
SAS® Data Quality Server 9.2
Reference
Second Edition

TW12247_ColorTitlePage.indd 1 3/17/10 10:28:57 AM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2010
SAS ® Data Quality Server 9.2: Reference, Second Edition. Cary, NC: SAS Institute Inc.

SAS® Data Quality Server 9.2: Reference, Second Edition
Copyright © 2011, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-60764-450-7
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, May 2010
2nd electronic book, May 2011
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

SAS Data Quality Server Enhancements v

SAS System Option vi

Support for the DataFlux Integration Server vi

Support for the z/OS Operating Environment vii

Chapter 1 � Overview SAS Data Quality Server 1
Overview 1

Chapter 2 � Concepts 3
SAS Data Quality Server Concepts 3

DataFlux Jobs and Services 5

Load and Unload Locales 7

Schemes 8

Create Match Codes 11

Clusters 12

Sensitivity 13

Chapter 3 � Locale Definitions 15
Locale Definitions 15

Chapter 4 � The DQMATCH Procedure 19
Overview: DQMATCH Procedure 19

Syntax: DQMATCH Procedure 20

DQMATCH Examples 24

Chapter 5 � The DQSCHEME Procedure 33
Overview: DQSCHEME Procedure 33

Syntax: DQSCHEME Procedure 34

PROC DQSCHEME Examples 40

Chapter 6 � The DQSRVADM Procedure 45
Overview: DQSRVADM Procedure 45

Syntax: DQSRVADM Procedure 45

The Job Status Data Set 46

Security 46

PROC DQSRVADM Examples 47

Chapter 7 � The DQSRVSVC Procedure 49
Overview: DQSRVSVC Procedure 49

Syntax: DQSRVSVC Procedure 49

The Input and Output Data Sets 52

Examples 52

iv

Chapter 8 � AUTOCALL Macros 53
AUTOCALL Macros for SAS Data Quality Server 53

Chapter 9 � Functions and CALL Routines 57
Overview 58

Functions Listed Alphabetically 58

Functions Listed by Category 60

Chapter 10 � SAS Data Quality Server System Options 107
SAS Data Quality Server System Options 107

Appendix 1 � Recommended Reading 111
Recommended Reading 111

Glossary 113

Index 117

v

What’s New

Overview

The SAS Data Quality Server provides procedures and functions that enable you to
administer and run jobs and services on DataFlux Integration Servers from DataFlux
(a SAS company). The following enhancements were made in SAS 9.2:

� The SAS Data Quality Server has added support for grouping of clustering
criteria, as well as a new CALL routine and new functions for parsing and version
verification.

� A new SAS system option, DQOPTIONS, has options to increase data transfer
rates and to control whether to terminate SAS execution if errors are encountered.

� New procedures, functions, and options have been added to support the DataFlux
Integration Server.

� The DataFlux Integration Server now supports all the language elements that
access DataFlux Integration Servers in the z/OS operating environment.

SAS Data Quality Server Enhancements

The DQMATCH procedure was enhanced to enable grouping of the clustering criteria
into a series of conditions.

Starting in SAS 9.2 Phase 2, the DQPARSE function is complemented by the
DQPARSE CALL routine. The new CALL routine returns a flag that indicates the
status of the parse operation (success or failure).

In the third maintenance release for SAS 9.2, the SAS Data Quality Server was
enhanced with several new functions:

� The DQOPTSURFACE function reveals or hides non-surfaced definitions.

� The DQPARSEINPUTLEN function specifies the input length for parsing
functions.

� The DQPARSERESLIMIT function specifies the resource limit a parsing operation
is allowed to consume.

� The DQPARSESCORDEPTH function specifies how deeply to search for the best
parsing score.

vi What’s New

� The DQVERQKB function returns the version of the currently loaded Quality
Knowledge Base.

� The DQVERBF function returns the version of Blue Fusion.

SAS System Option

In SAS 9.2 Phase 2, the SAS system option DQOPTIONS was added. DQOPTIONS
is available for use in the SAS start-up command and in the SAS configuration file. The
value of the option is a series of option-value pairs.

� DQSRVPROTOCOL=WIRELINE increases data transfer performance to and from
services.

� TRANSCODE=IGNORE|WARN tells SAS whether to terminate execution if errors
are encountered during the translation of languages and character sets.

Support for the DataFlux Integration Server

The following procedures and functions support DataFlux Integration Servers:

� PROC DQSRVADM creates job status data sets after querying DataFlux
Integration Servers.

� PROC DQSRVSVC runs real-time services on DataFlux Integration Servers. The
services are created with DataFlux dfPower Architect software.

� The DQSRVARCHJOB function runs jobs on DataFlux Integration Servers. The
jobs are created with DataFlux dfPower Architect software.

� The DQSRVCOPYLOG and DQSRVDELETELOG functions manage log entries on
DataFlux Integration Servers.

� The DQSRVJOBSTATUS function reads log entries from DataFlux Integration
Servers.

� The DQSRVKILLJOB function terminates jobs that are running on DataFlux
Integration Servers.

� The DQSRVPROFJOBFILE function runs profile jobs on individual files on
DataFlux Integration Servers. The jobs are created with the DataFlux dfPower
Profile software.

� The DQSRVPROFJOBREP function runs profile jobs on repositories.

� The DQSRVUSER function authenticates users on DataFlux Integration Servers.

In SAS 9.2 Phase 2, the following options were added for the DQSRVSVC procedure:

� MISSINGVARSOK enables the continuation of processing when an input data set
is missing one or more variables.

� TRIM removes blank spaces from the ends of input data sets that are processed by
real-time services executed on DataFlux Integration Servers.

In the third maintenance release for SAS 9.2, the DQSRVVER function enables you to
determine the version of the DataFlux Integration Server. The following options were
added to the DQSRVSVC procedure.

� MACROS enable a series of name-value pairs to be passed to a service as macros.

� NOPRINT suppresses writing the SERVICEINFO information to an output data
set.

� SERVICEINFO lists the input and output columns used by a given service.

What’s New vii

Support for the z/OS Operating Environment

In SAS 9.2 Phase 2 all of the language elements that access DataFlux Integration
Servers are enabled in the z/OS operating environment.

viii What’s New

1

C H A P T E R

1
Overview SAS Data Quality
Server

Overview 1
SAS Data Quality Server 1

Overview

SAS Data Quality Server
The SAS Data Quality Server consists of a Quality Knowledge Base (QKB) and SAS

language elements. The language elements in the diagram are divided into two logical
groups. The Local Process group and the Server Process group.

Figure 1.1 Server Interactions

The DataFlux Integration Server and the related DataFlux dfPower Profile and
DataFlux dfPower Architect applications are combined with the SAS Data Quality
Server software in various software offerings.

You can also choose to add DataFlux software after purchasing the SAS Data Quality
Server software.

A DataFlux Integration Server with a DataFlux Integration Server for SAS license
accepts requests only from a SAS client for execution of a Web service. However, if you

2 SAS Data Quality Server � Chapter 1

have this license, DataFlux jobs can be executed by 3rd party products using the
command-line interface that is available for the DataFlux Integration Server.

3

C H A P T E R

2
Concepts

SAS Data Quality Server Concepts 3
SAS Data Quality Setup File 3

Edit the SAS Data Quality Setup File 4

Configure Your SAS Session for Data Quality 4

Specify Definitions In SAS Data Cleansing Programs 5

Considerations for Installing and Updating the Software 5
DataFlux Jobs and Services 5

Running Jobs and Services on a DataFlux Integration Server 6

DataFlux Integration Server Passwords 6

Load and Unload Locales 7

Schemes 8

Create the Schemes 8
Analysis Data Sets 8

Applying Schemes 9

Meta Options 9

Create Match Codes 11

How Match Codes Are Created 11
Match Code Length 12

Clusters 12

Householding with the DQMATCH Procedure 12

Clustering with Exact Criteria 13

Sensitivity 13

SAS Data Quality Server Concepts

SAS Data Quality Setup File
To access a Quality Knowledge Base, SAS programs reference path specifications in

the setup file dqsetup.txt. The location of the setup file is specified with the
DQSETUPLOC= system option . The value of the system option can be the path to
dqsetup.txt, or a path to the root directory of a Quality Knowledge Base.

In the z/OS operating environment, the setup file DQSETUP is a member of a SAS
Data Quality Configuration PDS.

Note: SAS programs running jobs and services on a DataFlux Integration Server do
not reference the setup file. These programs do not directly access a Quality Knowledge
Base. �

4 Edit the SAS Data Quality Setup File � Chapter 2

If you move your Quality Knowledge Base, update the path specifications with
DQSETUPLOC= accordingly.

If your site uses multiple Quality Knowledge Bases, reference the intended setup file
with the DQSETUPLOC= option.

Edit the SAS Data Quality Setup File
The data quality setup file consists of a table with two columns. The first column

lists file access methods. The second column provides fully qualified paths to the
contents of the Quality Knowledge Base.

You can access the file in the following ways:

� specifying paths separated by commas to each individual directory

Example:

DISK C:\Program Files\DataFlux\QltyKB\CI\2009A\casetab;
DISK C:\Program Files\DataFlux\QltyKB\CI\2009A\chopinfo;
DISK C:\Program Files\DataFlux\QltyKB\CI\2009A\grammar;
DISK C:\Program Files\DataFlux\QltyKB\CI\2009A\locale;
DISK C:\Program Files\DataFlux\QltyKB\CI\2009A\phonetx;
DISK C:\Program Files\DataFlux\QltyKB\CI\2009A\regexlib;
DISK C:\Program Files\DataFlux\QltyKB\CI\2009A\scheme;
DISK C:\Program Files\DataFlux\QltyKB\CI\2009A\vocab;

� specifying a path to the QKB-root directory

DISK C:\Program Files\DataFlux\QltyKB\CI\2009A;

If you edit the setup file, complete these tasks:

� Include a semicolon at the end of each fully qualified path.

� Specify the DISK access method.

� In the Windows and UNIX operating environments, do not change the last
directory or filename in any path.

� For the z/OS operating environment, do not change the PDS names. Do not
change the names of the PDS contents. For example, in the following entry in the
setup file, you would retain the GRAMMAR PDS name and not change any
member names inside that PDS:

DISK SAS91.DQ.GRAMMAR;

To add comment lines to your setup file, specify an exclamation point (!) as the first
non-blank character in each line that contains comments. When an exclamation point is
detected in this position, the software ignores any other text on that line.

You can insert blank lines into the setup file.
In the setup file, the maximum record (line) length is 1024 characters.

Configure Your SAS Session for Data Quality
Use the DQOPTIONS= system option to configure your SAS session for data quality.

Specify the option in your SAS start-up command or in your SAS configuration file,
SASV9.CFG. DQOPTIONS= enables you to specify one or more option-value pairs that
pertain to the operation of the SAS Data Quality Server software.

The DQOPTIONS= system option currently enables two option-value pairs. The
DQSRVPROTOCOL=WIRELINE pair improves the performance of the DQSRVSVC
procedure by streamlining data transfer to and from the DataFlux Integration Server.

Concepts � DataFlux Jobs and Services 5

It is the default on z/OS, and improves performance on all other platforms. In other
operating environments, the default SOAP protocol is recommended.

TRANSCODE=IGNORE | WARN specifies that transcoding errors between character
sets are to be ignored, and SAS processing is allowed to continue. By default,
transcoding errors terminate SAS processing.

See: “DQOPTIONS” on page 108.

Specify Definitions In SAS Data Cleansing Programs
To specify definitions in your SAS data cleansing programs, you need to know the

names of the definitions that are available in a particular locale. Use the AUTOCALL
macro %DQPUTLOC.

To display information about a locale that is currently loaded into memory, use the
“DQLOCALEINFOGET Function” on page 69.

To display a list of definitions in a specified locale, use the “DQLOCALEINFOLIST
Function” on page 69.

Use the “DQLOCALEGUESS Function” on page 68 to return the name of the locale
that best fits your data.

Considerations for Installing and Updating the Software

The SAS Data Quality Server software is delivered with a sample Quality Knowledge
Base. After you install the SAS Data Quality Server software, download the latest
Quality Knowledge Base, including your choice of locales, from the DataFlux Web site
www.dataflux.com.

To maximize performance, download new Quality Knowledge Bases as they are made
available by DataFlux. On the DataFlux Web site, check the release notes of the latest
release. Determine whether your locales have been updated. Decide whether you need
any of the new locales that might have been added.

When you update your Quality Knowledge Base, you might want to install it in a new
location rather than overwriting your existing Quality Knowledge Base. This decision is
particularly important if you have customized your Quality Knowledge Base in the
previous release. Customizations are made with the DataFlux dfPower Customize
software. If you install your updated Quality Knowledge Base in a new location, either
change your setup file or reference a new setup file in your SAS programs.

If you customized your previous Quality Knowledge Base, evaluate those changes
and carry them over to your new Quality Knowledge Base as needed.

CAUTION:
When you upgrade your Quality Knowledge Base, be sure to regenerate your existing
match codes so that they are consistent with the newly created match codes. �

DataFlux Jobs and Services
Jobs and services that are run on a DataFlux Integration Server fulfill separate

needs. Use jobs to access larger data sets in batch mode, when a client application is
not waiting for a response. Use services and small data sets in real time, when clients
await a response from the server.

To create jobs and services for your DataFlux Integration Server, use the DataFlux
dfPower Profile and DataFlux dfPower Architect applications. Create jobs to analyze

6 Running Jobs and Services on a DataFlux Integration Server � Chapter 2

the quality of your data with DataFlux dfPower Profile software. Profile jobs and their
output can be stored either in a file format or in the DataFlux unified repository. The
DQSRVPROFJOBFILE function executes a profile job that has been stored as a file
format job. The DQSRVPROFJOBREP function executes a profile job that has been
stored in the repository.

Use DataFlux dfPower Architect software to create jobs and services using a
drag-and-drop interface. You can trigger the DataFlux dfPower Architect jobs with the
function DQSRVARCHJOB. You can run DataFlux dfPower Architect services with
PROC DQSRVSVC.

Jobs and services that run on the DataFlux Integration Servers generate information
that is written to the log. You can read the server logs using the DQSRVADM
procedure. Based on the information returned by the DQSRVSTATUS function, you can
terminate jobs using the DQSRVKILLJOB function.

Running Jobs and Services on a DataFlux Integration Server
Follow these steps to run jobs and services on a DataFlux Integration Server.
1 In the z/OS operating environment, for DataFlux Integration Servers version 8.1.1

or newer, configure your DataFlux Integration Server to use the Wireline protocol.
This is described in the DataFlux Integration Server: User’s Guide. The Wireline
protocol improves data transfer performance.

2 In the z/OS operating environment, reconfigure your SAS session to use the
Wireline protocol, as described in Configure Your SAS Session for Data Quality
section, earlier in this chapter.

3 Create jobs and services using the DataFlux dfPower Profile and DataFlux
dfPower Architect software.

4 Upload the jobs to the DataFlux Integration Server using the DataFlux
Integration Server Manager.

5 Create and run the SAS programs that execute or trigger the jobs and services on
the DataFlux Integration Server.

To run jobs and services, you do not need to load a Quality Knowledge Base onto your
local host. The DataFlux Integration Server handles all interactions with your Quality
Knowledge Bases.

See: Chapter 6, “The DQSRVADM Procedure,” on page 45 and Chapter 7, “The
DQSRVSVC Procedure,” on page 49.

DataFlux Integration Server Passwords
If security has been implemented on your DataFlux Integration Server, include user

names and passwords in the procedures and function calls that access that server.
Specify the passwords directly, in plain text, or as encoded passwords. SAS recognizes
encoded passwords and decodes them before it sends the passwords to the DataFlux
Integration Server.

The following example shows how to encode a password and use that password in a
call to the DQSRVSVC procedure:

/* Encode password in file. */
filename pwfile ’c:\dataEntry01Pwfile’;
proc pwencode in=’Oe3s2m5’ out=pwfile;
run;

/* Load encoded password into macro variable. */

Concepts � Load and Unload Locales 7

data _null_;
infile pwfile obs=1 length=l;
input @;
input @1 line $varying1024. l;
call symput (’dbpass’, substr(line,1,l));

run;

/* Run service on secure DataFlux Integration Server */
proc dqsrvsvc

service=’cleanseCorpName’ host=’entryServer1’
userid=’DataEntry1’ password="&dbpass"
data=corpName out=corpNameClean;

run;

PROC PWENCODE concepts, syntax, and examples are documented in the Base SAS
Procedures Guide.

Load and Unload Locales

You need to load and unload locales in order to run data-cleansing programs in SAS.
Conversely, you do not need to load locales if your SAS programs run jobs and services
on a DataFlux Integration Server.

Before you run data-cleansing programs in SAS, load locales into memory using the
AUTOCALL macro %DQLOAD. The macro sets the value of the system options
DQSETUPLOC and DQLOCALE. The macro also loads the specified locales into local
memory. The DQSETUPLOC= option specifies the location of the setup file. The
DQLOAD= option specifies an ordered list of locales.

See: “%DQLOAD AUTOCALL Macro” on page 53.
The order of locales in the locale list is pertinent only when one of the following

conditions is true:

� A locale is not specified by name.

� The specified locale is not loaded into memory.

� Input data is insufficient for the DQLOCALEGUESS function.

If a locale cannot be established, SAS searches the list of locales. SAS references the
first definition it finds that has the specified name. Use the “DQLOCALEGUESS
Function” on page 68, to determine the best locale for that data.

You can change the values of the system options DQSETUPLOC and DQLOCALE;
however doing so does not load different locales into memory. For this reason, it is
recommended that you use the %DQLOAD AUTOCALL macro to change the values of
the two data quality system options.

If you change locale files in the Quality Knowledge Base using the DataFlux dfPower
Customize software, you must reload macros into memory with the %DQLOAD macro
before cleansing data.

After you submit your data-cleansing programs, you can unload the locale from
memory by using the “%DQUNLOAD AUTOCALL Macro” on page 55.

New locales, and updates to existing locales, are provided periodically by DataFlux in
the form of a new Quality Knowledge Base, which you can download from the following
Web address:

www.dataflux.com/QKB

8 Schemes � Chapter 2

Schemes
A scheme is file that you create to transform the values of a character variable.

Applying the scheme to the data, transforms similar representations of a data value
into a standard representation.

To create and apply multiple schemes in a single procedure, see Chapter 5, “The
DQSCHEME Procedure,” on page 33. Use “DQSCHEMEAPPLY Function” on page 88
and “DQSCHEMEAPPLY CALL Routine” on page 84 to apply schemes as well.

This only pertains to schemes that are BFD (DataFlux) type of schemes. The Scheme
Builder application does not recognize schemes that are stored as SAS data sets.

Create the Schemes
Schemes are created with the CREATE statement in the DQSCHEME procedure.

The CREATE statement uses the matching technology, behind the scenes, to effectively
group like data values together. A survivor is selected out of each group to be the
standard value for that group of data values. The survivor is selected based on highest
frequency of occurrence of the data values.

Note: During scheme creation, the DQSCHEME procedure evaluates the definition
of each input variable in each CREATE statement. An error message is generated if the
defined length of an input variable exceeds 1024 bytes. �

Scheme data sets are created in SAS format or in Blue Fusion Data format. Blue
Fusion Data (BFD) format is recognized by SAS and by DataFlux dfPower Studio
software.

� The SAS Data Quality Server software can create and apply schemes. You can
also view the schemes with the SAS table viewer.

� DataFlux dfPower Studio software can create, apply, and edit schemes in BFD
format only.

� In the z/OS operating environment, the SAS Data Quality Server software can
create, apply, and display schemes in SAS format. Schemes in Blue Fusion format
can be applied.

Note: There is a CONVERT statement that is used to convert schemes between
the two formats. �

Analysis Data Sets
Analysis data sets show the groupings of like data values in the scheme-building

process. These are the groupings from which the standard value is selected. The data
sets are generated by specifying the ANALYSIS= option in the CREATE statement of
the DQSCHEME procedure. The analysis data sets enable you to experiment with
different options to create a scheme that provides optimal data cleansing.

The key to optimizing a scheme is to choose a sensitivity value that best suits your
data and your goal. You can create a series of analysis data sets using different
sensitivity values to compare the results. Changing the sensitivity value changes the
clustering of input values, as described in “Sensitivity” on page 13.

When you decide on a sensitivity level, you can create the scheme data set by
replacing the ANALYSIS= option with the SCHEME= option in the CREATE statement.

The analysis data set contains one observation for each unique input value. Any
adjacent blank spaces are removed from the input values. The COUNT variable
describes the number of occurrences of that value.

Concepts � Meta Options 9

The CLUSTER variable represents the groupings of data values that are similar
based on the selected sensitivity. One standard value is selected from each cluster,
based on the value with the highest COUNT (frequency).

Specify the INCLUDE_ALL option in the CREATE statement to include all input
values in the scheme. This includes the unique input values that did not receive a
cluster number in the analysis data set.

See “Create the Schemes” on page 8.

Applying Schemes
After you create a scheme data set, apply it to an input variable to transform its

values. You can apply a scheme with the APPLY statement in the DQSCHEME
procedure (see “APPLY Statement” on page 35), or with the DQSCHEMEAPPLY
function or CALL routine. Use the DQSCHEMEAPPLY CALL routine if you want to
return the number of transformations that occurred during the application of the
scheme. See “DQSCHEMEAPPLY Function” on page 88.

The scheme data set consists of the DATA and STANDARD variables. The DATA
variable contains the input character values that were used to create the scheme. The
STANDARD variable contains the transformation values. All of the DATA values in a
given cluster have the same STANDARD value. The STANDARD values are the values
that were the most common values in each cluster when the scheme was created.

When you apply a scheme to a SAS data set, an input value is transformed when the
it matches a DATA value in the scheme. The transformation replaces the input value
with the transformation value.

The lookup method determines how the input value is matched to the DATA values in
the scheme. The SCHEME_LOOKUP option or argument specifies that the match must
be exact, although case is insensitive. Alternatively the match can consist of a match
between the match codes of the input value, and the match codes of the DATA values.
When a match occurs, any adjacent blank spaces in the transformation value are
replaced with single blank spaces. Then the value is written into the output data set.

If no match is found for an input value, that exact value is written into the output
data set.

Specify the MODE argument or the MODE= option to apply schemes in one of two
modes: phrase or element. Applying a scheme by phrase compares the entire input
value (or the match code of the entire value) to the values (or match codes) in the
scheme. Phrase is the default scheme apply mode.

When you apply a scheme by element, each element in the input value (or match
code of each element) is compared to the values (or match codes) in the scheme.
Applying schemes by element enables you to change one or more elements in an input
value, without changing any of the other elements in that value.

The file format of a scheme is important when that scheme is applied. In the z/OS
operating environment, schemes must be created and applied in SAS format. Schemes
that are stored in a PDS in BFD format can be applied. Schemes in BFD format can be
converted to SAS format using the CONVERT statement in the DQSCHEME
procedure. Before you apply a scheme, see “Applying Schemes” on page 9.

Note: Schemes in BFD format cannot be created or displayed in the z/OS operating
environment. �

Meta Options
Meta options are stored in the scheme when the scheme is created. The options

provide default values for certain options of the DQSCHEME procedure’s APPLY
statement. The meta options also store default arguments for the DQSCHEMEAPPLY

10 Meta Options � Chapter 2

function or CALL routine. Default values are stored for the lookup mode
(SCHEME_LOOKUP option or argument), apply mode (MODE option or argument),
match definition, and sensitivity level. The values of the meta options are superseded
when other values are specified in the APPLY statement or in the DQSCHEMEAPPLY
function or CALL routine.

The meta options for the match definition and sensitivity value are valid only when
the scheme is applied with match-code lookup, when the value of the
SCHEME_LOOKUP option is USE_MATCHDEF.

The meta options are stored differently depending on the scheme format. For
schemes in SAS format, the meta options are stored in the data set label. For schemes
in BFD format, the meta options are stored within the scheme itself.

Note: In programs that create schemes in SAS format, do not specify a data set
label; doing so deletes the meta options. �

The meta options are stored using the following syntax:

’lookup-method’ ’apply-mode’ ’sensitivity-level’ ’match-definition’

lookup-method
EM specifies that the default value of the SCHEME_LOOKUP option or argument
is EXACT. For an input value to be transformed, that value must exactly match
a DATA value in the scheme.

IC specifies SCHEME_LOOKUP=IGNORE_CASE.
UM specifies that SCHEME_LOOKUP=USE_MATCHDEF. Match codes are

created and compared for all input values and all DATA values in the scheme.

apply-mode
E specifies that the default value of the MODE option or argument is ELEMENT.

P specifies that MODE=PHRASE.

sensitivity-level
is the amount of information in the match codes that is generated when
SCHEME_LOOKUP=USE_MATCHDEF.

Valid values range from 50 to 95.

match-definition
is the name of the default match definition that is used when the value of the
SCHEME_LOOKUP option is USE_MATCHDEF.

For example, the following meta options string specifies that the scheme:
� lookup method is match-code
� the apply-mode is by phrase
� the sensitivity-level is 80
� the match-definition is NAME

’UM’ ’P’ ’80’ ’NAME’

Concepts � How Match Codes Are Created 11

Create Match Codes

Match codes are encoded representations of character values that are used for
analysis, transformation, and standardization of data. Match codes are created by the
following procedures and functions:

The DQMATCH procedure
creates match codes for one or more variables or parsed tokens that have been
extracted from a variable. The procedure can also assign cluster numbers to
values with identical match codes.

See “Syntax: DQMATCH Procedure ”on page 20

The “DQMATCH Function” on page 71
generates match codes for a variable.

The “DQMATCHPARSED Function” on page 73
generates match codes for tokens that have been parsed from a variable.

Match codes are created by the DQMATCH procedure and by the DQMATCH and
DQMATCHPARSED functions. The functions DQMATCH and DQMATCHPARSED
return one match code for one input character variable. With these tools you can create
match codes for an entire character value or a parsed token extracted from a character
value.

During processing, match codes are generated according to the specified locale, match
definition, and sensitivity-level.

The locale identifies the language and geographical region of the source data. For
example, the locale ENUSA specifies that the source data uses the English language as
it is used in the United States of America.

The match definition in the Quality Knowledge Base identifies the category of the
data and determines the content of the match codes. Examples of match definitions are
named ADDRESS, ORGANIZATION, and DATE(YMD).

To determine the match definitions that are available in a Quality Knowledge Base,
consult the QKB documentation from DataFlux (a SAS company). Alternatively, use the
DQLOCALEINFOLIST function to return the names of the locale’s match definitions.
Use the DQLOCALEINFOLIST function if your site modifies the default Quality
Knowledge Base using DataFlux dfPower Customize software.

The sensitivity level is a value between 0 and 99 that determines the amount of
information that is captured in the match code, as described in “Sensitivity” on page 13.

If two or more match codes are identical, a cluster number can be assigned to a
specified variable, as described in “Clusters” on page 12.

The content of the output data set is determined by option values. You can include
values that generate unique match codes and you can include and add a cluster number
to blank or missing values. You can also concatenate multiple match codes.

Match codes are also generated internally when you create a scheme with the
DQSCHEME procedure, as described in “Schemes” on page 8. Match codes are also
created internally by the DQSCHEMEAPPLY function, and the DQSCHEMEAPPLY
CALL routine. The match codes are used in the process of creating or applying a
scheme.

How Match Codes Are Created
You can create two types of match codes:

� Simple match codes from a single input character variable.

12 Match Code Length � Chapter 2

� Composite match codes a concatenation of match codes from two or more input
character variables. The separate match codes are concatenated into a composite
match code.

Use the DELIMITER= option to specify that a delimiter exclamation point (!), is
to be inserted between the simple match codes in the combined match code.

To create simple match codes, specify one CRITERIA statement, one input variable
identified in the VAR= option, and one output variable identified with the
MATCHCODE= option.

Composite match codes are similar, except that you specify multiple CRITERIA
statements for multiple variables. All the CRITERIA statements specify the same
output variable in their respective MATCHCODE= options.

SAS Data Quality Server software creates match codes using these general steps:
1 Parse the input character value to identify tokens.
2 Remove insignificant words.
3 Remove some of the vowels. Remove fewer vowels when a scheme-build match

definition has been specified. See “Scheme Build Match Definitions” on page 16.
4 Standardize the format and capitalization of words.
5 Create the match code by extracting the appropriate amount of information from

one or more tokens, based on the specified match definition and level of sensitivity.

Certain match definitions skip some of these steps.

Note: To analyze or join two or more data sets using match codes, create the match
codes in each data set with identical sensitivity levels and match definitions. �

Match Code Length
Match codes can vary in length between 1 and 1024 bytes. The length is determined

by the specified match definition. If you receive a message in the SAS log that states
that match codes have been truncated, extend the length of the match code variable.
Truncated match codes do not produce accurate results.

Clusters
Clusters are numbered groups of values that generate identical match codes or that

have an exact match of characters. Clusters are used in the creation of schemes using
the DQSCHEME procedure. The cluster with the greatest number of members becomes
the transformation value for the scheme.

Householding with the DQMATCH Procedure
You can use the DQMATCH procedure to generate cluster numbers as it generates

match codes. An important application for clustering in is commonly referred to as
householding. Members of a family or household are identified in clusters that are
based on multiple criteria and conditions.

To establish the criteria and conditions for householding, use multiple CRITERIA
statements and CONDITION= options within those statements.

� The integer values of the CONDITION= options are reused across multiple
CRITERIA statements to establish groups of criteria.

� Within each group, match codes are created for each criteria.

Concepts � Sensitivity 13

� If a source row is to receive a cluster number, all of the match codes in the group
must match all of the codes in another source row.

� The match codes within a group are therefore evaluated with a logical AND.

If more than one condition number is specified across multiple CRITERIA
statements, there are multiple groups, and multiple groups of match codes. In this case,
source rows receive cluster numbers when any of its groups matches any other group in
another source row. The groups are therefore evaluated with a logical OR.

For an example of householding, assume that a data set that contains customer
information. To assign cluster numbers you use two groups of two CRITERIA
statements. One group (condition 1) uses two CRITERIA statements to generate match
codes based on the names of individuals and an address. The other group (condition 2)
generates match codes based on organization name and address. A cluster number is
assigned to a source row when either pair of match codes matches at least one group
matches the match codes from another source row. The code and output for this
example is provided in Example 5 on page 29.

Clustering with Exact Criteria
Use the EXACT= option of the DQMATCH procedure’s CRITERIA statement to use

exact character matches as part of your clustering criteria. Exact character matches are
helpful in situations where you want to assign cluster numbers using a logical AND of
an exact number and the match codes of a character variable.

For example, you could assign cluster numbers using two criteria, one using an exact
match on a customer ID values. The other using a match code generated from customer
names. The syntax of the EXACT= option is provided in “CRITERIA Statement” on
page 22.

Sensitivity
The amount of information contained in match codes is determined by a specified

sensitivity level. Changing the sensitivity level enables you to change what is
considered a match. Match codes created at lower levels of sensitivity capture little
information about the input values. The result is more matches, fewer clusters, and
more values in each cluster. See “Clusters” on page 12.

Higher sensitivity levels require that input values are more similar to receive the
same match code. Clusters are more numerous, and each cluster contains fewer entries.
For example, when collecting customer data based on account numbers, cluster on
account numbers, with a high sensitivity value.

In some data cleansing jobs, a lower sensitivity value is needed. To transform the
following names to one consistent value using a scheme, specify a lower sensitivity level.

Patricia J. Fielding
Patty Fielding
Patricia Feelding
Patty Fielding

All four values are assigned to the same cluster. The clusters are transformed to the
most common value, Patty Fielding.

Sensitivity values range from 50 to 95. The default value is 85.
To arrive at the sensitivity level that fits your data and your application, test with

the DQMATCH procedure. Alternatively create analysis data sets with the
DQSCHEME procedure.

14

15

C H A P T E R

3
Locale Definitions

Locale Definitions 15
Parse Definitions 15

Global Parse Definitions 16

Match Definitions 16

Scheme Build Match Definitions 16

Case and Standardization Definitions 17
Standardization of Dates in the EN Locale 17

Gender Analysis, Locale Guess, and Identification Definitions 18

Pattern Analysis Definitions 18

Locale Definitions

Parse Definitions
Parse definitions are referenced when you want to create parsed input values.

Parsed input values are delimited so that the elements in those values can be
associated with named tokens. After parsing, specific contents of the input values can
be returned by specifying the names of tokens.

Parse definitions and tokens are referenced by the following functions:
� “DQPARSE Function” on page 76
� “DQPARSEINFOGET Function” on page 77
� “DQTOKEN Function” on page 103
� “DQPARSETOKENGET Function” on page 81
� “DQPARSETOKENPUT Function” on page 82

For a brief example of how tokens are assigned and used, see “Specify Definitions In
SAS Data Cleansing Programs” on page 5.

Parsing a character value assigns tokens only when the content in the input value
meets the criteria in the parse definition. Parsed character values can therefore contain
empty tokens. For example, three tokens are empty when you use the DQPARSE
function to parse the character value Ian M. Banks. When using the NAME parse
definition in the ENUSA locale, the resulting token/value pairs are:

NAME PREFIX empty

GIVEN NAME Ian

MIDDLE NAME M.

16 Global Parse Definitions � Chapter 3

FAMILY NAME Banks

NAME SUFFIX empty

NAME
APPENDAGE

empty

Note: For parse definitions that work with dates, such as DATE (DMY) in the
ENUSA locale, input values must be character data rather than SAS dates. �

Global Parse Definitions
Global parse definitions contain a standard set of parse tokens that enable the

analysis of similar data from different locales. For example, the ENUSA locale and the
DEDEU locale both contain the parse definition ADDRESS (GLOBAL). The parse
tokens are the same in both locales. This global parse definition enables the
combination of parsed character data from multiple locales.

All global parse definitions are identified by the (GLOBAL) suffix.

Match Definitions
Match definitions are referenced during the creation of match codes. Match codes

provide a variable method of clustering similar input values as a basis for data
cleansing jobs such as the application of schemes.

When you create match codes, you determine the number of clusters (values with the
same match code) and the number of members in each cluster by specifying a
sensitivity level. The default sensitivity level is specified by the procedure or function,
rather than the match definition. For information about sensitivity levels, see
“Sensitivity” on page 13.

Match definitions are referenced by the following procedures and functions:

� Chapter 4, “The DQMATCH Procedure,” on page 19

� Chapter 5, “The DQSCHEME Procedure,” on page 33

� “DQMATCH Function” on page 71
� “DQMATCHINFOGET Function” on page 72

� “DQMATCHPARSED Function” on page 73

When you create match codes for parsed character values, your choice of match
definition depends on the parse definition that was used to parse the input character
value. To determine the parse definition that is associated with a given match
definition, use the “DQMATCHINFOGET Function” on page 72.

Note: For match definitions that work with dates, such as DATE (MDY) in the
ENUSA locale, input values must be character data rather than SAS dates. �

Scheme Build Match Definitions
Locales contain certain match definitions that are recommended for use in the

DQSCHEME procedure. These match definitions produce more desirable schemes. The
names of these scheme-build match definitions always end with “(SCHEME BUILD)”.

Scheme-build match definitions are advantageous because they create match codes
that contain more vowels. Match codes that contain more vowels result in more clusters
with fewer members in each cluster, which in turn results in a larger, more specific set
of transformation values.

Locale Definitions � Standardization of Dates in the EN Locale 17

When you are using the DQMATCH procedure or function to create simple clusters,
it is better to have fewer vowels in the match code. For example, using the CITY match
definition in the DQMATCH procedure, the values Baltimore and Boltimore receive the
same match codes. The match codes would differ if you used the match definition CITY
(SCHEME BUILD).

Case and Standardization Definitions
Case and standardization definitions are applied to character values to make them

more consistent for the purposes of display or in preparation for transforming those
values with a scheme.

Case definitions are referenced by the “Functions: DQCASE Function” on page 63.
Standardization definitions are referenced by the “DQSTANDARDIZE Function” on
page 102.

Case definitions transform the capitalization of character values. For example, the
case definition Proper in the ENUSA locale takes as input any general text. It
capitalizes the first letter of each word, and uses lowercase for the other letters in the
word. It also recognizes and retains or transforms various words and abbreviations into
uppercase. Other case definitions, such as PROPER – ADDRESS, apply to specific text
content.

Standardization definitions standardize the appearance of specific data values. In
general, words are capitalized appropriately based on the content of the input character
values. Also, adjacent blank spaces are removed, along with unnecessary punctuation.
Additional standardizations might be made for specific content. For example, the
standardization definition STATE (FULL NAME) in the locale ENUSA converts
abbreviated state names to full names in uppercase.

Standardization of Dates in the EN Locale
In the EN locale, dates are standardized to two-digit days (00–31), two-digit months

(01–12), and four-digit years. Input dates must be character values rather than SAS
dates.

Spaces separate (delimit) the days, months, and years, as shown in the following
table:

Table 3.1 Examples of Date Standardizations

Input Date Standardization Definition Standardized Date

July04, 03 Date (MDY) 07 04 2003

July 04 04 Date (MDY) 07 04 1904

July0401 Date (MDY) 07 04 2001

04.07.02 Date (DMY) 04 07 2002

04-07-2004 Date (DMY) 04 07 2004

03/07/04 Date (YMD) 2003 07 04

Two-digit year values are standardized as follows:
� If an input year is greater than 00 and less than or equal to 03, the standardized

year is 2000, 2001, 2002, or 2003.
� Two-digit input year values that are greater than or equal to 04, and less than or

equal to 99 are standardized into the range of 1904–1999

18 Gender Analysis, Locale Guess, and Identification Definitions � Chapter 3

For example, an input year of 03 is standardized as 2003. An input year of 04 is
standardized as 1904. These standardizations are not affected by the value of the SAS
system option YEARCUTOFF=.

Gender Analysis, Locale Guess, and Identification Definitions
Gender analysis, locale guess, and identification definitions enable you make

determinations about character values. With these definitions you can determine:
� the gender of an individual based on a name value

� the locale that is the most suitable for a given character value
� the category of a value, which is chosen from a set of available categories.

Gender analysis definitions determine the gender of an individual based on that
individual’s name. The gender is determined to be unknown, if the first name is used
by both males and females. If no other clues are provided in the name, or if conflicting
clues are found, gender analysis definitions are referenced by the “DQGENDER
Function” on page 64.

Locale guess definitions allow the software to determine the locale that is most likely
represented by a character value. All locales that are loaded into memory as part of the
locale list are considered, but only if they contain the specified guess definition. If a
definite locale determination cannot be made, the chosen locale is the first locale in the
locale list. Locale guess definitions are referenced by the “DQLOCALEGUESS
Function” on page 68.

Identification definitions are used to categorize character values. For example, using
the Entity identification definition in the ENUSA locale, a name value can apply to an
individual or an organization. Identification definitions are referenced by the
“DQIDENTIFY Function” on page 67.

Pattern Analysis Definitions
Pattern analysis definitions enable you to determine whether an input character

value contains characters that are alphabetic, numeric, non-alphanumeric (punctuation
marks or symbols), or a mixture of alphanumeric and non-alphanumeric. The ENUSA
locale contains two pattern analysis definitions: The pattern analysis definition WORD
is referenced by the DQPATTERN function. To generate one character of analytical
information for each word in the input character value. See “DQPATTERN Function”
on page 83. The CHARACTER definition generates one character of analytical
information for each character in the input character value.

19

C H A P T E R

4
The DQMATCH Procedure

Overview: DQMATCH Procedure 19
What Does the DQMATCH Procedure Do? 19

Syntax: DQMATCH Procedure 20

PROC DQMATCH Statement 20

CRITERIA Statement 22

DQMATCH Examples 24
Example 1: Generate Composite Match Codes 24

Example 2: Matching Values Using Mixed Sensitivity Levels 25

Example 3: Matching Values Using Minimal Sensitivity 27

Example 4: Creating Match Codes for Parsed Values 28

Example 5: Clustering with Multiple CRITERIA Statements 29

Example 6: Generating Multiple Simple Match Codes 30

Overview: DQMATCH Procedure

What Does the DQMATCH Procedure Do?
PROC DQMATCH creates match-codes as a basis for standardization or

transformation. The match-codes reflect the relative similarity of data values.
Match-codes are created based on a specified match definition in a specified locale. The
match-codes are written to an output SAS data set. Values that generate the same
match-codes are candidates for transformation or standardization.

The DQMATCH procedure can generate cluster numbers for input values that
generate identical match-codes. Cluster numbers are not assigned to input values that
generate unique match-codes. Input values that generate a unique match-code (no
cluster number) can be excluded from the output data set. Blank values can be retained
in the output data set. Blank values can receive a cluster number.

A specified sensitivity level determines the amount of information in the match-codes.
The amount of information in the match-code determines the number of clusters and
the number of entries in each cluster. Higher sensitivity–levels produce fewer clusters,
with fewer entries per cluster. Use higher sensitivity–levels when you need matches
that are more exact. Use lower sensitivity–levels to sort data into general categories or
to capture all values that use different spellings to convey the same information.

20 Syntax: DQMATCH Procedure � Chapter 4

Syntax: DQMATCH Procedure
Requirements: At least one CRITERIA statement is required.
Note: Match-codes are an encoded version of a character value that is created as a basis
for data analysis and data cleansing. Match-codes are used to cluster and compare
character values. The DQMATCH procedure generates match-codes based on a
definition and sensitivity value.

PROC DQMATCH DATA=<input-data-set>
CLUSTER=<output-numeric-variable-name>
CLUSTER_BLANKS|NO_CLUSTER_BLANKS
CLUSTERS_ONLY
DELIMITER|NODELIMITER
LOCALE=<locale-name>
MATCHCODE=<output-character-variable-name>
OUT=<output- data-set>;

CRITERIA <option(s)>;

PROC DQMATCH Statement

PROC DQMATCH <option(s)>;

Options

CLUSTER=variable-name
specifies the name of the numeric variable in the output data set that contains the
cluster number.
Note: If the CLUSTER= option is not specified and if the CLUSTERS_ONLY

option is specified, an output variable named CLUSTER is created.

CLUSTER_BLANKS | NO_CLUSTER_BLANKS
specifies how to process blank values.
Default: CLUSTER_BLANKS

CLUSTER_BLANKS
specifies that blank values are written to the output data set. The blank values do
not have accompanying match codes.

NO_CLUSTER_BLANKS
specifies that blank values are not written to the output data set.

CLUSTERS_ONLY
specifies that input character values that are part of a cluster are written to the
output data set. Excludes input character values that are not part of a cluster.
Default: This option is not asserted by default. Typically, all input values are

included in the output data set.
Note: A cluster number is assigned only when two or more input values produce

the same match–code.

The DQMATCH Procedure � PROC DQMATCH Statement 21

DATA=data-set-name
specifies then name of the input SAS data set.
Default: The most recently created data set in the current SAS session.

DELIMITER|NODELIMITER
specifies whether exclamation points (!) are used as delimiters.
SAS Default: uses a delimiter.
DataFlux dfPower Studio Default: does not use a delimiter.
Note: Be sure to used delimiters consistently if you plan to analyze, compare, or

combine match codes created in SAS and in DataFlux dfPower Studio.

DELIMITER
when multiple CRITERIA statements are specified, DELIMITER specifies that
exclamation points (!) separate the individual match- codes that make up the
concatenated match- code. Match- codes are concatenated in the order of
appearance of CRITERIA statements in the DQMATCH procedure.

NODELIMITER
specifies that multiple match- codes are concatenated without exclamation point
delimiters.

LOCALE=locale-name
specifies the name of the locale that is used to create match-codes. The locale-name
can be a name in quotation marks, or an expression that evaluates to a locale-name.
It can also be the name of a variable whose value is a locale-name.

The specified locale must be loaded into memory as part of the locale list.
Default: The first locale name in the locale list.
Restriction: If no locale-name is specified, the first locale in the locale list is used.
Note: The match definition, which is part of a locale, is specified in the CRITERIA

statement. This specification allows different match definitions to be applied to
different variables in the same procedure.

MATCHCODE=character-variable
specifies the name of the output character variable that stores the match codes. The
DQMATCH procedure defines a sufficient length for this variable, even if a variable
with the same name exists in the input data set.
MATCH_CD is created if the following statements are all true:

� The MATCHCODE= option is not specified in the DQMATCH procedure.
� The MATCHCODE= option is not specified in subsequent CRITERIA

statements.
� The CLUSTER= option is not specified.
� The CLUSTERS_ONLY option is not specified.

OUT=output-data-set
specifies the name of the output data set for match-codes created with the
DQMATCH procedure. The DQMATCH procedure creates match-codes for specified
character variables in an input data set.
Note: If the specified output data set does not exist, the DQMATCH procedure

creates it.

22 CRITERIA Statement � Chapter 4

CRITERIA Statement

Creates match codes and optional cluster numbers for an input variable.

Requirement: At least one CRITERIA statement is required in DQMATCH procedures.

CRITERIA CONDITION=<integer>
DELIMSTR=<variable-name>|VAR=<variable-name>
EXACT|MATCHDEF
MATCHCODE=<output-character-variable>
SENSITIVITY=<sensitivity-level>;

Options

CONDITION=integer
groups CRITERIA statements to constrain the assignment of cluster numbers.

� Multiple CRITERIA statements with the same CONDITION= value are all
required to match the values of an existing cluster to receive the number of that
cluster.

� The CRITERIA statements are applied as a logical AND.

� If more than one CONDITION= option is defined in a series of CRITERIA
statements, then a logical OR is applied across all CONDITION= option values.

� In a table of customer information, you can assign cluster numbers based on
matches between the customer name AND the home address.

� You can also assign cluster numbers on the customer name and organization
address.

� All CRITERIA statements that lack a CONDITION= option receive a cluster
number based on a logical AND of all such CRITERIA statements.

Default: 1

Restriction: If you specify a value for the MATCHCODE= option in the DQMATCH
procedure, and you specify more than one CONDITION= value, SAS generates an
error. To prevent the error, specify the MATCHCODE= option in CRITERIA
statements only.

Note: If you have not assigned a value to the CLUSTER= option in the DQMATCH
procedure, cluster numbers are assigned to a variable named CLUSTER by default.

See: The “DQMATCHINFOGET Function” on page 72

DELIMSTR | VAR
specifies the name of a variable.

Restriction: You cannot specify the DELIMSTR= option and the VAR= option in the
same CRITERIA statement.

See: The “DQPARSE Function” on page 76 and the “DQPARSETOKENPUT
Function” on page 82.

DELIMSTR=variable-name
specifies the name of a variable that has been parsed by the DQPARSE function,
or contains tokens added with the DQPARSETOKENPUT function.

The DQMATCH Procedure � CRITERIA Statement 23

VAR=variable-name
specifies the name of the character variable that is used to create match-codes. If
the variable contains delimited values, use the DELIMSTR= option.
Restriction: The values of this variable cannot contain delimiters added with the

DQPARSE function or the DQPARSETOKENPUT function.

EXACT | MATCHDEF
assigns a cluster number.
Default: If the CLUSTER= option has not been assigned a variable in the

DQMATCH procedure, then cluster numbers are assigned to the variable named
CLUSTER.

Restriction: If you specify the MATCHCODE= option in the DQMATCH procedure,
the match–code is a composite of the exact character-value and the match-code
that is generated by the match-definition.

EXACT
assigns a cluster number based on an exact character match between values.
Restriction: If you specify the EXACT option you cannot specify the

MATCHDEF= option, the MATCHCODE= option or the SENSITIVITY= option.

MATCHDEF=match-definition
specifies the match-definition that is used to create the match-code for the
specified variable.
Restriction: The match-definition must exist in the locale that is specified in the

LOCALE= option of the DQMATCH procedure.
Restriction: If you specify the MATCHDEF= option, you cannot specify the

EXACT option, the MATCHCODE= option, or the SENSITIVITY option.

MATCHCODE=character-variable
specifies the name of the variable that receives the match-codes for the character
variable that is specified in the VAR= option or the DELIMSTR= option.
Restriction: The MATCHCODE= option is not valid if you also specify the

MATCHCODE= option in the DQMATCH procedure.
Restriction: If you are using multiple CRITERIA statements in a single procedure

step, either:
� specify the MATCHCODE=character-variable in each CRITERIA statement
� or generate composite match-codes by specifying the MATCHCODE= option

only in the DQMATCH procedure.

SENSITIVITY=sensitivity-level
determines the amount of information in the resulting match codes. Higher
sensitivity values create match codes that contain more information about the input
values. Higher sensitivity levels result in a greater number of clusters, with fewer
values in each cluster.
Default: The default value is 85.
Valid values: Valid values range from 50 to 95.

Details
Match codes are created for the input variables that are specified in each CRITERIA

statement. The resulting match-codes are stored in the output variables that are named
in the MATCHCODE= option. The MATCHCODE= option can be specified in the
DQMATCH procedure or the CRITERIA statement.

Simple match-codes are created when the CRITERIA statements specify different
values for their respective MATCHCODE= options. Composite match codes are created

24 DQMATCH Examples � Chapter 4

when two or more CRITERIA statements specify the same value for their respective
MATCHCODE= options.

To create match codes for a parsed character variable, specify the DELIMSTR=
option instead of the VAR= option. In the MATCHDEF= option, be sure to specify the
name of the match-definition. This definition is associated with the parse definition that
was used to add delimiters to the character variable. To determine the parse definition
that is associated with a match definition, use the DQMATCHINFOGET function.

DQMATCH Examples

Example 1: Generate Composite Match Codes

The following example uses the DQMATCH procedure to create composite match
codes and cluster numbers. The default sensitivity level of 85 is used in both
CRITERIA statements. The locale ENUSA is assumed to have been loaded into
memory previously with the %DQLOAD AUTOCALL macro.

/* Create the input data set. */
data cust_db;

length customer $ 22;
length address $ 31;
input customer $char22. address $char31.;

datalines;
Bob Beckett 392 S. Main St. PO Box 2270
Robert E. Beckett 392 S. Main St. PO Box 2270
Rob Beckett 392 S. Main St. PO Box 2270
Paul Becker 392 N. Main St. PO Box 7720
Bobby Becket 392 Main St.
Mr. Robert J. Beckeit P. O. Box 2270 392 S. Main St.
Mr. Robert E Beckett 392 South Main Street #2270
Mr. Raul Becker 392 North Main St.
;
run;

/* Run the DQMATCH procedure. */
proc dqmatch data=cust_db out=out_db1 matchcode=match_cd

cluster=clustergrp locale=’ENUSA’;
criteria matchdef=’Name’ var=customer;
criteria matchdef=’Address’ var=address;

run;

/* Print the results. */
proc print data=out_db1;
run;

The DQMATCH Procedure � Example 2: Matching Values Using Mixed Sensitivity Levels 25

Display 4.1 PROC Print Output

The output data set, OUT_DB1, includes the new variables MATCH_CD and
CLUSTERGRP. The MATCH_CD variable contains the composite match code that
represents both the customer name and address. Because the default argument
DELIMITER was used, the resulting match code contains two match code components
(one from each CRITERIA statement) that are separated by an exclamation point.

The CLUSTERGRP variable contains values that indicate that five of the character
values are grouped in a single cluster and that the other three are not part of a cluster.
The clustering is based on the values of the MATCH_CD variable. By looking at the
values for MATCH_CD, you can see that five character values have identical match
code values. Although the match code value for customer Bobby Becket is similar to the
Cluster 1 match codes, the address difference caused it to be excluded in Cluster 1.

Example 2 on page 25 shows how the use of non-default sensitivity levels increases
the accuracy of the analysis.

Note: This example is available in the SAS Sample Library under the name
DQMCDFLT. �

Example 2: Matching Values Using Mixed Sensitivity Levels

The following example is similar to Example 1 on page 24, in that it displays match
codes and clusters for a simple data set. This example differs in that the CRITERIA
statement for the ADDRESS variable uses a sensitivity of 50. The CRITERIA
statement for the NAME variable uses the same default sensitivity of 85.

The use of mixed sensitivities enables you to tailor your clusters for maximum
accuracy. In this case, clustering accuracy is increased when the sensitivity level of a
less important variable is decreased.

This example primarily shows how to identify possible duplicate customers based on
their names. To minimize false duplicates, minimal sensitivity is applied to the
addresses.

/* Create the input data set. */
data cust_db;

length customer $ 22;
length address $ 31;
input customer $char22. address $char31.;

datalines;
Bob Beckett 392 S. Main St. PO Box 2270
Robert E. Beckett 392 S. Main St. PO Box 2270
Rob Beckett 392 S. Main St. PO Box 2270
Paul Becker 392 N. Main St. PO Box 7720

26 Example 2: Matching Values Using Mixed Sensitivity Levels � Chapter 4

Bobby Becket 392 Main St.
Mr. Robert J. Beckeit P. O. Box 2270 392 S. Main St.
Mr. Robert E Beckett 392 South Main Street #2270
Mr. Raul Becker 392 North Main St.
;
run;

/* Run the DQMATCH procedure. */
proc dqmatch data=cust_db out=out_db2 matchcode=match_cd
cluster=clustergrp locale=’ENUSA’;

criteria matchdef=’Name’ var=customer;
criteria matchdef=’Address’ var=address sensitivity=50;

run;

/* Print the results. */
proc print data=out_db2;
run;

Display 4.2 PROC Print Output

The output data set, OUT_DB2, includes the new variables MATCH_CD and
CLUSTERGRP. The MATCH_CD variable contains the match code that represents both
the customer name and address. Because the default argument DELIMITER was used,
the resulting match code contains two match code components (one from each
CRITERIA statement) that are separated by an exclamation point.

The CLUSTERGRP variable contains values that indicate that six of the character
values are grouped in a single cluster and that the other two are not part of any cluster.
The clustering is based on the values of the MATCH_CD variable.

This result is different than in Example 1 on page 24, where only five values were
clustered based on NAME and ADDRESS. This difference is caused by the lower
sensitivity setting for the ADDRESS criteria in the current example. This makes the
matching less sensitive to variations in the address field. Therefore, the value Bobby
Becket has now been included in Cluster 1.392 Main St. is considered a match with 392
S. Main St. PO Box 2270 and the other variations, this was not true at a sensitivity of
85.

Note: This example is available in the SAS Sample Library under the name
DQMCMIXD. �

The DQMATCH Procedure � Example 3: Matching Values Using Minimal Sensitivity 27

Example 3: Matching Values Using Minimal Sensitivity

The following example shows how minimal sensitivity levels can generate inaccurate
clusters. A sensitivity of 50 is used in both CRITERIA statements, which is the
minimum value for this argument.

/* Create the input data set. */
data cust_db;

length customer $ 22;
length address $ 31;
input customer $char22. address $char31.;

datalines;
Bob Beckett 392 S. Main St. PO Box 2270
Robert E. Beckett 392 S. Main St. PO Box 2270
Rob Beckett 392 S. Main St. PO Box 2270
Paul Becker 392 N. Main St. PO Box 7720
Bobby Becket 392 Main St.
Mr. Robert J. Beckeit P. O. Box 2270 392 S. Main St.
Mr. Robert E Beckett 392 South Main Street #2270
Mr. Raul Becker 392 North Main St.
;
run;

/* Run the DQMATCH procedure. */
proc dqmatch data=cust_db out=out_db3 matchcode=match_cd

cluster=clustergrp locale=’ENUSA’;
criteria matchdef=’Name’ var=customer sensitivity=50;
criteria matchdef=’Address’ var=address sensitivity=50;

run;

/* Print the results. */
proc print data=out_db3;
run;

Display 4.3 PROC Print Output

The output data set OUT_DB3 includes the variables MATCH_CD and
CLUSTERGRP. The MATCH_CD variable contains the match code that represents both
the customer name and address. Because the default argument DELIMITER was used,
the resulting match code contains two match code components (one from each
CRITERIA statement) that are separated by an exclamation point.

28 Example 4: Creating Match Codes for Parsed Values � Chapter 4

The CLUSTERGRP variable contains values that indicate that six of the values are
grouped in one cluster and that the other two are grouped in another. The clustering is
based on the values of the MATCH_CD variable. This example shows that, with a
minimal sensitivity level of 50, the following values match and form a cluster.

Mr. Raul Beckett
Paul Becker

A higher sensitivity level would not cluster these observations.

Note: This example is available in the SAS Sample Library under the name
DQMCMIN. �

Example 4: Creating Match Codes for Parsed Values
The following example creates match codes for parsed character data. The program

loads locales, determines a parse definition, creates character elements, creates parsed
character values, and creates match codes for the parse character elements.

/* load locales */
%dqload(dqlocale=(enusa), dqsetuploc=(’your-dqsetup-file-here’)

/* Determine the parse definition associated with your */
/* match definition. */
data _null_;

parsedefn=dqMatchInfoGet(’Name’);
call symput(’parsedefn’, parsedefn);
put ’The parse definition for the NAME match definition is: ’ parsedefn;
tokens=dqParseInfoGet(parsedefn);
put ’The ’ parsedefn ’parse definition tokens are:’ / @5 tokens;

run;

/* Create variables containing name elements. */
data parsed;

length first last $ 20;
first=’Scott’; last=’James’; output;
first=’James’; last=’Scott’; output;
first=’Ernie’; last=’Hunt’; output;
first=’Brady’; last=’Baker’; output;
first=’Ben’; last=’Riedel’; output;
first=’Sara’; last=’Fowler’; output;
first=’Homer’; last=’Webb’; output;
first=’Poe’; last=’Smith’; output;

run;

/* Create parsed character values. */
data parsedview;

set parsed;
length delimstr $ 100;

* Insert one token at a time;
delimstr=dqParseTokenPut(delimstr, first, ’Given Name’, ’Name’);
delimstr=dqParseTokenPut(delimstr, last, ’Family Name’, ’Name’);

run;

The DQMATCH Procedure � Example 5: Clustering with Multiple CRITERIA Statements 29

/* Generate match codes using the parsed character values. */
proc dqmatch data=parsedview

out=mcodes;
criteria matchdef=’Name’ delimstr=delimstr sensitivity=85;

run;

/* Print the match codes. */
proc print data=mcodes;

title ’Look at the match codes from PROC DQMATCH’;
run;

Note: This example is available in the SAS Sample Library under the name
DQMCPARS. �

Example 5: Clustering with Multiple CRITERIA Statements

The following example assigns cluster numbers based on a logical OR of two pairs of
CRITERIA statements. Each pair of CRITERIA statements is evaluated as a logical
AND. The cluster numbers are assigned based on a match between the customer name
and address, or the organization name and address.

/* Load the ENUSA locale. The system option DQSETUPLOC= is already set. */
%dqload(dqlocale=(enusa))

data customer;
length custid 8 name org addr $ 20;
input custid name $char20. org $char20. addr $char20.;

datalines;
1 Mr. Robert Smith Orion Star Corporation 8001 Weston Blvd.
2 The Orion Star Corp. 8001 Westin Ave
3 Bob Smith 8001 Weston Parkway
4 Sandi Booth Belleview Software 123 N Main Street
5 Mrs. Sandra Booth Belleview Inc. 801 Oak Ave.
6 sandie smith Booth Orion Star Corp. 123 Maine Street
7 Bobby J. Smythe ABC Plumbing 8001 Weston Pkwy
;
run;
/* Generate the cluster data. Because more than one condition

is defined, a variable named CLUSTER is created automatically */
proc dqmatch data=customer

out=customer_out;
criteria condition=1 var=name sensitivity=85 matchdef=’Name’;
criteria condition=1 var=addr sensitivity=70 matchdef=’Address’;

criteria condition=2 var=org sensitivity=85 matchdef=’Organization’;
criteria condition=2 var=addr sensitivity=70 matchdef=’Address’;

run;

/* Print the result. */
proc print data=customer_out noobs;
run;

30 Example 6: Generating Multiple Simple Match Codes � Chapter 4

The output is as follows:

custid name org addr CLUSTER
4 Sandi Booth Belleview Software 123 N Main Street 1
6 sandie smith Booth Orion Star Corp. 123 Maine Street 1
1 Mr. Robert Smith Orion Star Corporation 8001 Weston Blvd. 2
7 Bobby J. Smythe ABC Plumbing 8001 Weston Pkwy 2
3 Bob Smith 8001 Weston Parkway 2
2 The Orion Star Corp. 8001 Westin Ave 2
5 Mrs. Sandra Booth Belleview Inc. 801 Oak Ave.

In the preceding output, the two rows in cluster 1 matched on name and address.
The rows in cluster 2 matched on name and address as well as organization and
address. The inclusion of Bobby J. Smythe in cluster 2 indicates either a data error or a
need for further refinement of the criteria and conditions. The last row in the output
did not receive a cluster number because that row did not match any other rows.

Note: This example is available in the SAS Sample Library under the name
DQMLTCND. �

Example 6: Generating Multiple Simple Match Codes

The following example creates more than one simple match code with a single
DQMATCH procedure step. The first example, created a composite match code by
specifying the MATCHCODE= option in the DQMATCH procedure statement.

This example creates simple match codes by specifying the MATCHCODE= option on
each CRITERIA statement. In addition, unlike the first example, which creates a
cluster number, you cannot create a cluster number when generating multiple simple
match codes.

The default sensitivity level of 85 is used in both CRITERIA statements. The locale
ENUSA is assumed to have been loaded into memory previously with the %DQLOAD
AUTOCALL macro.

/* Create the input data set. */
data cust_db;

length customer $ 22;
length address $ 31;
input customer $char22. address $char31.;

datalines;
Bob Beckett 392 S. Main St. PO Box 2270
Robert E. Beckett 392 S. Main St. PO Box 2270
Rob Beckett 392 S. Main St. PO Box 2270
Paul Becker 392 N. Main St. PO Box 7720
Bobby Becket 392 Main St.
Mr. Robert J. Beckeit P. O. Box 2270 392 S. Main St.
Mr. Robert E Beckett 392 South Main Street #2270
Mr. Raul Becker 392 North Main St.
;
run;

The DQMATCH Procedure � Example 6: Generating Multiple Simple Match Codes 31

/* Run the DQMATCH procedure. */
proc dqmatch data=cust_db out=out_db5 locale=’ENUSA’;

criteria matchdef=’Name’ var=customer matchcode=mc_name;
criteria matchdef=’Address’ var=address matchcode=mc_addr;

run;

/* Print the results. */
proc print data=out_db5;
run;

The output data set, OUT_DB5, includes the new variables MC_NAME and
MC_ADDR. Compare this to the result of example 1, where the same match code values
were combined to form a composite match code in the MATCH_CD variable.

Using simple or composite match codes depends on the type of comparison that you
need. If you want to compare names and addresses separately, generate separate
match codes as shown in this example. If you want to do comparisons based on the
combined Name and Address, generate a composite match code as shown in example 1.

See Example 1 on page 24 to compare the examples.

Note: This example is available in the SAS Sample Library under the name
DQMCDFL2. �

32

33

C H A P T E R

5
The DQSCHEME Procedure

Overview: DQSCHEME Procedure 33
What Does the DQSCHEME Procedure Do? 33

Syntax: DQSCHEME Procedure 34

PROC DQSCHEME Statement 34

APPLY Statement 35

CONVERT Statement 36
CREATE Statement 37

PROC DQSCHEME Examples 40

Example 1: Creating an Analysis Data Set 40

Example 2: Creating Schemes 41

Example 3: Creating BFD Schemes 42

Example 4: Applying Schemes 42

Overview: DQSCHEME Procedure

What Does the DQSCHEME Procedure Do?
PROC DQSCHEME creates scheme data sets and analysis data sets and applies

schemes to input data sets. You can also apply schemes with the DQSCHEMEAPPLY
function or CALL routine.

See “DQSCHEMEAPPLY CALL Routine” on page 84
The DQSCHEME procedure enables you to create and apply schemes that transform

similar data values into the single most common value, as shown in the following
diagram.

34 Syntax: DQSCHEME Procedure � Chapter 5

Figure 5.1 Transform Similar Data Values

Input Data

Robert T. Green

Robert T. Green

Robert T. Green

Robert T. Green

Robert T. Green

Ryan T. Green

Robert W. Green

Apply
Scheme

Robert T. Green

Robert Green

Robert Thomas Green

Robert T. Green

Rob Greene

Ryan T. Green

Robert W. Green

Output Data

The DQSCHEME procedure also analyzes and reports on the quality of your data.
See Chapter 5, “The DQSCHEME Procedure,” on page 33.

Syntax: DQSCHEME Procedure
PROC DQSCHEME DATA=< input-data-set>

BFD|NOBFD
OUT=<output-data-set> ;

APPLY<option(s)>;

CONVERT<option(s)>;

CREATE<option(s)>;

PROC DQSCHEME Statement

PROC DQSCHEME <option(s)>

Options

BFD | NOBFD
specifies the format of the scheme.

BFD
specifying BFD indicates that all schemes are in Blue Fusion Data format.

NOBFD
specifying NOBFD indicates that all schemes are in SAS format.
The DQSCHEME procedure can create and apply schemes in either format.

Schemes in BFD format can be edited using the feature-rich graphical user interface
of the DataFlux dfPower Studio software.
Default: BFD
Restriction: In schemes stored in SAS format, data set labels are used to store

meta options. Therefore, you should not specify data set labels in scheme data sets

The DQSCHEME Procedure � APPLY Statement 35

that are stored in SAS format. If you specify data set labels, you overwrite the
scheme metadata.

Restriction: Always specify NOBFD when creating schemes in the z/OS operating
environment.

See: “Meta Options” on page 9

DATA=input-data-set
When you use the CREATE statement to create schemes, the DATA= option specifies
the SAS data set from which one or more schemes are built.

When you use the APPLY statement to apply existing schemes, the DATA= option
specifies the SAS data set against which the schemes are applied.
Default: The most recently created data set in the current SAS session.

OUT=output-data-set
specifies the output-data-set. If the specified data set does not exist, the DQSCHEME
procedure creates it.

If you use one or more APPLY statements, you must use the OUT= option to
specify the name of the output data set. Results are written to the output data set
after all schemes have been applied. If you specify OUT= without any APPLY
statements an empty output data set is created.

APPLY Statement

Applies a scheme to transform the values of a single variable.

See also: “Applying Schemes” on page 9

APPLY LOCALE=<locale-name>
MATCHDEF=<match-definition>
MODE=PHRASE|ELEMENT
SCHEME=<scheme-name>
SCHEME_LOOKUP=EXACT|IGNORE_CASE |USE_MATCHDEF
SENSITIVITY=<sensitivity-level>
VAR=<variable-name>;

Options

LOCALE=locale-name
specifies the name of the match definition, in the specified locales, that is used to
create match codes running the application of the scheme.

MATCH-DEFINITION=match-definition
specifies the name of the match definition, in the specified locales, that is used to
create match codes running the application of the scheme.

MODE=ELEMENT | PHRASE
specifies a mode of scheme application. This information is stored in the scheme as
metadata, which specifies a default mode when the scheme is applied. The default
mode is superseded by a mode in the APPLY statement, or in the
DQSCHEMEAPPLY function or CALL routine. See “Applying Schemes” on page 9.

36 CONVERT Statement � Chapter 5

ELEMENT
specifies that each element in each value of the input character variable is
compared to the data values in the scheme. When
SCHEME_LOOKUP=USE_MATCHDEF, the match code for each element is
compared to match codes generated for each element, in each DATA variable value
in the scheme.

PHRASE
this default value specifies that the entirety of each value of the input character
variable is compared to the data values in the scheme. When
SCHEME_LOOKUP=USE_MATCHDEF, the match code for the entire input value
is compared to match codes that are generated for each data value in the scheme.

SCHEME=scheme-name
identifies the scheme to apply to the input data set. In all the operating
environments other than z/OS, schemes using BFD format are identified by
specifying a fileref or a fully qualified name that ends in .sch.bfd

SCHEME_LOOKUP=EXACT | IGNORE_CASE | USE_MATCHDEF
specifies the method of applying the scheme to the data values of the input variable.

SENSITIVITY=sensitivity-level
defines the amount of information in the resulting match codes.

VAR=variable-name
specifies the name of the variable that is analyzed and transformed.

CONVERT Statement

Converts schemes between SAS and BFD formats.

Required: All options are required.

See also: “Applying Schemes” on page 9.

CONVERT BFDTOSAS | SASTOBFD
IN=input data-set
OUT=output data-set;

Arguments

BFDTOSAS | SASTOBFD
specify BDFTOSAS to convert a scheme in Blue Fusion Data format to SAS format.
Specify SASTOBFD to convert a scheme in SAS format to Blue Fusion Data format.
Schemes with SAS format are created with the CREATE statement using the
NOBFD option in the DQSCHEME procedure.

CAUTION:
In the z/OS operating environment, specify BFDTOSAS only. In z/OS, schemes in BFD
format can be applied but not created. �

The DQSCHEME Procedure � CREATE Statement 37

IN=scheme-data-set
identifies the existing scheme data set that is to be converted.

If BFDTOSAS is specified, then the value must be the name of a fileref that
references a fully qualified path in lowercase that ends in .sch.bfd.

If SASTOBFD is specified, then the value must be a one-level or two-level SAS
data set name.
Note In the z/OS operating environment, the PDS specification has no special

naming requirements.

OUT=converted-scheme-data-set
specifies the name of the data set with the converted scheme.

If BFDTOSAS is specified, the value must be a one-level or two-level SAS data set
name.

If SASTOBFD is specified, the value must be the name of a fileref. This fileref
references a fully qualified path in lowercase that ends in .sch.bfd.
Note: the z/OS operating environment, the PDS specification has no special naming

requirements.

CREATE Statement

Creates a scheme or an analysis data set.

See also: “Applying Schemes” on page 9

CREATE ANALYSIS=<analysis-data-set>
INCLUDE_ALL
LOCALE=<locale-name>
MATCHDEF=<match-definition>
MODE= PHRASE|ELEMENT
SCHEME=<scheme-name>
SCHEME_LOOKUP=EXACT|IGNORE_CASE|USE_MATCHDEF
SENSITIVITY=<sensitivity-level>
VAR=<variable-name>;

Options

ANALYSIS=analysis-data-set
names the output data set that stores analytical data.
Restriction: This option is required if the SCHEME= option is not specified.
See: “Create the Schemes” on page 8

INCLUDE_ALL
specifies that the scheme is to contain all of the values of the input variable. This
includes input variables:

� with unique match codes
� that were not transformed
� that did not receive a cluster number

Note: The INCLUDE_ALL option is not set by default.

38 CREATE Statement � Chapter 5

LOCALE=locale-name
specifies the locale that contains the specified match definition. The value can be a
locale name in quotation marks. It can be the name of a variable whose value is a
locale name, or is an expression that evaluates to a locale name.

The specified locale must be loaded into memory as part of the locale list.

Default: The first locale in the locale list.

Restriction: If no value is specified, the default locale is used.

See: “Load and Unload Locales” on page 7

MATCHDEF=match-definition
names the match definition in the specified locale that is used to establish cluster
numbers. You can specify any valid match definition.

The value of the MATCHDEF= option is stored in the scheme as a meta option.
This provides a default match definition when a scheme is applied. This meta option
is used only when SCHEME_LOOKUP=MATCHDEF. The default value that is
supplied by this meta option is superseded by match definitions specified in the
APPLY statement or the DQSCHEMEAPPLY function or CALL routine.

Best Practice: Use definitions whose names end in (SCHEME BUILD) when using
the ENUSA locale. These match definitions yield optimal results in the
DQSCHEME procedure.

See: “Meta Options” on page 9

MODE= ELEMENT | PHRASE
specifies a mode of scheme application. This information is stored in the scheme as
metadata, which specifies a default mode when the scheme is applied. The default
mode is superseded by a mode in the APPLY statement, or in the
DQSCHEMEAPPLY function or CALL routine. See “Applying Schemes” on page 9

ELEMENT
specifies that each element in each value of the input character variable is
compared to the data values in the scheme. When
SCHEME_LOOKUP=USE_MATCHDEF, the match code for each element is
compared to match codes generated for each element, in each DATA variable value
in the scheme.

PHRASE
this default value specifies that the entirety of each value of the input character
variable is compared to the data values in the scheme. When
SCHEME_LOOKUP=USE_MATCHDEF, the match code for the entire input value
is compared to match codes that are generated for each data value in the scheme.

SCHEME=scheme-name
specifies the name or the fileref of the scheme that is created. The fileref must
reference a fully qualified path with a filename that ends in .sch.bfd. Lowercase
letters are required. To create a scheme data set in Blue Fusion Data format, specify
the BFD option in the DQSCHEME procedure.

CAUTION:
In the z/OS operating environment, specify only schemes using SAS formats.BFD
schemes can be applied, but not created in the z/OS operating environment. �

To create a scheme in SAS format, specify the NOBFD option in the DQSCHEME
procedure and specify a one-level or two-level SAS data set name.

Restriction: The SCHEME= option is required if the ANALYSIS= option is not
specified.

See: “Syntax: DQSCHEME Procedure ”on page 34

The DQSCHEME Procedure � CREATE Statement 39

SCHEME_LOOKUP= EXACT | IGNORE_CASE |USE_MATCHDEF
specifies one of three mutually exclusive methods of applying the scheme to the
values of the input character variable. Valid values are defined as follows:

EXACT
this default value specifies that the values of the input variable are to be
compared to the DATA values in the scheme without changing the input values in
any way. The transformation value in the scheme is written into the output data
set only when an input value exactly matches a DATA value in the scheme. Any
adjacent blank spaces in the input values are replaced with single blank spaces
before comparison.

IGNORE_CASE
specifies that capitalization is to be ignored when input values are compared to the
DATA values in the scheme. Any adjacent blank spaces in the input values are
replaced with single blank spaces before comparison.

USE_MATCHDEF
specifies that comparisons are to be made between the match codes of the input
values and the match codes of the DATA values in the scheme. A transformation
occurs when the match code of an input value is identical to the match code of a
DATA value in the scheme.

Specifying USE_MATCHDEF enables the options LOCALE=, MATCHDEF=,
and SENSITIVITY=, which can be used to override the default values that might
be stored in the scheme.
The value of the SCHEME_LOOKUP= option is stored in the scheme as a meta

option. This specifies a default lookup method when the scheme is applied. The
default supplied by this meta option is superseded by a lookup method that is
specified in the APPLY statement, or in the DQSCHEMEAPPLY function or CALL
routine.

See: “Meta Options” on page 9

SENSITIVITY=sensitivity-level
determines the amount of information that is included in the match codes that are
generated during the creation and perhaps the application of the scheme.

Higher sensitivity values generate match codes that contain more information.
These match codes generally result in:

� fewer matches

� greater number of clusters

� fewer values in each cluster

The value of the SENSITIVITY= option is stored in the scheme as a meta option.
This provides a default sensitivity value when the scheme is applied. This meta
option is used at apply time only when SCHEME_LOOKUP=MATCHDEF. The
default value supplied by this meta option is superseded by a sensitivity value
specified in the APPLY statement, or in the DQSCHEMEAPPLY function or CALL
routine.

Default: 85

See: “Meta Options” on page 9

Valid values: 50 to 95

VAR=input-character-variable
specifies the input character variable that is analyzed and transformed. The
maximum length of input values is 1024 bytes.

40 PROC DQSCHEME Examples � Chapter 5

PROC DQSCHEME Examples

Example 1: Creating an Analysis Data Set
This example generates an analysis of the STATE variable in the VENDORS data set.

Note: You do not have to create a scheme to generate the analysis data set. �

Note: The locale ENUSA is assumed to have been loaded into memory as part of the
locale list. �

/* Create the input data set. */
data vendors;

input city $char16. state $char22. company $char34.;
datalines;
Detroit MI Ford Motor
Dallas Texas Wal-mart Inc.
Washington District of Columbia Federal Reserve Bank
SanJose CA Wal mart
New York New York Ernst & Young
Virginia Bch VA TRW INC - Space Defense
Dallas TX Walmart Corp.
San Francisco California The Jackson Data Corp.
New York NY Ernst & Young
Washington DC Federal Reserve Bank 12th District
New York N.Y. Ernst & Young
San Francisco CA Jackson Data Corporation
Atlanta GA Farmers Insurance Group
RTP NC Kaiser Permanente
New York NY Ernest and Young
Virginia Beach VIRGINIA TRW Space & Defense
Detroit Michigan Ford Motor Company
San Jose CA Jackson Data Corp
Washington District of Columbia Federal Reserve Bank
Atlanta GEORGIA Target
;
run;
/* Create the analysis data set. */
proc dqscheme data=vendors;

create analysis=a_state
matchdef=’State (Scheme Build)’
var=state
locale=’ENUSA’;

run;

/* Print the analysis data set. */
title ’Analysis of state name variations’;
proc print data=a_state;
run;

The DQSCHEME Procedure � Example 2: Creating Schemes 41

For each value of the STATE variable, the analysis data set WORK.A_STATE shows
the number of occurrences and the associated cluster number. Variables that are not
clustered with any other values have a blank value for the cluster number.

Note: This example is available in the SAS Sample Library under the name
DQANALYZ. �

Example 2: Creating Schemes
The following example generates three schemes in SAS format. Note that the locale

ENUSA is assumed to have been loaded into memory as part of the locale list.

/* Create the input data set. */
data vendors;
input city $char17. state $char22. company $char36.;

datalines;
Detroit MI Ford Motor
Dallas Texas Wal-mart Inc.
Washington District of Columbia Federal Reserve Bank

/* See Example 1: Creating an Analysis Data Set for the full data set. */

Washington District of Columbia Federal Reserve Bank
Atlanta GEORGIA Target
;
run;

proc dqscheme data=vendors nobfd;
create matchdef=’City (Scheme Build)’ var=city

scheme=city_scheme locale=’ENUSA’;
create matchdef=’State (Scheme Build)’ var=state

scheme=state_scheme locale=’ENUSA’;
create matchdef=’Organization (Scheme Build)’

var=company scheme=org_scheme locale=’ENUSA’;
run;

title ’City scheme’;
proc print data=work.city_scheme;
run;

title ’State scheme’;
proc print data=work.state_scheme;
run;

title ’Organization scheme’;
proc print data=work.org_scheme;
run;

Notice that this example did not create and immediately apply one or more schemes
within the same step. After you create schemes, it is important that someone familiar
with the data review the results. In this particular example, the City scheme chose
Dalas as the transformation value for the city of Dallas. Although the values Dalas and
Dallas were correctly clustered, you would probably prefer Dallas to be the
transformation value.

42 Example 3: Creating BFD Schemes � Chapter 5

Note: This example is available in the SAS Sample Library under the name
DQSASSCH. �

Example 3: Creating BFD Schemes

Blue Fusion Data schemes can be read by SAS and by the dfPower Studio software.
Generating Blue Fusion Data schemes is advantageous when you want to use dfPower
to edit the schemes. The following example generates three schemes in Blue Fusion
Data format. Note that the locale ENUSA is assumed to be loaded into memory as part
of the locale list.

/* Create filerefs with required suffixes. */
filename city ’c:\my schemes\city.sch.bfd’;
filename state ’c:\my schemes\state.sch.bfd’;
filename org ’c:\my schemes\org.sch.bfd’;

/* Create the input data set. */
data vendors;

input city $char17. state $char22. company $char36.;
datalines;
Detroit MI Ford Motor
Dallas Texas Wal-mart Inc.
Washington District of Columbia Federal Reserve Bank

/* See Example 1: Creating an Analysis Data Set for the full data set. */

Washington District of Columbia Federal Reserve Bank
Atlanta GEORGIA Target
;
run;

proc dqscheme data=vendors bfd;
create matchdef=’City (Scheme Build)’
var=city scheme=city locale=’ENUSA’;

create matchdef=’State (Scheme Build)’
var=state scheme=state locale=’ENUSA’;

create matchdef=’Organization (Scheme Build)’
var=company scheme=org locale=’ENUSA’;

run;

Note: This example is available in the SAS Sample Library under the name
DQBFDSCH. �

Example 4: Applying Schemes

In this example, the APPLY statement generates cleansed data in the
VENDORS_OUT data set. All schemes are applied before the result is written into the
output data set. The locale ENUSA is assumed to be loaded into memory as part of the
locale list.

The DQSCHEME Procedure � Example 4: Applying Schemes 43

/* Create filerefs with required suffixes. */
filename city ’c:\my schemes\city.sch.bfd’;
filename state ’c:\my schemes\state.sch.bfd’;
filename org ’c:\my schemes\org.sch.bfd’;

/* Create the input data set. */
data vendors;
input city $char17. state $char22. company $char36.;

datalines;
Detroit MI Ford Motor
Dallas Texas Wal-mart Inc.
Washington District of Columbia Federal Reserve Bank

/* See Example 1: Creating an Analysis Data Set for the full data set. */

Washington District of Columbia Federal Reserve Bank
Atlanta GEORGIA Target
;
run;

proc dqscheme data=vendors out=vendors_out bfd;
create matchdef=’City (Scheme Build)’

var=city scheme=city_scheme locale=’ENUSA’;
create matchdef=’State (Scheme Build)’

var=state scheme=state_scheme locale=’ENUSA’;
create matchdef=’Organization (Scheme Build)’

var=company scheme=org_scheme locale=’ENUSA’;
apply var=city scheme=city_scheme;
apply var=state scheme=state_scheme;
apply var=company scheme=org_scheme;

run;

title ’Result after Applying all Three SAS Format Schemes’;
proc print data=work.vendors_out;
run;

Note that the APPLY statements do not specify a locale. Nor do they specify the
scheme lookup method using the SCHEME_LOOKUP= option. Because neither the
locale nor the lookup method is specified, the schemes are applied with the ENUSA
locale. The ENUSA locale is stored in the schemes.

SCHEME_LOOKUP=EXACT (the default) specifies that the value in the scheme
replaces the input value in the output data set. This occurs when an exact match is
found between the input value and a DATA value in the scheme. Using the default
scheme apply mode MODE=PHRASE is used, each input value is compared to the
DATA values in the scheme.

Note: This example is available in the SAS Sample Library under the name
DQAPPLY. �

44

45

C H A P T E R

6
The DQSRVADM Procedure

Overview: DQSRVADM Procedure 45
What Does the DQSRVADM Procedure Do? 45

Syntax: DQSRVADM Procedure 45

PROC DQSRVADM Statement 45

The Job Status Data Set 46

Security 46
PROC DQSRVADM Examples 47

Example 1: Generate a Job Status Data Set 47

Example 2: Clean Up Jobs and Logs 47

Overview: DQSRVADM Procedure

What Does the DQSRVADM Procedure Do?
The DQSRVADM procedure creates a data set that provides the name, type, and

description of all DataFlux dfPower Architect and DataFlux dfPower Profile jobs. This
includes jobs that ran or that are running on a specified port on a DataFlux Integration
Server. Status information is provided for all jobs that have a log file on the server.

Syntax: DQSRVADM Procedure
PROC DQSRVADM option(s);

OUT=output-data-set
PASSWORD=password
PORT= job-port-number
USERID= userid

;

PROC DQSRVADM Statement

PROC DQSRVADM <option(s)>;

46 The Job Status Data Set � Chapter 6

Options

HOST=host-name
identifies the host of the DataFlux Integration Server.
Default: localhost

OUT=output-data-set
specifies the storage location of the job status data set.

PASSWORD=password
authenticates the user according to the registry in the DataFlux Integration Server.
The password can be plain text or SAS encoded.

PORT=port-number
identifies the port through which the local host communicates with the DataFlux
Integration Server. If the value is not specified, or the value is 0 or a negative
number, the default port number is used.
Default 21036

The Job Status Data Set
The job status data set contains the following variables:

JOBID
identifies the job on the DataFlux Integration Server. These values can be applied
to the functions DQSRVJOBSTATUS, DQSRVKILLJOB, DQSRVCOPYLOG, and
DQSRVDELETELOG, as described in “DataFlux Integration Server Functions” on
page 60.

STATUS
provides the following status codes:

0 Job completed successfully.

1 Job failed.

2 Job still running.

JOBDESC
provides the following descriptive text:

Architect job
Profile job
Service
Unknown type

JOBTYPE
provides the following job type codes:

0 Architect service

1 Architect job

2 Profile job

Security
If security is implemented on a DataFlux Integration Server, then you need to

authenticate with the function DQSRVUSER before you run PROC DQSRVADM.

The DQSRVADM Procedure � Example 2: Clean Up Jobs and Logs 47

See “DQSRVUSER Function” on page 100

PROC DQSRVADM Examples

Example 1: Generate a Job Status Data Set

This example generates a data set that provides information about jobs that are
running or have run on a DataFlux Integration Server.

proc dqsrvadm
out=work.jobReport
host=’myhost’
port=50001;

run;

The job status data set contains information about jobs that are represented by log
files on the server.

Example 2: Clean Up Jobs and Logs

This example generates a job report and then uses the contents of the report to
terminate all jobs and delete all log files on the DataFlux Integration Server:

proc dqsrvadm
out=work.jobReport
host=’myhost’
port=50001;

run;

data _null_;
set work.joblist;
kjrc=dqsrvkilljob (jobid, ’ myhost’ , 50001);
dlrc=dqsrvdeletelog (jobid, ’ myhost’ , 50001);

run;

48

49

C H A P T E R

7
The DQSRVSVC Procedure

Overview: DQSRVSVC Procedure 49
What Does the DQSRVSVC Procedure Do? 49

Syntax: DQSRVSVC Procedure 49

PROC DQSRVSVC Statement 50

The Input and Output Data Sets 52

The Input Data Set 52
The Output Data Set 52

Examples 52

Example 1: Run a DataFlux dfPower Architect Service 52

Example 2: Macros= Option 52

Overview: DQSRVSVC Procedure

What Does the DQSRVSVC Procedure Do?
The DQSRVSVC procedure runs a DataFlux dfPower Architect real-time service on a

DataFlux Integration Server. DataFlux dfPower Architect real-time services are batch
processes that are intended to cleanse smaller amounts of data at the point of data
entry. Data processing is intended to be synchronous, when a client application
requests the service and awaits a response. The DQSRVSVC procedure authenticates
you on the server, requests a service, delivers input data to the server, and delivers
output data to a SAS data set.

To improve performance, large input data sets are delivered to the DataFlux
Integration Server in chunks of a specified size.

To cleanse or analyze larger amounts of data asynchronously, execute a DataFlux job
using the functions DQSRVPROFJOB or DQSRVARCHJOB.

Syntax: DQSRVSVC Procedure
PROC DQSRVSVC DATA=<input-data-set>

BLOCKSIZE=<rows-per-message>
HOST=<host-name>
MACROS=<macro-list>
MISSINGVARSOK
NOPRINT

50 PROC DQSRVSVC Statement � Chapter 7

OUT=<output-data-set>
PASSWORD=<password-on-server>
PORT=<port-number>
SERVICE=<service-name>
SERVICEINFO
TIMEOUT=<message-processing-limit>
TRIM
USERID=<user-name-on-server>;

PROC DQSRVSVC Statement

PROC DQSRVSVC <option(s)>;

Options

BLOCKSIZE=rows-per-message
specifies the number of rows of source data that are transmitted to the DataFlux
Integration Server, in multiple messages. If this option is not specified, then the
entire data set is transmitted in a single message. Transmitting large data sets in a
single message can restrict resources on the DataFlux Integration Server. The server
processes each message separately. Output is delivered as usual in a single message.

The DataFlux dfPower Architect service program needs to be written to
accommodate multiple messages.

Restriction: Services that require the entire data set, such as those that calculate
averages or frequencies, cannot use the BLOCKSIZE= option.

DATA=data-set-name
identifies name of the input data set.
Default: If the DATA= option is not specified, the input data set _LAST_ is used.

HOST=host-machine
identifies the name of the machine hosting the DataFlux Integration Server. If the
HOST= option is not specified, localhost is used by default.
Default: localhost

MACROS=macro-list
takes a quoted string as its value. The contents of the string is a series of
name-value pairs. These pairs are passed to the service. If the service uses a macro
with a name that matches a name in the macro list, the name is assigned the
corresponding macro value.

Both the macro name and macro value in each pair must appear within single
quotation marks. An equal sign must separate the macro name and the macro value.
A comma separates each name-value pair from the next name-value pair in the
MACROS= option list.
See: Example 2 on page 52

MISSINGVARSOK
indicates that the DataFlux real-time service is to be allowed to continue to run
when one or more variables (or table columns) are missing from the input data set.
When the MISSINGVARSOK option is set, any data that is missing from the input
data set is assumed to be non-critical, or required by the DataFlux real-time service.

The DQSRVSVC Procedure � PROC DQSRVSVC Statement 51

Default: MISSINGVARSOK is not set by default.

NOPRINT
if the SERVICEINFO option is specified, suppresses writing the SERVICEINFO
information to the SAS log.

OUT=output-data-set
identifies the name of the output data set. DataFlux dfPower Architect services
always create new data sets or overwrite existing data sets.

Default: If the OUT= option is not specified, the input data set _LAST_ is used.

PASSWORD=password
authenticates the user according to the registry in the DataFlux Integration Server.
The password can be plain text or SAS encoded.

Note: If security has not been configured on the server, the PASSWORD= option is
ignored.

See: “DataFlux Integration Server Passwords” on page 6

PORT=port-number
identifies the port number through which the localhost communicates with the
DataFlux Integration Server. If this option is not specified, or if the value is zero or a
negative number, the default port number 21036 is used.

Default: 21036

SERVICE=service-name
identifies the service on the DataFlux Integration Server.

SERVICEINFO
writes the input and output columns used by the given service to the data set
specified by the OUT= option.

The data set has four columns:

� Name is the column name.

� Type is the type of data in column -character(C) or numeric(N).

� Length is the length of column data.

� Class is the input, output, or macro.

Default: The service information is also written to the SAS log.

Restriction: If SERVICEINFO is specified, the service is not run. Any options
related to the execution of the service, such as BLOCKSIZE= option are ignored.

TIMEOUT
specifies a time in seconds after which the procedure terminates if the localhost
has not received a response from the DataFlux Integration Server. If data is
delivered to the server in multiple messages using the BLOCKSIZE= option, the
TIMEOUT= value is applied to each message.

Tip: A value of zero or a negative number enables the procedure to run without a
time limit.

TRIM
removes any blank spaces from the end of the input data set.

Default: TRIM is not set by default.

USERID
identifies the user according to the registry in the DataFlux Integration Server.

Note: If security has not been configured on the server, the USERID= option is
ignored.

52 The Input and Output Data Sets � Chapter 7

The Input and Output Data Sets

The Input Data Set
The DQSRVSVC procedure acquires the names of the columns that the service

expects to receive as input from the DataFlux dfPower Architect service. In this case,
the name of the input data set must match the name that is specified in the architect
service. If the expected column names do not match the column names in the input
data set, then the DQSRVSVC procedure terminates.

Services can also be created where any named data set can be used for input. In this
case, there is no input data set name required.

The Output Data Set
If the output data set exists, new output data overwrites any existing data. The type

of the output data is determined by the service.

Examples

Example 1: Run a DataFlux dfPower Architect Service
The following example runs a DataFlux dfPower Architect service on a DataFlux

Integration Server that is installed on the local host:

PROC DQSRVSVC
SERVICE=’myService’
DATA=work.insrv
OUT=work.outsrv;

RUN;

The PORT= option is not set, so the server communicates over the default port
21036. The DATA= option and the OUT= option specify that the input and output data
sets are stored in the temporary WORK library. The service was previously created and
uploaded to the DataFlux Integration Server.

Example 2: Macros= Option
The value of the MACROS= option defines two macros, name1 and name2. The macro

name1 has a value equal to ’value1’, and the macro name2 has a value equal to ’value2’.

MACROS=’’ ’name1’=’value1’, ’name2’ = ’value2’ ‘‘

53

C H A P T E R

8
AUTOCALL Macros

AUTOCALL Macros for SAS Data Quality Server 53

AUTOCALL Macros for SAS Data Quality Server

SAS Data Quality Server software provides the following AUTOCALL macros:

� “%DQLOAD AUTOCALL Macro” on page 53

� “%DQPUTLOC AUTOCALL Macro” on page 54

� “%DQUNLOAD AUTOCALL Macro” on page 55

For more general information about the SAS AUTOCALL libraries and macros, see
SAS Macro Language: Reference and SAS Language Reference: Dictionary.

%DQLOAD AUTOCALL Macro

Sets system option values and loads locales into memory.

Syntax
%DQLOAD(DQLOCALE=(locale–1, ..., <locale-n>)

DQSETUPLOC="file-specification"|"path-specification"

DQINFO=0| 1

DQLOCALE=(locale–1, ..., locale-n)
specifies an ordered list of locales to load into memory.

DQSETUPLOC="file-specification" |"path-specification"
identifies the location of the setup file. The setup file in turn identifies the location of
the Quality Knowledge Base. The Quality Knowledge Base contains the specified
locales. In that case, a setup file is not required.

Note: In Windows and UNIX operating environments, the path specification
identifies the root directory of the Quality Knowledge Base.

54 %DQPUTLOC AUTOCALL Macro � Chapter 8

DQINFO=0 | 1
generates additional information in the SAS log about the status of the locale load
operation when DQINFO=1.
Default: 0

Details
Specify the %DQLOAD AUTOCALL macro at the beginning of each data cleansing
program. This ensures that the proper list and order of locales is loaded into memory
before you cleanse data. This loading prevents the use of an unintended default locale
or locale list.

Specify the %DQLOAD macro before data cleansing, instead of at SAS invocation
using an AUTOEXEC or configuration file, to preserve memory and shorten the
duration of the SAS invocation. Doing so is particularly beneficial when the SAS
session is not used to run data cleansing programs.

It is strongly suggested that you use only the %DQLOAD macro to set the value of
the DQLOCALE= system option. Setting the value of this system option by the usual
means (such as an OPTIONS statement) does not load the specified locales into
memory. Not loading locales into memory can lead to the use of an unintended locale.
For the same reason, it is not recommended that you set the DQLOCALE= system
option at SAS invocation using a configuration file or AUTOEXEC.

In addition to setting the DQLOCALE= system option, the %DQLOAD macro also
sets the DQSETUPLOC= system option (if that value is not set by default at your site).
When SAS is installed, the value of the DQSETUPLOC= option is set to point to the
location where the setup file is installed.

Example

In this example, the %DQLOAD macro sets the value of the DQLOCALE system
option. DQLOCALE loads the ENUSA and DEDUE locales into memory, in the UNIX
environment. The %DQLOAD macro also sets the DQSETUPLOC system option, which
points to the location where the setup file is installed.

%DQLOAD(DQLOCALE=(ENUSA DEDEU), DQSETUPLOC=’/sas/dqc/dqsetup.txt’);

%DQPUTLOC AUTOCALL Macro

Displays current information about a specified locale in the SAS log.

Requirement: At least one locale must be loaded into memory before this macro is called.
Tip: Specifying no parameters displays the full report for the default locale.

Syntax
%DQPUTLOC (locale ,short ,parsedefn)

locale
specifies the locale of interest. The value can be a locale name in quotation marks. It
can be the name of a variable whose value is a locale name. Or it can be an
expression that evaluates to a locale name.

AUTOCALL Macros � %DQUNLOAD AUTOCALL Macro 55

The specified locale must have been loaded into memory as part of the locale list.
Default: The first locale in the locale list.
See: “Load and Unload Locales” on page 7

short
shortens the length of the entry in the SAS log. Valid values:

0
displays the descriptions of how the definitions are used.

1
removes the descriptions of how the definitions are used.
Default: 0

parsedefn
lists with each gender analysis definition and each match definition of the related
parse definition, if such a parse definition exists.

0
does not display the related parse definition.

1
displays the related parse definition.
Default: 1

Details
The %DQPUTLOC AUTOCALL macro displays the contents of the specified locale in
the SAS log. Locale contents include all definitions, parse tokens, related functions, and
the names of the parse definitions that are related to each match definition. Knowing
the related parse definitions enables the creation of parsed character values. See the
“DQPARSETOKENPUT Function” on page 82.

It also enables the creation of match codes for parsed character values. See the
“DQMATCHPARSED Function” on page 73.

Load the specified locale into memory with %DQLOAD before you submit
%DQPUTLOC.

Example

The following example displays the definitions, related parse definitions and related
SAS Data Quality Server functions for the ENUSA locale.

%DQPUTLOC(enusa);

See Also

� “DQLOCALEINFOGET Function” on page 69
� “DQLOCALEINFOLIST Function” on page 69

%DQUNLOAD AUTOCALL Macro

Unloads all locales to increase the amount of free memory.

Requirement: After unloading locales from memory, load locales with the %DQLOAD
AUTOCALL macro before running any data cleansing programs.

56 %DQUNLOAD AUTOCALL Macro � Chapter 8

Syntax
%DQUNLOAD;

Details
The %DQUNLOAD AUTOCALL macro unloads all locales that are currently loaded
into memory.

57

C H A P T E R

9
Functions and CALL Routines

Overview 58
Functions Listed Alphabetically 58

Functions Listed by Category 60

DataFlux Integration Server Functions 60

Case Functions 60

Gender Analysis, Locale Guessing, and Identification Functions 60
Matching Functions 61

Parsing Functions 61

Pattern Analysis Functions 61

Reporting Functions 62

Scheme Functions and CALL Routines 63

Standardization Functions 63
Functions: DQCASE Function 63

DQGENDER Function 64

DQGENDERINFOGET Function 65

DQGENDERPARSED Function 66

DQIDENTIFY Function 67
DQLOCALEGUESS Function 68

DQLOCALEINFOGET Function 69

DQLOCALEINFOLIST Function 69

DQMATCH Function 71

DQMATCHINFOGET Function 72
DQMATCHPARSED Function 73

DQOPTSURFACE Function 74

DQPARSE CALL Routine 75

DQPARSE Function 76

DQPARSEINFOGET Function 77

DQPARSEINPUTLEN Function 78
DQPARSERESLIMIT Function 79

DQPARSESCORDEPTH Function 80

DQPARSETOKENGET Function 81

DQPARSETOKENPUT Function 82

DQPATTERN Function 83
DQSCHEMEAPPLY CALL Routine 84

DQSCHEMEAPPLY Function 88

DQSRVARCHJOB Function 91

DQSRVCOPYLOG Function 93

DQSRVDELETELOG Function 94
DQSRVJOBSTATUS Function 95

DQSRVKILLJOB Function 96

DQSRVPROFJOBFILE Function 97

58 Overview � Chapter 9

DQSRVPROFJOBREP Function 99
DQSRVUSER Function 100

DQSRVVER Function 101

DQSTANDARDIZE Function 102

DQTOKEN Function 103

DQVERBF Function 104
DQVERQKB Function 105

Overview
The functions and CALL routines in the SAS Data Quality Server software enable

you to cleanse data and access DataFlux Integration Servers from DataFlux (a SAS
company).

The functions and CALL routines are listed alphabetically and by category. Each
function and CALL routine has a link to a detailed description and syntax.

Note: The SAS Data Quality Server functions and CALL routines are available in
the Expression Builder of SAS Data Integration Studio software and SAS Enterprise
Guide software. �

Functions Listed Alphabetically

The “Functions: DQCASE Function” on page 63 returns a character value with
standardized capitalization.

The “DQGENDER Function” on page 64 returns a gender determination from the
name of an individual.

The “DQGENDERINFOGET Function” on page 65 returns the name of the parse
definition that is associated with a specified gender analysis definition.

The “DQGENDERPARSED Function” on page 66 returns a gender determination
from the parsed name of an individual.

The “DQIDENTIFY Function” on page 67 returns a category name from a character
value.

The “DQLOCALEGUESS Function” on page 68 returns the name of the locale that is
most likely represented by a character value.

The “DQLOCALEINFOGET Function” on page 69 returns information about locales.
The “DQLOCALEINFOLIST Function” on page 69returns the names of the

definitions in a locale and returns a count of those definitions.
The “DQMATCH Function” on page 71 returns a match code from a character value.
The “DQMATCHINFOGET Function” on page 72 returns the name of the parse

definition that is associated with a match definition.
The “DQMATCHPARSED Function” on page 73 returns a match code from a parsed

character value.
The “DQOPTSURFACE Function” on page 74 reveals or hides non-surfaced

definitions.
The “DQPARSE CALL Routine” on page 75 returns a parsed character value and a

status flag.
The “DQPARSE Function” on page 76 returns a parsed character value.

Functions and CALL Routines � Functions Listed Alphabetically 59

The “DQPARSEINFOGET Function” on page 77 returns the token names for the
specified parse definition.

The “DQPARSEINPUTLEN Function” on page 78 sets the default length of parsed
input, and returns a string indicating its previous value.

The “DQPARSERESLIMIT Function” on page 79 sets a limit on resources consumed
during parsing.

The “DQPARSESCORDEPTH Function” on page 80 specifies how deeply to search for
the best parsing score.

The “DQPARSETOKENGET Function” on page 81 returns a token from a parsed
character value.

The “DQPARSETOKENPUT Function” on page 82 inserts a token into a parsed
character value and returns the updated parsed character value.

The “DQPATTERN Function” on page 83 returns a pattern analysis from an input
character value.

The “DQSCHEMEAPPLY CALL Routine” on page 84 applies a scheme and returns a
transformed value and a transformation flag.

The “DQSCHEMEAPPLY Function” on page 88 applies a scheme and returns a
transformed value after applying a scheme.

The “DQSRVARCHJOB Function” on page 91 runs a DataFlux dfPower Architect job
on a DataFlux Integration Server and returns a job identifier.

The “DQSRVCOPYLOG Function” on page 93 copies a job’s log file from a DataFlux
Integration Server.

The “DQSRVDELETELOG Function” on page 94 deletes a job’s log file from a
DataFlux Integration Server.

The “DQSRVJOBSTATUS Function” on page 95 returns the status of a job that was
submitted to a DataFlux Integration Server.

The “DQSRVKILLJOB Function” on page 96 terminates a job that is running on a
DataFlux Integration Server.

The “DQSRVPROFJOBFILE Function” on page 97 runs a file type Profile job on a
DataFlux Integration Server and returns a job identifier.

The “DQSRVPROFJOBREP Function” on page 99 runs a repository–type Profile job
on a DataFlux Integration Server and returns a job identifier.

The “DQSRVUSER Function” on page 100 begins a session on a secure DataFlux
Integration Server.

The “DQSRVVER Function” on page 101 returns the version of the DataFlux
Integration Server.

The “DQSTANDARDIZE Function” on page 102 returns a character value after
standardizing casing, spacing, and format, and applying a common representation
to certain words and abbreviations.

The “DQTOKEN Function” on page 103 returns a token from a character value.
The “DQVERBF Function” on page 104 returns the version of Blue Fusion.
The “DQVERQKB Function” on page 105 returns the version of the currently loaded

Quality Knowledge Base.

60 Functions Listed by Category � Chapter 9

Functions Listed by Category

DataFlux Integration Server Functions

The “DQSRVARCHJOB Function” on page 91 runs a DataFlux dfPower Architect job
on a DataFlux Integration Server and returns a job identifier.

The “DQSRVCOPYLOG Function” on page 93 copies a job’s log file from a DataFlux
Integration Server.

The “DQSRVDELETELOG Function” on page 94 deletes a job’s log file from a
DataFlux Integration Server.

The “DQSRVJOBSTATUS Function” on page 95 returns the status of a job that was
submitted to a DataFlux Integration Server.

The “DQSRVKILLJOB Function” on page 96 terminates a job that is running on a
DataFlux Integration Server.

The “DQSRVPROFJOBFILE Function” on page 97 runs a file-type Profile job on a
DataFlux Integration Server and returns a job identifier.

The “DQSRVPROFJOBREP Function” on page 99 runs a repository-type Profile job
on a DataFlux Integration Server and returns a job identifier.

The “DQSRVUSER Function” on page 100 begins a session on a secure DataFlux
Integration Server.

The “DQSRVVER Function” on page 101 returns the version of the DataFlux
Integration Server.

The “DQVERBF Function” on page 104 returns the version of Blue Fusion.
The “DQVERQKB Function” on page 105 returns the version of the currently loaded

Quality Knowledge Base.

Case Functions

The “Functions: DQCASE Function” on page 63 returns a character value with
standardized capitalization.

The “DQSTANDARDIZE Function” on page 102 returns a character value after
standardizing casing, spacing, and format, and applying a common representation
to certain words and abbreviations.

Gender Analysis, Locale Guessing, and Identification Functions
The gender analysis, locale guessing, and identification functions return information

that is determined from the content of an input character value.
The “DQGENDER Function” on page 64 returns a gender determination from the

name of an individual.
The “DQGENDERINFOGET Function” on page 65 returns the name of the parse

definition that is associated with a specified gender analysis definition.
The “DQGENDERPARSED Function” on page 66 returns a gender determination

from the parsed name of an individual.

Functions and CALL Routines � Pattern Analysis Functions 61

The “DQIDENTIFY Function” on page 67 returns a category name from a character
value.

The “DQLOCALEGUESS Function” on page 68 returns the name of the locale that is
most likely represented by a character value.

The “DQLOCALEINFOGET Function” on page 69 returns information about locales.

The “DQLOCALEINFOLIST Function” on page 69 returns the names of the
definitions in a locale and returns a count of those definitions.

Matching Functions

The “DQMATCH Function” on page 71 returns a match code from a character value.

The “DQMATCHINFOGET Function” on page 72 returns the name of the parse
definition that is associated with a match definition.

The “DQMATCHPARSED Function” on page 73 returns a match code from a parsed
character variable.

Parsing Functions

The “DQGENDERINFOGET Function” on page 65 returns the name of the parse
definition that is associated with a specified gender analysis definition.

The “DQGENDERPARSED Function” on page 66 returns a gender determination
from the parsed name of an individual.

The “DQMATCHPARSED Function” on page 73 returns a match code from a parsed
character value.

The “DQPARSE CALL Routine” on page 75 returns a parsed character value and a
status flag.

The “DQPARSE Function” on page 76 returns a parsed character value.

The “DQPARSEINFOGET Function” on page 77 returns the token names for the
specified parse definition.

The “DQPARSEINPUTLEN Function” on page 78 sets the default length of parsed
input. DQPARSEINPUTLEN also returns a string indicating its previous value.

The “DQPARSERESLIMIT Function” on page 79 sets a limit on resources consumed
during parsing.

The “DQPARSESCORDEPTH Function” on page 80 specifies how deeply to search for
the best parsing score.

The “DQPARSETOKENGET Function” on page 81 returns a token from a parsed
character value.

The “DQPARSETOKENPUT Function” on page 82 inserts a token into a parsed
character value and returns the updated parsed character value.

Pattern Analysis Functions
The “DQPATTERN Function” on page 83 returns a pattern analysis from an input

character value.

62 Reporting Functions � Chapter 9

Reporting Functions

The “DQGENDER Function” on page 64 returns a gender determination from the
name of an individual.

The “DQGENDERPARSED Function” on page 66 returns a gender determination
from the parsed name of an individual.

The “DQGENDERINFOGET Function” on page 65 returns the name of the parse
definition that is associated with a specified gender analysis definition.

The “DQIDENTIFY Function” on page 67 returns a category name from a character
value.

The “DQLOCALEGUESS Function” on page 68 returns the name of the locale that is
most likely represented by a character value.

The “DQLOCALEINFOGET Function” on page 69 returns information about locales.

The “DQLOCALEINFOLIST Function” on page 69 returns the names of the
definitions in a locale and returns a count of those definitions.

The “DQMATCH Function” on page 71 returns a match code from a character value.

The “DQMATCHINFOGET Function” on page 72 returns the name of the parse
definition that is associated with a match definition.

The “DQMATCHPARSED Function” on page 73 returns a match code from a parsed
character value.

The “DQPARSE CALL Routine” on page 75 returns a parsed character value and a
status flag.

The “DQPARSE Function” on page 76 returns a parsed character value.

The “DQPARSEINFOGET Function” on page 77 returns the token names for the
specified parse definition.

The “DQPARSETOKENGET Function” on page 81 returns a token from a parsed
character value.

The “DQPARSETOKENPUT Function” on page 82 inserts a token into a parsed
character value and returns the updated parsed character value.

The “DQPATTERN Function” on page 83 returns a pattern analysis from an input
character value.

The “DQSCHEMEAPPLY CALL Routine” on page 84 applies a scheme and returns a
transformed value and a transformation flag.

The “DQSCHEMEAPPLY Function” on page 88 applies a scheme and returns a
transformed value after applying a scheme.

The “DQSTANDARDIZE Function” on page 102 returns a character value after
standardizing casing, spacing, and format, and applying a common representation
to certain words and abbreviations.

The “DQTOKEN Function” on page 103 returns a token from a character value.

The “DQVERBF Function” on page 104 returns the version of Blue Fusion.

The “DQVERQKB Function” on page 105 returns the version of the currently loaded
Quality Knowledge Base.

Functions and CALL Routines � Functions: DQCASE Function 63

Scheme Functions and CALL Routines

The “DQSCHEMEAPPLY Function” on page 88 applies a scheme and returns a
transformed value.

The “DQSCHEMEAPPLY CALL Routine” on page 84 applies a scheme and returns a
transformed value and a transformation flag.

Standardization Functions

The “Functions: DQCASE Function” on page 63 returns a character value with
standardized capitalization.

The “DQSTANDARDIZE Function” on page 102 returns a character value after
standardizing the casing, spacing, and format, and after applying a common
representation to certain words and abbreviations.

Functions: DQCASE Function

Returns a character value with standardized capitalization.

Requirement: The specified locale must be loaded into memory as part of the locale list.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQCASE (char, ’case-definition’<, ’locale’>)

Arguments

char
specifies a character constant, variable, or expression that contains the value that is
transformed, according to the specified case definition.

case-definition
is the character constant, variable, or expression to search. The definition must be in
the locale that is used. If the value of char is represented by a case definition, the
use of that definition is recommended, over the generic case definition.

If the value of char is a street address and you are using the ENUSA locale; the
recommended case definition is PROPER–ADDRESS. This is used instead of the
generic case definition PROPER.

locale
specifies a character constant, variable, or expression that contains the locale name.

Default: The default locale is the first locale in the locale list. If no value is
specified, the default locale is used.

64 DQGENDER Function � Chapter 9

Details
The DQCASE function operates on any character content, such as names,

organizations, and addresses.

Example

The following example standardizes the capitalization and spacing with the PROPER
case definition in the ENUSA locale.

orgname=dqCase("BILL’S PLUMBING & HEATING", ’Proper’, ’ENUSA’);

After this function call, the value of ORGNAME is Bill’s Plumbing & Heating.

DQGENDER Function

Returns a gender determination from the name of an individual.

Requirement: The specified locale must be loaded into memory as part of the locale list.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQGENDER (char, ’gender-analysis-definition’ <,’locale’>)

Arguments

char
specifies a character constant, variable, or expression that contains the value that is
evaluated to determine the gender.

gender-analysis-definition
specifies the gender analysis definition, that must exist in the specified locale. The
value must be the name of a character variable, in quotation marks. Also valid, an
expression that evaluates to a variable name, or a quoted value.

locale
specifies a character constant, variable, or expression that contains the locale name.

Default: The default locale is the first locale in the locale list. If no value is
specified, the default locale is used.

Details
The DQGENDER function evaluates the name of an individual to determine the

gender of that individual. If the evaluation finds substantial clues that indicate gender,
the function returns a value that indicates that the gender is female or male. If the
evaluation is inconclusive, the function returns a value that indicates that the gender is
unknown. The exact return value is determined by the specified gender analysis
definition and locale.

Functions and CALL Routines � DQGENDERINFOGET Function 65

Example

The following example returns the value M for the variable GENDER.

gender=dqGender(’Mr. John B. Smith’, ’Gender’, ’ENUSA’);

See Also

Functions:
“DQGENDERPARSED Function” on page 66

DQGENDERINFOGET Function

Returns the name of the parse definition that is associated with the specified gender definition.

Requirement: The specified locale must be loaded into memory as part of the locale list.
Valid in: DATA step, PROC SQL, and SCL

Syntax
DQGENDERINFOGET (’gender-analysis-definition’ < ,’locale’>)

Arguments

gender-analysis-definition
specifies the gender analysis definition, that must exist in the specified locale. The
value must be the name of a character variable, in quotation marks. Also valid, an
expression that evaluates to a variable name, or a quoted value.

locale
specifies a character constant, variable, or expression that contains the locale name.
Default: The default locale is the first locale in the locale list. If no value is

specified, the default locale is used.

Example

The following example writes the parse definition that is associated with GENDER to
the SAS log. The parse definition that is returned is then used to display the names of
the tokens that are enabled for that parse definition. The tokens are then used to
construct a parsed value and write the results of the gender to the log.

/* display the parse definition associated with the */
/* GENDER definition and display the tokens in that */
/* parse definition. */
data _null_;

parseDefn=dqGenderInfoGet(’Gender’, ’ENUSA’);
tokens=dqParseInfoGet(parseDefn, ’ENUSA’);
put parseDefn= / tokens=;

66 DQGENDERPARSED Function � Chapter 9

run;

/* build a parsed value from two tokens and display */
/* in the log the gender determination for that value. */
data _null_;

length parsedValue $ 200 gender $ 1;
parsedValue=dqParseTokenPut(parsedValue, ’Sandi’, ’Given Name’, ’Name’);
parsedValue=dqParseTokenPut(parsedValue, ’Baker’, ’Family Name’, ’Name’);
gender=dqGenderParsed(parsedValue, ’Gender’);
put gender=;

run;

See Also

Functions:

“DQGENDER Function” on page 64

“DQGENDERPARSED Function” on page 66

“DQPARSE Function” on page 76

“DQPARSETOKENPUT Function” on page 82

DQGENDERPARSED Function

Returns the gender of an individual.

Requirement: The specified locale must be loaded into memory as part of the locale list.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQGENDERPARSED (parsed-char, ’gender-analysis-definition’ <,’locale’>)

Arguments

parsed-char
is the value that is analyzed to determine the gender of an individual. The value
must be the name of a character variable, or a character value in quotation marks.
Also valid, an expression that evaluates to a variable name or quoted value.

gender-analysis-definition
specifies the name of the gender analysis definition. The analysis definition must
exist in the locale that is used.

locale
specifies a character constant, variable, or expression that contains the locale name.

Default: The default locale is the first locale in the locale list. If no value is
specified, the default locale is used.

Functions and CALL Routines � DQIDENTIFY Function 67

Details
The DQGENDERPARSED function returns a gender determination from a parsed

character value that contains the name of an individual. If the analysis finds
substantial clues that indicate the gender of the individual, the function returns a value
that indicates that the gender is female or male. If the analysis is inconclusive, the
function returns a value that indicates that the gender is unknown. The specific return
value depends on the specified gender analysis definition and locale.

See Also

Functions:

“DQGENDER Function” on page 64

“DQGENDERINFOGET Function” on page 65

DQIDENTIFY Function

Returns a category name from a character value.

Requirement: The specified locale must be loaded into memory as part of the locale list.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQIDENTIFY (char, ’identification-definition’ <,’locale’>)

Arguments

char
specifies a character constant, variable, or expression that contains the value that is
analyzed to determine that category of the content.

identification-definition
is the name of the identification definition. The definition must be in the locale that
is used.

locale
specifies a character constant, variable, or expression that contains the locale name.

Default: The default locale is the first locale in the locale list. If no value is
specified, the default locale is used.

Details
The DQIDENTIFY function returns a value that indicates the category of the content

in an input character value. The available categories and return values depend on your
choice of identification definition and locale.

68 DQLOCALEGUESS Function � Chapter 9

Example

The following example determines whether a character value represents an
individual or an organization.

dqid=dqIdentify(’LL Bean’,’Individual/Organization’,’ENUSA’);

After this function call, the value of DQID is Organization.

DQLOCALEGUESS Function

Returns the name of the locale that is most likely represented by a character value.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQLOCALEGUESS (char,’locale-guess-definition’)

Arguments

char
specifies a character constant, variable, or expression that contains the value that is
analyzed to determine the locale, according to the specified guess definition.

locale-guess-definition
specifies a character constant, variable, or expression that contains the
locale-guess-definition.

Details
The DQLOCALEGUESS function evaluates the input character value using the

specified locale guess definition in each of the locales that are loaded into memory. An
applicability score is generated for each locale in the locale list. If multiple locales hold
the highest score definition, or none of the locales have the guess definition, the return
value is the first locale in the locale list. The name of the locale that is returned
depends on which locales are loaded into memory.

Example

The following example returns the name of a locale as the value of LOC.

loc=dqLocaleGuess(’101 N. Main Street’, ’Address’);

See Also

Function:
“DQLOCALEINFOGET Function” on page 69

“Load and Unload Locales” on page 7

Functions and CALL Routines � DQLOCALEINFOLIST Function 69

DQLOCALEINFOGET Function

Returns information about locales.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQLOCALEINFOGET (<’info-type’>)

Arguments

info-type
(optional) is the value that is analyzed to determine the locales that are currently
loaded into memory. If no parameter is specified, the default, LOADED is used. The
only valid value is LOADED.

Details
The DQLOCALEINFOGET function returns a comma-delimited list of locale names.

The ordered list contains the names of the locales that are currently loaded into
memory. These locales are available for use in data cleansing.

Example

The following example returns the locales that are currently loaded into memory.

loadedLocales=dqLocaleInfoGet(’loaded’);
put loadedLocales;

If the locales ENUSA and ENGBR are loaded in that order, ENUSA,ENGBR is
returned. ENUSA is the default locale.

See Also

Function and autocall macro:
“DQLOCALEINFOLIST Function” on page 69
“%DQPUTLOC AUTOCALL Macro” on page 54

DQLOCALEINFOLIST Function

Returns the names of the definitions in a locale and a count of those definitions.

Requirement: The specified locale must be loaded into memory as part of the locale list.
Valid in: DATA step, PROC SQL, and SCL

70 DQLOCALEINFOLIST Function � Chapter 9

Syntax
DQLOCALEINFOLIST (’definition-type’<,’locale’>)

Arguments

definition-type
specifies the value that is analyzed to determine the names and count of the
definition type. The definition type must exist in the specified locale.

Definition types are as follows:

� ALL

� CASE

� GENDER

� GUESS

� IDENTIFICATION

� MATCH

� PARSE

� PATTERN

� STANDARDIZATION

locale
specifies a character constant, variable, or expression that contains the locale name.
If no value is specified, the default locale is used.

Default: The default locale is the first locale in the locale list.

Details
The DQLOCALEINFOLIST function writes the names of the type-definitions to the

SAS log.
The return value of the function is the total number of type-definitions.

Examples

The following example writes a list of the definition names and count, in the first
locale in the locale list to the SAS log.

num=dqLocaleInfoList(’all’);

The following example writes a list of parse definitions in the DEDEU locale to the
SAS log.

num=dqLocaleInfoList(’parse’, ’DEDEU’);

See Also

Functions:

“Load and Unload Locales” on page 7

“DQLOCALEINFOGET Function” on page 69

Functions and CALL Routines � DQMATCH Function 71

DQMATCH Function

Returns a match code from a character value.

Requirement: The specified locale must be loaded into memory as part of the locale list.
Valid in: DATA step, PROC SQL, and SCL

Syntax
DQMATCH (char, ’match-definition’<,’sensitivity’><, ’locale>’)

Arguments

char
specifies a character constant, variable, or expression that contains the value for
which a match code is created, according to the specified match definition.

match-definition
specifies the name of the match definition. The definition must exist in the locale
that is used.

sensitivity
specifies an integer value that determines the amount of information in the returned
match code. Valid values range from 50 to 95. The default value is 85. A higher
sensitivity value includes more information in the match code. In general, higher
sensitivity values result in a greater number of clusters, with fewer members per
cluster, because matches require greater similarity between input values.

locale
specifies a character constant, variable, or expression that contains the locale name.
Default: The default locale is the first locale in the locale list. If no value is

specified, the default locale is used.

Details
The DQMATCH function parses the input character value and creates a match code.

The match code represents a condensed version of the character value. The amount of
information in the match code is determined by the sensitivity level. For higher
sensitivities, two values must be very similar to produce the same match codes. At lower
sensitivities, two values produce the same match codes despite their dissimilarities.

Example

The following example returns a match code that contains the maximum amount of
information about the input value.

mcName=dqMatch(’Dr. Jim Goodnight’, ’NAME’, 95, ’ENUSA’);

72 DQMATCHINFOGET Function � Chapter 9

See Also

Functions:
Chapter 4, “The DQMATCH Procedure,” on page 19

DQMATCHINFOGET Function

Returns the name of the parse definition that is associated with a match definition.

Requirement: The specified locale must be loaded into memory as part of the locale list.
Valid in: DATA step, PROC SQL, and SCL

Syntax
DQMATCHINFOGET (’match-definition’ <,’locale’>)

Arguments

match-definition
is the name of the match definition. The definition must exist in the locale that is
used.

locale
specifies a character constant, variable, or expression that contains the locale name.
Default: The default locale is the first locale in the locale list. If no value is

specified, the default locale is used.

Details
The DQMATCHINFOGET function returns the name of the parse definition that is

associated with the specified match definition. Obtaining the name of that parse
definition enables you to create parsed character values with the DQPARSE or
DQPARSETOKENPUT functions.

If the specified match definition does not have an associated parse definition, the
DQMATCHINFOGET function returns a missing value.

Example

The following example displays the name of the parse definition that is associated
with the NAME match definition in the ENUSA locale. That parse definition is then
used to display the tokens that are enabled for that parse definition. The tokens are
then used to construct a parsed value, create and return a match code, and display the
match code.

data _null_;
parseDefn=dqMatchInfoGet(’Name’, ’ENUSA’);
tokens=dqParseInfoGet(parseDefn);
put parseDefn= / tokens=;

Functions and CALL Routines � DQMATCHPARSED Function 73

run;

data _null_;
length parsedValue $ 200 matchCode $ 15;
parsedValue=dqParseTokenPut(parsedValue, ’Joel’, ’Given Name’, ’Name’);
parsedValue=dqParseTokenPut(parsedValue, ’Alston’, ’Family Name’, ’Name’);
matchCode=dqMatchParsed(parsedValue, ’Name’);
put matchCode=;

run;

DQMATCHPARSED Function

Returns a match code from a parsed character value.

Requirement: If specified, the locale must be loaded into memory as part of the locale list.
Valid in: DATA step, PROC SQL, and SCL

Syntax
DQMATCHPARSED (parsed-char, ’match-definition’ <,sensitivity> <,’locale’>)

Arguments

match-definition
specifies the name of the match definition. The definition must exist in the locale
that is used.

parsed-char
specifies a character constant, variable, or expression that contains the value that is
the name of the parsed-definition that is associated with the match definition.

To determine the name of the associated parse definition, use the
DQMATCHINFOGET function. To determine the tokens that are enabled by that
parse definition, use the DQPARSEINFOGET function.

sensitivity
specifies an integer value that determines the amount of information in the returned
match code. Valid values range from 50 to 95. The default value is 85. A higher
sensitivity value inserts more information in the match code. In general, higher
sensitivity values result in a greater number of clusters, with fewer members per
cluster; input values must be more similar to receive the same match codes.

locale
specifies a character constant, variable, or expression that contains the locale name.
Default: The default locale is the first locale in the locale list. If no value is

specified, the default locale is used.

Example

The following example returns a match code for the parsed name of an individual.
The amount of information in the match code is high.

74 DQOPTSURFACE Function � Chapter 9

data _null_;
length nameIndividual matchCode $ 20 parsedName $ 200;
nameIndividual=’Susan B. Anthony’;
parsedName=dqParse(nameIndividual, ’name’, ’enusa’);
matchCode=dqMatchParsed(parsedName, ’name’, 90, ’enusa’);

run;

See Also

Functions:

Chapter 4, “The DQMATCH Procedure,” on page 19

“Create Match Codes” on page 11

“DQMATCHINFOGET Function” on page 72

“DQPARSEINFOGET Function” on page 77

“DQTOKEN Function” on page 103

DQOPTSURFACE Function

Reveals or hides non-surfaced definitions.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQOPTSURFACE (’surface-definition’)

Arguments

surface-definition
specifies the policy for the surface definitions.

Details
DQOPTSURFACE specifies whether the non-surfaced definitions are revealed or

hidden. By default, non-surfaced definitions are hidden. Valid input values are as
follows:

YES
reveals the non-surfaced definitions.

NO
hides the non-surfaced definitions.

The DQOPTSURFACE function returns the previous value of the surface definition
policy.

Functions and CALL Routines � DQPARSE CALL Routine 75

Example

The following example specifies that non-surfaced definitions are revealed. The
character value oldDEFAULT contains the value of the previous setting.

oldDefault=DQOPTSURFACE(’YES’);

DQPARSE CALL Routine

Returns a parsed character value and a status flag.

Restriction: Always use the DQPARSETOKENGET function to extract tokens from
parsed values. To extract tokens from values that do not contain delimiters, use the
DQTOKEN function.

Requirement: If specified, the locale must be loaded into memory as part of the locale list.

Valid in: DATA step, PROC SQL, and SCL

Syntax
CALL DQPARSE (parse-definition,’parse-result’, parse-return-code,parse-string,’<

locale>’)

Arguments

parse-definition
is the name of the parse definition. The definition must exist in the locale that is
used.

parse-result
is an output character variable that receives the result of the parse operation.

parse-return-code
is an output numeric variable that returns 1 when the parse operation is successful.
Otherwise, this variable receives a 0.

parse-string
is the input value that is parsed according to the specified parse definition. The value
must be the name of a character variable, or a character value in quotation marks.
Also valid, an expression that evaluates to a variable name or quoted value.

locale
specifies a character constant, variable, or expression that contains the locale name.

Default: The default locale is the first locale in the locale list. If no value is
specified, the default locale is used.

Details
The DQPARSE CALL routine returns a parsed character value and a return code

into separate variables. The parsed character value contains delimiters that identify
the elements in the value that correspond to the tokens that are enabled by the parse

76 DQPARSE Function � Chapter 9

definition. The delimiters in the value allow functions such as DQPARSETOKENGET
to access the elements in the value based on specified token names.

Example

The following example parses the name of an individual.

data a;
length parsename $ 40;
call dqparse (name, ’Name’, parsename, solution);
if solution= 1 then

put ’found solution’;
else

put ’no solution’;
run;

See Also

Functions:

“DQPARSEINFOGET Function” on page 77

“DQTOKEN Function” on page 103

DQPARSE Function

Returns a parsed character value.

Requirement: If specified, the locale must be loaded into memory as part of the locale list.

Restriction: Always use the DQPARSETOKENGET function to extract tokens from
parsed values. To extract tokens from values that do not contain delimiters, use the
DQTOKEN function.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQPARSE (’parse-definition’ ,’parse-string’ <,’locale’>)

Arguments

parse-definition
is the name of the parse definition. The definition must exist in the locale that is
used.

parse-string
is the value that is parsed according to the specified parse definition. The value must
be the name of a character variable, or a character value in quotation marks. Also
valid, an expression that evaluates to a variable name or quoted value.

Functions and CALL Routines � DQPARSEINFOGET Function 77

locale
specifies a character constant, variable, or expression that contains the locale name.
Default: The default locale is the first locale in the locale list. If no value is

specified, the default locale is used.

Details
The DQPARSE function returns a parsed character value. The return value contains

delimiters that identify the elements in the value that correspond to the tokens that are
enabled by the parse definition. The delimiters in the value allow functions such as
DQPARSETOKENGET to access the elements in the value based on specified token
names.

Example

The following example parses the name of an individual. Then the
DQPARSETOKENGET function returns the values of two of the tokens.

parsedValue=dqParse(’Mrs. Sallie Mae Pravlik’, ’NAME’, ’ENUSA’);
prefix=dqParseTokenGet(parsedValue, ’Name Prefix’, ’NAME’, ’ENUSA’);
given=dqParseTokenGet(parsedValue, ’Given Name’, ’NAME’, ’ENUSA’);

After these function calls, the value of PREFIX is Mrs. and the value of GIVEN is
Sallie.

See Also

Functions:
“DQPARSEINFOGET Function” on page 77
“DQTOKEN Function” on page 103

DQPARSEINFOGET Function

Returns the token names in a parse definition.

Requirement: If specified, the locale must be loaded into memory as part of the locale list.
Valid in: DATA step, PROC SQL, and SCL

Syntax
DQPARSEINFOGET (’parse-definition’ < ,’locale’>)

Arguments

parse-definition
specifies the name of the parse definition. The definition must exist in the locale that
is used.

78 DQPARSEINPUTLEN Function � Chapter 9

locale
specifies a character constant, variable, or expression that contains the locale name.
Default: The default locale is the first locale in the locale list. If no value is

specified, the default locale is used.

Details
The DQPARSEINFOGET function returns the names of the tokens that can be

inserted into character values using the DQPARSETOKENPUT function.

Example

The following example returns the token names for the parse definition e-mail in the
locale ENUSA and displays the token names in the SAS log.

tokenNames=dqParseInfoGet(’e-mail’,’ENUSA’);
put tokenNames;

After this function call, the value of TOKENNAMES is Mailbox, Sub-Domain,
Top-Level Domain, the names of the three tokens in this parse definition.

See Also

Functions:
“DQPARSETOKENGET Function” on page 81
“DQPARSETOKENPUT Function” on page 82
“DQTOKEN Function” on page 103

DQPARSEINPUTLEN Function
Sets the default length of parsed input, and returns a string indicating its previous value.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQPARSEINPUTLEN (’input-length’)

Arguments

input-length
specifies the input length for parsing functions. DQPARSEINPUTLEN returns the
previous value of the input length.

Details
The DQPARSEINPUTLEN function specifies the input length anticipated by parsing

functions. If REMOVE is specified, the override value is removed and the input limit is
set to the default value. Valid values for the input length are as follows:

Functions and CALL Routines � DQPARSERESLIMIT Function 79

� SHORT
� LONG
� AUTO
� REMOVE

The DQPARSEINPUTLEN function returns a value indicating the previous value of
the input length. If the value NOTSET is returned, the override value is not set.
Possible values for the previous input length are as follows:

� SHORT
� LONG
� AUTO
� NOTSET

Example

The following example sets the default input length to SHORT. The previous value of
the parse input length is returned as the value of oldDEFAULT.

oldDefault= dqParseInfPutLen(’short’);

DQPARSERESLIMIT Function

Sets a limit on resources consumed during parsing.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQPARSERESLIMIT (’resource-limit’)

Arguments

resource limit
specifies the resource limit a parsing operation is allowed to consume.

Details
The DQPARSERESLIMIT function sets the level of resource consumption in force

during parsing operations. If REMOVE is specified, the override value is removed and
the resource limit is set to the default value. Valid values are as follows:

� VERYLOW
� LOW
� MEDIUM
� HIGH
� VERYHIGH
� INTENSIVE
� REMOVE

80 DQPARSESCORDEPTH Function � Chapter 9

The DQPARSERESLIMIT function returns a value indicating the previous value of
the resource limit. If the value NOTSET is returned, the override value is not set.
Possible return values are as follows:

� VERYLOW
� LOW
� MEDIUM
� HIGH
� VERYHIGH
� INTENSIVE
� NOTSET

Example

The following example sets the default resource limit to INTENSIVE. The value of
oldDEFAULT is the previous value of the resource limit.

oldDefault=DQPARSERESLIMIT(’intensive’);

DQPARSESCORDEPTH Function

Specifies how deeply to search for the best parsing score.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQPARSESCORDEPTH (level)

Arguments

level
is the maximum depth permitted during scoring.

Details
The DQPARSESCORDEPTH function sets the level of how deeply to search for the

best parsing score. LEVEL must be in the range from five to ten inclusive, or zero. If at
least one of the conditions is true, DQPARSESCORDEPTH overrides the default scoring
depth value. If zero is returned, there is no override value in force.

The DQPARSESCORDEPTH function returns the previous value of the override
solutions depth.

Example

The following example sets DQPARSESCORDEPTH to eight. The numeric variable
oldDEFAULT contains the scoring depth previously in force.

oldDefault=DQPARSESCOREDEPTH(8);

Functions and CALL Routines � DQPARSETOKENGET Function 81

DQPARSETOKENGET Function

Returns a token from a parsed character value.

Requirement: If specified, the locale must be loaded into memory as part of the locale list.

Restriction: Do not attempt to extract tokens from parsed values using any means other
than the DQPARSETOKENGET function.
Valid in: DATA step, PROC SQL, and SCL

Syntax
DQPARSETOKENGET (parsed-char,’parse-definition’, ’token’< ,’locale’>)

Arguments

parsed-char
specifies a character constant, variable, or expression that contains the value that is
the parsed character value from which the value of the specified token is returned.

To determine how the parse definition inserts delimiters, use the
DQPARSEINFOGET function.

parse-definition
is the name of the parse definition. The definition must exist in the locale that is
used. The parse definition must be the same as the parse definition that originally
parsed the PARSED-CHAR value.

token
is the name of the token that is returned from the parsed value. The token must be
enabled by the specified parse definition

locale
specifies a character constant, variable, or expression that contains the locale name.

Default: The default locale is the first locale in the locale list. If no value is
specified, the default locale is used.

Details
The DQPARSETOKENGET function returns the value of the specified token from a

previously parsed character value.

Example

The following example parses a character value with the DQPARSE function and
extracts two of the tokens with the DQPARSETOKENGET function.

parsedValue=dqParse(’Mrs. Sallie Mae Pravlik’, ’NAME’, ’ENUSA’);
prefix=dqParseTokenGet(parsedValue, ’Name Prefix’, ’NAME’, ’ENUSA’);
given=dqParseTokenGet(parsedValue, ’Given Name’, ’NAME’, ’ENUSA’);

After these function calls, the value of prefix is Mrs. and the value of givenis
Sallie.

82 DQPARSETOKENPUT Function � Chapter 9

See Also

Functions:

“DQPARSE Function” on page 76

“DQPARSEINFOGET Function” on page 77

“DQTOKEN Function” on page 103

DQPARSETOKENPUT Function

Inserts a token into a parsed character value and returns the updated parsed character value.

Requirement: If specified, the locale must be loaded into memory as part of the locale list.

Valid in: DATA step and SCL

Syntax
DQPARSETOKENPUT (’char’,’parse-definition’, ’token-name’,’token-value’ <,’locale’>)

Arguments

char
specifies a character constant, variable, or expression that contains the value that is
the parsed character value that receives the new token value.

parse-definition
is the name of the parse definition. The definition must exist in the locale that is
used. The parse definition must be the same definition that was used to parse the
parsed-char value.

token-name
is the name of the token. The specified token must be enabled by the parse definition.

token-value
is the value of the token that is to be inserted into parsed-char.

locale
specifies a character constant, variable, or expression that contains the locale name.

Default: The default locale is the first locale in the locale list. If no value is
specified, the default locale is used.

Details
The DQPARSETOKENPUT function enables you to insert a new value that is

associated with a specified token into a parsed value. If a value exists for that token in
the input value, the new value is inserted before the existing value. The existing value
is retained.

You can specify a variable name for the value of parsed-char, and then assign the
return value from DQPARSETOKENPUT to the same variable.

Functions and CALL Routines � DQPATTERN Function 83

See Also

Functions:

“DQGENDERINFOGET Function” on page 65

“DQGENDERPARSED Function” on page 66

“DQMATCHPARSED Function” on page 73

“DQPARSETOKENGET Function” on page 81

DQPATTERN Function

Returns a pattern analysis from an input character value.

Requirement: If specified, the locale must be loaded into memory as part of the locale list.

Valid in: DATA step and SCL

Syntax
DQPATTERN (’char’, ’pattern-analysis-definition’< ,’locale’>)

Arguments

char
specifies a character constant, variable, or expression that contains the value that is
the name of the input character value that is analyzed.

pattern-analysis-definition
is the name of the pattern analysis definition. The definition must exist in the locale
that is used.

locale
specifies a character constant, variable, or expression that contains the locale name.
Default: The default locale is the first locale in the locale list. If no value is

specified, the default locale is used.

Details
The DQPATTERN function returns a pattern analysis from an input character value.

DQPATTERN identifies words or characters in the input value as numeric, alphabetic,
non-alphanumeric, or mixed. The choice of pattern analysis definition determines the
nature of the analysis as follows:

* non-alphanumeric, such as punctuation marks or symbols.

A alphabetic.

M mixture of alphabetic, numeric, and non-alphanumeric.

N numeric.

84 DQSCHEMEAPPLY CALL Routine � Chapter 9

Example

The following example analyzes the words in the input character value. The results
are written to the SAS log using the PUT statement.

pattern=dqPattern(’WIDGETS 5’,’32CT’,’WORD’,’ENUSA’);
put pattern;

The DQPATTERN function returns A N* M. Using the CHARACTER pattern
analysis definition returns AAAAAAA N* NNAA.

DQSCHEMEAPPLY CALL Routine

Applies a scheme and returns a transformed value and a transformation flag.

Requirement: If specified, the locale must be loaded into memory as part of the locale list.

Requirement: Schemes using SAS format are required in the z/OS operating environment.

Valid in: DATA step and SCL

Syntax
CALL DQSCHEMEAPPLY (’char’,output-variable’,’scheme’,’mode’,’scheme-

format’,’scheme-lookup-method’,’match-definition’ < ,’sensitivity’><,
’locale’><,transform-count-variable>)

Arguments

char
specifies a character constant, variable, or expression that contains the value that is
the input value to which the scheme is applied.

output-variable
is the character variable that receives the transformed input value.

scheme
is the scheme that is applied to the input value. A SAS format scheme is a filename
specification that includes; a pathname and the SAS data set name enclosed in
quotation marks.

Blue Fusion Data format, is the name of an existing fileref in quotation marks.
For all operating environments other than z/OS, the fileref must reference a file
specification that includes both the pathname and the filename that ends in .sch.bfd.

Requirement: Lowercase letters are required.

Note: In the z/OS operating environment, the normal naming conventions apply for
the partitioned data set (PDS) that contains the scheme.

scheme-format
identifies the format of the scheme. The valid formats are as follows:

BFD
is the Blue Fusion Data format. This is the default value.

Functions and CALL Routines � DQSCHEMEAPPLY CALL Routine 85

NOBFD
is the SAS data format. See “Schemes” on page 8.

mode
specifies how the scheme is to be applied to the values of the input character
variable. The default value of mode is the mode that is stored in the scheme. If a
mode is not stored in the scheme, the default value of mode, PHRASE is used.

If the value ofscheme-lookup-method is USE_MATCHDEF, and a value is not
specified for mode, the default value of mode, PHRASE is used.

Valid values for mode are as follows:

PHRASE
compares the entire input character value to the entire length of each of the DATA
values in the scheme. When the value of the scheme-lookup-method is
USE_MATCHDEF, the match-code values of the entire input value are compared
to the match codes of DATA values in the scheme. A transformation occurs when a
match is found between an element in the input value and a DATA value in the
scheme.

ELEMENT
compares each element in the input character value to each of the DATA values in
the scheme. When the value of the scheme-lookup-method is USE_MATCHDEF,
the match code of the entire input value is compared to the match codes of the
scheme’s DATA values. A transformation occurs when a match is found between
an element in the input value and a DATA value in the scheme.

scheme-lookup-method
specifies one of three mutually exclusive methods of applying the scheme. Valid
values for scheme-lookup-method are as follows:

EXACT
this default value specifies that the input value is to be compared to the DATA
values in the scheme without changing the input value in any way. The
transformation value in the scheme is written into the output data set only when
the input value exactly matches a DATA value in the scheme. Any adjacent blank
spaces in the input value are replaced with single blank spaces before comparison.

IGNORE_CASE
specifies that capitalization is to be ignored when the input value is compared to
the DATA values in the scheme. Any adjacent blank spaces in the input value are
replaced with single blank spaces before comparison.

USE_MATCHDEF
specifies that the match-code of the input value is to be compared to the
match-code of the DATA values in the scheme. A transformation occurs when the
two match codes are identical.

Specifying USE_MATCHDEF enables you to modify the values of locale,
match-definition, and sensitivity.

Note: The locale, match-definition, and sensitivity values are valid only when the
value of the scheme-lookup-method is USE_MATCHDEF. �

match-definition
is the name of the match definition. The definition must exist in the locale that is
used to create match codes during the application of the scheme.

Note: The match-definition value is valid only when the value of the
scheme-lookup-method is USE_MATCHDEF. �

If USE_MATCHDEF is specified and match-definition is not specified, the default
match definition is stored in the scheme.

86 DQSCHEMEAPPLY CALL Routine � Chapter 9

If USE_MATCHDEF is specified and a match-definition is not stored in the
scheme, then a value is required for match-definition.

sensitivity
specifies the amount of information in the match codes that are created during the
application of the scheme. With higher sensitivity values, two values must be
increasingly similar to create the same match code. At lower sensitivity values, two
values receive the same match code despite their dissimilarities. Valid values range
from 50 to 95.

Note: Sensitivity is valid only when the value of the scheme-lookup-method is
USE_MATCHDEF. �

When USE_MATCHDEF is specified and sensitivity is not specified, the sensitivity
value that is stored in the scheme is used. If there is no sensitivity in the scheme, the
sensitivity value is 85, the default.

locale
specifies a character constant, variable, or expression that contains the locale name.
Default: The default locale is the first locale in the locale list. If no value is

specified, the default locale is used.

Note: The locale is valid only when the value of the scheme-lookup-methodis
USE_MATCHDEF.

transform-count-variable
identifies the numeric variable that receives the returned number of transformations
that were performed on the input value.

If the value of mode is PHRASE and the input value is not transformed, then the
value of the transform-count-variable is 0.

If the input variable is transformed, the value of transform-count-variable is 1.
If the value of the mode is ELEMENT and the input value is not transformed,

then the value of transform-count-variable is 0.
If the input variable is transformed, then the value is a positive integer that

represents the number of elements in the input value that are transformed.

Note: The transformation count might appear to be inaccurate if the transformation
value in the scheme is the same as the input value (or any element in the input
value).

Details
The DQSCHEMEAPPLY CALL routine transforms an input value by applying a

scheme. The scheme can be in SAS format or Blue Fusion Data format. Schemes using
SAS format can be created with the DQSCHEME procedure. Schemes using Blue
Fusion Data format can be created with the DQSCHEME procedure or with the
DataFlux dfPower Studio software from DataFlux (a SAS company).

Example

The following example generates a scheme using Blue Fusion Data format with the
DQSCHEME procedure and then applies that scheme to a data set with CALL
DQSCHEMEAPPLY. The example assumes that ENUSA has been loaded into memory
as the default locale.

/* Create the input data set. */
data suppliers;

length company $ 50;
input company $char50.;

Functions and CALL Routines � DQSCHEMEAPPLY CALL Routine 87

datalines;
Ford Motor Company
Walmart Inc.
Federal Reserve Bank
Walmart
Ernest & Young
TRW INC - Space Defense
Wal-Mart Corp.
The Jackson Data Corp.
Ernest & Young
Federal Reserve Bank 12th District
Ernest and Young
Jackson Data Corp.
Farmers Insurance Group
Kaiser Permantente
Ernest and Young LLP
TRW Space & Defense
Ford Motor
Jackson Data Corp
Federal Reserve Bank
Target
;
run;

/* Create the scheme. */
proc dqscheme data=suppliers nobfd;
create matchdef=’Organization (Scheme Build)’

var=company scheme=work.myscheme
locale=’ENUSA’;

run;

/* Print the scheme. */
proc print data=work.myscheme;
title ’Organization Scheme’;
run;

/* Apply the scheme and display the results. */
data suppliers;

set suppliers;
length outCompany $ 50;
call dqSchemeApply(company, outCompany,’work.myscheme’,’nobfd’,’phrase’, numTrans);
put ’Before applying the scheme: ’ company /

’After applying the scheme: ’ outCompany /
’Transformation count: ’ numTrans /;

run;

The value of the NUMTRANS variable is 0 if the organization name is not
transformed. The value is 1 if the organization name is transformed. In the following
example, a transformation count of 1 is shown in instances, when no transformation
appears to have been made. This is shown in the PROC PRINT output.

Before applying the scheme: Jackson Data Corp
After applying the scheme: Jackson Data Corp
Transformation count: 1

88 DQSCHEMEAPPLY Function � Chapter 9

Instances such as these are not errors. In these cases the transformation value is the
same as the input value.

See Also

Functions:

Chapter 5, “The DQSCHEME Procedure,” on page 33

“DQSCHEMEAPPLY Function” on page 88

DQSCHEMEAPPLY Function

Applies a scheme and returns a transformed value.

Requirement: If specified, the locale must be loaded into memory as part of the locale list.

Requirement: Schemes using SAS format are required in the z/OS operating environment.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQSCHEMEAPPLY (char, ’scheme’, ’scheme-format’, < ’match-definition’>,<’mode ’>,

<’scheme-lookup-method’>, <sensitivity> <,’locale’>)

Arguments

char
specifies a character constant, variable, or expression that contains the value to
which the specified scheme is applied.

scheme
identifies the scheme that is applied to the input value. For schemes using SAS
format, the scheme argument includes both the path and the filename of the SAS
data set, in quotation marks.

For schemes using Blue Fusion Data format, the scheme argument is the name of
an existing fileref in quotation marks. For all operating environments other than z/
OS, the fileref must reference a file specification that includes both the path and the
filename that ends in .sch.bfd.

Requirement: Lowercase letters are required.

Note: In the z/OS operating environment, the normal naming conventions apply for
the partitioned data set (PDS) that contains the scheme.

scheme-format
identifies the file format of the scheme. Valid values are as follows:

BFD
indicates that the scheme is stored in Blue Fusion Data format. This is the default
value.

Functions and CALL Routines � DQSCHEMEAPPLY Function 89

NOBFD
indicates that the scheme is stored in SAS format.

See: “Applying Schemes” on page 9

locale
specifies a character constant, variable, or expression that contains the locale name.

Default: The default locale is the first locale in the locale list. If no value is
specified, the default locale is used.

match-definition
is the name of the match definition. The definition must exist in the locale that is
used to create match codes during the application of the scheme. If
USE_MATCHDEF is specified and a match definition is not stored in the scheme,
then a value is required for the match-definition argument.

Default: If USE_MATCHDEF is specified and the match-definition argument is not
specified, then the default match definition is the one that is stored in the scheme.

Restriction: The match-definition argument is valid only when the value of the
scheme-lookup-method argument is USE_MATCHDEF.

See: “Meta Options” on page 9

mode
specifies how the scheme is to be applied to the values of the input character
variable. The default value of mode is the mode that is stored in the scheme. If a
mode is not stored in the scheme, the default value of mode, PHRASE is used.

If the value ofscheme-lookup-method is USE_MATCHDEF, and a value is not
specified for mode, the default value of mode, PHRASE is used.

Valid values for mode are as follows:

PHRASE
compares the entire input character value to the entire length of each of the DATA
values in the scheme. When the value of the scheme-lookup-method is
USE_MATCHDEF, the match code values of the entire input value are compared
to the match codes of DATA values in the scheme. A transformation occurs when a
match is found between an element in the input value and a DATA value in the
scheme.

ELEMENT
compares each element in the input character value to each of the DATA values in
the scheme. When the value of the scheme-lookup-method is USE_MATCHDEF,
the match code of the entire input value is compared to the match codes of the
scheme’s DATA values. A transformation occurs when a match is found between
an element in the input value and a DATA value in the scheme.

scheme-lookup-method
specifies one of three mutually exclusive methods of applying the scheme.

EXACT
this default value specifies that the input value is to be compared to the DATA
values in the scheme without changing the input value in any way. The
transformation value in the scheme is written into the output data set only when
the input value exactly matches a DATA value in the scheme. Any adjacent blank
spaces in the input value are replaced with single blank spaces before comparison.

IGNORE_CASE
specifies that capitalization is to be ignored when the input value is compared to
the DATA values in the scheme. Any adjacent blank spaces in the input value are
replaced with single blank spaces before comparison.

90 DQSCHEMEAPPLY Function � Chapter 9

USE_MATCHDEF
specifies that the match-code of the input value is to be compared to the
match-code of the DATA values in the scheme. A transformation occurs when the
match-codes are identical.

Specify USE_MATCHDEF to enable locale, match-definition, and sensitivity.
Default: EXACT
Restriction: The arguments locale, match-definition, and sensitivity are valid only

when the value of the scheme-lookup-method function is USE_MATCHDEF.
See: “Applying Schemes” on page 9

sensitivity
specifies the amount of information in the match codes that are created during the
application of the scheme. With higher sensitivity values, two values must be
increasingly similar to create the same match code. At lower sensitivity values,
values can receive the same match code despite their dissimilarities.
Default: When use_matchdef is specified and the sensitivity argument is not

specified, the default sensitivity is the sensitivity value that is stored in the
scheme. When USE_MATCHDEF is specified and a sensitivity value is not stored
in the scheme, the default sensitivity value is 85.

Restriction: The sensitivity argument is valid only when the value of the
scheme-lookup-method argument is USE_MATCHDEF.

Note: To return a count of the number of transformations that take place during a
scheme application, use the DQSCHEMEAPPLY CALL routine.

See: “Meta Options” on page 9
Valid values: 50 to 95

Details
The locale argument is valid only when the value of the scheme-lookup-method

argument is USE_MATCHDEF. The DQSCHEMEAPPLY function transforms an input
value by applying a scheme. The scheme can be in SAS format or Blue Fusion Data
format. SAS format schemes can be created with the DQSCHEME procedure. Create
schemes using Blue Fusion Data format with the DQSCHEME procedure or with the
DataFlux dfPower Studio software from DataFlux (a SAS company).

Example

The following example generates a scheme with the DQSCHEME procedure and then
applies that scheme to a data set with the DQSCHEME function. The example assumes
that the ENUSA locale has been loaded into memory as part of the locale list.

/* Create the input data set. */P
data suppliers;

length company $ 50;
input company $char50.;

datalines;
Ford Motor Company
Walmart Inc.
Federal Reserve Bank
Walmart
Ernest & Young
TRW INC - Space Defense
Wal-Mart Corp.
The Jackson Data Corp.

Functions and CALL Routines � DQSRVARCHJOB Function 91

Ernest & Young
Federal Reserve Bank 12th District
Ernest and Young
Jackson Data Corp.
Farmers Insurance Group
Kaiser Permantente
Ernest and Young LLP
TRW Space & Defense
Ford Motor
Jackson Data Corp
Federal Reserve Bank
Target
;
run;

/* Assign a fileref to the scheme file. */
filename myscheme ’c:\temp\company.sch.bfd’;

/* Create the scheme. */
proc dqscheme data=suppliers bfd;
create matchdef=’Organization (Scheme Build)’

var=company scheme=myscheme
locale=’ENUSA’;

run;

/* Apply the scheme and display the results. */
data suppliers;

set suppliers;
length outCompany $ 50;
outCompany=dqSchemeApply(company,’myscheme’,’bfd’,’phrase’,’EXACT’);
put ’Before applying the scheme: ’ company /

’After applying the scheme: ’ outCompany;
run;

See Also

Chapter 5, “The DQSCHEME Procedure,” on page 33
“DQSCHEMEAPPLY CALL Routine” on page 84

DQSRVARCHJOB Function

Runs a DataFlux dfPower Architect job on a DataFlux Integration Server and returns a job identifier.

Requirement: If specified, the locale must be loaded into memory as part of the locale list.
Requirement: The character variable that receives the return value must have a
minimum length of 52.

Note: Since the DATA step creates a character variable automatically when the
DQSRVARCHJOB function is called, there is no need to create a variable with a ’length’
statement to hold the return code. If you choose to create a variable, then the variable
must be at least 52 characters in length or errors are generated. �

92 DQSRVARCHJOB Function � Chapter 9

Valid in: DATA step, PROC SQL, and SCL

Syntax

DQSRVARCHJOB (job-name< ,host>< ,port>< ,macro-name1>< ,macro-value1>< ,macro-
name2>< ,macro-value2...>)

Arguments

job-name
is the DataFlux dfPower Architect job as it exists on the specified DataFlux
Integration Server.

host
(optional) is the host of the DataFlux Integration Server. If this value is not
specified, then localhost is used.

port
identifies the port through which the local host communicates with the DataFlux
Integration Server. If this value is not specified, or if the value is 0 or a negative
number, then the default port number 21036 is used.

macro-name1
is the DataFlux dfPower Architect macro that exists on the DataFlux Integration
Server. The value of macro-name1 can be specified as text, or as the name of a
character variable. The value of the character variable is used as the macro name.

macro-value1
is the character value that is used by the associated DataFlux dfPower Architect
macro. Macro-value1 is used by macro-name1. The value of macro-value1 can be
specified as text, or as the name of a character variable.

Details

The DQSRVARCHJOB function returns a job-identifier. The return value is either a
job identifier of up to 52 characters, or the value MISSING. Use the job identifier in
subsequent function calls to manage the job, using DQSRVJOBSTATUS,
DQSRVCOPYLOG, DQSRVDELETELOG, and DQSRVKILLJOB.

� You can specify any number of macro value pairs.

� For information about how to run a DataFluxDataFlux dfPower Architect service
on a DataFlux Integration Server, see Chapter 7, “The DQSRVSVC Procedure,” on
page 49.

Example

The following example runs a DataFlux dfPower Architect job on a DataFlux
Integration Server. The job standardizes a character value that represents the name of
an operating environment. The server returns a job identifier that can be used to
manage the job’s log file.

jobid= dqsrvArchJob(’opsysCleanse’,’archServer1’, 5001,’osMacro’,’Unicks’);

Functions and CALL Routines � DQSRVCOPYLOG Function 93

See Also

Functions:
“DQSRVCOPYLOG Function” on page 93
“DQSRVDELETELOG Function” on page 94
“DQSRVJOBSTATUS Function” on page 95

DQSRVCOPYLOG Function

Copies a job’s log file from a DataFlux Integration Server.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQSRVCOPYLOG (job-ID < ,host> <,port> ,filename)

Arguments

job–ID
identifies the job that is submitted to a DataFlux Integration Server. The identifier is
previously returned by a function such as DQSRVARCHJOB or
DQSRVPROFJOBFILE.

host
identifies the host of the DataFlux Integration Server. If this value is not specified,
then localhost is used.

port
identifies the port through which the local host communicates with the DataFlux
Integration Server. If this value is not specified, or if the value is 0 or a negative
number, then the default port number 21036 is used.

filename
identifies where the log file is copied on the local host.

Details
To capture log information for a particular job, use the DQSRVJOBSTATUS function

to ensure that the job is finished before you copy the log.
Return values are 0 (log copied successfully) or 1 (log failed to copy).

Example

The following example copies a log file from a DataFlux Integration Server. The log
file is generated when the server runs a job. The job identifier is returned in the
function that runs the job.

copyrc= dqsrvCopyLog(jobid,’archServer1’, 5001,’archServer1.log’);

94 DQSRVDELETELOG Function � Chapter 9

See Also

Functions:

“DQSRVARCHJOB Function” on page 91

“DQSRVDELETELOG Function” on page 94

“DQSRVJOBSTATUS Function” on page 95

DQSRVDELETELOG Function

Deletes a job’s log file from a DataFlux Integration Server.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQSRVDELETELOG (job-ID,<,host><,port>)

Arguments

job-ID
identifies the job submitted to a DataFlux Integration Server. The identifier is set by
a function such as DQSRVARCHJOB or DQSRVPROFJOBFILE.

host
identifies the host of the DataFlux Integration Server. If this value is not specified,
then localhost is used

port
identifies the port through which the local host communicates with the DataFlux
Integration Server. If this value is not specified, or if the value is 0 or a negative
number, then the default port number 21036 is used.

Details
The log file is created after the job terminates. Use DQSRVJOBSTATUS to ensure

that the log file is available for deletion.

� DQSRVDELETELOG does not delete local copies of the job’s log file.

� Return values are 0 (log deleted successfully) or 1 (log failed to delete).

Example

The following example deletes a log file from a DataFlux Integration Server. The log
file is created when the server runs a job. The job identifier is returned in the function
that runs the job.

delrc= dqsrvDeleteLog(jobid,’archServer1’, 5001);

Functions and CALL Routines � DQSRVJOBSTATUS Function 95

See Also

Functions:
“DQSRVARCHJOB Function” on page 91
“DQSRVCOPYLOG Function” on page 93
“DQSRVJOBSTATUS Function” on page 95

DQSRVJOBSTATUS Function

Returns the status of a job that was submitted to a DataFlux Integration Server.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQSRVJOBSTATUS(job-ID <,host> <,port>,time-out ,interval)

Arguments

Job-ID
identifies the job that was submitted to a DataFlux Integration Server. The identifier
is previously set by a function such as DQSRVARCHJOB or DQSRVPROFJOBFILE.

host
identifies the host of the DataFlux Integration Server. If this value is not specified,
then localhost is used

port
identifies the port through which the local host communicates with the DataFlux
Integration Server. If this value is not specified, or if the value is 0 or a negative
number, then the default port number 21036 is used.

time-out
is a time in seconds that determines when status information is returned from the
host. Valid values are defined as follows:

-1 returns status information about when the job is finished. Return
values are 0 (job completed successfully) or 1 (job failed). This
value invalidates the interval argument.

0 returns status information immediately. Return values are 0 (job
completed successfully), 1 (job failed), or 2 (job running). This
value invalidates the interval argument.

greater-than-
zero

specifies a time limit for the interval argument. If the job is still
running after the time-out value, another value is returned only
when the job is finished.

interval
is the repeat period for the return of status information, within the limit that is
imposed by the time-out argument.

96 DQSRVKILLJOB Function � Chapter 9

Details
Use the DQSRVJOBSTATUS function to return job status information instantly,

periodically, or at the completion of the job. With an interval of 20 and a time-out of 60,
DQSRVJOBSTATUS returns status information up to four times. After 60 seconds, the
last return value is provided at the completion of the job.

Return values are 0 (job completed successfully), 1 (job failed), or 2 (job running).

Example

The following example returns a status number for a job that ran or is running on a
DataFlux Integration Server. The job identifier was returned by the function that ran
the job. Status information is returned in 20 seconds or less, depending on the
termination of the job. Job status is checked every 5 seconds.

status= dqsrvJobStatus(jobid,’archServer1’, 5001, 20, 5);

See Also

Functions:

“DQSRVARCHJOB Function” on page 91

“DQSRVDELETELOG Function” on page 94

“DQSRVKILLJOB Function” on page 96

DQSRVKILLJOB Function

Terminates a job that is running on a DataFlux Integration Server.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQSRVKILLJOB (job-ID <,host> <,port>)

Arguments

job-ID
identifies the job submitted to a DataFlux Integration Server. The identifier is set by
a function such as DQSRVARCHJOB or DQSRVPROFJOBFILE.

host
identifies the host of the DataFlux Integration Server. If this value is not specified,
then localhost is used

port
identifies the port through which the local host communicates with the DataFlux
Integration Server. If this value is not specified, or if the value is 0 or a negative
number, then the default port number 21036 is used.

Functions and CALL Routines � DQSRVPROFJOBFILE Function 97

Details
The DQSRVKILLJOB function terminates a job. Use the DQSRVJOBSTATUS

function to determine whether a job is still running. Return values are 0 (job
terminated) or 1 (job failed to terminate).

Example

The following example terminates a job that is running on a DataFlux Integration
Server. The job identifier is returned by the function that ran the job. Status
information is returned in 20 seconds or less, depending on the termination of the job.
Job status is checked every 5 seconds.

killrc= dqsrvKillJob(jobid,’archServer1’,5001);

See Also

Functions:

“DQSRVARCHJOB Function” on page 91

“DQSRVJOBSTATUS Function” on page 95

DQSRVPROFJOBFILE Function

Runs a file-type DataFlux dfProfile job on a DataFlux Integration Server and returns a job identifier.

Requirement: The character variable that receives the return value must have a
minimum length of 52 characters.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQSRVPROFJOBFILE (job-name<,host><,port>,results-filename,append,

description<,macro-name1> <,macro-value1> <,macro-name2> <,macro-value2...>)

Arguments

append
appends or overwrites job results.

0 appends job results below any existing content in the results file.

1 overwrites any existing content in the results file.

description
identifies a character variable whose value describes the current run of the job. The
descriptive text is added either to the top of the results file or above the results that
is appended to the bottom of the results file.

98 DQSRVPROFJOBFILE Function � Chapter 9

host
(optional) identifies the host of the DataFlux Integration Server. If this value is not
specified, then localhost is used

job–name
identifies the DataFlux dfPower Profile job as it exists on the specified DataFlux
Integration Server.

macro-name1
identifies a DataFlux dfPower Profile macro that exists on the DataFlux Integration
Server. The value of macro-name1 can be specified as text or as the name of a
character variable. The value of the variable specifies the name of the macro.

macro-value1
specifies the character value that is used by the associatedDataFlux dfPower Profile
macro. Macro–value1 is used by macro–name1. The value of macro-value1 can be
specified as text, or as the name of a character variable.

macro-name2
identifies a DataFlux dfPower Profile macro that exists on the DataFlux Integration
Server. The value of macro-name2 can be specified as text or as the name of a
character variable. The value of the variable specifies the name of the macro.

macro-value2
specifies the character value that is used by the associatedDataFlux dfPower Profile
macro. Macro–value2 is used by macro–name2. The value of macro-value2 can be
specified as text, or as the name of a character variable.

port
(optional) identifies the port through which the local host communicates with the
DataFlux Integration Server. If this value is not specified, or if the value is 0 or a
negative number, then the default port number 21036 is used.

results-filename
identifies the file that receives job results.

Example

The following example runs a data analysis job on a file of customer data using a
DataFlux Integration Server and the DataFlux dfPower Profile software. A macro
identifies the location of the data.

jobid=dqsrvProfJobFile(’ProfileCustomerData’,’profServer2’,5001,
’custprof.pfo’,1,’Profile of Customer Data’,’datapath’,
’/dept/marketing/customers’);

See Also

Functions:
“DQSRVJOBSTATUS Function” on page 95
“DQSRVKILLJOB Function” on page 96
“DQSRVPROFJOBREP Function” on page 99

Functions and CALL Routines � DQSRVPROFJOBREP Function 99

DQSRVPROFJOBREP Function

Runs a repository–type DataFlux dfProfile job on a DataFlux Integration Server and returns a job
identifier.

Requirement: The character variable that receives the return value must have a
minimum length of 52 characters.
Valid in: DATA step, PROC SQL, and SCL

Syntax
DQSRVPROFJOBREP

(job-name<,host><,port>,repository,report,description<,macro-name1>
<,macro-value1> <,macro-name2> <,macro-value2...>)

Arguments

description
is a character variable whose value describes the current run of the job. The
descriptive text is added either to the top of the results file or above the results that
is appended to the bottom of the results file.

host
identifies the host of the DataFlux Integration Server. If this value is not specified,
then localhost is used

job–name
is the DataFlux dfPower Profile job as it exists on the specified DataFlux Integration
Server.

macro-name1
identifies a DataFlux dfPower Profile macro that exists on the DataFlux Integration
Server. The value of macro-name1 can be specified as text or as the name of a
character variable. The value of the variable specifies the name of the macro.

macro-value1
specifies the character value that is used by the associated DataFlux dfPower Profile
macro. Macro–value1 is used by macro–name1. The value of macro-value1 can be
specified as text, or as the name of a character variable.

macro-name2
identifies a DataFlux dfPower Profile macro that exists on the DataFlux Integration
Server. The value of macro-name2 can be specified as text or as the name of a
character variable. The value of the variable specifies the name of the macro.

macro-value2
specifies the character value that is used by the associated DataFlux dfPower Profile
macro. Macro–value2 is used by macro–name2. The value of macro-value2 can be
specified as text, or as the name of a character variable.

port
identifies the port through which the local host communicates with the DataFlux

Integration Server. If this value is not specified, or if the value is 0 or a negative
number, then the default port number 21036 is used.

100 DQSRVUSER Function � Chapter 9

report
is the file that receives the report that is generated by the DataFlux dfPower Profile
job.

repository
is the repository on the DataFlux Integration Server that contains the DataFlux
dfPower Profile job.

Example

The following example runs a data analysis job on a repository of sales data using a
DataFlux Integration Server and the DataFlux dfPower Profile software. A macro
identifies the location of the data.

jobid= dqsrvProfJobRep(’ProfileSalesRepository’,’profServer2’,5001,
’Sales_Repository’,1,’Profile of Sales Data’,’datapath’,
’/dept/sales/Q3’);

See Also

Functions:
“DQSRVPROFJOBFILE Function” on page 97
“DQSRVJOBSTATUS Function” on page 95
“DQSRVKILLJOB Function” on page 96

DQSRVUSER Function

Authenticates a user on a DataFlux Integration Server.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQSRVUSER(user-ID, password)

Arguments

user-ID
identifies a user-ID according to the registry in a DataFlux Integration Server.

password
authenticates the associated user-ID user according to the registry in the DataFlux
Integration Server. The password can be plain text or SAS encoded.

Details
The DQSRVUSER function authenticates a user on a secure DataFlux Integration

Server. A return value of zero indicates successful authentication. A return value of 1
indicates a failure to authenticate.

Functions and CALL Routines � DQSRVVER Function 101

� Call this function as needed in a single DATA step to access different Integration
Servers or to change authorizations within a single Integration Server.

� If security has not been configured on a DataFlux Integration Server, then the
DQSRVUSER function has no effect.

� Return values are 0 (successful authentication) or 1 (failed to authenticate).

Example

The following example supplies a user identifier and a password to a secure
DataFlux Integration Server:

rc= dqsrvUser(’dfUser3’,’’pwdUser3’);

DQSRVVER Function

Returns the version of the DataFlux Integration Server.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQSRVVER (<host> <,port>)

Arguments

host
is the host of the DataFlux Integration Server. If this value is not specified,
localhost is used.

port
is the port through which the local host communicates with the DataFlux Integration
Server. If the value is not specified, the default 21036 is used.

Details
The DQSRVVER function takes two arguments, a host name and a port number. If

host is not specified, the local host is used. If port is not specified, or if the value is zero
or a negative number, the default port number 21036 is used.

DQSRVVER returns a string listing the version number of the integration server,
designated by the host and port values.

Example

The following example sets the value of the version to the character string of the
DataFlux Integration Server, running on machine ’myhost’ and communicating with
port 19525.

version=DQSRVVER (’myhost’,19525);

102 DQSTANDARDIZE Function � Chapter 9

See Also

“DQSRVARCHJOB Function” on page 91

DQSTANDARDIZE Function

Returns a character value after standardizing casing, spacing, and format, and applies a common
representation to certain words and abbreviations.

Requirement: If specified, the locale must be loaded into memory as part of the locale list.
Valid in: DATA step, PROC SQL, and SCL

Syntax
DQSTANDARDIZE (char, ’standardization-definition’<, locale>)

Arguments

char
specifies a character constant, variable, or expression that contains the value that is
standardized according to the specified standardization definition.

standardization-definition
specifies the name of the standardization definition. The definition must exist in the
locale that is used.

locale
specifies a character constant, variable, or expression that contains the locale name.
Default: The default locale is the first locale in the locale list. If no value is

specified, the default locale is used.

Details
In the locales, standardization definitions are provided for character content such as

dates, names, and ZIP codes. The available standardization definitions vary from one
locale to the next.

The return value is provided in the appropriate case, with insignificant blank spaces
and punctuation removed. The standardization definition that was specified in the
DQSTANDARDIZE function might standardize certain words and abbreviations. The
order of the elements in the return value might differ from the order of the elements in
the input character value.

Example

The following example standardizes four names using the NAME standardization
definition from the ENUSA locale. The following example assumes that the ENUSA
locale has been loaded into memory as part of the locale list.

data _null_;
length name stdName $ 50;

Functions and CALL Routines � DQTOKEN Function 103

input name $char50.;
stdName=dqStandardize(name, ’Name’);
put ’Name:’ @10 name /

’StdName:’ @10 stdName /;
datalines;
HOUSE, KEN
House, Kenneth
House, Mr. Ken W.
MR. KEN W. HOUSE
;
run;

After this function call, the SAS log displays the following information:

Name: HOUSE, KEN
StdName: Ken House

Name: House, Kenneth
StdName: Kenneth House

Name: House, Mr. Ken W.
StdName: Mr Ken W House

Name: MR. KEN W. HOUSE
StdName: Mr Ken W House

DQTOKEN Function

Returns a token from a character value.

Requirement: If specified, the locale must be loaded into memory as part of the locale list.
Valid in: DATA step, PROC SQL, and SCL

Syntax
DQTOKEN(char,’token’,’parse-definition’<, locale>)

Arguments

char
specifies a character constant, variable, or expression that contains the value that is
the value from which the specified token is returned, according to the specified parse
definition.

parse-definition
is the name of the parse definition. The definition must exist in the locale that is
used.

token
identifies the token that is returned.

104 DQVERBF Function � Chapter 9

locale
specifies a character constant, variable, or expression that contains the locale name.

Default: The default locale is the first locale in the locale list. If no value is
specified, the default locale is used.

Details

Use the DQTOKEN function to parse a value and return one token. If the DQTOKEN
function does not find a value for that token, the return value for that token is blank.

To return more than one token from a parsed value, use the functions DQPARSE and
DQPARSETOKENGET.

Example

The following example parses a single token from a character value:

prefix=dqToken(’Mrs. Sallie Mae Pravlik’,’Name Prefix’,’Name’,’ENUSA’);

After the DQTOKEN call, the value for the PREFIX variable is Mrs.

See Also

Functions:

“DQPARSE Function” on page 76

“DQPARSETOKENGET Function” on page 81

DQVERBF Function

Returns the version of Blue Fusion.

Valid in: DATA step, PROC SQL, and SCL

Syntax

DQVERBF ()

Details

The DQVERBF function returns the version number of Blue Fusion that has been
loaded by the SAS Data Quality product.

Example

The following example returns the Blue Fusion version.

version=DQVERBF ();

Functions and CALL Routines � DQVERQKB Function 105

DQVERQKB Function

Returns the version of the currently loaded QKB.

Valid in: DATA step, PROC SQL, and SCL

Syntax
DQVERQKB ()

Details
The DQVERQKB function returns a five-character string containing the version of

the currently loaded QKB. If the version cannot be determined (as with QKB versions
before 2005A), the value UNKNW is returned.

Example

The following example returns the version of the currently loaded QKB.

version= QVERQKB ();

106

107

C H A P T E R

10
SAS Data Quality Server System
Options

SAS Data Quality Server System Options 107

SAS Data Quality Server System Options

The SAS Data Quality Server system options DQLOCALE= and DQSETUPLOC=
must be asserted before you run data cleansing programs. The DQOPTIONS= system
option is used at SAS invocation to set data quality parameters.

To specify values for the DQLOCALE= and DQSETUPLOC= system options, use the
%DQLOAD AUTOCALL macro. See “%DQLOAD AUTOCALL Macro” on page 53.

Note: It is not recommended that you specify these system options by any means
other than invoking the AUTOCALL macro %DQLOAD. Failure to use %DQLOAD or
misapplied use of default settings for these system options can result in data that is
cleansed with inappropriate locales. �

The DQOPTIONS= system option enables you to optimize your SAS session for data
quality. The value of the system option is a set of option-value pairs that you specify on
the SAS start-up command or in the SAS configuration file.

The data quality system options can be referenced by the OPTIONS procedure by
specifying GROUP=DATAQUALITY.

DQLOCALE

Specifies an ordered list of locales.

Requirements: You must specify at least one locale.

Syntax
DQLOCALE= (locale1,<,locale2><,...localeN>)

LOCALE1, ...<LOCALE2, ...LOCALEN>
specifies an ordered list of locales. The list determines how the data is cleansed.
Locales are applied to the data in the order in which they are specified. All locales in
the list must exist in the Quality Knowledge Base.

108 DQOPTIONS � Chapter 10

Details
The DQLOCALE= system option identifies the locales that are referenced during data
cleansing. The order of the locales in the list affects the locale matching scheme of the
DQMATCH procedure.

Unlike other system options, the value of the DQLOCALE= system option must be
loaded into memory. Normally, system option values go into the system options table
only. Because the locales that are specified with this option must also be loaded into
memory, always set the value of this system option by invoking the AUTOCALL macro
%DQLOAD. This macro takes as its arguments the values for the DQLOCALE= and
DQSETUPLOC= system options.

Note: It is recommended that you invoke the AUTOCALL macro %DQLOAD at the
beginning of each data cleansing program or session. Failure to do so might generate
unintended output. �

SAS specifies no default value for the DQLOCALE= system option.
It is recommended that you not use an AUTOEXEC to load default locales when you

invoke SAS. Loading default locales can enable you to apply the wrong locales to your
data, which generates unintended output. Loading default locales also wastes resources
when you are not cleansing data. Instead of loading default locales, invoke the
%DQLOAD macro at the beginning of each data cleansing program or session. See
“%DQLOAD AUTOCALL Macro” on page 53.

DQOPTIONS

Specifies SAS session parameters for data quality programs.

Restriction: You cannot create or apply schemes in BFD format in z/OS.
Valid in: The configuration file and as SAS start-up option.

Syntax
DQOPTIONS = (label1=value1)

DQSRVPROTOCOL
specifies the SAS Data Quality Server protocol. In operating environments, other
than z/OS, the default SOAP protocol is recommended.

WIRELINE
specifies the Wireline protocol, which is required in the z/OS operating environment
for DataFlux Integration Servers version 8.1.1 or newer. The Wireline protocol
improves data transfer performance in z/OS. In the SAS Data Quality Server
software, z/OS support encompasses the DQSRVSVC procedure and all functions.

Requirement: The Wireline protocol must be specified in the z/OS operating
environment.

TRANSCODE=IGNORE|WARN
specifies whether transcoding errors end SAS processing.

� Errors can also occur when transcoding the locale’s character set into the
character set that is used in the SAS session.

SAS Data Quality Server System Options � DQSETUPLOC 109

� Transcoding errors can occur if characters in the source data cannot be
converted into the character set that is used by the selected locale.

IGNORE
prevents writing of transcoding warning messages to the SAS log. SAS processing
continues and ignores any transcoding errors.

WARN
writes transcoding error messages to the SAS log, and SAS stops processing.

Default: A value is not supplied for the TRANSCODE= option.

DQSETUPLOC

Specifies the location of the SAS Data Quality Server setup file or the root directory of the Quality
Knowledge Base.

Syntax
DQSETUPLOC=<’file-specification’ | ’path-specification’ >;

FILE-SPECIFICATION=path.dqsetup.txt
identifies the path and name of the setup file, named dqsetup.txt in the Windows and
UNIX operating environments. The setup file defines the contents of the Quality
Knowledge Base.

PATH-SPECIFICATION=Quality Knowledge Base root-directory
identifies the directory that is the root of the Quality Knowledge Base.
Restriction: When a path is specified instead of a file, a setup file is not referenced.
See Also: “Load and Unload Locales” on page 7.

110

111

A P P E N D I X

1
Recommended Reading

Recommended Reading 111

Recommended Reading
The following titles are available through the Customer Care Portal at

www.dataflux.com:
� DataFlux dfPower Studio Online Help
� DataFlux dfPower Studio Getting Started Guide
� DataFlux Integration Server User’s Guide
� DataFlux Expression Language Reference

To learn about the data quality transformations in the SAS Data Integration Studio
software, see that product’s online Help for Create Match Codes and Apply Lookup
Standardization.

For a complete list of SAS publications, refer to the current SAS Publishing Catalog.
The catalog is produced twice a year. To order books or to receive a free copy of the
catalog, write, call, or fax the Institute. Or access the online version of the SAS
Publishing Catalog via the World Wide Web.

When you order a title, this provides you with the most current edition that is
available.

SAS Institute
Fulfillment Services Dept.
SAS Campus Dr.
Cary, NC 27513
Telephone: 1-800-727-3228*
Fax: 919-677-8166
E-mail: sasbook@sas.com
Web site: www.sas.com/pubs

* For other SAS Institute business, call 919-677-8000.

Customers outside the U.S. should contact their local SAS office.

112

113

Glossary

analysis data set
in SAS data quality, a SAS output data set that provides information about the
degree of divergence in specified character values.

Blue Fusion data format
a file format for schemes that can be created and applied in data quality software
from SAS and from DataFlux (a SAS company). Schemes in Blue Fusion data format
are sometimes referred to as BFD schemes. Schemes can also be created in SAS
format.

case definition
a part of a locale that is referenced during data cleansing to impose a capitalization
scheme on a character variable.

cleanse
to improve the consistency and accuracy of data by standardizing it, reorganizing it,
and eliminating redundancy.

cluster
in SAS data quality, a set of character values that have the same match code.

composite match code
a match code that consists of a concatenation of match codes from values from two or
more input character variables in the same observation. A delimiter can be specified
to separate the individual match codes in the concatenation.

compound match code
a match code that consists of a concatenation of match codes that are created for
each token in a delimited or parsed string. Within a compound match code,
individual match codes might be separated by a delimiter.

data analysis
in SAS data quality, the process of evaluating input data sets in order to determine
whether data cleansing is needed.

data cleansing
the process of eliminating inaccuracies, irregularities, and discrepancies from data.

data definitions
are contained in the Quality Knowledge Base for a number of locales. Data
definitions specify how categories of data are processed.

114 Glossary

data quality
the relative value of data, which is based on the accuracy of the knowledge that can
be generated using that data. High-quality data is consistent, accurate, and
unambiguous, and it can be processed efficiently.

data transformation
in SAS data quality, a cleansing process that applies a scheme to a specified
character variable. The scheme creates match codes internally to create clusters. All
values in each cluster are then transformed to the standardization value that is
specified in the scheme for each cluster.

delimiter
a character that separates words or phrases in a text string.

gender definition
a part of a locale that is referenced during data cleansing to determine the gender of
individuals based on the names of those individuals.

guess definition
a part of a locale that is referenced during the selection of the locale from the locale
list. This is the best choice for use in the analysis or cleansing of the specified
character values.

identification definition
a part of a locale that is referenced during data analysis or data cleansing to
determine categories for specified character values.

locale
provide data definitions for a national language and geographical region. The locale
reflects the language, local conventions, and culture for a geographic region. Local
conventions can include specific formatting rules for dates, times, and numbers, and
a currency symbol for the country or region. Collating sequences, paper sizes, and
conventions for postal addresses and telephone numbers are also typically specified
for each locale. Some examples of locale values are French_Canada,
Portuguese_Brazil, and Chinese_Singapore.

locale list
an ordered list of locales that is loaded into memory prior to data analysis or data
cleansing. The first locale in the list is the default locale.

match
a set of values that produce identical match codes or identical match code
components. Identical match codes are assigned to clusters. See also match code,
match code component, and cluster.

match code
an encoded version of a character value that is created as a basis for data analysis
and data cleansing. Match codes are used to cluster and compare character values.

match definition
a part of a locale that is referenced during the creation of match codes. Each match
definition is specific to a category of data content. For example, in the ENUSA locale,
match definitions are provided for names, e-mail addresses, and street addresses,
among others. See also sensitivity.

name prefix
a title of respect or a professional title that precedes a first name or an initial. For
example, Mr., Mrs., and Dr. are name prefixes.

Glossary 115

name suffix
a part of a name that follows the last name. For example, Jr. and Sr. are name
suffixes.

parse
in SAS data quality, a process that inserts into a character value a series of
delimiters, as determined by a specified parse definition.

parse definition
a part of a locale that is referenced during the parsing of character values. The parse
definition specifies the number and location of the delimiters that are inserted during
parsing. The location of the delimiters depends on the content of the character
values. See also token.

parse token
a named element that can be assigned a value during parsing. Tokens are assigned
values based on the specified parse definition. The value can then be manipulated
using the name of the token. See also token.

parsed string
in SAS data quality, a text string into which has been inserted a delimiter and name
at the beginning of each token in that string. The string is automatically parsed by
referencing a parse definition. See also delimited string.

Quality Knowledge Base
a collection of locales and other information that is referenced during data analysis
and data cleansing. For example, to create match codes for a data set with addresses
in Great Britain, you would reference the ADDRESS match definition, in the ENGBR
locale.

SAS data format
a file format for schemes that can be created and applied in data quality software
from SAS and from DataFlux (a SAS company). Schemes in SAS data format are
sometimes referred to as ??? schemes.

scheme
in SAS data quality, a reusable collection of match codes and standardization values
that is applied to input character values for the purposes of transformation or
analysis. Schemes can be created in Blue Fusion data format or SAS data format.
See also Blue Fusion data format.

sensitivity
in SAS data quality, a value that specifies the amount of information in match codes.
Greater sensitivity values result in match codes that contain greater amounts of
information. As sensitivity values increase, character values must be increasingly
similar to generate the same match codes.

standardization definition
a part of a locale that is referenced during data cleansing to impose a specified
format on character values.

standardize
in SAS data quality, to impose a specified format on character values.
Standardization definition is used to standardize the data.

token
in SAS data quality, a named word or phrase in a parsed or delimited string that can
be individually analyzed and cleansed. See also parse token.

116 Glossary

transformation
in SAS Data Quality, a process that converts a group of similar data values to the
single value that is most commonly present in the group.

transformation value
in SAS Data Quality, the most frequently occurring value in a cluster. In data
cleansing, this value is propagated to all of the values in the cluster.

117

Index

! (exclamation point)
as delimiter 21

A
analysis data sets 8, 33

creating 37, 40
ANALYSIS= option

CREATE statement (DQSCHEME) 37
apply mode 9, 10
APPLY statement, DQSCHEME procedure 35
authentication 46, 51, 100
autocall macros 53

B
BFD format

See Blue Fusion Data (BFD) format
BFD option

PROC DQSCHEME statement 34
BFDTOSAS option

CONVERT statement (DQSCHEME) 36
blank spaces, removing 51
blank values 20
BLOCKSIZE= option

PROC DQSRVSVC statement 50
Blue Fusion Data (BFD) format 8, 9, 34

converting SAS schemes to 8, 36
creating BFD schemes 42
version of BFD 104

C
CALL routines 58

scheme CALL routines 63
case definitions 17, 63
case functions 60
case of character values 63
category names

from character values 67
character values

after standardization 102
case and standardization definitions 17
case of 63
category names from 67
gender analysis, locale guess, and identification defini-

tions 18
inserting tokens into parsed values 82
locale names from 68

match codes from 71
match codes from parsed values 73
parsed 75, 76
pattern analysis definitions 18
pattern analysis from input values 83
tokens from 103
tokens from parsed values 81
updated parsed values 82

character variables
transforming 8

cleaning up jobs and logs 47
cleansing data

real-time 49
cluster numbers 19

assigning 23
creating 24

CLUSTER= option
PROC DQMATCH statement 20

CLUSTER_BLANKS option
PROC DQMATCH statement 20

clusters 12
householding 12
minimal sensitivity 27
mixed sensitivity 25
with exact criteria 13
with multiple CRITERIA statements 29

CLUSTERS_ONLY option
PROC DQMATCH statement 20

columns, input and output 51
composite match codes 12, 24
CONDITION= option

CRITERIA statement (DQMATCH) 22
configuration

SAS sessions for data quality 4
CONVERT statement, DQSCHEME procedure 36
converting schemes 8, 36
count of locale definitions 70
CREATE statement, DQSCHEME procedure 37
CRITERIA statement, DQMATCH procedure 22

clustering with exact criteria 13
clustering with multiple 29

D
data cleansing

real-time 49
specifying definitions in programs 5

DATA= option
PROC DQMATCH statement 21

118 Index

PROC DQSCHEME statement 35
PROC DQSRVSVC statement 50

data quality
configuring SAS sessions for 4
SAS session parameters for programs 108

data sets
analysis 8, 33, 37, 40
input 52
job status 45, 46, 47
output 52
scheme 8, 9, 33, 37

data transfer 4
data values, similar

transforming 33
DataFlux dfPower Architect 1

creating jobs and services 5
job identifiers 92
job information 45
running jobs 92
running real-time services 49
running services 52

DataFlux dfPower Profile 1
creating jobs and services 5
job information 45
running file-type jobs 97
running repository-type jobs 99

DataFlux dfPower Studio 34
DataFlux Integration Server 1

authenticating users 46, 51, 100
cleaning up jobs and logs 47
copying log files 93
deleting log files 94
functions 60
host machine 50
host of 46
input and output columns 51
job status 95
jobs and services 5
passwords 6
port number 46, 51
running dfPower Architect jobs 92
running file-type Profile jobs 97
running jobs and services 6
running real-time services 49
running repository-type Profile jobs 99
security 46
service identification 51
terminating jobs 96
version of 101

date standardization
in EN locale 17

default length of parsed input 78
definitions

available in locales 5
case 63
case and standardization 17
date standardization in EN locale 17
displaying information about locale 5
gender 65
gender analysis, locale guess, and identification 18
global parse 16
locale 15
match 16
parse 15
pattern analysis 18
revealing or hiding non-surfaced 74

scheme-build match 16
specifying in data cleansing programs 5

delimiter
exclamation point as 21

DELIMITER option
PROC DQMATCH statement 21

DELIMSTR option
CRITERIA statement (DQMATCH) 22

DQCASE function 63
DQGENDER function 64
DQGENDERINFOGET function 65
DQGENDERPARSED function 66
DQIDENTIFY function 67
%DQLOAD autocall macro 53
DQLOCALE= system option 107
DQLOCALEGUESS function 68
DQLOCALEINFOGET function 69
DQLOCALEINFOLIST function 70
DQMATCH function 71
DQMATCH procedure 19

clustering with minimal sensitivity 27
clustering with mixed sensitivities 25
clustering with multiple CRITERIA statements 29
CRITERIA statement 22, 29
examples 24
generating composite match codes 24
generating multiple simple match codes 30
householding 12
match codes for parsed values 28
matching values with mixed sensitivity levels 25
PROC DQMATCH statement 20
syntax 20

DQMATCHINFOGET function 72
DQMATCHPARSED function 73
DQOPTIONS= system option 108

configuring SAS sessions 4
DQOPTSURFACE function 74
DQPARSE CALL routine 75
DQPARSE function 76
DQPARSEINFOGET function 77
DQPARSEINPUTLEN function 78
DQPARSERESLIMIT funciton 79
DQPARSESCORDEPTH function 80
DQPARSETOKENGET function 81
DQPARSETOKENPUT function 82
DQPATTERN function 83
%DQPUTLOC autocall macro 5, 54
DQSCHEME procedure 33

APPLY statement 35
applying schemes 42
CONVERT statement 36
CREATE statement 37
creating analysis data sets 40
creating BFD schemes 42
creating schemes 41
examples 40
PROC DQSCHEME statement 34
scheme-build match definitions and 16
syntax 34

DQSCHEMEAPPLY CALL routine 84
DQSCHEMEAPPLY function 88
DQSETUPLOC= system option 109
DQSRVADM procedure 45

cleaning up jobs and logs 47
examples 47
job status data sets 46, 47

Index 119

PROC DQSRVADM statement 46
security and 46
syntax 46

DQSRVARCHJOB function 92
DQSRVCOPYLOG function 93
DQSRVDELETELOG function 94
DQSRVJOBSTATUS function 95
DQSRVKILLJOB function 96
DQSRVPROFJOBFILE function 97
DQSRVPROFJOBREP function 99
DQSRVSVC procedure 49

examples 52
input and output data sets 52
performance of 4
PROC DQSRVSVC statement 50
syntax 50
timeout 51

DQSRVUSER function 100
DQSRVVER function 101
DQSTANDARDIZE function 102
DQTOKEN function 103
%DQUNLOAD autocall macro 56
DQVERBF function 104
DQVERQKB function 105

E
element mode 9
EN locale

date standardization in 17
encoded passwords 6
EXACT option

CRITERIA statement (DQMATCH) 23
exclamation point

as delimiter 21

F
file-type DataFlux dfProfile jobs 97
functions 58

case 60
DataFlux Integration Server 60
gender analysis, locale guessing, and identification 60
listed alphabetically 58
listed by category 60
matching 61
parsing 61
pattern analysis 61
reporting 62
scheme 63
standardization 63

G
gender analysis definitions 18
gender analysis functions 60
gender definitions

parse definitions associated with 65
gender determination

from name of an individual 64
from parsed name 66

global parse definitions 16

H
hiding non-surfaced definitions 74

host
for DataFlux Integration Server 46

host machine
DataFlux Integration Server 50

HOST= option
PROC DQSRVADM statement 46
PROC DQSRVSVC statement 50

householding 12

I
identification definitions 18
identification functions 60
IGNORE_CASE option

APPLY statement (DQSCHEME) 36
CREATE statement (DQSCHEME) 39

IN= option
CONVERT statement (DQSCHEME) 37

INCLUDE_ALL option
CREATE statement (DQSCHEME) 37

input
default length of parsed 78
parsed values 15

input character values
pattern analysis from 83

input columns 51
input data sets

DQSRVSVC procedure 52
installation 5

J
job identifiers

DataFlux dfPower Architect jobs 92
file-type Profile jobs 97
repository-type Profile jobs 99

job status data sets 45, 46
generating 47
location of 46

jobs 5
cleaning up 47
copying log files 93
creating 5
deleting log files 94
information about 45
logs for 6
running 6
running DataFlux dfPower Architect jobs 92
running file-type Profile jobs 97
running repository-type Profile jobs 99
status of 95
terminating 6, 96

K
killing jobs 6, 96

L
length

default length of parsed input 78
loading locales 7

into memory 53
Local Process group 1
locale definitions 15

case and standardization 17

120 Index

count of 70
date standardization in EN locale 17
gender analysis, locale guess, and identification 18
global parse 16
match 16
name of 70
parse 15
pattern analysis 18
scheme-build match 16

locale guess definitions 18
locale guessing functions 60
locale names

from character values 68
LOCALE= option

APPLY statement (DQSCHEME) 35
CREATE statement (DQSCHEME) 38
PROC DQMATCH statement 21

locales
definitions available in 5
displaying information about 5
displaying information in SAS log 54
getting information about 69
loading and unloading 7
loading into memory 53
ordered list of 107
unloading to increase free memory 56
updating 7

log files
copying 93
deleting 94

logs
cleaning up 47
displaying locale information 54
for jobs and services 6

lookup method 9, 10, 36, 39

M
macros, autocall 53
MACROS= option

PROC DQSRVSVC statement 50, 52
match codes 19

composite 12, 24
creating 11, 22
creating for parsed values 28
from character values 71
from parsed character values 73
generating multiple simple codes 30
length of 12
match definitions and 16
sensitivity 13
simple 11, 30
truncation of 12

MATCH-DEFINITION= option
APPLY statement (DQSCHEME) 35

match definitions 16
parse definitions associated with 72
scheme-build 16

MATCHCODE= option
CRITERIA statement (DQMATCH) 23
PROC DQMATCH statement 21

MATCHDEF option
CRITERIA statement (DQMATCH) 23
CREATE statement (DQSCHEME) 38

matching functions 61

matching values
default sensitivity 24
minimal sensitivity 27
mixed sensitivity 25

memory
loading locales into 53
unloading locales from 56

meta options 9
MISSINGVARSOK option

PROC DQSRVSVC statement 50
mode of scheme application 35, 38
MODE=ELEMENT option

APPLY statement (DQSCHEME) 35
CREATE statement (DQSCHEME) 38

N
named tokens 15, 77
names

gender determination and 64, 66
locale names from character values 68
of locale definitions 70
of parse definitions 65, 72
parsed 66

NO CLUSTER_BLANKS option
PROC DQMATCH statement 20

NOBFD option
PROC DQSCHEME statement 34

NODELIMITER option
PROC DQMATCH statement 21

non-surfaced definitions
revealing or hiding 74

NOPRINT option
PROC DQSRVSVC statement 51

O
option-value pairs 4
OUT= option

CONVERT statement (DQSCHEME) 37
PROC DQMATCH statement 21
PROC DQSCHEME statement 35
PROC DQSRVADM statement 46
PROC DQSRVSVC statement 51

output columns 51
output data sets

DQSRVSVC procedure 52

P
parse definitions 15

associated with gender definitions 65
associated with match definitions 72
global 16
name of 65, 72
token names in 77

parsed character values 75, 76
inserting tokens into 82
match codes from 73
tokens from 81
updated 82

parsed input 15
default length of 78

parsed names
gender determination from 66

Index 121

parsed values
match codes for 28
updated 82

parsing
resource limit during 79

parsing functions 61
parsing scores

searching for 80
PASSWORD= option

PROC DQSRVADM statement 46
PROC DQSRVSVC statement 51

passwords
for DataFlux Integration Server 6

pattern analysis
from input character values 83

pattern analysis definitions 18
pattern analysis functions 61
performance

DQSRVSVC procedure 4
phrase mode 9
PHRASE option

APPLY statement (DQSCHEME) 35
CREATE statement (DQSCHEME) 38

port number 46, 51
PORT= option

PROC DQSRVADM statement 46
PROC DQSRVSVC statement 51

PROC DQMATCH statement 20
PROC DQSCHEME statement 34
PROC DQSRVADM statement 46
PROC DQSRVSVC statement 50
Profile jobs 5

Q
Quality Knowledge Base (QKB) 1

location of root directory 109
setup file and 3
version of currently loaded 105

R
real-time data cleansing 49
reporting functions 62
repository-type Profile jobs 99
resource limit

during parsing 79
revealing non-surfaced definitions 74
root directory

specifying location of 109
running jobs 6

DataFlux dfPower Architect 92
file-type Profile jobs 97
repository-type Profile jobs 99

running services 6
real-time 49

S
SAS Data Quality Server 1

concepts 3
functional overview 1
installing 5
setup file 3
updating 5

SAS format schemes
converting BFD format to 8, 36

SAS language elements 1
SAS log

displaying locale information 54
SAS sessions

configuring for data quality 4
parameters for data quality programs 108

SASTOBFD option
CONVERT statement (DQSCHEME) 36

scheme-build match definitions 16
scheme CALL routines 63
scheme data sets 33

applying schemes 9
creating 37
format of 8, 9

scheme functions 63
SCHEME= option

APPLY statement (DQSCHEME) 36
CREATE statement (DQSCHEME) 38

SCHEME_LOOKUP=EXACT option
APPLY statement (DQSCHEME) 36
CREATE statement (DQSCHEME) 39

schemes 8, 33
analysis data sets 8
apply mode 9, 10
applying 9, 42, 84, 88
applying to transform values of a single variable 35
converting between formats 8, 36
creating 8, 41
creating BFD schemes 42
format of 34
meta options 9
mode of application 35, 38
returning transformation flag 84
returning transformed value 84, 88

searching
for parsing scores 80

security
DQSRVADM procedure and 46

sensitivity level 13
analysis data sets and 8
default value 24
match codes and 19, 23
match definitions and 16
meta options and 10
minimal 27
mixed 25

SENSITIVITY= option
APPLY statement (DQSCHEME) 36
CREATE statement (DQSCHEME) 39
CRITERIA statement (DQMATCH) 23

Server Process group 1
SERVICE= option

PROC DQSRVSVC statement 51
SERVICEINFO option

PROC DQSRVSVC statement 51
services 5

creating 5
identification of 51
logs for 6
running 6, 52
running real-time 49

setup file 3
editing 4
specifying location of 109

122 Index

similar data values
transforming 33

simple match codes 11
generating multiple 30

standardization 102
date standardization in EN locale 17

standardization definitions 17
standardization functions 63
system options 107

setting values 53

T
terminating jobs 6, 96
TIMEOUT option

PROC DQSRVSVC statement 51
PROC DQSRVSVC statement 51

token names 15, 77
tokens

from character values 103
from parsed character values 81
inserting into parsed character values 82
updated parsed character values 82

transcoding errors 5
transferring data 4
transformation flags 84
transforming

applying schemes to transform values of a single vari-
able 35

character values 8
returning transformed values after applying a scheme 84,

88
similar data values 33

TRIM option
PROC DQSRVSVC statement 51

truncated match codes 12

U
unloading locales 7, 56

updated parsed values 82

updated tokens 82

updating

locales 7

SAS Data Quality Server 5

USE_MATCHDEF option

APPLY statement (DQSCHEME) 36

CREATE statement (DQSCHEME) 39

user authentication 46, 51, 100

USERID= option

PROC DQSRVSVC statement 51

V
VAR option

CRITERIA statement (DQMATCH) 22

APPLY statement (DQSCHEME) 36

CREATE statement (DQSCHEME) 39

variables

applying schemes to transform values of a single vari-
able 35

transforming character variables 8

version

Blue Fusion Data 104

currently loaded QKB 105

DataFlux Integration Server 101

W
Wireline protocol 6

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

322

support.sas.com/saspress

support.sas.com/documentation

support.sas.com/spn

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. © 2010 SAS Institute Inc. All rights reserved. 56836US.0510

SAS® Press
SAS Press titles deliver expert advice from SAS® users worldwide. Written by experienced SAS professionals,
SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

SAS® Documentation
We produce a full range of primary documentation:
• Online help built into the software
• Tutorials integrated into the product
• Reference documentation delivered in HTML and PDF formats—free on the Web
• Hard-copy books

SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information via e-mail about all new SAS titles,
product news, special offers and promotions, and Web site features.

SOCIAL MEDIA: JOIN THE CONVERSATION!
Connect with SAS Publishing through social media. Visit our Web site for links to our pages on Facebook,
Twitter, and LinkedIn. Learn about our blogs, author podcasts, and RSS feeds, too.

SAS Publishing provides you with a wide range of resources to help you develop your SAS software expertise.
Visit us online at support.sas.com/bookstore.

SAS® Publishing Delivers!

support.sas.com/socialmedia

	Contents
	What’s New
	Overview
	SAS Data Quality Server Enhancements
	SAS System Option
	Support for the DataFlux Integration Server
	Support for the z/OS Operating Environment

	Server
	Overview
	SAS Data Quality Server

	Concepts
	SAS Data Quality Server Concepts
	SAS Data Quality Setup File
	Edit the SAS Data Quality Setup File
	Configure Your SAS Session for Data Quality
	Specify Definitions In SAS Data Cleansing Programs
	Considerations for Installing and Updating the Software

	DataFlux Jobs and Services
	Running Jobs and Services on a DataFlux Integration Server
	DataFlux Integration Server Passwords

	Load and Unload Locales
	Schemes
	Create the Schemes
	Analysis Data Sets
	Applying Schemes
	Meta Options

	Create Match Codes
	How Match Codes Are Created
	Match Code Length

	Clusters
	Householding with the DQMATCH Procedure
	Clustering with Exact Criteria

	Sensitivity

	Locale Definitions
	Locale Definitions
	Parse Definitions
	Global Parse Definitions
	Match Definitions
	Scheme Build Match Definitions
	Case and Standardization Definitions
	Standardization of Dates in the EN Locale
	Gender Analysis, Locale Guess, and Identification Definitions
	Pattern Analysis Definitions

	The DQMATCH Procedure
	Overview: DQMATCH Procedure
	What Does the DQMATCH Procedure Do?

	Syntax: DQMATCH Procedure
	DQMATCH Examples

	The DQSCHEME Procedure
	Overview: DQSCHEME Procedure
	What Does the DQSCHEME Procedure Do?

	Syntax: DQSCHEME Procedure
	PROC DQSCHEME Examples

	The DQSRVADM Procedure
	Overview: DQSRVADM Procedure
	What Does the DQSRVADM Procedure Do?

	Syntax: DQSRVADM Procedure
	The Job Status Data Set
	Security
	PROC DQSRVADM Examples

	The DQSRVSVC Procedure
	Overview: DQSRVSVC Procedure
	What Does the DQSRVSVC Procedure Do?

	Syntax: DQSRVSVC Procedure
	The Input and Output Data Sets
	The Input Data Set
	The Output Data Set

	Examples

	AUTOCALL Macros
	AUTOCALL Macros for SAS Data Quality Server

	Functions and CALL Routines
	Overview
	Functions Listed Alphabetically
	Functions Listed by Category
	DataFlux Integration Server Functions
	Case Functions
	Gender Analysis, Locale Guessing, and Identification Functions
	Matching Functions
	Parsing Functions
	Pattern Analysis Functions
	Reporting Functions
	Scheme Functions and CALL Routines
	Standardization Functions

	SAS Data Quality Server System
	Options
	SAS Data Quality Server System Options

	Recommended Reading
	Glossary
	Index

