
SAS® 9.2
Scalable Performance
Data Engine
Reference

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 Scalable Performance Data Engine: Reference. Cary, NC: SAS Institute Inc.

SAS® 9.2 Scalable Performance Data Engine: Reference
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-707-5
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009
2nd electronic book May 2010

1st printing, February 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

SPD Engine Data Set Options v

SPD Engine LIBNAME Statement Options vi

SPD Engine System Options vi

SPD Engine Compatability vi

P A R T 1 Usage 1

Chapter 1 � Overview: The SPD Engine 3
Introduction to the SPD Engine 3

SPD Engine Compatibility 4

Using the SMP Computer 4

Organizing SAS Data Using the SPD Engine 5

Comparing the Default Base SAS Engine and the SPD Engine 6

Interoperability of the Default Base SAS Engine and the SPD Engine Data Sets 8

Sharing the SPD Engine Files 8

Features That Enhance I/O Performance 8

Features That Boost Processing Performance 9

The SPD Engine Options 10

Chapter 2 � Creating and Loading SPD Engine Files 11
Introduction for Creating and Loading SPD Engine Files 11

Allocating the Library Space 12

Efficiency Using Disk Striping and Large Disk Arrays 15

Converting Default Base SAS Engine Data Sets to SPD Engine Data Sets 15

Creating and Loading New SPD Engine Data Sets 16

Compressing SPD Engine Data Sets 17

SPD Engine Component File Naming Conventions 19

Efficient Indexing in the SPD Engine 21

P A R T 2 Reference 23

Chapter 3 � SPD Engine LIBNAME Statement Options 25
Introduction to the SPD Engine LIBNAME Statement 25

Syntax 25

SPD Engine LIBNAME Statement Options List 39

Chapter 4 � SPD Engine Data Set Options 41
Introduction to SPD Engine Data Set Options 41

Syntax 41

SPD Engine Data Set Options List 71

iv

SAS Data Set Options That Behave Differently with the SPD Engine Than with the
Default Base SAS Engine 73

SAS Data Set Options Not Supported by the SPD Engine 73

Chapter 5 � SPD Engine System Options 75
Introduction to SPD Engine System Options 75

Syntax 75

SPD Engine System Options List 84

SAS System Options That Behave Differently with SPD Engine 84

P A R T 3 Appendix 85

Appendix 1 � Recommended Reading 87
Recommended Reading 87

Glossary 89

Index 93

v

What’s New

Overview

The SAS 9.2 Scalable Performance Data (SPD) Engine has the following
enhancements:

� new and enhanced data set options
� new and enhanced LIBNAME statement options
� new and enhanced system options

These enhancements enable the SPD Engine to perform rapid processing of very
large data sets that are stored in partitions across multiple disk volumes.

SPD Engine Data Set Options
COMPRESS=

The COMPRESS= data set option now supports binary compression with the
CHAR and BINARY options.

ENCRYPT=
The new ENCRYPT= data set option specifies whether to encrypt an output SPD
Engine data set.

IDXBY=
The new IDXBY= data set option specifies whether to use indexes when processing
BY statements in the SPD Engine. In some cases, this option can enhance
performance.

LISTFILES=
The new LISTFILES= data set option is used only with the CONTENTS
procedure. It lists the complete pathnames of all of the component files of an SPD
Engine data set.

PARTSIZE=
The PARTSIZE= data set option now expresses the partition size value in
gigabytes, terabytes, or the default megabytes. The maximum number of
megabytes has increased to 8,796,093,022,207.

vi What’s New

SPD Engine LIBNAME Statement Options

ACCESS=READONLY
The ACCESS=READONLY LIBNAME statement option determines the access
level of the data source. Using this option prevents writing to the data source.

IDXBY=
The new IDXBY= LIBNAME statement option specifies whether to use indexes
when processing BY statements in the SPD Engine. In some cases, this option can
enhance performance.

PARTSIZE=
The PARTSIZE= LIBNAME statement option now expresses the partition size
value in gigabytes, terabytes, or the default megabytes. The maximum number of
megabytes has increased to 8,796,093,022,207.

SPD Engine System Options
COMPRESS=

The COMPRESS= system option now supports binary compression with the CHAR
and BINARY options.

MINPARTSIZE=
The MINPARTSIZE= system option now has a default of 16 megabytes, instead of
0 megabytes.

SPD Engine Compatability
A new section has been added with information for upgrading from SAS 9.1.3 to SAS

9.2. See “SPD Engine Compatability”.

1

P A R T1

Usage

Chapter 1.Overview: The SPD Engine 3

Chapter 2.Creating and Loading SPD Engine Files 11

2

3

C H A P T E R

1
Overview: The SPD Engine

Introduction to the SPD Engine 3
SPD Engine Compatibility 4

Using the SMP Computer 4

Organizing SAS Data Using the SPD Engine 5

How the SPD Engine Organizes SAS Data 5

Metadata Component Files 5
Index Component Files 5

Data Component Files 6

Comparing the Default Base SAS Engine and the SPD Engine 6

Overview of Comparisons 6

The SPD Engine Libraries and File Systems 6

Utility File Workspace 6
Temporary Storage of Interim Data Sets 6

Differences between the Default Base SAS Engine Data Sets and the SPD Engine Data Sets 7

Interoperability of the Default Base SAS Engine and the SPD Engine Data Sets 8

Sharing the SPD Engine Files 8

Features That Enhance I/O Performance 8
Overview of I/O Performance Enhancements 8

Multiple Directory Paths 9

Physical Separation of the Data File and the Associated Indexes 9

WHERE Optimization 9

Features That Boost Processing Performance 9
Automatic Sort Capabilities 9

Queries Using Indexes 9

Parallel Index Creation 9

The SPD Engine Options 10

Introduction to the SPD Engine
The SPD Engine is designed for high-performance data delivery. It enables rapid

access to SAS data for processing by the application. The SPD Engine delivers data to
applications rapidly because it organizes the data into a streamlined file format that
takes advantage of multiple CPUs to perform parallel input/output functions.

The SPD Engine uses threads to read blocks of data very rapidly and in parallel. The
software tasks are performed in conjunction with an operating system that enables
threads to execute on any of the computer’s available CPUs. Although threaded I/O is
an important part of the SPD Engine functionality, the real power of the SPD Engine
comes from the way that the software structures SAS data. The SPD Engine organizes
data into a new file format that includes partitioning of the data. This data structure
permits threads, running in parallel, to perform I/O tasks efficiently.

4 SPD Engine Compatibility � Chapter 1

Although it is not intended to replace the default Base SAS engine, the SPD Engine
is a high-speed alternative for processing very large data sets. It reads and writes data
sets that contain millions of observations. For example, this includes data sets that
expand beyond the 2-gigabyte size limit imposed by some operating systems and data
sets that SAS analytic software and procedures must process faster.

The SPD Engine performance is boosted in the following ways:
� support for gigabytes of data
� scalability on symmetric multiprocessor (SMP) computers
� parallel WHERE selections
� parallel loads
� parallel index creation
� parallel I/O data delivery to applications
� automatic sorting on BY statements

The SPD Engine runs on UNIX, Windows, z/OS (zFS file system only), and OpenVMS
on HP Integrity Servers (ODS-5 file systems only).

Note: Be sure to visit the Scalability and Performance focus area at
http://support.sas.com/rnd/scalability for more information about scalability in
SAS 9.2. For system requirements, visit the Install Center at
http://support.sas.com/documentation/installcenter. �

SPD Engine Compatibility
If you upgrade from SAS 9.1.3 to SAS 9.2, you do not need to migrate your data sets

if you remain in the same operating environment. If you upgrade across hosts, such as
from a 32-bit to a 64-bit Windows operating environment, you must migrate your data
sets. To migrate your data sets, use CIMPORT, COPY, or CPORT. For more
information, see the Base SAS Procedures Guide.

Visit the Migration focus area at http://support.sas.com/rnd/migration for
migration information.

Note: The MIGRATE procedure does not support the SPD Engine. �

Using the SMP Computer
The SPD Engine exploits a hardware and software architecture known as symmetric

multiprocessing. An SMP computer has multiple central processing units (CPUs) and
an operating system that supports threads. An SMP computer is usually configured
with multiple controllers and multiple disk drives per controller. When the SPD Engine
reads a data file, it launches one or more threads for each CPU; these threads then read
data in parallel from multiple disk drives, driven by one or more controllers per CPU.
The SPD Engine running on an SMP computer provides the capability to read and
deliver much more data to an application in a given elapsed time.

Reading a data set with an SMP computer that has 5 CPUs and 10 disk drives could
be as much as 5 times faster than I/O on a single-CPU computer. In addition to
threaded I/O, an SMP computer enables threading of application processes (for
example, threaded sorting in the SORT procedure in SAS 9.1 or later).

The exact number of CPUs on an SMP computer varies by manufacturer and model.
The operating system of the computer is also specialized; it must be capable of
scheduling code segments so that they execute in parallel. If the operating system

Overview: The SPD Engine � Index Component Files 5

kernel is threaded, performance is further enhanced because it prevents contention
between the executing threads.

As threads run on the SMP computer, managed by a threaded operating system, the
available CPUs work together. The synergy between the CPUs and threads enables the
software to scale processing performance. The scalability, in turn, significantly
increases overall processing speed for tasks such as creating data sets, appending data,
and querying the data by using WHERE statements.

Organizing SAS Data Using the SPD Engine

How the SPD Engine Organizes SAS Data
Because the SPD Engine organizes data for high-performance processing, an SPD

Engine data set is physically different from a default Base SAS engine data set. The
default Base SAS engine stores data in a single data file that contains both data and
data descriptors for the file (metadata). The SPD Engine creates separate files for the
data and data descriptors. In addition, if the data set is indexed, two index files are
created for each index. Each of these four types of files is called an SPD Engine
component file and each has an identifying file extension.

In addition, each of these components can consist of one or more physical files so that
the component can span volumes but can be referenced as one logical file. For example,
the SPD Engine can create many physical files containing data, but reference the files
containing data as a single data component in an SPD Engine data set. The metadata
and index components differ from the data component in two ways:

1 You can specify a fixed-length partition size for data component files using the
PARTSIZE= option. However, you have little or no control over the size of the
metadata or index partitions.

2 The data component files are created in a cyclical fashion across all defined paths.
The metadata and index components are created in a single path until that path is
full, and then the next path is used.

Metadata Component Files
The SPD Engine data set stores the descriptive metadata in a file with the file

extension .mdf. Usually an SPD Engine data set has only one .mdf file.

Index Component Files
If the file is indexed, the SPD Engine creates two index component files for each

index. Each of these files contains a particular view of the index, so both exist for each
data set.

� The index file with the .hbx file extension contains the global index.
� The index file with the .idx file extension contains the segment index.

6 Data Component Files � Chapter 1

Data Component Files
The data component of an SPD Engine data set can be several files (partitions) per

path or device, rather than just one. Each of these partitions is a fixed length, specified
by you when you create the SPD Engine data set.

Specifying a partition size for the data component files enables you to tune the
performance of your applications. The partitions are the threadable units, that is, each
partition (file) is read in one thread. Chapter 2, “Creating and Loading SPD Engine
Files,” on page 11 provides details on how the SPD Engine stores data, metadata, and
indexes.

Comparing the Default Base SAS Engine and the SPD Engine

Overview of Comparisons
Default Base SAS engine data sets and SPD Engine data sets have many similarities.

They both store data in a SAS library, which is a collection of files that reside in one or
more directories. However, because the SPD Engine data libraries can span devices and
file systems, the SPD Engine is ideal for use with very large data sets. Also, the SPD
Engine enables you to specify separate directories, or devices, for each component in the
LIBNAME statement. Chapter 2, “Creating and Loading SPD Engine Files,” on page 11
provides details on designing and setting up the SPD Engine data libraries.

The SPD Engine Libraries and File Systems
An SPD Engine library can contain data files, metadata files, and index files. The

SPD Engine does not support catalogs, SAS views, MDDBs, or other utility (byte) files.
The SPD Engine uses the zFS file system for z/OS and the ODS-5 file system for

OpenVMS on HP Integrity Servers. This means that some functionality might be
slightly different on these platforms. For example, for z/OS, the user must have a home
directory on zFS.

Utility File Workspace
Utility files are generated during the SPD Engine operations that need extra space

(for example, when creating parallel indexes or when sorting very large files). Default
locations exist for all platforms but, if you have large amounts of data to process, the
default location might not be large enough. The SPD Engine system option
SPDEUTILLOC= lets you specify a set of file locations in which to store utility scratch
files. For more information, see “SPDEUTILLOC= System Option” on page 81.

Temporary Storage of Interim Data Sets
To create a library to store interim data sets, specify the SPD Engine option TEMP=

in the LIBNAME statement. If you want current applications to refer to these interim
files using one-level names, specify the library on the USER= system option.

Overview: The SPD Engine � Differences between the Default Base SAS Engine Data Sets and the SPD Engine Data Sets 7

The following example code creates a user libref for interim data sets. It is deleted at
the end of the session.

libname user spde ’/mydata’ temp=yes;
data a; x=1;
run;
proc print data=a;

The USER= option can be set in the configuration file so that applications that
reference interim data sets with one-level names can run in the SPD Engine.

Differences between the Default Base SAS Engine Data Sets and the
SPD Engine Data Sets

The following chart compares the SPD Engine capabilities to default Base SAS
engine capabilities.

Table 1.1 Comparing the Default Base SAS Engine Data Sets and the SPD Engine Data Sets

Feature SPD Engine Default Base SAS Engine

Partitioned data sets yes no

Parallel WHERE optimization yes no

Lowest locking level member record

Concurrent access from multiple SAS
sessions on a given data set

READ (INPUT open mode) READ and WRITE (all open modes)

Remote computing via SAS/
CONNECT

no yes

Data transfer via SAS/CONNECT no yes

RLS (Remote Library Services) via
SAS/CONNECT

no yes

Available via SAS/CONNECT no yes

Support in SAS/SHARE no yes

Automatic sort for SAS BY processing
(sort a temporary copy of the data to
support BY processing)

yes no

User-defined formats and informats yes, except in WHERE1 yes

Catalogs no yes

Views no yes

MDDBs no yes

Integrity constraints no yes

Data set generations no yes

CEDA no yes

Audit trail no yes

NLS transcoding no yes

Number of observations that can be
counted

263-1 (on all hosts) 231-1 (on 32-bit hosts)
263-1 (on 64-bit hosts)

8 Interoperability of the Default Base SAS Engine and the SPD Engine Data Sets � Chapter 1

Feature SPD Engine Default Base SAS Engine

COMPRESS= YES|NO|CHAR|BINARY (only if
the file is not encrypted)

YES|NO|CHAR|BINARY

ENCRYPT= cannot be used with COMPRESS= can be used with COMPRESS=

Encryption data files only yes (all files)

FIRSTOBS= system option and data
set option

no yes

OBS= system option and data set
option

yes, if used without ENDOBS= or
STARTOBS= SPD Engine options

yes

Functions and call routines yes, with some exceptions2 yes

Move table via OS utilities to a
different directory or folder

no yes

Observations returned in physical
order

no, if BY or WHERE is present yes

1 In WHERE processing, user-defined formats and informats are passed to the supervisor for handling. Therefore, they are not
processed in parallel.

2 In WHERE processing, functions and call routines introduced in SAS 9 or later are passed to the supervisor for handling.
Therefore, they are not processed in parallel.

Interoperability of the Default Base SAS Engine and the SPD Engine
Data Sets

Default Base SAS engine data sets must be converted to the SPD Engine format so
that the SPD Engine can access them. You can convert the default Base SAS engine
data sets easily using the COPY procedure, the APPEND procedure, or a DATA step.
(PROC MIGRATE cannot be used.) In addition, most of your existing SAS programs
can run on the SPD Engine files with little modification other than to the LIBNAME
statement. Chapter 2, “Creating and Loading SPD Engine Files,” on page 11 provides
details on converting default Base SAS engine data sets to the SPD Engine format.

Sharing the SPD Engine Files
The SPD Engine supports member-level locking, which means that multiple users

can have the same SPD Engine data set open for INPUT (read-only). However, if an
SPD Engine data set has been opened for update, then only that user can access it.

Features That Enhance I/O Performance

Overview of I/O Performance Enhancements
The SPD Engine has several new features that enhance I/O performance. These

features can dramatically increase the performance of I/O bound applications, in which
large amounts of data must be delivered to the application for processing.

Overview: The SPD Engine � Parallel Index Creation 9

Multiple Directory Paths
You can specify multiple directory paths and devices for each component type

because the SPD Engine can reference multiple physical files across volumes as a single
logical file. For very large data sets, this feature circumvents any file size limits that
the operating system might impose.

Physical Separation of the Data File and the Associated Indexes
Because each component file type can be stored in a different location, file

dependencies are not a concern when deciding where to store the component files. Only
cost, performance, and availability of disk space need to be considered.

WHERE Optimization
The SPD Engine automatically determines the optimal process to use to evaluate

observations for qualifying criteria specified in a WHERE statement. WHERE
statement efficiency depends on such factors as whether the variables in the expression
are indexed. A WHERE evaluation planner is included in the SPD Engine which can
choose the best method to use to evaluate WHERE expressions that use indexes to
optimize evaluation.

Features That Boost Processing Performance

Automatic Sort Capabilities
The SPD Engine’s automatic sort capabilities save time and resources for SAS

applications that process large data sets. With the SPD Engine, you do not need to
invoke the SORT procedure before you submit a SAS statement with a BY clause. The
SPD Engine encounters a BY clause and the data is not already sorted or indexed on
the BY variable. The SPD Engine automatically sorts the data without affecting the
permanent data set or producing a new output data set.

Queries Using Indexes
Large data sets can be indexed to maximize performance. Indexes permit rapid

WHERE expression evaluations for indexed variables. The SPD Engine takes
advantage of multiple CPUs to search the index component file efficiently.

Parallel Index Creation
In addition, the SPD Engine supports parallel index creation so that indexing large

data sets is not time-consuming. The SPD Engine decomposes data set append or insert
operations into a set of steps that can be performed in parallel. The level of parallelism
depends on the number of indexes present in the data set. The more indexes you have,

10 The SPD Engine Options � Chapter 1

the greater the exploitation of parallelism during index creation. However, index
creation requires utility file space and memory resources.

The SPD Engine Options
The SPD Engine works with many default Base SAS engine options. In addition,

there are options that are used only with the SPD Engine that enable you to further
manage the SPD Engine libraries and processing.

See:

� Chapter 3, “SPD Engine LIBNAME Statement Options,” on page 25

� Chapter 4, “SPD Engine Data Set Options,” on page 41

� Chapter 5, “SPD Engine System Options,” on page 75

11

C H A P T E R

2
Creating and Loading SPD
Engine Files

Introduction for Creating and Loading SPD Engine Files 11
Allocating the Library Space 12

How to Allocate the Library Space 12

Configuring Space for All Components in a Single Path 12

Configuring Separate Library Space for Each Component File 12

Anticipating the Space for Each Component File 13
Storage of the Metadata Component Files 13

Example: Initial Set of Paths 14

Example: Adding Subsequent Paths 14

Storage of the Index Component Files 14

Storage of the Data Partitions 14

Renaming, Copying, or Moving Component Files 15
Efficiency Using Disk Striping and Large Disk Arrays 15

Converting Default Base SAS Engine Data Sets to SPD Engine Data Sets 15

Converting Default Base SAS Engine Data Sets Using PROC COPY 16

Converting Default Base SAS Engine Data Sets Using PROC APPEND 16

Creating and Loading New SPD Engine Data Sets 16
Compressing SPD Engine Data Sets 17

SPD Engine Component File Naming Conventions 19

Efficient Indexing in the SPD Engine 21

Parallel Index Creation 21

Parallel Index Updates 22

Introduction for Creating and Loading SPD Engine Files
This section provides details on allocating SPD Engine libraries and creating and

loading SPD Engine data and indexes. Performance considerations related to these
tasks are also discussed.

12 Allocating the Library Space � Chapter 2

Allocating the Library Space

How to Allocate the Library Space
To realize performance gains through SPD Engine’s partitioned data I/O and

threading capabilities, the SPD Engine libraries must be properly configured and
managed. Optimally, a SAS system administrator performs these tasks.

An SPD Engine data set requires a file system with enough space to store the
various component files. Often that file system includes multiple directories for these
components. Usually, a single directory path (part of a file system) is constrained by a
volume limit for the file system as a whole. This limit is the maximum amount of disk
space configured for the file system to use.

Within this maximum disk space, you must allocate enough space for all of the SPD
Engine component files. Understanding how each component file is handled is critical
to estimating the amount of storage you need in each library.

Configuring Space for All Components in a Single Path
In the simplest SPD Engine library configuration, all of the SPD Engine component

files (data files, metadata files, and index files) can reside in a single path called the
primary path. The primary path is the default path specification in the LIBNAME
statement. The following LIBNAME statement sets up the primary file system for the
MYLIB library:

libname mylib spde ’/disk1/spdedata’;

Because there are no other path options specified, all component files are created in
this primary path. Storing all component file types in the primary path is simple and
works for very small data sets. It does not take advantage of the performance boost that
storing components separately can achieve, nor does it take advantage of multiple CPUs.

Note: The SPD Engine requires complete pathnames to be specified. �

Configuring Separate Library Space for Each Component File
Most sites use the SPD Engine to manage very large amounts of data, which can

have thousands of variables, some of them indexed. At these sites, separate storage
paths are usually defined for the various component types. In addition, using disk
striping and RAIDS (Redundant Array of Independent Disks) can be very efficient. For
more information, see the “SPD Engine Disk I/O Setup” in Scalability and Performance
at http://support.sas.com/rnd/scalability/spde/setup.html.

All metadata component files must begin in the primary path, even if they span
devices. In addition, specifying separate paths for the data and index components
provides further performance gains. You specify different paths because the I/O load is
distributed across disk drives. Separating the data and index components helps prevent
disk contention and increases the level of parallelism that can be achieved, especially in
complex WHERE evaluations. The following example code specifies a primary path for
the metadata. The code uses the “DATAPATH= LIBNAME Statement Option” on page
29 and “INDEXPATH= LIBNAME Statement Option” on page 32 to specify additional,
separate paths for the data and index component files:

Creating and Loading SPD Engine Files � Storage of the Metadata Component Files 13

libname all_users spde ’/disk1/metadata’
datapath= (’/disk2/userdata’ ’/disk3/userdata’)
indexpath= (’/disk4/userindexes’ ’/disk5/userindexes’);

The metadata is stored on disk1, which is the primary path. The data is on disk2 and
disk3, and the indexes are on disk4 and disk5. For all path specifications, you must
specify the complete pathname.

CAUTION:
The primary path must be unique for each library. If two librefs are created with the
same primary path, but with differences in the other paths, data can be lost. You
cannot use NFS in any path option other than the primary path. �

Note: If you are planning to store data in locally mounted drives and access the
data from a remote computer, use the remote pathname when you specify the
LIBNAME. If /data01 and /data02 are locally mounted drives on the localA computer,
use the pathnames /nfs/localA/data01 and /nfs/localA/data02 in the LIBNAME
statement.

You cannot change the pathnames of the files. When you specify the DATAPATH=,
INDEXPATH=, METAPATH=, or primary path LIBNAME options, make sure that the
identical paths that were used when the data set was created are used every time you
access the data sets. The names of these locations are stored internally in the data set.
If you change any part of the pathname, the SPD Engine might not be able to find the
data set or might damage the data set. �

Anticipating the Space for Each Component File
To properly configure the SPD Engine library space, you need to understand the

relative sizes of the SPD Engine component files. The following information provides a
general overview. For more information, see the “SPD Engine Disk I/O Setup” in
Scalability and Performance at http://support.sas.com/rnd/scalability/spde/
setup.html.

Metadata component files are relatively small files, so the primary path might be
large enough to contain all the metadata files for the library.

Index component files (both .idx and .hbx) can be medium to large, depending on the
number of distinct values in each index and whether the indexes are single or
composite indexes. When an index component file grows beyond the space available in
the current file path, a new component file is created in the next path.

Data component files can be quite numerous, depending on the amount of data and
the partition size specified for the data set. Each data partition is stored as a separate
data component file. The size of the data partitions is specified in the “PARTSIZE=
LIBNAME Statement Option” on page 34. Data files are the only component files for
which you can specify a partition size.

Storage of the Metadata Component Files
Much of the information that the SPD Engine needs to efficiently read and write

partitioned data is stored in the metadata component. The SPD Engine must be able to
rapidly access that metadata. By design, the SPD Engine expects every data set’s
metadata component to begin in the primary path. These metadata component files can
overflow into other paths (specified in the “METAPATH= LIBNAME Statement Option”
on page 33), but they must always begin in the primary path. This concept is very
important to understand because it directly affects whether you can add data sets (with
their associated metadata files) to the library.

14 Storage of the Metadata Component Files � Chapter 2

For example, a new data set for a library is created and the space in the primary
path is full. The SPD Engine cannot begin the metadata component file in that primary
path as required. The create operation fails with an appropriate error message. To
successfully create a new data set in this case, you must either free space in the
primary path or assign a new library. You cannot use the METAPATH= option to create
space for a new data set’s first metadata partition. METAPATH= only specifies overflow
space for a metadata component that begins in the primary path, but has expanded to
fill the space reserved in the primary path. Your metadata component might grow to
exceed the file size or library space limitations. To ensure you have space in the
primary path for additional data sets, specify an overflow path for metadata in the
METAPATH= option when you first create the library.

You can specify additional space at a later time for data and index component files,
even if you specified separate paths in the initial LIBNAME statement.

Example: Initial Set of Paths
In the following example, the LIBNAME statement specifies the MYLIB directory for

the primary path. By default, this path is used to store initial metadata partitions.
Other devices and directories are specified to store the data and index partitions.

libname myref spde ’mylib’
datapath=(’/mydisk30/siteuser’)
indexpath=(’/mydisk31/siteuser’);

Example: Adding Subsequent Paths
Later, if more space is needed (for example, for appending large amounts of data),

additional devices are added for the data and indexes, as in the following example:

libname myref spde ’mylib’
datapath=(’/mydisk30/siteuser’ ’/mydisk32/siteuser’ ’/mydisk33/siteuser’)
indexpath=(’/mydisk31/siteuser’ ’/mydisk34/siteuser’);

Storage of the Index Component Files
Index component files are stored based on overflow space. Several file paths are

specified with the INDEXPATH= option. Index files are started in the first available
space, and then overflow to the next file path when the previous space is filled. Unlike
metadata components, index component files do not have to begin in the primary path.

Storage of the Data Partitions
The data component partitions are the only files for which you can specify the size.

Partitioned data can be processed in threads easily, thereby taking full advantage of
multiple CPUs on your computer.

The partition size for the data component is fixed and it is set at the time the data
set is created. The default is 128 megabytes, but you can specify a different partition
size using the PARTSIZE= option. Performance depends on appropriate partition sizes.
You are responsible for knowing the size and uses of the data. SPD Engine data sets
can be created with a partition size that results in a balanced number of observations.
(For more information, see “PARTSIZE= Data Set Option” on page 60.)

Many data partitions can be created in each data path for a given data set. The SPD
Engine uses the file paths that you specify with the DATAPATH= option to distribute
partitions in a cyclic fashion. The SPD Engine creates the first data partition in one of
the specified paths, the second partition in the next path, and so on. The software
continues to cycle among the file paths, as many times as needed, until all data

Creating and Loading SPD Engine Files � Converting Default Base SAS Engine Data Sets to SPD Engine Data Sets 15

partitions for the data set are stored. The path selected for the first partition is selected
at random.

Assume that you specify the following in your LIBNAME statement:

datapath=(’/data1’ ’/data2’)

The SPD Engine stores the first partition in /DATA1, the second partition in /DATA2,
the third partition in /DATA1, and so on. Cyclical distribution of the data partitions
creates disk striping, which can be highly efficient. Disk striping is discussed in detail
in “SPD Engine Disk I/O Setup” in Scalability and Performance at http://
support.sas.com/rnd/scalability/spde/setup.html.

Renaming, Copying, or Moving Component Files
CAUTION:

Do not rename, copy, or move an SPD Engine data set or its component files using
operating system commands. �

You should always use the COPY procedure to copy SPD Engine data sets from one
location to another, or the DATASETS procedure to rename or delete SPD engine data
sets.

Efficiency Using Disk Striping and Large Disk Arrays
Your system might have a file creation utility that enables you to override the file

system limitations and create file systems (volumes) greater than the space on a single
disk. You can use this utility to allocate SPD Engine libraries that span multiple disk
devices, such as RAID. RAID configurations use a technique called disk striping that
can significantly enhance I/O. For more information about disk striping and RAID, see
“SPD Engine Disk I/O Setup” in Scalability and Performance at
http://support.sas.com/rnd/scalability/spde/setup.html.

Converting Default Base SAS Engine Data Sets to SPD Engine Data Sets
You can convert existing default Base SAS engine data sets to SPD Engine data sets

using the following methods:
� PROC COPY
� PROC APPEND

Some limitations apply. If your default Base SAS engine data has integrity constraints,
then the integrity constraints are dropped when the file is created in the SPD Engine
format. The following chart of file characteristics indicates whether the characteristic
can be retained or dropped, or if it results in an error when converted.

Table 2.1 Conversion Results for Base SAS File Characteristics

Base SAS File Characteristic Conversion Result

Indexes Rebuilt in SPD Engine (in parallel if
ASYNCINDEX=YES)

Default Base SAS engine COMPRESS=YES
|CHAR |BINARY *

Converts with compression if the data file is
not encrypted

16 Converting Default Base SAS Engine Data Sets Using PROC COPY � Chapter 2

Base SAS File Characteristic Conversion Result

Default Base SAS engine ENCRYPT=YES * Converts with encryption

Integrity constraints Dropped without ERROR

Audit file Dropped without ERROR

Generations file Dropped without ERROR

* If the default Base SAS engine file has both compression and encryption, the
compression is dropped, but the encryption is retained. SAS retains the security of the
data set instead of the compression.

Converting Default Base SAS Engine Data Sets Using PROC COPY
To create an SPD Engine data set from an existing default Base SAS engine data set

you can simply use the COPY procedure as shown in the following example. The PROC
COPY statement copies the default Base SAS engine-formatted data set
LOCAL.RACQUETS to a new SPD Engine-formatted data set SPORT.RACQUETS.

libname sport spde ’conversion_area’;

proc copy in=local out=sport;
select racquets;

run;

Even though the indexes on the default Base SAS engine data set are automatically
regenerated as the SPD Engine indexes (both .hdx and .idx files), they are not created
in parallel because the data set option ASYNCINDEX=NO is the default.

If an SPD Engine data set is encrypted, only the data component files are encrypted.
The metadata and both index files are not encrypted.

Converting Default Base SAS Engine Data Sets Using PROC APPEND
Use the APPEND procedure when you need to specify data set options for a new SPD

Engine data set.
The following example creates an SPD Engine data set from a default Base SAS

engine data set using PROC APPEND. The ASYNCINDEX=YES data set option
specifies to build the indexes in parallel. The PARTSIZE= option specifies to create
partitions of 100 megabytes.

libname spdelib spde ’old_data’;
libname somelib ’old_data’;
proc append base=spdelib.cars (asyncindex=yes partsize=100)

data=somelib.cars;
run;

Creating and Loading New SPD Engine Data Sets
To create a new SPD Engine data set, you can use the DATA step, any PROC

statement* with the OUT= option, or PROC SQL with the CREATE TABLE= option.

* except PROC MIGRATE

Creating and Loading SPD Engine Files � Compressing SPD Engine Data Sets 17

The following example uses the DATA step to create a new SPD Engine data set,
CARDATA.OLD_AUTOS in the report_area directory.

Note: Encryption and compression are mutually exclusive in SPD Engine. You can
use the ENCRYPT= option only when you are creating an SPD Engine data file that is
not compressed. You cannot create an SPD Engine data set with both encryption and
compression. �

libname cardata spde ’/report_area’;

data cardata.old_autos(compress=no encrypt=yes pw=secret);
input year $4. @6 manufacturer $12. @18 model $12. @31 body_style $5. @37
engine_liters @42 transmission_type $1. @45 exterior_color
$10. @55 mileage @62 condition;

datalines;

1966 Ford Mustang conv 3.5 M white 143000 2
1967 Chevrolet Corvair sedan 2.2 M burgundy 70000 3
1975 Volkswagen Beetle 2door 1.8 M yellow 80000 4
1987 BMW 325is 2door 2.5 A black 110000 3
1962 Nash Metropolitan conv 1.3 M red 125000 3
;

Compressing SPD Engine Data Sets
When COMPRESS=YES|BINARY|CHAR, the SPD Engine compresses, by blocks,

the data component file as it is created. The SPD Engine does not support
user-specified compression. In addition, if you are migrating a default Base SAS engine
data set that is both compressed and encrypted, the encryption is retained, but the
compression is dropped.

Once a compressed data set is created, you cannot change its block size. The
compressed blocks are stored linearly, with no spaces between the blocks. The following
figure illustrates how the blocks are stored on the disk:

Figure 2.1 Compressed Blocks on the Disk

If updates to the data set after compression require more space than what is available
in a block, SPD Engine creates a new block fragment to hold the overflow. If further

18 Compressing SPD Engine Data Sets � Chapter 2

updates again cause overflows, new block fragments are created, forming a chain. The
following figure illustrates how the updates create a chain of blocks on the disk:

Figure 2.2 Compressed Blocks with Overflow

Performance is affected if the chains get too long. To remove the chains and resize
the block, you must copy the data set to a new data set, setting IOBLOCKSIZE= to the
block size appropriate for the output data set.

When the data set is expected to be updated frequently, it is recommended that you
use PADCOMPRESS=. SPD Engine creates a padded space for each block, instead of
creating new block fragments. The following figure illustrates how each block has
padded space for updates:

Figure 2.3 Compressed Padded Blocks

If updates to the data set after compression require more space than what is
available in a block, SPD Engine uses the padded space for each block, instead of
creating new block fragments. The following figure illustrates how the updates decrease
the padded space:

Creating and Loading SPD Engine Files � SPD Engine Component File Naming Conventions 19

Figure 2.4 Compressed Padded Blocks with Updates

The CONTENTS procedure prints information about the compression. The following
example explains the compressed info fields in the CONTENTS procedure output:

- Compressed Info -
Number of compressed blocks 202
Raw data blocksize 32736
Number of blocks with overflow 5
Max overflow chain length 3
Block number for max chain 80
Min overflow area 87
Max overflow area 181

Number of
compressed
blocks

number of compressed blocks that are required to store data.

Raw data
blocksize

compressed block size in bytes calculated from the size specified in
the IOBLOCKSIZE= data set option.

Number of
blocks with
overflow

number of compressed blocks that needed more space. When data is
updated and the compressed new block is larger than the
compressed old block, an overflow block fragment is created.

Max overflow
chain length

largest number of overflows for a single block. For example, the
maximum overflow chain length would be 2 if a compressed block
was updated and became larger, and then updated again to a larger
size.

Block number
for max chain

number of the block containing the largest number of overflow
blocks.

Min overflow
area

minimum amount of disk space that an overflow requires.

Max overflow
area

maximum amount of disk space that an overflow requires.

SPD Engine Component File Naming Conventions
When you create an SPD Engine data set, many component files can also be created.

SPD Engine component files are stored with the following naming conventions:

20 SPD Engine Component File Naming Conventions � Chapter 2

filename.mdf.0.p#.v#.spds9
filename.dpf.fuid.p#.v#.spds9
filename.idxsuffix.fuid.p#.v#.spds9
filename.hbxsuffix.fuid.p#.v#.spds9

filename
valid SAS filename.

mdf
identifies the metadata component file.

dpf
identifies the partitioned data component files.

p#
is the partition number.

v#
is the version number. *

fuid
is the unique file ID, which is a hexadecimal equivalent of the primary (metadata)
path.

idxsuffix
identifies the segmented view of an index, where suffix is the name of the index.

hbxsuffix
identifies the global view of an index, where suffix is the name of the index.

spds9
denotes a SAS 9 SPD Engine component file.

Table 2.2 shows the data set component files that are created when you use this
LIBNAME statement and DATA step:

libname sample spde ’/DATA01/mydir’
datapath=(’/DATA01/mydir’ ’/DATA02/mydir’)
indexpath=(’/IDX1/mydir’);

data sample.mine(index=(ssn));
do i=1 to 100000;
ssn=ranuni(0);
end;

run;

Table 2.2 Data Set Component Files

mine.mdf.0.0.0.spds9 metadata component file

mine.dpf.000032a6.0.1.spds9 data file partition #1

mine.dpf.000032a6.1.1.spds9 data file partition #2

mine.dpf.000032a6.n-1.1.spds9 data file partition #n

mine.dpf.000032a6.n.1.spds9 data file partition #n+1

* The version number increases only when the data set is updated, that is, when the data set is opened in UPDATE mode.
Operations such as PROC SORT that replace the data set reset the version number to one, instead of incrementing it.

Creating and Loading SPD Engine Files � Parallel Index Creation 21

mine.hbxssn.000032a6.0.1.spds9 global index data set for variable
SSN

mine.idxssn.000032a6.0.1.spds9 segmented index data set for
variable SSN

Efficient Indexing in the SPD Engine
Indexes can improve the performance of WHERE expression processing and BY

expression processing. The SPD Engine enables the rapid creation and update of
indexes because it can process in parallel.

The SPD Engine’s indexes are especially appropriate for data sets of varying sizes
and data distributions. These indexes contain both a segmented view and a global view
of indexed variables’ values. This feature enables the SPD Engine to optimally support
both queries that require global data views, such as BY expression processing, and
queries that require segmented views, such as parallel processing of WHERE
expressions.

When an SPD Engine data set is encrypted, only the data component files are
encrypted. None of the other files are encrypted, such as the metadata and index files.

Parallel Index Creation
You can create indexes on your SPD Engine data in parallel, asynchronously. To

enable asynchronous parallel index creation, use the “ASYNCINDEX= Data Set Option”
on page 42.

Use this option with the DATA step INDEX= option, with PROC DATASETS INDEX
CREATE commands, or in the PROC APPEND statement when creating an SPD Engine
data set from a default Base SAS engine data set that has an index. Each method
enables all of the declared indexes to be populated from a single scan of the data set.

Note: If you create an SPD Engine data set from a default Base SAS engine data
set that is encrypted and that has an index, the index is not encrypted in the SPD
Engine data set. For more information, see “Converting Default Base SAS Engine Data
Sets to SPD Engine Data Sets” on page 15. �

The following example shows indexes created in parallel using the DATA step. A
simple index is created on variable X and a composite index is created on variables A
and B.

data foo.mine(index=(x y=(a b)) asyncindex=yes);
x=1;
a="Doe";
b=20;

run;

To create multiple indexes in parallel, you must allocate enough utility disk space to
create all of the key sorts at the same time. You must also allocate enough memory
space. Use the “SPDEUTILLOC= System Option” on page 81 to allocate disk space and
“SPDEINDEXSORTSIZE= System Option” on page 79 in the configuration file or at
invocation to allocate additional memory.

The DATASETS procedure has the flexibility to enable batched parallel index
creation by using multiple MODIFY groups. Instead of creating all of the indexes at
once, which would require a significant amount of space, you can create the indexes in
groups as shown in the following example:

22 Parallel Index Updates � Chapter 2

proc datasets lib=main;
modify patients(asyncindex=yes);

index create number;
index create class;

run;
modify patients(asyncindex=yes)’

index create lastname firstname;
run;
modify patients(asyncindex=yes);

index create fullname=(lastname firstname);
index create class_sex=(class sex);

run;
quit;

Indexes NUMBER and CLASS are created in parallel, indexes LASTNAME and
FIRSTNAME are created in parallel, and indexes FULLNAME and CLASS_SEX are
created in parallel.

Parallel Index Updates
The SPD Engine also supports parallel index updating during data set append

operations. Multiple threads enable updates of the data store and index files. The SPD
Engine decomposes a data set append or insert operation into a set of steps that can be
performed in parallel. The level of parallelism attained depends on the number of
indexes in the data set. As with parallel index creation, this operation uses memory
and disk space for the key sorts that are part of the index append processing. Use
system options SPDEINDEXSORTSIZE= to allocate memory and SPDEUTILLOC= to
allocate disk space.

23

P A R T2

Reference

Chapter 3.SPD Engine LIBNAME Statement Options 25

Chapter 4.SPD Engine Data Set Options 41

Chapter 5.SPD Engine System Options 75

24

25

C H A P T E R

3
SPD Engine LIBNAME Statement
Options

Introduction to the SPD Engine LIBNAME Statement 25
Syntax 25

ACCESS= LIBNAME Statement Option 26

BYSORT= LIBNAME Statement Option 26

DATAPATH= LIBNAME Statement Option 29

ENDOBS= LIBNAME Statement Option 30
IDXBY= LIBNAME Statement Option 31

INDEXPATH= LIBNAME Statement Option 32

METAPATH= LIBNAME Statement Option 33

PARTSIZE= LIBNAME Statement Option 34

STARTOBS= LIBNAME Statement Option 36

TEMP= LIBNAME Statement Option 38
SPD Engine LIBNAME Statement Options List 39

Introduction to the SPD Engine LIBNAME Statement
This section contains reference information for all LIBNAME options that are valid

for the SPD Engine LIBNAME statement. Some of these LIBNAME options are also
data set options. As in the default Base SAS engine, data set options take precedence
over corresponding LIBNAME options if both options are set.

Syntax

LIBNAME libref SPDE ’full-primary-path’ <options> ;

libref
a name that is up to eight characters long and that conforms to the rules for SAS
names. You cannot specify TEMP as a libref for an SPD Engine library unless
TEMP is not used as an environment variable.

’full-primary-path’
the complete pathname of the primary path for the SPD Engine library. The name
must be recognized by the operating environment. Enclose the name in single or
double quotation marks. Unless the DATAPATH= and INDEXPATH= options are
specified, the index and data components are stored in the same location. The
primary path must be unique for each library. Librefs that are different but
reference the same primary path are interpreted to be the same library and can
result in lost data.

26 ACCESS= LIBNAME Statement Option � Chapter 3

Note: You cannot change the names of the locations of the files. When you
specify the DATAPATH=, INDEXPATH=, METAPATH=, or primary path
LIBNAME options, make sure the identical paths that were used when the data
set was created are used every time you access the data sets. The names of these
locations are stored internally in the data set. �

options
one or more SPD Engine LIBNAME statement options.

Operating Environment Information: A valid library specification and its syntax are
specific to your operating environment. For details, see the SAS documentation for your
operating environment.

ACCESS= LIBNAME Statement Option

Determines the access level of the data source.

Default: none

Syntax
ACCESS=READONLY

READONLY
specifies that data sets can be read, but not updated or created.

Details
Using this option prevents writing to the data source. If this option is omitted, data

sets can be read, updated, and created if you have the necessary data source privileges.

BYSORT= LIBNAME Statement Option

Specifies for the SPD Engine to perform an automatic sort when it encounters a BY statement.

Corresponding data set option: BYSORT=

Affected by data set option: BYNOEQUALS=

Default: YES

Syntax
BYSORT=YES | NO

SPD Engine LIBNAME Statement Options � BYSORT= LIBNAME Statement Option 27

YES
specifies to automatically sort the data based on the BY variables whenever a BY
statement is encountered, instead of invoking PROC SORT before a BY statement.

NO
specifies not to sort the data based on the BY variables. Specifying NO means that
the data must already be sorted before the BY statement. Indexes are not used.

Details
DATA or PROC step processing using the default Base SAS engine requires that if
there is no index or if the observations are not in order, the data set must be sorted
before a BY statement is issued. In contrast, by default, the SPD Engine sorts the data
returned to the application if the observations are not in order. Unlike PROC SORT,
which creates a new sorted data set, the SPD Engine’s automatic sort does not change
the permanent data set and does not create a new data set. However, utility file space
is used. For more information, see “SPDEUTILLOC= System Option” on page 81.

The default is BYSORT=YES. A BYSORT=YES argument enables the automatic
sort, which outputs the observations in BY group order. If the data set option
BYNOEQUALS=YES, then the observations within a group might be output in a
different order from the order in the data set. Set BYNOEQUALS=NO to retain data
set order.

The BYSORT=NO argument means that the data must already be sorted on the
specified BY variables. This result can be from a previous sort using PROC SORT, or
from the data set having been created in BY variable order. When BYSORT=NO,
grouped data is delivered to the application in data set order. Indexes are not used to
retrieve the observations in BY variable order. The data set option BYNOEQUALS=
has no effect when BYSORT=NO.

If you specify the BYSORT= option in the LIBNAME statement, it can be overridden
by specifying BYSORT= in the PROC or DATA steps. Therefore, you set BYSORT=NO
in the LIBNAME statement and subsequently a BY statement is encountered. An error
occurs unless your data has been sorted (either by previously using PROC SORT or
because it was created in sorted order). Set BYSORT=YES in the DATA or PROC step,
for input or update opens, to override BYSORT=NO in the LIBNAME statement. The
point is that BYSORT=NO instructs the engine to do nothing to sort the data.

When you use the BYSORT=YES and the IDXWHERE= data set options, the
following messages are written to the SAS log if you set the MSGLEVEL=I SAS system
option:

� If IDXWHERE=YES and there is an index on the BY variable, the index is used to
order the rows of the table. The following message is written to the SAS log:

Note: BY ordering was produced by using an index for table tablename.

� If IDXWHERE=NO or IDXWHERE=YES and there is no index on the BY variable,
SPD Engine performs an automatic sort to order the rows of the table. The
following message is written to the SAS log:

Note: BY ordering was produced by performing an automatic
sort on table tablename.

Examples

Example 1: Group Formatting with BYSORT=YES by Default

libname growth spde ’D:\SchoolAge’;
data growth.teens;

input Name $ Sex $ Age Height Weight;
datalines;

28 BYSORT= LIBNAME Statement Option � Chapter 3

Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;

proc print data=growth.teens; by sex;
run;

Even though the data was not sorted using PROC SORT, no error occurred because
BYSORT=YES is the default. The output is shown:

Output 3.1 Group Formatting with BYSORT=YES by Default

The SAS System

Sex=F

Obs Name Age Height Weight

2 Carol 14 62.8 102.5
4 Janet 15 62.5 112.5
5 Judy 14 64.3 90.0

Sex=M

Obs Name Age Height Weight

1 Alfred 14 69.0 112.5
3 James 13 57.3 83.0
6 Philip 16 72.0 150.0
7 William 15 66.5 112.0

Example 2: Using BYSORT=NO in the LIBNAME Statement
In the following example, SAS returns an error because BYSORT=YES was not

specified on the DATA or PROC steps to override the BYSORT=NO specification in the
LIBNAME statement. Whenever automatic sorting is suppressed (BYSORT=NO), the
data must be sorted on the BY variable before the BY statement (for example, by using
PROC SORT).

libname growth spde ’D:\SchoolAge’ bysort=no;
proc print data=growth.teens;
by sex;
run;

ERROR: Data set GROWTH.TEENS is not sorted in ascending sequence.
The current by-group has Sex = M and the next by-group has Sex = F.

NOTE: The SAS System stopped processing this step because of errors.

SPD Engine LIBNAME Statement Options � DATAPATH= LIBNAME Statement Option 29

DATAPATH= LIBNAME Statement Option

Specifies a list of paths in which to store data partitions (.dpf) for an SPD Engine data set.

Affected by: PARTSIZE= data set or LIBNAME option
Default: the primary path specified in the LIBNAME statement

Syntax
DATAPATH=(’path1’ ’path2’...)

’pathn’
is a complete pathname in single or double quotation marks within parentheses.
Separate multiple arguments with spaces.

Note: The pathnames specified in the DATAPATH= option must be unique for
each library. Librefs that are different but reference the same pathnames can result
in lost data. �

Note: If your data is in the zFS file system, only one path specification is
required. The zFS system automatically spreads the partitions across multiple
logical volumes. �

Details
The SPD Engine creates as many partitions as needed to store all the data. The size of
the partitions is set using the PARTSIZE= option and partitions are created in the
paths specified using the DATAPATH= option in a cyclic fashion.

Note: If you are planning to store data in locally mounted drives and access the
data from a remote computer, use the remote pathname when you specify the
LIBNAME. For example, if /data01 and /data02 are locally mounted drives on the
localA computer, use the pathnames /nfs/localA/data01 and /nfs/localA/data02
in the LIBNAME statement.

You cannot change the pathnames of the files. When you specify the DATAPATH=,
INDEXPATH=, METAPATH=, or primary path LIBNAME options, make sure that the
identical paths that were used when the data set was created are used every time you
access the data sets. The names of these locations are stored internally in the data set.
If you change any part of the pathname, the SPD Engine might not be able to find the
data set or might damage the data set. �

Example

The path for the first partition is randomly selected and then continues in a cyclical
fashion:

libname mylib spde ’/metadisk/metadata’
datapath=(’/disk1/dataflow1’ ’/disk2/dataflow2’ ’/disk3/dataflow3’);

For example, if /DISK2/DATAFLOW2 is randomly selected as the first path, the first
partition is located there. The second partition is located in /DISK3/DATAFLOW3, the
third partition is located in /DISK1/DATAFLOW1, and so on.

30 ENDOBS= LIBNAME Statement Option � Chapter 3

ENDOBS= LIBNAME Statement Option

Specifies the end observation number in a user-defined range of observations to be processed.

Used with: STARTOBS=
Corresponding data set option: ENDOBS=
Default: the last observation in the data set
Restriction: use ENDOBS= with input data sets only
Restriction: cannot be used with OBS= system and data set option or FIRSTOBS=
system and data set option

Syntax
ENDOBS=n

n
is the number of the end observation.

Details
By default, the SPD Engine processes all of the observations in the entire data set
unless you specify a range of observations with the STARTOBS= and ENDOBS=
options. If the STARTOBS= option is used without the ENDOBS= option, the implied
value of ENDOBS= is the end of the data set. When both options are used together, the
value of ENDOBS= must be greater than the value of STARTOBS=.

In contrast to the default Base SAS engine option FIRSTOBS=, the STARTOBS= and
ENDOBS= SPD Engine system options can be used in the LIBNAME statement.

Note: The OBS= system option and the OBS= data set option cannot be used with
STARTOBS= or ENDOBS= data set or LIBNAME options. �

(See Chapter 4, “SPD Engine Data Set Options,” on page 41 for information about
using the ENDOBS= data set option in WHERE processing.)

Example

The following example shows that the STARTOBS= and ENDOBS= options subset
the data before the WHERE clause executes. The example prints the four observations
that were qualified by the WHERE expression (age >13 in PROC PRINT). The four
observations are out of the five observations that were processed from the input data set:

libname growth spde ’D:\SchoolAge’ endobs=5;
data growth.teens;

input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0

SPD Engine LIBNAME Statement Options � IDXBY= LIBNAME Statement Option 31

Philip M 16 72.0 150.0
William M 15 66.5 112.0
;

proc print data=growth.teens;
where age >13;

run;

The output is shown:

The SAS System

Obs Name Sex Age Height Weight

1 Alfred M 14 69.0 112.5
2 Carol F 14 62.8 102.5
4 Janet F 15 62.5 112.5
5 Judy F 14 64.3 90.0

IDXBY= LIBNAME Statement Option

Specifies whether to use indexes when processing BY statements in the SPD Engine.

Corresponding data set option: IDXBY=
Affected by data set option: BYSORT=
Default: YES

Syntax
IDXBY=YES | NO

YES
uses an index when processing indexed variables in a BY statement.

Note: If the BY statement specifies more than one variable or the DESCENDING
option, then the index is not used, even if IDXBY=YES. �

NO
does not use an index when processing indexed variables in a BY statement.

Note: IDXBY=NO performs an automatic sort when processing a BY statement. �

Details
When you use the IDXBY= LIBNAME option, make sure that you use BYSORT=YES
option and that the BY variable is indexed.

In some cases, you might get better performance from the SPD Engine if you
automatically sort the data. To use the automatic sort, BYSORT=YES must be set and
you should specify IDXBY=NO.

Set the SAS system option MSGLEVEL=I so that the BY processing information is
written to the SAS log. When you use the IDXBY= LIBNAME option and the
BYSORT=YES option, the following messages are written to the SAS log:

32 INDEXPATH= LIBNAME Statement Option � Chapter 3

� If IDXBY=YES and there is an index on the BY variable, the index is used to
order the rows of the table. The following message is written to the SAS log:

NOTE: BY ordering was produced by using an index for
table tablename.

� If you use IDXBY=NO, the following message is written to the SAS log:

NOTE: BY ordering was produced by performing an automatic sort
on table tablename.

Examples

Example 1: Using the IDXBY=NO LIBNAME Option

libname permdata spde ’c:/sales’ idxby=no;
options msglevel=i;
proc means data=permdata.customer;

var sales;
by state;

run;

The following message is written to the SAS log:

NOTE: BY ordering was produced by performing an automatic sort
on table PERMDATA.customer.

NOTE: There were 100 observations read from the data
set PERMDATA.CUSTOMER.

Example 2: Using the IDXBY=YES LIBNAME Option

The following example uses IDXBY=YES:

libname permdata spde ’c:\sales’ idxby=yes;
options msglevel=i;
proc means data=permdata.customer;

var sales;
by state;

run;

The following message is written to the SAS log:

NOTE: BY ordering was produced by using an index for table
PERMDATA.customer.

NOTE: There were 2981 observations read from the data set
PERMDATA.CUSTOMER.

INDEXPATH= LIBNAME Statement Option
Specifies a path or list of paths in which to store the two types of index component files (.hbx and
.idx) associated with an SPD Engine data set.

Default: the primary path specified in the LIBNAME statement

Syntax
INDEXPATH=(’path1’)< ’path2’...>

SPD Engine LIBNAME Statement Options � METAPATH= LIBNAME Statement Option 33

’pathn’
is a complete pathname, in single or double quotation marks within parentheses.
Separate multiple arguments with spaces.

Note: The pathnames specified in the INDEXPATH= option must be unique for
each library. Librefs that are different but reference the same pathnames can result
in lost data. �

Details
The SPD Engine creates the two index component files in the locations specified. If
there are multiple pathnames specified, the first path is randomly selected. When there
is not enough space in the path, the index component files overflow into the next file
path specified, and so on.

Note: If you are planning to store data in locally mounted drives and access the
data from a remote computer, use the remote pathname when you specify the
LIBNAME. For example, if /data01 and /data02 are locally mounted drives on the
localA computer, use the pathnames /nfs/localA/data01 and /nfs/localA/data02
in the LIBNAME statement.

You cannot change the pathnames of the files. When you specify the DATAPATH=,
INDEXPATH=, METAPATH=, or primary path LIBNAME options, make sure that the
identical paths that were used when the data set was created are used every time you
access the data sets. The names of these locations are stored internally in the data set.
If you change any part of the pathname, the SPD Engine might not be able to find the
data set or might damage the data set. �

Example

The following example creates index component files that span the paths /DISK1/
IDXFLOW1, /DISK2/IDXFLOW2, and /DISK3/IDXFLOW3.

libname mylib spde ’/metadisk/metadata’
datapath= (’/disk1/dataflow1’ ’/disk2/dataflow2’ ’/disk3/dataflow3’)

indexpath=(’/disk1/idxflow1’ ’/disk2/idxflow2’ ’/disk3/idxflow3’);

The path for the first index component files is randomly selected. SAS puts the index
component files in the first location until that location is full, and then continues in a
cyclical fashion. For example, if /DISK2/IDXFLOW2 is randomly selected, the first
index component files are located there. When that location is full, the index component
files overflow to /DISK3/IDXFLOW3, and then to /DISK1/IDXFLOW1.

METAPATH= LIBNAME Statement Option

Specifies a list of overflow paths in which to store metadata (.mdf) component files for an SPD
Engine data set.

Default: the primary path specified in the LIBNAME statement

34 PARTSIZE= LIBNAME Statement Option � Chapter 3

Syntax
METAPATH=(’path1’)< ’path2’...>

’pathn’
is a complete pathname in single or double quotation marks within parentheses.
Separate multiple arguments with spaces.

Note: The pathnames specified in the METAPATH= option must be unique for
each library. Librefs that are different but reference the same pathnames can result
in lost data. �

Details
The METAPATH= option is specified for space that is exclusively overflow space for the
metadata component file. The metadata component file for each data set must begin in
the primary path, and overflow occurs to the METAPATH= location when the primary
path is full.

Note: If you are planning to store data in locally mounted drives and access the
data from a remote computer, use the remote pathname when you specify the
LIBNAME. If /data01 and /data02 are locally mounted drives on the localA computer,
use the pathnames /nfs/localA/data01 and /nfs/localA/data02 in the LIBNAME
statement.

You cannot change the pathnames of the files. When you specify the DATAPATH=,
INDEXPATH=, METAPATH=, or primary path LIBNAME options, make sure that the
identical paths that were used when the data set was created are used every time you
access the data sets. The names of these locations are stored internally in the data set.
If you change any part of the pathname, the SPD Engine might not be able to find the
data set or might damage the data set. �

Example

The following example creates overflow metadata file partitions as needed using the
path /DISK1/METAFLOW1.

When /METADISK/METADATA is full, the metadata overflows to /DISK1/METAFLOW1.

libname mylib spde ’/metadisk/metadata’
datapath=(’/disk1/dataflow1’ ’/disk2/dataflow2’)
metapath=(’/disk1/metaflow1’);

PARTSIZE= LIBNAME Statement Option

Specifies the maximum size (in megabytes, gigabytes, or terabytes) that the data component
partitions can be. The value is specified when the SPD Engine data set is created. This size is a
fixed size. This specification applies only to the data component files.

Corresponding data set option: PARTSIZE=
Used with: MINPARTSIZE= system option
Affected by LIBNAME option: DATAPATH=

SPD Engine LIBNAME Statement Options � PARTSIZE= LIBNAME Statement Option 35

Default: 128 MB

Syntax
PARTSIZE=n | nM | nG | nT

n | nM | nG | nT
is the size of the partition in megabytes, gigabytes, or terabytes. If n is specified
without M, G, or T, the default is megabytes. PARTSIZE=128 is the same as
PARTSIZE=128M. The maximum value is 8,796,093,022,207 megabytes.
Restriction: This restriction applies only to 32–bit hosts with the following

operating systems: z/OS, Linux SLES 9 x86, and the Windows family. In SAS 9.2,
if you create a data set with a partition size greater than or equal to 2 gigabytes,
you cannot open the data set with any version of SPD Engine before SAS 9.2. The
following error message is written to the SAS log:

ERROR: Unable to open data file because its data
representation differs from the SAS session data
representation.

Details
SPD Engine data must be stored in multiple partitions for it to be subsequently
processed in parallel. Specifying PARTSIZE= forces the software to partition SPD
Engine data files at the specified size. The actual size of the partition is computed to
accommodate the maximum number of observations that fit in the specified size of n
megabytes, gigabytes, or terabytes. If you have a table with an observation length
greater than 65K, you might find that the PARTSIZE= you specify and the actual
partition size do not match. To get these numbers to match, specify a PARTSIZE= that
is a multiple of 32 and the observation length.

By splitting (partitioning) the data portion of an SPD Engine data set into fixed-sized
files, the software can introduce a high degree of scalability for some operations. The
SPD Engine can spawn threads in parallel (for example, up to one thread per partition
for WHERE evaluations). Separate data partitions also enable the SPD Engine to
process the data without the overhead of file access contention between the threads.
Because each partition is one file, the trade-off for a small partition size is that an
increased number of files (for example, UNIX i-nodes) are required to store the
observations.

Scalability limitations using PARTSIZE= depend on how you configure and spread
the file systems specified in the DATAPATH= option across striped volumes. (You
should spread each individual volume’s striping configuration across multiple disk
controllers or SCSI channels in the disk storage array.) The goal for the configuration is
to maximize parallelism during data retrieval. For information about disk striping, see
“I/O Setup and Validation” under “SPD Engine” in Scalability and Performance at
http://support.sas.com/rnd/scalability.

The PARTSIZE= specification is limited by the SPD Engine system option
MINPARTSIZE=, which is usually set and maintained by the system administrator.
MINPARTSIZE= ensures that an inexperienced user does not arbitrarily create small
partitions, thereby generating a large number of files.

The partition size determines a unit of work for many of the parallel operations that
require full data set scans. But, more partitions does not always mean faster
processing. The trade-offs involve balancing the increased number of physical files

36 STARTOBS= LIBNAME Statement Option � Chapter 3

(partitions) required to store the data set against the amount of work that can be done
in parallel by having more partitions. More partitions means more open files to process
the data set, but a smaller number of observations in each partition. A general rule is
to have 10 or fewer partitions per data path, and 3 to 4 partitions per CPU.

To determine an adequate partition size for a new SPD Engine data set, you should
be aware of the following:

� the types of applications that run against the data
� how much data you have
� how many CPUs are available to the applications
� which disks are available for storing the partitions
� the relationships of these disks to the CPUs

If each CPU controls only one disk, then an appropriate partition size would be one
in which each disk contains approximately the same amount of data. If each CPU
controls two disks, then an appropriate partition size would be one in which the load is
balanced. Each CPU does approximately the same amount of work.

Note: The PARTSIZE= value for a data set cannot be changed after a data set is
created. To change PARTSIZE=, you must re-create the data set and specify a different
PARTSIZE= value in the LIBNAME statement or on the new (output) data set. �

Example

When you specify the partition size in the LIBNAME statement, you have to select a
size that is appropriate for most of the data sets stored in that library. For example,
suppose you have an 8-disk configuration. The smallest data set has 20 gigabytes of
data, the largest has 50 gigabytes of data, and the remaining data sets have 36
gigabytes of data each. A partition size of 1250M is optimal for a 36-gigabyte data set
(four partitions per disk). The 20-gigabyte data set uses two partitions per disk, and the
50–gigabyte data set uses five partitions per disk.

libname sales spde ’/primdisk’ partsize=1250M
datapath=(’/disk01’ ’/disk02’ ’/disk03’ ’/disk04’
’/disk05’ ’/disk06’ ’/disk07’ ’/disk08’);

STARTOBS= LIBNAME Statement Option

Specifies the starting observation number in a user-defined range of observations to be processed.

Used with: ENDOBS=
Corresponding data set option: STARTOBS=
Default: the first observation in the data set
Restriction: use STARTOBS= with input data sets only
Restriction: cannot be used with OBS= system and data set option or FIRSTOBS=
system and data set option

Syntax
STARTOBS=n

SPD Engine LIBNAME Statement Options � STARTOBS= LIBNAME Statement Option 37

n
is the number of the starting observation.

Details
By default, the SPD Engine processes all of the observations in the entire data set
unless you specify a range of observations with the STARTOBS= and ENDOBS=
options. If the ENDOBS= option is used without the STARTOBS= option, the implied
value of STARTOBS= is 1. When both options are used together, the value of
STARTOBS= must be less than the value of ENDOBS=.

In contrast to the default Base SAS engine option FIRSTOBS=, the STARTOBS= and
ENDOBS= SPD Engine options can be used in the LIBNAME statement.

Note: FIRSTOBS= default Base SAS engine option is not supported by the SPD
Engine. The OBS= system option and the OBS= data set option cannot be used with
STARTOBS= or ENDOBS= data set or LIBNAME options. �

(Refer to Chapter 4, “SPD Engine Data Set Options,” on page 41 for information
about using the STARTOBS= data set option in WHERE processing.)

Example

The following example prints the five observations that were qualified by the
WHERE expression (age >13 in PROC PRINT). The five observations are out of the six
observations that were processed, starting with the second observation in the data set:

libname growth spde ’D:\SchoolAge’ startobs=2;
data growth.teens;

input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;

proc print data=growth.teens;
where age >13;

run;

The output is shown:

38 TEMP= LIBNAME Statement Option � Chapter 3

Output 3.2 STARTOBS=

The SAS System

Obs Name Sex Age Height Weight

2 Carol F 14 62.8 102.5
4 Janet F 15 62.5 112.5
5 Judy F 14 64.3 90.0
6 Philip M 16 72.0 150.0
7 William M 15 66.5 112.0

TEMP= LIBNAME Statement Option

Specifies to store the library in a temporary subdirectory of the primary directory.

Default: NO

Syntax
TEMP=YES | NO

YES
specifies to create the temporary subdirectory.

NO
specifies not to create a temporary subdirectory.

Details
The TEMP= option creates a temporary subdirectory of the primary directory that was
named in the LIBNAME statement. The subdirectory and all of its files contained are
deleted at the end of the session.

You can use TEMP= with the SAS option USER= to create a temporary directory to
store interim data sets that can be referenced with a single-level name.

Note: When using the SIGNON statement in SAS/CONNECT software, the
INHERITLIB= option cannot refer to an SPD Engine library that was defined with the
TEMP= option. �

Example

The following example illustrates two features:
� the use of the TEMP= LIBNAME option to create a temporary library
� the use of the USER= system option to enable the use of single-level table names

for SPD Engine tables

A directory is created under mydata. The MASTERCOPY table has its metadata file
stored in mydata. The data and index for MASTERCOPY are created in the locations
specified in the DATAPATH= and INDEXPATH= options.

SPD Engine LIBNAME Statement Options � SPD Engine LIBNAME Statement Options List 39

libname perm <masterdata>
libname mywork spde ’mydata’

datapath=(’/data01/mypath’ ’/data02/mypath’ ’/data03/mypath’ ’/data04/mypath’)
indexpath=(’index/mypath’) TEMP=YES;

option user=mywork;

data mastercopy (index=(lastname));
set perm.customer;
where region=’W’;

run;

SPD Engine LIBNAME Statement Options List
“ACCESS= LIBNAME Statement Option” on page 26

specifies that data sets can be read, but not updated or created.

“BYSORT= LIBNAME Statement Option” on page 26
specifies for the SPD Engine to perform an automatic sort when it encounters a
BY statement.

“DATAPATH= LIBNAME Statement Option” on page 29
specifies a list of paths in which to store data partitions (.dpf) for an SPD Engine
data set.

“ENDOBS= LIBNAME Statement Option” on page 30
specifies the end observation number in a user-defined range of observations to be
processed.

“IDXBY= LIBNAME Statement Option” on page 31
specifies whether to use an index when processing BY statements in the SPD
Engine.

“INDEXPATH= LIBNAME Statement Option” on page 32
specifies a path or list of paths in which to store the two types of index component
files (.hbx and .idx) associated with an SPD Engine data set.

“METAPATH= LIBNAME Statement Option” on page 33
specifies a list of overflow paths in which to store metadata (.mdf) component files
for an SPD Engine data set.

“PARTSIZE= LIBNAME Statement Option” on page 34
specifies the maximum size that the data component partitions can be. The value
is specified when the SPD Engine data set is created. This size is a fixed size. This
specification applies only to the data component files.

“STARTOBS= LIBNAME Statement Option” on page 36
specifies the starting observation number in a user-defined range of observations
to be processed.

“TEMP= LIBNAME Statement Option” on page 38
specifies to store the library in a temporary subdirectory of the primary directory.

40

41

C H A P T E R

4
SPD Engine Data Set Options

Introduction to SPD Engine Data Set Options 41
Syntax 41

ASYNCINDEX= Data Set Option 42

BYNOEQUALS= Data Set Option 43

BYSORT= Data Set Option 45

COMPRESS= Data Set Option 47
ENCRYPT= Data Set Option 49

ENDOBS= Data Set Option 50

IDXBY= Data Set Option 53

IDXWHERE= Data Set Option 54

IOBLOCKSIZE= Data Set Option 56

LISTFILES= Data Set Option 57
PADCOMPRESS= Data Set Option 60

PARTSIZE= Data Set Option 60

STARTOBS= Data Set Option 62

SYNCADD= Data Set Option 65

THREADNUM= Data Set Option 67
UNIQUESAVE= Data Set Option 68

WHERENOINDEX= Data Set Option 71

SPD Engine Data Set Options List 71

SAS Data Set Options That Behave Differently with the SPD Engine Than with the Default Base SAS
Engine 73

SAS Data Set Options Not Supported by the SPD Engine 73

Introduction to SPD Engine Data Set Options

Specifying data set options for the SPD Engine is the same as specifying data set
options for the default Base SAS Engine or SAS/ACCESS engines. This section provides
details about data set options that are used only with the SPD Engine. The default
Base SAS engine data set options that affect the SPD Engine are also listed.

When using the options, remember that if a data set option is used subsequent to a
LIBNAME option of the same name, the value of the data set option takes precedence.

Syntax

(option1=value1 <(option2=value2>...)

42 ASYNCINDEX= Data Set Option � Chapter 4

specifies a data set option in parentheses after a SAS data set name. To specify
several data set options, separate them with spaces.

ASYNCINDEX= Data Set Option

Specifies to create indexes in parallel when creating multiple indexes on an SPD Engine data set.

Valid in: DATA step and PROC step
Default: NO

Syntax
ASYNCINDEX=YES|NO

YES
creates the indexes in parallel (asynchronously).

NO
creates one index at a time (synchronously).

Details
The SPD Engine can create multiple indexes for a data set at the same time. The SPD
Engine spawns a single thread for each index created, and then processes the threads
simultaneously. Although creating indexes in parallel is much faster than creating one
index at a time, the default for this option is NO. Parallel creation requires additional
utility work space and additional memory, which might not be available. If the index
creation fails due to insufficient resources, you can do one of the following:

� set the SAS system option to MEMSIZE=0*
� increase the size of the utility file space using the SPDEUTILLOC= system option

You increase the memory space that is used for index sorting using the
SPDEINDEXSORTSIZE= system option. If you specify to create indexes in parallel,
specify a large-enough space using the SPDEUTILLOC= system option.

Example

The DATASETS procedure has the flexibility to use batched parallel index creation
by using multiple MODIFY groups. Instead of creating all of the indexes at once, which
would require a significant amount of space, you can create the indexes in groups as
shown in the following example:

proc datasets lib=main;
modify patients(asyncindex=yes);

index create PatientNo PatientClass;
run;

* for OpenVMS on HP Integrity Servers, increase the paging file quota (PGFLQUO); for z/OS, increase the REGION size.

SPD Engine Data Set Options � BYNOEQUALS= Data Set Option 43

modify patients(asyncindex=yes);
index create LastName FirstName;

run;
modify patients(asyncindex=no);

index create FullName=(LastName FirstName)
ClassSex=(PatientClass PatientSex);

run;
quit;

BYNOEQUALS= Data Set Option

Specifies whether the output order of data set observations that have identical values for the BY
variable is guaranteed to be in the data set order.

Valid in: DATA step and PROC step
Used with: BYSORT=YES data set option
Default: NO

Syntax
BYNOEQUALS=YES | NO

YES
does not guarantee that the output order of data set observations that have identical
values for the BY variable is in data set order.

NO
guarantees that the output order of data set observations that have identical values
for the BY variable is in data set order.

Details
When a group of observations that have identical values for the BY statement is output,
the order of the observations in the output is the same as the data set order because the
default is BYNOEQUALS=NO. By specifying YES, the processing time is decreased, but
the observations are not guaranteed to be output in the data set order.

The data set or LIBNAME option BYSORT= must be YES (the default) because the
BYNOEQUALS= option has no effect when BYSORT=NO.

The following table shows when the SPD Engine preserves physical order in the
output:

Table 4.1 SPD Engines Preserves Physical Order

Condition: Data Set Order Preserved?

If BY is present YES (BYNOEQUALS=NO and BYSORT=YES
by default)

If BY is present and BYNOEQUALS=YES NO

If BY is present and BYSORT=NO YES (because no automatic sort occurs)

44 BYNOEQUALS= Data Set Option � Chapter 4

Condition: Data Set Order Preserved?

If neither BY nor WHERE is present YES

If WHERE is present NO

Examples

Example 1: BYNOEQUALS=YES
In the following example, the observations that have identical BY values on the key

variable are output in unpredictable order because BYNOEQUALS=YES:

title ’With BYNOEQUALS=YES’;
proc print data=tempdata.housreps(bynoequals=yes);

by state;
where state in (’CA’ ’TX’);

run;

The output is shown:

Output 4.1 BYNOEQUALS=YES

With BYNOEQUALS=YES
State=CA

Obs Representative District
26 Berman, Howard L. 26th
55 Calvert, Ken 43d
60 Capps, Lois 22d
76 Cardoza, Dennis 18th
22 Becerra, Xavier 30th
9 Baca, Joe 42d
80 Cox, Christopher 47th
38 Bono, Mary 44th
89 Cunningham, Randy "Duke" 50th

State=TX

Obs Representative District

87 Culberson, John Abney 7th
20 Barton, Joe 6th
75 Combest, Larry 19th
36 Bonilla, Henry 23d
8 Armey, Richard K. 26th
23 Bentsen, Ken 25th
44 Brady, Kevin 8th

Example 2: BYNOEQUALS=NO
The following example shows the output with BYNOEQUALS=NO:

title ’With BYNOEQUALS=NO’;
proc print data=tempdata.housreps(bynoequals=no);

by state;
where state in (’CA’ ’TX’);

run;

The output is shown:

SPD Engine Data Set Options � BYSORT= Data Set Option 45

Output 4.2 BYNOEQUALS=NO

With BYNOEQUALS=NO

State=CA

Obs Representative District

9 Baca, Joe 42d
22 Becerra, Xavier 30th
26 Berman, Howard L. 26th
38 Bono, Mary 44th
55 Calvert, Ken 43d
60 Capps, Lois 22d
76 Cardoza, Dennis 18th
80 Cox, Christopher 47th
89 Cunningham, Randy "Duke" 50th

State=TX

Obs Representative District

8 Armey, Richard K. 26th
20 Barton, Joe 6th
23 Bentsen, Ken 25th
36 Bonilla, Henry 23d
44 Brady, Kevin 8th
75 Combest, Larry 19th
87 Culberson, John Abney 7th

BYSORT= Data Set Option
Specifies for the SPD Engine to perform an automatic sort when it encounters a BY statement.

Valid in: DATA step and PROC step
Affects data set option: BYNOEQUALS=
Default: YES

Syntax
BYSORT=YES | NO

YES
specifies to automatically sort the data based on the BY variables whenever a BY
statement is encountered, instead of invoking PROC SORT before a BY statement.

NO
specifies not to sort the data based on the BY variables. Specifying NO means that
the data must already be sorted before the BY statement. Indexes are not used.

Details
DATA or PROC step processing using the default Base SAS engine requires that if
there is no index or if the observations are not in order, the data set must be sorted

46 BYSORT= Data Set Option � Chapter 4

before a BY statement is issued. In contrast, by default, the SPD Engine sorts the data
returned to the application if the observations are not in order. Unlike PROC SORT,
which creates a new sorted data set, the SPD Engine’s automatic sort does not change
the permanent data set and does not create a new data set. However, utility file space
is used. For more information, see “SPDEUTILLOC= System Option” on page 81.

The default is BYSORT=YES. A BYSORT=YES argument enables the automatic
sort, which outputs the observations in BY group order. If the data set option
BYNOEQUALS=YES, then the observations within a group might be output in a
different order from the order in the data set. Set BYNOEQUALS=NO to retain data
set order.

The BYSORT=NO argument means that the data must already be sorted on the
specified BY variables. This result can be from a previous sort using PROC SORT, or
from the data set having been created in BY variable order. When BYSORT=NO,
grouped data is delivered to the application in data set order. Indexes are not used to
retrieve the observations in BY variable order. The data set option BYNOEQUALS=
has no effect when BYSORT=NO.

If you specify the BYSORT= option in the LIBNAME statement, it can be overridden
by specifying BYSORT= in the PROC or DATA steps. Therefore, you set BYSORT=NO
in the LIBNAME statement and subsequently a BY statement is encountered. An error
occurs unless your data has been sorted (either by previously using PROC SORT or
because it was created in sorted order). Set BYSORT=YES in the DATA or PROC step,
for input or update opens, to override BYSORT=NO in the LIBNAME statement. The
point is that BYSORT=NO instructs the engine to do nothing to sort the data.

When you use the BYSORT=YES and the IDXWHERE= data set options, the
following messages are written to the SAS log if you set the MSGLEVEL=I SAS system
option:

� If IDXWHERE=YES and there is an index on the BY variable, the index is used to
order the rows of the table. The following message is written to the SAS log:

Note: BY ordering was produced by using an index for table tablename.

� If IDXWHERE=NO or IDXWHERE=YES and there is no index on the BY variable,
SPD Engine performs an automatic sort to order the rows of the table. The
following message is written to the SAS log:

Note: BY ordering was produced by performing an automatic sort on
table tablename.

Examples

Example 1: Group Formatting with BYSORT=YES by Default

libname growth spde ’D:\SchoolAge’;
data growth.teens;

input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;

proc print data=growth.teens; by sex;

SPD Engine Data Set Options � COMPRESS= Data Set Option 47

run;

Even though the data was not sorted using PROC SORT, no error occurred because
BYSORT=YES is the default. The output is shown:

Output 4.3 Group Formatting with BYSORT=YES by Default

The SAS System

Sex=F
Obs Name Age Height Weight

2 Carol 14 62.8 102.5
4 Janet 15 62.5 112.5
5 Judy 14 64.3 90.0

Sex=M
Obs Name Age Height Weight

1 Alfred 14 69.0 112.5
3 James 13 57.3 83.0
6 Philip 16 72.0 150.0
7 William 15 66.5 112.0

Example 2: BYSORT=NO
With BYSORT=NO in the PROC PRINT statement, SAS returns an error whenever

automatic sorting is suppressed (BYSORT=NO). The data must be sorted on the BY
variable before the BY statement (for example, by using PROC SORT).

libname growth spde ’D:\SchoolAge’;
proc print data=growth.teens (bysort=no);
by sex;
run;

ERROR: Data set GROWTH.TEENS is not sorted in ascending sequence.
The current BY-group has Sex = M and the next BY-group has Sex = F.

NOTE: The SAS System stopped processing this step because of errors.

COMPRESS= Data Set Option

Specifies to compress SPD Engine data sets on disk as they are being created.

Valid in: DATA step and PROC step
Restriction: Cannot be used with ENCRYPT=YES or ENCRYPT=RC4
Related data set options: “IOBLOCKSIZE= Data Set Option” on page 56 and
“PADCOMPRESS= Data Set Option” on page 60
Default: NO

Syntax
COMPRESS= NO | YES | CHAR | BINARY

48 COMPRESS= Data Set Option � Chapter 4

NO
performs no data set compression.

YES | CHAR
performs the Run Length Compression (SPDSRLC2) on the data set.

BINARY
performs the Ross Data Compression (SPDSRDC) on the data set.

Details
When you specify COMPRESS=YES|BINARY|CHAR, the SPD Engine compresses, by
blocks, the data component file as it is created. To specify the size of the compressed
blocks, use the “IOBLOCKSIZE= Data Set Option” on page 56 when you create the data
set. To add padding to the newly compressed blocks, specify “PADCOMPRESS= Data
Set Option” on page 60 when creating or updating the data set. For more information,
see “Compressing SPD Engine Data Sets” on page 17.

Examples

Example 1: COMPRESS=BINARY
Here is PROC CONTENTS output from the SPD Engine with COMPRESS=BINARY.

The SAS System 1

The CONTENTS Procedure

Data Set Name URBANLIB.HOUSING Observations 96754
Member Type DATA Variables 56
Engine SPDE Indexes 0
Created Tuesday, October 02, Observation Length 448

2007 01:16:21 PM
Last Modified Tuesday, October 02, Deleted Observations 0

2007 01:16:21 PM
Protection Compressed BINARY
Data Set Type Point to Observations YES
Label Sorted NO
Data Representation WINDOWS_32
Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Blocking Factor (obs/block) 146
Disk Compression Name SPDSRDC
Data Partsize 134249920
- Compressed Info -
Number of compressed blocks 1326
Raw data blocksize 32704
Number of blocks with overflow 0
Max overflow chain length 0
Block number for max chain 0
Min overflow area 0
Max overflow area 0

Example 2: COMPRESS=CHAR

SPD Engine Data Set Options � ENCRYPT= Data Set Option 49

Here is PROC CONTENTS output from the SPD Engine with COMPRESS=CHAR.

The SAS System 1

The CONTENTS Procedure

Data Set Name SALESLIB.COSTS Observations 459568
Member Type DATA Variables 21
Engine SPDE Indexes 0
Created Tuesday, October 02, Observation Length 112

2007 01:26:30 PM
Last Modified Tuesday, October 02, Deleted Observations 0

2007 01:26:30 PM
Protection Compressed CHAR
Data Set Type Point to Observations YES
Label Sorted NO
Data Representation WINDOWS_32
Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Blocking Factor (obs/block) 585
Disk Compression Name SPDSRLC2
Data Partsize 134249920
- Compressed Info -
Number of compressed blocks 1574
Raw data blocksize 32704
Number of blocks with overflow 0
Max overflow chain length 0
Block number for max chain 0
Min overflow area 0
Max overflow area 0

ENCRYPT= Data Set Option
Specifies whether to encrypt an output SPD Engine data set.

Valid in: DATA step and PROC steps
Restriction: use with output data sets only
Restriction: ENCRYPT=YES cannot be used with COMPRESS=

Syntax
ENCRYPT=YES | NO

Syntax Description

YES

50 ENDOBS= Data Set Option � Chapter 4

encrypts the file. This encryption method uses passwords that are stored in the data
set. At a minimum, you must specify the READ= or the PW= data set option at the
same time that you specify ENCRYPT=YES. Because the encryption method uses
passwords, you cannot change any password on an encrypted data set without
re-creating the data set.

CAUTION:
Record all passwords when ENCRYPT=YES. If you forget the passwords, you cannot
reset it without assistance from SAS. The process is time-consuming and
resource-intensive. �

NO
does not encrypt the file.

Details
Encryption and compression are mutually exclusive in SPD Engine.

You cannot create an SPD Engine data set with both encryption and compression. If
you use ENCRYPT=YES data set option and the COMPRESS= data set or LIBNAME
option, the following error is generated:

ERROR: The data set was not compressed because compression and
encryption cannot both be specified.

When you copy a Base SAS data set that is compressed and encrypted to an SPD
Engine data set, the compression is dropped. SAS retains the security of the data set
instead of the compression.

Example 1: Using the ENCRYPT=YES Option
The following example encrypts the data set:

libname depta spde ’/datasecret’;

data salary(encrypt=yes read=green);

input name $ yrsal bonuspct;

datalines;
Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1
;

To use this data set, specify the READ password:

proc contents data=salary(read=green);
run;

ENDOBS= Data Set Option

Specifies the end observation number in a user-defined range of observations to be processed.

SPD Engine Data Set Options � ENDOBS= Data Set Option 51

Valid in: DATA step and PROC step
Used with: STARTOBS= data set option
Default: the last observation in the data set
Restriction: use ENDOBS= with input data sets only
Restriction: cannot be used with OBS= system and data set option or FIRSTOBS=
system and data set option

Syntax
ENDOBS=n

n
is the number of the end observation.

Details
By default, the SPD Engine processes all of the observations in the entire data set
unless you specify a range of observations with the STARTOBS= or ENDOBS= options.
If the STARTOBS= option is used without the ENDOBS= option, the implied value of
ENDOBS= is the end of the data set. When both options are used together, the value of
ENDOBS= must be greater than the value of STARTOBS=.

The ENDOBS= data set option in the SPD Engine works the same way as the OBS=
data set option in the default Base SAS engine, except when it is specified in a WHERE
expression.

Using ENDOBS= in a WHERE Expression
When ENDOBS= is used in a WHERE expression, the ENDOBS= value represents

the last observation to process, rather than the number of observations to return. The
following examples show the difference.

Note: The OBS= system option and the OBS= data set option cannot be used with
STARTOBS= or ENDOBS= data set or LIBNAME options. �

Examples

Example 1: ENDOBS= with SPD Engine
A data set is created and processed by the SPD Engine with ENDOBS=5 specified.

The WHERE expression is applied to the data set ending with observation number 5.
The PRINT procedure prints four observations, which are the observations qualified by
the WHERE expression.

libname growth spde ’c:\temp’;

data growth.teens;
input Name $ Sex $ Age Height Weight;
list;

datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0

52 ENDOBS= Data Set Option � Chapter 4

Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.0
Alice F 14 65.1 91.0
William M 15 66.5 112.0
;

proc print data=growth.teens (endobs=5);
where age >13;
title ’WHERE age>13 using SPD Engine’;

run;

The output is shown:

Output 4.4 Four Observations Printed

WHERE age>13 using SPD Engine

Obs Name Sex Age Height Weight

1 Alfred M 14 69.0 112.5
2 Carol F 14 62.8 102.5
4 Janet F 15 62.5 112.5
5 Judy F 14 64.3 90.0

Example 2: OBS= with SPD Engine
The same data set is processed with OBS=5 specified. PROC PRINT prints five

observations, which are all of the observations qualified by the WHERE expression,
ending with the fifth qualified observation.

libname growth spde ’c:\temp’;

data growth.teens;
input Name $ Sex $ Age Height Weight;
list;

datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.1
Alice F 14 65.1 91.0
William M 15 66.5 112.0
;

proc print data=growth.teens (obs=5);
where age >13;
title ’WHERE age>13 using V9’;

run;

SPD Engine Data Set Options � IDXBY= Data Set Option 53

Output 4.5 Five Observations Printed

WHERE age>13 using V9

Obs Name Sex Age Height Weight

1 Alfred M 14 69.0 112.5
2 Carol F 14 62.8 102.5
4 Janet F 15 62.5 112.5
5 Judy F 14 64.3 90.0
6 Philip M 16 72.0 150.0

IDXBY= Data Set Option

Specifies whether to use an index when processing BY statements in the SPD Engine.

Valid in: DATA step and PROC step

Default: YES

Syntax
IDXBY=YES | NO

YES
uses an index when processing indexed variables in a BY statement.

Note: If the BY statement specifies more than one variable or the DESCENDING
option, then the index is not used, even if IDXBY=YES. �

NO
does not use an index when processing indexed variables in a BY statement.

Note: IDXBY=NO performs an automatic sort when processing a BY statement. �

Details
When you use the IDXBY= data set option, make sure that you use the BYSORT=YES
option and that the BY variable is indexed.

In some cases, you might get better performance from the SPD Engine if you
automatically sort the data. To use the automatic sort, BYSORT=YES must be set and
you should specify IDXBY=NO.

Set the SAS system option MSGLEVEL=I so that the BY processing information is
written to the SAS log. When you use the IDXBY= data set option and the
BYSORT=YES option, the following messages are written to the SAS log:

� If IDXBY=YES and there is an index on the BY variable, the index is used to
order the rows of the table. The following message is written to the SAS log:

NOTE: BY ordering was produced by using an index for
table tablename.

� If IDXBY=NO, the following message is written to the SAS log:

54 IDXWHERE= Data Set Option � Chapter 4

NOTE: BY ordering was produced by performing an automatic sort
on table tablename.

Examples

Example 1: Using the IDXBY=NO Data Set Option

options msglevel=i;
proc means data=permdata.customer(IDXBY=no);

by sales;
by state;

run;

The following message is written to the SAS log:

NOTE: BY ordering was produced by performing an automatic sort
on table PERMDATA.customer.

NOTE: There were 2981 observations read from the data set
PERMDATA.CUSTOMER.

Example 2: Using the IDXBY=YES Data Set Option

proc means data=permdata.customer(IDXBY=yes);
var sales;
by state;

run;

The following message is written to the SAS log:

NOTE: BY ordering was produced by using an index for table
PERMDATA.customer.

NOTE: There were 2981 observations read from the data set
PERMDATA.CUSTOMER.

IDXWHERE= Data Set Option

Specifies to use indexes when processing WHERE expressions in the SPD Engine.

Valid in: DATA step and PROC step

Default: YES

Restriction: WHERENOINDEX= option cannot be used with IDXWHERE=NO option

Syntax
IDXWHERE=YES | NO

YES
uses indexes when processing WHERE expressions.

NO
ignores indexes when processing WHERE expressions.

SPD Engine Data Set Options � IDXWHERE= Data Set Option 55

Restriction: You cannot use the IDXWHERE=NO option and the
WHERENOINDEX= option together.

Details
IDXWHERE= is used with the SPD Engine’s WHERE expression planning software
called WHINIT. WHINIT tests the performance of index use with WHERE processing in
various applications. Set the SAS system option MSGLEVEL=I so that the WHERE
processing information is output to the SAS log.

When you use the IDXWHERE= data set option and the BYSORT=YES option, the
following messages are written to the SAS log:

� If IDXWHERE=YES and there is an index on the BY variable, the index is used to
order the rows of the table. The following message is written to the SAS log:

Note: BY ordering was produced by using an index for
table tablename.

� If IDXWHERE=NO or IDXWHERE=YES and there is no index on the BY variable,
SPD Engine performs an automatic sort to order the rows of the table. The
following message is written to the SAS log:

Note: BY ordering was produced by performing an
automatic sort on table tablename.

The SPD Engine supports four WHERE expression evaluation strategies. For more
information, see “SPDEWHEVAL= System Option” on page 83. Strategies 1, 3, and 4
use available indexes and execute the indexed part of the WHERE expression.
Evaluation strategy 2 executes the non-indexed part of the WHERE expression.

The first example shows that evaluation strategy 2 is used in the WHERE expression
because IDXWHERE=NO was specified. The second example shows that evaluation
strategy 1 was used because IDXWHERE=YES was specified.

Examples: WHINIT Log Output (MSGLEVEL=I)

Output 4.6 IDXWHERE=NO

34 options msglevel=i;
35 proc means data=permdata.customer(idxwhere=no);
36 var sales;
37 where state="CA";
38 run;

whinit: WHERE (sstate=’CA’)
whinit returns: ALL EVAL2
NOTE: There were 2981 observations read from the data set

PERMDATA.CUSTOMER. WHERE state=’CA’;

56 IOBLOCKSIZE= Data Set Option � Chapter 4

Output 4.7 IDXWHERE=YES

39 proc means data=permdata.customer(idxwhere=yes);
40 var sales;
41 where state="CA";
42 run;

whinit: WHERE (sstate=’CA’)
--
whinit: SBM-INDEX STATE uses 45% of segs (WITHIN maxsegratio 75%)
whinit returns: ALL EVAL1(w/SEGLIST)
NOTE: There were 2981 observations read from the data set

PERMDATA.CUSTOMER. WHERE state=’CA’;

CAUTION:
Do not arbitrarily suppress index use when using both WHERE and BY statements in
combination. When you use both a WHERE expression to filter the observations and
a BY expression to order the observations, the filtered observations qualified by the
WHERE expression are fed directly into a sort step as part of the parallel WHERE
expression evaluation. The final ordered observation set is produced as the result.
Index use for WHERE processing greatly improves the filtering performance feeding
into the sort step. �

IOBLOCKSIZE= Data Set Option

Specifies the size in bytes of a block of observations to be compressed.

Valid in: DATA step and PROC step
Affects data set options: “COMPRESS= Data Set Option” on page 47 and
“PADCOMPRESS= Data Set Option” on page 60
Default: 32,768 bytes

Syntax
IOBLOCKSIZE=n

n
is the size in bytes of a block of observations to be compressed.

Details
The SPD Engine uses blocks in memory to collect the observations to be compressed
before they are written to a data component file. IOBLOCKSIZE= specifies the size of
these blocks. (The actual size is computed to accommodate the largest number of
observations that fit in the specified size of n bytes. Therefore, the actual size is a
multiple of the observation length).

Once a compressed data set is created, you cannot change its block size. To resize the
block, you must copy the data set to a new data set, setting IOBLOCKSIZE= to the
appropriate block size for the output data set.

SPD Engine Data Set Options � LISTFILES= Data Set Option 57

The default value and the IOBLOCKSIZE= smallest value is 32,768 bytes. You
specify an IOBLOCKSIZE= value that complements the data to be accessed. Access to
data that is randomly distributed favors a smaller block size, such as 32,768 bytes,
because accessing smaller blocks is faster than accessing larger blocks. In contrast,
access to data that is uniformly or sequentially distributed or that requires a full data
set scan should have a large block size, such as 131,072 bytes.

If the data set is to be updated frequently, use the “PADCOMPRESS= Data Set
Option” on page 60 to enable expansion between the compressed blocks on the disk.

If a default Base SAS engine data set is copied to the SPD Engine, you do not have to
specify COMPRESS= or IOBLOCKSIZE= unless you want to specify a block size other
than the default size because compression is retained.

Note: To add padded space to compressed data sets without changing the
compression block size, see PADCOMPRESS= option“PADCOMPRESS= Data Set
Option” on page 60. �

Example
/*IOBLOCKSIZE set to 64K */
data sport.maillist(ioblocksize=65536 compress=yes);

/*IOBLOCKSIZE set to 32K */
data sport.maillist(ioblocksize=32768 compress=yes);

LISTFILES= Data Set Option

Specifies whether the CONTENTS procedure lists the complete pathnames of all of the component
files of an SPD Engine data set.

Valid in: PROC CONTENTS only

Default: NO

Syntax
LISTFILES=YES | NO

YES
lists the complete pathnames of all of the component files of an SPD Engine data set.

NO
does not list the pathnames.

Details
The LISTFILES= data set option is used only with the SPD Engine and the
CONTENTS procedure to list the complete pathnames of all of the component files of an
SPD Engine data set.

58 LISTFILES= Data Set Option � Chapter 4

Example

proc contents data=hrdept.names (listfiles=yes);

The following CONTENTS procedure output shows the complete pathnames of all of the
component files:

SPD Engine Data Set Options � LISTFILES= Data Set Option 59

Output 4.8 LISTFILES=YES

The SAS System 1

The CONTENTS Procedure

Data Set Name HRDEPT.NAMES Observations 1249854
Member Type DATA Variables 11
Engine SPDE Indexes 1
Created Tuesday, Observation Length 120

October 02,
2007 01:46:23
PM

Last Modified Tuesday, Deleted Observations 0
October 02,
2007 01:47:21
PM

Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation WINDOWS_32
Encoding wlatin1

Western
(Windows)

Engine/Host Dependent Information

Blocking Factor (obs/block) 546
Data Partsize 16776960
- Alphabetic List of Index Info -
Index Id
KeyValue (Min) 64587
KeyValue (Max) 64587
Number of discrete values 1
- Metadata Files -
d:\hrdir1\names.mdf.0.0.0.spds9 -
- Data Files -
d:\hrdird\names.dpf.d__sasmb.0.2.spds9 -
d:\hrdird\names.dpf.d__sasmb.1.2.spds9 -
d:\hrdird\names.dpf.d__sasmb.2.2.spds9 -
d:\hrdird\names.dpf.d__sasmb.3.2.spds9 -
d:\hrdird\names.dpf.d__sasmb.4.2.spds9 -
d:\hrdird\names.dpf.d__sasmb.5.2.spds9 -
d:\hrdird\names.dpf.d__sasmb.6.2.spds9 -
d:\hrdird\names.dpf.d__sasmb.7.2.spds9 -
d:\hrdird\names.dpf.d__sasmb.8.2.spds9 -
- Index Files -
d:\hrdiri\names.idxid.d__sasmb.0.2.spds9 -
d:\hrdiri\names.hbxid.d__sasmb.0.2.spds9 -

Alphabetic List of Variables and Attributes

Variable Type Len

7 Address01 Char 27
8 Address02 Char 9
9 City Char 12
3 CostCenter Num 8
5 FirstName Char 8
2 Id Num 8

Alphabetic List of Variables and Attributes

Variable Type Len

4 LastName Char 18
6 MiddleName Char 9
10 State Char 2
11 ZipCode Char 10
1 i Num 8

Alphabetic List of Indexes and Attributes

of
Unique

Index Values

1 Id 1

60 PADCOMPRESS= Data Set Option � Chapter 4

PADCOMPRESS= Data Set Option

Specifies the number of bytes to add to compressed blocks in a data set opened for OUTPUT or
UPDATE.

Valid in: DATA step and PROC step

Related to data set option: “COMPRESS= Data Set Option” on page 47 and
“IOBLOCKSIZE= Data Set Option” on page 56

Default: 0

Syntax
PADCOMPRESS= n

n
is the number of bytes to add.

Details
Compressed SPD Engine data sets occupy blocks of space on the disk. The size of a
block is derived from the IOBLOCKSIZE= data set option specified when the data set is
created. When the data set is updated, a new block fragment might need to be created
to hold the update. More updates might then create new fragments, which, in turn,
increases the number of I/O operations needed to read a data set.

By increasing the block padding in certain situations where many updates to the
data set are expected, fragmentation can be kept to a minimum. However, adding
padding can waste space if you do not update the data set.

You must weigh the cost of padding all compression blocks against the cost of
possible fragmentation of some compression blocks.

Specifying the PADCOMPRESS= data set option when you create or update a data
set adds space to all of the blocks as they are written back to the disk. The
PADCOMPRESS= setting is not retained in the data set’s metadata.

PARTSIZE= Data Set Option

Specifies the maximum size (in megabytes, gigabytes, or terabytes) that the data component
partitions can be. The value is specified when an SPD Engine data set is created. This size is a
fixed size. This specification applies only to the data component files.

Valid in: DATA step and PROC step

Used with: MINPARTSIZE= system option

Corresponding LIBNAME option: PARTSIZE=

Affected by LIBNAME option: DATAPATH=

Default: 128M

SPD Engine Data Set Options � PARTSIZE= Data Set Option 61

Syntax
PARTSIZE=n | nM | nG | nT

n | nM | nG | nT
is the size of the partition in megabytes, gigabytes, or terabytes. If n is specified
without M, G, or T, the default is megabytes. For example, PARTSIZE=128 is the
same as PARTSIZE=128M. The maximum value is 8,796,093,022,207 megabytes.
Restriction: This restriction applies only to 32–bit hosts with the following

operating systems: z/OS, Linux SLES 9 x86, and the Windows family. In SAS 9.2,
if you create a data set with a partition size greater than or equal to 2 gigabytes,
you cannot open the data set with any version of SPD Engine before SAS 9.2. The
following error message is written to the SAS log:

ERROR: Unable to open data file because its data
representation differs from the SAS session data
representation.

Details
Multiple partitions are necessary to read the data in parallel. The option PARTSIZE=
forces the software to partition SPD Engine data files at the specified size. The actual
size of the partition is computed to accommodate the maximum number of observations
that fit in the specified size of n megabytes, gigabytes, or terabytes. If you have a table
with an observation length greater than 65K, you might find that the PARTSIZE= you
specify and the actual partition size do not match. To get these numbers to match,
specify a PARTSIZE= that is a multiple of 32 and the observation length.

By splitting (partitioning) the data portion of an SPD Engine data set into fixed-sized
files, the software can introduce a high degree of scalability for some operations. The
SPD Engine can spawn threads in parallel (for example, up to one thread per partition
for WHERE evaluations). Separate data partitions also enable the SPD Engine to
process the data without the overhead of file access contention between the threads.
Because each partition is one file, the trade-off for a small partition size is that an
increased number of files (for example, UNIX i-nodes) are required to store the
observations.

Scalability limitations using PARTSIZE= depend on how you configure and spread
the file systems specified in the DATAPATH= option across striped volumes. (You
should spread each individual volume’s striping configuration across multiple disk
controllers or SCSI channels in the disk storage array.) The goal for the configuration,
at the hardware level, is to maximize parallelism during data retrieval. For information
about disk striping, see “I/O Setup and Validation” under “SPD Engine” in Scalability
and Performance at http://support.sas.com/rnd/scalability.

The PARTSIZE= specification is limited by the SPD Engine system option
MINPARTSIZE=, which is usually maintained by the system administrator.
MINPARTSIZE= ensures that an inexperienced user does not arbitrarily create small
partitions, thereby generating a large number of data files.

The partition size determines a unit of work for many of the parallel operations that
require full data set scans. But, more partitions does not always mean faster
processing. The trade-offs involve balancing the increased number of physical files
(partitions) required to store the data set against the amount of work that can be done
in parallel by having more partitions. More partitions means more open files to process
the data set, but a smaller number of observations in each partition. A general rule is
to have 10 or fewer partitions per data path, and 3 to 4 partitions per CPU. (Some
operating systems have a limit on the number of open files you can use.)

62 STARTOBS= Data Set Option � Chapter 4

To determine an adequate partition size for a new SPD Engine data set, you should
be aware of the following:

� the types of applications that run against the data
� how much data you have
� how many CPUs are available to the applications
� which disks are available for storing the partitions
� the relationships of these disks to the CPUs

For example, if each CPU controls only one disk, then an appropriate partition size
would be one in which each disk contains approximately the same amount of data. If
each CPU controls two disks, then an appropriate partition size would be one in which
the load is balanced. Each CPU does approximately the same amount of work.

Note: The PARTSIZE= value for a data set cannot be changed after a data set is
created. To change PARTSIZE=, you must re-create the data set and specify a different
PARTSIZE= value in the LIBNAME statement or on the new (output) data set. �

Example: Using PROC SQL

You have 100 gigabytes of data and 8 disks, so you can store 12.5 gigabytes per disk.
Optimally, you want 3 to 4 partitions per disk. A partition size of 3.125 gigabytes is
appropriate. So, you can specify PARTSIZE=3200M.

data salecent.sw (partsize=3200m);

Using the same amount of data, you anticipate the amount of data doubles within a
year. You can either specify the same PARTSIZE= and have about 7 partitions per disk,
or you can increase PARTSIZE= to 5000M and have 5 partitions per disk.

STARTOBS= Data Set Option

Specifies the starting observation number in a user-defined range of observations to be processed.

Valid in: DATA step and PROC step
Default: the first observation in the data set
Restriction: use STARTOBS= with input data sets only
Restriction: cannot be used with OBS= system and data set option or FIRSTOBS=
system and data set option

Syntax
STARTOBS=n

n
is the number of the starting observation.

Details
By default, the SPD Engine processes all of the observations in the entire data set
unless you specify a range of observations with the STARTOBS= and ENDOBS=

SPD Engine Data Set Options � STARTOBS= Data Set Option 63

options. If the ENDOBS= option is used without the STARTOBS= option, the implied
value of STARTOBS= is 1. When both options are used together, the value of
STARTOBS= must be less than the value of ENDOBS=.

The STARTOBS= data set option in the SPD Engine works the same way as the
FIRSTOBS= SAS data set option in the default Base SAS engine, except when it is
specified in a WHERE expression.

Note: The FIRSTOBS= SAS data set option is not supported by the SPD Engine.
The OBS= system option and the OBS= data set option cannot be used with the
STARTOBS= or ENDOBS= data set or LIBNAME options. �

Using STARTOBS= with a WHERE Expression
When STARTOBS= is used in a WHERE expression, the STARTOBS= value

represents the first observation on which to apply the WHERE expression. Compare
this value to the default Base SAS engine data set option FIRSTOBS=, which specifies
the starting observation number within the subset of data qualified by the WHERE
expression.

Examples

Example 1: STARTOBS= with SPD Engine
A data set is created and processed by the SPD Engine with STARTOBS=5 specified.

The WHERE expression is applied to the data set, beginning with observation number
5. The PRINT procedure prints six observations, which are the observations qualified
by the WHERE expression.

libname growth spde ’c:\temp’;

data growth.teens;
input Name $ Sex $ Age Height Weight;
list;

datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.1
Alice F 14 65.1 91.0
William M 15 66.5 112.0
Mike M 16 67.0 105.1
;

proc print data=growth.teens (startobs=5);
where age >13;
title ’WHERE age>13 using SPD Engine’;

run;

64 STARTOBS= Data Set Option � Chapter 4

Output 4.9 Six Observations Printed

WHERE age>13 using SPD Engine

Obs Name Sex Age Height Weight

5 Judy F 14 64.3 90.0
6 Philip M 16 72.0 150.0
7 Zeke M 14 71.1 105.1
8 Alice F 14 65.1 91.0
9 William M 15 66.5 112.0
10 Mike M 16 67.0 105.1

Example 2: FIRSTOBS= with the Default Base SAS Engine The same data set is
processed by the default Base SAS engine with FIRSTOBS=5 specified. PROC PRINT
prints five observations, which are all of the observations qualified by the WHERE
expression, starting with the fifth qualified observation. FIRSTOBS= is not supported
in the SPD Engine.

libname growth v9 ’c:\temp’;

data growth.teens;
input Name $ Sex $ Age Height Weight;
list;

datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.1
Alice F 14 65.1 91.0
William M 15 66.5 112.0
Mike M 16 67.0 105.1
;

proc print data=growth.teens (firstobs=5);
where age >13;
title ’WHERE age>13 using the V9 Engine’;

run;

Output 4.10 Five Observations Printed

WHERE age>13 using the V9 Engine

Obs Name Sex Age Height Weight
6 Philip M 16 72.0 150.0
7 Zeke M 14 71.1 105.1
8 Alice F 14 65.1 91.0
9 William M 15 66.5 112.0
10 Mike M 16 67.0 105.1

SPD Engine Data Set Options � SYNCADD= Data Set Option 65

SYNCADD= Data Set Option

Specifies to process one observation at a time or multiple observations at a time.

Valid in: PROC SQL

Affects the data set option: UNIQUESAVE=

Default: NO

Syntax
SYNCADD=YES|NO

YES
processes a single observation at a time (synchronously).

NO
processes multiple observations at a time (asynchronously).

Details
When SYNCADD=YES, observations are processed one at a time. With PROC SQL, if
you are adding observations to a data set with a unique index and the SPD Engine
encounters an observation with a nonunique value, the following occurs:

� the add operation stops

� all transactions just added are backed out

� the original data set on disk is unchanged

When SYNCADD=NO, observations are added in blocks (pipelining), which is usually
faster. If you are adding observations to a data set with a unique index and the SPD
Engine encounters an observation with a duplicate index value, the following occurs:

� the SPD Engine rejects the observation

� the SPD Engine continues processing

� a status code is issued only at the end of the append or insert operation

To save the rejected observations in a separate data set, set the UNIQUESAVE= data
set option to YES.

Example

In the following example, two data sets, UQ01A and UQ01B, are created. On
UQ01A, PROC SQL creates a unique composite index, and then inserts new values into
the data set with SYNCADD=NO (inserting blocks of data). Duplicate values are stored
in a separate file because UNIQUESAVE= is set to YES.

Then, PROC SQL creates a unique composite index on UQ01B and inserts new
values with SYNCADD=YES. PROC SQL stops when duplicate values are encountered
and restores the data set. Even though UNIQUESAVE=YES, it is ignored. The SAS log
is shown:

66 SYNCADD= Data Set Option � Chapter 4

1097 libname userfile spde ’c:\temp’;
NOTE: Libref SPDS USERFILE was successfully assigned as follows:

Engine: SPD Engine
Physical Name: d3727.na.sas.com:528c:\temp\

1098
1099 data uq01a uq01b;
1100 input z $ 1-20 x y;
1101 list;
1102 datalines;

RULE:----+----1----+----2----+----3----+----4----+----5----+----6----+----7
1103 one 1 10
1104 two 2 20
1105 three 3 30
1106 four 4 40
1107 five 5 50
NOTE: The data set USER.UQ01A has 5 observations and 3 variables.
NOTE: The data set USER.UQ01B has 5 observations and 3 variables.
NOTE: DATA statement used (Total process time):

real time 0.51 seconds
cpu time 0.06 seconds

1108 ;
1109
1110
1111 proc sql sortseq=ascii exec noerrorstop;
1112 create unique index comp
1113 on uq01a (x, y);
NOTE: Composite index comp has been defined.
1114 insert into uq01a(syncadd=no,uniquesave=yes)
1115 values(’rollback1’, -80, -80)
1116 values(’rollback2’,-90, -90)
1117 values(’nonunique’, 2, 20)
1118 ;
NOTE: 3 observations were inserted into USER.UQ01A.

WARNING: Duplicate values not allowed on index comp for file USER.UQ01A.
(Occurred 1 times.)

NOTE: Duplicate records have been stored in file USER._D2DAAF7.
NOTE: PROCEDURE SQL used (Total process time):

real time 0.99 seconds
cpu time 0.05 seconds

1119 proc sql sortseq=ascii exec noerrorstop;
1120 create unique index comp
1121 on uq01b (x, y);
NOTE: Composite index comp has been defined.
1122 insert into uq01b(syncadd=yes,uniquesave=yes)
1123 set z=’rollback3’, x=-60, y=-60
1124 set z=’rollback4’, x=-70, y=-70
1125 set z=’nonunique’, x=2, y=20;
ERROR: Duplicate values not allowed on index comp for file UQ01B.

SPD Engine Data Set Options � THREADNUM= Data Set Option 67

NOTE: Deleting the successful inserts before error noted above to restore
data set to a consistent state.

1126
NOTE: PROCEDURE SQL used (Total process time):

real time 0.26 seconds
cpu time 0.17 seconds

1127 proc compare data=uq01a compare=uq01b;run;

NOTE: There were 7 observations read from the data set USER.UQ01A.
NOTE: There were 5 observations read from the data set USER.UQ01B.
NOTE: PROCEDURE COMPARE used (Total process time):

real time 0.51 seconds
cpu time 0.05 seconds

THREADNUM= Data Set Option

Specifies the maximum number of I/O threads the SPD Engine can spawn for processing an SPD
Engine data set.

Valid in: DATA step and PROC step
Affected by system option: SPDEMAXTHREADS=
Default: the value of the SPDEMAXTHREADS= system option, if set. Otherwise, the
default is two times the number of CPUs on your computer

Syntax
THREADNUM=n

n
specifies the number of threads.

Details
THREADNUM= enables you to specify the maximum number of I/O threads that the
SPD Engine spawns for processing an SPD Engine data set. The THREADNUM= value
applies to any of the following SPD Engine I/O processing:

� WHERE expression processing
� parallel index creation
� I/O requested by thread-enabled applications

Adjusting THREADNUM= enables the system administrator to adjust the level of
CPU resources the SPD Engine can use for any process. For example, in a 64-bit
processor system, setting THREADNUM=4 limits the process to, at most, four CPUs,
thereby enabling greater throughput for other users or applications.

When THREADNUM= is greater than 1, parallel processing is likely to occur.
Therefore, physical order might not be retained in the output.

68 UNIQUESAVE= Data Set Option � Chapter 4

You can also use this option to explore scalability for WHERE expression evaluations.
SPDEMAXTHREADS=, a configurable system option, imposes an upper limit on the

consumption of system resources and, therefore, constrains the THREADNUM= value.

Note: The SAS system option NOTHREADS does not affect the SPD Engine. �

Note: Setting THREADNUM=1 means that no parallel processing occurs, which is
behavior consistent with the default Base SAS engine. �

Example

The SPD Engine system option SPDEMAXTHREADS= is set to 128 for the session.
A SAS macro shows the effects of parallelism in the following example:

%macro dotest(maxthr);
%do nthr=1 %to &maxthr;

data _null_;
set spde cen.precs(threadnum= &nthr);

where occup= ’022’
and state in(’37’,’03’,’06’,’36’);

run;
%mend dotest;

UNIQUESAVE= Data Set Option

Specifies to save observations with nonunique key values (the rejected observations) to a separate
data set when appending or inserting observations to data sets with unique indexes.

Valid in: PROC APPEND and PROC SQL

Affected by the data set option: SYNCADD=NO
Used with: SPDSUSDS automatic macro variable

Default: NO

Syntax
UNIQUESAVE=YES|NO

YES
if SYNCADD=NO, writes rejected observations to a separate, system-created data
set, which can be accessed by a reference to the macro variable SPDSUSDS.

NO
does not write rejected observations to a separate data set.

Details
Use UNIQUESAVE=YES when you are adding observations to a data set with unique
indexes and the data set option SYNCADD=NO is set.

SPD Engine Data Set Options � UNIQUESAVE= Data Set Option 69

SYNCADD=NO specifies that an append or insert operation should process
observations in blocks (pipelining), instead of one at a time. Duplicate index values are
detected only after all the observations are applied to a data set. With
UNIQUESAVE=YES, the rejected observations are saved to a separate data set whose
name is stored in the SPD Engine macro variable SPDSUSDS. You can specify the
macro variable in place of the data set name to identify the rejected observations.

Note: When SYNCADD=YES, the UNIQUESAVE= option is ignored. For more
information see the SYNCADD= data set option. �

Examples

In the following example, two data sets with unique indexes on the variable NAME
are created, and then appended together using PROC APPEND with
UNIQUESAVE=YES. The SAS log is shown:

1 libname employee spde ’c:\temp’;
NOTE: Libref EMPLOYEE was successfully assigned as follows:

Engine: SPD Engine
Physical Name: c:\temp\

2 data employee.emp1 (index=(name/unique));
3 input name $ exten;
4 list; datalines;

RULE:----+----1----+----2----+----3----+----4----+----5----+----6----+
5 Jill 4344
6 Jack 5589
7 Jim 8888
8 Sam 3334
NOTE: The data set EMPLOYEE.EMP1 has 4 observations and 2 variables.
NOTE: DATA statement used (Total process time):

real time 9.98 seconds
cpu time 1.28 seconds

9 run;

10 data employee.emp2 (index=(name/unique));
11 input name $ exten;
12 list; datalines;

RULE:----+----1----+----2----+----3----+----4----+----5----+----6----+
13 Jack 4443
14 Ann 8438
15 Sam 3334
16 Susan 5321
17 Donna 3332
NOTE: The data set EMPLOYEE.EMP2 has 5 observations and 2 variables.
NOTE: DATA statement used (Total process time):

real time 0.04 seconds
cpu time 0.04 seconds

18 run;

70 UNIQUESAVE= Data Set Option � Chapter 4

19 proc append data=employee.emp2 base=employee.emp1
20 (syncadd=no uniquesave=yes);
21 run;

NOTE: Appending EMPLOYEE.EMP2 to EMPLOYEE.EMP1.
NOTE: There were 5 observations read from the data set EMPLOYEE.EMP2.
NOTE: 3 observations added.
NOTE: The data set EMPLOYEE.EMP1 has 7 observations and 2 variables.
WARNING: Duplicate values not allowed on index name for file

EMPLOYEE.EMP1. (Occurred 2 times.)
NOTE: Duplicate records have been stored in file EMPLOYEE._D3596FF.
NOTE: PROCEDURE APPEND used (Total process time):

real time 6.25 seconds
cpu time 1.26 seconds

22 proc print data=employee.emp1;
23 title ’Listing of Final Data Set’;
24 run;

NOTE: There were 7 observations read from the data set EMPLOYEE.EMP1.
NOTE: PROCEDURE PRINT used (Total process time):

real time 2.09 seconds
cpu time 0.40 seconds

25
26 proc print data=&spdsusds;
27 title ’Listing of Rejected observations’;
28 run;

NOTE: There were 2 observations read from the data set EMPLOYEE._D3596FF.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.01 seconds
cpu time 0.01 seconds

Output 4.11 UNIQUESAVE=YES

Listing of Final Data Set

Obs name exten
1 Jill 4344
2 Jack 5589
3 Jim 8888
4 Sam 3334
5 Ann 8438
6 Susan 5321
7 Donna 3332

Listing of Rejected observations

Obs name exten XXX00000
1 Jack 4443 name
2 Sam 3334 name

SPD Engine Data Set Options � SPD Engine Data Set Options List 71

WHERENOINDEX= Data Set Option

Specifies a list of indexes to exclude when making WHERE expression evaluations.

Valid in: DATA step and PROC step
Default: blank
Restriction: cannot be used with IDXWHERE=NO data set option

Syntax
WHERENOINDEX=(name1 name2...)

(name1 name2...)
a list of index names to exclude from the WHERE planner.

Example

The data set PRECS is defined with indexes:

proc datasets lib=spde cen
modify precs;
index create stser=(state serialno) occind=(occup industry) hour89;

quit;

When evaluating the next query, the SPD Engine does not use the indexes for either
the STATE or HOUR89 variables.

In this case, the AND combination of the conditions for the OCCUP and INDUSTRY
variables produce a very small yield. Few observations satisfy the conditions. To avoid
the extra index I/O (computer time) that the query requires for a full-indexed
evaluation, use the following SAS code:

proc sql;
create data set hr80spde
as select state, age, sex, hour89, industry, occup from spde cen.precs
(wherenoindex=(stser hour89))

where occup=’022’
and state in(’37’,’03’,’06’,’36’)
and industry=’012’
and hour89 > 40;

quit;

Note: Specify the index names in the WHERENOINDEX list, not the variable
names. In the previous example, both the composite index for the STATE variable,
STSER, and the simple index, HOUR89, are excluded. �

SPD Engine Data Set Options List
“ASYNCINDEX= Data Set Option” on page 42

72 SPD Engine Data Set Options List � Chapter 4

specifies to create indexes in parallel when creating multiple indexes on an SPD
Engine data set.

“BYNOEQUALS= Data Set Option” on page 43
specifies the index output order of data set observations that have identical values
for the BY variable.

“BYSORT= Data Set Option” on page 45
specifies for the SPD Engine to perform an automatic sort when it encounters a
BY statement.

“COMPRESS= Data Set Option” on page 47
compresses SPD Engine data sets on disk.
Restriction: Compression and encryption are mutually exclusive in SPD Engine.

“ENCRYPT= Data Set Option” on page 49
Encrypts data files.

Restriction: Compression and encryption are mutually exclusive in SPD Engine.

“ENDOBS= Data Set Option” on page 50
specifies the end observation number in a user-defined range of observations to be
processed.

“IDXBY= Data Set Option” on page 53
specifies whether to use an index when processing BY statements in the SPD
Engine.

“IDXWHERE= Data Set Option” on page 54
specifies to use indexes when processing WHERE expressions in the SPD Engine.

“IOBLOCKSIZE= Data Set Option” on page 56
specifies the size of a block of observations to be compressed.

“LISTFILES= Data Set Option” on page 57
specifies whether the CONTENTS procedure lists the complete pathnames of all of
the component files in an SPD Engine data set.

“PADCOMPRESS= Data Set Option” on page 60
specifies the number of bytes to add to compressed blocks in a data set opened for
OUTPUT or UPDATE.

“PARTSIZE= Data Set Option” on page 60
specifies the maximum partition size of the data component files. PARTSIZE= is
also a LIBNAME option.

“STARTOBS= Data Set Option” on page 62
specifies the starting observation number in a user-defined range of observations
to be processed.

“SYNCADD= Data Set Option” on page 65
specifies to process one observation at a time or a block of observations at a time.

“THREADNUM= Data Set Option” on page 67
specifies the maximum number of threads to use for the SPD Engine processing.

“UNIQUESAVE= Data Set Option” on page 68
specifies to save (in a separate file) any observations that were rejected because of
nonunique key values during an append or insert to a data set with unique
indexes when SYNCADD=NO.

“WHERENOINDEX= Data Set Option” on page 71
specifies a list of indexes to exclude when making WHERE expression evaluations.

SPD Engine Data Set Options � SAS Data Set Options Not Supported by the SPD Engine 73

SAS Data Set Options That Behave Differently with the SPD Engine
Than with the Default Base SAS Engine

CNTLLEV=
only the value MEM is accepted

COMPRESS=
no user-supplied values are accepted
Restriction: Compression and encryption are mutually exclusive in the SPD

Engine. If you are copying a default Base SAS engine data set to an SPD
Engine data set and the data set is compressed and encrypted, the compression
is dropped. You cannot create an SPD Engine data set with both encryption and
compression.

ENCRYPT=
encrypts data files
Restriction: Compression and encryption are mutually exclusive in SPD Engine.

SAS Data Set Options Not Supported by the SPD Engine

� BUFNO=
� BUFSIZE=
� DLDMGACTION=
� ENCODING=
� FIRSTOBS=
� GENMAX=
� GENNUM=
� IDXNAME=
� OUTREP=
� POINTOBS=
� REUSE=
� TOBSNO=

74

75

C H A P T E R

5
SPD Engine System Options

Introduction to SPD Engine System Options 75
Syntax 75

COMPRESS= System Option 76

MAXSEGRATIO= System Option 77

MINPARTSIZE= System Option 78

SPDEINDEXSORTSIZE= System Option 79
SPDEMAXTHREADS= System Option 80

SPDESORTSIZE= System Option 80

SPDEUTILLOC= System Option 81

SPDEWHEVAL= System Option 83

SPD Engine System Options List 84

SAS System Options That Behave Differently with SPD Engine 84

Introduction to SPD Engine System Options

SAS system options are instructions that affect your SAS session. They control the
way that SAS performs operations, such as SAS system initialization, hardware and
software interfacing, and the input, processing, and output of jobs and SAS files. The
SPD Engine system options work the same way as SAS system options. This section
discusses system options that are used only with the SPD Engine, and Base SAS
system options that behave differently with the SPD Engine.

Syntax

OPTIONS option1 <...option-n>;

option
specifies one or more SPD Engine system options that you want to change.

The following example specifies the SPD Engine system option MAXSEGRATIO=:

options maxsegratio=50;

Operating Environment Information: On the command line or in a configuration file,
the syntax is specific to your operating environment. For details, see the SAS
documentation for your operating environment.

76 COMPRESS= System Option � Chapter 5

COMPRESS= System Option

Specifies to compress SPD Engine data sets on disk as they are being created.

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window

Restriction: cannot be used with ENCRYPT=YES or ENCRYPT=RC4

Default: NO

Syntax
COMPRESS= NO | YES | CHAR | BINARY

NO
performs no data set compression.

YES | CHAR
performs the Run Length Compression (SPDSRLC2) on the data set.

BINARY
performs the Ross Data Compression (SPDSRDC) on the data set.

Details
When you specify COMPRESS=YES|BINARY|CHAR, the SPD Engine compresses, by
blocks, the data component file as it is created. To specify the size of the compressed
blocks, use the “IOBLOCKSIZE= Data Set Option” on page 56 when you create the data
set. To add padding to the newly compressed blocks, specify “PADCOMPRESS= Data
Set Option” on page 60 when creating or updating the data set. For more information,
see “Compressing SPD Engine Data Sets” on page 17.

The SPD Engine does not support user-specified compression. If you are migrating a
default Base SAS engine data set that is both compressed and encrypted, the
encryption is retained, but the compression is dropped.

The CONTENTS procedure prints information about the compression. The following
example explains the compressed info fields in the CONTENTS procedure output:

- Compressed Info -
Number of compressed blocks 202
Raw data blocksize 32736
Number of blocks with overflow 5
Max overflow chain length 3
Block number for max chain 80
Min overflow area 87
Max overflow area 181

Number of
compressed
blocks

number of compressed blocks that are required to store data.

Raw data
blocksize

compressed block size in bytes calculated from the size specified in
the IOBLOCKSIZE= data set option.

SPD Engine System Options � MAXSEGRATIO= System Option 77

Number of
blocks with
overflow

number of compressed blocks that needed more space. When data is
updated and the compressed new block is larger than the
compressed old block, an overflow block fragment is created.

Max overflow
chain length

largest number of overflows for a single block. For example, the
maximum overflow chain length would be 2 if a compressed block
was updated and became larger, and then updated again to a larger
size.

Block number
for max chain

number of the block containing the largest number of overflow
blocks.

Min overflow
area

minimum amount of disk space that an overflow requires.

Max overflow
area

maximum amount of disk space that an overflow requires.

MAXSEGRATIO= System Option

Controls what percentage of index segments to identify as candidate segments before processing
the WHERE expression. This occurs when evaluating a WHERE expression that contains indexed
variables.

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window
Default: 75

Syntax
MAXSEGRATIO=n

n
specifies an upper limit for the percentage of index segments that the SPD Engine
identifies as containing the value referenced in the WHERE expression. The default
is 75, which specifies for the SPD Engine to do the following:

� use the index to identify segments that contain the particular WHERE
expression value

� stop identifying candidate segments when more than 75% of all segments are
found to contain the value

The range of valid values is integers between 0 and 100. If n=0, the SPD Engine
does not try to identify candidate segments, but instead applies the WHERE
expression to all segments. If n=100, the SPD Engine checks 100% of the segments
to identify candidate segments, and then applies the WHERE expression only to
those candidate segments.

Details
For WHERE queries on indexed variables, the SPD Engine determines the number of
index segments that contain one or more variable values that match one or more of the

78 MINPARTSIZE= System Option � Chapter 5

conditions in the WHERE expression. Often, a substantial performance gain can be
realized if the WHERE expression is applied only to the segments that contain
observations satisfying the WHERE expression.

The SPD Engine uses the value of MAXSEGRATIO= to determine at what point the
cost of applying the WHERE expression to every segment would be less than the cost of
continuing to identify candidate segments. When the calculated ratio exceeds the ratio
specified in MAXSEGRATIO=, the SPD Engine stops identifying candidate segments
and applies the WHERE expression to all segments.

Note: For a few tables, 75% might not be the optimal setting. To determine a better
setting, run a performance benchmark, adjust the percentage, and rerun the
performance benchmark. Comparing results shows you how the specific data population
you are querying responds to shifting the index-segment ratio. �

Examples

Example 1: MAXSEGRATIO=65 The following example causes the SPD Engine to begin
identifying index segments that might satisfy the WHERE expression until the
percentage of identified segments, compared to the total number of segments, exceeds
65. If the percentage exceeds 65, the SPD Engine stops identifying candidate segments
and applies the WHERE expression to all segments:

options maxsegratio=65;

Example 2: MAXSEGRATIO=0 The following example causes the SPD Engine to apply
the WHERE expression to all segments without first identifying any candidate
segments:

options maxsegratio=0;

Example 3: MAXSEGRATIO=100 The following example causes the SPD Engine to
begin identifying index segments and to not stop until it has evaluated all segments.
Then, the WHERE expression is applied to all candidate segments that were identified:

options maxsegratio=100;

MINPARTSIZE= System Option

Specifies the minimum size that the data component partitions can be. The value is specified
when the SPD Engine data set is created.

Valid in: configuration file, SAS invocation
Related to: PARTSIZE= data set and LIBNAME option
Default: 16M

Syntax
MINPARTSIZE=n | nK | nM | nG

SPD Engine System Options � SPDEINDEXSORTSIZE= System Option 79

n
is the size of the partition in bytes, kilobytes, megabytes, or gigabytes. The
maximum value for the minimum partition size is 2GB–1 or 2047 megabytes.
Restriction: This restriction applies only to 32–bit hosts with the following

operating systems: z/OS, Linux SLES 9 x86, and the Windows family. In SAS 9.2,
if you create a data set with a partition size greater than or equal to 2 gigabytes,
you cannot open the data set with any version of SPD Engine before SAS 9.2. The
following error message is written to the SAS log:

ERROR: Unable to open data file because its data
representation differs from the SAS session data
representation.

Details
Specifying MINPARTSIZE= sets a lower limit for the partition size that can be specified
with the PARTSIZE= option. The MINPARTSIZE= specification could affect whether
the partitions are created with approximately the same number of observations. A
small partition size means more open files during processing. Your operating system
might have a limit on the number of open files used.

SPDEINDEXSORTSIZE= System Option

Specifies the memory space size that the sorting utility can use when sorting values for creating
an index.

Valid in: configuration file, SAS invocation, OPTIONS statement, Systems Options
window
Affected by data set option: MEMSIZE=
Default: 32M

Syntax
SPDEINDEXSORTSIZE=n | nK | nM | nG

n
is the size of memory space in bytes, kilobytes, megabytes, or gigabytes. If n=0, the
sort utility uses its default. The valid value range is from 1,048,576 to
10,736,369,664 bytes.

Details
The SPDEINDEXSORTSIZE= option specifies the maximum amount of memory that
can be used when sorting values for creating an index. When indexes are created in
parallel (because ASYNCINDEX=YES), the value you specify in
SPDEINDEXSORTSIZE= is divided among all of the concurrent index creation threads.

80 SPDEMAXTHREADS= System Option � Chapter 5

Perform one of the following if the index creation fails due to insufficient memory:
� restart SAS with the SAS system option MEMSIZE=0*
� increase the size of the utility file space using the SPDEUTILLOC= system option

You increase the memory space that is used for index sorting using the
SPDEINDEXSORTSIZE= system option. If you specify to create indexes in parallel,
specify a large-enough space using the SPDEUTILLOC= system option.

SPDEMAXTHREADS= System Option

Specifies the maximum number of threads that the SPD Engine can spawn for I/O processing.

Valid in: configuration file, SAS invocation

Default: 0

Syntax
SPDEMAXTHREADS=n

n
is the maximum number of threads the SPD Engine can spawn. The range of valid
values is 0 to 65,536. The default is zero, which means that the SPD Engine uses the
value of THREADNUM= if set. Otherwise, the SPD Engine sets the number of
threads to spawn to be equivalent to two times the number of CPUs on your computer.

Details
Specifying SPDEMAXTHREADS= sets an upper limit on the number of threads to
spawn for the SPD Engine processing, which includes the following:

� WHERE expression processing

� parallel index creation
� any I/O processing requested by thread-enabled applications such as SAS

thread-enabled procedures

SPDEMAXTHREADS= constrains the THREADNUM= data set option.

SPDESORTSIZE= System Option

Specifies the memory space size that is needed for sorting operations used by the SPD Engine.

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window

* for OpenVMS on HP Integrity Servers, increase the paging file quota (PGFLQUO); for z/OS, increase the REGION size.

SPD Engine System Options � SPDEUTILLOC= System Option 81

Default: 32M

Syntax
SPDESORTSIZE=n | nK | nM | nG

n
is the size of memory space in bytes, kilobytes, megabytes, or gigabytes. If n=0, the
sort utility uses its default. The valid value range is from 1,048,576 to
10,736,369,664 bytes.

Details
The SPD Engine can perform an automatic sort in parallel. The sort size you specify for
SPDESORTSIZE= should be multiplied by the number of processes that are in parallel.
This total should be less than the physical memory available to your process. Proper
specification of SPDESORTSIZE= can improve performance by restricting the swapping
of memory that is controlled by the operating environment.

Perform one of the following if the sort process needs more memory than you
specified:

� restart SAS with the SAS system option MEMSIZE=0*
� increase the size of the utility file space using the SPDEUTILLOC= system option

You increase the memory that is used for index sorting using the
SPDEINDEXSORTSIZE= system option. If you specify to create indexes in parallel,
specify a large-enough space using the SPDEUTILLOC= system option.

Note: The SORTSIZE= option documented for the default Base SAS engine affects
PROC SORT operations. The SPDESORTSIZE= specification affects sorting operations
specific to the SPD Engine. �

SPDEUTILLOC= System Option

Specifies one or more file system locations in which the SPD Engine can temporarily store utility
files.

Valid in: configuration file, SAS invocation
See: The SAS Companion for your operating system details how to specify system
options.

Syntax
SPDEUTILLOC=location | (location-1 ...location-n)

* for OpenVMS on HP Integrity Servers, increase the paging file quota (PGFLQUO); for z/OS, increase the REGION size.

82 SPDEUTILLOC= System Option � Chapter 5

location
is an existing directory where the utility files are created.

(location-1 ...location-n)
a series of existing directories where the utility files are created.

Note: Location can be enclosed in single or double quotation marks. Quotation
marks are required if location contains embedded blanks. �

Operating Environment Information: The SAS Companion for your operating system
details how to specify system options. �

Details

The SPD Engine creates temporary utility files during certain processing, such as
automatic sorting and creating indexes. To successfully complete the process, you must
have enough space to store the utility files. The SPDEUTILLOC= system option
enables you to specify an adequate amount of space for processing. However, for
OpenVMS on HP Integrity Servers, the libraries must be ODS-5 files. When multiple
directories are specified in the SPDEUTILLOC= system option, the directory for the
first utility file is randomly selected when processing starts. The selection continues in
a cyclical fashion to the other directories. Utility files are temporary and are removed
after processing is completed.

Note: To avoid syntax errors, specify multiple directories in the configuration file. �

SAS recommends that you always specify the SPDEUTILLOC= option or the
UTILLOC= option to ensure that you have enough space for processes that create utility
files. If the SPDEUTILLOC= system option or the UTILLOC= SAS system option is not
specified, and the SPD Engine cannot locate the SAS WORK directory (or does not have
Write permission to it), the location for temporary utility file storage is defined by each
operating environment. The following table shows the default utility file locations:

Table 5.1 Default Utility File Locations

Operating
Environment

Default Location 1 Default Location 2 Default Location 3

UNIX UTILLOC= SAS
system option, if
specified

SAS Work library /tmp

Windows UTILLOC= SAS
system option, if
specified

SAS Work library location specified by
the TEMP=
environment variable

z/OS UTILLOC= SAS
system option, if
specified

SAS Work library /tmp

OpenVMS on HP
Integrity Servers

UTILLOC= SAS
system option, if
specified

WORK= SAS system
option, if specified,
and ODS-5 directory1

sys$scratch:

1 If the WORK= SAS system option does not specify an ODS-5 directory, and if the SAS session was started
with an ODS-5 file specification of SASROOT, the utility files will be created in the SASROOT directory.
Otherwise, there will be no default location, and the LIBNAME assignment will fail.

SPD Engine System Options � SPDEWHEVAL= System Option 83

SPDEWHEVAL= System Option

Specifies the process to determine which observations meet the condition or conditions of a
WHERE expression.

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window
Default: COST

Syntax
SPDEWHEVAL=COST | EVAL1 | EVAL3EVAL4

COST
specifies that the SPD Engine decides which evaluation strategy to use to optimize
the WHERE expression. This process calculates the number of threads to be used,
which minimizes the overhead of spawning underutilized threads. This is the default.

EVAL1
is a multi-threaded index evaluation strategy that can quickly determine the rows
that satisfy the WHERE expression, using multiple threads. The number of threads
that are spawned to retrieve the observations is equal to the THREADNUM= value.

EVAL3EVAL4
is a single-threaded index evaluation strategy that is used for a simple or compound
WHERE expression in which all of the key variables have a simple index and no
condition tests for non-equality. Multi-threading might be used to retrieve the
observations.

Details
COST, the default setting for SPDEWHEVAL=, analyzes the WHERE expression and
any available indexes. Based on the analysis, the SPD Engine chooses an evaluation
strategy to optimize the WHERE expression. The evaluation strategy can be EVAL1,
EVAL3, EVAL4, or a strategy that sequentially reads the data if no indexes are
available, or if the analysis shows that using the index or indexes cannot improve
processing time.

COST optimizes the number of threads to use for processing the WHERE expression.
COST determines and spawns the number of threads that can be efficiently used.
Based on the value of THREADNUM=, COST can save significant processing time by
not spawning threads that are underutilized.

COST is the recommended value for SPDEWHEVAL=, unless the WHERE
expression exactly meets one of the other evaluation strategy criterion. It is strongly
recommended that benchmark tests be used to determine whether a value other than
COST is more efficient.

EVAL1 might be more efficient if the WHERE expression is complex and there are
multiple indexes for the variables. EVAL1 spawns multiple threads to determine which
segments meet the conditions of the WHERE expression. Multiple threads can also be
used to retrieve the observations.

Note: In a few situations, COST might not perform the best. To determine whether
changing the value to EVAL1 or EVAL3EVAL4 can produce better performance, run a

84 SPD Engine System Options List � Chapter 5

performance benchmark, change the value, and re-run the performance benchmark.
Comparing results shows you how the specific data population you are querying
responds to rules-based WHERE planning. �

SPD Engine System Options List

“COMPRESS= System Option” on page 76
specifies to compress SPD Engine data sets on disk as they are being created.

“MAXSEGRATIO= System Option” on page 77
controls what percentage of index segments to identify as candidate segments
before processing the WHERE expression. This occurs when evaluating a WHERE
expression that contains indexed variables.

“MINPARTSIZE= System Option” on page 78
specifies the minimum partition size to use when creating SPD Engine data sets.

“SPDEINDEXSORTSIZE= System Option” on page 79
specifies the memory space size of the sorting utility can use when sorting values
for creating an index.

“SPDEMAXTHREADS= System Option” on page 80
specifies the maximum number of threads that the SPD Engine can spawn for I/O
processing.

“SPDESORTSIZE= System Option” on page 80
specifies the memory space size needed for sorting operations used by the SPD
Engine.

“SPDEUTILLOC= System Option” on page 81
specifies one or more file system locations in which the SPD Engine can
temporarily store utility files.

“SPDEWHEVAL= System Option” on page 83
specifies the process to determine which observations meet the condition or
conditions of a WHERE expression.

SAS System Options That Behave Differently with SPD Engine

MSGLEVEL=
the value I enables WHINIT planner output

MSGLEVEL=I
produces WHERE optimization information in the SAS log

COMPRESS=
cannot perform user-defined compression

DLDMGACTION=
does not affect the SPD Engine. If an SPD Engine data set is damaged, it must be
restored from a system backup file.

FIRSTOBS=
cannot be used in the SPD Engine

85

P A R T3

Appendix

Appendix 1.Recommended Reading 87

86

87

A P P E N D I X

1
Recommended Reading

Recommended Reading 87

Recommended Reading

Here is the recommended reading list for this title:
� Base SAS Procedures Guide
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

88

89

Glossary

block (of data)
a group of observations in a data set. If an application is thread-enabled, it can read,
write, and process the observations faster when they are delivered as a block than
when they are delivered as individual observations.

compound WHERE expression
a WHERE expression that contains more than one operator, as in WHERE X=1 and
Y>3. See also WHERE expression.

controller
a computer component that manages the interaction between the computer and a
peripheral device such as a disk or a RAID. For example, a controller manages data
I/O between a CPU and a disk drive. A computer can contain many controllers. A
single CPU can command more than one controller, and a single controller can
command multiple disks.

CPU-bound application
an application whose performance is constrained by the speed at which computations
can be performed on the data. Multiple CPUs and threading technology can alleviate
this problem.

data partition
a physical file that contains data and which is part of a collection of physical files of
the data component of an SPD Engine data set. See also partition, partitioned data
set.

I/O-bound application
an application whose performance is constrained by the speed at which data can be
delivered for processing. Multiple CPUs, partitioned I/O, threading technology, RAID
(redundant array of independent disks) technology, or a combination can alleviate
this problem.

light-weight process thread
a single-threaded subprocess that is created and controlled independently, usually
with operating system calls. Multiple light-weight process threads can be active at
one time on symmetric multiprocessing (SMP) hardware or in thread-enabled
operating systems.

multi-threading
See threading.

90 Glossary

parallel I/O
a method of input and output that takes advantage of multiple CPUs and multiple
controllers, with multiple disks per controller to read or write data in independent
threads.

parallel processing
a method of processing that uses multiple CPUs to process independent threads of an
application’s computations. See also threading.

partition
part or all of a logical file that spans devices or directories. In the SPD Engine, a
partition is one physical file. Data files, index files, and metadata files can all be
partitioned, resulting in data partitions, index partitions, and metadata partitions,
respectively. Partitioning a file can improve performance for very large data sets. See
also data partition, partitioned data set.

partitioned data set
in the SPD Engine, a data set whose data is stored in multiple physical files
(partitions) so that it can span storage devices. One or more partitions can be read in
parallel by using threads. This method improves the speed of I/O and processing for
very large data sets. See also parallel processing, partition, thread.

primary path
the location in which SPD Engine metadata files are stored. The other SPD Engine
component files (data files and index files) are stored in separate storage paths in
order to take advantage of the performance boost of multiple CPUs.

process
a functional unit of a program or task. In a thread-enabled operating system, a
process can consist of a single thread, or it can contain many threads that collectively
perform a complex function. See also thread, thread-enabled operating system.

RAID (redundant array of independent disks)
a type of storage system that consists of many disks and which implements
interleaved storage techniques that were developed at the University of California at
Berkeley. RAIDs can have several levels. For example, a level-0 RAID combines two
or more hard drives into one logical disk drive. Various RAID levels provide various
levels of redundancy and storage capability. A RAID provides large amounts of data
storage inexpensively. Also, because the same data is stored in different places, I/O
operations can overlap, which can result in improved performance. See also
redundancy.

redundancy
a characteristic of computing systems in which multiple interchangeable components
are provided in order to minimize the effects of failures, errors, or both. For example,
if data is stored redundantly (in a RAID, for example), then if one disk is lost, the
data is still available on another disk. See also RAID (redundant array of
independent disks).

SASROOT
a term that represents the name of the directory or folder in which SAS is installed
at your site or on your computer.

scalability
the ability of a software application to function well with little degradation in
performance despite changes in the volume of computations or operations that it
performs and despite changes in the computing environment. Scalable software is
able to take full advantage of increases in computing capability, such as those that
are provided by the use of SMP hardware and threaded processing. See also scalable
software, server scalability, SMP (symmetric multiprocessing).

Glossary 91

Scalable Performance Data Engine
See SPD Engine.

scalable software
software that responds to increased computing capability on SMP hardware in the
expected way. For example, if the number of CPUs is increased, the time to solution
for a CPU-bound problem decreases by a proportionate amount. And if the
throughput of the I/O system is increased, the time to solution for an I/O-bound
problem decreases by a proportionate amount. See also server scalability, SMP
(symmetric multiprocessing), time to solution.

server scalability
the ability of a server to take advantage of SMP hardware and threaded processing
to process multiple client requests simultaneously. That is, the increase in computing
capacity that SMP hardware provides increases proportionately the number of
transactions that can be processed per unit of time. See also SMP (symmetric
multiprocessing), threaded processing.

SMP
a hardware and software architecture that can improve the speed of I/O and
processing. An SMP computer has multiple CPUs and a thread-enabled operating
system. An SMP computer is usually configured with multiple controllers and with
multiple disk drives per controller.

spawn
to start a process or a process thread such as a light-weight process thread (LWPT).
See also thread.

SPD Engine
a SAS engine that is able to deliver data to applications rapidly because it organizes
the data into a streamlined file format. The SPD Engine also reads and writes
partitioned data sets, which enable it to use multiple CPUs to perform parallel I/O
functions. See also parallel I/O.

SPD Engine data file
the data component of an SPD Engine data set. In contrast to SAS data files, SPD
Engine data files contain only data; they do not contain metadata. The SPD Engine
does not support data views. See also SPD Engine data set.

SPD Engine data set
a data set created by the SPD Engine that has up to four component files: one for
data, one for metadata, and two for any indexes. The minimum number of
component files is two: data and metadata. Data is separated from the metadata for
SPD Engine file organization.

symmetric multiprocessing
See SMP.

thread
a single path of execution of a process in a single CPU, or a basic unit of program
execution in a thread-enabled operating system. In an SMP environment, which uses
multiple CPUs, multiple threads can be spawned and processed simultaneously.
Regardless of whether there is one CPU or many, each thread is an independent flow
of control that is scheduled by the operating system. See also SMP (symmetric
multiprocessing), thread-enabled operating system, threading.

thread-enabled operating system
an operating system that can coordinate symmetric access by multiple CPUs to a
shared main memory space. This coordinated access enables threads from the same
process to share data very efficiently.

92 Glossary

thread-enabled procedure
a SAS procedure that supports threaded I/O or threaded processing.

threaded I/O
I/O that is performed by multiple threads to increase its speed. For threaded I/O to
improve performance significantly, the application that is performing the I/O must be
capable of processing the data rapidly as well. See also I/O-bound application.

threaded processing
processing that is performed in multiple threads on multiple CPUs to improve the
speed of CPU-bound applications. See also CPU-bound application.

threading
a high-performance method of data I/O or data processing in which the I/O or
processing is divided into multiple threads that are executed in parallel. In the
boss-worker model of threading, the same code for the I/O or calculation process is
executed simultaneously in separate threads on multiple CPUs. In the pipeline
model, a process is divided into steps, which are then executed simultaneously in
separate threads on multiple CPUs. See also parallel I/O, parallel processing, SMP
(symmetric multiprocessing).

time to solution
the elapsed time that is required for completing a task. Time-to-solution
measurements are used to compare the performance of software applications in
different computing environments. In other words, they can be used to measure
scalability. See also scalability.

WHERE expression
a type of SAS expression that specifies a condition for selecting observations for
processing by a DATA step or a PROC step. WHERE expressions can contain special
operators that are not available in other SAS expressions. WHERE expressions can
appear in a WHERE statement, a WHERE= data set option, a WHERE clause, or a
WHERE command. See also compound WHERE expression.

93

Index

A
access level of data source 26
ACCESS=READONLY LIBNAME statement option 26
allocating library space 12
APPEND procedure

converting Base SAS engine data sets 16
asynchronous processing 65
ASYNCINDEX= data set option 42
automatic sorting 9, 26, 45

B
Base SAS engine

compared with SPD Engine 6
converting data sets for SPD Engine 8, 15

BY statement
using indexes when processing 31, 53

BYNOEQUALS= data set option 43
BYSORT= data set option 45
BYSORT= LIBNAME statement option 26

C
CNTLLEV= data set option 73
comparisons 6

Base SAS engine and SPD Engine 6
Base SAS engine and SPD Engine data sets 7

component files 5
anticipating space for 13
configuring separate space for each file 12
configuring space for, in single path 12
data component files 6, 61
index component files 5, 14
listing complete pathnames of 57
metadata component files 5, 13
naming conventions 19
renaming, copying, or moving 15
storing 9

COMPRESS= data set option 47, 73
COMPRESS= system option 76, 84
compressing data sets 17, 47, 76
compression blocks

adding bytes to 60
size of 56

CONTENTS procedure
listing pathnames of component files 57

converting data sets
Base SAS engine to SPD Engine 8, 15

COPY procedure
converting Base SAS engine data sets 16

copying component files 15

D
data component files 6

partition size 61
data files

physical separation of associated indexes 9
data organization 5
data partitions

minimum size of 78
size of 35, 61
storing 14, 29

data set options 41
list of 71
not supported by SPD Engine 73
syntax 41
that behave differently than with Base SAS engine 73

data sets
Base SAS engine compared with SPD Engine 7
compressing 17, 47, 76
converting for SPD Engine 8, 15
creating and loading 16
encrypting 49
interim 6
interoperability of 8
listing complete pathnames of component files 57
number of I/O threads to spawn 67
threads for SPD Engine data sets 67

data sources
access level of 26

DATAPATH= LIBNAME statement option 29
directories

storing libraries in temporary subdirectories 38
directory paths

multiple 9
disk arrays 15
disk striping 15
DLDMGACTION= system option 84

E
efficiency

indexing and 21
using disk striping and large disk arrays 15

ENCRYPT= data set option 49, 73
encrypting data sets 49

94 Index

ENDOBS= data set option 51
WHERE expression with 51

ENDOBS= LIBNAME statement option 30

F
file dependencies 9
file sharing 8
file systems 6
FIRSTOBS= system option 84

G
group formatting 27

I
I/O performance 8, 15
I/O threads

number to spawn 67
IDXBY= data set option 53
IDXBY= LIBNAME statement option 31
IDXWHERE= data set option 54
index component files 5

storing 14, 33
indexes

efficiency 21
evaluating WHERE expressions containing 77
excluding when evaluating WHERE expressions 71
parallel creation 9, 21, 42
parallel updates 22
physical separation of data sets and 9
queries with 9
segments in WHERE expressions 77
sorting values for creating 79
unique indexes 68
using when processing BY statements 31, 53
WHERE expressions with 54

INDEXPATH= LIBNAME statement option 33
interim data sets

temporary storage of 6
interoperability of data sets 8
IOBLOCKSIZE= data set option 56

L
LIBNAME statement, SPD Engine 25

introduction 25
options list 39
syntax 25

libraries 6
allocating space 12
storing in temporary subdirectory 38

LISTFILES= data set option 57
loading data sets 16

M
MAXSEGRATIO= system option 77
memory

space for sorting operations 81
space for sorting utility 79

metadata 5
metadata component files 5

overflow paths 34

storing 13, 34
METAPATH= LIBNAME statement option 34
MINPARTSIZE= system option 78
moving component files 15
MSGLEVEL= system option 84
multiple directory paths 9

N
naming conventions

component files 19

O
observations

appending with unique indexes 68
end number 30, 51
inserting with unique indexes 68
meeting conditions of WHERE expressions 83
output order of 43
processing multiple observations at a time 65
processing one at a time 65
saving with nonunique key values 68
starting number 37, 62

organizing SAS data 5
output

physical order in 43
overflow paths 34

P
PADCOMPRESS= data set option 60
parallel index creation 9, 21, 42
parallel index updates 22
parallelism 12
PARTSIZE= data set option 61
PARTSIZE= LIBNAME statement option 35
paths

listing pathnames of component files 57
multiple directory paths 9

performance
efficiency using disk striping and large disk arrays 15
efficient indexing 21
I/O performance 8, 15
processing performance 9

physical order in output 43
pipelining 65
primary path 12
processing performance 9

Q
queries

indexes with 9

R
RAIDs 15
redundant arrays of independent disks (RAIDs) 15
renaming component files 15

S
saving observations

with nonunique key values 68

Index 95

sharing files 8
SMP computers 4
sorting

automatic sorting 9, 26, 45
memory space for 81
values for index creation 79

sorting utility
memory space for 79

spawning I/O threads 67
SPD Engine 3

compared with Base SAS engine 6
converting Base SAS engine data sets 8, 15
file systems 6
libraries 6
organizing SAS data 5

SPD Engine options 10
SPDEINDEXSORTSIZE= system option 79
SPDEMAXTHREADS= system option 80
SPDESORTSIZE= system option 81
SPDEUTILLOC= system option 81
SPDEWHEVAL= system option 83
SQL procedure

size of data partitions 62
STARTOBS= data set option 62

WHERE expression with 63
STARTOBS= LIBNAME statement option 37
subdirectories

storing libraries in temporary subdirectories 38
SYNCADD= data set option 65
synchronous processing 65
system options 75

list of 84
syntax 75
that behave differently with SPD Engine 84

T
TEMP= LIBNAME statement option 38

temporary storage

libraries in temporary subdirectories 38

of interim data sets 6

of utility files 81

THREADNUM= data set option 67

threads 3

maximum number of 80

number to spawn 67

SMP computer and 4

U
unique indexes 68

UNIQUESAVE= data set option 68

updates

parallel index updates 22

utility file workspace 6

utility files

temporarily storing 81

W
WHERE evaluation planner 9

WHERE expressions

ENDOBS= data set option with 51

evaluating, when containing indexed variables 77

excluding indexes when evaluating 71

index segments in 77

indexes with 54

observations meeting conditions of 83

STARTOBS= data set option with 63

WHERE optimization 9

WHERENOINDEX= data set option 71

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Contents
	What’s New
	Overview
	SPD Engine Data Set Options
	SPD Engine LIBNAME Statement Options
	SPD Engine System Options
	SPD Engine Compatability

	Usage
	Overview: The SPD Engine
	Introduction to the SPD Engine
	SPD Engine Compatibility
	Using the SMP Computer
	Organizing SAS Data Using the SPD Engine
	How the SPD Engine Organizes SAS Data
	Metadata Component Files
	Index Component Files
	Data Component Files

	Comparing the Default Base SAS Engine and the SPD Engine
	Overview of Comparisons
	The SPD Engine Libraries and File Systems
	Utility File Workspace
	Temporary Storage of Interim Data Sets
	Differences between the Default Base SAS Engine Data Sets and the SPD Engine Data Sets

	Interoperability of the Default Base SAS Engine and the SPD Engine Data Sets
	Sharing the SPD Engine Files
	Features That Enhance I/O Performance
	Overview of I/O Performance Enhancements
	Multiple Directory Paths
	Physical Separation of the Data File and the Associated Indexes
	WHERE Optimization

	Features That Boost Processing Performance
	Automatic Sort Capabilities
	Queries Using Indexes
	Parallel Index Creation

	The SPD Engine Options

	Creating and Loading SPD Engine Files
	Introduction for Creating and Loading SPD Engine Files
	Allocating the Library Space
	How to Allocate the Library Space
	Configuring Space for All Components in a Single Path
	Configuring Separate Library Space for Each Component File
	Anticipating the Space for Each Component File
	Storage of the Metadata Component Files
	Renaming, Copying, or Moving Component Files

	Efficiency Using Disk Striping and Large Disk Arrays
	Converting Default Base SAS Engine Data Sets to SPD Engine Data Sets
	Converting Default Base SAS Engine Data Sets Using PROC COPY
	Converting Default Base SAS Engine Data Sets Using PROC APPEND

	Creating and Loading New SPD Engine Data Sets
	Compressing SPD Engine Data Sets
	SPD Engine Component File Naming Conventions
	Efficient Indexing in the SPD Engine
	Parallel Index Creation
	Parallel Index Updates

	Reference
	SPD Engine LIBNAME Statement Options
	Introduction to the SPD Engine LIBNAME Statement
	Syntax
	SPD Engine LIBNAME Statement Options List

	SPD Engine Data Set Options
	Introduction to SPD Engine Data Set Options
	Syntax
	SPD Engine Data Set Options List
	SAS Data Set Options That Behave Differently with the SPD Engine Than with the Default Base SAS Engine
	SAS Data Set Options Not Supported by the SPD Engine

	SPD Engine System Options
	Introduction to SPD Engine System Options
	Syntax
	SPD Engine System Options List
	SAS System Options That Behave Differently with SPD Engine

	Appendix
	Recommended Reading
	Recommended Reading

	Glossary
	Index

