importing Service Deployments
	Exporting Service Deployments
	Duplicating Service Deployments
	Redistributing Service Deployments

	Installing and Running Foundation Services as a Windows Service
	Overview of Installing and Running Foundation Services as a Windows Service
	Configuring the Java Service Wrapper
	Overview of the Java Service Wrapper
	Setting a Dependency for the Metadata Server Service
	Changing Timeout Intervals

	Executing the Java Service Wrapper

	Understanding How Applications Interact with Foundation Services
	Understanding How Applications Deploy Foundation Services
	Understanding How Applications Locate Foundation Services
	Overview of How Applications Locate Foundation Services
	Scenario: Stand-alone Application
	Scenario: Services that Can be Accessed Remotely
	Scenario: Local and Remote-accessible Services

	Understanding How Applications Share SAS Foundation Services

	Modifying Service Configurations
	Overview of Modifying Service Configurations
	Understanding the Event Broker Service
	Overview of the Event Broker Service

	Understanding Events and Process Flows
	Overview of Events
	Additional Security Configuration
	Overview of Process Flows

	Modifying an Event Broker Service Configuration
	Creating Events and Process Flows
	Create a New Event
	Create a New Process and Process Flow

	Modifying the Information Service Configuration
	Overview of the Information Service Configuration
	Configure the Information Service

	Modifying the Logging Service Configuration
	Overview of the Logging Service
	Configure the Logging Service

	Layout Formats
	Modifying the Session and User Service Configurations
	Understanding and Editing the User Service
	Configure the User Service
	Understanding and Editing the Session Service
	Configure the Session Service

	Index

