The MODEL Procedure


Example 26.22 Reducing Parameter Variance in a Tree Biomass Model

This example uses various dimensions of willow oak trees to model their biomass. Unlike a tree’s biomass, a tree’s dimensions can be measured noninvasively. The model and data for this example are taken from Parresol (1999). This biomass model uses four equations to model the bole wood, bole bark, crown, and total mass of the trees,

\begin{align*} y_\text {wood} & = b_{10} + b_{11}D^2H \\ y_\text {bark} & = b_{20} + b_{21}D^2H \\ y_\text {crown} & = b_{30} + b_{31}\frac{D^2H L}{1000} + b_{32}H \\ y_\text {total} & = b_{40} + b_{41}D^2H + b_{42}\frac{D^2H L}{1000} + b_{43}H \end{align*}

where $y_\text {wood}$, $y_\text {bark}$, and $y_\text {crown}$ are the three components of a tree’s total biomass, $y_\text {total}$; D is the tree’s diameter at breast height; H is the tree’s height; and L is the tree’s live crown length. The efficiency of parameter estimates in this model is improved by taking into account the correlations between errors in the equations for the four components of the trees’ biomass. Also, the efficiency of estimates is improved by taking into account heteroscedasticity in the sample of 39 trees that is used to develop the model.

In an initial OLS estimation of this model’s parameters, some general properties of the model and data can be quantified using the following statements:

proc model data=trees;
   endo wood bark crown total;

   vol = dbh**2*height;
   cvol = vol*lcl/1000;

   wood  = b10 + b11*vol;
   bark  = b20 + b21*vol;
   crown = b30 + b31*cvol + b32*height;
   total = b40 + b41*vol + b42*cvol + b43*height;

   fit / ols outs=stree out=otree outresid;
quit;

Here the covariance of equation errors is saved to the data set STREE, and the residuals are saved to the data set OTREE for later analysis.

The covariance matrix of equation errors that is computed in the OLS estimation can be used in a seemingly unrelated regression (SUR) estimation of the model to improve the efficiency of parameter estimates. The total biomass of trees is restricted to equal the other three biomass components in the following SUR estimation:

proc model data=trees;
   endo wood bark crown total;

   vol = dbh**2*height;
   cvol = vol*lcl/1000;

   wood  = b10 + b11*vol;
   bark  = b20 + b21*vol;
   crown = b30 + b31*cvol + b32*height;
   total = b40 + b41*vol + b42*cvol + b43*height;

   fit / nools sur sdata=stree;

   restrict b10 + b20 + b30 = b40,
            b11 + b21 = b41,
            b42 = b31,
            b43 = b32;
quit;

Output 26.22.1 shows the parameters and standard errors for the restricted SUR tree biomass model.

Output 26.22.1: SUR Parameter Estimates for Willow Oak Model

The MODEL Procedure

Nonlinear SUR Parameter Estimates
Parameter Estimate Approx Std Err t Value Approx
Pr > |t|
Label
b10 59.18653 48.2435 1.23 0.2274  
b11 0.026598 0.000558 47.67 <.0001  
b20 29.65101 10.3839 2.86 0.0069  
b21 0.003225 0.000120 26.79 <.0001  
b30 133.1066 26.6246 5.00 <.0001  
b31 0.061543 0.00508 12.11 <.0001  
b32 -5.33604 1.1141 -4.79 <.0001  
b40 221.9441 62.1834 3.57 0.0010  
b41 0.029824 0.000623 47.91 <.0001  
b42 0.061543 0.00508 12.11 <.0001  
b43 -5.33604 1.1141 -4.79 <.0001  
Restrict0 -656E-14 0.1316 -0.00 1.0000 b10 + b20 + b30 = b40
Restrict1 148.5607 11355.0 0.01 0.9898 b11 + b21 = b41
Restrict2 68.66564 178.8 0.38 0.7067 b42 = b31
Restrict3 0.388714 3.5449 0.11 0.9145 b43 = b32



An analysis of heteroscedasticity in the unrestricted OLS model suggests that the efficiency of the estimation could be improved further by weighting the observations using the following variance model:

\begin{align*} \sigma ^2_\text {wood} & = \exp (w_1 + w_2\ln D^2 H) \\ \sigma ^2_\text {bark} & = \exp (k_1 + k_2\ln D^2 H) \\ \sigma ^2_\text {crown} & = \exp (c_1 + c_2\ln \frac{D^2H L}{1000} - c_3 H^2) \\ \sigma ^2_\text {total} & = \exp (t_1 + t_2\ln D^2 H) \end{align*}

where $\sigma ^2_ i$ is the variance of the ith component of the biomass and the parameters $w_1$, $w_2$, $k_1$, $k_2$, $c_1$, $c_2$, $c_3$, $t_1$, and $t_2$ are determined by regressing the square of the residuals from the unrestricted OLS estimation against the tree dimensions. Estimates of the parameters in the variance model can be determined using the following statements:

proc model data=otree;
   vol = dbh**2*height;
   cvol = vol*lcl/1000;

   eq.varwood  = log(wood*wood) - (w1 + w2*log(vol));
   eq.varbark  = log(bark*bark) - (k1 + k2*log(vol));
   eq.varcrown = log(crown*crown) - (c1 + c2*log(cvol) - c3*height**2);
   eq.vartotal = log(total*total) - (t1 + t2*log(vol));

   fit varwood varbark varcrown vartotal;
quit;

The biomass component variance model can be used to account for heteroscedasticity and improve the efficiency of parameter estimates by weighting observations in the biomass model. The following PROC MODEL statements accommodate both the covariance among the biomass equations’ errors and the heteroscedasticity that is observed in each component of the trees’ biomass:

proc model data=trees;
   endo wood bark crown total;

   vol = dbh**2*height;
   cvol = vol*lcl/1000;

   wood  = b10 + b11*vol;
   bark  = b20 + b21*vol;
   crown = b30 + b31*cvol + b32*height;
   total = b40 + b41*vol + b42*cvol + b43*height;

   h.wood = exp(&w1)*vol**&w2;
   h.bark = exp(&k1)*vol**&k2;
   h.crown = exp(&c1)*cvol**&c2 * exp (-&c3*height*height);
   h.total = exp(&t1)*vol**&t2;

   fit / sur;

   restrict b10 + b20 + b30 = b40,
            b11 + b21 = b41,
            b42 = b31,
            b43 = b32;
quit;

Output 26.22.2 shows the parameters and standard errors for the heteroscedastic tree biomass model.

Output 26.22.2: SUR Parameter Estimates for Heteroscedastic Willow Oak Model

The MODEL Procedure

Nonlinear SUR Parameter Estimates
Parameter Estimate Approx Std Err t Value Approx
Pr > |t|
Label
b10 10.22253 14.2208 0.72 0.4766  
b11 0.027515 0.000534 51.48 <.0001  
b20 15.66358 4.8173 3.25 0.0024  
b21 0.003476 0.000138 25.13 <.0001  
b30 103.8782 10.6122 9.79 <.0001  
b31 0.055226 0.00306 18.02 <.0001  
b32 -4.05163 0.4603 -8.80 <.0001  
b40 129.7643 21.5621 6.02 <.0001  
b41 0.030991 0.000614 50.47 <.0001  
b42 0.055226 0.00306 18.02 <.0001  
b43 -4.05163 0.4603 -8.80 <.0001  
Restrict0 -0.28369 1.1969 -0.24 0.8164 b10 + b20 + b30 = b40
Restrict1 -56046.2 49194.0 -1.14 0.2603 b11 + b21 = b41
Restrict2 539.3854 697.4 0.77 0.4471 b42 = b31
Restrict3 4.374001 29.6959 0.15 0.8853 b43 = b32



Output 26.22.3 shows the improved efficiency of estimates in the heteroscedastic model as compared to the homoscedastic model. For most of the parameters, the standard errors are reduced significantly in the heteroscedastic estimation.

Output 26.22.3: Standard Error Reduction

Parameter StdErr Rel.
Change
b10 ( 71%)
b11 ( 4%)
b20 ( 54%)
b21 15%
b30 ( 60%)
b31 ( 40%)
b32 ( 59%)
b40 ( 65%)
b41 ( 1%)
b42 ( 40%)
b43 ( 59%)