
SAS® 9.4 Scalable
Performance Data Engine:
Reference, Fourth Edition

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® 9.4 Scalable Performance Data Engine: Reference,
Fourth Edition. Cary, NC: SAS Institute Inc.

SAS® 9.4 Scalable Performance Data Engine: Reference, Fourth Edition

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

November 2016

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P1:engspde

Contents

About This Book . v
What’s New in SAS 9.4 Scalable Performance Data Engine . xi

Chapter 1 • Overview: The SPD Engine . 1
Introduction to the SPD Engine . 2
SPD Engine Compatibility . 2
Using the SMP Computer . 3
Organizing SAS Data Using the SPD Engine . 4
Comparing the Default Base SAS Engine and the SPD Engine . 5
Interoperability of the Default Base SAS Engine and the SPD Engine Data Sets 8
Sharing the SPD Engine Files . 8
Features That Enhance I/O Performance . 8
Features That Boost Processing Performance . 9
The SPD Engine Options . 9

Chapter 2 • Creating and Loading SPD Engine Files . 11
Introduction for Creating and Loading SPD Engine Files . 12
Allocating the Library Space . 12
Efficiency Using Disk Striping and Large Disk Arrays . 16
Converting Default Base SAS Engine Data Sets to SPD Engine Data Sets 16
Creating and Loading New SPD Engine Data Sets . 18
Compressing SPD Engine Data Sets . 18
Encrypting SPD Engine Data Sets . 21
SPD Engine Component File Naming Conventions . 22
Efficient Indexing in the SPD Engine . 24
Backing Up SPD Engine Files . 25
Storing SPD Engine Data in HDFS . 25

Chapter 3 • SPD Engine LIBNAME Statement Options . 27
Introduction to the SPD Engine LIBNAME Statement . 27
Syntax . 27
SPD Engine LIBNAME Statement Options List . 28
Dictionary . 29

Chapter 4 • SPD Engine Data Set Options . 47
Introduction to SPD Engine Data Set Options . 47
Syntax . 48
SPD Engine Data Set Options List . 48
SAS Data Set Options That Behave Differently with the SPD

Engine Than with the Default Base SAS Engine . 49
SAS Data Set Options Not Supported by the SPD Engine . 50
Dictionary . 50

Chapter 5 • SPD Engine System Options . 93
Introduction to SPD Engine System Options . 93
Syntax . 93
SPD Engine System Options List . 94
SAS System Options That Behave Differently with the SPD

Engine Than with the Default Base SAS Engine . 94

Dictionary . 95

Recommended Reading . 107
Glossary . 109
Index . 113

iv Contents

About This Book

Syntax Conventions for the SAS Language

Overview of Syntax Conventions for the SAS Language
SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

• syntax components

• style conventions

• special characters

• references to SAS libraries and external files

Syntax Components
The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other
language elements, the keyword is followed by an equal sign (=). The syntax for
arguments has multiple forms in order to demonstrate the syntax of multiple arguments,
with and without punctuation.

keyword
specifies the name of the SAS language element that you use when you write your
program. Keyword is a literal that is usually the first word in the syntax. In a CALL
routine, the first two words are keywords.

In these examples of SAS syntax, the keywords are bold:

CHAR (string, position)
CALL RANBIN (seed, n, p, x);
ALTER (alter-password)
BEST w.
REMOVE <data-set-name>

In this example, the first two words of the CALL routine are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without arguments:

DO;

v

... SAS code ...
END;

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

Some procedure statements have multiple keywords throughout the statement syntax:

CREATE <UNIQUE> INDEX index-name ON table-name (column-1 <,
column-2, …>)

argument
specifies a numeric or character constant, variable, or expression. Arguments follow
the keyword or an equal sign after the keyword. The arguments are used by SAS to
process the language element. Arguments can be required or optional. In the syntax,
optional arguments are enclosed in angle brackets (< >).

In this example, string and position follow the keyword CHAR. These arguments are
required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In this example of SAS code, the argument string has a
value of 'summer', and the argument position has a value of 4:

x=char('summer', 4);

In this example, string and substring are required arguments, whereas modifiers and
startpos are optional.

FIND(string, substring <, modifiers> <, startpos>

argument(s)
specifies that one argument is required and that multiple arguments are allowed.
Separate arguments with a space. Punctuation, such as a comma (,) is not required
between arguments.

The MISSING statement is an example of this form of multiple arguments:

MISSING character(s);

<LITERAL_ARGUMENT> argument-1 <<LITERAL_ARGUMENT> argument-2 ... >
specifies that one argument is required and that a literal argument can be associated
with the argument. You can specify multiple literals and argument pairs. No
punctuation is required between the literal and argument pairs. The ellipsis (...)
indicates that additional literals and arguments are allowed.

The BY statement is an example of this argument:

BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …>;

argument-1 <option(s)> <argument-2 <option(s)> ...>
specifies that one argument is required and that one or more options can be
associated with the argument. You can specify multiple arguments and associated
options. No punctuation is required between the argument and the option. The
ellipsis (...) indicates that additional arguments with an associated option are
allowed.

The FORMAT procedure PICTURE statement is an example of this form of multiple
arguments:

PICTURE name <(format-option(s))>
<value-range-set-1 <(picture-1-option(s))>
<value-range-set-2 <(picture-2-option(s))> …>>;

vi About This Book

argument-1=value-1 <argument-2=value-2 ...>
specifies that the argument must be assigned a value and that you can specify
multiple arguments. The ellipsis (...) indicates that additional arguments are allowed.
No punctuation is required between arguments.

The LABEL statement is an example of this form of multiple arguments:

LABEL variable-1=label-1 <variable-2=label-2 …>;

argument-1 <, argument-2, ...>
specifies that one argument is required and that you can specify multiple arguments
that are separated by a comma or other punctuation. The ellipsis (...) indicates a
continuation of the arguments, separated by a comma. Both forms are used in the
SAS documentation.

Here are examples of this form of multiple arguments:

AUTHPROVIDERDOMAIN (provider-1:domain-1 <, provider-2:domain-2, …>
INTO :macro-variable-specification-1 <, :macro-variable-specification-2, …>

Note: In most cases, example code in SAS documentation is written in lowercase with a
monospace font. You can use uppercase, lowercase, or mixed case in the code that
you write.

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase bold,
uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In this
example, the keyword ERROR is written in uppercase bold:

ERROR <message>;

UPPERCASE
identifies arguments that are literals.

In this example of the CMPMODEL= system option, the literals include BOTH,
CATALOG, and XML:

CMPMODEL=BOTH | CATALOG | XML |

italic
identifies arguments or values that you supply. Items in italic represent user-supplied
values that are either one of the following:

• nonliteral arguments. In this example of the LINK statement, the argument label
is a user-supplied value and therefore appears in italic:

LINK label;

• nonliteral values that are assigned to an argument.

In this example of the FORMAT statement, the argument DEFAULT is assigned
the variable default-format:

FORMAT variable(s) <format > <DEFAULT = default-format>;

Special Characters
The syntax of SAS language elements can contain the following special characters:

Syntax Conventions for the SAS Language vii

=
an equal sign identifies a value for a literal in some language elements such as
system options.

In this example of the MAPS system option, the equal sign sets the value of MAPS:

MAPS=location-of-maps

< >
angle brackets identify optional arguments. A required argument is not enclosed in
angle brackets.

In this example of the CAT function, at least one item is required:

CAT (item-1 <, item-2, …>)

|
a vertical bar indicates that you can choose one value from a group of values. Values
that are separated by the vertical bar are mutually exclusive.

In this example of the CMPMODEL= system option, you can choose only one of the
arguments:

CMPMODEL=BOTH | CATALOG | XML

...
an ellipsis indicates that the argument can be repeated. If an argument and the ellipsis
are enclosed in angle brackets, then the argument is optional. The repeated argument
must contain punctuation if it appears before or after the argument.

In this example of the CAT function, multiple item arguments are allowed, and they
must be separated by a comma:

CAT (item-1 <, item-2, …>)

'value' or "value"
indicates that an argument that is enclosed in single or double quotation marks must
have a value that is also enclosed in single or double quotation marks.

In this example of the FOOTNOTE statement, the argument text is enclosed in
quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | "text">;

;
a semicolon indicates the end of a statement or CALL routine.

In this example, each statement ends with a semicolon:

data namegame;
 length color name $8;
 color = 'black';
 name = 'jack';
 game = trim(color) || name;
run;

References to SAS Libraries and External Files
Many SAS statements and other language elements refer to SAS libraries and external
files. You can choose whether to make the reference through a logical name (a libref or
fileref) or use the physical filename enclosed in quotation marks. If you use a logical
name, you typically have a choice of using a SAS statement (LIBNAME or
FILENAME) or the operating environment's control language to make the reference.

viii About This Book

Several methods of referring to SAS libraries and external files are available, and some
of these methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized phrase
file-specification. In the examples that use SAS libraries, SAS documentation uses the
italicized phrase SAS-library enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

Syntax Conventions for the SAS Language ix

x About This Book

What’s New in SAS 9.4 Scalable
Performance Data Engine

Overview

The following are new or enhanced options for 9.4:

• ALIGN= data set option

• COMPRESS= LIBNAME statement option

• ENCRYPT=AES (Advanced Encryption Standard) data set option

• ENCRYPTKEY= data set option

• IOBLOCKSIZE= LIBNAME statement option

• SPDEFILECACHE system option

• In the first maintenance release for SAS 9.4, SPD Engine does not support
DLDMGACTION=NOINDEX, but does support ABORT, FAIL, PROMPT, and
REPAIR.

• In the third maintenance release for SAS 9.4, a new section named “Accessing SPD
Engine Files on Another Host” on page 3 was added.

SPD Engine System Option

A new SPD Engine system option enables you to do the following:

• The SPDEFILECACHE system option enables or disables caching of opened SPD
Engine data files. For more information, see “SPDEFILECACHE System Option”
on page 99.

SPD Engine Data Set Options

New and enhanced SPD Engine data set options enable you to do the following:

• The new ALIGN= data set option specifies variable alignment. For more
information, see “ALIGN= Data Set Option” on page 50.

xi

• The ENCRYPT= data set option has been enhanced to include the AES algorithm for
stronger security. For more information, see “Encrypting SPD Engine Data Sets” on
page 21.

• The new ENCRYPTKEY= data set option specifies the key value for AES
encryption. For more information, see “ENCRYPTKEY= Data Set Option” on page
65.

SPD Engine LIBNAME Statement Options

The new LIBNAME statement options enable you to do the following:

• In the second maintenance release for SAS 9.4, the new IOBLOCKSIZE=
LIBNAME statement option enables you to specify the size in bytes of a block of
observations to be used in an I/O operation. For more information, see
“IOBLOCKSIZE= LIBNAME Statement Option” on page 39.

• In the second maintenance release for SAS 9.4, the COMPRESS= LIBNAME
statement option enables you to compress an SPD Engine data set on disk as it is
being created.

xii What’s New in SAS 9.4 Scalable Performance Data Engine

Chapter 1

Overview: The SPD Engine

Introduction to the SPD Engine . 2

SPD Engine Compatibility . 2
Upgrading SAS 9 . 2
Accessing SPD Engine Files on Another Host . 3

Using the SMP Computer . 3

Organizing SAS Data Using the SPD Engine . 4
How the SPD Engine Organizes SAS Data . 4
Metadata Component Files . 4
Index Component Files . 4
Data Component Files . 5

Comparing the Default Base SAS Engine and the SPD Engine 5
Overview of Comparisons . 5
The SPD Engine Libraries and File Systems . 5
Utility File Workspace . 5
Storing Temporary Data Sets . 5
Differences between the Default Base SAS Engine Data Sets

and the SPD Engine Data Sets . 6

Interoperability of the Default Base SAS Engine and the SPD Engine Data Sets . . 8

Sharing the SPD Engine Files . 8

Features That Enhance I/O Performance . 8
Overview of I/O Performance Enhancements . 8
Multiple Directory Paths . 8
Physical Separation of the Data File and the Associated Indexes 8
WHERE Optimization . 8

Features That Boost Processing Performance . 9
Automatic Sort Capabilities . 9
Queries Using Indexes . 9
Parallel Index Creation . 9

The SPD Engine Options . 9

1

Introduction to the SPD Engine
The SPD Engine is designed for high-performance data delivery. It enables an
application rapid access to SAS data for processing. The SPD Engine delivers data to
applications rapidly because it organizes the data into a streamlined file format that takes
advantage of multiple CPUs to perform parallel input functions.

The SPD Engine uses threads to read blocks of data very rapidly and in parallel. Tasks
are performed in conjunction with an operating system that enables threads to execute on
any of the computer’s available CPUs. Although threaded Read tasks are an important
part of the SPD Engine functionality, the real power of the SPD Engine comes from how
it structures SAS data. The SPD Engine organizes data into a file format that includes
partitioning the data. This data structure permits threads, running in parallel, to perform
Read tasks efficiently.

The SPD Engine is a high-speed alternative to the default Base SAS engine for
processing very large data sets. It reads data sets that contain billions of observations.
For example, this includes data sets that expand beyond the size limit imposed by some
operating systems and data sets that SAS analytic software and procedures must process
faster.

The SPD Engine boosts performance in the following ways:

• support for hundreds of gigabytes of data

• scalability on symmetric multiprocessor (SMP) computers and massively parallel
processor (MPP) computers

• parallel WHERE selections

• parallel loads

• parallel index creation

• parallel data delivery to applications

• automatic sorting on BY statements

The SPD Engine runs on UNIX, Windows, and z/OS (zFS file system only).

Note: Be sure to visit the Scalability and Performance Community focus area at http://
support.sas.com/rnd/scalability for more information about scalability. For system
requirements, visit the Install Center at http://support.sas.com/documentation/
installcenter.

SPD Engine Compatibility

Upgrading SAS 9
If you upgrade from a previous release of SAS 9, you do not need to migrate your data
sets if you stay in the same operating environment. If you upgrade across hosts, such as
from a 32-bit to a 64-bit Windows operating environment, you must migrate your data
sets. To migrate your data sets, use CIMPORT, COPY, or CPORT. For more information,
see the Base SAS Procedures Guide.

2 Chapter 1 • Overview: The SPD Engine

http://support.sas.com/rnd/scalability
http://support.sas.com/rnd/scalability
http://support.sas.com/documentation/installcenter
http://support.sas.com/documentation/installcenter

Note: The MIGRATE procedure does not support the SPD Engine.

Accessing SPD Engine Files on Another Host
The SPD Engine cannot share data sets across host families, but it can share data sets
within a host family. For example, the engine can access (Read and Update) SPD Engine
files on another host as long as both hosts have the same data representation.

The SPD Engine runs on the following hosts:

HP-UX IPF or HP-UX on Itanium Solaris 64-bit64 or Solaris on SPARC
Linux on x64 (x86-64) Solaris 10 on x64 (x86-64)
MVS_32 Windows 32-bit
AIX 64-bit or AIX on Power Windows 64-bit

Based on their data representation, data sets can be separated into the following host
families:

• big endian that runs on the following:

• HP-UX IPF or HP-UX on Itanium

• AIX 64-bit or AIX on Power

• Solaris 64-bit or Solaris on SPARC

• little endian that runs on the following:

• Linux on x64 (x86-64)

• Solaris 10 on x64 (x86-64)

• z/OS that runs on z/OS 32-bit

• Windows that runs on Windows 32-bit

• Windows x64 that runs on Windows 64-bit

Using the SMP Computer
The SPD Engine exploits a hardware and software architecture known as symmetric
multiprocessing. An SMP computer has multiple central processing units (CPUs) and an
operating system that supports threads. An SMP computer is usually configured with
multiple controllers and multiple disk drives per controller. When the SPD Engine reads
a data file, it launches one or more threads for each CPU; these threads then read data in
parallel from multiple disk drives, driven by one or more controllers per CPU. The SPD
Engine running on an SMP computer provides the capability to read and deliver much
more data to an application in a given elapsed time.

Reading a data set with an SMP computer that has 5 CPUs and 10 disk drives could be
as much as 5 times faster than I/O on a single-CPU computer. In addition to threaded
I/O, an SMP computer enables threading of application processes (for example, threaded
sorting in the SORT procedure in SAS 9.1 or later).

The exact number of CPUs on an SMP computer varies by manufacturer and model. The
operating system of the computer is also specialized; it must be capable of scheduling
code segments so that they execute in parallel. If the operating system kernel is threaded,

Using the SMP Computer 3

performance is further enhanced because it prevents contention between the executing
threads.

As threads run on the SMP computer, managed by a threaded operating system, the
available CPUs work together. The synergy between the CPUs and threads enables the
software to scale processing performance. The scalability, in turn, significantly increases
overall processing speed for tasks such as creating data sets, appending data, and
querying the data by using WHERE statements.

Organizing SAS Data Using the SPD Engine

How the SPD Engine Organizes SAS Data
Because the SPD Engine organizes data for high-performance processing, an SPD
Engine data set is physically different from a default Base SAS engine data set. The
default Base SAS engine stores data in a single data file that contains both data and data
descriptors for the file (metadata). The SPD Engine creates separate files for the data and
data descriptors. In addition, if the data set is indexed, the SPD Engine creates two index
files for each index. Each of these four files is called an SPD Engine component file, and
each has an identifier embedded in the filename.

The metadata component is a single physical file, but it can occupy multiple physical
files, and each file has .mdf embedded in the filename. The data component is one or
more physical files, and each file has .dpf embedded in the filename. If the index
component exists because indexes have been defined, each index has two physical files:

• one file with .hbx embedded in the filename

• one file with .idx embedded in the filename

Each of these component files can consist of one or more physical files so that the
component can span volumes, but be referenced as one logical file. For example, the
SPD Engine can create many physical files containing data, but it references the files
containing data as a single data component in an SPD Engine data set.

The metadata and index components differ from the data component in two ways:

1. You can specify a fixed-length partition size for data component files using the
PARTSIZE= option. You cannot specify the partition size for the metadata or index
components.

2. The data component files are created in a cyclical fashion across all defined paths.
The metadata and index component files are created in a single defined path until
that path is full, and then the next defined path is used.

Metadata Component Files
A SPD Engine data set stores the descriptive metadata in a file with the file
extension .mdf. Usually, an SPD Engine data set has only one .mdf file. Its .mdf file
includes the pathnames of all of its other component files.

Index Component Files
If the file is indexed, the SPD Engine creates two index files for each index. Each of
these files contains a particular view of the index.

4 Chapter 1 • Overview: The SPD Engine

• The index file with the .hbx file extension contains the global index.

• The index file with the .idx file extension contains the segment index.

Data Component Files
The data component of an SPD Engine data set can be several files (partitions) per path
or device, rather than just one. Each of these partitions is a fixed length, specified when
you create the SPD Engine data set.

Specifying a partition size for the data component files enables you to tune the
performance of your applications. The partitions are the threadable units, that is, each
partition (file) is read in one thread. Chapter 2, “Creating and Loading SPD Engine
Files,” on page 11 provides details about how the SPD Engine stores data, metadata,
and indexes.

Comparing the Default Base SAS Engine and the
SPD Engine

Overview of Comparisons
Default Base SAS engine data sets and SPD Engine data sets have many similarities.
They both store data in a SAS library, which is a logical collection of files. Because the
SPD Engine data libraries can span devices and file systems, the SPD Engine is ideal for
use with very large data sets. Also, the SPD Engine enables you to specify separate
directories, or devices, for each component in the LIBNAME statement. Chapter 2,
“Creating and Loading SPD Engine Files,” on page 11 provides details about
designing and setting up the SPD Engine data libraries.

The SPD Engine Libraries and File Systems
An SPD Engine library can contain data files, metadata files, and index files. The SPD
Engine does not support catalogs, SAS views, MDDBs, or other utility (byte) files.

The SPD Engine uses the zFS file system for z/OS.

Utility File Workspace
Utility files are generated during the SPD Engine operations that need extra space (for
example, when creating parallel indexes or when sorting very large files). Default
locations exist for all platforms but, if you have large amounts of data to process, the
default location might not be large enough. The SPD Engine system option
SPDEUTILLOC= lets you specify a set of file locations in which to store utility scratch
files. For more information, see “SPDEUTILLOC= System Option” on page 102.

Storing Temporary Data Sets
To create a library to store interim data sets, specify the SPD Engine option TEMP= in
the LIBNAME statement. If you want current applications to refer to these interim files
using one-level names, specify the library on the USER= system option.

Comparing the Default Base SAS Engine and the SPD Engine 5

The following example code creates a user libref for interim data sets. It is deleted at the
end of the session.

libname user spde 'SAS-library' temp=yes;
data a; x=1;
run;
proc print data=a;

The USER= option can be set in the configuration file so that applications that reference
interim data sets with one-level names can run in the SPD Engine.

Differences between the Default Base SAS Engine Data Sets and the
SPD Engine Data Sets

The following chart compares the SPD Engine capabilities to default Base SAS engine
capabilities.

Table 1.1 Comparing the Default Base SAS Engine Data Sets and the SPD Engine Data Sets

Feature SPD Engine Default Base SAS Engine

Partitioned data sets yes no

Parallel WHERE optimization yes no

Lowest locking level member record

Concurrent access from multiple SAS
sessions on a given data set

READ (INPUT Open mode) READ and WRITE (all Open modes)

Remote computing via
SAS/CONNECT

no yes

Data transfer via SAS/CONNECT no yes

RLS (Remote Library Services) via
SAS/CONNECT

no yes

Available via SAS/CONNECT no yes

Support in SAS/SHARE no yes

Automatic sort for SAS BY processing
(sort a temporary copy of the data to
support BY processing)

yes no

User-defined formats and informats yes, except in WHERE* yes

Catalogs no yes

Views no yes

MDDBs no yes

6 Chapter 1 • Overview: The SPD Engine

Feature SPD Engine Default Base SAS Engine

Integrity constraints no yes

Data set generations no yes

CEDA no yes

Audit trail no yes

NLS transcoding no yes

COMPRESS= YES | NO | CHAR | BINARY
(only if the file is not encrypted)

YES | NO | CHAR | BINARY

DLCREATEDIR no yes

ENCRYPT= cannot be used with COMPRESS= can be used with COMPRESS=

encryption yes yes

AES encryption data and index files only yes

FIRSTOBS= system option and data set
option

no yes

OBS= system option and data set
option

yes, if used without ENDOBS= or
STARTOBS= SPD Engine options

yes

EXTENDOBSCOUNTER= system
option and data set option

no yes

Extended attributes no yes

Functions and call routines yes, with some exceptions. yes

Move table via OS utilities to a
different directory or folder

no yes

Observations returned in physical order no, if BY or WHERE is present yes

DLDMGACTION= system option and
data set option

yes, with ABORT | FAIL |
PROMPT | REPAIR, but not with
NOINDEX

yes

* In WHERE processing, functions and call routines are passed to the supervisor for handling. Therefore, they are not processed in
parallel.

Comparing the Default Base SAS Engine and the SPD Engine 7

Interoperability of the Default Base SAS Engine
and the SPD Engine Data Sets

Default Base SAS engine data sets must be converted to the SPD Engine format so that
the SPD Engine can access them. You can convert the default Base SAS engine data sets
easily using the COPY procedure, the APPEND procedure, or a DATA step. (PROC
MIGRATE cannot be used.) In addition, most of your existing SAS programs can run on
the SPD Engine files with little modification other than to the LIBNAME statement.
Chapter 2, “Creating and Loading SPD Engine Files,” on page 11 provides details
about converting default Base SAS engine data sets to the SPD Engine format.

Sharing the SPD Engine Files
The SPD Engine supports member-level locking, which means that multiple users can
have the same SPD Engine data set open for INPUT (read-only). However, if an SPD
Engine data set has been opened for update or for index creation, then only that user can
access it.

Features That Enhance I/O Performance

Overview of I/O Performance Enhancements
The SPD Engine has several features that enhance I/O performance. These features can
dramatically increase the performance of I/O bound applications, in which large amounts
of data must be delivered to the application for processing.

Multiple Directory Paths
You can specify multiple directory paths and devices for each component type because
the SPD Engine can reference multiple physical files across volumes as a single logical
file. For very large data sets, this feature circumvents any file size limits that the
operating system might impose.

Physical Separation of the Data File and the Associated Indexes
Because each component file type can be stored in a different location, file dependencies
are not a concern when deciding where to store the component files. Only cost,
performance, and availability of disk space need to be considered.

WHERE Optimization
The SPD Engine automatically determines the best method to use to evaluate
observations for qualifying criteria specified in a WHERE statement. WHERE statement
efficiency depends on such factors as whether the variables in the expression are

8 Chapter 1 • Overview: The SPD Engine

indexed. A WHERE evaluation planner is included in the SPD Engine. It can choose the
best method to use to optimize evaluation of WHERE expressions that use indexes.

Features That Boost Processing Performance

Automatic Sort Capabilities
The SPD Engine's automatic sort capabilities save time and resources for SAS
applications that process large data sets. With the SPD Engine, you do not need to
invoke the SORT procedure before you submit a SAS statement with a BY clause. When
the SPD Engine encounters a BY clause and the data is not already sorted or indexed on
the BY variable, the SPD Engine automatically sorts the data without affecting the
permanent data set or producing a new output data set.

Queries Using Indexes
Large data sets can be indexed to maximize performance. Indexes permit rapid WHERE
expression evaluations for indexed variables. The SPD Engine takes advantage of
multiple CPUs to search the index component file efficiently.

Note: You cannot create an index or composite index on a variable if the variable name
contains any of the following special characters (even with the
VALIDMEMNAME=EXTEND option):

" * | \ : / < > ? - .

Parallel Index Creation
In addition, the SPD Engine supports parallel index creation so that indexing large data
sets is not time-consuming. The SPD Engine decomposes data set Append or Insert
operations into a set of steps that can be performed in parallel. The level of parallelism
depends on the number of indexes present in the data set. The more indexes you have,
the greater the exploitation of parallelism during index creation. However, index creation
requires utility file space and memory resources.

Note: You cannot create an index or composite index on a variable if the variable name
contains any of the following special characters (even with the
VALIDMEMNAME=EXTEND option):

" * | \ : / < > ? - .

The SPD Engine Options
The SPD Engine works with many default Base SAS engine options. In addition, there
are options that are used only with the SPD Engine that enable you to further manage the
SPD Engine libraries and processing. See:

• SPD Engine Data Set Options on page 47

• SPD Engine LIBNAME Statement Options on page 27

• SPD Engine System Options on page 93

The SPD Engine Options 9

10 Chapter 1 • Overview: The SPD Engine

Chapter 2

Creating and Loading SPD
Engine Files

Introduction for Creating and Loading SPD Engine Files . 12

Allocating the Library Space . 12
How to Allocate the Library Space . 12
Configuring Space for All Components in a Single Path . 12
Configuring Separate Library Space for Each Component File Type 12
Anticipating the Space for Each Component File . 13
Storage of the Metadata Component Files . 14
Renaming, Copying, or Moving Component Files . 16

Efficiency Using Disk Striping and Large Disk Arrays . 16

Converting Default Base SAS Engine Data Sets to SPD Engine Data Sets 16
Using the COPY and APPEND Procedures . 16
Converting Default Base SAS Engine Data Sets Using PROC COPY 17
Converting Default Base SAS Engine Data Sets Using PROC APPEND 17

Creating and Loading New SPD Engine Data Sets . 18

Compressing SPD Engine Data Sets . 18

Encrypting SPD Engine Data Sets . 21
SPD Engine Encryption Overview . 21
SAS Proprietary Algorithm . 22
AES Algorithm . 22

SPD Engine Component File Naming Conventions . 22

Efficient Indexing in the SPD Engine . 24
Parallel Indexing . 24
Parallel Index Creation . 24
Parallel Index Updates . 25

Backing Up SPD Engine Files . 25

Storing SPD Engine Data in HDFS . 25

11

Introduction for Creating and Loading SPD
Engine Files

This section provides details about allocating SPD Engine libraries and creating and
loading SPD Engine data and indexes. Performance considerations related to these tasks
are also discussed.

Allocating the Library Space

How to Allocate the Library Space
To realize performance gains through SPD Engine’s partitioned data read and threading
capabilities, the SPD Engine libraries must be properly configured and managed.
Optimally, a SAS system administrator performs these tasks.

An SPD Engine data set requires a file system with enough space to store the various
component files. Often that file system includes multiple directories for these
components. Usually, a single directory path (part of a file system) is constrained by a
volume limit for the file system as a whole. This limit is the maximum amount of disk
space configured for the file system to use.

Within this maximum disk space, you must allocate enough space for all of the SPD
Engine component files. Understanding how each component file is handled is critical to
estimating the amount of storage that you need in each library.

Configuring Space for All Components in a Single Path
In the simplest SPD Engine library configuration, all of the SPD Engine component files
(data files, metadata files, and index files) can reside in a single path called the primary
path. The primary path is the default path specification in the LIBNAME statement. The
following LIBNAME statement sets up the primary file system for the MyLib library:

libname mylib spde '/disk1/spdedata';

Because there are no other path options specified, all component files are created in this
primary path. Storing all component file types in the primary path is simple and works
for very small data sets. It does not take advantage of the performance boost that storing
components separately can achieve, nor does it take advantage of multiple CPUs.

Note: The SPD Engine requires complete pathnames to be specified.

Configuring Separate Library Space for Each Component File Type
Most sites use the SPD Engine to manage very large amounts of data, which can have
thousands of variables and some of them indexed. At these sites, separate storage paths
are usually defined for the various component types. In addition, using disk striping and
RAID (Redundant Array of Independent Disks) can be very efficient. For more
information, see “SPD Engine Disk I/O Setup” in Scalability and Performance at http://
support.sas.com/rnd/scalability/spde/setup.html.

12 Chapter 2 • Creating and Loading SPD Engine Files

http://support.sas.com/rnd/scalability/spde/setup.html
http://support.sas.com/rnd/scalability/spde/setup.html

The metadata component files for all data sets in a library must reside in the primary
path.

In addition, specifying separate paths for the data component files and index component
files provides performance gains. You specify separate paths because the Read load is
distributed across disk drives. Separating the data and index component files helps
prevent disk contention and increases the level of parallelism that can be achieved,
especially in complex WHERE evaluations. The following example code specifies a
primary path for the metadata component files. The code uses the DATAPATH= option
on page 34 and the INDEXPATH= option on page 38 to specify additional, separate
paths for the data and index component files:

libname all_users spde '/disk1/metadata'
 datapath= ('/disk2/userdata' '/disk3/userdata')
 indexpath= ('/disk4/userindexes' '/disk5/userindexes');

The metadata component files are stored on disk1, which is the primary path. The data
component files are on disk2 and disk3, and the index component files are on disk4 and
disk5. For all path specifications, you must specify the complete pathname.

CAUTION:
The primary path must be unique for each library. If two librefs are created with
the same primary path but with differences in the other paths, data can be lost. You
cannot use NFS in any path other than the primary path.

Note: If you are planning to store data in locally mounted drives and to access the data
from a remote computer, use the remote pathname when you specify the LIBNAME.
If /data01 and /data02 are locally mounted drives on the localA computer, use
the pathnames /nfs/localA/data01 and /nfs/localA/data02 in the
LIBNAME statement.

Anticipating the Space for Each Component File
To properly configure the SPD Engine library space, you need to understand the relative
sizes of the SPD Engine component files. The following information provides a general
overview. For more information, see “SPD Engine Disk I/O Setup” in Scalability and
Performance at http://support.sas.com/rnd/scalability/spde/setup.html.

Metadata component files are relatively small files, but the primary path that you specify
must be large enough to contain all of the metadata component files for the library.
Metadata component files cannot grow beyond the space available in the path.

Index component files (both .idx and .hbx) can be medium to large, depending on the
number of distinct values in each index and whether the index is a single or composite
index. When an index component file grows beyond the space available in the current
file path, a new index component file is created in the next path.

Data component files can be numerous, depending on the amount of data and the
partition size specified for the data set. Each data partition is stored as a separate data
component file. The size of the data partition is specified in the PARTSIZE= LIBNAME
statement option on page 41 or in the PARTSIZE= data set option on page 78. Data
component files are the only component files for which you can specify a partition size.

Allocating the Library Space 13

http://support.sas.com/rnd/scalability/spde/setup.html

Storage of the Metadata Component Files

Metadata Component Files
The metadata component file for an SPD Engine data set stores the descriptive
information about the data set and the pathnames to its constituent data component files
and index component files. This concept is very important to understand because it
directly affects whether you can add data sets (with their associated metadata component
files) to the library.

The metadata component files for all of the data sets in a library must reside in the same
location specified in the primary path. In effect, the files in the primary path act like a
directory to the entire library. When an SPD Engine data set is accessed, the SPD Engine
first opens the data set’s metadata component file to determine its attributes and to
determine whether it can access all of its other component files. If a new data set for a
library is created, and the space in the primary path is full, the SPD Engine cannot begin
creating the metadata component file in that path, and the Create operation fails with an
appropriate error message. To successfully create a new data set in this case, you must
either free space in the primary path or assign a new library and copy some or all of the
data sets to the new library. Data component files and index component files do not have
that limitation. You can specify additional space at a later time for data component files
and index component files.

Certain actions cause metadata component files to grow to exceed the file size or space
limitations. In that case, the SPD Engine creates another partition of the metadata
component file to accommodate the overflow. New metadata partitions can reside in the
primary path or in the paths specified in the “METAPATH= LIBNAME Statement
Option” on page 40.. You cannot use the METAPATH= option to create space for a
new data set’s first metadata partition. The METAPATH= option specifies space for only
metadata component files beyond the first one.

Storage of the Index Component Files
An index component file is stored based on overflow space. When an index component
file grows to exceed the file size or space limitations, the SPD Engine creates another
partition of the index component file to accommodate the overflow. When several file
paths are specified with the INDEXPATH= option, index component files are created in
the first available space, and then they overflow to the next path when the previous path
is filled. Unlike metadata component files, index component files do not have to be in
the primary path.

Storage of the Data Component Files
The data component files are the only files for which you can specify the partition size.
Partitioned data can be processed in threads easily, taking full advantage of multiple
CPUs on your computer. The partition size for the data component file is fixed. It is set
when the data set is created. The default is 128 megabytes, but you can specify a
different partition size using the PARTSIZE= option. Performance depends on
appropriate partition sizes. You are responsible for knowing the sizes and uses of the
data. SPD Engine data sets can be created with a partition size that results in a balanced
number of observations. (For more information, see “PARTSIZE= Data Set Option” on
page 78 and “PARTSIZE= LIBNAME Statement Option” on page 41. Many data
partitions can be created in each data path for a given data set. The SPD Engine uses the
file paths that you specify with the DATAPATH= option to distribute partitions in a
cyclic fashion. The SPD Engine creates the first data partition in one of the specified
paths, the second partition in the next path, and so on. The SPD Engine continues to

14 Chapter 2 • Creating and Loading SPD Engine Files

cycle through the file paths as many times as needed until all data partitions for the data
set are stored. The file path for the first partition is selected at random. Assume that you
specify the following in your LIBNAME statement:

datapath=('/data1' '/data2')

The SPD Engine stores the first partition in /DATA1, the second partition in /DATA2, the
third partition in /DATA1, and so on. Cyclical distribution of the data partitions creates
disk striping, which can be highly efficient. Disk striping is discussed in detail in “SPD
Engine Disk I/O Setup” in Scalability and Performance at http://support.sas.com/rnd/
scalability/spde/setup.html.

Initial Set of Paths
In the following example, the LIBNAME statement specifies the MyLib directory for the
primary path. This path is used to store the metadata partitions. Other devices and
directories are specified to store the data and index partitions.

libname myref spde 'Mylib'
 datapath=('/mydisk30' '/mydisk31')
 indexpath=('/mydisk36');

Assuming that all of the data sets created in the MyLib library were large enough to have
several data partitions, they will all have their metadata in MyLib, their data in /
mydisk30 and /mydisk31, and any indexes in /mydisk36. This specifically means
that the metadata component files for those data sets include those pathnames.

Adding Subsequent Paths
Later, if more space is needed (for example, for appending more data), additional
devices can be added for the data and index partitions, as in the following example:

libname myref spde 'Mylib'
 datapath=('/mydisk30' '/mydisk31' '/mydisk32')
 indexpath=('/mydisk36' '/mydisk37');

All of the data sets created with the MyLib library will have their metadata in MyLib,
their data in one or more of the three paths, and any indexes in /mydisk36 or /
mydisk37. If data was appended to an existing data set, the new data goes in one or
more of the three paths and the metadata component file is updated accordingly.

If one or more of the data or index partitions do not have much free space, you can
exclude them in the LIBNAME statement the next time you specify it:

libname myref spde 'Mylib'
 datapath=('/mydisk31' '/mydisk32' '/mydisk33')
 indexpath=('/mydisk37' '/mydisk38');

The SPD Engine is still able to access data sets that use the excluded paths because the
data sets’ metadata includes all of the used paths.

Omitting Paths
If you need to read only the data sets in a library, then because all of the necessary path
information is already in the metadata component files, you can specify the LIBNAME
statement without the extra DATAPATH= and INDEXPATH= options:

libname myref spde 'Mylib';

Allocating the Library Space 15

http://support.sas.com/rnd/scalability/spde/setup.html
http://support.sas.com/rnd/scalability/spde/setup.html

Renaming, Copying, or Moving Component Files
CAUTION:

Do not rename, copy, or move an SPD Engine data set or its component files
using operating system commands.

You should always use the COPY procedure to copy SPD Engine data sets from one
location to another or the DATASETS procedure to rename or delete SPD Engine data
sets.

Efficiency Using Disk Striping and Large Disk
Arrays

Your system might have a file creation utility that enables you to override the file system
limitations and create file systems (volumes) greater than the space on a single disk. You
can use this utility to allocate SPD Engine libraries that span multiple disk devices, such
as RAID. RAID configurations use a technique called disk striping that can significantly
enhance I/O. For more information about disk striping and RAID, see “SPD Engine Disk
I/O Setup” in Scalability and Performance at http://support.sas.com/rnd/scalability/spde/
setup.html.

Note: If you are using Hadoop Distributed File System (HDFS) for storage, see SAS
SPD Engine: Storing Data in the Hadoop Distributed File System.

Converting Default Base SAS Engine Data Sets to
SPD Engine Data Sets

Using the COPY and APPEND Procedures
You can convert existing default Base SAS engine data sets to SPD Engine data sets
using the following methods:

• PROC COPY

• PROC APPEND

Some limitations apply. If your default Base SAS engine data set has integrity
constraints, then the integrity constraints are dropped when the data set is created in the
SPD Engine format. The following chart of file characteristics indicates whether the
characteristic can be retained or dropped or if conversion results in an error.

Table 2.1 Conversion Results for Base SAS Engine Data Set Characteristics

Base SAS Engine Data Set Characteristic Conversion Result

Indexes Rebuilt in SPD Engine (in parallel if
ASYNCINDEX=YES)

16 Chapter 2 • Creating and Loading SPD Engine Files

http://support.sas.com/rnd/scalability/spde/setup.html
http://support.sas.com/rnd/scalability/spde/setup.html

Base SAS Engine Data Set Characteristic Conversion Result

Default Base SAS engine COMPRESS=YES |
CHAR | BINARY *

Converts with compression if the data set is
not encrypted

Default Base SAS engine ENCRYPT=YES * Converts with encryption

Integrity constraints Dropped without Error

Audit file Dropped with Warning

Generations file Dropped with Warning

Extended attributes Dropped with Warning

* If the default Base SAS engine data set has both compression and encryption, the
compression is dropped but the encryption is retained. SAS retains the security of the
data set instead of the compression.

Converting Default Base SAS Engine Data Sets Using PROC COPY
To create an SPD Engine data set from an existing default Base SAS engine data set, you
can simply use the COPY procedure. The PROC COPY statement copies the default
Base SAS engine-formatted data set Local.Racquets to a new SPD Engine-formatted
data set Sport.Racquets:

libname sport spde 'conversion_area';

proc copy in=local out=sport;
 select racquets;
run;

Even though the indexes on the default Base SAS engine data set are automatically
regenerated as SPD Engine indexes (both .hdx and .idx files), they are not created in
parallel because the data set option ASYNCINDEX=NO is the default.

If an SPD Engine data set is encrypted, only the data component files are encrypted. The
metadata component files and both index component files are not encrypted.

Converting Default Base SAS Engine Data Sets Using PROC
APPEND

Use the APPEND procedure when you need to specify data set options for a new SPD
Engine data set.

The following example creates an SPD Engine data set from a default Base SAS engine
data set using PROC APPEND. The ASYNCINDEX=YES data set option specifies to
build the indexes in parallel. The PARTSIZE= option specifies to create partitions of 100
megabytes.

libname spdelib spde 'new_data';
libname somelib 'old_data';
proc append base=spdelib.cars (asyncindex=yes partsize=100)
 data=somelib.cars;
run;

Converting Default Base SAS Engine Data Sets to SPD Engine Data Sets 17

Creating and Loading New SPD Engine Data Sets

To create a new SPD Engine data set, you can use the DATA step, any PROC statement1

with the OUT= option, or PROC SQL with the CREATE TABLE= option.

The following example uses the DATA step to create a new SPD Engine data set,
CARDATA.OLD_AUTOS in the report_area directory.

libname cardata spde '/report_area';

data cardata.old_autos(compress=no encrypt=yes pw=secret);
 input year $4. @6 manufacturer $12. @18 model $12. @31 body_style $5. @37
 engine_liters @42 transmission_type $1. @45 exterior_color
 $10. @55 mileage @62 condition;

datalines;

1966 Ford Mustang conv 3.5 M white 143000 2
1967 Chevrolet Corvair sedan 2.2 M burgundy 70000 3
1975 Volkswagen Beetle 2door 1.8 M yellow 80000 4
1987 BMW 325is 2door 2.5 A black 110000 3
1962 Nash Metropolitan conv 1.3 M red 125000 3
;
run;

Note: Encryption and compression are mutually exclusive in SPD Engine. You can use
the ENCRYPT= option only when you are creating an SPD Engine data file that is
not compressed. You cannot create an SPD Engine data set with both encryption and
compression.

Compressing SPD Engine Data Sets
When COMPRESS=YES | BINARY | CHAR, the SPD Engine compresses, by blocks,
the data component file as it is created. The SPD Engine does not support user-specified
compression. In addition, if you are copying a default Base SAS engine data set that is
both compressed and encrypted, the encryption is retained, but the compression is
dropped.

Once a compressed data set is created, you cannot change its block size. The compressed
blocks are stored linearly, with no spaces between the blocks. The following figure
illustrates how the blocks are stored on the disk:

1 except PROC MIGRATE

18 Chapter 2 • Creating and Loading SPD Engine Files

Figure 2.1 Compressed Blocks on the Disk

If updates to the data set after compression require more space than what is available in a
block, SPD Engine creates a new block fragment to hold the overflow. If further updates
again cause overflows, new block fragments are created, forming a chain. The following
figure illustrates how the updates create a chain of blocks on the disk:

Figure 2.2 Compressed Blocks with Overflow

Performance is affected if the chains get too long. To remove the chains and resize the
block, you must copy the data set to a new data set. Specify IOBLOCKSIZE= on page
73 to the block size appropriate for the output data set.

When the data set is expected to be updated frequently, it is recommended that you use
PADCOMPRESS= on page 77. SPD Engine creates a padded space for each block,
instead of creating new block fragments. The following figure illustrates how each block
has padded space for updates:

Figure 2.3 Compressed Padded Blocks

Compressing SPD Engine Data Sets 19

If updates to the data set after compression require more space than what is available in a
block, SPD Engine uses the padded space for each block. New block fragments are not
created. The following figure illustrates how the updates decrease the padded space:

Figure 2.4 Compressed Padded Blocks with Updates

The CONTENTS procedure prints information about the compression. The following
example explains the compressed info fields in the CONTENTS procedure output:

Output 2.1 CONTENTS Procedure Compressed Info Output

Number of compressed blocks
number of compressed blocks that are required to store data.

Raw data blocksize
compressed block size in bytes calculated from the size specified in the
IOBLOCKSIZE= data set option.

Number of blocks with overflow
number of compressed blocks that needed more space. When data is updated and the
compressed new block is larger than the compressed old block, an overflow block
fragment is created.

Max overflow chain length
largest number of overflows for a single block. For example, the maximum overflow
chain length would be 2 if a compressed block was updated and became larger, and
then updated again to a larger size.

20 Chapter 2 • Creating and Loading SPD Engine Files

Block number for max chain
number of the block containing the largest number of overflow blocks.

Min overflow area
minimum amount of disk space that an overflow requires.

Max overflow area
maximum amount of disk space that an overflow requires.

Encrypting SPD Engine Data Sets

SPD Engine Encryption Overview
Encryption is the transformation of intelligible data (plain text) into an unintelligible
form (cipher text) by a mathematical process. The cipher text is translated back into
plain text when you apply the appropriate password or ENCRYPTKEY that is necessary
for decrypting (unlocking) the cipher text.

Encryption helps protect information on-disk and in-transit:

• Over-the-wire encryption protects SAS data while in transit.

• On-disk encryption protects data at rest.

There are two types of algorithms that SAS uses to encrypt SPD Engine data sets at rest:

SAS Proprietary
provided within Base SAS software. This algorithm provides a medium level of
security. You use the ENCRYPT=YES data set option to invoke this encryption.

AES (Advanced Encryption Standard)
is a block cipher that encrypts data in blocks of 128 bits by using a 256-bit key. You
use SAS/SECURE software, which is included with default Base SAS software. You
use the ENCRYPT=AES data set option to invoke this encryption.

Table 2.2 SPD Engine Encryption Features

Features ENCRYPT=YES ENCRYPT=AES

License required No No

Encryption level Medium High

Algorithm supported within Base SAS software AES

Installation required No (part of Base SAS
software)

No (in SAS/SECURE,
which is included with
Base SAS software)

Operating environments supported UNIX

Windows

z/OS

UNIX

Windows

z/OS

SAS version support 8 and later 9.4 and later

Encrypting SPD Engine Data Sets 21

SAS Proprietary Algorithm
SAS Proprietary uses a 32-bit fixed encoding and is appropriate only for preventing
accidental exposure of information. SAS Proprietary is licensed with Base SAS software
and is available in all deployments.

AES Algorithm
The AES algorithm is a block cipher that encrypts data in blocks of 128 bits by using a
256-bit key. It uses SAS/SECURE software, which is included with Base SAS software.
For more information about SAS/SECURE, see Encryption in SAS.

Note: AES encryption is not supported for OpenVMS on 64-bit Itanium.

AES encryption, which provides enhanced encryption for SPD Engine data sets, is
available in SAS 9.4 and later. The AES algorithm produces a stronger encryption using
SAS/SECURE. If you want an encrypted SPD Engine data set, you must use the
ENCRYPTKEY= data set option with ENCRYPT=AES when you create the SPD
Engine data set.

Note: You cannot change the ENCRYPTKEY= value on an AES-encrypted SPD Engine
data set without re-creating the data set.

The following rules apply to AES encryption on SPD Engine data sets:

• You must use the ENCRYPTKEY= data set option when creating a data set with
AES encryption.

• To copy an AES-encrypted SPD Engine data set, the output engine must support
AES encryption. Otherwise, the data set is not copied.

• Releases before SAS 9.4 cannot use an AES-encrypted SPD Engine data set.

• If the SPD Engine data sets are AES-encrypted, all associated index files are also
AES-encrypted. Metadata files are not AES-encrypted.

For more information, see “ENCRYPT= Data Set Option” on page 62 and
“ENCRYPTKEY= Data Set Option” on page 65 .

SPD Engine Component File Naming Conventions
When you create an SPD Engine data set, many component files can also be created.
SPD Engine component files are stored with the following naming conventions:

filename.mdf.0.p#.v#.spds9
filename.dpf.fuid.p#.v#.spds9
filename.idxsuffix.fuid.p#.v#.spds9
filename.hbxsuffix.fuid.p#.v#.spds9

filename
valid SAS filename.

mdf
identifies the metadata component file.

dpf
identifies the partitioned data component files.

22 Chapter 2 • Creating and Loading SPD Engine Files

p#
is the partition number.

v#
is the version number. 1

fuid
is the unique file ID, which is a hexadecimal equivalent of the primary (metadata)
path.

idxsuffix
identifies the segmented view of an index, where suffix is the name of the index.

hbxsuffix
identifies the global view of an index, where suffix is the name of the index.

spds9
denotes a SAS 9 SPD Engine component file.

Table 2.2 shows the data set component files that are created when you use this
LIBNAME statement and DATA step:

libname sample spde '/DATA01/SAS-library'
 datapath=('/DATA01/mydir' '/DATA02/mydir')
 indexpath=('/IDX1/mydir');
data sample.mine(index=(ssn));
 do i=1 to 100000;
 ssn=ranuni(0);
 end;
run;

Table 2.3 Data Set Component Files

mine.mdf.0.0.0.spds9 metadata component file

mine.dpf.000032a6.0.1.spds9 data file partition #1

mine.dpf.000032a6.1.1.spds9 data file partition #2

mine.dpf.000032a6.n-1.1.spds9 data file partition #n

mine.dpf.000032a6.n.1.spds9 data file partition #n+1

mine.hbxssn.000032a6.0.1.spds9 global index data set for
variable SSN

mine.idxssn.000032a6.0.1.spds9 segmented index data set for
variable SSN

1 The version number increases only when the data set is updated, that is, when the data set is opened in UPDATE mode. Operations
such as PROC SORT that replace the data set reset the version number to one, instead of incrementing it.

SPD Engine Component File Naming Conventions 23

Efficient Indexing in the SPD Engine

Parallel Indexing
Indexes can improve the performance of WHERE expression processing and BY
expression processing. The SPD Engine enables the rapid creation and update of indexes
because it can process them in parallel.

The SPD Engine's indexes are especially appropriate for data sets of varying sizes and
data distributions. These indexes contain both a segmented view and a global view of
indexed variables' values. This feature enables the SPD Engine to optimally support both
of the following queries:

• queries that require global data views, such as BY expression processing

• queries that require segmented views, such as parallel processing of WHERE
expressions

Parallel Index Creation
You can create indexes on your SPD Engine data in parallel, asynchronously. To enable
asynchronous parallel index creation, use the “ASYNCINDEX= Data Set Option” on
page 53.

Use this option with the DATA step INDEX= option and with the PROC DATASETS
MODIFY statement when creating a data set that has several indexes. Either method
enables all of the declared indexes to be populated from a single scan of the data set.

The following example shows indexes created in parallel using the DATA step. A simple
index is created on variable X and a composite index is created on variables A and B.

data foo.mine(index=(x y=(a b)) asyncindex=yes);
 x=1;
 a="Doe";
 b=20;
run;

To create multiple indexes in parallel, you must allocate enough utility disk space to
create all of the key sorts at the same time. You must also allocate enough memory
space. Use the SPDEUTILLOC= system option on page 102 to allocate disk space and
SPDEINDEXSORTSIZE system option on page 100 in the configuration file or at
invocation to allocate additional memory.

The DATASETS procedure has the flexibility to enable batched parallel index creation
by using multiple MODIFY groups. Instead of creating all of the indexes at once, which
would require a significant amount of space, you can create the indexes in groups as
shown in the following example:

proc datasets lib=main;
 modify patients(asyncindex=yes);
 index create number;
 index create class;
 run;
 modify patients(asyncindex=yes)'
 index create lastname firstname;

24 Chapter 2 • Creating and Loading SPD Engine Files

 run;
 modify patients(asyncindex=yes);
 index create fullname=(lastname firstname);
 index create class_sex=(class sex);
 run;
quit;

Indexes Number and Class are created in parallel, indexes LastName and FirstName are
created in parallel, and indexes FullName and Class_Sex are created in parallel.

Parallel Index Updates
The SPD Engine also supports parallel index updating during data set Append
operations. Multiple threads enable updates of the data store and index files. The SPD
Engine decomposes a data set Append or Insert operation into a set of steps that can be
performed in parallel. The level of parallelism attained depends on the number of
indexes in the data set. As with parallel index creation, this operation uses memory and
disk space for the key sorts that are part of the index append processing. Use system
options SPDEINDEXSORTSIZE= to allocate memory and SPDEUTILLOC= to allocate
disk space.

Note: The ASYNCINDEX option is not valid for parallel index updates.

Backing Up SPD Engine Files
When you back up an SPD Engine data set, remember the following requirements:

• Ensure that all of the files that make up the data set are backed up together, at the
same time, even if they reside on different disks or file systems.

• Do not back up the data set while any files are being updated.

• After each backup, run a test to verify that the backup was a success.

Storing SPD Engine Data in HDFS
The SPD Engine can read, write, and update data in HDFS. Storing SPD Engine data in
HDFS provides a low-cost alternative to storing big data. You can use the SPD Engine
with standard SAS applications to retrieve data for analysis, perform administrative
functions, and update data.

Storing SPD Engine Data in HDFS 25

26 Chapter 2 • Creating and Loading SPD Engine Files

Chapter 3

SPD Engine LIBNAME Statement
Options

Introduction to the SPD Engine LIBNAME Statement . 27

Syntax . 27

SPD Engine LIBNAME Statement Options List . 28

Dictionary . 29
ACCESS= LIBNAME Statement Option . 29
BYSORT= LIBNAME Statement Option . 29
COMPRESS= LIBNAME Statement Option . 32
DATAPATH= LIBNAME Statement Option . 34
ENDOBS= LIBNAME Statement Option . 35
IDXBY= LIBNAME Statement Option . 36
INDEXPATH= LIBNAME Statement Option . 38
IOBLOCKSIZE= LIBNAME Statement Option . 39
METAPATH= LIBNAME Statement Option . 40
PARTSIZE= LIBNAME Statement Option . 41
STARTOBS= LIBNAME Statement Option . 43
TEMP= LIBNAME Statement Option . 44

Introduction to the SPD Engine LIBNAME
Statement

This section contains reference information for all LIBNAME options that are valid for
the SPD Engine LIBNAME statement.

Some of these LIBNAME options are also data set options. As in the default Base SAS
engine, data set options take precedence over corresponding LIBNAME options if both
options are set.

Syntax
LIBNAME libref SPDE 'full-primary-path' <option(s)> ;

libref
a name that is up to eight characters long and that conforms to the rules for SAS
names.

27

'full-primary-path'
the complete pathname of the primary path for the SPD Engine library. The name
must be recognized by the operating environment. Enclose the name in single or
double quotation marks. Unless the DATAPATH= and INDEXPATH= options are
specified, the index and data components are stored in the same location. The
primary path must be unique for each library. Librefs that are different but reference
the same primary path are interpreted to be the same library and can result in lost
data.

option(s)
one or more SPD Engine LIBNAME statement options.

Operating Environment Information: A valid library specification and its syntax are
specific to your operating environment. For details, see the SAS documentation for your
operating environment.

SPD Engine LIBNAME Statement Options List
ACCESS=READONLY

specifies that data sets can be read, but not updated or created.

BYSORT=
specifies the SPD Engine to perform an automatic sort when it encounters a BY
statement. BYSORT= is also a data set option.

COMPRESS=
specifies to compress SPD Engine data sets on disk as they are being created.
COMPRESS= is also a data set option.

DATAPATH=
specifies a list of paths in which to store data partitions (.dpf) for an SPD Engine data
set.

ENDOBS=
specifies the end observation number in a user-defined range of observations to be
processed. ENDOBS= is also a data set option.

IDXBY=
specifies whether to use an index when processing a BY statement in the SPD
Engine. IDXBY= is also a data set option.

INDEXPATH=
specifies a path or list of paths in which to store the two types of index component
files (.hbx and .idx) associated with an SPD Engine data set.

IOBLOCKSIZE=
specifies the size in bytes of a block of observations to be used in an I/O operation.
IOBLOCKSIZE= is also a data set option.

METAPATH=
specifies a list of paths in which to store overflow metadata (.mdf) component files
for an SPD Engine data set.

PARTSIZE=
specifies the maximum size that the data component partitions can be. The value is
specified when the SPD Engine data set is created. This size is a fixed size. This
specification applies only to the data component files. PARTSIZE= is also a data set
option.

28 Chapter 3 • SPD Engine LIBNAME Statement Options

STARTOBS=
specifies the starting observation number in a user-defined range of observations to
be processed. STARTOBS= is also a data set option.

TEMP=
specifies to store the library in a temporary subdirectory of the primary path.

Dictionary

ACCESS= LIBNAME Statement Option
Determines the access level of the data source.

Default: none

Engine: SPD Engine only

Syntax
ACCESS=READONLY

Required Argument
READONLY

specifies that data sets can be read, but not updated or created.

Details
Using this option prevents writing to the data source. If this option is omitted, data sets
can be read, updated, and created if you have the necessary data source privileges.

BYSORT= LIBNAME Statement Option
Specifies the SPD Engine to perform an automatic sort when it encounters a BY statement.

Default: YES

Interaction: “BYNOEQUALS= Data Set Option” on page 54

Engine: SPD Engine only

Syntax
BYSORT=YES | NO

Required Arguments
YES

specifies to automatically sort the data based on the BY variables when a BY
statement is encountered instead of sorting the data ahead of time.

BYSORT= LIBNAME Statement Option 29

NO
specifies not to sort the data based on the BY variables. Specifying NO means that
the data must already be sorted before the BY statement. Indexes are not used.

Details
DATA or PROC step processing using the default Base SAS engine requires that if there
is no index or if the observations are not in order, the data set must be sorted before a BY
statement is issued. In contrast, by default, the SPD Engine sorts the data returned to the
application if the observations are not in order. Unlike PROC SORT, which creates a
new sorted data set, the SPD Engine's automatic sort does not change the permanent data
set and does not create a new data set. However, utility file space is used. For more
information, see “SPDEUTILLOC= System Option” on page 102.

The default is BYSORT=YES. A BYSORT=YES argument enables the automatic sort,
which outputs the observations in BY group order. If the data set option
BYNOEQUALS=YES, then the observations within a group might be output in a
different order from the order in the data set. Set BYNOEQUALS=NO to retain data set
order.

The BYSORT=NO argument means that the data must already be sorted before the BY
statement. Sorting can be from a previous PROC SORT or from the data set having been
created in BY variable order. An error occurs if the data set is not sorted. When
BYSORT=NO, grouped data is delivered to the application in data set order. Indexes are
not used to retrieve the observations in BY variable order. The data set option
BYNOEQUALS= has no effect when BYSORT=NO.

If you specify the BYSORT= option in the LIBNAME statement, it can be overridden by
specifying BYSORT= in the PROC or DATA steps. Set BYSORT=YES in the DATA or
PROC step, for input opens, to override BYSORT=NO in the LIBNAME statement. The
point is that BYSORT=NO instructs the engine to do nothing to sort the data.

When you use the BYSORT=YES and the IDXWHERE= data set options, the following
messages are written to the SAS log if you set the MSGLEVEL=I SAS system option:

• If IDXWHERE=YES and there is an index on the BY variable, the index is used to
order the rows of the table. The following message is written to the SAS log:

Note: BY ordering was produced by using an index for table tablename.

• If IDXWHERE=NO or IDXWHERE=YES and there is no index on the BY variable,
SPD Engine performs an automatic sort to order the rows of the table. The following
message is written to the SAS log:

Note: BY ordering was produced by performing an automatic
sort on table tablename.

Comparisons
The BYSORT= data set option overrides the BYSORT= LIBNAME statement option.

Examples

Example 1: Group Formatting with BYSORT=YES by Default
libname growth spde 'SAS-library';
data growth.teens;
 input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5

30 Chapter 3 • SPD Engine LIBNAME Statement Options

Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;
proc print data=growth.teens; by sex;
run;

Even though the data was not sorted using PROC SORT, no error occurred because
BYSORT=YES is the default. The output is shown:

Output 3.1 Group Formatting with BYSORT=YES by Default

Example 2: Using BYSORT=NO in the LIBNAME Statement
In the following example, SAS returns an error because BYSORT=YES was not
specified on the DATA or PROC steps to override the BYSORT=NO specification in the
LIBNAME statement. Whenever automatic sorting is suppressed (BYSORT=NO), the
data must be sorted on the BY variable before the BY statement (for example, by using
PROC SORT).

libname growth spde 'SAS-library' bysort=no;
proc print data=growth.teens;
by sex;
run;

ERROR: Data set GROWTH.TEENS is not sorted in ascending sequence.
 The current by-group has Sex = M and the next by-group has Sex = F.
NOTE: The SAS System stopped processing this step because of errors.

BYSORT= LIBNAME Statement Option 31

COMPRESS= LIBNAME Statement Option
Specifies to compress an SPD Engine data set on disk as it is being created.

Default: NO

Restriction: Cannot be used with ENCRYPT=YES or ENCRYPT=AES

Interactions: “IOBLOCKSIZE= LIBNAME Statement Option” on page 39
“PADCOMPRESS= Data Set Option” on page 77

Engine: SPD Engine only

Syntax
COMPRESS=NO | YES | CHAR | BINARY

Required Arguments
NO

performs no data set compression.

YES | CHAR
specifies that data in an SPD Engine data set be compressed in blocks by using RLE
(run-length encoding). RLE compresses data by reducing repeated runs of the same
character (including a blank space) to two-byte or three-byte representations.

BINARY
specifies that data in an SPD Engine data set be compressed in blocks by using RDC
(Ross Data Compression). RDC combines RLE and sliding window compression to
compress the file by representing repeated byte patterns more efficiently.

Note: This method is highly effective for compressing medium to large (several
hundred bytes or larger) blocks of binary data (character and numeric variables).

Details
When you specify COMPRESS=YES | BINARY | CHAR, the SPD Engine compresses,
by blocks, the data component file as it is created. To specify the size of the compressed
blocks, use the “IOBLOCKSIZE= Data Set Option” on page 73 when you create the
data set. To add padding to the newly compressed blocks, specify “PADCOMPRESS=
Data Set Option” on page 77 when creating or updating the data set. For more
information, see “Compressing SPD Engine Data Sets” on page 18.

The SPD Engine does not support user-specified compression. If you are migrating a
default Base SAS engine data set that is both compressed and encrypted, the encryption
is retained, but the compression is dropped.

The CONTENTS procedure identifies the compress setting. If the data set is
compressed, PROC CONTENTS prints information about the compression. The
following example explains the Compressed Info fields in the CONTENTS procedure
output:

In general, COMPRESS=CHAR provides good compression when single bytes repeat;
COMPRESS=BINARY provides good compression when strings of bytes repeat. At the
same time, it is more costly to look for strings of bytes that repeat, than to look for single
bytes that repeat. For examples, see “Example 1: COMPRESS=CHAR” on page 62
and “Example 2: COMPRESS=BINARY” on page 62.

32 Chapter 3 • SPD Engine LIBNAME Statement Options

Output 3.2 PROC CONTENTS Compressed Section

Number of compressed blocks
number of compressed blocks that are required to store data.

Raw data blocksize
compressed block size in bytes calculated from the size specified in the
IOBLOCKSIZE= data set option. It is the largest multiple of the observation length
that gets in the block size.

Number of blocks with overflow
number of compressed blocks that needed more space. When data is updated and the
compressed new block is larger than the compressed old block, an overflow block
fragment is created.

Max overflow chain length
largest number of overflows for a single block. For example, the maximum overflow
chain length would be 2 if a compressed block was updated and became larger, and
then updated again to a larger size.

Block number for max chain
number of the block containing the largest number of overflow blocks.

Min overflow area
minimum amount of disk space that an overflow requires.

Max overflow area
maximum amount of disk space that an overflow requires.

Accessing compressed files usually requires more processing time. The files have to be
decompressed before reading them and, if updating, they have to be compressed again
when written to disk.

Comparisons
The COMPRESS= LIBNAME statement option overrides the COMPRESS= system
option.

The COMPRESS= data set option overrides the COMPRESS= LIBNAME statement
option.

COMPRESS= LIBNAME Statement Option 33

DATAPATH= LIBNAME Statement Option
Specifies a list of paths in which to store data partitions (.dpf) for an SPD Engine data set.

Default: The primary path specified in the LIBNAME statement

Interactions: “PARTSIZE= LIBNAME Statement Option” on page 41
“PARTSIZE= Data Set Option” on page 78

Engine: SPD Engine Only

Syntax
DATAPATH=('path1' <'path2'>…)

Required Argument
'path'

is a complete pathname in single or double quotation marks within parentheses.
Separate multiple arguments with spaces.

Note: The pathnames specified in the DATAPATH= option must be unique for each
library. Librefs that are different but reference the same pathnames can result in
lost data.

Note: If your data is in the zFS file system, only one path specification is required.
The zFS system automatically spreads the partitions across multiple logical
volumes.

Details
The SPD Engine creates as many partitions as needed to store all the data. The size of
the partitions is set using the PARTSIZE= option, and partitions are created in the paths
specified using the DATAPATH= option in a cyclic fashion.

Note: If you are planning to store data in locally mounted drives and access the data
from a remote computer, use the remote pathname when you specify the LIBNAME.
For example, if /data01 and /data02 are locally mounted drives on the localA
computer, use the pathnames /nfs/localA/data01 and /nfs/localA/
data02 in the LIBNAME statement.

Example: DATAPATH= for First Partition
The path for the first partition is randomly selected and then continues in a cyclical
fashion:

libname mylib spde '/metadisk/metadata'
 datapath=('/disk1/dataflow1' '/disk2/dataflow2' '/disk3/dataflow3');

For example, if /disk2/dataflow2 is randomly selected as the first path, the first partition
is located there. The second partition is located in /disk3/dataflow3, the third partition is
located in /disk1/dataflow1, and so on.

34 Chapter 3 • SPD Engine LIBNAME Statement Options

ENDOBS= LIBNAME Statement Option
Specifies the end observation number in a user-defined range of observations to be processed.

Default: The last observation in the data set

Restrictions: Use ENDOBS= with input data sets only
Cannot be used with the OBS= system or data set option or the FIRSTOBS= system
or data set option

Interactions: “ENDOBS= Data Set Option” on page 67
“STARTOBS= LIBNAME Statement Option” on page 43
“STARTOBS= Data Set Option” on page 80

Engine: SPD Engine only

Syntax
ENDOBS=n

Required Argument
n

is the number of the end observation.

Details
By default, the SPD Engine processes all of the observations in the entire data set unless
you specify a range of observations with the STARTOBS= and ENDOBS= options. If
the STARTOBS= option is used without the ENDOBS= option, the implied value of
ENDOBS= is the end of the data set. When both options are used together, the value of
ENDOBS= must be greater than the value of STARTOBS=.

In contrast to the default Base SAS engine option FIRSTOBS=, the STARTOBS= and
ENDOBS= SPD Engine system options can be used in the LIBNAME statement.

Note: The OBS= system option and the OBS= data set option cannot be used with
STARTOBS= or ENDOBS= data set or LIBNAME options.

(See SPD Engine Data Set Options on page 47 for information about using the
ENDOBS= data set option in WHERE processing.)

Comparisons
The ENDOBS= data set option overrides the ENDOBS= LIBNAME statement option.

Example: Using the ENDOBS= LIBNAME Statement
Option
The following example shows that the STARTOBS= and ENDOBS= options subset the
data before the WHERE clause executes. The example prints the four observations that
were qualified by the WHERE expression (age >13 in PROC PRINT). The four
observations are out of the five observations that were processed from the input data set:

libname growth spde 'SAS-library' endobs=5;

ENDOBS= LIBNAME Statement Option 35

data growth.teens;
 input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;
proc print data=growth.teens;
 where age >13;
run;

Output 3.3 ENDSOBS=

IDXBY= LIBNAME Statement Option
Specifies whether to use an index when processing a BY statement in the SPD Engine.

Default: YES

Interactions: “BYSORT= LIBNAME Statement Option” on page 29
“BYSORT= Data Set Option” on page 57

Engine: SPD Engine only

Syntax
IDXBY=YES | NO

Required Arguments
YES

uses an index when processing indexed variables in a BY statement.

Note: If the BY statement specifies more than one variable or the DESCENDING
option, then the index is not used, even if IDXBY=YES.

36 Chapter 3 • SPD Engine LIBNAME Statement Options

NO
does not use an index when processing indexed variables in a BY statement.

Note IDXBY=NO performs an automatic sort when processing a BY statement.

Details
When you use the IDXBY= LIBNAME option, make sure that you use BYSORT=YES
option and that the BY variable is indexed.

In some cases, you might get better performance from the SPD Engine if you
automatically sort the data. To use the automatic sort, BYSORT=YES must be set and
you should specify IDXBY=NO.

Set the SAS system option MSGLEVEL=I so that the BY processing information is
written to the SAS log. When you use the IDXBY= LIBNAME option and the
BYSORT=YES option, the following messages are written to the SAS log:

• If IDXBY=YES and there is an index on the BY variable, the index is used to order
the rows of the table. The following message is written to the SAS log:

 NOTE: BY ordering was produced by using an index for
 table tablename.

• If you use IDXBY=NO, the following message is written to the SAS log:

NOTE: BY ordering was produced by performing an automatic sort
 on table tablename.

Comparisons
The IDXBY= data set option overrides the IDXBY= LIBNAME statement option.

Examples

Example 1: Using the IDXBY=NO LIBNAME Option
libname permdata spde 'SAS-library' idxby=no;
options msglevel=i;
 proc means data=permdata.customer;
 var sales;
 by state;
 run;

The following message is written to the SAS log:

NOTE: BY ordering was produced by performing an automatic sort
 on table PERMDATA.customer.
NOTE: There were 100 observations read from the data
 set PERMDATA.CUSTOMER.

Example 2: Using the IDXBY=YES LIBNAME Option
The following example uses IDXBY=YES:

libname permdata spde 'SAS-library' idxby=yes;
options msglevel=i;
 proc means data=permdata.customer;
 var sales;
 by state;

IDXBY= LIBNAME Statement Option 37

run;

The following message is written to the SAS log:

NOTE: BY ordering was produced by using an index for table
 PERMDATA.customer.
NOTE: There were 2981 observations read from the data set
 PERMDATA.CUSTOMER.

INDEXPATH= LIBNAME Statement Option
Specifies a path or list of paths in which to store the two types of index component files (.hbx and .idx)
associated with an SPD Engine data set.

Default: The primary path specified in the LIBNAME statement

Engine: SPD Engine only

Syntax
INDEXPATH=('path1' <'path2'…>)

Required Argument
'path'

is a complete pathname, in single or double quotation marks within parentheses.
Separate multiple arguments with spaces.

Note: The pathnames specified in the INDEXPATH= option must be unique for each
library. Librefs that are different but reference the same pathnames can result in
lost data.

Details
Unlike metadata component files, index component files do not have to be in the primary
path. For more information, see “Storage of the Index Component Files” on page 14.

The INDEXPATH= option enables index I/O to be moved to another physical path or
device. This enhances performance. For more information, see “Features That Enhance
I/O Performance” on page 8.

The SPD Engine creates two index component files in the locations specified. If there
are multiple paths specified with the INDEXPATH= option, the first path is randomly
selected. If multiple paths are specified, index component files are created in the first
path, and then they overflow to the next path when the first path is filled.

Note: If you are planning to store data in locally mounted drives and access the data
from a remote computer, use the remote pathname when you specify the LIBNAME.
For example, if /data01 and /data02 are locally mounted drives on the localA
computer, use the pathnames /nfs/localA/data01 and /nfs/localA/
data02 in the LIBNAME statement.

Example: Creating Index Component Files
The following example creates index component files that span the paths /disk1/
idxflow1, /disk2/idxflow2, and /disk3/idxflow3.

38 Chapter 3 • SPD Engine LIBNAME Statement Options

libname mylib spde '/metadisk/metadata'
 datapath= ('/disk1/dataflow1' '/disk2/dataflow2'
 '/disk3/dataflow3')
 indexpath=('/disk1/idxflow1' '/disk2/idxflow2'
 '/disk3/idxflow3');

The path for the first index component files is randomly selected. SAS puts the index
component files in the first location until that location is full, and then continues in a
cyclical fashion. For example, if /disk2/idxflow2 is randomly selected, the first index
component files are located there. When that location is full, the index component files
overflow to /disk3/idxflow3, and then to /disk1/idxflow1.

IOBLOCKSIZE= LIBNAME Statement Option
Specifies the size in bytes of a block of observations to be used in an I/O operation.

Default: 1,048,576 bytes (1 megabyte)

Range: The minimum block size is 32,768 bytes. The maximum block size is half the size of
the SPD Engine data partition file.

Engine: SPD Engine only

Tip: When reading a data set, the block size can significantly affect performance. When
retrieving a large percentage of the data, a larger block size improves performance.
However, when retrieving a subset of the data such as with WHERE processing, a
smaller block size performs better.

Syntax
IOBLOCKSIZE=n

Required Argument
n

is the size in bytes of a block of observations.

Details
The I/O block size determines the amount of data that is physically transferred together
in an I/O operation. The larger the block size, the less I/O. The SPD Engine uses blocks
in memory to collect the observations to be written to or read from a data component
file. The IOBLOCKSIZE= option specifies the size of the block. (The actual size is
computed to accommodate the largest number of observations that fit in the specified
size of n bytes. Therefore, the actual size is a multiple of the observation length.)

The block size affects I/O operations for compressed, uncompressed, and encrypted data
sets. However, the effects are different and depend on the I/O operation.

• For a compressed data set, the block size determines how many observations are
compressed together, which determines the amount of data that is physically
transferred for both Read and Write operations. The block size is a permanent
attribute of the file. To specify a different block size, you must copy the data set to a
new data set, and then specify a new block size for the output file. For a compressed
data set, a larger block size can improve performance for both Read and Write
operations.

• For an encrypted data set, the block size is a permanent attribute of the file.

IOBLOCKSIZE= LIBNAME Statement Option 39

• For an uncompressed data set, the block size determines the size of the blocks that
are used to read the data from disk to memory. The block size has no affect when
writing data to disk. For an uncompressed data set, the block size is not a permanent
attribute of the file. That is, you can specify a different block size based on the Read
operation that you are performing. For example, reading data that is randomly
distributed or reading a subset of the data calls for a smaller block size because
accessing smaller blocks is faster than accessing larger blocks. In contrast, reading
data that is uniformly or sequentially distributed or that requires a full data set scan
works better with a larger block size.

Comparisons
The IOBLOCKSIZE= data set option overrides the IOBLOCKSIZE= LIBNAME
statement option.

Example: Using IOBLOCKSIZE=
/*IOBLOCKSIZE set to 64K */
libname employees spde ‘SAS-library’ ioblocksize=65536;

/*IOBLOCKSIZE set to 512M */
libname sales spde ‘SAS-library’ ioblocksize= 524288;

METAPATH= LIBNAME Statement Option
Specifies a list of paths in which to store overflow metadata (.mdf) component files for an SPD Engine data
set.

Engine: SPD Engine only

Syntax
METAPATH=('path1' <'path2'…>)

Required Argument
'path'

is a complete pathname in single or double quotation marks within parentheses.
Separate multiple arguments with spaces.

Details
The metadata component files for all of the data sets in a library must reside in the same
location specified in the primary path. If a new data set for a library is created, and the
space in the primary path is full, the SPD Engine cannot begin creating the metadata
component file in the primary path. The Create operation fails with an appropriate error
message. For more information, see “Storage of the Metadata Component Files” on page
14.

The METAPATH= option specifies space that is exclusively overflow space for metadata
component files. The metadata component file for each data set must reside in the
primary path. Overflow populates the METAPATH= location when the primary path is
full.

40 Chapter 3 • SPD Engine LIBNAME Statement Options

Note: If you are planning to store data in locally mounted drives and access the data
from a remote computer, use the remote pathname when you specify the LIBNAME.
If /data01 and /data02 are locally mounted drives on the localA computer, use
the pathnames /nfs/localA/data01 and /nfs/localA/data02 in the
LIBNAME statement.

PARTSIZE= LIBNAME Statement Option
Specifies the maximum size (in megabytes, gigabytes, or terabytes) that the data component partitions can
be. The value is specified when an SPD Engine data set is created. This size is a fixed size. This
specification applies only to the data component files.

Default: 128 MB

Interactions: “DATAPATH= LIBNAME Statement Option” on page 34
“MINPARTSIZE= System Option” on page 99

Engine: SPD Engine only

Syntax
PARTSIZE=n | nM | nG | nT

Required Argument
n | nM | nG | nT

is the size of the partition in megabytes, gigabytes, or terabytes. If n is specified
without M, G, or T, the default is megabytes. PARTSIZE=128 is the same as
PARTSIZE=128M. The maximum value is 8,796,093,022,207 megabytes.

Restriction This restriction applies only to 32-bit hosts with the following
operating systems: z/OS, Linux SLES 9 x86, and the Windows family.
If you create a data set with a partition size greater than or equal to 2
gigabytes, you cannot open the data set with any version of SPD
Engine prior to SAS 9.2. The following error message is written to the
SAS log: ERROR: Unable to open data file because its
data representation differs from the SAS session
data representation.

Details
SPD Engine data must be stored in multiple partitions for it to be subsequently processed
in parallel. Specifying PARTSIZE= forces the software to partition SPD Engine data
files at the specified size. The actual size of the partition is computed to accommodate
the maximum number of observations that fit in the specified size of n megabytes,
gigabytes, or terabytes.

By splitting (partitioning) the data portion of an SPD Engine data set into fixed-sized
files, the software can introduce a high degree of scalability for some operations. The
SPD Engine can spawn threads in parallel (for example, up to one thread per partition
for WHERE evaluations). Separate data partitions also enable the SPD Engine to process
the data without the overhead of file access contention between the threads. Because
each partition is one file, the trade-off for a small partition size is that an increased
number of files (for example, UNIX i-nodes) are required to store the observations.

PARTSIZE= LIBNAME Statement Option 41

Scalability limitations using PARTSIZE= depend on how you configure and spread the
file systems specified in the DATAPATH= option across striped volumes. (You should
spread each individual volume's striping configuration across multiple disk controllers or
SCSI channels in the disk storage array.) The goal for the configuration is to maximize
parallelism during data retrieval. For information about disk striping, see “I/O Setup and
Validation” under “SPD Engine” in Scalability and Performance at http://
support.sas.com/rnd/scalability.

The PARTSIZE= specification is limited by the SPD Engine system option
MINPARTSIZE=, which is usually set and maintained by the system administrator.
MINPARTSIZE= ensures that an inexperienced user does not arbitrarily create small
partitions, thereby generating a large number of files.

The partition size determines a unit of work for many of the parallel operations that
require full data set scans. But, more partitions does not always mean faster processing.
The trade-offs involve balancing the increased number of physical files (partitions)
required to store the data set against the amount of work that can be done in parallel by
having more partitions. More partitions means more open files to process the data set,
but a smaller number of observations in each partition. A general rule is to have 10 or
fewer partitions per data path and 3 to 4 partitions per CPU.

To determine an adequate partition size for a new SPD Engine data set, you should be
aware of the following:

• the types of applications that run against the data

• how much data you have

• how many CPUs are available to the applications

• which disks are available for storing the partitions

• the relationships of these disks to the CPUs

For example, if each CPU controls only one disk, then an appropriate partition size
would be one in which each disk contains approximately the same amount of data. If
each CPU controls two disks, then an appropriate partition size would be one in which
the load is balanced. Each CPU does approximately the same amount of work.

Note: The PARTSIZE= value for a data set cannot be changed after a data set is created.
To change PARTSIZE=, you must re-create the data set and specify a different
PARTSIZE= value in the LIBNAME statement or on the new (output) data set.

Comparisons
The PARTSIZE= data set option overrides the PARTSIZE= LIBNAME statement option.

Example: Specifying the Partition Size
When you specify the partition size in the LIBNAME statement, you have to select a
size that is appropriate for most of the data sets stored in that library. For example,
suppose you have an 8-disk configuration. The smallest data set has 20 gigabytes of
data, the largest has 50 gigabytes of data, and the remaining data sets have 36 gigabytes
of data each. A partition size of 1250M is optimal for a 36-gigabyte data set (four
partitions per disk). The 20-gigabyte data set uses two partitions per disk, and the 50-
gigabyte data set uses five partitions per disk.

libname sales spde '/primdisk' partsize=1250M
datapath=('/disk01' '/disk02' '/disk03' '/disk04'
'/disk05' '/disk06' '/disk07' '/disk08');

42 Chapter 3 • SPD Engine LIBNAME Statement Options

http://support.sas.com/rnd/scalability
http://support.sas.com/rnd/scalability

STARTOBS= LIBNAME Statement Option
Specifies the starting observation number in a user-defined range of observations to be processed.

Default: The first observation in the data set

Restrictions: Use STARTOBS= with input data sets only
Cannot be used with the OBS= system or data set option or with the FIRSTOBS=
system or data set option

Interactions: “STARTOBS= Data Set Option” on page 80
“ENDOBS= LIBNAME Statement Option” on page 35
“ENDOBS= Data Set Option” on page 67

Engine: SPD Engine only

Syntax
STARTOBS=n

Required Argument
n

is the number of the starting observation.

Details
By default, the SPD Engine processes all of the observations in the entire data set unless
you specify a range of observations with the STARTOBS= and ENDOBS= options. If
the ENDOBS= option is used without the STARTOBS= option, the implied value of
STARTOBS= is 1. When both options are used together, the value of STARTOBS= must
be less than the value of ENDOBS=.

In contrast to the default Base SAS engine option FIRSTOBS=, the STARTOBS= and
ENDOBS= SPD Engine options can be used in the LIBNAME statement.

Note: FIRSTOBS= default Base SAS engine option is not supported by the SPD
Engine. The OBS= system option and the OBS= data set option cannot be used with
STARTOBS= or ENDOBS= data set or LIBNAME options.

(See SPD Engine Data Set Options on page 47 for information about using the
STARTOBS= data set option in WHERE processing.)

Comparisons
The STARTOBS= data set option overrides the STARTOBS= LIBNAME statement
option.

Example: Using the WHERE Expression
The following example prints the five observations that were qualified by the WHERE
expression (age >13 in PROC PRINT). The five observations are out of the six
observations that were processed, starting with the second observation in the data set:

libname growth spde 'SAS-library' startobs=2;
data growth.teens;

STARTOBS= LIBNAME Statement Option 43

 input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;
proc print data=growth.teens;
 where age >13;
run;

The output is shown:

Output 3.4 STARTOBS=

TEMP= LIBNAME Statement Option
Specifies to store the library in a temporary subdirectory of the primary path.

Default: NO

Engine: SPD Engine only

Syntax
TEMP=YES | NO

Required Arguments
YES

specifies to create the temporary subdirectory.

NO
specifies not to create a temporary subdirectory.

44 Chapter 3 • SPD Engine LIBNAME Statement Options

Details
The TEMP= option creates a temporary subdirectory of the primary directory that was
named in the LIBNAME statement. The subdirectory and all component files are deleted
at the end of the session.

You can use TEMP= with the SAS option USER= to store temporary data sets that can
be referenced with a single-level name.

Note: When using the SIGNON statement in SAS/CONNECT software, the
INHERITLIB= option cannot refer to an SPD Engine library that was defined with
the TEMP= option.

Example: Creating a Temporary Library
The following example illustrates two features:

• the use of the TEMP= LIBNAME option to create a temporary library

• the use of the USER= system option to enable the use of single-level table names for
SPD Engine tables

A directory is created under MyData. The MasterCopy data set has its metadata file
stored in a subdirectory of MyData. The data and index for MasterCopy are created in
the locations specified in the DATAPATH= and INDEXPATH= options.

libname perm <masterdata>
libname mywork spde 'mydata'
 datapath=('/data01/mypath' '/data02/mypath' '/data03/mypath' '/data04/mypath')
 indexpath=('index/mypath') TEMP=YES;
option user=mywork;
data mastercopy (index=(lastname));
 set perm.customer;
 where region='W';
run;

TEMP= LIBNAME Statement Option 45

46 Chapter 3 • SPD Engine LIBNAME Statement Options

Chapter 4

SPD Engine Data Set Options

Introduction to SPD Engine Data Set Options . 47

Syntax . 48

SPD Engine Data Set Options List . 48

SAS Data Set Options That Behave Differently with the SPD
Engine Than with the Default Base SAS Engine . 49

SAS Data Set Options Not Supported by the SPD Engine . 50

Dictionary . 50
ALIGN= Data Set Option . 50
ASYNCINDEX= Data Set Option . 53
BYNOEQUALS= Data Set Option . 54
BYSORT= Data Set Option . 57
COMPRESS= Data Set Option . 60
ENCRYPT= Data Set Option . 62
ENCRYPTKEY= Data Set Option . 65
ENDOBS= Data Set Option . 67
IDXBY= Data Set Option . 70
IDXWHERE= Data Set Option . 71
IOBLOCKSIZE= Data Set Option . 73
LISTFILES= Data Set Option . 74
PADCOMPRESS= Data Set Option . 77
PARTSIZE= Data Set Option . 78
STARTOBS= Data Set Option . 80
SYNCADD= Data Set Option . 83
THREADNUM= Data Set Option . 86
UNIQUESAVE= Data Set Option . 87
WHERENOINDEX= Data Set Option . 90

Introduction to SPD Engine Data Set Options
Specifying data set options for the SPD Engine is the same as specifying data set options
for the default Base SAS engine or SAS/ACCESS engines. This section provides details
about data set options that are used only with the SPD Engine. The default Base SAS
engine data set options that affect the SPD Engine are also listed.

When using the options, remember that the value of the data set option overrides the
value of its corresponding LIBNAME option.

47

Syntax
(option-1=value-1 <(option-2=value-2>...)

specifies a data set option in parentheses after a SAS data set name. To specify several
data set options, separate them with spaces.

SPD Engine Data Set Options List
ALIGN=

specifies variable alignment.

ASYNCINDEX=
specifies to create indexes in parallel when creating multiple indexes on an SPD
Engine data set.

BYNOEQUALS=
specifies the index output order of data set observations that have identical values for
the BY variable.

BYSORT=
specifies the SPD Engine to perform an automatic sort when it encounters a BY
statement. BYSORT= is also a LIBNAME statement option.

COMPRESS=
specifies to compress SPD Engine data sets on disk as they are being created.
COMPRESS= is also a LIBNAME statement option.

Note: Compression and encryption are mutually exclusive in the SPD Engine.

ENCRYPT=
specifies whether to encrypt an output SPD Engine data set.

Note: Compression and encryption are mutually exclusive in the SPD Engine.

ENCRYPTKEY=
specifies the key value for AES encryption.

ENDOBS=
specifies the end observation number in a user-defined range of observations to be
processed. ENDOBS= is also a LIBNAME statement option.

IDXBY=
specifies whether to use an index when processing a BY statement in the SPD
Engine. IDXBY= is also a LIBNAME statement option.

IDXWHERE=
specifies whether to use an index when processing a WHERE expression in the SPD
Engine.

IOBLOCKSIZE=
specifies the size in bytes of a block of observations to be compressed.
IOBLOCKSIZE= is also a LIBNAME statement option.

LISTFILES=
specifies whether the CONTENTS procedure lists the complete pathnames of all of
the component files in an SPD Engine data set.

48 Chapter 4 • SPD Engine Data Set Options

PADCOMPRESS=
specifies the number of bytes to add to compressed blocks in a data set opened for
OUTPUT or UPDATE.

PARTSIZE=
specifies the maximum size that the data component partitions can be. PARTSIZE=
is also a LIBNAME statement option.

STARTOBS=
specifies the starting observation number in a user-defined range of observations to
be processed. STARTOBS= is also a LIBNAME statement option.

SYNCADD=
specifies to process one observation at a time or a block of observations at a time.

THREADNUM=
specifies the maximum number of threads to use for SPD Engine processing.

UNIQUESAVE=
specifies to save (in a separate file) any observations that were rejected because of
nonunique key values during an append or insert to a data set with unique indexes
when SYNCADD=NO.

WHERENOINDEX=
specifies a list of indexes to exclude when making WHERE expression evaluations.

SAS Data Set Options That Behave Differently
with the SPD Engine Than with the Default Base
SAS Engine

CNTLLEV=
only the value MEM is accepted

COMPRESS=
no user-supplied values are accepted

CAUTION:
Compression and encryption are mutually exclusive in the SPD Engine. If
you are copying a default Base SAS engine data set to an SPD Engine data set
and the data set is compressed and encrypted, the compression is dropped. You
cannot create an SPD Engine data set with both encryption and compression.

DLDMGACTION=
does not support DLDMGACTION=NOINDEX, but does support ABORT, FAIL,
PROMPT, and REPAIR.

ENCRYPT=
encrypts data files

CAUTION:
Compression and encryption are mutually exclusive in SPD Engine.

SAS Data Set Options That Behave Differently with the SPD Engine Than with the
Default Base SAS Engine 49

SAS Data Set Options Not Supported by the SPD
Engine

• BUFNO=

• BUFSIZE=

• ENCODING=

• EXTENDOBSCOUNTER=

• FIRSTOBS=

• GENMAX=

• GENNUM=

• IDXNAME=

• OUTREP=

• POINTOBS=

• REUSE=

• TOBSNO=

Dictionary

ALIGN= Data Set Option
specifies variable alignment.

Valid in: DATA step and PROC step

Default: YES

Restriction: Use only with SPD Server

Engine: SPD Engine only

Syntax
ALIGN=YES | NO

Required Arguments
YES

enables variable alignment.

NO
disables variable alignment to allow the SPD Engine data set to be compatible with
the SPD Server.

50 Chapter 4 • SPD Engine Data Set Options

Details

Variable Alignment
Base SAS imposes proper numeric data alignment on an observation on disk by the
careful arrangement of the variables within the observation. Like the default Base SAS
engine, the SPD Engine ensures that all of the numeric values are grouped together at the
beginning of the observation. It also ensures that the total observation length is an even
multiple of 8-bytes by adding extra-padding bytes at the end of the observation when
necessary. The SAS memory system ensures that all allocated memory starts on an 8-
byte boundary and that all of the numeric values are 8 bytes long. Grouping the numeric
values together at the beginning of the observation ensures that they will all be properly
aligned and can be used directly from the memory.

An observation in an SPD Engine data set is read from disk into memory. All of the
bytes are read at once, and their relative alignment is maintained in memory. For
maximum performance when accessing that observation data, all numeric data values
need to be properly aligned. Therefore, the need to move the values to a new location is
avoided. The normal behavior of the SPD engine is to ensure that all of the numeric
values in an observation are aligned on an 8-byte boundary when written to disk. This
allows the SPD engine to retrieve the observation data from disk and store it in memory.
The SPD Engine application uses the observation data directly from that location
without the need to move it.

Using the SPD Server
The SPD Server does not support the data alignment feature. Data sets created by the
SPD Engine that are used by the SPD Server must be created with data alignment
disabled. Using the ALIGN=NO option causes the data stored in the data set to not be
aligned. As a result, the data must be moved from its original memory location that it
was read into and into a different memory location that is aligned.

The purpose of the ALIGN=NO data set option is to specify that no data alignment is
done by the SPD Engine. This is not useful in most situations, but it is necessary when
using the SPD Server. The SPD Server does not support variable alignment capability. In
some situations, the SPD Server will refuse to operate on a data set that has aligned
variables.

CAUTION:
Do not use the ALIGN=NO option unless the data set is destined for the SPD
Server. Unaligned variable data will cause a significant decrease in performance
when processed by Base SAS.

Examples

Example 1: Data Set with Variable Alignment
The first data set shows the default behavior—it has aligned variables. Note that the
observation length is not the sum of the variable lengths. The observation length has
been rounded up to be an even multiple of 8. Also, the variables have been rearranged so
that the numeric variables come first in the observation.

ALIGN= Data Set Option 51

Log 4.1 Data Set with Variable Alignment

data testdata.size;
 length text $10 width 8 chars 8;
 text='Zero'; width=1; chars=4; output;
 text='Ten'; width=2; chars=3; output;
 text='Twenty'; width=2; chars=6; output;
run;

NOTE: The data set TESTDATA.SIZE has 3 observations and 3 variables.

proc sql;
 select obslen
 from dictionary.tables
 where memname="SIZE";

 Observation
 Length

 32

 select varnum, name, npos, length
 from dictionary.columns
 where memname="SIZE"
 order by npos;

 Column
 Number Column Column
 in Table Column Name Position Length
 --
 2 width 0 8
 3 chars 8 8
 1 text 16 10

quit;

/* --- */

data testdata.size (align=no);
 length text $10 width 8 chars 8;
 text='Zero'; width=1; chars=4; output;
 text='Ten'; width=2; chars=3; output;
 text='Twenty'; width=2; chars=6; output;
run;

NOTE: The data set TESTDATA.SIZE has 3 observations and 3 variables.

Example 2: Data Set without Variable Alignment
The second data set is identical except that the variables are not aligned. Note that the
observation length is just the sum of the variable lengths. The observation length is not
rounded to an even multiple of 8-bytes. The variables appear in the order in which they
were encountered in the DATA step in the LENGTH statement. The variables were not
rearranged for alignment.

52 Chapter 4 • SPD Engine Data Set Options

Log 4.2 Data Set without Variable Alignment

data testdata.size (align=no);
 length text $10 width 8 chars 8;
 text='Zero'; width=1; chars=4; output;
 text='Ten'; width=2; chars=3; output;
 text='Twenty'; width=2; chars=6; output;
run;

NOTE: The data set TESTDATA.SIZE has 3 observations and 3 variables.

proc sql;
 select obslen
 from dictionary.tables
 where memname="SIZE";

 Observation
 Length

 26

 select varnum, name, npos, length
 from dictionary.columns
 where memname="SIZE"
 order by npos;

 Column
 Number Column Column
 in Table Column Name Position Length
 --
 1 text 0 10
 2 width 10 8
 3 chars 18 8
quit;

NOTE: The data set TESTDATA.SIZE has 3 observations and 3 variables.

ASYNCINDEX= Data Set Option
Specifies to create indexes in parallel when creating multiple indexes on an SPD Engine data set.

Valid in: DATASETS procedure or with the INDEX data set option

Default: NO

Engine: SPD Engine only

Syntax
ASYNCINDEX=YES | NO

Required Arguments
YES

creates the indexes in parallel (asynchronously).

NO
creates one index at a time (synchronously).

ASYNCINDEX= Data Set Option 53

Details
The SPD Engine can create multiple indexes with a single scan of a data set. The SPD
Engine spawns a single thread for each index created, and then processes the threads
simultaneously. Although creating indexes in parallel is much faster than scanning the
data set for each index, the default for this option is NO because parallel index creation
requires extra utility space to store the sorting files and requires additional memory. If
index creation fails due to insufficient resources, you can do one or both of the
following:

• Increase the size of the utility file space using the SPDEUTILLOC= system option.

• Set the SAS system option to MEMSIZE=01 and increase the utility space that is
used for index sorting using the SPDEINDEXSORTSIZE= system option.

Example: Creating Indexes in Groups
The DATASETS procedure has the flexibility to use batched parallel index creation
using multiple MODIFY groups. Instead of creating all of the indexes at once, which
would require a significant amount of space, you can create the indexes in groups as
shown in the following example. Indexes PatientNo and PatientClass are created
together as are the indexes LastName and FirstName. The other indexes are created
serially.

proc datasets lib=main;
 modify patients(asyncindex=yes);
 index create PatientNo PatientClass;
 run;
 modify patients(asyncindex=yes);
 index create LastName FirstName;
 run;
 modify patients(asyncindex=no);
 index create FullName=(LastName FirstName)
 ClassSex=(PatientClass PatientSex);
 run;
quit;

BYNOEQUALS= Data Set Option
Specifies whether the output order of data set observations that have identical values for the BY variable is
guaranteed to be in the data set order.

Valid in: DATA step and PROC step

Used by: BYSORT=YES data set option

Default: NO

Engine: SPD Engine only

Syntax
BYNOEQUALS=YES | NO

1 For z/OS, increase the REGION size.

54 Chapter 4 • SPD Engine Data Set Options

Required Arguments
YES

does not guarantee that the output order of data set observations that have identical
values for the BY variable is in data set order.

NO
guarantees that the output order of data set observations that have identical values for
the BY variable is in data set order.

Details
When a group of observations that have identical values for the BY statement is output,
the order of the observations in the output is the same as the data set order. This happens
because the default is BYNOEQUALS=NO. By specifying YES, the processing time is
decreased, but the observations are not guaranteed to be output in the data set order.

The data set or LIBNAME option BYSORT= must be YES (the default) because the
BYNOEQUALS= option has no effect when BYSORT=NO.

The following table shows when the SPD Engine preserves physical order in the output:

Table 4.1 SPD Engine Preserves Physical Order

Condition: Data Set Order Preserved?

If BY is present YES (BYNOEQUALS=NO and
BYSORT=YES by default)

If BY is present and BYNOEQUALS=YES NO

If BY is present and BYSORT=NO YES (because no automatic sort occurs)

If neither BY nor WHERE is present YES

If WHERE is present NO

Examples

Example 1: BYNOEQUALS=YES
In the following example, the observations that have identical BY values on the key
variable are output in unpredictable order because BYNOEQUALS=YES:

title 'With BYNOEQUALS=YES';
proc print data=labs.performance(bynoequals=yes) noobs;
 by score;
run;

The output is shown:

BYNOEQUALS= Data Set Option 55

Output 4.1 BYNOEQUALS=YES

Example 2: BYNOEQUALS=NO
The following example shows the output with BYNOEQUALS=NO:

title 'With BYNOEQUALS=NO;
proc print data=labs.performance(bynoequals=no) noobs;
 by score;
run;

The output is shown:

56 Chapter 4 • SPD Engine Data Set Options

Output 4.2 BYNOEQUALS=NO

BYSORT= Data Set Option
Specifies the SPD Engine to perform an automatic sort when it encounters a BY statement.

Valid in: DATA step and PROC step

Default: YES

BYSORT= Data Set Option 57

Interaction: “BYNOEQUALS= Data Set Option” on page 54

Engine: SPD Engine only

Syntax
BYSORT=YES | NO

Required Arguments
YES

specifies to automatically sort the data based on the BY variables when a BY
statement is encountered instead of sorting the data ahead of time.

NO
specifies not to sort the data based on the BY variables. Specifying NO means that
the data must already be sorted before the BY statement. Indexes are not used.

Details
DATA or PROC step processing using the default Base SAS engine requires that if there
is no index or if the observations are not in order, the data set must be sorted before a BY
statement is issued. In contrast, by default, the SPD Engine sorts the data returned to the
application if the observations are not in order. Unlike PROC SORT, which creates a
new sorted data set, the SPD Engine's automatic sort does not change the permanent data
set and does not create a new data set. However, utility file space is used. For more
information, see “SPDEUTILLOC= System Option” on page 102.

The default is BYSORT=YES. A BYSORT=YES argument enables the automatic sort,
which outputs the observations in BY group order. If the data set option
BYNOEQUALS=YES, then the observations within a group might be output in a
different order from the order in the data set. Set BYNOEQUALS=NO to retain data set
order.

The BYSORT=NO argument means that the data must already be sorted before the BY
statement. Sorting can be from a previous PROC SORT or from the data set having been
created in BY variable order. An error occurs if the data set is not sorted. When
BYSORT=NO, grouped data is delivered to the application in data set order. Indexes are
not used to retrieve the observations in BY variable order. The data set option
BYNOEQUALS= has no effect when BYSORT=NO.

If you specify the BYSORT= option in the LIBNAME statement, it can be overridden by
specifying BYSORT= in the PROC or DATA steps. Set BYSORT=YES in the DATA or
PROC step, for input opens, to override BYSORT=NO in the LIBNAME statement. The
point is that BYSORT=NO instructs the engine to do nothing to sort the data.

When you use the BYSORT=YES and the IDXWHERE= data set options, the following
messages are written to the SAS log if you set the MSGLEVEL=I SAS system option:

• If IDXWHERE=YES and there is an index on the BY variable, the index is used to
order the rows of the table. The following message is written to the SAS log:

Note: BY ordering was produced by using an index for table tablename.

• If IDXWHERE=NO or IDXWHERE=YES and there is no index on the BY variable,
SPD Engine performs an automatic sort to order the rows of the table. The following
message is written to the SAS log:

Note: BY ordering was produced by performing an automatic sort on
 table tablename.

58 Chapter 4 • SPD Engine Data Set Options

Comparisons
The BYSORT= data set option overrides the BYSORT= LIBNAME statement option.

Examples

Example 1: Group Formatting with BYSORT=YES by Default
libname growth spde 'SAS-library';
data growth.teens;
 input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;
proc print data=growth.teens; by sex;
run;

Even though the data was not sorted using PROC SORT, no error occurred because
BYSORT=YES is the default.

The output is shown:

Output 4.3 Group Formatting with BYSORT=YES by Default

BYSORT= Data Set Option 59

Example 2: BYSORT=NO
With BYSORT=NO in the PROC PRINT statement, SAS returns an error whenever
automatic sorting is suppressed (BYSORT=NO). The data must be sorted on the BY
variable before the BY statement (for example, by using PROC SORT).

libname growth spde 'SAS-library';
proc print data=growth.teens (bysort=no);
by sex;
run;
ERROR: Data set GROWTH.TEENS is not sorted in ascending sequence.
 The current BY-group has Sex = M and the next BY-group has Sex = F.
NOTE: The SAS System stopped processing this step because of errors.

COMPRESS= Data Set Option
Specifies to compress SPD Engine data sets on disk as they are being created.

Valid in: DATA step and PROC step

Default: NO

Restriction: Cannot be used with ENCRYPT=YES or ENCRYPT=AES

Interactions: “IOBLOCKSIZE= Data Set Option” on page 73
“PADCOMPRESS= Data Set Option” on page 77

Engine: SPD Engine only

Syntax
COMPRESS=NO | YES | CHAR | BINARY

Required Arguments
NO

performs no data set compression.

YES | CHAR
specifies that data in an SPD Engine data set be compressed in blocks by using RLE
(run-length encoding). RLE compresses data by reducing repeated runs of the same
character (including a blank space) to two-byte or three-byte representations.

BINARY
specifies that data in an SPD Engine data set be compressed in blocks by using RDC
(Ross Data Compression). RDC combines RLE and sliding window compression to
compress the file by representing repeated byte patterns more efficiently.

Note: This method is highly effective for compressing medium to large (several
hundred bytes or larger) blocks of binary data (character and numeric variables).

Details
When you specify COMPRESS=YES | BINARY | CHAR, the SPD Engine compresses,
by blocks, the data component file as it is created. To specify the size of the compressed
blocks, use the “IOBLOCKSIZE= Data Set Option” on page 73 when you create the
data set. To add padding to the newly compressed blocks, specify “PADCOMPRESS=

60 Chapter 4 • SPD Engine Data Set Options

Data Set Option” on page 77 when creating or updating the data set. For more
information, see “Compressing SPD Engine Data Sets” on page 18.

The SPD Engine does not support user-specified compression. If you are migrating a
default Base SAS engine data set that is both compressed and encrypted, the encryption
is retained, but the compression is dropped.

The CONTENTS procedure identifies the compress setting. If the data set is
compressed, PROC CONTENTS prints information about the compression. The
following example explains the Compressed Info fields in the CONTENTS procedure
output:

In general, COMPRESS=CHAR provides good compression when single bytes repeat;
COMPRESS=BINARY provides good compression when strings of bytes repeat. At the
same time, it is more costly to look for strings of bytes that repeat, than to look for single
bytes that repeat. For examples, see “Example 1: COMPRESS=CHAR” on page 62
and “Example 2: COMPRESS=BINARY” on page 62.

Output 4.4 PROC CONTENTS Compressed Section

Number of compressed blocks
number of compressed blocks that are required to store data.

Raw data blocksize
compressed block size in bytes calculated from the size specified in the
IOBLOCKSIZE= data set option. It is the largest multiple of the observation length
that gets in the block size.

Number of blocks with overflow
number of compressed blocks that needed more space. When data is updated and the
compressed new block is larger than the compressed old block, an overflow block
fragment is created.

Max overflow chain length
largest number of overflows for a single block. For example, the maximum overflow
chain length would be 2 if a compressed block was updated and became larger, and
then updated again to a larger size.

Block number for max chain
number of the block containing the largest number of overflow blocks.

Min overflow area
minimum amount of disk space that an overflow requires.

COMPRESS= Data Set Option 61

Max overflow area
maximum amount of disk space that an overflow requires.

Accessing compressed files usually requires more processing time. The files have to be
decompressed before reading them and, if updating, they have to be compressed again
when written to disk.

Comparisons
The COMPRESS= data set option overrides the COMPRESS= LIBNAME statement
option and the COMPRESS= system option.

Examples

Example 1: COMPRESS=CHAR

data mylib.CharRepeats(compress=char);
 length ca $ 200;
 do i=1 to 100000;
 ca='aaaaaaaaaaaaaaaaaaaaaa';
 cb='bbbbbbbbbbbbbbbbbbbbbb';
 cc='cccccccccccccccccccccc';
 output;
 end;
run;

The following message is written to the SAS log:

NOTE: Compressing data set MYLIB.CHARREPEATS decreased size by 88.55 percent.
 Compressed is 45 pages; un-compressed would require 393 pages.

Example 2: COMPRESS=BINARY
data mylib.StringRepeats(compress=binary);
 length cabcd $ 200;
 do i=1 to 1000000;
 cabcd='abcdabcdabcdabcdabcdabcdabcdabcd';
 cefgh='efghefghefghefghefghefghefghefgh';
 cijkl='ijklijklijklijklijklijklijklijkl';
 output;
 end;
run;

The following message is written to the SAS log:

NOTE: Compressing data set MYLIB.STRINGREPEATS decreased size by 70.27 percent.
 Compressed is 1239 pages; un-compressed would require 4167 pages.

ENCRYPT= Data Set Option
Specifies whether to encrypt an output SPD Engine data set.

Valid in: DATA step and PROC step

62 Chapter 4 • SPD Engine Data Set Options

Default: NO

Restrictions: Use only with output data sets
ENCRYPT=YES or ENCRYPT=AES cannot be used with COMPRESS=

Syntax
ENCRYPT= AES | NO | YES

Syntax Description
AES

encrypts the data set using the AES (Advanced Encryption Standard) algorithm. AES
provides stronger encryption using SAS/SECURE software, which is included with
Base SAS software. You must use the ENCRYPTKEY= data set option when using
ENCRYPT=AES. For more information, see “ENCRYPTKEY= Data Set Option” on
page 65.

CAUTION Record all ENCRYPTKEY= key values if you specify ENCRYPT=AES.
If you forget the ENCRYPTKEY= key value, you lose your data. SAS
cannot assist you in recovering the ENCRYPTKEY= key value. The
following note is written to the log:

Note: If you lose or forget the ENCRYPTKEY= key value, there will
be no way to open the file or recover the data.

NO
does not encrypt the data set.

YES
encrypts the data set using the SAS Proprietary algorithm. This encryption method
uses passwords that are stored in the data set. At a minimum, you must specify the
READ= or the PW= data set option at the same time that you specify
ENCRYPT=YES. Because the encryption method uses passwords, you cannot
change any password on an encrypted data set without re-creating the data set.

CAUTION:
Record all passwords if you specify ENCRYPT=YES. If you forget a password,
you cannot reset it without assistance from SAS. The process is time-consuming
and resource-intensive.

Details
Encryption and compression are mutually exclusive in SPD Engine.

You cannot create an SPD Engine data set with both encryption and compression. If you
use ENCRYPT=YES or ENCRYPT=AES and the COMPRESS= data set or LIBNAME
option, the following error is generated:

ERROR: The data set was not created because compression and
 encryption cannot both be specified.

You cannot copy a Base SAS data set that is both compressed and encrypted to an SPD
Engine library.

When using ENCRYPT=YES, the following rules apply:

• To copy an encrypted data set, the output engine must support encryption. Otherwise,
the data set is not copied.

ENCRYPT= Data Set Option 63

• If the data set is encrypted, all associated index files and metadata files are also
encrypted.

• Encryption requires approximately the same amount of CPU resources as
compression.

• You cannot use PROC CPORT on SAS Proprietary-encrypted data sets.

When using ENCRYPT=AES, the following rules apply:

• You must use the ENCRYPTKEY= data set option when creating a data set with
AES encryption.

• To copy an AES-encrypted data set, the output engine must support AES encryption.
Otherwise, the data set is not copied.

• If the data set is AES-encrypted, all associated index files are also AES-encrypted.

• Releases before SAS 9.4 cannot use an AES-encrypted data set.

• You use SAS/SECURE software, which is included with Base SAS software, to use
AES encryption.

You cannot change the ENCRYPTKEY= key value on an AES-encrypted data set
without re-creating the data set.

Examples

Example 1: Using ENCRYPT=YES Option
The following example uses the SAS Proprietary algorithm:

libname depta spde 'SAS-library';
data salary(encrypt=yes read=green);
 input name $ yrsal bonuspct;
datalines;
Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1
;

To use this data set, specify the Read password:

proc contents data=salary(read=green);
run;

Example 2: Using ENCRYPT=AES Option
The following example uses the AES algorithm:

data salary(encrypt=aes encryptkey=green);
 input name $ yrsal bonuspct;
 datalines;
Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1

To use this data set, specify the ENCRYPTKEY= key value:

64 Chapter 4 • SPD Engine Data Set Options

proc contents data=salary(encryptkey=green);
run;

Example 3: Copying AES-Encrypted Data Sets
The following are two examples of using ENCRYPTKEY= data set options and the
COPY procedure:

PROC COPY IN=inlib OUT=outlib ENCRYPTKEY=secret;
 SELECT abc (ENCRYPTKEY=secreta) DEF(ENCRYPTKEY=secretb)…

PROC COPY IN=inlib OUT=outlib;
 SELECT abc (ENCRYPTKEY=secreta) DEF(ENCRYPTKEY=secretb)…

ENCRYPTKEY= Data Set Option
Specifies a key value for AES encryption.

Valid in: DATA step and PROC step

Range: 1 to 64 bytes

Restrictions: Use with SAS 9.4 or later only
Use only with AES-encrypted data sets

Syntax
ENCRYPTKEY=key-value

Syntax Description
key-value

assigns an encrypt key value. You must use the ENCRYPTKEY= data set option
with ENCRYPT=AES. The key value can be up to 64-bytes long. You are able to
create an ENCRYPTKEY= key value with or without quotation marks using the
following rules:

no quotation marks

• alphanumeric characters and underscores only

• up to 64-bytes

• uppercase and lowercase letters

• must start with a letter

• no blank spaces

• is not case sensitive

encryptkey=key-value
encryptkey=key-value1

single quotation marks

• alphanumeric, special, and DBCS characters

ENCRYPTKEY= Data Set Option 65

• up to 64-bytes

• uppercase and lowercase letters

• is case sensitive

encryptkey='key-value'
encryptkey='1234*#mykey'

double quotation marks

• alphanumeric, special, and DBCS characters

• up to 64-bytes

• uppercase and lowercase letters

• enables macro resolution

• is case sensitive

encryptkey="key-value"
encryptkey="1234*#mykey"
%let mykey=abcdefghi12;
encryptkey=&key-value

When the ENCRYPTKEY= key value uses DBCS characters, the 64-byte limit
applies to the character string after it has been transcoded to UTF-8 encoding. You
can use the following DATA step to calculate the length in bytes of a key value in
DBCS:

data _null_;
 key=length(unicodec('key-value','UTF8'));
 put 'key length=' key;
run;

Note You cannot change the ENCRYPTKEY= key value on an AES-encrypted
data set without re-creating the data set.

Details
CAUTION:

You must remember the ENCRYPTKEY= key value. If you forget the
ENCRYPTKEY= key value, you lose your data. SAS cannot assist you in recovering
the ENCRYPTKEY= key value.

You must use the ENCRYPTKEY= data set option when creating or accessing an SPD
Engine data set with AES encryption.

The ENCRYPTKEY= data set option does not protect the data set from deletion or
replacement. Encrypted data sets can be deleted using any of the following scenarios
without having to specify a key value:

• the KILL option in PROC DATASETS

• the DROP statement in PROC SQL

• the DELETE procedure

The ENCRYPTKEY= data set option prevents access only to the contents of the data set.
To protect the data set from deletion or replacement, the data set must also contain an
ALTER= password.

66 Chapter 4 • SPD Engine Data Set Options

You must specify the ENCRYPTKEY= key value when you copy AES-encrypted data
sets. The key value follows the data set name in the SELECT statement. The following
example uses the SELECT statement:

copy in=OldLib out=NewLib;
 select salary(encryptkey=key-value);
run;

When working with data sets protected by the ENCRYPTKEY= key value in the
DATASETS procedure, you can specify the key value in the AGE, APPEND,
CONTENTS, and MODIFY statements. The ENCRYPTKEY= data set option can be
specified either in parentheses after the name of the SAS data set or after a forward
slash.

It is possible to use a macro variable as the ENCRYPTKEY= key value. To use a macro
variable, you must use double quotation marks. The following code defines a macro
variable:

%let secret=MyValue;

The following code uses the macro variable as the ENCRYPTKEY= key value:

data my.dsname(encrypt=aes encryptkey="&secret");

When you specify a macro variable as the ENCRYPTKEY= key value, you must enclose
the macro variable in double quotation marks. If you do not use the double quotation
marks, unpredictable results can occur.

Example: Using ENCRYPTKEY= Data Set Option
This example uses the ENCRYPT=AES option:

data spdelib.salary(encrypt=aes encryptkey=green);
 input name $ yrsal bonuspct;
 datalines;
Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1

To use this data set, specify the ENCRYPTKEY= key value:

proc contents data=spdelib.salary(encryptkey=green);
run;

ENDOBS= Data Set Option
Specifies the end observation number in a user-defined range of observations to be processed.

Valid in: DATA step and PROC step

Default: The last observation in the data set

Restrictions: Use ENDOBS= with input data sets only
Cannot be used with the OBS= system or data set option or the FIRSTOBS= system
and data set option

Interactions: “ENDOBS= LIBNAME Statement Option” on page 35
“STARTOBS= LIBNAME Statement Option” on page 43

ENDOBS= Data Set Option 67

“STARTOBS= Data Set Option” on page 80

Engine: SPD Engine only

Syntax
ENDOBS=n

Required Argument
n

is the number of the end observation.

Details

Specifying a Range of Observations
By default, the SPD Engine processes all of the observations in the entire data set unless
you specify a range of observations with the STARTOBS= or ENDOBS= options. If the
STARTOBS= option is used without the ENDOBS= option, the implied value of
ENDOBS= is the end of the data set. When both options are used together, the value of
ENDOBS= must be greater than the value of STARTOBS=.

The ENDOBS= data set option in the SPD Engine works the same way as the OBS=
data set option in the default Base SAS engine. The only difference is when ENDOBS=
is specified in a WHERE expression.

Using ENDOBS= with a WHERE Expression
When ENDOBS= is used in a WHERE expression, the ENDOBS= value represents the
last observation to process, rather than the number of observations to return. The
following examples show the difference.

Note: The OBS= system option and the OBS= data set option cannot be used with
STARTOBS= or ENDOBS= data set or LIBNAME options.

Comparisons
The ENDOBS= data set option overrides the ENDOBS= LIBNAME statement option.

Examples

Example 1: Using the ENDOBS= Data Set Option
A data set is created and processed by the SPD Engine with ENDOBS=5 option
specified. The WHERE expression is applied to the data set ending with observation
number 5. The PRINT procedure prints four observations, which are the observations
qualified by the WHERE expression.

libname growth spde 'SAS-library';
data growth.teens;
 input Name $ Sex $ Age Height Weight;
 list;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5

68 Chapter 4 • SPD Engine Data Set Options

James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.0
Alice F 14 65.1 91.0
William M 15 66.5 112.0
;
proc print data=growth.teens (endobs=5);
 where age >13;
 title 'WHERE age > 13 using SPD Engine';
run;

Output 4.5 ENDOBS=

Example 2: OBS= with SPD Engine
The same data set is processed with OBS=5 specified. PROC PRINT prints five
observations, which are all of the observations qualified by the WHERE expression,
ending with the fifth qualified observation.

libname growth spde 'SAS-library';
data growth.teens;
 input Name $ Sex $ Age Height Weight;
 list;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.1
Alice F 14 65.1 91.0
William M 15 66.5 112.0
;
proc print data=growth.teens (obs=5);
 where age >13;
 title 'WHERE age > 13 using V9';
run;

ENDOBS= Data Set Option 69

Output 4.6 OBS=

IDXBY= Data Set Option
Specifies whether to use an index when processing a BY statement in the SPD Engine.

Valid in: DATA step and PROC step

Default: YES

Engine: SPD Engine only

Syntax
IDXBY=YES | NO

Required Arguments
YES

uses an index when processing indexed variables in a BY statement.

Note: If the BY statement specifies more than one variable or the DESCENDING
option, then the index is not used, even if IDXBY=YES.

NO
does not use an index when processing indexed variables in a BY statement.

Note IDXBY=NO performs an automatic sort when processing a BY statement.

Details
When you use the IDXBY= data set option, make sure that you use the BYSORT=YES
option and that the BY variable is indexed.

In some cases, you might get better performance from the SPD Engine if you
automatically sort the data. To use the automatic sort, BYSORT=YES must be set and
you should specify IDXBY=NO.

Set the SAS system option MSGLEVEL=I so that the BY processing information is
written to the SAS log. When you use the IDXBY= data set option and the
BYSORT=YES option, the following messages are written to the SAS log:

70 Chapter 4 • SPD Engine Data Set Options

• If IDXBY=YES and there is an index on the BY variable, the index is used to order
the rows of the table. The following message is written to the SAS log:

 NOTE: BY ordering was produced by using an index for
 table tablename.

• If IDXBY=NO, the following message is written to the SAS log:

NOTE: BY ordering was produced by performing an automatic sort
 on table tablename.

Comparisons
The IDXBY= data set option overrides the IDXBY= LIBNAME statement option.

Examples

Example 1: Using the IDXBY=NO Data Set Option
options msglevel=i;
proc means data=permdata.customer(IDXBY=no);
 by sales;
 by state;
run;

The following message is written to the SAS log:

NOTE: BY ordering was produced by performing an automatic sort
 on table PERMDATA.customer.
NOTE: There were 2981 observations read from the data set
 PERMDATA.CUSTOMER.

Example 2: Using the IDXBY=YES Data Set Option
proc means data=permdata.customer(IDXBY=yes);
 var sales;
 by state;
run;

The following message is written to the SAS log:

NOTE: BY ordering was produced by using an index for table
 PERMDATA.customer.
NOTE: There were 2981 observations read from the data set
 PERMDATA.CUSTOMER.

IDXWHERE= Data Set Option
Specifies whether to use an index when processing a WHERE expression in the SPD Engine.

Valid in: DATA step and PROC step

Default: YES

Restriction: WHERENOINDEX= option cannot be used with IDXWHERE=NO option

Engine: SPD Engine only

IDXWHERE= Data Set Option 71

Syntax
IDXWHERE=YES | NO

Required Arguments
YES

uses an index when processing a WHERE expression.

NO
ignores an index when processing a WHERE expression.

Restriction You cannot use the IDXWHERE=NO option and the
WHERENOINDEX= option together.

Details
IDXWHERE= is used with the SPD Engine's WHERE expression planning software
called WHINIT. WHINIT tests the performance of index use with WHERE processing
in various applications. Set the SAS system option MSGLEVEL=I so that the WHERE
processing information is output to the SAS log.

When you use the IDXWHERE= data set option and the BYSORT=YES option, the
following messages are written to the SAS log:

• If IDXWHERE=YES and there is an index on the BY variable, the index is used to
order the rows of the table. The following message is written to the SAS log:

Note: BY ordering was produced by using an index for
table tablename.

• If IDXWHERE=NO or IDXWHERE=YES and there is no index on the BY variable,
SPD Engine performs an automatic sort to order the rows of the table. The following
message is written to the SAS log:

Note: BY ordering was produced by performing an
automatic sort on table tablename.

The SPD Engine uses WHINIT, a rules-based WHERE expression planner, to select the
most appropriate evaluation strategy for a query. The SAS system option MSGLEVEL=I
surfaces WHINIT messages to the SAS log that can help you determine whether one or
more indexes are used in a query. For more details about WHINIT, see
“SPDEWHEVAL= System Option” on page 104.

Note: Do not arbitrarily suppress index use when using WHERE and BY statements
together. You use a WHERE statement to filter the observations and a BY statement
to order the observations. The filtered observations qualified by the WHERE
statement are fed directly into a sort step as part of the parallel WHERE expression
evaluation. The final, ordered observation set is produced as the result. Index use in
WHERE processing greatly improves the filtering and feeding performance into the
sort step.

Examples

Example 1: Using WHINIT Log Output with IDXWHERE=NO
This example shows that evaluation strategy 2 is used in the WHERE expression
because IDXWHERE=NO was specified.

72 Chapter 4 • SPD Engine Data Set Options

Log 4.3 IDXWHERE=NO

34 options msglevel=i;
35 proc means data=permdata.customer(idxwhere=no);
36 var sales;
37 where state="CA";
38 run;
whinit: WHERE (sstate='CA')
whinit returns: ALL EVAL2
NOTE: There were 2981 observations read from the data set
 PERMDATA.CUSTOMER. WHERE state='CA';

Example 2: Using WHINIT Log Output with IDXWHERE=YES
This example shows that evaluation strategy 1 was used because IDXWHERE=YES was
specified.

Log 4.4 IDXWHERE=YES

39 proc means data=permdata.customer(idxwhere=yes);
40 var sales;
41 where state="CA";
42 run;
whinit: WHERE (sstate='CA')
 --
whinit: SBM-INDEX STATE uses 45% of segs (WITHIN maxsegratio 75%)
whinit returns: ALL EVAL1(w/SEGLIST)
NOTE: There were 2981 observations read from the data set
 PERMDATA.CUSTOMER. WHERE state='CA';

IOBLOCKSIZE= Data Set Option
Specifies the size in bytes of a block of observations to be used in an I/O operation.

Valid in: DATA step and PROC step

Default: 1,048,576 bytes (1 megabyte)

Range: The minimum block size is 32,768 bytes. The maximum block size is half the size of
the SPD Engine data partition file.

Restriction: When reading a data set, the block size can significantly affect performance. When
retrieving a large percentage of the data, a larger block size improves performance.
However, when retrieving a subset of the data such as with WHERE processing, a
smaller block size performs better.

Engine: SPD Engine only

Syntax
IOBLOCKSIZE=n

Required Argument
n

is the size in bytes of a block of observations.

IOBLOCKSIZE= Data Set Option 73

Details
The I/O block size determines the amount of data that is physically transferred together
in an I/O operation. The larger the block size, the less I/O. The SPD Engine uses blocks
in memory to collect the observations to be written to or read from a data component
file. The IOBLOCKSIZE= data set option specifies the size of the block. (The actual
size is computed to accommodate the largest number of observations that fit in the
specified size of n bytes. Therefore, the actual size is a multiple of the observation
length.)

The block size affects I/O operations for compressed, uncompressed, and encrypted data
sets. However, the effects are different and depend on the I/O operation.

• For a compressed data set, the block size determines how many observations are
compressed together, which determines the amount of data that is physically
transferred for both Read and Write operations. The block size is a permanent
attribute of the file. To specify a different block size, you must copy the data set to a
new data set, and then specify a new block size for the output file. For a compressed
data set, a larger block size can improve performance for both Read and Write
operations.

• For an encrypted data set, the block size is a permanent attribute of the file.

• For an uncompressed data set, the block size determines the size of the blocks that
are used to read the data from disk to memory. The block size has no affect when
writing data to disk. For an uncompressed data set, the block size is not a permanent
attribute of the file. That is, you can specify a different block size based on the Read
operation that you are performing. For example, reading data that is randomly
distributed or reading a subset of the data calls for a smaller block size because
accessing smaller blocks is faster than accessing larger blocks. In contrast, reading
data that is uniformly or sequentially distributed or that requires a full data set scan
works better with a larger block size.

Comparisons
The IOBLOCKSIZE= data set option overrides the IOBLOCKSIZE= LIBNAME
statement option.

Example: Using IOBLOCKSIZE=
/*IOBLOCKSIZE set to 64K */
data sport.maillist(ioblocksize=65536);
/*IOBLOCKSIZE set to 32K */
data sport.maillist(ioblocksize=32768 compress=yes);

LISTFILES= Data Set Option
Specifies whether the CONTENTS procedure lists the complete pathnames of all of the component files of
an SPD Engine data set.

Valid in: PROC CONTENTS only

Default: NO

Engine: SPD Engine only

74 Chapter 4 • SPD Engine Data Set Options

Syntax
LISTFILES=YES | NO

Required Arguments
YES

lists the complete pathnames of all of the component files of an SPD Engine data set.

NO
does not list the pathnames.

Details
The LISTFILES= data set option is used only with the SPD Engine. The CONTENTS
procedure is used to list the complete pathnames of all of the component files of an SPD
Engine data set.

Example: LISTFILES Option
proc contents data=company.depts (listfiles=yes);

The following CONTENTS procedure output shows the complete pathnames of all of
the component files:

Output 4.7 CONTENTS Procedure—Output Section 1

LISTFILES= Data Set Option 75

Output 4.8 CONTENTS Procedure—Output Section 2

76 Chapter 4 • SPD Engine Data Set Options

Output 4.9 CONTENTS Procedure—Output Section 3

PADCOMPRESS= Data Set Option
Specifies the number of bytes to add to compressed blocks in a data set opened for OUTPUT or UPDATE.

Valid in: DATA step and PROC step

Default: 0

Interactions: “COMPRESS= Data Set Option” on page 60
“IOBLOCKSIZE= Data Set Option” on page 73

Engine: SPD Engine only

Syntax
PADCOMPRESS=n

Required Argument
n

is the number of bytes to add.

PADCOMPRESS= Data Set Option 77

Details
Compressed SPD Engine data sets occupy blocks of space on the disk. The size of a
block is derived from the IOBLOCKSIZE= data set option specified when the data set is
created. When the data set is updated, a new block fragment might need to be created to
hold the update. More updates might then create new fragments, which, in turn,
increases the number of I/O operations needed to read a data set.

By increasing the block padding in certain situations where many updates to the data set
are expected, fragmentation can be kept to a minimum. However, adding padding can
waste space if you do not update the data set.

You must weigh the cost of padding all compression blocks against the cost of possible
fragmentation of some compression blocks.

Specifying the PADCOMPRESS= data set option when you create or update a data set
adds space to all of the blocks as they are written back to the disk. The
PADCOMPRESS= setting is not retained in the data set's metadata.

PARTSIZE= Data Set Option
Specifies the maximum size (in megabytes, gigabytes, or terabytes) that the data component partitions can
be. The value is specified when an SPD Engine data set is created. This size is a fixed size. This
specification applies only to the data component files.

Valid in: DATA step and PROC step

Used by: MINPARTSIZE= system option

Default: 128 MB

Interaction: “DATAPATH= LIBNAME Statement Option” on page 34

Engine: SPD Engine only

Syntax
PARTSIZE=n | nM | nG | nT

Required Argument
n | nM | nG | nT

is the size of the partition in megabytes, gigabytes, or terabytes. If n is specified
without M, G, or T, the default is megabytes. For example, PARTSIZE=128 is the
same as PARTSIZE=128M. The maximum value is 8,796,093,022,207 megabytes.

Restriction This restriction applies only to 32-bit hosts with the following
operating systems: z/OS, Linux SLES 9 x86, and the Windows family.
In SAS 9.3, if you create a data set with a partition size greater than or
equal to 2 gigabytes, you cannot open the data set with any version of
SPD Engine prior to SAS 9.2. The following error message is written
to the SAS log: ERROR: Unable to open data file because
its data representation differs from the SAS
session data representation.

78 Chapter 4 • SPD Engine Data Set Options

Details
Multiple partitions are necessary to read the data in parallel. The option PARTSIZE=
forces the software to partition SPD Engine data files at the specified size. The actual
size of the partition is computed to accommodate the maximum number of observations
that fit in the specified size of n megabytes, gigabytes, or terabytes. If you have a table
with an observation length greater than 65K, you might find that the PARTSIZE= that
you specify and the actual partition size do not match. To get these numbers to match,
specify a PARTSIZE= that is a multiple of 32 and the observation length.

By splitting (partitioning) the data portion of an SPD Engine data set into fixed-sized
files, the software can introduce a high degree of scalability for some operations. The
SPD Engine can spawn threads in parallel (for example, up to one thread per partition
for WHERE evaluations). Separate data partitions also enable the SPD Engine to process
the data without the overhead of file access contention between the threads. Because
each partition is one file, the trade-off for a small partition size is that an increased
number of files (for example, UNIX i-nodes) are required to store the observations.

Scalability limitations using PARTSIZE= depend on how you configure and spread the
file systems specified in the DATAPATH= option across striped volumes. (You should
spread each individual volume's striping configuration across multiple disk controllers or
SCSI channels in the disk storage array.) The goal for the configuration, at the hardware
level, is to maximize parallelism during data retrieval. For information about disk
striping, see “I/O Setup and Validation” under “SPD Engine” in Scalability and
Performance at http://support.sas.com/rnd/scalability.

The PARTSIZE= specification is limited by the SPD Engine system option
MINPARTSIZE=, which is usually maintained by the system administrator.
MINPARTSIZE= ensures that an inexperienced user does not arbitrarily create small
partitions, thereby generating a large number of data files.

The partition size determines a unit of work for many of the parallel operations that
require full data set scans. But, more partitions does not always mean faster processing.
The trade-offs involve balancing the increased number of physical files (partitions)
required to store the data set against the amount of work that can be done in parallel by
having more partitions. More partitions means more open files to process the data set,
but a smaller number of observations in each partition. A general rule is to have 10 or
fewer partitions per data path, and 3 to 4 partitions per CPU. (Some operating systems
have a limit on the number of open files that you can use.)

To determine an adequate partition size for a new SPD Engine data set, you should be
aware of the following:

• the types of applications that run against the data

• how much data you have

• how many CPUs are available to the applications

• which disks are available for storing the partitions

• the relationships of these disks to the CPUs

For example, if each CPU controls only one disk, then an appropriate partition size
would be one in which each disk contains approximately the same amount of data. If
each CPU controls two disks, then an appropriate partition size would be one in which
the load is balanced. Each CPU does approximately the same amount of work.

Note: The PARTSIZE= value for a data set cannot be changed after a data set is created.
To change PARTSIZE=, you must re-create the data set and specify a different
PARTSIZE= value in the LIBNAME statement or on the new (output) data set.

PARTSIZE= Data Set Option 79

http://support.sas.com/rnd/scalability

Comparisons
The PARTSIZE= data set option overrides the PARTSIZE= LIBNAME statement option.

Example: Using PROC SQL
You have 100 gigabytes of data and 8 disks, so you can store 12.5 gigabytes per disk.
Optimally, you want 3 to 4 partitions per disk. A partition size of 3.125 gigabytes is
appropriate. So, you can specify PARTSIZE=3200M.

data salecent.sw (partsize=3200m);

Using the same amount of data, you anticipate the amount of data doubles within a year.
You can either specify the same PARTSIZE= and have about 7 partitions per disk, or you
can increase PARTSIZE= to 5000M and have 5 partitions per disk.

STARTOBS= Data Set Option
Specifies the starting observation number in a user-defined range of observations to be processed.

Valid in: DATA step and PROC step

Default: The first observation in the data set

Restrictions: Use STARTOBS= with input data sets only
Cannot be used with the OBS= system or data set option or with the FIRSTOBS=
system and data set option

Interactions: “STARTOBS= LIBNAME Statement Option” on page 43
“ENDOBS= LIBNAME Statement Option” on page 35
“ENDOBS= Data Set Option” on page 67

Engine: SPD Engine only

Syntax
STARTOBS=n

Required Argument
n

is the number of the starting observation.

Details

Specifying a Range of Observations
By default, the SPD Engine processes all of the observations in the entire data set unless
you specify a range of observations with the STARTOBS= and ENDOBS= options. If
the ENDOBS= option is used without the STARTOBS= option, the implied value of
STARTOBS= is 1. When both options are used together, the value of STARTOBS= must
be less than the value of ENDOBS=.

The STARTOBS= data set option in the SPD Engine works the same way as the
FIRSTOBS= SAS data set option in the default Base SAS engine. The only difference is
when STARTOBS= is specified in a WHERE expression.

80 Chapter 4 • SPD Engine Data Set Options

Note: The FIRSTOBS= SAS data set option is not supported by the SPD Engine. The
OBS= system option and the OBS= data set option cannot be used with the
STARTOBS= or ENDOBS= data set or LIBNAME options.

Using STARTOBS= with a WHERE Expression
When STARTOBS= is used in a WHERE expression, the STARTOBS= value represents
the first observation on which to apply the WHERE expression. Compare this value to
the default Base SAS engine data set option FIRSTOBS=, which specifies the starting
observation number within the subset of data qualified by the WHERE expression.

Comparisons
The STARTOBS= data set option overrides the STARTOBS= LIBNAME statement
option.

Examples

Example 1: STARTOBS= with SPD Engine
A data set is created and processed by the SPD Engine with STARTOBS=5 specified.
The WHERE expression is applied to the data set, beginning with observation number 5.
The PRINT procedure prints six observations, which are the observations qualified by
the WHERE expression.

libname growth spde 'SAS-library';
data growth.teens;
 input Name $ Sex $ Age Height Weight;
 list;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.1
Alice F 14 65.1 91.0
William M 15 66.5 112.0
Mike M 16 67.0 105.1
;
proc print data=growth.teens (startobs=5);
 where age >13;
 title 'WHERE age>13 using SPD Engine';
run;

STARTOBS= Data Set Option 81

Output 4.10 STARTOBS=

Example 2: FIRSTOBS= with the Default Base SAS Engine
The same data set is processed by the default Base SAS engine with FIRSTOBS=5
option specified. PROC PRINT prints five observations, which are all of the
observations qualified by the WHERE expression, starting with the fifth qualified
observation. FIRSTOBS= option is not supported in the SPD Engine.

libname growth v9 'SAS-library';
data growth.teens;
 input Name $ Sex $ Age Height Weight;
 list;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.1
Alice F 14 65.1 91.0
William M 15 66.5 112.0
Mike M 16 67.0 105.1
;
proc print data=growth.teens (firstobs=5);
 where age >13;
 title 'WHERE age>13 using the V9 Engine';
run;

82 Chapter 4 • SPD Engine Data Set Options

Output 4.11 Five Observations Printed

SYNCADD= Data Set Option
Specifies to process one observation at a time or multiple observations at a time when adding
observations.

Valid in: PROC SQL

Default: NO

Interaction: UNIQUESAVE=

Engine: SPD Engine only

Syntax
SYNCADD=YES | NO

Required Arguments
YES

processes a single observation at a time (synchronously).

NO
processes multiple observations at a time (asynchronously).

Details
With SYNCADD=YES, observations are processed one at a time. With PROC SQL, if
you are inserting observations into a data set with a unique index, and the SPD Engine
encounters an observation with a non-unique value, the following occurs:

• the add operation stops

• all transactions just added are backed out

• the original data set on disk is unchanged

Adding observations with SYNCADD=NO is obviously much faster. However, when
inserting a few observations into a data set with a unique index using PROC SQL, the
SPD Engine can back out all the observations if one duplicate value is found.
Specifically, the following occurs:

SYNCADD= Data Set Option 83

• the SPD Engine rejects the observation

• the SPD Engine continues processing

• a status code is issued only at the end of the Append or Insert operation

To save the rejected observations in a separate data set, set the UNIQUESAVE= data set
option to YES.

Example: Inserting Observations with Duplicate Values
into a Data Set with a Unique Index
In the following example, two identical data sets, WITH_NO and WITH_YES, are
created. Both have a unique index.

PROC SQL is used to insert three new observations, one of which has duplicate values.
The SYNCADD=YES option is used. PROC SQL stops when the duplicate values are
encountered and restores the data set.

PROC SQL is used again to insert these three new observations (as before). In this case,
the SYNCADD=NO option is used. The observation with duplicate values is rejected.
The SAS log is shown:

84 Chapter 4 • SPD Engine Data Set Options

Log 4.5 Inserting Observations

1 libname addlib spde 'c:\temp';
NOTE: Libref ADDLIB was successfully assigned as follows:
 Engine: SPDE
 Physical Name: c:\temp\
2
3 data addlib.with_no(index=(x /unique))
4 addlib.with_yes(index=(x /unique)) ;
5 input z $ 1-20 x y;
6 list;
7 datalines;

RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----
+----7----+----8----+
8 one 1 10
9 two 2 20
10 three 3 30
11 four 4 40
12 five 5 50
NOTE: The data set ADDLIB.WITH_NO has 5 observations and 3 variables.
NOTE: The data set ADDLIB.WITH_YES has 5 observations and 3 variables.

13 run;
14
15 proc sql;
16 insert into addlib.with_yes(syncadd=yes)
17 values('six_yes', 6, 60)
18 values('seven_yes', 2, 70)
19 values('eight_yes', 8, 80)
20 ;
ERROR: Duplicate values not allowed on index x for file WITH_YES.
NOTE: This insert failed while attempting to add data from VALUES clause 2 to
the data set.
NOTE: Deleting the successful inserts before error noted above to restore table
to a consistent
 state.
21 quit;
NOTE: The SAS System stopped processing this step because of errors.
22

23 proc sql;
24 insert into addlib.with_no(syncadd=no)
25 values('six_no', 6, 60)
26 values('seven_no', 2, 70)
27 values('eight_no', 8, 80)
28 ;
NOTE: 3 rows were inserted into ADDLIB.WITH_NO.

WARNING: Duplicate values not allowed on index x for file WITH_NO, 1
observations rejected.
29 quit;

30
31 proc compare data=addlib.with_no compare=addlib.with_yes;
32 run;

NOTE: There were 7 observations read from the data set ADDLIB.WITH_NO.
NOTE: There were 5 observations read from the data set ADDLIB.WITH_YES.

SYNCADD= Data Set Option 85

THREADNUM= Data Set Option
Specifies the maximum number of I/O threads the SPD Engine can spawn for processing an SPD Engine
data set.

Valid in: DATA step and PROC step

Default: The value of the SPDEMAXTHREADS= system option, if set; otherwise, the default
is two times the number of CPUs on your computer

Interaction: “SPDEMAXTHREADS= System Option” on page 101

Engine: SPD Engine only

Syntax
THREADNUM=n

Required Argument
n

specifies the number of threads.

Details
THREADNUM= enables you to specify the maximum number of I/O threads that the
SPD Engine spawns for processing an SPD Engine data set. The THREADNUM= value
applies to any of the following SPD Engine I/O processing:

• WHERE expression processing

• parallel index creation

• I/O requested by thread-enabled applications

Adjusting THREADNUM= enables the system administrator to adjust the level of CPU
resources the SPD Engine can use for any process. For example, in a 64-bit processor
system, setting THREADNUM=4 limits the process to, at most, four CPUs, thereby
enabling greater throughput for other users or applications.

When THREADNUM= is greater than 1, parallel processing is likely to occur.
Therefore, physical order might not be retained in the output.

You can also use this option to explore scalability for WHERE expression evaluations.

The SPDEMAXTHREADS= system option imposes an upper limit on the consumption
of system resources and constrains the THREADNUM= value.

Note: The SAS system option NOTHREADS does not affect the SPD Engine.

Note: Setting THREADNUM=1 means that no parallel processing occurs, which is
behavior consistent with the default Base SAS engine.

Example: Using %MACRO
The SPD Engine system option SPDEMAXTHREADS= is set to 128 for the session. A
SAS macro shows the effects of parallelism in the following example:

%macro dotest(maxthr);

86 Chapter 4 • SPD Engine Data Set Options

%do nthr=1 %to &maxthr;
data _null_;
set spde cen.precs(threadnum= &nthr);
 where occup= '022'
 and state in('37','03','06','36');
run;
%mend dotest;

UNIQUESAVE= Data Set Option
Specifies to save observations with non-unique key values (the rejected observations) to a separate data
set when appending or inserting observations to data sets with unique indexes.

Valid in: PROC APPEND and PROC SQL

Used by: SPDSUSDS automatic macro variable

Default: NO

Interaction: “SYNCADD= Data Set Option” on page 83

Engine: SPD Engine only

Syntax
UNIQUESAVE=YES | NO

Required Arguments
YES

if SYNCADD=NO, writes rejected observations to a separate, system-created data
set, which can be accessed by a reference to the macro variable SPDSUSDS.

NO
does not write rejected observations to a separate data set.

Details
Use UNIQUESAVE=YES when you are adding observations to a data set with unique
indexes and the data set option SYNCADD=NO is set.

SYNCADD=NO specifies that an Append or Insert operation should process
observations in blocks (pipelining), instead of one at a time. Duplicate index values are
detected only after all the observations are applied to a data set. With
UNIQUESAVE=YES, the rejected observations are saved to a separate data set whose
name is stored in the SPD Engine macro variable SPDSUSDS. You can specify the
macro variable in place of the data set name to identify the rejected observations.

Note: When SYNCADD=YES, the UNIQUESAVE= option is ignored. For more
information see the SYNCADD= data set option.

Example: Using the UNIQUESAVE= Option with the
APPEND Procedure
In the following example, a data set with two unique indexes is created and another data
set with duplicate values is then appended to the first one. Because the

UNIQUESAVE= Data Set Option 87

UNIQUESAVE=YES option is specified, a data set containing the rejected observations
is created. That data set includes a variable identifying the variable that had the duplicate
value. The SAS log is shown.

88 Chapter 4 • SPD Engine Data Set Options

Log 4.6 UNIQUESAVE= Option

1 libname employee spde 'c:\temp';
NOTE: Libref EMPLOYEE was successfully assigned as follows:
 Engine: SPDE
 Physical Name: c:\temp\
2
3 data employee.emp1 (index=(phone/unique room/unique));
4 input name $ phone room;
5 list;
6 datalines;

RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----
+----7----+----8----+
7 Jill 4344 456
8 Jack 5589 789
9 Jim 8888 345
10 Sam 3334 657
NOTE: The data set EMPLOYEE.EMP1 has 4 observations and 3 variables.

11 run;
12
13 data employee.emp2;
14 input name $ phone room;
15 list;
16 datalines;

RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----
+----7----+----8----+
17 Jack 8443 679
18 Ann 3334 987
19 Sam 8756 346
20 Susan 5321 456
NOTE: The data set EMPLOYEE.EMP2 has 4 observations and 3 variables.

21 run;
22
23 proc append base=employee.emp1(syncadd=no uniquesave=yes)
NOTE: Writing HTML Body file: sashtml.htm
24 data=employee.emp2;
25 run;

NOTE: Appending EMPLOYEE.EMP2 to EMPLOYEE.EMP1.
NOTE: There were 4 observations read from the data set EMPLOYEE.EMP2.
NOTE: 2 observations added.
NOTE: The data set EMPLOYEE.EMP1 has 6 observations and 3 variables.
WARNING: Duplicate values not allowed on index phone for file EMP1, 1
observations rejected.
WARNING: Duplicate values not allowed on index room for file EMP1, 1
observations rejected.
NOTE: Duplicate records have been stored in file
EMPLOYEE._SPDEDUP048604700067A9F340C7E3E6.

26
27 proc print data=employee.emp1;
28 title 'Listing of Final Data Set';
29 run;

NOTE: There were 6 observations read from the data set EMPLOYEE.EMP1.

30
31 proc print data=&spdsusds
32 title 'Listing of Rejected observations';
33 run;

NOTE: There were 2 observations read from the data set
 EMPLOYEE._SPDEDUP048604700067A9F340C7E3E6.

UNIQUESAVE= Data Set Option 89

Output 4.12 UNIQUESAVE=YES

Output 4.13 Rejected Observations

WHERENOINDEX= Data Set Option
Specifies a list of indexes to exclude when making WHERE expression evaluations.

Valid in: DATA step and PROC step

Default: Blank

Restriction: Cannot be used with IDXWHERE=NO data set option

Engine: SPD Engine only

Syntax
WHERENOINDEX=(name(s))

Required Argument
(name(s))

a list of index names to exclude from the WHERE planner.

90 Chapter 4 • SPD Engine Data Set Options

Example: Excluding Indexes
The data set PRECS is defined with indexes:

proc datasets lib=spde cen
 modify precs;
 index create stser=(state serialno) occind=(occup industry) hour89;
quit;

When evaluating the next query, the SPD Engine does not use the indexes for either the
STATE or HOUR89 variables.

In this case, the AND combination of the conditions for the OCCUP and INDUSTRY
variables produce a very small yield. Few observations satisfy the conditions. To avoid
the extra index I/O (computer time) that the query requires for a full-indexed evaluation,
use the following SAS code:

proc sql;
 create data set hr80spde
 as select state, age, sex, hour89, industry, occup from spde cen.precs
 (wherenoindex=(stser hour89))
 where occup='022'
 and state in('37','03','06','36')
 and industry='012'
 and hour89 > 40;
 quit;

Note: Specify the index names in the WHERENOINDEX list, not the variable names.
In the previous example, both the composite index for the STATE variable, STSER,
and the simple index, HOUR89, are excluded.

WHERENOINDEX= Data Set Option 91

92 Chapter 4 • SPD Engine Data Set Options

Chapter 5

SPD Engine System Options

Introduction to SPD Engine System Options . 93

Syntax . 93

SPD Engine System Options List . 94

SAS System Options That Behave Differently with the SPD
Engine Than with the Default Base SAS Engine . 94

Dictionary . 95
COMPRESS= System Option . 95
MAXSEGRATIO= System Option . 97
MINPARTSIZE= System Option . 99
SPDEFILECACHE System Option . 99
SPDEINDEXSORTSIZE= System Option . 100
SPDEMAXTHREADS= System Option . 101
SPDESORTSIZE= System Option . 101
SPDEUTILLOC= System Option . 102
SPDEWHEVAL= System Option . 104

Introduction to SPD Engine System Options
SAS system options are instructions that affect your SAS session. They control how
SAS performs operations, such as SAS system initialization, hardware and software
interfacing, and the input, processing, and output of jobs and SAS files. The SPD Engine
system options work the same way as SAS system options. This section discusses
system options that are used only with the SPD Engine, and Base SAS system options
that behave differently with the SPD Engine.

Syntax
OPTIONS option-1 <option-2 ...>;

option
specifies one or more SPD Engine system options that you want to change.

The following example specifies the SPD Engine system option MAXSEGRATIO=:

options maxsegratio=50;

93

Operating Environment Information: On the command line or in a configuration file, the
syntax is specific to your operating environment. For details, see the SAS documentation
for your operating environment.

SPD Engine System Options List
COMPRESS=

specifies to compress SPD Engine data sets on disk as they are being created.

MAXSEGRATIO=
controls what percentage of index segments to identify as candidate segments before
processing the WHERE expression. This occurs when evaluating a WHERE
expression that contains indexed variables.

MINPARTSIZE=
specifies the minimum partition size to use when creating SPD Engine data sets.

SPDFILECACHE | NOSPDEFILECACHE
enables or disables caching of opened SPD Engine data files.

SPDEINDEXSORTSIZE=
specifies the memory space size that the sorting utility can use when sorting values
for creating an index.

SPDEMAXTHREADS=
specifies the maximum number of threads that the SPD Engine can spawn for I/O
processing.

SPDESORTSIZE=
specifies the memory space size that is needed for sorting operations used by the
SPD Engine.

SPDEUTILLOC=
specifies one or more file system locations in which the SPD Engine can temporarily
store utility files.

SPDEWHEVAL=
specifies the process to determine which observations meet the condition or
conditions of a WHERE expression.

SAS System Options That Behave Differently with
the SPD Engine Than with the Default Base SAS
Engine

MSGLEVEL=I
produces WHERE optimization information in the SAS log.

COMPRESS=
cannot perform user-defined compression.

DLDMGACTION=
does not support DLDMGACTION=NOINDEX, but does support ABORT, FAIL,
PROMPT, and REPAIR.

94 Chapter 5 • SPD Engine System Options

DLCREATEDIR
does not work with the SPD Engine.

ERRORS=MAX
sets the maximum number of observations to 2147483647 for which SAS can issue
error messages.

FIRSTOBS=
cannot be used in the SPD Engine.

SORTPGM=
using the BEST option can cause performance issues.

VALIDMEMNAME=
has the following restrictions on member name when you use
VALIDMEMNAME=EXTEND:

• a member name cannot have a period, such as class.group.

• a member name cannot start with $, such as$class.

VALIDVARNAME=
cannot create an index or composite index on a variable if the variable name contains
any of the following special characters:

" * | \ : / < > ? -

Dictionary

COMPRESS= System Option
Specifies to compress SPD Engine data sets on disk as they are being created.

Valid in: Configuration file, SAS invocation, OPTIONS statement, System Options window

Category: System administration: Performance

Default: NO

Restriction: Cannot be used with ENCRYPT=YES or ENCRYPT=AES

Interactions: “IOBLOCKSIZE= Data Set Option” on page 73
“PADCOMPRESS= Data Set Option” on page 77

Engine: SPD Engine only

Syntax
COMPRESS=NO | YES | CHAR | BINARY

Required Arguments
NO

performs no data set compression.

COMPRESS= System Option 95

YES | CHAR
specifies that data in an SPD Engine data set be compressed in blocks by using RLE
(run-length encoding). RLE compresses data by reducing repeated runs of the same
character (including a blank space) to two-byte or three-byte representations.

BINARY
specifies that data in an SPD Engine data set be compressed in blocks by using RDC
(Ross Data Compression). RDC combines RLE and sliding window compression to
compress the file by representing repeated byte patterns more efficiently.

Note: This method is highly effective for compressing medium to large (several
hundred bytes or larger) blocks of binary data (character and numeric variables).

Details
When you specify COMPRESS=YES | BINARY | CHAR, the SPD Engine compresses,
by blocks, the data component file as it is created. To specify the size of the compressed
blocks, use the “IOBLOCKSIZE= Data Set Option” on page 73 when you create the data
set. To add padding to the newly compressed blocks, specify “PADCOMPRESS= Data
Set Option” on page 77 when creating or updating the data set. For more information,
see “Compressing SPD Engine Data Sets” on page 18.

The SPD Engine does not support user-specified compression. If you are migrating a
default Base SAS engine data set that is both compressed and encrypted, the encryption
is retained, but the compression is dropped.

The CONTENTS procedure identifies the compress setting. If the data set is
compressed, PROC CONTENTS prints information about the compression. The
following example explains the Compressed Info fields in the CONTENTS procedure
output:

In general, COMPRESS=CHAR provides good compression when single bytes repeat;
COMPRESS=BINARY provides good compression when strings of bytes repeat. At the
same time, it is more costly to look for strings of bytes that repeat, than to look for single
bytes that repeat. For examples, see “Example 1: COMPRESS=CHAR” on page 62 and
“Example 2: COMPRESS=BINARY” on page 62.

Output 5.1 PROC CONTENTS Compressed Section

Number of compressed blocks
number of compressed blocks that are required to store data.

96 Chapter 5 • SPD Engine System Options

Raw data blocksize
compressed block size in bytes calculated from the size specified in the
IOBLOCKSIZE= data set option. It is the largest multiple of the observation length
that gets in the block size.

Number of blocks with overflow
number of compressed blocks that needed more space. When data is updated and the
compressed new block is larger than the compressed old block, an overflow block
fragment is created.

Max overflow chain length
largest number of overflows for a single block. For example, the maximum overflow
chain length would be 2 if a compressed block was updated and became larger, and
then updated again to a larger size.

Block number for max chain
number of the block containing the largest number of overflow blocks.

Min overflow area
minimum amount of disk space that an overflow requires.

Max overflow area
maximum amount of disk space that an overflow requires.

Accessing compressed files usually requires more processing time. The files have to be
decompressed before reading them and, if updating, they have to be compressed again
when written to disk.

Comparisons
The COMPRESS= system option is overridden by the COMPRESS= LIBNAME
statement option and the COMPRESS= data set option.

MAXSEGRATIO= System Option
Controls what percentage of index segments to identify as candidate segments before processing the
WHERE expression. This occurs when evaluating a WHERE expression that contains indexed variables.

Valid in: Configuration file, SAS invocation, OPTIONS statement, System Options window

Category: System administration: Performance

Default: 75

Engine: SPD Engine only

Syntax
MAXSEGRATIO=n

Required Argument
n

specifies an upper limit for the percentage of index segments that the SPD Engine
identifies as containing the value referenced in the WHERE expression. The default
is 75, which specifies for the SPD Engine to do the following:

• use the index to identify segments that contain the particular WHERE expression
value

MAXSEGRATIO= System Option 97

• stop identifying candidate segments when more than 75% of all segments are
found to contain the value

The range of valid values is integers between 0 and 100. If n=0, the SPD Engine
does not try to identify candidate segments, but instead applies the WHERE
expression to all segments. If n=100, the SPD Engine checks 100% of the segments
to identify candidate segments, and then applies the WHERE expression only to
those candidate segments.

Details
For WHERE queries on indexed variables, the SPD Engine determines the number of
index segments that contain one or more variable values that match one or more of the
conditions in the WHERE expression. Often, a substantial performance gain can be
realized if the WHERE expression is applied only to the segments that contain
observations satisfying the WHERE expression.

The SPD Engine uses the value of MAXSEGRATIO= to determine at what point the
cost of applying the WHERE expression to every segment would be less than the cost of
continuing to identify candidate segments. When the calculated ratio exceeds the ratio
specified in MAXSEGRATIO=, the SPD Engine stops identifying candidate segments
and applies the WHERE expression to all segments.

Note: For a few tables, 75% might not be the optimal setting. To determine a better
setting, run a performance benchmark, adjust the percentage, and rerun the
performance benchmark. Comparing results shows you how the specific data
population that you are querying responds to shifting the index-segment ratio.

Examples

Example 1: Identifying Index Segments
The following example causes the SPD Engine to begin identifying index segments that
might satisfy the WHERE expression until the percentage of identified segments,
compared to the total number of segments, exceeds 65. If the percentage exceeds 65, the
SPD Engine stops identifying candidate segments and applies the WHERE expression to
all segments:

 options maxsegratio=65;

Example 2: Applying the WHERE Expression to All Segments
The following example causes the SPD Engine to apply the WHERE expression to all
segments without first identifying any candidate segments:

options maxsegratio=0;

Example 3: Not Stopping Until All Index Segments Are Evaluated
The following example causes the SPD Engine to begin identifying index segments and
to not stop until it has evaluated all segments. Then, the WHERE expression is applied
to all candidate segments that were identified:

options maxsegratio=100;

98 Chapter 5 • SPD Engine System Options

MINPARTSIZE= System Option
Specifies the minimum partition size to use when creating SPD Engine data sets.

Valid in: Configuration file, SAS invocation

Category: System administration: Performance

Default: 16M

Engine: SPD Engine only

Syntax
MINPARTSIZE=n | nK | nM | nG

Required Argument
n

is the size of the partition in bytes, kilobytes, megabytes, or gigabytes. The
maximum value for the minimum partition size is 2GB–1 or 2047 megabytes.

Restriction This restriction applies only to 32-bit hosts with the following
operating systems: z/OS, Linux SLES 9 x86, and the Windows family.
If you create a data set with a partition size greater than or equal to 2
gigabytes, you cannot open the data set with any version of SPD
Engine prior to SAS 9.2. The following error message is written to the
SAS log: ERROR: Unable to open data file because its
data representation differs from the SAS session
data representation.

Details
Specifying MINPARTSIZE= sets a lower limit for the partition size that can be specified
with the PARTSIZE= option. The MINPARTSIZE= specification could affect whether
the partitions are created with approximately the same number of observations. A small
partition size means more open files during processing. Your operating system might
have a limit on the number of open files used.

SPDEFILECACHE System Option
Enables or disables caching of opened SPD Engine data files.

Valid in: Configuration file, SAS invocation

Category: System administration: Performance

Default: NOSPDEFILECACHE

Engine: SPD Engine only

Syntax
SPDEFILECACHE | NOSPDEFILECACHE

SPDEFILECACHE System Option 99

Actions
SPDEFILECACHE

Enables caching of opened SPD Engine data files.

NOSPDEFILECACHE
Disables caching of opened SPD Engine data files.

Details
Use the SPDEFILECACHE system option to enable or disable file caching of opened
SPD Engine data files. Caching SPD Engine data files can improve performance by
reducing the need to open and close files. If SPD Engine data files are used in a shared
environment, caching files can result in performance degradation. This degradation
happens when a user must wait on a file that another user has opened but is no longer
accessing.

SPDEINDEXSORTSIZE= System Option
Specifies the memory space size that the sorting utility can use when sorting values for creating an index.

Valid in: Configuration file, SAS invocation, OPTIONS statement, Systems Options window

Category: System administration: Performance

Default: 32M

Engine: SPD Engine only

Syntax
SPDEINDEXSORTSIZE=n | nK | nM | nG

Required Argument
n

is the size of memory space in bytes, kilobytes, megabytes, or gigabytes. If n=0, the
sort utility uses its default. The valid value range is from 1,048,576 to
10,736,369,664 bytes.

Details
The SPD Engine can create multiple indexes with a single scan of a data set. The SPD
Engine spawns a single thread for each index created, and then processes the threads
simultaneously. Although creating indexes in parallel is much faster than scanning the
data set for each index, the default for this option is NO because parallel index creation
requires extra utility space to store the sorting files and requires additional memory. If
index creation fails due to insufficient resources, you can do one or both the following:

• Increase the size of the utility file space using the SPDEUTILLOC= system option.

• Set the SAS system option to MEMSIZE=01and increase the utility space that is used
for index sorting using the SPDEINDEXSORTSIZE= system option.

The maximum SPDEINDEXSORTSIZE= value is 10 GB, but this value cannot be
honored on host systems that are limited to 2 GB. On host systems that have a 64-bit

1 For z/OS, increase the REGION size.

100 Chapter 5 • SPD Engine System Options

LONG data type, SPD Engine honors values greater that 2 GB. On hosts systems that
have a 32-bit LONG data type, SPD Engine honors only the memory used up to 2 GB.
The SPDEINDEXSORTSIZE option value can be set to a larger value, but the larger
value is not honored.

Note: You receive a warning in the SAS log when the larger value is not honored and
used.

SPDEMAXTHREADS= System Option
Specifies the maximum number of threads that the SPD Engine can spawn for I/O processing.

Valid in: Configuration file, SAS invocation

Category: System administration: Performance

Default: 0

Engine: SPD Engine only

Syntax
SPDEMAXTHREADS=n

Required Argument
n

is the maximum number of threads the SPD Engine can spawn. The range of valid
values is 0 to 65,536. The default is zero, which means that the SPD Engine uses the
value of THREADNUM= if set. Otherwise, the SPD Engine sets the number of
threads to spawn to be equivalent to the number of CPUs.

Details
Specifying SPDEMAXTHREADS= sets an upper limit on the number of threads to
spawn for the SPD Engine processing, which includes the following:

• WHERE expression processing

• parallel index creation

• any I/O processing requested by thread-enabled applications such as SAS thread-
enabled procedures

SPDEMAXTHREADS= constrains the THREADNUM= data set option.

SPDESORTSIZE= System Option
Specifies the memory space size that is needed for sorting operations used by the SPD Engine.

Valid in: Configuration file, SAS invocation, OPTIONS statement, System Options window

Category: System administration: Performance

Default: 32M

Engine: SPD Engine only

SPDESORTSIZE= System Option 101

Syntax
SPDESORTSIZE=n | nK | nM | nG

Required Argument
n

is the size of memory space in bytes, kilobytes, megabytes, or gigabytes. If n=0, the
sort utility uses its default. The valid value range is from 1,048,576 to
10,736,369,664 bytes.

Details
The SPD Engine can perform an automatic sort in parallel. The sort size that you specify
for SPDESORTSIZE= should be multiplied by the number of processes that are in
parallel. This total for sort size should be less than the physical memory available to
your process. The proper specification of SPDESORTSIZE= can improve performance
by restricting the swapping of memory that is controlled by the operating environment.

Perform one of the following if the sort process needs more memory than you specified:

• restart SAS with the SAS system option MEMSIZE=0 (For z/OS, increase the
REGION size.)

• increase the size of the utility file space using the SPDEUTILLOC= system option

You increase the memory that is used when sorting values for creating an index using the
SPDEINDEXSORTSIZE= option. If you specify to create indexes in parallel, specify a
large-enough space using the SPDEUTILLOC= system option.

Note: The SORTSIZE= option documented for the default Base SAS engine affects
PROC SORT operations. The SPDESORTSIZE= specification affects sorting
operations specific to the SPD Engine.

The maximum SPDESORTSIZE= value is 10 GB, but this value cannot be honored on
host systems that are limited to 2 GB. On host systems that have a 64-bit LONG data
type, SPD Engine honors values greater that 2 GB. On host systems that have a 32-bit
LONG data type, SPD Engine honors only the memory used up to 2 GB. The
SPDESORTSIZE option value can be set to a larger value, but the larger value is not
honored.

Note: You receive a warning in the SAS log when the larger value is not honored and
used.

SPDEUTILLOC= System Option
Specifies one or more file system locations in which the SPD Engine can temporarily store utility files.

Valid in: Configuration file, SAS invocation

Category: System administration: Performance

Engine: SPD Engine only

See: The SAS Companion for your operating system details how to specify system
options

102 Chapter 5 • SPD Engine System Options

Syntax
-SPDEUTILLOC directory | ("directory-1" "directory-2"…)

Required Arguments
location

is an existing directory where the utility files are created.

("directory-1" "directory-2" ...)
is a series of existing directories where the utility files are created. You can use
single or double quotation marks.

Note location can be enclosed in single or double quotation marks. Quotation
marks are required if location contains embedded blanks.

Details
Operating Environment Information

The SAS Companion for your operating system details how to specify system
options.

The SPD Engine creates temporary utility files during certain processing, such as
automatic sorting and creating indexes. To successfully complete the process, you must
have enough space to store the utility files. The SPDEUTILLOC= system option enables
you to specify an adequate amount of space for processing. However, for OpenVMS on
HP Integrity Servers, the libraries must be ODS-5 files. When multiple directories are
specified in the SPDEUTILLOC= system option, the directory for the first utility file is
randomly selected when processing starts. The selection continues in a cyclical fashion
to the other directories. Utility files are temporary and are removed after processing is
completed.

Note: To avoid syntax errors, specify multiple directories in the configuration file.

SAS recommends that you always specify the SPDEUTILLOC= option or the
UTILLOC= option to ensure that you have enough space for processes that create utility
files. The location for temporary utility file storage is defined by each operating
environment if the following scenarios occur:

• the SPDEUTILLOC= system option or the UTILLOC= SAS system option is not
specified

• the SPD Engine cannot locate the SAS Work directory (or does not have Write
permission to it)

The following table shows the default utility file locations:

Table 5.1 Default Utility File Locations

Operating
Environment Default Location 1 Default Location 2 Default Location 3

UNIX UTILLOC= SAS
system option, if
specified

SAS Work library /tmp

SPDEUTILLOC= System Option 103

Operating
Environment Default Location 1 Default Location 2 Default Location 3

Windows UTILLOC= SAS
system option, if
specified

SAS Work library location specified by
the TEMP=
environment variable

z/OS UTILLOC= SAS
system option, if
specified

SAS Work library /tmp

SPDEWHEVAL= System Option
Specifies the process to determine which observations meet the condition or conditions of a WHERE
expression.

Valid in: Configuration file, SAS invocation, OPTIONS statement, System Options window

Category: System administration: Performance

Default: COST

Engine: SPD Engine only

Syntax
SPDEWHEVAL=COST | EVAL1 | EVAL3EVAL4

Required Arguments
COST

specifies that the SPD Engine decides which evaluation strategy to use to optimize
the WHERE expression. This process calculates the number of threads to be used,
which minimizes the overhead of spawning underused threads. This is the default.

EVAL1
is a multi-threaded index evaluation strategy that can quickly determine the rows that
satisfy the WHERE expression using multiple threads. The number of threads that
are spawned to retrieve the observations is equal to the THREADNUM= value.

EVAL3EVAL4
is a single-threaded index evaluation strategy that is used for a simple or compound
WHERE expression. All the key variables have a simple index and no condition tests
for non-equality. Multi-threading might be used to retrieve the observations.

Details
The SPD Engine uses WHINIT, a rules-based WHERE expression planner, to select the
most appropriate evaluation strategy for a query. The SAS system option MSGLEVEL=I
surfaces WHINIT messages to the SAS log that can help you determine whether one or
more indexes are used in a query.

COST, the default setting for SPDEWHEVAL=, analyzes the WHERE expression and
any available indexes. Based on the analysis, the SPD Engine chooses an evaluation

104 Chapter 5 • SPD Engine System Options

strategy to optimize the WHERE expression. The evaluation strategy can be EVAL1,
EVAL3, EVAL4, or a strategy that sequentially reads the data if no indexes are available.
Or, if the analysis shows that using the index or indexes cannot improve processing time.

COST optimizes the number of threads to use for processing the WHERE expression.
COST determines and spawns the number of threads that can be efficiently used. Based
on the value of THREADNUM=, COST can save significant processing time by not
spawning threads that are underused.

COST is the recommended value for SPDEWHEVAL=, unless the WHERE expression
exactly meets one of the other evaluation strategy criterion. It is strongly recommended
that benchmark tests be used to determine whether a value other than COST is more
efficient.

EVAL1 might be more efficient if the WHERE expression is complex and there are
multiple indexes for the variables. EVAL1 spawns multiple threads to determine which
segments meet the conditions of the WHERE expression. Multiple threads can also be
used to retrieve the observations.

Note: In a few situations, COST might not perform the best. To determine whether
changing the value to EVAL1 or EVAL3EVAL4 can produce better performance, run
a performance benchmark, change the value, and re-run the performance benchmark.
Comparing results shows you how the specific data population that you are querying
responds to rules-based WHERE planning.

SPDEWHEVAL= System Option 105

106 Chapter 5 • SPD Engine System Options

Recommended Reading

Here is the recommended reading list for this title:

• Base SAS Procedures Guide

• SAS Data Set Options: Reference

• SAS Language Reference: Concepts

• SAS System Options: Reference

• The Little SAS Book: A Primer

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

107

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=proc&pubcode=69850&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=69751&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=titlepage
http://www.sas.com/store/prodBK_65423_en.html
http://www.sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

108 Recommended Reading

Glossary

block
a group of observations in a data set. By using blocks, thread-enabled applications
can read, write, and process the observations faster than if they are delivered as
individual observations.

compound WHERE expression
a WHERE expression that contains more than one operator, as in WHERE X=1 and
Y>3. See also WHERE expression.

controller
a computer component that manages the interaction between the computer and a
peripheral device such as a disk or a RAID. For example, a controller manages data
I/O between a CPU and a disk drive. A computer can contain many controllers. A
single CPU can command more than one controller, and a single controller can
command multiple disks.

CPU-bound application
an application whose performance is constrained by the speed at which computations
can be performed on the data. Multiple CPUs and threading technology can alleviate
this problem.

data partition
a physical file that contains data and which is part of a collection of physical files
that comprise the data component of a SAS Scalable Performance Data Engine data
set. See also partition.

I/O-bound application
an application whose performance is constrained by the speed at which data can be
delivered for processing. Multiple CPUs, partitioned I/O, threading technology,
RAID (redundant array of independent disks) technology, or a combination of these
can alleviate this problem.

light-weight process thread
a single-threaded subprocess that is created and controlled independently, usually
with operating system calls. Multiple light-weight process threads can be active at
one time on symmetric multiprocessing (SMP) hardware or in thread-enabled
operating systems.

109

parallel I/O
a method of input and output that takes advantage of multiple CPUs and multiple
controllers, with multiple disks per controller to read or write data in independent
threads.

parallel processing
a method of processing that divides a large job into multiple smaller jobs that can be
executed simultaneously on multiple CPUs. See also threading.

partition
part or all of a logical file that spans devices or directories. In the SPD Engine, a
partition is one physical file. Data files, index files, and metadata files can all be
partitioned, resulting in data partitions, index partitions, and metadata partitions,
respectively. Partitioning a file can improve performance for very large data sets. See
also data partition.

primary path
the location in which SPD Engine metadata files are stored. The other SPD Engine
component files (data files and index files) are stored in separate storage paths in
order to take advantage of the performance boost of multiple CPUs.

RAID
See redundant array of independent disks.

redundancy
a characteristic of computing systems in which multiple interchangeable components
are provided in order to minimize the effects of failures, errors, or both. For example,
if data is stored redundantly (in a RAID, for example), then if one disk is lost, the
data is still available on another disk. See also redundant array of independent disks.

redundant array of independent disks (RAID)
a type of interleaved storage system that comprises multiple disks to store large
amounts of data inexpensively. RAIDs can have several levels. For example, a
level-0 RAID combines two or more hard drives into one logical disk drive. Various
RAID levels provide different amounts of redundancy and storage capability. Also,
because the same data is stored in different places, I/O operations can overlap, which
can result in improved performance. See also redundancy.

SAS Scalable Performance Data Engine (SPD Engine)
a SAS engine that organizes data into a streamlined file format, enabling rapid
delivery of data to applications. See also parallel I/O, parallel processing.

sasroot
a representation of the name for the directory or folder in which SAS is installed at a
site or a computer.

scalability
the ability of a software application to function well and with minimal loss of
performance, despite changing computing environments, and despite changes in the
volume of computations, users, or data. Scalable software is able to take full
advantage of increases in computing capability such as those that are provided by the
use of SMP hardware and threaded processing. See also scalable software.

scalable software
software that responds to increased computing capability on SMP hardware in the
expected way. For example, if the number of CPUs is increased, the time to solution

110 Glossary

for a CPU-bound problem decreases by a proportionate amount. And if the
throughput of the I/O system is increased, the time to solution for an I/O-bound
problem decreases by a proportionate amount.

server scalability
the ability of a server to take advantage of SMP hardware and threaded processing in
order to process multiple client requests simultaneously. That is, the increase in
computing capacity that SMP hardware provides increases proportionately the
number of transactions that can be processed per unit of time. See also symmetric
multiprocessing.

SMP
See symmetric multiprocessing.

sort indicator
an attribute of a data file that indicates whether a data set is sorted, how it was sorted,
and whether the sort was validated. Specifically, the sort indicator attribute indicates
the following information: 1) the BY variable(s) that were used in the sort; 2) the
character set that was used for the character variables; 3) the collating sequence of
character variables that was used; 4) whether the sort information has been validated.
This attribute is stored in the data file descriptor information. Any SAS procedure
that requires data to be sorted as a part of its process uses the sort indicator.

spawn
to start a process or a process thread such as a light-weight process thread (LWPT).
See also thread.

SPD Engine
See SAS Scalable Performance Data Engine.

SPD Engine data file
the data component of an SPD Engine data set. In contrast to SAS data files, SPD
Engine data files contain only data; they do not contain metadata. The SPD Engine
does not support data views. See also SPD Engine data set.

SPD Engine data set
a data set created by the SPD Engine that has up to four component files: one for
data, one for metadata, and two for any indexes. The minimum number of
component files is two: data and metadata. Data is separated from the metadata for
SPD Engine file organization.

symmetric multiprocessing (SMP)
a type of hardware and software architecture that can improve the speed of I/O and
processing. An SMP machine has multiple CPUs and a thread-enabled operating
system. An SMP machine is usually configured with multiple controllers and with
multiple disk drives per controller.

thread
the smallest unit of processing that can be scheduled by an operating system.

thread-enabled operating system
an operating system that can coordinate symmetric access by multiple CPUs to a
shared main memory space. This coordinated access enables threads from the same
process to share data very efficiently.

Glossary 111

thread-enabled procedure
a SAS procedure that supports threaded I/O or threaded processing.

threaded I/O
I/O that is performed by multiple threads in order to increase its speed. In order for
threaded I/O to improve performance significantly, the application that is performing
the I/O must be capable of processing the data rapidly as well. See also I/O-bound
application, thread.

threaded processing
processing that is performed in multiple threads in order to improve the speed of
CPU-bound applications. See also CPU-bound application, symmetric
multiprocessing.

threading
a high-performance technology for either data processing or data I/O in which a task
is divided into threads that are executed concurrently on multiple cores on one or
more CPUs.

time to solution
the elapsed time that is required for completing a task. Time-to- solution
measurements are used to compare the performance of software applications in
different computing environments. In other words, they can be used to measure
scalability. See also scalability.

WHERE expression
is a syntax string within a WHERE clause that defines the criteria for selecting
observations. For example, in a membership database, the expression "WHERE
member_type=Senior" returns all senior members. See also compound WHERE
expression.

112 Glossary

Index

A
access level of data source 29
ACCESS LIBNAME statement option 29
ACCESS=READONLY LIBNAME

statement option 29
AES algorithm 22
ALIGN= data set option 50
allocating library space 12
APPEND procedure

converting default Base SAS engine
data sets 17

asynchronous processing 83
ASYNCINDEX= data set option 53
automatic sorting 9, 29, 57

B
BY statement

using indexes when processing 36, 70
BYNOEQUALS= data set option 54
BYSORT= data set option 57
BYSORT= LIBNAME statement option

29

C
CNTLLEV= data set option 49
comparisons 5

default Base SAS engine and SPD
Engine 5

default Base SAS engine and SPD
Engine data sets 6

component files 4
anticipating space for 13
configuring separate space for each file

12
configuring space for, in single path 12
data component files 5, 78
index component files 4, 14
listing complete pathnames of 74
metadata component files 4, 14
naming conventions 22
renaming, copying, or moving 16
storing 8

COMPRESS= data set option 49, 60
COMPRESS= LIBNAME statement

option 32
COMPRESS= system option 94, 95
compressing data sets 18, 32, 95
compression blocks

adding bytes to 77
size of 73

CONTENTS procedure
listing pathnames of component files 74

converting data sets
default Base SAS engine to SPD Engine

8
default Base SASengine to SPD Engine

16
COPY procedure

converting default Base SAS engine
data sets 17

copying component files 16

D
data component files 5

partition size 78
data files

physical separation of associated
indexes 8

data organization 4
data partitions

minimum size of 99
size of 41, 78
storing 14, 34

data set options 47
list of 48
not supported by SPD Engine 50
syntax 48
that behave differently than with default

Base SAS engine 49
data sets

compressing 18, 32, 60, 95
converting for SPD Engine 8, 16
creating and loading 18
default Base SAS engine compared with

SPD Engine 6

113

encrypting 62
interim 5
interoperability of 8
listing complete pathnames of

component files 74
number of I/O threads to spawn 86
threads for SPD Engine data sets 86

data sources
access level of 29

DATAPATH= LIBNAME statement
option 34

default Base SAS engine
compared with SPD Engine 5
converting data sets for SPD Engine 8

default Base SASengine
converting data sets for SPD Engine 16

directories
storing libraries in temporary

subdirectories 44
directory paths

multiple 8
disk arrays 16
disk striping 16

E
efficiency

indexing and 24
using disk striping and large disk arrays

16
ENCRYPT= data set option 49, 62
ENCRYPTKEY= data set option 65
ENDOBS= data set option 67

WHERE expression with 68
ENDOBS= LIBNAME statement option

35

F
file caching 99
file dependencies 8
file sharing 8
file systems 5
FIRSTOBS= system option 95

G
group formatting 30

I
I/O performance 8
I/O threads

number to spawn 86
IDXBY= data set option 70
IDXBY= LIBNAME statement option 36

IDXWHERE= data set option 71
index component files 4

storing 14, 38
indexes

efficiency 24
evaluating WHERE expressions

containing 97
excluding when evaluating WHERE

expressions 90
parallel creation 9, 24, 53
parallel updates 25
physical separation of data sets and 8
queries with 9
segments in WHERE expressions 97
sorting values for creating 100
unique indexes 87
using when processing BY statements

36, 70
WHERE expressions with 71

INDEXPATH= LIBNAME statement
option 38

interim data sets
temporary storage of 5

interoperability of data sets 8
IOBLOCKSIZE= data set option 73
IOBLOCKSIZE= LIBNAME statement

39

L
LIBNAME statement, SPD Engine 27

introduction 27
options list 28
syntax 27

libraries 5
allocating space 12
storing in temporary subdirectory 44

LISTFILES= data set option 74
loading data sets 18

M
MAXSEGRATIO= system option 97
memory

space for sorting operations 101
space for sorting utility 100

metadata 4
metadata component files 4

overflow paths 40
storing 14, 40

METAPATH= LIBNAME statement
option 40

MINPARTSIZE= system option 99
moving component files 16
MSGLEVEL= system option 94
multiple directory paths 8

114 Index

N
naming conventions

component files 22

O
observations

appending with unique indexes 87
end number 35, 67
inserting with unique indexes 87
meeting conditions of WHERE

expressions 104
output order of 54
processing multiple observations at a

time 83
processing one at a time 83
saving with nonunique key values 87
starting number 43, 80

organizing SAS data 4
output

physical order in 55
overflow paths 40

P
PADCOMPRESS= data set option 77
parallel index creation 9, 24
parallel index updates 25
parallelism 13
PARTSIZE= data set option 78
PARTSIZE= LIBNAME statement option

41
paths

listing pathnames of component files 74
multiple directory paths 8

performance
efficiency using disk striping and large

disk arrays 16
efficient indexing 24
I/O performance 8
processing performance 9
read performance 16

physical order in output 55
pipelining 83
primary path 12
processing performance 9

Q
queries

indexes with 9

R
RAIDs 16
read performance 16

redundant arrays of independent disks
(RAIDs) 16

renaming component files 16

S
SASPropietary algorithm 22
saving observations

with nonunique key values 87
sharing files 8
SMP computers 3
sorting

automatic sorting 9, 29, 57
memory space for 101
values for index creation 100

sorting utility
memory space for 100

spawning I/O threads 86
SPD Engine 2

compared with default Base SAS engine
5

converting default Base SAS engine
data sets 8

converting default Base SASengine data
sets 16

encryption 21
file systems 5
libraries 5
organizing SAS data 4

SPD Engine encryption features 21
SPD Engine options 9
SPDEFILECACHE system option 99
SPDEINDEXSORTSIZE= system option

100
SPDEMAXTHREADS= system option

101
SPDESORTSIZE= system option 101
SPDEUTILLOC= system option 102
SPDEWHEVAL= system option 104
SQL procedure

size of data partitions 80
STARTOBS= data set option 80

WHERE expression with 81
STARTOBS= LIBNAME statement

option 43
subdirectories

storing libraries in temporary
subdirectories 44

SYNCADD= data set option 83
synchronous processing 83
system options 93

list of 94
syntax 93
that behave differently with SPD Engine

94

Index 115

T
TEMP= LIBNAME statement option 44
temporary storage

libraries in temporary subdirectories 44
of interim data sets 5
of utility files 102

THREADNUM data set option 86
threads 2

maximum number of 101
number to spawn 86
SMP computer and 3

U
unique indexes 87
UNIQUESAVE= data set option 87
updates

parallel index updates 25
utility file workspace 5
utility files

temporarily storing 102

V
variable alignment 50

W
WHERE evaluation planner 8
WHERE expressions

ENDOBS= data set option with 68
evaluating, when containing indexed

variables 97
excluding indexes when evaluating 90
index segments in 97
indexes with 71
observations meeting conditions of 104
STARTOBS= data set option with 81

WHERE optimization 8
WHERENOINDEX= data set option 90

116 Index

	Contents
	About This Book
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language
	Syntax Components
	Style Conventions
	Special Characters
	References to SAS Libraries and External Files

	What’s New in SAS 9.4 Scalable Performance Data Engine
	Overview
	SPD Engine System Option
	SPD Engine Data Set Options
	SPD Engine LIBNAME Statement Options

	Overview: The SPD Engine
	Introduction to the SPD Engine
	SPD Engine Compatibility
	Upgrading SAS 9
	Accessing SPD Engine Files on Another Host

	Using the SMP Computer
	Organizing SAS Data Using the SPD Engine
	How the SPD Engine Organizes SAS Data
	Metadata Component Files
	Index Component Files
	Data Component Files

	Comparing the Default Base SAS Engine and the SPD Engine
	Overview of Comparisons
	The SPD Engine Libraries and File Systems
	Utility File Workspace
	Storing Temporary Data Sets
	Differences between the Default Base SAS Engine Data Sets and
the SPD Engine Data Sets

	Interoperability of the Default Base SAS Engine and the SPD
Engine Data Sets
	Sharing the SPD Engine Files
	Features That Enhance I/O Performance
	Overview of I/O Performance Enhancements
	Multiple Directory Paths
	Physical Separation of the Data File and the Associated Indexes
	WHERE Optimization

	Features That Boost Processing Performance
	Automatic Sort Capabilities
	Queries Using Indexes
	Parallel Index Creation

	The SPD Engine Options

	Creating and Loading SPD Engine Files
	Introduction for Creating and Loading SPD Engine Files
	Allocating the Library Space
	How to Allocate the Library Space
	Configuring Space for All Components in a Single Path
	Configuring Separate Library Space for Each Component File
Type
	Anticipating the Space for Each Component File
	Storage of the Metadata Component Files
	Renaming, Copying, or Moving Component Files

	Efficiency Using Disk Striping and Large Disk Arrays
	Converting Default Base SAS Engine Data Sets to SPD Engine
Data Sets
	Using the COPY and APPEND Procedures
	Converting Default Base SAS Engine Data Sets Using PROC COPY
	Converting Default Base SAS Engine Data Sets Using PROC APPEND

	Creating and Loading New SPD Engine Data Sets
	Compressing SPD Engine Data Sets
	Encrypting SPD Engine Data Sets
	SPD Engine Encryption Overview
	SAS Proprietary Algorithm
	AES Algorithm

	SPD Engine Component File Naming Conventions
	Efficient Indexing in the SPD Engine
	Parallel Indexing
	Parallel Index Creation
	Parallel Index Updates

	Backing Up SPD Engine Files
	Storing SPD Engine Data in HDFS

	SPD Engine LIBNAME Statement Options
	Introduction to the SPD Engine LIBNAME Statement
	Syntax
	SPD Engine LIBNAME Statement Options List
	Dictionary
	ACCESS= LIBNAME Statement Option
	BYSORT= LIBNAME Statement Option
	COMPRESS= LIBNAME Statement Option
	DATAPATH= LIBNAME Statement Option
	ENDOBS= LIBNAME Statement Option
	IDXBY= LIBNAME Statement Option
	INDEXPATH= LIBNAME Statement Option
	IOBLOCKSIZE= LIBNAME Statement Option
	METAPATH= LIBNAME Statement Option
	PARTSIZE= LIBNAME Statement Option
	STARTOBS= LIBNAME Statement Option
	TEMP= LIBNAME Statement Option

	SPD Engine Data Set Options
	Introduction to SPD Engine Data Set Options
	Syntax
	SPD Engine Data Set Options List
	SAS Data Set Options That Behave Differently with the SPD Engine
Than with the Default Base SAS Engine
	SAS Data Set Options Not Supported by the SPD Engine
	Dictionary
	ALIGN= Data Set Option
	ASYNCINDEX= Data Set Option
	BYNOEQUALS= Data Set Option
	BYSORT= Data Set Option
	COMPRESS= Data Set Option
	ENCRYPT= Data Set Option
	ENCRYPTKEY= Data Set Option
	ENDOBS= Data Set Option
	IDXBY= Data Set Option
	IDXWHERE= Data Set Option
	IOBLOCKSIZE= Data Set Option
	LISTFILES= Data Set Option
	PADCOMPRESS= Data Set Option
	PARTSIZE= Data Set Option
	STARTOBS= Data Set Option
	SYNCADD= Data Set Option
	THREADNUM= Data Set Option
	UNIQUESAVE= Data Set Option
	WHERENOINDEX= Data Set Option

	SPD Engine System Options
	Introduction to SPD Engine System Options
	Syntax
	SPD Engine System Options List
	SAS System Options That Behave Differently with the SPD Engine
Than with the Default Base SAS Engine
	Dictionary
	COMPRESS= System Option
	MAXSEGRATIO= System Option
	MINPARTSIZE= System Option
	SPDEFILECACHE System Option
	SPDEINDEXSORTSIZE= System Option
	SPDEMAXTHREADS= System Option
	SPDESORTSIZE= System Option
	SPDEUTILLOC= System Option
	SPDEWHEVAL= System Option

	Recommended Reading
	Glossary
	Index

