Forecasting Process Details


References

  • Akaike, H. (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control AC-19:716–723.

  • Aldrin, M., and Damsleth, E. (1989). “Forecasting Non-seasonal Time Series with Missing Observations.” Journal of Forecasting 8:97–116.

  • Anderson, T. W. (1971). The Statistical Analysis of Time Series. New York: John Wiley & Sons.

  • Ansley, C. F. (1979). “An Algorithm for the Exact Likelihood of a Mixed Autoregressive–Moving Average Process.” Biometrika 66:59–65.

  • Ansley, C. F., and Newbold, P. (1980). “Finite Sample Properties of Estimators for Autoregressive Moving-Average Models.” Journal of Econometrics 13:159–183.

  • Archibald, B. C. (1990). “Parameter Space of the Holt-Winters’ Model.” International Journal of Forecasting 6:199–209.

  • Bartolomei, S. M., and Sweet, A. L. (1989). “A Note on the Comparison of Exponential Smoothing Methods for Forecasting Seasonal Series.” International Journal of Forecasting 5:111–116.

  • Bhansali, R. J. (1980). “Autoregressive and Window Estimates of the Inverse Correlation Function.” Biometrika 67:551–566.

  • Bowerman, B. L., and O’Connell, R. T. (1979). Time Series and Forecasting: An Applied Approach. North Scituate, MA: Duxbury Press.

  • Box, G. E. P., and Cox, D. R. (1964). “An Analysis of Transformations.” Journal of the Royal Statistical Society, Series B 26:211–234.

  • Box, G. E. P., and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Rev. ed. San Francisco: Holden-Day.

  • Box, G. E. P., and Tiao, G. C. (1975). “Intervention Analysis with Applications to Economic and Environmental Problems.” Journal of the American Statistical Association 70:70–79.

  • Brocklebank, J. C., and Dickey, D. A. (1986). SAS System for Forecasting Time Series. 1986 ed. Cary, NC: SAS Institute Inc.

  • Brown, R. G. (1962). Smoothing, Forecasting, and Prediction of Discrete Time Series. New York: Prentice-Hall.

  • Brown, R. G., and Meyer, R. F. (1961). “The Fundamental Theorem of Exponential Smoothing.” Operations Research 9:673–685.

  • Chatfield, C. (1978). “The Holt-Winters Forecasting Procedure.” Journal of the Royal Statistical Society, Series C 27:264–279.

  • Chatfield, C., and Prothero, D. L. (1973). “Box-Jenkins Seasonal Forecasting: Problems in a Case Study.” Journal of the Royal Statistical Society, Series A 136:295–315.

  • Chatfield, C., and Yar, M. (1988). “Holt-Winters Forecasting: Some Practical Issues.” The Statistician 37:129–140.

  • Chatfield, C., and Yar, M. (1991). “Prediction Intervals for Multiplicative Holt-Winters.” International Journal of Forecasting 7:31–37.

  • Cogger, K. O. (1974). “The Optimality of General-Order Exponential Smoothing.” Operations Research 22:858–867.

  • Cox, D. R. (1961). “Prediction by Exponentially Weighted Moving Averages and Related Methods.” Journal of the Royal Statistical Society, Series B 23:414–422.

  • Davidson, J. (1981). “Problems with the Estimation of Moving Average Models.” Journal of Econometrics 16:295.

  • Dickey, D. A., and Fuller, W. A. (1979). “Distribution of the Estimators for Autoregressive Time Series with a Unit Root.” Journal of the American Statistical Association 74:427–431.

  • Dickey, D. A., Hasza, D. P., and Fuller, W. A. (1984). “Testing for Unit Roots in Seasonal Time Series.” Journal of the American Statistical Association 79:355–367.

  • Fair, R. C. (1986). “Evaluating the Predictive Accuracy of Models.” In Handbook of Econometrics, vol. 3, edited by Z. Griliches, and M. D. Intriligator, 1979–1995. New York: North-Holland.

  • Fildes, R. (1979). “Quantitative Forecasting—the State of the Art: Extrapolative Models.” Journal of the Operational Research Society 30:691–710.

  • Fuller, W. A. (1976). Introduction to Statistical Time Series. New York: John Wiley & Sons.

  • Gardner, E. S., Jr. (1984). “The Strange Case of the Lagging Forecasts.” Interfaces 14:47–50.

  • Gardner, E. S., Jr. (1985). “Exponential Smoothing: The State of the Art.” Journal of Forecasting 4:1–38.

  • Granger, C. W. J., and Newbold, P. (1977). Forecasting Economic Time Series. New York: Academic Press.

  • Greene, W. H. (1993). Econometric Analysis. 2nd ed. New York: Macmillan.

  • Hamilton, J. D. (1994). Time Series Analysis. Princeton, NJ: Princeton University Press.

  • Harvey, A. C. (1981). Time Series Models. New York: John Wiley & Sons.

  • Harvey, A. C. (1984). “A Unified View of Statistical Forecasting Procedures.” Journal of Forecasting 3:245–275.

  • Hopewood, W. S., McKeown, J. C., and Newbold, P. (1984). “Time Series Forecasting Models Involving Power Transformations.” Journal of Forecasting 3:57–61.

  • Jones, R. H. (1980). “Maximum Likelihood Fitting of ARMA Models to Time Series with Missing Observations.” Technometrics 22:389–396.

  • Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

  • Ledolter, J., and Abraham, B. (1984). “Some Comments on the Initialization of Exponential Smoothing.” Journal of Forecasting 3:79–84.

  • Ljung, G. M., and Box, G. E. P. (1978). “On a Measure of Lack of Fit in Time Series Models.” Biometrika 65:297–303.

  • Makridakis, S. G., Wheelwright, S. C., and McGee, V. E. (1983). Forecasting: Methods and Applications. 2nd ed. New York: John Wiley & Sons.

  • McKenzie, E. (1984). “General Exponential Smoothing and the Equivalent ARMA Process.” Journal of Forecasting 3:333–344.

  • McKenzie, E. (1986). “Error Analysis for Winters’ Additive Seasonal Forecasting System.” International Journal of Forecasting 2:373–382.

  • Montgomery, D. C., and Johnson, L. A. (1976). Forecasting and Time Series Analysis. New York: McGraw-Hill.

  • Morf, M., Sidhu, G. S., and Kailath, T. (1974). “Some New Algorithms for Recursive Estimation on Constant Linear Discrete Time Systems.” IEEE Transactions on Automatic Control 19:315–323.

  • Nelson, C. R. (1973). Applied Time Series for Managerial Forecasting. San Francisco: Holden-Day.

  • Newbold, P. (1981). “Some Recent Developments in Time Series Analysis.” International Statistical Review 49:53–66.

  • Newton, H. J., and Pagano, M. (1983). “The Finite Memory Prediction of Covariance Stationary Time Series.” SIAM Journal on Scientific and Statistical Computing 4:330–339.

  • Pankratz, A. (1983). Forecasting with Univariate Box-Jenkins Models: Concepts and Cases. New York: John Wiley & Sons.

  • Pankratz, A. (1991). Forecasting with Dynamic Regression Models. New York: John Wiley & Sons.

  • Pankratz, A., and Dudley, U. (1987). “Forecast of Power-Transformed Series.” Journal of Forecasting 6:239–248.

  • Pearlman, J. G. (1980). “An Algorithm for the Exact Likelihood of a High-Order Autoregressive–Moving Average Process.” Biometrika 67:232–233.

  • Priestley, M. B. (1981). Spectral Analysis and Time Series. London: Academic Press.

  • Roberts, S. A. (1982). “A General Class of Holt-Winters Type Forecasting Models.” Management Science 28:808–820.

  • Schwarz, G. (1978). “Estimating the Dimension of a Model.” Annals of Statistics 6:461–464.

  • Sweet, A. L. (1985). “Computing the Variance of the Forecast Error for the Holt-Winters Seasonal Models.” Journal of Forecasting 4:235–243.

  • Winters, P. R. (1960). “Forecasting Sales by Exponentially Weighted Moving Averages.” Management Science 6:324–342.

  • Woodfield, T. J. (1987). “Time Series Intervention Analysis Using SAS Software.” In Proceedings of the Twelfth Annual SAS Users Group International Conference, 331–339. Cary, NC: SAS Institute Inc. http://www.sascommunity.org/sugi/SUGI87/Sugi-12-57%20Woodfield.pdf.

  • Yar, M., and Chatfield, C. (1990). “Prediction Intervals for the Holt-Winters Forecasting Procedure.” International Journal of Forecasting 6:127–137.