This example illustrates how to use SMM to estimate an AR(1) regression model for the following process:
|
|
|
|
|
|
|
|
|
|
|
|
In the following SAS statements,
is simulated by using this model, and the endogenous variable
is set to be equal to
. The MOMENT statement creates two more moments for the estimation. One is the second moment, and the other is the first-order
autocovariance. The NPREOBS=10 option instructs PROC MODEL to run the simulation 10 times before
is compared to the first observation of
. Because the initial
is zero, the first
is
. Without the NPREOBS option, this
is matched with the first observation of
. With NPREOBS, this
and the next nine
are thrown away, and the moment match starts with the eleventh
with the first observation of
. This way, the initial values do not exert a large influence on the simulated endogenous variables.
%let nobs=500;
data ardata;
lu =0;
do i=-10 to &nobs;
x = rannor( 1011 );
e = rannor( 1011 );
u = .6 * lu + 1.5 * e;
Y = 2 + 1.5 * x + u;
lu = u;
if i > 0 then output;
end;
run;
title1 'Simulated Method of Moments for AR(1) Process';
proc model data=ardata ;
parms a b s 1 alpha .5;
instrument x;
u = alpha * zlag(u) + s * rannor( 8003 );
ysim = a + b * x + u;
y = ysim;
moment y = (2) lag1(1);
fit y / gmm npreobs=10 ndraw=10;
bound s > 0, 1 > alpha > 0;
run;
The output of the MODEL procedure is shown in Output 19.16.1:
Output 19.16.1: PROC MODEL Output
| Simulated Method of Moments for AR(1) Process |
| Model Summary | |
|---|---|
| Model Variables | 1 |
| Parameters | 4 |
| Equations | 3 |
| Number of Statements | 8 |
| Program Lag Length | 1 |
| Model Variables | Y |
|---|---|
| Parameters(Value) | a b s(1) alpha(0.5) |
| Equations | _moment_2 _moment_1 Y |
| The 3 Equations to Estimate | |
|---|---|
| _moment_2 = | F(a, b, s, alpha) |
| _moment_1 = | F(a, b, s, alpha) |
| Y = | F(a(1), b(x), s, alpha) |
| Instruments | 1 x |
| Nonlinear GMM Parameter Estimates | ||||
|---|---|---|---|---|
| Parameter | Estimate | Approx Std Err | t Value | Approx Pr > |t| |
| a | 1.632798 | 0.1038 | 15.73 | <.0001 |
| b | 1.513197 | 0.0698 | 21.67 | <.0001 |
| s | 1.427888 | 0.0984 | 14.52 | <.0001 |
| alpha | 0.543985 | 0.0809 | 6.72 | <.0001 |