|
Neural Network
|
Regression
|
Decision Tree
|
---|---|---|---|
Input Data Sets:
|
|||
Training
|
Yes
|
Yes
|
Yes
|
Validation
|
Yes
|
Yes
|
Yes
|
Test
|
Yes
|
Yes
|
Yes
|
Scoring
|
Yes
|
Yes
|
Yes
|
Input Variables:
|
|||
Nominal
|
Yes
|
Yes
|
Yes
|
Ordinal
|
Yes
|
No#
|
Yes
|
Interval
|
Yes
|
Yes
|
Yes
|
Target Variables:
|
|||
Nominal
|
Yes
|
Yes
|
Yes
|
ordinal
|
Yes
|
Yes
|
Yes
|
Interval
|
Yes
|
Yes
|
Yes
|
Other Variable Roles:
|
|||
Frequency
|
Yes
|
Yes
|
Yes
|
Sampling Weight
|
No*
|
No*
|
No*
|
Variance Weight
|
No
|
No
|
No
|
Cost
|
Yes
|
Yes
|
Yes
|
Decision Options:
|
|||
Prior Probabilities
|
Yes
|
Yes
|
Yes
|
Profit or Loss Matrix
|
Yes
|
Yes
|
Yes
|
Output Data Sets:
|
|||
Scores
|
Yes
|
Yes
|
Yes
|
Model (weights, trees)
|
Yes
|
Yes
|
Yes
|
Fit Statistics
|
Yes
|
Yes
|
Yes
|
Profit or Loss Summaries
|
Yes
|
Yes
|
Yes
|
Score Variables:
|
|||
Output (predicted value,
posterior probability)
|
Yes
|
Yes
|
Yes
|
Residual
|
Yes
|
Yes
|
Yes
|
Classify (from, into)
|
Yes
|
Yes
|
Yes
|
Expected Profit or Loss
|
Yes
|
Yes
|
Yes
|
Profit or Loss Computed
from Target
|
Yes
|
Yes
|
Yes
|
Decision
|
Yes
|
Yes
|
Yes
|
Other Features:
|
|||
Interactive Training
|
Yes
|
No
|
Yes
|
Save and reuse models
|
Yes
|
Yes
|
Yes
|
Apply model with missing
inputs
|
No
|
No
|
Yes
|
DATA step code for scoring
|
Yes
|
Yes
|
Yes
|