
SAS®
Data Integration Studio 4.2
User’s Guide

ETLUG_ColorTitlePage.indd 1 1/27/09 10:02:34 AM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® Data Integration Studio 4.2: User’s Guide. Cary, NC: SAS Institute Inc.

SAS® Data Integration Studio 4.2: User’s Guide
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59047-960-5
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009

1st printing, March 2009

2nd electronic book, May 2009

2nd printing, June 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

PART 1 Introduction 1

Chapter 1 • Overview of SAS Data Integration . 3
About SAS Data Integration . 3
Advantages of SAS Data Integration . 4
A Basic Data Integration Environment . 5
Online Help for SAS Data Integration Studio . 8
Administrative Documentation for SAS Data Integration Studio 9
Accessibility Features in SAS Data Integration Studio . 10
Upgrading from Earlier Versions . 13

PART 2 General User Tasks 19

Chapter 2 • Getting Started . 21
Setup for SAS Data Integration Studio . 22
Security for SAS Data Integration Studio . 22
Main Tasks for Creating Process Flows . 23
Starting SAS Data Integration Studio . 24
Connecting to a SAS Metadata Server . 26
Working with the Folders Tree . 27
Selecting a Default SAS Application Server . 30
Registering SAS Libraries . 31
Working with User-Defined Formats . 32
Registering Tables and Cubes . 33
Specifying Global Options in SAS Data Integration Studio . 35
Working with Change Management . 36
Add a Note or Document to a Registered Object . 41
View the Content of Notes or Documents . 43

Chapter 3 • Importing, Exporting, and Copying Metadata . 45
Metadata Import and Export in SAS Data Integration Studio . 46
Working with SAS Package Metadata . 46
Preparing to Import or Export SAS Package Metadata . 47
Exporting SAS Package Metadata . 48
Importing SAS Package Metadata . 49
Copying and Pasting Metadata Objects . 51
Working with SAS Metadata Bridges . 51
Usage Notes for Importing or Exporting with a SAS Metadata Bridge 52
Preparing to Import or Export with a SAS Metadata Bridge . 53
Importing New Metadata with a SAS Metadata Bridge . 53
Importing Updated Metadata with a SAS Metadata Bridge . 55
Exporting Metadata with a SAS Metadata Bridge . 60

Chapter 4 • Working with Tables . 63
About Tables . 64
Registering Existing Tables with the Register Tables Wizard . 65
Registering New Tables with the New Table Wizard . 66

Viewing or Updating Table Metadata . 68
Using a Physical Table to Update Table Metadata . 69
Specifying Options for Tables . 70
Supporting Case and Special Characters in Table and Column Names 72
Maintaining Column Metadata . 77
Maintaining Keys . 82
Maintaining Indexes . 87
Browsing Table Data . 89
Editing SAS Table Data . 92
Using the View Data Window to Create a SAS Table . 95
Specifying Browse and Edit Options for Tables and External Files 96

Chapter 5 • Working with External Files . 99
About External Files . 100
Registering a Delimited External File . 100
Registering a Fixed-Width External File . 103
Registering an External File with User-Written Code . 108
Viewing or Updating External File Metadata . 111
Overriding the Code Generated by the External File Wizards 112
Specifying NLS Support for External Files . 113
Accessing an External File with an FTP Server or an HTTP Server 113
Viewing Data in External Files . 114
Registering a COBOL Data File That Uses a COBOL Copybook 115
Using an External File in the Process Flow for a Job . 117

Chapter 6 • Creating Jobs . 121
About Jobs . 122
Creating an Empty Job . 123
Creating a Process Flow for a Job . 124
Creating a Job That Contains Jobs . 125
Working with Default Temporary Output Tables . 126
About Job Options . 130
Documenting Process Flow Diagrams . 133
Accessing Local and Remote Data . 133
Viewing or Updating Job Metadata . 136
Displaying the SAS Code for a Job . 137
Common Code Generated for a Job . 138

Chapter 7 • Managing Jobs . 141
About Managing Jobs . 142
Submitting a Job for Immediate Execution . 142
Meeting Prerequisites for Collecting Job Statistics . 145
Reviewing a Successful Job . 145
Diagnosing and Correcting an Unsuccessful Job . 150
Maintaining Column Mappings . 154
Managing the Scope of Column Changes in Jobs . 158
Managing Connections in Job Editor Windows . 162
Viewing the Code for a Transformation . 164
Viewing or Updating the Metadata for Transformations . 165

Chapter 8 • Managing the Status of Jobs and Transformations . 167
About Status Handling for Jobs and Transformations . 167
Default Conditions, Actions, and Conditional Action Sets . 168
Prerequisites for Actions . 172
Perform Actions Based on the Status of a Job . 173
Perform Actions Based on the Status of a Transformation . 175

iv Contents

Macro Variables for Status Handling . 177

Chapter 9 • Deploying Jobs . 183
About Deploying Jobs . 184
About Deploying Jobs for Scheduling . 185
Prerequisites for Deploying a Job for Scheduling . 185
Deploying Jobs for Scheduling . 185
Redeploying Jobs for Scheduling . 187
Using Scheduling to Handle Complex Process Flows . 187
Using Deploy for Scheduling to Execute Jobs on a Remote Host 188
About Deploying Jobs as Stored Processes . 189
Prerequisites for Deploying a Job as a Stored Process . 190
Deploying Jobs as Stored Processes . 190
Redeploying Jobs to Stored Processes . 192
Viewing or Updating Stored Process Metadata . 193
About Deploying Jobs as Web Services . 194
Prerequisites for Web Service Jobs . 195
Requirements for Web Service Jobs . 195
Creating a Web Service Job . 196
Deploying a Web Service Job as a Stored Process . 200
Deploying a Stored Process as a Web Service . 203

Chapter 10 • Working with Generated Code . 205
About Code Generated for Jobs . 205
Displaying the Code Generated for a Job . 209
Displaying the Code Generated for a Transformation . 209
Specifying Options for Jobs . 210
Specifying Options for a Transformation . 210
Modifying Configuration Files or SAS Start Commands for Application Servers . . . 211

Chapter 11 • Working with User-Written Code . 213
About User-Written Code . 213
Adding User-Written Code to the Precode and Postcode Tab 214
Adding a User Written Code Transformation to a Job . 216
Creating and Using a Generated Transformation . 219
Maintaining a Generated Transformation . 226
Editing the Generated Code for a Job or Transformation . 228
Replacing the Generated Code for a Job or Transformation . 229

Chapter 12 • Optimizing Process Flows . 231
About Process Flow Optimization . 231
Managing Process Data . 232
Managing Columns . 235
Streamlining Process Flow Components . 237
Using Simple Debugging Techniques . 238
Using SAS Logs . 242
Reviewing Temporary Output Tables . 244
Additional Performance Optimization Information . 246

Chapter 13 • Using Impact Analysis . 247
About Impact Analysis and Reverse Impact Analysis . 247
Performing an Impact Analysis . 248
Performing Impact Analysis on a Generated Transformation 251
Performing Reverse Impact Analysis . 253

Chapter 14 • Working with Reports . 255

Contents v

About Reports . 256
Opening the Reports Window . 256
Selecting the Reports Perspective . 257
Customizing the Tables Report . 258
Customizing the Job Documentation Report . 259
Running and Saving a Report . 260
Saving a Report As a Document Object . 262
Viewing a Report . 263
Creating Your Own Report . 265

PART 3 Working with Transformations 267

Chapter 15 • Working with Loader Transformations . 269
About Loader Transformations . 269
About the SPD Server Table Loader Transformation . 270
About the Table Loader Transformation . 270
Setting Table Loader Transformation Options . 271
Selecting a Load Technique . 273
Removing Non-Essential Indexes and Constraints during a Load 276
Considering a Bulk Load . 277

Chapter 16 • Working with SAS Sort Transformations . 279
About Sort Transformations . 279
Optimizing Sort Performance . 279
Creating a Table That Contains the Sorted Contents of a Source 282

Chapter 17 • Working with SQL Join Transformations . 285
About SQL Join Transformations . 287
Using the Designer Window . 287
Reviewing and Modifying Clauses, Joins, and Tables in an SQL Query 288
Understanding Automatic Joins . 291
Selecting the Join Type . 294
Adding User-Written SQL Code . 296
Debugging an SQL Query . 297
Adding a Column to the Target Table . 299
Adding a Join to an SQL Query on the Designer Tab . 299
Creating a Simple SQL Query . 301
Configuring a SELECT Clause . 303
Adding a CASE Expression . 305
Creating or Configuring a WHERE Clause . 307
Adding a GROUP BY Clause and a HAVING Clause . 309
Adding an ORDER BY Clause . 312
Adding Subqueries . 313
Validating or Submitting an SQL Query . 318
Joining a Table to Itself . 319
Using Parameters with an SQL Join . 320
Constructing a SAS Scalable Performance Data Server Star Join 321
Optimizing SQL Processing Performance . 322
Performing General Data Optimization . 323
Influencing the Join Algorithm . 324
Setting the Implicit Property for a Join . 325
Enabling Pass-Through Processing . 326
Using Properties Window Options to Optimize SQL Processing Performance 328

vi Contents

Chapter 18 • Working with Iterative Jobs and Parallel Processing . 333
About Iterative Jobs . 333
Creating and Running an Iterative Job . 334
Creating a Parameterized Job . 337
Creating a Control Table . 340
About Parallel Processing . 342
Setting Options for Parallel Processing . 344

Chapter 19 • Working with Slowly Changing Dimensions . 347
About Slowly Changing Dimensions . 348
About Dimension Tables . 350
About Fact Tables . 352
Loading a Dimension Table with Type 1 and 2 Updates . 353
Loading a Fact Table Using Dimension Table Lookup . 356
Loading a Table and Adding a Surrogate Primary Key . 362
Tracking Changes in Source Datetime Values . 365
Closing Out Rows in Datetime Change Tracking . 367

Chapter 20 • Working with Change Data Capture . 369
About the Change Data Capture Transformations . 369
About CDC Changed Data Tables . 371
About CDC Control Tables . 372
Capture Changed Data from Oracle . 372

Chapter 21 • Working with Message Queues . 379
About Message Queues . 379
Prerequisites for Message Queues . 380
Selecting Message Queue Transformations . 381
Processing a WebSphere Queue . 382
Polling a Websphere Message Queue . 384
Processing a Microsoft Queue . 386

Chapter 22 • Working with SPD Server Cluster Tables . 389
About SPD Server Cluster Tables . 389
Creating an SPD Server Cluster Table . 390
Maintaining an SPD Server Cluster . 391

PART 4 Appendixes 393

Appendix 1 • Main Windows and Wizards . 395
Analysis Window . 396
Checkouts Tree . 397
Code Editor . 397
Comparison Results Window . 398
Connection Profile Window . 399
Desktop . 399
Details Pane . 401
Expression Builder . 402
Folders Tree . 403
Inventory Tree . 404
Job Editor . 407
Properties Windows . 408
Reports Window . 411
Tools-Options Window . 412

Contents vii

Transformations Tree . 413
Tree View . 419
View Data Windows . 421
Wizards . 423

Appendix 2 • Java Code and Methods for Report Plug-ins . 427
Example Java Code for a Report Plug-in . 427
Reporting Interface Methods . 433

Glossary . 439
Index . 449

viii Contents

Part 1

Introduction

Chapter 1
Overview of SAS Data Integration . 3

1

2

Chapter 1
Overview of SAS Data Integration

About SAS Data Integration . 3

Advantages of SAS Data Integration . 4

A Basic Data Integration Environment . 5
Overview of a Data Integration Environment . 5
SAS Management Console . 5
SAS Data Integration Studio . 6
Servers . 6
Libraries . 8
Additional Information . 8

Online Help for SAS Data Integration Studio . 8

Administrative Documentation for SAS Data Integration Studio 9

Accessibility Features in SAS Data Integration Studio . 10
Overview . 10
Enabling Assistive Technologies . 10
Accessibility Standards . 10

Upgrading from Earlier Versions . 13
Overview . 13
Objects That Are Not Migrated . 14
Updates to Jobs and Transformations During Migration . 14
User Action Required for Migrated Jobs with Data Quality Transformations 15
Updates to Jobs and Transformations during Partial Promotion 15
Changes to the Tree View . 16
SAS Workspace Server Requirements for New Jobs . 16
Impacts on Change Management . 17
Impacts on SAS Solutions . 17
Migration Web Site . 17

About SAS Data Integration
Data integration is the process of consolidating data from a variety of sources in order to
produce a unified view of the data. SAS supports data integration in the following ways:

• Connectivity and metadata. A shared metadata environment provides consistent data
definition across all data sources. SAS software enables you to connect to, acquire,
store, and write data back to a variety of data stores, streams, applications, and systems
on a variety of platforms and in many different environments. For example, you can

3

manage information in Enterprise Resource Planning (ERP) system, relational database
management systems (RDBMS), flat files, legacy systems, message queues, and XML.

• Data cleansing and enrichment. Integrated SAS Data Quality software enables you to
profile, cleanse, augment, and monitor data to create consistent, reliable information.
SAS Data Integration Studio provides a number of transformations and functions that
can improve the quality of your data.

• Extraction, transformation, and loading. SAS Data Integration Studio enables you to
extract, transform, and load data from across the enterprise to create consistent, accurate
information. It provides a point-and-click interface that enables designers to build
process flows, quickly identify inputs and outputs, and create business rules in
metadata, all of which enable the rapid generation of data warehouses, data marts, and
data streams.

• Migration and synchronization. SAS Data Integration Studio enables you to migrate,
synchronize, and replicate data among different operational systems and data sources.
Data transformations are available for altering, reformatting, and consolidating
information. Real-time data quality integration allows data to be cleansed as it is being
moved, replicated, or synchronized, and you can easily build a library of reusable
business rules.

• Data federation. SAS Data Integration Studio enables you to query and use data across
multiple systems without the physical movement of source data. It provides virtual
access to database structures, ERP applications, legacy files, text, XML, message
queues, and a host of other sources. It enables you to join data across these virtual data
sources for real-time access and analysis. The semantic business metadata layer shields
business staff from underlying data complexity.

• Master data management. SAS Data Integration Studio enables you to create a unified
view of enterprise data from multiple sources. Semantic data descriptions of input and
output data sources uniquely identify each instance of a business element (such as
customer, product, and account) and standardize the master data model to provide a
single source of truth. Transformations and embedded data quality processes ensure
that master data is correct.

Advantages of SAS Data Integration
SAS data integration projects have a number of advantages over projects that rely heavily
on custom code and multiple tools that are not well integrated.

• SAS data integration reduces development time by enabling the rapid generation of
data warehouses, data marts, and data streams.

• It controls the costs of data integration by supporting collaboration, code reuse, and
common metadata.

• It increases returns on existing IT investments by providing multi-platform scalability
and interoperability.

• It creates process flows that are reusable, easily modified, and have embedded data
quality processing. The flows are self-documenting and support data lineage analysis.

4 Chapter 1 • Overview of SAS Data Integration

A Basic Data Integration Environment

Overview of a Data Integration Environment
The following figure shows the main clients and servers in a SAS data integration
environment.

Figure 1.1 SAS Data Integration Studio Environment

Administrators use SAS Management Console to connect to a SAS Metadata Server. They
enter metadata about servers, libraries, and other resources on your network and save this
metadata to a repository. SAS Data Integration Studio users connect to the same metadata
server and register any additional libraries and tables that they need. Then, they create
process flows that read source tables and create target tables in physical storage.

SAS Management Console
SAS Management Console provides a single interface through which administrators can
explore and manage metadata repositories. With this interface, administrators can

SAS Management Console 5

efficiently set up system resources, manage user and group accounts, and administer
security.

SAS Data Integration Studio
SAS Data Integration Studio is a visual design tool for building, implementing and
managing data integration processes regardless of data sources, applications, or platforms.
Through its metadata, SAS Data Integration Studio provides a single point of control for
managing the following resources:

• data sources, from any platform that is accessible to SAS and from any format that is
accessible to SAS

• data targets, to any platform that is accessible to SAS, and to any format that is supported
by SAS

• processes that specify how data is extracted, transformed, and loaded from a source to
a target

• jobs that organize a set of sources, targets, and processes (transformations)

• source code that is generated by SAS Data Integration Studio

• user-written source code

Servers

SAS Application Servers
When the SAS Intelligence Platform was installed at your site, a metadata object that
represents the SAS server tier in your environment was defined. In the SAS Management
Console interface, this type of object is called a SAS Application Server. By default, this
application server is named SASApp.

A SAS Application Server is not an actual server that can execute SAS code submitted by
clients. Rather, it is a logical container for a set of application server components, which
do execute code––typically SAS code, although some components can execute Java code
or MDX queries. For example, a SAS Application Server might contain a workspace server,
which can execute SAS code that is generated by clients such as SAS Data Integration
Studio. A SAS Application Server might also contain a stored process server, which
executes SAS Stored Processes, and a SAS/CONNECT Server, which can upload or
download data and execute SAS code that is submitted from a remote machine.

The following table lists the main SAS Application Server components and describes how
each one is used.

Table 1.1 SAS Application Servers

Server How the Server Is Used How the Server Is Specified

SAS
Workspace
Server

Executes SAS code; reads and writes
data.

As a component in a SAS Application
Server object.

SAS/
CONNECT
Server

Submits generated SAS code to
machines that are remote from the
default SAS Application Server; can
also be used for interactive access to
remote libraries.

As a component in a SAS Application
Server object.

6 Chapter 1 • Overview of SAS Data Integration

Server How the Server Is Used How the Server Is Specified

SAS OLAP
Server

Creates cubes and processes queries
against cubes.

As a component in a SAS Application
Server object.

Stored
Process
Server

Submits stored processes for execution
by a SAS session. Stored processes are
SAS programs that are stored and can
be executed by client applications.

As a component in a SAS Application
Server object.

SAS Grid
Server

Supports a compute grid that can
execute grid-enabled jobs that are
created in SAS Data Integration
Studio.

As a component in a SAS Application
Server object.

Typically, administrators install, start, and register SAS Application Server components.
SAS Data Integration Studio users are told which SAS Application Server object to use.

SAS Data Servers
The following table lists two special-purpose servers for managing SAS data.

Table 1.2 SAS Data Servers

Server How the Server Is Used How the Server Is Specified

SAS/SHARE
Server

Enables concurrent access of server
libraries from multiple users.

In a SAS/SHARE library.

SAS Scalable
Performance
Data (SPD)
Server

Provides parallel processing for large
SAS data stores; provides a
comprehensive security infrastructure,
backup and restore utilities, and
sophisticated administrative and
tuning options.

In an SPD Server library.

Typically, administrators install, start, and register these servers and register the
SAS/SHARE library or the SPD Server library. SAS Data Integration Studio users are told
which library to use.

Database Management System (DBMS) Servers
SAS Data Integration Studio uses a SAS Application Server and a database server to access
tables in database management systems such as Oracle and DB2.

When you start the Register Tables wizard or the New Tables wizard, the wizard tries to
connect to a SAS Application Server. You are then prompted to select an appropriate
database library. SAS Data Integration Studio uses the metadata for the database library to
generate a SAS/ACCESS LIBNAME statement, and the statement is submitted to the SAS
Application Server for execution.

The SAS/ACCESS LIBNAME statement specifies options that are required to
communicate with the relevant database server. The options are specific to the DBMS to
which you are connecting. For example, here is a SAS/ACCESS LIBNAME statement that
can be used to access an Oracle database:

Servers 7

libname mydb oracle user=admin1 pass=ad1min
path='V2o7223.world'

Typically, administrators install, start, and register DBMS servers and register the DBMS
libraries. SAS Data Integration Studio users are told which library to use.

Enterprise Resource Management (ERM) Systems
Optional Composite Software provides access to ERM systems such as Siebel, PeopleSoft,
Oracle Applications and Salesforce.com. An optional data surveyor wizard provides access
to SAP ERM systems. For details about Composite Software and the data surveyor wizard
for SAP ERM systems, see the SAS Intelligence Platform: Data Administration Guide.

Libraries
In SAS software, a library is a collection of one or more files that are recognized by SAS
and that are referenced and stored as a unit. Libraries are critical to SAS Data Integration
Studio. You cannot begin to enter metadata for sources, targets, or jobs until the appropriate
libraries have been registered in a metadata repository.

Accordingly, one of the first tasks in a SAS Data Integration Studio project is to specify
metadata for the libraries that contain sources, targets, or other resources. At some sites,
an administrator adds and maintains most of the libraries that are needed, and the
administrator tells SAS Data Integration Studio users which libraries to use.

Additional Information
For more information about setting up a data integration environment, administrators
should see see “Administrative Documentation for SAS Data Integration Studio” on page
9.

Online Help for SAS Data Integration Studio
The online Help describes all windows in SAS Data Integration Studio, and it includes all
topics in the user's guide. The Help also includes a What's New topic and a set of Usage
Note topics for the current version of the software.

Perform the following steps to display the main Help window for SAS Data Integration
Studio.

1. Start SAS Data Integration Studio.

2. From the menu bar, select Help ð Contents. The main Help window displays.

To display the Help for an active window or tab, click its Help button. If the window or
tab does not have a Help button, press the F1 key.

To search for topics about concepts or features that are identified by specific words, such
as “application server,” display the main Help window. Then, click the Search tab
(magnifying glass icon). Enter the text to be found and press the Enter key.

8 Chapter 1 • Overview of SAS Data Integration

Administrative Documentation for SAS Data
Integration Studio

Administrative tasks that are performed outside of the SAS Data Integration Studio
interface are described in SAS Intelligence Platform documentation, which can be found
at the following location: http://support.sas.com/92administration.

The following table identifies the main SAS Intelligence Platform documentation for SAS
Data Integration Studio.

Table 1.3 SAS Intelligence Platform Documentation for SAS Data Integration Studio

Administrative Task Related Documentation

• Set up a folder structure for your site in the
Folders tree.

• Promote metadata (additional information
and metadata export and import).

• Start, stop, and check the status of servers.

• Monitor the system and set up system logs.

• Back up and restore your system.

• Optimize the performance of the SAS
Metadata Server.

• Manage SAS metadata repositories.

SAS Intelligence Platform: System
Administration Guide

• Set up security. SAS Intelligence Platform: Security
Administration Guide

• Set up data servers and libraries for common
data sources.

SAS Intelligence Platform: Data
Administration Guide

• Set up SAS Application Servers. SAS Intelligence Platform: Application
Server Administration Guide

• Set up grid computing (so that jobs can
execute on a grid).

Grid Computing for SAS 9.2

• Set up scheduling for jobs that have been
deployed for scheduling.

Scheduling In SAS

Administrative Documentation for SAS Data Integration Studio 9

Administrative Task Related Documentation

• Set up change management.

• Set up servers and libraries for remote data
(multi-tier environments).

• Set up support for message queue jobs.

• Set up support for Web service jobs and other
stored process jobs.

• Enable the bulk-loading of data into target
tables in a DBMS.

• Set up SAS Data Quality software.

• Set up support for job status handling.

• Set up support for FTP and HTTP access to
external files.

SAS Intelligence Platform: Desktop
Application Administration Guide

• Work with SAS OLAP cubes. SAS OLAP Server: User's Guide

Accessibility Features in SAS Data Integration
Studio

Overview
SAS Data Integration Studio includes features that improve usability of the product for
users with disabilities. These features are related to accessibility standards for electronic
information technology that were adopted by the U.S. Government under Section 508 of
the U.S. Rehabilitation Act of 1973, as amended.

If you have questions or concerns about the accessibility of SAS products, send e-mail to
accessibility@sas.com.

Enabling Assistive Technologies
For instructions about how to configure SAS Data Integration Studio software so that
assistive technologies work with the application, see the information about downloading
the Java Access Bridge in the section about accessibility features in the SAS Intelligence
Platform: Desktop Application Administration Guide.

Accessibility Standards
SAS Data Integration Studio follows the standards that are recommended in the Java Look
and Feel Design Guidelines, Second Edition (available at java.sun.com). All known
exceptions are documented in the following table. SAS is committed to improving the
accessibility and usability of our products. Many of the issues will be addressed within
future releases of the application.

10 Chapter 1 • Overview of SAS Data Integration

Table 1.4 Accessibility Exceptions

Accessibility Issue
Support
Status Explanation

Keyboard equivalents for user
actions.

Supported
with
exceptions

The software supports keyboard equivalents for
all user actions. Tree controls in the user
interface can be individually managed and
navigated through using the keyboard.
However, some exceptions exist. Some ALT
key shortcuts are not functional. Also, some
more advanced manipulations require a mouse.
Still, the basic functionality for displaying trees
in the product is accessible from the keyboard.

Based on guidance from the Access Board,
keyboard access to drawing tasks does not
appear to be required for compliance with
Section 508 standards. Accordingly, keyboard
access does not appear to be required for the
Diagram tab in the Job Editor window, or the
Designer tab in the SQL Join properties
window.

Specifically, use of the Diagram tab in the Job
Editor and the Designer tab in the SQL Join
Properties window are functions that cannot be
discerned textually. Both involve choosing a
drawing piece, dragging it into the workspace,
and designing a flow. These tasks require a level
of control that is provided by a pointing device.
Moreover, the same result can be achieved by
editing the source code for flows.

Example: Use of the Diagram tab in the Job
Editor is designed for visual rather than textual
manipulation. Therefore, it cannot be operated
via keyboard. If you have difficulty using a
mouse, then you can create process flows with
user-written source code.

The software supports keyboard equivalents to
navigating between different prompts in a
window. If the TAB key does not move focus
to the next prompt, press CTRL+TAB to access
the next prompt.

When you are defining or editing a static list in
a prompt, if pressing SPACEBAR once does
not select or clear the check box or radio button,
then press SPACEBAR twice to select or clear
a default value selection.

If focus is transferred to another prompt after
you finish editing a row, use the TAB key or
SHIFT+TAB until focus is back on the prompt
you want, and then you can use the TAB key or
the arrow keys to navigate through the rows of
values.

Accessibility Standards 11

Accessibility Issue
Support
Status Explanation

Keyboard equivalents for user
actions.

Supported
with
exceptions

In a window with multiple tabs, sometimes
pressing CTRL+TAB can switch to another tab
instead of moving to the next prompt in the
current tab. If the current prompt exhibits this
behavior, press TAB instead of CTRL+TAB to
move focus to the next prompt in the current
tab. In general, press TAB to move to the next
prompt in the current tab, and press only CTRL
+TAB if TAB by itself adds space to the current
prompt.

Identity, operation, and state of
interface elements.

Supported
with
exceptions

In some wizards, identity, operation, and state
of some interface elements is ambiguous. SAS
plans to address these issues in a future release.

Example: When you select a library in the
Register Tables wizard, you must use the SAS
Library combo box. If you are using the JAWS
screen reader, the reader immediately reads not
only the library name but also all of its details.
If you want to know the libref, you must know
that the label exists and that its shortcut is ALT
+F. Then, you must press ALT+F so that the
JAWS screen reader reads the label and its read-
only text. You can move among the items in
Library Details only after you use a shortcut to
get to one of them.

Application override of user-
selected contrast and color
selections and other individual
display attributes.

Supported
with
exceptions

SAS Data Integration Studio inherits the color
and contrast settings of the operating system
with the following exception:

As with most other Java applications, system
font settings are not inherited in the main
application window. If you need larger fonts,
then consider using a screen magnifier.

Color alone as the only
significant difference in
controls or displays.

Supported
with
exceptions

In the Authorization dialog box. and on the
Authorization tab in the properties windows
for some objects, the background colors of the
check boxes in the permissions table indicate
how a permission is assigned. For information
about the meaning of each color, see the Help
for the Authorization tab or dialog box.

12 Chapter 1 • Overview of SAS Data Integration

Accessibility Issue
Support
Status Explanation

Electronic forms and displays. Supported
with
exceptions

When navigating with a keyboard to choose a
path in the Browse dialog box, the focus
disappears. To work around the problem, either
(1) count the number of times that you press the
TAB key and listen closely to the items, or (2)
type the path explicitly.

When the user sets the operating system settings
to high contrast, some attributes of that setting
are not inherited. Example: In some wizards
such as the Register Tables wizard, the visual
focus can disappear sometimes when you
operate the software with only a keyboard. If
so, continue to press the TAB key until an
interface element regains focus.

F1 key SAS plans to
address this
issue in a
future
release.

The F1 key does not open the Help for the New
Prompt and Edit Prompt dialog boxes. The
workaround is to click the Help button at the
bottom of dialog boxes.

JAWS reader SAS plans to
address this
issue in a
future
release.

For any window or dialog box that contains a
table, JAWS cannot read the column and row
headings. JAWS can read the contents of the
table cells, but not the headings, so the context
might be confusing.

JAWS focus on a list box SAS plans to
address this
issue in a
future
release.

For any Open, Save, or Select dialog box that
does not display items in a tree, when the focus
is on the list box, JAWS can read the name of
the selected item only. If you use the arrow keys
to navigate through the list of items, JAWS does
not read the names of any of the items that are
not selected.

To enable JAWS to read the name of an item,
select the item in the list box, and then use the
TAB key to move back into the list box. After
you move back into the list box, JAWS can read
the name of the selected item.

Upgrading from Earlier Versions

Overview
SAS Data Integration Studio users who are migrating to version 4.2 should take special
note of the following changes:

• “Objects That Are Not Migrated” on page 14

• “Updates to Jobs and Transformations During Migration” on page 14

Overview 13

• “User Action Required for Migrated Jobs with Data Quality Transformations” on page
15

• “Updates to Jobs and Transformations during Partial Promotion” on page 15

• “Changes to the Tree View” on page 16

• “SAS Workspace Server Requirements for New Jobs” on page 16

• “Impacts on Change Management” on page 17

• “Impacts on SAS Solutions” on page 17

• “Migration Web Site” on page 17

Objects That Are Not Migrated
SAS 9.1 metadata objects for external files, and any jobs that include these objects, will
not be migrated. The external files must be re-registered in the 9.2 environment. Any jobs
that include SAS 9.1 metadata objects for external files must be recreated in the 9.2
environment.

The Forecasting transformation is not supported in SAS Data Integration Studio 4.2. Jobs
that include the Forecasting transformation will not be migrated.

User-defined job status Conditions and Actions are not supported in SAS Data Integration
Studio 4.2. Jobs that include custom Conditions and Actions will not be migrated.

Updates to Jobs and Transformations During Migration
After migration, you will see the following changes to jobs and transformations.

All migrated transformations, including generated transformations before 3.2, are
converted to use the new prompting framework. For most users, the main impact of this
change is on the Options tab for transformations. It is now easier to select options from
this tab. After migration, jobs with updated transformations should produce the same output
as before.

Any versions of the Table Loader transformation and the SQL Join transformation created
before version 3.4 are replaced with the latest versions of these transformations. After
migration, jobs with converted transformations should produce the same output as before.

Any job whose process flow included a separate Report transformation, such as
Correlations Report and Frequency Report, no longer have that transformation in the
process flow. The need for separate Report transformations has been eliminated. After
migration, jobs that used to require the Report transformations should produce the same
output as before.

All jobs that were deployed for scheduling or were deployed as stored processes should be
redeployed in the SAS 9.2 environment. From the SAS Data Integration Studio desktop,
you can select Tools ð Redeploy Jobs for Scheduling or Tools ð Redeploy Jobs to
Stored Processes.

Any job that was deployed as a Web Service in SAS Data Integration Studio 3.4 now
appears in the Stored Process folder of the Inventory tree, not the Web service (generated)
folder. This special kind of stored process can be used as before.

14 Chapter 1 • Overview of SAS Data Integration

User Action Required for Migrated Jobs with Data Quality
Transformations

If jobs that include the Create Match Code transformation do not run successfully after
migration, verify that the appropriate Quality Knowledge Base (QKB) location value
(DQSETUPLOC value), is specified on the global options window for SAS Data
Integration Studio. To verify the DQSETUPLOC value, select Tools ð Options from the
menu bar, click the Data Quality tab, and then verify that the appropriate value is specified
in the DQ Setup Location field.

Jobs that include the Apply Lookup Standardization transformation will not run
successfully after migration until you take one of the following actions:

• Open each affected job and replace the migrated Apply Lookup Standardization
transformation with a new (4.2) Apply Lookup Standardization transformation. You
must also restore the mappings in each job.

• Alternatively, you can go back to your SAS Data Integration Studio 3.4 environment,
export the original Apply Lookup Standardization jobs to SAS 9.1.3 package format,
and then use the Import SAS Package wizard in SAS Data Integration Studio 4.2 to
convert and register these jobs on your metadata server.

Note: The export SAS Package method is possible only if you are using SAS 9.1.3 Service
Pack 4, with SAS Data Integration Studio 3.4, and the 34DATABLDR09 hotfix
installed.

The following additional steps are required in order for the export SAS Package method
to work:

1. (Optional) In SAS Data Integration Studio 4.2, if you are not using the migrated jobs
that include the Apply Lookup Standardization transformation, delete them. Otherwise,
you have to manage multiple copies of the same metadata objects when you import the
same jobs as a SAS Package.

2. In SAS Data Integration Studio 3.4, create a package of jobs that use the same scheme
repository type in the Apply Lookup Standardization. Create one package for the BFD
scheme type and a separate package for the NOBFD scheme type.

3. In SAS Data Integration Studio 4.2, verify that the default DQ Setup Location is correct,
and that the default Scheme Repository Type matches the type (BFD or NOBFD) for
the package of jobs that you are importing.

To verify these values before importing the SAS Package, select Tools ð Options from
the menu bar, click the Data Quality tab, and then verify that the appropriate value is
specified in the DQ Setup Location field. Then specify the appropriate values in the DQ
Setup Location field and the Scheme Repository Type field. The DQ Setup Location
field should specify appropriate Quality Knowledge Base (QKB) location value
(DQSETUPLOC value). The Scheme Repository Type field should match the type (BFD
or NOBFD) for the package of jobs that you are importing.

When the package is imported, the job and its transformations are updated as they are during
migration. The Apply Lookup Standardization transformation uses the default scheme
repository values, and if the values are correct the transformation runs successfully.

Updates to Jobs and Transformations during Partial Promotion
You might have jobs stored in locations that are not part of the migration process. If these
jobs can be exported to SAS 9.1.3 Package format, you can use the Import from SAS

Updates to Jobs and Transformations during Partial Promotion 15

Package wizard in SAS Data Integration Studio 4.2 to convert and register these jobs on
your metadata server.

If you have jobs that were exported in XML format before SAS Data Integration Studio
3.4., you must either include these jobs in a system migration, or import them in SAS Data
Integration Studio 3.4, export them as a SAS Package, then import the SAS Package in
SAS Data Integration Studio 4.2.

Note: When a job in SAS 9.1.3 Package format is imported with the SAS 9.2 Import from
SAS Package wizard, the job and its transformations are updated as they are during
migration.

Changes to the Tree View
After migration, you will see the following changes to the tree view on the left side of the
desktop.

The Custom tree is now called the Folders tree. Any user-defined folders in the Custom
tree now appear in the Folders tree. If a migrated or imported object was not located in a
folder, and it is an object type that requires a folder, it is placed in the Shared Data folder.

My Folder is the private folder of the user who is currently logged on. Metadata in this
folder is visible only to the current user and to unrestricted users. When you add a new
metadata object, and you want to share it with other users, do not save it to My Folder.

In the Folders tree, you cannot have duplicate objects with the same name in the same
folder. Accordingly, after migration or when importing metadata from versions before
version 4.2, if there were duplicate objects with the same name in the same folder, a number
will be added as a suffix to the duplicate file name (filename(1), filename(2), etc.). Also,
metadata objects can no longer have slash characters in their names. If a migrated or
imported object had slash characters in its name, the slashes are replaced by underscores.

Unlike the Custom tree, in the Folders tree, you cannot drag and drop objects from one top-
level folder to another. Instead, you can right-click the object and select Move to Folder.

The Inventory tree now contains folders for more kind of objects. Most of the time,
however, SAS Data Integration Studio users work with the same objects as before, such as
tables, libraries, and jobs. Some actions, such as importing metadata, can no longer be done
in the Inventory tree. You must perform these actions from the Folders tree.

The Process Library tree is now called the Transformations tree. The Transformations tree
supports one level of folders only. If transformations in your Process Library were
organized in a hierarchy of folders, they now appear at the top level of the Transformations
tree.

The Project tree, a special tree that was used under change management, is now called the
Checkouts tree.

In previous versions of SAS Data Integration Studio, metadata repositories were the top
level objects in the Inventory tree and the Custom tree. Now, metadata repositories are not
visible in the Inventory tree, and they are just another folder in the Folders tree. In most
cases it is no longer important which metadata repository contains a particular object. If
you have the appropriate privilege, you can work with any object in the tree views,
regardless of what metadata repository contains the object.

SAS Workspace Server Requirements for New Jobs
From this release forward, new jobs with code that is generated by SAS Data Integration
Studio must be executed on a SAS 9.2 Workspace Server or newer.

16 Chapter 1 • Overview of SAS Data Integration

Impacts on Change Management
Administrators who are responsible for setting up change management in SAS Data
Integration Studio must do some additional work after migration. For more information,
see the SAS Data Integration Studio chapter in the SAS Intelligence Platform Desktop
Application Administration Guide.

Impacts on SAS Solutions
Some SAS 9.2 solutions might not be available until after the release of SAS Data
Integration Studio 4.2. Accordingly, if your site is using a SAS solution, it is recommended
that you not import individual solution objects until that solution is ready for SAS 9.2 and
is installed.

Alternatively, you can migrate or import jobs with missing solution transformations and
simply not open them until after the SAS 9.2 solution is installed. After the SAS 9.2 solution
is installed, you can select a job in a tree view and use the Upgrade pop-up menu option
to upgrade the job.

Migration Web Site
For more information about migration, see our Migration Web site: http://
support.sas.com/rnd/migration/utility/utilitynotes.

Migration Web Site 17

18 Chapter 1 • Overview of SAS Data Integration

Part 2

General User Tasks

Chapter 2
Getting Started . 21

Chapter 3
Importing, Exporting, and Copying Metadata . 45

Chapter 4
Working with Tables . 63

Chapter 5
Working with External Files . 99

Chapter 6
Creating Jobs . 121

Chapter 7
Managing Jobs . 141

Chapter 8
Managing the Status of Jobs and Transformations 167

Chapter 9
Deploying Jobs . 183

Chapter 10
Working with Generated Code . 205

Chapter 11
Working with User-Written Code . 213

Chapter 12
Optimizing Process Flows . 231

Chapter 13
Using Impact Analysis . 247

Chapter 14
Working with Reports . 255

19

20

Chapter 2
Getting Started

Setup for SAS Data Integration Studio . 22
Basic Setup . 22

Security for SAS Data Integration Studio . 22
Overview of Security . 22
Authorization Tab . 23

Main Tasks for Creating Process Flows . 23

Starting SAS Data Integration Studio . 24
Problem . 24
Solution . 24
Tasks . 24

Connecting to a SAS Metadata Server . 26
Problem . 26
Solution . 26
Tasks . 26

Working with the Folders Tree . 27
Overview of the Folders Tree . 27
Add a Folder . 28
Add Metadata Objects to a Folder . 29
Copy to Folder . 29
Drag to Folder . 29
Move to Folder . 29
Rename a Folder . 29
Considerations When You Change a Folder Path . 30

Selecting a Default SAS Application Server . 30
Problem . 30
Solution . 30
Tasks . 30

Registering SAS Libraries . 31
Problem . 31
Solution . 31
Tasks . 31

Working with User-Defined Formats . 32
Problem . 32
Solution . 32
Tasks . 32

Registering Tables and Cubes . 33
Problem . 33

21

Solution . 33
Tasks . 33

Specifying Global Options in SAS Data Integration Studio 35
Problem . 35
Solution . 35
Tasks . 35

Working with Change Management . 36
Problem . 36
Solution . 36
Tasks . 37

Add a Note or Document to a Registered Object . 41
Problem . 41
Solution . 41
Tasks . 41

View the Content of Notes or Documents . 43
Problem . 43
Solution . 43
Tasks . 43

Setup for SAS Data Integration Studio

Basic Setup
SAS Data Integration Studio depends on servers, clients, and other resources in a data
integration environment. Administrators install and configure these resources, and SAS
Data Integration Studio users are told which resources to use. At a minimum, the following
resources must be installed to support SAS Data Integration Studio. For more information
about these and other resources, see the installation instructions for your SAS data
integration environment.

Table 2.1 Components Required by SAS Data Integration Studio 4.2 or Later

Component Description

SAS Metadata Server SAS 9.2 Metadata Server or later.

SAS Application
Server

SAS Application Server with SAS 9.2 server components or later,
including a SAS 9.2 Workspace Server.

Security for SAS Data Integration Studio

Overview of Security
In order to build and execute process flows in SAS Data Integration Studio, you must have
privileges such as the following:

22 Chapter 2 • Getting Started

• read and write access to the sources and targets in the job, as specified by the operating
system and other relevant systems such as database servers

• read and write access to the metadata for sources and targets in the job, as specified on
the SAS Metadata Server

• read and write access to folders in the Folders tree on the desktop

Typically, SAS Data Integration Studio users use the privileges that are granted to them
by a security administrator and do not set security attributes themselves. For example, an
administrator can set up the custom folder structure in the Folders tree and set permissions
on those folders. Most users simply save objects to those folders, without setting any
permissions on individual objects.

For details about setting up security, administrators should see the SAS Intelligence
Platform: Security Administration Guide. The "Permissions on Folders" section describes
how to set permissions on folders in the Folders tree. Under change management, there
are additional security considerations for users and administrators. See “Working with
Change Management” on page 36.

Authorization Tab
An Authorization tab can be displayed in the property windows for tables, libraries,
transformations, and many other objects. This tab can be used to view or update the
metadata permissions on these objects. In general, users do not set permissions on
individual objects, but this capability is available if needed. For more information about
using the Authorization tab, see the "Working with Permissions" chapter in the SAS
Intelligence Platform: Security Administration Guide.

Each user can control whether the Authorization tab is hidden or displayed in his or her
SAS Data Integration Studio session. To toggle the display of this tab, select Tools ð
Options from the menu bar. In the Options window, click the General tab, and then select
or deselect the Show advanced property tabs check box.

Main Tasks for Creating Process Flows
Here are the main tasks for creating process flows in SAS Data Integration Studio:

1. Start SAS Data Integration Studio.

2. Open an existing connection profile or create a new one that connects to the appropriate
metadata server.

3. Select a default SAS Application Server.

4. Add metadata for the inputs to a process flow (data sources).

5. Add metadata for the outputs from a process flow (data targets).

6. Create a new job and a process flow that reads the appropriate sources, performs the
required transformations, and loads the target data store with the desired information.

7. Run the job.

Main Tasks for Creating Process Flows 23

Starting SAS Data Integration Studio

Problem
You want to start SAS Data Integration Studio.

Solution
Start SAS Data Integration Studio as you would any other SAS application on a given
platform. You can specify one or more options in the start command or in the
distudio.ini file. For more information, see the following tasks:

• “Start SAS Data Integration Studio” on page 24

• “Specify Java Options” on page 24

• “Specify the Plug-in Location” on page 24

• “Specify the Error Log Location” on page 25

• “Specify Message Logging” on page 25

• “Allocate More Memory to SAS Data Integration Studio” on page 25

For more information about command-line arguments for SAS client applications,
administrators should see the SAS Intelligence Platform Desktop Application
Administration Guide.

Tasks

Start SAS Data Integration Studio
Under Microsoft Windows, you can select Start ð Programs ð SAS ð SAS Data
Integration Studio.

You can also start the application from a command line. Navigate to the SAS Data
Integration Studio installation directory and issue the distudio.exe command.

If you do not specify any options, SAS Data Integration Studio uses the parameters
specified in the distudio.ini file. The following sections contain information about
options you can specify on the command line or add to the distudio.ini file.

Specify Java Options
To specify Java options when you start SAS Data Integration Studio, use the -
javaopts option and enclose the Java options in single quotation marks. For example,
the following command starts SAS Data Integration Studio on Windows and contains Java
options that specify the locale as Japanese:

distudio -javaopts '-Duser.language=ja
-Duser.country=JP'

Specify the Plug-in Location
By default, SAS Data Integration Studio looks for plug-ins in a plugins directory under
the directory in which the application was installed. If you are starting SAS Data Integration

24 Chapter 2 • Getting Started

Studio from another location, you must specify the location of the plug-in directory by
using the –pluginsDir option. The syntax of the option is

distudio –pluginsdir
<plugin path>

Specify the Error Log Location
SAS Data Integration Studio writes error information to a file named errorlog.txt in
the working directory. Because each SAS Data Integration Studio session overwrites this
log, you might want to specify a different name or location for the log file. Use the following
option to change the error logging location:

distudio –logfile
'<filepath/filename>'

Specify Message Logging
You can specify the server status messages that are encountered in a SAS Data Integration
Studio session by using the –MessageLevel level_value option. Valid values for
level_value are listed in the following table.

Table 2.2 Values for level_value

Value Description

ALL All messages are logged.

CONFIG Static configuration messages are logged.

FINE Basic tracing information is logged.

FINER More detailed tracing information is logged.

FINEST Highly detailed tracing information is logged. Specify this option to
debug problems with SAS server connections.

INFO Informational messages are logged.

OFF No messages are logged.

SEVERE Messages indicating a severe failure are logged.

WARNING Messages indicating a potential problem are logged.

Allocate More Memory to SAS Data Integration Studio
There might be a number of reasons to increase the amount of memory for SAS Data
Integration Studio. For example, after running a job, if you click the Log tab or the
Output tab, and SAS Data Integration Studio does not respond, you might need to increase
the amount of memory allocated to the application.

Locate the subdirectory where SAS Data Integration Studio's executable
(distudio.exe) is found. There is an .ini file with the same name as the executable
(distudio.ini). Edit the .ini file and increase the memory values on the Java invocation.
If that does not help, the problem might be server memory or another issue.

Tasks 25

Connecting to a SAS Metadata Server

Problem
You want to work with tables, jobs, and other objects in SAS Data Integration Studio.

Solution
Create and open a connection profile, which connects to a SAS Metadata Server. You can
then work with tables, jobs, and other objects that have been specified in the metadata, and
you can add new metadata as needed.

When you create a connection profile, you can select the Use Integrated Windows
authentication (single sign-on) option if you know that your environment supports single
sign-on. For more information about single sign-on, administrators should see the
"Dictionary of Authentication Mechanisms" chapter of the SAS Intelligence Platform:
Security Administration Guide.

The main tasks for maintaining connection profiles are as follows:

• “Create a Connection Profile” on page 26

• “Open a Connection Profile” on page 26

• “Update a Connection Profile” on page 27

• “Reconnecting to a Metadata Server” on page 27

Tasks

Create a Connection Profile
Perform the following steps to create a connection profile:

1. Obtain the following information from an administrator:

• the network name of the metadata server

• the port number used by the metadata server

• a logon ID and password for the metadata server

2. Start SAS Data Integration Studio. The Connection Profile window displays.

3. Select Create a new connection profile. The New Connection Profile wizard displays.

4. Click Next, and enter a name for the profile.

5. Click Next, and enter a machine address, port, user name, and password that enables
you to connect to the appropriate SAS Metadata Server.

6. Click Finish to exit the connection profile wizard, connect to the metadata server, and
display the server's metadata in SAS Data Integration Studio.

Open a Connection Profile
Perform the following steps to open a connection profile that was created earlier:

1. Start SAS Data Integration Studio. The Connection Profile window displays.

26 Chapter 2 • Getting Started

2. Select Open an existing connection profile.

3. Use the selection arrow to select the profile to be opened, and click Ok.

Another way to open an existing connection profile is to start SAS Data Integration Studio,
and then select File ð Connection Profile from the menu bar. The Connection Profile
window displays, and you perform the same steps as in the preceding task.

After you open a connection profile, you are connected to the metadata server, and the
server's metadata is displayed in SAS Data Integration Studio. If you are working under
change management, the name of your project repository is displayed in the Checkouts
tree on the desktop. If you are not working under change management, you do not see the
Checkouts tree.

Update a Connection Profile
Perform the following steps to update a connection profile:

1. Start SAS Data Integration Studio. The Connection Profile window displays.

2. Use the selection arrow to select the profile that you want to edit, and then click Edit.
The Edit Connection Profile wizard displays.

3. Update the profile as needed, and then click Finish to exit the connection profile wizard,
connect to the metadata server, and display the server's metadata in SAS Data
Integration Studio.

Reconnecting to a Metadata Server
If the connection to the metadata server is broken, a dialog box displays and asks if you
want to attempt reconnection. Click Try Now, and SAS Data Integration Studio attempts
to reconnect to the metadata server.

If the reconnection is successful, you can continue your work. The user credentials from
the previous session is used. If the tree views are not populated with the appropriate
metadata, select View ð Refresh. If the reconnection is not successful, contact your server
administrator.

Working with the Folders Tree

Overview of the Folders Tree
The Folders tree is one of the tree views in the left panel of the desktop. Like the Inventory
tree, the Folders tree displays metadata for objects that are registered on the current
metadata server, such as tables and libraries. The Inventory tree, however, organizes
metadata by type and does not allow you to add custom folders. The Folders tree enables
you to add custom folders.

Some folders in the Folders tree are provided by default, such as My Folder, Products,
Shared Data, System, and Users. Typically, SAS Data Integration Studio users work with
metadata in custom folders, such as the Data Collection 1 folder and Data Collection 2
(CM) folder as shown in the following display.

Overview of the Folders Tree 27

Display 2.1 Example Folders in the Folders Tree

In general, an administrator sets up the custom folder structure in the Folders tree and sets
permissions on those folders. Users simply save metadata to the appropriate folders in that
structure. For example, given the folder structure shown in the preceding display, users can
save metadata to a sub-folder under Data Collection 1. Users who work under change
management can save metadata to a sub-folder under Data Collection 2 (CM). Any
additions or changes to your custom folder structure should be carefully planned, as
described in “Considerations When You Change a Folder Path” on page 30.

In general, SAS Data Integration Studio users work with the following folders:

• The custom folders, such as the Data Collection 1 and Data Collection 2 (CM) folders
in the preceding display, are used to organize metadata that you want to be available
to other users. Custom folders are usually added to the root of the tree or to the Shared
Data folder.

• The Shared Data folder is a default folder that can be used to organize metadata that
you want to be available to other users. Your site might or might not choose to save
metadata to this folder.

• My Folder is the private folder of the user who is currently logged on. It is similar to
the My Documents folder in Microsoft Windows. Metadata in My Folder is visible
only to the owning user and to unrestricted users, so this folder can be used to store
metadata that you are not ready to make available to other users.

When you first begin adding metadata objects in SAS Data Integration Studio, these objects
might be added to My Folder by default. To make these objects visible to other people
who are connected to the same metadata server, you can use the Move to Folder option to
move the metadata in an appropriate public folder in the Folders tree.

Users who are working under change management should not use My Folder. They should
use the Checkouts tree and the change-managed folder instead. For more information, see
“Working with Change Management” on page 36.

Add a Folder
Perform the following steps to add a custom folder without selecting a parent folder in the
Folders tree.

1. From the desktop select New ð Folder.

2. Enter a name for the folder. Verify that the folder path in the Location field is the path
you want. To specify a different path in the Folders tree, click Browse and select the
desired path.

3. Select OK to create the new folder.

28 Chapter 2 • Getting Started

Perform the following steps to add a sub-folder to a folder that you select in the Folders
tree:

1. Right-click a folder in the Folders tree and select New ð Folder. An untitled folder is
added to the parent folder.

2. Type a new name for the folder.

Add Metadata Objects to a Folder
When you add a metadata object, it is added to a folder in the Folders tree and in the
Inventory tree. You can specify the folder in the Folders where new metadata is added. To
save a new metadata object to a specific folder in the Folders tree, right-click that folder,
select New, and then select the appropriate wizard. Alternatively, if you select New from
the menu bar, and then select the appropriate wizard, you can use the Browse control beside
the Location field to change the folder path for the new object.

Copy to Folder
Perform the following steps to create a copy of a metadata object and save that copy to a
different folder.

1. Right-click an object in the Folders tree and select Copy to Folder.

2. Select a target folder and click OK.

Drag to Folder
You can drag metadata objects from one folder to another folder within a top-level folder.
This changes the folder path of the object. See “Considerations When You Change a Folder
Path” on page 30.

You cannot drag an object from one top-level folder to another top-level folder. For
example, you cannot drag an object from My Folder to the Shared Data folder. You can
use the Move to Folder option to perform this task.

Move to Folder
Use the Move to Folder option to move a metadata object from one folder to another folder
in the Folders, tree. This changes the folder path of the object. See “Considerations When
You Change a Folder Path” on page 30.

Perform the following steps to move a metadata object to a different folder.

1. Right-click an object in the Folders tree and select Move to Folder.

2. Select a target folder and click OK.

Rename a Folder

You can rename a folder. This changes the folder path of the objects in the folder. See
“Considerations When You Change a Folder Path” on page 30.

Perform the following steps to rename a folder.

Rename a Folder 29

1. Right-click the folder in the Folders tree and select Rename.

2. Enter a new name for the folder.

Considerations When You Change a Folder Path
Note: Use caution when renaming folders and when moving objects from one folder to

another.

Any additions or changes to your custom folder structure, and any movement of objects
from one folder to another, should be carefully planned. Some types of objects are
referenced using folder pathnames. Associations to these types of objects can break if you
move the object to a different folder. If you break an association based on a folder path,
you can restore it by updating the folder path in the affected object.

For example, reports use folder paths to locate information maps. If you move an
information map to a different folder, then you might need to edit associated reports to
point to the new information map location. Other objects that depend on folder pathnames
include information maps and prompts. For more information about managing folder
pathnames, see the "Working with SAS Folders" chapter in the SAS Intelligence Platform:
System Administration Guide.

Selecting a Default SAS Application Server

Problem
You want to work with SAS Data Integration Studio without having to select a server each
time that you access data, execute SAS code, or perform other tasks that require a SAS
server.

Solution
Use the Tools ð Options window to select a default SAS Application Server. Alternatively,
you can double-click the SAS Application Server pane at the bottom of the desktop, to the
left of the user ID panel. (The status bar at the bottom of the desktop displays the current
user, SAS Application Server, and SAS Metadata Server.)

When you select a default SAS Application Server, you are actually selecting a metadata
object that can provide access to a number of servers, libraries, schemas, directories, and
other resources. An administrator typically creates this object. The administrator then tells
the SAS Data Integration Studio user which object to select as the default server.

Tasks

Select a SAS Application Server
Perform the following steps to select a default SAS Application Server:

1. From the SAS Data Integration Studio menu bar, select Tools ð Options to display
the Options window.

2. Select the SAS Server tab.

30 Chapter 2 • Getting Started

3. On the SAS Server tab, select the desired server from the Server drop-down list. The
name of the selected server appears in the Server field.

4. Click Test Connection to test the connection to the SAS Workspace Server or servers
that are specified in the metadata for the server. If the connection is successful, go to
the next step. If the connection is not successful, contact the administrator who defined
the server metadata for additional help.

5. After you have verified the connection to the default SAS Application Server, click
OK to save any changes. The server that is specified in the Server field is now the
default SAS Application Server.

Registering SAS Libraries

Problem
You want to register a SAS library so that you can access tables in that library.

Solution
Use the New Library wizard to register the library.

In SAS software, a library is a collection of one or more files that are recognized by SAS
and that are referenced and stored as a unit. You cannot use SAS Data Integration Studio
to register tables, run jobs that read and write tables, or view data in tables until the libraries
that contain these tables have been registered.

At some sites, an administrator registers most of the libraries that are needed, and the
administrator tells SAS Data Integration Studio users which libraries to use. It is possible,
however, that you need to register additional libraries.

Note: Registering a library does not, in itself, provide access to tables in the library. You
must perform a separate operation to register any tables that you want to access in the
library. See “Registering Tables and Cubes” on page 33.

Tasks

Register a SAS Library
Perform the following steps to register a SAS library:

1. From the SAS Data Integration Studio desktop, select the appropriate folder in the
Folders tree, then select File ð New ð Library from the menu bar. The New Library
wizard displays. The first page of the wizard enables you to select the kind of library
that you want to create.

2. After you have selected the library type, click OK.

3. Enter the rest of the library metadata as prompted by the wizard.

For more information about libraries, see the chapters about common data sources in the
SAS Intelligence Platform: Data Administration Guide.

Tasks 31

Working with User-Defined Formats

Problem
You want to use the View Data window to display data with user-defined formats, or you
want to execute a job that contains a table with user-defined formats.

Solution
Make user-defined formats available from the SAS Application Server, or make them
available for a particular job.

A format is an instruction that SAS uses to write data values. Formats are used to control
the written appearance of data values, or, in some cases, to group data values together for
analysis. An informat is an instruction that SAS uses to read nonstandard data values, such
as dates, currency values, or hexadecimal values.

To make a custom format library available to any application that uses a particular SAS
Application Server, administrators should see the "Working With User-Defined Formats"
section of the "Connecting to Common Data Sources" chapter in the SAS Intelligence
Platform: Data Administration Guide.

To make a custom format library available to a specific job, see “Specify a Format Library
in a Preprocess to a Job” on page 32.

Tasks

Specify a Format Library in a Preprocess to a Job
SAS Data Integration Studio users can specify the location of the format library in a
preprocess to a job. The preprocess would consist of SAS statements such as the following:

Options fmtsearch=(myformat library work);
libname myformat "C:\formats\myformats";

The SAS Application Server that executes the job must be able to resolve the path that you
specify in the LIBNAME statement for the format library.

The following steps describe one way to specify a format library in a preprocess to a job:

1. From the SAS Data Integration Studio desktop, select the job you want to update, then
select Edit ð Properties from the menu bar. The property window for the job displays.

2. Click the Precode and Postcode tab, and then select the Precode check box.

3. In the code panel, enter a FMTSEARCH option and a LIBNAME statement that are
similar to the previous example code.

4. To save the precode in metadata, click OK. To save the precode to a file, click Save
As, specify a server and filename for the code, and then click OK.

When you execute the job, the preprocess code runs first and the specified format library
becomes available when the rest of the job executes.

32 Chapter 2 • Getting Started

Registering Tables and Cubes

Problem
You want to work with a table or a cube that is not visible in the tree view on the SAS Data
Integration Studio desktop.

Solution
Register the table or cube.

To register an object means to save metadata about that object to a SAS Metadata Server.
After you register an object, its metadata is displayed in the tree view. You can then work
with that object in SAS Data Integration Studio.

The main tasks for registering tables and cubes are as follows:

• “Register Tables or Cubes” on page 33

• “Preserving Foreign Keys in DBMS Tables” on page 35

Tasks

Register Tables or Cubes
Use the methods in the following table to add metadata for tables or cubes in SAS Data
Integration Studio.

Note: The Register Table wizard and the New Table wizard use a SAS library to access
the tables that you want to register. It is simpler if any required libraries are registered
before you run these wizards. See “Registering SAS Libraries” on page 31.

Table 2.3 Methods for Registering Tables or Cubes

Objects to be Registered Method for Specifying Metadata

A set of table metadata in Common Warehouse
Metamodel (CWM) format or in a format that is
supported by a SAS Metadata Bridge.

Select File ð Import ð Metadata from the
menu bar to import the metadata.

A set of table metadata exported from SAS Data
Integration Studio as a SAS Package File.

Select an appropriate destination folder in
the tree view, and then select File ð
Import ð SAS Package from the menu bar
to import the metadata.

One or more SAS tables or database management
system tables (DBMS) tables that exist in physical
storage.

Select File ð Register Tables from the
menu bar, select the appropriate format, and
then respond to the Register Table wizard.
Alternatively, right-click the library that
contains the tables to be registered, and then
select Register Tables.

Tasks 33

Objects to be Registered Method for Specifying Metadata

A table that is specified in a comma-delimited file
or in another external file.

Select File ð New ð External File ð
Delimited from the menu bar, select the
appropriate external file format, and then
respond to the external file wizard.

A new table that is created when a SAS Data
Integration Studio job is executed. Or, a new table
that reuses column metadata from one or more
registered tables.

Select New ð Table from the menu bar, and
then respond to the New Table wizard.

One or more tables that are specified in an XML
file.

Select File ð Register Tables from the
menu bar, select the XML format, and then
respond to the Register Tables wizard. For
more information, administrators should see
the sections about XML in the chapters
about common data sources in the SAS
Intelligence Platform: Data Administration
Guide.

A Microsoft Excel spreadsheet. Select File ð Register Tables from the
menu bar, select the Excel or ODBC format,
and then respond to the Register Tables
wizard. For more information,
administrators should see the sections about
ODBC in the chapters about common data
sources in the SAS Intelligence Platform:
Data Administration Guide.

One or more tables that exist in physical storage
and that can be accessed with an Open Database
Connectivity (ODBC) driver.

Select File ð Register Tables from the
menu bar, select the ODBC format, and then
respond to the Register Tables wizard. For
more information, administrators should see
the sections about ODBC in the chapters
about common data sources in the SAS
Intelligence Platform: Data Administration
Guide.

A table in a format that does not appear in your
Register Tables wizard. (Your site might not have
licensed all of the formats that are available from
SAS.)

Select File ð Register Tables from the
menu bar, select the Generic format, and
then respond to the Register Table wizard.

The Generic format in the Register Tables
wizard uses a Generic Library to access
tables. A Generic library enables you to
manually specify a SAS engine and the
options that are associated with that engine.
Because it is general by design, a Generic
Library offers few hints as to what options
should be specified for a particular engine.
Accordingly, a Generic Library might be
most useful to experienced SAS users. For
details about the options for a particular
engine, see the SAS documentation for that
engine.

34 Chapter 2 • Getting Started

Objects to be Registered Method for Specifying Metadata

A SAS cube. Select File ð New ð Cube from the menu
bar, and then respond to the New Cube
wizard.

Preserving Foreign Keys in DBMS Tables
Tables in a database management system often have primary keys, unique keys, and foreign
keys. When you register a DBMS table with foreign keys, if you want to preserve the foreign
keys, select all of the tables that are referenced by the foreign keys at the same time, in a
single pass of the wizard. Similarly, when you export or import a DBMS table with foreign
keys, select all of the tables that are referenced by the foreign keys at the same time, in a
single pass of the wizard.

Specifying Global Options in SAS Data Integration
Studio

Problem
You want to set default options for SAS Data Integration Studio.

Solution
Specify the appropriate option in the start command for SAS Data Integration Studio, or
specify an option in the global Options window, as described in the following topics:

• “Starting SAS Data Integration Studio” on page 24

• “Use the Global Options Window” on page 35

Tasks

Use the Global Options Window
To display the global Options window from the SAS Data Integration Studio desktop, select
Tools ð Options from the menu bar.

From the Options window, you can specify options such as the following:

• general interface options for SAS Data Integration Studio

• options for the Diagram tab of the Job Editor window

• options for the Code tab of the Job Editor window

• options for the default SAS Application Server for SAS Data Integration Studio

• options for the View Data window

• options which specify how SAS Data Integration Studio generates code

• data quality options, such as options for the Create Match Codes transformation and
the Apply Lookup Standardization transformation

Tasks 35

Working with Change Management

Problem
A team of SAS Data Integration Studio users wants to work simultaneously with a set of
related metadata. They want to avoid overwriting each other's changes.

Solution
Have an administrator set up a change-managed folder in the Folders tree, such as the Data
Collection 2 (CM) folder shown in the following display.

Display 2.2 Data Collection 2 (CM) Folder is Under Change Management

Under change management, most users are restricted from adding or updating the metadata
in a change-managed folder in the Folders tree. Authorized users, however, can add new
metadata objects and check them in to the change-managed folder. They can also check
out metadata objects from the change-managed folder in order to update them. The objects
are locked so that no one else can update them as long as the objects are checked out. When
the users are ready, they check in the objects to the change-managed folder, and the lock
is released.

If you are authorized to work in a change-managed folder, a Checkouts tree is added to
your desktop in SAS Data Integration Studio. The Checkouts tree displays metadata in your
project repository, which is an individual work area or playpen.

To update a metadata object in the change-managed folder, check out the object. The object
is locked in the change-managed folder, and a copy is placed in the Checkouts tree.
Metadata that has been checked out for update has a check mark beside it, such as the first
two objects in the following display.

36 Chapter 2 • Getting Started

Display 2.3 Sample Checkouts Tree

You can modify the copy in the Checkouts tree. When ready, check in the updated object
to the change-managed folder. Any lock on that object is released and any updates are
applied.

To add a new metadata object to the change-managed folder, add the object as usual. The
metadata is added to the Checkouts tree. New metadata objects that have never been
checked in do not have a check mark beside them, such as the last two objects in the
preceding display. When ready, check in the new object to the change-managed folder.

Note: Users who are working under change management should not use My Folder in the
Folders tree. They should use the Checkouts tree and the change-managed folder
instead.

For, example, when you add a new metadata object, verify that the folder path in the
Location field for the object goes to the appropriate, change-managed folder. For
information about setting up change management, administrators should see the
“Administering SAS Data Integration Studio” chapter of the SAS Intelligence Platform
Desktop Application Administration Guide.

Working with change management involves the following tasks:

• “Create a Connection Profile for a User Under Change Management” on page 37

• “Create a Connection Profile for an Administrator Under Change Management” on
page 38

• “Add New Metadata” on page 38

• “Check In Metadata” on page 38

• “Check Out Metadata” on page 39

• “Delete Metadata” on page 39

• “Undo Checkouts” on page 40

• “Clear All Metadata from Your Project” on page 40

• “Clear All Metadata from a Project That You Do Not Own” on page 40

See also “Usage Notes for Change Management” on page 40.

Tasks

Create a Connection Profile for a User Under Change Management
Perform the following steps to create a connection profile that enables you to work with
metadata in a change-managed folder:

Tasks 37

1. Obtain the following information from an administrator:

• the network name of the metadata server

• the port number used by the metadata server

• a logon ID and password that enable you to work in a change-managed folder

• the name of the project that you specify in your connection profile

2. Start SAS Data Integration Studio. The Connection Profile window displays.

3. Select Create a new connection profile. The New Connection Profile wizard displays.

4. Click Next, and enter a name for the profile.

5. Click Next, and enter a machine address, port, user name, and password that enable
you to connect to the appropriate SAS Metadata Server.

6. Click Next. The wizard attempts to connect to the metadata server. If the connection
is successful, the Project Selection page displays.

7. Select the appropriate project. Then select the Connect to a project check box.

8. Click Finish to exit the connection profile wizard, connect to the metadata server, and
display the server's metadata in SAS Data Integration Studio. The name of your project
repository is displayed in the Checkouts tree on the desktop.

Create a Connection Profile for an Administrator Under Change
Management
The standard set of privileges that enable you to work in a change-managed folder do not
enable you to perform administrative tasks such as the following:

• deploy a job for scheduling

• deploy a job as a stored process

• create a Web service from a stored process

• clear a project repository that you do not own
In order to perform tasks such as these, you must use a connection profile that has
appropriate privileges in the change-managed folder. Ask an administrator for a logon ID
and password that has the privileges you need for these tasks. Then create and use the
connection profile as usual.

Add New Metadata
Perform the following steps to add a new metadata object to a change-managed folder:

1. If you have not done so already, open a connection profile that enables you to work
with the metadata in a change-managed folder.

2. Add the metadata as usual. Verify that the folder path in the Location field for the
object goes to the appropriate, change-managed folder. To specify a different path in
the Folders tree, click Browse and select the desired path. The new object appears in
the Checkouts tree on the desktop. The new object is not displayed in other trees until
it is checked in for the first time.

3. When you are finished working with the new metadata, you can check it in to the
change-managed folder.

Check In Metadata
Perform the following steps to check in metadata to a change-managed folder:

38 Chapter 2 • Getting Started

1. To check in selected objects, select one or more objects in the Checkouts tree, right-
click them, and select Check In. The Check In Wizard displays.

Alternatively, to check in all metadata in your project, right-click the name of the project
in the Checkouts tree, and select Check In All. The Check In Wizard displays.

2. In the Check In Wizard, enter a title and an optional description for the changes that
you are about to check in. The text entered here becomes part of the history for all
objects that you are checking in. If you do not enter meaningful comments, the history
is less useful. When you are finished describing your changes, click Next. The Select
Objects to Check In page displays.

You can use the Select Objects to Check In page to identify any checked-out objects
that depend on an object that you selected for check-in. For example, suppose that you
had checked out a job and also a table that was in the process flow for that job. If you
selected the job for check-in, the Select Objects to Check In page would indicate that
a table in that job was also checked out. In that case, you might want to check it in along
with the job.

3. To skip the Select Objects to Check In page, click Next to display the Finish window.

Otherwise, select an object in the Select Objects to Check In page. Any checked-out
objects that depend on the object that you just selected are displayed on the
Dependencies tab. Use the Dependencies and other tabs on this page to determine
whether you want to check in a dependent object along with the parent object. When
finished, click Next to display the Finish window.

4. Review the metadata and click Finish to check in the metadata.

After check in, any new or updated metadata that was in your Checkouts tree is moved to
the change-managed folder.

Check Out Metadata
Perform the following steps to check out metadata from a change-managed folder:

1. If you have not done so already, open a connection profile that enables you to work
with the metadata in a change-managed folder.

2. In the change-managed folder, right-click the metadata that you want to check out and
select Check Out. Alternatively, you can left-click the metadata that you want to check
out, then go the menu bar, and select Check Outs ð Check Out. The metadata is
checked out and displays in your Checkouts tree.

After you are finished working with the metadata, you can check it in to the change-
managed folder.

Delete Metadata
You can use the Delete option to permanently remove selected metadata objects from the
metadata server. Metadata objects that have never been checked in are simply deleted from
the Checkouts tree. Metadata objects that are checked out are deleted from the metadata
server.

Note: Metadata objects that are deleted cannot be recovered except by restoring the
metadata repository from backup.

Perform the following steps to permanently remove selected metadata objects.

1. If the metadata objects that you want to delete are not checked out, check them out.

2. In the Checkouts tree, select one or more objects that you want to permanently remove.

Tasks 39

3. Right-click the object or objects and select Delete.

4. Click Yes when prompted to verify the delete operation.

Undo Checkouts
You can use the Undo Checkout option to discard any changes to selected metadata objects
that have been checked out. The objects are removed from the Checkouts tree, and the
original objects are unlocked in the change-managed folder. Any changes made to the
metadata since it was checked out are lost. Perform the following steps to undo checkouts:

1. In the Checkouts tree, select one or more checked-out objects whose changes should
be discarded.

2. Right-click the object or objects and select Undo Checkout.

3. Click Yes when prompted to verify the undo checkout operation.

Clear All Metadata from Your Project
You can use the Clear option to delete all new objects and unlock all checked-out objects
in your Checkouts tree. You can use this option any time that you want to discard all new
and updated metadata in your Checkouts tree. You can also use this option when a metadata
object fails to check in due to technical problems. When you clear a project, all changes
that have not been checked in are lost. Perform the following steps to use this option:

Right-click the Checkouts tree and select Clear. Alternatively, you can select the name of
your project in the Checkouts tree, then select Checkouts ð Clear from the menu bar.

Clear All Metadata from a Project That You Do Not Own
Problems can occur that require an administrator to clear all metadata from a user's project
repository, which is the metadata repository that populates the Checkouts tree. For example,
suppose a user checked out metadata objects but forgot to check them back in before going
on a long vacation. In the meantime, other users need to update the checked-out metadata.
As another example, suppose an administrator accidentally deletes a user's project
repository that contains checked-out objects. These objects would remain locked and
unavailable for update until they were unlocked.

If problems such as these occur, an administrator can perform the following steps to clear
all metadata from one or more project repositories:

1. Start SAS Data Integration Studio. Select a connection profile for an unrestricted user,
as described in “Create a Connection Profile for an Administrator Under Change
Management” on page 38.

2. On the SAS Data Integration Studio desktop, select Checkouts ð Clear from the menu
bar. The Clear Project Repository window displays. Unrestricted users see all project
repositories on the current metadata server.

3. If the project repository that you want to clear been deleted, select Search for deleted
project repository information. Any deleted project repositories on the current
metadata server are listed.

4. In the Clear Project Repository window, select one or more project repositories to be
cleared. Then, click OK. In the selected projects, all new objects are deleted, and all
checked-out objects are unlocked. All changes that have not been checked in are lost.

Usage Notes for Change Management
Under change management, you can neither add new cubes nor check out existing cubes
for update.

40 Chapter 2 • Getting Started

Under change management, there is limited support for the following kinds of objects:
Stored Processes, Information Maps, Web Services, Deployed Jobs, Deployed Flows,
Mining Results, Reports, and Prompts. You can add these objects and check them in once.
You can import these objects and check them in once. However, some actions might not
be supported for these objects.

Add a Note or Document to a Registered Object

Problem
The metadata for libraries, tables, and other registered objects includes a Description field.
This field is limited to 200 characters, but some objects might need a longer description.

Solution
You can type text into the Quick Note field on the Notes tab on the properties window for
the object. Alternatively, you can create a note or document and associate it with the
metadata for the object that you want to describe.

Notes are generally short and contain only minimal formatting. A document is usually
longer, and it might have been authored using a word-processing program or a desktop-
publishing application. Documents can contain more elaborate formatting, graphics, and
so on.

Use the following methods to add notes or documents to the metadata for a library, table,
or another object:

• “Add a Quick Note to a Metadata Object” on page 41

• “Create a Note and Attach It to a Metadata Object” on page 41

• “Create a Document and Attach It to a Metadata Object” on page 42

• “Attach One or More Registered Notes or Documents to a Metadata Object” on page
42

• “Associate a Quick Note, a Note, or a Document with a Column” on page 43

Tasks

Add a Quick Note to a Metadata Object
Perform the following steps to add a quick note to a metadata object:

1. In a SAS application, display the properties window for the object that you want to
describe.

2. Click the Notes tab.

3. Type the desired text into the Quick Notes field.

4. Click OK to save your changes.

Create a Note and Attach It to a Metadata Object
Perform the following steps to create a note and associate it with a metadata object:

Tasks 41

1. In a SAS application, display the properties window for the resource that you want to
describe.

2. Click the Notes tab.

3. In the Notes area of the tab, click New. The New Notes window displays.

4. In the Name field, enter a name for the metadata to identify the note.

5. (Optional) In the Description field, enter a longer description for the metadata to
identify the note.

6. In the Location field, accept the default folder or click the Browse button to select the
folder in the Folders tree. The metadata for the note is stored in the selected folder.

7. In the Text field, enter a note that describes the current object.

8. Click OK to save your changes and associate the note with the current object.

Create a Document and Attach It to a Metadata Object
Perform the following steps to create a document and associate it with a metadata object:

1. Use third-party software to create a document that describes one or more registered
objects. Remember the path to the document.

2. In a SAS application, display the properties window for an object that you described
in Step 1.

3. Click the Notes tab.

4. In the Documents area of the tab, click New. The New Documents window displays.

5. In the Name field, enter a name for the metadata that identifies the document.

6. (Optional) In the Description field, enter a longer description for the metadata that
identifies the document.

7. In the Location field, accept the default folder or click the Browse button to select the
folder in the Folders tree. The metadata for the document is stored in the selected folder.

8. Click the right corner of the Path field to display the file selection button and click that
button. A file selection window displays for the default SAS Application Server or a
SAS Application Server that you select.

9. Use the file selection window to select the document that you created in Step 1.

10. Click OK to save your changes and associate the selected document with the current
object.

Attach One or More Registered Notes or Documents to a Metadata
Object
Perform the following steps to associate one or more registered notes or documents with a
metadata object:

1. In a SAS application, display the properties window for the metadata object.

2. Click the Notes tab.

3. In the Notes area or the Documents area of the tab, click Attach. The Select Notes
window or the Select Documents window displays.

4. In the window, use the Folders tree to display the desired notes or documents. Select
one or more notes or documents, and then click the right arrow to move them into the
Selected column.

5. Click OK to link the selected notes or documents to the current metadata object.

42 Chapter 2 • Getting Started

Associate a Quick Note, a Note, or a Document with a Column
Perform the following steps to associate a quick note, a note, or a document with the
metadata for a table column:

1. In a SAS application, display the properties window for a table with a column that you
want to describe with a quick note, a note, or a document.

2. Click the Columns tab.

3. Right-click the column that you want to describe, and then select Properties. The
column properties window displays.

4. Attach a quick note, a note, or a document, as described in the previous tasks.

View the Content of Notes or Documents

Problem
You want to view the quick notes that have been added to a registered object, or you want
to view the content of notes or documents that are registered on the current metadata server.

Solution
Use one of the following methods:

• “View Quick Notes, Notes, or Documents Associated with a Registered Object” on
page 43

• “View Notes in the SAS Data Integration Studio Tree View” on page 43

• “View Documents in the SAS Data Integration Studio Tree View” on page 44

Tasks

View Quick Notes, Notes, or Documents Associated with a Registered
Object
Display the properties window for the object and click the Notes tab. Quick notes are
displayed in the Quick Notes field.

For a note, select the note from the Notes Assigned list, and the text of the note displays
in the Note text area.

For a document, make note of the specified path for the document in which you are
interested. You need third-party software to open the actual document.

View Notes in the SAS Data Integration Studio Tree View
SAS Data Integration Studio supports the following method for displaying the contents of
a registered note:

1. In the tree view, right-click the note and select Properties.

2. Click the Details tab to read the contents of the note.

Tasks 43

View Documents in the SAS Data Integration Studio Tree View
SAS Data Integration Studio supports the following method for displaying the contents of
a registered document:

1. In the tree view, right-click the document and select Open to read the contents of a
document in HTML format and some other formats.

2. If the document is not displayed, right-click the document and select Properties.

3. Click the Details tab. Note the specified path for the document. You need third-party
software to open the actual document.

44 Chapter 2 • Getting Started

Chapter 3
Importing, Exporting, and Copying
Metadata

Metadata Import and Export in SAS Data Integration Studio 46

Working with SAS Package Metadata . 46
About Importing and Exporting SAS Package Metadata . 46
Objects That Can Be Imported and Exported in SAS Package Format 47
Importing Earlier Versions of SAS Package Metadata . 47

Preparing to Import or Export SAS Package Metadata . 47

Exporting SAS Package Metadata . 48
Problem . 48
Solution . 48
Tasks . 48

Importing SAS Package Metadata . 49
Problem . 49
Solution . 49
Tasks . 50

Copying and Pasting Metadata Objects . 51
Problem . 51
Solution . 51
Tasks . 51

Working with SAS Metadata Bridges . 51
About SAS Metadata Bridges . 51
Objects That Can be Imported or Exported with a SAS Metadata Bridge 52

Usage Notes for Importing or Exporting with a SAS Metadata Bridge 52

Preparing to Import or Export with a SAS Metadata Bridge 53

Importing New Metadata with a SAS Metadata Bridge . 53
Problem . 53
Solution . 53
Tasks . 53

Importing Updated Metadata with a SAS Metadata Bridge 55
Problem . 55
Solution . 55
Tasks . 56

Exporting Metadata with a SAS Metadata Bridge . 60
Problem . 60
Solution . 60
Tasks . 61

45

Metadata Import and Export in SAS Data
Integration Studio

SAS Data Integration Studio enables you to import and export metadata for individual
objects or sets of related objects. You can work with two kinds of metadata:

• SAS metadata in SAS Package format

• relational metadata (metadata for libraries, tables, columns, indexes, and keys) in
formats that can be accessed with a SAS Metadata Bridge

By importing and exporting SAS Package metadata, you can move the metadata for SAS
Data Integration Studio jobs and related objects between SAS Metadata Servers. For
example, you can create a job in a test environment, export it as a SAS Package, and import
it into another instance of SAS Data Integration Studio in a production environment.

By importing and exporting relational metadata in external formats, you can reuse metadata
from third-party applications, and you can reuse SAS metadata in those applications as
well. For example, you can use third-party data modeling software to specify a star schema
for a set of tables. The model can be exported in Common Warehouse Metamodel (CWM)
format. You can then use a SAS Metadata Bridge to import that model into SAS Data
Integration Studio.

This chapter focuses on the wizards that are used to import and export individual objects
or sets of related objects in SAS Data Integration Studio. For a more comprehensive view
of metadata management, administrators should see the metadata management chapters in
the SAS Intelligence Platform: System Administration Guide. See also the technical paper,
“Metadata Promotion in SAS 9.2” at: http://support.sas.com/resources/
papers/tnote/tnote_migration.html.

Working with SAS Package Metadata

About Importing and Exporting SAS Package Metadata
The SAS Intelligence Platform provides tools that enable you to promote individual
metadata objects or groups of objects from one metadata server to another, or from one
location to another on the same metadata server. You can also promote the physical files
that are associated with the metadata.

The promotion tools include:

• the Export to SAS Package wizard and the Import from SAS Package wizard, which
are available in SAS Data Integration Studio, SAS Management Console, and SAS
OLAP Cube Studio.

• the batch import tool and the batch export tool, which enable you to perform promotions
on a scheduled or repeatable basis. These tools provide most of the same capabilities
as the SAS Package import and export wizards. For information about the batch import
tool and the batch export tool, see the "Using the Promotion Tools" chapter in the SAS
Intelligence Platform: System Administration Guide.

The SAS Package import and export wizards enable you to reuse the metadata for tables,
jobs, and other objects. For example, you can develop a job in a test environment, export

46 Chapter 3 • Importing, Exporting, and Copying Metadata

http://support.sas.com/resources/papers/tnote/tnote_migration.html
http://support.sas.com/resources/papers/tnote/tnote_migration.html

it, and then import the job into a production environment. These wizards enable you to
perform the following tasks:

• export the metadata for one or more selected objects in a tree view.

• export the metadata for all objects in one or more selected folders in the Folders tree.

• export access controls that are associated with exported objects (optional).

• export data, dependent metadata, and other content that is associated with exported
objects (optional).

• change physical paths and other attributes when you import metadata (optional). For
example, you can export the metadata for a SAS table, and upon import, change the
metadata so that it specifies a DBMS table in the target environment.

Objects That Can Be Imported and Exported in SAS Package Format
You can import and export SAS Package metadata for any object type that is included in
the SAS Data Integration Studio Inventory tree. For a description of these objects, see
“Inventory Tree” on page 404.

Importing Earlier Versions of SAS Package Metadata
If you are migrating from an earlier version to SAS Data Integration Studio 4.2,
administrators need to migrate your metadata servers. However, you might have jobs stored
in locations that are not part of the migration process. If these jobs can be exported to SAS
9.1.3 Package format, you can use the Import from SAS Package wizard in SAS Data
Integration Studio 4.2 to convert and register these jobs on your metadata server.

If you have jobs that were exported in XML format before SAS Data Integration Studio
3.4., you must either include these jobs in a system migration, or import them in SAS Data
Integration Studio 3.4, export them as a SAS Package, and then import the SAS Package
in SAS Data Integration Studio 4.2.

Note: When a job in SAS 9.1.3 Package format is imported with the SAS 9.2 Import from
SAS Package wizard, the job and its transformations are updated as they are during
migration.

For details about the impacts of conversion, see “Updates to Jobs and Transformations
During Migration” on page 14 and “User Action Required for Migrated Jobs with Data
Quality Transformations” on page 15.

Preparing to Import or Export SAS Package
Metadata

The SAS Package import and export wizards are easy to use, especially when you are
working with small packages of metadata on the same metadata server. However, it can
sometimes be difficult to map servers, libraries, and other attributes when an object is
imported from a different metadata server. Accordingly, administrators should carefully
plan the import or export of large amounts of metadata, or the import of metadata from one
metadata server to another. For more information, administrators should see the "Using the
Promotion Tools" chapter in the SAS Intelligence Platform: System Administration
Guide.

Preparing to Import or Export SAS Package Metadata 47

Exporting SAS Package Metadata

Problem
You want to export selected metadata objects from SAS Data Integration Studio so that
you can import them later.

Solution
Use the Export Wizard to export the metadata. You can then import the package in SAS
Data Integration Studio and save it to the same metadata server or to a different metadata
server. The source and target server can be located on the same host machine or on different
host machines. It is assumed that you have prepared for this task as described in “Preparing
to Import or Export SAS Package Metadata” on page 47.

Perform the following tasks:

• “Document the Metadata That Will Be Exported (optional) ” on page 48

• “Export Selected Metadata” on page 48

Tasks

Document the Metadata That Will Be Exported (optional)
Metadata export and import tasks are easier to manage if you create a document that
describes the metadata to be exported, the metadata that should be imported, and the main
metadata associations that must be reestablished in the target environment. Otherwise, you
might have to guess about these issues when you are using the import and export wizards
for SAS Packages.

Export Selected Metadata
Perform the following steps to export metadata using a SAS package:

1. In the tree view, right-click the objects to be exported and select Export ð SAS
Package from the pop-up menu. The Export SAS Package Wizard displays.
Alternatively, you can left-click the objects to be exported and select File ð Export
ð SAS Package from the menu bar.

2. In the first page of the wizard, specify a path and name for the export package or accept
the default. If you want to include dependent objects when you create the package, you
can click the Include dependent objects when retrieving initial collection of
objects check box. For example, you can export a job named Check Sort and name the
package CheckSort.spk. The full pathname for the sample job is C:\export
\CheckSort.spk. When you are finished, click Next to access the Select Objects to
Export page.

3. Review the list of objects that you have selected for export. Deselect the check box for
any objects that you do not want to export. You can click Details in the toolbar to see
tabs at the bottom of the page. These tabs enable you to review dependencies,
information, options, and properties for a selected object. The Select Objects to Export
page is shown in the following display.

48 Chapter 3 • Importing, Exporting, and Copying Metadata

Display 3.1 Select Objects to Export Page

Click Next to access the Summary page.

4. Review the metadata to be exported. Then, click Next. The metadata is exported to a
SAS package file. A status page displays, indicating whether the export was successful.
A log with a datetime stamp is saved to your user directory.

5. If desired, click View Log to view a log of the export operation. When you are finished,
click Finish.

Importing SAS Package Metadata

Problem
You want to import metadata into SAS Data Integration Studio that was exported in SAS
Package format.

Solution
Use the Import to SAS Package wizard to import the SAS package file that contains the
metadata. The package can be saved to the same metadata server or to a different metadata
server. The source and target server can be located on the same host machine or on different
host machines. It is assumed that you have prepared for this task described in “Preparing
to Import or Export SAS Package Metadata” on page 47.

Solution 49

Tasks

Identify the Metadata That Should Be Imported (optional)
It is easier to import metadata if you have a document that describes the metadata that was
exported, the metadata that should be imported, and the main metadata associations that
must be reestablished in the target environment.

For example, suppose that a SAS Data Integration Studio job was exported. When you
import the job, the Import from SAS Package wizard prompts you to associate tables in
the job with libraries in the target environment. If appropriate libraries do not exist, you
might have to cancel the wizard, register appropriate libraries, and run the wizard again.
However, if the library requirements are known and addressed ahead of time, you can
simply import the tables and specify an appropriate library in the target environment.

Import the SAS Package File
Perform the following steps to import metadata using a SAS package:

1. In the Folders tree, right-click the folder into which metadata should be imported and
select Import from the pop-up menu. The Import wizard displays. Alternatively, you
can left-click a folder and select File ð Import ð SAS Package from the menu bar.

2. In the first page of the wizard, select the package to be imported. Select the option to
import all objects in the package or just the new objects (objects which are not registered
on the target metadata server). When finished, click Next to access the Select Objects
to Import page.

3. Review the list of objects that you have selected for import. Deselect the check box for
any objects that you do not want to import.

4. If desired, click an object, and then click the Options tab to view its options. For
example, you can click the Options tab to specify whether you want to import content,
if content was exported with the object. You can also click Properties to review its
properties. When finished, click Next to access the About Metadata Connections page.

5. Review any metadata associations to be restored. For example, if you are importing a
table, you are prompted to specify a library for that table. Click Next to access the SAS
Application Servers page and begin restoring the required associations.

6. Review any application server associations. Then, click Next to access the Directory
Paths page.

7. Review any directory paths. Then, click Next to access the Summary page.

8. Review the metadata to be imported. Then click Next to access the Importing Object
page. The metadata is imported. A status page displays, indicating whether the import
was successful. A log with a datetime stamp is saved to your user directory.

9. If desired, click View Log to view a log of the import operation. When finished, click
Finish.

50 Chapter 3 • Importing, Exporting, and Copying Metadata

Copying and Pasting Metadata Objects

Problem
You want to create a metadata object that is similar to another metadata object in a SAS
Data Integration Studio tree view.

Solution
Use the Copy and Paste menu options to create a copy of the object, and then modify the
copy as desired. As an alternative to Paste, you can use Paste Special, which enables you
to select which attributes are copied and to change some attributes in the pasted object.

Tasks

Copy
To copy an object in a tree view, right-click the object and select Copy from the pop-up
menu.

Paste
Paste enables you to create a copy that is almost identical to the original that you copied.
To paste an object, right-click a target folder in the Folders tree object and select Paste
from the pop-up menu.

Paste Special
Paste Special enables you to select which attributes are copied and to change some
attributes in the pasted object. Right-click a target folder in the Folders tree, then select
Paste Special from the pop-up menu.

Working with SAS Metadata Bridges

About SAS Metadata Bridges
SAS Data Integration Studio can import and export relational metadata in any format that
is supported by a SAS Metadata Bridge. By importing and exporting relational metadata
in external formats, you can reuse metadata from third-party applications, and you can
reuse SAS metadata in those applications as well. For example, you can use third-party
data modeling software to specify a star schema for a set of tables. The model can be
exported in Common Warehouse Metamodel (CWM) format. You can then use a SAS
Metadata Bridge to import that model into SAS Data Integration Studio.

The Export Metadata Wizard enables you to export relational metadata from SAS Data
Integration Studio to a file, in any format that is supported by a SAS Metadata Bridge. The
Import Metadata Wizard enables you to perform the following tasks:

• Import relational metadata in a file, in any format that can be accessed with a SAS
Metadata Bridge.

About SAS Metadata Bridges 51

• Compare imported metadata to existing metadata.

• View any changes in the Differences window.

• Run impact analysis or reverse impact analysis on tables and columns in the Differences
window, to help you understand the impact of a given change on the target environment.

• Choose which changes to apply to the target environment.

Objects That Can be Imported or Exported with a SAS Metadata
Bridge

You can import and export relational metadata in any format that is accessible with a SAS
Metadata Bridge. Relational metadata includes the metadata for the following objects:

• data libraries

• tables

• columns

• indexes

• keys (including primary keys and foreign keys)

Usage Notes for Importing or Exporting with a SAS
Metadata Bridge

• You cannot run change analysis on metadata that is imported from z/OS systems.

• If you are working under change management, it is a good practice to check in the
comparison result metadata before viewing or applying the results.

• When imported metadata is compared to existing metadata, the differences between
the two are stored in a comparison result library. In the current release, the comparison
result library cannot be a SAS/SHARE library. Accordingly, in an environment where
two or more people perform change analysis on imported metadata, care should be
taken to avoid contention over the same comparison results library. For example, each
user can create his or her own comparison result library.

• To avoid problems that arise when character sets from different locales are combined
in the same comparison result library, create one or more comparison result libraries
for each locale.

• If you are working under change management, empty your Checkouts tree of any
metadata before importing more metadata with the Import Metadata Wizard. This
makes it easier to manage the imported metadata from a particular session. If you want
to save any metadata in the Checkouts tree, check in that metadata. It you want to discard
any remaining metadata in the Checkouts tree, you can select Check Outs ð Clear
Repository from the menu bar.

• The Import Metadata Wizard enables you to select a metadata file that is local or remote
to SAS Data Integration Studio. Remote support is provided for Windows and UNIX
hosts only.

• When imported metadata is compared to existing metadata, and you are working under
change management, imported metadata is compared to the checked-in metadata.
Accordingly, any metadata in the Checkouts tree that has not been checked in is not
included in the comparison.

52 Chapter 3 • Importing, Exporting, and Copying Metadata

If you mistakenly run a comparison before the appropriate metadata has been checked
in, you can check in the contents of the Checkouts tree and then select Comparison
Recompare from the toolbar in the Differences window.

• Null SAS formats that show as differences in change analysis will, when applied,
overwrite user-defined SAS Formats in a metadata repository. Be careful when you
apply formats during change analysis.

Preparing to Import or Export with a SAS Metadata
Bridge

To import or export metadata in a format that is accessible with a SAS Metadata Bridge,
you must license the appropriate SAS Metadata Bridge. For more information, contact your
SAS representative.

Importing New Metadata with a SAS Metadata
Bridge

Problem
You want to import metadata for one or more tables that have never been registered on the
current metadata server. The metadata is in a format that is accessible with a SAS Metadata
Bridge.

Solution
You can use the Import Metadata Wizard and select the Import as new metadata option
on the Import Selection page. This option specifies that metadata in the selected file is
imported without comparing it to existing metadata.

Note: The Import as new metadata option eliminates some steps, but it can result in
duplicate metadata, if any of the metadata that you are importing is for an object that
has already been registered on the current metadata server.

Under change management, the imported metadata appears in your Checkouts tree, where
you can review it before checking it in. Without change management, all metadata in the
selected file is registered to the target metadata server.

Tasks

Import As New Metadata
The following preparation makes it easier to import metadata as new:

• Identify the folder in the Folders tree that contains the imported metadata. You can
create a new folder, if you need to do so.

• Identify the path to the file that contains the metadata to be imported.

• Identify the library in the target environment that contains the imported metadata. You
can register a new library, if you need to do so.

Tasks 53

Follow these steps to import metadata that is in a format that can be accessed by a SAS
Metadata Bridge. The Common Warehouse Metamodel (CWM) format is one example.

Perform the following steps to import metadata for one or more tables that have never been
registered on the current metadata server:

1. Right-click the folder in the Folders tree that stores the imported metadata. Then, select
Import ð Metadata to access the Select an import format page of the Metadata Import
Wizard. This page lists the formats that are licensed for your site.

2. Verify that the folder specified in the Folders field on the File Location page is the
folder that you designated as the storage location for the imported metadata. If the folder
is incorrect, click Browse to select a different folder.

3. Specify a path to the file that contains the metadata to be imported in the File name
field. The path must be accessible to the default SAS Application server or to a server
you select with the Advanced button on this page. Click Next to access the Meta
Integration Options page.

4. Review the information on the Meta Integration Options page. Typically, you accept
the default values.

Note: The Meta Integration Options page enables you to specify how the wizard
imports various kinds of metadata in the source file. To see a description of each
option, select the option in the Name field, and a description of that option appears
in the pane at the bottom of the page. Typically, you can accept the defaults on this
page. The following display shows the Meta Integration Options page for the
sample job.

Display 3.2 Meta Integration Options

Click Next to access the Import Selection page.

5. The Import Selection page enables you to select whether the metadata is imported as
new or compared to existing metadata in the target environment. Because the sample
job is a new metadata import, select Import as new metadata. Then, click Next to
access the Metadata Location page.

54 Chapter 3 • Importing, Exporting, and Copying Metadata

6. The Metadata Location page enables you to specify the library in the target environment
that should contain the imported metadata. If necessary, you can click the ellipsis button
in the Library field to select the library. The content in the DBMS and Schema fields
is based on the library that you select. Click Next to access the Finish page.

7. Review the metadata. Click Finish to import the metadata. When prompted to view the
import log, respond as needed. After you skip or view the log, the Import Metadata
wizard will close. Verify that the metadata was imported to the appropriate library and
folder.

If you are not working under change management, all tables that are specified in the
imported metadata are registered to the target metadata repository. Verify that the table
metadata was imported into the correct folder and library.

Also, be aware that if you are working under change management, the imported tables
might not appear in the Checkouts tree until you refresh the tree. Right-click the Checkouts
tree and select Refresh.

Importing Updated Metadata with a SAS Metadata
Bridge

Problem
You want to import a data model for a set of tables. The model is in a format that is accessible
with a SAS Metadata Bridge. It is possible that some of the imported metadata contains
updates for existing metadata.

Solution
You can use the Import Metadata Wizard and select the Compare import metadata to
repository option on the Import Selection page. This option specifies that metadata in the
selected file is imported and compared to existing metadata. Differences in tables, columns,
indexes, and keys are detected.

Under change management, imported metadata is compared to the checked in metadata
that is associated with the library that you selected in the wizard. Without change
management, imported metadata is compared to the metadata in the default repository that
is associated with the selected library. Differences are stored in a comparison result library.
You can view the changes in the Differences window.

Perform the following tasks:

• “Import the Metadata to be Compared” on page 56

• “Compare the Imported Metadata to the Existing Metadata” on page 58

• “Applying Changes to Tables with Foreign Keys” on page 59

• “Restoring Metadata for Foreign Keys” on page 60

• “Deleting an Invalid Change Analysis Result” on page 60

Solution 55

Tasks

Import the Metadata to be Compared
The following preparation makes it easier to import the metadata that you need to compare
to existing metadata:

• Identify the folder in the Folders tree that contains the existing metadata that are updated
with the imported metadata.

• Identify the path to the file that contains the metadata to be imported.

• Identify the library that contains the differences between the imported metadata and
existing metadata (the comparison result library). Register a new library, if necessary.

• Identify the library in the target environment that contains the imported metadata.
Register a new library, if necessary. (This library is generally created when the library
metadata is first imported.)

Perform the following steps to compare imported metadata to existing metadata:

1. Right-click the folder in the Folders tree that stores the imported metadata. Then, select
Import ð Metadata to access the Select an import format page of the Metadata Import
Wizard. This page lists the formats that are licensed for your site.

Note: If you select the wrong folder, the imported metadata is not compared to the
appropriate existing metadata. Some or all of the imported metadata might then
show up incorrectly as new in the Differences window.

2. From the Metadata Import Wizard, select the format of the file that you want to import.
For example, a sample job could use the commonly used OMG CWM (Common
Warehouse Metamodel) format. Click Next to access the File Location page.

3. Specify a path to the file that contains the metadata to be imported in the File name
field. The path must be accessible to the default SAS Application server or to a server
that you select with the Advanced button on this page. Click Next to access the Meta
Integration Options page.

4. Review the information on the Meta Integration Options page. Typically, you accept
the default values.

Note: The Meta Integration Options page enables you to specify how the wizard
imports various kinds of metadata in the source file. To see a description of each
option, select the option in the Name field, and a description of that option appears
in the pane at the bottom of the page. Typically, you can accept the defaults on this
page. The following display shows the Meta Integration Options page for the
sample job.

56 Chapter 3 • Importing, Exporting, and Copying Metadata

Display 3.3 Meta Integration Options

Click Next to access the Import Selection page.

5. The Import Selection page enables you to select whether the metadata is imported as
new or compared to existing metadata in the target environment. Because the sample
job compares the imported metadata to existing metadata, select Compare import
metadata to repository.

Note: If the wizard detects that the metadata to be imported is similar to existing
metadata in the folder that you selected when you began the import, it selects
Compare import metadata to repository by default. If this option is not selected,
select it now. The Comparison results library field becomes active.

6. Use the drop-down menu to select a comparison result library in the Comparison
results library field. You can change the default options for the comparison by clicking
Advanced to display the Advanced Comparison Options window. Click Next to access
the Metadata Location page.

7. The Metadata Location page enables you to specify the library in the target environment
that should contain the imported metadata. You should select the same library that
contains the existing metadata that is compared to the imported metadata. If necessary,
you can click the ellipsis button in the Library field to select the library. Note that the
content in the DBMS and Schema fields is based on the library that you select. Click
Next to access the Finish page.

8. Review the metadata. Click Finish to import the metadata. When prompted to view the
import log, respond as needed. After you skip or view the log, the Import Metadata
wizard will close. Verify that the metadata was imported to the appropriate library and
folder.

9. If you are working under change management, it is a good practice to check in the
comparison result metadata before viewing or applying the results. From the Checkouts
tree, right-click the Project repository icon and select Check In Repository.

Tasks 57

If you are not working under change management, all tables that are specified in the
imported metadata are registered to the target metadata repository. Verify that the table
metadata was imported into the correct folder and library.

Also, be aware that if you are working under change management, the imported tables
might not appear in the Checkouts tree until you refresh the tree. Right-click the Checkouts
tree and select Refresh.

Compare the Imported Metadata to the Existing Metadata
Perform the following steps to view the results of an import metadata comparison.

1. Select Tools ð Comparison Results from the menu bar on the desktop to access the
Comparison Results window. The following display shows the Comparison Results
window for a sample job.

Display 3.4 Comparison Results Window

The Comparison Results window enables you to select the results of a compare import
metadata to repository operation. There is one record for each successful comparison
operation. Select the desired comparison record. Then, click the View differences
found icon in the toolbar to access the Differences window.

Note: The comparison results object is named after the imported file, and it has an
XML extension.

2. Expand the folders in the Differences window to determine whether any metadata has
changed. A sample Differences window is shown in the following display.

58 Chapter 3 • Importing, Exporting, and Copying Metadata

Display 3.5 Differences Window

Continue to expand folders and view the metadata until you are satisfied that you
understand the differences between existing metadata and the imported metadata. To
perform impact analysis or reverse impact analysis on an item, select the check box by
that item, then click the Impact Analysis or Reverse Impact Analysis icons on the
toolbar on the Differences window. (For a detailed description of all options and
controls in the Differences window, press F1.) In this example, the triangle icons in the
next display indicate that the imported metadata contains updates to three tables. The
star icon indicates that the imported metadata contains one new table.

The Differences window is divided into two panes: Import Metadata and Repository
Metadata. The Import Metadata pane displays metadata that is being imported. Under
change management, the Repository Metadata pane displays any matching metadata
in the change-managed repository. Only the checked-in metadata displays. Without
change management, the Repository Metadata pane displays any matching metadata
in the default repository.

3. To apply a change, select the check box next to it in the Differences window. Then
click the Applies the checked changes icon in the toolbar. A dialog box displays,
prompting you to verify the change.

4. Click OK to accept the changes. The selected changes are applied. When finished, close
the Differences window and the Comparison Results window.

Applying Changes to Tables with Foreign Keys
When you import metadata about a set of tables that are related by primary keys or foreign
keys, and the keys have been either added or updated in the imported metadata, do one of
the following:

• apply all changes in the imported metadata

• apply selective changes, making sure to select all tables that are related by primary keys
or foreign keys

Otherwise, the key relationships are not preserved.

Tasks 59

Restoring Metadata for Foreign Keys
When you apply changes from imported metadata, a warning message is displayed if
foreign key metadata is about to be lost. At that time, you can cancel or continue the apply
operation. However, if you accidentally lose foreign key metadata as a result of an apply
operation, it is possible to restore this metadata.

Assuming that the imported metadata correctly specifies the primary keys or foreign keys
for a set of tables, you can compare the imported metadata to the metadata in the repository.
In the Comparison Results window, select the icon for the appropriate comparison result.
Then, click Redo the comparison in the toolbar. In the Differences window, accept all
changes, or select the primary key table and all related foreign key tables together and apply
changes to them.

After you import the metadata for a table, you can view the metadata for any keys by
displaying the properties window for the table and clicking the Keys tab.

Deleting an Invalid Change Analysis Result
When you perform change analysis on imported metadata, it is possible to import the wrong
metadata or compare the imported metadata to the wrong current metadata. If this happens,
the comparison result metadata in the Comparison Result tree are not valid, as well as the
data sets for this comparison in the comparison result library.

If you are not working under change management, delete the invalid comparison result
metadata.

If you are working under change management, perform the following steps to delete an
invalid change analysis result:

1. Check in the invalid comparison result metadata. From the Checkouts tree, right-click
the Project repository icon and select Check In Repository. This makes the
comparison result metadata available to others, such as the administrator in the next
step.

2. In SAS Data Integration Studio, have an administrator open the repository that contains
the invalid comparison result metadata.

3. Have the administrator delete the invalid comparison result from the Comparison
Results tree. This deletes both the metadata and the data sets for a comparison result.

Exporting Metadata with a SAS Metadata Bridge

Problem
You want to export metadata from SAS Data Integration Studio in a format that is supported
by a SAS Metadata Bridge. For example, you can export metadata for use in a third-party
data modeling application. Some SAS solutions rely on this method.

Note: This method does not export the metadata to a SAS Package. For information about
SAS Packages, see “Working with SAS Package Metadata” on page 46.

Solution
Use the Metadata Export wizard to export the metadata. Later, you can import the metadata
in a third-party application or in SAS Data Integration Studio. It is assumed that you have

60 Chapter 3 • Importing, Exporting, and Copying Metadata

prepared for this task as described in “Preparing to Import or Export SAS Package
Metadata” on page 47.

Perform the following tasks:

• “Document the Metadata That Will Be Exported (optional) ” on page 61

• “Export Selected Metadata ” on page 61

Tasks

Document the Metadata That Will Be Exported (optional)
Metadata export and import tasks are easier to manage if you create a document that
describes the metadata to be exported, the metadata that should be imported, and the main
metadata associations that must be reestablished in the target environment. Otherwise, you
might have to guess about these issues when you are using the import and export wizards.

Export Selected Metadata
Perform the following steps to export metadata from SAS Data Integration Studio in a
format that is supported by a SAS Metadata Bridge.

1. Select File ð Export ð Metadata in the menu bar of the desktop to access the Select
an export format page of the Metadata Export Wizard.

2. From the Metadata Import Wizard, select the format of the file that you want to import.
For example, a sample job could use the commonly used OMG CWM (Common
Warehouse Metamodel) format. Click Next to access the Select the tables for export
page.

3. Navigate through the folder structure on Select the tables for export page until you
locate the tables that you need to export. Then, select the tables in the Available field
and move them to the Selected field. The following display shows the completed Select
the tables for export page for a sample job.

Tasks 61

Display 3.6 Select the Tables for Export Page

Click Next to access the Specify the file to export the metadata to page.

4. Specify a path and name for the export file. The path and name specify the destination
for the exported metadata. Click Next to access the Specify Meta Integration Options
page.

5. Review the information on the Meta Integration Options page. Typically, you accept
the default values.

Note: The Meta Integration Options page enables you to specify how the wizard
imports various kinds of metadata in the source file. To see a description of each
option, select the option in the Name field, and a description of that option appears
in the pane at the bottom of the page. Typically, you can accept the defaults on this
page.

6. Click Next to access the Finish page.

7. Review the format and path information for the metadata export. Then, click Finish to
complete the export process.

62 Chapter 3 • Importing, Exporting, and Copying Metadata

Chapter 4
Working with Tables

About Tables . 64

Registering Existing Tables with the Register Tables Wizard 65
Problem . 65
Solution . 65
Tasks . 65

Registering New Tables with the New Table Wizard . 66
Problem . 66
Solution . 66
Tasks . 66

Viewing or Updating Table Metadata . 68
Problem . 68
Solution . 68

Using a Physical Table to Update Table Metadata . 69
Problem . 69
Solution . 69
Tasks . 69

Specifying Options for Tables . 70
Problem . 70
Solution . 70
Tasks . 70

Supporting Case and Special Characters in Table and Column Names 72
Overview . 72
About Case and Special Characters in SAS Names . 73
About Case and Special Characters in DBMS Names . 74
Set Default Name Options for New Tables . 76
Set Name Options in the Register Tables Wizard . 76
Set Name Options for Registered Tables . 76

Maintaining Column Metadata . 77
Problem . 77
Solution . 77
Tasks . 77

Maintaining Keys . 82
Problem . 82
Solution . 82
Tasks . 83

Maintaining Indexes . 87
Problem . 87

63

Solution . 87
Tasks . 87

Browsing Table Data . 89
Problem . 89
Solution . 89
Tasks . 89

Editing SAS Table Data . 92
Problem . 92
Solution . 92
Tasks . 92

Using the View Data Window to Create a SAS Table . 95
Problem . 95
Solution . 95
Tasks . 95

Specifying Browse and Edit Options for Tables and External Files 96
Problem . 96
Solution . 96
Tasks . 96

About Tables
Tables are the inputs and outputs of most SAS Data Integration Studio jobs. The tables can
be SAS tables or tables created by the database management systems that are supported by
SAS Access software.

The most common tasks for data tables are listed in the following table.

Table 4.1 Common Table Tasks

Task Action

Register a table (add metadata about the
table's physical location, columns, and
other attributes).

For more information, see “Registering Existing Tables
with the Register Tables Wizard” on page 65 and
“Registering New Tables with the New Table Wizard”
on page 66.

Specify a registered table as a source or
a target in a job.

Select the table in a tree. Then, drag it to the Job Editor
window for the job and connect it to an appropriate
input or output port. For more information, see
“Creating a Process Flow for a Job” on page 124.

View the data or metadata for a
registered table.

For more information, see “Browsing Table Data” on
page 89 and “Viewing or Updating Table Metadata”
on page 68.

64 Chapter 4 • Working with Tables

Registering Existing Tables with the Register
Tables Wizard

Problem
You want to create a job that includes one or more tables that exist in physical storage, but
the tables are not registered in a metadata repository.

Solution
Use the Register Tables wizard to register the tables. Later, you can drag and drop this
metadata into a process flow. When the process flow is executed, SAS Data Integration
Studio uses the metadata for the table to access the physical instance of that table.

The first page of the wizard prompts you to select a library that contains the tables to be
registered. (Typically, this library has been registered ahead of time.) SAS Data Integration
Studio must be able to access this library. This library can point to a location that is remote
to the current default workspace server, provided that the library is on a system that has an
available SAS/CONNECT definition so that remote access can be implemented to that
server. This allows for registering tables on systems that do not have a workspace server
component.

Tasks

Register a Table with the Register Tables Wizard
Perform the following steps to register one or more tables that exist in physical storage:

1. Display the Register Tables wizard in one of the following ways:

• Right-click a folder in the Folders tree where metadata for the table should be saved,
and then select Register Tables from the pop-up menu.

• Select File ð Register Tables.

• Right-click a library and select Register Tables. Note that the procedure for
registering a table in the previous two options begins with a page that asks you to
"Select the type of tables that you want to import information about". This page is
skipped when you register a table through a library.

2. When the Register Tables wizard opens, only those data formats that are licensed for
your site are available for use. Select the data format of the tables that you want to
register.

3. Click Next. The wizard tries to open a connection to the default SAS Application
Server. If there is a valid connection to this server, you might be prompted for a user
name and a password. After you have provided that information, you will be taken
directly to the Select a Library window.

4. Select the library that contains the tables that you want to register, and review the
settings that are displayed in the Library Details section of the window. Sample
settings for a SAS table are shown in the following display.

Tasks 65

Display 4.1 Sample Library Settings

You can handle case-sensitive and special characters in tables and column names by
selecting the respective check box.

5. Click Next to access the Define Tables and Select Folder Location page. Select one or
more tables to register. Select a folder location, if needed.

6. Click Next to access the "The following metadata will be created" page. Review the
metadata that is created. When you are satisfied that the metadata is correct, click
Finish to save the data and close the wizard.

Registering New Tables with the New Table Wizard

Problem
You want to create a job that includes a table that does not yet exist. This new table might
hold the final results of the job, or it might serve as the input to a transformation that
continues the job.

Solution
Use The New Table wizard to register the new table. Later, you can drag and drop this
metadata onto the target position in a process flow. When the process flow is executed,
SAS Data Integration Studio uses the metadata for the target table to create a physical
instance of that table.

The physical storage page of the wizard prompts you to select a library that contains the
table to be registered. (Typically, this library has been registered ahead of time.)

Tasks

Register a New Table with the New Table Wizard
Perform the following steps to register a table that does not exist:

66 Chapter 4 • Working with Tables

1. Display the New Tables wizard in one of the following ways:

• Right-click the folder in the Folders tree where metadata for the new table should
be saved. Then select New ð Table.

• Select File ð New ð Table.

• Select New ð Table on the SAS Data Integration Studio toolbar.

The New Table wizard opens.

2. Enter a name and description for the table that you want to register. Note that the
metadata object might or might not have the same name as the corresponding physical
table. You specify a name for the physical table in a later window in this wizard.

3. Verify that the folder in the Location field is the folder where the metadata for the table
should be stored. If not, click Browse to select the correct folder.

4. Click Next to access the Table Storage Information page. Enter appropriate values in
the following fields:

• DBMS

• Library

• Name (must follow the rules for table names in the format that you select in the
DBMS field. For example, if SAS is the selected DBMS, the name must follow the
rules for SAS data sets. If you select another DBMS, the name must follow the rules
for tables in that DBMS. For a SAS table or a table in a database management
system, you can enable the use of mixed-case names or special characters in names.)

• Schema (if required by DBMS type)

Use the Table Storage Information page to specify the format and location of the table
that you are registering. You also specify the database management system that is used
to create the target, the library where the target is to be stored, and a valid name for the
target. You can specify new libraries or edit the metadata definitions of existing libraries
by using the New and Edit buttons. You can use the Table Options button to specify
options for SAS tables and tables in a DBMS. The following display shows these
settings for a sample table.

Display 4.2 Sample Table Storage Settings

You can handle case-sensitive and special characters in tables and column names by
selecting the respective check box.

Tasks 67

5. Click Next to access the Select Columns page. Use the Select Columns page to import
column metadata from existing tables that are registered for use in SAS Data Integration
Studio.

6. Drill down in the Available Columns field to find the columns that you need for the
target table. Then, move the selected columns to the Selected Columns field.

7. Click Next to access the Change Columns/Indexes page. Use this window to accept or
modify any column metadata that you selected in the Select Columns page. You can
add new columns or modify existing columns in various ways. (For details, click the
Help button for the window.)

8. Click Next when you are finished reviewing and modifying the column metadata. If
you change the default order of the column metadata, you are prompted to save the new
order.

9. Click Next to access the page labeled as The following metadata is created. Review
the created metadata. When you are satisfied that the metadata is correct, click
Finish to save the data and close the wizard.

Viewing or Updating Table Metadata

Problem
You want to view or update the metadata for a table that you have registered in SAS Data
Integration Studio.

Solution
You can access the properties window for the table and change the settings on the
appropriate tab of the window. The following tabs are available on properties windows for
tables:

• General

• Columns

• Indexes

• Keys

• Parameters

• Physical Storage

• Notes

• Extended Attributes

• Authorization

Use the properties window for a table to view or update the metadata for its columns, keys,
indexes, and other attributes. You can right-click a table in any of the trees on the SAS
Data Integration Studio desktop or in the Job Editor window. Then, click Properties to
access its properties window.

Note that updates that you make to the metadata about the table affect all other users of
that table's metadata. However, the physical table is not actually updated until you run a
job process that actually updates that table. In the case of existing physical tables, in order

68 Chapter 4 • Working with Tables

to make the physical table match the metadata, it is necessary to drop and recreate the table.
These changes can have the following consequences for any jobs that use the table:

• Changes, additions, or deletions to column metadata are reflected in all of the jobs that
include the table.

• Changes to column metadata often affect mappings. Therefore, you might need to
remap your columns.

• Changes to keys, indexes, physical storage options, and parameters affect the physical
external file and are reflected in any job that the includes the table.

You can use the impact analysis and reverse impact tools in SAS Data Integration Studio
to estimate the impact of these updates on your existing jobs.

Using a Physical Table to Update Table Metadata

Problem
You want to ensure that the metadata for a table matches the physical table.

Solution
You can use the update table metadata feature. This feature compares the columns, keys
and indexes in a physical table to the columns, keys, and indexes that are defined in the
metadata for that table. If column, key or index metadata does not match the columns, keys,
or indexes in the physical table, the metadata is updated to match the physical table.

For existing tables, the update table metadata feature adds new columns, keys and indexes,
removes deleted columns, keys, and indexes, and records changes to all of the column, key,
and index attributes. When you select and run this feature against one or more tables
simultaneously, the update log lists which tables have been successfully updated and which
have failed.

The update table metadata feature uses the following resources:

• the current metadata server and the SAS Application Server to read the physical table

• the current metadata server to update the metadata to match the physical table

Tasks

Run Update Table Metadata
Perform the following steps to run the update table metadata feature:

1. Select one or more tables from a SAS Data Integration Studio tree. Then, right-click
one of the tables and select Update Metadata in the pop-up menu. You might be
prompted to supply a user name and password for the relevant servers.

2. When the update is finished, you can choose to view the resulting SAS log.

Tasks 69

Specifying Options for Tables

Problem
You want to set options for tables that are used in SAS Data Integration Studio jobs, such
as DBMS name options; library, name, and schema options; and compression scheme and
password protection options.

Solution
You can set global options for tables on the General tab of the Options menu. The
Options menu is available on the Tools menu on the SAS Data Integration Studio menu
bar. You can set local options on the tabs that are available on the properties window for
each table.

Tasks

Set Global Options for Tables
Table 4.2 Global Table Options

Option Name Description

Enable case-sensitive DBMS object
names

Specifies whether SAS Data Integration Studio
generates code when registering and using the table in
jobs that supports case-sensitive table and column
names by default. If you do not select the check box, no
case-sensitive support is provided. If you select the
check box, support is provided.

Enable special characters within
DBMS object names

Specifies whether SAS Data Integration Studio
generates code when registering and using the table in
jobs that supports special characters in table and names
by default. If you select the check box, support is
provided by default. When you select this check box,
the Enable case-sensitive DBMS object names check
box is also automatically selected.

The global settings apply to any new table metadata object, unless the settings are
overridden by a local setting. For more information about DBMS object names, see
“Supporting Case and Special Characters in Table and Column Names” on page 72.

Set Local Options for Tables
You can set local options that apply to individual tables. These local options override global
options for the selected table, but they do not affect any other tables. For example, you can
set local DBMS name options on the Physical Storage tab of the properties window for a
table. These DBMS name options are listed in the following table.

70 Chapter 4 • Working with Tables

Table 4.3 Local Table Options on the Physical Storage Tab

Option Name Description

DBMS Specifies the database management system (DBMS) where the table
is stored. To select a DBMS from a list, click the down arrow. The
DBMSs that are valid in the current context are listed.

Library Specifies a library that you can use to access the table. To select a
library, click the selection arrow. To create a new library, click
New, which opens the New Library wizard. To edit the properties of
the existing library, click Edit, which opens the properties window
for the data library.

Name Specifies the name of the table. The name must follow the rules for
table names in the DBMS that is selected in the DBMS field. For
example, if SAS is the selected DBMS, the name must follow the
rules for SAS data sets. If you select another DBMS, the name must
follow the rules for tables in that DBMS. If the table is used for
iterative or parallel processing, the name might contain a variable.
For example, suppose you have the variable &myvar. You can name
the table &myvar. You can also imbed the variable in the name (for
example, September_&myvar). This usage ensures that parameters
that are set for the iteration are recognized and that the table is
included when the iterative process works through the list of tables
contained in the control table.

Enable case-sensitive
DBMS object names

Specifies whether SAS Data Integration Studio generates code that
supports case-sensitive table and column names for the current table.
If the check box is deselected, case sensitivity is not supported. If
the check box is selected, case sensitivity is supported. This option
overrides the global option with the same name.

Enable special characters
within DBMS object
names

Specifies whether SAS Data Integration Studio software generates
code that supports special characters in table and names by default.
If you select the check box, support is provided by default. When
you select this check box, the Enable case-sensitive DBMS object
names check box is also automatically selected. This option
overrides the global option with the same name.

Create as view Select this option to specify the current table as a view. Deselect this
option to specify the current table as a physical table. In the context
of a SAS Data Integration Studio job, if Create as view is selected
for an output table, and the transformation that creates the table can
create views, then the table is created as a view. Some
transformations do not support views and might ignore the setting.

Table Options Displays the Table Options window, where you can specify a
compression scheme, password protection, or other options for the
current table.

See “Supporting Case and Special Characters in Table and Column Names” on page
72 for more information about DBMS object names.

You can set additional SAS table options in the Table Options window. To access this
window, click Table Options on the Physical Storage tab of the properties window for a
table. These options are covered in following table.

Tasks 71

Table 4.4 Local Table Options in the Table Options Window

Option name Description

Compress Specifies the kind of compression used, if any, for a SAS data set.
(You cannot compress SAS data views because they contain no
data.) Compression reduces storage requirements, but it increases
the amount of CPU time that is required to process the file. Although
compression affects performance by increasing the amount of CPU
time that is required to process the file, it significantly reduces
storage requirements. In particular, you want to enable compression
for files such as Web logs that have columns with large widths that
are sparsely filled. Select one of the following:

• NO (default): The SAS data set is not compressed.

• YES: The SAS data set is compressed using Run Length
Encoding (RLE). Use this method for character data.

• BINARY: The SAS data set is compressed by using Ross Data
Compression (RDC). Use this method for medium to large
(several hundred bytes or larger) blocks of binary data (numeric
variables).

Encrypt Specifies whether a SAS data set is encrypted (YES) or not encrypted
(NO). You cannot encrypt SAS data views because they contain no
data.

Additional options Specifies options for SAS data sets or views. Separate each option
with a blank. The field is restricted to a maximum of 200 characters.
You can specify a password for the table in this field. Use table option
syntax, such as read=readpw write=writepw. When using
SAS 9.2 as your workspace or batch server, passwords can be
encoded using SAS 9.2 encoding.

Table 4.5 DBMS Table Options in the Table Options Window

Option Name Description

Table Options Specifies the appropriate SAS/ACCESS table
options for the specific DBMS. Separate each
option with a space. The field is restricted to a
maximum of 200 characters.

Supporting Case and Special Characters in Table
and Column Names

Overview
The following topics describe how to support case and special characters in table and
column names:

72 Chapter 4 • Working with Tables

• “About Case and Special Characters in SAS Names” on page 73

• “About Case and Special Characters in DBMS Names” on page 74

• “Set Default Name Options for New Tables” on page 76

• “Set Name Options in the Register Tables Wizard” on page 76

• “Set Name Options for Registered Tables” on page 76

About Case and Special Characters in SAS Names

Rules for SAS Names
By default, the names for SAS tables and columns must follow these rules:

• Blanks cannot appear in SAS names.

• The first character must be a letter (such as A through Z) or an underscore (_).

• Subsequent characters can be letters, numeric digits (such as 0 through 9), or
underscores.

• You can use uppercase or lowercase letters. SAS processes names as uppercase,
regardless of how you enter them.

• Special characters are not allowed, except for the underscore. In filerefs you can use
only the dollar sign ($), pound sign (#), and at sign (@).

The following SAS language elements have a maximum length of eight characters:

• librefs and filerefs

• SAS engine names and passwords

• names of SAS/ACCESS access descriptors and view descriptors (to maintain
compatibility with SAS 6 names)

• variable names in SAS/ACCESS access descriptors and view descriptors

Beginning in SAS 7 software, SAS naming conventions have been enhanced to allow longer
names for SAS data sets and SAS variables. The conventions also allow case-sensitive or
mixed case names for SAS data sets and variables.

The following SAS language elements can now be up to 32 characters in length:

• members of SAS libraries, including SAS data sets, data views, catalogs, catalog
entries, and indexes

• variables in a SAS data set macros and macro variables
For a complete description of the rules for SAS names, see the topic, "Names in the SAS
Language" in SAS Language Reference: Concepts.

Case and Special Characters in SAS Names
By default, the names for SAS tables and columns must follow the rules for SAS names.
However, SAS Data Integration Studio supports case-sensitive names for tables, columns,
and special characters in column names if you specify the appropriate table options, as
described in “Set Name Options for Registered Tables” on page 76 or “Set Default Name
Options for New Tables” on page 76. Double-byte character set (DBCS) column names
are supported in this way, for example.

The DBMS name options apply to all SAS and DBMS table types, with a few exceptions
for SAS tables. The following special rules apply to SAS tables:

• Special characters are not supported in SAS table names.

About Case and Special Characters in SAS Names 73

• Leading blanks are not supported for SAS column names and are removed if you used
them.

• Neither the External File wizards nor SAS/SHARE libraries and tables support case-
sensitive names for SAS tables or special characters in column names. When you use
these components, the names for SAS tables and columns must follow the standard
rules for SAS names.

About Case and Special Characters in DBMS Names

Overview
You can access tables in a database management system (DBMS), such as Oracle or DB2,
through a special SAS library that is called a database library. SAS Data Integration Studio
cannot access a DBMS table with case-sensitive names or with special characters in names
unless the appropriate DBMS name options are specified in both of these places:

• in the metadata for the database library that is used to access the table

• in the metadata for the table itself
For more information, see “Enable Name Options for a New Database Library” on page
74 or “Enable Name Options for an Existing Database Library” on page 75. Use the
following methods to avoid or fix problems with case-sensitive names or with special
characters in names in DBMS tables.

DBMSs for Which Case and Special Characters are Supported
SAS Data Integration Studio generates SAS/ACCESS LIBNAME statements to access
tables and columns that are stored in DBMSs. You should check your database to see
whether it supports case-sensitive names and names with special characters.

Verify Case and Special Character Handling Options for Database
Libraries
Perform the following steps to verify that the appropriate DBMS name options have been
set for all database libraries where you want to support case and special character handling
for tables:

1. Select the library that you want to verify. To easily locate libraries, you can expand the
Libraries folder in the Inventory tree.

2. Right-click a database library and select Display LIBNAME from the pop-up menu.
A SAS LIBNAME statement is generated for the selected library. In the LIBNAME
statement, verify that both the Preserve DBMS table names option is set to YES and
the Preserve column names as in the DBMS option have been set correctly.

3. If these options are not set correctly, update the metadata for the library, as described
in “Enable Name Options for an Existing Database Library” on page 75.

Enable Name Options for a New Database Library
The following task describes how to specify name options for a new relational database
library such as Oracle, Sybase, and Teradata. These name options ensure that table and
column names are supported as they are in the DBMS. This task is typically done by an
administrator. It is assumed that the appropriate database server has been installed and
registered, and the appropriate database schema has been registered. For more information
about database servers and schemas, see the chapters about common data sources in the
SAS Intelligence Platform: Data Administration Guide. Perform the following steps to
specify name options:

74 Chapter 4 • Working with Tables

1. From the desktop, select New ð Library. The New Library Wizard opens.

2. In the first window of the New Library wizard, select the appropriate kind of database
library and click Next.

3. Enter a name for the library and click Next.

4. Enter a SAS LIBNAME for the library, and then click Advanced Options. The
Advanced Options window displays.

5. In the Advanced Options window, click the Output tab. In the Preserve column names
as in the DBMS field, select Yes.

6. Click OK and enter the rest of the metadata as prompted by the wizard.

Enable Name Options for an Existing Database Library
Perform the following steps to update the existing metadata for a database library in order
to support table and column names as they exist in the DBMS:

1. In SAS Data Integration Studio, click the Inventory tab to display the Inventory tree.

2. In the Inventory tree, expand the folders until the Libraries folder is displayed.

3. Select the Libraries folder and then select the library for which metadata must be
updated.

4. Select File ð Properties from the menu bar. The properties window for the library
displays.

5. In the properties window, click the Options tab.

6. On the Options tab, click Advanced Options. The Advanced Options window
displays.

7. In the Advanced Options window, click the Output tab. In the Preserve column names
as in the DBMS field, select Yes.

8. In the Advanced Options window, click the Input/Output tab. In the Preserve DBMS
table names field, select Yes.

9. Click OK twice to save your changes.

Verify DBMS Name Options in Table Metadata
Perform the following steps to verify that the appropriate DBMS name options have been
set for DBMS tables that are used in SAS Data Integration Studio jobs:

1. From the SAS Data Integration Studio desktop, select the Inventory tree.

2. In the Inventory tree, open the Jobs folder.

3. Right-click a job that contains DBMS tables and select Open from the pop-up menu.
The job opens in the Job Editor window.

4. In the process flow diagram for the job, right-click a DBMS table and select
Properties from the pop-up menu.

5. In the properties window, click the Physical Storage tab.

6. Verify that the Enable case-sensitive DBMS object names option and the Enable
special characters within DBMS object names option are selected.

7. If these options are not set correctly, update the metadata for the table, as described in
“Set Name Options for Registered Tables” on page 76.

About Case and Special Characters in DBMS Names 75

Set Default Name Options for New Tables
You can set default name options for all table metadata that is entered with the Register
Tables wizard or the New Tables wizard in SAS Data Integration Studio. These defaults
apply to tables in SAS format or in DBMS format.

Defaults for table and column names can make it easier for users to enter the correct
metadata for tables. Administrators still have to set name options on database libraries, and
users should verify that the appropriate name options are selected for a given table.

Perform the following steps to set default name options for all table metadata that is entered
with the Register Tables wizard or the New Table wizard in SAS Data Integration Studio:

1. Start SAS Data Integration Studio.

2. Open the connection profile that specifies the metadata server where the tables are
registered.

3. On the SAS Data Integration Studio desktop, select Tools ð Options from the menu
bar. The Options window is displayed.

4. In the Options window, select the General tab.

5. On the General tab, select Enable case-sensitive DBMS object names to have the
Register Tables wizard and the New Table wizard support case-sensitive table and
column names by default.

6. On the General tab, select Enable special characters within DBMS object names
to have the Register Tables wizard and the New Table wizard support special characters
in table and column names by default.

7. Click OK to save any changes.

Set Name Options in the Register Tables Wizard
The second page in the Register Tables wizard for a DBMS table enables you to select the
library that contains the table or tables for which you want to generate metadata. In the first
window, check the boxes labeled Enable case-sensitive DBMS object names and Enable
special characters within DBMS object names.

Set Name Options for Registered Tables
Perform the following steps to enable name options for tables that have been registered on
a metadata server. These steps apply to tables in SAS format or in DBMS format.

1. From the SAS Data Integration Studio desktop, display the Inventory tree or another
tree view.

2. Open the Tables folder.

3. Select the desired table and then select File ð Properties from the menu bar. The
properties window for the table displays.

4. In the properties window, click the Physical Storage tab.

5. On the Physical Storage tab, select the check box to enable the appropriate name option
for the current table. Select Enable case-sensitive DBMS object names to support
case-sensitive table and column names. Select Enable special characters within
DBMS object names to support special characters in table and column names.

76 Chapter 4 • Working with Tables

6. Click OK to save your changes.

Maintaining Column Metadata

Problem
You want to add or modify column metadata for registered tables, temporary work tables,
and external files.

Solution
You can use the Columns tab to maintain the metadata for columns in a table or external
file. You can perform the following tasks on the metadata:

• “Add Metadata for a Column” on page 77

• “Modify Metadata for a Column” on page 78

• “Add and Maintain Notes and Documents for a Column” on page 79

• “Perform Additional Operations on Column Metadata” on page 80

Tasks

Add Metadata for a Column
Perform the following steps to add a new column to the metadata for the current table:

1. Open the properties window for the table or external file, and click the Columns tab.
The metadata for the current columns, if any, appears in an ordered list.

2. To add metadata for a new column to the end of the current list of columns, click the
New column icon in the toolbar at the top of the Columns tab. Alternatively, you can
right-click in a blank area of the Columns tab and select New column from the pop-
up menu.

To insert metadata for a new column after the metadata for a current column, right-
click the metadata for the current column, and then select New column from the pop-
up menu.

After you perform these actions, a row of default metadata that describes the new
column displays. The name of the column, Untitledn, is selected and ready for editing.
The other attributes of the column have the following default values:

• Description: Blank

• Type: Character

• Length: 8

• Informat: (None)

• Format: (None)

• Is Nullable: Yes

• Summary Role: (None)

• Sort Order: (None)

Tasks 77

3. Change the name of the column to give it a meaningful name.

4. Change the values of other attributes for the column as desired. For more information,
see “Modify Metadata for a Column” on page 78.

5. Click OK to save the new column metadata.

Note: You can add columns only when the columns table in the Columns tab is sorted on
the # column.

Modify Metadata for a Column
To modify the metadata for a column in the current table, open the properties window for
the table or external file, and click the Columns tab. Select the attribute that you want to
change, make the change, and then click OK. The following table explains how to change
each type of attribute.

Table 4.6 Column Metadata Modifications

Attribute Description Instructions

Name The SASColumnName of the
column. This matches the
physical name.

Perform the following steps to enter a name:

1. Double-click the current name to make it
editable.

2. Enter a new name of 32 characters or fewer.

3. Press the ENTER key.

Description This can be the label of the
column, and shows up as the
label in the generated code.

Perform the following steps to enter a description:

1. Double-click in the Description field.

2. Edit the description, using 200 characters or
fewer.

3. Press the ENTER key.

Type The type can be either
numeric or character.

Perform the following steps to enter the data type:

1. Double-click the current value to display the
drop-down list arrow.

2. Click the arrow to make a list of valid choices
appear.

3. Select a value from the list.

Length This is the length of the
column.

Perform the following steps to enter the column
length:

1. Double-click the current length.

2. Enter a new length. A numeric column can be
from 3 to 8 bytes long (2 to 8 in the z/OS
operating environment). A character column
can be 32,767 characters long.

3. Press the ENTER key.

78 Chapter 4 • Working with Tables

Attribute Description Instructions

Informat This specifies a pattern or set
of instructions that SAS uses
to determine how data values
in an input file should be
interpreted.

Perform the following steps to enter an informat:

1. Double-click the current value to display the
drop-down list arrow.

2. Click the arrow to make a list of valid choices
appear and then select a value from the list, or
type in a new value and press ENTER.

Format This specifies a pattern or set
of instructions that SAS uses
to determine how to display
information.

Perform the same steps as for informat.

Is Nullable This is used to determine
whether the integrity
constraint IsNullable is set
for a specific column. This
determines whether a column
might have a value of null.

Perform the same steps as for type.

Summary
Role

This is used for information
purposes only.

Perform the same steps as for type.

Sort Order This is used for information
purposes only.

Perform the same steps as for type.

You can also edit a value by tabbing to it and pressing the F2 key or any alphanumeric key.
For information about the implications of modifying metadata for a column, see the note
at the end of "Delete Metadata for a Column" in “Perform Additional Operations on Column
Metadata” on page 80.

Add and Maintain Notes and Documents for a Column
The Columns tab enables you to attach text notes, and documents produced by word
processors, to the metadata for a table column. Such a note or document usually contains
information about the table column or the values that are stored in that column.

Note: If a column currently has notes or documents associated with it, you can see a notes
icon to the left of the column name.

To add a note or document to a column, modify an existing note or document, or remove
an existing note or document, you can use the Notes window. Perform the following steps
to display this window:

1. Right-click the column that you want to work with and click Properties in the pop-up
menu. Then, click Notes to access the Notes tab for the selected column.

2. Perform one or more of the following tasks in the Notes group box:

• Enter the text in the Quick Note field. Quick notes are private to this column, while
the other type of notes are shared notes.

• Click New to create a new note. Enter a title in the Assigned field and the text of
the note in the Note text field. Use the editing and formatting tools at the top of the
window if you need them.

Tasks 79

• Click the name of an existing note in the Assigned field to review or update the
content in the Note text field.

• Click Delete to delete the note.

• Click Attach to access the Select Additional Notes window and attach an additional
note to the column.

3. Perform one or more of the following steps in the Documents group box:

• Click New to attach a new document to the note. Enter a title in the Name field.
Then, enter a path to the document in the Path field.

• Click the name of an existing document in the Name field to review or update the
path in the Path field.

• Click Delete to delete the document.

• Click Attach to access the Select Additional Documents window and attach an
additional document to the column.

4. Click OK to save the contents of the note.

Perform Additional Operations on Column Metadata
The following table describes some additional operations you can perform on metadata in
the Columns tab.

Table 4.7 Additional Operations on Column Metadata

Task Action

Delete Metadata for a Column Perform the following steps to delete the metadata for
a column in the current table:

1. Select a column.

2. Click Delete.

Note: When you modify or delete the metadata for a
column in a table and that table is used in a SAS Data
Integration Studio job, you might also have to make the
same modifications to other tables in the job. For
example, if you change the data type of a column and
that table is used as a source in a job, then you need to
change the data type of that column in the target table
and in the temporary work tables in the transformations
in that job.

Changes to column metadata in SAS Data Integration
Studio do not appear in the physical table automatically.
You must select the Replace in the Load Style field
and the Entire table in the Replace field on the Load
Technique tab of the Table Loader transformation that
loads the current table.

Column level impact analysis can help you gather
information about deleting metadata for a column. To
perform impact analysis, right-click on a table and
select Analyze. Note that you can also obtain
information about reverse impact analysis on another
tab in the same window.

80 Chapter 4 • Working with Tables

Task Action

Import Metadata for a Column Perform the following steps to import column metadata
that has been added to the metadata server that is
specified in your current connection profile:

1. Click Import columns to access the Import
Columns window.

2. Locate the table with columns that you want to
import. Select one or more columns from the
Available field in the Import Columns window.

3. Select the right arrow to move the selected columns
into the Selected field.

4. Reorder the columns in the Selected Columns field
by selecting columns and clicking the Moves
selected items up or Moves selected items down
arrows.

5. Click OK to import the columns into the table.

Be aware of the following implications if you add or
import metadata for a column:

• You might need to propagate that column metadata
through the job or jobs that include the current
table.

• Changes to column metadata in SAS Data
Integration Studio do not appear in the physical
table automatically. You must select the Replace
in the Load Style field and the Entire table in the
Replace field in the Load Technique tab of the
Table Loader transformation that loads the current
table.

Maintain Indexes Indexes are registered automatically when using
Register tables to register metadata about existing
tables. In SAS 9.2, indexes are imported correctly when
import/export is used. Update table metadata also
updates indexes. See “Maintaining Indexes” on page
87.

Maintain Keys Primary, foreign, and unique keys are registered
automatically when using Register tables to register
metadata about existing tables. In SAS 9.2, keys are
imported correctly when import/export is used. Update
table metadata also updates them, although currently it
doesn't handle foreign key updates.

It is important when working with foreign keys to
include ALL of the tables that are related in a single
registration. Otherwise, foreign key relationships
cannot be maintained. See “Maintaining Keys” on page
82.

Propagate Column Metadata from One
Table to Other Tables in a Job

See “Managing the Scope of Column Changes in Jobs”
on page 158.

Tasks 81

Task Action

Reorder Columns and Rows You can rearrange the columns in a table (without
sorting them) by dragging a column to a new location.
You can reorder rows by (1) using the arrow buttons at
the top of the window, or (2) dragging a column to a
new location by dragging the column-number cell.

Restore the Order of Columns Click the column number heading to restore all of the
rows to their original order.

Save Reordered Columns Some windows allow you to change the default order
of columns. Then, you can save that new order in the
metadata for the current table or file. If you can save
reordered columns before you exit the current window,
SAS Data Integration Studio displays a dialog box that
asks if you want to save the new order.

Sort Columns You can sort the columns in a table based on the value
of any column attribute (such as Name or Description)
in either ascending or descending order. For example,
you can sort the columns in ascending order by name
by clicking the Name heading. To sort the columns in
descending order by name, you can click the same
heading a second time.

View or update extended attributes for
columns

From the Columns tab, select the desired column, then
click the Properties icon in the toolbar. In the properties
window, click the Extended Attributes tab. Use this
tab to view or update extended attributes.

Maintaining Keys

Problem
You want to view, add, or update keys for a table.

Solution
You can use the Keys tab in the properties window for a table to maintain keys. See
“Understanding Keys in SAS Data Integration Studio” on page 83. Then perform the
following tasks as needed:

• “View Keys” on page 83

• “Add a Primary Key or a Unique Key” on page 85

• “Add a Foreign Key” on page 85

• “Update the Columns in a Key” on page 86

• “Delete or Rename a Key” on page 87

82 Chapter 4 • Working with Tables

Tasks

Understanding Keys in SAS Data Integration Studio
SAS Data Integration Studio enables you to manage the following types of keys:

• primary key: a column or combination of columns that uniquely identifies a row in a
table. A table can have only one primary key.

• unique key: one or more columns that can be used to uniquely identify a row in a table.
A table can have one or more unique keys.

• foreign key: a column or combination of columns in one table that references a
corresponding key in another table. A foreign key must have the same data type as the
key that it references.

Primary keys and unique keys are often used in table joins. A foreign key is used to create
and enforce a link between the data in two tables. A link is created between two tables such
that the column or columns that hold a primary key value or a unique key value in one table
are referenced by a column or columns in a second table. The column or set of columns in
the second table is a foreign key.

Note: Some databases, such as Oracle and DB2, support foreign key references to columns
in the same table.

View Keys
To display information about keys that have been specified for a table, access the Keys tab
on the properties window for the table. On the Keys tab, the Keys pane on the left lists all
of the keys that are associated with the current table. Click a key in the list to see information
about it in the panes on the right: the Details pane and the Associated Foreign Key Tables
pane. The following display shows the Keys tab for a table named AUTHOR. A primary
key named AUTHOR.Primary is selected on the left. Information about this key is shown
on the right.

Display 4.3 Keys Tab with a Primary Key

The default name for a primary key is currentTableName.Primary, where
currentTableName is the name of the current table, and Primary is a literal string. For
example, the default name for the primary key in the AUTHORS table is
AUTHOR.Primary.

Tasks 83

The default name for a unique key is currentTableName.UniqueKeyN, where
currentTableName is the name of the current table, UniqueKey is a literal string, and
N is an iteration number added to the end.

When a primary key or a unique key is selected in the Keys pane, then the columns that
are specified for that key are displayed in the Details pane. In the preceding display, the
primary key consists of the personid column in the AUTHOR table.

The Associated Foreign Key Tables pane displays any foreign keys that are associated with
a primary key or unique key that is selected in the Keys pane. The name of the foreign key
and the name of the table that contains the foreign key are displayed. In the preceding
display, the primary key AUTHOR.Primary is referenced by a foreign key in the BOOKS
table.

The following display shows the Keys tab for the BOOKS table, the table that contains the
foreign key that was referenced. The BOOKS table has two keys: a primary key named
BOOKS.Primary and a foreign key named AUTHOR.BOOKS, which is selected on the
left. Information about the foreign key is shown on the right.

Display 4.4 Keys Tab with a Foreign Key Selected

The default name for a foreign key is foreignTableName.currentTableName, where
foreignTableName is the name of the table where the foreign columns were originally
created, and currentTableName is the name of the current table. In the preceding
display, the foreign key is named AUTHOR.BOOKS, because the foreign columns
originate in the AUTHOR table, and the current table is the BOOKS table.

When a foreign key is selected in the Keys pane, the following values are displayed in the
Details pane:

• Foreign Key Column displays the column or combination of columns in the current
table that references the corresponding column or combination of columns in another
table. In the preceding display, the foreign key column is named author, which is the
name of a column in the BOOKS table.

• Length displays the length of the Foreign Key Column.

• Unique Key Column displays the corresponding column or combination of columns
in the other table. In the previous display, the unique key column is named personid.

• Unique Key Table displays the name of the other table: AUTHOR.

84 Chapter 4 • Working with Tables

Add a Primary Key or a Unique Key
In general, to create a primary key or a unique key, you select one or more columns in a
table and specify them as a key. Typically, the creation of keys is carefully planned, so you
know which table and columns to select. Perform the following steps to add a primary key
or a unique key:

1. Access the Keys tab on the properties window for the desired table. For example, you
want to create a primary key for the AUTHORS table.

2. Select New from the toolbar, and select Primary Key or Unique Key. Alternatively,
right-click Primary Key or Unique Key in the Keys pane, and select New. A column
selector window displays.

3. Select one or more columns in the current table that are appropriate for the key that you
want to create. For example, the AUTHOR table has a column named personid, which
uniquely identifies each author in the table. This is a good column to use as the primary
key. The following display shows the selection of the personid column in the AUTHOR
table.

Display 4.5 Selecting a Column for a Primary Key

4. Click OK to save the selected columns in the metadata for a key. The new key is
displayed in the Details pane.

5. Click OK to save the key.

Add a Foreign Key
To create a foreign key, which is a key in one table that references a corresponding key in
another table, first select the other table that has the corresponding key. Then combine key
columns in the current table with the corresponding key columns from the other table, and
specify this combination as a foreign key. Typically, the creation of a foreign key is
carefully planned, so you know which tables and columns to select. Perform the following
steps to add a foreign key:

1. Access the Keys tab on the properties window for the table that requires a foreign key.
For example, if you want to create a foreign key in the BOOKS table that references
the primary key column in the AUTHORS table, then open the properties window for
the BOOKS table.

2. Right-click Foreign Key in the Keys pane, and select New. A table selector window
displays.

3. Select the other table with the column or columns that you want to reference in the
current table. In the current example, select the AUTHORS table. Then, click OK to
save your selection. The Select Partner Key window displays. A default partner column
in the selected table is displayed in the Partner Key Columns field.

Tasks 85

Display 4.6 Foreign Key Column Not Yet Selected

4. If the default partner key column is not appropriate, use the Key selector to select a
different key in the other table. Otherwise, accept the default. For example, in the
preceding display, the default partner key column is the primary key column in the
AUTHORS table: personid. You want to reference this column in the BOOKS table.

5. Use the selection arrow in the Foreign Key Columns field to select a column whose
values should be linked to the partner key column. For example, the BOOKS table has
a column named author whose values match the values in the personid column. The
following display shows the combination of the personid column and the author
column.

Display 4.7 Foreign Key Column Selected

6. Click OK to save the selected columns in the metadata for the foreign key. The new
key is displayed in the Details pane.

7. Click OK to save the key.

Update the Columns in a Key
To add, delete, or change the order of columns in a primary key or unique key, select the
key in the Keys pane, and then use the controls in the Details pane, such as the Add button,
the up and down arrows, and so on. The only change you can make to a foreign key in the
Details pane is to select a different foreign key column.

86 Chapter 4 • Working with Tables

Delete or Rename a Key
To delete or rename a key, right-click the key in the Keys pane and select Delete or
Rename.

Note: You cannot delete a primary key or a unique key that has a foreign key association.
Deleting a key that is referenced by a foreign key breaks the table that contains the
foreign key. You must delete the foreign key from the other table before you are
permitted to delete the primary key or unique key in the current table.

Maintaining Indexes

Problem
You want to create a new index for a table, or to modify or delete an existing index.

Solution
Use the Indexes tab on the properties window for the table to perform the following tasks:

• “Create a New Index” on page 87

• “Delete an Index or a Column” on page 88

• “Rearrange the Columns in an Index” on page 88

Tasks

Create a New Index
Perform the following steps to create a new index in the Indexes tab:

1. Click New. A folder displays in the tree in the Indexes field. This folder represents an
index and has an appropriate default name. The name is selected for editing. You can
rename the index to a more appropriate value by typing over the existing name and
pressing the Enter key.

2. Drag a column name from the Columns field to an index folder in the Indexes field to
add one or more columns to the index.

3. Click OK. The following display depicts a sample index.

Tasks 87

Display 4.8 Sample Completed Index

Note: If you add one column to the index, you create a simple index. If you add two or
more columns, you create a composite index. If you want the index to be unique, select
the index name in the Indexes field, and then select the Unique values check box.
Finally, if you are working with a SAS table and want to ensure that the index contains
no missing values, check the No missing values check box.

Delete an Index or a Column
Perform the following steps to delete an index or to delete a column from an index in the
Indexes window or tab:

1. Select the index or column in the tree in the Indexes field.

2. Click the Delete button, or press the Delete key on your keyboard.

3. Click OK.

Rearrange the Columns in an Index
You can reorder the columns for composite indexes, which contain more than one column.
Perform the following steps to move a column up or down in the list of index columns in
the Indexes window or the Indexes tab:

1. Select the column that you want to move in the tree in the Indexes field.

2. Use the Move columns up in an index and Move columns down in an index buttons
to move the column up or down.

3. After you have arranged the columns as you want them, click OK.

Note: It is generally best to list the column that you plan to search the most often first.

88 Chapter 4 • Working with Tables

Browsing Table Data

Problem
You want to display data in a SAS table or view, in an external file, in a temporary output
table displayed in a process flow diagram, or in a DBMS table or view that is part of a SAS
library for DBMS data stores.

Solution
You can use the browse mode of the View Data window, provided that the table, view, or
external file is registered on the current metadata server and exists in physical storage. You
can browse temporary output tables until the Job Editor window is closed or the current
server session is ended in some other way.

Transformations in a SAS Data Integration Studio job can create temporary output tables.
If these temporary tables have not been deleted, you can also use the browse mode to display
the data that they contain. The transformation must have been executed at least once for
the temporary output tables to exist in physical storage.

The View Data window constructs a SELECT query from the metadata for the selected
table, view, external file, or transformation. For example, if the metadata for Table 1
specifies three columns that are named Col1, Col2, and Col3, then view data generates the
following query for that table:

SELECT Col1, Col2, Col3 FROM Table1

If the metadata for a SAS or DBMS data store does not match the data in the data store, an
error dialog box displays. The dialog box gives you the option of ignoring the column
metadata that has been registered for the data store and using any column definitions in the
data store to format the columns for display.

The View Data window cannot display data for a fixed-width external file unless the SAS
informats in the metadata are appropriate for the columns in the data.

Tasks

Use Browse Mode in the View Data Window
Perform the following steps to browse data in the View Data window:

1. Right-click the metadata object for the table, view, external file, temporary output, or
transformation. Then, select Open from the pop-up menu.

2. Enter the appropriate user ID and password, if you are prompted for them. The
information in the table, view, or external file displays in the View Data window, as
shown in the following display.

Tasks 89

Display 4.9 View Data Window in Browse Mode

The title bar of the View Data window displays the name of the object that is being
viewed and the total number of rows.

Browse Functions
The browse mode of the View Data window contains a group of functions that enable you
to customize how the data in the window is displayed. These functions are controlled by
the view data toolbar, as shown in the following display.

Display 4.10 View Data Browse Toolbar

Perform the tasks that are listed in the following table to customize the data display:

Table 4.8 Browse Functions in the View Data Window

Task Action

Navigate within the data Perform the following steps:

• Enter a row number in the Go to row field and click
Go to row to specify the number of the first row
that is displayed in the table.

• Click Go to first row to navigate to the first row of
data in the View Data window.

• Click Go to last row to navigate to the last row of
data in the View Data window.

90 Chapter 4 • Working with Tables

Task Action

Select a View Data window mode Perform the following steps:

• Click Switch to browse mode to switch to the
browse mode.

• Click Switch to edit mode to switch to the edit
mode.

Note that the Switch to browse mode and Switch to
edit mode buttons are displayed only for SAS tables.

Perform utility functions Perform the following steps:

• Click Print to print the View Data window.

• Click Refresh to refresh the data in the View Data
window.

Copy one or more rows of data into the
copy buffer

Perform the following steps:

• Highlight one or more rows of data. Then, click
Copy to copy the selected text into the copy buffer.

Manipulate the data that is displayed in
View Data window

Perform the following steps:

• Click Show search pane. Then, use the search
toolbar to search for string occurrences in the data
set that is currently displayed in the View Data
window.

• Click Launch sort screen. Then, use the Sort By
Columns tab in the Query Options window to
specify a sort condition on multiple columns. The
sort is performed on the data set that is currently
displayed in the View Data window.

• Click Filter. Then, use the Filter tab in the Query
Options window to specify a filter clause on the
data set that is currently displayed in the View Data
window. This filter clause is specified as an SQL
WHERE clause that is used when the data is
fetched.

• Click Subset columns. Use the Columns tab in the
Query Options window to select a list of columns
that you want to see displayed in the View Data
window. You can create a subset of the data that is
currently displayed in the View Data window by
selecting only some of the available columns in the
Columns field. The redrawn View Data window
includes only the columns that you select here on
the Columns tab.

Tasks 91

Task Action

Determine what is displayed in the
column headings

You can display any combination of column metadata,
physical column names, and descriptions in the column
headings.

• Click Show column name in column header to
display physical column names in the column
headings.

• Click Show column description in column
header to display optional descriptions in the
column headings.

• Click Show column metadata name in column
header to display optional column metadata in the
column headings. This metadata can be entered in
some SAS Business Intelligence applications, such
as the SAS Information Mapping Studio.

Determine whether metadata formats
are applied

Perform the following steps:

• Click Apply metadata formats to toggle between
showing formatted and unformatted data in the
View Data window.

To sort columns and perform related tasks, right-click on a column name and select an
appropriate option from the pop-up menu. To set options for the View Data window, select
File ð Options from the SAS Data Integration Studio menu bar to display the Options
window. Then, click the View Data tab. For information about the available options, see
“Specifying Browse and Edit Options for Tables and External Files” on page 96.

Editing SAS Table Data

Problem
You want to edit SAS table data that is displayed in the View Data window.

Solution
You can use the edit mode of the View Data window to perform simple editing operations
in a SAS table. The editing mode is enabled only on SAS tables that are stored in a Base
SAS engine library and are assigned on the workspace server. If you are working under
change management, you must check out the entity before you can edit it in the View
Data window.

Tasks

Use Edit Mode in the View Data Window
Perform the following steps to edit data for a SAS table in the View Data window:

1. Right-click the metadata object for a SAS table. Then, select Open from the pop-up
menu.

92 Chapter 4 • Working with Tables

2. Enter the appropriate user ID and password, if you are prompted for them. The
information in the table displays in the browse mode of the View Data window.

3. Click Switch to edit mode on the view data toolbar. The View Data window displays
in edit mode, as shown in the following display.

Display 4.11 View Data Window in Edit Mode

The title bar of the View Data window displays the name of the object that is being
viewed.

4. Double-click inside a cell and then change the data in the cell. Click Save edit row to
commit the change to the database. Rows are committed as they are added. Of course,
you must have operating system access for the file in order for the change to be saved.

5. Click Undo last action to reverse the change that you just made. (You can click Redo
last action to return to the changed version of the cell.) Note that you can undo only
the last operation because only a single level of undo is supported. If multiple rows
have been deleted or pasted, then only the last row affected can be undone. Similarly,
you can redo only your latest undo.

6. Click a row number to select the row. Click Copy to copy the row into the buffer.

7. Click Go to last row to move to the last row in the table.

8. Click in the row marked by the New Row icon at the end of the View Data window.
The New Row icon changes to the Editing Row icon. Click Paste to paste the copied
data into the row.

Note that you can also use Paste Special to paste more at once. You can copy single
or multiple rows for pasting. When multiple rows are pasted, changes are made and the
database table is immediately updated. If you paste a range of rows that go beyond that
last row or if the range of the data is beyond the row and column range of the table, an
error message is displayed. Use Paste Special to append new rows to the table by
pasting data.

If you paste data into an EDIT row, only the first pasted row is considered. A warning
to this effect is shown if more than one row is pasted. The pasted data is not
automatically committed to the database.

9. Click Delete selected rows to delete the pasted data and remove the row from the table.

Tasks 93

Edit Tasks
The edit mode of the View Data window contains a group of functions that enable you to
customize how the data in the window is displayed. These functions are controlled by the
view data toolbar, as shown in the following display.

Display 4.12 View Data Edit Toolbar

Perform the tasks that are listed in the following table to edit the data displayed:

Table 4.9 Edit Functions in the View Data Window

Task Action

Navigate within the data Perform the following steps:

• Enter a row number in the Go to row field and click
Go to specify the number of the first row that is
displayed in the table.

• Click Go to first row to navigate to the first row of data
in the View Data window.

• Click Go to last row to navigate to the last row of data
in the View Data window.

Select a View Data window mode Perform the following steps:

• Click Switch to browse mode to switch to the browse
mode.

• Click Switch to edit mode to switch to the edit mode.

Note that the Switch to browse mode and Switch to edit
mode buttons are displayed only for SAS tables.

Perform utility functions Perform the following steps:

• Click Print to print the View Data window.

• Click Refresh to refresh the data in the View Data
window.

Copy or paste data Perform the following steps:

• Highlight one or more rows of data. Then, click Copy
to copy the selected text into the copy buffer.

• Place the cursor in the row where you want to place the
data. Then, click Paste to paste the data into the table.
Note that you can also use Paste Special to paste more
at once.

Undo or redo editing operations Perform the following steps:

• Click Undo last action to reverse the most recent
editing operation.

• Click Redo last action to restore the results of the most
recent editing operation.

94 Chapter 4 • Working with Tables

Task Action

Search the data displayed in View
Data window

Perform the following steps:

• Click Show search pane. Then, use the search toolbar
to search for string occurrences in the data set that is
currently displayed in the View Data window.

Determine what is displayed in the
column headings

You can display any combination of column metadata,
physical column names, and descriptions in the column
headings.

• Click Show column name in column header to
display physical column names in the column headings.

• Click Show column description in column header to
display displays optional descriptions in the column
headings.

Commit or delete editing changes Perform the following steps:

• Click Save edited row to commit the changes that you
have made to the currently edited row.

• Click Delete selected rows to delete the changes that
you have made to the currently edited row.

To hide, show, hold, and release columns, right-click on a column name and select an
appropriate option from the pop-up menu.

To set options for the View Data window, select Tool ð Options from the SAS Data
Integration Studio menu bar to display the Options window. Then, click the View Data
tab. For information about the available options, see “Specifying Browse and Edit Options
for Tables and External Files” on page 96.

Using the View Data Window to Create a SAS Table

Problem
You want to create a new SAS table. This method can be used to create small tables for
testing purposes.

Solution
Use the create table function of the View Data window. This function enables you to create
a new SAS table based on metadata that you register by using the New Table wizard.

Tasks

Using the Create Table Function in the View Data Window
Perform the following steps to create a new table in the View Data window:

1. Create the metadata for a new SAS table in the New Table wizard. Select the columns
that you need from existing tables.

Tasks 95

2. Right-click the newly registered table and click Open. The dialog box in the following
display is shown.

Display 4.13 Create Table Dialog Box

3. Click Yes to create the table in the SAS library that you specified in the metadata for
the table. The table is opened in edit mode.

Specifying Browse and Edit Options for Tables and
External Files

Problem
You want to set options that control how tables and external files are processed in the
browse and edit modes in the View Data window.

Solution
You can use the View Data tab in the Options window to specify options for the View
Data window. (The Options menu is available on the Tools menu on the SAS Data
Integration Studio menu bar.) The options that you set on the View Data tab are applied
globally. The tab is divided into the General group box, the Column Headers group box,
the Format group box, the Search group box, and the Editing group box.

Tasks

Set General Options
The General group box contains the following items:

Table 4.10 General Options

Option Description

Clear Query Options when refreshing Clears any options that you set on the query when you
refresh the data.

Prompt for long-running navigation
operation

Determines whether the user is prompted to decide
whether the View Data query should proceed with a
long-running navigation operation. If this option is
selected, the prompt is displayed whenever the row
count of the table is either not known or greater than
100,000. If the option is deselected, the navigation
operation proceeds without the warning prompt.

96 Chapter 4 • Working with Tables

Set Column Heading Options
The Column Headers group box contains the following items:

Table 4.11 Column Headings Options

Option Description

Show column name in column header Displays physical column names in the column
headings.

Show column description in column
header

Displays optional descriptions in the column headings.

Show column metadata name in
column header

Displays optional column metadata names in the
column headings. This metadata can be entered in some
SAS Business Intelligence applications, such as the
SAS Information Mapping Studio.

Note: You can display any combination of column metadata, SAS column names, and
descriptions in the column headings by selecting the combination of check boxes that
are required to get the result that you want.

Set Format Options
The Format group box contains the following items:

Table 4.12 Format Options

Option Description

Apply formats When selected, displays formatted data in the View
Data window. This option applies the permanent
formats that are specified for the data when the data set
is created. Deselect the check box to view unformatted
data in the View Data window.

Apply metadata formats When selected, uses metadata formats for formatted
data that is displayed in the View Data window. These
formats are specified in the metadata for the data set.

Set Search Options
The Search group box contains the following items:

Table 4.13 Search Options

Option Description

Recently specified search string
(entries)

Specifies the number of recently searched strings that
are displayed when you click the drop-down menu in
the Search for field.

Ignore invalid column names When selected, ignores any invalid column names that
are entered into the search.

Tasks 97

Set Editing Options
The Editing group box contains the following items:

Table 4.14 Editing Options

Option Description

Allow editing of SCD2 tables without
prompting

Determines whether a warning dialog box that states
that edits to Slowly Changing Dimension (SCD) tables
causes the SCD to no longer be valid is displayed.

Always delete rows without prompting Determines whether a warning dialog box is displayed
before rows are deleted.

On multi-row operation errors When one or more errors occur in a multi-row editing
operation, determines whether the user is prompted,
errors are ignored and the operation is continued, or the
operation is canceled.

Default date format Default date values are returned as yyyy-MM-dd

Default datetime format Default datetime values are returned as yyyy-MM-dd
hh:mm:ss.SSS

98 Chapter 4 • Working with Tables

Chapter 5
Working with External Files

About External Files . 100

Registering a Delimited External File . 100
Problem . 100
Solution . 100
Tasks . 101

Registering a Fixed-Width External File . 103
Problem . 103
Solution . 104
Tasks . 104

Registering an External File with User-Written Code . 108
Problem . 108
Solution . 108
Tasks . 108

Viewing or Updating External File Metadata . 111
Problem . 111
Solution . 111

Overriding the Code Generated by the External File Wizards 112
Problem . 112
Solution . 112
Tasks . 112

Specifying NLS Support for External Files . 113
Problem . 113
Solution . 113
Tasks . 113

Accessing an External File with an FTP Server or an HTTP Server 113
Problem . 113
Solution . 114
Tasks . 114
Additional Information . 114

Viewing Data in External Files . 114
Problem . 114
Solution . 115
Tasks . 115

Registering a COBOL Data File That Uses a COBOL Copybook 115
Problem . 115
Solution . 116
Tasks . 116

99

Using an External File in the Process Flow for a Job . 117
Problem . 117
Solution . 117
Tasks . 118

About External Files
An external file, sometimes called a flat file or a raw data file, is a plain text file that often
contains one record per line. Within each record, the fields can have a fixed length or they
can be separated by delimiters, such as commas. Like SAS or DBMS tables, external files
can be used as inputs and outputs in SAS Data Integration Studio jobs. Unlike SAS or
DBMS tables, which are accessed with SAS LIBNAME engines, external files are accessed
with SAS INFILE and FILE statements. Accordingly, external files have their own
registration wizards, and they have two special transformations in the Transformations tree:
File Reader and File Writer.

The most common tasks for external files are listed in the following table.

Table 5.1 Common External File Tasks

Task Action

Register an external file (add metadata
about the file's physical location,
columns, and other attributes).

For more information, see “Registering a Delimited
External File” on page 100, “Registering a Fixed-
Width External File” on page 103 , and “Registering
an External File with User-Written Code” on page
108.

Specify a registered external file as a
source or a target in a job.

For more information, see “Using an External File in
the Process Flow for a Job” on page 117.

View the data or metadata for a
registered external file.

For more information, see “Viewing Data in External
Files” on page 114 and “Viewing or Updating External
File Metadata” on page 111.

Registering a Delimited External File

Problem
You want to create metadata for a delimited external file so that it can be used in SAS Data
Integration Studio.

Solution
Use the delimited external file wizard to register the file. The wizard enables you to create
metadata for external files that contain delimited data. This metadata is saved to a SAS
Metadata Server.

100 Chapter 5 • Working with External Files

Tasks

Run the Delimited External File Wizard
Perform the following steps to use one method to register an external file in the delimited
external file wizard:

1. Right-click the destination folder for the external file metadata. Then, select New ð
External File ð Delimited to access the General page in the New User Written
External File wizard. Enter an appropriate name and description of the external file that
you want to register. Click Next to access the External File Location page.

2. If you are prompted, enter the user ID and password for the default SAS Application
Server that is used to access the external file.

3. Specify the physical path to the external file in the File name field. Click Next to access
the Delimiters and Parameters page.

4. Select the check box for the appropriate delimiter in the Delimiters group box. Accept
the default values for the remaining fields, and click Next to access the Column
Definitions page.

5. Click Refresh to view the raw data from the external file in the File tab in the view
pane at the bottom of the page. Sample data is shown in the following display.

Display 5.1 Sample Column Definitions

Note: If your external file contains fewer than 10 rows, a warning box is displayed.
Click OK to dismiss the warning window.

6. Click Auto Fill to access the Auto Fill Columns window and populate preliminary data
into the columns component of the Columns Definition page.

7. The first row in most external files is unique because it holds the column names for the
file. Therefore, you should change the value that is entered in the Start record field in
the Guessing records group box to 2. This setting ensures that the guessing algorithm
begins with the second data record in the external file. Excluding the first data from the
guessing process yields more accurate preliminary data.

Tasks 101

8. Accept all of the remaining default settings. Click OK to return to the Column
Definitions page.

9. Click Import to access the Import Column Definitions window and the import function
to simplify the task of entering column names.

10. Select the Get the column names from column headings in the field radio button,
and keep the default settings for the fields underneath it. Click OK to save the settings
and return to the Column Definitions page. The names from the first record in the
external file are populated in the Name column. You now can edit them as needed.

Note: If you use the get column names from column headings function, the value in
the Starting record field in the Data tab of the view pane in the Column Definitions
page is automatically changed. The new value is one greater than the value in the
The column headings are in file record field in the Import Column Definitions
window.

11. The preliminary metadata that is populated into the columns component usually
includes column names and descriptions that are too generic to be useful for SAS Data
Integration Studio jobs. Fortunately, you can modify the columns component by
clicking in the cells that you need to change and entering the correct data. Enter
appropriate values for the external file that you are registering. The following display
depicts a sample completed Column Definitions page.

Display 5.2 Sample Completed Column Definitions Page

12. To verify that the metadata you have entered is appropriate for the data in the external
file, click the Data tab and then click Refresh. If the metadata matches the data, the
data is properly displayed in the Data tab. The Data tab looks similar to the View
Data window for the registered external file. If the data does not display properly, update
the column metadata and click Refresh to verify that the appropriate updates have been
made. To view the code that is generated for the external file, click the Source tab. To
view the SAS log for the generated code, click the Log tab. The code that is displayed
in the Source tab is the code that is generated for the current external file when it is
included in a SAS Data Integration Studio job.

13. Click Next and then Finish to save the metadata and exit the delimited external file
wizard.

102 Chapter 5 • Working with External Files

View the External File Metadata
After you have generated the metadata for an external file, you can use SAS Data
Integration Studio to view, and possibly make changes to, that metadata. For example, you
might want to remove a column from a table or change the data type of a column. Any
changes that you make to this metadata do not affect the physical data in the external file.
However, the changes affect the data that is included when the external table is used in
SAS Data Integration Studio. Perform the following steps to view or update external file
metadata:

1. Right-click the external file, and click Properties. Then, click the Columns tab. The
Columns tab is displayed, as shown in the following display.

Display 5.3 Sample External File Columns Tab

2. Click OK to save any changes and close the properties window.

View the Data
Right-click the external file, and click Open as Table. The View Data window is displayed,
as shown in the following display.

Display 5.4 Sample External File Data in the View Data Window

If the data in the external file displays correctly, the metadata for the file is correct and the
table is available for use in SAS Data Integration Studio. If you need to review the original
data for the file, right-click on its metadata object. Then, click Open.

Registering a Fixed-Width External File

Problem
You want to create metadata for a fixed-width external file so that it can be used in SAS
Data Integration Studio.

Problem 103

Solution
Use the fixed-width external file wizard to register the file. The wizard enables you to create
metadata for external files that contain fixed-width data. The metadata is saved to a SAS
Metadata Server.

You need to know the width of each column in the external file. This information might
be provided in a document that describes the structure of the external file.

Tasks

Run the Fixed-Width External File Wizard
Perform the following steps to use one method to register an external file in the fixed-width
external file wizard:

1. Right-click the destination folder for the external file metadata. Then, select New ð
External File ð FIxed Width to access the General page in the New Fixed Width
External File wizard. Enter an appropriate name and description of the external file that
you want to register. Click Next to access the External File Location page.

2. If you are prompted, enter the user ID and password for the default SAS Application
Server that is used to access the external file.

3. Specify the physical path to the external file in the File name field. Click Next to access
the Parameters page.

4. The Pad column values with blanks check box is selected by default. Deselect this
check box if the columns in your external file are short. It is unnecessary to pad values
in short columns, and padded values can hurt performance. In addition, select the Treat
unassigned values as missing check box. This setting adds the TRUNCOVER option
to the SAS code, which sets variables without assigned values to missing.

5. Accept the default for the Logical record length, and click the Next button to access
the Column Definitions page.

6. Click Refresh to view the raw data from the external file on the File tab in the view
pane at the bottom of the page. Sample data is shown in the following display.

104 Chapter 5 • Working with External Files

Display 5.5 Sample Fixed-Width Data on the File Tab

7. Click the appropriate tick marks in the ruler displayed at the top of the view pane. You
can get the appropriate tick mark position numbers from the documentation that comes
with the data to set the boundaries of the columns in the external file. The process is
similar to the process that is used to set tabs in word processing programs. To set the
first column boundary, click the tick mark on the ruler that immediately follows the
end of its data. A break line displays, and the column is highlighted. For example, if
the data in the first column extends to the eighth tick mark, you should click the ninth
mark. Notice that the metadata for the column is also populated into the column
component at the top of the page.

8. Click the appropriate tick marks in the ruler for the other columns in the external file.
Break lines and metadata for these columns are set.

9. Click Auto Fill to refine this preliminary data by using the auto fill function. Accept
all default settings and then click OK to return to the Column Definitions page. More
accurate metadata is entered into the column components section of the page.

10. The preliminary metadata that is populated into the columns component usually
includes column names and descriptions that are too generic to be useful for SAS Data
Integration Studio jobs. Fortunately, you can modify the columns component by
clicking in the cells that you need to change and by entering the correct data.

Note: The only values that need to be entered for the sample file are appropriate names
and descriptions for the columns in the table. The other values were created
automatically when you defined the columns and clicked Auto Fill. However, you
should make sure that all variables have informats that describe the data that you
are importing because the auto fill function provides a best estimate of the data.
You need to go in and verify this estimate. If appropriate informats are not provided
for all variables in the fixed-width file, then incorrect results can be encountered
when the external file is used in a job or when its data is viewed. A sample of a
completed Column Definitions page is shown in the following display.

Tasks 105

Display 5.6 Sample Completed Column Definitions Page

You can click Data to see a formatted view of the external file data. To view the code
that is generated for the external file, click the Source tab. To view the SAS log for the
generated code, click the Log tab. The code that is displayed in the Source tab is the
code that is generated for the current external file when it is included in a SAS Data
Integration Studio job.

11. Click Next and Finish to save the metadata and exit the fixed-width external file wizard.

View the External File Metadata
After you have generated the metadata for an external file, you can use SAS Data
Integration Studio to view, and possibly make changes to, that metadata. For example, you
might want to remove a column from a table or change the data type of a column. Any
changes that you make to this metadata do not affect the physical data in the external file.
However, the changes affect the data that is displayed when the external table is used in
SAS Data Integration Studio. Perform the following steps to view or update external file
metadata:

1. Right-click the external file, and click Properties. Then, click the Columns tab. The
Columns tab is displayed, as shown in the example in the following display.

106 Chapter 5 • Working with External Files

Display 5.7 Sample External File Columns Tab

2. Click OK to save any changes and close the properties window.

View the Data
Right-click the external file, and click Open as Table. The View Data window is displayed,
as shown in the example in the following display.

Display 5.8 Sample External File Data in the View Data Window

If the data in the external file displays correctly, the metadata for the file is correct and the
table is available for use in SAS Data Integration Studio. If you need to review the original
data for the file, right-click on its metadata object. Then, click Open.

Tasks 107

Registering an External File with User-Written
Code

Problem
You want to register an external file whose structure is more complex than can be easily
managed in the delimited wizard or the fixed width wizard.

Solution
Use the New User-Written External File wizard to specify a user-written SAS INFILE
statement to read the structure of the file. The wizard uses the INFILE statement to read
the structure of the file, and then it registers the file on the metadata server. The metadata
object for the file can then be used as a source or a target in a SAS Data Integration Studio
job.

Tasks

Test Your Code
You should test your SAS code before you run it in the User Written External File wizard.
That way, you can ensure that any problems that you encounter in the wizard come from
the wizard itself and not from the code. Perform the following steps to test your code:

1. Open the Code Editor window from the Tools menu in the menu bar on the SAS Data
Integration Studio desktop.

2. Paste the SAS code into the Code Editor window. Here is the code that is used in this
example:

libname
temp base
'\\machine number\output_sas';
%let _output=temp.temp;
data &_output;

 infile '\\machine number\sources_external\birthday_event_data.txt'
 lrecl = 256
 pad
 firstobs = 2;

 attrib Birthday length = 8 format = ddmmyy10. informat = YYMMDD8. ;
 attrib Event length = $19 format = $19. informat = $19. ;
 attrib Amount length = 8 format = dollar10.2 informat = comma8.2 ;
 attrib GrossAmt length = 8 format = Dollar12.2 informat = Comma12.2;

 input @ 1 Birthday YYMMDD8.
 @ 9 Event $19.
 @ 28 Amount Comma8.2
 @ 36 GrossAmt Comma12.2;

Birthdayrun;

108 Chapter 5 • Working with External Files

Note: The first two lines of this SAS code are entered to set the LIBNAME and output
parameters that the SAS code needs to process the external file. After you have
verified that the code ran successfully, delete the first two lines of code. They are
not needed when the SAS code is used to process the external file.

3. Review the log in the Code Editor window to ensure that the code ran without errors.
The expected number of records, variables, and observations should have been created.

4. Close the Code Editor window. Do not save the results.

Run the User-Written External File Wizard
Perform the following steps to use one method to register an external file in the user-written
wizard:

1. Right-click the destination folder for the external file metadata. Then, select New ð
External File ð User Written to access the General page in the New Delimited
External File wizard. Enter an appropriate name, description, and location of the
external file that you want to register. Click Next to access the User Written Source
Code page.

2. If you are prompted, enter the user ID and password for the default SAS Application
Server that is used to access the external file.

3. Enter the appropriate value in the Type field. The available types are File and
Metadata. For example, you can select File type to point to code that is embedded in
a separate file. If you select Metadata, you must click Edit and paste the code in the
Edit Source Code window.

Note: The Host and Path fields on the User Written Source Code page are displayed
only when you select File in the Type field. Different fields are displayed when
you select Metadata.

4. Verify that the correct server is displayed in the Host field.

5. Specify the physical path to the external file in the Path field. Click Next to access the
Column Definitions window. For example, you can register the metadata for an external
file that is named birthday_event_data.txt.

6. You can either enter the column definitions manually or click Import to access the
Import Column Definitions window. For information about the column import
functions available there, see the "Import Column Definitions Window" in the SAS
Data Integration Studio Help. The column definitions for this example were entered
manually.

You can find the information that you need to define the columns in the attributes list
in the SAS code file. For example, the first variable in the birthday_event_code.sas file
has a name of Birthday, a length of 8, the yymmdd8. informat, and the
ddmmyy10. format. Click New to add a row to the columns component at the top of
the Column Definitions window.

7. Review the data after you have defined all of the columns. To view this data, click the
Data tab under the view pane at the bottom of the window. To view the code that is
generated for the external file, click the Source tab. To view the SAS log for the
generated code, click the Log tab. The code that is displayed in the Source tab is the
code that is generated for the current external file when it is included in a SAS Data
Integration Studio job. The following display shows the completed Column Definitions
window.

Tasks 109

Display 5.9 Completed Column Definitions Window

8. Click Next to access a summary page, and then click Finish to save the metadata and
exit the user written external file wizard.

View the External File Metadata
After you have generated the metadata for an external file, you can use SAS Data
Integration Studio to view, and possibly make changes to, that metadata. For example, you
might want to remove a column from a table or change the data type of a column. Any
changes that you make to this metadata do not affect the physical data in the external file.
However, the changes affect the data that is included when the external table is used in
SAS Data Integration Studio. Perform the following steps to view or update external file
metadata:

1. Right-click the external file, and click Properties. Then, click the Columns tab. The
Columns tab is displayed, as shown in the example in the following display.

Display 5.10 External File Columns Tab

2. Click OK to save any changes and close the properties window.

110 Chapter 5 • Working with External Files

View the Data
Right-click the external file, and click Open as Table. The View Data window is displayed,
as shown in the example in the following display.

Display 5.11 External File Data in the View Data Window

If the data in the external file displays correctly, the metadata for the file is correct and the
table is available for use in SAS Data Integration Studio. If you need to review the original
data for the file, right-click on its metadata object. Then, click Open.

Viewing or Updating External File Metadata

Problem
You want to view or update the metadata for an external file that you have registered in
SAS Data Integration Studio.

Solution
You can access the properties window for the table and change the settings on the
appropriate tab of the window. The following tabs are available on properties windows for
tables:

• General

• File Location (not available for user-written external files)

• File Parameters

• Columns

• Parameters

• Notes

• Extended Attributes

• Authorization

Use the properties window for an external file to view or update the metadata for its
columns, file locations, file parameters, and other attributes. You can right-click an external
file in any of the trees on the SAS Data Integration Studio desktop or in the Job Editor
window. Then, click Properties to access its properties window.

Note that any updates that you make to an external file change the physical external file
when you run a job that contains the file. These changes can have the following
consequences for any jobs that use the external file:

Solution 111

• Changes, additions, or deletions to column metadata are reflected in all of the jobs that
include the external file.

• Changes to column metadata often affect mappings. Therefore, you might need to
remap your columns.

• Changes to file locations, file parameters, and parameters affect the physical external
file and are reflected in any job that the includes the external file.

You can use the impact analysis and reverse impact tools in SAS Data Integration Studio
to estimate the impact of these updates on your existing jobs.

Overriding the Code Generated by the External File
Wizards

Problem
You want to substitute your own SAS INFILE statement for the code that is generated by
the Delimited External File wizard and the Fixed Width External File wizard. For details
about the SAS INFILE statement, see SAS Language Reference: Dictionary.

Solution
Use the Override generated INFILE statement with the following statement check box
in the Advanced File Parameters window of the external file wizard. To access this window,
click Advanced on the Delimiters and Parameters page in the delimited external file wizard
or on the Parameters page in the fixed-width external file wizard.

Note: If you override the generated code that is provided by the external file wizards and
specify a non-standard access method such as PIPE, FTP, or a URL, then the
Preview button on the External File Location page, the File tab on the Columns
Definition page, and the Auto Fill button on the Columns Definition page do not work.

Tasks

Replace a Generated SAS INFILE Statement
Perform the following steps to substitute your own SAS INFILE statement for the code
that is generated by the Delimited External File wizard and the Fixed Width External File
wizard.

1. Right-click the destination folder for the external file metadata. Then, open the
appropriate external file wizard and navigate to the Delimiters and Parameters page or
the Parameters page (depending on the selected wizard).

2. Click the Advanced button to display the Advanced File Parameters window.

3. Select the Override generated INFILE statement with the following statement
check box. Then, paste your SAS INFILE statement into the text area.

4. Enter other metadata for the external file as prompted by the wizard.

For details about the effects of using overridden code with a non-standard access method,
see the "Accessing Data With Methods Other Than the SAS Application Server" topic in
SAS Data Integration Studio Help.

112 Chapter 5 • Working with External Files

Specifying NLS Support for External Files

Problem
You want to specify the National Language Support (NLS) encoding for an external file.
You must have the proper NLS encoding to view the contents of the selected file or
automatically generate its column metadata.

Solution
Enter the appropriate encoding value into the Encoding options field in the Advanced File
Parameters window of the external file wizard.

Tasks

Specify NLS Encoding Options
Perform the following steps to specify NLS encoding for the New Delimited External File
wizard or the New Fixed Width External File wizard.

1. Right-click the destination folder for the external file metadata. Then, open the
appropriate external file wizard. Enter appropriate settings on the General and External
File Location pages. In particular, specify the physical path for an external file for which
NLS options must be set, such as a Unicode file. Normally, after you have specified
the path to the external file, you can click Preview to display the raw contents of the
file. However, the Preview button does not work yet, because the required NLS options
have not been specified.

2. Click Next to view either the Parameters page or the Parameters/Delimiters page,
depending on the selected wizard.

3. Click Advanced to display the Advanced File Parameters window.

4. Enter the appropriate NLS encoding for the selected file in the Encoding options field.
Then, click OK.

For detailed information about encoding values, see the section on "Encoding Values in
SAS Language Elements" in SAS National Language Support (NLS): User's Guide.

Accessing an External File with an FTP Server or
an HTTP Server

Problem
You want to access an external file that is located on either an HTTP server or an FTP
server. The Delimited External File wizard and the Fixed Width External File wizard
prompt you to specify the physical path to an external file. By default, a SAS Application
Server is used to access the file. However, you can access the file with an HTTP server,
HTTPS server, or FTP server if that server is registered to the current metadata server.

Problem 113

Note: If you use a method other than a SAS Application Server to access an external file,
then the Preview button on the External File Location page, the File tab on the Columns
Definition page, and the Auto Fill button on the Columns Definition page do not work.

Solution
You can select the server in the FTP Server field or the HTTP Server field. These fields
are located on the Access Method tab in the Advanced File Location Settings window.

Tasks

Select an HTTP Server or an FTP Server
Perform the following steps to select an HTTP server or an FTP server in the external file
wizards:

1. Right-click the destination folder for the external file metadata. Then, open the
appropriate external file wizard and navigate to the External File Location page.

2. Click Advanced. The Advanced File Location Settings window displays.

3. Click the Access Method tab. Then, select either the FTP check box or the URL check
box.

4. Select either an FTP server or an HTTP server in the FTP Server field or the HTTP
Server field. Click OK to save the setting and close the Advanced File Location
Settings window.

5. Specify a physical path for the external file. The path must be appropriate for the server
that you selected.

6. Enter other metadata for the external file as prompted by the wizard.

Additional Information
For details about defining metadata for an HTTP server, HTTPS server, or an FTP server,
administrators should see the section on "Enabling the External File Wizards to Retrieve
Files Using FTP or HTTP" in the "SAS Data Integration Studio" chapter of SAS Intelligence
Platform: Desktop Application Administration Guide. Also see the usage note "Accessing
Data With Methods Other Than the SAS Application Server" in the "Usage Notes for
External Files" topic in SAS Data Integration Studio Help.

Viewing Data in External Files

Problem
You want to view raw data or formatted data in one of the external file wizards that are
included in the wizard. You might also need to view this raw or formatted data in an external
file that you have already registered by using of the external file wizards.

114 Chapter 5 • Working with External Files

Solution
You can view raw data in the External File Location page or Columns Definition page in
the external file wizards or in the View File window for a registered external file. You can
view formatted data in the Columns Definition page in the external file wizards or in the
View Data window for a registered external file.

Tasks

View Raw Data in an External File
You can click Preview on the External File Location page in the external file wizards to
view raw data for an unregistered file. You can also click the File tab on the Columns
Definition page. There are two main situations where the Preview button and the File tab
are not able to display data in the external file:

• when you use a method other than a SAS Application Server to access the external file.
(See “Specifying NLS Support for External Files” on page 113.)

• when you use the User Written External File wizard (because your SAS code, not the
wizard, is manipulating the raw data in the file).

For an example of how you can use the File tab to help you define metadata, see the
explanation of the Column Definitions page in “Registering a Delimited External File” on
page 100. You can also view the raw data in an external file after you have registered it in
the wizard. To view the raw data, access the View File window for the external file. The
raw data displayed in the external file wizards and the View File window is shown without
detailed column specifications or data formatting. You can use the raw data to understand
the structure of the external file better.

View Formatted Data in the External File Wizards
The Data tab on the Columns Definition page displays data in the external file after
metadata from the external file wizard has been applied. Use the Data tab to verify that the
appropriate metadata has been specified for the external file.

The Data tab is populated as long as the SAS INFILE statement that is generated by the
wizard is valid. The tab cannot display data for a fixed-width external file unless the SAS
informats in the metadata are appropriate for the columns in the data. For an example of
how you can use the Data tab to help you verify your metadata, see the explanation of the
Column Definitions page in “Registering a Delimited External File” on page 100.

You can also view the formatted data in an external file after you have registered it in the
wizard. To view the formatted data, access the View Data window for the external file.

Registering a COBOL Data File That Uses a COBOL
Copybook

Problem
You want to create metadata for a COBOL data file that uses column definitions from a
COBOL copybook. The copybook is a separate file that describes the structure of the data
file.

Problem 115

Solution
Perform the following steps to specify metadata for a COBOL data file in SAS Data
Integration Studio:

1. Use the import COBOL copybook feature to create a COBOL format file from the
COBOL copybook file.

2. Use the External File wizard to copy column metadata from the COBOL format file.

Tasks

Import the COBOL Copybook
Server administrators should perform the following steps, which describe one way to
import the COBOL copybook:

1. Obtain the required set of SAS programs that supports copybook import. Perform the
following steps from Technical Support document TS-536 to download the version of
COB2SAS8.SAS that was modified for SAS 8:

a. Go to the Technical Support Web page and download this zipped file: http://
ftp.sas.com/techsup/download/mvs/cob2sas8.zip.

b. Unzip the file into an appropriate directory.

c. Read the README.TXT file. It contains information about this modified version
of COB2SAS8.SAS. It also contains additional information about the installation
process.

2. Click Import COBOL Copybook in the Tools menu for SAS Data Integration Studio
to access the Cobol Copybook Location and Options window.

3. Select a SAS Application Server in the Server field. The selected SAS Application
Server must be able to resolve the paths that are specified in the Copybook(s) field and
the COBOL format file directory field.

4. Indicate the original platform for the COBOL data file by selecting the appropriate
radio button in the COBOL data resides on field.

5. Select a copybook file to import in the Copybook(s) field. If you have imported
copybooks in the past, you can select from a list of up to eight physical paths to
previously selected copybook files. If you need to import a copybook that you have
never used in SAS Data Integration Studio, you have two options. First, you can click
Add to type a local or remote path manually. Second, you can click Browse to browse
for a copybook that is local to the selected SAS Application Server.

6. Specify a physical path to the directory for storing the COBOL format file in the
COBOL format file directory field. You can enter a local or remote path in the field,
choose a previously selected location from the drop-down menu, or browse to the file.

7. Click OK when you are finished. The Review object names to be created window
displays.

8. Verify the name of the COBOL format file or files. Specify a physical path for the SAS
log file in the SAS Log field. This file is saved to the SAS Data Integration Studio
client machine.

9. Click OK when you are finished. One or more COBOL format files are created from
the COBOL copybook file.

116 Chapter 5 • Working with External Files

Note: If the external file resides on the MVS operating system, and the filesystem is native
MVS, then the following usage notes apply.

• Add the MVS: tag as a prefix to the name of the COBOL copybook file in the
Copybook(s) field . Here is an example filename:
MVS:wky.tst.v913.etls.copybook.

• Native MVS includes partitioned data sets (PDS and PDSE). Take this factor into
account when you specify a physical path to the directory for storing the COBOL format
file in the COBOL format file directory field . Here is an example path:
MVS:dwatest.tst.v913.cffd.

• The COB2SAS programs must reside in a PDS with certain characteristics. For more
information about these characteristics, see http://support.sas.com/
techsup/technote/ts536.htm.

• The path to the r2cob1.sas program should specify the PDS and member name.
Here is an example path, which would be specified in the Full path for r2cob1.sas
field in the Advanced options window:
mvs:dwatest.tst.v913.cob2sasp(r2cob1).

Copy Column Metadata From the COBOL Format File
Perform the following steps to copy column metadata from the COBOL format file in the
Column Definitions page of an External File wizard.

1. Access the Column Definitions page of an External File wizard.

2. Click Import to access the Import Columns window.

3. Select the Get the column definitions from a COBOL format file radio button. Then,
use the down arrow to select the appropriate COBOL format file and click OK. The
column metadata from the COBOL format file is copied into the Column Definitions
page.

4. Specify any remaining column metadata in the Column Definitions page. Click Next.

5. Click Finish when you are finished. The metadata for the external file is saved to the
metadata server.

Using an External File in the Process Flow for a Job

Problem
You want the process flow for a job to read from an external file or write to an external
file.

Solution
In the process flow for a job, you can use the File Reader transformation to read an external
file, and you can use the File Writer transformation to write to an external file.

An external file, sometimes called a flat file or a raw data file, is a plain text file that often
contains one record per line. Within each record, the fields can have a fixed length or they
can be separated by delimiters, such as commas. Most SAS Data Integration Studio
transformations cannot use external files as inputs or outputs, so the File Reader and File
Writer transformations are used to incorporate external files into the process flow for a job.

Solution 117

http://support.sas.com/techsup/technote/ts536.htm
http://support.sas.com/techsup/technote/ts536.htm

Perform the following tasks:

• “Read from an External File in a Job” on page 118

• “Write to an External File in a Job” on page 118

• “Run the Job and Verify the Results” on page 120

Tasks

Read from an External File in a Job
To read from an external file in a job, add a File Reader transformation to the job. Then,
specify the external file as the input to the File Reader transformation, as shown in the next
display.

Display 5.12 File Reader Process Flow

The File Reader transformation reads information from the external file and writes the
output to a temporary work table. By default, the temporary work table is a SAS data set.
Most SAS Data Integration Studio transformations can read a SAS data set, so the output
work table could be connected to a second transformation such as the Sort transformation.
The second transformation could be connected to a third, and so on. In this way, a chain
of transformations can be used to process information from an external file.

Perform the following steps to specify an external file as the input to the File Reader
transformation.

1. If the external file has not been registered, use the appropriate wizard to register the
external file. For more information, see “Registering a Delimited External File” on page
100, “Registering a Fixed-Width External File” on page 103, and “Registering an
External File with User-Written Code” on page 108.

2. Create an empty SAS Data Integration Studio job. For more information, see “Creating
an Empty Job” on page 123.

3. Select and drag a File Reader transformation from the Access folder of the
Transformations tree. Then, drop it in the empty job on the Diagram tab in the Job
Editor window.

4. Select and drag the external file from the tree view. Then, drop it before the File Reader
transformation on the Diagram tab.

5. Drag the cursor from the external file to the input port of the File Reader transformation.
This action connects the source to the transformation. At this point, the minimum
process flow for your job should look similar to the preceding process flow. You can
run the job and verify the results.

Write to an External File in a Job
To write to an external file in a job, add a File Writer transformation to the job. Then,
specify a SAS or DBMS table as the input and an external file as the output, as shown in
the next display.

118 Chapter 5 • Working with External Files

Display 5.13 File Writer Process Flow

The File Writer transformation reads information from a SAS or DBMS table and writes
the output to an external file. The input to a File Writer transformation could be the output
of a previous transformation in the current job, or it could be output from another job. In
this way, the output of SAS Data Integration Studio jobs can be made available to third-
party applications that support external files.

Assume that the SAS or DBMS table input to the File Writer transformation is already
registered, and that the external file output is a new file, one that is created when the job
that includes the File Writer executes for this first time. Perform the following steps to
specify an external file as the output of the File Writer transformation.

1. If the external file has not been registered, use the appropriate wizard to register the
external file. For more information, see “Registering a Delimited External File” on page
100, “Registering a Fixed-Width External File” on page 103, and “Registering an
External File with User-Written Code” on page 108.

2. Create an empty SAS Data Integration Studio job. For more information, see “Creating
an Empty Job” on page 123.

3. Select and drag a File Writer transformation from the Access folder of the
Transformations tree. Then, drop it in the empty job on the Diagram tab in the Job
Editor window.

4. Select and drag a SAS or DBMS input table from the tree view. Then, drop it before
the File Writer transformation on the Diagram tab.

5. Drag the cursor from the input table to the input port of the File Writer transformation.
This action connects the input to the transformation.

6. Select and drag the external file output from the tree view. Then, drop it after the File
Writer transformation on the Diagram tab.

7. Drag the cursor from the output port of the File Writer transformation to the external
file. This action connects the output to the transformation. At this point, the process
flow should look similar to the preceding process flow diagram.

The File Writer transformation attempts to automatically map columns between the
input table and the output external file. You might want to verify that the mappings are
correct.

8. (Optional) To verify the mappings in the File Writer transformation, right-click the
transformation in the job and select Properties from the pop-up menu. The next display
shows the Mapping tab for the File Writer transformation.

Tasks 119

Display 5.14 Mapping Tab for File Writer Transformation

In the preceding display, three columns from the input table (SAS Table) are mapped
to three identical columns in the output file (External File 2). If the mappings are what
you want, click Cancel to close the properties window. To update the mappings, see
“Maintaining Column Mappings” on page 154.

9. When ready, run the job and verify the results.

Run the Job and Verify the Results
Perform the following steps to run the job and view the output.

1. Right-click on an empty area of the job, and click Run in the pop-up menu. SAS Data
Integration Studio generates code for the job and submits it to the SAS Application
Server for execution.

2. If error messages display, read and respond to the messages as needed.

Right-click the appropriate external file or table and select Open or Open as Table to
verify that the correct data was loaded into the table or file.

120 Chapter 5 • Working with External Files

Chapter 6
Creating Jobs

About Jobs . 122
Jobs with Generated Source Code . 122
Jobs with User-Supplied Source Code . 123
Run Jobs . 123
Manage Submitted Jobs . 123

Creating an Empty Job . 123
Problem . 123
Solution . 123
Tasks . 123

Creating a Process Flow for a Job . 124
Problem . 124
Solution . 124
Tasks . 124

Creating a Job That Contains Jobs . 125
Problem . 125
Solution . 125
Tasks . 126

Working with Default Temporary Output Tables . 126
Problem . 126
Solution . 126
Tasks . 126

About Job Options . 130

Documenting Process Flow Diagrams . 133
Problem . 133
Solution . 133
Tasks . 133

Accessing Local and Remote Data . 133
Data Access Overview . 133
Access Data in the Context of a Job . 134
Access Data Interactively . 134
Use a Data Transfer Transformation . 135

Viewing or Updating Job Metadata . 136
Problem . 136
Solution . 136
Tasks . 136

Displaying the SAS Code for a Job . 137
Problem . 137

121

Solution . 137
Tasks . 137

Common Code Generated for a Job . 138
Overview . 138
LIBNAME Statements . 138
SYSLAST Macro Statements . 138
Remote Connection Statements . 139
Macro Variables for Status Handling . 140
User Credentials in Generated Code . 140

About Jobs

Jobs with Generated Source Code
A job is a collection of SAS tasks that create output. SAS Data Integration Studio uses the
metadata for each job to generate SAS code that reads sources and creates targets in physical
storage.

If you want SAS Data Integration Studio to generate code for a job, you must define a
process flow diagram that specifies the sequence of each source, target, and process in a
job. In the diagram, each source, target, and process has its own metadata object.

For example, the following process flow diagram shows a job that reads data from a source
table, sorts the data, and then writes the sorted data to a target table.

Display 6.1 Process Flow Diagram for a Job That Sorts Data

The components of this process flow perform the following functions:

• ALL_EMP specifies metadata for the source table.

• Sort specifies metadata for the sort process.

• EMP_SORT specifies metadata for the target table.

SAS Data Integration Studio uses this metadata to generate SAS code that reads ALL_EMP,
sorts this information, and then writes it to the EMP_SORT table. You can also include
temporary output tables and Table Loader transformations in process flows. For
information, see “Working with Default Temporary Output Tables” on page 126.

Each process in a process flow diagram is specified by a metadata object called a
transformation. In the example, SAS Sort is a transformation. A transformation specifies
how to extract data, transform data, or load data into data stores. Each transformation that
you specify in a process flow diagram generates or retrieves SAS code. You can specify
user-written code for any transformation in a process flow diagram.

For more details about the process flow diagram in the preceding example, see “Creating
a Process Flow for a Job” on page 124.

122 Chapter 6 • Creating Jobs

Jobs with User-Supplied Source Code
For all jobs except the read-only jobs that create cubes, you can specify user-written code
for the entire job or for any transformation within the job. For details, see “About User-
Written Code” on page 213.

Run Jobs
There are four ways to run a job:

• submit the job for immediate execution. For information, see “Submitting a Job for
Immediate Execution” on page 142.

• deploy the job for scheduling. For information, see “Deploying Jobs for Scheduling”
on page 185.

• deploy the job as a SAS stored process. For information, see “Deploying Jobs as Stored
Processes” on page 190.

• deploy a stored process as a Web service. For information, see “Deploying a Stored
Process as a Web Service” on page 203.

Manage Submitted Jobs
After you have submitted the job, you can use the tabs in the Details panel to check status,
review warnings and errors, examine statistics, and trace the control flow of the job. For
details, see “About Managing Jobs” on page 142.

Note: You can also trace the control flow of a job before you run the job.

Creating an Empty Job

Problem
You want to create an empty job. After you have an empty job, you can create a process
flow diagram by dragging and dropping tables and transformations into the Job Editor
window.

Solution
Use the New Job wizard to create an empty job in a specified location.

Tasks

Use the New Job Wizard
Perform the following steps to create an empty job:

1. Access the New Job wizard through one of the following methods:

• Select File ð New from the menubar. Then, click Job.

• Click New on the toolbar. Then, click Job.

Tasks 123

• Right-click on the folder where you want the job to be located and click New. Then,
click Job.

2. Enter an appropriate name for the job in the New Job wizard in the Name field. You
can enter an optional description of the job in the Description field. You can also
browse for a location for the job's metadata by using the Browse button and the
Location field.

3. Click OK to save the job.

After you have created an empty job, you can populate and execute the job.

Creating a Process Flow for a Job

Problem
You want to create a job to perform a business task that populates a target table with data.
Then, you need to populate the job with the source tables, transformations, and target tables
that are required to complete the task.

Solution
You can use the New Job Wizard to create an empty job. Then, you can populate the job
in the Job Editor window with the source tables, transformations, and target tables that you
need to accomplish your task. Note that some transformations do not support permanent
target tables.

Tasks

Create and Populate a Sample Job
Perform the following steps to create and populate a job:

1. Create an empty job. For information, see “Creating an Empty Job” on page 123.

2. Drop the source table on the Diagram tab of the Job Editor window. Sources must be
registered in SAS Data Integration Studio. You can also right-click a source table (or
any object that can be dropped into a job) in an Inventory tree and click Add to
Diagram in the pop-up menu. This action adds the selected object to the Diagram tab
of the active job on the desktop. Of course, this option is available only when at least
one job is open.

3. Drop a transformation from the Transformations tree on the Diagram tab.

4. Drag the cursor from the source table to the input port of the transformation. This action
connects the source to the transformation. If the input port that you need is not available,
right-click the transformation and click Ports in the pop-up menu. Then, click Add
Input Port in the sub-menu. This feature is available for most transformations. It
enables you to perform the following tasks:

• Add an input port.

• Delete an input port.

• Add an output port.

• Delete an output port.

124 Chapter 6 • Creating Jobs

Note: You can include a particular table more than once in a process flow. For example,
you can use the same table as the source table and the target table for a SAS Data
Integration Studio job. You can use this approach to change the structure of a
physical table. However, the control flow tab might not report control flow warnings
correctly if you do this.

5. Because you want to have a permanent target table to contain the output for the
transformation, right-click the temporary work table that is attached to the
transformation and click Replace in the pop-up menu. Then, use the Table Selector
window to select the target table for the job. The target table must be registered in SAS
Data Integration Studio. (For more information about temporary work tables, see
“Working with Default Temporary Output Tables” on page 126.)

The following display shows a process flow diagram for a sample job that contains the Sort
transformation.

Display 6.2 Sample Process Flow

Note the source table is named ALL_EMP and target table is named
EMPLOYEES_SORTED.

You can set global options for jobs on the Code Generation tab of the Options menu. The
Options window is available from the Tools menu on the SAS Data Integration Studio
menu bar. You can set local options on the Options tab that is on the properties window
for each table. For detailed information, see “About Job Options” on page 130.

Note: If you change a job in any way, you must save the job in order to save the changes.
You should save the whole job even when you click Save or Save As on the Code tab
for a job or transformation or the Precode and Postcode tab for a transformation in a
job. These save options save the updated code to the metadata or to a file, but the link
between the saved code and the job is not established unless the job is saved.

Creating a Job That Contains Jobs

Problem
You want to create a job that contains one or more existing jobs.

Solution
You can add existing jobs from a tree view to the Diagram tab of the Job Editor window
in an open job. These jobs are added to the control flow in the order that they are added to
the job. This sequence is useful for jobs that are closely related, but the jobs do not have
to be related. You can always change the order of execution for the added jobs in the
Control Flow tab of the Details pane.

Solution 125

Tasks

Create a Job That Contains Existing Jobs
Perform the following tasks to create a job that contains existing jobs:

1. Create an empty SAS Data Integration Studio job.

2. Drag one or more existing jobs from a tree view to the Diagram tab of the Job Editor
window. The completed sample job is shown in the following display.

Display 6.3 Completed Job

Note that the added jobs are linked by dashed-line control flow arrows and not by solid-
line data flow arrows. Be default, the extract job in the sample job, which was added first,
will be executed first. Then the sort job, which was added second, will be executed.

Working with Default Temporary Output Tables

Problem
You added a transformation to the Diagram tab of the Job Editor window. The
transformation sends its output to a temporary output table, and you need to decide what
you should do with the temporary output table. Of course, the temporary output table is
populated with data only when the job that contains it has been run.

Solution
You can use default temporary output tables in the following ways:

• “Use the Default Temporary Output Table As the Final Output” on page 126

• “Use the Default Temporary Output Table As an Input to Another Transformation” on
page 127

• “Replace the Default Temporary Output Table with a Permanent Target Table” on page
128

• “Use the Temporary Output Table As an Input to a Table Loader ” on page 129

Tasks

Use the Default Temporary Output Table As the Final Output
When the default temporary output table is placed at the end of a job, you can keep the
table and use it to view the output of the transformation. Then, you can review the results
of the transformation without writing the data to a permanent target table. Perform the
following steps to create a process flow diagram that uses the default temporary output
table as the final output:

126 Chapter 6 • Creating Jobs

1. Create an empty job.

2. Select and drag a transformation from the Transformations tree. Then, drop it in the
empty job on the Diagram tab in the Job Editor window.

3. Select and drag a source table from the Inventory tree. Then, drop it before the
transformation on the Diagram tab.

4. Drag the cursor from the source table to the input port of the transformation. This action
connects the source to the transformation.

The following display shows a sample job that works this way.

Display 6.4 Sample Job with Default Temporary Output Table

By default, the temporary output table for single-output transformations has the same name
as the transformation that provides its input. However, when a transformation has multiple
outputs, a numerical suffix is added to each output table (for example, Splitter 0 and Splitter
1). In addition, users can change these default names in the property window for the table.
The new name must be a valid SAS table name, just like the name for any other table.

Use the Default Temporary Output Table As an Input to Another
Transformation
You can't use one transformation as the direct data input to another transformation. The
data must first flow from a transformation to a permanent or temporary output table. Then,
it can proceed to the next transformation.

Of course, if you need to save the output into a physical table that you can access after the
current SAS session is terminated, you must use a permanent output table. You need to
consider performance when you decide whether to use permanent or temporary output
storage.

Temporary output storage can be created either as a table in the WORK library or as a view.
If the data from the first transformation in the job is referenced multiple times in a process
flow, then putting the data into a table generally improves overall performance. When you
use a view as a temporary output table, SAS must execute the underlying code repeatedly
each time the view is accessed.

However, if the data is referenced only once in a process flow, then the use of a view that
is created from a temporary output table usually offers better performance.

You can tell whether a temporary output table takes the form of a view or a physical table
by looking for the View modifier on the temporary output table. You can also right-click
a temporary output table and look at the pop-up menu. If the Create as View item is
checked, a view is generated. If not, the output is stored in a temporary physical table.

You can also click Create as View to switch between a physical table and a view. Note,
however, that some transformations, such as Sort, do not support the creation of views.
You can click Create as View, but the transformation ignores it and produces a temporary
physical table.

Perform the following steps to create a process flow diagram that uses a temporary output
table as an input to a transformation:

1. Create an empty job.

Tasks 127

2. Select and drag a transformation from the Transformations tree. Then, drop it in the
empty job on the Diagram tab in the Job Editor window.

3. Select and drag a source table from the Inventory tree. Then, drop it before the
transformation on the Diagram tab.

4. Drag the cursor from the source table to the input port of the transformation. This action
connects the source to the transformation.

5. Select and drag a second transformation from the Transformations tree on the
Diagram tab.

6. Drag the cursor from the output port of the temporary output table that is attached to
the first transformation to the input port of the second transformation. This action
connects the temporary output table to the second transformation.

The following display shows a sample job that works this way.

Display 6.5 Sample Job with Default Temporary Output Table between Transformations

Note: Some transformations, such as Return Code Check, produce no data output. Because
they are not data transformations, they are linked to other transformations only by
control flow lines. The User Written transformation also has an optional data target.
When it is used without a data target, it also connects only with control flow lines.

Replace the Default Temporary Output Table with a Permanent Target
Table
You can replace the default temporary output table with a permanent target table. Then,
you can write the data directly to the target table without first passing it through a temporary
view. You might use this approach with the last transformation in a process flow, which is
when you want to store the output in a permanent table. These permanent target tables
perform better than temporary output tables under the following conditions:

• The data is referenced multiple times in a process flow. In a temporary output table,
SAS must execute the underlying code repeatedly each time the view is accessed.

• The data is referenced once in a process flow, but the reference is a resource-intensive
procedure that performs multiple passes of the input.

• The data is generated with SQL and is referenced once, but the reference is from another
SQL view. SAS SQL optimization can be less effective when views are nested. This
is especially true if the steps involve joins or RDBMS sources.

Note that these performance issues occur when the temporary output table takes the form
of a view.

Perform the following steps to create a process flow diagram that replaces the default
temporary output table with a permanent table:

1. Create an empty job.

2. Select and drag a transformation from the Transformations tree. Then, drop it in the
empty job on the Diagram tab in the Job Editor window.

3. Select and drag a source table from the Inventory tree. Then, drop it before the
transformation on the Diagram tab.

128 Chapter 6 • Creating Jobs

4. Drag the cursor from the source table to the input port of the transformation. This action
connects the source to the transformation.

5. Right-click the temporary output table that is attached to the transformation. Then, click
either Register Table or Replace in the pop-up menu.

• Click Register Table to display a Register Table window that enables you to change
the temporary output table into a permanent physical table. This permanent table
is displayed on the Diagram tab of the Job Editor window and added to the
Inventory tree.

The table is added to the library that was used when the register table function was
last run in the current SAS session. If register table has not been used in the current
session, then you must add a library for the table on the Physical Storage tab of
the Register Table window. This step prevents a design-time warning in the Job
Editor.

• Click Replace to display a Table Selector window that enables you to replace the
selected temporary output table with a specified physical table. If you want to retain
the mappings, then choose a physical table that matches the temporary table.

Both the register table and replace functions attempt to keep mappings and expressions
intact. When you simply delete the temporary table and connect the transformation
directly to a target table that you drop on the Diagram tab, these mappings are lost.

The following display shows a sample job that includes a permanent target table.

Display 6.6 Sample Job with a Permanent Target Table

Use the Temporary Output Table As an Input to a Table Loader
You can always let a SAS Data Integration Studio transformation perform a simple load
of its output table that drops and replaces the table. However, you can also add a Table
Loader transformation to a permanent output table. Then, you can use the options in the
Table Load transformation to control how data is loaded into the target table. In fact, a
separate Table Loader transformation might be desirable under the following conditions:

• loading a DBMS table with any technique other than drop and replace

• loading tables that contain rows that must be updated upon load (instead of dropping
and recreating the table each time the job is executed)

• creating primary keys, foreign keys, or column constraints

• performing operations on constraints before or after the loading of the output table

• performing operations on indexes other than after the loading of the output table

Note that some of these actions are also possible with the SCD Type 2 Loader
transformation.

Perform the following steps to create a sample process flow diagram that includes a source
table, an initial transformation, a temporary output table, a Table Loader transformation,
and a permanent target table:

1. Create an empty job.

Tasks 129

2. Select and drag a transformation from the Transformations tree. Then, drop it in the
empty job on the Diagram tab in the Job Editor window.

3. Select and drag a source table from the Inventory tree. Then, drop it before the
transformation on the Diagram tab.

4. Drag the cursor from the source table to the input port of the transformation. This action
connects the source to the transformation.

5. Select and drag a Table Loader transformation from the Transformations tree on the
Diagram tab.

6. Drag the cursor from the output port of the temporary output table that is attached to
the first transformation to the input port of the Table Loader transformation. This action
connects the temporary output table to the Table Loader transformation.

7. Select and drag the target table out of the Inventory tree. Then, drop it after the Table
Loader transformation on the Diagram tab.

8. Drag the cursor from the output port of the Table Loader transformation to the input
port of the target table. This action connects the Table Loader transformation to the
target table.

The following display shows a sample job that works this way.

Display 6.7 Sample Job with a Default Temporary Output Table and a Table Loader

You can feed any table, temporary output table, or physical table into a Table Loader
transformation. For example, you can omit the initial Sort transformation and its input and
output tables. Then, the job consists of a table that feeds into the Table Loader
transformation. The Table Loader then feeds into the target table. In fact, you can use the
same table as both the input and the output for the Table Loader, as shown in the following
display.

Display 6.8 Sample Job Table Loader and a Single Table

This approach enables you to use the Table Loader transformation to reload the table with
a different load technique.

About Job Options
Options can be set for SAS Data Integration Studio, such as enabling parallel processing
and configuring grid processing.

130 Chapter 6 • Creating Jobs

Use the Options window to specify options for SAS Data Integration Studio. You can
display this window by selecting Tools ð Options ð Code Generation from the menu
bar.

In most cases the appropriate options are selected by default. You can override the defaults
by using one of the options in the following tables.

Table 6.1 Global Options for Jobs

Option Name Description

Enable optional macro variables for new jobs When selected, specifies that optional
metadata macro variables are to be included
in the code that SAS Data Integration Studio
generates for new jobs.

Generate JCL compatible code with an extra
space at beginning of each line

When selected, generates JCL compatible
code with an extra space at the beginning of
each line.

Enable parallel processing macros for new jobs When selected, adds parallel processing
macros to the code that is generated for all new
jobs.

Default grid workload specification Enables you to select a default workload
specification value for all new jobs. For
example, if the grid is partitioned, you can
designate specific applications to run on
designated servers. The grid workload
specification consists of a string value that
must match the name that is defined in the
Platform Computing grid configuration files.
These files are text files that are set up by
administrators when they configure a grid.

Default maximum number of concurrent
processes group box

Contains concurrent processes options.

One process for each available CPU node When selected, sets the number of concurrent
processes to one process for each available
CPU node for all new jobs. Generally, this is
the most effective setting.

Use this number Specifies an exact number of concurrent
processes to run for all new jobs.

About Job Options 131

Option Name Description

Run all processes concurrently When selected, runs all processes
concurrently by using SAS load balancing for
new jobs. Typically, this option is used only
in a grid computing environment where a
managing scheduler, such as Platform
Computing software, is used to handle
workload management for the grid. In a grid
computing environment, you should also
adjust your job slots to match your
environment and perform other necessary
tuning. Too many processes sent to an
overloaded environment can dramatically
reduce performance, and potentially cause
deadlock.

Enable generation of job status handling as last
step for new jobs

When selected, adds job status handling code
as the last step for new jobs.

Use locale-specific date format in generated code
for new jobs

When selected, uses the appropriate date
format for the specific locale in the generated
code for new jobs.

You can set local options that apply to individual jobs by selecting the job and using the
right mouse button to open the pop-up menu. Select Properties and then select the
Options tab. These local options override global options for the selected job, but they do
not affect any other jobs.

Table 6.2 Local Options for Jobs

Option name Description

System Options Enables you to set options by using a SAS
OPTIONS statement.

Enable optional metadata macro variables When set to YES, specifies that optional
macro variables are to be included in the code
that SAS Data Integration Studio generates for
the selected job. This option overrides the
global option with the same name.

Enable parallel processing macros When set to YES, adds parallel processing
macros to the code that is generated for the
selected job. This option overrides the global
option with the same name.

Generate the status handling code as the last step When selected, adds job status handling code
as the last step.

Use locale-specific date format in generated code When selected, uses the appropriate date
format for the specific locale in the generated
code.

132 Chapter 6 • Creating Jobs

Documenting Process Flow Diagrams

Problem
You want to document a process flow diagram by either printing it directly or saving it as
a graphic file. The diagram has been built on the Diagram tab in the Job Editor window
of a SAS Data Integration Studio job.

Solution
You can print or save the process flow diagram from the Job Editor window of an open
job.

Tasks

Print or Save a Process Flow Diagram
Perform the following steps to print or save a process flow diagram:

1. Locate and open the job that contains the process flow diagram that you need to
document.

2. If you want to print the process flow diagram, select File ð Print from the menu bar.
The Print window displays. Then, configure and run the print job. Note that the process
flow diagram is resized to fit the paper that is selected for the printer. Use a plotter for
large process flow diagrams.

3. If you want to print the process flow diagram as a graphic file, select File ð Save
Diagram as Image from the menu bar. A submenu displays the following two options:
Current Page or Entire Diagram. The Entire Diagram option allows the user to save
the entire image, but it is scaled and might lose some resolution for extremely large
images. The Current Page option creates an image of the visible portion of the flow
without scaling. After selecting an option, specify a name and path and click Save to
save the file.

Accessing Local and Remote Data

Data Access Overview
You can access data using the following methods:

• “Access Data in the Context of a Job” on page 134

• “Access Data Interactively” on page 134

• “Use a Data Transfer Transformation” on page 135

Data Access Overview 133

Access Data in the Context of a Job
You can access data implicitly in the context of a job. When code is generated for a job, it
is generated in the current context. The context includes the default SAS Application Server
when the code was generated, the credentials of the person who generated the code, and
other information. The context of a job affects the way that data is accessed when the job
is executed.

In order to access data in the context of a job, you need to understand the distinction between
local data and remote data. Local data is addressable by the SAS Application Server when
code is generated for the job. Remote data is not addressable by the SAS Application Server
when code is generated for the job.

For example, the following data is considered local in the context of a job:

• data that can be accessed as if it were on one or more of the same computers as the SAS
Workspace Server components of the default SAS Application Server

• data that is accessed with a SAS/ACCESS engine (used by the default SAS Application
Server)

The following data is considered remote in a SAS Data Integration Studio job:

• data that cannot be accessed as if it were on one or more of the same computers as the
SAS Workspace Server components of the default SAS Application Server

• data that exists in a different operating environment from the SAS Workspace Server
components of the default SAS Application Server (such as MVS data that is accessed
by servers running under Microsoft Windows)

Note: Avoid or minimize remote data access in the context of a SAS Data Integration
Studio job.

Remote data has to be moved because it is not addressable by the relevant components in
the default SAS Application Server at the time that the code was generated. SAS Data
Integration Studio uses SAS/CONNECT and the UPLOAD and DOWNLOAD procedures
to move data. Accordingly, it can take longer to access remote data than local data,
especially for large data sets. It is especially important to understand where the data is
located when using advanced techniques such as parallel processing because the UPLOAD
and DOWNLOAD procedures run in each iteration of the parallel process.

For information about accessing remote data in the context of a job, administrators should
see the section on "Multi-Tier Environments" in the "SAS Data Integration Studio" chapter
of the SAS Intelligence Platform: Desktop Application Administration Guide.
Administrators should also see “Using Deploy for Scheduling to Execute Jobs on a Remote
Host” on page 188. For details about the code that is generated for local and remote jobs,
see the subheadings about LIBNAME statements and remote connection statements in
“Common Code Generated for a Job” on page 138.

Access Data Interactively
When you use SAS Data Integration Studio to access information interactively, the server
that is used to access the resource must be able to resolve the physical path to the resource.
The path can be a local path or a remote path, but the relevant server must be able to resolve
the path. The relevant server is the default SAS Application Server, a server that has been
selected, or a server that is specified in the metadata for the resource.

For example, in the external file wizards, the Server tab in the Advanced File Location
Settings window enables you to specify the SAS Application Server that is used to access

134 Chapter 6 • Creating Jobs

the external file. This server must be able to resolve the physical path that you specify for
the external file.

As another example, assume that you use the Open option to view the contents of a table
in the Inventory tree. If you want to display the contents of the table, the default SAS
Application Server or a SAS Application Server that is specified in the library metadata
for the table must be able to resolve the path to the table.

In order for the relevant server to resolve the path to a table in a SAS library, one of the
following conditions must be met:

• The metadata for the library does not include an assignment to a SAS Application
Server, and the default SAS Application Server can resolve the physical path that is
specified for this library.

• The metadata for the library includes an assignment to a SAS Application Server that
contains a SAS Workspace Server component, and the SAS Workspace Server is
accessible in the current session.

• The metadata for the library includes an assignment to a SAS Application Server, and
SAS/CONNECT is installed on both the SAS Application Server and the machine
where the data resides. For more information about configuring SAS/CONNECT to
access data on a machine that is remote to the default SAS Application Server,
administrators should see the section on "Multi-Tier Environments" in the "SAS Data
Integration Studio" chapter of the SAS Intelligence Platform: Desktop Application
Administration Guide.

Note: If you select a library that is assigned to an inactive server, you receive a “Cannot
connect to workspace server” error. Check to make sure that the server assigned to the
library is running and is the active server.

Use a Data Transfer Transformation
You can use the Data Transfer transformation to move data directly from one machine to
another. Direct data transfer is more efficient than the default transfer mechanism.

For example, assume that you have the following items:

• a source table on machine 1

• the default SAS Application Server on machine 2

• a target table on machine 3

You can use SAS Data Integration Studio to create a process flow diagram that moves data
from the source on machine 1 to the target on machine 3. By default, SAS Data Integration
Studio generates code that moves the source data from machine 1 to machine 2 and then
moves the data from machine 2 to machine 3. This is an implicit data transfer. For large
amounts of data, this might not be the most efficient way to transfer data.

You can add a Data Transfer transformation to the process flow diagram to improve a job's
efficiency. The transformation enables SAS Data Integration Studio to generate code that
migrates data directly from the source machine to the target machine. You can also use the
Data Transfer transformation with a SAS table or a DBMS table whose table and column
names follow the standard rules for SAS names.

Use a Data Transfer Transformation 135

Viewing or Updating Job Metadata

Problem
You want to view or update the metadata that is associated with a job. All jobs have basic
properties that are contained in metadata that is viewed from the job properties window. If
you want SAS Data Integration Studio to generate code for the job, then the job must also
have a process flow diagram. If you supply the source code for a job, then no process flow
diagram is required. However, you might want to create one for documentation purposes.

Solution
You can find metadata for a job in its properties window or process flow diagram.

Tasks

View or Update Basic Job Properties
Perform the following steps to view or update the metadata that is associated with the job
properties window:

1. Find the job on the SAS Data Integration Studio desktop. Common job locations include
the following:

• the Jobs folder in the Inventory tree

• the My Folder folder

• the Shared Data folder

• a folder nested in the User folder

2. Right-click the desired job. Then, click Properties in the pop-up menu to access the
properties window for the job.

3. Click the appropriate tab to view or update the desired metadata.

For details about the metadata that is maintained on a particular tab, click the Help button
on that tab. The Help topics for complex tabs often include task topics that can help you
perform the main tasks that are associated with the tab.

View or Update the Job Process Flow Diagram
Perform the following steps to view or update the process flow diagram for a job:

1. Locate the job.

2. Open the job by using one of the following methods:

• Double click the job.

• Right-click the job. Then, click Open in the pop-up menu.
Both methods display the process flow diagram for the job in the Diagram tab in the
Job Editor window.

3. View or update the metadata displayed in the process flow diagram by using one of the
following methods:

136 Chapter 6 • Creating Jobs

• To update the metadata for tables or external files in the job, see “Viewing or
Updating Table Metadata” on page 68 or “Viewing or Updating External File
Metadata” on page 111.

• To update the metadata for transformations in the job, see “Viewing or Updating
the Metadata for Transformations” on page 165.

• To add a transformation to a process flow diagram, select the transformation and
drop it in the Job Editor window.

Note: Updates to job metadata are not reflected in the output for that job until you rerun
the job. For details about running jobs, see “Submitting a Job for Immediate Execution”
on page 142.

Displaying the SAS Code for a Job

Problem
You want to display the SAS code for a job. (To edit the SAS code for a job, see “About
User-Written Code” on page 213.)

Solution
You can display the SAS code for a job on the Code tab of the Job Editor window or on
the Code tab of a job properties window. In either case, SAS Data Integration Studio must
be able to connect to a SAS Application Server with a SAS Workspace Server component
in order to generate the SAS code for a job. See “Connecting to a SAS Metadata Server”
on page 26.

Tasks

View SAS Code in the Code Tab of a Job Editor Window
You can view the code for a job that is currently displayed in the Job Editor window. To
do this, click the Code tab. The job is submitted to the default SAS Application Server and
to any server that is specified in the metadata for a transformation within the job. The code
for the job is displayed on the Code tab.

View SAS Code on the Code Tab in the Job Properties Window
Perform the following steps to view the code for a job that is not displayed in the Job Editor
window:

1. Expand the Jobs folder in the Inventory tree on the SAS Data Integration Studio
desktop.

2. Right-click the job that you want to view, and then select Properties from the pop-up
menu.

3. Click the Code tab in the properties window to review the code.

4. Click OK to close the properties window.

Tasks 137

Common Code Generated for a Job

Overview
When SAS Data Integration Studio generates code for a job, it typically generates the
following items:

• “LIBNAME Statements” on page 138

• “SYSLAST Macro Statements” on page 138

• “Remote Connection Statements” on page 139

• “Macro Variables for Status Handling” on page 140

• “User Credentials in Generated Code” on page 140

The generated code includes the user name and password of the person who created the
job. You can set options for the code that SAS Data Integration Studio generates for jobs
and transformations. For details, see “About Job Options” on page 130.

LIBNAME Statements
When SAS Data Integration Studio generates code for a job, a library is considered local
or remote in relation to the SAS Application Server that executes the job. If the library is
stored on one of the machines that is specified in the metadata for the SAS Application
Server that executes the job, it is local. Otherwise, it is remote.

SAS Data Integration Studio generates the appropriate LIBNAME statements for local and
remote libraries.

The following syntax is generated for a local library:

libname libref <"lib-specification"> <connectionOptions> <libraryOptions> <schema=databaseSchema> <user=userID> <password=password>;

The following syntax is generated for a remote library:

options comamid=connection_type;
%let remote_session_id=host_name <host_port>;
signon remote_session_id <user=userID password=password>;
rsubmit remote_session_id;
libname libref <engine> <"lib-specification"> <connectionOptions> <libraryOptions> <password=password>;
endrsubmit;

SYSLAST Macro Statements
The Options tab in the property window for most transformations includes a field that is
named Create SYSLAST Macro Variable. This field specifies whether SAS Data
Integration Studio generates a SYSLAST macro statement at the end of the current
transformation. In general, accept the default value of YES for the Create SYSLAST
Macro Variable option when the current transformation creates an output table that should
be the input of the next transformation in the process flow. Otherwise, select NO.

When you select YES for a transformation, SAS Data Integration Studio adds a SYSLAST
macro statement to the end of the code that is generated for the transformation. The syntax
of this statement is as follows:

138 Chapter 6 • Creating Jobs

%let
SYSLAST=transformation_output_table_name;

The value represented by

transformation_output_table_name

is the name of the last output table created by the transformation. The SYSLAST macro
variable is used to make

transformation_output_table_name

the input for the next step in the process flow. In most cases, this setting is appropriate.

Setting the value to NO is appropriate when you have added a transformation to a process
flow if that transformation does not produce output, or if it produces output that should not
become the input to the next step in the flow. The following example illustrates a sample
process flow.

Display 6.9 Process Flow with a Custom Error Handling Transformation

In this example, the Custom Error Handing transformation contains user-written code that
handles errors from the Extract transformation, and the error-handling code does not
produce output that should be become the input to the target table, ALL_MALE_EMP.
Instead, the output from the Extract transformation should become the input to
ALL_MALE_EMP. The Custom Error Handling transformation was created with the User
Written Code transformation. This particular instance of the transformation was renamed
to Custom Error Handling.

In this example, you would do the following:

• Leave the Create SYSLAST Macro Variable option set to YES for the Extract
transformation.

• Set the Create SYSLAST Macro Variable option to NO for the Custom Error
Handing transformation.

Remote Connection Statements
Each transformation within a job can specify its own execution host. When SAS Data
Integration Studio generates code for a job, a host is considered local or remote in relation
to the SAS Application Server that executes the job. If the host is one of the machines that
is specified in the metadata for the SAS Application Server that executes the job, it is local.
Otherwise, it is remote.

A remote connection statement is generated if a remote machine has been specified as the
execution host for a transformation within a job, as shown in the following sample
statement:

options comamid=connection_type;
%let remote_session_id=host_name <HOST_PORT>;
SIGNON remote_session_id <USER=userID password=password>;rsubmit
remote_session_id;

Remote Connection Statements 139

 ... SAS code ...
endrsubmit;

Macro Variables for Status Handling
When SAS Data Integration Studio generates the code for a job, the code includes a number
of macro variables that can be used to monitor the status of jobs. For details, see “About
Status Handling for Jobs and Transformations” on page 167.

User Credentials in Generated Code
The code that is generated for a job contains the credentials of the user who created the
job. If a user's credentials are changed and a deployed job contains outdated user
credentials, the deployed job fails to execute. The solution is to redeploy the job with the
appropriate credentials. For details, see “About Deploying Jobs for Scheduling” on page
185.

140 Chapter 6 • Creating Jobs

Chapter 7
Managing Jobs

About Managing Jobs . 142

Submitting a Job for Immediate Execution . 142
Problem . 142
Solution . 142
Tasks . 143

Meeting Prerequisites for Collecting Job Statistics . 145

Reviewing a Successful Job . 145
Problem . 145
Solution . 145
Tasks . 145

Diagnosing and Correcting an Unsuccessful Job . 150
Problem . 150
Solution . 150
Tasks . 150

Maintaining Column Mappings . 154
Problem . 154
Solution . 154
Tasks . 154

Managing the Scope of Column Changes in Jobs . 158
Problem . 158
Solution . 158
Tasks . 158

Managing Connections in Job Editor Windows . 162
Problem . 162
Solution . 162
Tasks . 162

Viewing the Code for a Transformation . 164
Problem . 164
Solution . 164
Tasks . 164

Viewing or Updating the Metadata for Transformations . 165
Problem . 165
Solution . 165
Tasks . 165

141

About Managing Jobs
Once you have a created a SAS Data Integration Studio job, you need to be able to run it,
check its status, review warnings and errors, examine statistics, and trace the control flow
of the job. These job management practices are covered in the following topics:

• “Submitting a Job for Immediate Execution” on page 142

• “Meeting Prerequisites for Collecting Job Statistics” on page 145

• “Reviewing a Successful Job” on page 145

• “Diagnosing and Correcting an Unsuccessful Job” on page 150

• “Maintaining Column Mappings” on page 154

• “Managing the Scope of Column Changes in Jobs” on page 158

• “Managing Connections in Job Editor Windows” on page 162

Submitting a Job for Immediate Execution

Problem
You want to execute a job immediately.

Solution
You can submit a job from the Job Editor window after you have defined its metadata.
Until you submit a job, its output tables (or targets) might not exist on the file system. Note
that you can open multiple jobs in multiple process designer windows and submit each job
for execution. These jobs execute in the background, so you can do other tasks in SAS Data
Integration Studio while a job is executing. Each job has its own connection to the SAS
Application Server so that the jobs can execute in parallel. Perform the following tasks:

• “Submit a Complete Job” on page 143

• “Submit Selected Transformations in a Job” on page 143

• “Submit a Segment of a Job” on page 144

• “Submit a Job One Step at a Time” on page 144

• “Submit a Job to a Grid” on page 144

Note: Two jobs that load the same target table should not be executed in parallel. They
will either overwrite each other's changes, or they will try to open the target at the same
time.

The SAS Application Server that executes the job must be installed, and the appropriate
metadata must be defined for it. For details, see “Selecting a Default SAS Application
Server” on page 30.

142 Chapter 7 • Managing Jobs

Tasks

Submit a Complete Job
You can submit a job that is displayed in a Job Editor window. Click Run on the toolbar
for the job, or right-click on a blank space in the job and click Run in the pop-up menu.
The job is submitted to the default SAS Application Server and to any server that is specified
in the metadata for a transformation within the job.

Submit Selected Transformations in a Job
You can submit selected transformations in a job that is displayed in a Job Editor window.
This function enables you to submit a portion of a job without submitting the entire job.
For example, you can re-sort a long job without consuming the resources that are required
if you submit the entire job. Perform the following steps to submit selected transformations
in a job:

1. Control-click the transformations that you want to submit for execution. (You can
simply click a single transformation.)

2. Click Run Selected Transformations. The portion of the job is submitted to the default
SAS Application Server and to any server that is specified in the metadata for a
transformation within the job. The following display shows a partial job that has been
submitted.

Display 7.1 Sample Submission of a Partial Job

Note that the Run Selected Transformations button is circled in the display. (The Sort
transformation is also highlighted.) The following display shows the output from the
partial submission.

Tasks 143

Display 7.2 Data from a Partial Submission

Before the partial submission, the EMP_SORT table was sorted by the Sex column.
The partial submission added the Age column to the search. Note that the data is sorted
first by sex and then by age.

Submit a Segment of a Job
You can submit a segment of a job that either begins or ends at a selected transformation.
To begin a job submission at a selected transformation, select the transformation and click
Run From Selected Transformation on the Job Editor window toolbar. To end a job
submission at a selected transformation, select the transformation and click Run To
Selected Transformation on the toolbar.

Submit a Job One Step at a Time
You can submit a job by running one step at a time. Click Step on the Job Editor window
toolbar to move through the job on a step-by-step basis. You can click Continue on the
toolbar to run the remainder of the job in a single submission.

Submit a Job to a Grid
You can submit a job to a grid provided that the job is grid-enabled and the default SAS
Application Server is configured for grid computing. To grid-enable a job, click Yes in the
drop-down menu in the Enable parallel processing macros field on the Options tab of
the properties window for the job.

For additional information about server requirements, system administrators should see the
grid chapter in the SAS Intelligence Platform: Application Server Administration Guide.

If a Grid Server Component is available, you can select the component in the Server drop-
down menu on the Job Editor window toolbar. Then, click Submit in the toolbar to submit
the job to the grid.

144 Chapter 7 • Managing Jobs

Meeting Prerequisites for Collecting Job Statistics
In order to track performance statistics for a SAS Data Integration Studio job, the following
prerequisites must be met:

• The logging facility must be enabled on the SAS Workspace Server that executes the
job. The logging facility is enabled by default. For more information, administrators
should see the logging chapters in the SAS Intelligence Platform System Administration
Guide.

• The collect runtime statistics option must be enabled for the job. To collect runtime
statistics for an existing job, open the job in the Job Editor window. Then, right-click
the canvas and select Collect Runtime Statistics. To collect runtime statistics for all
new jobs, select Tools ð Options ð Job Editor. Then, select the check boxes for
Collect Runtime Statistics and Collect Table Statistics.

Note: The collect runtime statistics option is on by default for a job. Some servers have
the ARM statistics enabled by default (for example, workspace, batch, and other
servers), but other servers do not (for example, stored process server).

Reviewing a Successful Job

Problem
You have run a successful job and want to review data about the job. You also want to
examine the job output.

Solution
You can use the interactive tools that are provided with the Job Editor window. Perform
the following tasks:

• “Check the Status Tab” on page 145

• “Examine the Statistics Tab” on page 146

• “Examine the Control Flow Tab” on page 149

• “Review the Job Output” on page 149

Tasks

Check the Status Tab
Click Status in the Details section of the Job Editor window to display the status of each
step in the job. If the Details section is not displayed, click Details in the View menu in
the SAS Data Integration Studio menu bar. The following display shows a Status tab that
confirms that all of the steps in a sample job were completed successfully.

Tasks 145

Display 7.3 Successfully Completed Sample Job

Note: The runtime status of each node in a job is also shown on the node on the
Diagram tab. The following markers are placed on the jobs:

• a green check for a status of complete

• a yellow triangle for a warning

• red X for an error
In addition, you can review the basic properties of any object in the job. Click the object
on the Diagram. Then, examine the Basic Properties pane for the object.

Examine the Statistics Tab
Click Statistics in the Details section to display a tabular or graphic presentation of statistics
about the progress of the job. Click the icon for the Display table view for the statistics
tab on the Statistics toolbar to view a table of statistics. The following display shows the
table for the sample job.

146 Chapter 7 • Managing Jobs

Display 7.4 Sample Statistics Table

The statistics table includes the following columns:

• Order

• Name

• Status

• Records

• Start Time

• End Time

• Duration

• CPU Time

• Current Memory

• System Memory

• Current I/O

• System I/O

• Server

• Threads

You can click the icon for the Display graph view for the statistics tab on the Statistics
toolbar to display a graphical chart. Select Line Graph to display a graph that charts one
or more of the following values for the job:

• CPU

• I/O

• OS I/O

• Memory

• OS Memory

• Real

• Records

Click Select to choose the values that are included in the graph. The following display
shows a line graph of the sample job.

Tasks 147

Display 7.5 Sample Line Graph

Note that you can display a summary for a step in the job by positioning the cursor over
its node.

Select Bar Chart to display a bar chart that illustrates the process duration of each
transformation that is included in the job. Click Select to pick a single transformation or
all transformations for inclusion in the graph. The following display shows a bar chart of
the sample job.

Display 7.6 Sample Bar Chart

You can display a detailed summary for a transformation by hovering the mouse over its
bar.

If you don't see the output that you expect on the Statistics tab, then you can perform the
following troubleshooting tasks:

• When you execute jobs interactively and have runtime statistics enabled, output should
be produced. If not, verify that the server is properly configured. See the "Use ARM
to Display Runtime Statistics" section in the "Administering SAS Data Integration
Studio" chapter of the SAS Intelligence Platform: Desktop Application Administration
Guide.

• When runtime statistics and table counts are enabled but zero records are returned for
the row count, verify that the table is not a view. A zero row count is returned for all
views.

• Input and output counts are based on the input and output that are provided by the
operating system. When a job has steps that are run on various operating systems, these
numbers reflect the metrics that are returned by the operating system.

148 Chapter 7 • Managing Jobs

Examine the Control Flow Tab
Click Control Flow in the Details section to access a table that consists of the
transformations that are included in the job. These transformations are listed in the order
in which they are run in the job. The following display shows the control flow table for the
sample job.

Display 7.7 Sample Control Table

You can click Validates the control flow to make sure that the flow is valid. You can also
drag a row to a higher or lower position in the table by clicking on the row number and
moving the row either up or down. This action moves the transformation included in the
row to a different position in the flow; it is run in an earlier or later position.

Control order is the order in which the nodes are run in a job. A warning in the control flow
panel can be displayed when a step is ordered to run before the step that creates its data has
run. For example, suppose there are two steps in a job in which Step 1 creates data that
Step 2 uses, and Step 2 is ordered to run before Step 1. This arrangement forces Step 2 to
run before its data is created. Step 2 is unlikely to run correctly because it doesn’t have its
data yet. If an out of order scenario is detected, then a warning icon is displayed to warn
users that they might have steps out of order. However, they can still run the steps out of
order if they choose.

Review the Job Output
Right-click the target table of the job. Then, click Open in the pop-up window to see the
output. The target table for the sample job is shown in the following display.

Display 7.8 Sample View Data Window

You can also review basic details about the job in the Runtime Manager at the bottom of
the SAS Data Integration Studio window. If the Runtime Manager is not displayed, click
Runtime Manager in the View menu in the SAS Data Integration Studio menu bar. The
Runtime Manager is shown in the following display.

Tasks 149

Display 7.9 Sample Runtime Manager

Diagnosing and Correcting an Unsuccessful Job

Problem
You have run a job that was not successfully completed. You need to diagnose the problems
with the job and correct them.

Solution
You can use the interactive tools that are provided with the Job Editor window. Perform
the following tasks:

• “Examine the Diagram Tab” on page 150

• “Check the Status Tab” on page 151

• “Read the Warnings and Errors Tab” on page 151

• “Examine the Problem in the Log Tab” on page 152

• “Fix the Problem” on page 153

• “Run the Job and Check the Results” on page 153

Tasks

Examine the Diagram Tab
You can easily see the transformations on the Diagram tab that generated error messages
when the job was run. The transformations with errors are outlined in red and marked with
a red dot in the bottom right corner. You can also click a red dot to see the error message
in a sticky note window, as shown in the following display.

Display 7.10 Transformation Error in a Sample Job

150 Chapter 7 • Managing Jobs

Note: When there are many warning or error messages, only the first few messages are
shown in the sticky note due to performance reasons. You can set a limit on the number
of messages at the following location: Tools ð Options ð Job Editor ð Maximum
number of warnings and errors to display per step.

Check the Status Tab
Click Status in the Details section of the Job Editor window to display the status of each
step in the job. If the Details section is not displayed, click Details in the View menu in
the SAS Data Integration Studio menu bar. The following display shows a Status tab that
shows that two of the steps in a sample job that resulted in errors.

Display 7.11 Unsuccessful Sample Job

Read the Warnings and Errors Tab
Double-click on an error in the Status column of the Status tab to display the error in the
Warnings and Errors tab.

Tasks 151

Display 7.12 Sample Warning and Errors Tab

The following links are available on the Warnings and Errors tab to help you diagnose
and correct the problem with the job:

• The Transformation Name: displays the transformation that is highlighted on the
Diagram tab

• Code: displays the code for the transformation that is highlighted on the Code tab

• Log: displays the error on the Log tab

• Properties: displays the properties window for the transformation

Examine the Problem in the Log Tab
Click Log on the Warnings and Errors tab to display the error on the Log tab. When you
submit a job for execution, the SAS log is now updated at the end of each DATA step or
procedure in the job. Therefore, you can use the SAS log to monitor the progress of each
step in a job as it executes.

The following display shows the error in highlighted text. The log is scrolled to show both
the error and the relevant lines in the code.

Display 7.13 Sample Log Tab

The error corresponds to the code, which is missing a value for where Height >.

152 Chapter 7 • Managing Jobs

Fix the Problem
Click Properties on the Warnings and Errors tab to display the properties tab for the
appropriate transformation in the sample job. Then, click the appropriate tab and correct
the error, as shown in the following display.

Display 7.14 Sample Where Properties Tab

You can fix the sample job by correcting the text in the Expression Text field and saving
the values in the properties window. After the correction, the expression text reads Height
> 60.

Run the Job and Check the Results
You can verify that the job is corrected. First, run the job and right-click the target table.
Then, click Open in the pop-up menu to see the output. The target table for the sample job
is shown in the following display.

Display 7.15 Sample View Data Window

Tasks 153

Maintaining Column Mappings

Problem
You want to create or maintain the column mappings between the source tables and the
target tables in a SAS Data Integration Studio job. Mapping is the ability to create a
relationship between a source and target column. The following mapping types are
supported:

1-to-1
no expression is needed to create the column in the target from the source.

derived
an expression is required to create the column in the target based on the source.

Solution
You create or maintain column mappings in the Mappings tab. The Mappings tab is
available in the following places in a job:

• the Details section in the Job Editor window (when a transformation node is selected
in the Diagram tab of the Job Editor window.

• the properties window for a transformation when the transformation has been added to
the Diagram tab in the Job Editor window. The Mappings tab is not displayed in the
properties window for a transformation in a tree or a folder.

Perform the following tasks:

• “Create Automatic Column Mappings” on page 154

• “Create One-to-One Column Mappings” on page 156

• “Create Derived Column Mappings” on page 156

• “Delete Column Mappings” on page 157

• “Use the Options for Mappings” on page 157

Tasks

Create Automatic Column Mappings
You can review the mappings that are automatically generated when a transformation is
submitted for execution in the context of a SAS Data Integration Studio job. The mappings
are depicted on the Mappings tab. A Mappings tab from a sample job is shown in the
following display.

154 Chapter 7 • Managing Jobs

Display 7.16 Automatic Column Mappings

The arrows in the preceding display represent mappings that associate source columns with
target columns. By default, SAS Data Integration Studio automatically creates a mapping
when a source column and a target column have the same column name, data type, and
length. Events that trigger automatic mapping include:

• connecting a source and a target to the transformation on the Diagram tab

• clicking Propagate in the toolbar or in the pop-up menu in the Job Editor window

• clicking Propagate on the Mappings tab toolbar and selecting a propagation option

• clicking Map all columns on the Mappings tab toolbar

Note: When a transformation that is included in a job has multiple source or target tables,
a drop-down menu is added to the top of the field. This menu enables you to select each
individual table or all of the tables at once.

SAS Data Integration Studio might not be able to automatically create all column mappings
that you need in a transformation. It automatically creates a mapping when a source column
and a target column have the same column name, data type, and length. However, even
though such mappings are valid, they might not be appropriate in the current job.

You can also disable or enable automatic mapping for a transformation. For example,
suppose that both the source table and the target table for a transformation have two columns
that have the same column name, data type, and length, as shown in the preceding display.
These columns are mapped automatically unless you disable automatic mapping for the
transformation. If you delete the mappings between these columns, the mappings are
restored upon a triggering event, such as clicking Propagate or Map all columns.

You can use the following methods to disable automatic mapping:

• disable automatic mapping globally for new SAS Data Integration Studio jobs. Select
or deselect Automatically map columns on the Job Editor tab in the Options window.
To access the Options window, click Options in the Tools menu on the SAS Data
Integration Studio menu bar.

• disable automatic mapping for the job. Deselect Automatically Map Job on the drop-
down menu that is displayed when you click Settings on the toolbar at the top of the
Job Editor window.

• disable automatic mapping for the transformation in a job. Deselect Include
Transformation in Mapping on the drop-down menu that is displayed when you click
Settings on the toolbar at the top of the Mappings tab.

Note: If you disable automatic mapping for a transformation, you must maintain its
mappings manually.

Tasks 155

Create One-to-One Column Mappings
You need to manually map between a column in the source table and a column in the target
table. Perform the following steps to map between two columns:

1. Open the Mappings tab.

2. Click the column in the source table.

3. Hold down the CTRL key and click the column in the target table.

4. Click Map selected columns on the Mappings tab toolbar.

You can also create a mapping in the Mappings tab by clicking on a source column and
dragging a line to the appropriate target column.

Create Derived Column Mappings
A derived mapping is a mapping between a source column and a target column in which
the value of the target column is a function of the source column. For example, you can
use a derived column to accomplish the following tasks:

• Write the date to a Date field in the target when there is no source column for the date.

• Multiply the value of the Price source column by 1.06 to get the value of the
PriceIncludingTax target column.

• Write the value of the First Name and Last Name columns in the source table to the
Name field in the target table.

You can use the techniques that are illustrated in the following table to create different
types of derived column mappings. All of the techniques are used on the Mappings tab in
the properties window for the transformation.

Table 7.1 Derived Column Techniques

Technique Description

Directly enter
an expression
into an
Expression
field

You can create any type of expression by entering the expression directly into
an Expression field. The expression can be a constant or an expression that
uses the values of one or more source columns. For example, you can create a
sample expression that writes today's date to a Date column in a target table.
Perform the following steps:

1. Double-click in the field in which you want to enter the expression. A cursor
displays in the field. (The button disappears.)

2. Enter your expression into the field. For example, to write today's date to
every row in a column, you can enter the expression &SYSDATE.

Create
expressions
that use no
source
columns

Some transformations such as Extract, Lookup, and SCD Type 2 Loader
provide an Expression column in the target table. You can perform the following
steps to enter an expression into this column that does not use source columns:

1. Right-click in an Expression column. Then, click Advanced in the pop-up
menu to access the Expression window.

2. Use the Expression Builder to create an expression. Then, click OK to save
the expression, close the Expression window, and display the expression
in the selected column in the target table.

156 Chapter 7 • Managing Jobs

Technique Description

Create
expressions
that use a single
source column

Assume that you want to define the value of a DiscountedPrice column in the
target by using the Price source column in an expression. This is possible if the
discount is a constant, such as 6 percent. That is, you might want to define an
expression as Price * .94. You could perform the following steps:

1. Select the Price source column and the DiscountedPrice target column.

2. Right-click either selected variable, and select Expression from the pop-up
menu. Then, select Advanced to access the Expression window.

3. Use the Expression Builder to create an expression. Then, click OK to save
the expression, close the Expression window, and display the expression
in the selected column in the target table.

Create
expressions
that use two or
more source
columns

You can create a derived mapping that uses two or more source columns.
Perform the following steps:

1. Select the source columns and target column to be used in the mapping. For
example, you can use the values of the Price and Discount columns in the
source in an expression. Then, the result can be written to the
DiscountedPrice column in the target.

2. Review the warning that displays because two source columns are mapped
to a single target column.

3. Right-click either selected variable, and click Expression from the pop-up
menu. Then, select Advanced from the submenu to access the Expression
window.

4. Create the expression, which is Price - (Price * (Discount / 100)) in this
example. Then, click OK to save the expression, close the Expression
window, and display the expression in the selected column in the target
table.

Delete Column Mappings
You can delete a column mapping in the Mappings tab by using one of the following
methods:

• Click the arrow that connects a column in the Source table field to a column in the
Target table field. Then, press the DELETE key.

• Right-click the arrow that connects a column in the Source table field to a column in
the Target table field. Then, click Delete Mappings in the pop-up menu.

Note: You must disable automatic mapping for a transformation in order to delete
mappings that are otherwise automatically created.

Use the Options for Mappings
You can use the toolbar or the pop-up menu in the Mapping tab of the properties window
to control the behavior of the tab. To access the Help for the Mapping tab, click on the
Help button at the top of the SAS Data Integration Studio window. Under the folder for
Windows and Other Components, select the Popup Menus icon. Click on the Pop-Up
Menu Options for Mapping link.

Tasks 157

Managing the Scope of Column Changes in Jobs

Problem
You have added columns and you need to determine the scope of these additions. Select
one of the following scenarios:

• No propagation: Adding column changes to the output of a single transformation in a
job

• Automatic propagation: Automatically adding column changes to tables in a specified
direction

• Manual propagation: Manually controlling the addition of column changes in specified
paths and directions

Note that you can propagate column changes only in the context of a job. If you add column
changes in the properties window for a table from a tree or a folder, the propagate and
mapping options that you see on the Mappings tab in a job are not available. In that case,
you must remember to map and propagate the column changes when you later use the
altered table in a job. Therefore, it is generally more efficient to make and propagate your
columns directly in the jobs where you need them.

Solution
You can use an appropriate propagation control in a SAS Data Integration Studio job to
enable or disable automatic propagation or to exercise manual control over propagation
functions. Perform the following tasks:

• “Managing Automatic Propagation” on page 158

• “Managing Manual Propagation” on page 159

Tasks

Managing Automatic Propagation
Automatic propagation sends column changes to tables when process flows are created. If
you disable automatic propagation and refrain from using manual propagation, you can
propagate column changes on the Mappings tab for a transformation that are restricted to
the target tables for that transformation. Automatic propagation controls are explained in
the following table.

158 Chapter 7 • Managing Jobs

Table 7.2 Automatic Propagation Controls

Level Control Set Propagation Direction

Global Automatically propagate columns in the
Automatic Settings group box on the Job
Editor tab in the Options window. (Click
Options in the Tools menu to display the
window.) This option controls automatic
propagation of column changes in all new
jobs.

Select one of the following
directions in the Propagation
Direction group box:

• From beginning to end

• From end to beginning

Job Automatically Propagate Job in the drop-
down menu that displays when you click
Settings in the toolbar on the Diagram tab
in the Job Editor window. This option
controls automatic propagation of column
changes in the currently opened job.

Select one of the following
directions in the drop-down
menu:

• From Beginning to End

• From End to Beginning

Process flow Propagate Columns in the pop-up menu
on the Diagram tab in the Job Editor
window. This option controls automatic
propagation of column changes in the
process flow in a currently opened job.

Select one of the following
directions in the pop-up menu:

• To Beginning

• To End

Transformation Include Transformation in Propagation
in the drop-down menu that displays when
you click Settings in the toolbar on the
Mappings tab. This option controls
automatic propagation of column changes
in the selected transformation.

Not applicable

Transformation Include Selected Columns in
Propagation in the drop-down menu that
displays when you click Settings in the
toolbar on the Mappings tab to propagate
changes to columns that you select in the
source or target tables for the selected
transformation.

Not applicable

The Mappings tab is available in the following locations:

• the Details section in the Job Editor window

• the properties windows for any transformation that is included on the Diagram tab of
the Job Editor window

The Mappings tab performs the same functions and contains the same items in both
locations.

Managing Manual Propagation
Add, delete, or update the columns in your job. Manual propagation controls are explained
in the following table.

Tasks 159

Table 7.3 Manual Propagation Options

Level Control Function Direction

Job Propagate Job in the
toolbar in the Diagram
tab in the Job Editor
window

Propagates column
changes in the job.

Uses the direction set
with Settings on the Job
Editor toolbar.

Process flow Propagate Columns in
the pop-up menu in the
Diagram tab in the Job
Editor window

Propagates column
changes in the process
flow in a specified
direction.

Use the following
directions:

• To Beginning

• To End

Transformation Propagate from
sources to targets in the
toolbar in the
Mappings tab

Propagates column
changes in the process
flow from source
tables to target tables.

From source tables to
target tables.

Transformation Propagate from
targets to sources in the
toolbar in the
Mappings tab

Propagates column
changes in the process
flow from target
tables to source
tables.

From target tables to
source tables.

Transformation Propagate in pop-up
menus in the Source
table field and the
Target table field

Specifies a path and a direction for propagating
column changes. See the table that follows for
details.

Transformation Propagate columns in
the toolbar on the
Mappings tab

Specifies a path and a direction for propagating
column changes. See the table that follows for
details.

The following table specifies the available path and direction options for the Propagate
field and Propagate columns field on the Mappings tab for a transformation.

Table 7.4 Propagation Path Options

Path Direction

For the Propagate option in pop-up menus in the Source table field and the Target table field

To Targets • From Sources

• From Beginning

• From End

From Targets • To Sources

• To Beginning

• To End

160 Chapter 7 • Managing Jobs

Path Direction

Selected Target Columns • To Sources

• To Beginning

• To End

Update Selected Target
Columns

• To Sources

• To Beginning

• To End

For the Propagate columns in the toolbar on the Mappings tab

To Targets • From Sources

• From Beginning

• From End

To Sources • From Targets

• From Beginning

• From End

From Targets • To Sources

• To Beginning

• To End

From Sources • To Targets

• To Beginning

• To End

Selected Target Columns • To Sources

• To Beginning

• To End

Selected Sources Columns • To Targets

• To Beginning

• To End

Update Selected Target
Columns

• To Sources

• To Beginning

• To End

Update Selected Sources
Columns

• To Targets

• To Beginning

• To End

Tasks 161

Managing Connections in Job Editor Windows

Problem
You need to manage the input and output connections for the objects in a SAS Data
Integration Studio job. For example, you might need to switch an input table for a
transformation with an output table.

Solution
You can use the Connections window for an object on the Diagram tab in the Job Editor
window to review or change the input and output connections for the object. You can access
the Connections window for the following objects:

• a table

• a transformation

• a temporary output table

Perform the following tasks:

• “Review the Connections for the Object” on page 162

• “Change the Inputs and Outputs for the Object” on page 163

Tasks

Review the Connections for the Object
The Connections window displays the input and output nodes for any selected object in
the Job Editor window. For example, you can display the Connections window for an object
in the sample job shown in the following display.

Display 7.17 Initial Process Flow

Perform the following steps to review the connections for an object in the job.

1. Right-click the object that you need to review. Then, click Connections in the pop-up
menu to display the Connections window. The following display shows the
Connections window for the Extract transformation in the sample job.

162 Chapter 7 • Managing Jobs

Display 7.18 Connections Window

2. Review the inputs and outputs for the object. Note that the ALL_EMP table is listed as
an input node in the Input Ports field. In addition, the ALL_FEMALE_EMP is listed
as an output node in the Output Ports field. Both fields also include a Selector button.
This button is displayed only when the node can be deleted or replaced with another
object in the job.

Change the Inputs and Outputs for the Object
The input and output selector windows enable you to change the connections in and out of
the objects that are contained in the job. Perform the following steps to display and use a
selector window.

1. Click the Selector button to display the selector window for an input or output node.
The following display shows the Input Selector window for the Extract transformation
in the sample job.

Display 7.19 Input Selector Window

Note that the Connected Node field contains the input and the output tables for the
job. The field also contains a <none> field, which you can use to remove the input table
to the transformation entirely. The display shows the target table,
ALL_FEMALE_EMP selected.

2. Click OK to save the change to the input node for the object.

3. Use selector windows to change any other objects that you need to update. Then, save
the changes.

Tasks 163

4. Click OK in the Connections window to close the window and save the changes to the
job. The following display shows the updated sample job after the source and target
tables are dragged to their appropriate places on the Diagram tab.

Display 7.20 Updated Process Flow

The source table and the target table have exchanged places.

Viewing the Code for a Transformation

Problem
You want to view the code for a transformation that is included in an existing SAS Data
Integration Studio job.

Solution
You can view the metadata for a transformation in the transformation's Code window. This
window is available only when the transformation is included in a SAS Data Integration
Studio job.

Tasks

View the Code in a Transformation
Perform the following steps to access the code in a transformation that is included in a SAS
Data Integration Studio job:

1. Open an existing SAS Data Integration Studio job.

2. Right-click the transformation in the Job Editor window that contains the code that you
want to review. Then, click Properties in the pop-up menu to access the properties
window for the transformation.

3. Open the Code tab, and review the code for the transformation.

4. Click View Step Code to access the View Step Code window. Review the code for the
step in the job that includes the selected transformation.

5. Close the View Step Code window and the properties window for the transformation.

164 Chapter 7 • Managing Jobs

Viewing or Updating the Metadata for
Transformations

Problem
You want to view or update the metadata for a transformation. This metadata can include
the metadata for column mappings and the metadata that specifies whether you or SAS
Data Integration Studio will supply the code for the transformation.

Solution
You can view or update the metadata for a transformation in the transformation's properties
window. This window is available only when the transformation is included in a SAS Data
Integration Studio job.

Tasks

Access the Metadata for a Transformation
Perform the following steps to access the metadata for a transformation that is included in
a SAS Data Integration Studio job:

1. Open an existing SAS Data Integration Studio job.

2. Right-click the transformation in the Job Editor window that contains the metadata that
you need to review or update. Then, click Properties.

3. Click the appropriate tab to view or update the desired metadata.

For details about the metadata that is maintained on a particular tab, click Help on that tab.
The Help topics for complex tabs often include task topics that can help you perform the
main tasks that are associated with that tab. Updates to transformation metadata are not
reflected in the output for that transformation until you rerun the job in which the
transformation appears.

Tasks 165

166 Chapter 7 • Managing Jobs

Chapter 8
Managing the Status of Jobs and
Transformations

About Status Handling for Jobs and Transformations . 167

Default Conditions, Actions, and Conditional Action Sets 168
Overview . 168
Default Conditions . 168
Default Actions . 169
Conditional Action Sets . 171

Prerequisites for Actions . 172

Perform Actions Based on the Status of a Job . 173
Problem . 173
Solution . 174
Tasks . 174

Perform Actions Based on the Status of a Transformation 175
Problem . 175
Solution . 175
Tasks . 175

Macro Variables for Status Handling . 177
Overview . 177
Example: Macro Variables for Status Handling in Generated Code 177
Macro Variables for Status Handling in User-Written Code 182

About Status Handling for Jobs and
Transformations

When you execute a SAS Data Integration Studio job, a return code for each transformation
in the job is captured in a macro variable. The return code for the job is set according to
the least successful transformation in the job. These return codes can be used to test for
certain conditions, such as Successful or Lookup Failed. Use the Status Handling tab in
the property window for jobs and transformations to specify an action that should be
performed when a certain condition is met, such as Send Email or Send Event. In this
way, you can specify actions based on the status of a job or transformation when it is
executed.

For example, if a lookup fails in the process flow for a job, the job can be terminated, and
a status message can be sent to a person, to a file, or to an event broker that passes the status
message to another application. You can also use status handling to capture job statistics,
such as the number of records before and after an append of the last table loaded in the job.

167

To capture statistics about a job, select the desired condition to be tested for the job, such
as Successful, then associate that condition with the Send Job Status action.

Default Conditions, Actions, and Conditional
Action Sets

Overview
SAS Data Integration Studio provides a number of default conditions, actions, and
condition action sets. These are displayed in the Inventory tree and the Folders tree.
Typically, however, you do not interact with these objects in the tree view. Instead, you
use the Status Handling tab in the property windows of jobs and transformations.

Note: If you want to add user-defined condition templates, action templates, or condition
action set templates, contact your SAS representative.

Default Conditions
All of the default conditions are listed in the following table and in the Condition folder
in the Inventory tree. Only those conditions that are valid for a job or for a specific kind of
transformation are displayed on the Status Handling tab.

Table 8.1 Default Conditions

Condition Description

Data Exception An exception occurred as the Data Validation transformation
processed data.

Data Modified The transformation modified data.

Errors in Process There was an error in a process.

Errors This checks for return code > 4.

Lookup Failed The lookup value was not found.

Lookup Table Missing The lookup table is missing.

No Lookup Rows There are no rows in the lookup table.

Send Job Status The job status table is created.

Successful This checks for return code=0.

Successful RC=1, RC=2. and
RC=3

This condition is not used.

Table Created A table is created in physical storage.

Table Does Not Exist Table does not exist in physical storage.

168 Chapter 8 • Managing the Status of Jobs and Transformations

Condition Description

Table Dropped The table is deleted.

Table Not Match Meta This identifies when the table does not match the metadata.

Table Truncated The table is truncated.

Warnings This checks for return code > 3.

Default Actions
You can specify an action that should be performed when a certain condition is met. When
you select a condition on the Status Handling tab, only those actions that are valid for that
condition are available to be selected. The Input column in the following table describes
the values that are required by some actions.

Table 8.2 Default Actions

Action Description Input

Abort Terminates the job or
transformation.

None.

Abort After Looping Completes all of the processes in the
loop and then terminates the job.

None.

Abort All Processes Terminates all of the currently
executing and remaining processes.

None.

Abort Remaining Terminates all of the remaining
processes after the current process
executes.

None.

Add Row to Error Table Adds a row to an error table for a
Lookup transformation.

None.

Add Row to Exception
Table

Adds a row to an exception table, as
specified by the transformation.

None.

Custom Calls SAS code to provide user-
defined status handling for a job or
transformation. Examples include
SAS code added to the Precode and
Postcode tab in a job or
transformation, or a macro in a SAS
Autocall library.

In the Custom Code field,
enter a call to the user-
defined code. One example is
the following call to a macro
in a SAS Autocall library:
%sendcustom;

Do Not Create Report Prevents the creation of an exception
report.

None.

Email Report Sends an exception report to the
specified e-mail address.

E-mail address.

Default Actions 169

Action Description Input

Save Report Saves the exception report to the
specified location.

Location for the exception
report.

Save Table Saves status messages to a table.
Consecutive messages are appended
to the table with a timestamp.

Table name in the
LIBREF.DATASET SAS
format. The libref must be
assigned before the job or
transformation executes.

Send Email Sends an e-mail message that you
specify.

One or more recipient e-mail
addresses and a message in
the options window. To
specify more than one e-mail
address, enclose the group of
addresses in parentheses,
enclose each address in
quotation marks, and
separate the addresses with a
space, as in
user1@domain.com and
user2@domain.com. Any
text in the Message field that
includes white space must be
enclosed by single quotation
marks so that the mail is
processed correctly.

Send Entry to Data Set Saves status messages to a SAS data
set. Consecutive messages are
appended to the data set with a
timestamp.

Data set name in the
LIBREF.DATASET SAS
format. The libref must be
assigned before the job or
transformation executes.

Send Entry to File Sends text to the specified filename. Physical path to a file; text of
the message.

Send Event If an event broker is configured, this
action sends a status message to the
event broker, which sends the
message to applications that have
subscribed to the broker. The
subscribing applications can then
respond to the status of the SAS Data
Integration Studio job or
transformation.

For details about the options
for the Send Event action, see
the SAS Data Integration
Studio Help for the Event
Options window.

Send Job Status Updates the job status table with a
record when the current job
completes.

Data set name in the
LIBREF.DATASET SAS
format. The libref must be
assigned before the job or
transformation executes.

Set Target Column Value Sets the target column to the
specified value; accessible from the
Lookups tab of the Lookup
transformation property window.

SAS expression.

170 Chapter 8 • Managing the Status of Jobs and Transformations

Action Description Input

Set Target Column Value
to Missing

Sets the target column value to
missing; accessible from the
Lookups tab of the Lookup
transformation property window.

None.

Skip the Record Skips a record that has an error. None.

Conditional Action Sets
All of the default action sets are listed in the following table and in the Conditional Action
Sets folder in the Inventory tree. Typically you do not interact with these sets. They provide
status handling for the standard SAS Data Integration Studio transformations.

Table 8.3 Default Conditional Action Sets

Conditional Action Sets Description

Data Exception Condition: Data Exception

Actions: None, Send Email, Send Entry to Dataset, Send
Entry to File, Send Event, Do not create report, Email Report,
Save Report. Save Table

Send Job Status Condition: Send Job Status

Actions: None, Send Job Status

Set Data Modified Condition: Data Modified

Actions: None, Custom, Send Email, Send Entry to Dataset,
Send Entry to File, Send Event

Set Error in Process Condition: Error in Process

Actions: None, Custom, Send Email, Send Entry to Dataset,
Send Entry to File, Abort All Processes, Abort Remaining,
Abort After Looping, Send Event

Set Errors Condition: Errors

Actions: None, Custom, Send Email, Send Entry to Dataset,
Send Entry to File, Abort, Send Event

Set Lookup Not Found Condition: Lookup Failed

Actions: None, Abort, Add Row to Error Table, Add Row to
Exception Table, Set Target Column Value, Set Target
Column Value to Missing, Skip the Record

Set Lookup Table Missing Condition: Lookup Table Missing

Actions: None, Abort, Add Row to Error Table, Add Row to
Exception Table, Set Target Column Value, Set Target
Column Value to Missing, Skip the Record

Conditional Action Sets 171

Conditional Action Sets Description

Set Lookup Table Missing
Records

Condition: No Lookup Rows

Actions: None, Abort, Add Row to Error Table, Add Row to
Exception Table, Set Target Column Value, Set Target
Column Value to Missing, Skip the Record

Set Successful Condition: Successful

Actions: None, Custom, Send Email, Send Entry to Dataset

Set Successful return code =1 Not used

Set Successful return code =2 Not used

Set Successful return code =3 Not used

Set Table Created Condition: Table Created

Actions: None, Custom, Send Email, Send Entry to Dataset

Set Table Different Condition: Table Different

Actions: None, Custom, Send Email, Send Entry to Dataset,
Send Entry to File, Send Event

Set Table Does Not Exist Condition: Table Does Not Exist

Actions: None, Custom, Send Email, Send Entry to Dataset,
Send Entry to File, Send Event

Set Table Dropped Condition: Table Dropped

Actions: None, Custom, Send Email, Send Entry to Dataset,
Send Entry to File, Send Event

Set Table Truncated Condition: Table Truncated

Actions: None, Custom, Send Email, Send Entry to Dataset,
Send Entry to File, Send Event

Set Warnings Condition: Warnings

Actions: None, Custom, Send Email, Send Entry to Dataset,
Send Entry to File, Send Event

Prerequisites for Actions
Some actions that can be selected on the Status Handling tab require server setup, as
described in the following table.

172 Chapter 8 • Managing the Status of Jobs and Transformations

Table 8.4 Prerequisites for Status Handling Actions

Action Description

Any action that sends
e-mail.

E-mail must be enabled for the SAS Workspace Server that executes
the job that includes the action. For more information, administrators
should see the section called "Add or Modify E-Mail Settings for SAS
Application Servers" in the SAS Intelligence Platform: Application
Server Administration Guide.

Send Event SAS Foundation Services must be installed, and the Event Broker
Service must be properly configured for the software that receives the
events. For more information, see the documentation for SAS
Foundation Services and for the software that receives the events.

Custom The Custom action enables you to call SAS code to provide user-defined
status handling for a job or transformation. Examples include SAS code
that is added to the Precode and Postcode tab in a job or transformation,
or a macro in a SAS Autocall library. The SAS code must have valid
SAS syntax based on the location it is being called from.

If you call a macro in a SAS Autocall library, the SAS Application
Server that executes the job must be able to access the relevant Autocall
library. For details about making Autocall macro libraries available to
SAS Data Integration Studio, see the “Administering SAS Data
Integration Studio” chapter in the SAS Intelligence Platform: Desktop
Application Administration Guide.

Any action that
requires a libref

The libref must be assigned before the job or transformation executes.
To assign a library within SAS Data Integration Studio, you can select
the Pre and Post Process tab in the properties window for the job or
transformation and then specify a SAS LIBNAME statement as a
preprocess.

To assign a library outside of SAS Data Integration Studio, you can pre-
assign the library to the SAS Application Server that is used to execute
the job. Some tasks that are associated with pre-assigning a SAS library
must be done outside of SAS Data Integration Studio or SAS
Management Console. For details, see the “Assigning Libraries”
chapter in SAS Intelligence Platform: Data Administration Guide.

Note: If an action requires you to specify a physical path, then use relative paths for
portability.

Perform Actions Based on the Status of a Job

Problem
When a job is executed, you want certain actions to be performed automatically based on
the status of the job.

Problem 173

Solution
You can use the Status Handling tab in the properties window for a job to specify one or
more pairs of conditions and actions. These conditions and actions apply to the job as a
whole.

Perform the following tasks:

• “Specify Conditions and Actions for the Job” on page 174

• “Run the Job and Verify the Status Handling Output” on page 174

Some actions require server setup, as described in “Prerequisites for Actions” on page
172.

Tasks

Specify Conditions and Actions for the Job
Perform the following steps to specify actions to be performed automatically based on the
status of a job.

1. Right-click the job in a tree view and select Properties from the menu.

2. Click the Status Handling tab.

3. Click New. A default condition and action are displayed in the first row of the table.

4. To replace the default condition, use the selection arrow to select another condition,
such as Error.

5. To replace the default action, use the selection arrow to select another action, such as
Send Email. If the action requires information from you, the Action Options window
appears.

6. Use the Action Options window to specify any values that are required by the action.
For example, a Send Email action requires an e-mail address.

7. Select more conditions and actions, as desired.

8. Click OK to close the properties window.

Run the Job and Verify the Status Handling Output
Perform the following steps to run the job and verify the status handling output.

1. Right-click the job in a tree view and select Open from the menu. The job opens in the
Job Editor.

2. Click Run.

3. If any of the conditions that you specified are met, then the actions that you specified
should be performed.

174 Chapter 8 • Managing the Status of Jobs and Transformations

Perform Actions Based on the Status of a
Transformation

Problem
When a job is executed, you want certain actions to be performed automatically based on
the status of a transformation in the job.

Solution
If the transformation has its own Status Handling tab, you can use this tab to specify one
or more pairs of conditions and actions for the transformation. If the transformation does
not have its own Status Handling tab, you can insert a Return Code Check transformation
into the process flow, after the transformation that you want to monitor. A Return Code
Check transformation can specify conditions and actions for the preceding transformation
in a process flow.

Accordingly, use one of the following methods:

• “Use the Status Handling Tab for the Transformation You Want to Monitor” on page
175

• “Add a Return Code Check Transformation After the Transformation You Want to
Monitor” on page 176

Then verify the job as described in “Run the Job and Verify the Status Handling Output”
on page 176. Some actions require server setup, as described in “Prerequisites for Actions”
on page 172.

Tasks

Use the Status Handling Tab for the Transformation You Want to
Monitor
Perform the following steps when a transformation has its own Status Handling tab, and
you want to specify actions to be performed automatically based on the status of the
transformation.

1. Right-click the appropriate job in a tree view and select Open from the menu. The job
opens in the Job Editor.

2. Right-click the desired transformation in the process flow and select Properties from
the menu

3. Click the Status Handling tab.

4. Click New. A default condition and action are displayed in the first row of the table.

5. Some transformations check for only one status condition. Others might have several
conditions to choose from. To replace the default condition, use the selection arrow to
select another condition, such as Error.

6. To replace the default action, use the selection arrow to select another action, such as
Send Entry to File. If the action requires information from you, the Action Options
window appears.

Tasks 175

7. Use the Action Options window to specify any values that are required by the action.
For example, a Send Entry to File action requires a physical path to a file.

8. Select more conditions and actions, as desired.

9. Click OK to close the properties window.

You are now ready to run the job and verify the status handling output.

Add a Return Code Check Transformation After the Transformation
You Want to Monitor
Perform the following steps when a transformation does not have its own Status
Handling tab, and you want to specify actions to be performed automatically based on the
status of the transformation.

1. Right-click the appropriate job in a tree view and select Open from the menu. The job
opens in the Job Editor.

2. Open the Control folder in the Transformations tree. Right-click the Return Code
Check transformation, and then select Add to Diagram. The Return Code Check
transformation is added to the end of the process flow of the job. The next display shows
an example process flow for a job with a Return Code Check transformation.

Display 8.1 Process Flow with a Return Code Check Transformation

3. Verify that Return Code Check transformation will be executed immediately after the
transformation that you want to monitor. For example, in the preceding display, the
Return Code Check transformation is executed immediately after the Sort
transformation. Any actions and conditions that are specified in the Return Code Check
transformation are applied to the Sort transformation.

If you need to change the execution order of the transformations in a process flow,
select View ð Details from the menu bar on the desktop. On the Details pane, click
Control Flow tab. Use that tab to change the execution order of the transformations.

4. To specify actions and conditions, right-click the Return Code Check transformation
in the process flow and select Properties from the menu.

5. Click the Status Handling tab.

6. Use the Status Handling tab to specify conditions and actions, as described in “Use
the Status Handling Tab for the Transformation You Want to Monitor” on page 175.
These conditions and actions are checked for the preceding transformation in the
process flow.

7. Click OK to close the properties window.

You are now ready to run the job and verify the status handling output.

Run the Job and Verify the Status Handling Output
Perform the following tasks to run the job and verify the status handling output.

176 Chapter 8 • Managing the Status of Jobs and Transformations

1. Right-click the appropriate job in a tree view and select Open from the menu. The job
opens in the Job Editor.

2. Click Run.

3. If any of the conditions that you specified are met, the actions that you specified should
be performed.

Macro Variables for Status Handling

Overview
The following topics examine the use of macro variables in status handling:

• “Example: Macro Variables for Status Handling in Generated Code” on page 177

• “Macro Variables for Status Handling in User-Written Code” on page 182

When SAS Data Integration Studio generates the code for a job, the code includes the
following macro and macro variables:

• RCSET: This macro sets the values of the TRANS_RC and JOB_RC variables. Accepts
numeric values or autocall macros as parameters. For example, you can pass a numeric
value of 9999 to RCSET, using the following syntax:

%RCSET(9999);

You can also pass one of the following autocall macros to RCSET:

• &syserr — used to set TRANS_RC and JOB_RC for SAS procedures and the SAS
DATA STEP.

• &syslibrc — used to set TRANS_RC and JOB_RC for SAS LIBNAME statements.

• &sqlrc — used to set TRANS_RC and JOB_RC for the SQL procedure and pass-
through statements.

The syntax is as follows:

%RCSET(&syslibrc);

• TRANS_RC: This variable is cleared at the beginning of generated code for each
transformation. The RCSET macro resets the TRANS_RC variable after each library
assignment statement and after the main generated code for the transformation. If the
transformation has more than one processing step, then the TRANS_RC macro is set
to the highest value.

• JOB_RC: This variable is set to 0 at the top of the job. It is not cleared as the code for
the job is executed. At the end of the job, the RCSET macro sets the JOB_RC variable
to the highest return code value of the entire job.

Example: Macro Variables for Status Handling in Generated Code
Suppose that you created a simple job in which a SAS table named ADVERSE is loaded
into another SAS table named ADVERSE2. There is a one-to-one mapping of columns
from ADVERSE to ADVERSE2. SAS Data Integration Studio generates the following
code for this job. Note how the status handling macro and macro variables are used.

Example: Macro Variables for Status Handling in Generated Code 177

/*--
* Name: Simple Load Job
* Description: Code generated for Server SASMain
* Generated: Tue Jun 29 13:29:09 EDT 2008
--/
/* This is the setup required to capture the transformation return code */
%let JOB_RC=0;
%let TRANS_RC=0;
%global SQLRC;
%global SYSERR;

%macro RCSET(error);
%if (&error gt &TRANS_RC) %then
%let TRANS_RC=&error;
%if (&error gt &JOB_RC) %then
%let JOB_RC=&error;
%mend RCSET;

%let TRANS_RC=0;

options VALIDVARNAME=ANY;
/*
* Access the data for Test_lib
*/
LIBNAME testlib BASE "C:\sources\test";

%RCSET(&syslibrc);

%let SYSLAST=%nrquote(testlib."ADVERSE"n);

/***
* Name: Loader
* Description: Codegen
* Generated: Tue Jun 29 13:29:09 EDT 2008
**/
%let SYSOPT=;

%global DBXRC;
%global DWNUMIDX;
%global DBXLAST;
%let DBXRC=-1;
%let DWNUMIDX=-1;
%let DBXLAST=&SYSLAST;

/*--
* Name: DBWALOAD
* Description: Define load data macro
* Generated: Tue Jun 29 13:29:09 EDT 2008
--/
%macro dbwaload;

/* Determine if the target table exists */
%let DBXRC = %sysfunc(exist(testlib."ADVERSE_SORTED"n, DATA));

%if &DBXRC>0 %then
%do; /* if table exists*/

178 Chapter 8 • Managing the Status of Jobs and Transformations

/*--
* Name: Truncate
* Description: Truncate a table
* Generated: Tue Jun 29 13:29:09 EDT 2008
--/
%put NOTE: Truncating table ...;

/* get the constraints from the table */
proc contents data = testlib."ADVERSE_SORTED"n
out2 = work.etls_constraints
noprint;
run;

/* get the number of constraints (number of rows) */
%let etl_numRows = 0;
%let etl_dsid=%sysfunc(open(work.etls_constraints));
%if (&etl_dsid gt 0) %then
%do;
%let etl_numRows = %sysfunc(attrn(&etl_dsid, NOBS));
%let etl_dsid = %sysfunc(close(&etl_dsid));
%end;

%let etl_primaryKey = NO;

%if (&etl_numRows gt 0) %then
%do; /* table has constraints */

/* determine if another table has a foreign key that points to this table */
data work.etls_constraints;
set work.etls_constraints;
type = upcase(type);
if (type eq "REFERENTIAL") then
do;
call symput("etl_primaryKey", "YES");
stop;
end;

/* delete any indexes that are created by another constraint */
if (type eq "INDEX" and ICOwn eq "YES") then
delete;
run;

%end; /* table has constraints */

%if (&etl_primaryKey eq YES) %then
%do; /* table has primary key and referential constraints */

data _null_;
put "WARNING: Because the target table has referential integrity "
constraint(s), an attempt will be made to truncate the table using "
the 'delete&039: statement in sql. This procedure may fail if the "
constraints are violated. Note that if the procedure is successful,
the rows will only be logically deleted, not physically deleted.";
run;

Example: Macro Variables for Status Handling in Generated Code 179

/* logically delete all the records from the table */
proc sql;
delete * from testlib."ADVERSE_SORTED"n;
quit;

%RCSET(&sqlrc);

%end; /* table has primary key and referential constraints */

%else
%do; /* table does not have a primary key and referential constraints */

%if (&etl_numRows gt 0) %then
%do; /* table has constraints */

/* delete the constraints from the table */
proc datasets lib=testlib nolist;
modify "ADVERSE_SORTED"n;
ic delete _all_;
quit;

%end; /* table has constraints */

/* physically delete all the records from the table */
data testlib."ADVERSE_SORTED"n;
set testlib."ADVERSE_SORTED"n;
stop;
run;

%RCSET(&syserr);

%if (&etl_numRows gt 0) %then
%do; /* table has constraints */

/* recreate the constraints on the table */
data _null_;

set work.etls_constraints end=eof;

if _n_ eq 1 then
do;
call execute("proc datasets lib=testlib nolist;");
call execute(& modify "ADVERSE_SORTED"n;');
end;

call execute(" " || recreate);

if eof then
call execute("quit;");

run;

%RCSET(&syserr);

%end; /* table has constraints */

180 Chapter 8 • Managing the Status of Jobs and Transformations

%end; /* table does not have a primary key and referential constraints */

%put NOTE: Deleting work.etls_constraints...;
proc datasets lib=work nolist nowarn memtype=(data view);
delete etls_constraints;
quit;

%end; /* if table exists*/

/*--
* Name: Create Table
* Description: Create a new table
* Generated: Tue Jun 29 13:29:09 EDT 2008
--/
%if &DBXRC=0 %then
%do; /* if table does not exist*/

%put NOTE: Creating table ...;

data testlib."ADVERSE_SORTED"n
(label="ADVERSE2");
attrib "aedecod"n length=$21 format=$F21. informat=$F21.
label="AE Decode from Dictionary";
attrib "subjid"n length=8 format=BEST12. informat=F12.
label="Subject ID";
attrib "studyid"n length=$8 format=$F8. informat=$F8.
label="Study ID";
attrib "trtgrp"n length=$8 format=$F8. informat=$F8.
label="Treatment Group";
attrib "bodysys"n length=$20
label="Body System";
attrib "aesev"n length=$10
label="Severity";
attrib "aeout"n length=$15< br> label="Outcome";
stop;
run;

%RCSET(&syserr);

%end; /* if table does not exist*/

%let sqlrc = 0;
/*--
* Name: Append
* Description: Append new data
* Generated: Tue Jun 29 13:29:09 EDT 2008
--/
%put NOTE: Appending data ...;

proc append base=testlib."ADVERSE_SORTED"n
data=&DBXLAST (&SYSOPT) force;
run;
%RCSET(&syserr);

%mend dbwaload;

Example: Macro Variables for Status Handling in Generated Code 181

/*--
* Name: DBWALOAD
* Description: Execute load data macro
* Generated: Tue Jun 29 13:29:09 EDT 2008
--/
%dbwaload;

Macro Variables for Status Handling in User-Written Code
You can add the RCSET macro and the TRANS_RC and JOB_RC variables to user-written
code, such as the code for the User Written Code transformations and generated
transformations. Use the preceding example as a model for your code.

182 Chapter 8 • Managing the Status of Jobs and Transformations

Chapter 9
Deploying Jobs

About Deploying Jobs . 184

About Deploying Jobs for Scheduling . 185

Prerequisites for Deploying a Job for Scheduling . 185

Deploying Jobs for Scheduling . 185
Problem . 185
Solution . 185
Tasks . 185

Redeploying Jobs for Scheduling . 187
Problem . 187
Solution . 187
Tasks . 187

Using Scheduling to Handle Complex Process Flows . 187
Problem . 187
Solution . 188
Tasks . 188

Using Deploy for Scheduling to Execute Jobs on a Remote Host 188
Problem . 188
Solution . 188
Tasks . 189

About Deploying Jobs as Stored Processes . 189

Prerequisites for Deploying a Job as a Stored Process . 190
For Administrators . 190
For Users . 190

Deploying Jobs as Stored Processes . 190
Problem . 190
Solution . 190
Tasks . 190

Redeploying Jobs to Stored Processes . 192
Problem . 192
Solution . 192
Tasks . 193

Viewing or Updating Stored Process Metadata . 193
Problem . 193
Solution . 193
Tasks . 194

183

About Deploying Jobs as Web Services . 194

Prerequisites for Web Service Jobs . 195
For Administrators . 195
For Users . 195

Requirements for Web Service Jobs . 195

Creating a Web Service Job . 196
Problem . 196
Solution . 196
Tasks . 197

Deploying a Web Service Job as a Stored Process . 200
Problem . 200
Solution . 200
Tasks . 201

Deploying a Stored Process as a Web Service . 203
Problem . 203
Solution . 203
Tasks . 203

About Deploying Jobs
In a production environment, SAS Data Integration Studio jobs must often be executed
outside of SAS Data Integration Studio. For example, a job might have to be scheduled to
run at a specified time, or a job might have to be made available as a stored process.

Accordingly, SAS Data Integration Studio enables you to do the following tasks:

• Deploy a job for scheduling; see “About Deploying Jobs for Scheduling” on page
185.

• Deploy a job as a SAS stored process; see “About Deploying Jobs as Stored Processes”
on page 189.

• Deploy a job as a SAS stored process that can be accessed by a Web service client; see
“About Deploying Jobs as Web Services” on page 194.

You can also deploy a job in order to accomplish the following tasks:

• Divide a complex process flow into a set of smaller flows that are joined together and
can be executed in a particular sequence; see “Using Scheduling to Handle Complex
Process Flows” on page 187. Alternatively, you can drop jobs into other jobs, and build
up complexity that way as well. For example, you could build an outer job that contains
inner jobs. You might find that these nested jobs provide a more direct and efficient
solution to the problem of creating and scheduling complex process flows. This
approach does not require separate deployment steps. For more information, see
“Creating a Job That Contains Jobs” on page 125.

• Execute a job on a remote host; see “Using Deploy for Scheduling to Execute Jobs on
a Remote Host” on page 188. Alternatively, you can save the SAS code generated by
the job to a file, and then manually move that file to the remote host.

Note: Under change management, only administrators can deploy jobs.

184 Chapter 9 • Deploying Jobs

About Deploying Jobs for Scheduling
You can select a job in the Inventory tree or the Folders tree and deploy it for scheduling.
Code is generated for the job, and the code is saved to a file in a source repository. Metadata
about the deployed job is saved to the current metadata server. The user or administrator
responsible for scheduling jobs can use the appropriate software to schedule the job for
execution.

Here are some of the main tasks that are associated with deploying a job for scheduling:

• “Deploying Jobs for Scheduling” on page 185

• “Redeploying Jobs for Scheduling” on page 187

• “Using Scheduling to Handle Complex Process Flows” on page 187

See also “Prerequisites for Deploying a Job for Scheduling” on page 185.

Prerequisites for Deploying a Job for Scheduling
Administrators must install and configure a SAS Workspace Server for deploying jobs for
scheduling. For more information, see Scheduling in SAS. The administrator then tells SAS
Data Integration Studio users which server and deployment directory to select when
deploying jobs for scheduling.

Deploying Jobs for Scheduling

Problem
You want to schedule a SAS Data Integration Studio job to run in batch mode at a specified
date and time.

Solution
Scheduling a job is a two-stage process:

• Use SAS Data Integration Studio to deploy the job for scheduling. See “Deploy a Job
for Scheduling” on page 185.

• Use other software to schedule the job for execution. For more information, see
Scheduling in SAS.

Tasks

Deploy a Job for Scheduling
Perform the following steps to deploy a job for scheduling:

Tasks 185

1. Right-click the job that you want to deploy. Then, select Scheduling ð Deploy in the
pop-up menu to access the Deploy for a job for scheduling window. The following
display shows the window if you select only one job for deployment.

Display 9.1 Deploy for a Job for Scheduling Window for a Single Job

By default, the deployed job file (in this case, Extract Balances Job.sas) is named after
the selected job. The following display shows the Deploy for a job for scheduling
window used to deploy multiple jobs for scheduling.

Display 9.2 Deploy for Scheduling Window for Multiple Jobs

2. When you deploy more than one job, a separate SAS file is created for each job that
you select. Each deployed job file is named after the corresponding job.

3. In the Batch Server field, accept the default server or select the server that is used to
store the SAS file for the selected job. The next step is to select the job deployment
directory. One or more job deployment directories (source repositories) were defined
for the selected server when the metadata for that server was created.

4. Check the Deployment Directory field to ensure that the deployed job is stored in the
appropriate directory. If the wrong directory is displayed, select another director from
the drop-down list, or click New to create a new directory if you have permission to
create directories on the server.

5. If you selected one job, you can edit the default name of the file that contains the
generated code for the selected job in the Deployed Job Name field of the Deploy for
a job for scheduling window. The name must be unique in the context of the directory
specified in the Deployment Directory field.

6. To deploy the job or jobs, click OK.

Code is generated for the selected job or jobs and is saved to the directory that is specified
in the Deployment Directory field. Metadata about the deployed jobs is saved to the
current SAS Metadata Server. A status window is displayed and indicates whether the
deployment was successful. In the Inventory tree, metadata for the deployed job is added
to the Deployed job folder. This job is now available for scheduling.

186 Chapter 9 • Deploying Jobs

Redeploying Jobs for Scheduling

Problem
After a job has been deployed for scheduling, either the job or the computing environment
changes. For example, additional transformations might be added to the process flow for
the job, or the job might be exported to another environment where the servers and libraries
are different.

Solution
Use the Redeploy Jobs for Scheduling feature to find any jobs that have been deployed for
scheduling, regenerate the code for these jobs, and save the new code to a job deployment
directory. The redeployed jobs can then be rescheduled.

Rescheduling a job is a two-stage process:

• Redeploy the job for scheduling. See “Redeploy a Job for Scheduling” on page 187.

• Use other software to schedule the job for execution. For more information, see
Scheduling in SAS.

Tasks

Redeploy a Job for Scheduling
Perform the following steps to redeploy a job for scheduling:

1. Select Tools ð Redeploy for Scheduling in the menu bar. Any jobs that have been
deployed are found.

2. Click Yes to continue the redeployment process. The Redeployed scheduled jobs
window is displayed. Verify that the appropriate options have been set, and click OK
to redeploy the jobs. Code is generated for all deployed jobs and saved to the job
deployment directory for the SAS Application Server that is used to deploy jobs.

The regenerated code contains references to servers and libraries that are appropriate for
the current environment. The regenerated jobs are now available for scheduling.

Using Scheduling to Handle Complex Process
Flows

Problem
You have a complex job involving joins and transformations from many different tables.
You want to reduce the complexity by creating a set of smaller jobs that are joined together
and can then be executed in a particular sequence.

Problem 187

Solution
Group all of the jobs in the flow together in a single folder in the Folders tree. Perform the
steps in “Schedule Complex Process Flows” on page 188 to deploy and schedule the jobs
in the proper sequence.

As an alternative to the approach described here, you can drop jobs into other jobs and
build up complexity that way. For example, you can build an outer job that contains inner
jobs. You might find that these nested jobs provide a more direct and efficient solution to
the problem of creating and scheduling complex process flows. This approach does not
require separate deployment steps. For more information, see “Creating a Job That Contains
Jobs” on page 125.

Tasks

Schedule Complex Process Flows
Perform the following steps to schedule complex process flows:

1. Divide the complex job into a series of smaller jobs that create permanent tables. Those
tables can then be used as input for succeeding jobs.

2. Keep all of your jobs in the flow together in a single folder in the Folders tree, and give
the jobs a prefix that displays in the appropriate execution order.

3. Deploy the jobs for scheduling.

4. The user responsible for scheduling can use the appropriate software to schedule the
jobs to be executed in the proper sequence.

Using Deploy for Scheduling to Execute Jobs on a
Remote Host

Problem
You want to execute one or more SAS Data Integration Studio jobs that process a large
amount of data on a remote machine and then save the results to that remote machine. In
this case, it might be efficient to move the job itself to the remote machine.

Solution
In order for this solution to work, a SAS Workspace Server and a SAS DATA Step Batch
Server must have been configured on the remote host. For information about this
configuration, administrators should see the "Multi-Tier Environments" section in the SAS
Data Integration Studio chapter of the SAS Intelligence Platform: Desktop Application
Administration Guide. Note especially the “Processing Jobs Remotely” topic.

A SAS Data Integration Studio user can then use the Deploy for Scheduling window to
deploy a job for execution on the remote host. Code is generated for the job and the
generated code is saved to a file on the remote host. After a job has been deployed to the
remote host, it can be executed by any convenient means.

188 Chapter 9 • Deploying Jobs

For example, assume that the default SAS Application Server for SAS Data Integration
Studio is called SASApp, but you want a job to execute on another SAS Application Server
that is called SASApp2. Select SASApp2 in the Deploy for Scheduling window, so that
the code that is generated for the job is local to SASApp2.

Note: Instead of using this deployment mechanism, you can also save the SAS code
generated by the job to a file. Then, you can move that file to the remote host.

Tasks

Deploy One or More Jobs for Execution on a Remote Host
Perform the following steps to deploy jobs for execution on a remote host:

1. In a tree view, right-click the job or jobs that you want to deploy. Then, select
Scheduling ð Deploy in the pop-up menu to access the Deploy for a job for
scheduling window.

2. In the Batch Server field, select the SAS Application Server that contains the servers
on the remote host.

3. In the Deployment Directory field, select a predefined directory where the generated
code for the selected job is stored. If the wrong directory is displayed, click New and
specify the correct directory in the New directory window.

If you selected one job, you can edit the default name of the file that contains the
generated code for the selected job in the Deployed Job Name field. The name must
be unique in the context of the directory that is specified above. Click OK to deploy
the job.

If you selected more than one job, SAS Data Integration Studio automatically generates
filenames that match the job names. If the files already exist, a message asking whether
you want to overwrite the existing files is displayed. Click Yes to overwrite them.
Otherwise, click No.

Code is generated for the current jobs and saved to the directory that is specified in the
Deployment Directory field. Metadata about the deployed jobs is saved to the current
metadata server. In the Inventory tree, metadata for the deployed job is added to the
Deployed job folder. The deployed job can either be scheduled or executed by any
convenient means.

About Deploying Jobs as Stored Processes
You can select a job in the Inventory tree or the Folders tree and deploy it as a SAS stored
process. Code is generated for the stored process and the code is saved to a file in a source
repository. Metadata about the stored process is saved to the current metadata server. The
stored process can be executed as required by requesting applications.

You can use stored processes for Web reporting, analytics, building Web applications,
delivering result packages to clients or the middle tier, and publishing results to channels
or repositories. Stored processes can also access any SAS data source or external file and
create new data sets, files, or other data targets supported by the SAS System.

Here are some of the main tasks that are associated with deploying a job as a stored process:

• “Deploying Jobs as Stored Processes” on page 190

About Deploying Jobs as Stored Processes 189

• “Redeploying Jobs to Stored Processes” on page 192

• “Viewing or Updating Stored Process Metadata” on page 193

See also “Prerequisites for Deploying a Job as a Stored Process” on page 190.

Prerequisites for Deploying a Job as a Stored
Process

For Administrators
The New Stored Process wizard requires a connection to a server that can execute SAS
stored processes. Administrators install and configure the appropriate servers, and then tell
SAS Data Integration Studio users which server and source repository to select when
deploying jobs as stored processes.

Stored processes that can be executed by Web service clients require a connection to a SAS
Stored Process Server. Other stored processes can be executed on a SAS Stored Process
Server or a SAS Workspace Server. For details about how these servers are installed,
configured, and registered on a SAS Metadata Server, see SAS Intelligence Platform:
Application Server Administration Guide.

For Users
To use the stored process feature efficiently, you should be familiar with stored process
parameters, input streams, and result types. For a detailed discussion of stored processes,
see SAS Stored Processes: Developer's Guide.

Deploying Jobs as Stored Processes

Problem
You want to make a job available to any application that can execute a SAS stored process.

Solution
Deploy the job as a stored process.

Tasks

Deploy a Job as a Stored Process
Perform the following steps to deploy a job as a stored process:

1. In the Inventory tree or the Folders tree on the SAS Data Integration Studio desktop,
right-click the job for which you want to generate a stored process. Then select Stored
Process ð New from the pop-up menu. The first window of the Stored Process wizard
is displayed.

190 Chapter 9 • Deploying Jobs

Display 9.3 General Tab

2. In the first window, enter a descriptive name for the stored process metadata. You might
want to use a variation of the job name. Enter other information as desired. For details
about the fields in this window, select Help. Click Next to access the Execution tab
of the wizard.

3. Specify a SAS server, a source repository, a source filename, any input stream, and any
output type (result type) for the new stored process. The following display shows some
sample values for this window.

Tasks 191

Display 9.4 Execution Tab

Click Next to access the Parameters Tab screen, where you can specify any parameters
that you need for the stored process.

4. Click Next to access the Data screen, where you can specify any data sources and targets
that are used by the stored process.

5. Click Finish. A stored process is generated for the current job and is saved to the source
repository. Metadata about the stored process is saved to the metadata server. A
metadata object for the stored process is added to the Stored Process folder in the
Inventory tree.

After the job has been deployed, it can be executed with any application that can execute
a SAS stored process.

Redeploying Jobs to Stored Processes

Problem
After a job has been deployed as a stored process, either the job or the computing
environment changes. For example, additional transformations might be added to the
process flow for the job, or the job might be exported to another environment where the
servers and libraries are different.

Solution
You can select a job for which a stored process has been generated, regenerate code for the
job, and update any stored processes associated with the selected job. See “Redeploy a
Selected Job with a Stored Process” on page 193.

192 Chapter 9 • Deploying Jobs

Alternatively, you can use the Redeploy Jobs to Stored Processes feature to regenerate the
code for most jobs with stored processes and update any stored processes associated with
these jobs. Each redeployed stored process then matches the current version of the
corresponding job. See “Redeploy Most Jobs with Stored Processes” on page 193.

Tasks

Redeploy a Selected Job with a Stored Process
Perform the following steps to select a job for which a stored process has been generated,
regenerate code for the job, and update any stored processes associated with the selected
job:

1. Open the Jobs folder in the Inventory tree.

2. Right-click the job metadata for a stored process.

3. Select Stored Process ð <job_name> ð Redeploy from the pop-up menu to access
Redeploy Jobs to Stored Processes window.

4. Click Yes.

Redeploy Most Jobs with Stored Processes
Perform the following steps to regenerate the code for most jobs with stored processes and
update any stored processes associated with these jobs.

Note: The Redeploy Jobs to Stored Processes feature does not redeploy a job that has been
deployed for execution by a Web service client.

1. From the SAS Data Integration Studio desktop, select Tools ð Redeploy Jobs to
Stored Processes to access the Redeploy Jobs to Stored Processes window.

2. Click Yes.

For each job that has one or more associated stored processes, the code is regenerated for
that job. For each stored process associated with a job, the generated code is written to the
file associated with the stored process. The regenerated code contains references to servers
and libraries that are appropriate for the current SAS Metadata Server.

Viewing or Updating Stored Process Metadata

Problem
You want to update or delete the metadata for a stored process.

Solution
Locate the metadata for the stored process in the Stored Process folder of the Inventory
tree. Display the properties window and update the metadata.

Solution 193

Tasks

Update the Metadata for a Stored Process
Perform the following steps to update the metadata for a stored process that was generated
for a SAS Data Integration Studio job:

1. In the Inventory tree on the SAS Data Integration Studio desktop, locate the Stored
Process folder.

2. Locate the metadata for the stored process that you want to update.

3. To delete the metadata for a stored process, right-click the appropriate process and
select Delete. (The physical file that contains the stored process code is not deleted;
only the metadata that references the file is deleted.)

To view or update the metadata for a stored process, right-click the appropriate process
and select Properties. A properties window for the stored process is displayed.

4. View or update the metadata as desired. For details about the tabs in this window, select
Help.

About Deploying Jobs as Web Services
A Web service is an interface that enables communication between distributed applications,
even if the applications are written in different programming languages or are running on
different operating systems.

After a SAS Data Integration Studio job has been deployed as a stored process, you can
select the stored process in the Inventory tree or the Folders tree and deploy it as a Web
service. Code is generated for the Web service and the code is saved to a file in a source
repository. Metadata about the Web service is saved to the current metadata server. The
Web service can be executed as required by a Web service client.

To deploy a job as a Web service, perform the following tasks:

• Create the job. See “Creating a Web Service Job” on page 196.

• Deploy the job as a stored process. See “Deploying Jobs as Stored Processes” on page
190.

• Deploy the stored process for execution by a Web service client. See “Deploying a
Stored Process as a Web Service” on page 203.

After the job has been deployed, the user responsible for executing the deployed job can
use the appropriate Web service client to access and execute the job. Before deploying a
job as a Web service, you might want to review the general prerequisites that are described
in “Prerequisites for Web Service Jobs” on page 195 and the specific requirements that
are described in “Requirements for Web Service Jobs” on page 195.

194 Chapter 9 • Deploying Jobs

Prerequisites for Web Service Jobs

For Administrators
To deploy a job as a Web service, users must first deploy the job as a stored process.
Accordingly, the prerequisites that are described in “Prerequisites for Deploying a Job as
a Stored Process” on page 190 must be met.

The Deploy as a Web Service wizard requires a URL to a Web Service Maker. This URL
is available when administrators have installed one of the following:

• SAS BI Web Services for .NET, which is part of SAS Integration Technologies

• SAS Web Infrastructure Platform (WIP) and its associated components, which is
included in the BI Server and EBI Server software

For Users
To use the Web service feature efficiently, you should be familiar with stored processes,
XML tables, SAS XML libraries, Web services, and Web service clients. For more
information about SAS XML libraries, see the SAS XML LIBNAME Engine: User's
Guide.

Requirements for Web Service Jobs
A Web service job is a SAS Data Integration Studio job that is designed to be executed by
a Web service client. The process flow for a Web service job has these requirements:

• The job can receive zero or more inputs from the Web service client that executes the
job.

• The job can send zero or one output to the client that executes the job.

• Input to the job from the client, and output from the job to the client, must be in XML
table format.

• The XML tables that specify client input or output in the job must be members of a
SAS XML library. For details about SAS XML libraries, see the SAS XML LIBNAME
Engine: User's Guide.

• The XML table for a client input can have an XMLMap associated with it through the
library. An XMLMap can help the XML LIBNAME engine to read the table. However,
the XML table that specifies a client output cannot have an XMLMap associated with
it through the library.

• The XML table for each client input or output in the job must have a unique libref.

• The XML table for each client input or output in the job must be configured as a Web
stream.

The following display illustrates a typical process flow for a Web service job.

Requirements for Web Service Jobs 195

Display 9.5 Sample Process Flow for a Web Service Job

In the sample flow, INTABLE is a metadata object for an input table in XML format.
Convert Temp GT is a generated transformation with custom SAS code that processes the
input. OUTTABLE is a metadata object for an output table in XML format. The small blue
circle that overlays the table icons indicates that the input table and output table are
configured as Web streams.

The preceding Web service job is deployed as a stored process. Then the stored process is
deployed as a Web service. Users with Web client software access the Web service job,
and they are prompted to supply input. The job processes the input and displays the result
to the Web client.

Creating a Web Service Job

Problem
You want to create a job that can be executed by a Web service client. The job must be
accessed across platforms, and the amount of data to be input and output is not large.

Solution
Create a Web service job, deploy it as a stored process, and then deploy the stored process
as a Web service.

Your first task is to create a Web service job. The job must meet the requirements that are
described in “Requirements for Web Service Jobs” on page 195. One way to meet these
requirements is to create a job with a process flow similar to the flow in the following
display.

Display 9.6 Sample Process Flow for a Web Service Job

In the sample flow, INTABLE is a metadata object for an input table in XML format.
Convert Temp GT is a generated transformation with custom SAS code that processes the
input and produces a result. OUTTABLE is a metadata object for an output table in XML
format. The small blue circle that overlays the table icons indicates that the input table and
output table are configured as Web streams. Users with Web client software access the
Web service job, and they are prompted to supply input. The job processes the input and
displays the result to the Web client.

To create a Web service job, perform the following tasks:

• “Create the XML Inputs and Outputs for the Job ” on page 197

• “Create XML Libraries for the Inputs and Outputs” on page 197

• “Register the XML Inputs and Outputs” on page 198

196 Chapter 9 • Deploying Jobs

• “Create a Generated Transformation That Produces the Desired Output” on page
198

• “Create the Job” on page 200

It is assumed that the general prerequisites have been met, as described in “Prerequisites
for Web Service Jobs” on page 195.

Tasks

Create the XML Inputs and Outputs for the Job
Perform the following steps to create the input and output tables for a Web service job. If
you include test values in these tables, you might find it easier to test your job before it is
deployed.

1. Use an XML editor to create an XML table for each input from the Web service client.
Include test values in the input tables, if desired. Save each table to a separate file. For
the sample job that is shown in Sample Process Flow for a Web Service Job on page
196, the physical name of the input table is InTemp.xml. The XML code for this table
is as follows:

<TABLE>
 <INTABLE>
 <temperature> 40 </temperature>
 <Unit> C </Unit>
 </INTABLE>
</TABLE>

2. Use an XML editor to create an XML table for the output to the Web service client.
Save that table to a file. For the sample job, the physical name of the output table is
OutTemp.xml. The XML code for this table is as follows:

<TABLE>
 <OUTTABLE>
 <CalculatedTemperature> Temperature of 40 degrees Centigrade = 104 degrees Farenheit </CalculatedTemperature>
 </OUTTABLE>
</TABLE>

Create XML Libraries for the Inputs and Outputs
You must create a separate XML library for each input from the Web service client and
each output from the job. SAS XML libraries differ from most SAS libraries in that the
library metadata points to an XML file, not to a directory that contains XML files. The
structure of your XML tables might require you to specify certain options in the library.
For details about SAS XML libraries, see the SAS XML LIBNAME Engine: User's Guide.

Perform the following steps to create the libraries for the input and output tables in a Web
service job:

1. On a file system that is accessible to the Web service client, create directories for the
input and output tables. For the sample job, the physical path of the input directory is
c:\public\input. The physical path of the output directory is c:\public\output.

2. Copy the input and output files that you created to the directories that you created. For
the sample job, the physical path of the input file is c:\public\input\InTemp.xml. The
physical path of the output file is c:\public\output\OutTemp.xml.

3. In SAS Data Integration Studio, to register a library for an input table in XML format,
right-click a destination folder in the Folders tree. Then select New ð Library from
the pop-up menu.

Tasks 197

4. In the New Library wizard, select SAS XML Library and click Next.

5. Use the pages of the wizard to specify values that are appropriate for the library for the
input table. For the sample job, you can enter the following values:

Name: Intemp

Selected Server: SASApp

Libref: intemp

Engine: XML

XML File: c:\public\input\InTemp.xml

XML Type: Generic

Library Access: Blank

6. Repeat steps 1 through 5 for the output library. Use the pages of the wizard to specify
values that are appropriate for that library. For the sample job, you can enter the
following values:

Name: Outtemp

Selected Server: SASApp

Libref: outtemp

Engine: XML

XML File: c:\public\output\OutTemp.xml

XML Type: Generic

Library Access: Blank

Register the XML Inputs and Outputs
Perform the following steps to register the input and output tables for a Web service job:

1. Right-click the input library and click Register Tables in the pop-up menu.

2. Register the input table. For the sample job, the input table is InTemp.xml. For more
information, see “Register a Table with the Register Tables Wizard” on page 65.

3. Right-click the output library and click Register Tables in the pop-up menu.

4. Register the output table. For the sample job, the output table is OutTemp.xml.

Create a Generated Transformation That Produces the Desired
Output
You can use the Transformation Generator wizard to create a custom transformation that
reads input in the form of an XML table, process the input, and then write output in the
form of an XML table. For an introduction to the Transformation Generator wizard, see
“Creating and Using a Generated Transformation” on page 219.

In the sample job, we need a custom transformation that reads values for temperature and
scale, in the format specified by InTemp.xml. The transformation converts the temperature
in one scale to the equivalent temperature in the other scale, and then writes the result in
the format specified by OutTemp.xml.

Perform the following steps or similar steps to create a custom transformation for a job that
can be deployed as a Web service:

198 Chapter 9 • Deploying Jobs

1. Right-click the destination folder in the Folders tree where the new transformation
should be stored. Then select New ð Transformation. The first page of the
Transformation Generator wizard displays.

2. Enter a name for the transformation. In the sample job, the transformation is named
Convert Temp GT.

3. Review other values on this page and make changes as desired, and then click Next.
The SAS Code page displays.

4. Add SAS code that reads input in the form of an XML table, process the input, and
then write output in the form of an XML table. In the sample job, the following SAS
code is added to this page.

data &_OUTPUT;
set &_INPUT;
keep CalculatedTemperature;
length NewTemperature 8.;
if (Unit="F") then
 do;
 NewTemperature=(5/9)*(Temperature-32);
 Unit="C";
 CalculatedTemperature = "Temperature of " || compress(temperature) ||
 " degrees Farenheit = " || compress(NewTemperature) ||
 " degrees Centigrade" ;
 end;
else if (Unit="C") then
 do;
 NewTemperature=(9/5)*(Temperature)+32;
 Unit="F";
 CalculatedTemperature = "Temperature of " || compress(temperature) ||
 " degrees Centigrade = " || compress(NewTemperature) ||
 " degrees Farenheit" ;
 end;
else
 do;
 CalculatedTemperature="Temperature of " || compress(temperature) ||
 " with unit of " || compress(unit) || " cannot be converted ";
 Unit="";
 end;
run;

5. When you are satisfied with the code, click Next . The Options page displays. Specify
options as desired. The sample job does not require any options. When ready, click
Next. The Transform properties page displays.

6. Specify transformation properties as desired. For the sample job, the following
properties are specified:

Transform supports inputs (selected)

Maximum number of inputs (1)

Transform supports outputs (selected)

Maximum number of outputs (1)

Automatically generate delete code for outputs (deselected)

Note: Be sure to deselect the Automatically generate delete code for outputs
property. It is not appropriate for Web service jobs.

Tasks 199

7. Click Finish to save the transformation. In the Folders tree, the custom transformation
appears in the folder that you right-clicked in step 1. In the Transformations tree, the
custom transformation appears in the Ungrouped folder or another category that you
specified in step 3.

Create the Job
Perform the following steps to create the process flow for a job that can be deployed as a
Web service:

1. Right-click the destination folder in the Folders tree where the new job should be stored.
Then select New ð Job. The New Jobs wizard displays.

2. Enter a name for the job. The sample job is named Convert Temp Job. Click OK. An
empty job opens in the Job Editor.

3. Drag your custom transformation from a tree view into the job.

4. Drag an XML input table from a tree view into the job. Connect the input to the custom
transformation. Repeat for as many inputs as you have.

5. Right-click the temporary output table for the transformation and select Replace. Select
the XML output table.

Note: At this point, you should have a complete process flow. The process flow for
the sample job looks similar to the process flow shown in the Sample Process Flow
for a Web Service Job display on page 196.

6. If the metadata for each client input table points to an XML table with test values, you
can test the job in SAS Data Integration Studio. Run the job and note the status
messages. You can right-click the output table and select Open to verify that the values
in the client output table are correct. If not, troubleshoot and correct the job.

Note: After the job is deployed, and the Web client executes the job, any physical table
specified in the metadata for a Web stream input or output is ignored, and data
submitted by the client is used instead.

7. Configure the client input and output as Web streams. Right-click a client input in the
process flow and then select Web Stream from the pop-up menu. Repeat for all inputs
and the output in the job. The Web stream icon, a small blue circle, should overlay the
table icons for all tables in the job.

8. Save and close the job.

Deploying a Web Service Job as a Stored Process

Problem
You want to deploy a Web service job as a stored process so that the stored process can be
deployed as a Web service.

Solution
Use the New Stored Process wizard to deploy a Web service job as a stored process.

200 Chapter 9 • Deploying Jobs

Tasks

Deploy a Web Service Job as a Stored Process
Perform the following steps to deploy a Web service job as a stored process:

1. Right-click the Web service job in a tree view, and select Stored Process ð New from
the pop-up menu. The New Stored Process wizard displays.

2. Accept the default name or specify another name that makes it easier to distinguish the
job from the stored process that you are about to create. For the sample job, the name
is Convert Temp Stp. Enter other values as desired and click Next. The Execution
page displays.

3. Verify that the values in the following fields are appropriate. If not, select an appropriate
value.

SAS Server specifies the name of the SAS server that runs the stored process that you
are defining. For the sample job, this is SAS App – Logical Stored Process Server.

Source code repository specifies the path where the SAS server saves the source code
for the stored process. For the sample job, this path is c:\public\st_processes.

Source file specifies the name of the SAS file that contains the stored process that you
are creating. For the sample job, this is Convert Temp Job.sas.

When ready, click Next. The Parameters page displays.

4. (Optional) Enter parameters if desired. The sample job does not require parameters.
Click Next to go to the Data page.

5. The Data page shows information about the source and target in the job. Verify that the
information on the Data page is appropriate for the stored process that you are creating.
If not, use the New or Edit buttons to specify appropriate values for the source and
target. For example, the following display shows the default information on the Data
page for the sample job.

Tasks 201

Display 9.7 Data Page of the New Stored Process Wizard

To update the source information, select the appropriate row in the Source pane, and
then click Edit. A Modify Data Source window displays. For the sample job, you can
specify values such as the following:

Type: XML Stream

Label: Input Temperature and Unit

Allow rewinding stream: (selected)

Fileref: intemp

Specify schema: (selected)

Schema URI: file:///c:/public/InTable.xsd

Reference namespace: http://server1/test (as specified in the schema)

Reference name: TABLE

Reference type: Schema element

WSDL generation options: embedded

To update the target information, select the appropriate row in the Target pane, and
then click Edit. A Modify Data Target window displays. For the sample job, you can
specify values such as the following.

Type: XML Stream

Label: Output Temperature

Fileref: outtemp

6. Review any changes. Click Finish when ready. A stored process is generated for the
job. A metadata object for the stored process is added to the Stored Process folder in
the Inventory tree.

202 Chapter 9 • Deploying Jobs

You might want to use an appropriate application to run the stored process to ensure that
it works.

Deploying a Stored Process as a Web Service

Problem
You want to deploy a stored process as a Web service, so that it can be executed by a Web
service client.

Solution
Use the Deploy As Web Service wizard to deploy a stored process as a Web service.
Typically, the stored process is created from a Web service job, as described in “Deploying
a Web Service Job as a Stored Process” on page 200.

Tasks

Deploy a Stored Process as a Web Service
Perform the following steps to deploy a stored process as a Web service:

1. Right-click the stored process in a tree view and select Web Service ð New from the
pop-up menu. The Deploy As Web Service wizard displays.

2. Select a URL for the Web Service Maker. If you do not see a URL, contact your
administrator.

3. Specify a name for the Web service. Slashes, backslashes, spaces, and control
characters cannot be used in this field.

4. Typically the Use my current credentials to deploy check box should be selected.
When ready click Next. The Namespace and Keywords page displays.

5. If the defaults are acceptable, click Next. The Confirm Web Service Deployment page
displays.

6. If the defaults are acceptable, click Finish. A Web service is generated. If the operation
is successful, a dialog box is displayed. Click OK to close it. A metadata object is added
to the Web service (generated) folder in the Inventory tree.

After the stored process has been deployed as a Web service, it can be executed with a Web
service client.

Tasks 203

204 Chapter 9 • Deploying Jobs

Chapter 10
Working with Generated Code

About Code Generated for Jobs . 205
Overview . 205
LIBNAME Statements . 206
SYSLAST Macro Statements . 206
Remote Connection Statements . 207
Macro Variables . 207
User Credentials in Generated Code . 208

Displaying the Code Generated for a Job . 209
Problem . 209
Solution . 209
Tasks . 209

Displaying the Code Generated for a Transformation . 209
Problem . 209
Solution . 209
Tasks . 210

Specifying Options for Jobs . 210
Problem . 210
Solution . 210
Tasks . 210

Specifying Options for a Transformation . 210
Problem . 210
Solution . 211
Tasks . 211

Modifying Configuration Files or SAS Start Commands for
Application Servers . 211

About Code Generated for Jobs

Overview
When SAS Data Integration Studio generates code for a job, it typically generates the
following items:

• specific code to perform the transformations used in the job

• a LIBNAME statement for each table in the job

205

• a SYSLAST macro statement at the end of each transformation in the job

• remote connection statements for any remote execution machine that is specified in the
metadata for a transformation within a job

• macro variables for status handling

You can set options for the code that SAS Data Integration Studio generates for jobs and
transformations. For details, see “Specifying Options for Jobs” on page 210 and
“Specifying Options for a Transformation” on page 210.

LIBNAME Statements
When SAS Data Integration Studio generates code for a job, a library is considered local
or remote in relation to the SAS Application Server that executes the job. If the library is
stored on one of the machines that is specified in the metadata for the SAS Application
Server that executes the job, it is local. Otherwise, it is remote.

SAS Data Integration Studio generates the appropriate LIBNAME statements for local and
remote libraries.

Here is the syntax that is generated for a local library:

libname libref <enginer> <"lib-specification"> <connectionOptions> <libraryOptions>
<schema=databaseSchema>
<user=userID>
<password=password>;

Here is the syntax that is generated for a remote library:

options
comamid=connection_type;
%let remote_session_id=host_name <host_port>;
signon
remote_session_id<user=userID>
<password=password>;
rsubmit remote_session_id;
 libname <library details>;
endrsubmit;

rsubmit remote_session_id;
proc download
data=table_on_remote_machine
out=table_on_local_machine;
run;
endrsubmit;

SYSLAST Macro Statements
The Options tab in the property window for most transformations includes a field that is
named Create SYSLAST Macro Variable. This field specifies whether SAS Data
Integration Studio generates a SYSLAST macro variable to hold the name of the
transformation's output table. In general, accept the default value of YES when the current
transformation creates an output table that should be the input of the next transformation
in the process flow. Otherwise, select NO.

206 Chapter 10 • Working with Generated Code

Remote Connection Statements
Most transformations within a job can specify their own execution host. When SAS Data
Integration Studio generates code for a job, a host is considered local or remote in relation
to the SAS Application Server that executes the job. If the host is one of the machines that
is specified in the metadata for the SAS Application Server that executes the job, it is local.
Otherwise, it is remote.

A remote connection statement is generated if a remote machine has been specified as the
execution host for a transformation within a job:

options
comamid=connection_type;
%let remote_session_id=host_name <host_port>;
signon remote_session_id
<user=userID
password=password>;
rsubmit remote_session_id;
... SAS code ...
endrsubmit;

Note: This is done implicitly for users if the machine is remote. Users can also use the
Data Transfer transformation to explicitly handle moving data between machine
environments when needed. The Data Transfer transformation provides more control
over the transfer when needed, such as support for locale-specific settings.

Macro Variables
When SAS Data Integration Studio generates the code for a job, the code includes the macro
variables that are listed in the following table:

Macro Variable Description

etls_jobName Specifies the name as supplied on the job properties panel.

etls_userID Specifies the user ID that is used to generate the code for the job.

_INPUT Specifies the libref.tablename of the first input table.

_INPUT_count Specifies the count of input tables.

_INPUT_connect Specifies the connect statement for the table. This macro
variable is used for explicit passthrough statements.

_INPUT_engine Specifies the library engine. This macro variable can be used for
explicit passthrough statement construction.

_INPUT_memtype Specifies the member type of the table, either DATA or VIEW.
Users can use this variable to write transformation code to enable
creation of views on output tables or to know whether the input
is a VIEW.

Macro Variables 207

Macro Variable Description

_INPUT_options Specifies the table option string, such as COMPRESS=YES
ENCRYPT=YES. This macro option is found on the table
options dialog box from physical storage tab on the table’s
Properties window.

_INPUT_alter Specifies an alter or password option text so the table can be
deleted or altered. This macro variable is a subset of the _options
string.

_INPUT_path Specifies the location of table on metadata server.

_INPUT_type Specifies a macro given by the prompting framework. This
macro variable should always be 1 for usage with SAS Data
Integration Studio.

jobID Specifies the unique metadata ID code that is given to the job
when the job is first created.

JOB_RC Specifies a status handling macro variable that is set and reset
(as the job runs) to be the maximum return code value
(&trans_rc) of the completed transformations.

_OUTPUT_count Specifies the count of output tables.

SYSLAST Specifies the name of the transformation's output table. In
general, accept the default value of YES when the current
transformation creates an output table that should be the input
of the next transformation in the process flow. Otherwise, select
NO.

trans_rc Specifies a status handling macro variable that is set based on
the return code of individual steps within a transformation.

Note: Any variable that begins with _INPUT or _OUTPUT deals with the macros that are
always generated with transformations that have inputs, outputs, or both. _Input and
_output are present on the first table by default because SAS Data Integration Studio
uses a legacy macro set. If identical _INPUT and _INPUT1 variables are present,
_INPUT1 is the name that the user chose when setting up the INPUT macro variable
or the default if a name wasn't specified for the macro.

Users can add references to any of these in user-written code. See “About User-Written
Code” on page 213. SAS Data Integration Studio uses these macro variables in header
comments and in code that is associated with the status handling features of the Return
Code Checker, SQL Join, and loader transformations.

User Credentials in Generated Code
The code that is generated is based on the credentials and permission settings of the user
who generated the code. When required, such as in LIBNAME statements to a relational
DBMS, for passthrough, or for remote machine data movement, the generated code might
also contain embedded credentials, with encoded passwords.

208 Chapter 10 • Working with Generated Code

If the credentials of the person who created the job are changed and a deployed job contains
outdated user credentials, then the deployed job fails to execute. The solution is to redeploy
the job with the appropriate credentials.

Displaying the Code Generated for a Job

Problem
You want to see the code that you generated for a job.

Solution
SAS Data Integration Studio uses the metadata in a job to generate code or to retrieve user-
written code. You can display the SAS code for a job by opening the job in the Job
Editor window and selecting the Code tab. You can also view the SAS Code in the
properties window for an unopened job. Note that SAS Data Integration Studio must be
able to connect to a SAS Application Server with a SAS Workspace Server component in
order to generate the SAS code for a job.

Tasks

View Code Displayed in the Job Editor Window
To view the code for a job that is currently displayed in the Job Editor window, click the
Code tab. The generated code for the job is displayed on the Code tab.

View Code for a Job Not Displayed in the Job Editor Window
Perform the following steps to view the code for a job that is not displayed in the Job
Editor window:

1. Right-click the job. Then, click Properties in the pop-up menu to open the properties
window for the job.

2. Click the Code tab to display the generated code for the job.

Displaying the Code Generated for a
Transformation

Problem
You want to see the code that you generated for a transformation.

Solution
You can review the code for a transformation on the Code tab in the properties window
for the transformation.

Solution 209

Tasks
Perform the following steps to see the generated code for a transformation:

1. Open the properties window for the transformation.

2. Click the Code tab. The code that is generated for the transformation is displayed. The
value in the Code generation mode field defaults to Automatic, which displays both
the generated code for the transformation and the wrapper code that places it into the
job. If you want to see the generated code for the transformation without the wrapper
code, click View Step Code.

Specifying Options for Jobs

Problem
You want to set code generation options for SAS Data Integration Studio jobs, such as
enabling parallel processing and configuring grid processing.

Solution
In most cases the appropriate code generation options are selected by default, but you can
override the default options. Use the Code Generation tab in the Options window to set
global options for all new jobs. Use the Options tab in the properties window for a job to
set local code generation options for that job.

Tasks

Set Global Options for Jobs
Use the Code Generation tab in the Options window to set global options for all new jobs.
To display the tab, select Tools ð Options ð Code Generation from the menu bar. Then,
specify the desired options.

Set Local Options for a Job
Use the Options tab in the properties window for a job to set local options for that job.
Right-click a job and select Properties to display the properties window. Click the
Options tab. Set the appropriate options. These local options override global options for
the selected job, but they do not affect any other jobs.

Specifying Options for a Transformation

Problem
You want to set options for a SAS Data Integration Studio transformation, such as SAS
Sort, SQL Join, or Extract.

210 Chapter 10 • Working with Generated Code

Solution
You can specify SAS system options, SAS statement options, or transformation-specific
options on the Options tab or other tabs in the properties window for many transformations.
Use this method to select these options when a particular transformation executes.

Tasks
Perform the following steps to display the Options tab in the properties window for a
transformation in a job:

1. Open the job to display its process flow.

2. Right-click the transformation and select Properties from the pop-up menu.

3. Select the Options tab.

For a description of the available options for a particular transformation, see the Help for
the Options tab or other tabs that enable you to specify options. If the Options tab includes
a System Options field, you can specify options such as UBUFNO for the current
transformation. Some transformations enable you to specify options that are specific to that
transformation. For example, the Options tab for the Sort transformation has specific fields
for sort size and sort sequence. It also has a PROC SORT Options field where you can
specify sort-related options that are not otherwise surfaced in the interface. These options
are described in “Optimizing Sort Performance” on page 279.

Modifying Configuration Files or SAS Start
Commands for Application Servers

There are several ways to customize the environment where the code generated by SAS
Data Integration Studio runs. When you submit a SAS Data Integration Studio job for
execution, it is submitted to a SAS Workspace Server component of the relevant SAS
Application Server. The relevant SAS Application Server is one of the following:

• the default server that is specified on the SAS Server tab in the Options window

• the SAS Application Server to which a job is deployed with the Deploy for Scheduling
option

To set SAS invocation options for all SAS Data Integration Studio jobs that are executed
by a particular SAS server, specify the options in the configuration files for the relevant
SAS Workspace Servers, batch or scheduling servers, and grid servers. (You do not set
these options on SAS Metadata Servers or SAS Stored Process Servers.) Examples of these
options include UTILLOC, NOWORKINIT, or ETLS_DEBUG.

To specify SAS system options or startup options for all jobs that are executed on a
particular SAS Workspace Server, modify one of the following for the server:

• config.sas file

• autoexec.sas file

• SAS start command

Modifying Configuration Files or SAS Start Commands for Application Servers 211

For example, your SAS logs have become too large and you want to suppress the MPRINT
option in your production environment. Perform the following steps to invoke the
ETLS_DEBUG option in the autoexec.sas:

1. Open the autoexec.sas file.

2. Add the following code to the autoexec.sas file for your production run:

%let etls_debug=0;

3. Save and close the file.

Note: If the condition etls_debug=0 is true, then the logic in the deployed job prevents
execution of the OPTIONS MPRINT; statement. To turn on the MPRINT option again,
remove %let etls_debug=0; from the autoexec.sas file.

CAUTION:
It is strongly recommended that you do not turn off MPRINT in a development
environment.

212 Chapter 10 • Working with Generated Code

Chapter 11
Working with User-Written Code

About User-Written Code . 213

Adding User-Written Code to the Precode and Postcode Tab 214
Problem . 214
Solution . 214
Tasks . 214

Adding a User Written Code Transformation to a Job . 216
Problem . 216
Solution . 216
Tasks . 216

Creating and Using a Generated Transformation . 219
Problem . 219
Solution . 219
Tasks . 220

Maintaining a Generated Transformation . 226
Problem . 226
Solution . 226
Tasks . 226

Editing the Generated Code for a Job or Transformation 228
Problem . 228
Solution . 228
Tasks . 228

Replacing the Generated Code for a Job or Transformation 229
Problem . 229
Solution . 229
Tasks . 229

About User-Written Code
By default, SAS Data Integration Studio uses the metadata for a job to generate code for
the job. If the generated code does not do what you want, you can do the following:

• add user-written code that will be executed before or after a job or transformation

• add a User-Written Code transformation to a job

• use the Transformation Generator wizard to create a custom transformation and add it
to a job

213

• edit the generated code for a job or transformation

• replace the generated code for a job or transformation

Adding User-Written Code to the Precode and
Postcode Tab

Problem
You want to set a SAS option, assign a libref, or perform some other action immediately
before or after a job or transformation is executed.

Solution
You can add the user-written code on the Precode and Postcode tab in the properties
window for a job or transformation. For example, you can add a libref to an existing job
that enables you to use a table from an unregistered library, as in the following sample job.

Tasks

Add the User-Written Code to the Precode or Postcode Field
Perform the following steps to insert the user-written code:

1. Create a job, or open an existing job. The sample job, which is named is named Extract
Job, is shown in the following display.

Display 11.1 Sample Process Flow

2. Open the Precode and Postcode tab in the properties window for the transformation
or job that you need to change. In the sample job, the code is added to the job itself in
order to provide access to the target table, ALL_FEMALE_EMP.

3. Select the appropriate Precode or Postcode check box. The check box that you select
depends on whether the user-written code that you add runs before or after the source
code for the job or transformation. The sample job requires precode.

4. Enter the user-written code in the field that is associated with the selected check box.
The code shown in the following display is entered into the sample job.

214 Chapter 11 • Working with User-Written Code

Display 11.2 Sample User-Written Precode

Save the User-Written Code to a File
This is an optional task. Perform the following steps to save the user-written code to a file
that you can reuse:

1. Click the Save As button to access the Save As window.

2. Select the File check box. Then, enter a server, name, and location for the file in the
appropriate fields. The settings for the sample job are shown in the following display.

Display 11.3 Sample Save As Window

Note: You can also select the Metadata check box and save the user-written code to
the metadata server. In any case, the Save As window applies your changes to the
current session. To make your changes persist after the current session, you must
save the entire job. To save the entire job, select File ð Save from the menu bar on
the desktop.

3. Click OK to save the file and return to the properties window. Later, you can reuse the
code in the file. Simply click the appropriate Open button on the Precode and
Postcode tab.

Tasks 215

4. Open the Code tab to verify that the user-written code is added to the job. The following
display shows a portion of the Code tab for the sample job.

Display 11.4 Sample Code Tab Content

5. Click OK to save the changes to the job or transformation and close the properties
window.

Adding a User Written Code Transformation to a
Job

Problem
You want to add user-written code to a job. One method is to use the User Written Code
transformation that is provided in Transformations tree. After you place this transformation
in a job, you can add user-written code on the Code tab of its properties window and map
its columns to the target table. This approach works particularly well with jobs that need
quick custom code or that require only one input and output and no parameters. More
complicated situations are handled more effectively with the Transformation Generator
wizard.

Solution
You can create a job that includes the User Written Code transformation. You need to add
the code to the job in the User Written Code transformation. Then, you need to map the
columns from the transformation to the target table. Perform the following tasks:

• “Create and Populate the Job” on page 216

• “Add User-Written Code to the User Written Code Transformation and Map Columns”
on page 217

• “Run the Job” on page 218

• “View the Output” on page 218

Tasks

Create and Populate the Job
Perform the following tasks to create a job that uses the User Written Code transformation:

1. Create a new job and give it an appropriate name. The Job Editor window for the new
job is displayed.

2. Drop the User Written Code transformation from the Data folder in the Transformations
tree into the Diagram tab of the Job Editor window.

3. Connect the source table to the input port of the User Written Code transformation.

216 Chapter 11 • Working with User-Written Code

4. Because you want a permanent target table to contain the output for the transformation,
right-click the temporary work table that is attached to the transformation and click
Replace in the pop-up menu. Then, use the Table Selector window to select the target
table for the job. The target table must be registered in SAS Data Integration Studio.
For more information about temporary work tables, see “Working with Default
Temporary Output Tables” on page 126.

The flow for the sample job is shown in the following display.

Display 11.5 Sample User Written Code Transformation in a Job

Note that the sample job includes a source table named EMP_GENDER and a target table
named CONVERTED_EMP_DATA.

Add User-Written Code to the User Written Code Transformation and
Map Columns
Perform the following steps to add user-written code to the User Written Code
transformation in a job:

1. Write SAS code and test it to ensure that it produces the required output. The following
code was written for the sample job:

data
&_OUTPUT;
 set &SYSLAST;
 length sex $1;
 if gender = "Male" then
 sex = "M";
 else if gender = "Female" then
 sex = "F";
 else
 sex="U";
run;

In this case, the code changes the gender identification in the Gender column from the
words Male and Female to the initials M and F.

2. Open the Code tab in the properties window for the User Written Code transformation
on the Diagram tab of the Job Editor window. Code is generated for the transformation
and displayed on the Code tab. The Code generation mode field defaults to User
written body.

3. Select the code generation mode. The Code generation mode field defaults to User
written body. Note that any non-user-written portion of the code is dimmed when you
select User written body. You cannot modify this part of the code.

4. Place the cursor in an editable section of the Code tab.

5. Enter the SAS code.

6. Click Save or Save As on the toolbar for the tab. The Save option enables you to save
the code in the editor as a metadata object (instead of saving the code into a file). The
Save As option opens the Save File window, where you can either save a name and

Tasks 217

description for the metadata object (code in the editor) or save the contents of the editor
as a file.

Note: The Save and Save As options apply your changes to the current session. To
make your changes persist after the current session, you must save the entire job.
To save the entire job, select File ð Save from the menu bar on the desktop.

7. Click OK to save the changes and close the properties window.

8. Make sure that the User Written Code transformation is selected on the Diagram tab
of the Job Editor window. Then, click the Mappings tab in the Details section.

9. Create column mappings between the source table and the target table.

Note: When SAS Data Integration Studio generates all of the code for a job, it can
automatically generate the metadata for column mappings between sources and
targets. However, when you specify user-written code for part of a job, you must
manually define the column metadata for that part of the job that the user-written
code handles. SAS Data Integration Studio needs this metadata to generate the code
for the part of the job that comes after the User Written Code transformation. This
mapping is also needed for impact analysis.

At this point, you have updated the User Written Code transformation so that it can retrieve
the appropriate code when the job is executed.

Run the Job
Perform the following steps to submit and run the job:

1. Run the job. If you are prompted to do so, enter a user ID and password for the default
SAS Application Server that generates and run SAS code for the job. The server
executes the SAS code for the job.

2. If the job completes without error, go to the next section. If error messages appear, read
and respond to the messages.

View the Output
You can verify that the job created the desired output by reviewing the View Data window.
The View Data window for the sample job is shown in the following display.

218 Chapter 11 • Working with User-Written Code

Display 11.6 Output from the Sample Job

Note that the Gender column in the source table has been mapped to the Sex column in the
target. The words Male and Female in the Sex column have been replaced with M and F.

Creating and Using a Generated Transformation

Problem
You need a custom transformation that enables you to process multiple outputs or inputs,
macro variables, and parameters.

Solution
Use the Transformation Generator wizard to create a custom transformation. The wizard
guides you through the steps of creating the transformation and registering it on the
metadata server. The new transformation displays in the Transformations tree, where it is
available for use in any job.

Perform the following tasks:

• “Create a Generated Transformation” on page 220

• “Use a Generated Transformation in a Job” on page 223

Solution 219

Tasks

Create a Generated Transformation
Perform the following steps to create a generated transformation:

1. Right-click the destination folder for the generated transformation.

Then, select New ð Transformation to access the Transformation Generator page in
the New Transformation wizard.

2. Enter an appropriate name for the transformation. Then, verify that the destination
folder for the transformation is populated in the Location field. You can also enter a
description and select a category for the transformation. Click Next to access the SAS
Code page.

3. Enter the SAS code generated by the transformation. You can either enter code
manually or paste in SAS code from an existing source. The following display shows
the SAS code for a sample generated transformation.

Display 11.7 Sample Transformation Code Page

A number of macro variables appear in this sample code. One of these macro variables,
&SYSLAST, is normally available and refers to the last data set created. The
transformation also includes other macro variables, such as &ColumnsToPrint and
&ReportTitle. The type of each such variable is defined in the Options screen of the
wizard. You can supply values for these user-defined variables when the transformation
is included in a job. Click Next to access the Options page.

4. Click New Prompt to access the New Prompt window. Define an option that
corresponds to the first macro variable that is listed on the SAS code screen. The
following display shows the General tab in the New Prompt window for the first macro
variable in the sample transformation.

220 Chapter 11 • Working with User-Written Code

Display 11.8 General Prompt Tab for the Columns to Print Option

Display 11.9 Prompt Type and Values Tab for the Columns to Print Option

Each prompt window contains a General tab where you can enter general information
about the option. Each prompt window also contains a Prompt Type and Values tab
where you can select settings that are appropriate for each prompt type. For example,
the second macro variable for the sample transformation, ReportType, requires an
option that uses the text prompt type, as shown in the following display.

Tasks 221

Display 11.10 Sample Prompt Type and Value Tab for the ReportTitle Option

You need to define each of the macro variables that are included in the transformation
as an option. These options display on the Options tab of the transformation when it
is used in a job. The completed Options page for the sample transformation is depicted
in the following display.

Display 11.11 Completed Options Page

When you have defined options for each of the macro variables, click Next to access
the Transform properties page.

5. Use the Transform properties screen to specify the number of inputs and outputs for
the generated transformation. The Transform properties page for the sample
transformation is depicted in the following display.

222 Chapter 11 • Working with User-Written Code

Display 11.12 Sample Transform Properties Page

These values determine how many inputs can be fed into the generated transformation.
Note that if you later update the transformation to increase this minimum number of
inputs value, any jobs that have been submitted and saved use the original value. The
increased minimum number of inputs is enforced only for subsequent jobs. This feature
enables you to increase the minimum number of inputs without breaking existing jobs.

The increased maximum number of inputs is used to allow you to feed additional inputs
into the transformation. (In the sample transformation, you can have up to six inputs
because you set the maximum to six.) The same rules apply to outputs. The report that
is generated by this transformation is sent to the Output tab of the Process Designer
window. Therefore, you do not need to add an output to the transformation by using
the controls in the Outputs group box.

6. Click Next to access the Finish page. Verify that the metadata is correct, and then click
Finish. Your transformation is created and saved.

7. Verify that the generated transformation is available in the destination folder.

Use a Generated Transformation in a Job
Perform the following steps to create and run a job that contains the generated
transformation:

1. Create an empty job.

2. Drop the generated transformation into the Job Editor window for the empty job.

3. Drop the source table for the job into the Job Editor window.

4. If you enabled an output table, then drop the target table into the Job Editor window.
You can also send the output to the Output tab of the Job Editor window. The
appropriate option on the General tab of the Options window must be set so that the
Output tab appears in the Job Editor window. The sample job shown in the following
display uses the Output tab in this way.

Tasks 223

Display 11.13 Generated Transformation in a Sample Job

5. Drag the cursor from the output port of the transformation to the target table, if you
have an output table. This action connects the transformation to the target.

6. Open the Options tab in the properties window for the generated transformation. Enter
appropriate values for each of the options that are created for the transformation. Then,
set the properties for the first option in the transformation. The following display shows
the Select Data Source Items window, which is used to select the columns that are
printed in the report.

Display 11.14 Sample Select Data Source Items Window

The following display shows the completed Options tab.

224 Chapter 11 • Working with User-Written Code

Display 11.15 Sample Completed Options Page

Note that the report title is already entered in the sample job. It was entered when the
prompt was created.

Click OK to close the properties window and save the settings.

7. Run the job by right-clicking inside the Job Editor and selecting Run from the pop-up
menu. SAS Data Integration Studio generates and runs the following code:

%let ColumnsToPrint = Name Sex Weight;
%let ColumnsToPrint_count = 3;
%let ColumnsToPrint0 = 3;
%let ColumnsToPrint1 = Name;
%let ColumnsToPrint2 = Sex;
%let ColumnsToPrint3 = Weight;
%let ReportTitle = %nrquote(Employee Dependent Data);
%let ColumnsToPrint_dsc = ;
%let GenerateIndexesOnTargets "" %nrquote(YES);

PROC PRINT DATA=&SYSLAST;
 VAR &ColumnsToPrint;
 WHERE Sex="M" and Weight > 65;
 Title "&ReportTitle;";
 run;

8. After the code has executed, check the Job Editor window Output tab for the report
that is shown in the following display.

Display 11.16 Sample Output Report

Tasks 225

Maintaining a Generated Transformation

Problem
You want to analyze the impact of a change to a generated transformations and perhaps
update that transformation.

Solution
Before you change a generated transformation, you should run impact analysis on that
transformation to see all of the jobs that might be affected by the change. After you have
run impact analysis, you can make updates to the transformations.

Changes to a generated transformation can affect existing jobs that include that
transformation. They can also affect any new jobs that include that transformation.
Therefore, you should be very careful about any generated transformation that has been
included in existing jobs. This precaution reduces the possibility that any one user makes
changes to a generated transformation that adversely affects many users.

Perform the following tasks:

• “Identify a Generated Transformation” on page 226

• “Analyze the Impact of Generated Transformations” on page 226

• “Update Generated Transformations” on page 227

Tasks

Identify a Generated Transformation
All transformations in the Transformation tree that have this icon () are generated
transformations.

Analyze the Impact of Generated Transformations
Perform the following steps to run impact analysis on a generated transformation:

1. Find the generated transformation that you want to analyze in the Transformations tree.

2. Right-click the transformation and click Analyze. (You can also click Analyze in the
Actions menu.) The Report view of the Impact Analysis window displays, as shown
in the following display.

226 Chapter 11 • Working with User-Written Code

Display 11.17 Impact Analysis on a Sample Generated Transformation

The selected generated transformation is named Employee Dependent Data. The Impact
Analysis window shows that the selected transformation is used in a job. You can right-
click the objects in the Report view to access their properties windows and view the jobs
that contain them. For a data-flow view of the impacts, click Diagram View.

Update Generated Transformations
Perform the following steps to update the source code and other properties of a generated
transformation. Any change that you make to the generated transformation can affect
existing jobs that contain the transformation.

1. Access the properties window of the transformation that you want to update by double-
clicking the transformation's name in the Transformations tree.

2. Click on a tab that you want to update.

3. Make any needed changes to the source code. Click OK to save these changes to the
SAS code. The following display depicts an update to the source code of a sample
transformation.

Display 11.18 Sample Code Tab with Updates

Note: Any change that you make to the generated transformation can affect existing
jobs that contain the transformation. Therefore, the warning in the following display
is shown.

Tasks 227

Display 11.19 Confirm Changes Warning

4. Make any updates that are needed to the other tabs in the properties window.

5. Click OK to save the updates and exit the transformation properties window.

Editing the Generated Code for a Job or
Transformation

Problem
You want a result that cannot be easily achieved with the code that is generated for a job
or transformation. Only a few changes are needed to the generated code.

Solution
You can edit the generated code for a job or transformation and save the edited code to the
metadata server or to a separate file. If you save the code to a file, you might want to create
a special directory for this type of code. Naturally, this method requires a basic
understanding of the SAS programming language. The specified user-written code is
retrieved whenever code for this job or transformation is generated.

Tasks

Edit and Save the Generated Code
Perform the following steps to generate code for a job, edit the code, and then save the
edited code to the job's metadata or a file:

1. Open the Code tab in the properties window for the job or transformation.

2. Select User written body or All user written in the Code generation mode field. Any
portion of the code that is not user-written is dimmed when you click User written
body. You cannot modify this part of the code.

3. Place the cursor in an editable section of the Code tab. Edit the generated code in the
Code tab.

4. Click Save or Save As on the toolbar for the tab. The Save option enables you to save
the code in the editor as a metadata object (instead of saving the code into a file). The
Save As option opens the Save File window, where you can either save a name and
description for the metadata object (code in the editor) or save the contents of the editor
as a file.

228 Chapter 11 • Working with User-Written Code

Note: The Save and Save As options apply your changes to the current session. To
make your changes persist after the current session, you must save the entire job.
To save the entire job, select File ð Save from the menu bar on the desktop.

5. Click OK to save the changes and close the properties window.

Replacing the Generated Code for a Job or
Transformation

Problem
You want a result that cannot be easily achieved with the code that is generated for a job
or transformation. Extensive changes are needed to the generated code.

Solution
You can write a SAS program to achieve the desired result. Then you can replace the
generated code for the job or transformation with your program. You can copy your code
into the metadata for the transformation or job (Import SAS Code), or you can specify a
path to a file that contains your SAS program (Attach to SAS Code). If you change an
attached source file later, the changes are reflected in the code that you update.

Tasks

Replace the Generated Code for a Job or Transformation
Perform the following steps to replace existing code into a job or transformation.

1. Open the Code tab in the properties window for the job or transformation.

2. Click User written body or All user written in the Code generation mode field. Note
that any non-user-written portion of the code is dimmed when you click User written
body. You cannot modify this part of the code.

3. Place the cursor in an editable section of the Code tab.

4. Click the Open icon on the toolbar of the Code tab.

5. Click either Import SAS Code or Attach to SAS Code. Then you can copy the SAS
code that is contained in the selected file into the Code tab of a job or transformation.

Note: When you click Import SAS Code, the code is copied without establishing a
link to the source file. If you change an imported source file later, the changes are
not reflected in the code that you update. However, when you click Attach to SAS
Code, the code is copied with a link to the source file. If you change an attached
source file later, the changes are reflected in the code that you update.

6. Click Local or Remote to access the Open window. The Local window enables you to
open a file from your client computer. The Remote window enables you to open a file
from the SAS Application Server.

Note: Both local and remote access are available for the import SAS code function.
Only remote access is available for the attach to SAS code function.

Tasks 229

7. Click Save or Save As on the toolbar for the tab. The Save option enables you to save
the code in the editor as a metadata object (instead of saving the code into a file). The
Save As option opens the Save File window, where you can either save a name and
description for the metadata object (code in the editor) or save the contents of the editor
as a file.

Note: The Save and Save As options apply your changes to the current session. To
make your changes persist after the current session, you must save the entire job.
To save the entire job, select File ð Save from the menu bar on the desktop.

8. Click OK to apply the changes to the current session and close the properties window.

230 Chapter 11 • Working with User-Written Code

Chapter 12
Optimizing Process Flows

About Process Flow Optimization . 231

Managing Process Data . 232
Problem . 232
Solution . 232
Tasks . 232

Managing Columns . 235
Problem . 235
Solution . 235
Tasks . 236

Streamlining Process Flow Components . 237
Problem . 237
Solution . 237
Tasks . 237

Using Simple Debugging Techniques . 238
Problem . 238
Solution . 239
Tasks . 239

Using SAS Logs . 242
Problem . 242
Solution . 242
Tasks . 242

Reviewing Temporary Output Tables . 244
Problem . 244
Solution . 244
Tasks . 244

Additional Performance Optimization Information . 246

About Process Flow Optimization
Efficient process flows are critical to the success of any data management project,
especially as data volumes and complexity increase. The following sections describe
improving the performance of process flows in SAS Data Integration Studio with the
following techniques:

• “Managing Process Data” on page 232

231

• “Managing Columns” on page 235

• “Streamlining Process Flow Components” on page 237

The remaining sections describe analyzing the performance of process flows that have
already been created by with the following techniques:

• “Using Simple Debugging Techniques” on page 238

• “Using SAS Logs” on page 242

• “Reviewing Temporary Output Tables” on page 244

See Also
“Additional Performance Optimization Information” on page 246

Managing Process Data

Problem
You want to optimize a process flow that is running too slowly or generating intermediate
files that are clogging your file storage system.

Solution
You can perform the following tasks that can help manage process data effectively:

• “Manage Views and Physical Tables” on page 232

• “Delete Intermediate Files” on page 233

• “Cleanse and Validate Data” on page 235

• “Minimize Remote Data Access” on page 235

Tasks

Manage Views and Physical Tables
In general, each step in a process flow creates an output table that becomes the input for
the next step in the flow. Consider what format is best for transferring data between steps
in the flow. There are two choices:

• Write the output for a step to disk (in the form of SAS data files or RDBMS tables).

• Create views that process input and pass the output directly to the next step, with the
intent of bypassing some writes to disk.

SAS supports two types of views, SQL views and DATA step views. The two types of
views can behave differently. Switching from views to physical tables or tables to views
sometimes makes little difference in a process flow. At other times, improvements can be
significant. The following tips are useful:

• If the data that is defined by a view is referenced only once in a process flow, then a
view is usually appropriate.

232 Chapter 12 • Optimizing Process Flows

• If the data that is defined by a view is referenced multiple times in a process flow, then
putting the data into a physical table will likely improve overall performance. When
data is in a view, SAS must execute the underlying code repeatedly each time the view
is accessed.

• If the view is referenced once in a process flow, but the reference is a resource-intensive
procedure that performs multiple passes of the input, then consider using a physical
table.

• If the view is SQL and is referenced once, but the reference is another SQL view, then
consider using a physical table. SAS SQL optimization can be less effective when views
are nested. This is especially true if the steps involve joins or RDBMS sources.

• If the view is SQL and involves a multi-way join, it is subject to performance limitations
and disk space considerations.

Assess the overall impact to your process flow if you make changes based on these tips. In
some circumstances, you might find that you have to sacrifice performance in order to
conserve disk space.

You can right-click a temporary output table in the Job Editor window to access the Create
as View option. Then, you can select and deselect this option to switch between physical
tables and views. In this way, you can test the performance of a process flow while you
switch between tables and views.

In some cases you can switch the format of a permanent output table between a physical
table and a view. You can right-click the permanent output table in the Job Editor window,
select Properties, click the Physical Storage tab, and then select or deselect the Create
as view option for the table. If the transformation that creates the table can create views,
then the table will be created as a view. Some transformations do not support views and
might ignore the setting.

Delete Intermediate Files
Transformations in a SAS Data Integration Studio job can produce the following types of
intermediate files:

• procedure utility files that are created by the SORT and SUMMARY procedures when
these procedures are used in the transformation

• transformation temporary files that are created by the transformation as it is working

• transformation output tables that are created by the transformation when it produces its
result; the output for a transformation becomes the input to the next transformation in
the flow

By default, procedure utility files, transformation temporary files, and transformation
output tables are created in the WORK library. You can use the -WORK invocation option
to force all intermediate files to a specified location. You can use the -UTILLOC invocation
option to force only utility files to a separate location.

Knowledge of intermediate files helps you to perform the following tasks:

• View or analyze the output tables for a transformation and verify that the output is
correct.

• Estimate the disk space that is needed for intermediate files.

These intermediate files are usually deleted after they have served their purpose. However,
it is possible that some intermediate files might be retained longer than desired in a
particular process flow. For example, some user-written transformations might not delete
the temporary files that they create.

Tasks 233

Utility files are deleted by the SAS procedure that created them. Transformation temporary
files are deleted by the transformation that created them. When a SAS Data Integration
Studio job is executed in batch, transformation output tables are deleted when the process
flow ends or the current server session ends.

When a job is executed interactively in SAS Data Integration Studio, transformation output
tables are retained until the Job Editor window is closed or the current server session is
ended in some other way (for example, by selecting Actions ð Stop from the menu. For
information about how transformation output tables can be used to debug the
transformations in a job, see “Reviewing Temporary Output Tables” on page 244.
However, as long as you keep the job open in the Job Editor window, the output tables
remain in the WORK library on the SAS Workspace Server that executed the job. If this
is not what you want, you can manually delete the output tables, or you can close the Job
Editor window and open it again, which will delete all intermediate files.

Here is a post-processing macro that can be incorporated into a process flow. It uses the
DATASETS procedure to delete all data sets in the Work library, including any
intermediate files that have been saved to the Work library.

%macro clear_work;
 %local work_members;
 proc sql noprint;
 select memname
 into :work_members separated by ","
 from dictionary.tables
 where
 libname = "WORK" and
 memtype = "DATA";
 quit;
 data _null_;
 work_members = symget("work_members");
 num_members = input(symget("sqlobs"), best.);
 do n = 1 to num_members;
 this_member = scan(work_members, n, ",");
 call symput("member"||trim(left(put(n,best.))),trim(this_member));
 end;
 call symput("num_members", trim(left(put(num_members,best.))));
 run;
 %if #_members gt 0 %then %do;
 proc datasets library = work nolist;
 %do n=1 %to #_members;
 delete &&member&n
 %end;
 quit;
 %end;
%mend clear_work;
%clear_work

Note: The previous macro deletes all data sets in the Work library.

For details about adding a post process to a SAS Data Integration Studio job, see
“Specifying Options for Jobs” on page 210.

The transformation output tables for a process flow remain until the SAS session that is
associated with the flow is terminated. Analyze the process flow and determine whether
there are output tables that are not being used (especially if these tables are large). If so,
you can add transformations to the flow that deletes these output tables and free up valuable
disk space and memory. For example, you can add a generated transformation that deletes

234 Chapter 12 • Optimizing Process Flows

output tables at a certain point in the flow. For details about generated transformations, see
“Creating and Using a Generated Transformation” on page 219.

Cleanse and Validate Data
Clean and de-duplicate the incoming data early in the process flow so that extra data that
might cause downstream errors in the flow is caught and eliminated quickly. This process
can reduce the volume of data that is being sent through the process flow.

To clean the data, consider using the Sort transformation with the NODUPKEY option or
the Data Validation transformation. The Data Validation transformation can perform
missing-value detection and invalid-value validation in a single pass of the data. It is
important to eliminate extra passes over the data, so try to code all of these validations into
a single transformation. The Data Validation transformation also provides de-duplication
capabilities and error-condition handling. For information, search for data validation in
SAS Data Integration Studio Help.

Minimize Remote Data Access
Remote data has to be copied locally because it is not accessible by the relevant components
in the default SAS Application Server at the time that the code was generated. SAS uses
SAS/CONNECT and the UPLOAD and DOWNLOAD procedures to move data. It can
take longer to access remote data than local data, especially when you access large data
sets.

For example, data is considered local in a SAS Data Integration Studio job when it is directly
accessible from the same machine, from a machine that is directly addressable from the
primary machine, or through one of the SAS/ACCESS methods. Otherwise, it is considered
remote.

Avoid or minimize remote data access in a process flow. For information about accessing
remote data, or executing a job on a remote host, administrators should see “Multi-Tier
Environments” in the SAS Data Integration Studio chapter in the SAS Intelligence
Platform: Desktop Application Administration Guide.

Managing Columns

Problem
Your process flows are running slowly, and you suspect that the columns in your source
tables are either poorly managed or superfluous.

Solution
You can perform the following tasks on columns to improve the performance of process
flows:

• “Drop Unneeded Columns” on page 236

• “Avoid Adding Unneeded Columns” on page 236

• “Aggregate Columns for Efficiency” on page 237

• “Match the Size of Column Variables to Data Length” on page 237

Solution 235

Tasks

Drop Unneeded Columns
As soon as the data comes in from a source, consider dropping any columns that are not
required for subsequent transformations in the flow. You can drop columns and make
aggregations early in the process flow instead of later. This prevents the extraneous detail
data from being carried along between all transformations in the flow. You should work
to create a structure that matches the ultimate target table structure as closely as possible
early in the process flow. Then, you can avoid carrying extra data along with the process
flow.

To drop columns in the output table for a SAS Data Integration Studio transformation, click
the Mapping tab and remove the extra columns from the Target table area on the tab. Use
derived mappings to create expressions to map several columns together. You can then
build your own transformation output table columns to match your ultimate target table
and map.

Finally, you can control column mapping and propagation at a job level, at a transformation
level, or even at a column level. Column propagation is the ability to automatically
propagate columns through the intermediate tables in a process flow to the target table. If
you don't need to map or propagate some of the columns in a flow, use one of the following
options:

• Automatically map columns and Automatically propagate columns options at
Tools ð Option ð Job Editor (for new jobs)

• Map Columns and Propagate Columns in the pop-up menu for a job or transformation
(for selected jobs and transformations)

• Map all columns, Map selected columns, Propagate from sources to targets,
Propagate from targets to sources, and Propagate columns on the Mappings tab
for a job or transformation (for selected jobs and transformations)

For information about mapping columns, see “Maintaining Column Mappings” on page
154. For information about column propagation, see “Managing the Scope of Column
Changes in Jobs” on page 158.

Avoid Adding Unneeded Columns
As data is passed from step to step in a process flow, columns could be added or modified.
For example, column names, lengths, or formats might be added or changed. In SAS Data
Integration Studio, these modifications, which are done on the Mappings tab in the details
pane of the Job Editor window or from the Mappings tab of the transformation, often result
in the generation of an intermediate SQL view step. In many situations, that intermediate
step adds processing time. In turn, these changes to columns can be propagated throughout
the job. Try to avoid generating more of these steps than is necessary.

You should rework your flow so that activities such as column modifications or additions
throughout many transformations in a process flow are consolidated within fewer
transformations. Avoid using unnecessary aliases; if the mapping between columns is one-
to-one, then keep the same column names. Avoid multiple mappings on the same column,
such as converting a column from a numeric to a character value in one transformation and
then converting it back from a character to a numeric value in another transformation. For
aggregation steps, rename any columns within those transformations, rather than in
subsequent transformations.

236 Chapter 12 • Optimizing Process Flows

Aggregate Columns for Efficiency
When you add column mappings, also consider the level of detail that is being retained.
Ask these questions:

• Is the data being processed at the right level of detail?

• Can the data be aggregated in some way?

Aggregations and summarizations eliminate redundant information and reduce the number
of records that have to be retained, processed, and loaded into a data collection.

Match the Size of Column Variables to Data Length
Verify that the size of the column variables in the data collection is appropriate to the data
length. Consider both the current and future uses of the data:

• Are the keys the right length for the current data?

• Will the keys accommodate future growth?

• Are the data sizes on other variables correct?

• Do the data sizes need to be increased or decreased?

Data volumes multiply quickly, so ensure that the variables that are being stored in the data
warehouse are the right size for the data.

Streamlining Process Flow Components

Problem
You have worked hard to optimize the data and columns in your process flow, but your
flow is still running too slowly.

Solution
You can try the following best practices when they are relevant to your process flows:

• “Work From Simple to Complex” on page 237

• “Use Transformations for Star Schemas and Lookups” on page 238

• “Use Surrogate Keys” on page 238

Tasks

Work From Simple to Complex
When you build process flows, build by validating jobs as you build up complexity. For
example, build a job subsection, and then test and validate it. Then, then add additional
components, which you can test and validate as you go. This step-by-step process of
progressively building complexity into a job is supported by the following features:

• the ability to test the validity of the subsections by using the options for Run From
Selected Transformation, Run To Selected Transformation, and Run Selected
Transformations

• the ability to test each subsection by using Step and Continue to step through and
validate each subsection of the entire process

Tasks 237

• the ability to verify the success of the job or its subsections by monitoring the Status,
Warnings and Errors, and Statistics tabs on the Details pane of the Job Editor window

• the ability to select specific transformations for inclusion in the bar chart of performance
statistics on the Statistics tab

Also, consider subsetting incoming data or setting a pre-process option to limit the number
of observations that are initially being processed in order to fix job errors and validate
results before applying processes to large volumes of data or complex tasks. For details
about limiting input to SAS Data Integration Studio jobs and transformations, see “Limit
Input to a Transformation” on page 239.

Use Transformations for Star Schemas and Lookups
Consider using the Lookup transformation when you build process flows that require
lookups such as fact table loads. The Lookup transformation is built using a fast in-memory
lookup technique known as DATA step hashing that is available in SAS®9. The
transformation allows for multi-column keys and has useful error handling techniques such
as control over missing-value handling and the ability to set limits on errors.

When you are working with star schemas, consider using the SCD Type 2 transformation.
This transformation efficiently handles change data detection and has been optimized for
performance. Several change detection techniques are supported: date-based, current
indicator, and version number. For details about the SCD Type 2 transformation, see
“About Slowly Changing Dimensions” on page 348.

Use Surrogate Keys
Another technique to consider when you are building the data warehouse is to use
incrementing integer surrogate keys as the main key technique in your data structures.
Surrogate keys are values that are assigned sequentially as needed to populate a dimension.
They are very useful because they can shield users from changes in the operational systems
that might invalidate the data in a warehouse (and thereby require redesign and reloading).
For example, if the operational system changes its key length or type, then a surrogate key
remains valid. An operational key does not remain valid.

The SCD Type 2 transformation includes a surrogate key generator. You can also plug in
your own methodology that matches your business environment to generate the keys and
point the transformation to it. A Surrogate Key Generator transformation can be used to
build incrementing integer surrogate keys.

Avoid character-based surrogate keys. In general, functions that are based on integer keys
are more efficient because they avoid the need for subsetting or string partitioning that
might be required for character-based keys. Numeric strings are also smaller in size than
character strings, thereby reducing the storage required in the warehouse.

For details about surrogate keys and the SCD Type 2 transformation, see “About Slowly
Changing Dimensions” on page 348.

Using Simple Debugging Techniques

Problem
Occasionally a process flow might run longer than you expect or the data that is produced
might not be what you anticipate (either too many records or too few). In such cases, it is
important to understand how a process flow works. Then, you can correct errors in the flow
or improve its performance.

238 Chapter 12 • Optimizing Process Flows

Solution
A first step in analyzing process flows is being able to access information from SAS that
will explain what happened during the run. If there were errors, you need to understand
what happened before the errors occurred. If you are having performance issues, then the
logs identify which steps are performing poorly. Finally, if you know what SAS options
are set and how they are set, this information can help you determine what is going on in
your process flows. You can perform the following tasks:

• “Check the Status of a Job” on page 239

• “Verify Output From a Transformation” on page 239

• “Limit Input to a Transformation” on page 239

• “Add Debugging Code to a Process Flow” on page 240

• “Set SAS Invocation Options on Jobs” on page 241

• “Set and Check Status Codes” on page 241

Tasks

Check the Status of a Job
You can see information about the status of your jobs and the nodes that they contain. This
status information is provided by the following features:

• the status indicators and sticky note windows on the nodes on the Diagram tab of the
Job Editor window. These features are available before and after you submit a job.
Therefore, they are useful as tools that help you construct a job and determine whether
it is ready to run.

• the Status tab on the Details pane of the Job Editor window. This feature displays the
status of each node in a job as it is run. You can double-click an error or warning status
on a node to display it in the Warnings and Errors tab.

• the Warnings and Errors tab on the Details pane of the Job Editor window. This
feature displays any warnings or errors that are displayed as a job is run. You can click
the link in an error or warning to see it displayed in the Log tab of the Job Editor
window.

For information about using these features, see “Reviewing a Successful Job” on page
145 and “Diagnosing and Correcting an Unsuccessful Job” on page 150.

Verify Output From a Transformation
You can view the output tables for the transformations in the job. Reviewing the output
tables enables you to verify that each transformation is creating the expected output. This
review can be useful when a job is not producing the expected output or when you suspect
that something is wrong with a particular transformation in the job. For more information,
see “Browsing Table Data” on page 89.

Limit Input to a Transformation
When you are debugging and working with large data files, you might find it useful to
decrease some or all of the data that is flowing into a particular step or steps. One way of
doing this is to use the OBS= data set option on input tables of DATA steps and procedures.

Tasks 239

To specify the OBS= system option for an entire job in SAS Data Integration Studio, add
the following code to the Precode and Postcode tab in the job's property window:

 options
obs=<number>;

To specify the OBS= system option for a transformation within a job, you can temporarily
add the option to the System options field on the Options tab in the transformation's
property window. Alternatively, you can edit the code that is generated for the
transformation and execute the edited code. For more information about this method, see
“Specifying Options for Jobs” on page 210.

Important considerations when you are using the OBS= system option include the
following:

• All inputs into all subsequent steps are limited to the specified number, until the option
is reset.

• Setting the number too low before a join or merge step can result in few or no matches,
depending on the data.

• In the SAS Data Integration Studio Job Editor, this option stays in effect for all runs of
the job until it is reset or the Job Editor window is closed.

The syntax for resetting the option is as follows:

options
obs=MAX;

Note: Removing the OBS= line of code from the Job Editor does not reset the OBS= system
option. You must reset it as shown or by closing the Job Editor window.

The Max Input Rows option enables you to specify the number of input rows to an SQL
query within the Designer window of the SQL join transformation. To access this option,
click SQL Join in the Navigate pane of the window. Then, look for the option in the SQL
Join Properties pane. You can also specify the number of output rows with the Max Output
Rows option.

Add Debugging Code to a Process Flow
If you are analyzing a SAS Data Integration Studio job, and the information that is provided
by logging options and status codes is not enough, consider the following methods for
adding debugging code to the process flow.

Table 12.1 Methods for Adding Custom Debugging Code

Method Documentation

Replace the generated code for a
transformation with user-written
code.

“Replacing the Generated Code for a Job or Transformation”
on page 229

Add the User-Written Code
transformation to the process
flow.

“Adding a User Written Code Transformation to a Job” on
page 216

Add a generated transformation
to the process flow.

“Creating and Using a Generated Transformation” on page
219

Add a return code to the process
flow.

“Set and Check Status Codes” on page 241

240 Chapter 12 • Optimizing Process Flows

Custom code can direct information to the log or to alternate destinations such as external
files, or tables. Possible uses include tests of frequency counts, dumping out SAS macro
variable settings, or listing the run-time values of system options.

Set SAS Invocation Options on Jobs
When you submit a SAS Data Integration Studio job for execution, it is submitted to a SAS
Workspace Server component of the relevant SAS Application Server. The relevant SAS
Application Server is one of the following:

• the default server that is specified on the SAS Server tab in the Options window

• the SAS Application Server to which a job is deployed

To set SAS invocation options for all SAS Data Integration Studio jobs that are executed
by a particular SAS server, specify the options in the configuration files for the relevant
SAS Workspace Servers, batch or scheduling servers, and grid servers. (You do not set
these options on SAS Metadata Servers or SAS Stored Process Servers.) Examples of these
options include UTILLOC, NOWORKINIT, or ETLS_DEBUG. For more information,
see “Modifying Configuration Files or SAS Start Commands for Application Servers” on
page 211.

To set SAS global options for a particular job or transformation within a job, you can add
these options to the Precode and Postcode tab in the properties window. For more
information about adding code to this window, see “Specifying Options for Jobs” on page
210.

The property window for most transformations within a job has an Options tab with a
System Options field. Use the System Options field to specify options for a particular
transformation in a job's process flow. For more information, see “Specifying Options for
a Transformation” on page 210.

For more information about SAS options, search for relevant phrases such as “system
options” and “invoking SAS” in SAS OnlineDoc.

Set and Check Status Codes
When you execute a job in SAS Data Integration Studio, a return code for each
transformation in the job is captured in a macro variable. The return code for the job is set
according to the least successful transformation in the job. SAS Data Integration Studio
enables you to associate a return code condition, such as Successful, with an action, such
as Send Email or Abort. In this way, users can specify how a return code is handled for
the job or transformation.

For example, you could specify that a transformation in a process flow will terminate based
on conditions that you define. The log can be defined to display only the transformations
that affect the problem being investigated, making the log more manageable and
eliminating inconsequential error messages. For more information about status code
handling for transformations, see “Perform Actions Based on the Status of a
Transformation” on page 175.

You should also remember that the status code information is supplemented by the job and
node status information in the Job Editor window, particularly the Status tab and Warnings
and Errors tab in the Details pane. For more information, see “Check the Status of a Job”
on page 239.

Tasks 241

Using SAS Logs

Problem
The errors, warnings, and notes in the SAS log provide information about process flows.
However, large SAS logs can decrease performance, so the costs and benefits of large SAS
logs should be evaluated. For example, in a production environment, you might not want
to create large SAS logs by default.

Solution
You can use SAS logs in the following ways:

• “Evaluate SAS Logs” on page 242

• “Capture Additional SAS Options in the SAS Log” on page 242

• “View or Hide SAS Logs” on page 243

• “Redirect Large SAS Logs to a File” on page 243

Tasks

Evaluate SAS Logs
The SAS logs from your process flows are an excellent resource to help you understand
what is happening as the flows execute. For example, when you look at the run times in
the log, compare the real-time values to the CPU time (user CPU plus system CPU). For
read operations, the real time and CPU time should be close. For write operations, however,
the real time can substantially exceed the CPU time, especially in environments that are
optimized for read operations. If the real time and the CPU time are not close, and they
should be close in your environment, investigate what is causing the difference.

If you suspect a hardware issue, see the document "A Practical Approach to Solving
Performance Problems with the SAS System," which is available from the "Scalability and
Performance Papers" page at http://support.sas.com/rnd/scalability/
papers/.

If you determine that your hardware is properly configured, then review the SAS code.
Transformations generate SAS code. Understanding what this code is doing is very
important to ensure that you do not duplicate tasks, especially SORTs, which are resource-
intensive. The goal is to configure the hardware so that there are no bottlenecks, and to
avoid needless I/O in the process flows.

If you need to examine additional performance statistics, you can right-click in an open job
and click Collect Runtime Statistics in the pop-up menu. After you run the job, you can
review the statistics that are generated in the run on the Statistics tab of the Details pane.
You can display the statistics in the form of a table, a line graph, or a bar chart.

Capture Additional SAS Options in the SAS Log
Another way to analyze performance is to turn on the following SAS options so that detailed
information about the SAS tasks is captured in the SAS log:

242 Chapter 12 • Optimizing Process Flows

http://support.sas.com/rnd/scalability/papers/
http://support.sas.com/rnd/scalability/papers/
http://support.sas.com/rnd/scalability/papers/
http://support.sas.com/rnd/scalability/papers/

FULLSTIMER
MSGLEVEL=I (this option prints additional notes pertaining to index, merge
 processing, sort utilities, and CEDA usage, along with the standard notes,
 warnings, and error messages)
SOURCE, SOURCE2
MPRINT
NOTES

To interpret the output from the FULLSTIMER option, see the document "A Practical
Approach to Solving Performance Problems with the SAS System," which is available
from the "Scalability and Performance Papers" page at http://support.sas.com/
rnd/scalability/papers/.

In addition, the following SAS statements also send useful information to the SAS log:

PROC OPTIONS OPTION=UTILLOC; run;
PROC OPTIONS GROUP=MEMORY; run;
PROC OPTIONS GROUP=PERFORMANCE; run;
LIBNAME _ALL_ LIST;

The PROC OPTIONS statement sends SAS options and their current settings to the SAS
log. There are hundreds of SAS options, so if, for example, you prefer to see which value
has been set to the SAS MEMORY option, you can issue the PROC OPTIONS statement
with the GROUP=MEMORY parameter. The same is true if you want to see only the SAS
options that pertain to performance.

The LIBNAME _ALL_ LIST statement sends information (such as physical path location
and the engine that is being used) to the SAS log about each libref that is currently assigned
to the SAS session. This data is helpful for understanding where all the work occurs during
the process flow. For details about setting SAS invocation options for SAS Data Integration
Studio, see “Set SAS Invocation Options on Jobs” on page 241.

View or Hide SAS Logs
The Process Designer window in SAS Data Integration Studio has a Log tab that displays
the SAS log for the job in the window. Perform the following steps to display or hide the
Log tab:

1. Select Tools ð Options on the SAS Data Integration Studio menu bar to display the
Options window.

2. Click the General tab in the Options window. Then, select or deselect the check box
that controls whether the Log tab is displayed in the Job Editor window.

3. Click OK in the Options window to save the setting and close the window.

Redirect Large SAS Logs to a File
The SAS log for a job provides critical information about what happened when a job was
executed. However, large jobs can create large logs, which can slow down SAS Data
Integration Studio. In order to avoid this problem, you can redirect the SAS log to a
permanent file. Then, you can turn off the Log tab in the Job Editor window.

When you install SAS Data Integration Studio, the Configuration Wizard enables you to
set up as permanent SAS log files for each job that is executed. The SAS log filenames
contain the name of the job that creates the log, plus a timestamp of when the job is executed.

Alternatively, you can add the following code to the Precode and Postcode tab in the
properties window for a job:

proc printto log=...path_to_log_file NEW; run;

Tasks 243

For details about adding pre-process code to a SAS Data Integration Studio job, see
“Specifying Options for Jobs” on page 210. This code causes the log to be redirected to
the specified file. Be sure to use the appropriate host-specific syntax of the host where your
job is running when you specify this log file, and make sure that you have Write access to
the location where the log is written.

Reviewing Temporary Output Tables

Problem
Most transformations in a SAS Data Integration Studio job create at least one output table.
Then, they store these tables in the Work library on the SAS Workspace Server that executes
the job. The output table for each transformation becomes the input to the next
transformation in the process flow. All output tables are deleted when the job is finished
or the current server session ends.

Sometimes a job does not produce the expected output. Other times, something can be
wrong with a particular transformation. In either case, you can view the output tables for
the transformations in the job to verify that each transformation is creating the expected
output. Output tables can also be preserved to determine how much disk space they require.
You can even use them to restart a process flow after it has failed at a particular step (or in
a specific transformation).

Solution
You can view a transformation's temporary output table from the Process Designer window
and preserve temporary output tables so that you can view their contents by other means.
You can perform the following tasks to accomplish these objectives:

• “Preserve Temporary Output Tables” on page 244

• “View Temporary Output Tables” on page 245

• “Redirect Temporary Output Tables” on page 245

• “Add the List Data Transformation to a Process Flow” on page 246

• “Add a User-Written Code Transformation to the Process Flow ” on page 246

Tasks

Preserve Temporary Output Tables
When SAS Data Integration Studio jobs are executed in batch mode, a number of SAS
options can be used to preserve intermediate files in the Work library. These system options
can be set as described in “Set SAS Invocation Options on Jobs” on page 241.

Use the NOWORKINIT system option to prevent SAS from erasing existing Work files
on invocation. Use the NOWORKTERM system option to prevent SAS from erasing
existing Work files on termination.

For example, to create a permanent SAS Work library in UNIX and PC environments, you
can start the SAS Workspace Server with the WORK option to redirect the Work files to
a permanent Work library. The NOWORKINIT and NOWORKTERM options must be
included, as follows:

244 Chapter 12 • Optimizing Process Flows

C:\>"C:\Program Files\SAS\SAS
9.2\sas.exe"
-work "C:\Documents and Settings\sasapb\My Documents\My SAS Files\My SAS Work
Folder"
-noworkinit
-noworkterm

This redirects the generated Work files in the folder My SAS Work Folder.

To create a permanent SAS Work library in the z/OS environment, edit your JCL statements
and change the WORK DD statement to a permanent MVS data set. For example:

 //STEP1 EXEC SDSSAS9,REGION=50M
//* changing work lib definition to a permanent data set
//SDSSAS9.WORK DD DSN=userid.somethin.sasdata,DISP=OLD
//* other file defs
//INFILE DD

CAUTION:
If you redirect Work files to a permanent library, you must manually delete these
files to avoid running out of disk space.

View Temporary Output Tables
Perform the following steps to view the output file:

1. Open the job in the Job Editor window.

2. Submit the job for execution. The transformations must execute successfully.
(Otherwise, a current output table is not available for viewing.)

3. Right-click the transformation of the output table that you want to view, and click
Open. The transformation's output table is displayed in the View Data window.

This approach works if you do not close the Job Editor window. When you close the Job
Editor window, the current server session ends, and the output tables are deleted. For
information, see “Browsing Table Data” on page 89.

Redirect Temporary Output Tables
The default name for a transformation's output table is a two-level name that specifies the
Work libref and a generated member name, such as work.W54KFYQY. You can specify
the name and location of the output table for that transformation on the Physical
Storage tab on the properties window of the temporary output table. Note that this location
can be a SAS library or RDBMS library. This has the added benefit of providing users the
ability to specify which output tables they want to retain and to allow the rest to be deleted
by default. Users can use this scheme as a methodology for checkpoints by writing specific
output tables to disk when needed.

Note: If you want to save a transformation output table to a library other than the SAS
User library, replace the default name for the output table with a two-level name.

If you refer to an output table with a single-level name (for example, employee), instead
of a two-level name (for example, work.employee), SAS automatically sends the output
table into the User library, which defaults to the Work library. However, this default
behavior can be changed by any SAS user. Through the USER= system option, a SAS user
can redirect the User library to a different library. If the USER= system option is set, single-
level tables are stored in the User library, which has been redirected to a different library,
instead of to the Work library.

Tasks 245

Add the List Data Transformation to a Process Flow
In SAS Data Integration Studio, you can use the List Data transformation to print the
contents of an output table from the previous transformation in a process flow. Add the
List Data transformation after any transformation whose output table is of interest to you.

The List Data transformation uses the PRINT procedure to produce output. Any options
that are associated with that procedure can be added from the Options tab in the
transformation's property window. By default, output goes to the Output tab in the Job
Editor window. Output can also be directed to an HTML file. For large data, customize
this transformation to print just a subset of the data. For details, see the “Example: Create
Reports from Table Data” topic in SAS Data Integration Studio Help.

Add a User-Written Code Transformation to the Process Flow
You can add a User Written Code transformation to the end of a process flow that moves
or copies some of the data sets in the Work library to a permanent library. For example,
assume that there are three tables in the Work library (test1, test2, and test3). The following
code moves all three tables from the Work library to a permanent library named PERMLIB
and then deletes them from the Work library:

libname permlib base
"C:\Documents and Settings\ramich\My Documents\My SAS Files\9.2";
proc copy move
in = work
out = permlib;
select test1 test2 test3;
run;

For information about User Written Code transformations, see “Adding a User Written
Code Transformation to a Job” on page 216.

Additional Performance Optimization Information
The techniques covered in this chapter address general performance issues that commonly
arise for process flows in SAS Data Integration Studio jobs. For specific information about
the performance of the SQL Join transformation, see “Optimizing SQL Processing
Performance” on page 322. For specific information about the performance of the Table
Loader transformation, see “Selecting a Load Technique” on page 273 and “Removing
Non-Essential Indexes and Constraints during a Load” on page 276.

You can also access a library of SAS Technical Papers that cover a variety of performance-
related topics. You can find these papers at http://support.sas.com/resources/
papers/.

246 Chapter 12 • Optimizing Process Flows

http://support.sas.com/resources/papers/

Chapter 13
Using Impact Analysis

About Impact Analysis and Reverse Impact Analysis . 247

Performing an Impact Analysis . 248
Problem . 248
Solution . 249
Tasks . 249

Performing Impact Analysis on a Generated Transformation 251
Problem . 251
Solution . 252
Tasks . 252

Performing Reverse Impact Analysis . 253
Problem . 253
Solution . 253
Tasks . 253

About Impact Analysis and Reverse Impact
Analysis

Impact analysis identifies the tables, columns, jobs, and transformations that are
affected by a change to a selected table or column. Reverse impact analysis identifies the
tables, columns, jobs, and transformations that contribute to the content of a
selected table or column. Use impact analysis before changing or deleting a metadata
object, to see how that change can affect other objects. Use reverse impact analysis to trace
the source data that contributes to the content of a selected table or column.

The following figure shows the difference between impact analysis and reverse impact
analysis for a selected object.

247

Figure 13.1 Differentiating Impact Analysis and Reverse Impact Analysis

As shown in the figure, impact analysis traces the impact of the selected object on later
objects in the data flow. Reverse impact analysis traces the impact that previous objects in
the data flow have had on the selected object.

Analysis is performed on all metadata repositories on the current metadata server. You can
generate impact and reverse impact analyses for most types of data objects, including columns,
tables, external files, information maps, Enterprise Guide projects and associated objects,
and the levels and measures in OLAP cubes. You can also generate impact analyses for
generated transformations, as described in “Performing Impact
Analysis on a Generated Transformation” on page 251.

To perform an analysis, right-click an object in the Inventory tree, Custom tree, or Job
Editor and select Analyze. This action opens a new window that contains up to four tabs,
which include Impact Analysis, Reverse Impact Analysis, Contents, and Reports.
Analytical results appear in the Impact Analysis or Reverse Impact Analysis tabs. In those
tabs, you can right-click on the table and select Analyze Columns to determine how that
table or job impacts or is impacted by the selected object. Within these tabs, you can also
display properties or select Open to view the data in a table. You can also select one of the
icons at the top of the tab to view the object in a tree or diagram view or to print the contents.

If you run an analysis and the results do not include objects that you know exist on the
system, ask your administrator to verify that you have the appropriate privileges to see
these objects. For more information, the administrator should see the SAS Intelligence
Platform: Security Administration Guide.

Performing an Impact Analysis

Problem
A table is used in the process flow for a job. You want to delete the metadata for a column
in a table, and you want to trace the impact this would have on later objects in the process
flow.

248 Chapter 13 • Using Impact Analysis

Solution
Use impact analysis to trace the impact of the selected object on later objects in the process
flow for the job.

Tasks

Perform an Impact Analysis
To perform impact analysis on a metadata object, right-click the object in a tree view or in
a process flow in the Job Editor window, and then select Analyze from the pop-up menu.
Be sure to save the job in the Job Editor window before running analysis on a metadata
object in that job. Otherwise, your analysis does not reflect any changes since the last save.

Alternatively, you can select the object in a tree view or in the context of a process flow,
select Actions from the menu bar, and then select Analyze. The following display shows
the tree view of the analysis of a table named CUSTOMER.

Display 13.1 Impact Analysis Tab

Perform the following steps to trace the impact of the metadata for a table column:

1. In a tree view or in the context of a process flow, right-click on the metadata object for
the table that contains the column to be analyzed. Select Analyze.

2. In the Analyze window, right-click on the metadata object for the table, then select
Analyze Columns.

3. Select the column you want from the Available columns pane. Use the arrow key to
move it to the Selected column pane.

Tasks 249

Display 13.2 Select a Column to Analyze Window

4. Click the OK button. A new window appears. In the following display, this window
shows the result of an analysis performed on a column named Customer_ID in a table
named CUSTOMER.

Display 13.3 Analysis Results

The Tree View window uses a hierarchical list to illustrate the impact of the selected
object (Customer_ID column) on later objects in a process flow. In the previous display,
the tab contains three jobs. In this example, the third job contains the following objects:

• CUSTOMER.Customer_ID (Foundation): specifies the selected column,
Customer_ID, in the table CUSTOMER, which is registered in the Foundation
repository.

• Load Dimension Table (Foundation): specifies the job, Load Dimension Table,
to which the Customer_ID column is an input. The mapping type is 1:1.

250 Chapter 13 • Using Impact Analysis

• SCD Type 2 Loader.Customer_ID (1:1) (Foundation): specifies the
transformation that maps data from the Customer_ID column to a column later in
the process flow. The mapping type is 1:1.

• CUSTOMER_DIM.Customer_ID (Foundation): specifies the target column,
Customer_ID, in the table CUSTOMER_DIM. The target column is loaded with
data from the selected column.

5. To view the results as a graphical display, click on the icon for the Diagram View. The
same analytical results as shown in the preceding hierarchical display are shown in the
following graphical example.

Display 13.4 Analysis Diagram View

The Diagram View uses a process flow to illustrate the impact of the selected object
(Customer_ID column) on later objects in the flow.

Performing Impact Analysis on a Generated
Transformation

Problem
You want to determine how many jobs are impacted by a change to a generated
transformation.

A generated transformation is a transformation that you create with the Transformation
Generator wizard. You can use this wizard to create your own generated transformations
and register them on a metadata server. After they are registered, your transformations

Problem 251

display in the Transformations tree, where they are available for use in any job. For more
information about these transformations, see “Creating and Using a Generated
Transformation” on page 219.

When you change or update a generated transformation, the change can affect the jobs that
include that transformation. Before you change a generated transformation, you should run
impact analysis on that transformation to see all of the jobs that might be affected by the
change.

Solution
Run impact analysis on a generated transformation.

Tasks

Perform Impact Analysis on a Generated Transformation
Perform the following steps to run an impact analysis on a generated transformation:

1. From the SAS Data Integration Studio desktop, select the Transformations or Inventory
tree.

2. Open the folder that contains the generated transformation that you want to analyze.

3. Select that transformation, right-click the object, and select Analyze from the pop-up
menu.

Alternatively, you can select the object in a tree view or in the context of a process
flow, then select Actions from the menu bar, and then select Analyze. The following
display shows the tree view of the analysis.

Display 13.5 Impact Analysis on a Generated Transformation

In the preceding display, the selected generated transformation is named Summary
Statistics. The Impact Analysis window shows that the selected transformation is used in
the job Summary Statistics.

You can right-click the objects on the Impact Analysis tab to obtain information about
those objects.

For a process flow view of the impacts, select the Diagram view icon.

252 Chapter 13 • Using Impact Analysis

Performing Reverse Impact Analysis

Problem
A table is used in the process flow for a job. You notice an error in the data for one column,
and you want to trace the data flow to that column.

Solution
Use reverse impact analysis to identify the tables, columns, jobs, and transformations that
contribute to the content of a selected column.

Tasks

Perform Reverse Impact Analysis
To perform impact analysis on a metadata object, right-click the object in a tree view or in
a process flow in the Job Editor window, and then select Analyze from the pop-up menu.
Be sure to save the job in the Job Editor window before running analysis on a metadata
object in that job. Otherwise, your analysis does not reflect any changes since the last save.

Alternatively, you can select the object in a tree view or in the context of a process flow,
select Actions from the menu bar, and then select Analyze.

Once the Analysis window opens, select the Reverse Impact Analysis tab. The steps for
performing reverse impact analysis on a column are similar to the steps in “Perform an
Impact Analysis” on page 249.

Tasks 253

254 Chapter 13 • Using Impact Analysis

Chapter 14
Working with Reports

About Reports . 256

Opening the Reports Window . 256
Problem . 256
Solution . 256
Tasks . 256

Selecting the Reports Perspective . 257
Problem . 257
Solution . 257
Tasks . 258

Customizing the Tables Report . 258
Problem . 258
Solution . 258
Tasks . 259

Customizing the Job Documentation Report . 259
Problem . 259
Solution . 259
Tasks . 260

Running and Saving a Report . 260
Problem . 260
Solution . 260
Tasks . 261

Saving a Report As a Document Object . 262
Problem . 262
Solution . 262
Tasks . 262

Viewing a Report . 263
Opening a Report . 263
Contents of a Tables Report . 263
Contents of a Job Report . 264
Contents of Your Own Report . 265

Creating Your Own Report . 265
Problem . 265
Solution . 265
Tasks . 265

255

About Reports
The reports feature in SAS Data Integration Studio can be used to generate reports. You
can generate reports to review the metadata for tables and jobs in a convenient format. You
can generate your own reports by creating a Java report plug-in. For more information
about generating your own reports see “Creating Your Own Report” on page 265.

Reports enable you to:

• find information about a table or job quickly

• compare information between different tables or jobs

• obtain a single file that contains summary information of all tables or jobs in HTML,
RTF, or PDF format

• perform custom behaviors that are defined by user-created plug-in SAS code, Java code,
or both

You can access reports in SAS Data Integration Studio using document objects. You can
save the physical path to a report as a document object, and access that document object
in the Folders tree or the Inventory tree on the SAS Data Integration Studio desktop. For
more information about accessing reports with document objects see “Saving a Report As
a Document Object” on page 262.

Opening the Reports Window

Problem
You want to view the Reports window.

Solution
You can view the Reports window by using the drop-down menu in the Tools field or the
Reports button on the SAS Data Integration Studio menu bar.

Tasks

Access the Reports Window
Perform the following steps to access the Reports window.

1. Select Tools on the SAS Data Integration Studio menu bar.

2. Click Reports on the drop-down menu in the Tools field, or you can click the
Reports button on the SAS Data Integration Studio menu bar to open the Reports
window.

256 Chapter 14 • Working with Reports

Display 14.1 Reports Window

The Reports window contains the following information about a report:

• the name of a report

• a description of a report

• the type of report

• the time the report was last run

• the time the report was last saved

You can sort multiple reports that are listed in the Reports window by their number. You
can also sort reports alphabetically by their name, description, type, date last run, or date
last saved. For example, clicking once on the Name tab sorts all reports in the Reports
window in increasing alphanumeric order, and an arrow pointing up appears on the
Name tab. Clicking a second time on the Name tab sorts all reports in the Reports window
in decreasing alphanumeric order, and an arrow pointing down appears on the Name tab.

Selecting the Reports Perspective

Problem
You want to choose a perspective in the Reports window that includes only reports about
tables, jobs, or any additional report plug-in categories.

Solution
You can use the drop-down menu in the Show field in the Reports window to choose a
perspective that includes all reports or just reports about tables, jobs, or any additional
categories.

Solution 257

Tasks

Select the Perspective that Includes Tables, Jobs, or all Categories
Perform the following steps to select the perspective that includes tables, jobs, or all
categories.

1. Open the Reports window in SAS Data Integration Studio.

2. Click the drop-down menu in the Show field at the top of the Reports window. The
following table lists the possible options in the drop-down menu in the Show field and
describes their effect on the perspective in the Reports window. The drop-down menu
in the Show field displays any additional report plug-in categories after the categories
of Table and Job, and before the category Recently Run.

Table 14.1 Perspective Options on the Show Drop-down Menu

Option Description

All Selects a perspective that shows all reports.

Table Selects a perspective that includes all reports in
the Table category.

Job Selects a perspective that includes all reports in
the Job category.

Recently Run Shows a perspective that includes all reports
that have a date in the Last Run column in the
table.

Saved As Documents Shows only the reports that have a date in the
Last Saved column in the table.

Customizing the Tables Report

Problem
You want to customize the generated Tables Report.

Solution
You can specify the format type, style sheet, and additional Output Delivery System (ODS)
options to modify how the Tables Report is generated and control where the report output
is saved.

258 Chapter 14 • Working with Reports

Tasks

Specify Format and Style Changes for a Tables Report
Perform the following steps to specify format and style changes for a Tables Report.

1. Open the Reports window in SAS Data Integration Studio.

2. Click on the Tables Report so that it is highlighted. If you do not see Tables Report
make sure the perspective is set to Table or All in the drop-down menu in the Show
field.

3. Click Additional report options at the top of the Reports window. After you click the
Additional report options button, the following ODS Report Options dialog box is
shown.

Display 14.2 Report Options Dialog Box for Tables and Plug-in Code

4. Click the drop-down menu in the Format field to format your report as an HTML,
RTF, or PDF file.

5. (Optional) Specify a path to a style for your report in the Style field, or click Browse
to search for a path. For more information about style sheets, see the SAS Output
Delivery System User's Guide.

6. (Optional) Specify additional Output Delivery System (ODS) options in the Additional
options field. For more information about ODS options, see the SAS Output Delivery
System User's Guide.

7. Click OK to save your ODS report options, or click Cancel to keep the default report
options.

Customizing the Job Documentation Report

Problem
You want to customize the generated Job Documentation Report.

Solution
You can specify how to customize the generated Job Documentation Report with the
Additional report options button and the Report results pane in the Reports window.

Solution 259

Tasks

Specify Job Report Options
Perform the following steps to specify job report options.

1. Open the Reports window in SAS Data Integration Studio.

2. Click on the Job Documentation Report so that it is highlighted. If you do not see a job
report, make sure the perspective is set to All or Job in the drop-down menu in the
Show field.

3. Click Additional report options at the top of the Reports window. After you click the
Additional report options button, the following Job Documentation Report Options
dialog box opens.

Display 14.3 Job Documentation Report Options Dialog Box

The default settings for a job documentation report use the default HTML page,
index.html, and include all tables. To specify a different template for your job
documentation report, deselect the Use default HTML template check box, and enter
the path to another template in the text box. Alternatively, click Browse to search for
a template. Deselect the Include all tables check box to include only those tables that
have been registered in the Folders tree on the SAS Data Integration Studio desktop.

4. Click OK to save your job documentation report options, or click Cancel to keep the
default job documentation report options.

Running and Saving a Report

Problem
You want to run and save a report.

Solution
You can run and save a report by using the Run and view a report button on the
Reports window.

260 Chapter 14 • Working with Reports

Tasks

Run and Save a Report
Perform the following steps to run and save a report.

1. Open the Reports window in SAS Data Integration Studio.

2. Click on a report in the Reports window so that it is highlighted. If you do not see the
report you want, verify that the perspective in the Reports window includes the type of
report you want by checking the drop-down menu in the Show field.

3. Edit your report’s name in the File Name field in the Report results pane of the
Reports window.

Display 14.4 Report Results Pane

4. Check the default location to save your report in the Default Location field in the
Report results pane. This location is on the default SAS Application Server for SAS
Data Integration Studio, which is probably not the computer where SAS Data
Integration Studio is installed. You can change the directory to save your report by
entering a new path in the Default Location field. Alternatively, click Browse to
navigate to the directory of your choice. It is a good idea to use the Browse button to
examine the file folder hierarchy and check the path.

5. Click Run and view a report at the top of the Reports window. Alternatively, you can
double-click on a report in the Reports window to run and save a report.

Your report is saved to the path specified in the Default Location field in the Report
results pane of the Reports window. After you click the Run and view a report button,
or double-click a report, a Report View dialog box will open once the report has been
successfully created. A plug-in report might be designed to behave differently.

Display 14.5 Report View Dialog Box

6. Click Yes to view the report, or click No to close the Report View dialog box. Note
that a report opens only if the Default Location field in the Report results pane contains
a valid path. A plug-in report might be designed to behave differently. For more
information about viewing a report see “Viewing a Report” on page 263.

Tasks 261

Saving a Report As a Document Object

Problem
You want to save a report as a document object, so that you can access this report from the
SAS Data Integration Studio Folders tree.

Solution
You can save a report as a document object by using the Save the report result as a
document object button on the Reports window.

Tasks

Save a Report As a Document Object
Perform the following steps to save a report as a document object.

1. Open the Reports window in SAS Data Integration Studio.

2. Click on a category in the Reports window so that it is highlighted. If you do not see
the report you want, verify that the perspective in the Reports window includes the type
of report you want by checking the drop-down menu in the Show field.

3. Click Save the report as a document object at the top of the Reports window. After
you click the Save the report as a document object button, a Save As Document
dialog box will open. You can use the drop-down menu in the Save in field to specify
the location in the Folders tree on the SAS Data Integration Studio desktop to save your
document object. Choose a name in the Name field for your document object.

Display 14.6 Save As Document Dialog Box

262 Chapter 14 • Working with Reports

4. Click Save to create your document object, or Cancel to close the Save As
Document dialog box.

Note: A document object will not open a report if the report is moved to a different
directory. This is because a document object contains the path where the HTML file
was originally created.

Viewing a Report

Opening a Report
You can open a report one of the following ways.

• Click Yes on the Report View dialog box after clicking Run and view a report on the
Reports window.

• Right-click a document object in the Folders tree on the SAS Data Integration Studio
desktop, and select Open.

• Navigate to the directory on your computer or network where the report is saved and
double-click on the report icon.

Contents of a Tables Report
A tables report contains information about the tables in the Inventory tree on the SAS Data
Integration Studio desktop. See the following display for a portion of a sample tables report.

Display 14.7 Tables Report

A tables report contains:

• an observation number for each table

• the name of a table

• a description of the table

• the date that the table was created

• the date that the table was last modified

• the owner of the table

• the schema of the table

Contents of a Tables Report 263

• the folder where the table resides in the Folders tree on the SAS Data Integration Studio
desktop

• the date that the table was checked out

Contents of a Job Report
A job report contains three windows. The first window is the Main window for the job
report, and is located on the right. The second window is an Items window, and it is located
in the upper left hand corner of the job report. The third window is an Objects window,
and it is located in the lower left hand corner of the job report.

Display 14.8 Job Report

Main Window

The Main window contains links to detailed information about libraries, tables, jobs,
and metadata repositories.

Items Window

An item is a metadata repository, job, library, or table.

The Items window allows you to select items by type, select items by storage, or search
for an item by name.

To select an item by type, make sure the “items by type” perspective is selected in the
Items window. The “items by type” perspective contains a link for each metadata
repository, job, library, and table. You can open detailed information about an item in
the Main window of a job report by clicking on a link for an item.

To select an item by storage, make sure the “items by storage” perspective is selected
in the Items window. The “items by storage” perspective allows you to browse items
in a tree as they are stored in the Folders tree on the SAS Data Integration Studio
desktop. You can open detailed information about an item in the Main window of a job
report by clicking on a link for an item.

To search for an item by name, make sure the “search” perspective is selected in the
Items window. The “search” perspective allows you to search for an item by entering
the name of the item in a text box. You can open detailed information about an item in
the Main window of a job report by clicking on a link for an item that is in the results
set of a search.

264 Chapter 14 • Working with Reports

Objects Window

An object is a table name or column name in a table.

The Objects window contains an alphabetical list of links for each table and column
name. The Objects window is useful to look up metadata for a table if you know the
name of a column in a table, but do not know the name of the table. You can open
detailed information about an object in the Main window of a job report by clicking on
a link for an object.

Contents of Your Own Report
You can create your own report by writing a Java report plug-in. The content of the report
can be generated by using SAS code, Java code, or both. For more information about
creating your own report see “Creating Your Own Report” on page 265.

Creating Your Own Report

Problem
You want to create a custom report in SAS Data Integration Studio.

Solution
You can create a custom report by using SAS Data Integration Studio software's plug-in
functionality. The Java plug-in report can generate the content of the report by using SAS
code, Java code, or both.

Tasks

Create a Report Category
Perform the following steps to add your own report category to the Reports window. Note
that these steps create the Tables Report, which you can find in the table in the Reports
window.

1. Create a new Java package for:

com.sas.reports

that contains the file:

TableListingReport.java

The TableListingReport class extends an abstract class called AbstractReport.
AbstractReport contains the implementation of the reporting plug-in interface called
ReportingInterface. TableListingReport shows an implementation of only the
mandatory methods that have not been implemented in AbstractReport. It is
recommended that when creating a custom report to extend AbstractReport class. For
an example of the TableListingReport, see “Example Java Code for a Report Plug-in”
on page 427. For explanations of the methods in the report plug-in interface, see
“Reporting Interface Methods” on page 433.

2. Compile TableListingReport.java to create class files.

Tasks 265

3. Create a manifest file, called MANIFEST.MF, that describes your compiled classes,
and add the following line to the MANIFEST.MF file:

Plugin-Init: com.sas.reports.TableListingReport.class

If you do not add this line to MANIFEST.MF, then SAS Data Integration Studio
software cannot recognize this plug-in.

4. Build a compressed JAR (Java ARchives) file (not an "executable" JAR file) that
contains your compiled class files, and the MANIFEST.MF file. Before adding the
manifest file to the JAR file, create a folder called META-INF, and put your manifest
file in this folder. Now add the META-INF folder to your JAR file.

5. Navigate to the folder called 'plugins' in the 'SASDataIntegrationStudio' folder. If SAS
Data Integration Studio is installed in your Program Files, a likely path for the 'plugins'
folder is:

C:\Program Files\SAS\SASDataIntegrationStudio\4.2\plugins

Once inside the plugins directory, create a new folder. You do not need to name the
folder anything in particular. Add your JAR file into the folder that you just created.
SAS Data Integration Studio software cannot find your JAR file if you just add it to
the plugins directory, or if your JAR file is two or more directories deep from the plugins
folder. You must put your JAR file inside a folder that you create in the plugins
directory. If the name of the folder you created is 'reports', and the name of your JAR
file is 'sas.reports.jar', then the complete path of this JAR file based on the previous
example path, would be:

C:\Program Files\SAS\SASDataIntegrationStudio\4.2\plugins\
reports\sas.reports.jar

6. Start SAS Data Integration Studio to populate the Reports window with the category
that corresponds to your plug-in code in the JAR file that you created. If you do not see
a report for your plug-in code in the Reports window, make sure the perspective in the
Reports window is set to All in the drop-down menu in the Show field.

You can add multiple reports to your package. If you want to add multiple reports, compile
class files for each report category that you want to create, and add the compiled classes
to your JAR file. Modify the Plugin-Init line of code in your manifest file by adding each
class, and separating each class by a semi-colon.

266 Chapter 14 • Working with Reports

Part 3

Working with Transformations

Chapter 15
Working with Loader Transformations . 269

Chapter 16
Working with SAS Sort Transformations . 279

Chapter 17
Working with SQL Join Transformations . 285

Chapter 18
Working with Iterative Jobs and Parallel Processing 333

Chapter 19
Working with Slowly Changing Dimensions . 347

Chapter 20
Working with Change Data Capture . 369

Chapter 21
Working with Message Queues . 379

Chapter 22
Working with SPD Server Cluster Tables . 389

267

268

Chapter 15
Working with Loader
Transformations

About Loader Transformations . 269

About the SPD Server Table Loader Transformation . 270

About the Table Loader Transformation . 270

Setting Table Loader Transformation Options . 271
Problem . 271
Solution . 271
Tasks . 272

Selecting a Load Technique . 273
Problem . 273
Solution . 274
Tasks . 274

Removing Non-Essential Indexes and Constraints during a Load 276
Problem . 276
Solution . 276

Considering a Bulk Load . 277
Problem . 277
Solution . 277
Tasks . 277

About Loader Transformations
SAS Data Integration Studio provides three specific transformations to load data. Although
most data-related transformations load data into temporary SAS WORK tables, these
Loader Transformations are designed to output to permanent, registered tables (that is,
tables that are available in the Folder or Inventory Tree). Loaders can create and replace
tables and maintain indexes, as do the other transformations. Loaders can also do updates,
appends, and be used to maintain constraints.

SAS Data Integration Studio provides the following transformations for loading data into
permanent output tables:

• The SCD Type 2 Loader transformation, which loads source data into a dimension
table, detects changes between source and target rows, updates change tracking
columns, and applies generated key values. This transformation implements slowly
changing dimensions. For more information, see “Transformations That Support
Slowly Changing Dimensions” on page 349.

269

• The SPD Server Table Loader transformation reads a source and writes to an SPD
Server target. This transformation is automatically added to a process flow when an
SPD Server table is specified as a source or as a target. It enables you to specify options
that are specific to SPD Server tables. For more information, see “About the SPD Server
Table Loader Transformation” on page 270.

• The Table Loader transformation is a general loader that reads a source table and writes
to a target table. This transformation can be used to load SAS and most DBMS tables,
as well as Excel spreadsheets. The code generated by this transformation includes
syntax that is specific to the output data type. For more information, see“About the
Table Loader Transformation” on page 270.

About the SPD Server Table Loader
Transformation

The SPD Server Table Loader transformation can be added to a process flow when a SAS
Scalable Performance Data (SPD) Server table is used as a target. The SPD Server Table
Loader generates code that is appropriate for the special data format that the server uses.
It also enables you to specify options that are unique to SPD Server tables.

You can specify a variety of table options in the Additional Data Table Options field.
This field is found in the Loader window of the Options tab of the SPD Server Table Loader
properties window. These options are described in detail in the documentation that is
installed with the SPD Server. One example of an additional table option is the
MINMAXVARLIST option that is described in the SAS Data Integration Studio Usage
Notes topic in SAS Data Integration Studio Help.

About the Table Loader Transformation
You can always let a SAS Data Integration Studio transformation perform a simple load
of its output table that drops and replaces the table. However, you can also add a Table
Loader transformation to a permanent output table. Then, you can use the options in the
Table Load transformation to control how data is loaded into the target table. In fact, a
separate Table Loader transformation might be desirable under the following conditions:

• loading a DBMS table with any technique other than drop and replace

• loading tables that contain rows that must be updated upon load (instead of dropping
and recreating the table each time the job is executed)

• creating primary keys, foreign keys, or column constraints

• performing operations on constraints before or after the loading of the output table

• performing operations on indexes other than after the loading of the output table

The Table Loader transformation generates code that reads a single source table (or view)
and updates, replaces, or appends it to a permanent target table. Supported target types
include SAS, Excel, and a wide variety of DBMS types. For data types that support
constraints such as not-null and primary, unique, and foreign keys, a Table Loader can be
set to generate the appropriate code to add or remove constraints. Constraint actions can
be set independently for before and after the load. Likewise, the adding and removing of
indexes can be controlled in the same way.

270 Chapter 15 • Working with Loader Transformations

Choosing the Load Style and Technique is critical to getting the Table Loader to perform
the correct task for the job efficiently. User requirements control which style (Update,
Replace, or Append) to select. Once the style has been selected, a number of possible
techniques to accomplish the task are presented. Choosing the correct technique is often a
matter of deciding which technique will likely result in the best performance for the job
when it later runs in production. The exact number and types of available styles and
techniques depend on the target’s data type. Some data types support clearing old rows by
using a technique known as Truncate, while others do not. Some data types support a special
Upsert technique, which updates rows that match on a specific key and appends the other
rows to the master. Some support direct access; for those, the DATA step Modify technique
is a choice. For more information about all the available techniques, see the Help topic for
the Load Technique.

Once the technique is chosen, additional options that are associated with the selected
technique should be reviewed to determine whether any option values should be changed
from their defaults. Also, with performance in mind, you should consider any special
handling of constraints and indexes.

It is important to know that non-loader transformations can load data directly into a
permanent table if it has no constraints, in effect doing a Replace Entire table without
using a Table Loader. This is done in the Job Editor by replacing the non-loader’s output
WORK table with a registered table. This technique is not supported by all transformations
for all data types.

A new Replace Simulating truncate load style has been added for SAS targets. This choice
empties the output table by using a DATA step with SET and STOP statements. This
actually recreates the target table with no rows before data from the source is appended.
Original data is physically deleted, not just logically deleted as with Replace All rows
using delete. Constraints are restored as they were on the physical table before the load.

CAUTION:
When using this load style, the new table structure is derived from the physical
table (assuming it pre-existed) and not from metadata. This load style does not
reflect changes to the column, index, or constraint metadata after the creation of
the table.

One feature that is available for SAS tables with Replace Simulating truncate, but not
available with other Replace types, is the ability to use generation data sets. Generation
data sets are a way of automatically saving a specified number of backups of the target. In
SAS, this feature is enabled by adding the data set option GENMAX=#.

Setting Table Loader Transformation Options

Problem
You want to specify the options that control how the Table Loader transformation updates
the target.

Solution
You can use the settings on the Load Technique tab in the properties window for the Table
Loader transformation. Some of the settings on the tab vary depending on which load styles
that you use, although some settings appear for more than one load style.

Solution 271

In addition to the options on the Load Technique tab, more options are located under the
Options tab in the properties window.

Tasks

Setting the Table Loader Job Options
Perform the following steps to set the response:

1. Create a job in SAS Data Integration Studio and give it an appropriate name.

2. Drop the Table Loader transformation from the Process tab onto the Job Editor window.
Drag and drop a source table and a target table from the Inventory or Folders tab to
the appropriate sides of the Table Loader transformation. Connect the source and target
tables to the transformation. This step creates a single process flow diagram for the job,
which is shown in the following example.

Display 15.1 Sample of the Table Loader Flow

3. Set the Load Technique by right-clicking on the Table Loader transformation to open
the Properties window. Select the Load Technique tab. Here you can set the load
style, the technique to be used, and the constraints or indexes. For this example, which
uses a SAS table, the selections are shown in the following display.

Display 15.2 Sample Table Loader Load Technique Selections

4. If these options are not already set in the target table object, you can set additional
options by selecting the Options tab in the Properties window. For example, your
business requires that three generations of target table backups be kept, and you need

272 Chapter 15 • Working with Loader Transformations

to use the load style of Replace with a load technique of Simulate truncate. Open the
Options tab and enter GENMAX=3 in the Additional table options field of the Loader
window.

Display 15.3 Modify Table Loader Options

5. Click OK to save the setting and close the properties window.

6. Submit and run the job.

7. Save the job.

Selecting a Load Technique

Problem
You want to load data into a permanent physical table that is structured to match your data
model. As the designer or builder of a process flow in SAS Data Integration Studio, you
must identify which one of these load styles best meets your process requirements:

• appending all of the source data to any previously loaded data

• replacing all previously loaded data with the source data

• using the source data to update and add to the previously loaded data that is based on
specific key columns

Once you know which load style is required, you can select the techniques and options that
maximize the step's performance.

Problem 273

Solution
You can use the Table Loader transformation to perform any of the three load styles. The
transformation generates the code that is required to load SAS data sets, database tables,
and other types of data, such as an Excel spreadsheet. When you load a table type that
supports indexing or constraints, you can use the Table Loader transformation to manage
indexes and constraints on the table.

You select the load style in the Load style field on the Load Technique tab of the Table
Loader transformation. After you have selected the load style, you can choose from a
number of load techniques and options. Based on the load style that you select and the type
of table that is being loaded, the choice of techniques and options can vary. The Table
Loader transformation generates code to perform a combination of the following loading
tasks:

• “Remove All Rows” on page 274

• “Add New Rows” on page 275

• “Match and Update Rows” on page 275

The following sections describe the SAS code alternatives for each load task and provide
tips for selecting the load technique (or techniques) that performs best.

Tasks

Remove All Rows
This task is associated with the Replace Load style. Based on the type of target table that
is being loaded, two or three of the following selections are listed in the Replace field:

• Replace Entire table: uses PROC DATASETS to delete the target table

• Replace All rows using truncate: uses PROC SQL with TRUNCATE to remove all
rows (only available for DBMS tables that support truncation)

• Replace All rows using delete: uses PROC SQL with DELETE * to remove all rows

• Replace Simulating truncate: uses the DATA step with SET and STOP statements
to remove all rows (available only for SAS tables)

When you select Replace Entire table, the table is removed and disk space is freed. Then
the table is recreated with 0 rows. Consider this option unless your security requirements
restrict table deletion permissions (a restriction that is commonly imposed by a database
administrator on database tables). Also, avoid this method if the table has any indexes or
constraints that SAS Data Integration Studio cannot recreate from metadata (for example,
check constraints).

If available, consider using Replace All rows using truncate. Either of the replace all rows
selections enables you to keep all indexes and constraints intact during the load. By design,
using TRUNCATE is the quickest way to remove all rows. In Replace All rows using
delete, the DELETE * syntax also removes all rows; however, based on the database and
table settings, this choice can incur overhead that can degrade performance. Consult your
database administrator or the database documentation for a comparison of the two
techniques.

CAUTION:
When DELETE * is used repeatedly to clear a SAS table, the size of that table
should be monitored over time. DELETE * performs only logical deletes for SAS

274 Chapter 15 • Working with Loader Transformations

tables. Therefore, the table's physical size continues to increase, which can negatively
affect performance.

Replace Simulating truncate is available for SAS tables. It does not remove rows from
a table as Replace All rows using delete does, or as Replace All rows using truncate
does for a DBMS. It actually behaves more like Replace Entire table in that the entire
table is replaced with an empty table before being loaded. Unlike Replace All rows using
delete, this replace style does not have the issue of ever-increasing table size.

Compared to Replace Entire table, Replace Simulating truncate offers an advantage in
that it can maintain constraints such as check constraints that cannot be defined in metadata
for SAS Data Integration Studio. If a target table is to have check constraints, the physical
table must be created with all constraints applied before a Table Loader can load it with
Replace Simulating truncate. This can be done once, outside of SAS Data Integration
Studio or in user-written code in a SAS Data Integration Studio job. When the Loader step
runs and the target table already exists, the step simulates a Truncate by creating an empty
table with structure and constraints that are identical to the original, and then appends or
inserts the data from the source table.

It is important to understand that Replace Simulating truncate, by design, ignores all
constraint metadata when code is generated (except to create code to initialize the target if
it does not already exist). Therefore, constraints on the physical table cannot be modified
by changing constraint metadata and regenerated and rerunning with Replace Simulating
truncate.

Note: If you are using Generation Data Sets, use the Simulating Truncate load technique
instead of the DELETE * syntax.

Add New Rows
For this task, the Table Loader transformation provides two techniques for all three load
styles: PROC APPEND with the FORCE option and PROC SQL with the INSERT
statement. The two techniques handle discrepancies between source and target table
structures differently.

PROC APPEND with the FORCE option is the default. If the source is a large table and
the target is in a database that supports bulk-load, PROC APPEND can take advantage of
the bulk-load feature. Consider bulk-loading the data into database tables with the
optimized SAS/ACCESS engine bulk loaders. (It is recommended that you use native
SAS/ACCESS engine libraries instead of ODBC libraries or OLEDB libraries for relational
database data. SAS/ACCESS engines have native access to the databases and have superior
bulk-loading capabilities.)

PROC SQL with the INSERT statement performs well when the source table is small
because you do not incur the overhead that is needed to set up bulk-loading. PROC SQL
with INSERT adds one row at a time to the database.

Match and Update Rows
The Table Loader transformation provides three techniques for matching and updating rows
in a table. All the following techniques are associated with the Update/Insert load style:

• DATA step with the MODIFY BY option

• DATA step with the MODIFY KEY= option

• PROC SQL with the WHERE and SET statements

For each of these techniques, you must select one or more columns or an index for matching.
All three techniques update matching rows in the target table. The MODIFY BY and

Tasks 275

MODIFY KEY= options can take unmatched records and add them to the target table
during the same pass-through on the source table.

Of these three choices, the DATA step with MODIFY KEY= option often outperforms the
other update methods in tests conducted on loading SAS tables. An index is required. The
MODIFY KEY= option can also perform adequately for database tables when indexes are
used.

When the Table Loader uses PROC SQL with WHERE and SET statements to match and
update rows, performance varies. When used in PROC SQL, neither of these statements
requires data to be indexed or sorted, but indexing on the key columns can greatly improve
performance. Both of these statements use WHERE processing to match each row of the
source table with a row in the target table.

The update technique that you choose depends on the percentage of rows being updated.
If the majority of target records are being updated, the DATA step with MERGE (or
UPDATE) might perform better than the DATA step with MODIFY BY or MODIFY
KEY= or PROC SQL because MERGE makes full use of record buffers. Performance
results can vary by hardware and operating environment, so you should consider testing
more than one technique.

Note: The general Table Loader transformation does not offer the DATA step with
MERGE as a load technique. However, you can revise the code for the MODIFY BY
technique to do a merge and save that as user-written code for the transformation.

Removing Non-Essential Indexes and Constraints
during a Load

Problem
You want to improve the performance of a job that includes a table that contains one or
more non-essential indexes.

Solution
You can remove non-essential indexes before a load and recreate those indexes after the
load. In some situations, this procedure improves performance. As a general rule, consider
removing and recreating indexes if more than 10 percent of the data in the table requires
reloading.

You might also want to temporarily remove key constraints in order to improve
performance. If you remove constraints from the target before the load, then you remove
the overhead of maintaining those constraints. If you are loading a significant number of
transactions with data that conforms to the constraints, then removing the constraints should
improve your performance.

To control the timing of index and constraint removal, use the options that are available on
the Load Technique tab of the Table Loader transformation. The following settings are
provided to enable you to specify the desired conditions for the constraints and indexes
before and after the load:

• the Before Load field in the Constraint Condition group box

• the After Load field in the Constraint Condition group box

• the Before Load field in the Index Condition group box

276 Chapter 15 • Working with Loader Transformations

• the After Load field in the Index Condition group box

The options that are available depend on the load technique that you choose. The choices
translate to four different tasks: put on, take off, leave as is, or recreate as is. When you
select Off for the Before Load options, the generated code checks for and removes any
indexes (or constraints) that are found. Then, it loads the table. If an index is required for
an update, that index is added or not removed as needed. Select On for the After Load
options to have indexes added after the load.

In some situations, you might select Leave Off in the After Load field to leave the indexes
off during and after the table loading for performance reasons. One scenario is when the
table is updated multiple times in a series of load steps. Indexes are defined on the table
only to improve performance of a query and reporting application that runs after the nightly
load. None of the load steps need the indexes, and leaving the indexes on impedes the
performance of the load. In this scenario, the indexes can be taken off before the first update
and left off until after the final update.

Considering a Bulk Load

Problem
You want to load large data volumes into a relational database.

Solution
You should consider using the optimized SAS/ACCESS engine bulk loaders to bulk load
the data into database tables. Many of the SAS/ACCESS engines for DBMS support the
BULKLOAD option, and this loading capability is one of the fastest ways to insert large
data volumes into a relational database.

By default, the SAS/ACCESS engines load data into tables by preparing an SQL INSERT
statement, executing the INSERT statement for each row, and periodically issuing a
COMMIT. If you specify BULKLOAD=YES as a data set or a LIBNAME option, a
database bulk-load method is used. This can significantly enhance performance, especially
when database tables are indexed.

Consult SAS documentation to determine whether the BULKLOAD option is supported
for your target database type and whether it can be specified as a LIBNAME or a data set
option. For each database there are additional options to specify behavior of the bulkload
option. These options can be found in the SAS/ACCESS documentation for the specific
database. The names of these options normally start with BL_.

Perform one of the following tasks to specify the BULKLOAD option:

• “Set the BULKLOAD Option for a DBMS Library” on page 277

• “Set the BULKLOAD Option for a DBMS Table” on page 278

Tasks

Set the BULKLOAD Option for a DBMS Library
Some SAS/ACCESS engines allow you to specify the BULKLOAD option on the library.
The LIBNAME statement enables you to assign a libref to a relational DBMS. This feature
lets you reference a DBMS object directly in a DATA step or SAS procedure. You can use

Tasks 277

it to read from and write to a DBMS object as if it were a SAS data set. You can associate
a SAS libref with a relational DBMS database, schema, server, or group of tables and views.

The following DBMSs support BULKLOAD on the library level:

• ODBC

• OLE DB

• Teradata

Perform the following tasks to set the BULKLOAD= LIBNAME option:

1. Open the Properties window on the library icon, and select the Options tab.

2. Click on the Advanced Options button and select the Output tab.

3. Select Yes for the field labeled Whether to use DBMS's bulk load.

Set the BULKLOAD Option for a DBMS Table
You can specify the BULKLOAD option to load on an individual table level by using the
data set option. This data set option applies only to the data set on which it is specified,
and it remains in effect for the duration of the DATA step or procedure.

The DBMSs that support BULKLOAD on the table level are:

• DB2 UNIX for PC

• DB2 for z/OS

• Neoview

• Netezza

• ODBC

• OLE DB

• Oracle

• Sybase

• Teradata

Perform the following tasks to set the BULKLOAD= data set option:

1. Open the Properties window on the table icon and select the Physical Storage tab.

2. Click on the Table Options button.

3. Enter BULKLOAD=YES in the field labeled Table options.

278 Chapter 15 • Working with Loader Transformations

Chapter 16
Working with SAS Sort
Transformations

About Sort Transformations . 279

Optimizing Sort Performance . 279
Problem . 279
Solution . 280

Creating a Table That Contains the Sorted Contents of a Source 282
Problem . 282
Solution . 282
Tasks . 282

About Sort Transformations
The Sort transformation provides a graphic interface for the functions that are available in
PROC SORT. You can use the transformation to read data from a source, sort it, and write
the sorted data to a target in a SAS Data Integration Studio job.

The properties window for the Sort transformation contains tabs that enable you to select
the columns that you sort by and to set options for the sort. You can also optimize sort
performance, as described in “Optimizing Sort Performance” on page 279. For an example
of how you can use a Sort transformation, see “Creating a Table That Contains the Sorted
Contents of a Source” on page 282.

Optimizing Sort Performance

Problem
You want to sort the data in your source tables before running a job. Sorting is a common
and resource-intensive component of SAS Data Integration Studio. Sorts occur explicitly
as PROC SORT steps and implicitly in other operations such as joins. Effective sorting
requires a detailed analysis of performance and resource usage.

Sorting large SAS tables requires large SORT procedure utility files. When SAS Data
Integration Studio is running on multiple SAS jobs simultaneously, multiple SORT
procedure utility files can be active. For these reasons, tuning sort performance and
understanding sort disk space consumption are critical.

279

Solution
You can enhance sort performance with the techniques listed in the following table. For
more information, see the ETL Performance Tuning Tips whitepaper that is available from
http://support.sas.com/resources/papers/tnote/
tnote_performance.html.

Table 16.1 Sort Performance Enhancement Techniques

Technique Notes

Use the improved SAS®9 sort
algorithm

SAS®9 includes a rewritten SORT algorithm that
incorporates threading and data latency reduction algorithms.
The SAS®9 sort uses multiple threads and outperforms a SAS
8 sort in almost all circumstances.

Minimize data Perform the following steps:

• Minimize row width.

• Drop unnecessary columns.

• Minimize pad bytes.

Direct sort utility files to fast
storage devices

Use the WORK invocation option, the UTILLOC invocation
option, or both options to direct SORT procedure utility files
to fast, less-utilized storage devices. Some procedure utility
files are accessed heavily, and separating them from other
active files might improve performance.

Distribute sort utility files across
multiple devices

Distribute SORT procedure utility files across multiple fast,
less-utilized devices. Direct the SORT procedure utility file
of each job to a different device. Use the WORK invocation
option, the UTILLOC invocation option, or both options.

Pre-sort explicitly on the most
common sort key

SAS Data Integration Studio might arrange a table in sort
order, one or multiple times. For large tables in which sort
order is required multiple times, look for a common sort
order. Use the MSGLEVEL=I option to expose information
that is in the SAS log to determine where sorts occur.

Change the default SORTSIZE
value

For large tables, set SORTSIZE to 256 MB or 512 MB. For
extremely large tables (a billion or more wide rows), set
SORTSIZE to 1 GB or higher. Tune these recommended
values further based on empirical testing or based on in-depth
knowledge of your hardware and operating system.

Change the default MEMSIZE
value

Set MEMSIZE at least 50% larger than SORTSIZE.

Set the NOSORTEQUALS
system option

In an ETL process flow, maintaining relative row order is
rarely a requirement. If maintaining the relative order of rows
with identical key values is not important, set the system
option NOSORTEQUALS to save resources.

280 Chapter 16 • Working with SAS Sort Transformations

http://support.sas.com/resources/papers/tnote/tnote_performance.html
http://support.sas.com/resources/papers/tnote/tnote_performance.html

Technique Notes

Set the UBUFNO option to the
maximum of 20

The UBUFNO option specifies the number of utility I/O
buffers. In some cases, maximizing UBUFNO increases sort
performance up to 10%. Increasing UBUFNO has no
negative ramifications.

Use the TAGSORT option for
nearly sorted data

TAGSORT is an alternative SAS 8 sort algorithm that is
useful for data that is almost in sort order. The option is most
effective when the sort-key width is no more than 5 percent
of the total uncompressed column width. Using the
TAGSORT option on a large unsorted data set results in
extremely long sort times compared to a SAS®9 sort that uses
multiple threads.

Use relational database sort
engines to pre-sort tables without
data order issues

Pre-sorting in relational databases might outperform sorting
that is based on SAS. Use options of the SAS Data Integration
Studio Extract transformation to generate an ORDER BY
clause in the SAS SQL. The ORDER BY clause asks the
relational database to return the rows in that particular sorted
order.

Determine disk space
requirements to complete a sort

Size the following sort data components:

• input data

• SORT procedure utility file

• output data

Size input data Because sorting is so I/O intensive, it is important to start with
only the rows and columns that are needed for the sort. The
SORT procedure WORK files and the output file are
dependent on the input file size.

Size SORT procedure utility files Consider a number of factors to size the SORT procedure
utility files:

• sizing information of the input data

• any pad bytes added to character columns

• any pad bytes added to short numeric columns

• pad bytes that align each row by 8 bytes (for SAS data
sets)

• 8 bytes per row overhead for EQUALS processing

• per-page unused space in the SORT procedure utility files

• multi-pass merge: doubling of SORT procedure utility
files (or sort failure)

Size of output data To size the output data, apply the sizing rules of the
destination data store to the columns that are produced by the
sort.

Solution 281

Creating a Table That Contains the Sorted
Contents of a Source

Problem
You want to create a job that reads data from a source, sorts it, and writes the sorted data
to a target.

Solution
You can create a job that uses a Sort transformation to sort the data in a source table and
write it to a target table. The sample job includes the following tasks:

• “Create and Populate the Job” on page 282

• “Specify How to Sort Information in the Target” on page 283

• “Run the Job and View the Output” on page 283

Tasks

Create and Populate the Job
Perform the following steps to create and populate a new job:

1. Create an empty SAS Data Integration Studio job.

2. From the Data folder in the Transformations tree, select and drag a Sort transformation
and drop it in the empty job on the Diagram tab in the Job Editor window.

3. Select and drag the source table from its folder and drop it before the Sort transformation
on the Diagram tab.

4. Drag the cursor from the source table to the input port of the Sort transformation. This
action connects the transformation to the source.

5. Because you want to have a permanent target table to contain the output for the
transformation, right-click the temporary work table that is attached to the
transformation and click Replace in the pop-up menu. Then, use the Table Selector
window to select the target table for the job. The target table must be registered in SAS
Data Integration Studio. (For more information about temporary work tables, see
“Working with Default Temporary Output Tables” on page 126.)

The following example shows the sample process flow. The source table is named
ALL_EMP and the permanent target table is named EMPSORT.

Display 16.1 Sample Sort Process Flow Diagram

282 Chapter 16 • Working with SAS Sort Transformations

Specify How to Sort Information in the Target
Perform the following steps to specify how to sort information in the target table:

1. Open the Sort By Columns tab of the properties window for the Sort transformation.

2. Select the first variable for the new sort from the list in the Available Columns field.
Move the variable to the Sort by columns field. Then, specify the sort direction for the
variable with the drop-down menu in the Sort Order column.

Note: You can double-click on the value in the Sort order column to change the value.
However, if you double-click on the value in the Column name column, the column
is removed from the Sort by columns list.

3. Move the other variables that you want to sort by to the Sort by columns field. Then,
set the sort direction for each. The following display depicts the completed Sort By
Columns tab for the sample sort job.

Display 16.2 Completed Sort Tab for Sample Job

Note: Additional sorting options can be specified on the Options tab.

Run the Job and View the Output
Perform the following steps to run the job and view the output:

1. Save the selection criteria for the target and close the properties window.

2. Right-click on an empty area of the job, and click Run in the pop-up menu. SAS Data
Integration Studio generates code for the job and submits it to the SAS Application
Server for execution. The following display shows a successful run of a sample job.

Tasks 283

Display 16.3 Successfully Completed Sample Job

3. If error messages are displayed on the Status tab, read and respond to the messages as
needed.

4. To view the target table, right-click the target and select Open. The following display
shows the target table data for the sample job.

Display 16.4 Data in Sample Sorted Table

You can review the View Data window to ensure that the data from the source table was
properly sorted. Note that the Age and Sex columns in the sample target table are sorted,
but the other columns remained unsorted.

284 Chapter 16 • Working with SAS Sort Transformations

Chapter 17
Working with SQL Join
Transformations

About SQL Join Transformations . 287

Using the Designer Window . 287
Problem . 287
Solution . 287
Tasks . 288

Reviewing and Modifying Clauses, Joins, and Tables in an SQL Query 288
Problem . 288
Solution . 289
Tasks . 289

Understanding Automatic Joins . 291
The Autojoin Process . 291
A Sample Auto-Join Process . 292

Selecting the Join Type . 294
Problem . 294
Solution . 294
Tasks . 294

Adding User-Written SQL Code . 296
Problem . 296
Solution . 296
Additional Information . 297

Debugging an SQL Query . 297
Problem . 297
Solution . 298
Tasks . 298

Adding a Column to the Target Table . 299
Problem . 299
Solution . 299
Tasks . 299

Adding a Join to an SQL Query on the Designer Tab . 299
Problem . 299
Solution . 299
Tasks . 300

Creating a Simple SQL Query . 301
Problem . 301
Solution . 301
Tasks . 301

285

Configuring a SELECT Clause . 303
Problem . 303
Solution . 303
Tasks . 304

Adding a CASE Expression . 305
Problem . 305
Solution . 306
Tasks . 306

Creating or Configuring a WHERE Clause . 307
Problem . 307
Solution . 307
Tasks . 308

Adding a GROUP BY Clause and a HAVING Clause . 309
Problem . 309
Solution . 309
Tasks . 310

Adding an ORDER BY Clause . 312
Problem . 312
Solution . 312
Tasks . 312

Adding Subqueries . 313
Problem . 313
Solution . 313
Tasks . 314

Validating or Submitting an SQL Query . 318
Problem . 318
Solution . 318
Tasks . 318

Joining a Table to Itself . 319
Problem . 319
Solution . 319
Tasks . 319

Using Parameters with an SQL Join . 320
Problem . 320
Solution . 320

Constructing a SAS Scalable Performance Data Server Star Join 321
Problem . 321
Solution . 321
Tasks . 321

Optimizing SQL Processing Performance . 322
Problem . 322
Solution . 322

Performing General Data Optimization . 323
Problem . 323
Solution . 323
Tasks . 323

Influencing the Join Algorithm . 324
Problem . 324
Solution . 324
Tasks . 324

286 Chapter 17 • Working with SQL Join Transformations

Setting the Implicit Property for a Join . 325
Problem . 325
Solution . 325

Enabling Pass-Through Processing . 326
Problem . 326
Solution . 327
Tasks . 327

Using Properties Window Options to Optimize SQL Processing
Performance . 328

Problem . 328
Solution . 329
Tasks . 329

About SQL Join Transformations
The SQL Join transformation enables you to create SQL queries that run in the context of
SAS Data Integration Studio jobs. The transformation features a graphical interface that
provides a consistent and intuitive setting for building the statements and clauses that
constitute queries. The transformation supports the PROC SQL syntax of Create
table/view <table> as <query expression> and accommodates up to 256
tables in a single query. The Select statement supports joining the table to itself. It also
supports subqueries; the CASE expression; and WHERE, GROUP BY, HAVING, and
ORDER BY clauses.

The process of building the SQL query is performed in the Designer window. You access
this window when you double-click the SQL Join transformation in a SAS Data Integration
Studio job. You use the Designer window to create, edit, and review an SQL query. The
window contains sections that are designed to simplify creating the SQL query and
configuring its parts. To return to the SQL job on the Designer tab of the Job Editor window,
click Up on the toolbar.

Using the Designer Window

Problem
You want to create SQL queries that you can use in SAS Data Integration Studio jobs. You
want to build these queries in a graphical interface that enables you to drag and drop
components onto a visual representation of a query. After a component is added to the
query, you need the ability to open and configure it.

Solution
Use the Designer window for the SQL transformation to create, edit, and review an SQL
query. You access this window when you double-click the SQL Join in a SAS Data
Integration Studio job. (You can also right-click the transformation and click Open in the
pop-up menu.) The window contains sections that are designed to simplify creating the
SQL query and configuring its parts.

Solution 287

Tasks

Using Components in the Designer Window
The Designer window enables you to perform the tasks listed in the following table:

Table 17.1 Designer Tab Tasks

Task Location Action

Select and manipulate an object that
displays in the Diagram tab.

Navigate pane Click the object that you need to
access.

Add SQL clauses to the flow shown
on the Diagram tab.

SQL Clauses
pane

Double-click the clause or drop it on
the Diagram tab.

Review the list of columns in the
source table and the target table. Note
that you can specify alphabetic
display of the columns by selecting
Display columns in alphabetical
order.

Tables pane Click Select, Where, Having,
Group by, or Order by in the SQL
Clauses pane.

Display and update the main
properties of an object that is selected
on the Diagram tab. The title of this
pane changes to match the object
selected in the Navigate pane.

Properties pane Click an object on the Diagram tab.

Create SQL statements, configure the
clauses that are contained in the
statement, and edit the source table to
target table mappings. The name of
this component changes as you click
different statements and clauses in
the Navigate pane.

Diagram tab Click SQL Join, Create, or From in
the Navigate pane.

View the SAS code generated for the
query.

Code tab Click Code at the bottom of the
Diagram tab.

View the log of a SAS program, such
as the code that is executed or
validated for the SQL query.

Log tab Click Log at the bottom of the
Diagram tab.

Reviewing and Modifying Clauses, Joins, and
Tables in an SQL Query

Problem
You want to view a clause, join, or table in an SQL query or modify its properties.

288 Chapter 17 • Working with SQL Join Transformations

Solution
Use the Navigate and properties panes on the Designer window for the SQL transformation
to access and review the objects in your query.

Perform the following tasks:

• “Review Clauses, Join, and Tables” on page 289

• “Modify Properties of Clauses and Tables” on page 290

Tasks

Review Clauses, Join, and Tables
When you click an item in the Navigate pane, the Designer window responds in the
following ways:

• The properties pane for the clause, join, or table is displayed.

• The appropriate tab for the clause or join is displayed in a tab on the left side of the
Designer window. When you click a table, the columns from the table are shown in a
tab.

• If you click SQL Join, Create, or From in the Navigate pane, the SQL Clauses pane is
displayed.

• If you click Select, Where, or one of the Joins in the Navigate pane, the Tables pane is
displayed.

The following display shows the Designer window for a sample job.

Tasks 289

Display 17.1 Information about a Select Clause on a Designer Tab

Note that Select is highlighted on the Navigate pane, and the SQL code for the SELECT
clause is highlighted on the Code tab. To highlight the code for a query object, right-click
the object in the Navigate pane and click Find In. Then, click Code in the submenu. Also
note that the Select tab, the Tables pane, and the Select Properties pane are displayed.

Modify Properties of Clauses and Tables
You can use the properties pane that is displayed when you click an object on the Navigate
pane to modify the object directly. If the properties window is not displayed, click Show
Properties Pane in the toolbar at the top of the Designer window.

For example, if you enter text in the Description field in the Select Properties pane, a
comment is added to the SELECT clause on the Code tab. See the following display for a
sample view of this behavior.

290 Chapter 17 • Working with SQL Join Transformations

Display 17.2 Using the Description Field to Comment a Select Clause

Note that text entered in the Description field in the Select Properties pane is also displayed
immediately before the SQL code on the Code tab. If you were to delete the text from the
Description field, it would also be removed from the Navigate pane and the Code tab.
Once again, you highlight the code with the Find In pop-up menu option. You can make
similar modifications to any field in a properties pane for any object, unless the field is
dimmed. Dimmed fields are read-only.

Understanding Automatic Joins

The Autojoin Process
The automatic join (auto-join) process determines the initial relationships and conditions
for a query that is formulated in the SQL Join transformation. You can understand how
these relationships and conditions are established. You can also examine how port order,
key relationships, and indexes are used in the auto-join process.

The process for determining the join relationships is based on the order of the tables that
are added to SQL transformation as input. When more than one table is connected to the
SQL transformation, a best guess is made about the join relationships between the tables.
The join order is determined by taking the first table connected and making it the left side
of the join. Then, the next table connected becomes the right side. If more than two tables
are connected, the next join is added so that the existing join is placed on the left side and
the next table is placed on the right. This process continues until no more source tables are
found. The default join type is an inner join.

The Autojoin Process 291

As each join is created and has its left and right sides added, a matching process is run to
determine the best relationships for the join. The process evaluates the join tables from the
left side to the right side. For example, if a join is connected on the left, it follows that left
side join until it locates all of the tables that are connected to the join. This process continues
until it includes all of the joins that are connected to the first join.

The auto-join process is geared toward finding the best relationships between the tables.
This process is based on the known relationships that are documented as key constraints,
indexes, or both. The process is most likely to find the correct relationships when the
primary and foreign key relationships are defined between the tables that are being joined.
The auto-join process can still find the correct relationships by using indexes alone, but an
index-only match can occur only when columns are matched between the two tables in the
join.

The key-matching process proceeds as follows:

1. Each of the left side table's unique keys are evaluated to find any existing associated
foreign keys in any table on the right side of the join. If no associations are found, the
left side table's foreign keys are checked to see whether a relationship is found to a
unique key in a table on the right side of the join. If a match is found, both tables are
removed from the search.

2. If tables are still available on both the left and right sides, the table indexes are searched.
The left side is searched first. If an index is found, then the index columns are matched
to any column in the tables on the right. As matches are found, both tables are removed
from the search. The right side is searched if tables are still available on both the right
and left sides.

3. If tables are still available on both the left and right sides, the left side table's columns
are matched to the right side by name and type. If the type is numeric, the lengths must
match. As a match is found, both tables are removed from the search.

A Sample Auto-Join Process
An auto-join is best explained with a specific example. Suppose you add the following
tables as input to the SQL Join transformation in the following order:

• CUSTOMER, with the following constraint defined:

• Primary key: CUSTOMER_ID

• INVOICE, with the following constraints defined:

• Primary key: INVOICE_NUMBER

• Foreign key: CUSTOMER_ID

• Foreign key: ITEMSINSTOCK

• PRODUCT, with the following constraint defined:

• Primary key: ITEMSINSTOCK

• ITEMSINSTOCK, with the following constraint defined:

• Index: ITEMSINSTOCK

After the auto-join process is run for this source data, the process flow that is depicted in
the following display is shown in the Diagram tab in the Designer window for the SQL
Join transformation.

292 Chapter 17 • Working with SQL Join Transformations

Display 17.3 Sample Process Flow for an Auto-Join Process

This process flow is resolved to the following order: CUSTOMER, INVOICE, PRODUCT,
and ITEMSINSTOCK. This flow means that the join at the top of diagram is created first,
followed by the join in middle. Finally, the join at the bottom is created. As each join is
created and has its left and right sides, a matching process is used to determine the best
relationships for the join. The process evaluates the join tables from the left side to the right
side. For example, if a join is connected on the left, it follows that left side join until all of
the tables are connected to the join. The matching process uses the following criteria to
determine a good match. Note that the tables are removed from the search process as the
relationships are found.

The first join is created with the left table of CUSTOMER and the right table of INVOICE.
Going through the join relationship process, the key relationship on CUSTOMER_ID is
found between the two tables. Both tables are removed from the search and the matching
process is finished.

The next join is created with the search results of the CUSTOMER and INVOICE tables
as the new left table and PRODUCT as the right table. A key relationship between
INVOICE and PRODUCT on the column ITEMSINSTOCK is found, and an expression
is created. Both tables are removed from the search and the matching process is finished.

The last join is created with the search results of the CUSTOMER, INVOICE, and
PRODUCT table as the new left table and ITEMSINSTOCK as the right table. No key
relationships are found, so the indexes are searched. A match is found between PRODUCT
and INVENTORY on the column ITEMSINSTOCK. Both tables are then removed from
the search and the matching process is finished.

The relationship is initialized as follows:

A Sample Auto-Join Process 293

CUSTOMER.CUSTOMER_ID = INVOICE.CUSTOMER_ID and
INVOICE.ITEMSINSTOCK = PRODUCT.ITEMSINSTOCK and
PRODUCT.ITEMSINSTOCK = ITEMSINSTOCK.ITEMSINSTOCK

Selecting the Join Type

Problem
You want to select a specific type for a join in an SQL query. You can use the join type
selection to gain precise control over the data that is included in the results of the query.

Solution
Right-click an existing join in an SQL query, and click the appropriate join type in the pop-
up menu to select a different join type.

Tasks

Change Join Types in a Sample SQL Query
Examine a sample SQL query in a SAS Data Integration Studio job to see the effects of
changing the join types that are used in the query. The sample query contains the tables
and columns that are listed in the following table:

Table 17.2 Sample Query Data

Source Table 1:
POSTALCODES

Source Table 2:
UNITEDSTATES Target Table: State_Data

Name

Code

Name

Capital

Population

Area

Continent

Statehood

Name

Code

Capital

Population

Area

Continent

Statehood

The join condition for the query is POSTALCODES.Name = UNITEDSTATES.Name.
The query is depicted in the following display.

294 Chapter 17 • Working with SQL Join Transformations

Display 17.4 Sample SQL Query in a SAS Data Integration Studio Job

Notice that the query contains an inner join and a WHERE statement. These components
are included by default when a query is first created. The following table illustrates how
the query is affected when you run through all of the available join types in succession:

Table 17.3 Results By Join Type

Join Type Description Data Included in Results

Implicit or
Explicit
Status

Inner Combines and displays only the
rows from the first table that
match rows from the second
table, based on the matching
criteria that are specified in the
WHERE clause.

50 rows: 50 matches on name
column; 0 non-matches

Implicit

Full Retrieves both the matching
rows and the non-matching
rows from both tables.

59 rows: 50 matches on name
column; 8 non-matches from
POSTALCODES (left table); 1
non-match from
UNITEDSTATES (right table)

Explicit

Left Retrieves both the matching
rows and the non-matching
rows from the left table.

58 rows: 50 matches on name
column; 8 non-matches from
POSTALCODES (left table)

Explicit

Right Retrieves both the matching
rows and the non-matching
rows from the right table.

51 rows: 50 matches on name
column; 1 non-match from
UNITEDSTATES (right table)

Explicit

Cross Combines each row in the first
table with every row in the
second table (creating a
Cartesian product of the tables).

2958 rows Explicit

Tasks 295

Join Type Description Data Included in Results

Implicit or
Explicit
Status

Union Selects unique rows from both
tables together and overlays the
columns. PROC SQL first
concatenates and sorts the rows
from the two tables, and then
eliminates any duplicate rows.
See the following display for
the results of a sample union
join.

109 rows: 58 rows from
POSTALCODES (left table);
51 rows from
UNITEDSTATES (right table)

Explicit

A section of the View Data window for a sample query that includes a union join is depicted
in the following display.

Display 17.5 Sample Section from a View of a Union Join

Rows 45 to 51 come from the POSTALCODES table. Rows 52 to 59 come from the
UNITEDSTATES table.

These joins are contained in the FROM clause in the SELECT statement, which comes
earlier in an SQL query than a WHERE statement. You can often create more efficient
query performance by using the proper join type in a SELECT statement than you can by
setting conditions in a WHERE statement that comes later in the query.

Adding User-Written SQL Code

Problem
You want to add user-written code to an SQL query that is used in a SAS Data Integration
Studio job. This user-written code can consist of SQL code that is added to a WHERE,
HAVING, or JOIN clause. It can also overwrite the entire DATA step for the SQL Join
transformation.

Solution
You can add SQL code to an SQL WHERE, HAVING, or JOIN clause in the properties
window for the clause. To set the user-written property for a clause, click the clause in the
SQL Clauses pane in the Designer window. Then, select Yes in the User Written field and

296 Chapter 17 • Working with SQL Join Transformations

enter the code in the SQL field on the clause's tab. The following display shows sample
user-written code added to a WHERE clause.

Display 17.6 Sample User-Written SQL Code

Note that the following line of SQL code was added to the SQL field on the Where tab:

 and US.Population < 5000000

This code is also highlighted on the Code tab.

Additional Information
For information about how to overwrite the entire DATA step for the SQL Join
transformation, see “About User-Written Code” on page 213.

Debugging an SQL Query

Problem
You want to determine which join algorithm is selected for an SQL query by the SAS SQL
Optimizer. You also need to know how long it takes to run the job that contains the SQL
Join transformation.

Problem 297

Solution
You can enable debugging for the query by setting the Debug property in the SQL
Properties pane. Perform the following tasks:

• “Set the Debug Property” on page 298

• “Examine Some Sample Method Traces” on page 298

Tasks

Set the Debug Property
The Debug property in the SQL Properties pane enables the following debugging option:

options sastrace = ',,,sd' sastraceloc = saslog
no$stsuffix fullstimer;

You can use this option to determine which join algorithms are used in the query and to
get timing data for the SAS job.

You can use the keywords from the trace output that are listed in the following table to
determine which join algorithm was used:

Table 17.4 Debugging Keywords and Join Algorithms

Keyword Join Algorithm

sqxsort sort step

sqxjm sort-merge join

sqxjndx index join

sqxjhsh hash join

sqxrc table name

Examine Some Sample Method Traces
The following sample fragments illustrate how these keywords appear in a _method trace.

In the first example, each data set is sorted and sort-merge is used for the join:

sqxjm
 sqxsort
 sqxsrc(WORK.JOIN_DATA2)
 sqxsort
 sqxsrc(LOCAL.MYDATA)

In the next example, an index nested loop is used for the join:

sqxjndx
 sqxsrc(WORK.JOIN_DATA2)
 sqxsrc(LOCAL.MYDATA)

In the final example, a hash is used for the join:

298 Chapter 17 • Working with SQL Join Transformations

sqxjhsh
 sqxsrc(LOCAL.MYDATA)
 sqxsrc(WORK.JOIN_DATA1)

Adding a Column to the Target Table

Problem
You want to add a column to the target table for an SQL query that is used in a SAS Data
Integration Studio job.

Solution
You can use the Columns tab on the properties window for the target table to add a column
to the target table. (You can also add a column in the Select tab. To perform this task, right-
click in the Target table field and click New Column in the pop-up menu.)

Tasks

Add a Column with the Columns Tab for the Target Table
Perform the following steps to add a column to the target table:

1. Right-click the target table in the Navigation pane. Then, open the Columns tab in its
properties window.

2. Click New column to add a row to the list of columns.

3. Enter the column name in the Column field of the new row.

4. Click the drop-down menu in the Type field. Then, click either Character or
Numeric.

5. Review the other columns in the new row to ensure that they contain appropriate values.
Make any needed changes.

6. Click OK to save the new column and close the properties window.

Adding a Join to an SQL Query on the Designer Tab

Problem
You want to add a join to an SQL query that is used in a SAS Data Integration Studio job.
Then you can connect an additional source table, join, or subquery for the query to the join.

Solution
You can drop the join on the Diagram tab in the Designer window. You can easily tie this
new join into the existing query flow.

Solution 299

Tasks

Add a Join to the Diagram Tab
Perform the following steps to add a join to the Diagram tab:

1. Select one of the join objects in the Joins folder in the SQL Clauses pane, and drop it
in a blank space on the Diagram tab.

2. Disconnect the existing join from the Select object. Click on the arrow between the
Join and the Select object. Then, press DELETE to remove the arrow. The new join
and the original join are displayed in the query flow, as shown in the following display.

Display 17.7 Initial Job Flow

3. Move the new join to an appropriate location. Then, complete the following actions:

• Connect the original join to one input port of the new join.

Note: If you select a Join node on the diagram, then the new join node will be
inserted after the join that you selected.

• Drop the source table for the new join onto the Diagram tab.

• Connect the table to the remaining input port of the new join.

• Connect the new join to the input port of the Select object.

Note: If you select the Select node on the diagram, then the join is automatically
connected or inserted between the Select node and the Join node.

A sample job that includes an added join is shown in the following display.

Display 17.8 Added Join

Note: You can add the source and target tables directly to the process flow diagram for
the job in the Diagram tab for the Job Editor window. You can also add a table, join,
or subquery to a job by dragging and dropping it on the Diagram tab in the Designer
window for the SQL Join transformation.

300 Chapter 17 • Working with SQL Join Transformations

Creating a Simple SQL Query

Problem
You want to add a simple SQL query to a SAS Data Integration Studio job.

Solution
Use the SQL Join transformation to create an SQL query that runs in the context of a SAS
job. The transformation features a graphical interface that enables you to build the
statements and clauses that constitute queries. This example describes how to use the
transformation to create a job that uses an SQL query to select data from two SAS tables.
The data is merged into a target table.

Perform the following tasks:

• “Create and Populate the Job” on page 301

• “Create the SQL Query” on page 302

Tasks

Create and Populate the Job
Perform the following steps to create and populate the job:

1. Select and drag an SQL Join transformation from the Data folder in the
Transformations tree. Then, drop it in the empty job on the Diagram tab in the Job
Editor window.

2. Select and drag the source tables out of the Inventory tree. Then, drop it before the SQL
Join transformation on the Diagram tab. Drag the cursor from the source tables to the
input port of the SQL Join transformation. This action connects the sources to the
transformation.

3. Select and drag the target table out of the Inventory tree. Then, drop it after the SQL
Join transformation on the Diagram tab.

4. Because you want to have a permanent target table to contain the output for the
transformation, right-click the temporary work table that is attached to the SQL Join
transformation and click Replace in the pop-up menu. Then, use the Table Selector
window to select the target table for the job. The target table must be registered in SAS
Data Integration Studio. (For more information about temporary work tables, see
“Working with Default Temporary Output Tables” on page 126.)

Note: If you keep the worktable, you must add the Table Loader transformation to the
job in order to connect the target table into the job flow. The Table Loader provides
additional load options and combinations of load options, but it is not needed for
many jobs. The extra processing that is required for the Table Loader can degrade
performance when the job is run. In addition, you should not use a temporary output
table and a Table Loader step if you use pass-through processing when your target
table is a DBMS table and your DBMS engine supports the Create as
Select syntax.

The following display shows a sample SQL job.

Tasks 301

Display 17.9 Sample SQL Job

Note: The source tables for the sample job are UNITEDSTATES and USCITYCOORDS.
The target table is named CAPITAL_CITY_DATA. Now you can create the SQL query
that populates the target table.

Create the SQL Query
Perform the following steps to create the SQL query that populates the target table:

1. Double-click the SQL Join transformation to open the Designer window.

2. Click SQL Join in the Navigate pane. The right-hand side of the Designer window
contains a Navigate pane, an SQL Clauses/Tables pane, and a properties pane. You
might need to resize the horizontal borders of the panes to see all three of them. For
more information, see “Using the Designer Window” on page 287.

You can enter options that affect the entire query. Note that the SQL Join Properties
pane displays at the bottom of the tab. For example, you can limit the number of
observations that are output from the job in the Max Output Rows field.

3. Click Create in the Navigate pane to display an initial view of the query on the
Diagram tab. Note that the sample query already contains an INNER join, a SELECT
statement, and a WHERE clause. These elements are created when you drop source
tables on the transformation template. The joins shown in the query process flow are
not necessarily joined in the order in which the SQL optimizer actually joins the tables.
However, they do reflect the SQL syntax.

You can click the tables that are included in the query and set an alias in the properties
pane for each. These aliases help simplify the SQL code that is generated in the query.
Aliases are set for the source tables in the sample job. The Designer window is shown
in the following display.

302 Chapter 17 • Working with SQL Join Transformations

Display 17.10 Sample Designer Tab

Note: The query is shown in the Navigate pane, complete with the aliases that were
set for the source tables. The process flow for the query is displayed on the
Create tab. You can review the code for the query in the SQL Join properties pane.
You can see the SQL code for the query on the Code tab.

Configuring a SELECT Clause

Problem
You want to configure the SELECT clause for an SQL query that is used in a SAS Data
Integration Studio job. This clause defines which columns are read from the source tables
and which columns are saved in the query result tables. You must review the automappings
for the query, and you might need to create one or more derived expressions for the query.

Solution
You need to use the Select tab in the Designer window for the SQL Join transformation.

Solution 303

Tasks

Configure the SELECT Clause with the Select Tab
Perform the following steps to configure the SELECT clause for the SQL query:

1. Click Select in the Navigate pane to access the Select tab.

2. Review the automappings to ensure that the columns in the source table are mapped to
corresponding tables in the target table. If some columns are not mapped, right-click
in an empty area between the Source table and Target table fields. Then, click Map
All in the pop-up menu.

3. Perform the following steps if you need to create a derived expression for a column in
the target table for the sample query:

• Click the drop-down menu in the Expression column in the Target table field, and
click Advanced. The Expression Builder window displays. For information about
the Expression Builder window, see “Expression Builder” on page 402.

• Enter the expression that you need to create into the Expression Text field. (You
can use the Data Sources tab to navigate to the column names.) Click OK to close
the window.

• Review the data in the row that contains the derived expression. Ensure that the
column formats are appropriate for the data that is generated by the expression.
Change the formats as necessary.

To highlight the code for the Select object, right-click the object in the Navigate pane
and click Find In. Then, click Code in the submenu. The following display depicts a
sample Select tab.

304 Chapter 17 • Working with SQL Join Transformations

Display 17.11 Sample Select Tab Settings

4. Review the data tables in the Source table field and the Target table field to avoid
mapping errors. For example, the Name column in the US source table uses the full
names of the states, such as California. However, the State column in the CITY target
table uses the two-letter state abbreviation (CA). In this case, the column width for the
State column must be increased to 50 in order to accommodate the data in the Name
column. Also, the Distinct property in the Select Properties pane is set to Yes. This
property determines that only the first matching record for each matching condition is
included in the output. Note that the SQL code for the SELECT clause is highlighted
on the Code tab.

Adding a CASE Expression

Problem
You want to create a CASE expression to incorporate conditional processing into an SQL
query contained in a SAS Data Integration Studio job. The CASE expression can be added
to the following parts of a query:

• a SELECT statement

• a WHERE condition

• a HAVING condition

• a JOIN condition

Problem 305

Solution
You can use the CASE Expression window to add a conditional expression to the query.

Tasks

Add a CASE Expression to an SQL Query in the Designer Window
Perform the following steps to add a CASE expression to the SQL query in the Designer
window:

1. Access the CASE Expression window. To perform this task, click CASE in the drop-
down menu for an Operand in a WHERE, HAVING, or JOIN condition. You can also
access the CASE option in the Expression column for any column that is listed in the
Target table field on the Select tab.

2. Click New to begin the first condition of the expression. An editable row appears in
the table.

3. Enter the appropriate WHEN condition and THEN result for the first WHEN and THEN
clause.

4. Add the remaining WHEN and THEN clauses. You need to add one row for each clause.

5. Enter an appropriate value in the ELSE Result field. This value is returned for any row
that does not satisfy one of the WHEN and THEN clauses.

6. Click OK to save the CASE expression and close the window. The following display
depicts a sample completed CASE Expression window.

Display 17.12 Sample Completed CASE Expression Window

Note that the Operand field is blank. You can specify the operand only when the conditions
in the CASE expression are all equality tests. The expression in this sample query uses
comparison operators. Therefore, the US.Population column name must be entered for each
WHEN condition in the expression. In the sample query, the CASE expression is added to
a Pop_Group column that has been added to the target table. The following display depicts
the Select tab.

306 Chapter 17 • Working with SQL Join Transformations

Display 17.13 Sample CASE Expression Query

Note that the Population column in the Source table field on the Select tab is mapped to
both the Population and the Pop_Group columns in the Target table field. The second
mapping, which links Population to Pop_Group, is created by the CASE expression
described in this topic.

Note: Make sure that the option in the Select* field of the Select Properties pane is set to
No. The CASE expression is not included in the SQL SELECT statement when this
option is enabled.

Creating or Configuring a WHERE Clause

Problem
You want to configure the WHERE clause for an SQL query that is used in a SAS Data
Integration Studio job. The conditions included in this clause determine which subset of
the data from the source tables is included in the query results that are collected in the target
table.

Solution
You can use the Where tab in the Designer window for the SQL Join transformation to
configure the WHERE clause for an SQL query.

Solution 307

Tasks

Configure the WHERE Clause with the Where Tab
The WHERE clause for the query is an SQL expression that creates subsets of the source
tables in the SQL query. It also defines the join criteria for joining the source tables and
the subquery to each other by specifying which values to match. Perform the following
steps to configure the Where tab:

1. If the Where clause object is missing from the process flow in the Diagram tab, double-
click Where in the SQL Clauses pane. The Where clause object is added to the query
flow in the Diagram tab. Note that Where clause objects are automatically populated
into the Diagram tab. The WHERE clause is not automatically generated under the
following circumstances:

• the query contains only one source table

• no relationship was found during the auto-join process

2. Click Where in the Navigate pane to access the Where tab.

3. Click New on the Where tab to begin the first condition of the expression. An editable
row appears in the table near the top of the tab.

4. Enter the appropriate operands and operator for the first condition.

5. Add the remaining conditions for the WHERE clause. You need to add one row for
each condition.

6. The conditions created for the sample query are depicted in the SQL code that is
generated in this step in the SQL field, as shown in the following display.

308 Chapter 17 • Working with SQL Join Transformations

Display 17.14 Sample Where Tab Settings

Note that the SQL code for the WHERE clause that is shown in the SQL field is identical
to the highlighted WHERE clause code that is displayed on the Code tab. To highlight the
code for a query object such as the Where object, right-click the object in the Navigate
pane and click Find In. Then, click Code in the submenu.

Adding a GROUP BY Clause and a HAVING Clause

Problem
You want to group your results by a selected variable. Then, you want to subset the number
of groups displayed in the results.

Solution
You can add a GROUP BY clause to group the results of your query. You can also add a
HAVING clause that uses an aggregate expression to subset the groups returned by the
GROUP BY clause that are displayed in the query results.

Perform the following tasks:

• “Add a GROUP BY Clause to an SQL Query in the Diagram Tab” on page 310

• “Add a HAVING Clause to an SQL Query in the Diagram Tab” on page 310

Solution 309

Tasks

Add a GROUP BY Clause to an SQL Query in the Diagram Tab
Perform the following steps to add a GROUP BY clause to the SQL query in the Diagram
tab in the Designer window:

1. Click Create in the Navigate pane to access the Diagram tab and the SQL Clauses
pane.

2. Double-click Group by in the SQL Clauses pane. The Group by object is added to
the query flow in the Diagram tab. Then, click Group by in the Navigate pane to access
the Group by tab.

3. Select the column that you want to use for grouping the query results from the Available
columns field. Then, move the column to the Group by columns field. The following
display depicts a sample SQL query grouped with a GROUP BY clause.

Display 17.15 Sample SQL Query Grouped with a GROUP BY Clause

Note that the Group by column pane is set on the Group by tab, and the resulting SQL
code is highlighted on the Code tab. The GROUP BY clause in the sample query groups
the results of the query by the region of the United States.

Add a HAVING Clause to an SQL Query in the Diagram Tab
Perform the following steps to add a HAVING clause to the SQL query in the Diagram
tab in the Designer window:

310 Chapter 17 • Working with SQL Join Transformations

1. Click Create in the Navigate pane to access the Diagram tab and the SQL Clauses
pane.

2. Double-click Having in the SQL Clauses pane. The Having object is added to the query
flow on the Diagram tab.

3. Click Having in the Navigate pane to access the Having tab.

4. Click New on the Having tab to begin the first condition of the expression. An editable
row appears in the table near the top of the tab.

5. Enter the appropriate operands and operator for the first condition.

6. Add the remaining conditions for the HAVING clause. You need to add one row for
each condition.

7. The condition that is created for the sample query is depicted in the SQL code generated
in this step in the SQL field, as shown in the following display.

Display 17.16 Sample SQL Query Subsetted with a HAVING Clause

Note that the SQL code for the HAVING clause that is shown in the SQL field is identical
to the highlighted HAVING clause code that is displayed on the Code tab. (To highlight
the code for a query object, right-click the object in the Navigate pane and click Find In.
Then, click Code in the submenu.) The HAVING clause subsets the groups that are
included in the results for the query. In the sample, only the regions with an average
population density of less than 100 are included in the query results.

Tasks 311

Adding an ORDER BY Clause

Problem
You want to sort the output data in an SQL query that is included in a SAS Data Integration
Studio job.

Solution
You can use the Order by tab in the Designer window to add an ORDER By clause to the
SQL query.

Tasks

Add an ORDER BY Clause to an SQL Query in the Diagram Tab
You can add an ORDER BY clause to establish a sort order for the query results. Perform
the following steps to add an ORDER BY clause to the SQL query in the Designer window:

1. Click Create in the Navigate pane to access the Diagram tab and the SQL Clauses
pane.

2. Double-click Order by in the SQL Clauses pane. The Order by object is added to the
query flow in the Diagram tab.

3. Click the Order by object in the SQL Clauses pane to access the Order by tab.

4. Select the column that you want to use for ordering the query results from the Available
columns field. Then, move the column to the Order by columns field. Finally, enter
a value in the Sort Order field to determine whether the results are sorted in ascending
or descending order.

5. The following display depicts a sample SQL query with an ORDER BY clause.

312 Chapter 17 • Working with SQL Join Transformations

Display 17.17 Sample SQL Query Sorted with an ORDER BY Clause

Note that the ORDER BY column is set on the Order by tab, and the resulting SQL code
is highlighted on the Code tab. To highlight the code for a query object, right-click the
object in the Navigate pane and click Find In. Then, click Code in the submenu.

Adding Subqueries

Problem
You want to add one or more subqueries to an existing SQL query by using the
Designer tab of the properties window for the SQL Join transformation.

Solution
Use the Subquery object in the Designer window to add a subquery to an SQL query. The
sample job used in “Add a Subquery As an Input Table” on page 314 adds a subquery to
an input table. This subquery reduces the amount of data that is processed in the main SQL
query because it runs and subsets data before the SELECT clause is run. “Add a Subquery
to an SQL Clause” on page 317 covers adding a subquery to a SELECT, WHERE, or
HAVING clause in an SQL query.

Perform the following tasks:

• “Add a Subquery As an Input Table” on page 314

Solution 313

• “Add a Subquery to an SQL Clause” on page 317

Tasks

Add a Subquery As an Input Table
You can add the source and target tables directly to the process flow diagram for the job.
You can also add a table, join, or subquery to a job by dragging and dropping it on the
Diagram tab in the Designer window for the SQL Join transformation. If you drop a table
on an existing table in the Designer tab, the new table replaces the existing table.

You can even add a new input port to the query flow on the Diagram tab. To perform this
task, select one of the join icons from the Joins directory in the SQL Clauses pane and drop
it on the Diagram tab. The join and its input port is displayed in the query flow in the tab,
where you can connect it to the appropriate parts of the SQL query. Use this method to add
a subquery to the job.

Perform the following steps to create a subquery that refines the SQL query:

1. Select the SubQuery object in the Select Clauses folder in the SQL Clauses pane, and
drop it in a blank space in the Diagram tab.

2. Select the Inner join object in the Joins folder in the SQL Clauses pane, and drop it in
a blank space in the Diagram tab.

3. Disconnect the existing join from the Select object. Click on the arrow between the
Join and the Select object. Then, press DELETE to remove the arrow. The subquery,
the inner join, and the original join are displayed in the query flow, as shown in the
following display.

Display 17.18 Initial Subquery on Inner Join

4. Move the subquery and the new join to appropriate locations. Then, complete the
following actions:

• Connect the subquery to an input port of the new join.

• Connect the original join to the remaining input port of the new join.

• Connect the new join to the input port of the Select object.

A sample subquery on an inner join is shown in the following display.

Display 17.19 Connected Subquery On Inner Join

5. Click the SubQuery object. Note that the SubQuery Properties pane displays. Enter an
appropriate value in the Alias field. (RegionQry was entered in the sample job.) If

314 Chapter 17 • Working with SQL Join Transformations

you do not enter an alias here, then the subquery fails. The system-generated name for
the subquery results table is too ambiguous to be recognized as an input to the full SQL
query.

6. Click SubQuery in Navigate pane. The Select object for the Subquery is displayed on
a Diagram tab.

7. Drop the source table on the Diagram tab. The source table for the sample job is named
Region.

8. Double-click Select to display the Select tab. Make sure that the source table columns
are mapped properly to the target table. Also, ensure that the Select * property in the
Select Properties pane is set to No.

9. Click SubQuery in the Navigate pane to return to the SubQuery tab. Then, select
Where in the SQL Clauses folder of the SQL Clause pane. Finally, drop the
Where icon into an empty spot in the Diagram tab. A Where clause object is added
to the Diagram tab. The completed subquery flow is shown in the following display.

Display 17.20 Sample Subquery Flow

10. Double-click Where to display the Where tab.

11. Click New on the Where tab to begin the first part of the expression. An editable row
appears in the table near the top of the tab.

12. Create your first WHERE condition. In this example, a subset of the Region column
from the Region table to select values from the eastern region was created. To recreate
the condition, click the drop-down menu in the Operand field on the left side of the

Tasks 315

row, and click Choose column(s). Then, drill down into the Region table, and select
the Region column. The value r.Region displays in the field.

13. Keep the defaulted value of = in the Operator field. Enter the value 'E' in the
Operand field on the right side of the row.

14. Create the remaining conditions for the WHERE statement. Review the SQL code that
is generated in this step in the SQL field, as shown in the following display.

Display 17.21 Where Tab in the Subquery

15. A connection is required between the source table for the subquery and the target table
for the full SQL query. To recreate the sample, right-click in the Target table field of
the Select tab and click New Column in the pop-up menu.

16. Enter name of the subquery source table in the Name field. Then, make sure that the
new column has the appropriate data type. In this case, the Region table is added to the
target table in the SQL query.

17. Add a mapping for the subquery to the main query SELECT clause. In the sample query,
the Region column from the Region table in the subquery is mapped to the Region
column in the target table. Also, the following condition is added to the main query
WHERE clause:

and RegionQry.Region = Region

This condition connects the inner join subquery to the main query.

Note: You can add a subquery to any place that you can add a table.

316 Chapter 17 • Working with SQL Join Transformations

Add a Subquery to an SQL Clause
You can also add a subquery to SELECT, WHERE, HAVING clauses in SQL queries. The
following display shows how a subquery can be added as a condition to a WHERE clause.

Display 17.22 Add a Subquery to a WHERE Clause

Note that the subquery is connected to the WHERE clause with the EXISTS operator, which
you can select from the drop-down menu in the Operator field. To add the subquery, click
in the Operand field on the right-hand side of the Where tab. Then, click Subquery from
the drop-down menu. The following display shows the completed sample subquery.

Display 17.23 Sample WHERE Clause Subquery

The subquery includes a source table, a SELECT clause, and a WHERE clause. You can
compare the tree view of the subquery in the Navigate pane to the process flow on the
Diagram tab and the code that is highlighted on the Code tab.

Tasks 317

Validating or Submitting an SQL Query

Problem
You want to either validate that the code in an SQL query works properly when the SAS
Data Integration Studio job that contains it is run at a later time or immediately submit the
query as part of a job.

Solution
You can validate the code in an SQL query in the Designer window for the SQL Join
transformation. This approach can be helpful when you want to make sure that your query
runs properly and returns the data that you're seeking. You can also submit the query as
part of the SAS Data Integration Studio job that contains the SQL Join transformation.

• “Validate the Code in an SQL Query” on page 318

• “Submit a Query As a Part of a SAS Data Integration Studio Job” on page 318

Tasks

Validate the Code in an SQL Query
Perform the following steps to validate a query in the Designer window:

1. Click Validate SQL in the toolbar at the top of the Designer window.

2. Examine the Log tab that is displayed in the Designer window to verify that the query
was submitted successfully or to troubleshoot an unsuccessful submission.

Note: You can use the Runtime Manager in SAS Data Integration Studio to cancel the
SQL query. The SQL Join transformation is displayed as a row in the Runtime Manager.
You can right-click the row and click Stop Job to cancel the query. (You can also click
Stop in the Designer window toolbar.) The SQL Join transformation is currently the
only transformation that supports this type of cancellation.

Submit a Query As a Part of a SAS Data Integration Studio Job
Perform the following steps to submit a query from the SAS Data Integration Studio job:

1. Submit the query in one of the following ways:

• Click Run on the SAS Data Integration Studio menu bar.

• Right-click in the Job Editor window. Then, click Run.

• Click Run on the SAS Data Integration Studio Actions menu.

2. Validate the job as needed. For example, you can check the properties of the target
table. You can also review the data that is populated into the target table in the View
Data window. Finally, you can examine the Log tab to verify that the job was submitted
successfully or to troubleshoot an unsuccessful submission.

Note: You can click Run to Selected Transform on the Designer window toolbar to
specify that only the steps that are placed before the SQL query code are submitted.
(These steps are used to create the source tables for the query.)

318 Chapter 17 • Working with SQL Join Transformations

Joining a Table to Itself

Problem
You need to produce a subset of information that is based on the relationship between
columns in the same table.

Solution
You can join the table to itself by creating the second version of the table with an alias.
Then, you can create a query to compare data from columns in the original table to other
columns in the aliased table.

Tasks

Join the Table to Itself
Perform the following steps to join a table to itself and use the resulting hierarchy of tables
in a query:

1. Create an SQL query in an empty job. The query should contain the SQL Join
transformation, at least one source table, and a target table.

2. Open the Designer window for the SQL Join transformation. Click Create in the
Navigate pane to access the Diagram tab and the SQL Clauses pane.

3. Drop the same table that was used as a source table for the query in the Diagram tab.
You are prompted to supply an alias for the table because it is already being used as a
source table for the query. Enter the alias in the Alias field of the properties pane for
the table. The dialog box for the alias is shown in the following display.

Display 17.24 Self-Join Alias Dialog Box

4. Complete any additional configuration needed to finish the query. The following
display shows a sample job that includes a table joined to itself.

Tasks 319

Display 17.25 Sample Job with a Table Joined to Itself

The tables in the flow shown on the Diagram tab are reflected in the FROM clause that is
highlighted on the Code tab below it. The query that is shown in the sample job pulls the
Name variable from the original table (denoted with the us alias). However, it pulls the
Population and Area variables from the copy of the original table (denoted with the
uscopy alias).

Using Parameters with an SQL Join

Problem
You want to include an SQL Join transformation in a parameterized job that is run in an
iterative job. This iterative job contains a control loop in which one or more processes are
executed multiple times, so this job needs to be allowed to iteratively run a series of tables
in a library through your SQL query. For example, you need to process a series of 50 tables
that represent each of the 50 states in the United States through the same SQL query.

Solution
You can create one or more parameters on the Parameters tab in the properties window
for the SQL Join transformation. Then, you can use the parameters to tie the SQL Join
transformation to the other parts of the parameterized job and the iterative job that contains
it. The following prerequisites must be satisfied before the SQL Join transformation can
work in this iterative setting:

• The SQL Join transformation must be placed in a parameterized job. See “Creating a
Parameterized Job” on page 337.

• One or more parameters must be set for the input and output tables for the parameterized
job. See “Set Input and Output Parameters” on page 338.

• One or more parameters must be set for the parameterized job. See “Set Parameters for
the Job” on page 339.

320 Chapter 17 • Working with SQL Join Transformations

• The parameterized job must be embedded in an iterative job. See “About Iterative Jobs”
on page 333.

• The parameters from the parameterized job must be mapped on the Parameter
Mapping tab of the properties window for the iterative job.

• The tables that you need to process through query created in the SQL Join
transformation must be included in the control table for the iterative job. See “Creating
a Control Table” on page 340.

Constructing a SAS Scalable Performance Data
Server Star Join

Problem
You want to construct SAS Scalable Performance Data (SPD) Server star joins.

Solution
You can use the SAS Data Integration Studio SQL Join transformation to construct SAS
SPD Server star joins when you use SAS SPD Server version 4.2 or later.

Tasks

Construct an SPD Server Star Join
Star joins are useful when you query information from dimensional models that are
constructed of two or more dimension tables that surround a centralized fact table, which
is known as a star schema. SAS SPD Server star joins are queries that validate, optimize,
and execute SQL queries in the SAS SPD Server database for performance. If the star join
is not used, the SQL is processed in the SAS SPD Server by using pair-wise joins, which
require one step for each table to complete the join. When the SAS SPD Server options are
set, the star join is enabled.

You must meet the following requirements in order to enable a star join SAS SPD Server:

• All dimension tables must surround a single fact table.

• Dimension-to-fact table joins must be equal joins, and there should be one join per
dimension table.

• You must have two or more dimension tables in the join condition.

• The fact table must have at least one subsetting condition placed on it.

• All subsetting and join conditions must be specified in the WHERE clause.

• Star join optimization must be enabled through the setting of options on the SAS SPD
Server library.

In order to enable star join optimization, code that runs on the generated Pass SAS SPD
Server system library must have the following options added to the library:

• LIBGEN=YES*

• IP=YES

Tasks 321

Here is a commented example of a WHERE clause that enables a SAS SPD Server star
join optimization:

where
/* dimension1 equi-joined on the fact */
 hh_&statesimple.geosur = hh_dim_geo_&statesimple.geosur
/* dimension2 equi-joined on the fact */
 and hh_&statesimple.utilsur = hh_dim_utility_&statesimple.utilsur
/* dimension3 equi-joined on the fact */
 and hh_dim_family_&statesimple.famsur =
hh_dim_family_&statesimple.famsur
/* subsetting condition on the fact */
 and hh_dim_family_&statesimple.PERSONS = 1
;

Note: The SAS SPD Server requires all subsetting to be implemented on the Where tab
in the SQL Join transformation. For more information about SAS SPD Server support
for star joins, see the SAS Scalable Performance Data Server 4.4: User's Guide. When
the code is properly configured, the following output is generated in the log:
SPDS_NOTE: STARJOIN optimization used in SQL execution

Optimizing SQL Processing Performance

Problem
Joins are a common and resource-intensive part of SAS Data Integration Studio. SAS SQL
implements several well-known join algorithms: sort-merge, index, and hash. You can use
common techniques to aid join performance, irrespective of the algorithm that you choose.
Conditions often cause the SAS SQL optimizer to choose the sort-merge algorithm;
techniques that improve sort performance also improve sort-merge join performance.
However, understanding and leveraging index and hash joins enhance performance.

You might often perform lookups between tables in SAS Data Integration Studio. Based
on key values in one table, you look up matching keys in a second table and retrieve
associated data in the second table. SQL joins can perform lookups. However, SAS and
SAS Data Integration Studio provide special lookup mechanisms that typically outperform
a join. The problems associated with joins are similar to the problems with sorting:

• Join performance seems slow.

• You have trouble influencing the join algorithm that SAS SQL chooses.

• You experience higher than expected disk space consumption.

• You have trouble operating SAS SQL joins with RDBMS data.

Solution
Review the techniques explained in the following topics:

• “Debugging an SQL Query” on page 297

• “Enabling Pass-Through Processing” on page 326

• “Influencing the Join Algorithm” on page 324

• “Performing General Data Optimization” on page 323

322 Chapter 17 • Working with SQL Join Transformations

• “Understanding Automatic Joins” on page 291

• “Setting the Implicit Property for a Join” on page 325

• “Selecting the Join Type” on page 294

• “Using Properties Window Options to Optimize SQL Processing Performance” on page
328

Performing General Data Optimization

Problem
You want to streamline the data as much as possible before you run it through SQL
processing in a SAS Data Integration Studio job.

Solution
You can minimize the input and output overhead for the data. You can also pre-sort the
data. Perform the following tasks:

• “Minimize Input/Output (I/O) Processing” on page 323

• “Pre-Sort Data” on page 323

Tasks

Minimize Input/Output (I/O) Processing
To help minimize I/O and improve performance, you can drop unneeded columns,
minimize column widths (especially from Database Management System [DBMS] tables
that have wide columns), and delay the inflation of column widths until the end of your
SAS Data Integration Studio flow. (Column width inflation becomes an issue when you
combine multiple columns into a single column to use a key value).

Pre-Sort Data
Pre-sorting can be the most effective means to improve overall join performance. A table
that participates in multiple joins on the same join key usually benefits from pre-sorting.
For example, if the ACCOUNT table participates in four joins on ACCOUNT_ID, then
pre-sorting the ACCOUNT table on ACCOUNT_ID helps optimize three joins. However,
the overhead that is associated with sorting can degrade performance. You can sometimes
achieve better performance when you subset by using the list of columns in the SELECT
statement and the conditions set in the WHERE clause.

Note: Integrity constraints are automatically generated when the query target to the SQL
transformation is a physical table. You can control the generation of these constraints
by using a Table Loader transformation between the SQL Join transformation and its
physical table.

Tasks 323

Influencing the Join Algorithm

Problem
You want to influence the SAS SQL optimizer to choose the join algorithm that yields the
best possible performance for the SQL processing that is included in a SAS Data Integration
Studio job. SAS SQL implements several well-known join algorithms: sort-merge, index,
and hash.

Solution
Common techniques aid join performance, irrespective of the algorithm chosen. These
techniques use options that are found on the SQL Properties pane and the properties panes
for the tables found in SAS queries. However, selecting a join algorithm is important
enough to merit a dedicated topic. You can use the Debug property on the SQL Join
Properties pane to run the _method option, which adds a trace that indicates which
algorithm is used when in the Log tab.

You can use the following join types:

• “Sort-Merge Joins” on page 324

• “Index Joins” on page 324

• “Hash Joins” on page 325

Tasks

Sort-Merge Joins
Conditions often cause the SAS SQL optimizer to choose the sort-merge algorithm, and
techniques that improve sort performance also improve sort-merge join performance.
However, understanding and using index and hash joins can provide performance gains.
Sort-merge is the algorithm that is selected most often by the SQL optimizer. When index
nested loop and hash join are eliminated as choices, a sort-merge join or simple nested loop
join is used. A sort-merge sorts one table, stores the sorted intermediate table, sorts the
second table, and finally merges the two to form the join result. Use the Suggest Sort
Merge Join property on the SQL Properties pane to encourage a sort-merge. This property
adds MAGIC=102 to the PROC SQL invocation, as follows: proc sql _method
magic=102;.

Index Joins
An index join looks up each row of the smaller table by querying an index of the large
table. When chosen by the optimizer, an index join usually outperforms a sort-merge join
on the same data. To get the best join performance, you should ensure that both tables have
indexes created on any columns that you want to participate in the join relationship. The
SAS SQL optimizer considers an index join when:

• The join is an equijoin in which tables are related by equivalence conditions on key
columns.

• Joins with multiple conditions are connected by the AND operator.

• The larger table has an index that includes all the join keys.

324 Chapter 17 • Working with SQL Join Transformations

Encourage an index nested loop with IDXWHERE=YES as a data set option, as follows:
proc sql _method; select ... from smalltable,
largetable(idxwhere=yes). You can also turn on the Suggest Index Join property
on the properties panes for the tables in the query.

Hash Joins
The optimizer considers a hash join when an index join is eliminated as a possibility. With
a hash join, the smaller table is reconfigured in memory as a hash table. SQL sequentially
scans the larger table and performs row-by-row hash lookup against the small table to form
the result set. A memory-sizing formula, which is not presented here, determines whether
a hash join is chosen. The formula is based on the PROC SQL option BUFFERSIZE, whose
default value is 64 KB. On a memory-rich system, consider increasing BUFFERSIZE to
increase the likelihood that a hash join is chosen. You can also encourage a hash join by
increasing the default 64 KB PROC SQL buffersize option. Set the Buffer Size property
on the SQL Properties pane to 1048576.

Setting the Implicit Property for a Join

Problem
You want to decide whether the Implicit property for a join should be enabled. This setting
determines whether the join condition is processed implicitly in a WHERE statement or
explicitly in a FROM clause in the SELECT statement.

Solution
You can access the Implicit property in the SQL Properties pane. You can also right-click
a join in the Diagram tab to access the property in the pop-up menu. The following table
depicts the settings that are available for each type of join, along with a sample of the join
condition code that is generated for the join type:

Table 17.5 Implicit and Explicit Properties for SQL Join Types

Join Type Join Condition Code

Inner Can generate an implicit inner join condition in a WHERE statement
near the end of the query:

where
 POSTALCODES.Name = UNITEDSTATES.Name

You can use an implicit join only when the tables are joined with the
equality operator. You can also generate an explicit inner join condition
in a FROM clause in the SELECT statement:

from
 srclib.POSTALCODES inner join
 srclib.UNITEDSTATES
 on
 (
 POSTALCODES.Name = UNITEDSTATES.Name
)

Solution 325

Join Type Join Condition Code

Full Can generate an explicit join condition in a FROM clause in the
SELECT statement:

from
 srclib.POSTALCODES full join
 srclib.UNITEDSTATES
 on
 (
 POSTALCODES.Name = UNITEDSTATES.Name
)

Left Can generate an explicit join condition in a FROM clause in the
SELECT statement:

from
 srclib.POSTALCODES left join
 srclib.UNITEDSTATES
 on
 (
 POSTALCODES.Name = UNITEDSTATES.Name
)

Right Can generate an explicit join condition in a FROM clause in the
SELECT statement:

from
 srclib.POSTALCODES right join
 srclib.UNITEDSTATES
 on
 (
 POSTALCODES.Name = UNITEDSTATES.Name
)

Cross Can generate an explicit join condition in a FROM clause in the
SELECT statement:

from
 srclib.POSTALCODES cross join
 srclib.UNITEDSTATES

Union Can generate an explicit join condition in a FROM clause in the
SELECT statement:

from
 srclib.POSTALCODES union join
 srclib.UNITEDSTATES

The Implicit property is disabled by default for all of the join types except the inner join.

Enabling Pass-Through Processing

Problem
You want to decide whether to enable pass-through processing, which sends DBMS-
specific statements to a database management system and retrieves the DBMS data directly.

326 Chapter 17 • Working with SQL Join Transformations

In some situations, pass-through processing can improve the performance of the SQL Join
transformation in the context of a SAS Data Integration Studio job. Pass-through processing
is enabled with options that are found on the SQL Properties pane and the properties panes
for the tables found in SAS queries.

Solution
You can use the Pass Through property on the SQL Join Properties pane to determine
whether explicit pass-through processing is used. When the Pass Through property is set
to Yes, you can send DBMS-specific statements to a database management system and
retrieve DBMS data directly, which sometimes is faster than processing the SQL query on
the SAS system. When Pass Through is set to No, explicit pass-through processing is not
used.

You can use the following types of pass-through processing:

• “Explicit Pass-Through Processing” on page 327

• “Implicit Pass-Through Processing” on page 327

Tasks

Explicit Pass-Through Processing
Explicit pass-through is not always feasible. The query has to be able to work as is on the
database. Therefore, if the query contains anything specific to SAS beyond the outermost
select columns portion, the database generates errors. For example, using any of the
following in a WHERE clause expression or in a subquery on the WHERE or FROM
clauses causes the code to fail on the database if pass through is set to Yes:

• SAS formats

• SAS functions

• DATE or DATETIME literals or actual numeric values

• date arithmetic (usually does not work)

• INTO: macro variable

• data set options

The SQL Properties pane also contains the Target Table is Pass Through property, which
determines whether explicit pass-through is active for the target table. This property enables
the target to have the select rows inserted into the target within the explicit operation. This
property is valid only when all the tables in the query, including the target, are on the same
database server. The Target Table is Pass Through property has a corresponding property,
named Target Table Pass Through Action. The Truncate option in this property is useful
for DBMS systems that does not allow the target to be deleted or created. In this case, the
only option is removing all of the rows. If Truncate is selected, all of the rows in the table
are deleted. If the table doesn't exist, it is created.

Implicit Pass-Through Processing
Even if Pass Through is set to No, PROC SQL still tries to pass the query or part of the
query down to the database with implicit pass-through. This attempt to optimize
performance is made without the user having to request it. SQL implicit pass-through is a
silent optimization that is done in PROC SQL. Implicit pass-through interprets SAS SQL
statements, and, whenever possible, rewrites the SAS SQL into database SQL.

Tasks 327

There is no guarantee that the SQL is passed to the database. However, PROC SQL tries
to generate SQL that passes to the database. If the optimization succeeds in passing a query
(or parts of a query) directly to a database, the SQL query executes on the database and
only the results of the query are returned to SAS. This approach can greatly improve the
performance of the PROC SQL code. If the query cannot be passed to the database, records
are read and passed back to SAS, one at a time. Implicit pass-through is disabled by the
following query constructs:

• Heterogeneous queries: Implicit pass-through is not attempted for queries that involve
different engines or on queries that involve a single engine with multiple librefs that
cannot share a single connection because they have different connection properties
(such as a different database= value). You can use the Pass Through property to
run these queries with explicit pass-through processing. You can also use the Upload
Library Before SQL, Pre-Upload Action, and Use Bulkload for Upload properties
in the table properties panes to improve the situation.

Note: The Upload Library Before SQL property can be used to create a homogeneous
join, which then can enable an explicit pass-through operation. This property allows
you to select another library on the same database server as other tables in the SQL
query. The best choice for a library is a temporary space on that database server.
The operations on that temporary table can also be modified to choose between
deleting all rows or deleting the entire table. Bulk-load is also an option for the
upload operation with the Use Bulkload for Uploading property. It is generally a
good practice to upload the smaller of the tables in the SQL query because this
operation can be expensive.

• Queries that incorporate explicit pass-through statements: If explicit pass-through
statements are used, the statements are passed directly to the database as they are.
Therefore, there is no need to try to prepare or translate the SQL with implicit pass-
through to make it compatible to the database. It is already assumed to be compatible.

• Queries that use SAS data set options: SAS data set options cannot be honored in a
pass-through context.

• Queries that use an INTO: clause: The memory that is associated with the host variable
is not available to the DBMS that processes the query. The INTO: clause is not
supported in the SQL Join transformation.

• Queries that contain the SAS OUTER UNION operator: This operator is a non-ANSI
SAS SQL extension.

• Specification of a SAS Language function that is not mapped to a DBMS equivalent
by the engine. These functions vary by database.

• Specification of ANSIMISS or NOMISS in the join syntax.

Using Properties Window Options to Optimize SQL
Processing Performance

Problem
You want to set specific options in the SQL Properties pane or table properties panes that
are located in the Designer window for an SQL Join transformation. These options are
intended to improve the performance of SQL processes that are included in a SAS Data
Integration Studio job.

328 Chapter 17 • Working with SQL Join Transformations

Solution
Use one of the following techniques:

• “Bulk Load Tables” on page 329

• “Optimize the SELECT Statement” on page 329

• “Set Buffering Options” on page 330

• “Use Threaded Reads” on page 330

• “Write User-Written Code” on page 330

Tasks

Bulk Load Tables
The fastest way to insert data into a relational database when using the SAS/ACCESS
engine is to use the bulk-loading capabilities of the database. By default, the
SAS/ACCESS engines load data into tables by preparing an SQL INSERT statement,
executing the INSERT statement for each row, and issuing a COMMIT. If you specify
BULKLOAD=YES as a DATA step or LIBNAME option, then the database load utility
is invoked. This invocation enables you to bulk load rows of data as a single unit, which
can significantly enhance performance. You can set the BULKLOAD option on the
Bulkload to DBMS property pane for the target table. Some databases require that the
table be empty in order to load records with their bulk-load utilities. Check your database
documentation for these restrictions.

For smaller tables, the extra overhead of the bulk-load process might slow performance.
For larger tables, the speed of the bulk-load process outweighs the overhead costs. Each
SAS/ACCESS engine invokes a different load utility and uses different options. For
information about using the bulk-load option for each SAS/ACCESS engine, see the online
documentation for each engine.

The Use Bulkload for Uploading and Bulkload Options properties are available on the
properties window for each table in a query. The Use Bulkload for Uploading property
applies to the source table. It is a valid option only when the source table is being uploaded
to the DBMS to create a homogeneous join. The Bulkload to DBMS property applies to
target tables and turns bulk loading on and off. The Bulkload to DBMS property is not
valid when the Target Table is Pass Through property on the SQL Properties pane is set
to Yes.

The option to bulk load tables applies only to source tables that are participating in a
heterogeneous join. Also, the user must be uploading the table to the DBMS where the join
is performed.

Optimize the SELECT Statement
If you set the Select * property to Yes in the Select Properties pane, a Select * statement
selects all columns in the order in which they are stored in a table and then runs when the
query is submitted. If you set the Select * property to No and enter only the columns that
you need for the query in the SELECT statement, you can improve performance. You can
also enhance performance by carefully ordering columns so that non-character columns
(such as numeric, DATE, and DATETIME) come first and character columns come last.

Tasks 329

Set Buffering Options
You can adjust I/O buffering. Set the Buffer Size property to 128 KB to promote fast I/O
performance (or 64 KB to enhance large, sequential processes). The Buffer Size property
is available in the SQL Properties pane. Other buffering options are database-specific and
are available in the properties pane for each of the individual tables in the query. For
example, you can set the READBUFF option by entering a number in the Number of Rows
in DBMS Read property in the properties pane, which buffers the database records read
before passing them to SAS. INSERTBUFF is an example of another option that is available
on some database management systems.

You should experiment with different settings for these options to find optimal performance
for your query. These options apply to data sets; therefore, do not specify them unless you
know that explicit pass-through or implicit pass-through is not used on that portion of the
query because they could actually slow performance. If these options are present in the
query at all, they prevent implicit pass-through processing. If these options are present on
the part that is being explicitly passed through, a database error occurs because the database
won't recognize these options.

For example, if the Target Table is Pass Through property on the SQL Properties pane
is set to Yes, then using INSERTBUFF data set option on this target table causes an error
on the database. If the Pass Through property in the SQL Properties pane is set to Yes and
a number is specified in the Buffer Size property, then the database returns an error because
it does not recognize this option in the query's FROM clause. To avoid the risk of preventing
implicit pass-through, specify these options in the LIBNAME statement, which applies to
all tables that use that LIBNAME and anything that accesses those tables. These buffering
data set options are great performance boosters if the database records are all copied to
SAS before the query runs in SAS (with no pass-through) because it buffers the I/O between
the database and SAS into memory.

Use Threaded Reads
Threaded reads divide resource-intensive tasks into multiple independent units of work and
execute those units simultaneously. SAS can create multiple threads, and a read connection
is established between the DBMS and each SAS thread. The results from each of these
threads, know as a result set, is partitioned across the connections, and rows are passed to
SAS simultaneously (in parallel) across the connections. This approach improves
performance.

To perform a threaded read, SAS first creates threads, which are standard operating system
tasks that are controlled by SAS, within the SAS session. Next, SAS establishes a DBMS
connection on each thread. SAS then causes the DBMS to partition the result set and reads
one partition per thread. To cause the partitioning, SAS appends a WHERE clause to the
SQL so that a single SQL statement becomes multiple SQL statements, one for each thread.
The DBSLICE option specifies user-supplied WHERE clauses to partition a DBMS query
for threaded reads. The DBSLICEPARM option controls the scope of DBMS threaded
reads and the number of DBMS connections. You can enable threaded reads with the
Parallel Processing with Threads property on the SQL Properties pane.

Write User-Written Code
The User Written property determines whether the query is user-written or generated.
When the User Written property on the SQL Properties pane is set to Yes, you can edit
the code on the Source tab, and the entire job is saved as user written. When the User
Written property in the Where, Having, or Join Properties pane is set to Yes, you can then
enter code directly into the field. Therefore, you can either write a new SQL query from
scratch or modify a query that is generated when conditions are added to the top section of
the Where/Having/Join tab. When User Written is set to No in any properties pane, the
SQL field is read-only. It displays only the generated query. User-written code can be used

330 Chapter 17 • Working with SQL Join Transformations

as a last resort because the code can't be regenerated from the metadata when there are
changes. The User Written property is available in the SQL Properties pane and in the
Where/Having/Join Properties pane.

Tasks 331

332 Chapter 17 • Working with SQL Join Transformations

Chapter 18
Working with Iterative Jobs and
Parallel Processing

About Iterative Jobs . 333

Creating and Running an Iterative Job . 334
Problem . 334
Solution . 334
Tasks . 334

Creating a Parameterized Job . 337
Problem . 337
Solution . 337
Tasks . 337

Creating a Control Table . 340
Problem . 340
Solution . 340
Tasks . 340

About Parallel Processing . 342

Setting Options for Parallel Processing . 344
Problem . 344
Solution . 344
Tasks . 344

About Iterative Jobs
An iterative job is a job with a control loop in which one or more processes are executed
multiple times. For example, the following display shows the process flow for an iterative
job. The circled numbers represent the order in which the transformations are run.

Display 18.1 Iterative Job

The process flow specifies that the inner Extract Balance job is executed multiple times,
as specified by the Loop transformations and the CHECKLIB control table. The inner job
is also called a parameterized job because it specifies its inputs and outputs as parameters.

333

For an example of how the steps in the iterative process are performed, see “Creating and
Running an Iterative Job” on page 334.

The job shown in the previous example uses a control table that was created in a separate
library contents job. This job created a control table that contains a static list of the tables
that are included in the input library at the time that the job was run. You can also reuse an
existing control table or create a new one. Many times, you will want to add the library
input and the Library Contents transformation directly to an iterative job, as shown in the
following example.

Display 18.2 Control Table Job in an Iterative Job

When the input library and the Library Contents transformation are added to the iterative
job, the contents of the control table are dynamically generated each time that the iterative
job is run. This arrangement ensures that the list of tables in the CHECKLIB table is
refreshed each time that the job is run. It also ensures that the tables are processed iteratively
as each row in the control table is read.

Creating and Running an Iterative Job

Problem
You want to run a series of similarly structured tables through the same task or series of
tasks. For example, you might need to extract specific items of census data from a series
of 50 tables. Each table in the series contains data from one of the 50 states in the United
States.

Solution
You need to create an iterative job that enables you to run a series of tables through the
tasks contained in a job that is placed between Loop and Loop End transformations. This
iterative job also contains a control table that lists the tables that are fed through the loop.

Perform the following tasks:

• “Create the Iterative Job ” on page 334

• “Variation: Add the Library Input and Library Contents Transformation Directly to a
Job ” on page 335

• “Run the Iterative Job and Examine the Results” on page 336

Tasks

Create the Iterative Job
Perform the following steps to create and run the iterative job:

1. Create the control table and the parameterized job that are included in the iterative job.
See “Creating a Control Table” on page 340 and “Creating a Parameterized Job” on
page 337 for more information.

334 Chapter 18 • Working with Iterative Jobs and Parallel Processing

2. Create an empty job.

3. Select and drag the Loop transformation from the Control folder in the Transformations
tree. Then, drop it in the empty job on the Diagram tab in the Job Editor window.

4. Select and drag the control table from its folder. Then, drop it before the Loop
transformation on the Diagram tab.

5. Select and drag the parameterized job from its folder. Then, drop it after the Loop
transformation on the Diagram tab.

6. Select and drag the Loop End transformation from the Control folder in the
Transformations tree. Then, drop it after the parameterized job on the Diagram tab.

7. Drag the control table and connect it to the input port for the Loop transformation.

A sample completed iterative job is shown in the following display.

Display 18.3 Completed Iterative Job

8. Open the Loop Options tab in the properties window for the Loop transformation.
Select the Execute iterations in parallel check box. Also select the One process for
each available CPU node check box in the Maximum number of concurrent
processes group box.

9. Open the Parameter Mapping tab. Make sure that the appropriate value Source
table field is mapped to the parameter that is listed in the Parameters field. The exact
mapping depends on the columns that are included in the source table and the parameter
that is set on the parameterized job.

10. Close the properties window for the Loop transformation.

Variation: Add the Library Input and Library Contents Transformation
Directly to a Job
You can customize the basic process by adding the library input and the Library Contents
transformation directly to an iterative job, as shown in the following example.

Display 18.4 Control Table Job in an Iterative Job

When the input library and the Library Contents transformation are added to the iterative
job, the contents of the control table are dynamically generated each time that the iterative
job is run. This arrangement ensures that the list of tables in the control table is refreshed
each time that the job is run. It also ensures that the tables are processed iteratively as each
row in the control table is read. For information about control table jobs, see “Creating a
Control Table” on page 340.

Tasks 335

Run the Iterative Job and Examine the Results
After you run the iterative job, you can find output for the completed iterative processing
in the output table for the parameterized job. In addition, the Loop transformation provides
a status and run-time information in the temporary output table that is available when it is
included in a submitted job. Perform the following steps to run the job, review the status
data, and examine the iterative job output:

1. Run the iterative job. The following display shows a successfully completed sample
job.

Display 18.5 Sample Successful Iterative Job

2. Right-click the temporary table that is attached to the Loop transformation and click
Open. A sample View Data window for the status information in the Loop
transformation temporary output table is shown in the following example.

Display 18.6 Loop Transformation Temporary Table

Each row in this table contains information about an iteration in the job.

3. Double-click the icon for the parameterized job. After the parameterized job opens,
right-click the target table icon and click View Data. A sample View Data window for
the iterative data is shown in the following example.

336 Chapter 18 • Working with Iterative Jobs and Parallel Processing

Display 18.7 View of Target Table Output

Remember that you set a default value for the parameter on the output table when you
set up the parameterized job. You can change the default value to see a different portion
of the outputted data.

Creating a Parameterized Job

Problem
You want to create a job that will enable you to perform an identical set of tasks on a series
of tables. For example, you might need to extract specific demographic information for
each of the 50 states in the United States when the data for each state is contained in a
separate table.

Solution
You need to create a job that enables you to run each table through the loop in an iterative
job. This job then writes data to an output table with each iteration. You set parameters on
the job, the input table, and the output table. Then, you connect the parameters to the control
table in the iterative job.

Perform the following tasks:

• “Create and Populate the Job” on page 337

• “Set Input and Output Parameters” on page 338

• “Set Parameters for the Job” on page 339

• “Complete Parameterized Job Configuration” on page 339

Tasks

Create and Populate the Job
Perform the following steps to create and populate the job:

Tasks 337

1. Create and register the input and output tables. The input and output tables must contain
exactly the same columns as the tables that are listed in the control table for the loop
processing in the iterative job to work properly.

2. Create an empty job.

3. Select and drag the SAS transformation that is used to process the data from the
appropriate folder in the Transformations tree. Then, drop it in the empty job on the
Diagram tab in the Job Editor window. The sample job uses an Extract transformation
to extract a subset of the data with a specified marital status from the source tables that
are run through the loop.

4. Select and drag the source table from its folder. Then, drop it before the SAS
transformation on the Diagram tab. You set the input parameter on this table.

5. Drag the cursor from the source table to the input port of the SAS transformation. This
action connects the source to the transformation.

6. Because you must have a permanent target table to contain the output parameter that
is needed for the loop job to work, right-click the temporary work table attached to the
transformation and click Replace in the pop-up menu. Then, use the Table Selector
window to select the target table for the job. The target table must be registered in SAS
Data Integration Studio. (For more information about temporary work tables, see
“Working with Default Temporary Output Tables” on page 126.) You set the output
parameter on this table.

A sample completed parameterized job is shown in the following example.

Display 18.8 Completed Parameterized Job

The input table for the sample job is named PARAMTABLE_IN. The output table is named
PARAMTABLE_OUT.

Set Input and Output Parameters
Perform the following steps to set the input and output table parameters for the
parameterized job:

1. Open the Parameters tab in the properties window for the input table. Click New
Prompt to display the New Prompt window. Enter appropriate values in the following
fields on the General tab:

• Name: a valid macro variable name, such as mstatus

• Displayed Text: a display name for the macro variable, such as Marital
Status.

If you want to enter a default value for the input table, click the Prompt Type and
Values tab. Then, enter the value in the Default value field. The default value in the
sample job is CHECKING_ACCOUNT_DIVORCED. Because the default prompt type of
Text is appropriate, you keep the defaulted values in the other fields on the Prompt
Type and Values tab.

2. Click OK to save the parameter and close the New Prompt window.

338 Chapter 18 • Working with Iterative Jobs and Parallel Processing

3. Open the Physical Storage tab. Enter an appropriate value in the Name field. Create
this value by combining an ampersand sign (&) with the value that was entered in the
Macro Variable Name field in the New Prompt window (for example, &mstatus).

4. Click OK to save the settings and close the properties window for the input table.

5. Open the Parameters tab in the properties window for the output table. Click New
Prompt to display the New Prompt window. Enter appropriate values in the following
fields on the General tab:

• Name: a valid macro variable name, such as mstatus.

• Displayed Text: a display name for the macro variable, such as Marital Status
Out.

If you want to enter a default value for the output table, click the Prompt Type and
Values tab. Then, enter the value in the Default value field. The default value in the
sample job is CHECKING_ACCOUNT_DIVORCED. Because the default prompt type of
Text is appropriate, you keep the defaulted values in the other fields on the Prompt
Type and Values tab.

6. Click OK to save the parameter and close the New Prompt window.

7. Open the Physical Storage tab. Enter an appropriate value in the Name field. Create
this value by combining an ampersand sign with the value that was entered in the Macro
Variable Name field in the New Prompt window and appending .OUT to the
combination (for example, &mstatus.OUT).

8. Click OK to save the settings and close the properties window for the input table.

Set Parameters for the Job
Perform the following steps to set the parameters for the parameterized job and to complete
job configuration:

1. Open the Parameters tab in the properties window for the parameterized job.

2. Click Import Parameters to display the Import Parameters window. Click an
appropriate value such as PARAMTABLE_IN in the Available Parameters field.
Select the parameter that is assigned to the input table and move it to the Selected
Parameters field. Then, click OK to save the setting and close the properties window.

Complete Parameterized Job Configuration
Perform the following steps to complete the configuration of the parameterized job:

1. Configure any settings needed to process the data in the parameterized job. For
example, you can set a WHERE condition in an Extract transformation if one is included
in the job. These settings vary depending on the structure of the individual job. For the
sample job, the WHERE condition is

CHECKING_APP_MARITAL_STATUS_CD = 'D'

2. Open the Mapping tab in the properties window for the transformation that is included
in the parameterized job. Verify that all of the columns in the source table are mapped
to an appropriate column in the target table and close the properties window.

3. Do not run the job. It will be submitted as a part of the iterative job.

Tasks 339

Creating a Control Table

Problem
You want to create a control table that lists the tables that you plan to include in an iterative
job. Iterative jobs are used to run a series of similarly structured tables through the same
task or series of tasks. The control table supplies the name of the table that is run through
each iteration of the job.

Solution
You can reuse an existing control table or create one manually. You can also create a job
that uses the Library Contents transformation. This transformation generates a listing of
the tables contained in the library that holds the tables that you plan to run through the
iterative job. This control table is based on the dictionary table of that library.

Perform the following tasks:

• “Create and Register the Control Table” on page 340

• “Create and Populate the Job” on page 341

• “Run the Job and Examine the Output” on page 341

Tasks

Create and Register the Control Table
If you have an existing control table, you can use it. If you don't use an existing control
table, you can use the Code Editor window in SAS Data Integration Studio to execute an
SQL statement. The statement creates an empty instance of the table that has same column
structure as the dictionary table for the library. Then use New Table wizard to register the
empty table. Perform the following steps to create the empty control table:

1. Determine the identity and location of the library that contains the tables that you need
to process in an iterative job.

2. From the SAS Data Integration Studio desktop, select Tools ð Code Editor.

The Source Editor window appears. Submit code similar to the following code:

libname tgt 'C:\targets\sas1_tgt';
 proc sql;
 create table tgt.CHECKLIB
 as select *
 from dictionary.tables
 where libname='checklib';
 quit;

Be sure to check the Log tab to verify that the code ran without errors.

3. Register the table that you just created using the Register Tables wizard. This action
creates a metadata object for the table.

340 Chapter 18 • Working with Iterative Jobs and Parallel Processing

4. (Optional) You can confirm that the empty control table was created in physical storage.
Right-click the metadata object for the table and select Open. A sample empty control
table is shown in the following example.

Display 18.9 View of Empty Control Table Output

Create and Populate the Job
Perform the following steps to create and populate the job:

1. Create an empty job.

2. Select and drag a Library Contents transformation from the Access folder in the
Transformations tree. Then, drop it in the empty job on the Diagram tab in the Job
Editor window.

3. Select and drag the library that you plan to use to generate the control table from its
folder. Then, drop it before the Library Contents transformation on the Diagram tab.

4. Drag the cursor from the library to the input port of the Library Contents transformation.
This action connects the library to the transformation.

5. Because you want to have a permanent target table to contain the output for the
transformation, right-click the temporary work table that is attached to the
transformation and click Replace in the pop-up menu. Then, use the Table Selector
window to select the target table for the job. The target table must be registered in SAS
Data Integration Studio. (For more information about temporary work tables, see
“Working with Default Temporary Output Tables” on page 126.)

6. Drag the cursor from the output port of the Library Contents transformation to the target
table. This action connects the transformation to the target.

7. Open the Mapping tab in the properties window for the Library Contents
transformation. Verify that all of the rows in the source table are mapped to the
corresponding row in the target table. You can click Map all columns to correct any
errors.

A sample completed control table job is shown in the following example.

Display 18.10 Completed Control Table Job

The library for the sample job is named CHECKLIB. The target table is also named
CHECKLIB.

Run the Job and Examine the Output
Perform the following steps to run the control table job and examine its output:

1. Run the job. The following display shows a successfully completed sample job.

Tasks 341

Display 18.11 Successful Sample Control Job

2. If the job completes without error, right-click the control table icon and click Open.
The View Data window appears, as shown in the following example.

Display 18.12 View of Control Table Output

Note that the all of the rows in the table are populated with the name of the control table
in the libname column. This name confirms that all of the rows are drawn from the
appropriate library. You can now use the table as the control table for the iterative job.

About Parallel Processing
SAS Data Integration Studio uses a set of macros to enable parallel processing. You can
enable these macros by doing one of the following:

• selecting YES in the Enable parallel processing macros option on the Options tab
of the properties window for a job.

• including a Loop transformation in a job.

342 Chapter 18 • Working with Iterative Jobs and Parallel Processing

When you enable the parallel-processing option for a job, macros are generated at the top
of the job code with comments. These macros enable you to create your own
transformations or code in order to use parallel processing.

When you include a Loop transformation in a job, the transformation generates the
necessary macros to use sequential execution, symmetric multiprocessing (SMP)
execution, or execution on a grid computing network.

No special software or metadata is required to enable parallel processing on SMP servers.
Grid options can be enabled for a job even when the grid software has not been configured
and licensed. However, SAS Data Integration Studio does not generate grid-enabled code
for the job in this case. It generates code that is appropriate for SMP on the SAS Application
Server.

The following table describes the prerequisites that are required to enable parallel
processing for SAS Data Integration Studio jobs. For details about these prerequisites, see
the appropriate section in the documentation mentioned below.

Table 18.1 Prerequisites for Parallel Processing of SAS Data Integration Studio Jobs

Computers Used for Parallel Processing Requirements

SMP machine with one or more processors Specify a SAS®9 Workspace server in the
metadata for the default for SAS Data
Integration Studio. See the “Specifying
Metadata for the Default SAS Application
Server” topic in SAS Data Integration Studio
Help.

Grid computing network Specify an appropriate SAS Metadata Server
to get the latest metadata object for a grid
server. See the SAS Data Integration Studio
chapter in the SAS Intelligence Platform:
Desktop Application Administration Guide.

Specify an appropriate SAS®9 Workspace
Server in the metadata for the default.

Grid software must be licensed.

Define or add a grid server component to the
metadata that points to the grid server
installation. The controlling server machine
must have both a grid server definition and a
SAS Workspace Server definition as a
minimum to be able to run your machines in
a grid. It is recommended that you also have
the SAS Metadata Server component
accessible to the server definition where your
grid machines are located.

Install Platform Computing software to
handle workload management for the grid.

Note: For additional information about these requirements, see the grid chapter in SAS
Intelligence Platform: Application Server Administration Guide.

About Parallel Processing 343

Setting Options for Parallel Processing

Problem
You want to use parallel processing and grid processing in SAS Data Integration Studio
jobs.

Solution
If you need to enable parallel or grid processing for all jobs, then set global options on the
Code Generation tab of the Options window for SAS Data Integration Studio. If you need
to enable parallel or grid processing for a single iterative job, then set the options that are
available on the Loop Options tab of the properties window for the Loop transformation.

Tasks
The following tables describe how to set options for parallel processing and grid processing
in SAS Data Integration Studio jobs.

Table 18.2 Global Options (affects all new jobs)

Option Purpose Task

Enable parallel processing
macros for new jobs

Adds parallel processing
macros to the code that is
generated for all new jobs.

Select Tools ð Options from
the menu bar. Click the Code
Generation tab. Specify the
desired option.

Various grid computing options Sets grid computing options
for all new jobs.

Select Tools ð Options from
the menu bar. Click the Code
Generation tab. Specify the
desired option.

Table 18.3 Local Options (affects the current job or transformation)

Option Purpose Task

Enable parallel processing
macros

When YES is selected, this
option adds parallel
processing macros to the code
that is generated for the
current job.

Parallel processing macros
are always included in the
code that is generated for a
Loop transformation.

Open the Options tab in the
properties window for the job.
Select YES or NO in the field
for this option.

344 Chapter 18 • Working with Iterative Jobs and Parallel Processing

Option Purpose Task

Various grid computing options
for the Loop transformation

Sets grid options for the
current Loop transformation

Open the Loop Options tab in
the properties window for the
Loop transformation. Specify
the desired option.

Tasks 345

346 Chapter 18 • Working with Iterative Jobs and Parallel Processing

Chapter 19
Working with Slowly Changing
Dimensions

About Slowly Changing Dimensions . 348
Slowly Changing Dimensions Defined . 348
Types of Slowly Changing Dimensions . 348
Transformations That Support Slowly Changing Dimensions 349
SCD Project Stages . 349

About Dimension Tables . 350
About Change Tracking . 350
About Change Detection and Loading for SCD . 350
About Generated Keys . 351
About Cross-Reference Tables . 352
About Type 1 Updates . 352

About Fact Tables . 352
Overview . 352
About the Loading of Fact Tables with the Lookup Transformation 353

Loading a Dimension Table with Type 1 and 2 Updates . 353
Problem . 353
Solution . 353
Tasks . 353

Loading a Fact Table Using Dimension Table Lookup . 356
Problem . 356
Solution . 356
Tasks . 357

Loading a Table and Adding a Surrogate Primary Key . 362
Problem . 362
Solution . 362
Tasks . 362

Tracking Changes in Source Datetime Values . 365
Problem . 365
Solution . 365
Tasks . 365

Closing Out Rows in Datetime Change Tracking . 367
Problem . 367
Solution . 367

347

About Slowly Changing Dimensions

Slowly Changing Dimensions Defined
Slowly changing dimensions (SCD) is the name of a process that loads data into dimension
tables. The dimension tables are structured so that they retain a history of changes to their
data. This record of data changes provides a basis for analysis.

As shown in the following diagram, dimension tables combine with fact tables to form star
schemas. Fact tables store numeric events. Dimension tables store the detail data that
describes the events. Key columns in the tables connect events to details. For example, a
star schema might store product sales numbers in a fact table, and use dimension tables to
store information about customers, suppliers, and retail locations.

You can use SAS Data Integration Studio to load data into star schemas and analyze data
to extract knowledge from the star schema.

Figure 19.1 The Star Schema and SAS Data Integration Studio

In SAS Data Integration Studio, the process of loading dimension tables takes place in the
SCD Type 2 Loader transformation. Fact tables are loaded with the Lookup transformation.

Types of Slowly Changing Dimensions
The three types of slowly changing dimensions are defined as follows:

Type 1 SCD: no history of data changes
overwrites specified columns in dimension tables without retaining a history of
changes. Type 1 SCD is useful for maintaining less-significant columns that are not
used in historical analysis. In SAS Data Integration Studio, the SCD Type 2 Loader
transformation allows you to combine Type 1 and Type 2 updates in a single operation.

348 Chapter 19 • Working with Slowly Changing Dimensions

Type 2 SCD: full history
maintains multiple records for each individual in the dimension table. The latest entry
is the current entry for that member. Other rows comprise the historical record of data
changes. New entries create new current rows. This comprehensive record of data
changes is the primary purpose of the SCD Type 2 Loader transformation.

Type 3 SCD: limited history
maintains a limited history of changes using multiple columns for selected variables.
For example, a Type 3 dimension table containing customer information has columns
named New Postal Code, Old Postal Code, and Oldest Postal Code. Data is moved from
column to column during the loading process. Type 3 SCD has less analytical value
than Type 2 SCD.

Transformations That Support Slowly Changing Dimensions
SAS Data Integration Studio provides the following transformations that you can use to
implement slowly changing dimensions:

SCD Type 2 Loader
loads dimension tables, detects changes, tracks changes, and generates key values.

Lookup
loads source data into fact tables and loads foreign keys from dimension tables, with
configurable exception handling. The lookup process accesses dimension tables by
using hash objects for optimal performance.

Key Effective Date
updates dimension tables based on changes to the business key, when change detection
is unnecessary.

Surrogate Key Generator
generates unique key numbers for dimension tables in a manner that is similar but less
feature-rich than the SCD Type 2 Loader transformation. Use the Surrogate Key
Generator when key generation is the sole task that is required at that point in the job.

SCD Project Stages
The process for loading a star schema for slowly changing dimensions follows these general
steps:

1. Stage operational data. In this initial step you capture data and validate the quality of
that data. Your staging jobs make use of the Data Validation transformation, along with
other data quality transformations and processes.

2. Load dimension tables. Data from the staging area is moved into the dimension tables
of the star schema. Dimension tables are loaded before the fact table in order to generate
the primary key values that are needed in the fact table.

3. Load the fact table. In this final step you run a job that includes the Lookup
transformation, which loads numerical columns from the staging area into the fact table.
Then the Lookup transformation captures foreign key values from the dimension tables.

SCD Project Stages 349

About Dimension Tables

About Change Tracking
Dimension tables that are loaded with the SCD Type 2 Loader consist of a primary key
column, a business key column, change tracking columns, and any number of detail data
columns. The primary key column is often loaded with values that are generated by the
transformation. The business keys are supplied in the source data. Both the business key
and the primary key can be defined to consist of more than one column, as determined by
the structure of the source data.

Change tracking columns can consist of begin and end datetime columns, a version number
column, or a current-row indicator column. You can combine tracking methods as needed
to optimize your analyses. Using a current-row indicator column improves the performance
of the SCD Type 2 Loader.

Begin and end datetime values specify the period of time in which each row was the current
row for that member. The following diagram shows how data is added to begin and end
datetime columns. The begin datetime for the new current row is one second greater than
the end datetime of the former current row. The end value for the current row is a
placeholder future date.

Figure 19.2 Structure of an SCD Dimension Table

Tracking changes by version number increments a counter when a new row is added. The
current row has the highest version number for that member. The version number for new
members is current_version_number + 1.

Tracking changes using a current–row indicator column loads a 1 for the current row and
0s for all of the other rows that apply to that same member.

The preceding diagram shows a primary key column, the values for which are generated
by the SCD Type 2 Loader. The generated primary key is necessary in order to uniquely
identify individual rows in the dimension table. The generated primary key values are
loaded into the star schema's fact table as foreign keys, to connect factual or numerical
events to the detail data that describes those events.

About Change Detection and Loading for SCD
In jobs that run the SCD Type 2 Loader transformation, the dimension table loading process
repeats the following process for each source row:

350 Chapter 19 • Working with Slowly Changing Dimensions

1. Compare the business key of the source row to the business keys of all of the current
rows in the dimension table. If no match is found, then the source row represents a new
member. The source row is written to the target as the new current member for that
business key. The current member contains the latest information. The loading process
moves to the next source row.

2. If the business key in the source matches a business key in the target, then specified
detail data columns are compared between the matching rows. If no differences in data
are detected, then the source row is a duplicate of the target row. The source row is not
loaded into the target as the new current row for that business key. The loading process
moves on to the next source row.

3. If business keys match and data differences are detected in the columns specified for
Type 2 SCD, then the source row represents a new current row for that member. The
source row is written to the target, and the previous current row for that member is
closed out. To close out a row, the change tracking column or columns are updated as
specified, depending on the selected method of change tracking. For Type 1 updates,
if changes are detected in the Type 1 columns, the source data overwrites the target
data in the current row, even if data differences are not detected in the Type 2 columns.

About Generated Keys
The SCD Type 2 Loader enables you to generate key values when you load a dimension
table. The generated values are frequently used as primary keys, because the business key
from the source table identifies the member, not the unique row in the dimension table.

In the Generated Keys tab of the SCD Type 2 Loader, you can configure a simple surrogate
key that increments the highest existing value in a specified column for each new row. You
can also use an expression to generate key values in other increments. To specify a unique
starting point for the keys that are generated in each load, you can specify a lookup column.
The initial key value is the highest value in the lookup column.

Note: When loading a fact table instead of a dimension table, you can generate simple
surrogate keys using the Lookup transformation.

In addition to surrogate keys, you can also generate retained keys. Retained keys provide
a primary key value that consists of two columns, the begin datetime change tracking
column and a numeric column that receives generated values. The combination of the two
columns uniquely identifies each row in the table.

The generated value is retained because a single generated value is applied to all of the
rows that apply to a given member. When a new row is added to an existing member, it
receives the same generated value as the other rows that apply to that member.

As with surrogate keys, you can generate retained key values using expressions and lookup
columns.

In order to generate unique retained keys, begin and end datetime change tracking is
required.

To enhance performance, you should create an index for your generated key column. If
you identify your generated key column as the primary key of the table, then the index is
created automatically. Surrogate keys should receive a unique or simple index that consists
of one column. Retained keys should receive a complex index that includes the generated
key column and the beginning datetime column.

To create an index, open the Properties dialog box for the table and use the Index and
Keys tabs.

About Generated Keys 351

About Cross-Reference Tables
During the process of loading an SCD dimension table, the comparison of incoming source
rows to the current rows in the target is facilitated by a cross-reference table. The cross-
reference table consists of all of the current rows in the dimension table, one row for each
member. The columns consist of the generated key, the business key, and a digest column
named DIGEST_VALUE.

The digest column is used to detect changes in data between the source row and the target
row that has a matching business key. DIGEST_VALUE is a character column with a length
of 32. The values in this column are encrypted concatenations of the data columns that
were selected for change detection. The encryption uses the MD5 algorithm, which is
described in detail at http://www.faqs.org/rfcs/rfc1321.html.

If a cross-reference table exists and has been identified, it is used and updated. If a cross-
reference table has not been identified, then a new temporary table is created each time you
run the job.

To increase performance in large jobs, enable change tracking by current row indicator.
This method of change tracking can be combined with the other change tracking methods
(begin and end datetime and version number). The current row indicator speeds up the
process of creating or updating the digest file. The performance improvement is provided
by a WHERE clause that efficiently separates current rows from closed-out rows.

Cross-reference tables are identified on the Options tabs of the following transformations:
SCD Type 2 Loader and Key Effective Date, in the field Cross-Reference Table Name.

About Type 1 Updates
Type 1 updates are defined as overwrites of existing data in specified columns. When you
run a Type 1 update with the SCD Type 2 Loader transformation, digest values containing
the Type 1 columns are created for the source and target. The digest values are then
compared to determine the target rows that need to be updated. When the rows are updated,
the number of writes is optimized.

You can combine Type 2 and Type 1 updates in the same job. Use Type 2 updates to
maintain a history of changes for important columns. Use Type 1 updates to maintain
accurate and complete information in your dimension table, without generating new target
rows for each change.

About Fact Tables

Overview
Fact tables are combined with dimension tables to make up star schemas. Fact tables
describe events using numeric data. Dimension tables provide detail data that describe the
events. Examples of factual events include the sale of an item or a transaction in a bank
account. Each such event is represented by a single row in a fact table.

The columns in a fact table consist of one or more numeric columns that relate to an event
and a series of foreign key columns that connect the event to the detail data in the dimension
tables.

352 Chapter 19 • Working with Slowly Changing Dimensions

About the Loading of Fact Tables with the Lookup Transformation
To load data into a fact table, use the Lookup transformation in a SAS Data Integration
Studio job. The Lookup transformation generates primary key values, loads numeric fact
data from a source table, and loads foreign keys from dimension tables using a lookup
process.

The lookup process runs separately for each dimension table that contributes foreign keys.
The process compares business key values between the source table and a dimension table.
If a match is found, an expression (a WHERE clause) is evaluated to identify the specific
dimension table row in that business key. In general, the values that are loaded from the
dimension table are the primary key columns. Loading these foreign keys into the fact table
allows each event to contain references to all of the detail data that describes that event.

If no match is found in a dimension table, or if a value is missing, then the numeric data in
the source row is not loaded into the fact table and the exception condition is processed by
the Lookup transformation. Each exception condition triggers one or more available
actions, including the termination of the job, the loading of source data into an error table,
and the loading of information into an exception table.

Loading a Dimension Table with Type 1 and 2
Updates

Problem
You want to load a dimension table using type 1 updates (overwrites) in certain columns
and type 2 updates (track changes) in other columns. You need to generate a primary key
for each target row and optimize performance for large source tables.

Solution
You can create a job that includes the SCD Type 2 Loader transformation. You can load
Type 1 and Type 2 changes in a single transformation. To optimize performance, you can
add a current-row indicator that speeds up the creation of the cross-reference table that is
used for change detection.

The sample job includes the following tasks:

• “Create and Populate the Job” on page 353

• “Configure the SCD Type 2 Loader” on page 355

• “Run the Job and View the Output” on page 355

Tasks

Create and Populate the Job
Perform the following steps to create and populate the job:

1. Create an empty SAS Data Integration Studio job.

2. In the Transformations tree, in the Data folder, drag the SCD Type 2 Loader
transformation into the empty job on the Diagram tab.

Tasks 353

3. Select and drag the source table from its folder and drop it before the SCD Type 2
Loader transformation on the Diagram tab. In this sample job, the source contains
information on customers.

4. Drag the cursor from the source table to the input port of the SCD Type 2 Loader
transformation. This action connects the source to the transformation.

5. Create a new target table using the New Table Wizard. The sample job uses the same
columns as the source, and adds columns for change tracking, performance
enhancement, and a generated key. The new columns are defined as follows:

VALID_FROM DTTM
receives begin datetime values.

VALID_TO_DTTM
receives end datetime values.

CURRENT_ROW
receives 1s in current rows and zeros in closed-out rows. Adding this column
improves performance in loads that involve large amounts of data. The current row
indicator speeds up the process of creating and updating the cross-reference table.

CUSTOMER_DIM_ID
receives the generated key values.

The following display shows the column properties for the new target table:

Display 19.1 Target Column Properties

6. Drag the target table from its folder and drop it after the SCD Type 2 Loader
transformation on the Diagram tab.

7. Drag the cursor from the output port of the SCD Type 2 Loader transformation to the
target table. This action connects the transformation to the target. The following display
depicts the process flow in the sample job.

Display 19.2 Sample SCD Type 2 Loader Process Flow Diagram

354 Chapter 19 • Working with Slowly Changing Dimensions

Configure the SCD Type 2 Loader
Perform the following steps to configure the SCD Type 2 Loader:

1. Open the properties window of the SCD Type 2 Loader and select the Change
Tracking tab. Note that datetime change tracking is enabled by default, with datetime
values delivered to the columns VALID_FROM_DTTM and VALID_TO_DTTM.

2. Select Use current indicator, and then click the down arrow in Current indicator
column. Select the CURRENT_ROW column.

3. Open the Business Key tab and specify the source columns that comprise the business
key. During change detection, the business key columns are compared between each
incoming source row and the entire target. If the business keys match between the
source and target, then data values are compared to detect changes. Frequently, the
business key is the primary key in the source. For the purposes of this example, click
New and select Customer_ID.

4. Open the Detect Changes tab and specify the columns that are tracked for Type 2
updates. The number and length of these columns affects the run-time performance of
the job. In the sample job, select Street_ID and Customer_Type_ID, and then click
the right arrow.

5. Open the Type 1 Columns tab and specify the columns that are updated in the most
current rows of their respective business keys, without affecting the begin and end
datetime values. Select Customer_Lastname and Customer_Address, and then click
the right arrow.

6. Open the Generated Key tab and specify the numeric column that receive the generated
key value. Click the down arrow in the Column field and specify
CUSTOMER_DIM_ID. When the job runs, unique identifiers are added to this
column for each row in the table.

7. Click OK to save changes and close the properties window.

Run the Job and View the Output
Perform the following steps to run the job and view the output:

1. Right-click on an empty area of the job, and click Run in the pop-up menu. SAS Data
Integration Studio generates code for the job and submits it to the SAS Application
Server for execution.

2. If error messages are displayed on the Status tab, please read and respond to the
messages as needed.

3. After the completion of the job, right-click the target and select Open to view the
generated surrogate key values. The following display depicts the target table data for
the sample job.

Tasks 355

Display 19.3 Key Columns and Change Tracking Columns in the Sample Target Table

Loading a Fact Table Using Dimension Table
Lookup

Problem
You want to load numeric source data into a fact table and add foreign keys from a
dimension table.

Solution
You can create a job that uses the Lookup transformation, which loads fact data from a
source table and uses a lookup process to load foreign keys from the dimension table.

The lookup process compares the business key in each source row to the business keys in
the dimension table. When the business keys match, the foreign key from the dimension
table is loaded into the fact table target.

This sample job assumes that you have already loaded data into your dimension table before
you run the job that loads your fact table. Loading the dimension table first ensures that
new foreign keys are available in the dimension table.

The sample job includes the following tasks:

• Create and Populate the Job on page 357

• Map Source Columns Into the Target on page 357

• Map Key Columns Between the Source and Lookup Tables on page 358

• Map Lookup Columns Into the Target on page 359

• Create Error and Exception Tables on page 359

• Configure Exception Handling on page 360

• Run the Job and View the Output on page 360

356 Chapter 19 • Working with Slowly Changing Dimensions

Tasks

Create and Populate the Job
Perform the following steps to load a fact table:

1. Create an empty SAS Data Integration Studio job.

2. In the Transformations tree, in the Data folder, drag the Lookup transformation into
the empty job in the Diagram tab.

3. Select and drag the source table containing numeric fact table data into the source table
location on the Diagram tab.

4. Drag the cursor from the source table to the input port of the Lookup transformation.
This action connects the source to the transformation.

5. Select and drag the lookup table that contains detail data into the Diagram tab, into a
location that is near the source table.

6. Drag the cursor from the lookup table to the input port of the Lookup transformation.
This action connects the lookup table to the transformation.

Note: To add more lookup tables, right-click the Lookup transformation and click Add
Input.

7. Because you want to store the output of the transformation in a permanent target table,
right-click the temporary work table that is attached to the transformation and select
Replace. Then, use the Table Selector window to select the target table for the job. The
target table must be registered in SAS Data Integration Studio. (For more information
about temporary work tables, see “Working with Default Temporary Output Tables”
on page 126.)

8. Select and drag the target table into the target table location on the Diagram tab. The
target table has columns for data that is loaded from the source and from the lookup
table.

9. Drag the cursor from an output port of the Surrogate Key Generator transformation to
the target table. This action connects the transformation to the target. The following
example shows the sample process flow.

Display 19.4 Sample Lookup Process Flow Diagram

Note: In the display, the red icon indicates that the new Lookup transformation requires
source column mappings. Click the red icon to display information about errors.

Map Source Columns Into the Target
Perform the following steps to map fact table columns from the source into the target:

1. In the properties window of the Lookup transformation, open the Mappings tab. Use
this tab to map the columns directly from the source table to the target table, without
the involvement of a lookup table.

Tasks 357

2. In this sample job, map all source columns to the target by clicking the Map all

columns icon (). The following display depicts the mappings between the source
and the target:

Display 19.5 Mappings Between Source and Target

Map Key Columns between the Source and Lookup Tables
Perform the following steps to define the conditions under which values from a lookup
table are loaded into the target.

1. Select the Lookups tab.

2. Select the lookup table and click Lookup Properties.

3. Use the Source to Lookup Mapping tab to specify the source and lookup columns
that are compared at runtime. If values match, then the lookup value is added to the
target. If a match is not found, then an exception condition exists.

In the sample job, the business key in the source is compared to the business key in the
lookup table, which in this case is a dimension table that contains customer information.
To map the columns, click the Customer_ID column in the Source Table list. Then
right-click the Customer_ID column in the Lookup Table list, and select Map
Selected. A mapping arrow appears between the two columns. The following display
depicts the completed Source to Lookup Mapping tab.

358 Chapter 19 • Working with Slowly Changing Dimensions

Display 19.6 Source to Lookup Column Mapping

4. If you want to define a WHERE clause that further refines the match between the
business key columns, click the Where tab and build an expression. Click Apply to
save changes.

Note: If you use a WHERE clause, and if the lookup table uses a generated key, you
can improve performance by creating an index on the generated key column, as
described in “About Generated Keys” on page 351.

Map Lookup Columns Into the Target
Perform the following steps to map lookup columns into the target. Values are loaded when
keys match between the source table and lookup table. In the sample job, the target receives
lookup table key values. In the target, the key values connect the factual events (orders) to
detail data (customer information).

1. Open the Lookup to Target Mapping tab, and select the Customer_Gen_Key
column.

2. Right-click the Customer_Gen_Key column and select Map Selected. A mapping
arrow appears between the two columns.

Create Error and Exception Tables
You can create error and exception tables that receive selected data in response to selected
conditions. You configure the error and exception conditions later in this sample job.
Perform the following steps to create the error and exception tables:

1. Open the properties window of the Lookup transformation and select the Errors tab.

2. Click Create error table and then click Choose columns.

3. In the Choose Error Table Columns window, note that all source columns are selected
to appear in the error table. Click OK to close the window.

4. On the Errors tab, click Create Exception Table and click Choose columns.

Tasks 359

5. In the Choose Exception Table Columns window, note that the exception table columns
include the source row number, the lookup table name, the exception condition, and
the exception action. Click OK to close the window.

Configure Exception Handling
If you create an error table and an exception table, the Lookup transformation will, by
default, send non-matching source rows to the error table and send exception messages to
the exception table. This sample job examines and accepts the default conditions and
actions for exception handling.

Perform the following steps to view the default exception handling:

1. In the properties window of the Lookup transformation, select the Lookups tab.

2. In the Lookups tab, select the lookup table and then select Lookup Properties.

3. In the Lookup Properties window, open the Exceptions tab. The following display
depicts the default configuration for exception handling.

Display 19.7 Default Exception Handling

In this sample job, if the Customer_ID column in a source row does not match a
Customer_ID value in the target, then the error and exception tables are updated and
the lookup value (Customer_Gen_Key) is set to missing for that row in the target.

4. Click OK to store your entries and close the properties window of the Lookup
transformation.

Run the Job and View the Output
Perform the following steps to run the job and view the output:

1. Right-click on an empty area of the job, and click Run in the pop-up menu. SAS Data
Integration Studio generates code for the job and submits it to the SAS Application
Server for execution.

2. If error messages are displayed on the Status tab, read and respond to the messages as
needed.

3. After the completion of the job, right-click the target and select Open to view the values
that were loaded from the source and lookup tables. The following display depicts the
target table data for the sample job.

360 Chapter 19 • Working with Slowly Changing Dimensions

Display 19.8 Target Table Data

4. To view the contents of the error table, position the cursor in the job, over the Lookup
transformation. When the error and exception tables appear, move the cursor over the
error table, right-click, and select Open. The following display depicts the error table
data for the sample job.

Display 19.9 Error Table Data

5. To view the contents of the exception table, position the cursor over the Lookup
transformation. When the error and exception tables appear in the job, slide the cursor
over the exception table, right-click, and select Open. The following display depicts
the exception table data for the sample job.

Display 19.10 Exception Table Data

Tasks 361

Loading a Table and Adding a Surrogate Primary
Key

Problem
You want to create a job that loads source data into a target and adds a primary key column.
The added key column is known as a surrogate key. The surrogate key in the target replaces
the primary key that is loaded into the target from the source. The surrogate key is required
because the target contains multiple instances of the primary key in the source.

Solution
You can create a job that includes the Surrogate Key Generator transformation. This
transformation is more efficient than the SCD Type 2 Loader because you are not tracking
data changes in the target.

The sample job includes the following tasks:

• “Create and Populate the Job” on page 362

• “Add the Surrogate Key Column to the Target” on page 363

• “Identify Tables and Columns in the Transformation” on page 363

• “Run the Job and View the Output” on page 364

Tasks

Create and Populate the Job
Perform the following steps to create and populate the job:

1. Create an empty SAS Data Integration Studio job.

2. In the Transformations tree, in the Data folder, drag the Surrogate Key Generator
transformation into the empty job on the Diagram tab.

3. Select and drag the source table from its folder and drop it before the Surrogate Key
Generator transformation on the Diagram tab.

4. Drag the cursor from the source table to the input port of the Surrogate Key Generator
transformation. This action connects the source to the transformation.

5. Because you want to store the output of the transformation in a permanent target table,
right-click the temporary work table attached to the transformation and select
Replace. Then, use the Table Selector window to select the target table for the job. The
target table must be registered in SAS Data Integration Studio. (For more information
about temporary work tables, see “Working with Default Temporary Output Tables”
on page 126.)

6. Drag the target table from its folder and drop it after the Surrogate Key Generator
transformation on the Diagram tab.

7. Drag the cursor from an output port of the Surrogate Key Generator transformation to
the target table. This action connects the transformation to the target. The following
example shows the sample process flow.

362 Chapter 19 • Working with Slowly Changing Dimensions

Display 19.11 Sample Surrogate Key Process Flow Diagram

Add the Surrogate Key Column to the Target
Perform the following steps to add a new column to the target for the generated key values:

1. Open the properties window of the target and select the Columns tab.

2. On the Columns tab, click the New column icon. A new column appears at the bottom
of the list.

3. Type the name of the new column. This sample uses the name
CUSTOMER_GEN_KEY.

4. In the Type column, change the type of the new column to Numeric.

5. To reposition the surrogate key column, select its column number in the list and drag
the column up to position 1. The following display depicts the completed Columns tab
for the sample job.

Display 19.12 Completed Columns Tab for Sample Job

6. Click OK to save your changes and close the properties window.

Identify Tables and Columns in the Transformation
The goal of this section is to configure the Surrogate Key Generator transformation. In this
sample job, the surrogate key is generated using the default settings. By default, the
transformation generates key values based on the largest value in the key column.
Remaining configuration steps identify the target table and the key column in the
transformation's Options tab. the option values that determine the method of surrogate key
generation.

Perform the following steps to configure the Surrogate Key Generator transformation:

1. Open the properties window of the transformation, and then select the Options tab. On
the Options tab, select Target table and key columns.

2. Specify the name of the target table in Select Target Table.

3. Specify the business key column or columns by selecting from the list of columns under
Select business key columns in source and target table. The business key columns
are the primary key columns in the source.

Tasks 363

4. Specify the target column that receives the surrogate key values. Select the down arrow
under Select surrogate key column, and click the target column. The following display
depicts the completed Options tab in the sample job.

Display 19.13 Completed Options Tab for Sample Job

5. Click OK to save the option specifications and close the properties window.

Run the Job and View the Output
Perform the following steps to run the job and view the output:

1. Right-click on an empty area of the job, and click Run in the pop-up menu. SAS Data
Integration Studio generates code for the job and submits it to the SAS Application
Server for execution.

2. If error messages are displayed on the Status tab, read and respond to the messages as
needed.

3. After the completion of the job, right-click the target and select Open to view the
generated surrogate key values. The following display depicts the target table data for
the sample job.

Display 19.14 Generated Key Values in the Sample Target Table

364 Chapter 19 • Working with Slowly Changing Dimensions

Tracking Changes in Source Datetime Values

Problem
You want to track changes to primary key values using begin and end datetime values.

Solution
You can create a job that uses a Key Effective Date transformation.

The sample job includes the following tasks:

• “Create and Populate the Job” on page 365

• “Identify Source Columns” on page 365

• “Run the Job and View the Output” on page 366

Tasks

Create and Populate the Job
Perform the following steps to create and populate a new job:

1. Create an empty SAS Data Integration Studio job.

2. In the Transformations tree, in the Data folder, drag the Key Effective Date
transformation into the empty job on the Diagram tab.

3. Select and drag the source table into the source table location in the Diagram tab. In
this sample job, the source table contains customer information.

4. Drag the cursor from the source table to the input port of the Key Effective Date
transformation. This action connects the source to the transformation.

5. Select and drag the target table into the target table location in the Diagram tab. The
target contains the same columns as the source.

6. Drag the cursor from an output port of the Key Effective Date transformation to the
target table. This action connects the transformation to the target. The following
example shows the sample process flow.

Display 19.15 Sample Key Effective Date Process Flow Diagram

Identify Source Columns
Perform the following steps to identify the primary key and datetime columns in the
transformation:

1. Open the properties window of the Key Effective Date transformation, and then select
the Change Tracking tab.

Tasks 365

2. Under Column Name, triple-click to open the pull-down list to select the source and
target columns that contain the begin and end datetime values.

3. Under Expression, enter the expression or value that is applied when begin and end
datetime values are missing from a source row.

4. Open the Key tab and click New. Under Column, select the name of the first column
in the primary key of the source table. Similarly, select in order any other columns in
the primary key. The following display depicts the completed Key tab for the sample
job.

Display 19.16 Order of Primary Key Columns on the Key Tab

5. Click OK to close the properties window.

Run the Job and View the Output
Perform the following steps to run the job and view the output:

1. Right-click in the job and select Run. SAS Data Integration Studio generates code for
the job and submits the code to the SAS Application Server for execution.

2. If error messages are displayed on the Status tab, read and respond to the messages as
needed.

3. After the completion of the job, right-click the target and select Open. The following
display shows the target table data for the sample job.

Display 19.17 Tracked Datetime Values in the Sample Target Table

366 Chapter 19 • Working with Slowly Changing Dimensions

Closing Out Rows in Datetime Change Tracking

Problem
In a dimension table that uses datetime change tracking, you need to close out a current
row without adding a new current row for that member.

Solution
To close out a current row without changing the tracked data values in that row (and
therefore adding a new current row), simply load that row without data changes and with
an end datetime value that is less than the current end datetime value. The row receives the
new end datetime value, which closes-out the row, without creating a new current row for
that member.

Solution 367

368 Chapter 19 • Working with Slowly Changing Dimensions

Chapter 20
Working with Change Data
Capture

About the Change Data Capture Transformations . 369
Change Data Capture Defined . 369
Prerequisites for Change Data Capture . 370

About CDC Changed Data Tables . 371

About CDC Control Tables . 372

Capture Changed Data from Oracle . 372
Problem . 372
Solution . 373
Tasks . 373

About the Change Data Capture Transformations

Change Data Capture Defined
Change data capture (CDC) is a process that shortens the time required to load data from
a relational database. The process is efficient because the source is a changed data table,
rather than the entire base table.

The CDC transformations in SAS Data Integration Studio are used to load dimension tables
in star schemas, as part of an implementation of slowly changing dimensions. For more
information, see “About Slowly Changing Dimensions” on page 348.

The following diagram illustrates a job that loads changed data into a dimension table. The
temporary target table that is generated by the CDC transformation is the source for the
SCD Type 2 Loader transformation.

369

Figure 20.1 A CDC Job that Implements Slowly Changing Dimensions

SAS Data Integration Studio provides four CDC transformations: Oracle CDC, DB2 CDC,
Attunity CDC, and General CDC. The Oracle, DB2, and Attunity transformations work
directly with changed data tables that are in native database format. The General CDC
transformation loads change data from other vendors or from your own custom
applications.

The CDC transformations are available in the Transformations tree under the heading
Change Data Capture.

The CDC transformations require you to install and configure change data capture software
on your relational database, and then use that software to generate changed data tables. For
details, see the topic that describes the prerequisites for each of the CDC transformations.

All of the CDC transformations require you to supply a source changed data table.
Additionally, the CDC transformations can be configured to read a control table. The
primary purpose of the control table is to allow only one write to each record in the target.
For information about control tables, see About CDC Control Tables on page 372.

Prerequisites for Change Data Capture
The CDC transformations require the following software:

Attunity CDC
Attunity is a data integration product, in which the Attunity Stream software enables
connectivity between databases and across operating environments. The Attunity CDC

370 Chapter 20 • Working with Change Data Capture

transformation has been validated on Attunity AIS 5.0 with Attunity Stream. To use
the Attunity software you need to license SAS/ACCESS Interface to ODBC.

Oracle CDC
The Oracle CDC transformation has been validated on Oracle 10G with asynchronous
CDC. The transformation requires that you license SAS/ACCESS to Oracle.

DB2 CDC
The DB2 CDC transformation has been validated on DB2/UDB, release 8.1, fixpak 3.
The transformation requires that you license SAS/ACCESS to DB2.

General CDC
The General CDC transformation has no prerequisites.

About CDC Changed Data Tables
In jobs that include changed data capture transformations, the source is a table that records
changes to a database. Each row in the source changed data table records an insert, update,
or delete action. Each row includes the data that was involved in the action.

The CDC transformations generate target data that is suitable for loading into star schemas
using the SCD Type 2 Loader transformation.

The source changed data tables are generally created in native database format, using
technologies that are provided by the database.

The CDC transformations require certain columns in the source changed data tables. The
names and order of the following columns can vary. To identify the columns to the CDC
transformations, you specify option values in properties window.

The CDC transformations require the following column definitions in the source changed
data tables:

Application Name
identifies the application that compares the source change data records to the records
in the target to test for previous updates. A typical value for this column is SAS Data
Integration Studio. The column type is character and the length is 64.

Table Name
identifies the source changed data table. The column type is character and the length
is 64.

Context
provides the unique identifiers in the target that are not to be overwritten. The column
type is numeric and the length is 8. For the Oracle CDC transformation, the length is
32.

Rows Processed
records the number of source changed data records that were processed the last time
that the job was run. The type of this column is numeric and the length is 8.

Timestamp
identifies the time and date when the job was run. The type of this column is numeric
and the length is 8.

About CDC Changed Data Tables 371

About CDC Control Tables
In jobs that include a change data capture transformation, you can use a control table to
prevent the update of target rows that were processed in an earlier run. When you run a job
that uses a control table, the CDC transformation first finds in the source the most recent
insert, update, or delete action for a given unique identifier (business key). The most recent
source row is then compared to the prior actions that appear in the control table. If the
unique identifiers match, and if the rest of the rows are identical, then the source row is a
duplicate and it is not added to the target.

Control tables are optional, so you need to use one only if the source changed data table
contains information that was already loaded into the target.

The control table can be in SAS format or in native database format.

Column definitions in the control table are similar to those that are required in the source
changed data tables.

You can use the New Table Wizard to create control tables.

In control tables, the names and order of the following columns can vary, because you
identify those columns in the properties window of the CDC transformation:

Application Name
identifies the application that compares the source change data records to the records
in the target to test for previous updates. A typical value for this column is SAS Data
Integration Studio. The column type is character and the length is 64.

Table Name
identifies the source changed data table. The column type is character and the length
is 64.

Context
provides the unique identifiers in the target that are not to be overwritten. The context
is a character value with length of 32 for DB2, Attunity, and General. Oracle context
is numeric with a length of 8.

Rows Processed
records the number of source changed data records that were processed the last time
that the job was run. This value is updated at the end of the job run, as an output from
the CDC transformation. The type of this column is numeric and the length is 8.

Timestamp
identifies the time and date when the job was run, in DATETIME16.6 format. The type
of this column is numeric and the length is 8.

Capture Changed Data from Oracle

Problem
You need to load changed data from an Oracle database, with the eventual purpose of
updating a dimension table in a star schema.

372 Chapter 20 • Working with Change Data Capture

Solution
Create and run a job that contains an Oracle CDC transformation. The source table contains
changed data from an Oracle database. A control table is used to prevent the updates of
target rows that were updated in a previous run.

The steps in the following Tasks section assume that the Oracle base table was previously
loaded into the dimension table in a separate job. The example job in the task section also
assumes that a third job loads the CDC target table into the dimension table using the SCD
Type 2 Loader. The SCD Type 2 Loader was not included in this example job as a matter
of simplicity. To see an example that uses the SCD Type 2 Loader, refer to “Loading a
Dimension Table with Type 1 and 2 Updates” on page 353.

The source changed data table from Oracle contains all of the inserts, updates, and deletes
that have occurred since the last time the dimension table was loaded.

To accommodate database deletes, the Oracle CDC transformation calculates new end
dates for the corresponding rows in the dimension table. (The dimension table retains a
history of data changes by closing-out records, rather than deleting them.)

The sample job includes the following tasks:

• “Prerequisites” on page 373

• “Create and Populate the Job” on page 373

• “Configure Row Processing” on page 374

• “Configure the Use of the Control Table” on page 375

• “Run the Job, Update the Metadata, and View the Output” on page 376

Tasks

Prerequisites
Perform the following steps to prepare your Oracle source changed data table and control
table:

1. Fulfill the prerequisites for changed data capture, as defined in “Prerequisites for
Change Data Capture” on page 370.

2. Use Oracle tools to create the source changed data table. Typical implementations use
database triggers or log mining. Typical tools are the Oracle Data Integrator or the
Oracle Log Miner.

3. Specify a library for the Oracle source table. For more information, see the SAS
Intelligence Platform: Data Administration Guide.

4. To create the control table, select New ð Table.

5. In the New Table Wizard, create a new table without columns. Specify a table name
and a library, and then click Next until you can select Finish. The Oracle CDC
transformation provides column definitions when you run the job.

Create and Populate the Job
Perform the following steps to create and populate a job that loads data by using an Oracle
changed data table and control table:

1. Create an empty SAS Data Integration Studio job.

Tasks 373

2. In the Transformations tree, in the Change Data Capture folder, drag the Oracle CDC
transformation into the empty job in the Diagram tab.

3. Select and drag the source changed data table from its folder and drop it before the
Oracle CDC transformation on the Diagram tab. In the example job, the source table
is named Oracle Changed Data US Males.

4. Drag the cursor from the source table to the input port of the Oracle CDC
transformation. This action connects the source to the transformation.

5. Select and drag the control table from its folder and drop it before the Oracle CDC
transformation in the Diagram tab. In this example job, the control table is named CDC
Control Table US Males.

6. Drag the cursor from the control table to the input port of the Oracle CDC
transformation. This action connects the control table to the transformation. Note that
the CDC transformation reads the control table without loading any of its data into the
target.

7. Because you want to store the output of the transformation in a permanent target table,
right-click the temporary work table that is attached to the transformation and select
Replace. Then, use the Table Selector window to select the target table for the job. The
target table must be registered in SAS Data Integration Studio. (For more information
about temporary work tables, see “Working with Default Temporary Output Tables”
on page 126.)

8. Drag the target table from its folder and drop it after the Oracle CDC transformation
on the Diagram tab. In this example, the name of the target is US Males SCD-Ready.

9. Drag the cursor from an output port of the Oracle CDC transformation to the target
table. This action connects the transformation to the target. The following example
shows the sample process flow.

Display 20.1 Sample Oracle CDC Process Flow Diagram

Configure Row Processing
Perform the following steps to specify how rows from the source changed data table are
processed for application to the target.

1. Open the properties window of the Oracle CDC transformation and select the
Options tab.

2. For the option Process Rows by Action, select the value Process Rows by
Action. Selecting this option indicates that delete processing instructions in the source
changed data table are to be processed by updating an end date/time column in the
target.

3. For the option End Date Calculation, accept the default value, which is used to
calculate the date/time value that is added to the target to close-out deleted rows.

4. For the option Select the End Date Column, click the Browse button and select the
numeric column that contains end date/time values. The following display depicts the
completed row processing options.

374 Chapter 20 • Working with Change Data Capture

Display 20.2 Row Processing Options

Configure the Use of the Control Table
Perform the following steps to configure the Oracle CDC transformation to use the control
table.

1. On the Options tab, click Control Table Settings in the left panel.

2. For the option Use a control table in the CDC process, select the value Use a
control table.

3. For the option Specify the option name, accept the default value SAS Data
Integration Studio. You would enter a different application name if that
application was to supply input data rows based on the contents of the source changed
data table and the control table.

4. For the option Override the table name used in the control table, enter the name of
the table that is used to filter the control table. In this example, enter the table name
CDC Control Table US Males. You need to enter a value for this option only to
use a different table when writing to and reading from the control table. The following
display depicts the completed control table settings.

Tasks 375

Display 20.3 Completed Control Table Options

5. Click OK to save the option specifications and close the properties window.

Run the Job, Update the Metadata, and View the Output
Perform the following steps to run the job and view the output:

1. Right-click in the job and select Run. SAS Data Integration Studio generates code for
the job and submits the code to the SAS Application Server for execution.

2. If error messages are displayed on the Status tab, read and respond to the messages as
needed.

3. To store the metadata for the control table columns that were created by the Oracle
CDC transformation, right-click the control table on the Diagram tab and select
Update Metadata. This step and the next are necessary only when you create a control
table without column definitions, and only after the first time you run the job.

4. To prevent the columns in the control table from appearing in the target, right-click the
Diagram tab and ensure that a check mark does not appear next to Automatically
Propagate Columns.

5. After the completion of the job, right-click the target and select Open. The following
display shows the target table data for the sample job.

376 Chapter 20 • Working with Change Data Capture

Display 20.4 CDC Columns in the Sample Target Table

Tasks 377

378 Chapter 20 • Working with Change Data Capture

Chapter 21
Working with Message Queues

About Message Queues . 379

Prerequisites for Message Queues . 380

Selecting Message Queue Transformations . 381
Problem . 381
Solution . 381
Tasks . 381

Processing a WebSphere Queue . 382
Problem . 382
Solution . 382
Tasks . 382

Polling a Websphere Message Queue . 384
Problem . 384
Solution . 384
Tasks . 385

Processing a Microsoft Queue . 386
Problem . 386
Solution . 386
Tasks . 386

About Message Queues
A message queue is a guaranteed message delivery mechanism for handling data sharing
in a user-defined format. Several widely used messaging technologies are currently
available. The format of the message content can be completely user defined, or it can be
a format that has been commonly accepted for a particular industry segment. The message
queues in SAS Data Integration Studio support all of the following data transfer types:

Table 21.1 Support Data Transfer Types

Data Transfer Type Description

Text Transmits text of a maximum length of 32767
characters or a macro variable for transfer to the
message queue.

379

Data Transfer Type Description

Tables Transmits records from a table (from a SAS data
set, a DBMS table, or an XML table). In order to
successfully handle tables, the structure of the
table must be included on the receiving end so
that input data values can be correctly formatted
to accurately reconstitute the data. A queue is
mapped to the data set or table. Each message that
is sent to the queue corresponds to a database
record.

Binary Files Transmits files, provided that the receiver
understands the file format.

Unlike other SAS Data Integration Studio jobs, message queue jobs can handle both
structured data, such as tables, and unstructured data, such as texts. However, you can create
a memory overrun if you transmit a very large table or file in a Websphere message queue.
For more information, see the topic on "Very Large Tables or Files In WebSphere Message
Queues Can Cause Memory Overruns" in the "Usage Notes" topic in SAS Data Integration
Studio Help.

The Microsoft Queue Writer transformation does not transform missing numeric values to
some other value. If missing values are encountered, then an error occurs. For more
information about this error and specific recommendations for avoiding it, see the topic on
"Microsoft Queue Writer Transformation Does Not Transform Missing Numeric Values"
in the "Usage Notes" topic in SAS Data Integration Studio Help.

Prerequisites for Message Queues
The following prerequisites are required in order to use message queues in SAS Data
Integration Studio jobs:

• Base SAS and SAS Integration technologies must be installed on the machine where
the message queue server is installed.

• The message queue server must be installed (WebSphere MQ server for WebSphere
queues; MSMQ Server for Microsoft queues). Then, the queues must be defined on the
server.

• The workspace server must have client/server or client access to the message queue
server. The workspace server that is defined and used to run queue jobs is critical. For
example, if you are using a metadata server on your machine and using the workspace
server on Machine X and the model is client/server, then messages are sent to the
message queue server that is running on Machine X.

• The machine that is used to run the job is able to access the message queue server.

• The queue manager and queues must be defined in SAS Management Console. For
more information, see the "Administering Message Queues" section in the
"Administering SAS Data Integration Studio" chapter of the SAS Intelligence Platform:
Desktop Application Administration Guide.

Note: If you want to launch a SAS program to read messages from a WebSphere message
queue and process them, see “Polling a Websphere Message Queue” on page 384.

380 Chapter 21 • Working with Message Queues

Selecting Message Queue Transformations

Problem
You want to select the transformations that are appropriate for a Microsoft or WebSphere
message queue that contains information that you need to either send or receive.

Solution
Four transformations are provided in SAS Data Integration Studio to facilitate the
processing of message queues. Select the transformations that you need for your process
from the table in the Tasks section.

Tasks

Table 21.2 Message Queue Transformations

Transformation Purpose

Microsoft Queue Writer
transformation

Enables writing files in binary mode, tables, or
structured lines of text to the Microsoft MQ messaging
system. The queue and queue manager objects that are
necessary to get to the messaging system are defined in
SAS Management Console.

Websphere Queue Writer
transformation

Enables writing files in binary mode, tables, or
structured lines of text to the WebSphere MQ messaging
system. The queue and queue manager objects that are
necessary to get to the messaging system are defined in
SAS Management Console.

Microsoft Queue Reader
transformation

Enables content from a Microsoft MQ message queue to
be delivered to SAS Data Integration Studio. If the
message is being sent into a table, then the message
queue content is sent to a table or a SAS Data Integration
Studio transformation. If the message is being sent to a
macro variable or file, then these files or macro variables
can be referenced by a later step.

Websphere Queue Reader
transformation

Enables content from a WebSphere MQ message queue
to be delivered to SAS Data Integration Studio. If the
message is being sent into a table, then the message
queue content is sent to a table or a SAS Data Integration
Studio transformation. If the message is being sent to a
macro variable or a SAS data set file, then these data set
files or macro variables can be referenced by a later step.

Tasks 381

Processing a WebSphere Queue

Problem
You want to write rows from a source table into a WebSphere message queue. Then, you
need to read the messages back from the queue and write them into a target table.

Solution
You can use the Websphere Queue Writer transformation in SAS Data Integration Studio
to write the data to the message queue. Then, you can use the Websphere Queue Reader
transformation to read the messages from the queue and populate them into a target table.
Perform the following tasks to process the queue:

• “Create the Websphere Queue Writer Job” on page 382

• “Configure and Run the Websphere Queue Writer Job” on page 383

• “Verify the Websphere Queue Writer Job” on page 383

• “Create the Websphere Queue Reader Job” on page 383

• “Configure and Run the Websphere Queue Reader Job” on page 383

• “Verify the Websphere Queue Reader Job” on page 384

Text and file transfers are also supported in message queues, but these transfers are not
covered in this example.

Tasks

Create the Websphere Queue Writer Job
Perform the following steps to create and populate the job:

1. Create an empty job.

2. Select and drag the Websphere Queue Writer transformation from the Access folder in
the Transformations tree into the empty job in the Diagram tab in the Job Editor
window.

3. Drop the source table for the queue in the Diagram tab.

4. Connect the source table to the input port of the Websphere Queue Writer
transformation.

5. Drop the queue from the Message queue folder in the Inventory tree in the Diagram
tab.

6. Connect the queue to the output port of the Websphere Queue Writer transformation.
The job resembles the sample shown in the following display.

Display 21.1 Write Records from Table to Queue Job

382 Chapter 21 • Working with Message Queues

Configure and Run the Websphere Queue Writer Job
Perform the following steps to configure the job:

1. Open the Queue Options tab of the properties window for the Websphere Queue Writer
transformation.

2. Select Table in the Message Type group box. Save the setting and close the properties
window.

3. Run the job. If you are prompted to do so, enter a user ID and password for the default
SAS Application Server that generates and runs SAS code for the job. The server
executes the SAS code for the job.

4. If the job completes without error, go to the next section. If error messages appear, read
and respond to the messages.

Verify the Websphere Queue Writer Job
Perform the following steps to verify the results of the queue writer job:

1. Open the IBM WebSphere Queue Explorer application.

2. Select the queue that you created and ran. Then, verify that the expected messages are
sitting on the queue.

Create the Websphere Queue Reader Job
Perform the following steps to create the Websphere Queue Reader Job:

1. Create an empty job.

2. Select and drag the Websphere Queue Reader transformation from the Access folder
in the Transformations tree into the empty job in the Diagram tab in the Job Editor
window.

3. Drop the queue that you created and ran on the Diagram tab.

4. Connect the queue to the input port of the Websphere Queue Reader transformation.

5. Because you want to have a permanent target table to contain the output for the
transformation, right-click the temporary work table that is attached to the
transformation and click Replace in the pop-up menu. Then, use the Table Selector
window to select the target table for the job. The target table must be registered in SAS
Data Integration Studio. (For more information about temporary work tables, see
“Working with Default Temporary Output Tables” on page 126.)

6. After these steps have been completed, the process flow diagram for this example
resembles the following display.

Display 21.2 Read Records to a Table Job

Configure and Run the Websphere Queue Reader Job
Perform the following steps to configure the job:

1. Open the Queue Options tab of the properties window for the Websphere Queue
Reader transformation.

Tasks 383

2. Select Table in the Message Type group box. Save the setting and close the properties
window. Remember that you verified that the message queue contained the messages
from the source table in the Verify the Websphere Queue Writer Job section.

3. Run the job. If you are prompted to do so, enter a user ID and password for the default
SAS Application Server that generates and runs SAS code for the job. The server
executes the SAS code for the job.

4. If the job completes without error, go to the next section. If error messages appear, read
and respond to the messages.

Verify the Websphere Queue Reader Job
Perform the following steps to verify the results of the queue reader job:

1. Access the View Data window for the source table.

2. Access the View Data window for the target table. A sample target table is shown in
the following example.

Display 21.3 Sample Target Table Data

3. The source table and the target table contain identical data. This means that the data
was transferred successfully through the Websphere message queue. If you do not see
the data that you expected, check the Message Format column on the Columns tab in
the Websphere Queue Reader properties window. To access this window, right-click
Websphere Queue Reader and click Properties in the pop-up menu. Then, you can
correct the formats as needed.

Polling a Websphere Message Queue

Problem
You want to launch a SAS program to read messages from a Websphere message queue
and process them.

Solution
You can create a job in SAS Data Integration Studio to read message from a queue and add
appropriate transformations or SAS code to process the message. You can then deploy this
job that contains a Websphere Queue Reader transformation for scheduling to be run in
batch mode. Message Queue Polling Server is configured to launch this deployed job to
read and process messages from the queue whenever a specified number of messages
accumulates on the Websphere queue.

384 Chapter 21 • Working with Message Queues

Once you configure a Message Queue Polling Server, you can use the object spawner to
perform message queue polling to monitor queues and start SAS programs to read and
process messages. The Object Spawner application can monitor the queue depth for a
message queue and start a SAS program to process messages on the queue. Message queue
polling enables you to configure the application monitor so that new SAS sessions can be
started as needed.

Message queue polling enables load balancing across multiple SAS sessions. You can
configure any number of definitions to specify which queues to monitor, the transport
(MQSeries or MQSeries C), the number of messages (the queue depth) required to start a
new SAS session, and the wait interval between queries. Your administrator can customize
the configuration so that sufficient processes are running to handle the number of messages
on the queue.

You or an administrator must perform the following tasks to create the connection between
the SAS job and the Message Queue Polling Server:

1. Define the Message Queue Server and the message queue. See the "Administering
Message Queues" section in the "Administering SAS Data Integration Studio" chapter
of the SAS Intelligence Platform: Desktop Application Administration Guide.

2. Create a queue reader job. See “Processing a WebSphere Queue” on page 382.

3. Deploy the queue reader job for scheduling. See “Deploy the SAS Job for Scheduling”
on page 385.

4. Create the Message Polling Server. Then, configure it to point to the SAS job that is
used to process the message (such as the queue reader job). See the "Administering
Message Queues" section in the "Administering SAS Data Integration Studio" chapter
of the SAS Intelligence Platform: Desktop Application Administration Guide.

5. Configure the object spawner to recognize the Message Polling Server. Then, refresh
the object spawner to start the polling server job. See the "Administering Message
Queues" section in the "Administering SAS Data Integration Studio" chapter of the
SAS Intelligence Platform: Desktop Application Administration Guide.

Tasks

Deploy the SAS Job for Scheduling
Perform the following steps to deploy a SAS job such as a queue reader job for scheduling
and eventual linkage to a Message Polling Server:

1. Right-click the SAS job in the Folders tree. Click Scheduling in the pop-up menu.
Then, click Deploy in the submenu.

2. Verify that the appropriate batch server, deployment directory, deployed job name, and
location are displayed in the Deploy a job for scheduling window.

3. Click OK to deploy the SAS job for scheduling.

You can now use information about this deployed SAS job in your Message Polling Server
configuration.

Tasks 385

Processing a Microsoft Queue

Problem
You want to write rows from a file into a Microsoft message queue. Then, you need to read
the messages back from the queue and write them into a target table.

Solution
You can use the Microsoft Queue Writer transformation in SAS Data Integration Studio
to write the data to the message queue. Then, you can use the Microsoft Queue Reader
transformation to read the message from the queue and populate them into a target table.
Perform the following tasks:

• “Create the Microsoft Queue Job” on page 386

• “Configure and Run the Microsoft Queue Job” on page 387

• “Verify the Microsoft Queue Job” on page 387

Tasks

Create the Microsoft Queue Job
Perform the following steps to create and populate the job:

1. Create an empty job.

2. Select and drag the Microsoft Queue Writer transformation from the Access folder in
the Transformations tree into the empty job on the Diagram tab in the Job Editor
window.

3. Connect the source table to the input port of the Microsoft Queue Writer transformation.

4. Connect the queue to the output port of the Microsoft Queue Writer transformation.

5. Drag the Microsoft Queue Reader transformation onto the Diagram tab in the Job
Editor window.

6. Connect the queue to the Microsoft Queue Reader transformation.

7. Because you want to have a permanent target table to contain the output for the
transformation, right-click the temporary work table that is attached to the
transformation and click Replace in the pop-up menu. Then, use the Table Selector
window to select the target table for the job. The target table must be registered in SAS
Data Integration Studio. (For more information about temporary work tables, see
“Working with Default Temporary Output Tables” on page 126.)

The job resembles the sample shown in the following display.

Display 21.4 Sample Microsoft Message Queue Process Flow

386 Chapter 21 • Working with Message Queues

The source table for the sample job is named CAKE. The target table is named CAKE2,
and the queue is named cypress\venu\nontransactional.

Configure and Run the Microsoft Queue Job
Perform the following steps to configure the job:

1. Open the Queue Options tab of the properties window for the Microsoft Queue Writer
transformation.

2. Specify the source for the queue. The sample job uses a file. You can also use text or
a table as the source.

3. Open the Queue Options tab of the properties window for the Microsoft Queue Reader
transformation.

4. Specify the target for the queue. The sample job uses a file. You can also use text or a
table as the target.

5. Run the job. If you are prompted to do so, enter a user ID and password for the default
SAS Application Server that generates and runs SAS code for the job. The server
executes the SAS code for the job. The following display shows that the job runs
successfully.

Display 21.5 Sample Completed Microsoft Message Queue Job

Verify the Microsoft Queue Job
Perform the following steps to verify the results of the queue job:

1. Examine the data in the source file.

2. Access the View Data window for the target table. A sample target table is shown in
the following example.

Tasks 387

Display 21.6 Target Table Data for the Sample Job

3. Confirm that the source file and the target table contain identical data. This means that
the data was transferred successfully through the Microsoft message queue.

388 Chapter 21 • Working with Message Queues

Chapter 22
Working with SPD Server Cluster
Tables

About SPD Server Cluster Tables . 389

Creating an SPD Server Cluster Table . 390
Problem . 390
Solution . 390
Tasks . 390

Maintaining an SPD Server Cluster . 391
Problem . 391
Solution . 391

About SPD Server Cluster Tables
The SAS Scalable Performance Data (SPD) Server enables you to create dynamic cluster
tables. A dynamic cluster table is two or more SPD Server tables that are virtually
concatenated into a single entity, using metadata that is managed by the SPD Server.
Dynamic cluster tables can be used as the inputs or outputs in SAS Data Integration Studio
jobs.

Before you can create a cluster table, the following prerequisites must be satisfied:

• Administrators must have installed, started, and registered an SPD Server. The
application server that executes the cluster table job must be able to access the SPD
Server. For more information about SPD Servers, see the chapters about common data
sources in the SAS Intelligence Platform: Data Administration Guide.

• An SPD Server library must be available. For more information about SPD Server
libraries, see the chapters about common data sources in the SAS Intelligence Platform:
Data Administration Guide.

• All of the source tables that are to be added to a cluster table have been registered in
the SPD Server library. All source tables must have the same column structure.

• A cluster table has been registered in the SPD Server library. The cluster table and all
of its source tables must have the same column structure. One way to ensure that all of
these tables have the same columns is to use the New Table wizard to copy the metadata
from a source table and save it as the metadata for the cluster table. For details about
using the New Table wizard, see “Registering New Tables with the New Table Wizard”
on page 66.

389

Creating an SPD Server Cluster Table

Problem
You want to create an SPD Server cluster table. Cluster tables can be used as the inputs or
outputs in SAS Data Integration Studio jobs and can improve the performance of the jobs.

Solution
You can use the Create or Add to a Cluster transformation to create or add tables to an SPD
Server cluster table. Use this transformation to create an SPD Server cluster table in a SAS
Data Integration Studio job and list its contents in the Output tab in the Job Editor window.
For more information, see the following tasks:

• “Create and Populate the Job” on page 390

• “Specify Options for the Create or Add to a Cluster Transformation” on page 391

Tasks

Create and Populate the Job
Perform the following steps to build a job that creates an SPD Server cluster table. If you
add the List Cluster Contents transformation to the same job, you can list the source tables
in the Output tab in the Job Editor window.

1. Create a job in SAS Data Integration Studio and give it an appropriate name.

2. Drop the Create or Add to a Cluster transformation on the Job Editor window. This
transformation produces a temporary output table that you can use as a permanent
output table or as an input to another transformation or table loader. You can also
replace the temporary output table with a permanent target table. The SPD server cluster
job does not actually load a physical table. Instead, it creates a virtual table that
combines all of the data from the tables included in the SPD Server library into a virtual
table that is processed as a single unit. The following example shows the temporary
output table.

Display 22.1 Sample SPD Server Cluster Table Job with Temporary Output Table

3. To replace the temporary output table with the clustered table, right-click the temporary
work table that is attached to the Create or Add to a Cluster transformation and click
Replace in the pop-up menu. Then, use the Table Selector window to select the cluster
table. For additional information about temporary output tables, see “Working with
Default Temporary Output Tables” on page 126.

4. To verify what tables were clustered, add the List Cluster Contents transformation to
the process flow, and drop the transformation on the Job Editor window. Then, drag
the cursor from the output port of the cluster table to the input port of the List Cluster

390 Chapter 22 • Working with SPD Server Cluster Tables

Contents transformation. The following display shows a process flow diagram for the
resulting job. The numbers on the transformations show the order of the job's processes.

Display 22.2 Sample SPD Server Cluster Table Job with List Cluster Contents

The List Cluster Contents transformation sends a list of all tables included in the cluster
table to the Output tab.

Specify Options for the Create or Add to a Cluster Transformation
Perform the following steps to specify options for the Create or Add to a Cluster
Transformation and run the job.

1. Right-click the Create or Add to a Cluster transformation and click Properties to access
the Create or add to a cluster Properties window. Then click Options to access the
Options tab.

2. Limit the tables that are included in the cluster table by entering a string in the Filter:
table name contains ... field found on the Cluster Options window. In this case, enter
CLUSTER because all tables that are required include this string in the table name.

3. Enter a value into the Set maximum number of slots field. This value must be large
enough to accommodate the potential growth of the cluster because the number of slots
cannot be increased after the cluster is created. If the slot size does not accommodate
all of the clustered tables, then you must delete the existing cluster definition and define
a new cluster that includes an adequate value for the maximum number of slots.

4. Click OK to save the setting and close the properties window.

5. Submit and run the job. Click Output to access the Output tab and verify that the
expected tables were added to the SPD Server cluster table, as shown in the following
example:

Display 22.3 Cluster Contents on Output Tab

Maintaining an SPD Server Cluster

Problem
You want to maintain an existing SPD server cluster by adding a table to a cluster,
generating a list of tables that are included in a cluster, or removing a cluster definition.

Solution
You can use the List Cluster Contents transformation or the Remove Cluster
transformation. These transformations are explained in the following table.

Solution 391

Table 22.1 SPD Server Transformations

Server Tasks That Require This Server

Add a table to a cluster Perform the following steps to use the Create or Add to a
Cluster transformation:

1. Create an empty job.

2. Drop the Create or Add to a Cluster transformation
into the Job Editor window.

3. Replace the temporary output table with the clustered
table.

4. Drag the cursor from the output port of the Create or
Add to a Cluster transformation to the input port of
the cluster table.

5. Run the job.

Generate a list of tables in a cluster Perform the following steps to use the List Cluster
Contents transformation:

1. Create an empty job.

2. Drop the List Cluster Contents transformation into
the Job Editor window.

3. Drop the cluster table onto the Job Editor window.

4. Drag the cursor from the output port of the cluster
table to the input port of the List Cluster Contents
transformation.

5. Run the job.

Note that you can also include the List Cluster Contents
transformation in an SPD server cluster job. This
generates a cluster list each time you create a cluster.

Remove a cluster definition Perform the following steps to use the Remove Cluster
transformation:

1. Create an empty job.

2. Drop the Remove Cluster transformation into the Job
Editor window.

3. Drop the cluster table into the Job Editor window.

4. Drag the cursor from the output port of the cluster
table to the input port of the Remove Cluster
transformation.

5. Run the job.

The cluster table is now removed and the tables that were
in the cluster are now available as individual tables.

392 Chapter 22 • Working with SPD Server Cluster Tables

Part 4

Appendixes

Appendix 1
Main Windows and Wizards . 395

Appendix 2
Java Code and Methods for Report Plug-ins . 427

393

394

Appendix 1
Main Windows and Wizards

Analysis Window . 396

Checkouts Tree . 397

Code Editor . 397

Comparison Results Window . 398

Connection Profile Window . 399

Desktop . 399

Details Pane . 401

Expression Builder . 402

Folders Tree . 403

Inventory Tree . 404

Job Editor . 407

Properties Windows . 408
Basic Properties . 408
Job Properties . 409
Transformation Properties . 409
Table Properties . 410

Reports Window . 411

Tools-Options Window . 412

Transformations Tree . 413
Introduction to Transformations . 413
Overview of the Transformations Tree . 413
Access Folder . 414
Analysis Folder . 414
Archived Folder . 415
Change Data Capture Folder . 415
Control Folder . 416
Data Folder . 416
Data Quality Folder . 417
Data Transforms Folder . 418
Output Folder . 418
Publish Folder . 418
SPD Server Dynamic Cluster Folder . 419

Tree View . 419

395

View Data Windows . 421
View Data Window . 421
View File Window . 422

Wizards . 423
New Object Wizards . 423
Register Tables Wizards . 424
Cube Wizards . 424
Data Surveyor Wizards . 425
Metadata Import and Export Wizards . 425

Analysis Window
Use the Analysis window to examine the possible impact of changing the metadata for data
stores (tables, external files, and cubes), columns, generated transformations, and other
objects. To access the Analysis window, right-click the object and select Analyze. The
following display shows a sample Impact Analysis for a table.

Display A1.1 Sample Impact Analysis for a Table

The Analysis window contains the following tabs:

• Impact Analysis: identifies the data stores, columns, jobs, and transformations that are
affected by a change in a selected object. For more information, see “Performing an
Impact Analysis” on page 248.

• Reverse Impact Analysis: identifies the data stores, columns, jobs, and
transformations that contribute to the content of a selected object. For more
information, see “Performing Reverse Impact Analysis ” on page 253.

• Contents: executes and displays the CONTENTS procedure for a selected table.

396 Appendix 1 • Main Windows and Wizards

• Reports: enables you to run any custom analysis reports that were created for your site.
If your site has not created such reports, the icons on this tab are dimmed. For more
information about custom reports, see “Example Java Code for a Report Plug-in” on
page 427.

Checkouts Tree
The Checkouts tree is one of the tree views in the left panel of the desktop. This tree is
displayed automatically when you are working under change management in SAS Data
Integration Studio. Under change management, most users are restricted from adding or
updating the metadata in a change-managed folder in the Folders tree. Authorized users,
however, can add new metadata objects and check them in to the change-managed folder.
They can also check out metadata objects from the change-managed folder in order to
update them. The objects are locked so that no one else can update them as long as the
objects are checked out. When the users are ready, they check the objects in to the change-
managed folder, and the lock is released.

If you are authorized to work in a change-managed folder, a Checkouts tree is added to
your desktop in SAS Data Integration Studio. The following display shows a sample
Checkouts tree.

Display A1.2 Sample Checkouts Tree

Metadata that has been checked out for update has a check mark beside it, such as the first
two objects in the preceding display. New metadata objects that have never been checked
in do not have a check mark beside them, such as the last two objects in the preceding
display. For more information about change management, see “Working with Change
Management” on page 36.

Code Editor
The Code Editor is a window that you can use to develop and execute SAS code. For
example, you can use the Code Editor window to develop and verify user-written code,
and then you can use that code to replace the generated code for a job or a transformation.
The following display shows the Code Editor window.

Code Editor 397

Display A1.3 Code Editor Window

Note that the window contains Code, Log, and Output tabs.

To display the Code Editor window, select Tools ð Code Editor from the desktop. To
submit code for execution, click Run on the Code Editor toolbar. Alternatively, you can
select Actions ð Run from the desktop. To display Help for the Code Editor, press the
F1 key. To customize the appearance and behavior of the Code Editor, select Tools ð
Options from the desktop and click the Code Editor tab.

Any options that you specify for the Code Editor window affect the Code tab in the Job
Editor as well.

Comparison Results Window
The Comparison Results window enables you to select the results of a comparison between
existing metadata and metadata that is imported with the Import Metadata Wizard. Each
successful comparison operation generates a record of the result, such as the record in the
next display.

Display A1.4 Comparison Results Window

When you select a comparison result, the icons on the toolbar are activated. You can click
these icons to view the differences between the imported metadata and existing metadata,
or to perform other tasks. For more information, see “Importing Updated Metadata with a
SAS Metadata Bridge” on page 55.

398 Appendix 1 • Main Windows and Wizards

Connection Profile Window
When you start SAS Data Integration Studio, the Connection Profile window displays in
front of the desktop, as shown in the next display.

Display A1.5 Connection Profile Window

A connection profile enables you to connect to a SAS Metadata Server. You cannot do any
work until you open an existing profile or create a new one. For more information, see
“Connecting to a SAS Metadata Server” on page 26.

Desktop
After you open a connection profile, the SAS Data Integration Studio desktop displays.
The following display shows a typical desktop.

Desktop 399

Display A1.6 SAS Data Integration Studio Desktop

The main components of the desktop are described in the following table.

Table A1.1 Desktop Components

Component Location Description

Title bar Top of the desktop Shows the current version of SAS Data
Integration Studio and the name of the current
connection profile.

Menu bar Under the title bar Provides access to the drop-down menus. The
list of active options varies according to the
current work area and the kind of object that
you select. Inactive options are disabled or
hidden.

Toolbar Under the menu bar Provides access to shortcuts for items on the
menu bar. The list of active options varies
according to the current work area and the
kind of object that you select. Inactive options
are disabled or hidden.

Tree view Left pane on the
desktop

Provides access to the Basic Properties pane,
Checkouts tree, Folders tree, Inventory tree,
and Transformations tree. For more
information, see “Tree View” on page 419.

400 Appendix 1 • Main Windows and Wizards

Component Location Description

Basic Properties pane Bottom of the left pane
on the desktop

Displays basic properties of an object that is
selected in the tree view. To display this pane,
select View ð Basic Properties from the
desktop. For more information, see
“Properties Windows” on page 408.

Status bar Bottom of the desktop Displays the name of the currently selected
object, the name of the default SAS
Application Server if one has been selected,
the login ID and metadata identity of the
current user, and the name of the current SAS
Metadata Server.

To select a different SAS Application Server,
double-click the name of that server to
display a dialog box.

If the name of the SAS Metadata Server turns
red, the connection is broken. In that case, you
can double-click the name of the metadata
server to display a dialog box that enables you
to reconnect.

Job Editor Right pane of the
desktop

Used to create and maintain jobs in SAS Data
Integration Studio. To display this window,
right-click a job in the tree view, and select
Open. For more information, see “Job
Editor” on page 407.

Details pane Under the Job Editor Used to monitor and debug a job in the Job
Editor. To display this pane, select View ð
Details from the desktop. For more
information, see “Details Pane” on page
401.

Runtime Manager Under the Details pane Displays the run-time status of the current
job, the last time that the job was executed in
the current session, and the SAS Application
Server that was used to execute the job. To
display this pane, select View ð Runtime
Manager from the desktop.

Actions History Under the Details pane Displays low-priority errors and warnings.
To display this pane, select View ð Actions
History from the desktop.

Details Pane
The Details pane enables you to monitor and debug a job in the Job Editor window. To
display this pane, click Details in the Job Editor window toolbar or select View ð
Details from the desktop. The following display shows the Status tab in a typical Details
pane.

Details Pane 401

Display A1.7 Sample Details Pane

The tabs on this pane are described in the following table.

Table A1.2 Details Pane Tabs

Tab Description

Status Used to display the status of each step in a submitted job.

Warnings and Errors Used to display any warnings and errors that are generated when
a job is submitted.

Statistics Used to display run-time and table statistics that are generated
by a submitted job. Includes tabular and graphical displays.

Control Flow Used to display the control flow sequence of steps in a job. Also
enables you to validate the control flow and change the sequence
of steps.

Columns Used to review and update columns in a table or external file in
a job.

Mappings Used to review and update mappings for transformations in a job.

The Status, Warnings and Errors, Statistics, and Control tabs are displayed whenever
the Details pane is enabled for an opened job. The Columns tab is displayed when a table
or external file in a job is selected. The Mappings tab is displayed when a transformation
is selected.

Expression Builder
The Expression Builder is a component that enables you to create SAS expressions that
aggregate columns, perform conditional processing, and perform other tasks in a SAS Data
Integration Studio job. For example, the following display shows an expression used in a
WHERE clause in an SQL query.

402 Appendix 1 • Main Windows and Wizards

Display A1.8 Expression Builder Window

The Expression Builder is displayed from tabs in the property windows of many SAS Data
Integration Studio transformations. It is used to add or update expressions in SAS, SQL,
or MDX. The expression can transform columns, provide conditional processing, calculate
new values, and assign new values. The expressions specify the following elements, among
others:

• column names

• SAS functions

• constants (fixed values)

• sequences of operands (something to be operated on like a column name or a constant)
and operators, which form a set of instructions to produce a value

An expression can be as simple as a constant or a column name, or an expression can contain
multiple operations connected by logical operators. For example, an expression to define
how the values for the column COMMISSION are calculated can be amount * .01. An
example of conditional processing to subset data can be amount > 10000 and region
= 'NE'. Other examples are an expression to convert a character date into a SAS date or
an expression to concatenated columns. For details about SAS expressions, see SAS
Language Reference: Concepts.

Folders Tree
The Folders tree is one of the tree views in the left panel of the desktop. Like the Inventory
tree, the Folders tree displays metadata for objects that are registered on the current
metadata server, such as tables and libraries. The Inventory tree, however, organizes
metadata by type and does not allow you to add custom folders. The Folders tree enables
you to add custom folders.

Folders Tree 403

Display A1.9 Example Folders in the Folders Tree

For more information, see “Working with the Folders Tree” on page 27.

Inventory Tree
The Inventory tree is one of the tree views in the left panel of the desktop. It displays
metadata for objects that are registered on the current metadata server, such as tables and
libraries. The Inventory tree displays a subset of the metadata that is available in the Folders
tree. It displays metadata that is relevant to SAS Data Integration Studio, organized by type.
For example, in the Inventory tree, you can find job metadata in the folder named Jobs,
and so on.

Note: Not all metadata objects in the Inventory tree can be added or updated in SAS Data
Integration Studio. Some objects appear in the tree view for other reasons.

For example, you cannot add or update actions, conditions, or deployed flows in SAS Data
Integration Studio, but they appear in the tree view so that they can be included in the import
and export of jobs. Likewise, you cannot add or update information maps in SAS Data
Integration Studio, but they appear in the tree view so that they can be displayed in impact
analysis.

The following table describes the folders and icons for metadata objects in the Inventory
tree and the Folders tree.

Table A1.3 Main Icons for Metadata Objects in the Inventory Tree and Folders Tree

Folder Name Icon Description

Action Metadata for a Status Handling action. SAS provides
a number of actions, such as Skip the Record and
Send Email, that can be performed when certain
conditions are met during the execution of a job. You
cannot add or update actions.

Condition Metadata for a Status Handling conditions. SAS
provides a number of conditions, such as
Successful and Error in Process, that can be tested
for when jobs are executed. You cannot add or update
conditions.

Conditional action set Metadata for the default Status Handling conditional
action sets (conditions and actions). You cannot add
or update conditional action sets.

404 Appendix 1 • Main Windows and Wizards

Folder Name Icon Description

Cube Metadata for a SAS cube, a logical set of data that is
organized and structured in a hierarchical,
multidimensional arrangement. A cube supports
online analytical processing (OLAP).

Deployed flow Metadata for a job flow used for scheduling. Job
flows are maintained in SAS Management Console.
You cannot use SAS Data Integration Studio to add
or update a deployed flow.

Deployed job Metadata for a file that contains the code of a job that
was deployed for scheduling. The icon for the
original job has a blue triangle overlay, which
indicates that the job has been deployed for
scheduling.

Document Metadata for a document. Many metadata objects
have a Description attribute, which is limited to 200
characters. A document can be used to supplement
the Description. Documents can contain graphics as
well as text.

External file Metadata for an external file. An external file is a file
that is created and maintained by a host operating
system or by another vendor's software application.
A comma-delimited file is one example.

Generated transformation Metadata for a transformation that is created with the
Transformation Generator wizard. The wizard helps
you specify SAS code for the transformation.

Information map (OLAP) Metadata for an Information Map that is based on a
SAS cube. Information Maps are created and
maintained in SAS Information Map Studio, and they
can be used in end-user applications. You cannot use
SAS Data Integration Studio to add or update an
information map, but information maps are shown in
impact analysis.

Information map (Relational) Metadata for an Information Map that is based on one
or more tables.

Job Metadata for a SAS Data Integration Studio job. A
job is collection of SAS tasks that create output.

Job (cube) Metadata for a read-only job that creates a SAS cube.

Libraries Metadata for a library. In SAS software, a library is
a collection of one or more files that are recognized
by SAS and that are referenced and stored as a unit.

Message queue Metadata for a message queue. A message queue is
a place where one program can send messages to be
retrieved by another program.

Inventory Tree 405

Folder Name Icon Description

Mining Results Metadata for the output of a Mining Results
transformation.

Note Metadata for a note. Many metadata objects have a
Description attribute, which is limited to 200
characters. A note can be used to supplement the
Description. Notes can contain text only.

OLAP Schema Metadata for an OLAP schema. In general, do not
add or update OLAP Schemas in SAS Data
Integration Studio.

Prompt Metadata for prompts. In general, do not add or
update prompts in SAS Data Integration Studio.

Prompt group Metadata for prompt groups. In general, do not add
or update prompt groups in SAS Data Integration
Studio.

Stored Processes Metadata for a stored process that was generated
from a SAS Data Integration Studio job. Enables
users to execute SAS Data Integration Studio jobs
from applications such as SAS Enterprise Guide or a
Web Service client.

Table Metadata for a table.

Web service (generated) Metadata for generated Web services.

A modifier icon called an icon overlay indicates that an object is in a certain state or has
special attributes. The following table describes the overlay icons for metadata objects in
the Inventory tree and the Folders tree.

Table A1.4 Icon Overlays for Metadata Objects in the Inventory Tree and Folders Tree

Icon Overlay Description

An ampersand on the icon for a table, external file, or job
indicates that some attributes of the object, such as its
physical path, are specified as variables rather than literal
values. These parameterized tables and jobs are often used
in iterative jobs.

A blue triangle overlay on the icon for a job indicates that
this job has been deployed for scheduling.

A blue sphere overlay on the icon for a table indicates that
this table has been configured as a Web stream and is the
input or output of a Web service job.

406 Appendix 1 • Main Windows and Wizards

Icon Overlay Description

A check mark overlay on any metadata object means that
the object has been checked out under change management.
Only the person who checked out the object can modify it.

Job Editor
The Job Editor window enables you to create, maintain, and troubleshoot SAS Data
Integration Studio jobs. To display this window, right-click a job in the tree view and select
Open. The following display shows a sample Job Editor window.

Display A1.10 Sample Job Editor Window

The following table describes the main tabs in the Job Editor window.

Table A1.5 Job Editor Tabs

Tab How to Display the Tab Description

Diagram Always displayed. Used to build and
update the process flow
for a job.

Code Select Tools ð Options from the desktop.
On the General tab, select Show Code
Tab.

Used to review or
update code for a job.

Job Editor 407

Tab How to Display the Tab Description

Log Select Tools ð Options from the desktop.
On the General tab, select Show Log
Tab.

Used to review the log
for a submitted job.

Output Select Tools ð Options from the desktop.
On the General tab, select Show Output
Tab.

Used to review the
output of a submitted
job.

The following table describes a number of panes that can be used with the Job Editor
window.

Table A1.6 Panes Used with the Job Editor

Pane How to Display Description

Details Select View ð Details from the desktop. Used to monitor and debug
a job in the Job Editor. For
more information, see
“Details Pane” on page
401.

Runtime Manager Select View ð Runtime Manager from
the desktop.

Displays the run-time status
of the current job, the last
time that the job was
executed in the current
session, and the SAS
Application Server that was
used to execute the job. This
information is available as
long as the job is active.

Actions History Select View ð Actions History from the
desktop.

Displays low-priority
errors and warnings.

Properties Windows

Basic Properties
The Basic Properties pane is an optional pane that can be displayed on the right side of the
desktop. It displays the main attributes of an object that is selected in a tree view. To display
or hide this pane, select or deselect View ð Basic Properties from the menu bar.

Note: If you have not selected a default SAS Application Server, and you select a table in
a tree view, you are prompted to select a SAS Application Server so that the Basic
Properties pane can display a row count for the table. To avoid this prompt, you can
select a default SAS Application Server for SAS Data Integration Studio, or you can
hide the Basic Properties pane. You can also select Tools ð Options from the desktop
menu bar and deselect the row count option on the General tab.

408 Appendix 1 • Main Windows and Wizards

Job Properties
The job properties window enables you to view or update the metadata for a SAS Data
Integration Studio job. One way to display this window is to right-click a job in the Folders
tree or Inventory tree, and click Properties in the pop-up menu. The next table describes
the purpose of each tab in a job properties window. For more information about each tab,
see the Help for that tab.

Table A1.7 Tabs in a Job Properties Window

Tab Description

General Enables you to enter general information that identifies,
describes, and locates the job.

Code Enables you to review and modify the code that is generated for
the job.

Precode and Postcode Enables you review and modify user-written code that is inserted
at the beginning or end of the job.

Status Handing Enables you to review and modify status handling conditions and
actions for the job.

(Some transformations have this tab as well.)

Parameters Enables you to review and modify parameters for the job.

Options Enables you to review and modify options for the job.

Notes Enables you to review and modify notes for the job.

Extended Attributes Enables you to review and modify extended attributes for the job.

Authorization Enables you to review and modify metadata access settings for
the job.

Transformation Properties
The transformation properties window enables you to view or update the metadata for a
transformation in a SAS Data Integration Studio job. One way to display this window is
to open a job in the Job Editor, right-click a transformation on the Diagram tab, and click
Properties in the pop-up menu. The property window for most transformations has one or
more tabs that are unique to that transformation. The following table describes the purpose
of the common tabs for a transformation. For more information about each tab, see the Help
for that tab.

Transformation Properties 409

Table A1.8 Common Tabs in a Transformation Properties Window

Tab Description

General Enables you to enter general information that identifies and
describes the transformation.

Mappings Enables you to review and modify the mappings for the
transformation.

Options Enables you to review and modify options for the
transformation.

Code Enables you to review and modify the code that is generated for
the transformation.

Precode and Postcode Enables you review and modify user-written code that is inserted
at the beginning or end of the transformation.

Parameters Enables you to review and modify parameters for the
transformation.

Notes Enables you to review and modify notes for the transformation.

Extended Attributes Enables you to review and modify extended attributes for the
transformation.

Table Properties
The table properties window enables you to view or update the metadata for the table. One
way to display this window is to right-click a table in the Folders tree or the Job Editor and
click Properties in the pop-up menu. The next table describes the purpose of each tab in
a table properties window. For more information about each tab, see the Help for that tab.

Table A1.9 Tabs in a Table Properties Window

Tab Description

General Enables you to enter general information that
identifies and describes the table.

Columns Enables you to maintain column metadata.

Indexes Enables you to review, add, and modify indexes
on table columns.

Keys Enables you to review, add, and modify key
columns.

Parameters Enables you to review and modify parameters for
the table.

410 Appendix 1 • Main Windows and Wizards

Tab Description

Physical Storage Enables you to specify the format and location of
a table.

Notes Enables you to review and modify notes for the
table.

Extended Attributes Enables you to review and modify extended
attributes for the table.

Authorization Enables you to review and modify metadata
access settings for the table.

The following table lists icons that represent columns and related attributes. These icons
are displayed in the Mappings tab, Columns tab, the Indexes tab, or the Keys tab in the
property window for tables.

Table A1.10 Icons and Attributes

Category Icon Description

Column Metadata for a character
column.

Metadata for a numeric
column.

Index Metadata for an index.

Key Metadata for a foreign key

Metadata for a primary key or
a unique key.

Reports Window
The Reports window enables you review and run reports about your data. It also enables
you to create custom reports that support your business processes and needs. To access the
window, click Reports in the Tools menu or click Reports on the SAS Data Integration
Studio toolbar. The following display shows a sample Reports window.

Reports Window 411

Display A1.11 Sample Reports Window

Note: Reports window includes report selection tools; a toolbar with controls for running,
saving, and formatting reports; a table that lists available reports; and fields that enable
you to specify default locations and filenames for report results.

Tools-Options Window
The Options window is used to specify global options for SAS Data Integration Studio. To
display this window, select Tools ð Options from the desktop. The following table
describes the purpose of each tab in the Options window. For more information about each
tab, see the Help for that tab.

Table A1.11 Option Window Tabs

Tab Description

General Specifies general user interface options, such as whether SAS Data
Integration Studio should prompt before discarding changes to metadata.

Job Editor Specifies interface options for the Job Editor, such as the default zoom
level, or whether the metadata for columns and column mappings should
be automatically propagated in a process flow.

Code Editor Specifies interface options for the Code tab in the Job Editor window,
such as whether to display line numbers.

SAS Server Specifies the default SAS Application Server for SAS Data Integration
Studio and enables you to set options for submitting jobs to a grid.

View Data Specifies interface options for the View Data window, such as whether
View Data should prompt before proceeding with a lengthy navigation
operation.

412 Appendix 1 • Main Windows and Wizards

Tab Description

Code Generation Specifies how SAS Data Integration Studio generates code for new jobs.
For example, you can specify whether optional macro variables should
be added to the code that is generated for new jobs.

Data Quality Specifies options that are used by the transformations in the Data
Quality folder of the Transformations tree. For example, you can specify
the location of the DQ setup file.

Transformations Tree

Introduction to Transformations
A transformation is a metadata object that specifies how to extract data, transform data, or
load data into data stores. Each transformation that you specify in a process flow diagram
generates or retrieves SAS code. You can also specify user-written code in the metadata
for any transformation in a process flow diagram.

Overview of the Transformations Tree
The Transformations tree organizes transformations into a set of folders. You can drag a
transformation from the Transformations tree to the Job Editor, where you can connect it
to source and target tables and update its default metadata. By updating a transformation
with the metadata for actual sources, targets, and transformations, you can quickly create
process flow diagrams for common scenarios. The following display shows the standard
Transformations tree.

Display A1.12 Transformations Tree

This document has an example of the main transformations used in SAS Data Integration
Studio, and the online Help has an example of all transformations. The following sections
describe the contents of the Transformations tree folders.

Overview of the Transformations Tree 413

Access Folder
The following table describes the transformations in the Access folder in the
Transformations tree.

Table A1.12 Access Folder Transformations

Name Description

File Reader Reads an external file and writes to a SAS or DBMS table.

File Writer Reads a SAS or DBMS table and writes to an external file.

Library
Contents

Generates an output table that lists the tables contained in an input library. If there
is no input library, then the transformation generates a list of tables from all of the
libraries that are allocated on the SAS Workspace Server.

Microsoft
Queue
Reader

Delivers content from a Microsoft MQ message queue to SAS Data Integration
Studio. If the message is being sent into a table, the message queue content is sent
to a table or a SAS Data Integration Studio transformation. If the message is being
sent to a macro variable or file, then these files or macro variables can be referenced
by a later step.

Microsoft
Queue
Writer

Enables writing files in binary mode, tables, or structured lines of text to the
WebSphere MQ messaging system. The queue and queue manager objects
necessary to get to the messaging system are defined in SAS Management Console.

SPD Server
Table
Loader

Reads a source and writes to a SAS SPD Server target. Enables you to specify
options that are specific to SAS SPD Server tables.

Table
Loader

Reads a source table and writes to a target table. Provides more loading options
than other transformations that create tables.

Websphere
Queue
Reader

Delivers content from a WebSphere MQ message queue to SAS Data Integration
Studio. If the message is being sent into a table, the message queue content is sent
to a table or a SAS Data Integration Studio transformation. If the message is being
sent to a macro variable or file, then these files or macro variables can be referenced
by a later step.

Websphere
Queue
Writer

Enables writing files in binary mode, tables, or structured lines of text to the
WebSphere MQ messaging system. The queue and queue manager objects
necessary to get to the messaging system are defined in SAS Management Console.

XML
Writer

Puts data into an XML table. In a SAS Data Integration Studio job, if you want to
put data into an XML table, you must use an XML Writer transformation. You
cannot use the Table Loader transformation to load an XML table, for example.

Analysis Folder
The following table describes the transformations in the Analysis folder in the
Transformations tree.

414 Appendix 1 • Main Windows and Wizards

Table A1.13 Analysis Folder Transformations

Name Description

Correlations Creates an output table that contains correlation statistics.

Distribution
Analysis

Creates an output table that contains a distribution analysis.

Frequency Creates an output table that contains frequency information.

One-Way
Frequency

Creates a one-way output table that contains frequency information about the
relationship between two classification variables.

Summary
Statistics

Creates an output table that contains summary statistics.

Summary
Tables

Creates an output table that contains descriptive statistics in tabular format, using
some or all of the variables in a data set. It computes many of the same statistics
that are computed by other descriptive statistical procedures such as MEANS,
FREQ, and REPORT.

Archived Folder
In order to support backwards compatibility for existing processes and guarantee that
processes run exactly as defined using older transformations, SAS has developed a
methodology for archiving older versions of transformations in the Process library. The
process library continues to surface the archived transformations for some number of
releases. When a job is opened that contains a newer transformation replacement, a dialog
box displays that indicates the name of the old transformation. The dialog box also provides
the name and location of the new transformation in the process library tree.

The following table describes the deprecated and archived transformations in the Archived
Transforms folder in the Transformations tree.

Table A1.14 Archived Transforms Folder Transformations

Name Description

Fact Table
Lookup

Loads source data into a fact table and translates business keys into generated keys.

This older transformation is marked with a flag on its icon. This flag indicates that
the transformation is an older version of an updated transformation.

Change Data Capture Folder
Change data capture (CDC) is a process that shortens the time required to load data from
relational databases. The CDC loading process is more efficient because the source table
contains changed data only. The changed data table is much smaller than the relational base
table. The following table describes the transformations in the Change Data Capture
folder in the Transformations tree.

Change Data Capture Folder 415

Table A1.15 Change Folder Transformations

Name Description

Attunity
CDC

Loads changed data only from Attunity and other selected databases.

DB2 CDC Loads changed data only from DB2 databases.

General
CDC

Loads changed data only from a wide range of databases.

Oracle
CDC

Loads changed data only from Oracle databases.

Control Folder
The following table describes the transformations in the Control folder in the
Transformations tree.

Table A1.16 Control Folder Transformations

Name Description

Loop Marks the beginning of the iterative processing sequence in an iterative job.

Loop End Marks the end of the iterative processing sequence in an iterative job.

Return
Code Check

Provides status-handling logic at a desired point in the process flow diagram for a
job. Can be inserted between existing transformations and removed later without
affecting the mappings in the original process flow.

Data Folder
The following table describes the transformations in the Data Transforms folder in the
Transformations tree.

Table A1.17 Data Folder Transformations

Name Description

Append Creates a single target table by combining data from several source tables.

Data
Transfer

Moves data directly from one machine to another. Direct data transfer is more
efficient than the default transfer mechanism.

Data
Validation

Cleanses data before it is added to a data warehouse or data mart.

416 Appendix 1 • Main Windows and Wizards

Name Description

Extract Selects multiple sets of rows from a source and writes those rows to a target.
Typically used to create one subset from a source. Can also be used to create
columns in a target that are derived from columns in a source.

Key
Effective
Date

Enables change tracking in intersection tables.

Lookup Loads a target with columns taken from a source and from several lookup tables.

Mining
Results

Integrates a SAS Enterprise Miner model into a SAS Data Integration Studio data
warehouse. Typically used to create target tables from a SAS Enterprise Miner
model.

Rank Ranks one or more numeric column variables in the source and stores the ranks in
the target.

SCD Type 2
Loader

Loads source data into a dimension table, detects changes between source and
target rows, updates change tracking columns, and applies generated key values.
This transformation implements slowly changing dimensions.

Sort Reads data from a source, sorts it, and writes the sorted data to a target.

Splitter Selects multiple sets of rows from one source and writes each set of rows to a
different target. Typically used to create two or more subsets of a source. Can also
be used to create two or more copies of a source.

SQL Join Selects multiple sets of rows from one or more sources and writes each set of rows
to a single target. Typically used to merge two or more sources into one target. Can
also be used to merge two or more copies of a single source.

Standardize Creates an output table that contains data standardized to a particular number.

Surrogate
Key
Generator

Loads a target, adds generated whole number values to a surrogate key column,
and sorts and saves the source based on the values in the business key column or
columns.

Transpose Creates an output table that contains transposed data.

User
Written
Code

Retrieves a user-written transformation. Can be inserted between existing
transformations and removed later without affecting the mappings in the original
process flow. Can also be used to document the process flow for the transformation
so that you can view and analyze the metadata for a user-written transformation,
similarly to how you can analyze metadata for other transformations.

Data Quality Folder
The following table describes the transformations in the Data Quality folder in the
Transformations tree.

Name Description

Data Quality Folder 417

Apply Lookup
Standardization

Applies one or more schemes to one or more columns in a source table.
Applying schemes modifies your source data according to rules that are
defined in the schemes.

Create Match
Code

Establish relationships between source rows. You can create match codes at
specified levels of sensitivity. You can also assign cluster numbers to groups
of source rows that generate the same match codes.

DataFlux IS Job Executes jobs services on DataFlux Integration Servers from DataFlux, a SAS
company. Used to cleanse larger amounts of source data.

DataFlux IS
Service

Executes services on DataFlux Integration Servers from DataFlux, a SAS
company. Used to synchronously process smaller amounts of data, in
coordination with client applications that await a response from the server.

Data Transforms Folder
The Data Transforms folder contains any transformations that have been created with the
Transformation Generator wizard and not assigned to a transformation category. The folder
is displayed only when a generated transformation is present. It is displayed only to other
users when the generated transformations are placed in the Shared Data folder.

Output Folder
The following table describes the transformations in the Output folder in the
Transformations tree.

Table A1.18 Output Folder Transformations

Name Description

List Data Creates an HTML report that contains selected columns from a source table.

Publish Folder
The following table describes the transformations in the Publish folder in the
Transformations tree.

Table A1.19 Publish Folder Transformations

Name Description

Publish to
Archive

Creates an HTML report and an archive of the report.

Publish to
Email

Creates an HTML report and e-mails it to a designated address.

Publish to
Queue

Creates an HTML report and publishes it to a queue using MQSeries.

418 Appendix 1 • Main Windows and Wizards

SPD Server Dynamic Cluster Folder
The following table describes the transformations in the SPD Server Dynamic Cluster
folder in the Transformations tree.

Table A1.20 SPD Server Dynamic Cluster Folder Transformations

Name Description

Create or
Add to a
Cluster

Creates or updates an SPD Server cluster table.

List Cluster
Contents

Lists the contents of an SPD Server cluster table.

Remove
Cluster
Definition

Deletes an SPD Server cluster table.

Tree View
The tree view is displayed on the left side of the desktop. The following display shows the
tree view.

Tree View 419

The tree view can display the following components.

Table A1.21 Tree View Components

Component
How to Display the
Component Description

Folders tree Displays by default. Organizes metadata into folders
that are shared across a number
of SAS applications. My
Folder and Shared Data are the
folders that you use most of the
time. For more information, see
“Folders Tree” on page 403.

420 Appendix 1 • Main Windows and Wizards

Component
How to Display the
Component Description

Inventory tree Displays by default. Displays metadata for objects
that are registered on the current
metadata server, such as tables
and libraries. Metadata can be
accessed in folders that group
metadata by type, such as Table,
Library, and so on. For more
information, see “Inventory
Tree” on page 404.

Transformations tree Displays by default. Displays transformations that
can be dragged and dropped into
SAS Data Integration Studio
jobs. For more information, see
“Transformations Tree” on
page 413.

Basic Properties pane Select View ð Basic
Properties from the desktop.

Displays the basic properties of
an object selected in a tree view.

Checkouts tree Displays automatically when
you are working under change
management.

Displays metadata that has been
checked out for update, as well
as any new metadata that has not
been checked in. For more
information, see “Checkouts
Tree” on page 397.

View Data Windows

View Data Window
The View Data window is available in the tree views on the desktop and in process flows
in the Job Editor. It works in two modes: browse and edit. The browse mode enables you
to view the data displayed in a SAS table or view, in an external file, in a temporary output
table displayed in a process flow diagram, or in a DBMS table or view that is part of a SAS
library for DBMS data stores. The table, view, or external file must be registered and must
exist in physical storage.

Use the edit mode to perform simple editing operations on the data in the View Data
window. For example, you can overwrite the data in a cell, copy and paste rows of data,
and delete data. You can even create completely new tables. However, this editing mode
is enabled only on SAS tables that are stored in a Base SAS engine library that is assigned
to a SAS Workspace Server.

The View Data window typically uses the metadata for a data store to format the data for
display. Accordingly, the View Data window can be used to verify that the metadata for a
data store is appropriate for use in the intended job. If the window does not correctly display
the data in the selected data store, then you might have to update the corresponding metadata
before you use it in a job.

The following display shows a typical View Data window.

View Data Window 421

Display A1.13 View Data Window

The title bar in the View Data window displays the name of the object that is being viewed
and the total number of rows. If a column has a description, the description displays in the
column heading in the View Data window. Otherwise, the physical name of the column
displays in the column heading. A round icon to the left of the name indicates that the
column is numeric, and a pyramid-shaped icon to the left of the name indicates that the
column contains character data.

To customize the data view displayed in the View Data window, right-click on a column
name, row number, or table cell. Then, select an appropriate option from the pop-up menu.
To display Help for the View Data window, press F1.

View File Window
Use the View File window to display the raw contents of an external file. Unlike the View
Data window, the View File window does not use SAS metadata to format the contents of
the corresponding external file. It reads the structure of the external file directly and displays
the data accordingly.

The external file must exist in physical storage. You cannot use the View File window to
view an external file that is accessed with user-written code.

The following display shows a typical View File window.

Display A1.14 View File Window

422 Appendix 1 • Main Windows and Wizards

Wizards

New Object Wizards
Most new object wizards enable you to register objects, such as libraries and tables, so that
they can be used in SAS Data Integration Studio jobs. One way to display these wizards is
to right-click an appropriate destination folder in the Folders tree, then select New ð
Folder, or New ð Job, and so on. The next table describes the new object wizards.

Table A1.22 New Object Wizards

Wizard Description

New Folder Adds a folder in the Folders tree.

New Job Adds metadata for a new SAS Data Integration
Studio job.

New Table Registers a single table that does not yet exist in
physical storage, such as a table that is created
when a job is executed for the first time.

New Transformation Adds a new generated transformation. The
wizard guides you through the steps of specifying
SAS code for the transformation and saving the
transformation to the metadata server. After the
transformation is saved, it displays in the
Transformations tree, Folders tree, and Inventory
tree where it is available for use in any job.

New External File Registers an external file, which is a file that is
maintained by the machine operating
environment or by a software product other than
SAS. A flat file with comma-separated values is
one example.

New Library Registers a SAS library.

New Document Registers a document that you can associate with
one or more metadata objects.

New Note Creates and registers a note that you can associate
with one or more metadata objects.

New Cube (Cube Designer in add mode) Creates and registers a SAS OLAP cube.

New OLAP Schema Changes the OLAP schema associated with a
cube.

New Object Wizards 423

Register Tables Wizards
Register Tables wizards enable you to register one or more selected tables, based on the
physical structure of the tables. One way to display these wizards is to right-click an
appropriate destination folder in the Folders tree, and then select Register Tables. Another
way is to right-click the icon for the library that contains the physical tables, and then select
Register Tables.

Cube Wizards
Cube wizards enable you to create and maintain SAS OLAP cubes. A SAS OLAP cube is
a logical set of data that is organized and structured in a hierarchical, multidimensional
arrangement. It is a data store that supports online analytical processing (OLAP). When
you specify a cube, you specify the dimensions and measures for the cube along with
information about how aggregations should be created and stored.

A cube can be quite complex. Accordingly, someone who is familiar with OLAP design
and the business goals for a particular cube should create and maintain the cube. The main
cube wizards in SAS Data Integration Studio are described in the following table.

Table A1.23 Cube Wizards

Wizard How to Display the Wizard Description

Cube Designer (add mode) Right-click an appropriate
destination folder in the
Folders tree, and then from
the desktop select New ð
Cube.

Creates and registers a SAS
OLAP cube.

Cube Designer (update mode) Right-click a cube, and then
select Edit Cube Structure.

Maintains a cube.

Aggregation Tuning Right-click a cube, and then
select Aggregation Tuning.

Updates aggregations.

View Cube Right-click a cube, and then
select View Cube.

Displays the cube.

Export Code Right-click a cube, and then
select Export Code.

Saves the code for the cube to a
file.

Calculated Members Right-click a cube, and then
select Maintain ð
Calculated Members.

Adds, edits, and deletes the
calculated members associated
with the cubes that are
registered to the current
metadata server.

Change OLAP Schema Right-click a cube, and then
select Maintain ð Change
OLAP Schema.

Changes the OLAP schema
associated with a cube.

For more information about SAS OLAP cubes, see SAS OLAP Server User's Guide.

424 Appendix 1 • Main Windows and Wizards

Data Surveyor Wizards
An optional data surveyor wizard enables you to extract, search, and navigate data from
the SAP ERM system. One way to display the SAP data surveyor is to right-click an
appropriate destination folder in the Folders tree, select Register Tables, and then select
the data surveyor.

Optional Composite Software provides access to ERM systems such as Siebel, PeopleSoft,
Oracle Applications, and Salesforce.com. For details about Composite Software and the
data surveyor wizard for SAP ERM systems, see the SAS Intelligence Platform: Data
Administration Guide.

For details about setting up the libraries, servers, and client software for Enterprise
Resource Planning (ERP) systems, administrators should see the chapters about common
data sources in the SAS Intelligence Platform: Data Administration Guide.

Metadata Import and Export Wizards
SAS Data Integration Studio enables you to import and export metadata in SAS Open
Metadata Architecture format or in a format that is supported by a SAS Metadata Bridge.

The SAS Package wizards enable you to import and export metadata in SAS Open Metadata
Architecture format. For example, you could use the SAS Package wizards to export a job
from SAS Data Integration Studio in a test environment, and then import that job into SAS
Data Integration Studio in a production environment.

Table A1.24 SAS Package Wizards

Wizard How to Display the Wizard Description

Export SAS Package In the Folders tree, right-click
one or more objects to be
exported, and then select
Export ð SAS Package.

Exports selected metadata
objects to a SAS Package (SPK)
file.

Import SAS Package In the Folders tree, right-click
a destination folder, and then
select Import ð SAS
Package.

Imports SAS metadata that was
exported to a SAS Package
(SPK) file.

The Import and Export Metadata wizards enable you to work with metadata in a format
that is supported by a SAS Metadata Bridge. You must license the appropriate bridge.

Table A1.25 Import and Export Metadata Wizards

Wizard How to Display the Wizard Description

Export Metadata In the Folders tree, right-click
one or more objects to be
exported, and then select
Export ð Metadata.

Exports table metadata that you
select. You can export metadata
in a format that is supported by
a SAS Metadata Bridge.

Metadata Import and Export Wizards 425

Wizard How to Display the Wizard Description

Import Metadata In the Folders tree, right-click
a destination folder, and then
select Import ð Metadata.

Imports metadata in a format
that is supported by a SAS
Metadata Bridge. You have the
option of comparing the
imported metadata to existing
metadata. You can view any
changes in the Differences
window and choose which
changes to apply.

426 Appendix 1 • Main Windows and Wizards

Appendix 2
Java Code and Methods for
Report Plug-ins

Example Java Code for a Report Plug-in . 427

Reporting Interface Methods . 433

Example Java Code for a Report Plug-in
The simplest way to create a new report is to extend the abstract class, AbstractReport.
AbstractReport is located in the sas.dbuilder.util.jar at com.sas.wadmin.reports.
AbstractReport provides the default implementation of the majority of the methods required
by the report plug-in interface, ReportingInterface. In this example, all of the logic to
generate the report is handled by SAS code, which is embedded in the Java code. The SAS
Code is submitted to the application server by the reporting framework when the Run and
view a report button is pressed in the Reports window.

Specific JAR files are needed to use the import statements in the sample code that is
provided in this section. The JAR files for your reports plug-in code are located in the folder
named SASVersionedJarRepository. This folder is usually located in the same directory
as the SASDataIntegrationStudio folder. Make sure your path includes the following JAR
files:

sas.dbuilder.util.jar
sas.framework.workspace.jar
sas.oma.joma.rmt.jar

The following example creates a summary report of all of the tables in the metadata server.
This example generates the Tables Report, which you can find in the table in the Reports
window.

CAUTION:
The following code sample was formatted so that each line fits within the page
margins even if that string was continued on another line. Newline characters
within a string generate compile errors, so do not put strings on a separate line
as shown in this example.

import com.sas.metadata.remote.MdException;
import com.sas.wadmin.plugins.ReportingInterface;
import com.sas.wadmin.reports.AbstractReport;
import com.sas.wadmin.reports.ReportingController;
import com.sas.workspace.MessageUtil;
import com.sas.workspace.SASCodeGeneration;
import com.sas.workspace.WAdminResource;
import com.sas.workspace.WsAppServer;

427

import com.sas.workspace.WsServerRequest;

/**
 * TableListingReport generates a summary report all of the tables in
 * a repository.
 */
public class TableListingReport extends AbstractReport
{
 /**
 * Default constructor
 */
 public TableListingReport()
 {
 }

 /**
 * Gets the report name
 * @return the name of the report
 * @see com.sas.plugins.PluginInterface#getName()
 */
 public String getName()
 {
 return "Tables Report";
 }//end method

 /**
 * Gets the report description
 * @return the description of the report
 * @see com.sas.plugins.PluginInterface#getDescription()
 */
 public String getDescription()
 {
 return "Shows a list of all the tables in the repository";
 }//end method

 /**
 * Gets the category that the report will be using. Cannot have
 * multiple levels, only a single level can be used
 * @return the category name
 * @see com.sas.wadmin.plugins.ReportingInterface#getCategory()
 */
 public String getCategory()
 {
 return "Table";
 }//end method

 /**
 * Should return the fully qualified class name of this class. This is
 * used to tie the report to the report visual.
 * Example: com.sas.reports.TableReport
 * @return the report plug-in class name
 * @see com.sas.wadmin.plugins.ReportingInterface#getReportingClass()
 */
 public String getReportingClass()
 {

428 Appendix 2 • Java Code and Methods for Report Plug-ins

 return "com.sas.reports.TableListingReport";
 }//end method

 /**
 * This method is called after the user selects a report and exits out
 * of the reporting framework. This method executes on the UI thread
 * and is called prior to when getSourceCode() is sent to the application server.
 * @see com.sas.wadmin.plugins.ReportingInterface#onSelected()
 */
 public void onSelected()
 {
 //This report doesn't have any extra UI elements
 }//end method

 /**
 * Gets the report's generated code. This code will then be executed on the
 * application server on a background thread.
 * @return string buffer containing the code to send to the application server
 * @see com.sas.wadmin.plugins.ReportingInterface#getSourceCode()
 */
 public StringBuffer getSourceCode()
 {
 SASCodeGeneration codeGen = new SASCodeGeneration();

 codeGen.addCommentLine("Creates an overview or summary report of
 all tables in the server.");
 WsServerRequest svrRequest = ReportingController.getInstance().
 getServerRequest();
 WsAppServer appServer = svrRequest.getAppServer();

 if (appServer == null)
 return new StringBuffer();

 try
 {
 codeGen.genMetadataMacrosAndOptions(appServer.getServerContext(),
 appServer.getServerContext(),
 true);
 }
 catch (MdException me)
 {
 MessageUtil.displayMetadataExceptionMessage(me, MessageUtil.
 ACCESSING);
 }
 catch (java.rmi.RemoteException re)
 {
 com.sas.workspace.Workspace.handleRemoteException(re);
 }

 codeGen.addSourceCode("filename request temp;\n\n");
 codeGen.addSourceCode("data _null_;\n");
 codeGen.indent(3);
 codeGen.addSourceCode("file request;\n");
 codeGen.addSourceCode("infile cards4;\n");
 codeGen.addSourceCode("length long $256;\n");
 codeGen.addSourceCode("input;\n");

Example Java Code for a Report Plug-in 429

 codeGen.addSourceCode("long=_infile_;\n");
 codeGen.addSourceCode("put long \' \';\n");
 codeGen.unIndent(3);
 codeGen.addSourceCode("cards4;\n");
 codeGen.addSourceCode("<GetMetadataObjects>\n");
 codeGen.addSourceCode("<ReposId>$METAREPOSITORY</ReposId>\n");
 codeGen.addSourceCode("<Type>PhysicalTable</Type>\n");
 codeGen.addSourceCode("<Objects/>\n");
 codeGen.addSourceCode("<ns>SAS</ns>\n");
 codeGen.addSourceCode("<Flags>260</Flags>\n");
 codeGen.addSourceCode("<Options>\n");
 codeGen.addSourceCode("<Templates>\n");
 codeGen.addSourceCode("<PhysicalTable Name=\"\" Desc=\"\"
 ChangeState=\ "\" MetadataCreated=\"\"
 MetadataUpdated=\"\">\n");
 codeGen.addSourceCode("<Trees/> <ResponsibleParties/><TablePackage/>
 </PhysicalTable>\n");
 codeGen.addSourceCode("<ResponsibleParty Name=\"\"/>\n");
 codeGen.addSourceCode("<SASLibrary Name=\"\"/>\n");
 codeGen.addSourceCode("<Tree Name=\"\"/>\n");
 codeGen.addSourceCode("<DatabaseSchema Name=\"\"/>\n");
 codeGen.addSourceCode("</Templates>\n");
 codeGen.addSourceCode("</Options>\n");
 codeGen.addSourceCode("</GetMetadataObjects>\n");
 codeGen.addSourceCode(";;;;\n");
 codeGen.addSourceCode("run;\n\n");
 codeGen.addCommentLine("Issue the request.");
 codeGen.addSourceCode("filename response temp lrecl=1024;\n\n");
 codeGen.addSourceCode("proc metadata in=request out=response;\n");
 codeGen.addSourceCode("run;\n\n");
 codeGen.addCommentLine("Build the XML Map file to parse the
 response.");
 codeGen.addSourceCode("filename map temp;\n\n");
 codeGen.addSourceCode("data _null_;\n");
 codeGen.indent(3);
 codeGen.addSourceCode("file map;\n");
 codeGen.addSourceCode("put \'<?xml version=\"1.0\" ?>\';\n");
 codeGen.addSourceCode("put \'<SXLEMAP version=\"1.2\">\';\n");
 codeGen.addSourceCode("put \'<TABLE name=\"Tables\">\';\n");
 codeGen.addSourceCode("put \'<TABLE-PATH syntax=\"xpath\">/
 GetMetadataObjects/Objects/PhysicalTable
 </TABLE-PATH>\';\n");
 codeGen.addSourceCode("put \'<COLUMN name=\"table\" retain=\"YES\">
 \';\n");
 codeGen.addSourceCode("put \"<PATH>/GetMetadataObjects/Objects/
 PhysicalTable@Name</PATH>\";\n");
 codeGen.addSourceCode("put \'<TYPE>character</TYPE>\';\n");
 codeGen.addSourceCode("put \'<DATATYPE>STRING</DATATYPE>\';\n");
 codeGen.addSourceCode("put \'<LENGTH>60</LENGTH>\';\n");
 codeGen.addSourceCode("put \'</COLUMN>\';\n");
 codeGen.addSourceCode("put \'<COLUMN name=\"description\" retain=\
 "YES\">\';\n");
 codeGen.addSourceCode("put \"<PATH>/GetMetadataObjects/Objects/
 PhysicalTable@Desc</PATH>\";\n");
 codeGen.addSourceCode("put \'<TYPE>character</TYPE>\';\n");
 codeGen.addSourceCode("put \'<DATATYPE>STRING</DATATYPE>\';\n");

430 Appendix 2 • Java Code and Methods for Report Plug-ins

 codeGen.addSourceCode("put \'<LENGTH>200</LENGTH>\';\n");
 codeGen.addSourceCode("put \'</COLUMN>\';\n");
 codeGen.addSourceCode("put \'<COLUMN name=\"created\"
 retain=\"YES\">\';\n");
 codeGen.addSourceCode("put \"<PATH>/GetMetadataObjects/Objects/
 PhysicalTable@MetadataCreated</PATH>\";\n");
 codeGen.addSourceCode("put \'<TYPE>date</TYPE>\';\n");
 codeGen.addSourceCode("put \'<DATATYPE>TIME</DATATYPE>\';\n");
 codeGen.addSourceCode("put \'<LENGTH>20</LENGTH>\';\n");
 codeGen.addSourceCode("put \'</COLUMN>\';\n");
 codeGen.addSourceCode("put \'<COLUMN name=\"modified\"
 retain=\"YES\">\';\n");
 codeGen.addSourceCode("put \"<PATH>/GetMetadataObjects/Objects/
 PhysicalTable@MetadataUpdated</PATH>\";\n");
 codeGen.addSourceCode("put \'<TYPE>date</TYPE>\';\n");
 codeGen.addSourceCode("put \'<DATATYPE>TIME</DATATYPE>\';\n");
 codeGen.addSourceCode("put \'<LENGTH>20</LENGTH>\';\n");
 codeGen.addSourceCode("put \'</COLUMN>\';\n");
 codeGen.addSourceCode("put \'<COLUMN name=\"owner\" retain=\"YES\">
 \';\n");
 codeGen.addSourceCode("put \"<PATH>/GetMetadataObjects/Objects/
 PhysicalTable/ResponsibleParties/
 ResponsibleParty@Name</PATH>\";\n");
 codeGen.addSourceCode("put \'<TYPE>character</TYPE>\';\n");
 codeGen.addSourceCode("put \'<DATATYPE>STRING</DATATYPE>\';\n");
 codeGen.addSourceCode("put \'<LENGTH>60</LENGTH>\';\n");
 codeGen.addSourceCode("put \'</COLUMN>\';\n");
 codeGen.addSourceCode("put \'<COLUMN name=\"schema\"
 retain=\"YES\">\';\n");
 codeGen.addSourceCode("put \"<PATH>/GetMetadataObjects/Objects/
 PhysicalTable/TablePackage/
 DatabaseSchema@Name</PATH>\";\n");
 codeGen.addSourceCode("put \'<TYPE>character</TYPE>\';\n");
 codeGen.addSourceCode("put \'<DATATYPE>STRING</DATATYPE>\';\n");
 codeGen.addSourceCode("put \'<LENGTH>60</LENGTH>\';\n");
 codeGen.addSourceCode("put \'</COLUMN>\';\n");
 codeGen.addSourceCode("put \'<COLUMN name=\"group\"
 retain=\"YES\">\';\n");
 codeGen.addSourceCode("put \"<PATH>/GetMetadataObjects/Objects/
 PhysicalTable/Trees/Tree@Name</PATH>\";\n");
 codeGen.addSourceCode("put \'<TYPE>character</TYPE>\';\n");
 codeGen.addSourceCode("put \'<DATATYPE>STRING</DATATYPE>\';\n");
 codeGen.addSourceCode("put \'<LENGTH>60</LENGTH>\';\n");
 codeGen.addSourceCode("put \'</COLUMN>\';\n");
 codeGen.addSourceCode("put \'<COLUMN name=\"checkout\"
 retain=\"YES\">\';\n");
 codeGen.addSourceCode("put \"<PATH>/GetMetadataObjects/Objects/
 PhysicalTable@ChangeState</PATH>\";\n");
 codeGen.addSourceCode("put \'<TYPE>character</TYPE>\';\n");
 codeGen.addSourceCode("put \'<DATATYPE>STRING</DATATYPE>\';\n");
 codeGen.addSourceCode("put \'<LENGTH>60</LENGTH>\';\n");
 codeGen.addSourceCode("put \'</COLUMN>\';\n");
 codeGen.addSourceCode("put \'</TABLE>\';\n");
 codeGen.addSourceCode("put \'</SXLEMAP>\';\n");
 codeGen.unIndent(3);
 codeGen.addSourceCode("run;\n\n");

Example Java Code for a Report Plug-in 431

 codeGen.addCommentLine("Parse the response with the XML library
 engine and PROC SQL.");
 codeGen.addSourceCode("libname response xml xmlmap=map;\n\n");
 codeGen.addCommentLine("Create a HTML report for viewing
 the table.");
 codeGen.addSourceCode("filename myReport \"")
 .addSourceCode(getURL())
 .addSourceCode("\";\n");
 String sformat = getODSFormatType();
 codeGen.addSourceCode("ods ")
 .addSourceCode(sformat)
 .addSourceCode(" file=myReport \n");
 //Check to see if style sheet is being used
 String sStyleSheet = getODSStyleSheet();
 //This options only works with HTML...
 if (sformat.equals(ReportingInterface.ODS_HTML))
 if (sStyleSheet != null && sStyleSheet.length() > 0)
 {
 codeGen.addSourceCode("stylesheet=(URL=\"file:")
 .addSourceCode(sStyleSheet.trim())
 .addSourceCode("\") \n");
 }
 String sAdditionalOptions = getODSAdditionalOptions();
 if (sAdditionalOptions != null && sAdditionalOptions.length() > 0)
 {
 codeGen.addSourceCode(sAdditionalOptions)
 .addSourceCode("\n");
 }
 codeGen.addSourceCode(";\n");

 //Set up the Table column name display
 codeGen.addSourceCode("%let etls_table = %str(\"" +
 codeGen.escapeMacroValue("Table Name") + "\");\n")
 .addSourceCode("%let etls_descr = %str(\"" +
 codeGen.escapeMacroValue("Description") + "\");\n")
 .addSourceCode("%let etls_create = %str(\"" +
 codeGen.escapeMacroValue("Created") + "\");\n")
 .addSourceCode("%let etls_modified = %str(\"" +
 codeGen.escapeMacroValue("Last Modified") + "\");\n")
 .addSourceCode("%let etls_owner = %str(\"" +
 codeGen.escapeMacroValue("Owner") + "\");\n")
 .addSourceCode("%let etls_schema = %str(\"" +
 codeGen.escapeMacroValue("Schema") + "\");\n")
 .addSourceCode("%let etls_group = %str(\"" +
 codeGen.escapeMacroValue("Folder") + "\");\n")
 .addSourceCode("%let etls_checkout = %str(\"" +
 codeGen.escapeMacroValue("Checked Out") + "\");\n");

 codeGen.addSourceCode("title \"")
 .addSourceCode(getName())
 .addSourceCode("\";\n\n");
 codeGen.addSourceCode("proc print data=response.tables label;\n")
 .addSourceCode("var table description created modified owner
 schema group checkout;\n")
 .addSourceCode("label table = &etls_table\n")
 .addSourceCode(" description = &etls_descr\n")

432 Appendix 2 • Java Code and Methods for Report Plug-ins

 .addSourceCode(" created = &etls_create\n")
 .addSourceCode(" modified = &etls_modified\n")
 .addSourceCode(" owner = &etls_owner\n")
 .addSourceCode(" schema = &etls_schema\n")
 .addSourceCode(" group = &etls_group\n")
 .addSourceCode(" checkout = &etls_checkout\n");
 codeGen.addSourceCode("run;\n\n");
 codeGen.addSourceCode("ods ")
 .addSourceCode(getODSFormatType())
 .addSourceCode(" close;\n\n");
 codeGen.addCommentLine("Cleanup");
 codeGen.addSourceCode("filename request;\n");
 codeGen.addSourceCode("filename response;\n");
 codeGen.addSourceCode("filename map;\n");

 return codeGen.getSourceBuffer();
 }//end method

}//end class

Reporting Interface Methods
New report plug-ins need to implement com.sas.wadmin.plugins.ReportingInterface,
which is an extension of the com.sas.plugins.PluginInterface. Implementation of each of
the methods in the Reporting Interface allows the report designer to have control over the
Reports window. The onSelected() method can be used to generate a report by using Java
classes or display dialog boxes to gather additional information needed for the generated
source to run. The getSourceCode() method returns the SAS code that is submitted to the
SAS application server, or it returns null if no code is being used to the generate the report.

To add a report to the Analysis window for tables the category needs to be Table Analysis.
When running in the Analysis window, the reporting framework supplies the selected
default table to your report. When the report is run in the Reports window you need to
supply a table. You can add code to the onSelected() method to check if the default metadata
object is null. If it is, then you can display a dialog box that allows the user to select the
table. If you want to add a report to the external table Analysis window, then the category
needs to be External Table Analysis.

An abstract implementation of the reporting interface has been provided called
com.sas.wadmin.reports.AbstractReport. AbstractReport provides some default
implementations of the interface methods. It assumes that the report is being generated with
SAS ODS, and the Output Delivery System Report Options dialog box is being used. The
following table shows the main interface methods, explains how they work with the Reports
window, and gives a short description of how AbstractReport has implemented the
methods. For an example of how these methods can be used to create a report, see “Example
Java Code for a Report Plug-in” on page 427.

The following table contains information about the methods you can use to create your
own report.

Reporting Interface Methods 433

Table A2.1 Reporting Interface Methods

Name Description
Default Abstract Report
Implementation

getName(); This method returns the report
name and is displayed in the
Name column of the Reports
window.

Not implemented.

getDescription(); This method returns the report
description and is displayed in
the Description column of the
Reports window.

Not implemented.

String getCategory(); This method returns the
category that the report uses.
The report category is
displayed in the Reports
window under the heading
Type. The user can also
choose to show reports based
on the category name.

Not implemented.

StringBuffer
getSourceCode();

This method returns the
generated SAS code that can
be used to generate a report.
Code returned by this method
is submitted to the application
server by the report
framework. If code is not
being used to generate the
report, then this method
returns null.

Not implemented.

void onSelected(); This method executes when
the user runs the selected
report before submitting any
SAS code to the application
server that is returned by the
getSourceCode() method.
This method can be left empty
for reports that do not contain
any visual elements, or whose
processing is done solely with
generated SAS code.

Not implemented.

434 Appendix 2 • Java Code and Methods for Report Plug-ins

Name Description
Default Abstract Report
Implementation

void
setDefaultMetadataObject(Ro
ot object);

An optional metadata object
might be used when
generating the report. This
option only is set
automatically by the report
framework if the report
category is set to “Table
Analysis” or “External Table
Analysis”. These reports are
shown in the Analysis
window, and the selected table
or external table is used as the
default object.

Sets a member variable.

Root
getDefaultMetadataObject();

This method returns the
optional metadata object or
null.

Returns the member variable
value that is set in the
setDefaultMetadataObject
method.

void setPath(String path); The report designer can set a
default path or allow the user
to set the path in the Reports
window. The report
framework saves up to eight
paths per client in the
application default files.
These paths are loaded at
initialization and set to the
first path displayed in the
combo box.

Sets a member variable .

String getPath(); This method returns the
default path if it is set by the
report designer. This method
is used by the Reports window
to show that default path.

Returns the member variable
value that is set in the setPath
method.

Boolean isLocalBrowse(); This method returns true if the
Browse button on the Report
results pane in the Reports
window brings up the local
file system browser. This
method returns false if the
remote file system browser is
used. This determination is
based on the application
server dialog box.

Returns false, so the remote
file system browser is
displayed based on the default
application server selected.

void setFileName(String
filename);

The report designer can
choose to set the default
filename to use when the
report is created and saved.

Sets a member variable.

Reporting Interface Methods 435

Name Description
Default Abstract Report
Implementation

String getFileName(); This method returns the
default filename. This method
is used by the Reports window
to show the default filename.

If the member variable in the
setFileName method has not
been set, then the returned
name is the report name with
all spaces removed and the
type of ODS format selected
(that is, html, .rtf, or .pdf).

Boolean
isFileNameFieldEditable();

This method returns false if
the user cannot change the
filename. The report designer
can turn off the user's ability to
edit the filename.

Returns true.

String getURL(); This method returns the report
URL.

Returns the fully qualified
path and filename.

Boolean
hasAnOptionsDialog();

This method returns true if the
Additional report options
button on the Reports window
toolbar is activated.

Returns true.

void
showOptionsDialog(Reportin
gController controller)

This method is executed when
the user opens the Report
Options dialog box for the
selected report.

Shows the Report Options
dialog box.

void
setODSFormatType(String
type);

This method is used only if the
report is generated with SAS
ODS and is using the default
Report Options dialog box.
This method is called when
the user selects HTML, RTF,
or PDF in the Format field on
the Report Options dialog box.
The default is set to HTML.

Sets a member variable.

String getODSFormatType(); This method returns the ODS
format type that is selected by
the user.

Returns the member variable
that is set in the
setODSFormatType method.
If there is no format type set,
then this method returns
'HTML' as the default.

void setODSStyleSheet(String
cssFile);

This method is used only if the
report is generated with SAS
ODS and is using the default
Report Options dialog box.
This method is called if the
user selects an ODS style
sheet to be used with the report
in the Style field on the Report
Options dialog box.

Sets a member variable.

436 Appendix 2 • Java Code and Methods for Report Plug-ins

Name Description
Default Abstract Report
Implementation

String getODSStyleSheet(); This method returns the ODS
style sheet that is selected by
the user.

Returns the member variable
that is set in the
setODSStyleSheet method.

void
setODSAdditionalOptions(Str
ing addOptions);

This method is called by the
Additional options field in
the default Report Options
dialog box.

Sets a member variable.

String
getODSAdditionalOptions();

This method returns any
additional ODS options that
are set by the user to be used
when generating the report.

Returns the member variable
that is set in the
setODSAdditionalOptions
method.

String getReportingClass(); This method returns the fully
qualified class name. This
method is called to tie the
report to the Reports window.
One example is:
com.sas.reports.TableReport.

Not implemented.

Reporting Interface Methods 437

438 Appendix 2 • Java Code and Methods for Report Plug-ins

Glossary

administrator
the person who is responsible for maintaining the technical attributes of an object such
as a table or a library. For example, an administrator might specify where a table is
stored and who can access the table. See also owner.

alternate key
another term for unique key. See also unique key.

analysis data set
in SAS data quality, a SAS output data set that provides information on the degree of
divergence in specified character values.

business key
one or more columns in a dimension table that comprise the primary key in a source
table in an operational system.

CDC
See change data capture.

change analysis
the process of comparing one set of metadata to another set of metadata and identifying
the differences between the two sets of metadata. For example, in SAS Data Integration
Studio, you have the option of performing change analysis on imported metadata.
Imported metadata is compared to existing metadata. You can view any changes in the
Differences window and choose which changes to apply. To help you understand the
impact of a given change, you can run impact analysis or reverse impact analysis on
tables and columns in the Differences window.

change data capture
the process of capturing changes that are made to data, and making these changes
available in a machine-readable format. By capturing only the changes in the data, CDC
reduces the volume of information that is required for data integration. Short form:
CDC.

change management
in the SAS Open Metadata Architecture, a facility for metadata source control, metadata
promotion, and metadata replication.

439

channel
a virtual communication path for distributing information. In SAS, a channel is
identified with a particular topic (just as a television channel is identified with a
particular radio frequency). Using the features of the Publishing Framework, authorized
users or applications can publish digital content to the channel, and authorized users
and applications can subscribe to the channel in order to receive the content. See also
publish and subscribe.

cluster
in SAS data quality, a set of character values that have the same match code.

comparison result
the output of change analysis. For example, in SAS Data Integration Studio, the
metadata for a comparison result can be selected, and the results of that comparison
can be viewed in a Differences window and applied to a metadata repository. See also
change analysis.

cross-reference table
a table that contains only the current rows of a larger dimension table. Columns
generally include all business key columns and a digest column. The business key
column is used to determine if source rows are new dimensions or updates to existing
dimensions. The digest column is used to detect changes in source rows that might
update an existing dimension. During updates of the fact table that is associated with
the dimension table, the cross-reference table can provide generated keys that replace
the business key in new fact table rows.

custom repository
an optional metadata store for a SAS Metadata Server that can be configured in addition
to the foundation repository. Custom repositories are useful for physically segregating
metadata for storage or security purposes.

data analysis
in SAS data quality, the process of evaluating input data sets in order to determine
whether data cleansing is needed.

data cleansing
the process of eliminating inaccuracies, irregularities, and discrepancies from data.

data integration
the process of consolidating data from a variety of sources in order to produce a unified
view of the data.

data lineage
a search that seeks to identify the tables, columns, and transformations that have an
impact on a selected table or column. See also impact analysis, reverse impact analysis,
and transformation.

data store
a table, view, or file that is registered in a data warehouse environment. Data stores can
contain either individual data items or summary data that is derived from the data in a
database.

data transformation
in SAS data quality, a cleansing process that applies a scheme to a specified character
variable. The scheme creates match codes internally to create clusters. All values in

440 Glossary

each cluster are then transformed to the standardization value that is specified in the
scheme for each cluster.

database library
a collection of one or more database management system files that are recognized by
SAS and that are referenced and stored as a unit. Each file is a member of the library.

database server
a server that provides relational database services to a client. Oracle, DB/2 and Teradata
are examples of relational databases.

delimiter
a character that separates words or phrases in a text string.

delivery transport
in the Publishing Framework, the method of delivering a package to the consumer.
Supported transports include e-mail, message queue, and WebDAV. Although not a
true transport, a channel also functions as a delivery mechanism. See also e-mail,
message queue, WebDAV (Web Distributed Authoring and Versioning), and channel.

derived mapping
a mapping between a source column and a target column in which the value of the target
column is a function of the value of the source column. For example, if two tables
contain a Price column, the value of the target table's Price column might be equal to
the value of the source table's Price column multiplied by 0.8.

digest column
a column in a cross-reference table that contains a concatenation of encrypted values
for specified columns in a target table. If a source row has a digest value that differs
from the digest value for that dimension, then changes are detected and the source row
becomes the new current row in the target. The old target row is closed out and receives
a new value in the end date/time column.

dimension
a category of contextual data or detail data that is implemented in a data model such as
a star schema. For example, in a star schema, a dimension named Customers might
associate customer data with transaction identifiers and transaction amounts in a fact
table.

dimension table
in a star schema or snowflake schema, a table that contains data about a particular
dimension. A primary key connects a dimension table to a related fact table. For
example, if a dimension table named Customers has a primary key column named
Customer ID, then a fact table named Customer Sales might specify the Customer ID
column as a foreign key.

dynamic cluster table
two or more SAS SPD Server tables that are virtually concatenated into a single entity,
using metadata that is managed by the SAS SPD Server.

e-mail
a system for transmitting messages electronically, usually between two computers. See
also delivery transport.

Glossary 441

fact table
the central table in a star schema or snowflake schema. A fact table typically contains
numerical measurements or amounts and is supplemented by contextual information
in dimension tables. For example, a fact table might include transaction identifiers and
transaction amounts. Dimension tables could add contextual information about
customers, products, and salespersons. Fact tables are associated with dimension tables
via key columns. Foreign key columns in the fact table contain the same values as the
primary key columns in the dimension tables.

foreign key
a column or combination of columns in one table that references the corresponding
primary key in another table. A foreign key must have the same attributes as the primary
key that it references.

foundation repository
the required metadata store for a SAS Metadata Server. Each SAS Metadata Server has
one foundation repository that is created by default when the metadata server is
configured.

generated key
a column in a dimension table that contains values that are sequentially generated using
a specified expression. Generated keys are used to implement surrogate keys and
retained keys.

generated transformation
in SAS Data Integration Studio, a transformation that is created with the Transformation
Generator wizard, which helps you specify SAS code for the transformation. See also
transformation.

global resource
an object, such as a server or a library, that is shared on a network.

impact analysis
a search that seeks to identify the tables, columns, and transformations that would be
affected by a change in a selected table or column. See also transformation and data
lineage.

Integrated Object Model server
a SAS object server that is launched in order to fulfill client requests for IOM services.
Short form: IOM server.

intersection table
a table that describes the relationships between two or more tables. For example, an
intersection table could describe the many-to-many relationships between a table of
users and a table of groups.

IOM server
See Integrated Object Model server.

iterative job
a job with a control loop in which one or more processes are executed multiple times.
Iterative jobs can be executed in parallel. See also job.

iterative processing
a method of processing in which a control loop executes one or more processes multiple
times.

442 Glossary

job
a collection of SAS tasks that create output.

locale
a value that reflects the language, local conventions, and culture for a geographic region.
Local conventions can include specific formatting rules for dates, times, and numbers,
and a currency symbol for the country or region. Collating sequences, paper sizes, and
conventions for postal addresses and telephone numbers are also typically specified for
each locale. Some examples of locale values are French_Canada, Portuguese_Brazil,
and English_USA.

lookup standardization
a process that applies a scheme to a data set for the purpose of data analysis or data
cleansing.

match code
an encoded version of a character value that is created as a basis for data analysis and
data cleansing. Match codes are used to cluster and compare character values. See also
sensitivity.

message queue
in application messaging, a place where one program can send messages that will be
retrieved by another program. The two programs communicate asynchronously.
Neither program needs to know the location of the other program nor whether the other
program is running. See also delivery transport.

metadata administrator
a person who defines the metadata for servers, metadata repositories, users, and other
global resources.

metadata model
a definition of the metadata for a set of objects. The model describes the attributes for
each object, as well as the relationships between objects within the model.

metadata object
a set of attributes that describe a table, a server, a user, or another resource on a network.
The specific attributes that a metadata object includes vary depending on which
metadata model is being used.

metadata repository
a collection of related metadata objects, such as the metadata for a set of tables and
columns that are maintained by an application. A SAS Metadata Repository is an
example.

metadata server
a server that provides metadata management services to one or more client applications.
A SAS Metadata Server is an example.

operational data
data that is captured by one of more applications in an operational system. For example,
an application might capture and manage information about customers, products, or
sales. See also operational system.

Glossary 443

operational system
one or more applications that capture and manage data for an organization. For example,
a business might have a set of applications that manage information about customers,
products, and sales.

owner
the person who is responsible for the contents of an object such as a table or a library.
See also administrator.

parameterized job
a job that specifies its inputs and outputs as parameters. See also job.

parameterized table
a table whose metadata specifies some attributes as variables rather than as literal
values. For example, the input to an iterative job could be a parameterized table whose
metadata specifies its physical pathname as a variable. See also iterative job.

PFD
See process flow diagram.

primary key
a column or combination of columns that uniquely identifies a row in a table.

process flow diagram
a diagram that specifies the sequence of each source, target, and process in a job. In the
diagram, each source, target, and process has its own metadata object. Each process in
the diagram is specified by a metadata object called a transformation. Short form: PFD.

project repository
a metadata repository that serves as an individual work area or playpen. Project
repositories are available for SAS Data Integration Studio only. In general, each user
who participates in change management has his or her own project repository.

publish
to deliver electronic information, such as SAS files (including SAS data sets, SAS
catalogs, and SAS data views), other digital content, and system-generated events to
one or more destinations. These destinations can include e-mail addresses, message
queues, publication channels and subscribers, WebDAV-compliant servers, and
archive locations.

Quality Knowledge Base
a collection of locales and other information that is referenced during data analysis and
data cleansing. For example, to create match codes for a data set that contains street
addresses in Great Britain, you would reference the ADDRESS match definition in the
ENGBR locale in the Quality Knowledge Base.

register
to save metadata about an object to a metadata repository. For example, if you register
a table, you save metadata about that table to a metadata repository.

retained key
a numeric column in a dimension table that is combined with a begin-date column to
make up the primary key. During the update of a dimensional target table, source rows
that contain a new business key are added to the target. A key value is generated and
added to the retained key column and a date is added to the begin-date column. When
a source row has the same business key as a row in the target, the source row is added

444 Glossary

to the target, including a new begin-date value. The retained key of the new column is
copied from the target row.

reverse impact analysis
See data lineage.

SAS Application Server
in the SAS Intelligence Platform, a logical entity that represents the SAS server tier.
This logical entity contains specific servers (for example, a SAS Workspace Server and
a SAS Stored Process Server) that execute SAS code. A SAS Application Server has
relationships with other metadata objects. For example, a SAS library can be assigned
to a SAS Application Server. When a client application needs to access that library, the
client submits code to the SAS Application Server to which the library is assigned.

SAS Management Console
a Java application that provides a single user interface for performing SAS
administrative tasks.

SAS metadata
metadata that is created by SAS software. Metadata that is in SAS Open Metadata
Architecture format is one example.

SAS OLAP Server
a SAS server that provides access to multidimensional data. The data is queried using
the multidimensional expressions (MDX) language.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

SAS Stored Process Server
a SAS IOM server that is launched in order to fulfill client requests for SAS Stored
Processes. See also IOM server.

SAS task
a logical process that is executed by a SAS session. A task can be a procedure, a DATA
step, a window, or a supervisor process.

SAS XML library
a library that uses the SAS XML LIBNAME engine to access an XML file.

SAS/CONNECT server
a server that provides SAS/CONNECT services to a client. When SAS Data Integration
Studio generates code for a job, it uses SAS/CONNECT software to submit code to
remote computers. SAS Data Integration Studio can also use SAS/CONNECT software
for interactive access to remote libraries.

SAS/SHARE library
a SAS library for which input and output requests are controlled and executed by a
SAS/SHARE server.

SAS/SHARE server
the result of an execution of the SERVER procedure, which is part of SAS/SHARE
software. A server runs in a separate SAS session that services users' SAS sessions by
controlling and executing input and output requests to one or more SAS libraries.

Glossary 445

scheme
a lookup table or data set of character variables that contains variations of data items
and specifies the preferred variation form or standard. When these schemes are applied
to the data, the data is transformed or analyzed according to the predefined rules to
produce standardized values.

sensitivity
in SAS data quality, a value that specifies the amount of information in match codes.
Greater sensitivity values result in match codes that contain greater amounts of
information. As sensitivity values increase, character values must be increasingly
similar to generate the same match codes.

server administrator
a person who installs and maintains server hardware or software. See also metadata
administrator.

server component
in SAS Management Console, a metadata object that specifies information about how
to connect to a particular kind of SAS server on a particular computer.

slowly changing dimensions
a technique for tracking changes to dimension table values in order to analyze trends.
For example, a dimension table named Customers might have columns for Customer
ID, Home Address, Age, and Income. Each time the address or income changes for a
customer, a new row could be created for that customer in the dimension table, and the
old row could be retained. This historical record of changes could be combined with
purchasing information to forecast buying trends and to direct customer marketing
campaigns.

snowflake schema
tables in a database in which a single fact table is connected to multiple dimension
tables. The dimension tables are structured to minimize update anomalies and to address
single themes. This structure is visually represented in a snowflake pattern. See also
star schema.

source
an input to an operation.

star schema
tables in a database in which a single fact table is connected to multiple dimension
tables. This is visually represented in a star pattern. SAS OLAP cubes can be created
from a star schema.

subscribe
to sign up to receive electronic content that is published to a SAS publication channel.

surrogate key
a numeric column in a dimension table that is the primary key of that table. The
surrogate key column contains unique integer values that are generated sequentially
when rows are added and updated. In the associated fact table, the surrogate key is
included as a foreign key in order to connect to specific dimensions.

target
an output of an operation.

446 Glossary

transformation
a SAS task that extracts data, transforms data, or loads data into data stores.

unique key
one or more columns that can be used to uniquely identify a row in a table. A table can
have one or more unique keys.

Web Distributed Authoring and Versioning
an emerging industry standard, based on extensions to HTTP 1.1, that enables users to
collaborate in the development of files and collections of files on remote Web servers.
Short form: WebDAV. See also delivery transport.

Web service
a programming interface that enables distributed applications to communicate even if
the applications are written in different programming languages or are running on
different operating systems.

WebDAV
See Web Distributed Authoring and Versioning.

Glossary 447

448 Glossary

Index

A
Access folder 414
accessibility features 10
actions

based on job status 173
based on transformation status 175
default 168
prerequisites for 172

administrative tasks 9
aggregate columns 237
Analysis folder 414
Analysis window 396
application servers

modifying configuration files or SAS
start commands for 211

Archived folder 415
assistive technologies 10
Authorization tab 23
automatic column mappings 154
automatic joins 291
automatic propagation 158

B
Basic Properties pane 408
browsing table data 89
buffering options 330
bulk load tables 329
bulk loading 277

C
case

in table and column names 72
CASE expressions 305
change data capture (CDC) 369

changed data tables 371

control tables 372
from Oracle 372
prerequisites for 370

Change Data Capture folder 415
Change Data Capture transformations

369
change detection

dimension tables 350
change management 36

adding metadata 38
checking in metadata 38
checking out metadata 39
clearing metadata from projects 40
creating connection profiles for

administrators 38
creating connection profiles for users

37
deleting metadata 39
migration and 17
undoing checkouts 40
usage notes for 40

change tracking
datetime 365, 367
dimension tables 350

checkouts
undoing 40

Checkouts tree 397
clauses

adding subqueries to 317
reviewing and modifying 288

cleansing data 4, 235
clearing metadata 40
cluster tables 389
COBOL copybooks 115
COBOL data files 115
code

common code generated for jobs 138

449

credentials in generated code 140
displaying SAS code for jobs 137
for transformations 164
generated 205
jobs with generated source code 122
jobs with user-supplied source code

123
overriding generated code 112
user-written 213
user-written SQL code 330

Code Editor 397
code testing 108
column heading options 97
column mappings 154

automatic 154
deleting 157
derived 156
from source table to work table 218
from work table to target table 218
one-to-one 156
options for 157

column metadata
adding 77
additional operations 80
maintaining 77
modifying 78
notes and documents for 79

column names
case and special characters in 72

columns
adding to query target table 299
aggregate columns 237
avoiding unneeded columns 236
deleting from indexes 88
dropping unneeded columns 236
key columns 82
managing for performance 235
matching variable size to data length

237
rearranging in indexes 88
scope of column changes in jobs 158
updating columns in keys 86

Comparison Results window 398
conditional action sets

default 168
conditions

default 168
configuration files

modifying for application servers 211
Connection Profile window 399
connection profiles

creating 26
creating for administrators, with change

management 38
creating for users, with change

management 37

opening 26
updating 27

connections for objects 162
connectivity 3
constraints

removing non-essential constraints
during a load 276

Control Flow tab 149
Control folder 416
control tables 340

registering 340
credentials

in generated code 140, 208
cross-reference tables 352
cube wizards 424
cubes

registering 33

D
data cleansing 4, 235
data enrichment 4
data federation 4
Data folder 416
data integration 3

advantages of 4
data integration environment 5

libraries 8
overview diagram 5
SAS Data Integration Studio 6
SAS Management Console 5
servers 6

data optimization 323
Data Quality folder 417
data surveyor wizards 425
Data Transfer transformation 135
Data Transforms folder 418
data validation 235
datetime change tracking 365

closing out rows in 367
DBMS names 74

setting options in Register Tables wizard
76

DBMS servers 7
DBMS tables

preserving foreign keys in 35
debugging 238

adding code to process flows 240
checking job status 239
limiting input to transformations 239
setting and checking status codes 241
setting SAS invocation options on jobs

241
SQL queries 297
verifying output from transformations

239

450 Index

default actions 169
default conditional action sets 171
default conditions 168
default SAS Application Server 30
Delimited External File wizard 101
delimited external files

registering 100
deploying jobs 184

as stored processes 189, 190
as Web services 194
creating Web service jobs 196
for execution on remote host 188
for scheduling 185
prerequisites for deploying as stored

process 190
prerequisites for scheduling 185
prerequisites for Web service jobs 195
redeploying jobs for scheduling 187
redeploying to stored processes 192
requirements for Web service jobs 195
scheduling for complex process flows

187
stored process as Web service 203
viewing or updating stored process

metadata 193
Web service jobs as stored process 200

derived column mappings 156
Designer tab (SQL)

adding CASE expression 306
adding GROUP BY clause 310
adding HAVING clause 310
adding joins to queries 299
adding ORDER BY clause 312
submitting queries from 318

Designer window 287
desktop 399
Details pane 401
Diagram tab 150
dimension table lookup 356
dimension tables 350

change detection and loading for 350
change tracking 350
cross-reference tables and 352
generated keys and 351
loading with Type 1 and 2 updates 353
Type 1 updates 352

document objects
saving reports as 262

documentation 9
for process flow diagrams 133

documents
adding to registered objects 41
for columns 79
viewing contents of 43

E
editing options 98
empty jobs 123
encoding options 113
environment 5
ERM systems 8
error log location 25
ETL (extraction, transformation, and

loading) 4
executing jobs

on remote host 188
explicit pass-through processing 327
exporting metadata 46

documenting 48
SAS Metadata Bridges 51, 60
SAS Package metadata 46, 47, 48
selected metadata 48

Expression Builder window 402
external files 100

accessing with FTP or HTTP server
113

browse and edit options for 96
common tasks 100
in job process flows 117
NLS support for 113
overriding code generated by wizards

112
registering COBOL data files 115
registering delimited files 100
registering files with user-written code

108
registering fixed-width files 103
updating metadata 111
viewing data in 114
viewing metadata 111

extraction, transformation, and loading
(ETL) 4

F
fact tables 352

loading with dimension table lookup
356

structure and loading of 352
fixed-width external file wizard 104
fixed-width external files

registering 103
Folders tree 27, 403

adding folders 28
adding metadata objects to folders 29
changing folder paths 30
icon overlays for metadata objects 406
renaming folders 29

foreign keys
adding 85
applying changes to tables 59

Index 451

key columns 82
preserving in DBMS tables 35
restoring metadata for 60

format libraries
specifying in preprocess to job 32

format options 97
formats

user-defined 32
FTP servers

accessing external files 113

G
generated code 205

credentials in 140, 208
displaying for jobs 209
displaying for transformations 209
editing for jobs 228
for jobs 138
jobs with generated source code 122
LIBNAME statements and 206
macro variables and 207
macro variables for status handling in

177
modifying configuration files for

application servers 211
modifying SAS start commands 211
options for jobs 210
options for transformations 210
overriding, when created by External File

wizards 112
remote connection statements and 207
replacing for jobs 229
SYSLAST macro statement and 206

generated keys 351
generated transformations 198, 219

impact analysis on 226, 251
maintaining 226
updating 227

global options 35
for jobs 131
for tables 70

global Options window 35
grids

submitting jobs to 144
GROUP BY clause

adding to queries 309

H
hash joins 325
HAVING clause

adding to queries 309
Help 8
hiding logs 243
HTTP servers

accessing external files 113

I
I/O processing

minimizing 323
impact analysis 247

on generated transformations 226
performing 248
performing on generated transformations

251
reverse 247, 253

implicit pass-through processing 327
implicit property for joins 325
Import and Export Metadata wizards 425
importing COBOL copybooks 116
importing metadata 46

comparing metadata to repository 56
invalid change analysis result 60
SAS Metadata Bridges 51
SAS Package metadata 46, 47, 49

importing SAS metadata
comparing metadata to repository 58

index joins 324
indexes 87

creating 87
deleting 88
deleting columns from 88
rearranging columns in 88
removing non-essential indexes during a

load 276
INFILE statement

replacing generated statements 112
input tables

adding subqueries to 314
intermediate files

deleting for performance 233
invalid change analysis results 60
Inventory tree 404

icon overlays for metadata objects 406
invocation options

setting on jobs 241
iterative jobs 333

adding input and transformation directly
335

creating and running 334
creating control tables 340
creating parameterized jobs 337

J
Java code

for report plug-ins 427
Java options 24
Job Documentation Report

customizing 259

452 Index

Job Editor window 407
making connections in 162
submitting jobs from 143
viewing code in 209

job management 142
job metadata

viewing or updating 136
job options 130, 210

global 210
local 210

job properties
viewing or updating 136

job properties window 409
job statistics

prerequisites for collecting 145
job status 140, 239

actions based on 173
jobs 122

accessing local and remote data 133
adding User Written Code transformation

to 216
column mappings 154
common code generated for 138
creating empty jobs 123
creating jobs containing jobs 125
creating process flows for 124
credentials in generated code 140
data access in context of 134
Data Transfer transformation 135
default temporary output tables 126
deploying 184
displaying generated code for 209
displaying SAS code for 137
editing generated code for 228
external files in process flows 117
generated code for 205
global options for 131
interactive data access 134
iterative 333
local options for 132
managing submitted jobs 123
parameterized 320, 333, 337
replacing generated code for 229
reviewing successful jobs 145
running 123
SAS invocation options on 241
scope of column changes 158
status handling for 167
submitting for immediate execution

142
submitting one step at a time 144
submitting queries from 318
submitting segments of 144
submitting selected transformations 143
submitting to a grid 144
troubleshooting 150

updates during partial promotion 15
updating during migration 14
user action after migration 15
viewing or updating metadata 136
with generated source code 122
with user-supplied source code 123

join algorithms 324
join types

changing 294
results by 295

joins 287
adding to queries on Designer tab 299
automatic 291
hash joins 325
implicit property for 325
index joins 324
joining a table to itself 319
parameters with 320
reviewing and modifying 288
selecting join type 294
sort-merge 324
SPD Server star joins 321

K
key columns 82
Key Effective Date transformation 349
keys

adding primary or unique keys 85
deleting 87
generated 351
maintaining 82
renaming 87
surrogate 238
surrogate primary 362
updating columns in 86
viewing 83

L
level_value option 25
LIBNAME statement

generated code and 206
generated job code and 138

libraries 8
registering 31

List Cluster Contents transformation 391
List Data transformation

adding to process flows 246
load techniques 273

adding rows 275
matching and updating rows 275
removing all rows 274

loader transformations 269
bulk loading 277

Index 453

removing non-essential indexes and
constraints during a load 276

selecting a load technique 273
SPD Server Table Loader transformation

270
Table Loader options 271
Table Loader transformation 270

loading output tables 269
local data

accessing 133
local options

for jobs 132
for tables 70

Log tab 152
logs

capturing additional options 242
error log location 25
evaluating 242
for process flow optimization 242
hiding 243
message logging 25
redirecting large logs to a file 243
viewing 243

Lookup transformation 349
lookups

transformations for 238

M
macro variables

for status handling 140, 177
for status handling in generated code

177
for status handling in user-written code

182
generated code and 207

manual propagation 159
mappings 154
master data management 4
memory allocation 25
message logging 25
message queues 379

Microsoft queues 386
polling WebSphere queues 384
prerequisites 380
supported data transfer types 379
transformations for 381
WebSphere queues 382

metadata
adding 38
checking in 38
checking out 39
clearing from projects 40
connectivity and 3
deleting 39
import and export wizards 425

importing and exporting 46
maintaining column metadata 77
updating external file metadata 111
updating table metadata 68
viewing external file metadata 111
viewing or updating job metadata 136
viewing or updating stored process

metadata 193
viewing or updating transformations

metadata 165
viewing table metadata 68

metadata objects
adding notes or documents to registered

objects 41
adding to folders 29
copying and pasting 51
copying to folders 29
dragging to folders 29
icon overlays for 406
moving to folders 29

Microsoft message queues 386
migration 4, 13

Web site for 17

N
names

DBMS names 74
SAS names 73

New Job wizard 123
new object wizards 423
New Table wizard 66

registering tables with 66
New User-Written External File wizard

108
NLS

encoding options 113
support for external files 113

notes
adding to registered objects 41
for columns 79
viewing contents of 43

O
objects

connections for 162
migration of 14

one-to-one column mappings 156
online Help 8
Options window 412
Oracle

capturing changed data from 372
ORDER BY clause

adding to queries 312
Output folder 418

454 Index

output tables
loading in process flows 269
temporary 126

P
parallel processing 342

prerequisites for 343
setting options for 344

parameterized jobs 320, 333
creating 337

pass-through processing 326
performance

data optimization 323
process flow optimization 231
sort performance 279
SQL processing 322, 328

physical tables
managing for performance 232
updating table metadata 69

plug-in location 24
pre-sorting data 323
Precode and Postcode tab

adding user-written code to 214
primary keys

adding 85
key columns 82
surrogate 362

process data management 232
process flow diagrams

documenting 133
viewing or updating 136

process flow optimization 231
additional information 246
column management 235
debugging techniques 238
logs for 242
process data management 232
reviewing temporary output tables 244
streamlining process flow components

237
process flows

adding debugging code to 240
adding List Data transformation to 246
adding User Written Code transformation

to 246
creating 23
creating for jobs 124
external files in 117
loading output tables in 269
scheduling for complex process flows

187
streamlining components 237

projects
clearing metadata from 40

promotion

updates to jobs and transformations 15
propagation

automatic 158
manual 159
path options 160

properties windows 408
Publish folder 418

Q
queries 287

adding a GROUP BY clause 309
adding a HAVING clause 309
adding an ORDER BY clause 312
adding CASE expressions 305
adding columns to target table 299
adding joins to, on Designer tab 299
adding user-written SQL code 296
configuring a SELECT clause 303
creating or configuring a WHERE clause

307
creating simple queries 301
debugging 297
Designer window 287
reviewing and modifying clauses, joins,

and tables 288
submitting 318
submitting as part of a job 318
submitting from Designer tab 318
subqueries 313
validating 318

R
redeploying jobs

for scheduling 187
to stored processes 192

redirecting
logs 243
temporary output tables 245

Register Tables wizard 65, 424
setting name options in 76

registered objects
adding notes or documents to 41

registering
COBOL data files 115
control tables 340
cubes 33
delimited external files 100
external files with user-written code

108
fixed-width external files 103
libraries 31
tables 33, 65, 66

remote connection statements 207
generated code and 139

Index 455

remote data
accessing 133
minimizing access 235

remote host
deploying jobs for execution on 188

Remove Cluster transformation 391
report plug-ins

example Java code for 427
reporting interface methods 433

reporting interface methods 433
reports 256

creating 265
customizing the Job Documentation

Report 259
customizing the Tables Report 258
opening 263
running and saving 260
saving as document object 262
viewing 263

Reports window 256, 411
selecting a perspective 257

reverse impact analysis 247, 253
rows

adding 275
closing out in datetime change tracking

367
matching and updating 275
removing all 274

running jobs 123

S
SAS Application Servers 6, 30
SAS code

displaying for jobs 137
SAS Data Integration Studio

documentation 9
environment and 6
online Help 8
required components 22
setup 22
starting 24
upgrading 13

SAS data servers 7
SAS Grid Server 6
SAS Intelligence Platform

documentation 9
SAS invocation options

setting on jobs 241
SAS Management Console

environment and 5
SAS Metadata Bridges 51

exporting metadata 60
importing new metadata 53
importing updated metadata 55
preparing to import or export 53

usage notes for 52
SAS Metadata Server 6

connecting to 26
reconnecting to 27

SAS names 73
SAS OLAP Server 6
SAS Package

importing and exporting metadata 46,
48, 49

preparing to import or export metadata
47

SAS Package wizards 425
SAS solutions

migration and 17
SAS start commands

modifying for application servers 211
SAS Workspace Server 6

requirements for new jobs 16
SAS/CONNECT Server 6
SAS/SHARE Server 7
SCD

See slowly changing dimensions (SCD)
SCD Type 2 Loader transformation 269,

349
scheduling

deploying jobs for 185
for complex process flows 187
prerequisites for deploying jobs 185
redeploying jobs for 187
to execute jobs on remote host 188

search options 97
Section 508 10
security 22
SELECT clause

configuring 303
SELECT statement

optimizing 329
servers 6
setup 22
slowly changing dimensions (SCD) 348

closing out rows in datetime change
tracking 367

dimension tables 350
fact tables 352
loading dimension tables with Type 1 and

2 updates 353
loading fact tables with dimension table

lookup 356
loading tables and adding surrogate

primary key 362
project stages 349
star schema loading process 349
star schemas and 348
tracking changes in source datetime

values 365
transformations supporting 349

456 Index

types of 348
Sort transformation 279

creating tables containing sorted contents
of a source 282

sort transformations 279
optimizing sort performance 279

sort-merge joins 324
sorting

performance and 279, 282
pre-sorting data 323

source code
jobs with generated source code 122
jobs with user-supplied source code

123
source tables

mapping columns to work table 218
sources

table containing sorted contents of 282
SPD Server 7
SPD Server cluster tables 389

creating 390
maintaining 391

SPD Server Dynamic Cluster folder 419
SPD Server star joins 321
SPD Server Table Loader transformation

270
special characters

in table and column names 72
SQL Join transformations 287

adding a GROUP BY clause 309
adding a HAVING clause 309
adding an ORDER BY clause 312
adding CASE expressions 305
adding columns to target table 299
adding joins to queries on Designer tab

299
adding subqueries 313
adding user-written SQL code 296
automatic joins 291
configuring a SELECT clause 303
creating or configuring a WHERE clause

307
creating simple queries 301
data optimization 323
debugging queries 297
Designer window 287
implicit property for a join 325
join algorithms 324
joining a table to itself 319
optimizing processing performance 322,

328
parameters with joins 320
pass-through processing 326
selecting join type 294
SPD Server star joins 321
submitting queries 318

validating queries 318
SQL Properties window

options for optimizing performance 328
star joins 321
star schemas

loading process 349
slowly changing dimensions and 348
transformations for 238

starting SAS Data Integration Studio 24
Statistics tab 146
status codes

setting and checking 241
status handling

actions based on 173
actions based on transformation status

175
default conditions, actions, and

conditional action sets 168
for jobs and transformations 167
in generated code 177
in user-written code 182
macro variables for 140, 177
prerequisites for actions 172

Status tab 145, 151
stored process server 6
stored processes

deploying as Web service 203
deploying jobs as 189, 190
deploying Web service jobs as 200
prerequisites for 190
prerequisites for deploying jobs as 190
redeploying jobs to 192
viewing or updating metadata 193

subqueries 313
adding to clauses 317
adding to input tables 314

Surrogate Key Generator transformation
349

surrogate keys 238
surrogate primary keys 362
synchronization 4
SYSLAST macro statement

generated code and 206
job code and 138

T
Table Loader transformation 270

setting options 271
table metadata

updating with physical table 69
viewing or updating 68

table names
case and special characters in 72
default name options 76
name options for registered tables 76

Index 457

table properties window 410
tables 64

browse and edit options for 96
browsing data 89
bulk load 329
CDC control tables 372
changed data tables 371
common tasks 64
containing sorted contents of a source

282
control tables 340
creating with View Data window 95
cross-reference tables 352
default temporary output tables 126
dimension tables 350, 353
editing data 92
fact tables 352, 356
global options for 70
indexes 87
joining a table to itself 319
key columns 82
loading and adding surrogate primary key

362
local options for 70
managing physical tables for

performance 232
registering 33
registering with New Table wizard 66
registering with Register Tables wizards

65
reviewing and modifying, in queries

288
setting default name options 76
source tables 218
SPD Server cluster tables 389
specifying options for 70
target tables 218
temporary output tables 244
updating metadata with physical table

69
work tables 218

Tables Report
customizing 258

target tables
adding columns to 299
mapping columns from work table 218

temporary output tables 126
preserving 244
redirecting 245
reviewing 244
viewing 245

testing code 108
threaded reads 330
Tools-Options window 412
tracking

datetime change tracking 365, 367

transformation options 210
transformation properties window 409
transformations 413

actions based on status of 175
adding directly to iterative jobs 335
Change Data Capture 369
Data Transfer 135
displaying generated code for 209
editing generated code for 228
for lookups 238
for message queues 381
for star schemas 238
generated 219, 226, 251
Key Effective Date 349
limiting input 239
List Cluster Contents 391
List Data 246
loader transformations 269
Lookup 349
Remove Cluster 391
replacing generated code for 229
SCD Type 2 Loader 269, 349
Sort transformations 279
SPD Server Table Loader 270
SQL Join 287
status handling for 167
submitting selected transformations 143
supporting slowly changing dimensions

349
Surrogate Key Generator 349
Table Loader 270
updates during partial promotion 15
updating during migration 14
User Written Code 216, 246
verifying output 239
viewing code for 164
viewing or updating metadata 165
Websphere Queue Reader 383, 384
Websphere Queue Writer 382, 383

Transformations tree 413
tree view 419

after migration 16
troubleshooting unsuccessful jobs 150
Type 1 updates 352, 353
Type 2 updates 353

U
undoing checkouts 40
unique keys

adding 85
key columns 82

update table metadata feature 69
updates

Type 1 352, 353
Type 2 353

458 Index

upgrading 13
User Written Code transformation

adding to process flows 246
user-defined formats 32
user-supplied source code 123
user-written code 213

adding to Precode and Postcode tab 214
editing generated code for jobs or

transformations 228
generated transformations and 219
macro variables for status handling in

182
maintaining generated transformations

226
replacing generated code for jobs or

transformations 229
SQL 296, 330

User-Written Code transformation
adding to jobs 216

user-written external files
registering 108

V
validating data 235
View Data window 421

creating tables 95
View File window 422
views

managing for performance 232

W
Warnings and Errors tab 151
Web services

creating jobs 196
deploying jobs as 194
deploying jobs as stored process 200
deploying stored processes as 203
prerequisites for deploying jobs 195
requirements for deploying jobs 195

WebSphere message queues 382
polling 384

Websphere Queue Reader transformation
configuring and running jobs 383
creating jobs 383
verifying jobs 384

Websphere Queue Writer transformation
configuring and running jobs 383
creating jobs 382
verifying jobs 383

WHERE clause
creating or configuring 307

wizards 423
work tables

mapping columns from source table
218

mapping columns to target table 218

Index 459

460 Index

Your Turn

We welcome your feedback.

• If you have comments about this book, please send them to yourturn@sas.com.
Include the full title and page numbers (if applicable).

• If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

66

	Contents
	Introduction
	Overview of SAS Data Integration
	About SAS Data Integration
	Advantages of SAS Data Integration
	A Basic Data Integration Environment
	Overview of a Data Integration Environment
	SAS Management Console
	SAS Data Integration Studio
	Servers
	Libraries
	Additional Information

	Online Help for SAS Data Integration Studio
	Administrative Documentation for SAS Data Integration Studio
	Accessibility Features in SAS Data Integration Studio
	Overview
	Enabling Assistive Technologies
	Accessibility Standards

	Upgrading from Earlier Versions
	Overview
	Objects That Are Not Migrated
	Updates to Jobs and Transformations During Migration
	User Action Required for Migrated Jobs with Data Quality Transformations
	Updates to Jobs and Transformations during Partial Promotion
	Changes to the Tree View
	SAS Workspace Server Requirements for New Jobs
	Impacts on Change Management
	Impacts on SAS Solutions
	Migration Web Site

	General User Tasks
	Getting Started
	Setup for SAS Data Integration Studio
	Basic Setup

	Security for SAS Data Integration Studio
	Overview of Security
	Authorization Tab

	Main Tasks for Creating Process Flows
	Starting SAS Data Integration Studio
	Problem
	Solution
	Tasks

	Connecting to a SAS Metadata Server
	Problem
	Solution
	Tasks

	Working with the Folders Tree
	Overview of the Folders Tree
	Add a Folder
	Add Metadata Objects to a Folder
	Copy to Folder
	Drag to Folder
	Move to Folder
	Rename a Folder
	Considerations When You Change a Folder Path

	Selecting a Default SAS Application Server
	Problem
	Solution
	Tasks

	Registering SAS Libraries
	Problem
	Solution
	Tasks

	Working with User-Defined Formats
	Problem
	Solution
	Tasks

	Registering Tables and Cubes
	Problem
	Solution
	Tasks

	Specifying Global Options in SAS Data Integration Studio
	Problem
	Solution
	Tasks

	Working with Change Management
	Problem
	Solution
	Tasks

	Add a Note or Document to a Registered Object
	Problem
	Solution
	Tasks

	View the Content of Notes or Documents
	Problem
	Solution
	Tasks

	Importing, Exporting, and Copying Metadata
	Metadata Import and Export in SAS Data Integration Studio
	Working with SAS Package Metadata
	About Importing and Exporting SAS Package Metadata
	Objects That Can Be Imported and Exported in SAS Package Format
	Importing Earlier Versions of SAS Package Metadata

	Preparing to Import or Export SAS Package Metadata
	Exporting SAS Package Metadata
	Problem
	Solution
	Tasks

	Importing SAS Package Metadata
	Problem
	Solution
	Tasks

	Copying and Pasting Metadata Objects
	Problem
	Solution
	Tasks

	Working with SAS Metadata Bridges
	About SAS Metadata Bridges
	Objects That Can be Imported or Exported with a SAS Metadata
Bridge

	Usage Notes for Importing or Exporting with a SAS Metadata
Bridge
	Preparing to Import or Export with a SAS Metadata Bridge
	Importing New Metadata with a SAS Metadata Bridge
	Problem
	Solution
	Tasks

	Importing Updated Metadata with a SAS Metadata Bridge
	Problem
	Solution
	Tasks

	Exporting Metadata with a SAS Metadata Bridge
	Problem
	Solution
	Tasks

	Working with Tables
	About Tables
	Registering Existing Tables with the Register Tables Wizard
	Problem
	Solution
	Tasks

	Registering New Tables with the New Table Wizard
	Problem
	Solution
	Tasks

	Viewing or Updating Table Metadata
	Problem
	Solution

	Using a Physical Table to Update Table Metadata
	Problem
	Solution
	Tasks

	Specifying Options for Tables
	Problem
	Solution
	Tasks

	Supporting Case and Special Characters in Table
and Column Names
	Overview
	About Case and Special Characters in SAS Names
	About Case and Special Characters in DBMS Names
	Set Default Name Options for New Tables
	Set Name Options in the Register Tables Wizard
	Set Name Options for Registered Tables

	Maintaining Column Metadata
	Problem
	Solution
	Tasks

	Maintaining Keys
	Problem
	Solution
	Tasks

	Maintaining Indexes
	Problem
	Solution
	Tasks

	Browsing Table Data
	Problem
	Solution
	Tasks

	Editing SAS Table Data
	Problem
	Solution
	Tasks

	Using the View Data Window to Create a SAS Table
	Problem
	Solution
	Tasks

	Specifying Browse and Edit Options for Tables and External
Files
	Problem
	Solution
	Tasks

	Working with External Files
	About External Files
	Registering a Delimited External File
	Problem
	Solution
	Tasks

	Registering a Fixed-Width External File
	Problem
	Solution
	Tasks

	Registering an External File with User-Written Code
	Problem
	Solution
	Tasks

	Viewing or Updating External File Metadata
	Problem
	Solution

	Overriding the Code Generated by the External File Wizards
	Problem
	Solution
	Tasks

	Specifying NLS Support for External Files
	Problem
	Solution
	Tasks

	Accessing an External File with an FTP Server or an HTTP Server
	Problem
	Solution
	Tasks
	Additional Information

	Viewing Data in External Files
	Problem
	Solution
	Tasks

	Registering a COBOL Data File That Uses a COBOL Copybook
	Problem
	Solution
	Tasks

	Using an External File in the Process Flow for a Job
	Problem
	Solution
	Tasks

	Creating Jobs
	About Jobs
	Jobs with Generated Source Code
	Jobs with User-Supplied Source Code
	Run Jobs
	Manage Submitted Jobs

	Creating an Empty Job
	Problem
	Solution
	Tasks

	Creating a Process Flow for a Job
	Problem
	Solution
	Tasks

	Creating a Job That Contains Jobs
	Problem
	Solution
	Tasks

	Working with Default Temporary Output Tables
	Problem
	Solution
	Tasks

	About Job Options
	Documenting Process Flow Diagrams
	Problem
	Solution
	Tasks

	Accessing Local and Remote Data
	Data Access Overview
	Access Data in the Context of a Job
	Access Data Interactively
	Use a Data Transfer Transformation

	Viewing or Updating Job Metadata
	Problem
	Solution
	Tasks

	Displaying the SAS Code for a Job
	Problem
	Solution
	Tasks

	Common Code Generated for a Job
	Overview
	LIBNAME Statements
	SYSLAST Macro Statements
	Remote Connection Statements
	Macro Variables for Status Handling
	User Credentials in Generated Code

	Managing Jobs
	About Managing Jobs
	Submitting a Job for Immediate Execution
	Problem
	Solution
	Tasks

	Meeting Prerequisites for Collecting Job Statistics
	Reviewing a Successful Job
	Problem
	Solution
	Tasks

	Diagnosing and Correcting an Unsuccessful Job
	Problem
	Solution
	Tasks

	Maintaining Column Mappings
	Problem
	Solution
	Tasks

	Managing the Scope of Column Changes in Jobs
	Problem
	Solution
	Tasks

	Managing Connections in Job Editor Windows
	Problem
	Solution
	Tasks

	Viewing the Code for a Transformation
	Problem
	Solution
	Tasks

	Viewing or Updating the Metadata for Transformations
	Problem
	Solution
	Tasks

	Managing the Status of Jobs and Transformations
	About Status Handling for Jobs and Transformations
	Default Conditions, Actions, and Conditional Action Sets
	Overview
	Default Conditions
	Default Actions
	Conditional Action Sets

	Prerequisites for Actions
	Perform Actions Based on the Status of a Job
	Problem
	Solution
	Tasks

	Perform Actions Based on the Status of a Transformation
	Problem
	Solution
	Tasks

	Macro Variables for Status Handling
	Overview
	Example: Macro Variables for Status Handling in Generated Code
	Macro Variables for Status Handling in User-Written Code

	Deploying Jobs
	About Deploying Jobs
	About Deploying Jobs for Scheduling
	Prerequisites for Deploying a Job for Scheduling
	Deploying Jobs for Scheduling
	Problem
	Solution
	Tasks

	Redeploying Jobs for Scheduling
	Problem
	Solution
	Tasks

	Using Scheduling to Handle Complex Process Flows
	Problem
	Solution
	Tasks

	Using Deploy for Scheduling to Execute Jobs on a Remote Host
	Problem
	Solution
	Tasks

	About Deploying Jobs as Stored Processes
	Prerequisites for Deploying a Job as a Stored Process
	For Administrators
	For Users

	Deploying Jobs as Stored Processes
	Problem
	Solution
	Tasks

	Redeploying Jobs to Stored Processes
	Problem
	Solution
	Tasks

	Viewing or Updating Stored Process Metadata
	Problem
	Solution
	Tasks

	About Deploying Jobs as Web Services
	Prerequisites for Web Service Jobs
	For Administrators
	For Users

	Requirements for Web Service Jobs
	Creating a Web Service Job
	Problem
	Solution
	Tasks

	Deploying a Web Service Job as a Stored Process
	Problem
	Solution
	Tasks

	Deploying a Stored Process as a Web Service
	Problem
	Solution
	Tasks

	Working with Generated Code
	About Code Generated for Jobs
	Overview
	LIBNAME Statements
	SYSLAST Macro Statements
	Remote Connection Statements
	Macro Variables
	User Credentials in Generated Code

	Displaying the Code Generated for a Job
	Problem
	Solution
	Tasks

	Displaying the Code Generated for a Transformation
	Problem
	Solution
	Tasks

	Specifying Options for Jobs
	Problem
	Solution
	Tasks

	Specifying Options for a Transformation
	Problem
	Solution
	Tasks

	Modifying Configuration Files or SAS Start Commands for Application
Servers

	Working with User-Written Code
	About User-Written Code
	Adding User-Written Code to the Precode and Postcode Tab
	Problem
	Solution
	Tasks

	Adding a User Written Code Transformation to a Job
	Problem
	Solution
	Tasks

	Creating and Using a Generated Transformation
	Problem
	Solution
	Tasks

	Maintaining a Generated Transformation
	Problem
	Solution
	Tasks

	Editing the Generated Code for a Job or Transformation
	Problem
	Solution
	Tasks

	Replacing the Generated Code for a Job or Transformation
	Problem
	Solution
	Tasks

	Optimizing Process Flows
	About Process Flow Optimization
	Managing Process Data
	Problem
	Solution
	Tasks

	Managing Columns
	Problem
	Solution
	Tasks

	Streamlining Process Flow Components
	Problem
	Solution
	Tasks

	Using Simple Debugging Techniques
	Problem
	Solution
	Tasks

	Using SAS Logs
	Problem
	Solution
	Tasks

	Reviewing Temporary Output Tables
	Problem
	Solution
	Tasks

	Additional Performance Optimization Information

	Using Impact Analysis
	About Impact Analysis and Reverse Impact Analysis
	Performing an Impact Analysis
	Problem
	Solution
	Tasks

	Performing Impact Analysis on a Generated Transformation
	Problem
	Solution
	Tasks

	Performing Reverse Impact Analysis
	Problem
	Solution
	Tasks

	Working with Reports
	About Reports
	Opening the Reports Window
	Problem
	Solution
	Tasks

	Selecting the Reports Perspective
	Problem
	Solution
	Tasks

	Customizing the Tables Report
	Problem
	Solution
	Tasks

	Customizing the Job Documentation Report
	Problem
	Solution
	Tasks

	Running and Saving a Report
	Problem
	Solution
	Tasks

	Saving a Report As a Document Object
	Problem
	Solution
	Tasks

	Viewing a Report
	Opening a Report
	Contents of a Tables Report
	Contents of a Job Report
	Contents of Your Own Report

	Creating Your Own Report
	Problem
	Solution
	Tasks

	 Working with Transformations
	Working with Loader Transformations
	About Loader Transformations
	About the SPD Server Table Loader Transformation
	About the Table Loader Transformation
	Setting Table Loader Transformation Options
	Problem
	Solution
	Tasks

	Selecting a Load Technique
	Problem
	Solution
	Tasks

	Removing Non-Essential Indexes and Constraints during a Load
	Problem
	Solution

	Considering a Bulk Load
	Problem
	Solution
	Tasks

	Working with SAS Sort Transformations
	About Sort Transformations
	Optimizing Sort Performance
	Problem
	Solution

	Creating a Table That Contains the Sorted Contents of a Source
	Problem
	Solution
	Tasks

	Working with SQL Join Transformations
	About SQL Join Transformations
	Using the Designer Window
	Problem
	Solution
	Tasks

	Reviewing and Modifying Clauses, Joins, and Tables in an SQL
Query
	Problem
	Solution
	Tasks

	Understanding Automatic Joins
	The Autojoin Process
	A Sample Auto-Join Process

	Selecting the Join Type
	Problem
	Solution
	Tasks

	Adding User-Written SQL Code
	Problem
	Solution
	Additional Information

	Debugging an SQL Query
	Problem
	Solution
	Tasks

	Adding a Column to the Target Table
	Problem
	Solution
	Tasks

	Adding a Join to an SQL Query on the Designer Tab
	Problem
	Solution
	Tasks

	Creating a Simple SQL Query
	Problem
	Solution
	Tasks

	Configuring a SELECT Clause
	Problem
	Solution
	Tasks

	Adding a CASE Expression
	Problem
	Solution
	Tasks

	Creating or Configuring a WHERE Clause
	Problem
	Solution
	Tasks

	Adding a GROUP BY Clause and a HAVING Clause
	Problem
	Solution
	Tasks

	Adding an ORDER BY Clause
	Problem
	Solution
	Tasks

	Adding Subqueries
	Problem
	Solution
	Tasks

	Validating or Submitting an SQL Query
	Problem
	Solution
	Tasks

	Joining a Table to Itself
	Problem
	Solution
	Tasks

	Using Parameters with an SQL Join
	Problem
	Solution

	Constructing a SAS Scalable Performance Data Server Star Join
	Problem
	Solution
	Tasks

	Optimizing SQL Processing Performance
	Problem
	Solution

	Performing General Data Optimization
	Problem
	Solution
	Tasks

	Influencing the Join Algorithm
	Problem
	Solution
	Tasks

	Setting the Implicit Property for a Join
	Problem
	Solution

	Enabling Pass-Through Processing
	Problem
	Solution
	Tasks

	Using Properties Window Options to Optimize SQL Processing
Performance
	Problem
	Solution
	Tasks

	Working with Iterative Jobs and Parallel Processing
	About Iterative Jobs
	Creating and Running an Iterative Job
	Problem
	Solution
	Tasks

	Creating a Parameterized Job
	Problem
	Solution
	Tasks

	Creating a Control Table
	Problem
	Solution
	Tasks

	About Parallel Processing
	Setting Options for Parallel Processing
	Problem
	Solution
	Tasks

	Working with Slowly Changing Dimensions
	About Slowly Changing Dimensions
	Slowly Changing Dimensions Defined
	Types of Slowly Changing Dimensions
	Transformations That Support Slowly Changing Dimensions
	SCD Project Stages

	About Dimension Tables
	About Change Tracking
	About Change Detection and Loading for SCD
	About Generated Keys
	About Cross-Reference Tables
	About Type 1 Updates

	About Fact Tables
	Overview
	About the Loading of Fact Tables with the Lookup Transformation

	Loading a Dimension Table with Type 1 and 2 Updates
	Problem
	Solution
	Tasks

	Loading a Fact Table Using Dimension Table Lookup
	Problem
	Solution
	Tasks

	Loading a Table and Adding a Surrogate Primary Key
	Problem
	Solution
	Tasks

	Tracking Changes in Source Datetime Values
	Problem
	Solution
	Tasks

	Closing Out Rows in Datetime Change Tracking
	Problem
	Solution

	Working with Change Data Capture
	About the Change Data Capture Transformations
	Change Data Capture Defined
	Prerequisites for Change Data Capture

	About CDC Changed Data Tables
	About CDC Control Tables
	Capture Changed Data from Oracle
	Problem
	Solution
	Tasks

	Working with Message Queues
	About Message Queues
	Prerequisites for Message Queues
	Selecting Message Queue Transformations
	Problem
	Solution
	Tasks

	Processing a WebSphere Queue
	Problem
	Solution
	Tasks

	Polling a Websphere Message Queue
	Problem
	Solution
	Tasks

	Processing a Microsoft Queue
	Problem
	Solution
	Tasks

	Working with SPD Server Cluster Tables
	About SPD Server Cluster Tables
	Creating an SPD Server Cluster Table
	Problem
	Solution
	Tasks

	Maintaining an SPD Server Cluster
	Problem
	Solution

	Appendixes
	Main Windows and Wizards
	Analysis Window
	Checkouts Tree
	Code Editor
	Comparison Results Window
	Connection Profile Window
	Desktop
	Details Pane
	Expression Builder
	Folders Tree
	Inventory Tree
	Job Editor
	Properties Windows
	Basic Properties
	Job Properties
	Transformation Properties
	Table Properties

	Reports Window
	Tools-Options Window
	Transformations Tree
	Introduction to Transformations
	Overview of the Transformations Tree
	Access Folder
	Analysis Folder
	Archived Folder
	Change Data Capture Folder
	Control Folder
	Data Folder
	Data Quality Folder
	Data Transforms Folder
	Output Folder
	Publish Folder
	SPD Server Dynamic Cluster Folder

	Tree View
	View Data Windows
	View Data Window
	View File Window

	Wizards
	New Object Wizards
	Register Tables Wizards
	Cube Wizards
	Data Surveyor Wizards
	Metadata Import and Export Wizards

	Java Code and Methods for Report Plug-ins
	Example Java Code for a Report Plug-in
	Reporting Interface Methods

	Glossary
	Index

