Prefix
|
Root
|
Description
|
Target Needed?
|
---|---|---|---|
BL_
|
Decision data set
|
Best possible loss of
any of the decisions, –B(i)
|
Yes
|
BP_
|
Decision data set
|
Best possible profit
of any of the decisions, B(i)
|
Yes
|
CL_
|
Decision data set
|
Loss computed from the
target value, –C(i)
|
Yes
|
CP_
|
Decision data set
|
Profit computed from
the target value, C(i)
|
Yes
|
D_
|
Decision data set
|
Label of the decision
chosen by the model
|
No
|
E__
|
Target
|
Error function
|
Yes
|
EL__
|
Decision data set
|
Expected loss for the
decision chosen by the model, –E(i)
|
No
|
EP__
|
Decision data set
|
Expected profit for
the decision chosen by the model, E(i)
|
No
|
F_
|
Target
|
Normalized category
that the case comes from
|
Yes
|
I__
|
Target
|
Normalized category
that the case is classified into
|
No
|
IC_
|
Decision data set
|
Investment cost IC(i)
|
No
|
M__
|
Variable
|
Missing indicator dummy
variable
|
—
|
P__
|
Target or dummy
|
Outputs (predicted values
and posterior probabilities)
|
No
|
R__
|
Target or dummy
|
Plain residuals: target
minus output
|
Yes
|
RA__
|
Target
|
Anscombe residuals
|
Yes
|
RAS_
|
Target
|
Standardized Anscombe
residuals
|
Yes
|
RAT_
|
Target
|
Studentized Anscombe
residuals
|
Yes
|
RD_
|
Target
|
Deviance residuals
|
Yes
|
RDS_
|
Target
|
Standardized deviance
residuals
|
Yes
|
RDT_
|
Target
|
Studentized deviance
residuals
|
Yes
|
ROI_
|
Decision data set
|
Return on investment,
ROI(i)
|
Yes
|
RS_
|
Target
|
Standardized residuals
|
Yes
|
RT_
|
Target
|
Studentized residuals
|
Yes
|
S_
|
Variable
|
Standardized variable
|
—
|
T__
|
Variable
|
Studentized variable
|
—
|
U__
|
Target
|
Unformatted category
that the case is classified into
|
No
|
Code
|
|
---|---|
C
|
Missing cost variable
|
M
|
Missing inputs
|
P
|
Invalid posterior probability
(for example, <0 or >1)
|
U
|
Unrecognized input category
|
Name
|
Label
|
---|---|
_NOBS_
|
Sum of Frequencies
|
_DFT_
|
Total Degrees of Freedom
|
_DIV_
|
Divisor for ASE
|
_ASE_
|
Train: Average Squared
Error
|
_MAX_
|
Train: Maximum Absolute
Error
|
_RASE_
|
Train: Root Average
Squared Error
|
_SSE_
|
Train: Sum of Squared
Error
|
Name
|
Label
|
---|---|
_AIC_
|
Sum of Frequencies
|
_AVERR_
|
Total Degrees of Freedom
|
_ERR_
|
Divisor for ASE
|
_SBC_
|
Train: Average Squared
Error
|
Name
|
Label
|
---|---|
_MISC_
|
Train: Misclassification
Rate
|
_WRONG_
|
Train: Number of Wrong
Classifications
|
Name
|
Label
|
---|---|
_PROF_
|
Train: Total Profit
|
_APROF_
|
Train: Average Profit
|
_LOSS_
|
Train: Total Loss
|
_ALOSS_
|
Train: Average Loss
|
Name
|
Label
|
---|---|
_VASE_
|
Valid: Average Squared
Error
|
_VAVERR_
|
Valid: Average Error
Function
|
_VDIV_
|
Valid: Divisor for ASE
|
_VERR_
|
Valid: Error Function
|
_VMAX_
|
Valid: Maximum Absolute
Error
|
_VMSE_
|
Valid: Mean Squared
Error
|
_VNOBS_
|
Valid: Sum of Frequencies
|
_VRASE_
|
Valid: Root Average
Squared Error
|
_VRMSE_
|
Valid: Root Mean Square
Error
|
_VSSE_
|
Valid: Sum of Squared
Errors
|
Name
|
Label
|
---|---|
_VMISC_
|
Valid: Misclassification
Rate
|
_VWRONG_
|
Valid: Number of Wrong
Classifications
|
Name
|
Label
|
---|---|
_VPROF_
|
Valid: Total Profit
|
_VAPROF_
|
Valid: Average Profit
|
_VLOSS_
|
Valid: Total Loss
|
_VALOSS_
|
Valid: Average Loss
|
Name
|
Label
|
---|---|
_TASE_
|
Test: Average Squared
Error
|
_TAVERR_
|
Test: Average Error
Function
|
_TDIV_
|
Test: Divisor for ASE
|
_TERR_
|
Test: Error Function
|
_TMAX_
|
Test: Maximum Absolute
Error
|
_TMSE_
|
Test: Mean Squared Error
|
_TNOBS_
|
Test: Sum of Frequencies
|
_TRASE_
|
Test: Root Average Squared
Error
|
_TRMSE_
|
Test: Root Mean Square
Error
|
_TSSE_
|
Test: Sum of Squared
Errors
|
Name
|
Label
|
---|---|
_TMISC_
|
Test: Misclassification
Rate
|
_TMISL_
|
Test: Lower 95% Confidence
Limit for TMISC
|
_TMISU_
|
Test: Upper 95% Confidence
Limit for TMISC
|
_TWRONG_
|
Test: Number of Wrong
Classifications
|