
Base SAS® 9.2
Guide to Information Maps

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
Base SAS ® 9.2 Guide to Information Maps. Cary, NC: SAS Institute Inc.

Base SAS® 9.2 Guide to Information Maps
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-001-4
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009
2nd electronic book, December 2009

1st printing, December 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

INFOMAPS Procedure v

SAS Information Maps LIBNAME Engine vii

Chapter 1 � Overview of SAS Information Maps 1
What Is a SAS Information Map? 1

Why Are SAS Information Maps Important? 2

Where Can SAS Information Maps Be Used? 3

Accessibility Features of the INFOMAPS Procedure and the SAS Information Maps
LIBNAME Engine 3

Chapter 2 � The INFOMAPS Procedure 5
Overview: INFOMAPS Procedure 5

Syntax: INFOMAPS Procedure 6

Examples: INFOMAPS Procedure 57

Chapter 3 � Using the SAS Information Maps LIBNAME Engine 63
What Does the Information Maps Engine Do? 63

Understanding How the Information Maps Engine Works 63

Advantages of Using the Information Maps Engine 67

What Is Required to Use the Information Maps Engine? 67

What Is Supported? 67

Chapter 4 � LIBNAME Statement for the Information Maps Engine 69
Using the LIBNAME Statement 69

LIBNAME Statement Syntax 69

Chapter 5 � SAS Data Set Options for the Information Maps Engine 75
Using Data Set Options 75

Chapter 6 � Examples of Using the Information Maps Engine 81
Example 1: Submitting a LIBNAME Statement Using the Defaults 81

Example 2: Submitting a LIBNAME Statement Using Connection Options 81

Chapter 7 � Hints and Tips for Using the INFOMAPS Procedure or the Information Maps
Engine 83
Hints and Tips for Using the INFOMAPS Procedure 83

Hints and Tips for Using the Information Maps Engine 84

Chapter 8 � Example: Using the INFOMAPS Procedure and the Information Maps
Engine 87
About This Example 87

Step 1: Create a Library Definition in the SAS Metadata Server 87

Step 2: Set the Metadata System Options and a Macro Variable 88

iv

Step 3: Register Data Using the METALIB Procedure 88

Step 4: Create an Information Map Using the INFOMAPS Procedure 90

Step 5: Retrieve the Data Associated with the Information Map Using the Information
Maps Engine 96

Step 6: View the Data Items and Filters Using the CONTENTS Procedure 96

Step 7: Print the Data from the Information Map 98

Step 8: Analyze the Data in SAS and Produce an ODS Report 100

Appendix 1 � SQL DICTIONARY Tables for the Information Maps Engine 103
Using SQL DICTIONARY Tables 103

DICTIONARY.INFOMAPS Table 103

DICTIONARY.DATAITEMS Table 104

DICTIONARY.FILTERS Table 105

Appendix 2 � SAS Tracing and the Information Maps Engine 107
Tracing Diagnostic Messages from the Information Maps Engine 107

Example 107

Appendix 3 � Recommended Reading 109
Recommended Reading 109

Glossary 111

Index 117

v

What’s New

Overview
The INFOMAPS procedure in Base SAS software has been enhanced for this release.

You can change the definitions of any existing data item, filter, data source, folder, or
relationship within an information map. You can move items between folders and
associate stored processes with information maps.

The SAS Information Maps LIBNAME engine has also been enhanced for this
release. The engine supports complex filter clauses and can read aggregated data as
well as detailed data. You can specify an authentication domain for user logons.

INFOMAPS Procedure
The INFOMAPS procedure is now available on all operating systems for the SAS 9.2

release except OpenVMS on HP Integrity. Previously, the procedure was available only
on Windows (32-bit), Solaris (64-bit), HP-UX, HP-UX on Itanium, AIX (64-bit), and z/OS.

The following statements in the INFOMAPS procedure have changes and
enhancements:

� The PROC INFOMAPS statement has changed as follows:
� The new DOMAIN= option specifies an authentication domain on the current

server for user logons.
� The METAPASS= and METAUSER= arguments are optional if the metadata

server supports single sign-on.
� The METAREPOSITORY= argument is now required only in the case where

the information maps you want to use reside in a SAS 9.2 metadata
repository that was converted from a custom repository in SAS 9.1.3.

� The EXPORT statement has changed. The FILE= argument is now required
rather than optional.

� The INSERT DATAITEM statement has been enhanced. The new HIERARCHY=
and MEASURE= options provide simpler alternatives to the EXPRESSION= option
for creating data items for OLAP data sources. You can use the HIERARCHY=

vi What’s New

option to specify a physical hierarchy in an OLAP data source. You can use the
MEASURE= option to specify a physical measure in an OLAP data source.

You can use the new CREATE option to create the location for the data item if
the location specified in the FOLDER= option does not already exist.

� The INSERT FILTER statement has changed. You now specify the filter name
using the NAME= argument rather than as an explicit argument in the INSERT
FILTER statement.

You can use the new CREATE option to create the location for the filter if the
location specified in the FOLDER= option does not already exist.

� The INSERT RELATIONSHIP statement has been enhanced. The following
syntax is now obsolete:

INSERT RELATIONSHIP left-table INNER | LEFT | RIGHT | FULL
JOIN right-table ON “conditional-expression”;

You now use the LEFT_TABLE=, RIGHT_TABLE=, JOIN=, and CONDITION=
arguments to specify the relationship.

The new DESCRIPTION= option specifies a description for a relationship.
� The LIST statement has been enhanced. The new RELATIONSHIPS option lists

the identifier, left and right tables, cardinality, type of join, and join expression for
each relationship defined in an information map.

The output for the LIST statement now indicates when the information map
does not contain the type of business data that has been requested.

� The MOVE DATAITEM statement is new for this release. This statement moves
data items to a new location.

� The MOVE FILTER statement is new for this release. This statement moves
filters to a new location.

� The MOVE FOLDER statement is new for this release. This statement moves
folders to a new location.

� The OPEN INFOMAP statement has been replaced with the NEW INFOMAP
statement to create a new information map and the UPDATE INFOMAP
statement to update an existing information map.

� The SAVE statement has been updated. You can use the new CREATE option to
create the location for the information map if it does not already exist.

� The SET STORED_PROCESS statement is new for this release. This statement
associates a stored process with the current information map.

� The UPDATE DATAITEM statement is new for this release. This statement
updates the properties of a specified data item in an information map.

� The UPDATE DATASOURCE statement is new for this release. This statement
updates the properties of a data source in an information map.

� The UPDATE FILTER statement is new for this release. This statement updates
the properties of a specified filter in an information map.

� The UPDATE FOLDER statement is new for this release. This statement updates
the properties of a specified folder in an information map.

� The UPDATE RELATIONSHIP statement is new for this release. This statement
updates the properties of a join relationship in an information map.

What’s New vii

SAS Information Maps LIBNAME Engine
The Information Maps engine in Base SAS software has the following changes and

enhancements:
� The Information Maps engine is now available on all operating systems for the

SAS 9.2 release except OpenVMS on HP Integrity. Previously, the engine was
available only on Windows (32-bit), Solaris (64-bit), HP-UX, HP-UX on Itanium,
AIX (64-bit), and z/OS.

� The METAPASS= and METAUSER= arguments are optional if the metadata
server supports single sign-on.

� The METAREPOSITORY= argument is now required only in the case where the
information maps you want to use reside in a SAS 9.2 metadata repository that
was converted from a custom repository in SAS 9.1.3.

� The SSPI= option can be used to specify Integrated Windows Authentication.
� The AGGREGATE= option for the LIBNAME statement and the AGGREGATE=

data set option are new for this release. These options specify whether the engine
uses detailed data or aggregated data.

� The DOMAIN= option for the LIBNAME statement is new for this release. This
option specifies an authentication domain on the current server for user logons.

� The PRESERVE_MAP_NAMES= option for the LIBNAME statement has replaced
the PRESERVE_TAB_NAMES option. (PRESERVE_TAB_NAMES is still
supported as an alias for PRESERVE_MAP_NAMES.)

� The FILTER= data set option has been enhanced for this release. The OR and
NOT Boolean operators are now supported. You can also use parentheses to
signify precedence or any needed grouping within the clause.

� When you use the CONTENTS procedure in Base SAS software to show the
contents of an information map referenced by the Information Maps engine, the
Label column in the procedure output now shows only the data item description.

� SQL DICTIONARY tables are now available that contain information about the
information maps, data items, and filters that can be accessed using the
Information Maps engine.

viii What’s New

1

C H A P T E R

1
Overview of SAS Information
Maps

What Is a SAS Information Map? 1
Why Are SAS Information Maps Important? 2

Where Can SAS Information Maps Be Used? 3

Accessibility Features of the INFOMAPS Procedure and the SAS Information Maps LIBNAME
Engine 3

What Is a SAS Information Map?
A SAS Information Map is business metadata that is applied on top of the data

sources in your data warehouse. (Metadata is information about the structure and
content of data. An information map does not contain any physical data.) Information
maps provide business users with a user-friendly way to query data and get results for
themselves.

An information map is based on one or more data sources, which can be tables or
OLAP cubes. Information maps that are based on more than one table data source
contain relationships that define how the data sources are joined. An information map
contains data items and filters, which are used to build queries. A data item can refer
to a data field or a calculation. Filters contain criteria for subsetting the data that is
returned in a query. Folders can be used to organize the data items and filters so that
business users can easily locate information within the information map.

To create an information map, you can use either SAS Information Map Studio, an
application that provides a graphical user interface (GUI) for creating and viewing
information maps, or the INFOMAPS procedure that is described in “Overview:
INFOMAPS Procedure” on page 5. The following figure shows you what an information
map looks like in the main window in SAS Information Map Studio.

2 Why Are SAS Information Maps Important? � Chapter 1

Multiple relational tables
or one OLAP cube can be
referenced in an
information map.

Folders enable you
to organize data
items and filters.

Filters provide criteria for
subsetting a result set.

Measure data items can
be used for calculations.

Category data items
are used to group
measure data items.

Why Are SAS Information Maps Important?
Information maps provide a business metadata layer that enables business users to

ask questions and get answers for themselves. This frees IT resources from ad hoc
reporting requests and reduces the need to provide training in programming and
database structures.

Information maps enable business users to easily access enterprise-wide data by
providing the following benefits:

� Information maps shield users from the complexities of the data.

� Information maps make data storage transparent to users. It does not matter
whether the data is relational or multidimensional, or whether the data is in a
SAS data set or in a third-party database system.

� Information maps predefine business formulas and calculations, which makes
them usable on a consistent basis.

� Information maps enable users to query data for answers to business questions
without knowing query languages or being aware of the data model.

Overview of SAS Information Maps � Accessibility Features 3

Where Can SAS Information Maps Be Used?
The following software can use information maps:
� Base SAS software
� SAS Add-In for Microsoft Office
� SAS Enterprise Guide
� SAS Information Delivery Portal
� SAS Marketing Automation
� SAS Web OLAP Viewer for Java

� SAS Web Report Studio

Information maps can also be used by custom applications developed with SAS AppDev
Studio.

Accessibility Features of the INFOMAPS Procedure and the SAS
Information Maps LIBNAME Engine

The INFOMAPS procedure and the Information Maps engine are part of Base SAS
software. Base SAS is a command-based product. For this release, no features were
added to address accessibility, but the product might very well be compliant to
accessibility standards because it does not have a graphical user interface, and all of its
features are available to anyone who can type or otherwise produce a command. If you
have specific questions about the accessibility of SAS products, send them to
accessiblity@sas.com or call SAS Technical Support.

4

5

C H A P T E R

2
The INFOMAPS Procedure

Overview: INFOMAPS Procedure 5
What Does the INFOMAPS Procedure Do? 5

Syntax: INFOMAPS Procedure 6

PROC INFOMAPS Statement 9

DELETE INFOMAP Statement 11

EXPORT Statement 12
IMPORT Statement 13

INSERT DATAITEM Statement 14

INSERT DATASOURCE Statement 24

INSERT FILTER Statement 27

INSERT FOLDER Statement 29

INSERT RELATIONSHIP Statement 31
LIST Statement 33

MOVE DATAITEM Statement 36

MOVE FILTER Statement 37

MOVE FOLDER Statement 38

NEW INFOMAP Statement 39
SAVE Statement 42

SET STORED_PROCESS Statement 42

UPDATE DATAITEM Statement 43

UPDATE DATASOURCE Statement 48

UPDATE FILTER Statement 49
UPDATE FOLDER Statement 50

UPDATE INFOMAP Statement 52

UPDATE RELATIONSHIP Statement 55

Examples: INFOMAPS Procedure 57

Example 1: Creating a Basic Information Map 57

Example 2: Creating an Information Map with Relationships and Filters 58
Example 3: Aggregating a Data Item 60

Overview: INFOMAPS Procedure

What Does the INFOMAPS Procedure Do?
The INFOMAPS procedure enables you to create information maps

programmatically. You can also use the procedure to modify an existing information
map by adding new data sources, data items, filters, folders, or relationships. Or you
can change the definitions of any existing data item, filter, data source, folder, or
relationship within an information map.

6 Syntax: INFOMAPS Procedure � Chapter 2

A SAS Information Map is a business metadata layer that is applied on top of the
data sources in your data warehouse. (Metadata is information about the structure and
content of data. An information map does not contain any physical data.) Information
maps provide business users with a user-friendly way to query data and get results for
themselves. For example, you can create data items with names such as “Age Group” or
“Sales Revenue from Internet Orders.”

Information maps can contain data items and filters, which are used to build queries.
A data item can refer to a physical data source such as one or more columns from a
table, to an OLAP hierarchy, or to an OLAP measure. It can also refer to one or more
other data items in the same information map. A data item is classified as either a
measure item or a category item. Measure items can be used for calculations. Category
items are used to group measure items. Filters contain criteria for subsetting the data
that is returned for a query. You can organize data items and filters into folders and
subfolders to help users find the information they need.

In addition to using the INFOMAPS procedure to create information maps, you can
also use the interactive client application, SAS Information Map Studio, to create,
update, and manage information maps. When you have created or modified an
information map, you can access it using the Information Maps engine and retrieve the
data that the information map describes. For information, see Chapter 3, “Using the
SAS Information Maps LIBNAME Engine,” on page 63.

For information about defining metadata, installing and setting up a standard SAS
Metadata Server, or changing the standard configuration options for the SAS Metadata
Server, see the SAS Intelligence Platform: System Administration Guide.

Syntax: INFOMAPS Procedure

PROC INFOMAPS
<DOMAIN=“authentication-domain”>
<MAPPATH=“location>”
<METACREDENTIALS=YES|NO>
<METAPASS=“password”>
<METAPORT=port-number>
<METASERVER=“address”>
<METAUSER=“user-ID”>;

DELETE INFOMAP “information-map-name”
<MAPPATH=“location”>;

EXPORT
FILE=fileref |“physical-location”
<INFOMAP “information-map-name”>
<MAPPATH=“location”>;

IMPORT
FILE=fileref |“physical-location”;

INSERT DATAITEM
COLUMN=“data-source-ID”.“column-name” | EXPRESSION=“expression-text” |
HIERARCHY=“dimension”.“hierarchy” | MEASURE=“OLAP-measure”
<ACTIONS=(actions-list)>
<AGGREGATION=aggregate-function>
<AGGREGATIONS_DROP_LIST=(aggregate-function-list)>

The INFOMAPS Procedure � Syntax: INFOMAPS Procedure 7

<AGGREGATIONS_KEEP_LIST=(aggregate-function-list)>
<CLASSIFICATION=CATEGORY | MEASURE>
<CUSTOM_PROPERTIES=(custom-properties-list)>
<DESCRIPTION=“descriptive-text”>
<FOLDER=“folder-name” | “folder-location” </CREATE>>
<FORMAT=“format-name”>
<ID=“data-item-ID”>
<NAME=“data-item-name”>
<TYPE=NUMERIC | CHARACTER | DATE | TIME | TIMESTAMP>
<VALUE_GENERATION=NONE | DYNAMIC | (custom-value-list)>;

INSERT DATASOURCE
SASSERVER=“application-server-name”
TABLE=“library”.“table” <COLUMNS=(column–1 <... column-n>) | _ALL_>
<DESCRIPTION=“descriptive-text”>
<ID=data-source-ID>
<NAME=“data-source-name”>;

INSERT DATASOURCE
SASSERVER=“application-server-name”
CUBE=<“schema”.>“cube” <_ALL_>

<DESCRIPTION=“descriptive-text”>
<ID=data-source-ID>
<NAME=“data-source-name”>;

INSERT FILTER
CONDITION=“conditional-expression”
<CUSTOM_PROPERTIES=(custom-properties-list)>
<DESCRIPTION=“descriptive-text”>
<FOLDER=“folder-name” | “folder-location” </CREATE>>
<ID=“filter-ID”>
<NAME=“filter-name”>;

INSERT FOLDER “folder-name”
<CUSTOM_PROPERTIES=(custom-properties-list)>
<DESCRIPTION=“descriptive-text”>
<LOCATION=“parent-folder-name” | “parent-folder-location” </CREATE>>;

INSERT RELATIONSHIP
CONDITION=“conditional-expression”
LEFT_TABLE=“data-source-ID–1”
RIGHT_TABLE=“data-source-ID-2”

<CARDINALITY=ONE_TO_ONE | ONE_TO_MANY | MANY_TO_ONE |
MANY_TO_MANY | UNKNOWN>
<CUSTOM_PROPERTIES=(custom-properties-list)>
<DESCRIPTION=“descriptive-text”>
<ID=“relationship-ID”>
<JOIN=INNER | LEFT | RIGHT | FULL>;

LIST <DATAITEMS | DATASOURCES | FILTERS | RELATIONSHIPS | _ALL_> ;

MOVE DATAITEM “data-item-ID” | ID_LIST=(“data-item-ID-1” <...
“data-item-ID-n”>)
NEW_LOCATION=“new-folder-location” </CREATE>;

MOVE FILTER “filter-ID” | ID_LIST=(“filter-ID-1” <... “filter-ID-n”>)
NEW_LOCATION=“new-folder-location” </CREATE>;

MOVE FOLDER “folder-name”

8 Syntax: INFOMAPS Procedure � Chapter 2

NEW_LOCATION=“new-folder-location” </CREATE>
<LOCATION=“current-folder-location”>;

NEW INFOMAP “information-map-name”
<AUTO_REPLACE=YES | NO>
<CREATE_TARGET_FOLDER=YES | NO>
<CUSTOM_PROPERTIES=(custom-properties-list)>
<DESCRIPTION=“descriptive-text”>
<INIT_CAP=YES | NO>
<MAPPATH=“location” </CREATE>>
<REPLACE_UNDERSCORES=YES | NO>
<USE_LABELS=YES | NO>
<VERIFY=YES | NO>;

SAVE
<INFOMAP “information-map-name”>
<MAPPATH=“location” </CREATE>>;

SET STORED_PROCESS
NAME=“stored-process-name”
<LOCATION=“stored-process-location”>;

UPDATE DATAITEM “data-item-ID”
<ACTIONS=(actions-list)>
<AGGREGATION=aggregate-function>
<AGGREGATIONS_LIST=_ALL_ | ADD (aggregate-function-list) |
REPLACE (aggregate-function-list) | REMOVE (aggregate-function-list)>

<CLASSIFICATION=CATEGORY | MEASURE>
<CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) |
REPLACE (custom-properties-list) | REMOVE (property-names-list)>

<DESCRIPTION=“descriptive-text”>
<EXPRESSION=“expression-text”>
<FORMAT=“format-name”>
<ID=“new-data-item-ID”>
<NAME=“data-item-name”>
<TYPE=NUMERIC | CHARACTER | DATE | TIME | TIMESTAMP>
<VALUE_GENERATION=NONE | DYNAMIC | ADD (custom-value-list) |
REPLACE (custom-value-list) | REMOVE (unformatted-value-list)>;

UPDATE DATASOURCE “data-source-ID”
<NAME=“data-source-name”>
<DESCRIPTION=“descriptive-text”>
<ID=“new-data-source-ID”>;

UPDATE FILTER “filter-ID”
<CONDITION=“conditional-expression”>
<CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) |
REPLACE (custom-properties-list) | REMOVE (property-names-list)>

<DESCRIPTION=“descriptive-text”>
<ID=“new-filter-ID”>
<NAME=“filter-name”>;

UPDATE FOLDER “folder-name”
<CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) |
REPLACE (custom-properties-list) | REMOVE (property-names-list)>

<DESCRIPTION=“descriptive-text”>
<LOCATION=“current-parent-folder-name” | “current-parent-folder-location”>
<NAME=“new-folder-name”>;

The INFOMAPS Procedure � PROC INFOMAPS Statement 9

UPDATE INFOMAP “information-map-name”
<CREATE_TARGET_FOLDER=YES | NO>
<CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) |
REPLACE (custom-properties-list) | REMOVE (property-names-list)>

<DESCRIPTION=“descriptive-text”>
<INIT_CAP=YES | NO>
<MAPPATH=“location”>
<REPLACE_UNDERSCORES=YES | NO>
<USE_LABELS=YES | NO>
<VERIFY=YES | NO>;

UPDATE RELATIONSHIP “relationship-ID”
<CARDINALITY=ONE_TO_ONE | ONE_TO_MANY | MANY_TO_ONE |
MANY_TO_MANY | UNKNOWN>
<CONDITION=“conditional-expression”>
<CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) |
REPLACE (custom-properties-list) | REMOVE (property-names-list)>

<DESCRIPTION=“descriptive-text”>
<ID=“new-relationship-ID”>
<JOIN=INNER | LEFT | RIGHT | FULL>;

PROC INFOMAPS Statement

Connects to the specified metadata server.

PROC INFOMAPS
<DOMAIN=“authentication-domain”>
<MAPPATH=“location”>
<METACREDENTIALS=YES|NO>
<METAPASS=“password”>
<METAPORT=port-number>
<METASERVER=“address”>
<METAUSER=“user-ID”>;

Options

DOMAIN=“authentication-domain”
specifies an authentication domain to associate the user ID and password with. If
you do not specify an authentication domain, then the user ID and password are
associated with the DefaultAuth authentication domain. For information about
authentication, see “Understanding Authentication in the SAS Intelligence Platform”
in SAS Intelligence Platform: Security Administration Guide.

MAPPATH=“location”
specifies the location within the metadata server for the information map that you
want to create, open, or delete. After the connection is made, the location is stored so
that you do not need to specify it again on subsequent statements such as NEW
INFOMAP, UPDATE INFOMAP, DELETE INFOMAP, SAVE, or EXPORT. However,
if you do specify a location on a subsequent statement in the same PROC
INFOMAPS step, then that location overrides the stored location.
Alias: PATH=

10 PROC INFOMAPS Statement � Chapter 2

METACREDENTIALS=YES|NO
specifies whether the user ID and password specified in the METAUSER= and
METAPASS= system options are retrieved and used to connect to the metadata
server when the METAUSER= and METAPASS= options for the PROC INFOMAPS
statement are omitted.

By default, or when METACREDENTIALS=YES is specified, the system option
values are used if they are available when the corresponding options for the PROC
INFOMAPS statement are omitted. Specify METACREDENTIALS=NO to prevent
the INFOMAPS procedure from using the system option values.

A typical situation in which you would specify METACREDENTIALS=NO is when
the code containing the INFOMAPS procedure is being executed on a workspace
server or stored process server. In such cases, the METAUSER= and METAPASS=
system options contain a one-time user ID and password that have already been used
by the server. A new one-time password must be generated in this situation.
Specifying METACREDENTIALS=NO enables a connection to be established under
the identity of the client user using a new one-time password.
Default: YES

METAPASS=“password”
specifies the password that corresponds to the user ID that connects to the metadata
server.

You can use the METAPASS= system option to specify a default password for
connecting to the metadata server for the SAS session. See the METAPASS= system
option in the SAS Language Interfaces to Metadata.

If your metadata server supports single sign-on, you can omit the METAPASS=
and METAUSER= options and connect through a trusted peer connection or through
Integrated Windows Authentication. For more information, see the SAS Intelligence
Platform: Security Administration Guide.
Alias: PASSWORD= | PW=
Examples:

metapass="My Password"
metapass="MyPassword"

METAPORT=port-number
specifies the TCP port that the metadata server is listening to for connections.

If this option is not specified, the value is obtained from the METAPORT= system
option. See the METAPORT= system option in the SAS Language Interfaces to
Metadata.
Alias: PORT=
Example: metaport=8561

METASERVER=“address”
specifies the network IP (Internet Protocol) address of the computer that hosts the
metadata server.

If this option is not specified, the value is obtained from the METASERVER=
system option. See the METASERVER= system option in the SAS Language
Interfaces to Metadata.
Alias: SERVER= | HOST=
Example: metaserver="myip.us.mycompany.com"

METAUSER=“user-ID”
specifies the user ID to connect to the metadata server. The user ID is not case
sensitive.

You can use the METAUSER= system option to specify a default user ID for
connecting to the metadata server for the SAS session. See the METAUSER= system
option in the SAS Language Interfaces to Metadata.

The INFOMAPS Procedure � DELETE INFOMAP Statement 11

If your metadata server supports single sign-on, you can omit the METAUSER=
and METAPASS= options and connect through a trusted peer connection or through
Integrated Windows Authentication. For more information, see the SAS Intelligence
Platform: Security Administration Guide.
Alias: USER= | USERID= | ID=
Example: metauser="myUserID"

Restriction: In the metadata server, you must have at least one login definition
that contains a user ID that corresponds to the user ID that you specify here. For
information about login definitions, see the User Manager Help for logins in the
SAS Management Console.

Restriction: If your metadata server runs in the Windows environment, then you
must fully qualify the user ID by specifying the domain or machine name that you
specified when your login object was created in the metadata server. For example,
metauser="Windows-domain-name\user-ID".

Example
proc infomaps

domain="myDomain"
metauser="myUserID"
metapass="myPassword"
metaserver="myip.us.mycompany.com"
metaport=8561;

DELETE INFOMAP Statement

Deletes an information map from the SAS folders tree.

DELETE INFOMAP “information-map-name”
<MAPPATH=“location”>;

Required Argument

“information-map-name”
specifies the name of the information map to delete.

Option

MAPPATH=“location”
specifies the location within the SAS folders tree for the information map to delete.
Interaction: A location in the DELETE statement overrides a location specified in a

PROC INFOMAPS statement.

12 EXPORT Statement � Chapter 2

Examples
delete infomap "my testmap"

mappath="/Users/myUserID/My Folder";

delete infomap "myMap";

EXPORT Statement

Exports an information map in its XML representation.

EXPORT
FILE=fileref | “physical-location”
<INFOMAP “information-map-name”>
<MAPPATH=“location”>;

Required Argument

FILE=fileref | “physical-location”
specifies an external file to which to export an XML representation of the information
map. If the external file already exists, it is replaced.
Requirement: If you use an external text editor to modify the XML file after it has

been exported, then the editor must encode the file using the Unicode UTF-8
format in order for the INFOMAPS procedure or SAS Information Map Studio to
import it correctly.

Options

INFOMAP “information-map-name”
specifies the name of the information map to export. If you do not specify the
INFOMAP option, the current information map is exported.

MAPPATH=“location”
specifies the location within the SAS folders tree for the information map to export.
Exporting fails if you specify an information map name in the EXPORT statement
but no location has been specified. The location from which the information map is
exported is determined according to the following order of precedence:

1 The MAPPATH specified in the EXPORT statement
2 The MAPPATH specified in the NEW INFOMAP or UPDATE INFOMAP

statement
3 The MAPPATH specified in the PROC INFOMAPS statement

Examples
/* Export an information map to a physical location. */
/* Note that the sample locations are operating system-specific. */
export infomap "my testmap"

file="c:\test\test.xml"
mappath="/Users/myUserID/My Folder";

The INFOMAPS Procedure � IMPORT Statement 13

/* Export an information map to a fileref. */
filename xmlfile "c:\test\test.xml";
export infomap "my testmap"

file=xmlfile
mappath="/Users/myUserID/My Folder";

IMPORT Statement

Imports an information map from an external XML file.

IMPORT
FILE=fileref |“physical-location”;

Required Argument

FILE=fileref |“physical-location”
specifies the fileref or physical location of an XML file from which an information
map is imported.

Requirement: If you use an external text editor to modify the XML file before
importing it, then the editor must encode the file using the Unicode UTF-8 format
for it to be imported correctly.

Details
After importing an information map, you must issue a SAVE statement to save it. If

you specify a name in the SAVE statement, then that name overrides the name
specified in the XML file. If you save it with the same name and in the same location as
an existing information map, then the imported information map replaces the existing
information map in the SAS folders tree.

The location where the imported information map is saved is determined according to
the following order of precedence:

1 The MAPPATH specified in the SAVE statement

2 The MAPPATH specified in the NEW INFOMAP or UPDATE INFOMAP statement

3 The MAPPATH specified in the PROC INFOMAPS statement

CAUTION:
The IMPORT statement always opens a new information map. Any changes made to an
open information map are lost if those changes are not saved before importing. �

Example
/* Create a new information map from an external file. */
import file="c:\test\test.xml";
save infomap "myMap"

mappath="/Users/myUserID/My Folder";

14 INSERT DATAITEM Statement � Chapter 2

INSERT DATAITEM Statement
Inserts a data item into the current information map.

INSERT DATAITEM
COLUMN=“data-source-ID”.“column-name” | EXPRESSION=“expression-text” |
HIERARCHY=“dimension”.“hierarchy” | MEASURE=“OLAP-measure”
<ACTIONS=(actions-list)>
<AGGREGATION=aggregate-function>
<AGGREGATIONS_DROP_LIST=(aggregate-function-list)>
<AGGREGATIONS_KEEP_LIST=(aggregate-function-list)>
<CLASSIFICATION=CATEGORY | MEASURE>
<CUSTOM_PROPERTIES=(custom-properties-list)>
<DESCRIPTION=“descriptive-text”>
<FOLDER=folder-name | “folder-location” </CREATE>>
<FORMAT=“format-name”>
<ID=“data-item-ID”>
<NAME=“data-item-name”>
<TYPE=NUMERIC | CHARACTER | DATE | TIME | TIMESTAMP>
<VALUE_GENERATION=NONE | DYNAMIC | custom-values-list>;

Required Argument

COLUMN=“data-source-ID”.“column-name”
specifies a column. The data-source-ID is the identifier of a data source in the
current information map. It must match the identifier of the table that contains the
column, as shown in the following example:

insert datasource sasserver="SASMain"
table="Common"."WORLDPOP2002"
id="PopulationData";

insert dataitem column="PopulationData"."Projected_Population_millions_";

The column-name is the SAS name of a column defined in the relational table
associated with data source ID. The INFOMAPS procedure inserts a data item for
this column into the information map.
Restriction: This argument applies only to a relational data source.
Interaction: You can specify only one of the COLUMN=, EXPRESSION=,

HIERARCHY=, or MEASURE= arguments in an INSERT DATAITEM statement.

EXPRESSION=“expression-text”
specifies the combination of data elements, literals, functions, and mathematical
operators that are used to derive the value of a data item when the information map
is used in a query.

Note: If you are using the Information Maps engine to access an information map
containing character type data items created with the EXPRESSION= argument, you
should be aware of the EXPCOLUMNLEN= option of the LIBNAME statement. By
default, the Information Maps engine sets the data length for columns of these data
items to 32 characters. You can use the EXPCOLUMNLEN= option to change the
default length. For more information about the EXPCOLUMNLEN= option, see
“Other LIBNAME Statement Options for the Information Maps Engine” on page 71
and “EXPCOLUMNLEN= Data Set Option” on page 76. �

The INFOMAPS Procedure � INSERT DATAITEM Statement 15

Requirement: Relational data: Any reference to physical or business data in a
relational table must be enclosed in double angle brackets (<< >>). Everything
between double angle brackets is maintained just as it is; that is, case and blank
spaces are maintained.

If you are referring to a physical column, then you must qualify the column
with the data source ID. For example, <<Transaction.Sales_Tax>>. If you are
referring, in an expression, to a data item in the current information map, then
you do not need to qualify the data item ID. You can refer explicitly to the current
information map by specifying root as the qualifier. For example,
<<root.MODEL_ID>>.

Requirement: OLAP data: Expressions for OLAP data items must resolve to a
valid, one-dimensional MDX set. Use double angle brackets (<< >>) to enclose
references to an OLAP measure, OLAP dimension, OLAP hierarchy, or an OLAP
level. Use single sets of square brackets ([]) to enclose a reference to an OLAP
member. For example:

<<Measures.new_business_value_sum>>,
<<campaigns>>,
<<campaigns.campaigns>>,
[campaigns].[All campaigns].[ADVT]

Interaction: You can specify only one of the COLUMN=, EXPRESSION=,
HIERARCHY=, or MEASURE= arguments in an INSERT DATAITEM statement.

Tip: If you are using the INSERT DATAITEM statement to insert a non-calculated
data item from physical data, it is preferable for performance reasons to use the
COLUMN=, HIERARCHY=, or MEASURE= argument instead of the
EXPRESSION= argument.

HIERARCHY=“dimension”.“hierarchy”
specifies a physical hierarchy. The dimension is the name of a dimension in the
current OLAP data source. The hierarchy is the name of a hierarchy that is defined
in the specified dimension. For example:

insert datasource sasserver="SASMain" cube="Simba";
insert dataitem hierarchy="MARKET"."GEOGRAPHICAL" id="Geographical";

The INFOMAPS procedure inserts a data item for this hierarchy into the information
map.

By default, a data item inserted using the HIERARCHY= argument returns the
top-level members of the hierarchy when used in a query. If you want the data item
to return members from other levels, you should instead define it with the
EXPRESSION= argument. In the following example, the data item Geographical1
returns the top-level members of the GEOGRAPHICAL hierarchy (for example,
REGION), while the data item Geographical2 returns all members of the level.

insert dataitem hierarchy="MARKET"."GEOGRAPHICAL" id="Geographical1";
insert dataitem expression="<<MARKET.GEOGRAPHICAL>>"

id="Geographical2"
type=character;

If the GEOGRAPHICAL hierarchy contains another level named STATE and you
want a data item to return members from the STATE level, then you should use the
EXPRESSION option to create that data item. For example,

insert dataitem expression="<<MARKET.GEOGRAPHICAL.STATE>>.members"
id="State"
type=character;

Restriction: This option applies only to an OLAP data source.

16 INSERT DATAITEM Statement � Chapter 2

Interaction: You can specify only one of the COLUMN=, EXPRESSION=,
HIERARCHY=, or MEASURE= arguments in an INSERT DATAITEM statement.

MEASURE=“measure”
specifies a physical measure. The measure is the name of a measure that is defined
in the measures dimension in the OLAP data source for the current information map.
For example:

insert datasource sasserver="SASMain" cube="SASMain - OLAP schema".Simba;
insert dataitem measure="ACTUALAVE" id="Average Actual";

The INFOMAPS procedure inserts a data item for this OLAP measure into the
information map.
Restriction: This option applies only to an OLAP data source.
Interaction: You can specify only one of the COLUMN=, EXPRESSION=,

HIERARCHY=, or MEASURE= arguments in an INSERT DATAITEM statement.

Options

ACTIONS=(actions-list)
tells an application (such as SAS Web Report Studio) that uses the information map
what actions it can present to its users to perform on the result data set returned by
the information map. For example, a user of SAS Web Report Studio can right-click a
column heading of a report and select Sort from the pop-up menu to sort the values
in that column. Specifying actions=(nosort) tells SAS Web Report Studio not to
offer the Sort menu for this data item.

The following actions can be specified:

RANK | NORANK
specifies whether the following items can be ranked:

� relational data item values
� members of OLAP data items that represent hierarchies

The setting for this option does not affect the ability of the information map
consumer to rank row and column values in a generated result set.
Default: RANK

SORT | NOSORT
specifies whether the following items can be sorted:

� relational data item values
� members of OLAP data items that represent hierarchies

The setting for this option does not affect the ability of the information map
consumer to sort OLAP data values.
Default: SORT

FILTER | NOFILTER
specifies whether members of OLAP data items that represent hierarchies can
have filters applied to them. The setting for this option does not affect the ability
of the information map consumer to filter on row and column values in a
generated result set, and it does not affect test queries that are run from the Test
the Information Map dialog box in Information Map Studio.
Default: FILTER
Restriction: This option value applies only to non-measure OLAP data items.

The INFOMAPS Procedure � INSERT DATAITEM Statement 17

NAVIGATE | NONAVIGATE
specifies whether the member of OLAP data items that represent hierarchies can
be drilled up or down, or expanded and collapsed.
Default: NAVIGATE
Restriction: This option value applies only to non-measure OLAP data items.

Default: The action is enabled (RANK, SORT, FILTER, or NAVIGATE) unless it is
specifically disabled (NORANK, NOSORT, NOFILTER, or NONAVIGATE).

Example: ACTIONS=(RANK SORT NOFILTER NONAVIGATE)

AGGREGATION=aggregate-function
specifies how a measure data item is aggregated when it is used in a query. Values
for the AGGREGATION= option are shown in Table 2.1 on page 18. For more
information about the aggregate functions (except for InternalAggregation and
InternalAggregationAdditive), see “Summarizing Data: Using Aggregate
Functions” in the “Retrieving Data from a Single Table” chapter in the SAS 9.2 SQL
Procedure User’s Guide.

The special value InternalAggregation specifies that the values of the measure
data item are aggregated by a non-additive expression. A non-additive expression is
one for which the arithmetic summation of the aggregated values of the measure
data item is not equal to the arithmetic summation of all of the detail values of that
data item. For example, SUM(COL1)/COUNT(COL1) is a non-additive expression. If
you specify that a data item has a non-additive expression, then the total for that
data item is calculated by applying the specified expression to the detail values of the
data item.

The special value InternalAggregationAdditive specifies that values of the
measure data item are aggregated by an additive expression. An additive expression
is one for which the arithmetic summation of the aggregated values of the measure
data item is equal to the arithmetic summation of all of the detail values of that data
item. For example, SUM(COL1*COL2) is an additive expression.
Restriction: The AGGREGATION= option applies only to relational data items that

are measures.
Restriction: If the data item is defined by an expression that references a measure

data item or that contains an aggregate function, then the only valid values for the
AGGREGATION= option are InternalAggregation or
InternalAggregationAdditive.

Default: If you do not specify an AGGREGATION= option, then the default
aggregate function is defined as follows:

SUM
if the expression type for the data item is numeric

COUNT
if the expression type for the data item is character, date, time, or timestamp

InternalAggregation
if the data item is based on a measure

If the default function is not available, then the first aggregate function in the list
of functions that SAS maintains becomes the default.

Interaction: If you use the AGGREGATION= option in the same INSERT
DATAITEM statement as either the AGGREGATIONS_DROP_LIST= or the
AGGREGATIONS_KEEP_LIST= option, then the INFOMAPS procedure sets the
AGGREGATIONS_DROP_LIST= or the AGGREGATIONS_KEEP_LIST= option
first.

18 INSERT DATAITEM Statement � Chapter 2

Table 2.1 Aggregate Functions

Function Definition

Available to
nonnumeric item
that is a measure

AVG average (mean) of values

AvgDistinct average (mean) of distinct values

COUNT number of nonmissing values �
CountDistinct, number of distinct nonmissing values �
CountPlusNMISS number of values (including the

number of missing values) �
CountPlusNMISSDistinct number of distinct values (including

the number of distinct missing values) �
CSS corrected sum of squares

CSSDistinct corrected sum of squares of distinct
values

CV coefficient of variation (percent)

CVDistinct coefficient of variation (percent) of
distinct values

FREQ number of nonmissing values �
FreqDistinct number of distinct nonmissing values �
InternalAggregation defined in an expression (non-additive) �
InternalAggregationAdditive defined in an expression (additive) �
MAX largest value �
MEAN mean (average) of values

MeanDistinct mean (average) of distinct values

MIN smallest value �
N number of nonmissing values �
NDistinct number of distinct nonmissing values �
NMISS number of missing values �
NMISSDistinct number of distinct missing values �

The INFOMAPS Procedure � INSERT DATAITEM Statement 19

Function Definition

Available to
nonnumeric item
that is a measure

PRT probability of a greater absolute value
of Student’s t

PRTDistinct probability of a greater absolute value
of Student’s t of distinct values

RANGE range of values

RANGEDistinct range of distinct values

STD standard deviation

STDDistinct standard deviation of distinct values

STDERR standard error of the mean

STDERRDistinct standard error of the mean of distinct
values

SUM sum of values

SumDistinct sum of distinct values

T Student’s t value for testing the
hypothesis that the population mean is
zero

TDistinct Student’s t value for testing the
hypothesis that the population mean of
distinct values is zero

USS uncorrected sum of squares

USSDistinct uncorrected sum of squares for distinct
values

VAR variance

VarDistinct variance of distinct values

AGGREGATIONS_DROP_LIST=(aggregate-function-list)
removes one or more functions from the set of aggregate functions available to a data
item. See Table 2.1 on page 18 for information about aggregate functions.

Separate multiple aggregate functions in the list with a blank space. For example:

AGGREGATIONS_DROP_LIST=(Freq FreqDistinct CSSDistinct)

Note: Use AGGREGATIONS_DROP_LIST= if there are only a few aggregate
functions that you want excluded from the total set. Use
AGGREGATIONS_KEEP_LIST= if there are only a few aggregate functions that you
want included. �

Restriction: This option applies only to relational data items that are measures.

Default: If you specify neither AGGREGATIONS_DROP_LIST= nor
AGGREGATIONS_KEEP_LIST=, then all of the valid aggregate functions for the
data item are available.

Interaction: If you use the AGGREGATIONS_DROP_LIST= option in the same
INSERT DATAITEM statement as the AGGREGATION= option, then the
INFOMAPS procedure sets the AGGREGATIONS_DROP_LIST= option first.

20 INSERT DATAITEM Statement � Chapter 2

AGGREGATIONS_KEEP_LIST=(aggregate-function-list)
specifies the aggregate functions that are available to a data item. Functions not
listed in aggregate-function-list are excluded. See Table 2.1 on page 18 for
information about aggregate functions.

Separate multiple aggregate functions with a blank space. For example:

AGGREGATIONS_KEEP_LIST=(Freq FreqDistinct CSSDistinct)

Note: Use AGGREGATIONS_KEEP_LIST= if there are only a few aggregate
functions that you want included. Use AGGREGATIONS_DROP_LIST= if there are
only a few aggregate functions that you want excluded from the total set. �
Restriction: This option applies only to relational data items that are measures.
Default: If you specify neither AGGREGATIONS_DROP_LIST= nor

AGGREGATIONS_KEEP_LIST=, then all of the valid aggregate functions for the
data item are available.

Interaction: If you use the AGGREGATIONS_KEEP_LIST= option in the same
INSERT DATAITEM statement as the AGGREGATION= option, then the
INFOMAPS procedure sets the AGGREGATIONS_KEEP_LIST= option first.

CLASSIFICATION=CATEGORY | MEASURE
specifies whether the data item is a category or a measure. The classification of the
data item determines how it is processed in a query. A data item that is a measure
can be used in computations or analytical expressions. A data item that is a category
is used to group measures using an applied aggregate function.

If you do not specify the CLASSIFICATION= option, the INFOMAPS procedure
assigns a default classification based on the following:

� the contents of the expression if the EXPRESSION= argument is used
� the data type of the physical data if the COLUMN=, HIERARCHY=, or

MEASURE= argument is used

For a relational data source, if a data item is created from a physical column, then
CATEGORY is the default classification unless the physical data is of type
NUMERIC and is not a key. Data items inserted with the EXPRESSION= argument
also default to CATEGORY. However, if the expression contains an aggregation, the
default classification is MEASURE instead.

For an OLAP data source, if the HIERARCHY= argument is used, then the default
classification is CATEGORY. If the MEASURE= argument is used, then the default
classification is MEASURE. If the EXPRESSION= argument is used, then the
default classification is MEASURE if the specified TYPE= value is NUMERIC.
Otherwise, the default classification is CATEGORY.

CUSTOM_PROPERTIES=(custom-properties-list)
specifies additional properties for the data item. Custom properties are supported by
specific SAS applications such as SAS Marketing Automation. The form of the
custom-properties-list is

("property-name-1" "property-value-1" <"description-1">)
...
("property-name-n" "property-value-n" <"description-n">)

where

property-name
specifies the name of the property.
Requirement: Property names must be unique. If a property name already exists

in the data item, then the INSERT DATAITEM statement will fail. Therefore, it
is recommended that you add a prefix or suffix to the property name to ensure
uniqueness.

The INFOMAPS Procedure � INSERT DATAITEM Statement 21

Restriction: Property names cannot begin with an underscore (_) character.

property-value
specifies the value of the property.

description
specifies the description of the property. The description is optional.
For example

CUSTOM_PROPERTIES=(
("MA_Level" "Nominal" "Descriptive text goes here.")
("MA_UseInSubjectIdTop" "Subject_ID_" "Subject ID")

)

DESCRIPTION=“descriptive-text”
specifies the description of the data item, which can be viewed by the information
map consumer.

Alias: DESC=

Restriction: Although you can specify more than 256 characters for the data item
description, SAS programs can use only the first 256 characters of the description.

FOLDER=“folder-name” | “folder-location” </CREATE>
specifies the folder in the information map into which to insert the data item.

� If the folder is in the root directory of the information map, then you can specify
the folder by name without an initial slash. For example, FOLDER="CUSTOMERS".

� If the folder is not in the root directory, then you must specify the location of the
folder beginning with a slash. For example, FOLDER="/CUSTOMERS/Europe".

/CREATE
specifies that the named folder or location is created automatically if it does not
already exist.

Alias: LOCATION=

Restriction: The following characters are not valid in a folder name:

� / \

� null characters

� non-blank nonprintable characters

Restriction: A folder name can contain blank spaces, but it cannot consist only of
blank spaces.

FORMAT=“format-name”
specifies the SAS format of the data item.

If you do not specify a SAS format, or if you specify an empty string as the format
value, the INFOMAPS procedure sets a default format for the data item based on the
following factors:

� the classification of the data item

� whether there is a format defined in the physical or business resource
referenced in the data item expression

� the expression type of the data item

Restriction: The FORMAT= option applies only to relational data items and OLAP
measures.

22 INSERT DATAITEM Statement � Chapter 2

ID=“data-item-ID”
specifies the ID assigned to the data item being inserted. The ID is a value that
uniquely identifies the associated data item in the current information map. If you
do not specify the ID= option, the INFOMAPS procedure generates an ID. The value
that is generated for a data item depends on how the data item is inserted:

� If the NAME= option is specified, the data item name is used as the seed for
generating the ID.

� If the NAME= option is not specified, how the ID is generated depends on
whether the data item is inserted from a physical column or from the
EXPRESSION=, HIERARCHY=, or MEASURE= argument.

� If the data item is inserted from a physical column in one of the following
ways, then the ID is generated from either the SAS name or label of the
physical column:

INSERT DATAITEM with the COLUMN= argument specified
INSERT DATASOURCE with either the _ALL_ or the COLUMNS=

option specified

The settings of the USE_LABELS=, REPLACE_UNDERSCORES=, and
INIT_CAP= options determine the exact value and casing of the ID.

� If the data item is inserted with the EXPRESSION= option, then the
INFOMAPS procedure assigns a unique ID of the form DataItemnumber,
where number is an internally maintained counter for ID generation. This
counter is also used for generating IDs for other business data, including
data sources, filters, and relationships.

� If the data item is inserted with the HIERARCHY= or MEASURE= option,
then the ID is generated from the caption of the hierarchy or measure.

The INSERT DATAITEM statement prints a note displaying the ID of the data
item if the ID has a different value from the data item name. You can use the LIST
statement to view the IDs of all the data items in the current information map.
Restriction: Nulls and non-blank nonprintable characters are not valid in an ID.

The following characters are invalid:

. < > [] { } \ / ^ @ ~

If a name contains any of these characters, they are replaced with an underscore
(_) when the ID is generated from the name.

Restriction: The first 32 characters of an ID must be unique across an information
map. An error occurs if you specify an ID that is the same as an existing ID (data
item, data source, filter, or other). An ID that differs only by case from another ID
in the current information map is not considered unique.

NAME=“data-item-name”
specifies the name assigned to the data item in the information map. A name is
optional, descriptive text that makes it easier for business users to understand what
the data is about. A data item’s name is for display purposes only. You refer to a
data item in code using its ID rather than its name. If you do not specify a name, the
name defaults to one of the following, depending on how the data item is defined:

� If the COLUMN= argument is used, then the name defaults to the column
name or column label (based on the setting of the USE_LABELS= option from
the NEW INFOMAP or UPDATE INFOMAP statement).

� If the EXPRESSION= argument is used, then the INFOMAPS procedure
provides a default name.

� If the HIERARCHY= or MEASURE= argument is used, then the name defaults
to the caption of the hierarchy or measure.

The INFOMAPS Procedure � INSERT DATAITEM Statement 23

Restriction: There is no limit on the length of the name of a relational data item.
OLAP data item names cannot contain more than 245 characters.

Restriction: A data item name can contain blank spaces, but it cannot consist only
of blank spaces. Nulls and non-blank nonprintable characters are not valid
characters in a data item name. A data item name can contain the following
special characters, but they are replaced with an underscore (_) in the ID that is
generated from the name:

. < > [] { } \ / ^ @ ~

Square brackets ([]) are not valid in an OLAP data item name.

TYPE=NUMERIC | CHARACTER | DATE | TIME | TIMESTAMP
specifies the data type of the data item’s expression.
Restriction: For OLAP data, the only valid types are NUMERIC and CHARACTER.
Interaction: If you specify the EXPRESSION= option, then you must specify the

TYPE= option. If you specify the COLUMN=, HIERARCHY=, or MEASURE=
option, then you can omit the TYPE= option. In this case, the INFOMAPS
procedure derives the type from the type of the corresponding data.

VALUE_GENERATION=NONE | DYNAMIC | (custom-values-list)
specifies what method an application (for example, SAS Web Report Studio) that uses
the information map is to use in generating a list of data item values for this data
item to present to a user when the user is constructing a filter or responding to a
prompt. The following value generation methods can be specified:

NONE
specifies that the list of values should not be generated. The application will
require its user to manually type data item values.

DYNAMIC
specifies that the list that contains all of the data item’s values be dynamically
generated. The list is generated by querying the data source to retrieve the data
item’s values.

custom-values-list
defines a custom list of values for the data item. The form of the custom-values-list
is

("unformatted-value-1" <"formatted-value-1">)
...
("unformatted-value-n" <"formatted-value-n">)

where

unformatted-value
specifies the unformatted value for a report.

formatted-value
specifies the formatted value for a report.

Note: The formatted value is optional. It is used for display purposes only.
For example, SAS Web Report Studio displays these values to the user of a filter
and prompt definition dialog boxes so that the user can see what the values will
look like after they are formatted for a report. �

Note: To refer to a custom value later during an update, you must specify the
unformatted value rather than the formatted value.

Example:

VALUE_GENERATION=(
("CA" "California")

24 INSERT DATASOURCE Statement � Chapter 2

("NC")
("NY" "New York")

)

Examples

/* Use the COLUMN= option to insert a data item for a physical column. */
insert dataitem column="TRANSACTION"."Sales_Amount"

id="Total_Sales";

INSERT DATASOURCE Statement

Makes the data from either a table or cube available to the current information map.

INSERT DATASOURCE
SASSERVER=“application-server-name”
TABLE=“library”.“table” <COLUMNS=(column–1 <... column-n>) | _ALL_ >
<DESCRIPTION=“descriptive-text”>
<ID=“data-source-ID”>
<NAME=“data-source-name”>;

or:

INSERT DATASOURCE
SASSERVER=“application-server-name”
CUBE=<“schema”.>“cube” <_ALL_>

<DESCRIPTION=“descriptive-text”>
<ID=“data-source-ID”>
<NAME=“datasource-name”>;

Required Arguments

CUBE=<“schema”.>“cube”
identifies an OLAP cube as a data source for the current information map.

A cube must be both of the following:

� registered in the currently connected metadata server

� associated with a schema that is registered in the SAS OLAP Server specified
by the SASSERVER= option

Note: A SAS OLAP Server can have only one schema. A schema lists the
available cubes. �

Restriction: If you use the CUBE= argument in an INSERT DATASOURCE
statement, then you cannot use the TABLE= argument in any INSERT
DATASOURCE statement in the same PROC INFOMAPS step. Although you can
access either relational data or cube data, you cannot access both types within the
same information map.

Restriction: You can insert only one OLAP cube into an information map.

Restriction: Cube names are case sensitive.

The INFOMAPS Procedure � INSERT DATASOURCE Statement 25

SASSERVER=“application-server-name”
identifies the SAS server. The server can be either a SAS application server for
relational data (SAS libraries) or a SAS OLAP Server for cube data. The type of
server being accessed is identified by the TABLE= option or the CUBE= option.

TABLE=“library”.“table”
identifies a relational table as a data source for the current information map.

A table must be both of the following:
� registered in the currently connected metadata server
� associated with a SAS library that is registered in the SAS application server

specified by the SASSERVER= option

In order for an information map to use a table, the table must have a unique name
in its SAS library (for a SAS table) or database schema (for a table from a different
DBMS) in the metadata server. If multiple tables in a SAS library or database
schema have the same name, then you must perform one of the following tasks
before you can use any of the tables with an information map:

� From either SAS Data Integration Studio or the Data Library Manager in SAS
Management Console, you can rename a table by changing the value of the
Name field in the General tab in the properties window for the table.

� From SAS Data Integration Studio, delete the duplicate tables.

Alias: SERVER=
Restriction: If you use the TABLE= argument in an INSERT DATASOURCE

statement, then you cannot use the CUBE= argument in any INSERT
DATASOURCE statement in the same PROC INFOMAPS step. Although you can
access either relational data or cube data, you cannot access both types within the
same information map.

Restriction: You can use multiple INSERT DATASOURCE statements to add
multiple relational tables to the same information map. However, when accessing
multiple tables, all tables must be accessed from the same SAS Workspace Server.

Restriction: Table names are case sensitive.

Options

NAME=“data-source-name”
enables you to specify a descriptive name for each data source inserted in an
information map. If you use the INFOMAPS procedure to insert multiple data
sources from the same physical table, the data sources will, by default, all have the
same name. When you view the data sources in SAS Information Map Studio, they
are indistinguishable because the names are used as identifiers in the graphical user
interface. Use the NAME= option to customize the name for each data source.

ALL
specifies to insert a data item for each physical column or hierarchy as defined in the
specified table or cube.
Interaction: If you specify the _ALL_ option, then you cannot specify the

COLUMNS= option.

26 INSERT DATASOURCE Statement � Chapter 2

COLUMNS=(column-1 <... column-n>)
specifies one or more physical column names as defined in the specified table. The
INFOMAPS procedure inserts a data item into the information map for each of these
named columns.

The column list can be a single SAS column name or a list of SAS column names
separated by at least one blank space and enclosed in parentheses.
Restriction: This option applies only to a relational data source.
Requirement: If you specify the COLUMNS= option, then you must specify it

immediately after the TABLE= option.
Interaction: If you specify the COLUMNS= option, then you cannot specify the

ALL option.

DESCRIPTION=“descriptive-text”
specifies the description of the data source, which can be viewed by the information
map consumer.
Alias: DESC
Restriction: Although you can specify more than 256 characters for the data source

description, SAS programs can use only the first 256 characters of the description.

ID=“data-source-ID”
specifies the ID assigned to the data source. The ID is a value that you can use in an
expression to uniquely identify the associated data source in the current information
map.

If you do not specify the ID= option, the INFOMAPS procedure generates an ID
for the data source based on the specified table or cube name. If the generated ID is
different from the table or cube name, then the INFOMAPS procedure prints a note
in the SAS log with the generated ID. You can use the LIST statement to display
data source IDs.
Restriction: Nulls and non-blank nonprintable characters are not valid in an ID.

The following characters are invalid:

. < > [] { } \ / ^ @ ~

If a name contains any of these characters, they are replaced with an underscore
(_) when the ID is generated from the name.

Restriction: Table and cube names are case sensitive.
Restriction: The first 32 characters of an ID must be unique across an information

map. An error occurs if you specify an ID that is the same as an existing ID (data
item, data source, filter, or other). An ID that differs only by case from another ID
in the current information map is not considered unique.

Details
An inserted data source is a logical representation of a table or cube that you can

query via the information map. An OLAP data source and the cube that it references
have the same set of properties. A relational data source has properties that are not
part of the referenced table. You can insert multiple tables as data sources into an
information map. A table can be inserted as a data source multiple times in the same
information map. Each of these data sources has a unique ID and its own set of
properties. To refer to a table data source in an expression, you must use its ID. By
default, the ID of a table data source is the same as the table name.

To view a list of all the data sources in the current information map, use the LIST
DATASOURCES statement. Even though the data source name and its ID have the
same value by default, you can use the ID= option to specify a different ID or use the
NAME= option to assign a different name.

The INFOMAPS Procedure � INSERT FILTER Statement 27

Examples
/* Insert all the columns from a relational data source. */
insert datasource sasserver="SASMain"

table="Basic Data"."CUSTOMER" _ALL_
name="CUSTOMER_US"
description="Domestic Customers";

/* Insert only three columns from a relational data source. */
insert datasource sasserver="SASMain"

table="OrionTables"."CUSTOMER_DIM"
columns=("Customer_id" "Customer_name" "Customer_age") ;

/* Insert an OLAP data source. */
insert datasource sasserver="SASMain"

cube="SASMain - OLAP Schema"."class"
id="Sample_Data";

INSERT FILTER Statement

Inserts a filter into the current information map. A filter provides criteria for subsetting a result
set. For relational databases, a filter is a WHERE clause.

INSERT FILTER
CONDITION=“conditional-expression”
<CUSTOM_PROPERTIES=(custom-properties-list)>
<DESCRIPTION=“descriptive-text”>
<FOLDER=“folder-name” | “folder-location” </CREATE>>
<ID=“filter-ID”>
<NAME=“filter-name”>;

Required Argument

CONDITION=“conditional-expression”
specifies a conditional expression that is used to filter the data.
Requirement: Relational data: Any reference to physical or business data in a

relational table must be enclosed in double angle brackets (<< >>). Everything
between double angle brackets is maintained just as it is; that is, case and blanks
are maintained.

If you are referring to a physical column, then you must qualify the column
with the data source ID. For example, <<Transaction.Sales_Tax>>. If you are
referring, in an expression, to a data item in the current information map, then
you do not need to qualify the data item ID. You can refer explicitly to the current
information map by specifying root as the qualifier. For example,
<<root.MODEL_ID>>.

Requirement: OLAP data: Expressions for OLAP data items must resolve to a
valid, one-dimensional MDX set. Use double angle brackets (<< >>) to enclose
references to an OLAP measure, OLAP dimension, OLAP hierarchy, or an OLAP
level. Use single sets of square brackets ([]) to enclose a reference to an OLAP
member.

28 INSERT FILTER Statement � Chapter 2

Options

CUSTOM_PROPERTIES=(custom-properties-list)
specifies additional properties for the filter. Custom properties are supported by
specific SAS applications such as SAS Marketing Automation. The form of the
custom-properties-list is

("property-name-1" "property-value-1" <"description-1">)
...
("property-name-n" "property-value-n" <"description-n">)

where

property-name
specifies the name of the property.

Requirement: Property names must be unique. If a property name already exists
in the filter, then the INSERT FILTER will fail. Therefore, it is recommended
that you add a prefix or suffix to the property name to ensure uniqueness.

Restriction: Property names cannot begin with an underscore (_) character.

property-value
specifies the value of the property.

description
specifies the description of the property. The description is optional.

DESCRIPTION=“descriptive-text”
specifies the description of the filter to be inserted.

Alias: DESC=

FOLDER=“folder-name” | “folder-location” </CREATE>
specifies the folder in the information map into which to insert the filter.

� If the folder is in the root directory of the information map, then you can specify
the folder by name, without an initial slash. For example,
FOLDER="CUSTOMERS".

� If the folder is not in the root directory, then you must specify the location of the
folder beginning with a slash. For example, FOLDER="/CUSTOMERS/Europe".

/CREATE
specifies that the named folder or location is created automatically if it does not
already exist.

Alias: LOCATION=

Restriction: The following characters are not valid in a folder name:

� / \

� null characters

� non-blank nonprintable characters

Restriction: A folder name can contain blank spaces, but it cannot consist only of
blank spaces.

ID=“filter-ID”
specifies the ID of the filter to insert. If you do not specify an ID, the INFOMAPS
procedure generates a unique ID from the filter name. You can use the LIST
statement to display filter IDs.

The INFOMAPS Procedure � INSERT FOLDER Statement 29

Restriction: Nulls and non-blank nonprintable characters are not valid in an ID.
The following characters are invalid:

. < > [] { } \ / ^ @ ~

If a name contains any of these characters, they are replaced with an underscore
(_) when the ID is generated from the name.

Restriction: The first 32 characters of an ID must be unique across the information
map. An error occurs if you specify an ID that is the same as an existing ID (data
item, data source, filter, or other). An ID that differs only by case from another ID
in the current information map is not considered unique.

NAME=“filter-name”
specifies the name of a filter to insert into the current information map. If the
NAME= option is missing from the INSERT FILTER statement, the INFOMAPS
procedure will generate a default name.
Restriction: Nulls and non-blank nonprintable characters are not valid characters

for a filter name.

Examples
/* Insert a relational table filter. */
insert filter

name="genderFilter"
id="Boys"
description="Filter for boys"
folder="/Filters" /create
condition=’<<CLASS.sex>> = "M"’;

/* Insert an MDX filter. */
insert filter

name="dates1"
condition="<<Dates_FirstChild>> <>
[cust_dates].[All cust_dates].[1996].[1996/06].[24JUN96]";

/* Insert an MDX filter. */
insert filter

name="dates2"
condition="<<Dates_Dates>>=[cust_dates].[All cust_dates].[1998].[1998/02],
[cust_dates].[All cust_dates].[1998].[1998/02].[03FEB98]";

INSERT FOLDER Statement

Inserts a folder into the current information map.

INSERT FOLDER “folder-name”
<CUSTOM_PROPERTIES=(custom-properties-list)>
<DESCRIPTION=“descriptive-text”>
<LOCATION=“parent-folder-name” | “parent-folder-location” </CREATE>>;

30 INSERT FOLDER Statement � Chapter 2

Required Argument

“folder-name”
specifies the name of the map folder to insert into the current information map.
Tip: When referring to the folder, remember that case is important.

Options

CUSTOM_PROPERTIES=(custom-properties-list)
specifies additional properties for the folder. Custom properties are supported by
specific SAS applications such as SAS Marketing Automation. The form of the
custom-properties-list is

("property-name-1" "property-value-1" <"description-1">)
...
("property-name-n" "property-value-n" <"description-n">)

where

property-name
specifies the name of the property.
Requirement: Property names must be unique. If a property name already exists

in the folder, then the INSERT FOLDER statement will fail. Therefore, it is
recommended that you add a prefix or suffix to the property name to ensure
uniqueness.

Restriction: Property names cannot begin with an underscore (_) character.

property-value
specifies the value of the property.

description
specifies the description of the property. The description is optional.

DESCRIPTION=“descriptive-text”
specifies the description of the folder that is created.
Alias: DESC=

LOCATION=“parent-folder-name” | “parent-folder-location” </CREATE>
specifies the parent folder of the folder that you are inserting into the information
map. By specifying the parent folder, you specify where in the information map to
insert the folder.

� If the parent folder is in the root directory of the information map, then you can
specify the parent folder by name without an initial slash. For example,
FOLDER="CUSTOMERS".

� If the parent folder is not in the root directory, then you must qualify it with a
location that starts with a slash. For example, FOLDER="/CUSTOMERS/Europe".

/CREATE
specifies that the named folder or location is created automatically if it does not
already exist.

Alias: PARENT=
Restriction: The following characters are not valid in a parent folder name:

� / \
� null characters

The INFOMAPS Procedure � INSERT RELATIONSHIP Statement 31

� non-blank nonprintable characters

Restriction: A parent folder name can contain blank spaces, but it cannot consist
only of blank spaces.

Examples
insert folder "measures";
insert folder "subMeasures" parent="measures";
insert folder "subsubMeasures" location="/measures/subMeasures";

INSERT RELATIONSHIP Statement

Inserts a join into the current information map.

INSERT RELATIONSHIP
CONDITION=“conditional-expression”
LEFT_TABLE=“data-source-ID-1”
RIGHT_TABLE=“data-source-ID-2”

<CARDINALITY=ONE_TO_ONE | ONE_TO_MANY | MANY_TO_ONE |
MANY_TO_MANY | UNKNOWN>
<CUSTOM_PROPERTIES=(custom-properties-list)>
<DESCRIPTION=“descriptive-text”>
<ID=“relationship-ID”>
<JOIN=INNER | LEFT | RIGHT | FULL>;

Required Arguments

CONDITION=“conditional-expression”
specifies the columns to be joined to create a single relationship between two tables.

Requirement: The columns referenced in the conditional expression must be
qualified with the associated data source ID and must be enclosed in double angle
brackets (<< >>).

LEFT_TABLE=“data-source-ID-1”
specifies the data source ID of the first table in the relationship.

RIGHT_TABLE=“data-source-ID-2”
specifies the data source ID of the second table in the relationship.

Options

CARDINALITY=ONE_TO_ONE | ONE_TO_MANY | MANY_TO_ONE |
MANY_TO_MANY | UNKNOWN

describes the relationship between rows in the first data source and rows in the
second data source.

Default: If the CARDINALITY= option is not specified, then the cardinality
defaults to UNKNOWN.

32 INSERT RELATIONSHIP Statement � Chapter 2

CUSTOM_PROPERTIES=(custom-properties-list)
specifies additional properties for the relationship. Custom properties are supported
by specific SAS applications such as SAS Marketing Automation. The form of the
custom-properties-list is

("property-name-1" "property-value-1" <"description-1">)
...
("property-name-n" "property-value-n" <"description-n">)

where

property-name
specifies the name of the property.

Requirement: Property names must be unique. If a property name already exists
in the relationship, then the INSERT RELATIONSHIP statement will fail.
Therefore, it is recommended that you add a prefix or suffix to the property
name to ensure uniqueness.

Restriction: Property names cannot begin with an underscore (_) character.

property-value
specifies the value of the property.

description
specifies the description of the property. The description is optional.

DESCRIPTION=“descriptive-text”
specifies the description of the relationship, which can be viewed by the information
map consumer.

Alias: DESC

ID=“relationship-ID”
specifies the ID of the relationship to be inserted. If you do not specify an ID, the
INFOMAPS procedure generates a unique ID.

Restriction: Nulls and non-blank nonprintable characters are not valid in an ID.
The following characters are invalid:

. < > [] { } \ / ^ @ ~

If a name contains any of these characters, they are replaced with an underscore
(_) when the ID is generated from the name.

Restriction: The first 32 characters of an ID must be unique across the information
map. An error occurs if you specify an ID that is the same as an existing ID (data
item, data source, filter, or other). An ID that differs only by case from another ID
in the current information map is not considered unique.

JOIN=INNER | LEFT | RIGHT | FULL
specifies the type of join.

INNER
returns all the rows in one table that have one or more matching rows in the other
table

LEFT
returns all the rows in the specified left table, plus the rows in the specified right
table that match rows in the left table

RIGHT
returns all the rows in the specified right table, plus the rows in the specified left
table that match rows in the right table

The INFOMAPS Procedure � LIST Statement 33

FULL
returns all the rows in both tables

Default: INNER

Details
The INSERT RELATIONSHIP statement applies only to relational tables. If a join

already exists between the specified tables, then the new join replaces the old one,
unless a new and unique ID is specified.

When specifying a table, you must specify the data source ID associated with the
table in an information map. IDs are case sensitive. You can define data source ID
values when you insert or update the data sources. You can use the LIST
DATASOURCES statement to see the IDs of data sources in your information map.

Example
insert relationship

left_table="CUSTOMER"
right_table="TRANSACTION"
condition="(<<CUSTOMER.Cust_ID>>=<<TRANSACTION.Cust_ID>>)"
join=inner
id="join_customer_to_transaction";

LIST Statement

Lists the key properties of business data in the current information map. The definitions are
printed to the SAS log or to the computer console.

LIST <DATAITEMS | DATASOURCES | FILTERS |RELATIONSHIPS | _ALL_>;

Options

DATAITEMS
lists the properties of all the data items defined in the current information map. The
properties include the name, ID, folder location, description, expression text,
expression type, classification, format, and the default aggregation (if the
classification is a measure) of each data item.

DATASOURCES
lists the properties of all the data sources defined in the current information map.
The properties include data source (library.physical-table), data source ID, table or
cube name, and description.

FILTERS
lists the properties of all the filters defined in the current information map. The
properties include the name, ID, folder location, description, and the conditional
expression text of each filter.

RELATIONSHIPS
lists the properties of all the relationships that are defined in the current information
map. The properties include the ID, left table, right table, cardinality, join type, and
the join expression text.

34 LIST Statement � Chapter 2

ALL
lists the properties of all the data items, filters, data sources, and relationships
defined in the current information map.
Default: _ALL_ is the default if you do not specify an option.

Example
The following output shows the result of submitting the LIST statement for the

information map in Chapter 8, “Example: Using the INFOMAPS Procedure and the
Information Maps Engine,” on page 87.

Output 2.1 Log the LIST Statement

1/* List all of the properties of the current information map. */

2 list;

Total datasources: 3

Data source: HR.EMPINFO

ID: Empinfo

Name: EMPINFO

Description:

Data source: HR.JOBCODES

ID: Jobcodes

Name: JOBCODES

Description:

Data source: HR.SALARY

ID: Salary

Name: SALARY

Description:

Total data items: 9

Data item name: Annual Salary

ID: Annual Salary

Folder: /Salary Info

Description: Physical column SALARY

Expression: <<Salary.Salary>>

Expression type: NUMERIC

Classification: MEASURE

Format: DOLLAR12.

Default aggregation: Sum

Data item name: Department Code

ID: Dept_code

Folder: /

Description:

Expression: SUBSTRN(<<root.Jobcode>>, 1, 3)

Expression type: CHARACTER

Classification: CATEGORY

Format:

The INFOMAPS Procedure � LIST Statement 35

Data item name: Division

ID: Division

Folder: /

Description: Physical column DIVISION

Expression: <<Empinfo.DIVISION>>

Expression type: CHARACTER

Classification: CATEGORY

Format:

Data item name: Enddate

ID: Enddate

Folder: /Salary Info

Description: Physical column ENDDATE

Expression: <<Salary.ENDDATE>>

Expression type: DATE

Classification: CATEGORY

Format: DATE9.

Data item name: Identification Number

ID: Identification Number

Folder: /

Description: Physical column IDNUM

Expression: <<Empinfo.Identification Number>>

Expression type: NUMERIC

Classification: CATEGORY

Format: SSN11.

Data item name: Jobcode

ID: Jobcode

Folder: /

Description: Physical column JOBCODE

Expression: <<Empinfo.JOBCODE>>

Expression type: CHARACTER

Classification: CATEGORY

Format:

Data item name: Location

ID: Location

Folder: /

Description: Physical column LOCATION

Expression: <<Empinfo.LOCATION>>

Expression type: CHARACTER

Classification: CATEGORY

Format:

Data item name: Monthly Salary

ID: Monthly Salary

Folder: /Salary Info

Description:

Expression: <<Salary.Salary>>/12

Expression type: NUMERIC

Classification: CATEGORY

Format: DOLLAR12.

Data item name: Title

ID: Title

Folder: /

Description: Physical column TITLE

Expression: <<Jobcodes.TITLE>>

Expression type: CHARACTER

Classification: CATEGORY

Format: $F20.

36 MOVE DATAITEM Statement � Chapter 2

Total filters: 4

Filter name: Cary HQ

ID: Cary HQ

Folder: /

Description: Located in Cary, North Carolina HQ

Expression: <<root.Location>>=’Cary’

Filter name: Education and Publications

ID: Education and Publications

Folder: /

Description: Employees in Education and Publications

Expression: SUBSTRN(<<root.Jobcode>>, 1, 3) IN (’EDU’,’PUB’)

Filter name: Host Systems Development

ID: Host Systems Development

Folder: /

Description: Employees in Host Systems Development

Expression: <<root.Division>>=’HOST SYSTEMS DEVELOPMENT’

Filter name: Status is Current

ID: Status is Current

Folder: /Salary Info

Description:

Expression: <<root.Enddate>> IS NULL

Total Relationships: 2

Relationship ID: JOIN_10

Left table: HR.EMPINFO

Right table: HR.JOBCODES

Cardinality: UNKNOWN

Join type: INNER

Join expression: (<<Empinfo.JOBCODE>>=<<Jobcodes.JOBCODE>>)

Relationship ID: JOIN_11

Left table: HR.EMPINFO

Right table: HR.SALARY

Cardinality: UNKNOWN

Join type: INNER

Join expression: (<<Empinfo.Identification Number>>=<<Salary.Identification Number>>)

90 run;

MOVE DATAITEM Statement

Moves one or more data items to a new location.

MOVE DATAITEM “data-item-ID” | ID_LIST=(“data-item-ID-1” <...
“data-item-ID-n”>)
NEW_LOCATION=“new-folder-location” </CREATE>;

The INFOMAPS Procedure � MOVE FILTER Statement 37

Required Arguments

“data-item-ID” | ID_LIST=(“data-item-ID-1” <... “data-item-ID-n”>)
specifies the data items to move. You can specify a single data item or you can use
the ID_LIST= option to specify multiple data items.
Tip: The data items specified in the ID_LIST do not have to reside in the same

folder.

NEW_LOCATION=“new-folder-location” </CREATE>
specifies the new location for the folder.

/CREATE
specifies that the named folder or location is created automatically if it does not
already exist.

Example
/* Move the data item "Name" from the current folder */
/* to the "newFolder" folder. If the "newFolder" folder */
/* does not exist, then create it. */
move dataitem "Name" new_location="newFolder" /create;

MOVE FILTER Statement

Moves one or more filters to a new location.

MOVE FILTER “filter-ID” | ID_LIST=(“filter-ID-1” <... “filter-ID-n”>)
NEW_LOCATION=“new-folder-location” </CREATE>;

Required Arguments

“filter-ID” | ID_LIST=(“filter-ID-1” <... “filter-ID-n”>)
specifies the filters to move. You can specify a single filter ID or you can use the
ID_LIST= option to specify multiple filter names.
Tip: The filters specified in the ID_LIST= argument do not have to reside in the

same folder.

NEW_LOCATION=“new-folder-location” </CREATE>
specifies the new location.

/CREATE
specifies that the named folder or location is created automatically if it does not
already exist.

Example
/* Move the filters "over60", "over40", and "over20" from */
/* the current folder to the "/Employees/AgeGroups" folder. */
/* If the "/Employees/AgeGroups" folder does not */
/* exist, then create it. */
move filter id_list=("over60" "over40" "over20")

new_location= "/Employees/AgeGroups" /create;

38 MOVE FOLDER Statement � Chapter 2

MOVE FOLDER Statement

Moves a folder to a new location.

MOVE FOLDER “folder-name”
NEW_LOCATION=“new-folder-location” </CREATE>
<LOCATION=“current-folder-location”>;

Required Arguments

“folder-name”
specifies the name of the folder to move.

NEW_LOCATION=“new-folder-location” </CREATE>
specifies the new location for the folder.

/CREATE
specifies that the named folder or location is created automatically if it does not
already exist.

Option

LOCATION=“current-folder-location”
specifies the current location of the folder to move. If you do not specify a location,
then the default is the root folder location.

Example
/* Move the "myCompany" folder from the */
/* "NC" folder to the "CA" folder. */
move folder "myCompany" location="/State/NC" new_location="/State/CA";

The INFOMAPS Procedure � NEW INFOMAP Statement 39

NEW INFOMAP Statement

Creates a new information map.

NEW INFOMAP “information-map-name”
<AUTO_REPLACE=YES | NO>
<CREATE_TARGET_FOLDER=YES | NO>
<CUSTOM_PROPERTIES= (custom-properties-list)>
<DESCRIPTION=“descriptive-text”>
<INIT_CAP=YES | NO>
<MAPPATH=“location” </CREATE>>
<REPLACE_UNDERSCORES=YES | NO>
<USE_LABELS=YES | NO>
<VERIFY=YES | NO>;

Required Argument

“information-map-name”
specifies the name of the new information map.
Restriction: The following characters are not valid in information map names:

� null characters
� non-blank nonprintable characters

Restriction: An information map name can contain blank spaces, but it cannot
contain leading or trailing blank spaces and cannot consist of only blank spaces.

Restriction: Information map names can be up to 60 characters long. However, if
you plan to access the information map in SAS programs using the Information
Maps engine, then you should specify a name with no more than 32 characters,
which is the maximum length for SAS names.

Options

AUTO_REPLACE=YES | NO
indicates whether the specified information map is automatically replaced if it
already exists. If the AUTO_REPLACE= option is set to YES and the information
map already exists, then the existing information map is replaced with a new empty
information map. If the AUTO_REPLACE= option is set to NO and the information
map already exists, then an error occurs.
Default: NO

40 NEW INFOMAP Statement � Chapter 2

CREATE_TARGET_FOLDER=YES | NO
specifies whether to automatically create a folder when inserting all data items from
a data source. Specifying YES automatically creates a folder when you subsequently
insert data items using an INSERT DATASOURCE statement that specifies the
ALL option. The ID of the data source is used as the name of the folder. All of the
data items that are inserted as a result of the INSERT DATASOURCE statement are
inserted into the folder that is created automatically.
Default: YES

CUSTOM_PROPERTIES= (custom-properties-list)
specifies additional properties for an information map. The form of the
custom-properties-list is

("property-name-1" "property-value-1" <"description-1">")
...
("property-name-n" "property-value-n" <"description-n">)

where

property-name
specifies the name of the property.
Requirement: Property names must be unique. It is recommended that you add a

prefix or suffix to the property name to ensure uniqueness.
Restriction: Property names cannot begin with an underscore (_) character.

property-value
specifies the value of the property.

description
specifies the description of the property. The description is optional.

DESCRIPTION=“descriptive-text”
specifies the description of the information map, which can be viewed by the
information map consumer.
Alias: DESC=

INIT_CAP=YES | NO
specifies whether to capitalize the first letter of each word in the data item name.
Specifying YES capitalizes the first letter of each word in the names of data items
that you insert subsequently using one or more of the following statements:

� INSERT DATASOURCE with either the _ALL_ or the COLUMNS= option
specified

� INSERT DATAITEM with the COLUMN= option specified

Default: YES
Tip: When you specify INIT_CAP=YES, the option replaces multiple consecutive

blank spaces within a data item name with a single blank space, and it removes
trailing blank spaces.

MAPPATH=“location” </CREATE>
specifies the location within the SAS folders tree for the new information map. The
location is required unless a location has been specified in the PROC INFOMAPS
statement.

/CREATE
specifies that the location is created automatically, if it does not already exist.

Alias: LOCATION=
Interaction: The location from the NEW INFOMAP statement overrides the

location from the PROC INFOMAPS statement.

The INFOMAPS Procedure � NEW INFOMAP Statement 41

REPLACE_UNDERSCORES=YES | NO
specifies whether to replace each underscore (_) character in the data item name
with a blank space. Specifying YES replaces underscores in the names of data items
that you insert subsequently using one or more of the following statements:

� INSERT DATASOURCE with either the _ALL_ or the COLUMNS= option
specified

� INSERT DATAITEM with the COLUMN= option specified

Default: YES

USE_LABELS=YES | NO
specifies whether to create the data item name using the column label (if available)
instead of the column name. Specifying YES uses the column label instead of the
column name for data items that you insert subsequently using one or more of the
following statements:

� INSERT DATASOURCE with either the _ALL_ or the COLUMNS= option
specified

� INSERT DATAITEM with the COLUMN= option specified

Default: YES
Restriction: This option applies only to a relational data source.

VERIFY=YES|NO
specifies whether the INFOMAPS procedure verifies the validity of data items,
filters, and relationships in subsequent insert or update operations. Setting the
VERIFY option to NO improves performance, but doing so introduces the risk that
invalid data items, filters, or relationships could get saved into an information map.
Default: YES

Details
The NEW INFOMAP statement creates a new information map. When you open an

information map that does not yet exist, the INFOMAPS procedure allocates space in
memory for its creation. After that, you can start inserting business data into the copy
of the information map in memory. Save the information map with a SAVE statement
to write the in-memory copy to the SAS folders tree.

Only one information map can be created at a time. If you submit one NEW
INFOMAP statement, you must save the new information map with a SAVE statement
before submitting another NEW INFOMAP, UPDATE INFOMAP, or IMPORT
statement. If you do not save the in-memory copy, it is not written to the SAS folders
tree and is simply lost.

Example
new infomap "my testmap"

mappath="/Users/myUserID/My Folder"
verify=no
description="Map for Domestic Customers";

42 SAVE Statement � Chapter 2

SAVE Statement

Saves the current information map.

SAVE
<INFOMAP “information-map-name”>
<MAPPATH=“location” </CREATE>>;

Options

INFOMAP “information-map-name”
specifies the name to use for saving the current information map.
Default: If you do not specify a name in the SAVE statement, the default is the

name of the current information map.

MAPPATH=“location” </CREATE>
specifies the location within the SAS folders tree where the information map is to be
saved.

/CREATE
specifies that the location is created automatically, if it does not already exist.

Alias: LOCATION=
Default: If you do not specify a location, the default is determined according to the

following order of precedence:
1 The MAPPATH specified in the NEW INFOMAP or UPDATE INFOMAP

statement
2 The MAPPATH specified in the PROC INFOMAPS statement

Example
/* Save the current information map in the location specified */
/* when it was opened (or in the PROC INFOMAPS statement) */
/* using the name ’myMap’ */
save infomap "myMap";

/* Save the current information map in the specified location using */
/* its current name */
save mappath="/Users/myUserID/My Folder";

/* Save the current information map in the specified location using */
/* the name ’myMap’ */
save infomap "myMap" mappath="/Users/myUserID/My Folder";

SET STORED_PROCESS Statement

Associates a stored process with the current information map.

SET STORED_PROCESS

The INFOMAPS Procedure � UPDATE DATAITEM Statement 43

NAME=“stored-process-name”
<LOCATION=“stored-process-location”>;

Required Argument

NAME=“stored-process-name”
specifies the name of the stored process that is to be associated with the information
map. If the stored process name is a null or blank string, then no stored process is
associated with the information map.

Interaction: When the name of the specified stored process is a null string (“”) or
contains only blank spaces, then the value for the LOCATION= option is ignored.

Option

LOCATION=“stored-process-location”
specifies the location within the SAS folders tree of the stored process that is
associated with the current information map.

UPDATE DATAITEM Statement

Updates the properties of a specified data item in the current information map.

UPDATE DATAITEM “data-item-ID”
<ACTIONS=(actions-list)>
<AGGREGATION=aggregate-function>
<AGGREGATIONS_LIST=(_ALL_ | ADD (aggregate-function-list) |
REPLACE (aggregate-function-list) | REMOVE (aggregate-function-list)>

<CLASSIFICATION=CATEGORY | MEASURE>
<CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) |
REPLACE (custom-properties-list) | REMOVE (property-names-list)>

<DESCRIPTION=“descriptive-text”>
<EXPRESSION=“expression-text”>
<FORMAT=“format-name”>
<ID=“new-data-item-ID”>
<NAME=“data-item-name”>
<TYPE=NUMERIC | CHARACTER | DATE | TIME | TIMESTAMP>
<VALUE_GENERATION=NONE | DYNAMIC | ADD (custom-value-list) |
REPLACE (custom-value-list) | REMOVE (unformatted-value-list)>;

Required Argument

“data-item-ID”
specifies the ID of the data item to update.

44 UPDATE DATAITEM Statement � Chapter 2

Options

ACTIONS=(actions-list)
tells a SAS application (such as SAS Web Report Studio) that uses the information
map what actions it can present to its users to perform on the result data set
returned by the information map.

The following actions can be specified:

RANK | NORANK
specifies whether the following items can be ranked:

� relational data item values.
� members of OLAP data items that represent hierarchies. The setting for this

option does not affect the ability of the information map consumer to rank
row and column values in a generated result set.

The setting for this option does not affect the ability of the information map
consumer to rank row and column values in a generated result set.
Default: RANK

SORT | NOSORT
specifies whether the following items can be sorted:

� relational data item values.
� members of OLAP data items that represent hierarchies. The setting for this

option does not affect the ability of the information map consumer to sort
OLAP data values.

The setting for this property does not affect the ability of the information map
consumer to sort OLAP data values.
Default: SORT

FILTER | NOFILTER
specifies whether members of OLAP data items that represent hierarchies can
have filters applied to them. The setting for this option does not affect the ability
of the information map consumer to filter on row and column values in a
generated result set, and it does not affect test queries that are run from the Test
the Information Map dialog box in Information Map Studio.
Default: FILTER
Restriction: This option value applies only to non-measure OLAP data items.

NAVIGATE | NONAVIGATE
specifies whether the member of OLAP data items that represent hierarchies can
be drilled up or down, or expanded and collapsed.
Default: NAVIGATE
Restriction: This option value applies only to non-measure OLAP data items.

Default: If an action is not specified with an UPDATE DATAITEM statement, then
it remains as originally specified with the INSERT DATAITEM statement. By
default an action is enabled unless it is specifically disabled.

Interaction: The ACTIONS= option replaces the specified action or actions but does
not affect any other actions that are in effect.

AGGREGATION=aggregate-function
specifies how a measure data item is aggregated when it is used in a query. See
Table 2.1 on page 18 for a list of functions and what types of data they are available
to. For more information about the aggregate functions (except for
InternalAggregation and InternalAggregationAdditive), see “Summarizing

The INFOMAPS Procedure � UPDATE DATAITEM Statement 45

Data: Using Aggregate Functions” in the “Retrieving Data from a Single Table”
chapter in the SAS 9.2 SQL Procedure User’s Guide.

The special value InternalAggregation specifies that the values of the measure
data item are aggregated by a non-additive expression. A non-additive expression is
one for which the arithmetic summation of the aggregated values of the measure
data item is not equal to the arithmetic summation of all of the detail values of that
data item. For example, SUM(COL1)/COUNT(COL1) is a non-additive expression. If
you specify that a data item has a non-additive expression, then the total for that
data item is calculated by applying the specified expression to the detail values of the
data item.

The special value InternalAggregationAdditive specifies that values of the
measure data item are aggregated by an additive expression. An additive expression
is one for which the arithmetic summation of the aggregated values of the measure
data item is equal to the arithmetic summation of all of the detail values of that data
item. For example, SUM(COL1*COL2) is an additive expression.
Interaction: If you use the AGGREGATION= option in the same UPDATE

statement as the AGGREGATIONS_LIST= option, then the INFOMAPS procedure
sets the AGGREGATIONS_LIST= option first.

AGGREGATIONS_LIST=_ALL_ | ADD (aggregate-function-list) | REPLACE
(aggregate-function-list) | REMOVE (aggregate-function-list)

modifies the list of aggregation functions that are available to the data item.
Interaction: If you use the AGGREGATION= option in the same UPDATE

statement as the AGGREGATIONS_LIST= option, then the INFOMAPS procedure
sets the AGGREGATIONS_LIST= option first.
The following actions can be specified:

ALL
places all the aggregate functions that are valid for the data item in the
aggregation list.

ADD (aggregate-function-list)
adds the specified aggregate functions to the aggregation list. See Table 2.1 on
page 18 for information about aggregate functions.

REPLACE (aggregate-function-list)
replaces the current aggregation list with the specified aggregate functions.

REMOVE (aggregate-function-list)
removes the specified aggregate functions from the aggregation list.

Requirement: Separate aggregate function names in aggregate-function-list values
with a blank space. For example:

AGGREGATIONS_LIST=REPLACE(Freq FreqDistinct CSSDistinct)

Interaction: You can specify two AGGREGATIONS_LIST= options in the same
UPDATE DATAITEM statement if one specifies _ALL and the other specifies
REMOVE or if one specifies ADD and the other specifies REMOVE. If you specify
both the _ALL_ and REMOVE operations, then the _ALL_ operation occurs first.
If you specify both the ADD and REMOVE operations, then the REMOVE
operation occurs first.

CLASSIFICATION=CATEGORY | MEASURE
specifies the usage type of the data item to be updated.

46 UPDATE DATAITEM Statement � Chapter 2

CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) | REPLACE
(custom-properties-list) | REMOVE (property-names-list)

specifies how custom properties for the data item are updated. Custom properties are
supported by specific SAS applications such as SAS Marketing Automation. Valid
operations are the following:

NONE
removes all custom properties from the data item, if there are any.

ADD (custom-properties-list)
adds the specified custom properties to the data item.

The form of the custom-properties-list is

("property-name-1" "property-value-1" <"description-1">)
...

("property-name-n" "property-value-n" <"description-n">)

where

property-name
specifies the name of the property.

Requirement: Property names must be unique. If a property name already
exists in the data item, then the UPDATE DATAITEM statement will fail.
Therefore, it is recommended that you add a prefix or suffix to the property
name to ensure uniqueness.

Restriction: Property names cannot begin with an underscore (_) character.

property-value
specifies the value of the property.

description
specifies the description of the property. The description is optional.

REPLACE (custom-properties-list)
replaces the current custom properties for the data item with the specified
properties.

See the ADD operation for a description of the form of the custom-properties-list.

REMOVE (property-names-list)
removes the specified custom properties from the data item.

The form of the property-names-list is

"property-name-1" <... "property-name-n">

Interaction: If you specify both the ADD and REMOVE operations, then the
REMOVE operation occurs first.

DESCRIPTION=“descriptive-text”
specifies the description of the data item, which can be viewed by the information
map consumer.

EXPRESSION=“expression-text”
specifies the combination of data elements, literals, functions, and mathematical
operators that are used to derive the value of a data item when the information map
is used in a query.

Note: If you are using the Information Maps engine to access an information map
that contains character type data items that are created with the EXPRESSION=
option, you should be aware of the EXPCOLUMNLEN= option of the LIBNAME
statement. By default, the Information Maps engine sets the data length for columns
of these data items to 32 characters. You can use the EXPCOLUMNLEN= option to

The INFOMAPS Procedure � UPDATE DATAITEM Statement 47

change the default length. For more information about the EXPCOLUMNLEN=
option, see “Other LIBNAME Statement Options for the Information Maps Engine”
on page 71 and “EXPCOLUMNLEN= Data Set Option” on page 76. �
Interaction: Changing the expression of an existing data item might cause changes

in other property settings within the same data item.

FORMAT=“format-name”
specifies the SAS format of the data item.

ID=“new-data-item-ID”
specifies the new ID for the data item.

NAME=“data-item-name”
specifies the name assigned to the data item in the information map. A name is
optional, descriptive text that makes it easier for business users to understand what
the data is about. A data item’s name is for display purposes only—you use a data
item’s ID to refer to it in code rather than its name.

TYPE=NUMERIC | CHARACTER | DATE | TIME | TIMESTAMP
specifies the data type of the data item’s expression.
Interaction: Changing the type of an existing data item might cause changes in

other property settings within the same data item.

VALUE_GENERATION=NONE | DYNAMIC | ADD (custom-values-list) | REPLACE
(custom-values-list) | REMOVE (unformatted-values-list)

specifies what method an application (for example, SAS Web Report Studio) that uses
the information-map is to use in generating a list of data item values for this data
item to present to a user when the user is constructing a filter or responding to a
prompt. Here are the value-generation methods that can be specified:

NONE
specifies that the list of values should not be generated. The application will
require its user to manually type data item values.

DYNAMIC
specifies that the list that contains all of the data item’s values be dynamically
generated. The list is generated by querying the data source to retrieve the data
item’s values.

ADD (custom-values-list)
adds the specified custom values to the data item.

The form of the custom-values-list is

("unformatted-value-1" <"formatted-value-1" >)
...

("unformatted-value-n" <"formatted-value-n" >)

where

unformatted-value
specifies the unformatted value for a report.

formatted-value
specifies the formatted value for a report.

Note: The formatted value is optional. It is used for display purposes only.
For example, SAS Web Report Studio displays these values to the user of a filter
and prompt definition dialog boxes so that the user can see what the values will
look like after they are formatted for a report. �

REPLACE (custom-values-list)
replaces the current custom values for the data item.

See the ADD operation for a description of the form of the custom-values-list.

48 UPDATE DATASOURCE Statement � Chapter 2

REMOVE (unformatted-values-list)
removes the specified unformatted values and their associated formatted values
from the custom values list for the data item.

The form of the unformatted-values-list is

"unformatted-value-1" <... "unformatted-value-n">

Interaction: If you specify both the ADD and REMOVE operations, then the
REMOVE operation occurs first.

Example

update dataitem "custId"
classification=category
actions=(rank sort)
value_generation=add(

("NC" "North Carolina")
("VA" "Virgina")
("MD" "Maryland")

)
value_generation=remove("CA" "OR" "WA");

UPDATE DATASOURCE Statement

Updates the properties of a data source in the current information map.

UPDATE DATASOURCE “data-source-ID”
<NAME=“data-source-name”>
<DESCRIPTION=“descriptive-text”>
<ID=“new-data-source-ID”>;

Required Argument

“data-source-ID”
specifies the ID of the data source to update.

Options

NAME=“data-source-name”
specifies a new name for the data source. When you change the name, you create a
logical representation of the physical data source. You are not duplicating any
physical data.

DESCRIPTION=“descriptive-text”
specifies the description of the data source.

ID=“new-data-source-ID”
specifies the new ID for the data source.

The INFOMAPS Procedure � UPDATE FILTER Statement 49

Example
update datasource "Customer"

name="Customer_US"
description="Customers from the US";

UPDATE FILTER Statement

Updates the properties of a specified filter in the current information map.

UPDATE FILTER “filter-ID”
<CONDITION=“conditional-expression”>
<CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) |
REPLACE (custom-properties-list) | REMOVE (property-names-list)>

<DESCRIPTION=“descriptive-text”>
<ID=“new-filter-ID”>
<NAME=“filter-name”>;

Required Argument

“filter-ID”
specifies the ID of the filter to update.

Options

CONDITION=“conditional-expression”
specifies a conditional expression that is used to filter the data.

CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) | REPLACE
(custom-properties-list) | REMOVE (property-names-list)

specifies how custom properties for the filter are updated. Custom properties are
supported by specific SAS applications such as SAS Marketing Automation. Valid
operations are the following:

NONE
removes all custom properties from the filter, if there are any.

ADD (custom-properties-list)
adds the specified custom properties to the filter.

The form of the custom-properties-list is

("property-name-1" "property-value-1" <"description-1">)
...
("property-name-n" "property-value-n" <"description-n">)

where

property-name
specifies the name of the property.

Requirement: Property names must be unique. If a property name already
exists in the filter, then the UPDATE FILTER statement will fail. Therefore,

50 UPDATE FOLDER Statement � Chapter 2

it is recommended that you add a prefix or suffix to the property name to
ensure uniqueness.

Restriction: Property names cannot begin with an underscore (_) character.

property-value
specifies the value of the property.

description
specifies the description of the property. The description is optional.

REPLACE (custom-properties-list)
replaces the current custom properties for the filter with the specified custom
propertied.

See the ADD operation for a description of the form of the custom-properties-list.

REMOVE (property-names-list)
removes the specified custom properties from the filter.

The form of the property-names-list is

"property-name-1" <... "property-name-n">

Interaction: If you specify both the ADD and REMOVE operations, then the
REMOVE operation occurs first.

DESCRIPTION=“descriptive-text”
specifies the description of the filter.

ID=“new-filter-ID”
specifies the new ID for the filter.

NAME=“filter-name”
specifies the name assigned to the filter in the information map.

Examples
update filter "ageFilter"

condition="<<Class.Age>> = 10"
description="Ten years old only"
name="Age Filter";

UPDATE FOLDER Statement

Updates the properties of a folder in the current information map.

UPDATE FOLDER “folder-name”
<CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) |
REPLACE (custom-properties-list) | REMOVE (property-names-list)>

<DESCRIPTION=“descriptive-text”>
<LOCATION=“current-parent-folder-name” | “current-parent-folder-location”>
<NAME=“new-folder-name”>;

The INFOMAPS Procedure � UPDATE FOLDER Statement 51

Required Argument

“folder-name”
specifies the name of the map folder to be updated.

Options

CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) | REPLACE
(custom-properties-list) | REMOVE (property-names-list)

specifies how custom properties for the folder are updated. Custom properties are
supported by specific SAS applications such as SAS Marketing Automation. Valid
operations are the following:

NONE
removes all custom properties from the folder, if there are any.

ADD (custom-properties-list)
adds the specified custom properties to the folder.

The form of the custom-properties-list is

("property-name-1" "property-value-1" <"description-1">)
...

("property-name-n" "property-value-n" <"description-n">)

where

property-name
specifies the name of the property.
Requirement: Property names must be unique. If a property name already

exists in the folder, then the UPDATE FOLDER statement will fail.
Therefore, it is recommended that you add a prefix or suffix to the property
name to ensure uniqueness.

Restriction: Property names cannot begin with an underscore (_) character.

property-value
specifies the value of the property.

description
specifies the description of the property. The description is optional.

REPLACE (custom-properties-list)
replaces the current custom properties for the folder with the specified properties.

See the ADD operation for a description of the form of the custom-properties-list.

REMOVE (property-names-list)
Removes the specified custom properties from the folder.

The form of the property-names-list is

"property-name-1" <... "property-name-n">

Interaction: If you specify both the ADD and REMOVE operations, then the
REMOVE operation occurs first.

DESCRIPTION=“descriptive-text”
specifies the description of the folder.

LOCATION=“current-parent-folder-name” | “current-parent-folder-location”
specifies the current parent folder of the folder that you are updating.

52 UPDATE INFOMAP Statement � Chapter 2

� If the folder is in the root directory of the information map, then you can specify
the folder by name without an initial slash. For example,
LOCATION="CUSTOMERS".

� If the parent folder is not in the root directory, then you must qualify it with a
location that starts with a slash. For example, LOCATION="/CUSTOMERS/
Europe".

Restriction: The root folder cannot be updated.

NAME=“new-folder-name”
specifies the new name of the folder.

Example
update folder "subsubMeasures" location="/measures/subMeasures"

UPDATE INFOMAP Statement

Updates an existing information map.

UPDATE INFOMAP “information-map-name”
<CREATE_TARGET_FOLDER=YES | NO>
<CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) |
REPLACE (custom-properties-list) | REMOVE (property-names-list)>

<DESCRIPTION=“descriptive-text”>
<INIT_CAP=YES | NO>
<MAPPATH=“location”>
<REPLACE_UNDERSCORES=YES | NO>
<USE_LABELS=YES | NO>
<VERIFY=YES | NO>;

Required Argument

“information-map-name”
specifies the name of the information map to update.

Restriction: If the specified information map does not exist, an error will occur.

Options

CREATE_TARGET_FOLDER=YES | NO
specifies whether to automatically create a folder when inserting all items from a
data source. Specifying YES automatically creates a folder when you subsequently
insert all data items using an INSERT DATASOURCE statement that specifies the
ALL option. The name of the folder is the name of the table specified in the
INSERT DATASOURCE statement. The data items that are inserted as a result of
the INSERT DATASOURCE statement are inserted into the folder that is created
automatically.

Default: YES

The INFOMAPS Procedure � UPDATE INFOMAP Statement 53

CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) | REPLACE
(custom-properties-list) | REMOVE (property-names-list)

specifies how custom properties for the information map are updated. Valid
operations are the following:

NONE
removes all the existing custom properties from the information map, if there are
any.

ADD (custom-properties-list)
adds the specified custom properties to the information map.

The form of the custom-properties-list is

("property-name-1" "property-value-1" <"description-1">)
...

("property-name-n" "property-value-n" <"description-n">)

where

property-name
specifies the name of the property.
Requirement: Property names must be unique. If a property name already

exists in the information map, then the UPDATE INFOMAP statement will
fail. Therefore, it is recommended that you add a prefix or suffix to the
property name to ensure uniqueness.

Restriction: Property names cannot begin with an underscore (_) character.

property-value
specifies the value of the property.

description
specifies the description of the property. The description is optional.

REPLACE (custom-properties-list)
replaces the custom properties for the information map with the specified custom
properties.

See the ADD operation for a description of the form of the custom-properties-list.

REMOVE (properties-names-list)
removes the specified custom properties from the information map.

The form of the properties-names-list is

"property-name-1" <... "property-name-n">

Interaction: If you specify both the ADD and REMOVE operations, then the
REMOVE operation occurs first.

DESCRIPTION=“descriptive-text”
specifies the description of the information map, which can be viewed by the
information map consumer.
Alias: DESC=

INIT_CAP=YES | NO
specifies whether to capitalize the first letter of each word in the data item name.
Specifying YES capitalizes the first letter of each word in the names of data items
that you insert subsequently using one or more of the following statements:

� INSERT DATASOURCE with either the _ALL_ or the COLUMNS= option
specified

� INSERT DATAITEM with the COLUMN= option specified

Default: YES

54 UPDATE INFOMAP Statement � Chapter 2

Tip: When you specify INIT_CAP=YES, the option replaces multiple consecutive
blank spaces within a data item name with a single blank space, and it removes
trailing blank spaces.

MAPPATH=“location”
specifies the location within the SAS folders tree for the information map to open or
update. The location is required unless a location has been specified in the PROC
INFOMAPS statement.
Alias: LOCATION=
Interaction: The location from the UPDATE INFOMAP statement overrides the

location from the PROC INFOMAPS statement.

REPLACE_UNDERSCORES=YES | NO
specifies whether to replace each underscore (_) character in the data item name
with a blank space. Specifying YES replaces underscores in the names of data items
that you insert subsequently using one or more of the following statements:

� INSERT DATASOURCE with either the _ALL_ or the COLUMNS= option
specified

� INSERT DATAITEM with the COLUMN= option specified

Default: YES

USE_LABELS=YES | NO
specifies whether to create the data item name using the column label (if available)
instead of the column name. Specifying YES uses the column label instead of the
column name for data items that you insert subsequently using one or more of the
following statements:

� INSERT DATASOURCE with either the _ALL_ or the COLUMNS= option
specified

� INSERT DATAITEM with the COLUMN= option specified

Default: YES
Restriction: This option applies only to a relational data source.

VERIFY=YES|NO
specifies whether the INFOMAPS procedure verifies the validity of data items,
filters, and relationships during the update operation. Setting the VERIFY option to
NO improves performance, but doing so introduces the risk that invalid data items,
filters, or relationships could get saved into an information map.
Default: YES

Details
When you use the UPDATE INFOMAP statement to open an existing information

map, the INFOMAPS procedure creates a working copy of the information map in
memory. You must submit a SAVE statement to save the working copy before you
terminate the INFOMAPS procedure or open a different information map by submitting
an IMPORT, NEW INFOMAP, or UPDATE INFOMAP statement. If you do not submit
a SAVE statement, then any changes that you have made to the working copy of the
information map are lost.

Example
update infomap "my testmap"

mappath="/Users/myUserID/My Folder"

The INFOMAPS Procedure � UPDATE RELATIONSHIP Statement 55

verify=no
description="Map for Domestic Customers";

UPDATE RELATIONSHIP Statement

Updates the properties of a specified join relationship in the current information map.

UPDATE RELATIONSHIP “relationship-ID”
<CARDINALITY=ONE_TO_ONE | ONE_TO_MANY | MANY_TO_ONE |
MANY_TO_MANY | UNKNOWN>
<CONDITION=“conditional-expression”>
<CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) |
REPLACE (custom-properties-list) | REMOVE (property-names-list)>

<DESCRIPTION=“descriptive-text”>
<ID=“new-relationship-ID”>
<JOIN=INNER | LEFT | RIGHT | FULL>;

Required Argument

“relationship-ID”
specifies the ID of the relationship to update.

Options

CARDINALITY=ONE_TO_ONE | ONE_TO_MANY | MANY_TO_ONE |
MANY_TO_MANY | UNKNOWN

specifies the cardinality of the relationship.

CONDITION=“conditional-expression”
specifies the columns to be joined to create a single relationship between two tables.
Requirement: The columns referenced in the conditional expression must be

qualified with the associated data source ID and must be enclosed in double angle
brackets <<...>>.

CUSTOM_PROPERTIES=NONE | ADD (custom-properties-list) | REPLACE
(custom-properties-list) | REMOVE (property-names-list)

specifies how custom properties for the relationship are updated. Custom properties
are supported by specific SAS applications such as SAS Marketing Automation. Valid
operations are the following:

NONE
removes all custom properties from the relationship, if there are any.

ADD (custom-properties-list)
adds to a custom list of values for the relationship.

The form of the custom-properties-list is

("property-name-1" "property-value-1" <"description-1">)
...
("property-name-n" "property-value-n" <"description-n">)

where

56 UPDATE RELATIONSHIP Statement � Chapter 2

property-name
specifies the name of the property.
Requirement: Property names must be unique. If a property name already

exists in the relationship, then the INSERT RELATIONSHIP statement will
fail. Therefore, it is recommended that you add a prefix or suffix to the
property name to ensure uniqueness.

Restriction: Property names cannot begin with an underscore (_) character.

property-value
specifies the value of the property.

description
specifies the description of the property. The description is optional.

REPLACE (custom-properties-list)
replaces a custom list of values for the relationship.

See the ADD operation for a description of the form of the custom-properties-list.

REMOVE (property-names-list)
removes names from a custom properties list.

The form of the property-names-list is

"property-name-1" <... "property-name-n">

Interaction: If you specify both the ADD and REMOVE operations, then the
REMOVE operation occurs first.

DESCRIPTION=“descriptive-text”
specifies the description of the relationship, which can be viewed by the information
map consumer.
Alias: DESC

ID=“new-relationship-ID”
specifies the new ID for the relationship.

JOIN=INNER | LEFT | RIGHT | FULL
specifies the type of join.

INNER
returns all the rows in one table that have one or more matching rows in the other
table

LEFT
returns all the rows in the specified left table, plus the rows in the specified right
table that match rows in the left table

RIGHT
returns all the rows in the specified right table, plus the rows in the specified left
table that match rows in the right table

FULL
returns all the rows in both tables

Example
update relationship "join_customer_to_transaction"

condition="(<<CUSTOMER.Cust_ID>>=<<TRANSACTION.Cust_ID>>)"
join=inner;

update relationship "CustTransaction"
cardinality=one_to_one
join=left;

The INFOMAPS Procedure � Example 1: Creating a Basic Information Map 57

update relationship "join"
join=inner cardinality= one_to_many
condition= "(<<CUSTOMER.Cust_ID>>=<<TRANSACTION.Cust_ID>>)

and (<<CUSTOMER.Cust_ID>> > 142673939)";

Examples: INFOMAPS Procedure

Example 1: Creating a Basic Information Map

The following example shows you how to use the INFOMAPS procedure to create an
information map.

proc infomaps metauser="pubhdc1\sasdemo"
metapass="Pwd123"
metaserver="pubhdc1.na.sas.com"
metaport=8561;

/* Open a new information map. The specified location is */
/* where, by default, the information map is saved when a */
/* SAVE statement issued. The information map exists only */
/* in memory until a SAVE statement is issued. */
new infomap "xmp_simple"

mappath="/Users/sasdemo/My Folder"
auto_replace=yes;

/* Make the specified table on the specified server accessible. */
insert datasource sasserver="SASApp"

table="Sample Data"."CLASS" _all_ ;

/* Save the information map that is currently open. Because */
/* no location is specified in the SAVE statement, it is saved */
/* in the location specified in the NEW INFOMAP statement. */
save;
run;

The following window shows the resulting information map opened in SAS
Information Map Studio. Note that the folder CLASS was created automatically
because the INSERT DATASOURCE statement includes the _ALL_ option.

58 Example 2: Creating an Information Map with Relationships and Filters � Chapter 2

Example 2: Creating an Information Map with Relationships and Filters
The following example shows:
� how to create a relationship to link two data sources
� how to explicitly create folders with the INSERT FOLDER statement, and how to

insert data items into the folders with the INSERT DATAITEM statement
� how to create a filter that can be used in queries to subset a data item

proc infomaps metauser="pubhdc1\sasdemo"
metapass="Pwd123"
metaserver="pubhdc1.na.sas.com"
metaport=8561;

/* Open a new information map. The specified location is */
/* where, by default, the information map is saved when a */
/* SAVE statement issued. The information map exists only */
/* in memory until a SAVE statement is issued. */
new infomap "Employee Info"

mappath="/Users/sasdemo/My Folder"
auto_replace=yes;

/* Make the Employee Information table accessible. */
insert datasource sasserver="SASApp"

table="HR"."EMPINFO"
id="EmployeeInfo";

/* Make the Salary Information table accessible. */
insert datasource sasserver="SASApp"

table="HR"."SALARY"
id="SalaryInfo";

/* Create a relationship to link the data sources. */
insert relationship

id="join_empinfo_to_salary"

The INFOMAPS Procedure � Example 2: Creating an Information Map with Relationships and Filters 59

left_table="EmployeeInfo"
right_table="SalaryInfo"
cardinality=one_to_one
condition="<<EmployeeInfo.IDNUM>>=<<SalaryInfo.IDNUM>>";

/* Create folders for data items. */
insert folder "Employee Information";
insert folder "Salary Statistics";

/* Create data items. */
insert dataitem

column="EmployeeInfo"."NAME"
folder="Employee Information";

insert dataitem
column="EmployeeInfo"."IDNUM"
folder="Employee Information"
classification=category;

insert dataitem
column="EmployeeInfo"."JOBCODE"
folder="Employee Information"
name="Job Code";

insert dataitem
column="EmployeeInfo"."DEPTCODE"
folder="Employee Information"
name="Department";

insert dataitem
column="EmployeeInfo"."LOCATION"
folder="Employee Information";

insert dataitem
column="SalaryInfo"."SALARY"
folder="Salary Statistics"
name="Average Salary"
aggregations_keep_list=("AVG")
format="dollar12.2";

insert dataitem
column="SalaryInfo"."SALARY"
folder="Salary Statistics"
name="Minimum Salary"
aggregations_keep_list=("MIN")
format="dollar12.2";

insert dataitem
column="SalaryInfo"."SALARY"
folder="Salary Statistics"
name="Maximmum Salary"
aggregations_keep_list=("MAX")
format="dollar12.2";

60 Example 3: Aggregating a Data Item � Chapter 2

/* Create a filter for the Location data item. */
insert filter

name="Cary Employees"
description="Employees who work in Cary, NC"
condition="<<EmployeeInfo.LOCATION>>=’Cary’";

/* Save the information map that is currently open. Because */
/* no location is specified in the SAVE statement, it is saved */
/* in the location specified in the NEW INFOMAP statement. */
save;
run;

The following window shows the resulting information map opened in SAS
Information Map Studio.

Example 3: Aggregating a Data Item
The following example shows the aggregation of data item values using the

AGGREGATION= option in the INSERT DATAITEM statement.

proc infomaps metauser="myUserID"
metapass="myPassword"
metaserver="myip.us.mycompany.com"
metaport=8561;

new infomap "expression9"
mappath="/Users/myUserID/My Folder";

The INFOMAPS Procedure � Example 3: Aggregating a Data Item 61

/* Make the table "Orion Star"."CUSTOMER_DIM" */
/* accessible to the information map. */
insert datasource sasserver="SASMain"

table="Orion Star"."CUSTOMER_DIM";

/* Specify the aggregation function using the AGGREGATION= option. */
insert dataitem

column="CUSTOMER_DIM".Customer_Age
classification=measure
aggregation=avg;

save;
run;

The following window shows the results of running a query in SAS Information Map
Studio using the information map that was created with the INFOMAPS procedure.
You can see that the query generated from the information map calculates an average,
which is displayed in the Results window.

62

63

C H A P T E R

3
Using the SAS Information Maps
LIBNAME Engine

What Does the Information Maps Engine Do? 63
Understanding How the Information Maps Engine Works 63

Advantages of Using the Information Maps Engine 67

What Is Required to Use the Information Maps Engine? 67

What Is Supported? 67

What Does the Information Maps Engine Do?

An information map is a collection of data items and filters that describes and
provides a view of data that business users understand. The SAS Information Maps
LIBNAME engine enables you to retrieve data that is described by an information map.
The engine provides a read-only way to access data generated from an information map
and to bring it into a SAS session. Once you retrieve the data, you can run almost any
SAS procedure against it.

Note that the Information Maps engine can only read information maps. It cannot
write to or update them, nor can it modify the underlying data. If you want to update
an existing information map, you can use the INFOMAPS procedure. For more
information, see Chapter 2, “The INFOMAPS Procedure,” on page 5. If you have SAS
Information Map Studio software, you can use that client application to interactively
create or update information maps.

Understanding How the Information Maps Engine Works

An engine is a component of SAS software that reads from or writes to a file. Each
engine enables SAS to access files that are in a particular format. There are several
types of SAS engines.

The Information Maps engine works like other SAS data access engines. That is, you
execute a LIBNAME statement to assign a libref and to specify an engine. You then use
that libref throughout the SAS session where a libref is valid.

However, instead of the libref being associated with the physical location of a SAS
library, the libref is associated with a set of information maps. The information maps
contain metadata that the engine uses to provide data access to users.

The following example shows a LIBNAME statement for the Information Maps
engine and the output you see when you execute the statement:

libname mymaps infomaps metauser=myUserID
metapass=myPassword
metaserver="myserver.mycompany.com"

64 Understanding How the Information Maps Engine Works � Chapter 3

metaport=8561
mappath="/Users/myUserID/My Folder";

Output 3.1 Output from the LIBNAME Statement

1 libname mymaps infomaps metauser=myUserID
2 metapass=XXXXXXXXXX
3 metaserver="myserver.mycompany.com"
4 metaport=8561
5 mappath="/Users/myUserID/My Folder";

NOTE: Libref MYMAPS was successfully assigned as follows:
Engine: INFOMAPS
Physical Name: /Users/myUserID/My Folder

The DATASETS procedure can be used to display a list of available information maps.

Note: The list of available information maps will include only those that are
supported by the engine. For example, there might be OLAP-based information maps
available in the MAPPATH location. However, these information maps are not
supported by the Information Maps engine, so they will not be displayed by the
DATASETS procedure. �

The CONTENTS procedure can be used to view the data items and filters in an
information map. The PRINT procedure can be used to print all of the data that the
information map contains. If the map contains filters, they can be used to restrict the
returned data. Here is an example:

/* Use the Information Maps engine to retrieve the data. */
libname mymaps infomaps metauser=myUserID

metapass=myPassword
metaserver="myserver.mycompany.com"
metaport=8561
mappath="/Users/myUserID/My Folder";

/* Display a list of available information maps. */
proc datasets lib=mymaps;
run;
quit;

/* Allow mixed-case letters and blank spaces in information map names. */
option validvarname=any;

/* View the data items, including any filters, in the information map. */
proc contents data=mymaps.’Employee Statistics Sample’n;
run;

/* Print 5 observations from the data that the information map references. */
proc print data=mymaps.’Employee Statistics Sample’n (obs=5

filter=(’Cary Employees’n));
run;

Using the SAS Information Maps LIBNAME Engine � Understanding How the Information Maps Engine Works 65

Output 3.2 Log for the Example Program

1 /* Run the Information Maps engine to retrieve the data. */

2 libname mymaps infomaps metauser=myUserID

3 metapass=XXXXXXXXXX

4 metaserver="myserver.mycompany.com"

5 metaport=8561

6 mappath="/Users/myUserID/My Folder";

NOTE: Libref MYMAPS was successfully assigned as follows:

Engine: INFOMAPS

Physical Name: /Users/myUserID/My Folder

7

8 /* Display a list of available information maps. */

9 proc datasets lib=mymaps;

Directory

Libref MYMAPS

Engine INFOMAPS

Physical Name /Users/myUserID/My Folder

Member

Name Type

1 Employee Statistics Sample DATA

10 run;

11 quit;

NOTE: PROCEDURE DATASETS used (Total process time):

real time 0.06 seconds

cpu time 0.00 seconds

12

13 /* Allow mixed-case letters and blank spaces in information map names. */

14 option validvarname=any;

15

16 /* View the data items, including any filters, in the information map. */

17 proc contents data=mymaps.’Employee Statistics Sample’n;

18 run;

NOTE: PROCEDURE CONTENTS used (Total process time):

real time 0.09 seconds

cpu time 0.00 seconds

19

20 /* Print 5 observations from the data that the information map references. */

21 proc print data=mymaps.’Employee Statistics Sample’n (obs=5

22 filter=(’Cary Employees’n));

23 run;

NOTE: There were 5 observations read from the data set MYMAPS.’Employee Statistics Sample’n.

NOTE: PROCEDURE PRINT used (Total process time):

real time 0.23 seconds

cpu time 0.11 seconds

66 Understanding How the Information Maps Engine Works � Chapter 3

Output 3.3 Output from the CONTENTS and PRINT Procedures

The SAS System

The CONTENTS Procedure

Data Set Name MYMAPS.’Employee Statistics Sample’n Observations .

Member Type DATA Variables 11

Engine INFOMAPS Indexes 0

Created . Observation Length 0

Last Modified . Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label Filters 1

Data Representation Default

Encoding Default

Alphabetic List of Variables and Attributes

Variable Type Len Format Label

4 Deptcode Char 3 Physical column EMPINFO.DEPTCODE

10 Hire Date Num 8 DATE9. Hire date

2 Identification Num 8 SSN11. Identification Number

Number

3 Jobcode Char 8 Physical column EMPINFO.JOBCODE

5 Location Char 8 Physical column EMPINFO.LOCATION

1 Name Char 32 $32. NAME

11 Number of Years Num 8 COMMA6. The number of years that the employee

Employed has been employed by the company.

7 Salary2 Num 8 DOLLAR12.2 Salary

8 Salary3 Num 8 DOLLAR12.2 Salary

9 Salary4 Num 8 DOLLAR12.2 Salary

6 Salary_2 Num 8 DOLLAR12.2 Salary

Information Maps

FilterName FilterType FilterDesc

Cary Employees Unp Employees who work in Cary, North Carolina.

The SAS System

Identification

Obs Name Number Jobcode Deptcode Location

1 Bryan, Lynne C. 000-00-0381 VID002 VID Cary

2 Fissel, Ronald T. 000-00-0739 QA0005 QA0 Cary

3 White, Frank P. 000-00-1575 DPD003 FAC Cary

4 Winfree, Ambrose Y. 000-00-1579 CCD001 CCD Cary

5 Blue, Kenneth N. 000-00-1637 MIS004 QA0 Cary

Number of

Years

Obs Salary_2 Salary2 Salary3 Salary4 Hire Date Employed

1 $183,000.00 $183,000.00 $183,000.00 $183,000.00 08APR1984 25

2 $85,000.00 $85,000.00 $85,000.00 $85,000.00 02FEB1985 24

3 $69,000.00 $69,000.00 $69,000.00 $69,000.00 01JUN1984 24

4 $100,000.00 $100,000.00 $100,000.00 $100,000.00 14JUN1989 19

5 $18,000.00 $18,000.00 $18,000.00 $18,000.00 12NOV1991 17

15:51 Monday, November 3, 2008 1

NOTE: WHERE were 277 observations read from the data set SAMPDATA.EMPINFO.LOCATION=’Cary ’;

For information about improving the performance of the Information Maps engine,
see “Hints and Tips for Using the Information Maps Engine” on page 84.

Using the SAS Information Maps LIBNAME Engine � What Is Supported? 67

Advantages of Using the Information Maps Engine
Using the Information Maps engine provides the following advantages:
� The engine is the only way for Base SAS software to access data generated from

an information map.
� The engine provides a single point of access to many information maps.
� The engine enables you to take advantage of information maps, which provide you

with the benefits described in “Why Are SAS Information Maps Important?” on
page 2.

What Is Required to Use the Information Maps Engine?
To use the Information Maps engine, the following are required:
� access to the metadata server that contains the metadata definition for the data

and information maps
� information maps that are defined in a metadata server
� access to the server where the physical data is located

What Is Supported?
The Information Maps engine can only read information maps and their data

sources. If you want to update an information map directly, you can use the
INFOMAPS procedure or SAS Information Map Studio.

The engine supports accessing metadata in a metadata server to process the
information map. Using the engine and SAS code, you can do the following:

� read data that is retrieved via an information map (input processing)
� create a new data set by using an information map (output processing)

Note: The new data set is created in Base SAS software, not on the data
server. �

The Information Maps engine does not support the following:
� The engine does not pass WHERE clauses to the SAS server for processing.

Therefore, all of the data that is retrieved via the information map is passed back
to the SAS client. The SAS client applies the WHERE clause to restrict the data
for the result set.

Performance is degraded whenever a large number of observations have to be
processed by SAS. You can use information map filters to restrict the query and
reduce the number of observations that must be processed. A filter contains
criteria for subsetting data in an information map. For more information about
filters, see “FILTER= Data Set Option” on page 77.

� The engine does not sort data in the result set for BY-group processing. BY-group
processing requires that the result set be sorted; however, the engine has no
control over sorting the data. This means that you will have to manually sort the
data in the result set that is supplied by the engine before you use it with a
BY-group statement.

For example:

libname mylib infomaps ... ;

68 What Is Supported? � Chapter 3

proc sort data=mylib.results_set out=work.sorted;
by sorted_var;

run;

proc print data=work.sorted;
by sorted_var;

run;

The one exception is the SQL procedure. You can use BY-group processing with
the Information Maps engine’s result set because the SQL procedure automatically
sorts the result set before it applies the BY-group statement.

� The engine does not support OLAP data.

� The engine does not support updating or deleting an information map, nor does it
support updating the underlying data.

� The engine does not provide explicit SQL Pass-Through support.

69

C H A P T E R

4
LIBNAME Statement for the
Information Maps Engine

Using the LIBNAME Statement 69
LIBNAME Statement Syntax 69

Required Arguments 69

LIBNAME Statement Options for Connecting to the SAS Metadata Server 70

Other LIBNAME Statement Options for the Information Maps Engine 71

Using the LIBNAME Statement
The LIBNAME statement for the Information Maps engine associates a SAS libref

with information maps that are stored in a metadata server. The engine reads
information maps and uses their metadata to access underlying data.

You must have a metadata server available that contains metadata that defines the
information maps to be accessed. For the necessary server identifiers and metadata
object names and identifiers, see the documentation for your application.

The metadata server, which is a multi-user server that stores metadata from one or
more metadata repositories, must be running in order to execute the LIBNAME
statement for the engine.

For information about defining metadata, installing and setting up a standard SAS
Metadata Server, or changing the standard configuration options for the metadata
server, see the SAS Intelligence Platform: System Administration Guide.

LIBNAME Statement Syntax
LIBNAME libref INFOMAPS MAPPATH=“location” <options>;

Required Arguments
libref

is a SAS name that refers to the metadata server library to be accessed. A libref
cannot exceed eight characters. For additional rules for SAS names, refer to SAS
Language Reference: Dictionary.

INFOMAPS
is the engine name for the SAS Information Maps LIBNAME engine.

MAPPATH=“location”
specifies the path to the location of the information maps within the metadata
server.

70 LIBNAME Statement Options for Connecting to the SAS Metadata Server � Chapter 4

The path is hierarchical with the slash (/) as the separator character. For
example, mappath="/Users/myUserID/My Folder".

Alias: PATH=

LIBNAME Statement Options for Connecting to the SAS Metadata
Server

The following LIBNAME statement options establish a connection to the metadata
server.

DOMAIN=“authentication-domain”
specifies an authentication domain in the metadata server that is associated with
the user ID and password. If you do not specify an authentication domain, then
the user ID and password are associated with the DefaultAuth authentication
domain. For information about authentication, see “Understanding Authentication
in the SAS Intelligence Platform” in SAS Intelligence Platform: Security
Administration Guide.

Alias: AUTHDOMAIN=

METACREDENTIALS=YES|NO
specifies whether the user ID and password specified in the METAUSER= and
METAPASS= system options are retrieved and used to connect to the metadata
server when the METAUSER= and METAPASS= options for the LIBNAME
statement are omitted.

By default, or when METACREDENTIALS=YES is specified, the system option
values are used if they are available when the LIBNAME statement does not
provide the corresponding options. Specify METACREDENTIALS=NO to prevent
the Information Maps engine from using the system option values.

A typical situation in which you would specify METACREDENTIALS=NO is
when the code containing the LIBNAME statement is being executed on a
workspace server or stored process server. In such cases, the METAUSER= and
METAPASS= system options contain a one-time user ID and password that have
already been used by the server. A new one-time password must be generated in
this situation. Specifying METACREDENTIALS=NO enables a connection to be
established under the identity of the client user using a new one-time password.

Default: YES

METAPASS=“password”
specifies the password that corresponds to the user ID that connects to the
metadata server. For example, metapass="My Password" or
metapass=MyPassword. If the password is not encoded or does not contain a blank
space (or spaces), then enclosing the identifier in quotation marks is optional.

If your metadata server supports single sign-on, you can omit the METAPASS=
and METAUSER= options and connect through a trusted peer connection or
through Integrated Windows Authentication. For more information, see the SAS
Intelligence Platform: Security Administration Guide.

You can use the METAPASS= system option to specify a default password for
connecting to the metadata server for the SAS session. For information about the
METAPASS= system option, see SAS Language Interfaces to Metadata.

Alias: PASSWORD= | PW=

METAPORT=port-number
specifies the TCP port that the metadata server is listening to for connections. For
example, metaport=8561.

LIBNAME Statement for the Information Maps Engine � Other LIBNAME Statement Options for the Information Maps Engine 71

If this option is not specified, the value is obtained from the METAPORT=
system option. For information about the METAPORT= system option, see SAS
Language Interfaces to Metadata.
Alias: PORT=

METASERVER=“address”
specifies the network IP (Internet Protocol) address of the computer that hosts the
metadata server. For example, metaserver="myip.mycompany.com". Enclosing
the identifier in quotation marks is optional.

If this option is not specified, the value is obtained from the METASERVER=
system option. For information about the METASERVER= system option, see SAS
Language Interfaces to Metadata.
Alias: SERVER= | HOST= | IPADDR=

METAUSER=“user-ID”
specifies the user ID to connect to the metadata server. For example,
metauser="My UserID" or metauser=myUserID. If the user ID does not contain a
blank space (or spaces) or a backslash character, enclosing the identifier in
quotation mark is optional.

You can use the METAUSER= system option to specify a default user ID for
connecting to the metadata server for the SAS session. For information about the
METAUSER= system option, see SAS Language Interfaces to Metadata.

If your metadata server supports single sign-on, you can omit the METAUSER=
and METAPASS= options and connect through a trusted peer connection or
through Integrated Windows Authentication. For more information, see the SAS
Intelligence Platform: Security Administration Guide.
Alias: USER= | USERID= | ID=
Restriction: In the metadata server, you must have at least one login definition

that corresponds to the user ID that you specify here. For information about
login definitions, see the User Manager Help for logins in the SAS Management
Console.

Restriction: If your metadata server runs in a Windows environment, then you
must fully qualify the user ID by using the domain or machine name that you
specified when your login object was created in a SAS Metadata Server. For
example, metauser="domain-name\user-ID".

SSPI=YES|NO
specifies whether Integrated Windows Authentication is used. Integrated Windows
Authentication is a mechanism for a Windows client and server to exchange
credentials without the user having to explicitly specify them. For more
information, see “Integrated Windows Authentication” in SAS Intelligence
Platform: Security Administration Guide.
Default: NO

Other LIBNAME Statement Options for the Information Maps Engine
The following LIBNAME statement options for the Information Maps engine are

global options that exist for the lifetime of the libref.

AGGREGATE=YES | NO
specifies whether detailed data or aggregated data is retrieved from the data
source.

YES
specifies that aggregated data is retrieved.

72 Other LIBNAME Statement Options for the Information Maps Engine � Chapter 4

NO
specifies that detailed data is retrieved.

Specify YES in order to see data items that do not support detailed data.
Default: NO

EXPCOLUMNLEN=integer
specifies the length of the SAS character column when a data item defined with an
expression is encountered.

Note: The Information Maps engine also supports a EXPCOLUMNLEN= data
set option that can be used to change this option setting during a DATA step when
the Information Maps engine is used. The changed value is in effect only during
the execution of the DATA step. Once the DATA step is completed, the value will
revert to the setting specified when the libref was created. For more information,
see the “EXPCOLUMNLEN= Data Set Option” on page 76. �
Default: 32

PRESERVE_MAP_NAMES=YES | NO

YES
specifies that information map names are read with special characters. The
exact, case-sensitive spelling of the name is preserved.

Note: To access information maps with special characters or blank spaces,
you have to use SAS name literals. For more information about SAS name
literals, see “Rules for Words and Names in the SAS Language” and
“Avoiding Errors When Using Name Literals” in the SAS Language
Reference: Concepts. �

NO
specifies that information map names are derived from SAS member names
by using SAS member-name normalization. When you use SAS to retrieve a
list of information map names (for example, in the SAS Explorer window),
the information maps whose names do not conform to the SAS member-name
normalization rules do not appear in the output. The DATASETS procedure
reports the number of information maps that cannot be displayed because
their names cannot be normalized, as shown in the following example:

NOTE: Due to the PRESERVE_MAP_NAMES=NO LIBNAME option setting,
12 information map(s) have not been displayed.

This note is not displayed when you view information maps in the SAS
Explorer window.

The SAS Explorer window displays information map names in capitalized
form when PRESERVE_MAP_NAMES=NO. These information map names
follow the SAS member-name normalization rules and might not represent
the actual case of the information map name.

Default: YES

READBUFF=integer
specifies the number of rows to hold in memory for input into SAS. The value must
be positive.

Choosing the optimum value for the READBUFF= option requires a detailed
knowledge of the data that is returned from the information map and of the
environment in which the SAS session runs. Buffering data reads can decrease
network activities and increase performance. However, higher values for
READBUFF= use more memory. In addition, if too many rows are selected at
once, then the rows that are returned to the SAS application might be out of date.

LIBNAME Statement for the Information Maps Engine � Other LIBNAME Statement Options for the Information Maps Engine 73

For example, if someone modifies the rows after they are read, then you do not see
the changes.

A READBUFF= data set option is also available. You can use the data set
option to adjust the buffer size during a DATA step when using the Information
Maps engine. This changed value is in effect only during the execution of the
DATA step. Once the DATA step is completed, the value reverts to the setting
specified when the libref was created. For more information, see the
“READBUFF= Data Set Option” on page 78.
Alias: BUFFSIZE=
Default: 1000

SPOOL=YES | NO

YES
specifies that SAS creates a spool file into which it writes the rows of data
that are read for the first time. For subsequent passes through the data,
rows are read from the spool file, rather than being reread from the original
data source(s). This guarantees that each pass through the data processes
the same information.

NO
specifies that the required rows for all passes through the data are read from
the original data source(s). No spool file is written. There is no guarantee
that each pass through the data processes the same information.

Default: YES

74

75

C H A P T E R

5
SAS Data Set Options for the
Information Maps Engine

Using Data Set Options 75
AGGREGATE= Data Set Option 75

EXPCOLUMNLEN= Data Set Option 76

FILTER= Data Set Option 77

READBUFF= Data Set Option 78

Using Data Set Options

Data set options specify actions that apply only to the SAS data set with which they
appear. Because the Information Maps engine makes the data from information maps
appear as SAS data sets, you can use data set options with information maps that you
access through the engine. You specify data set options in parentheses after the
information map name in SAS programming statements. To specify several data set
options, separate them with spaces. For example:

libref.information-map-name(option-1=value-1 < ... option-n=value-n>)

For more information about SAS data set options, see SAS Language Reference:
Dictionary.

The following data set options for the Information Maps engine exist for the lifetime
of the DATA step and override the LIBNAME option values when the option can be
specified in both places.

AGGREGATE= Data Set Option

Specifies whether detailed data or aggregated data should be retrieved

Valid in: DATA Step

Category: Data Set Control

Default: NO

Syntax

AGGREGATE=YES | NO

76 EXPCOLUMNLEN= Data Set Option � Chapter 5

Details
By default, or when you specify AGGREGATE=NO, aggregate data items in the
information map are not accessible through the Information Maps engine. If an
information map contains such data items, then a warning is displayed in the SAS log
indicating how many data items are not accessible. Specify AGGREGATE=YES to
retrieve aggregated data.

When you specify AGGREGATE=YES and use the CONTENTS procedure to view the
contents of an information map, a column named Default Aggregation appears in the
procedure output showing the default aggregation function that is assigned to the
variable. If the original variable was character type, it is changed to numeric type due
to applying the aggregation function. For example, a default aggregation function of
COUNT on a character variable containing names produces a numeric variable that
contains the number of names. A line in the heading of the CONTENTS procedure
output shows the number of aggregate variables, if any.

EXPCOLUMNLEN= Data Set Option

Specifies the default length of the SAS character column when a data item defined with
expressions is encountered

Valid in: DATA Step

Category: Data Set Control

Restriction: Use with character column only

Default: 32

Syntax
EXPCOLUMNLEN=column-length

column-length
specifies the length of the SAS column when expressions are used. Valid values are
integers from 1 to a maximum SAS column size.

Details
When character data items are defined with expressions in an information map, the
length of the resulting SAS column cannot be readily determined by the Information
Maps engine. Use the EXPCOLUMNLEN= option to assign a value to the length of the
column. This value can be tuned based on an understanding of the results of the
expression and of the data involved.

See Also

EXPCOLUMNLEN= option in “Other LIBNAME Statement Options for the
Information Maps Engine” on page 71

SAS Data Set Options for the Information Maps Engine � FILTER= Data Set Option 77

FILTER= Data Set Option

Uses the filters that are defined in an information map to specify criteria for subsetting a result set

Valid in: DATA Step
Category: Data Set Control
Restriction: Use only with information maps that contain filters
Restriction: Filters that prompt for values at run time are not supported

Syntax
FILTER=(<NOT> filter-1 < ... Boolean-operator <NOT> filter-n>)

Syntax Description

NOT operator
specifies that the inverse of the specified filter criteria is used to subset the data.

For example, if an information map contains a filter named Over_30 that is
defined as age > 30, then specifying the data set option FILTER=(NOT Over_30)
retrieves rows of data in which the AGE data item has a value of 30 or less.

filter
specifies a filter that is applied when data is retrieved from the information map.

You must specify the names for filters that are assigned by SAS for use within the
SAS session. The assigned names can differ from the filter names that are defined in
the information map in that the assigned filter names conform to the rules for SAS
variable names that are specified in the VALIDVARNAME= system option. For more
information about the VALIDVARNAME= system option, see the SAS Language
Reference: Dictionary. You can use the CONTENTS procedure to view the assigned
filter names.
Requirement: If you specify more than a single filter, then parentheses are

required.
Requirement: If you use the NOT operator with single filter, then parentheses are

required.

Boolean-operator
combines the effects of two filters or filter clauses.

AND operator
specifies that data that satisfies the criteria defined in both filters or filter clauses
is returned.

OR operator
specifies that data that specifies the criteria defined in either filter or filter clause
is returned.

For more information about Boolean operators and expressions, see SAS Language
Reference: Concepts.

Details
A filter contains criteria for subsetting data. For example, a filter named Males could
be defined in an information map as gender="Male".

78 READBUFF= Data Set Option � Chapter 5

An information map can contain filters that are not supported by the Information
Maps engine. Only filters that are defined using static values (called unprompted
filters) can be used in a FILTER= data set option. You can use the CONTENTS
procedure to print a list of the filters that are supported by a libref that is created by
the Information Maps engine.

Using the FILTER= data set option is similar to using a WHERE clause in a PROC
SQL statement. However, filter criteria are applied as data is retrieved from the data
source. As a result, a FILTER= option restricts the amount of data that is returned
from the data source. In contrast, a WHERE clause is applied as data from the data
source is brought into SAS. As a result, a WHERE clause does not restrict the amount
of data that is retrieved.

When you specify more than one filter in the FILTER= option, you must use Boolean
operators to define the logical relationships between the filters in the filter clause. The
rules of precedence for Boolean operators in filter clauses follow the rules set for the
SAS WHERE clause. These rules specify that the NOT operator has the highest
precedence, followed by the AND and OR operators. You can use parentheses to specify
explicit precedence or groupings within the clause. For more information about the
rules for the SAS WHERE clause, see “Combining Expressions by Using Logical
Operators” in SAS Language Reference: Concepts.

Example
In the following example, there are three unprompted filters: Repeat Buyer, Midwest
Region, and Southwest Region. The retrieved data is filtered to produce new buyers
from either the Midwest or Southwest regions.

option validvarname=any; /* This option is needed for names with spaces */
libname Orion infomaps ...;
proc print data=Orion.’Star Schema’n

(filter=((NOT(’Repeat Buyer’n)) AND
((’Midwest Region’n) OR
(’Southwest Region’n))));

RUN;

READBUFF= Data Set Option

Specifies the number of rows to hold in memory for input into SAS

Valid in: DATA Step and LIBNAME Statement
Category: Data Set Control
Alias: BUFFSIZE=
Default: 1000

Syntax
READBUFF=integer

SAS Data Set Options for the Information Maps Engine � READBUFF= Data Set Option 79

Syntax Description

integer
specifies the number of rows to hold in memory input into SAS. The value must be
positive.

Details
Choosing the optimum value for the READBUFF= option requires a detailed knowledge
of the data that is returned from the information map and of the environment in which
the SAS session runs. Buffering data reads can decrease network activities and
increase performance. However, higher values for the READBUFF= option use more
memory. In addition, setting a high value for the READBUFF= option could yield stale
data if the data source is updated frequently.

See Also

READBUFF= option in “Other LIBNAME Statement Options for the Information
Maps Engine” on page 71

80

81

C H A P T E R

6
Examples of Using the
Information Maps Engine

Example 1: Submitting a LIBNAME Statement Using the Defaults 81
Example 2: Submitting a LIBNAME Statement Using Connection Options 81

Example 1: Submitting a LIBNAME Statement Using the Defaults
This example shows a LIBNAME statement that uses the defaults for the

Information Maps engine. Because both the METAUSER= and METAPASS= statement
options are omitted, the values specified in the METAUSER= and METAPASS= system
options are used if they have been set. Otherwise, single sign-on is used. Because the
METASERVER= and METAPORT= statement options are omitted, the values specified
in the METASERVER= and METAPORT= system options are used. An error occurs if
the system options have not been previously specified.

libname mylib infomaps
mappath="/Users/myUserID/My Folder";

Output 6.1 Output from the LIBNAME Statement

1 libname mylib infomaps
2 mappath="/Users/myUserID/My Folder";
NOTE: Libref MYLIB was successfully assigned as follows:

Engine: INFOMAPS
Physical Name: /Users/myUserID/My Folder

Example 2: Submitting a LIBNAME Statement Using Connection Options
This example shows you a LIBNAME statement that uses all of the engine’s

LIBNAME statement options in order to connect to the metadata server.

libname mylib infomaps metauser=’myUserID’
metapass=myPassword
metaserver="myserver.mycompany.com"
metaport=8561
mappath="/Users/myUserID/My Folder";

82 Example 2: Submitting a LIBNAME Statement Using Connection Options � Chapter 6

Output 6.2 Output from the LIBNAME Statement

1 libname mylib infomaps metauser=’myUserID’
2 metapass=XXXXXXXXXX
3 metaserver=myserver.mycompany.com
4 metaport=8561
5 mappath="/Users/myUserID/My Folder";
NOTE: Libref MYLIB was successfully assigned as follows:

Engine: INFOMAPS
Physical Name: /Users/myUserID/My Folder

83

C H A P T E R

7 Hints and Tips for Using the
INFOMAPS Procedure or the
Information Maps Engine

Hints and Tips for Using the INFOMAPS Procedure 83
Hints and Tips for Using the Information Maps Engine 84

Improving the Performance of the Information Maps Engine 84

Creating Information Maps That Work Well with the Information Maps Engine 84

Following SAS Naming Restrictions 84

Using Calculated Data Items 85
Working with Natural Language Names in SAS 85

Hints and Tips for Using the INFOMAPS Procedure
To improve the performance of the INFOMAPS procedure, consider the following:
� Use the COLUMN=, HIERARCHY=, or MEASURE= option instead of the

EXPRESSION= option in the INSERT DATAITEM statement, unless you have a
calculated data item. For more information about the INSERT DATAITEM
statement and the COLUMN=, HIERARCHY=, and MEASURE= options, see
“INSERT DATAITEM Statement” on page 14.

� For an information map to use a table, the table must have a unique name in its
SAS library (for a SAS table) or database schema (for a table from a different
DBMS) in the metadata server. If multiple tables in a SAS library or database
schema have the same name, then you must perform one of the following tasks
before you can use any of the tables with an information map:

� From either SAS Data Integration Studio or the Data Library Manager in
SAS Management Console, you can rename a table by changing the value of
the Name field in the General tab in the properties window for the table.

� From SAS Data Integration Studio, delete the duplicate tables.

� To prevent the Java Virtual Machine from running out of memory, break the task
of creating an information map into smaller steps instead of using a single step.
For example, if you are adding a large number of data items, add the first 100 in
one PROC INFOMAPS step. Then add the next 100 in a second PROC
INFOMAPS step. The number of items that can be added varies with the memory
available to the Java Virtual Machine.

84 Hints and Tips for Using the Information Maps Engine � Chapter 7

Hints and Tips for Using the Information Maps Engine

Improving the Performance of the Information Maps Engine
To improve the performance of the Information Maps engine, consider the following:
� Use filters to reduce the amount of data that the engine has to return.
� Use the DROP= or KEEP= data set options to select only the data items that you

need.
� If you use static data (that is, data you know will not change during the time you

are using it), retrieve the data once with the Information Maps engine and then
save the data to a data set that is local to your SAS session. You will save time by
not having to access the static data (which could be on another server) multiple
times.

� If the data is on your local machine or if you have clients on your local machine
that can access the data, then you will get the best performance from the engine.
If the data or the clients are not on your local machine, then the following message
appears in the SAS log indicating that performance will not be optimal:

NOTE: The Information Maps LIBNAME Engine is retrieving data via
a remote connection. Performance is not optimized.

� It is important that your middle-tier components be configured for efficiency and
performance. This includes making sure that your Java Virtual Machine (JVM) is
properly tuned and has the relevant memory settings specified correctly. The
garbage collector for the JVM should be configured appropriately.

For detailed information about improving the performance of your middle-tier
components, see “Best Practices for Configuring Your Middle Tier” in the SAS
Intelligence Platform: Web Application Administration Guide.

Creating Information Maps That Work Well with the Information Maps
Engine

Following SAS Naming Restrictions
Information maps that meet the following restrictions work well with the

Information Maps engine:
� Names have a maximum length of 32 bytes in Base SAS software.

Information map names can be up to 60 bytes long, but you must use names
that are no more that 32 bytes long for information maps that you access using the
Information Maps engine.

If a filter or data item in the information map has a name that is more than 32
bytes long, then the name will be reduced to a unique 32-byte name when it is
used in a SAS program.

� Descriptions have a maximum length of 256 bytes in Base SAS software. If you
create a description in an information map that is more than 256 bytes long, then
the description will be truncated when it is used in SAS programs.

Note: Clients that rely on the Information Maps engine, such as SAS Enterprise
Guide and SAS Add-in for Microsoft Office, are affected by these name and description
length constraints. �

Hints and Tips for Using the INFOMAPS Procedure or the Information Maps Engine � Creating Information 85

For more information about names in the SAS language, see “Rules for Words and
Names in the SAS Language” in SAS Language Reference: Concepts.

Using Calculated Data Items

Calculated data items in information maps used by the Information Maps engine or
by clients that rely on the engine, such as SAS Enterprise Guide and SAS Add-in for
Microsoft Office, should be created using the data in the expression whenever possible.
Data items that are based on expressions that include either business data or
summarization functions cannot be used in detailed queries. Calculated data items
appear only when the AGGREGATE=YES option is used.

Working with Natural Language Names in SAS

Information map names, data item names, and filter names can be stored as natural
language names in the metadata. Natural language names have blank spaces
separating the words in the name or include symbols in the name. To use natural
language names in SAS, you need to do the following:

� Make sure that the PRESERVE_MAP_NAMES option is set to YES (the default) if
you are using information maps with natural language names and want them to
be accessible to the Information Maps engine. For more information about the
PRESERVE_MAP_NAMES option, see “Other LIBNAME Statement Options for
the Information Maps Engine” on page 71.

� Specify the VALIDVARNAME=ANY system option to allow names that contain
any character, including blank spaces or mixed-case letters. This SAS system
option controls the type of SAS variable names that can be created and processed
during a SAS session. For more information about the VALIDVARNAME= system
option, see SAS Language Reference: Dictionary.

� For SAS variable names and filter names, specify natural language names (names
that contain blank spaces or symbols) as SAS name literals. For more information
about SAS name literals, see “Rules for Words and Names in the SAS Language”
and “Avoiding Errors When Using Name Literals” in SAS Language Reference:
Concepts.

The following example uses the Information Maps engine to make an information
map with a natural language name available for use in the PRINT procedure:

libname mymap infomaps ... ;

option validvarname=any;
proc print data=mymap."Results (Yearly)"n (drop="Tax Rate (Yearly)"n);
run;

The VALIDVARNAME=ANY option allows the variable name in the DROP= data set
option to include blank spaces, as well as the parentheses symbols. The SAS name
literal surrounds the information map name in the PRINT procedure statement to allow
the name Tax Rate (Yearly) to remain intact and contain the symbols that are
otherwise not allowed in SAS.

Note: The VALIDVARNAME= option applies only to variable names and filter
names. Results (Yearly) is a valid information map name because the
PRESERVE_MAP_NAMES= option in the LIBNAME statement for the Information
Maps engine defaults to YES. �

86

87

C H A P T E R

8 Example: Using the INFOMAPS
Procedure and the Information
Maps Engine

About This Example 87
Step 1: Create a Library Definition in the SAS Metadata Server 87

Step 2: Set the Metadata System Options and a Macro Variable 88

Step 3: Register Data Using the METALIB Procedure 88

Step 4: Create an Information Map Using the INFOMAPS Procedure 90

Step 5: Retrieve the Data Associated with the Information Map Using the Information Maps Engine 96
Step 6: View the Data Items and Filters Using the CONTENTS Procedure 96

Step 7: Print the Data from the Information Map 98

Step 8: Analyze the Data in SAS and Produce an ODS Report 100

About This Example

The example in this chapter shows you how to use the INFOMAPS procedure to
create a new information map and then use the Information Maps engine to retrieve
the data associated with the new information map. Once you have the data, you can
use other SAS software products to analyze it.

For the example, suppose that the management team in the Human Resources (HR)
department in your company wants to analyze some of the employees’ salary data. The
HR managers are looking for a report with statistical breakdowns that can be updated
on a regular basis. Based on the output of this report, they want to be able to create
additional Web-based reports on the same information.

You are part of the IT team, so you know that the analyses are updated and modified
constantly (to meet the changing demands of the company). You would like to set up
the environment programmatically to support the request from the HR management
team. You decide to build the statistical report on top of an information map, so the
information map can be used later in SAS Web Report Studio.

Step 1: Create a Library Definition in the SAS Metadata Server

Before you can use a data source in an information map, you must define the data
source in the SAS Metadata Server. This example uses sample data sets that are
provided with SAS. The sample data sets are typically located in the
!sasroot\SASFoundation\9.2\core\sample directory (where !sasroot indicates the
directory in which SAS is installed at your location). This example uses the EMPINFO,
JOBCODES, and SALARY data sets in that directory.

Use SAS Management Console to define a library named HR that points to the
directory that contains the sample data sets. For more information about creating

88 Step 2: Set the Metadata System Options and a Macro Variable � Chapter 8

libraries using SAS Management Console, see the online Help for SAS Management
Console.

For information about defining metadata, installing and setting up a standard SAS
Metadata Server, or changing the standard configuration options for the SAS Metadata
Server, see the SAS Intelligence Platform: System Administration Guide.

Step 2: Set the Metadata System Options and a Macro Variable

This example uses metadata system options and a macro variable to set site-specific
data. This is a good programming technique that makes it easy for you to customize
SAS code for your environment.

The following code sets the metadata system options and a macro variable:

/* Set system options for connecting to the metadata server. */
options metauser="myUserID"

metapass="myPassword"
metaserver="myserver.mycompany.com"
metaport=8561;

/* Assign a macro variable to store the path for the folder */
/* that contains information maps (to avoid having to set */
/* the path multiple times). */
%LET infomap_path=/Shared Data;

Output 8.1 Log for Setting the Metadata System Options and the Macro Variable

1 /* Set system options for connecting to the metadata server. */

2 options metauser="myUserID"

3 metapass=XXXXXXXXXX

4 metaserver="myserver.mycompany.com"

5 metaport=8561;

6 /* Assign a macro variable to store the path for the folder */

7 /* that contains information maps (to avoid having to set */

8 /* the path multiple times). */

9 %LET infomap_path=/Shared Data;

For more information about macro variables or the %LET statement, see the SAS
Macro Language: Reference.

Step 3: Register Data Using the METALIB Procedure

To register the tables in a SAS Metadata Server, you need to use the METALIB
procedure. The METALIB procedure synchronizes table definitions in a metadata server
with current information from the physical library data source. For more information
about the METALIB procedure, see the SAS Language Interfaces to Metadata.

The following code registers the tables using the METALIB procedure:

/* Use the library object defined in the SAS Metadata Server */
/* to obtain all accessible table metadata from the data source */
/* to create table metadata in the metadata server. */
proc metalib;

omr (library="Demo_V92_Doc");
select("empinfo" "jobcodes" "salary");

Example: Using the INFOMAPS Procedure and the Information Maps Engine � Register Data 89

/* Create a summary report of the metadata changes. */
report;

run;

Note: If you run the METALIB procedure code more than once, your output will be
different from what is shown. �

Output 8.2 Log for the METALIB Procedure

11 /* Use the library object defined in the SAS Metadata Server */

12 /* to obtain all accessible table metadata from the data source */

13 /* to create table metadata in the metadata server. */

14 proc metalib;

15 omr (library="HR");

16 select("empinfo" "jobcodes" "salary");

17 /* Create a summary report of the metadata changes. */

18 report;

19 run;

NOTE: A total of 3 tables were analyzed for library "HR".

NOTE: Metadata for 0 tables was updated.

NOTE: Metadata for 3 tables was added.

NOTE: Metadata for 0 tables matched the data sources.

NOTE: 0 tables listed in the SELECT or EXCLUDE statement were not found in either the metadata

or the data source.

NOTE: 0 other tables were not processed due to error or UPDATE_RULE.

NOTE: PROCEDURE METALIB used (Total process time):

real time 2.85 seconds

cpu time 0.49 seconds

Output 8.3 Output from the METALIB Procedure

The METALIB Procedure

Summary Report for Library HR

Repository Foundation

Metadata Summary Statistics

Total tables analyzed 3

Tables Updated 0

Tables Added 3

Tables matching data source 0

Tables not found 0

Tables not processed 0

Tables Added

Metadata Name Metadata ID SAS Name

EMPINFO A5U6VCF4.B80003T3 EMPINFO

JOBCODES A5U6VCF4.B80003T4 JOBCODES

SALARY A5U6VCF4.B80003T5 SALARY

90 Step 4: Create an Information Map Using the INFOMAPS Procedure � Chapter 8

Step 4: Create an Information Map Using the INFOMAPS Procedure

Once the tables are registered in the metadata server, you can create a new
information map. The INFOMAPS procedure inserts multiple data sources and data
items, inserts relationships to join the tables, inserts four filters, and then saves the
new information map.

The following code creates the new information map:

/* Create a new information map using the INFOMAPS procedure. */
proc infomaps mappath="&infomap_path";
/* Open a new information map. */
new infomap "Employee Info"

auto_replace=yes;

/* Insert a data source and three data items using the COLUMNS= option. */
insert datasource sasserver="SASMain"

table="HR".empinfo
columns=("JobCode" "LOCATION" "DIVISION")
id="Empinfo";

/* Insert a data item based on a physical column. Because the ID= option */
/* is not specified, a note with its ID value will print in the SAS log. */
insert dataitem column="Empinfo".idnum classification=category;

/* Insert a data item with an expression. */
insert dataitem expression="SUBSTRN(<<root.Jobcode>>, 1, 3)"

type=character
name="Department Code"
id="Dept_code";

/* Insert a second data source, plus a data item into the */
/* current information map. */
insert datasource sasserver="SASMain"

table="HR".jobcodes
columns=("TITLE")
id="Jobcodes";

/* Change the data item to a measure so that you can use it in computations */
/* and analytical expressions. Set the default aggregation to Count. */
update dataitem "Title" aggregation=COUNT classification=MEASURE;

/* Insert a third data source into the current information map. */
insert datasource sasserver="SASMain"

table="HR".salary
id="Salary";

/* Add joins between the tables. */
insert relationship

left_table="Empinfo"
right_table="Jobcodes"
join=inner
condition="(<<Empinfo.JOBCODE>>=<<Jobcodes.JOBCODE>>)";

insert relationship

Example: Using the INFOMAPS Procedure and the Information Maps Engine � Create an Information Map 91

left_table="Empinfo"
right_table="Salary"
join=inner
condition="(<<Empinfo.IDNUM>>=<<Salary.IDNUM>>)";

/* Insert a folder and additional business items. */
insert folder "Salary Info";

insert dataitem column="Salary".salary
name="Annual Salary" folder="Salary Info";

/* Insert a data item that contains an expression */
insert dataitem expression="<<Salary.SALARY>>/12" type=numeric

name="Monthly Salary" folder="Salary Info";

insert dataitem column="Salary".enddate folder="Salary Info";

/* Insert filters. */
insert filter "Status is Current"

condition="<<root.Enddate>> IS NULL" folder="Salary Info";

insert filter "Education and Publications"
condition=’SUBSTRN(<<root.Jobcode>>, 1, 3) IN ("EDU","PUB")’
desc="Employees in Education and Publications";

insert filter "Host Systems Development"
condition=’<<root.Division>>="HOST SYSTEMS DEVELOPMENT" ’
desc="Employees in Host Systems Development";

insert filter "Cary HQ"
condition=’<<root.Location>>="Cary" ’
desc="Located in Cary, North Carolina HQ";

/* List the key properties of business data in the current information map. */
list;

/* Save the information map. */
save;

/* End the INFOMAPS procedure. */
quit;

Note: If you run the INFOMAPS procedure code more than once, your output will
be different from what is shown. �

92 Create an Information Map � Chapter 8

Output 8.4 Log for the INFOMAPS Procedure

11 /* Create a new information map using the INFOMAPS procedure. */

12 proc infomaps mappath="&infomap_path";

13 /* Open a new information map. */

14 new infomap "Employee Info"

15 auto_replace=yes;

16

17 /* Insert a data source and three data items using the COLUMNS= option. */

18 insert datasource sasserver="SASMain"

19 table="HR".empinfo

20 columns=("JobCode" "LOCATION" "DIVISION")

21 id="Empinfo";

22

23 /* Insert a data item based on a physical column. Because the ID= option */

24 /* is not specified, a note with its ID value will print in the SAS log. */

25 insert dataitem column="Empinfo".idnum classification=category;

NOTE: A data item was inserted for the physical column Empinfo.IDNUM. The data item’s ID is

"Identification Number".

26

27 /* Insert a data item with an expression. */

28 insert dataitem expression="SUBSTRN(<<root.Jobcode>>, 1, 3)"

29 type=character

30 name="Department Code"

31 id="Dept_code";

32

33 /* Insert a second data source, plus a data item into the */

34 /* current information map. */

35 insert datasource sasserver="SASMain"

36 table="HR".jobcodes

37 columns=("TITLE")

38 id="Jobcodes";

39

40 /* Change the data item to a measure so that you can use it in computations */

41 /* and analytical expressions. Set the default aggregation to Count. */

42 update dataitem "Title" aggregation=COUNT classification=MEASURE;

43

44 /* Insert a third data source into the current information map. */

45 insert datasource sasserver="SASMain"

46 table="HR".salary

47 id="Salary";

48

49 /* Add joins between the tables. */

50 insert relationship

51 left_table="Empinfo"

52 right_table="Jobcodes"

53 join=inner

54 condition="(<<Empinfo.JOBCODE>>=<<Jobcodes.JOBCODE>>)";

NOTE: A relationship between the tables "Empinfo" and "Jobcodes" has been inserted. The

relationship’s ID is "JOIN_10".

55

56 insert relationship

57 left_table="Empinfo"

58 right_table="Salary"

59 join=inner

60 condition="(<<Empinfo.IDNUM>>=<<Salary.IDNUM>>)";

NOTE: A relationship between the tables "Empinfo" and "Salary" has been inserted. The

relationship’s ID is "JOIN_11".

61

62

63 /* Insert a folder and additional business items. */

64 insert folder "Salary Info";

65

66 insert dataitem column="Salary".salary

67 name="Annual Salary" folder="Salary Info";

68

69 /* Insert a data item that contains an expression */

70 insert dataitem expression="<<Salary.SALARY>>/12" type=numeric

71 name="Monthly Salary" folder="Salary Info";

72

73 insert dataitem column="Salary".enddate folder="Salary Info";

NOTE: A data item was inserted for the physical column Salary.ENDDATE. The data item’s ID is

"Enddate".

74

Example: Using the INFOMAPS Procedure and the Information Maps Engine � Create an Information Map 93

75 /* Insert filters. */

76 insert filter "Status is Current"

77 condition="<<root.Enddate>> IS NULL" folder="Salary Info";

78

79 insert filter "Education and Publications"

80 condition=’SUBSTRN(<<root.Jobcode>>, 1, 3) IN ("EDU","PUB")’

81 desc="Employees in Education and Publications";

82

83 insert filter "Host Systems Development"

84 condition=’<<root.Division>>="HOST SYSTEMS DEVELOPMENT" ’

85 desc="Employees in Host Systems Development";

86

87 insert filter "Cary HQ"

88 condition=’<<root.Location>>="Cary" ’

89 desc="Located in Cary, North Carolina HQ";

90

91 /* List the key properties of business data in the current information map. */

92 list;

Total datasources: 3

Data source: HR.EMPINFO

ID: Empinfo

Name: EMPINFO

Description:

Data source: HR.JOBCODES

ID: Jobcodes

Name: JOBCODES

Description:

Data source: HR.SALARY

ID: Salary

Name: SALARY

Description:

Total data items: 9

Data item name: Annual Salary

ID: Annual Salary

Folder: /Salary Info

Description: Physical column SALARY

Expression: <<Salary.Salary>>

Expression type: NUMERIC

Classification: MEASURE

Format: DOLLAR12.

Default aggregation: Sum

Data item name: Department Code

ID: Dept_code

Folder: /

Description:

Expression: SUBSTRN(<<root.Jobcode>>, 1, 3)

Expression type: CHARACTER

Classification: CATEGORY

Format:

94 Create an Information Map � Chapter 8

Data item name: Division

ID: Division

Folder: /

Description: Physical column DIVISION

Expression: <<Empinfo.DIVISION>>

Expression type: CHARACTER

Classification: CATEGORY

Format:

Data item name: Enddate

ID: Enddate

Folder: /Salary Info

Description: Physical column ENDDATE

Expression: <<Salary.ENDDATE>>

Expression type: DATE

Classification: CATEGORY

Format: DATE9.

Data item name: Identification Number

ID: Identification Number

Folder: /

Description: Physical column IDNUM

Expression: <<Empinfo.Identification Number>>

Expression type: NUMERIC

Classification: CATEGORY

Format: SSN11.

Data item name: Jobcode

ID: Jobcode

Folder: /

Description: Physical column JOBCODE

Expression: <<Empinfo.JOBCODE>>

Expression type: CHARACTER

Classification: CATEGORY

Format:

Data item name: Location

ID: Location

Folder: /

Description: Physical column LOCATION

Expression: <<Empinfo.LOCATION>>

Expression type: CHARACTER

Classification: CATEGORY

Format:

Example: Using the INFOMAPS Procedure and the Information Maps Engine � Create an Information Map 95

Data item name: Monthly Salary

ID: Monthly Salary

Folder: /Salary Info

Description:

Expression: <<Salary.Salary>>/12

Expression type: NUMERIC

Classification: CATEGORY

Format: DOLLAR12.

Data item name: Title

ID: Title

Folder: /

Description: Physical column TITLE

Expression: <<Jobcodes.TITLE>>

Expression type: CHARACTER

Classification: MEASURE

Format: BEST12.

Default aggregation: Count

Total filters: 4

Filter name: Cary HQ

ID: Cary HQ

Folder: /

Description: Located in Cary, North Carolina HQ

Expression: <<root.Location>>="Cary"

Filter name: Education and Publications

ID: Education and Publications

Folder: /

Description: Employees in Education and Publications

Expression: SUBSTRN(<<root.Jobcode>>, 1, 3) IN ("EDU","PUB")

Filter name: Host Systems Development

ID: Host Systems Development

Folder: /

Description: Employees in Host Systems Development

Expression: <<root.Division>>="HOST SYSTEMS DEVELOPMENT"

Filter name: Status is Current

ID: Status is Current

Folder: /Salary Info

Description:

Expression: <<root.Enddate>> IS NULL

Total Relationships: 2

Relationship ID: JOIN_10

Left table: HR.EMPINFO

Right table: HR.JOBCODES

Cardinality: UNKNOWN

Join type: INNER

Join expression: (<<Empinfo.JOBCODE>>=<<Jobcodes.JOBCODE>>)

Relationship ID: JOIN_11

Left table: HR.EMPINFO

Right table: HR.SALARY

Cardinality: UNKNOWN

Join type: INNER

Join expression: (<<Empinfo.Identification Number>>=<<Salary.Identification Number>>)

93

94 /* Save the information map. */

95 save;

NOTE: The information map "Employee Info" has been saved in the folder "/Shared Data".

96

97 /* End the INFOMAPS procedure. */

98 quit;

NOTE: PROCEDURE INFOMAPS used (Total process time):

real time 30.17 seconds

cpu time 0.09 second

96 Step 5: Retrieve the Data Associated with the Information Map Using the Information Maps Engine � Chapter 8

Step 5: Retrieve the Data Associated with the Information Map Using
the Information Maps Engine

Now that you have an information map, you can use the Information Maps engine to
access the metadata and then retrieve the underlying data. Once you retrieve the data,
you can run almost any SAS procedure against it.

The following code retrieves the data associated with the newly created information
map:

/* Use the Information Maps engine to define a libref to retrieve */
/* data from the information maps. */
libname HR_Data infomaps mappath="&infomap_path";
/* Allow mixed-case letters and blank spaces in information map names. */
option validvarname=any;

Note: Unlike running the INFOMAPS procedure code more than once, if you run
the Information Maps engine code multiple times, the output should be the same as
what is shown. �

Output 8.5 Log for the Information Maps Engine LIBNAME Statement

100 /* Use the Information Maps engine to define a libref to retrieve */

101 /* data from the information maps. */

102 libname HR_Data infomaps mappath="&infomap_path";

NOTE: Libref HR_DATA was successfully assigned as follows:

Engine: INFOMAPS

Physical Name: /Shared Data

103 /* Allow mixed-case letters and blank spaces in information map names. */

104 option validvarname=any;

Step 6: View the Data Items and Filters Using the CONTENTS Procedure
You can view the data items and filters in the new information map that you just

created. The following code uses the CONTENTS procedure to display the default set of
information about the data items and filters:

/* View the data items, including any filters, in the information map. */
proc contents data=HR_Data."Employee Info"n;
run;

Output 8.6 Log for the CONTENTS Procedure

106 /* View the data items, including any filters, in the information map. */

107 proc contents data=HR_Data."Employee Info"n;

108 run;

NOTE: PROCEDURE CONTENTS used (Total process time):

real time 6.01 seconds

cpu time 0.18 seconds

Example: Using the INFOMAPS Procedure and the Information Maps Engine � Step 6: View the Data Items and Filters 97

Output 8.7 Output from the CONTENTS Procedure

The CONTENTS Procedure

Data Set Name HR_DATA.’Employee Info’n Observations .

Member Type DATA Variables 9

Engine INFOMAPS Indexes 0

Created . Observation Length 0

Last Modified . Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label Filters 4

Data Representation Default

Encoding Default

Alphabetic List of Variables and Attributes

Variable Type Len Format Label

7 Annual Salary Num 8 DOLLAR12. Physical column SALARY

5 Dept_code Char 32

3 Division Char 40 Physical column DIVISION

9 Enddate Num 8 DATE9. Physical column ENDDATE

4 Identification Number Num 8 SSN11. Physical column IDNUM

1 Jobcode Char 8 Physical column JOBCODE

2 Location Char 8 Physical column LOCATION

8 Monthly Salary Num 8 DOLLAR12.

6 Title Char 20 $F20. Physical column TITLE

Information Maps

FilterName FilterType FilterDesc

Status is Current Unp

Education and Publications Unp Employees in Education and Publications

Host Systems Development Unp Employees in Host Systems Development

Cary HQ Unp Located in Cary, North Carolina HQ

The following code uses the AGGREGATE= data set option in conjunction with the
CONTENTS procedure to display additional information about the aggregations that
are applied to data items that are measures:

/* Turn on aggregation and view the contents of the information map. */
proc contents data=HR_Data."Employee Info"n(aggregate=yes);
run;

Output 8.8 Log for the CONTENTS Procedure

110 /* Turn on aggregation and view the contents of the information map. */

111 proc contents data=HR_Data."Employee Info"n(aggregate=yes);

112 run;

NOTE: PROCEDURE CONTENTS used (Total process time):

real time 4.14 seconds

cpu time 0.06 seconds

98 Step 7: Print the Data from the Information Map � Chapter 8

Output 8.9 Output from the CONTENTS Procedure

The CONTENTS Procedure

Data Set Name HR_DATA.’Employee Info’n Observations .

Member Type DATA Variables 9

Engine INFOMAPS Indexes 0

Created . Observation Length 0

Last Modified . Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label Filters 4

Data Representation Default Aggregate Variables 2

Encoding Default

Alphabetic List of Variables and Attributes

Default

Variable Type Len Format Aggregation Label

7 Annual Salary Num 8 DOLLAR12. SUM Physical column SALARY

5 Dept_code Char 32

3 Division Char 40 Physical column DIVISION

9 Enddate Num 8 DATE9. Physical column ENDDATE

4 Identification Number Num 8 SSN11. Physical column IDNUM

1 Jobcode Char 8 Physical column JOBCODE

2 Location Char 8 Physical column LOCATION

8 Monthly Salary Num 8 DOLLAR12.

6 Title Num 8 BEST12. COUNT Physical column TITLE

Information Maps

FilterName FilterType FilterDesc

Status is Current Unp

Education and Publications Unp Employees in Education and Publications

Host Systems Development Unp Employees in Host Systems Development

Cary HQ Unp Located in Cary, North Carolina HQ

Step 7: Print the Data from the Information Map

You can use the PRINT procedure to print all of the data that the information map
contains. If the information map contains any filters, they can be used to restrict the
amount of returned data. For the purpose of this example, only the first five
observations are selected.

The following code uses the PRINT procedure to display information about the data
items:

/* Print five observations of detailed data from the data that */
/* the information map references. */
proc print data=HR_Data."Employee Info"n (obs=5);
run;

title1 "Total salary for each division except Education and Publications";
title2 "and Host Systems Development";
proc print data=HR_Data."Employee Info"n

(keep="Annual Salary"n Division
aggregate=yes
filter=(NOT("Education and Publications"n

Example: Using the INFOMAPS Procedure and the Information Maps Engine � Print the Data 99

OR "Host Systems Development"n)));
run;

Output 8.10 Log for the PRINT Procedure

114 /* Print five observations of detailed data from the data that */

115 /* the information map references. */

116 proc print data=HR_Data."Employee Info"n (obs=5);

117 run;

NOTE: There were 5 observations read from the data set HR_DATA.’Employee Info’n.

NOTE: PROCEDURE PRINT used (Total process time):

real time 5.57 seconds

cpu time 0.14 seconds

118

119 title1 "Total salary for each division except Education and Publications";

120 title2 "and Host Systems Development";

121 proc print data=HR_Data."Employee Info"n

122 (keep="Annual Salary"n Division

123 aggregate=yes

124 filter=(NOT("Education and Publications"n

125 OR "Host Systems Development"n)));

126 run;

NOTE: There were 14 observations read from the data set HR_DATA.’Employee Info’n.

NOTE: PROCEDURE PRINT used (Total process time):

real time 4.78 seconds

cpu time 0.09 seconds

100 Step 8: Analyze the Data in SAS and Produce an ODS Report � Chapter 8

Output 8.11 Output from the PRINT Procedure

The SAS System

Identification Dept_

Obs Jobcode Location Division Number code

1 FAC011 Cary FACILITIES 333-88-1850 FAC

2 TS0007 Cary TECHNICAL SUPPORT 333-88-7366 TS0

3 SAM009 Cary SALES & MARKETING 301-97-8691 SAM

4 ACT001 Cary FINANCE 333-44-5555 ACT

5 VID001 Cary VIDEO 333-78-0101 VID

Annual Monthly

Obs Title Salary Salary Enddate

1 LANDSCAPING SUPV $28,000 $2,333 .

2 TECH SUP ANALYST II $32,000 $2,667 .

3 MARKETING ANALYST $52,000 $4,333 .

4 TAX ACCOUNTANT I $37,000 $3,083 .

5 VIDEO PRODUCER $25,400 $2,117 .

Total salary for each division except Education and Publications

and Host Systems Development

Annual

Obs Division Salary

1 CALIFORNIA REGIONAL $96,500

2 CONTRACTS $511,000

3 EXECUTIVE $973,000

4 FACILITIES $596,500

5 FINANCE $326,000

6 HUMAN RESOURCES $824,500

7 INFORMATION SYSTEMS $919,500

8 INTERNAL DATA BASE $178,000

9 QUALITY ASSURANCE $898,000

10 SALES & MARKETING $1,254,500

11 SOFTWARE DEVELOPMENT $2,348,000

12 TECHNICAL SUPPORT $688,000

13 TEXAS REGIONAL $918,000

14 VIDEO $238,400

Step 8: Analyze the Data in SAS and Produce an ODS Report
You can use the MEANS procedure to analyze the annual salary data that you have

retrieved from the information map. For the purpose of this example, you will use a
DATA step to apply a filter to view only the data for the employees in the Host Systems
Development Division. You will then use the MEANS procedure to analyze the annual
salary data for the mean, the minimum, and the maximum salaries for each job code in
the division. And, finally, a report will be produced with ODS (Output Delivery System).

The following code analyzes the data and produces an ODS report:

data work.HRinfo;
set HR_Data."Employee Info"n(filter="Host Systems Development"n);
keep jobcode "Annual Salary"n;
run;

/* Produce an ODS report. */
ods html body="example-body.htm";
/* Analyze the annual salary distribution data. */
proc means data=work.HRinfo maxdec=0;

Example: Using the INFOMAPS Procedure and the Information Maps Engine � Step 8: Analyze the Data in SAS 101

var "Annual Salary"n;
class jobcode;
title "Annual Salary by Job Code";

run;
ods html close;

Output 8.12 Log for the DATA Step and the MEANS Procedure

127 data work.HRinfo;

128 set HR_Data."Employee Info"n(filter="Host Systems Development"n);

129 keep jobcode "Annual Salary"n;

130 run;

NOTE: There were 21 observations read from the data set HR_DATA.’Employee Info’n.

NOTE: The data set WORK.HRINFO has 21 observations and 2 variables.

NOTE: DATA statement used (Total process time):

real time 4.73 seconds

cpu time 0.10 seconds

131

132 /* Produce an ODS report. */

133 ods html body="example-body.htm";

NOTE: Writing HTML Body file: example-body.htm

134 /* Analyze the annual salary distribution data. */

135 proc means data=work.HRinfo maxdec=0;

136 var "Annual Salary"n;

137 class jobcode;

138 title "Annual Salary by Job Code";

139 run;

NOTE: There were 21 observations read from the data set WORK.HRINFO.

NOTE: PROCEDURE MEANS used (Total process time):

real time 0.39 seconds

cpu time 0.10 seconds

140 ods html close;

Output 8.13 Output from the MEANS Procedure

The MEANS Procedure

Analysis Variable : Annual Salary Physical column SALARY

Physical

column N

JOBCODE Obs N Mean Std Dev Minimum Maximum

HSD001 1 1 30000 . 30000 30000

HSD002 4 4 39625 11940 27000 55000

HSD003 1 1 29000 . 29000 29000

HSD004 3 3 47667 20108 31000 70000

HSD005 2 2 57500 3536 55000 60000

HSD006 1 1 120000 . 120000 120000

HSD007 4 4 65750 9777 57000 79000

HSD008 5 5 61000 18990 45000 93500

102 Step 8: Analyze the Data in SAS � Chapter 8

The report that is produced by ODS should look similar to the following:

Display 8.1 Report Displayed in the Results Viewer

103

A P P E N D I X

1
SQL DICTIONARY Tables for the
Information Maps Engine

Using SQL DICTIONARY Tables 103
DICTIONARY.INFOMAPS Table 103

DICTIONARY.DATAITEMS Table 104

DICTIONARY.FILTERS Table 105

Using SQL DICTIONARY Tables

An SQL DICTIONARY table is a read-only SAS view that contains information about
a SAS library or SAS data set. The Information Maps engine makes an information
map appear like a SAS data set within a SAS library. For the engine, an information
map contains one or more data items, as well as zero or more filters. The following SQL
DICTIONARY tables are available for use in conjunction with the Information Maps
engine:

DICTIONARY.INFOMAPS
contains metadata about the information maps that are available in the current
SAS session

DICTIONARY.DATAITEMS
contains metadata about the data items that are defined in the available
information maps

DICTIONARY.FILTERS
contains metadata about the filters that are defined in the available information
maps

You can use the SQL procedure in Base SAS to query these tables and retrieve
information about the information maps.

DICTIONARY.INFOMAPS Table

The SQL DICTIONARY.INFOMAPS table contains a row for each information map
that is available through the Information Maps engine. The table contains the following
variables:

LIBNAME
Information Maps engine libref for the information map

MEMNAME
SAS name for the information map

104 DICTIONARY.DATAITEMS Table � Appendix 1

MAPNAME
Information map name

PATH
Location of the information map within the metadata server

DESCRIPTION
Description of the information map

The following example shows how you can query the DICTIONARY.INFOMAPS table
to retrieve information about the available information maps:

libname mymaps infomaps mappath="/Users/myUserID/My Folder";

proc sql;
select i.mapname, i.path

from DICTIONARY.INFOMAPS as i;

Output A1.1 Output from DICTIONARY.INFOMAPS Table Query

Information Map Name Information Map Path

Employee Statistics Sample /Users/myUserID/My Folder

DICTIONARY.DATAITEMS Table

The SQL DICTIONARY.DATAITEMS table contains a row for each data item in all of
the information maps that are available through the Information Maps engine. The
table contains the following variables:

LIBNAME
Information Maps engine libref for the information maps that contains the data
item

MEMNAME
SAS name for the information map that contains the data item

NAME
SAS name for the data item

DATAITEMNAME
Data item name

ID
Data item ID

PATH
Location of the data item within the metadata server

CLASS
Classification of the data item

AGGREGATION
Default aggregate function for the data item

ISCALC
Flag to indicate whether the data item contains a calculated expression (YES or
NO)

SQL DICTIONARY Tables for the Information Maps Engine � DICTIONARY.FILTERS Table 105

ISUSABLE
Flag to indicate whether the underlying data for data item is available (YES or NO)

DESCRIPTION
Description of the data item

The following example shows how you can query the DICTIONARY.DATAITEMS
table to retrieve information about the available data items:

libname mymaps infomaps mappath="/Users/myUserID/My Folder";

proc sql;
select d.memname, d.dataitemname, d.id, d.class

from DICTIONARY.DATAITEMS as d;

Output A1.2 Output from DICTIONARY.DATAITEMS Table Query

Member Name Data Item Name Data Item ID Classification

--

Employee Statistics Sample Name Name CATEGORY

Employee Statistics Sample Identification Identification CATEGORY

Number Number

Employee Statistics Sample Job Code Jobcode CATEGORY

Employee Statistics Sample Department Deptcode CATEGORY

Employee Statistics Sample Location Location CATEGORY

Employee Statistics Sample Average Salary Salary_2 MEASURE

Employee Statistics Sample Minimum Salary Salary2 MEASURE

Employee Statistics Sample Maximum Salary Salary3 MEASURE

Employee Statistics Sample Sum of Salaries Salary4 MEASURE

Employee Statistics Sample Hire Date Hire Date CATEGORY

Employee Statistics Sample Number of Years Number of Years CATEGORY

Employed Employed

DICTIONARY.FILTERS Table

The SQL DICTIONARY.FILTERS table contains a row for each filter in all of the
information maps that are available through the Information Maps engine. The table
contains the following variables:

LIBNAME
Information Maps engine libref for the information map that contains the filter

MEMNAME
SAS name for the information map that contains the filter

NAME
SAS name for the filter

FILTERNAME
Filter name

ID
Filter ID

PATH
Location of the filter within the metadata server

DESCRIPTION
Description of the filter

106 DICTIONARY.FILTERS Table � Appendix 1

The following example shows how you can query the DICTIONARY.FILTERS table to
retrieve information about the available filters:

libname mymaps infomaps mappath="/Users/myUserID/My Folder";

proc sql;
select f.memname, f.filtername, f.id, f.description

from DICTIONARY.FILTERS as f;

Output A1.3 Output from DICTIONARY.FILTERS Table Query

Member Name Filter Name Filter ID Filter Description

--

Employee Statistics Sample Cary Employees Cary Employees Employees who work

in Cary, North

Carolina.

Employee Statistics Sample Which department? Which department? Filters based on

selected

departments.

107

A P P E N D I X

2
SAS Tracing and the Information
Maps Engine

Tracing Diagnostic Messages from the Information Maps Engine 107
Example 107

Tracing Diagnostic Messages from the Information Maps Engine
You can use the SASTRACE system option to trace diagnostic messages issued by the

Information Maps engine. You can specify the following parameters:

SASTRACE= ’,,,<s|sa>’

’,,,s’
specifies that a summary of timing information is sent to the log.

’,,,sa’
specifies that detailed timing messages are sent to the log along with a summary.

You can use the SASTRACELOC system option to specify the destination of the
diagnostic messages.

SASTRACELOC= stdout |SASLOG | FILE ’pathname’

You can use the NOSTSUFFIX system option to simplify diagnostic messages by
suppressing some nonessential output.

Example
The following statement causes both detailed and summary timing information to be

written to the SAS log:

options sastrace=’,,,sa’ sastraceloc=saslog nostsuffix;

108

109

A P P E N D I X

3
Recommended Reading

Recommended Reading 109

Recommended Reading

The recommended reading list for this title is:
� The Little SAS Book: A Primer
� Step-by-Step Programming with Base SAS Software

� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary
� Base SAS Procedures Guide

� SAS Language Interfaces to Metadata
� SAS Companion that is specific to your operating environment
� Base SAS Focus Area at http://support.sas.com/rnd/base

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: http://support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

110

111

Glossary

aggregate function
a function that summarizes data and produces a statistic such as a sum, an average,
a minimum, or a maximum.

business data
a collective term for data items in an information map. See also data item.

category
a classification of data items. Category data items are used to group measure data
items, using an applied aggregate function. For example, a category data item that
contains the names of countries could be used to group a measure data item that
contains population values.

classification
an attribute of data items that determines how they will be processed in a query.
Data items can be classified as either categories or measures.

client
a computer or application that requests services, data, or other resources from a
server. See also server.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

cube
a set of data that is organized and structured in a hierarchical, multidimensional
arrangement. A cube includes measures, and it can have numerous dimensions and
levels of data.

data element
a general term that can include data (such as table columns, OLAP hierarchies, and
OLAP measures) as well as data items. See also data item.

data item
in an information map, an item that represents either data (a table column, an
OLAP hierarchy, or an OLAP measure) or a calculation. Data items are used for
building queries. Data items are usually customized in order to present the data in a
form that is relevant and meaningful to a business user.

112 Glossary

data set
See SAS data set.

data source
a logical representation of a table or cube that an information map retrieves data
from.

DATA step
in a SAS program, a group of statements that begins with a DATA statement and that
ends with either a RUN statement, another DATA statement, a PROC statement, the
end of the job, or the semicolon that immediately follows lines of data. The DATA
step enables you to read raw data or other SAS data sets and to use programming
logic to create a SAS data set, to write a report, or to write to an external file.

dimension
a group of closely related hierarchies. Hierarchies within a dimension typically
represent different groupings of information that pertains to a single concept. For
example, a Time dimension might consist of two hierarchies: (1) Year, Month, Date,
and (2) Year, Week, Day. See also hierarchy.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular file format.

Extensible Markup Language
a markup language that structures information by tagging it for content, meaning, or
use. Structured information contains both content (for example, words or numbers)
and an indication of what role the content plays. For example, content in a section
heading has a different meaning from content in a database table. Short form: XML.

filter
in an information map, criteria (rules) that subset data. When a query is generated
from an information map, the filter is converted to a query-language statement (for
example, an SQL WHERE clause).

format
a pattern that SAS uses to determine how the values of a variable or data item
should be written or displayed. SAS provides a set of standard formats and also
enables you to define your own formats.

hierarchy
an arrangement of members of a dimension into levels that are based on parent-child
relationships. Members of a hierarchy are arranged from more general to more
specific. For example, in a Time dimension, a hierarchy might consist of the members
Year, Quarter, Month, and Day. In a Geography dimension, a hierarchy might consist
of the members Country, State or Province, and City. More than one hierarchy can be
defined for a dimension. Each hierarchy provides a navigational path that enables
users to drill down to increasing levels of detail. See also member and level.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

information map
a collection of data items and filters that provides a user-friendly view of a data
source. When you use an information map to query data for business needs, you do
not have to understand the structure of the underlying data source or know how to
program in a query language.

Glossary 113

inner join
a join between two tables that returns all of the rows in one table that have one or
more matching rows in the other table. See also join.

join
(1) the act of combining data from two or more tables in order to produce a single
result set. (2) a specification that describes how you want data from two or more
tables to be combined. The specification can be in the form of Structured Query
Language (SQL) programming code, or it can be done interactively through a
software user interface.

level
an element of a dimension hierarchy. Levels describe the dimension from the highest
(most summarized) level to the lowest (most detailed) level. For example, possible
levels for a Geography dimension are Country, Region, State or Province, and City.

libref
a short name for the full physical name of a SAS library. In the context of the SAS
Metadata Server, a libref is associated with a SAS library when the library is defined
in the metadata server.

literal
a number or a character string that indicates a fixed value.

MDX language
See multidimensional expressions language.

measure
(1) a classification of data items. The values of measure data items are aggregated
(unless otherwise specified) and can be used in computations or analytical
expressions. For example, a measure data item could contain age values that are
grouped by gender and then averaged. (2) a member of a Measure dimension.

member
(1) a SAS file in a SAS library. (2) in a multidimensional database (or cube), a name
that represents a particular data element within a dimension. For example,
September 1996 might be a member of the Time dimension. A member can be either
unique or non-unique. For example, 1997 and 1998 represent unique members in the
Year level of a Time dimension. January represents non-unique members in the
Month level, because there can be more than one January in the Time dimension if
the Time dimension contains data for more than one year.

metadata
data about data. For example, metadata typically describes resources that are shared
by multiple applications within an organization. These resources can include
software, servers, data sources, network connections, and so on. Metadata can also
be used to define application users and to manage users’ access to resources.
Maintaining metadata in a central location is more efficient than specifying and
maintaining the same information separately for each application.

metadata object
a set of attributes that describe a table, a server, a user, or another resource on a
network. The specific attributes that a metadata object includes vary depending on
which metadata model is being used.

metadata server
a server that provides metadata management services to one or more client
applications. A SAS Metadata Server is an example.

114 Glossary

multidimensional expressions language
a standardized, high-level language that is used to query multidimensional data
sources. The MDX language is the multidimensional equivalent of SQL (Structured
Query Language). Short form: MDX language.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains either one
data value or a missing-value indicator for each variable.

OLAP
See online analytical processing.

online analytical processing
a software technology that enables users to dynamically analyze data that is stored
in cubes. Short form: OLAP.

outer join
a join between two tables that returns all of the rows in one table, as well as part or
all of the rows in the other table. A left or right outer join returns all of the rows in
one table (the table on the left or right side of the SQL statement, respectively), as
well as the matching rows in the other table. A full outer join returns all of the rows
in both of the tables. See also join.

physical data
data values that are stored on any type of physical data-storage media, such as disk
or tape.

port
in a network that uses the TCP/IP protocol, an endpoint of a logical connection
between a client and a server. Each port is represented by a unique number.

procedure
See SAS procedure.

prompted filter
a filter that is associated with a prompt, which enables the user of an information
map to specify filtering criteria when a query is executed.

query
a set of instructions that requests particular information from one or more data
sources.

register
to save metadata about an object to a metadata server. For example, if you register a
table, you save metadata about that table to a metadata server.

relationship
the association, between tables in an information map, that generates a database join
in a query.

repository
a location in which data, metadata, or programs are stored, organized, and
maintained, and which is accessible to users either directly or through a network.

result set
the set of rows or records that a server or other application returns in response to a
query.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

Glossary 115

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. See also SAS data set and SAS data view.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files that are
stored in other software vendors’ file formats.

SAS data set option
an option that appears in parentheses after a SAS data set name. Data set options
specify actions that apply only to the processing of that SAS data set.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns) plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. SAS data views can be created by the SAS DATA step and by the SAS SQL
procedure.

SAS Information Map
See information map.

SAS library
a collection of one or more files that are recognized by SAS and that are referenced
and stored as a unit. SAS libraries can be defined in a SAS Metadata Server to
provide centralized definitions for SAS applications.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

SAS procedure
a program that provides specific functionality and that is accessed with a PROC
statement. For example, SAS procedures can be used to produce reports, to manage
files, or to analyze data. Many procedures are included in SAS software.

SAS program
a group of SAS statements that guide SAS through a process or series of processes in
order to read and transform input data and to generate output. The DATA step and
the procedure step, used alone or in combination, form the basis of SAS programs.

SAS system option
an option that affects the processing of an entire SAS program or interactive SAS
session from the time the option is specified until it is changed. Examples of items
that are controlled by SAS system options include the appearance of SAS output, the
handling of some files that are used by SAS, the use of system variables, the
processing of observations in SAS data sets, features of SAS initialization, and the
way SAS interacts with your host operating environment.

SAS Workspace Server
a SAS server that provides access to Foundation SAS features such as the SAS
programming language and SAS libraries.

116 Glossary

schema
a map or model of the overall data structure of a database. An OLAP schema
specifies which group of cubes an OLAP server can access.

server
a computer system that provides data or services to multiple users on a network.
The term ’server’ sometimes refers to the computer system’s hardware and software,
but it often refers only to the software that provides the data or services. In a
network, users might log on to a file server (to store and retrieve data files), a print
server (to use centrally located printers), or a database server (to query or update
databases). In a client/server implementation, a server is a program that waits for
and fulfills requests from client programs for data or services. The client programs
might be running on the same computer or on other computers. See also client.

SQL
See Structured Query Language.

statement option
a word that you specify in a particular SAS statement and which affects only the
processing that that statement performs.

Structured Query Language
a standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. Short form: SQL.

system option
See SAS system option.

table
a two-dimensional representation of data in which the data values are arranged in
rows and columns.

variable
a column in a SAS data set or in a SAS data view. The data values for each variable
describe a single characteristic for all observations.

XML
See Extensible Markup Language.

117

Index

A
aggregate functions

example 60
removing from list 19, 20, 45
specifying default 17, 44
table of 18

AGGREGATION= argument
INSERT DATAITEM statement (INFOMAPS) 17
UPDATE DATAITEM statement (INFOMAPS) 44

AGGREGATIONS_DROP_LIST= argument
INSERT DATAITEM statement (INFOMAPS) 19, 20
UPDATE DATAITEM statement (INFOMAPS) 45

ALL argument
INSERT DATASOURCE statement (INFOMAPS) 25
LIST statement (INFOMAPS) 34

analyzing data 100

B
best practices

INFOMAPS procedure 83
Information Maps engine 84

buffering data reads 72, 79
business data definitions 33
BY-group processing 67

C
calculated data items 85
capitalizing data item names 40, 53
CLASSIFICATION= argument

INSERT DATAITEM statement (INFOMAPS) 20
UPDATE DATAITEM statement (INFOMAPS) 45

COLUMN= argument
INSERT DATAITEM statement (INFOMAPS) 14, 83

column labels
as data item names 41, 54

columns
inserting data items 14
inserting data items for each column 25
length of 72, 76
specifying physical column names 26

COLUMNS= argument
INSERT DATASOURCE statement (INFOMAPS) 26

CONDITION= argument
INSERT FILTER statement (INFOMAPS) 27
UPDATE FILTER statement (INFOMAPS) 49

CONTENTS procedure
viewing aggregated data items 97
viewing data items and filters 64, 96

CREATE_TARGET_FOLDER= argument
NEW INFOMAP statement (INFOMAPS) 40
UPDATE INFOMAP statement (INFOMAPS) 52

CUBE= argument
INSERT DATASOURCE statement (INFOMAPS) 24

cubes
as data source 24
inserting data from 24

D
data analysis 100
data items 1, 6

aggregate functions 17, 19, 20, 44, 45,
calculated 85
capitalizing names of 40, 53
column labels as names 41, 54
data type of expressions 23, 47
descriptions of 21, 46
folders for 21, 58
format of 21, 47
ID specification 22
inserting 14
inserting for each column or hierarchy 25
listing properties of 33
naming 22, 41, 47, 54
underscores in names 41, 54
usage type of 20, 45
viewing with CONTENTS procedure 64, 96

data reads
buffering 72, 79

data set options
for Information Maps engine 75

data sources
cubes as 24
ID specification 26
inserting 24
listing properties of 33
relational tables as 25

data types
of expressions 23, 47

DATAITEMS argument
LIST statement (INFOMAPS) 33

DATASETS procedure
listing available information maps 64

118 Index

DATASOURCES argument
LIST statement (INFOMAPS) 33

DELETE INFOMAP statement
INFOMAPS procedure 11

DESCRIPTION= argument
INSERT DATAITEM statement (INFOMAPS) 21
INSERT FILTER statement (INFOMAPS) 28
INSERT FOLDER statement (INFOMAPS) 30
UPDATE DATAITEM statement (INFOMAPS) 46
UPDATE FILTER statement (INFOMAPS) 50

DOMAIN= argument
PROC INFOMAPS statement 9

DOMAIN= option
LIBNAME statement 70

E
engine

See Information Maps engine
examples 87

aggregate functions 60
analyzing data 100
creating information maps with INFOMAPS proce-

dure 90
INFOMAPS procedure 57
LIBNAME statement 63, 81
ODS reports 100
printing information map data 98
registering data with METALIB procedure 88
retrieving data 96
setting macro variable 88
setting metadata system options 88
viewing aggregated data items 97
viewing data items and filters 96

EXPCOLUMNLEN= argument
LIBNAME statement 14, 46

EXPCOLUMNLEN= data set option 76
EXPCOLUMNLEN= option

LIBNAME statement 72
EXPORT statement

INFOMAPS procedure 12
exporting information maps 12
EXPRESSION= argument

INSERT DATAITEM statement (INFOMAPS) 14
expressions

column length and 72, 76
data type of 23, 47
inserting data items 14

F
FILE= argument

EXPORT statement (INFOMAPS) 12
IMPORT statement (INFOMAPS) 13

FILTER= data set option 77
filters 1, 6

as WHERE clause 27, 49
conditional expression 27, 49
description of 28, 50
folder for inserting 28
inserting 27
listing properties of 33
restricting returned data 64
updating 49
viewing with CONTENTS procedure 64, 96

FILTERS argument
LIST statement (INFOMAPS) 33

FOLDER= argument
INSERT DATAITEM statement (INFOMAPS) 21
INSERT FILTER statement (INFOMAPS) 28

folders 1
creating automatically 40, 52, 58
description of 30
inserting 30, 58
inserting data items 21, 58
inserting filters into 28
parent folders 30
updating 51

FORMAT= argument
INSERT DATAITEM statement (INFOMAPS) 21
UPDATE DATAITEM statement (INFOMAPS) 47

formats
data item format 21, 47

H
hierarchies

inserting data items for each hierarchy 25

I
ID= argument

INSERT DATAITEM statement (INFOMAPS) 22
INSERT DATASOURCE statement (INFOMAPS) 26

IMPORT statement
INFOMAPS procedure 13

importing information maps 13
INFOMAP argument

EXPORT statement (INFOMAPS) 12
SAVE statement (INFOMAPS) 42

INFOMAPS argument
LIBNAME statement 69

INFOMAPS procedure 5
aggregating data items 60
best practices 83
creating information maps 39, 57, 90
DELETE INFOMAP statement 11
examples 57
EXPORT statement 12
folders in information maps 58
IMPORT statement 13
INSERT DATAITEM statement 14
INSERT DATASOURCE statement 24
INSERT FILTER statement 27
INSERT FOLDER statement 30
INSERT RELATIONSHIP statement 31
LIST statement 33
NEW INFOMAP statement 39
PROC INFOMAPS statement 9
SAVE statement 42
syntax 9
UPDATE FILTER statement 49
UPDATE FOLDER statement 51
UPDATE INFOMAP statement 52
UPDATE RELATIONSHIP statement 55
updating information maps 52

information maps 1
benefits of 2
business data definitions 33
calculated data items 85
creating 39, 57, 90

Index 119

deleting from metadata server 11
exporting in XML 12
folders in 58
importing from XML file 13
inserting data items 14
inserting data sources 24
inserting filters 27
inserting folders 30
inserting joins 31
list of available maps 64
names with special characters 72, 85
naming 39, 52
naming restrictions and 84
opening 39
printing data 64, 98
restricting returned data 64
SAS Information Map Studio and 6
saving 42
updating 52
updating filters 49
updating folders 51
updating joins 55

Information Maps engine 63
advantages of 67
best practices 84
data set options 75
how it works 63
memory usage 84
nickname 69, 96
performance improvement 84
requirements for 67
retrieving data 96
submitting LIBNAME statement using connection op-

tions 81
submitting LIBNAME statement using defaults 81
what is supported 67

INIT_CAP= argument
NEW INFOMAP statement (INFOMAPS) 40
UPDATE INFOMAP statement (INFOMAPS) 53

input
number of rows to hold in memory 72, 79

INSERT DATAITEM statement
INFOMAPS procedure 14

INSERT DATASOURCE statement
INFOMAPS procedure 24

INSERT FILTER statement
INFOMAPS procedure 27

INSERT FOLDER statement
INFOMAPS procedure 30

INSERT RELATIONSHIP statement
INFOMAPS procedure 31

IP address
of metadata server host 10, 71

J
joins

inserting 31
updating 55

L
LIBNAME statement, Information Maps engine 69

connection options for metadata server 70
examples 63, 81
global options 71

submitting, using connection options 81
submitting, using defaults 81
syntax 69

librefs 63, 69
LIST statement

INFOMAPS procedure 33

M
macro variable 88
map folders

See folders
MAPPATH= argument 9

DELETE INFOMAP statement (INFOMAPS) 11
EXPORT statement (INFOMAPS) 12
NEW INFOMAP statement (INFOMAPS) 40
PROC INFOMAPS statement 9
SAVE statement (INFOMAPS) 42
UPDATE INFOMAP statement (INFOMAPS) 54

MAPPATH= option
LIBNAME statement 69

MEANS procedure 100
member-name normalization 72
memory

for Information Maps engine 84
number of rows to hold in 72, 79

METACREDENTIALS= argument
LIBNAME statement 70
PROC INFOMAPS statement 10

metadata 1
metadata server

connecting to 9, 70
deleting information maps from 11
IP address of host 10, 71
LIBNAME statement connection options 70
passwords for 10, 70
path 9
TCP port 10
user ID for connecting 10, 71

metadata system options 88
METALIB procedure 88
METAPASS= argument

PROC INFOMAPS statement 10
METAPASS= option

LIBNAME statement 70
METAPORT= argument

PROC INFOMAPS statement 10
METAPORT= option

LIBNAME statement 70
METASERVER= argument

PROC INFOMAPS statement 10
METASERVER= option

LIBNAME statement 71
METAUSER= argument

PROC INFOMAPS statement 10
METAUSER= option

LIBNAME statement 71

N
NAME= argument

INSERT DATAITEM statement (INFOMAPS) 22
UPDATE DATAITEM statement (INFOMAPS) 47

name literals 72
names

data items 22, 40, 41, 47, 53,

120 Index

information maps 39, 52, 72, 85
natural language names 85
nickname for Information Maps engine 69
physical column names 26
restrictions on 84
special characters in information map names 72, 85
tables 83

natural language names 85
NEW INFOMAP statement

INFOMAPS procedure 39
nickname for Information Maps engine 69, 96

O
ODS reports 100
OLAP cubes

as data source 24

P
PARENT= argument

INSERT FOLDER statement (INFOMAPS) 30
parent folders 30
passwords

metadata server 10, 70
path

See also MAPPATH= argument
metadata server 9

performance
Information Maps engine 84

PRESERVE_MAP_NAMES= option
LIBNAME statement 72, 85

PRINT procedure
printing information map data 64, 98

PROC INFOMAPS statement 9
properties

listing 33

Q
queries

for subsetting result sets 77

R
READBUFF= data set option 79
READBUFF= option

LIBNAME statement 72
registering data 88
relational databases

filter as WHERE clause 27, 49
relational tables

as data source 25
inserting joins 31
updating joins 55

REPLACE_UNDERSCORES= argument
NEW INFOMAP statement (INFOMAPS) 41
UPDATE INFOMAP statement (INFOMAPS) 54

result sets
subsetting 27, 49, 77

retrieving data 96
rows

number to hold in memory 72, 79

S
SAS Information Map Studio 6, 63
SAS Information Maps

See information maps
SAS server

inserting data sources and 25
SASSERVER= argument

INSERT DATASOURCE statement (INFOMAPS) 25
SAVE statement

INFOMAPS procedure 42
saving information maps 42
special characters

information map names 72, 85
spool file 73
SPOOL= option

LIBNAME statement 73
SSPI= argument

LIBNAME statememt 71
subsetting result sets 27, 49, 77
system options

setting metadata system options 88
VALIDVARNAME= 85

T
TABLE= argument

INSERT DATASOURCE statement (INFOMAPS) 25
tables

inserting data from 24
naming 83

TCP port 10, 70
TYPE= argument

INSERT DATAITEM statement (INFOMAPS) 23
UPDATE DATAITEM statement (INFOMAPS) 47

U
underscores

in data item names 41, 54
UPDATE FILTER statement

INFOMAPS procedure 49
UPDATE FOLDER statement

INFOMAPS procedure 51
UPDATE INFOMAP statement

INFOMAPS procedure 52
UPDATE RELATIONSHIP statement

INFOMAPS procedure 55
USE_LABELS= argument

NEW INFOMAP statement (INFOMAPS) 41
UPDATE INFOMAP statement (INFOMAPS) 54

user ID
connecting to metadata server 10, 71

V
VALIDVARNAME= system option 85

W
WHERE clauses 67

filters as 27, 49

Index 121

X
XML files

exporting information maps in 12

importing information maps from 13

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

	Contents
	What’s New
	Overview
	INFOMAPS Procedure
	SAS Information Maps LIBNAME Engine

	Overview of SAS Information Maps
	What Is a SAS Information Map?
	Why Are SAS Information Maps Important?
	Where Can SAS Information Maps Be Used?
	Accessibility Features of the INFOMAPS Procedure and the SAS Information Maps LIBNAME Engine

	The INFOMAPS Procedure
	Overview: INFOMAPS Procedure
	What Does the INFOMAPS Procedure Do?

	Syntax: INFOMAPS Procedure
	Examples: INFOMAPS Procedure

	Using the SAS Information Maps LIBNAME Engine
	What Does the Information Maps Engine Do?
	Understanding How the Information Maps Engine Works
	Advantages of Using the Information Maps Engine
	What Is Required to Use the Information Maps Engine?
	What Is Supported?

	LIBNAME Statement for the Information Maps Engine
	Using the LIBNAME Statement
	LIBNAME Statement Syntax
	Required Arguments
	LIBNAME Statement Options for Connecting to the SAS Metadata Server
	Other LIBNAME Statement Options for the Information Maps Engine

	SAS Data Set Options for the Information Maps Engine
	Using Data Set Options

	Examples of Using the Information Maps Engine
	Example 1: Submitting a LIBNAME Statement Using the Defaults
	Example 2: Submitting a LIBNAME Statement Using Connection Options

	Hints and Tips for Using the INFOMAPS Procedure or the Information Maps Engine
	Hints and Tips for Using the INFOMAPS Procedure
	Hints and Tips for Using the Information Maps Engine
	Improving the Performance of the Information Maps Engine
	Creating Information Maps That Work Well with the Information Maps Engine

	Example: Using the INFOMAPS Procedure and the Information Maps Engine
	About This Example
	Step 1: Create a Library Definition in the SAS Metadata Server
	Step 2: Set the Metadata System Options and a Macro Variable
	Step 3: Register Data Using the METALIB Procedure
	Step 4: Create an Information Map Using the INFOMAPS Procedure
	Step 5: Retrieve the Data Associated with the Information Map Using the Information Maps Engine
	Step 6: View the Data Items and Filters Using the CONTENTS Procedure
	Step 7: Print the Data from the Information Map
	Step 8: Analyze the Data in SAS and Produce an ODS Report

	SQL DICTIONARY Tables for the Information Maps Engine
	Using SQL DICTIONARY Tables
	DICTIONARY.INFOMAPS Table
	DICTIONARY.DATAITEMS Table
	DICTIONARY.FILTERS Table

	SAS Tracing and the Information Maps Engine
	Tracing Diagnostic Messages from the Information Maps Engine
	Example

	Recommended Reading
	Recommended Reading

	Glossary
	Index

