
SAS/IntrNet® 9.2
Application Dispatcher

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008. SAS/IntrNet®
9.2: Application Dispatcher. Cary, NC: SAS Institute Inc.

SAS/IntrNet® 9.2: Application Dispatcher

Copyright © 2008, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, March 2008

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-
727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Table of Contents
What's New in SAS/IntrNet 9.2Application Dispatcher...1

 About Application Dispatcher..2

An Overview of the Application Dispatcher...3
What Is the Application Dispatcher?...3
What Are Application Dispatcher Services?...3
What Are Application Dispatcher Applications?..4
What Is the Application Load Manager?...4
Who Uses the Application Dispatcher?...4

How the Application Dispatcher Works...6
How a Request Is Submitted to the Application Broker..6
How the Application Broker Processes a Request...7
How the Application Server Processes a Request...7
How Program Output Is Sent to the Application Broker...8
How the Load Manager Works..8

Requirements for the Application Dispatcher...11
Requirements for the Application Broker..11
Requirements for the Application Server..11
Requirements for the Application Load Manager...12

Application Dispatcher Security..13
Related Topics...13

Application Broker and Web Server Security...14
Using a Secure Web Server...14
Hiding Sensitive Information from Web Server Logs...14
Protecting the Application Broker Configuration File...14
Creating Encrypted User Names and Passwords...15
Authenticating the Application Broker..15

Application Server Security...16
The Application Server Should Not Trust the Application Broker...16
Application Server May Restrict Application Broker Access...17
Supplying a Password When Starting the Application Server...17
Hiding Passwords and Other Sensitive Data from the SAS Log...17
Restricting Access to Program Libraries...18
Disabling Sample Programs...18
Reviewing New or Modified Code..18

Controlling Access to Data Sources with the AUTHLIB Data Set...19
AUTHLIB Functions...20
Verifying the AUTHLIB Data Set...21

Application Dispatcher Program Security...23
Using SCL or Compiled Macro Code..23
Using Password−Protected Data Sets..23

SAS Documentation

Table of Contents
Upgrading from Version 8 to Version 9..24

Completing the Installation..25

Create and Start the Default Service..26
Windows Platforms..26
UNIX Platforms...26
z/OS...27
OpenVMS..28

Add the Default Service Definition..30

Testing the Installation...31
Completing the Application Dispatcher Installation..32

Customizing the Application Dispatcher..33
Customizing the Application Broker...33
Customizing the Application Server..33

Using the Application Broker Configuration File..34
Template Configuration File..34
Modifying the Application Broker Configuration File..34

Creating a Customized Welcome Page...36

ISAPI/GWAPI Application Brokers...37
ISAPI...37
GWAPI..37

Specifying the Global Administrator..39

Specifying the Self−Referencing URL...40

Specifying HTTP Methods...41

Setting the Default Value of _DEBUG..42

Using DebugMask and ServiceDebugMask..43

Displaying the Powered by SAS Logo...44

Exporting Environment Variables..45

Configuration File Directives...47
Administrator Directives..47
Debugging Directives..47
File and Variable Manipulation Directives..47
General Service Directives..48
Service−Specific Directives...50

LaunchService...50

SAS Documentation

Table of Contents
Configuration File Directives

LaunchService Directives for Previous Version Servers..50
PoolService..51
SocketService..52

URL Directives..52

Running Multiple Application Servers at Your Site...54

Application Server Administration Programs...55

Application Server Libraries...57
Program Libraries..57
Data Libraries...57

Using Services..58

Choosing a Service Type..59
Socket Services..59

Advantages..59
Disadvantages..59

Pool Services..59
Advantages..59
Disadvantages..60

Launch Services...60
Advantages..60
Disadvantages..60

Services on OpenVMS..61
Creating a Service..61
Starting the Service..62
Stopping the Service..62
Service Log Files...63
Removing a Service...63

Services on z/OS..64
Creating a Service..64
Starting the Service..66
Stopping the Service..67
Service Log Files...67
Removing a Service...67

Services on UNIX Platforms..68
Creating a Service..68
Starting the Service..70
Stopping the Service..70
Service Log Files...70
Removing a Service...71

SAS Documentation

Table of Contents
Services on Windows Platforms..72

Creating a Service..72
Starting the Service..73
Stopping the Service..74
Modifying a Service or Accessing Service Log Files..74
Windows Services..75
Removing a Service...75

Enhancing Performance...76
Using Multiple Servers (Random Load Balancing)...76
Using the Load Manager (Intelligent Load Balancing)...76
Increasing Timeout..77
Using Server Weights..77
Specifying a Backup Machine...77

Development vs. Production Environments...79
Development Services...79
Production Services...79

Using the Load Manager..80

Application Load Manager Reference..81
Starting the Load Manager...81
Stopping the Load Manager...82
Application Broker Directives for the Load Manager...83
Load Manager Statistics...83

Load Manager serv.abc.com:5555..83
Load Manager Data for Application Server Activity..84

Load Manager serv.abc.com:5555..84

Load Manager on Windows Platforms...86
Configuring and Starting the Load Manager...86
Accessing Log Files...86
Windows Services..86

Application Load Manager Log Files...87

Running Jobs in the Background..89

The Input Component..90
Reserved Names...90
Specifying Name/Value Pairs in a URL..91
Specifying Name/Value Pairs in an HTML Form...91
Specifying Name/Value Pairs in the Application Broker Configuration File.......................................92
Multiple Value Pairs..93

HTML Syntax Reference...94
HTML Tags...94

Quotation Marks..94
Anchor Tag..94

SAS Documentation

Table of Contents
HTML Syntax Reference

FORM Tag..94
IMG Tag..95
INPUT Tag..95
TEXTAREA Tag...96

URL Syntax...96

The Program Component...98

The Four Types of Programs...99
SAS Programs..99
Source Entries..99
SCL Entries..99
Macro Entries...100

Receiving Input Component Data...101

Reserved or Special Variables...103

HTTP Headers..105
Automatic Header Generation...105

Example...106
Disabling Automatic Header Generation..107
HTTP Output Reference..107
Content−type...107
Expires...108
Location...108
Pragma...108
Set−Cookie..108

Using HTML Formatting Tools...109

The Output Delivery System (ODS)..110
Creating Web Output with ODS..110
Layout Examples...111

Body Only...111
Body and Table of Contents..112
Table of Contents Only...112
Graphics and Text...113

Cleaning Up...113

Using the REPLAY Program...114

Advanced Programming Techniques..115
Data Passing and Program Chaining..115

First HTML Form..116
First Program (PGM1.SAS)..116
Second Program (PGM2.SAS)..117
Modified Version of First Program (PGM1.SAS)..118

Embedded Graphics...119

SAS Documentation

Table of Contents
Advanced Programming Techniques

Web Browser Referral by Using the Location Header..120
Creating Various Date/Time Formats..121

Creating Temporary Files..123
Creating a File with a Unique Name..123
Creating a File in a Unique Subdirectory..123
Storing a File in a Unique Catalog...124
Example...124

Using Sessions: A Sample Web Application...126
Sample Data...126
Login..126
Main Aisle..127
Library Aisles...130
Add Items...132
Shopping Cart..133
Checkout and Logout...135
Invalid Session Program..138

Uploading Files..140
Reserved Macro Variables...140
Examples of How to Upload Files...141

Example 1: Uploading a single file...141
Example 2: Uploading multiple files...142

Examples of How to Use Uploaded Files..145
Example 3: Uploading a CSV file to a SAS table...145
Example 4: Uploading an Excel XML workbook to multiple SAS tables....................................145
Example 5: Uploading a SAS table or view..146
Example 6: Uploading a SAS catalog...146
Example 7: Uploading a SAS table, view, or catalog and saving a permanent copy....................146
Example 8: Uploading an Excel workbook to a SAS table...147

Application Server Functions..148

APPSRVGETC...149
Syntax..149
Arguments..149
Details..149
Examples..149

APPSRVGETN...150
Syntax..150
Arguments..150
Details..150
Examples..150

APPSRVSET...151
Syntax..151
Arguments..151

SAS Documentation

Table of Contents
APPSRVSET

Details..151
Examples..152

APPSRV_AUTHCLS...153
Syntax..153
Arguments..153
Details..153
Examples..153

APPSRV_AUTHDS..155
Syntax..155
Arguments..155
Details..155
Examples..155

APPSRV_AUTHLIB..156
Syntax..156
Arguments..156
Details..156
Examples..156

APPSRV_HEADER..158
Syntax..158
Arguments..158
Details..158
Examples..158
Disabling Automatic Header Generation...159

APPSRV_SESSION..160
Syntax..160
Arguments..160
Details..160
Examples..160

Application Dispatcher Debugging...161

Debugging in the Input Component..162
List of Valid Debug Values...162
Disabling Debug Flags...163
Special Cases...164
Debugging Application Broker Installation Problems...164

Debugging in the Program Component..167
Examining the SAS Log..167
Using SAS Options..167
The DATA Step Debugger..167
The SCL Debugger..167

SAS Documentation

Table of Contents
The APPSRV Procedure..169

Syntax..169

PROC APPSRV Statement..171
PROC APPSRV Arguments..171
Special Requirements for AUTH=HOST..174

Using AUTH=HOST on OpenVMS systems..174
Using AUTH=HOST on z/OS systems...175
Using AUTH=HOST on UNIX systems...175
Using AUTH=HOST on Windows systems..175

ADMINLIBS Statement...176
Syntax..176
Arguments..176

ALLOCATE FILE Statement...177
Syntax..177
Arguments..177

ALLOCATE LIBRARY Statement..179
Syntax..179
Arguments..179
Nesting Library Names in Concatenated Libraries..179

Concatenated Data Libraries...179
Concatenated Program Libraries...180

DATALIBS Statement..182
Syntax..182
Arguments..182

LOG Statement...183
Syntax..183
Arguments..183
Default Log File Append Behavior..184

PROGLIBS Statement..185
Syntax..185
Arguments..185

REQUEST Statement...186
Syntax..186
Arguments..186

SESSION Statement...188
Syntax..188
Arguments..188

STATISTICS Statement...190
Syntax..190
Arguments..190

SAS Documentation

Table of Contents
STATISTICS Statement

 Default Contents of the Data Set..191
Customizing the Statistics Data Set...192
Application Server Access to the Data Set..193
Application Access to the Data Set..193

Samples..195

SAS Documentation

What's New in SAS/IntrNet 9.2
Application Dispatcher

Overview
Application Dispatcher provides background processing, support for 64−bit hosts and IPv6−based hosts, Load
Manager enhancements, new options for the PROC APPSRV statement, new parameters for the _REPLAY
program, and improved documentation.

General Enhancements

SAS/IntrNet Application Dispatcher includes the following enhancements:

Long−running SAS/IntrNet programs can now run in the background to avoid problems with common
timeouts for the Application Broker, Web server, and Application Server. The Web browser does not
have to wait for a job to complete. The results are returned via e−mail or stored for subsequent
retrieval. The following new APPSRVSET parameters are available:

 APPSRVSET('background',request_timeout);♦
 APPSRVSET('disconnect');♦

•

SAS/IntrNet now runs on 64−bit hosts and IPv6−based hosts. Any fields in the broker.cfg file that are
specified with host:port have to be changed to [host]:port if host contains a colon.

•

SAS/IntrNet supports the following additional parameters for starting the Load Manager:

−background=n
specifies the number of Application Servers that can be run in the background at one time.

−delete=service−name
removes a previously installed Load Manager as a system service on Windows. This is useful
if you are running multiple Load Managers. If the service_name is not specified, the name
defaults to SAS IntrNet Load Manager.

−install=service−name
installs the Load Manager on Windows as a system service. This is useful if you want to run
multiple Load Managers. If the service_name is not specified, the Load Manager is installed
as SAS IntrNet Load Manager.

−localhost=hostname
forces the Load Manager to use the specified string as the local host name for all system host
name comparisons.

•

SAS/IntrNet Application Dispatcher supports the following additional options for the PROC
APPSRV statement:

CHARSET= and NOCHARSET options
enable the PROC APPSRV statement to append a specified character set name to the HTTP
content−type header and to disable any special content−type processing, respectively.

AUTH=META option
enables the PROC APPSRV statement to use a metadata server.

•

SAS/IntrNet Application Dispatcher now supports additional parameters for the _REPLAY program.
The _OUTPUTAPP= parameter enables you to replay output to a Microsoft Office application. The
_CONTDISP parameter enables you to control the filename of the replayed content.

•

1

About Application Dispatcher
Application Dispatcher, a SAS/IntrNet component, is a Web gateway from your Web browser to the power of
SAS processing. This gateway, written by using the Common Gateway Interface (CGI), provides access to
data in combination with a powerful array of analysis and presentation procedures. SAS software does not
have to be installed on your machine!

To access and analyze data, a Web user completes an HTML form by selecting items and filling in fields.
When the user selects the option to submit the information, the Application Dispatcher passes the information
through the CGI program to a waiting SAS session. SAS software processes the information by using the
identified program. Program results return through the CGI to the Web browser and are displayed to the
waiting user.

You do not need CGI programming experience to use the Application Dispatcher. You can create the Web
user interface and retrieve SAS data for display on the Web without having to program a CGI script.

2

An Overview of the Application Dispatcher
Using the Application Dispatcher, you can send information from a Web browser to a SAS session for
processing and receive the results on your Web browser. The results can appear as text, HTML, GIF, JPEG, or
any other format that is supported by your Web browser.

By submitting an HTML form or clicking a hypertext link, you can cause SAS to run a program. The program
can be written by you or someone else at your site, or it can be a sample program that is provided by SAS.
You can even use the sample forms and code as the foundation for your own applications. You can easily
modify almost any SAS batch program to run on the Web and thus add new life to legacy applications and
legacy data. Some commercial SAS applications that run by using the Application Dispatcher are included
with SAS/IntrNet software.

To get started with Application Dispatcher terminology and concepts, read the following:

What Is the Application Dispatcher?•
What Are Application Dispatcher Services?•
What Are Application Dispatcher Applications?•
What Is the Application Load Manager?•
Who Uses the Application Dispatcher?•

What Is the Application Dispatcher?

The Application Dispatcher exchanges and processes information by using the following components:

The input component runs on the Web server or the client. It normally consists of static or dynamically
generated HTML pages containing URL references or HTML forms. The input component is responsible for
selecting what program component to run and what input data to pass to that program component.

The Application Broker is a CGI program that resides on your Web server (for example, in the cgi−bin or
scripts directory). The Application Broker interprets the information received from the input component and
passes it to the Application Server.

The Application Server is a SAS session that receives input from the Application Broker. The Application
Server accepts information from the Application Broker CGI program and invokes the program component.

The program component is a SAS program invoked within the Application Server. The program

receives the request from the server1.
processes it2.
returns the results to the Application Broker for delivery to the Web browser and the waiting user.3.

What Are Application Dispatcher Services?

Each request from the Web browser contains the name of a service that will fulfill the request. The
Application Broker identifies the service by looking into its configuration file and then determines where and
how the request should be forwarded. The configuration file defines the three services (socket, launch, and
pool) that are available for Application Dispatcher applications to use.

A socket service runs the Application Server continuously, waiting for new requests, and refers to the protocol
3

that is used (TCP/IP sockets) to communicate between the server and the Application Broker. Using this type
of service, many servers can run at the same time, letting the Application Broker balance the load. As multiple
users invoke Application Dispatcher programs, multiple servers can be used to improve application
performance. An optional component called the Application Load Manager can be added to assist the
Application Broker in balancing the load.

Instead of using the socket service method of running the Application Server, you can use the launch service,
which starts a new server for each request. Although this method can require more time than the socket
service because of the Application Server start−up time, it is easier to administer and provides some security
advantages.

Using the Application Load Manager, the pool service starts servers from the pool as needed to handle queued
jobs. When a job completes, the server becomes available for new requests until an optional idle time−out is
reached, at which time the server shuts down.

What Are Application Dispatcher Applications?

The Application Broker and the Application Server provide the communication and processing mechanisms
for Application Dispatcher applications. An Application Dispatcher application consists of one or more
associated input components and program components. The program components for an Application
Dispatcher application can be any of the following:

a SAS program (an external file that has a .sas extension)•
a source entry (a catalog entry that has a .source extension)•
an SCL entry (a catalog entry that has a .scl extension)•
a compiled macro (a catalog entry that has a .macro extension).•

The program component that you create must be designed to accept the information that is received from the
Web browser. In many cases, this means that you not only create the source program but also the HTML page
that passes information to the Application Broker.

What Is the Application Load Manager?

The Application Load Manager (LOADMGR) is a separate, optional process that can be used to enhance the
distribution of Application Dispatcher resources on a network. If installed, it records the state of all
Application Servers and maintains a separate dynamic pool of available servers. These capabilities enable the
Load Manager to distribute Application Dispatcher requests most efficiently.

The Load Manager is of greatest use to the person who creates and maintains the configuration file for the
Application Broker.

Who Uses the Application Dispatcher?

You should use the Application Dispatcher if you

want to analyze and display information dynamically on the Web and let your Web users immediately
retrieve the information they need.

•

have SAS programming experience but have little or no CGI programming experience. Application
Dispatcher enables you to create the Web user interface and retrieve the SAS data for display on the
Web without writing a CGI script.

•

want to create applications that provide Web output without investing a lot of programming time.•

SAS Documentation

4

want to create applications that run on a variety of Web browsers.•

The Application Dispatcher has several types of users:

End users enter information in a form, select a link, or view an inline image that displays in a Web
browser.

•

Web−page authors create the HTML forms or pages, which include unique Application Dispatcher
fields. These individuals could be SAS application developers.

•

Application Dispatcher program developers create the Application Dispatcher programs that receive
information entered on the Web page.

•

System administrators, also known as Webmasters, maintain programs on the Web server or maintain
the Application Server(s).

•

SAS Documentation

5

How the Application Dispatcher Works
How a Request Is Submitted to the Application Broker•
How the Application Broker Processes a Request•
How the Application Server Processes a Request•
How Program Output Is Sent to the Application Broker•
How the Load Manager Works•

The SAS/IntrNet Application Dispatcher enables you to offer the power of SAS to Web users without having
them install client software on every desktop. Here's a summary of how it works:

Users enter information in an HTML form using their Web browser and then submit it. The
information is passed to the Web server, which invokes the first component of the Application
Dispatcher, the Application Broker.

1.

The Application Broker accepts data from the Web server and sends it to the second Application
Dispatcher component, the Application Server.

2.

The Application Server invokes a SAS program that processes the information.3.
The results of the SAS program are sent back through the Application Broker and Web server to the
Web browser and the awaiting users.

4.

The following diagram, which is described in detail later, illustrates how the Application Dispatcher submits
and processes a communication request.

How a Request Is Submitted to the Application Broker

Web users submit information and processing requests via their Web browsers. The interface to the
Application Dispatcher is usually an HTML form that users access from their Web browser, but users can also
access the Application Dispatcher through a hypertext link that contains the URL and required parameters that
are necessary to run the program.

Depending on the design and purpose of the form, users can

formulate queries by selecting items from lists, check boxes, or radio buttons•
6

specify analysis variables, processing options, and reporting options by selecting items from lists,
check boxes, or radio buttons, or by completing text entry fields

•

input data by completing text entry fields.•

When a user selects the Submit button or a hypertext link, the Web browser sends the information to the Web
server, which immediately invokes the Application Broker. The Application Broker is a Common Gateway
Interface (CGI) program that runs on any Web server that supports the CGI standard. The Application Broker
then forwards the request to the Application Server.

In addition to providing the user interface, the HTML form provides

the location of the Application Broker, as defined in the ACTION= attribute of the HTML FORM tag•
the name of the service that is used to process the request, as specified in the _SERVICE field•
the name of the program that executes the request, as specified in the _PROGRAM field•
generic name and value information that is contained in optional fields.•

To learn how to enter these fields in HTML code and how to make your own Application Dispatcher form and
its associated SAS code, see the Input Component and the Program Component.

How the Application Broker Processes a Request

The Web server invokes the Application Broker each time a user submits a request. The location of the
Application Broker CGI program is provided by the ACTION= attribute in the HTML form or by the HREF=
attribute in a hypertext link.

The _SERVICE field in the request specifies the service name. The Application Broker reads its configuration
file to get the definition of the requested service. The Application Broker then connects to an Application
Server that is associated with the service. Application Dispatcher currently supports three types of services:

Socket Service
specifies one or more Application servers that run permanently on the SAS Server and wait for a
request. The Application Broker either picks an available server or queries the Load Manager for an
idle server.

Pool Service
identifies multiple servers (a pool of servers) that might be running. The Application Broker contacts
the Load Manager in order to find an available Application Server. If no server is available, the Load
Manager can start a new server that will then handle the request. After the request is completed, the
new server is added to the service pool and is available for future requests.

Launch Service
enables the Application Broker to launch a new Application Server for each new request. The
Application Server runs on the Web server machine and terminates when the request is complete.

The Application Broker forwards information from input fields and any configuration information that is
specified in the Application Broker configuration file. For socket services, the configuration file also specifies
the machine name or IP address and the TCP/IP port name or number that will receive the request.

How the Application Server Processes a Request

It can be helpful for you to know the specific steps that the Application Server performs when it handles a
request. This information can be useful when you are enhancing server performance or performing
administrative tasks. The following list describes how the Application Server processes a request:

SAS Documentation

7

After the Application Server is started, it listens on the TCP socket for a request.1.
When the server receives a request, it examines the _PROGRAM parameter to determine the type and
location of the program that is being run. If the Application Server does not find the program, it
generates an error page that displays in the user's browser.

2.

The server creates macro variables and a SAS Component Language (SCL) list that contains the input
name/value pairs so that the program can access them.

3.

The Application Server creates a _WEBOUT fileref connection so that SAS can send data back to the
browser.

4.

The server runs the program, cleans up, and then waits for a new request. If the server was started for
a launch service and no session was created by the user program, the server exits immediately.

5.

How Program Output Is Sent to the Application Broker

The program output is sent directly to the Application Broker by using a predefined file reference. The format
of the output is defined by the HTTP standard. See HTTP Headers for more information.

As the Application Broker receives the program output, it does a quick consistency check on the HTTP
headers and sends the results back to the Web server, which streams the results back to the browser. Because
of the streaming, results begin to appear in the browser before the program has finished processing.

How the Load Manager Works

You can use the Load Manager, which is a separate, optional process, to optimize the use of Application
Dispatcher resources on a network. The Load Manager can route requests to available idle servers and start
additional available servers as needed.

The Load Manager listens for requests from Application Brokers for Application Servers that are idle.•
If a server is not designated as being busy, it is allocated to the requesting Application Broker.•

When the Application Server receives the job, it notifies the Load Manager that it is busy processing the
request. The following diagram illustrates how the Application Server notifies the Load Manager after it has
received a request.

SAS Documentation

8

After completing the job, the Application Server again notifies the Load Manager that it is free to work on
another request. The following diagram illustrates how the Application Server notifies the Load Manager after
it is free to process the next request.

If no servers are free, the request is queued by the Load Manager until a server becomes available or until the
time−out value is reached. For pool services, the Load Manager can start a new server to process the request.
The following diagram illustrates how the Load Manager starts a new server to process the request.

The new server is then added to the pool of servers for that service. The following diagram illustrates how a
new server is added to the pool of servers.

SAS Documentation

9

By using a Load Manager to maintain the state of Application Servers, requests are distributed to idle servers.
Each Application Server notifies the Load Manager when it starts and completes a job by using the Load
Manager socket address that is passed by the Application Broker. This data is used by the Load Manager
during subsequent requests to determine which Application Servers are busy and to direct the Application
Broker to use an available idle server.

Note: If the Load Manager is not installed, the Application Broker randomly selects an Application Server to
process the request. Random selection of an Application Server is adequate for low−traffic environments.
However, as traffic increases, requests can become stalled while waiting for a busy server even if another
server is idle.

SAS Documentation

10

Requirements for the Application Dispatcher
The following are required:

The end user must have a Web browser.•
The site must have a machine that has a Web server.•
The site must have a SAS server for SAS 9.2 with an Application Server installed.•

These requirements (a Web browser, a Web server, and an Application Server) can reside on one machine or
on three separate machines.

You must install both the Application Broker and the Application Server components of the Application
Dispatcher. Install the Application Server on a machine that has SAS software running, and install the
Application Broker on the machine that has your Web server running. A third component of the Application
Dispatcher, the Application Load Manager, is not required for a typical setup. SAS software is not required on
the Web server or the local desktop. The installation requirements are

Requirements for the Application Broker•
Requirements for the Application Server•
Requirements for the Application Load Manager•

Requirements for the Application Broker

Because the Application Broker is invoked by the Web server, the Web server must already be
installed on the machine where you plan to install the Application Broker.

•

You must have WRITE access to the directory where your CGI scripts and programs are stored.•
You must have already installed at least one Application Server.•
The machine on which you install the Application Broker must have access by means of a
TCP/IP−based network to the machine on which you installed the Application Server.

•

For pool services, a Load Manager must be running on the network. A SAS spawner is also required
if servers are to be started by using user name or passwords.

•

You must have access to a Web browser to test your installation.•

Requirements for the Application Server

This documentation describes the Application Server for SAS 9.2. If your SAS server is an earlier version,
refer to the documentation for that version.

You must install the Application Server on a machine where SAS 9.2 is installed, because the
Application Server is a SAS program.

•

If you want to use a launch service, both the Web server and the SAS server must reside on the same
machine. This is because the Web server invokes the Application Broker and the Application Broker
invokes the SAS server.

•

A socket service can be configured by using the Web server and the SAS server on the same or on
different machines.

•

For increased functionality, you can take advantage of other SAS software you already have installed,
such as SAS/GRAPH, SAS/SHARE, SAS/ACCESS, or SAS/EIS software.

•

The machine on which the Application Server is installed must have access to all of the data that is
necessary to run the Application Dispatcher applications. This data can be stored in local SAS data
sets, in third−party databases accessed through SAS/ACCESS software, or on remote servers

•

11

accessed through SAS/SHARE software.

Requirements for the Application Load Manager

You must install both the Application Broker and the Application Server in order to use Load
Manager.

•

Load Manager must have access to the Web server and the Application Server by means of a
TCP/IP−based network. You can install Load Manager on your Web server machine, your SAS server
machine, or any other machine on your network.

•

You can run Load Manager as an unattended, background process, or you can start it as a system
service.

•

SAS Documentation

12

Application Dispatcher Security
Security is a complex topic for networked, client/server applications. Security issues include user
authentication, authorization, communications security, and writing secure applications. Here are some of the
many approaches and tools you can use to secure the Application Dispatcher.

Application Broker and Web Server Security
Using a Secure Web Server♦
Hiding Sensitive Information from Web Server Logs♦
Protecting the Application Broker Configuration File♦
Creating Encrypted User Names and Passwords♦
Authenticating the Application Broker♦

•

Application Server Security
The Application Server Should Not Trust the Application Broker♦
Application Server May Restrict Application Broker Access♦
Supplying a Password When Starting the Application Server♦
Hiding Passwords and Other Sensitive Data from the SAS Log♦
Restricting Access to Program Libraries♦
Disabling Sample Programs♦
Reviewing New or Modified Code♦

•

Controlling Access to SAS Data Sources With the AUTHLIB Data Set
AUTHLIB Functions♦
Verifying the AUTHLIB Data Set♦

•

Application Dispatcher Program Security
Using SCL or Compiled Macro Code♦
Using Password−Protected Data Sets♦

•

Related Topics

Host Authentication•
Firewalls (support.sas.com/rnd/web/intrnet/misc/firewall.html)•
Application Broker Directives. See BrokerPassword under Administrator Directives and Encrypt
under General Service Directives.

•

13

Application Broker and Web Server Security
Using a Secure Web Server•
Hiding Sensitive Information from Web Server Logs•
Protecting the Application Broker Configuration File•
Creating Encrypted User Names and Passwords•
Authenticating the Application Broker•

Using a Secure Web Server

One security risk involves the network between the Web browser and the Web server. You can improve
security by using a secure Web server. A secure Web server uses an HTTPS protocol, which is HTTP that has
secure sockets. This protocol encrypts all the data flowing back−and−forth between the Web browser and the
Web server. Unauthorized users are not able to decipher the secure packets of data as it passes through the
various computers between the Web browser and the Web server.

Hiding Sensitive Information from Web Server Logs

Parameters on a GET request are logged by the Web server. This means that passwords and other sensitive
parameters might be captured in the Web server log. Using POST generally prevents submitted form data
from appearing in the Web server log files. You should use POST instead of GET to handle sensitive data in
Application Dispatcher requests, although POST is not a guarantee that the Web server will not log input
parameters.

Protecting the Application Broker Configuration File

As a security precaution, you should protect your Application Broker configuration file. Your first priority
should be to restrict file system access so that only specific individuals can update the configuration file.
Protecting this file means that you can rely on the settings you define in the file, such as DebugMask and
Debug.

Usually the configuration file is stored in the CGI executable directory along with the Application Broker
executable. Some Web servers allow files stored in a CGI executable directory to be downloaded the same
way as a regular HTML file. To test this, try one of the following URLs, and see if your Web server allows
you to download a copy of the configuration file:

UNIX:
http://yourserver/cgi−bin/broker.cfg

Windows:
http://yourserver/scripts/broker.cfg

If you are able to download the file, then you need to adjust your Web server configuration to prevent this.
Next, ensure that the DebugMask value is set in your configuration file to disallow _DEBUG=4. This debug
value displays the contents of the configuration file. Try one of the following URLs, to ensure that this debug
flag is disabled:

UNIX:
http://yourserver/cgi−bin/broker?_debug=4

Windows:
http://yourserver/scripts/broker.exe?_debug=4

14

Creating Encrypted User Names and Passwords

The user name and password parameters in the Application Broker configuration file can be encrypted or
entered as open text. If a value starts with an exclamation point (!), the value is assumed to be encrypted. To
obtain the encrypted equivalent for a user name/password, send the values to the Application Broker with a
_DEBUG=1. For example,

 http://abc.def.com/cgi−bin/broker?
 _service=default&_debug=1&_username=myname&_password=xyzzy

should produce output with the fields encrypted following an exclamation point (!). These new values can
then be used in place of the original open−text versions.

Note: When you use the Application Broker to encrypt a user name or password, the original unencrypted
user name and password might be saved in the Web server log. You can run the Application Broker from the
command line to avoid this issue:

 broker "_service=default&_debug=1&_username=myname&_password=xyzzy"

An alternative to entering this password in plain−text is to use the encrypted version of the password. For
example, if your password is xyzzy, the encrypted version that you can put into the broker.cfg is
!ci3mC.Xmq.t2Chnx. By hardcoding the encrypted version in the broker.cfg, the text of your actual
password is protected from anyone who has read access to the broker.cfg file.

Authenticating the Application Broker

By default, Web servers enable any client to connect and make an anonymous request for a static page or a
CGI program. You can enable Web server authentication for the CGI executable directory that contains the
Application Broker. This requires that users supply a user ID and password in their Web browser to run the
Application Broker. When a Web server launches a CGI program that is authenticated, it supplies the user ID
of the client in the environment variable REMOTE_USER. By examining the corresponding SAS macro
variable, _RMTUSER, your programs can determine who the requesting client is. Using this information, you
can provide the appropriate access to application features.

Note that it might be easy for users to fake the value of the REMOTE_USER variable without authenticating.
Because the Application Broker program accepts this value through an environment variable, users can set the
environment variable REMOTE_USER to any value that they want and run the Application Broker from an
operating system command prompt. Therefore, they can masquerade as other users and the Application Server
does not know the difference. See the section titled Application Server Should Not Trust the Application
Broker for an explanation of how to overcome this problem.

SAS Documentation

15

Application Server Security
The Application Server Should Not Trust the Application Broker•
Application Server May Restrict Application Broker Access•
Supplying a Password When Starting the Application Server•
Hiding Passwords and Other Sensitive Data from the SAS Log•
Restricting Access to Program Libraries•
Disabling Sample Programs•
Reviewing New or Modified Code•

The Application Server Should Not Trust the Application Broker

By enabling Web−server authentication for the Application Broker executable file, your Web server can pass
the user ID of the client to the Application Broker in the REMOTE_USER environment variable. By
exporting this environment variable, you can pass the remote−user value to SAS as the macro variable
_RMTUSER. Then your application can use the value of this variable to activate or de−activate various
application features.

Note: You cannot trust that the Application Broker that is connected to your Application Server is the same
Application Broker that is executed on your Web server machine. It is possible that another Web server, or a
user running the Application Broker from an operating system command prompt, could make a connection to
your Application Server and supply a bogus value for REMOTE_USER. In other words, there is not a strong
coupling between the Application Broker and the Application Server to ensure the transmission of a security
context.

This is not to say that Web server authentication and the REMOTE_USER value are worthless. On the
contrary, they are quite valuable as long as their reliability has not been compromised. One way to repair the
security model outlined above is to create a strong coupling between the Application Broker and Application
Server. If you can ensure that the only Application Broker that can run programs on your Application Server
is the same Application Broker that you are authenticating on your Web server, then REMOTE_USER is a
trustworthy value.

You can use the ServiceSet directive in the Application Broker configuration file to define a variable name
and a constant value. For example,

 SocketService default "Default service"
 Server appsrv.yourcomp.com
 Port 5001
 ServiceSet passkey "some value that is hard to guess"

With each request to the specified service, the Application Broker passes all the normal application data and
the additional variable defined by using ServiceSet to the Application Server. In this example, each request
would contain the name/value pair passkey=some value that is hard to guess. You can
check the value of this special variable within your Application Server program. If the value of this variable
passed to your program does not match the value you assigned in the configuration file, then you can refuse
the request because it violates your security model. Any requests that perform the required Web server
authentication will contain the special variable that has the correct value. These requests will pass your initial
security check and then you can trust the value of _RMTUSER.

Because the Application Broker merges exported environment variables and variables created by using the Set
directives after the Web server receives the request from the Web browser, there is no fear of the special
variable appearing in the URL or in the Web server log files. In this example, only the Application Server sees

16

the variable PASSKEY and its value.

There are some important caveats to this technique. Placing this "secret" value in the Application Broker
configuration file means that you must protect the configuration file and ensure that no one can read its
contents. The "secret" variable and its value must be treated like a password. Secondly, you need to disable
the _DEBUG=1 flag by using the DebugMask directive. This debug flag will display the "secret" variable and
its value in the Web browser of the user along with the reset of the data for the request. You also have to
include the "secret" variable and its value in your program code. This means that you have to restrict access to
your program code just as you restricted access to the configuration file. See also Protecting the Application
Broker Configuration File

Application Server May Restrict Application Broker Access

An Application Broker might be restricted from making requests from an Application Server if the
Application Server's request syntax is limited to specific IP addresses.

For example, the Application Broker is started on a machine with IP address 12.34.56.78. The Application
Server is started on another machine using the following syntax:

 proc appsrv port=5800;
 request fromadr=("12.34.56.99");
 run;

A request from the Application Broker to this Application Server fails because the Application Broker's IP
address does not match the APPSRV FROMADR.

Supplying a Password When Starting the Application Server

When you start the server, you can optionally specify an administrative password by using the ADMINPW
option. For example,

 PROC APPSRV PORT=5001 ADMINPW='XXXX' ...

The password must not contain quotation marks. Specifying a password prevents anyone from running
administrative programs such as STOP without supplying the password. By using an HTML form that has a
password field, as shown in the following example, you can create an administrative interface to the server:

 <FORM ACTION= "/cgi−bin/broker" METHOD="POST">
 <INPUT TYPE= "hidden" NAME= "_SERVICE" VALUE="default">
 <INPUT TYPE="hidden" NAME="_PROGRAM" VALUE="stop">
 Password:
 <INPUT TYPE="PASSWORD" NAME="_ADMINPW">
 <INPUT TYPE="SUBMIT" VALUE="Shut down">
 </FORM>

Note: Use METHOD=POST when creating forms that supply passwords to the Application Server. Including
the password on a URL by using METHOD=GET or an explicit URL will expose the password in potentially
unsecure places such as Web server logs, Application Server logs, history files or bookmark files.

Hiding Passwords and Other Sensitive Data from the SAS Log

The SAS log exposes programs and input parameters, which could pose a security issue. There are some
actions you can take to hide passwords and other sensitive data from the SAS log. Password values are

SAS Documentation

17

automatically hidden from the Application Server log. You can disable the SAS log with the DebugMask
option. You can also use the prefix _NOLOG_ with macro symbols to hide request variable values.

The _NOLOG_ feature enables you to create special macro symbols that can be sent to the Application Server
without publishing the macro values in the APPSRV log. The special macro symbols must start with the
prefix _NOLOG_. The prefix is case insensitive. For example:

 http://yourserver/cgi−bin/broker.exe?_service=default
 &_program=test.getEmployeeSalary.sas&_nolog_salary=secretpw

If _NOLOG_SALARY is displayed in the SAS logs, it shows

 _NOLOG_SALARY=XXXXXXXX;

Restricting Access to Program Libraries

Another recommended security measure is to separate Application Dispatcher programs from their data.
Application Dispatcher programs should not be placed in libraries along with the data they read and update. If
your operating environment allows you to set read and write permissions for specific directories, then specify
or assign the Application Server READ access only to all program libraries. Also, it is best to allocate
program libraries by using the ACCESS=READONLY option. If any programs need to create or update data
sets or files, then READ and WRITE access must be allowed to those data libraries. Though the Application
Dispatcher functions correctly without these security measures, we strongly recommend that you follow these
guidelines.

Do not permit unlimited access to existing application libraries. To achieve a high level of security, restrict
access to the Application Dispatcher application libraries only to those developers who should be allowed to
modify application code.

Disabling Sample Programs

The sample programs shipped with SAS/IntrNet are enabled by default. These samples programs include the
ability to browse data in any library defined to an Application Server. If you want to limit access to SAS
libraries defined in a server's data libraries, you should disable the sample programs. You can do this by
editing the appstart.sas file (or @APSTXn members on z/OS) for the Application Dispatcher service. You
must remove or comment out the ALLOCATE LIBRARY statement for the SAMPLIB libref, remove or
comment out the ALLOCATE FILE statement for the SAMPLE fileref, and remove SAMPLE and SAMPLIB
from the PROGLIBS statement.

Reviewing New or Modified Code

To prevent security holes that could be created inadvertently, review any new code or code that has been
changed in any way. See the section on Application Dispatcher Program Security for details about what to
look for to find potential problems.

SAS Documentation

18

Controlling Access to Data Sources with the
AUTHLIB Data Set

AUTHLIB Functions•
Verifying the AUTHLIB Data Set•

The AUTHLIB data set enables you to permit or restrict access to SAS library entities. The default name for
the AUTHLIB data set is SASHELP.AUTHLIB. It contains INCLUDE and EXCLUDE rules that declare
which data is available and which data is unavailable to an Application Dispatcher program. The enforcement
of these rules is not automatic. An Application Dispatcher program must call the AUTHLIB functions in order
to participate in this access control scheme. It is the responsibility of the programmer to incorporate the
AUTHLIB functions into a program.

The AUTHLIB data set has a specific structure:

Column Name Type Length Description

Rule character 7 The access rule for this record. Valid values are
"INCLUDE" and "EXCLUDE".

Libname character 8 The library name of the entity to which this rule applies.

Memname character 32 The member name of the entity to which this rule applies.

Memtype character 8 The member type of the entity to which this rule applies.

Objname character 32 The catalog entry name of the entity to which this rule
applies.

Objtype character 8 The catalog entry type of the entity to which this rule
applies.

Comment character 128 An optional comment explaining this rule.

And here is a sample AUTHLIB data set:

Rule Libname Memname Memtype Objname Objtype Comment

INCLUDE SASHELP * DATA * *

INCLUDE SASHELP * VIEW * *

INCLUDE SASHELP * MDDB * *

INCLUDE SAMPDAT * * * *

EXCLUDE SAMPDAT MYCAT CATALOG * *

To customize the access control for your Application Server, you can modify the SASHELP.AUTHLIB data
set that is shipped with SAS/IntrNet software, or you can copy this data set to a new name and modify that
copy. If you use a data set name other than SASHELP.AUTHLIB for your set of access rules, you must use
the APPSRV_AUTHDS function to set the new name.

Here is how the AUTHLIB data set is interpreted. An entity is any SAS library, member, or catalog entry.
19

An INCLUDE rule indicates that access is allowed for matching entities.•
An EXCLUDE rule indicates that access is not allowed for matching entities.•
All explicit EXCLUDE rules override all INCLUDE rules.•
If an entity does not match any rules, then an implicit EXCLUDE rule is assumed.•
Variable values are not case sensitive.•
A single asterisk in a variable value matches any entity or partial entity name.•

Here are a few additional guidelines:

Keep it simple. Avoid creating an overly complex set of rules. This reduces the chance of
unintentionally allowing access to sensitive entities.

•

Verify any changes you make to the AUTHLIB data set.•
You cannot combine a text value with an asterisk to create a pattern match. An asterisk is effective
only when used by itself.

•

Do not leave any variable values blank. This does not evaluate properly. Place an asterisk in any
columns that you might expect to leave blank. For example, OBJNAME and OBJTYPE do not make
sense when the MEMTYPE is DATA. However, placing asterisks in these columns is required.

•

Use a MEMTYPE value of CATALOG when you supply a nonasterisk value for OBJNAME or
OBJTYPE. For example, suppose you want to exclude access to all catalog entries of type SCL. That
rule would look like

Rule Libname Memname Memtype Objname Objtype Comment

EXCLUDE * * CATALOG * SCL Exclude all SCL entries.

•

As stated above, the default rule (if none match) is EXCLUDE. If you add an INCLUDE rule with
asterisks in all columns, this changes the default rule to INCLUDE, for example:

Rule Libname Memname Memtype Objname Objtype Comment

INCLUDE * * * * * Now all entities are included
by default.

•

If you add an EXCLUDE rule with asterisks in all columns, then no access is allowed to any entities,
for example:

Rule Libname Memname Memtype Objname Objtype Comment

EXCLUDE * * * * * Turn off all access to SAS
library data.

•

AUTHLIB Functions

The following functions enable you to use the AUTHLIB data set in your Application Dispatcher programs.

APPSRV_AUTHLIB checks whether access is allowed for a given entity. The arguments to this
function are similar to the columns of the AUTHLIB data set. This function is efficient if you are
checking either a single or just a few entities. If you want to check many entities it is more efficient to
use the APPSRV_AUTHCLS function.

•

APPSRV_AUTHCLS produces various WHERE clauses. These clauses can be used to subset the
entities in the current SAS session to only the entities that are authorized by the AUTHLIB data set. If
your program needs to check the authorization for a large number of entities, or if your program needs
to generate lists of authorized entities, then use this function. The returned WHERE clause can be
combined with your own subsetting criteria and applied to the SQL dictionaries or various SASHELP

•

SAS Documentation

20

views.
APPSRV_AUTHDS changes the name of the AUTHLIB data set that is used by the other two
functions.

•

Verifying the AUTHLIB Data Set

It is a good idea to verify all changes you make to the AUTHLIB data set. Fortunately, the
APPSRV_AUTHCLS function makes this task easy. By using this function, you can generate lists of included
and excluded entities that you can review for correctness. The following program produces a verification
report for the AUTHLIB data set.

 /*generate the different authlib WHERE clauses
 and store them as macro variables*/

 data _null_;
 length clause $ 32767;

 clause = appsrv_authcls('LIBRARY');
 call symput('LIBCLS',clause);

 clause = appsrv_authcls('MEMBER');
 call symput('MEMCLS',clause);

 clause = appsrv_authcls('CATALOGENTRY');
 call symput('ENTRYCLS',clause);
 run;

 /*create a view of included libraries*/

 proc sql;
 create view work.inclib as select *
 from sashelp.vslib
 where &libcls;
 quit;

 /*create a view of the excluded libraries*/

 proc sql;
 create view work.exclib as select *
 from sashelp.vslib
 where not &libcls;
 quit;

 /*create a view of the included members*/

 proc sql;
 create view work.incmem as select *
 from sashelp.vmember
 where &memcls;
 quit;

 /*create a view of the excluded members*/

 proc sql;
 create view work.excmem as select *
 from sashelp.vmember

SAS Documentation

21

 where not &memcls;
 quit;

 /*NOTE: THE CATALOG ENTRY VIEWS CAN TAKE A LONG TIME TO RUN
 YOU MAY WANT TO SUBSET BY ADDING SOMETHING TO
 THE WHERE CLAUSE TO SPEED IT UP SUCH AS

 and libname ne 'SASHELP'

 THIS WILL PREVENT YOU FROM OPENING EVERY CATALOG
 IN EVERY LIBRARY.*/

 /*create a view of the included entries from selected catalogs*/

 proc sql;
 create view work.incentry as select *
 from sashelp.vcatalg
 where &entrycls;
 quit;

 /*create a view of the excluded entries from selected catalogs*/

 proc sql;
 create view work.excentry as select *
 from sashelp.vcatalg
 where not &entrycls;
 quit;

 /*Now print out the results of the SQL steps*/

 proc print data=work.inclib;
 proc print data=work.exclib;
 proc print data=work.incmem;
 proc print data=work.excmem;
 proc print data=work.incentry;
 proc print data=work.excentry;
 run;

SAS Documentation

22

Application Dispatcher Program Security
Using SCL or Compiled Macro Code•
Using Password−Protected Data Sets•

Using SCL or Compiled Macro Code

One feature of the Application Dispatcher lets you view the SAS log. This helps when developing an
application; however, it creates a potential security risk in a production−level application. Programs of the
type .SAS, .SOURCE, and .MACRO all submit statements that appear in the log. SAS Component Language
(SCL) statements do not appear in the log, but statements submitted by using an SCL submit block do appear.
(SCL is available with SAS/AF software).

You can accomplish many of the same tasks in SCL that you can by using these other program types. SCL is
the most secure program type. If you create your Application Dispatcher program with SCL and the user
attempts to return the SAS log, your program statements do not appear. Additionally, SCL is more secure
because it is a compiled language. Compiled macros (.MACRO program types) share this feature. Using SCL
lets you compile the program and delete the readable source. This prevents someone from reading the
program statements even if they gained access to the SAS catalog on the Application Server machine.

Running a .MACRO entry prints the original source to the SAS log if the MPRINT option is set. To prevent
this, you can include the following statement in a request init program:

 options nomprint;

Using Password−Protected Data Sets

You can protect access to your data by using password−protected data sets. This feature of SAS software lets
you assign a password to a data set. You must then supply the password to access or to modify the data set.
You can choose to code the password to the data set in your application or require the user to supply it. If you
code the password into your application, ensure that the user cannot view that password by returning the SAS
log to the Web browser or by reading your source code files.

23

Upgrading from Version 8 to Version 9
The following information details the steps that you must take in order to upgrade from Version 8 to Version
9 of Application Dispatcher.

Note: If you are upgrading from a release earlier than Version 8, read the documentation for Release 8.2 of
Application Dispatcher (at support.sas.com/rnd/web/intrnet), which describes upgrading from prior releases.

You must install the SAS 9 CGI Tools package on your Web server to access the SAS 9 Application
Server. Note that the SAS 9 Application Broker and Load Manager will work with existing Version 8
Application Dispatcher services, so you can upgrade one or more services to SAS 9 while keeping
other services at previous versions.

1.

Upgrade socket services by editing the server start script and changing the path to the SAS executable
from your Version 8 installation to the new SAS 9 executable. The following table lists the server
start script for each operating environment.

Operating Environment Server Start
Script

Windows appstart.bat

UNIX start.pl

z/OS APSTRTn JCL

OpenVMS start.com

No changes are required for the appstart SAS program or other support files.

2.

Upgrade pool and launch services by editing the Application Broker configuration file and changing
the path of the SAS executable. No changes are required to the appstart SAS program or other
support files.

3.

If you are using Load Manager, modify your procedure for starting Load Manager to use the SAS 9
executable. On Windows, use the "Create a New IntrNet Service" utility to set up a SAS 9 Load
Manager. Uninstall any existing Window Load Manager services from the Version 8 SAS System
Start Menu. On UNIX you might need to edit the loadmgr script created by the inetcfg.pl utility.

4.

If you are using Spawner for pool services, modify your procedure for starting the Spawner to use the
SAS 9 executable.

5.

Existing programs from earlier versions will run on the SAS 9 Application Server without
modifications in most cases.

6.

24

Completing the Installation
Before you can use the Application Dispatcher, you must perform the following steps:

If you are upgrading from a previous version, see Upgrading From Version 8 to Version 9 for more
information before completing the installation.

1.

Install SAS 9.2 (including SAS/IntrNet.) The SAS/IntrNet software that is installed in this step
includes the Application Server.

2.

Install the Application Broker, which is contained in the CGI Tools for the Web Server. The
instructions for installing the CGI Tools for the Web Server package are included with SAS/IntrNet
software.

3.

Create and start the default service for the Application Server by using the inetcfg utility.4.
Add the default service definition to the Application Broker configuration file.5.
Run the sample applications to test your installation.6.

Note: For z/OS, the SAS 9 or later Application Broker requires that the IBM Web maintenance patch,
PQ47248, be installed if you intend to use a Web server codepage (FSCP) other than ibm−1047.

25

Create and Start the Default Service
You must create a default Application Dispatcher service to run any of the sample programs supplied with
SAS/IntrNet. Before you create the service, you must reserve a TCP/IP port number for your default
Application Dispatcher service. Consult your system administrator or check your services definition file to
find an available port number.

You should create the default service with the SAS/IntrNet Configuration Utility (inetcfg). This utility is
available for

Windows platforms•
UNIX platforms•
z/OS•
OpenVMS.•

After you create and start the service, continue with Adding the Default Service Definition to the Application
Broker configuration file.

Windows Platforms

Services can be created on Windows platforms with a configuration utility that is accessible from the Start
menu.

Perform the following steps to create and start the default service:

From the Start menu, select Programs SAS (or other program group where SAS is installed)
IntrNet Create a New IntrNet Service.

The IntrNet Config Utility Welcome window appears.

1.

Read the information in the Welcome window, and then select Next to continue.2.
Select Create a Socket Service, then select Next to continue.3.
Type default as the name of the new service. Select Next to continue.4.
Specify the directory where you want the configuration utility to place your service directory and
control files. The default location (under your SASUSER directory) is recommended. Select Next to
continue.

5.

Type the TCP/IP port number that you reserved for the default Application Dispatcher service. Select
Next to continue.

6.

A password is not necessary for the default service. You can add an administrator password later if
you use this service for production applications. Select Next to continue.

7.

The Create Service window displays all of the information that you specified for this service. Verify
that the information is correct and then select Next to create the service.

8.

Select Next and then Finish to complete the setup of the default service.9.
From the Start menu, select Programs SAS (or other program group where SAS is installed)
IntrNet default Service Start Interactively. Your default Application Server should now be
running.

10.

UNIX Platforms

On UNIX platforms, the configuration utility is a Perl script. Perform the following steps to create and start
the default service:

26

From a system prompt, submit the following command:

SASROOT/utilities/bin/inetcfg.pl

where SASROOT is the path to the SAS root directory.

As the configuration utility runs, you are prompted for information about the service that you are
creating.

1.

Press Return to accept the default value, which names the service default.2.
The next prompt asks for the name of the directory where all of the service control files should be
stored. Press Return to accept the suggested value, or type the desired directory name and then press
Return.

3.

Type S and press Return to define a socket service.4.
Press Return to select one server.5.
Type the TCP/IP port number that you reserved for this service and press Return.6.
Press Return to skip entering an administrator password. You can add an administrator password
later if you use this service for production applications.

7.

Verify the displayed information and press Return to create the service. Note the path for the service
directory.

8.

The configuration utility created a start.pl file to start the default Application Server. Change to the
service directory path and start the server by submitting the following command:

 ./start.pl

9.

z/OS

The configuration utility provided for z/OS is a batch job. It is installed as a member named INETCFG in the
CNTL data set that you created as the first step in the installation of your SAS software. To use the utility, you
must edit the parameter file, member INETEDTP in the CNTL data set, edit the INETCFG job, and then
submit the INETCFG job. The INETEDTP member contains the parameters necessary for creating a service.

To create and start the default service on z/OS, perform the following steps:

Edit the member INETEDTP.1.
Verify the name of the service that you are creating. The service name is defined by the line
beginning with ISVC= and should be DEFAULT.

2.

Verify that the service is a socket service. The line containing ISVCTYP=%SOCKETTYP should be
uncommented.

3.

Locate the line I$−PORT1. Change the value 5001 to the correct port number or network service
name for your Application Server.

4.

Save and close INETEDTP.5.
Edit INETCFG to verify the job header information. Verify that the service name is DEFAULT. If
you make changes, be sure to save them. Do NOT change SASEDITP to INETEDTP because this is
your original SAS installation parameters file.

6.

Submit the INETCFG JCL job for processing. The INETCFG job will submit another job
(INETCFGA). Verify that both jobs completed with a return code of 0. If they completed
successfully, you now have the data sets and members necessary for running the default service.

If the INETCFG job failed, examine the messages and sysprint members for error messages. If you
see a message that reads

 ERROR: THIS REPLACEMENT CAUSES RESULT TO EXCEED OUTPUT LRECL

7.

SAS Documentation

27

you might have supplied a pathname in one of your INETEDTP parameters that is too long. Try
shortening this pathname and rerun INETCFG.

Note: Before you run INETCFG again, you must delete any data sets created by the previous failure
of INETCFG. You can find these data sets by looking in the namespace determined by your original
SAS install. For example, if your SAS software was installed with the prefix name SYS.SAS and your
failed INETCFG was trying to create the DEFAULT service, then delete all data sets beginning with
the name prefix SYS.SAS.WEB.DEFAULT before running INETCFG again.
The configuration utility creates a server root in a partitioned data set (PDS) named
prefix.WEB.DEFAULT, where prefix is the data set prefix that you supplied during your SAS
installation. The PDS contains any JCL procedures and server start−up code required for starting the
service. You will find the following members:

APSTRT1
contains the JCL necessary to run the corresponding @APSTX1 file as a started task. You
should move this file to your started task library and enable it as a started task.

@APSTX1
contains the SAS code that invokes the server. This file is called by the JCL in the
corresponding APSTRT1 file. This SAS program must remain in the PDS where it was
created.

In addition to the server root PDS, the configuration utility creates an empty PDS named
prefix.WEB.DEFAULT.TDIR, where prefix is the data set prefix that you supplied during your SAS
installation. The Application Server will use this PDS as a scratch location.

8.

You must modify the permissions for the data sets created above so that the server can write to them
as necessary. To modify the permissions, create a special RACF data set profile that applies to all the
data sets in this service (prefix.WEB.DEFAULT.*). The RACF data set profile should also grant write
access to the user ID of the Application Server.

9.

Issue a START command from the system console to start the default Application Server.10.

OpenVMS

To create and start the default service on OpenVMS, perform the following steps:

From a system prompt, submit @sas$root:[tools]inetcfg.com.

As the configuration utility runs, you are prompted for information about the service that you are
creating.

1.

Press Return to name the service DEFAULT.2.
Press Return to accept the suggested value for the server root directory.3.
Type S to define a socket service. Press Return to continue.4.
Press Return to select one server for this service.5.
Type the TCP/IP port number or name that you reserved for the default Application Server and press
Return.

6.

A password is not necessary for the default service. You can add an administrator password later if
you use this service for production applications. Press Return to continue.

7.

The utility displays the information that you entered for this service. Verify that the information is
correct. If the information is correct, press Return to create the service. Read the messages to
determine whether the service was created correctly. One of these messages contains the path for the
service directory created by the utility. You should note this path for use later in this process.

8.

The configuration utility created a START.COM file that starts the default Application Server. To
start the server, change to the service directory created by the utility. Then submit the following
command:

9.

SAS Documentation

28

 @START.COM

SAS Documentation

29

Add the Default Service Definition
After you have created the default service, you must add the service definition to the Application Broker
configuration file. The configuration file is usually named broker.cfg and lives in the same directory as the
Application Broker executable. The following instructions describe just the changes needed for the default
service. See Using the Configuration File for more information about this file.

Open the configuration file, broker.cfg, in edit mode. The configuration file is in the directory where
you installed the Application Broker.

1.

Search the file for Global administrator. Change the values for Administrator and AdministratorMail
to appropriate values for your site.

2.

Search the file for SocketService default.
Change the value for Server from appsrv.yourcomp.com to the DNS name or IP address of
the machine where you created the default service (where SAS software is installed).

♦

Change the value for Port from 5001 to the TCP/IP port that you selected when creating the
default service.

♦

3.

Save the changes to the configuration file and continue to Testing the Installation.4.

30

Testing the Installation
If you follow the instructions for Completing the Installation, you should have an Application Server running
and the Application Broker should be installed in your Web server CGI directory. Before trying to write
applications of your own, perform the following steps to verify that everything is working correctly.

Test the Application Broker by pointing your Web browser to the Application Dispatcher URL. For
example,

Windows:
http://yourserver/scripts/broker.exe?

Other hosts:
http://yourserver/cgi−bin/broker?

Replace yourserver with the name of your Web server. The URL path might also need to be changed
if you installed the Application Broker to a different directory.

If the Application Broker is working, you receive a page similar to the following:

Note: If there is a customized Application Broker welcome page, then it will display instead of this
default welcome page when you enter the Application Broker URL in your Web browser. If this is the
case, and if you want to view the services that are available from the default welcome page, then add
_DEBUG=4 to the URL, as follows:

 http://yourserver/cgi−bin/broker.exe?_debug=4

1.

Click on the Application Dispatcher Administration link to see whether the Application Broker can
read the Application Broker configuration file. The response looks like

2.

31

Ping the Application Server by clicking on the ping link in the Application Dispatcher Services page.
If the server is working correctly, the response is

3.

To complete installation testing, return to the main Application Dispatcher page (see step 1) and select
SAS/IntrNet Samples. Try some of the Application Dispatcher samples to verify the complete
installation.

Note: If the samples fail, stop the Application Server and examine the SAS log file. You can stop the
Application Server by clicking on the stop link on the Application Dispatcher Services page (see step
2).

4.

Completing the Application Dispatcher Installation

Congratulations! If you followed all the steps, you now have a working Application Dispatcher. While you
should find this setup sufficient for many simple applications, the Application Dispatcher includes additional
features that easily handle more complex applications. For details about creating your own Application
Dispatcher applications, see The Input Component and The Program Component. For details about additional
settings or customization options, see Customizing the Application Dispatcher.

SAS Documentation

32

Customizing the Application Dispatcher
The topics listed here provide information for customizing your Application Dispatcher installation. Follow
the instructions in Completing the Installation if you have not already done so.

Customizing the Application Broker

Using the Application Broker Configuration File•
Creating a Customized Welcome Page•
ISAPI/GWAPI Application Brokers•
Specifying the Global Administrator•
Specifying the Self−Referencing URL•
Specifying HTTP Methods•
Setting the Default Value of _DEBUG•
Using the DebugMask and ServiceDebugMask•
Displaying the Powered by SAS Logo•
Exporting Environment Variables•
Configuration File Directives•

Customizing the Application Server

Running Multiple Application Servers at Your Site•
Application Server Administration Programs•
Application Server Libraries•

33

Using the Application Broker Configuration File
The Application Broker is controlled by the directives in a configuration file. Usually, the configuration file is
named broker.cfg and lives in the same directory as the broker executable, but other names or directories can
be used in special cases. The Application Broker searches for the configuration file in the following manner:

builds the configuration file name by adding .cfg as the file type to the executable name. For example,
broker.exe would look for broker.cfg and broker7 or broker7.cgi would look for broker7.cfg.

1.

checks for the environment variable BROKER_CFG. If this variable exists, it is assumed to contain
the path with the configuration file. If the BROKER_CFG variable exists, the configuration file must
exist in this directory or the Application Broker will fail to execute.

2.

checks for the configuration file in the same directory as the executable.3.

Platform Notes

UNIX

Check /usr/local/lib/IntrNet/broker/ for the configuration file.•

z/OS

Check /usr/local/lib/IntrNet/broker/ for the configuration file.•
Starting with Release 8.2, the Application Broker configuration file is assumed to be in the encoding
specified by the Web server's file system codepage option (FSCP).

•

If the configuration file is not found in any of the locations above, the Application Broker will fail to execute.

Template Configuration File

A template Application Broker configuration file named broker.cfg_v9 is installed with SAS/IntrNet. If this is
the first installation of SAS/IntrNet, the template file will be installed as your initial Application Broker
configuration file. The template contains example directives to help configure the Application Broker for your
site. The following pages describe some of these directives in greater detail.

Specifying the Global Administrator•
Specifying the Self−Referencing URL•
Specifying HTTP Methods•
Setting the Default Value of _DEBUG•
Using the DebugMask and ServiceDebugMask•
Displaying the Powered by SAS Logo•
Exporting Environment Variables•
Configuration File Directives•

Modifying the Application Broker Configuration File

Use the following guidelines when modifying the template configuration file:

Comments start with # as the first non−blank character.•
Because the Application Broker ignores leading spaces, you can include them to make the file easier
for you to read.

•

34

Each line of the configuration file must not extend beyond the first 256 columns. The plus sign (+) at
the end of a non−comment line is used for line continuation.

•

Quotation marks are required for values that contain blanks.•
You can use single or double quotation marks. Values that might require quotation marks are
filenames and descriptions.

•

If a configuration file entry accepts multiple values, delimit the values with spaces only.•
To specify a single quotation mark in a value, use \'.•
To specify double quotation marks in a value, use \".•
To specify a single backslash in a value, use \\.•
If an entry in the configuration file begins with #, you can activate that entry by removing the #.•
To complete an entry, delete or modify the text provided in the sample file. Replace this text with
information that is valid for your site and installation.

•

SAS Documentation

35

Creating a Customized Welcome Page
When the Application Broker is invoked with no parameters, it displays a default welcome page that looks
like this:

To display a customized welcome page, create an HTML file in the same directory as the Application Broker
configuration file. The name of the file should be the same as the configuration file with a file type of "html"
instead of "cfg". For example, if the configuration file is named broker.cfg, then the customized welcome
page should be named broker.html. For most installations, the customized welcome page will be named
broker.html and be located in the same directory as the Application Broker executable.

36

ISAPI/GWAPI Application Brokers
Two additional versions of the Application Broker have been developed for heavily loaded systems where
performance is critical. These versions are built as shared libraries that are linked directly into the Web server
at run time. When a new request is accepted by the Web server, it starts an Application Broker copy in a Web
server thread rather than starting a new CGI process. In this manner, the overhead of process creation is
replaced by the creation of a new Web server thread.

The two new modules are broker.dll (ISAPI Windows) and broker.so (GWAPI z/OS). These files are typically
installed into the Web server CGI directory. When the first request is made to the Web server, these modules
are loaded and linked to the Web server. The Application Broker configuration file is read once and stored in
memory. This means that if the configuration file is subsequently changed, the Web server must be stopped
and restarted in order to reload the changes. On Windows, the IIS Admin Service must also be stopped and
restarted, using the Control Panel/Services dialog box. To see when the configuration file was last read,
invoke the Application Broker with a _DEBUG value of 16384.

ISAPI

To use the ISAPI version on Windows, change the URL in the Web browser from broker.exe to broker.dll. A
URL of the form

 http://yourserver/cgi−bin/broker.dll?

loads and executes the ISAPI module. If no parameters are specified, then the default or optional customized
welcome page is displayed.

Note: For Apache Web servers on Windows, the ISAPI Application Broker will work only with Apache 2.0
or greater and with the following configuration lines added for your CGI directory to the Web server
HTTP.CONF file:

 ISAPICacheFile c:/cgi−bin/broker.dll
 Addhandler isapi−isa .dll

You must also add the ExecCGI options line to the directory section of the HTTP.CONF file, as follows:

 <Directory "C:/Program Files/Apache Group/Apache2/cgi−bin">
 AllowOverride None

Options ExecCGI
 Order allow,deny
 Allow from all
 </Directory>

For ISAPI, the Application Broker thread typically runs under the user ID IUSR_nodename, as it does with
the CGI version.

GWAPI

The z/OS GWAPI version requires a Web server configuration change. Add a line of the form

 Service /cgi−bin/gwbroker* /dept/test/cgi−bin/broker.so:broker

to the Web server configuration file httpd.conf. In addition, execute the following command for the broker.so
37

module:

 extattr +p /dept/test/cgi−bin/broker.so

The exact form of the commands depends on the directory specification for the CGI directory. Changing the
URL to the form

 http://yourserver/cgi−bin/gwbroker?

loads and executes the GWAPI module, which will look for an Application Broker configuration file named
gwbroker.cfg. If no parameters are specified, then the default or optional customized welcome page
(gwbroker.html) is displayed.

For GWAPI, the Application Broker runs under the same user ID as the Web server.

Note: The Application Broker encryption option is not available with the GWAPI Application Broker.

SAS Documentation

38

Specifying the Global Administrator
The global administrator is the designated contact for service definition requests and general Broker
problems. You can specify a single person or a group of people. At least one administrator must have write
access to the configuration file and understand the information required to define a service.

To specify information about the global administrator

Locate the following two lines that appear near the top of the file:

Administrator "Your Name"
AdministratorMail "yourname@yoursite"

1.

Replace Your Name with the administrator's name. This value can include spaces.2.
Replace yourname@yoursite with the fully qualified e−mail address for the administrator.3.

These two values become the macro variables _ADMIN and _ADMAIL in your Dispatcher program.

39

Specifying the Self−Referencing URL
The self−referencing URL identifies the Application Broker program URL. In most cases you will not need to
set this value. The URL is passed to the SAS program in a macro variable called _URL. The Web server uses
the script−name environment variable to change the value of _URL. The Application Server uses the
variable _URL to generate the variables _THISSRV and _THISSESSION.

You might need to change the self−referencing URL in the following situations:

if your Web server does not set the script−name environment variable or sets it incorrectly.•
if your site uses load balancing with its Web servers. For example, a site might have a Web server
www.company.com that dynamically refers all Web browser requests to a range of Web servers
from www1.company.com through www5.company.com. In this situation, the
self−referencing URL might direct the request to www2.company.com/cgi−bin/broker rather
than to the original, load−balanced Web server. If all the company's Web servers used the Application
Dispatcher, you could set the self−referencing URL to point to
www.company.com/cgi−bin/broker, which would direct all requests to the load−balanced
service to maintain the use of Web server load balancing with each page of the Application
Dispatcher application.

•

40

Specifying HTTP Methods
The HTTP methods specified in the ALLOW directive are the two methods used by the HTTP server to pass
information to the CGI program (Application Broker). The ALLOW directive lists the allowable values for
the request method; this line does not actually set the method. The method names are GET and POST:

GET tells the server to process the entire form as one long concatenated string of values appended to
the URL. Using GET allows users to bookmark the resulting dynamic pages. However, the resulting
page's URL can become very long and display variable information that you might prefer not to
display.

•

POST sends the form data in a long input stream, which is not visible to users. Using POST is helpful
when processing a large amount of data. However, users cannot bookmark the resulting pages.

•

To specify which HTTP methods the Application Broker should allow, locate the following line in the
configuration file:

 Allow get post

If you want to allow both methods, leave the line as it is. If you want to allow only one method, delete the
method that you do not want to allow. By default, both methods are allowed, so commenting or omitting the
directive allows both GET and POST.

As stated, the ALLOW directive does not set the HTTP method. That is done in each HTML page that
references the Application Broker. The author of the HTML portion of an Application Dispatcher application
specifies either the GET or POST method in the HTML form tag, for example:

 <form action=<location of Application Broker> method=post|get>

One simple, but not ironclad, security technique is to use the POST method when you invoke the Application
Broker. In your HTML form tag, specify ACTION=, which points to the Application Broker. In addition, you
can specify a method as shown in the following example:

 <form action="/cgi−bin/broker" method="post";>

The POST method passes all form variables to the Application Broker on standard input, which prevents them
from appearing as part of the URL. This method makes it more difficult for users to subvert the values sent to
your program.

Note: Using POST prevents the submitted form data from appearing in the Web server log files. POST also
prevents you from bookmarking those dynamically generated pages.

41

Setting the Default Value of _DEBUG
If you are writing your own Application Dispatcher applications or are having problems with some of the
samples we provide, you might want to specify a different default _DEBUG value or keyword. The default is
2, or TIME, which will display the elapsed processing time, the Powered by SAS logo (if available), and the
Application Broker build number at the bottom of the Web page.

However, you can set a different default value that will take effect if the _DEBUG field is not included in the
HTML page. The config file directives Debug and ServiceDebug set the default values for the _DEBUG field.
To set them, follow the directive with the value that you want as the default.

See the List of Valid Debug Values for a complete list of debug values and keywords.

Remember that you can set more than one debug option. To do so, add the option values together. For
example, to set both the 2048 and 4 options, enter 2052 as the value for Debug, DebugService, or _DEBUG,
as appropriate. You can also use more than one keyword separated by spaces or commas to specify more than
one option. For example, to set both the 2048 (TRACE) and 4 (SERVICES) options, specify

 _DEBUG=TRACE SERVICES

42

Using DebugMask and ServiceDebugMask
The Application Dispatcher has several debugging options that can be turned on and off through the _DEBUG
field in Application Dispatcher requests. Some of these options might represent security risks, including a few
that are not documented and are used by Technical Support. For example, the Application Dispatcher includes
an option to show the SAS log (which might contain source code), the host name and port number where the
Application Server is running, or a list of all services known to the Application Broker.

To create a secure Application Dispatcher setup, decide which debugging options you want to allow and set
the value of DebugMask or ServiceDebugMask in the Application Broker configuration file to the sum of
those options. Add together the debug values that you want to allow and use that number in the directive. For
example, if you want to allow only the field echo (1), status message (2), and output dump (16) values, you
would set DebugMask to 19 (1+2+16). You can also use keywords to specify these options. For a list of valid
debug values and keywords, see the List of Valid Debug Values.

Note: By default, all debugging options are allowed because the DebugMask and ServiceDebugMask
directives are global and by−service directives.

The default value for the DebugMask is 32767, which is acceptable for most sites. The value 32767 indicates
that all debug values are allowed. If you comment out the DebugMask option by maintaining the # sign in
front of DebugMask, you are also allowing all debug values.

Some debug values pose a security risk, so it is recommended that you selectively disable these values by
specifying a different DebugMask value. Setting a different DebugMask value controls the allowable values
for the _DEBUG field in the HTML form or link.

43

Displaying the Powered by SAS Logo
You can include the Powered by SAS logo at the end of every request on the bottom of the returned page. To
enable this, complete the following steps:

Download the Powered by SAS logo from the SAS Web site. Review the logo guidelines before
downloading the Powered by SAS logo.

1.

Edit your Application Broker configuration file (broker.cfg). Find the four directives beginning with
#SASPowered and remove the leading pound sign on each line to enable the Powered by SAS logo.

2.

Set the _DEBUG=2 flag in your HTML code to show the Powered by SAS logo and the Application
Broker build number in addition to the elapsed time. You can enable the logo for all programs by
defaulting the debug mask in the broker.cfg file with the Debug 2 directive.

3.

The Application Dispatcher adds the image in the status line at the bottom of each results page.

44

Exporting Environment Variables
The following table from the sample configuration file lists some standard CGI environment variables.
However, you can pass any variables that your Web server supports. (For more information about
environment variables, see the CGI area at the World Wide Web Consortium Web site at www.w3.org.)

Note: These SAS macro variable names are suggestions only; you do not need to use these exact names.

Environment variables SAS macro variable Description

GATEWAY_INTERFACE _GATEWAY Version of the Common Gateway Interface
(CGI) that the Web server uses.

SERVER_NAME _SRVNAME Web server's DNS (host) name or IP
address.

SERVER_SOFTWARE _SRVSOFT Web server software name and version.

SERVER_PROTOCOL _SRVPROT Name and revision of the HTTP information
protocol transmitting the client request.

SERVER_PORT _SRVPORT Web server port number.

REQUEST_METHOD _REQMETH

Method with which the information request
was issued, for example, GET or POST.
This corresponds with the
<FORM...METHOD=GET|POST>
statement in the HTML form.

PATH_INFO _PATHINF Extra path information after the script
passed to a CGI program.

PATH_TRANSLATED _PATHTRN Local filename of PATH_INFO.

SCRIPT_NAME _SCRIPT

Virtual path of the script being executed. In
this case, a duplicate of _URL, another
macro variable passed to the Application
Dispatcher program.

DOCUMENT_ROOT _DOCROOT Directory from which Web documents are
served. This variable is unreliable.

QUERY_STRING _QRYSTR

Query information passed to the program. It
is appended to the URL with a question
mark (?). In this case, it is an unparsed
version of the user macro parameters. Set
only with GET.

REMOTE_HOST _RMTHOST User's DNS (remote host) name, if known.

REMOTE_ADDR _RMTADDR User's IP address.

AUTH_TYPE _AUTHTYP Authentication method used to validate a
user, usually Basic.

REMOTE_USER _RMTUSER User name, if authenticated.

REMOTE_IDENT _RMTID
45

Identification of user making request.
RFC931 ID, if supported.

CONTENT_TYPE _CONTTYP The Internet media type (MIME type) of the
query data. Set only with POST.

CONTENT_LENGTH _CONTLEN
Length of the data (in bytes or number of
characters) passed to the CGI program. Set
only with POST.

HTTP_FROM _HTFROM E−mail address of the user making the
request (unreliable).

HTTP_ACCEPT _HTACPT

Internet media (MIME) types that the client
can accept. However, you might find using
the HTTP_USER_AGENT variable more
reliable than HTTP_ACCEPT.

HTTP_COOKIE _HTCOOK Cookies. See also the Set−Cookie header
line.

HTTP_USER_AGENT _HTUA Web browser name.

HTTP_REFERER _HTREFER
If known, the URL of the document that the
client points to before accessing the CGI
program.

The Web server makes essential information available to CGI programs as environment variables. You can
pass some or all of this information on to your Application Dispatcher programs by using the Export directive.
The syntax is

 Export <environment−variable> <SAS variable name>

The Export directive instructs the Application Broker to retrieve the contents of the specified environment
variable and make it available to Application Dispatcher programs in the specified SAS macro variable or
SCL list item.

The sample configuration file includes several Export directives. You can activate a directive by changing the
information to match your site and removing the # that appears at the left of the export line.

Some Export directives are activated by default. Export REMOTE_HOST _RMTHOST is one. These
directives are not preceded by a # in the default configuration file.

If you omit the SAS name, the name of the environment variable will be used as the SAS macro name.

If the value of the environment variable is greater than your field width (as set in _FLDWDTH), then the
variable divides like any field into multiple variables. You can avoid this by using SAS variable names with a
leading underscore, such as _RMTHOST. Application Dispatcher variables that begin with an underscore are
not divided according to _FLDWDTH. These variables are truncated at 32767 characters.

SAS Documentation

46

Configuration File Directives
The required directives are listed below. For usage tips, see Using the Application Broker Configuration File.

Administrator Directives

Administrator name
ServiceAdmin name

specifies the name of the person who is the administrator of the entire system or service. The name is
passed to the Application Dispatcher program in the _ADMIN variable and is used in error messages.

AdministratorMail e−mail
ServiceAdminMail e−mail

specifies the fully qualified e−mail address of the system or service administrator. The e−mail value
is passed to the Application Dispatcher program in the _ADMAIL variable and is used in error
messages.

BrokerPassword string
specifies a password to protect the administration interface. If the BrokerPassword directive is
specified, you must supply the password to access the Application Broker Admin page (debug=4).

ConnectionError "string"
ServiceConnectionError "string"

specifies the message to be displayed when there is an Application Server connection error. The
directive can be specified in the configuration file on a global or service level. The message is not
displayed for connection errors in socket service administration programs such as ping and status.

Debugging Directives

Debug flags
ServiceDebug flags

specifies flags for debugging and output management. This directive can be overridden with the
_DEBUG field, which can be specified with a value or a keyword. The default is 2, or TIME,
(indicates to display the status line and the Powered by SAS logo). See also List of Valid Debug
Values.

DebugMask flags
ServiceDebugMask flags

specifies the debug values that users are allowed to set. The default value for the DebugMask is
32767, which indicates that all debug values are allowed. If any debug values represent a security
risk, you can selectively disable them by specifying a different DebugMask value, and then allow
them only on certain services or for troubleshooting. See also List of Valid Debug Values.

File and Variable Manipulation Directives

Allow method−1 ...
lists the allowable values for the request method. This directive does not actually set the method. The
method names are GET and POST. See also HTML Syntax Reference.

AppendFile filepath
ServiceAppendFile filepath

specifies a file that is added to the bottom of every HTML page that is generated by your application.
The file will also be added to requests that generate errors in the Application Server, but will not be
added when errors are generated by the Application Broker. Note that this is a host pathname, not a
URL. If you use this feature, your applications might not output the </BODY> and </HTML> tags,

47

but most Web browsers allow this.
Export env−var sas−var
ServiceExport env−var sas−var

specifies environment variables to be made available to Application Dispatcher programs. The
sas−var is optional; if omitted, the SAS variable name is the same as the environment variable name
(as long as it is a valid SAS name). Variables that do not begin with an underscore are subject to
long−value splitting according to the field width. See also Exporting Environment Variables.

Language code
specifies the language used for error messages. The code is a two−letter language code. Currently
only EN and FR are valid. The default is English.

PrependFile filepath
ServicePrependFile filepath

specifies a file that is added at the top of every HTML page that is generated by your application. The
file will also be added to requests that generate errors in the Application Server, but will not be added
when errors are generated by the Application Broker. Note that this is a host pathname, not a URL. If
you use this feature, your applications might not output the </BODY> and </HTML> tags, but most
Web browsers allow this.

Set variable value
ServiceSet variable value

specifies a variable to define on every request. This is similar to Export, but no environment variable
is needed. This enables you to avoid hard−coding values such as the location of htmSQL in your
applications. Values that do not begin with an underscore are subject to long−value splitting
according to the field width.

General Service Directives

DefaultService
specifies the default service to use when no service name is supplied. DefaultService is the default.

Encrypt algorithm lib−path
ServiceEncrypt algorithm lib−path

specifies the configuration file line that enables encryption. When this line is included for a service
and the SAS/SECURE product has been installed, all data sent between the Application Broker and
the Application Server will be encrypted by using the specified algorithm.

algorithm
is one of the values SASPROPRIETARY, RC4, RC2, DES, or TRIPLEDES. A special keyword
NONE can be entered to disable encryption for a particular service.

lib−path
is the path to where the SAS libraries TCPDENCR.DLL, TCPDEAM.DLL, and TCPDCAPI.DLL
(Windows) and TCPENCR and TCPDRSA/TCPDRSAI (all other platforms) reside, for example,

"C:\\Program Files\\SAS\\SASFoundation\\9.2\\core\\sasexe".

Platform Notes

z/OS

lib−path is not used, but the path must be specified in an environment variable named STEPLIB.•

Windows

You must install Microsoft Enhanced Cryptographic Provider Version 1.0 or later in order to use DES
or TRIPLEDES.

•

SAS Documentation

48

The lib−path value is optional if SAS/SECURE has been installed. The library location will be
automatically obtained from the Windows registry.

•

LoadManager host:port
ServiceLoadManager host:port

defines the host and port number for the Application Load Manager. The Application Broker attempts
to connect to this host and port to request an available Application Server from the Load Manager.
You can supply the DNS name (for example, APPSRV.YOURCOMP.COM) or IP address (for
example, 127.0.0.1) of the machine for host. You can supply a numeric port value or a symbolic name
that is defined in the system services file for port.

Note: Any fields that are specified with host:port have to be changed to [host]:port if host contains a
colon.

LocalAddress address
overrides the automatic determination of the local host IP address. Only specify this directive in
special cases where the Application Server cannot connect back to the Application Broker host.

ServiceCompatibility version
specifies the Application Server version number, if not the current version. This directive is useful for
transitioning between incompatible releases. It is not needed if the Application Broker and the server
releases match. For Version 6 and Version 7 of SAS software, set this value to 1.0.

ServiceDescription description
provides a long description for the service.

Set variable value
ServiceSet variable value

specifies a variable to define on every request. This is similar to Export, but no environment variable
is needed. This enables you to avoid hard−coding values such as the location of htmSQL in your
applications. Values that do not begin with an underscore are subject to long−value splitting
according to the field width.

Timeout seconds
ServiceTimeout seconds

specifies the number of seconds that the Application Broker waits for a response from the Application
Server. When the specified time elapses, the Application Broker returns an error message to the Web
browser. If no global timeout is specified, then the timeout default is 60 seconds.

For z/OS Only

ServerEncoding encoding
ServiceServerEncoding encoding

defines the encoding used for data sent from the Application Broker to the Application Server and
returned from the Application Server to the Application Broker. This option is not necessary unless
the Web server uses a different encoding from the one used by the Application Server. The default
ServerEncoding is automatically set based on the Web server encoding. The server encoding must
match the Application Server output encoding. The Application Server output encoding is normally
determined by the locale setting of your SAS installation, but can be set directly using the PROC
APPSRV ENCODING option.

Use one of the following values for encoding:

wlatin1 (Western Europe): This value is the default in all cases except for when the Web
server encoding is IBM−870 or IBM−1025.

◊

SAS Documentation

49

wlatin2 (Eastern Europe): This is the default encoding when the Web server is using
IBM−870 encoding.

◊

wcyrillic (Cyrillic): This is the default encoding when the Web server is using
IBM−1025 encoding.

◊

ISO−8859−1 (Latin1)◊
ISO−8859−2 (Eastern Europe)◊
ISO−8859−5 (Cyrillic)◊
ISO−8859−15 (Latin9)◊

Note that the body of the response from the Application Server (whether in HTML or another text
format) defaults to the specified encoding but might be changed by the request program. For example,
your request program might choose to generate a ISO−8859−1 response even if the ServerEncoding
directive specifies wlatin1.

Service−Specific Directives

LaunchService

LaunchService name desc
begins a service definition and accepts two values: a name and an optional short description for the
service. The name is used as the value for the _SERVICE field that is passed to the Application
Broker from the HTML information in the Web browser. The name value is required.

Note: A launch on Windows NT systems does not work if you do not have the TEMP system variable
set or if you do not specify −work on the SAS command line. Within the SAS configuration file,
WORK is defined as

 /* Setup the default SAS System user the work folder */
 −WORK "!TEMP\SAS Temporary Files"

Because the Web server uses only system variables, if TEMP is not defined as a system variable, then
WORK is not found and SAS does not start.

SasCommand command
specifies the SAS command and arguments that are necessary to invoke a new SAS session. It is
usually the fully qualified path to your SAS executable file or a shell script. The argument SYSPARM
must be included with the command. It must be specified at the end of the command as shown in the
template configuration file delivered with SAS/IntrNet software. When you specify SasCommand on
a Windows system, you must include the .exe extension for the SAS executable file.

LaunchService Directives for Previous Version Servers

InitCmd
(Version 6 servers only)

specifies the SAS statement necessary to invoke the Application Server. Do not include the PORT=
argument, which is valid only with the SocketService.

InitStmt
(Version 7 servers only)

specifies the SAS statement necessary to invoke the Application Server. Do not include the PORT=
argument, which is valid only with the SocketService.

SasBin command
(Version 7 and Version 6 servers only)

specifies the SAS command necessary to invoke a new SAS session. It is usually the fully qualified
path to your SAS executable file. When you specify SasBin on a Windows system, you must include

SAS Documentation

50

the .exe extension for the SAS executable file.
SasOpts options
(Version 7 and Version 6 servers only)

specifies the SAS command line options that are used to invoke a SAS session. You must include a
−SYSIN file as one of your SAS options or the server will not start. This file must exist, but it is
empty because the real input to the server session is supplied by the InitStmt directive.

TmpDir directory
(in Version 7 and Version 6 LaunchServices only)

specifies a directory (that must end with a slash) on the Web server machine (with read and write
permissions allowed) where the application writes temporary files. All temporary files and directories,
including the SASUSER and WORK libraries, log files, and other files used by the Application
Broker and the server, are created in TmpDir. The directory value is passed to the Application
Dispatcher application in the _TMPDIR variable.

PoolService

Note: You must specify a Load Manager before you use PoolService. Also, if the specified server is not on
the same machine as the Load Manager, you must specify a spawner port to use.

FullDuplex True
indicates that the Application Broker and Application Server use only one socket for communication.
Use this only with servers Release 8.1 or later because it will cause previous releases to hang.

IdleTimeout minutes
specifies the optional pool server timeout (in minutes). The default is 60 minutes. A value of 0
indicates immediate shutdown after processing the job. A server does not shut down until all sessions
have expired.

MinRun value
specifies the minimum number of servers to keep running. This directive is optional.

Password string
specifies the optional password used with the Username directive to start a new server. If
_PASSWORD is specified, the password is taken from the client _PASSWORD field. A password
that starts with an exclamation point (!) character is assumed to be encrypted. This directive is valid
only if you have specified a spawner port.

PoolService name desc
begins a service definition and accepts two values: a name and an optional short description for the
service. The name specified for the service is used as the value for the _SERVICE field that is passed
to the Application Broker from the HTML information in the Web browser.

Port port1 port1−port3
specifies the TCP/IP port number(s) or network service name(s) used by the Application Broker to
send requests to the Application Servers. You can define multiple ports by separating their values
with spaces or by issuing the Port directive multiple times. Numeric port ranges and symbolic names
that are defined in the system services file are supported. A number less than 256 indicates a count of
the maximum number of servers to start.

SasCommand command
specifies the SAS command and arguments that are necessary to invoke a new SAS session. It is
usually the fully qualified path to your SAS executable file or a shell script. The argument SYSPARM
must be included with the command. It must be specified at the end of the command as shown in the
template configuration file delivered with SAS/IntrNet software. When you specify SasCommand on
a Windows system, you must include the .exe extension for the SAS executable file. On UNIX
systems, it is recommended that you use the −LOG /DEV/NULL option.

Server host−1 host−2 ...
specifies the names of the physical machines on which the Application Servers are installed. You can

SAS Documentation

51

supply the DNS name (for example, APPSRV.YOURCOMP.COM) or IP address (for example,
127.0.0.1) of the machine. This directive is required with the pool service. You can supply a value of
LOCALHOST instead of a fully qualified DNS name if the Application Server is running on the same
machine as the Web server.

SpawnerPort port
specifies the port on which the SAS Spawner is listening. The SAS Spawner is used to start new
Application servers for this service. This directive is optional.

Note: Some of the SAS Spawner features cannot be used with pool services. For example, because
the Load Manager does not support data encryption, the SAS Spawner cannot be started with
−netencrypt or −netencralg.

StartAhead value
indicates how many SAS servers to start ahead of time when all current servers are busy. The default
is 0. This directive is optional.

Username string
specifies an optional user name used with the Password directive to start a new server. If
_USERNAME is specified, the user name is taken from the client _USERNAME field. A user name
starting with a ! character is assumed to be encrypted. This option is valid only if you have specified a
spawner port.

SocketService

FullDuplex True
indicates that the Application Broker and Application Server use only one socket for communication.
Use this only with servers Release 8.1 or later because it will cause previous releases to hang.

Port port1 port1−port3 ...
specifies the TCP/IP port number(s) or network service name(s) used by the Application Servers for
this service. You can define multiple ports by separating their values with spaces or by issuing the
Port directive multiple times. Numeric port ranges and symbolic names defined in the system services
file are supported.

Note: For Pool Services, a number less than 256 indicates a count of the maximum number of servers
to start.

Server host−1 host−2 ...
specifies the names of the physical machines on which the Application Servers are installed. You can
supply the DNS name (for example, APPSRV.YOURCOMP.COM) or IP address (for example,
127.0.0.1) of the machine. This directive is required with the socket service. You can supply a value
of LOCALHOST instead of a fully qualified DNS name if the Application Server is running on the
same machine as the Web server. See also Enhancing Performance.

SocketService name desc
Begins a service definition and accepts two values: a name and an optional short description for the
service. The name specified for the service is used as the value for the _SERVICE field passed to the
Application Broker from the HTML information in the Web browser. The name value is required.

URL Directives

SASPoweredAlt text
ServiceSASPoweredAlt text

specifies the alternate text used for the Powered by SAS logo image. This text appears while the
image is loading, or if images are disabled or not supported, or in some Web browsers, when the
mouse is held motionless over the image. The default is "SAS Institute Inc."

SAS Documentation

52

SASPoweredHref URL
Service SASPoweredHref URL

specifies the destination URL, that is, where you go when you click the image. The default is
HTTP://WWW.SAS.COM.

SASPoweredLogo URL
ServiceSASPoweredLogo URL

specifies the location of the Powered by SAS logo image file. See also Displaying the Powered by
SAS Logo.

SASPoweredTarget frame
ServiceSASPoweredTarget frame

specifies the frame that is used for the hypertext link on the Powered by SAS logo. The default is no
target. Any Web browser−supported target might be used, such as _TOP, which indicates to take over
the whole Web browser window, _BLANK, which indicates to open a new window, _PARENT,
which indicates to use the parent of the current frame, and _SELF, which indicates to use the current
frame.

SelfURL URL
specifies the self−referencing URL that identifies the Application Broker program. The default value
is the SCRIPT_NAME environment variable set by the Web server. The URL is passed to the SAS
program in a macro variable named _URL.

Note: Normally you do not need to set SelfURL. SelfURL might be useful in the following situations:

if your Web server does not set the SCRIPT_NAME environment variable or sets it
incorrectly.

◊

if your site uses DNS load balancing with its Web servers. SelfURL can be used to specify
the load−balanced Web server name instead of the particular Web server executing the
Application Broker. For example, assume your company Web address
HTTP://WWW.COMPANY.COM uses DNS to refer Web browser requests to one of five
servers (WWW1.COMPANY.COM through WWW5.COMPANY.COM). An Application
Broker running on WWW2.COMPANY.COM might have a default SCRIPT_NAME value
of HTTP://WWW2.COMPANY.COM/SCRIPTS/BROKER.EXE. The SelfURL directive
could be used to specify the load−balanced address
HTTP://WWW.COMPANY.COM/SCRIPTS/BROKER.EXE instead.

◊

SAS Documentation

53

Running Multiple Application Servers at Your Site
Running multiple Application Servers raises the same issues as running multiple SAS sessions. There is little
to be concerned with if you set up each server on a different file system. However, quite often, multiple
servers could be set up that access the same file system. This raises the general issue of file contention
between the Application Servers.

Here are some guidelines to follow if you set up multiple Application Servers on the same file system:

Servers can share a server root directory.•
Servers can share program libraries. Be sure to use access=readonly when allocating shared
program libraries. Allocating shared program libraries in this way prevents an Application Server
from opening SAS catalogs in update mode.

•

Servers on the same machine must use different port numbers.•
Update access to data sets should be done through the use of SAS/SHARE software. If you do not use
SAS/SHARE software and two users attempt to update the same SAS data set at the same time, a
failure will result.

•

Because update access to files can fail due to operating environment contention, Application
Dispatcher programs should be prepared to handle such failures.

•

Each server should write to a different log file.•

54

Application Server Administration Programs
The Application Server has a few built−in programs that instruct the server to perform special administrative
tasks. Starting with Release 8.2 of Application Dispatcher, you can use an administration interface to perform
these tasks. To access the interface, enter the Application Broker URL in your Web browser. The Application
Broker URL depends on your Web server platform and the Application Broker location. Typical URLs might
be

 http://yourserver/cgi−bin/broker (UNIX or z/OS)
 http://yourserver/scripts/broker.exe (Windows)

When you access the Application Broker URL using no parameters, a welcome page appears in your Web
browser. This page gives you access to an administration interface, SAS/IntrNet samples, and SAS/IntrNet
documentation. Clicking on the Application Dispatcher Administration link will display information about all
defined Application Dispatcher services. Links are provided to administrative and status programs for each
service. The available programs are described below. The administration interface can be password protected
using the BrokerPassword directive in the Application Broker configuration file. To disable the administration
interface, use the DebugMask directive to disable _DEBUG=4.

Note: If there is a customized Application Broker welcome page, then it will display instead of this default
welcome page when you enter the Application Broker URL in your Web browser. If this is the case, and if
you want to view the services that are available from the default welcome page, then add _DEBUG=4 to the
URL, as follows:

 http://yourserver/cgi−bin/broker.exe?_debug=4

The following administrative programs are available for Application Dispatcher services.

Command Description

STOP Stops the Application Server. All currently active requests are allowed to complete. An optional
_WAIT parameter can be used to specify a maximum wait time (in seconds) for any sessions to
expire. An Application Server that has received a STOP command with a _WAIT parameter
will accept requests that access existing sessions, but will not accept other new requests. The
default value for _WAIT is zero. BREAK and ENDSAS commands are also supported for
compatibility with earlier releases, although the STOP command is recommended.

PING Executes a simple program that verifies that the Application Server is working correctly.

STATUS Displays a status page for the server that contains useful information, such as when the server
was started and how many jobs it has processed.

In addition to using the administration interface, you can execute an Application Server administration
program by supplying the name of the program in an Application Dispatcher request. For example,

 http://yourserver/cgi−bin/broker?_service=default&_program=ping

These special program names are not case sensitive. If you start the Application Server by using a password,
you must supply the password to execute the STOP program. For example,

 http://yourserver/cgi−bin/broker?_service=default&_program=stop&_adminpw=foo

Note: If you do not start the Application Server by using a password, any client can run the STOP program
55

and shut down your server.

SAS Documentation

56

Application Server Libraries

Program Libraries

Program libraries are directories, partitioned data sets, or SAS libraries that contain Application Dispatcher
programs. Each Dispatcher program must be placed in a program library before the Application Server can
run it. One Application Server can access multiple program libraries. They are defined by the ALLOC file,
ALLOC library, and PROGLIB statements in PROC APPSRV. These libraries are separated from data
libraries for security reasons.

Data Libraries

Data created or used by Application Dispatcher programs should not be stored in program libraries. It is a
security risk to store programs in the same location as their data. For a more complete discussion on security
precautions, see Restricting Access to Program Libraries. The recommended method for accessing data from
an Application Dispatcher program is to issue a LIBNAME or FILENAME statement in the Application
Dispatcher program code. After the program has completed, the Application Server clears any librefs or
filenames that the program has left assigned.

57

Using Services
An Application Dispatcher service is a collection of one or more Application Servers. The servers might be
running on one system or could be distributed across multiple systems. All of the servers in a specified service
are assumed to have access to the same applications and data so that a particular client request can be fulfilled
by any server within the service. All Application Dispatcher requests include a service name (the _SERVICE
parameter) that determines which service will perform the request. The Application Broker is responsible for
selecting a particular server belonging to that service and forwarding the request to that server.

During the SAS/IntrNet installation process, you will have created a default service. The default service is a
socket service with only one server, the simplest type of service to set up and use. This service is adequate for
running the sample programs delivered with Application Dispatcher and beginning to develop your own
applications, but there are many reasons that you might want to create additional services. You might want to
create separate services for different applications so that you can distribute resources (such as memory, disk
space, or priority) among applications. You can create different services with different levels of access as a
simple form of security. Often, you will need to create separate services for development and production
application environments, so that development activities do not affect production applications.

The following pages address some of these issues and describe the process of creating and maintaining
services:

Choosing a Service Type•
Creating and Modifying Services

on OpenVMS♦
on z/OS♦
on UNIX platforms♦
on Windows platforms.♦

•

Enhancing Performance•
Development vs. Production Environments.•

58

Choosing a Service Type
A service can be a socket, pool, or launch service. The features, advantages, and disadvantages of each of
these service types is discussed below.

Socket Services

Socket services consist of one or more Application Servers that run continuously, servicing client requests.
Socket services are generally started whenever a machine is restarted (either manually or by an operating
environment mechanism for starting processes at boot or login time). The service usually runs until the
machine is shut down. Socket services are relatively simple to configure and manage and are adequate for
most applications.

Advantages

Socket services are supported on all SAS/IntrNet platforms. Other service types are not supported
everywhere.

•

The server is already running by the time a client request appears, so clients do not have to wait for a
server to start.

•

The administrator has explicit control of resources allocated to the service: the administrator can
control how many servers are run on each system and which resources are allocated to each server.

•

Increasing load can be handled by adding more servers to the service.•

Disadvantages

Servers must be started and stopped manually or by the operating system. No automated start−up and
shutdown service is provided by SAS/IntrNet software.

•

No dynamic scaling to meet increasing loads is provided. A fixed number of servers are available to
handle all client requests. A few long−running requests can slow the entire service for all clients.

•

Pool Services

Pool services consist of a pool of Application Servers shared by clients. Based on system loading the servers
are started and stopped by the Application Load Manager. Numerous options are provided to fine−tune the
operation of a pool service. Pool services combine some of the advantages of socket and launch services.

Advantages

Servers are started as needed. If all servers in the service are busy, the Load Manager can start an
additional server.

•

Servers can be reused by new clients once they are started. A started server remains in the pool until
an idle timeout is reached and the server is stopped.

•

Unlike launch services, pool services can be on a different system than the Web server and can be
distributed across multiple server systems.

•

Using the SAS Spawner, servers can be started under specific user names to control access to system
resources.

•

59

Disadvantages

Installation and configuration are more complex for pool services. The Application Load Manager
must be installed. The SAS Spawner must be installed in some cases.

•

Client requests might have to wait for a new server to start, although this is typically no worse (and
could be better) than waiting for currently executing requests to complete in a socket service.

•

Launch Services

A launch service starts a new Application Server for each client request. An existing server is reused only for
applications that use sessions or the _TMPCAT catalog for IDS output. Most of the features of launch services
are better provided by pool services. Launch services are not generally recommended for new installations.

Advantages

Server start−up is automatic for each request. Once the launch service is configured, little or no
additional administration is necessary.

•

Requests run in a separate server, so a long−running request will not block access to the service for
other clients.

•

Many requests can run in parallel, assuming that the system will support the load.•
Ill−behaved applications that "crash" or "hang" a server will not affect other client requests.•

Disadvantages

Launch services are started by the Application Broker and must run on the same system as the Web
server.

•

Each new request incurs the resource overhead and delay of starting a new server session.•
Launch services are not suitable for high user loads. There are no settable limits on the server load.
The service will attempt to start a new server for each new client. In an extreme case, 200
simultaneous users could cause 200 servers to be started, likely causing extreme "memory thrashing"
and very slow response for all users. Most Web servers have limits on the number of simultaneous
CGI requests that could help to control this problem.

•

Each launch service request must incur the additional time for starting a SAS session.•
Launch services are not supported on OpenVMS and z/OS platforms.•
Launched servers can be difficult to shut down. A launched server that creates a session or
_TMPCAT catalog will continue running until an idle timeout is reached. These servers cannot be
shut down other than by interrupting the server process.

•

SAS Documentation

60

Services on OpenVMS

Creating a Service

To create a service on OpenVMS:

From a system prompt, submit @sas$root:[tools]inetcfg.com.

Note: Square brackets in syntax indicates that an attribute is optional; do not include the square
brackets in your code.

As the configuration utility runs, you are prompted for information about the service that you are
creating.

1.

At the first prompt, type the name of the service. Press Return to accept the default value, which
names the service default. To create a service other than default, type the service name and then press
Return.

2.

The next prompt asks for the name of the directory where all of the service control files should be
stored. Press Return to accept the suggested value, or type the desired directory name and then press
Return.

3.

Specify the type of service you are defining. Type S for a socket service or P for a pool service. Press
Return to continue.

4.

If you choose a socket service, specify the number of servers that you want to include in this service.
The number you specify here represents only those servers running on this physical machine.

If there is only one server, press Return. If you plan to have multiple servers, type the number and
then press Return.

5.

If you have selected a socket service, you are prompted to enter a TCP/IP port number or name for
each of the servers that you requested as the answer to the previous prompt. Type the value and press
Return.

6.

You are asked whether you want to protect this service with an administrator password. Answer Y or
N, and press Return. Type a password and press Return.

7.

The utility displays the information that you entered for this service. Verify that the information is
correct.

If the information is correct, press Return. The utility creates the service. Read the messages printed
by the utility to determine whether the service was created correctly. One of these messages contains
the path for the service root directory created by the utility. Note this path for use later in this process.

If you want to change the information, type N and press Return. The utility exits and you can start
over.

8.

If you are creating a pool service, you must install the SAS Spawner. Refer to the SAS/CONNECT
documentation for installation instructions for the SAS Spawner.

9.

The Application Broker must know about this service for you to access it. Open the Broker
configuration file on your Web server in a text editor and add a service definition block.

The following code is an example of a socket service definition:

 # This service contains one server (port 5801) on yourserver.
 SocketService service−name "brief−text−desc"
 ServiceDescription "text−desc"
 ServiceAdmin "administrator−name"
 ServiceAdminMail "administrator−email−address@host"

♦

10.

61

 Server yourserver
 Port 5801

The following code is an example of a pool service definition:

 # Start up to 5 servers on node yourserver using the spawner
 # started at port 7777. All servers will be started with the
 # specified username/password. At least 1 server will not timeout
 # and will be kept running.
 PoolService service−name "brief−text−desc"
 ServiceDescription "text−desc"
 ServiceAdmin "administrator−name"
 ServiceAdminMail "administrator−email−address@host"
 ServiceLoadManager load−manager−host:port
 SasCommand "sas9 disk:+
 [username.INTRNET.service−name]APPSTART.SAS+
 /rsasuser /noterminal /noprint /nolog /SYSPARM "
 Server yourserver
 Port 6000−6004
 Username your−username
 Password your−password
 SpawnerPort 7777
 MinRun 1

♦

Starting the Service

Socket services must be started with the START.COM created by the configuration utility. To start the
service, change to the service root directory created by the utility. Then submit the following command:

 @START.COM

Pool services are started automatically by the Application Load Manager. See Using the Load Manager for
more details.

Once a service is started, you can test it from a Web browser. The URL depends on the platform and path
where your Application Broker is installed. For typical installations, use one of the following URLs to test (or
"ping") a service:

Windows:
http://yourserver/scripts/broker.exe?_service=service−name&_program=ping

UNIX and z/OS:
http://yourserver/cgi−bin/broker?_service=service−name&_program=ping

Specify your Web server name in place of yourserver and your service name in place of service−name. You
might need to use a different URL path if you chose a different path when you installed the Application
Broker. If the service is running, an HTML page will be returned stating that the Application Server is
functioning.

Stopping the Service

Services can be stopped from a Web browser. The URL depends on the platform and path where your
Application Broker is installed. For typical installations, use one of the following URLs to stop a service:

Windows:
http://yourserver/scripts/broker.exe?_service=service−name&_program=stop

UNIX and z/OS:

SAS Documentation

62

http://yourserver/cgi−bin/broker?_service=service−name&_program=stop

Specify your Web server name in place of yourserver and your service name in place of service−name. You
might need to use a different URL path if you chose a different path when you installed the Application
Broker.

Service Log Files

Log files are placed in the LOGS directory under the service root directory and are named
<day>_<port>.LOG, for example, MON_5001.LOG;1 or TUE_5001.LOG;1. By default, logs are kept for one
week (six full days and one partial day) and then overwritten.

SAS 9 has implemented a set of % codes that can be used in the −log parameter. You must add a −logparm
option in order to get the codes translated into the log. For example, adding the following options:

 −log 'disk:[service−root.service−name.LOGS]appsrv_%v.log'
 −logparm rollover=auto

creates log files with unique log filenames. The rollover=auto option causes an automatic "rollover" of the log
when the directives in the value of the LOG option change. This is particularly useful for generating log files
for pool services. This example creates log filenames such as APPSRV_1.LOG;1, APPSRV_2.LOG;1, and
APPSRV_3.LOG;1.

Note: You must use a full path to specify the log file because there is limited control over what path the Load
Manager or spawner will use as the current directory for each Application Server.

For more information, see the documentation on the LOGPARM= system option in SAS Language Elements.

Removing a Service

You can remove a service by deleting the service root directory and its contents. Any active servers must be
stopped before you delete this directory.

SAS Documentation

63

Services on z/OS

Creating a Service

The configuration utility provided for z/OS is a batch job. It is installed as a member named INETCFG in the
CNTL data set that you created as the first step in the installation of your SAS software. To use the utility, you
must edit the parameter file, member INETEDTP in the CNTL data set, edit the INETCFG job, and then
submit the INETCFG job. The INETEDTP member contains the parameters necessary for creating a service.
You can read the comments provided and change the default values to the values required for your service.

To create a service under z/OS:

Edit the member INETEDTP.1.
Specify the name of the service you are creating. The service name can be a maximum of eight
characters. Locate the line containing ISVC= and replace the default value with the name of the
service you are creating.

2.

Specify the type of service that you are defining. Uncomment the appropriate line containing
ISVCTYP=:

If you want a socket service, uncomment %SOCKETTYP.♦
If you want a pool service, uncomment %POOLTYP.♦

Ensure that the line containing the other service type is commented out by placing an asterisk in the
first column.

3.

For socket services, specify the TCP/IP port number or network service name for each server in the
service. You must specify at least one port, but you can specify up to ten. Port numbers or names are
not used for pool services.

To specify the TCP/IP port, locate the line containing I$−PORT1. Change the value 5001 to the
correct port number or network service name for the first server in your service. If you want to use
more than one server for this service, remove *NO* from the desired number of I$−PORT entries and
change the value to the appropriate value for each server in the service.

4.

If you are creating a pool service, you must install the Application Load Manager. You might also
want to install the Load Manager if you have a socket service with more than one server. See Using
the Load Manager for more information.

If you want to use the Load Manager on your z/OS system, you must install the SAS/IntrNet CGI
Tools for the Web Server package. Verify the settings for the Load Manager in INETEDTP:

Choose a TCP port number or network service name for the Load Manager. Supply this value
on the line containing I$−LDMPORT=.

♦

Supply the entire UNIX System Services file path to the Load Manager executable on the line
containing I$−LDMPROG=. The Load Manager is named LOADMGR and is installed in the
directory corresponding to the URL
http://yourserver/sasweb/IntrNet9/tools/.

♦

Determine where the Load Manager should write its log file. Supply the entire UNIX System
Services file path for the log file on the line containing I$−LDMSOUT.

♦

5.

Save and close INETEDTP.6.
Edit INETCFG to verify the job header information and the name of the service you are defining. The
service name in this Job Control Language (JCL) should match the value you supplied for ISVC in
INETEDTP. If you make changes, be sure to save them. Do NOT change SASEDITP to INETEDTP.
This filename refers to your original SAS installation parameters file.

7.

64

Submit the INETCFG JCL job for processing. The INETCFG job submits another job (INETCFGA).
Verify that both jobs completed with a return code of 0. If they completed successfully, you now have
the data sets and members necessary for running your service.

If the INETCFG job failed, examine the messages and sysprint members for error messages. If you
see the following message:

 ERROR: THIS REPLACEMENT CAUSES RESULT TO EXCEED OUTPUT LRECL

you might have supplied a pathname in one of your INETEDTP parameters that is too long. Try
shortening this pathname and rerun INETCFG.

Note: Before you run INETCFG again, you must delete any data sets created by the previous failure
of INETCFG. You can find these data sets by looking in the namespace determined by your original
SAS install. For example, if your SAS software was installed with the prefix name SYS.SAS and your
failed INETCFG was trying to create the default service, then delete all data sets beginning with
the name prefix SYS.SAS.WEB.DEFAULT before running INETCFG again.

8.

The configuration utility creates a server root in a partitioned data set (PDS) named
prefix.WEB.service−name, where prefix is the data set prefix you supplied during your SAS
installation and service−name is the name of the service that you just created. The PDS contains any
JCL procedures and server start−up code required for starting the service. You will find these
members:

APSTRTn
contains the JCL necessary to run the corresponding @APSTXn file as a started task. These
members exist only for socket services. You should move these files to your started task
library and enable them as started tasks.

@APSTXn
contains the SAS code that invokes the server. This file is called by the JCL in the
corresponding APSTRTn file for socket services and by the Spawner for pool services. These
SAS programs must remain in the PDS where they were created.

LOADMGR
contains the JCL necessary to run the Load Manager. You should move this file to your
started task library and enable it as a started task.

In addition to the server root PDS, the configuration utility creates an empty PDS named
prefix.WEB.service−name.TDIR, where prefix is the data set prefix that you supplied during your
SAS installation and service−name is the name of the service you just created. All of the servers in
the service use this PDS as a scratch location. Each server also has its own scratch SAS data library.
These libraries are named TBLIB1 through TBLIBn.

9.

You must modify the permissions for the data sets created above so that the server can write to them
as necessary. To modify the permissions, create a special RACF data set profile that applies to all the
data sets in this service (prefix.WEB.service−name.*). The RACF data set profile should
also grant write access to the user ID of the Application Server.

10.

If you are creating a pool service, you must install the SAS Spawner. Refer to the SAS/CONNECT
documentation for installation instructions for the SAS Spawner.

11.

The Application Broker must know about this service so that you can access it. Open the Broker
configuration file on your Web server in an editor and add a service definition block. Example service
definitions are found in the template configuration file installed with the Application Broker. The
following examples also show service definitions.

The following code is an example of a socket service definition:

 # This service contains one server (port 5801) on yourserver.

♦

12.

SAS Documentation

65

 SocketService service−name
 ServiceDescription "text−desc"
 ServiceAdmin "administrator−name"
 ServiceAdminMail "administrator−email−address@host"
 Server yourserver
 Port 5801

The following code is an example of a pool service definition:

 # Start up to 5 servers on node yourserver using the spawner
 # started at port 7777. All servers will be started with the
 # specified username/password. At least 1 server will not timeout
 # and will be kept running.
 PoolService service−name
 ServiceDescription "text−desc"
 ServiceAdmin "administrator−name"
 ServiceAdminMail "administrator−email−address@host"
 ServiceLoadManager load−manager−host:port
 # Spacing shown in the example command is important.
 SasCommand "/your/bin/poolstart.sh SASTREXX −SASRXSYSCONFIG +
 \"'userid.dataset.SASRXCFG(REXCW0)'\" NOSASUSER −NOTERMINAL +
 −RSASUSER −NOPRINT −SYSIN \"'yourserver(POOLSTRT)'\" −NOLOG +
 \'−SYSPARM\' "
 Server yourserver
 Port 6000−6004
 Username your−username
 Password your−password
 SpawnerPort 7777
 MinRun 1

Note: The SasCommand line contains six double quotation marks (") and six single quotation
marks ('). Ensure that these are placed correctly. Also note that the SAS Spawner must be
installed and configured for scripted signons in order for this command to work.

If you are creating a pool service, you must have a poolstart.sh file. This is a shell script that
is used to start an Application Server. The following code is an example of a poolstart.sh file:

 #
 # Set additional environment variables...
 # SYSPROC specifies the data set containing the SAS CLIST/REXX
 # STEPLIB of null required to prevent propagation of spawner's
 # STEPLIB
 #
 export STEPLIB=
 export tsoout=
 export SYSPROC=userid.dataset.SASRX
 #
 #
 # Start SAS
 #
 exec /bin/tso −t "$@"

♦

Starting the Service

As stated above, the APSTRTn files for a socket service should be moved from your server root PDS to your
started task library and enabled as started tasks. To start the service, issue a START command from the
system console for each server in the service.

Pool services are started automatically by the Application Load Manager. If you installed the Load Manager
on your z/OS system, the LOADMGR started task can be started by a START command from the system

SAS Documentation

66

console. See Using the Load Manager for more details.

Once a service is started, you can test it from a Web browser. The URL will depend on the platform and path
where your Application Broker is installed. For typical installations, use one of the following URLs to test (or
"ping") a service:

UNIX and z/OS:
http://yourserver/cgi−bin/broker?_service=service−name&_program=ping

Windows:
http://yourserver/scripts/broker.exe?_service=service−name&_program=ping

You must specify your Web server name in place of yourserver and your service name in place of
service−name. You might need to use a different URL path if you chose a different path when you installed
the Application Broker. If the service is running, an HTML page will be returned stating that the Application
Server is functioning.

Stopping the Service

Socket or pool services can be stopped from a Web browser. The URL will depend on the platform and path
where your Application Broker is installed. For typical installations, use one of the following URLs to stop a
service:

UNIX and z/OS:
http://yourserver/cgi−bin/broker?_service=service−name&_program=stop

Windows:
http://yourserver/scripts/broker.exe?_service=service−name&_program=stop

You must specify your Web server name in place of yourserver and your service name in place of
service−name. You might need to use a different URL path if you chose a different path when you installed
the Application Broker.

Service Log Files

Log files for socket services are saved as JES spool files. Log files for pool services are named
prefix.WEB.service−name.mmddyy.port−no.LOG, where prefix is the data set prefix that you
supplied during your SAS installation, mmddyy is the current date (represented as a six digit number), and
port−no is the TCP/IP port number of the server. Log files are not automatically deleted. You must
manually delete them to recover the disk space.

Removing a Service

A service can be removed by deleting all data sets beginning with the name
prefix.WEB.service−name, where prefix is the data set prefix that you supplied during your SAS
installation. For example, if you want to remove the SVC2 service and your SAS software was installed with
the prefix name SYS.SAS, then delete all data sets beginning with the name prefix SYS.SAS.WEB.SVC2.

SAS Documentation

67

Services on UNIX Platforms

Creating a Service

To create a service for an Application Server running in a UNIX environment, perform the following steps:

From a system prompt, submit the following command:

SASROOT/utilities/bin/inetcfg.pl

where SASROOT is the path to the SAS root directory.

As the configuration utility runs, you are prompted for information about the service that you are
creating.

1.

For the first prompt, type the name of the service. Press Return to accept the default value, which
names the service default. To create a service other than default, type the service name, and then press
Return.

2.

The next prompt asks for the name of the directory where all of the service control files should be
stored. Press Return to accept the suggested value, or type the desired directory name and then press
Return.

3.

Specify the type of service you are defining. Type S if you are defining a socket service, L for a
launch service, or P for a pool service. Press Return to continue.

4.

If you choose a socket service, specify the number of servers that you want to include in this service.
Note that the number you specify here represents only those servers running on this physical machine.

If there is only one server, press Return. If you plan to have multiple servers, type the number, and
then press Return.

5.

If you select a socket service, you are prompted to enter a TCP/IP port number or name for each of
the servers that you requested as the answer to the previous prompt. Type the value and press Return.

6.

If you choose a socket or a pool service, the script will ask if you want to protect this service with an
administrator password. Answer Y or N and press Return. Supply a password and press Return.

7.

Next, the utility displays the information that you entered for this service. Verify that the information
is correct.

If the information is correct, press Return. The utility creates the service. Read the messages printed
by the utility to determine whether the service was created correctly. One of these messages contains
the path for the service directory created by the utility. You should note this path for use later in this
process.

If you want to change the information, type N and press Return. The script exits and you can rerun
the script.

8.

If you are creating a pool service, you must install the Application Load Manager. You might also
want to install the Load Manager if you have a socket service with more than one server. See Using
the Load Manager for more information.

9.

If you are creating a pool service, you might need to install the SAS Spawner. The Spawner is not
required if you configure the Application Load Manager to start the service directly. If you choose
this method, the servers must all execute on the same system as the Load Manager and under the same
user ID. The Spawner is not required if you choose to use the UNIX Telnet daemon to start the
servers. Refer to the SAS/CONNECT documentation for installation instructions for the SAS
Spawner.

10.

The Application Broker must know about this service so that you can access it. Open the Broker11.
68

configuration file on your Web server in an editor and add a service definition block. Example service
definitions are found in the template configuration file installed with the Application Broker. The
following examples also show service definitions.

The following code is an example of a socket service definition:

 # This service contains one server (port 5801) on yourserver.
 SocketService service−name "brief−text−desc"
 ServiceDescription "text−desc"
 ServiceAdmin "administrator−name"
 ServiceAdminMail "administrator−email−address@host"
 Server yourserver
 Port 5801

♦

The following code is an example of a launch service definition:

 LaunchService service−name "brief−text−desc"
 ServiceDescription "text−desc"
 ServiceAdmin "administrator−name"
 ServiceAdminMail "administrator−email−address@host"
 SasCommand "/your/bin/sas+
 /your/intrnet/service−name/appstart.sas+
 −rsasuser −noterminal −noprint −nolog −SYSPARM"

♦

The following code is an example of how to define a pool service that is started directly by
the Load Manager:

 # Start up to 2 servers on the same node as the Load Manager. No
 # username/password or spawner is needed for this case. Servers
 # will time out after 30 minutes.
 PoolService service−name
 ServiceDescription "text−desc"
 ServiceAdmin "administrator−name"
 ServiceAdminMail "administrator−email−address@host"
 ServiceLoadManager load−manager−host:port
 SasCommand "/your/bin/sas+
 /your/intrnet/service−name/appstart.sas+
 −rsasuser −noterminal −noprint −nolog −SYSPARM"
 IdleTimeout 30
 Server yourserver
 Port 2

♦

The following code is an example of how to define a pool service that is started by the SAS
Spawner:

 # Start up to 5 servers on node yourserver using the spawner
 # started at port 7777. All servers will be started with the
 # specified username/password. At least 1 server will not timeout
 # and will be kept running.
 PoolService service−name
 ServiceDescription "text−desc"
 ServiceAdmin "administrator−name"
 ServiceAdminMail "administrator−email−address@host"
 ServiceLoadManager load−manager−host:port
 SasCommand "/your/bin/sas+
 /your/intrnet/service−name/appstart.sas+
 −rsasuser −noterminal −noprint −nolog −SYSPARM"
 Server yourserver
 Port 6000−6004
 Username your−username
 Password your−password
 SpawnerPort 7777
 MinRun 1

♦

SAS Documentation

69

Starting the Service

Socket services must be started with the start.pl script created by the configuration utility. To start the service,
change to the service root directory created by the utility. Then submit the following command:

 ./start.pl

Launch services are started automatically by the Application Broker. Pool services are started automatically
by the Application Load Manager. See Using the Load Manager for more details.

Once a service is started, you can test it from a Web browser. The URL will depend on the platform and path
where your Application Broker is installed. For typical installations, use one of the following URLs to test (or
"ping") a service:

UNIX and z/OS:
http://yourserver/cgi−bin/broker?_service=service−name&_program=ping

Windows:
http://yourserver/scripts/broker.exe?_service=service−name&_program=ping

You must specify your Web server name in place of yourserver and your service name in place of
service−name. You might need to use a different URL path if you chose a different path when you installed
the Application Broker. If the service is running, an HTML page will be returned stating that the Application
Server is functioning.

Stopping the Service

Socket or pool services can be stopped from a Web browser. The URL will depend on the platform and path
where your Application Broker is installed. For typical installations, use one of the following URLs to stop a
service:

UNIX and z/OS:
http://yourserver/cgi−bin/broker?_service=service−name&_program=stop

Windows:
http://yourserver/scripts/broker.exe?_service=service−name&_program=stop

You must specify your Web server name in place of yourserver and your service name in place of
service−name. You might need to use a different URL path if you chose a different path when you installed
the Application Broker.

Service Log Files

Log files are placed in the logs directory under the service root directory and are named
<day>_<port>.log. For example, Mon_5001.log or Tue_5001.log. By default, logs are kept for one week
(six full days and one partial day) and then overwritten.

SAS 9 has implemented a set of % codes that can be used in the −log parameter. You must add a −logparm
option in order to get the codes translated into the log. For example, adding the following options:

 −log '/full−service−root−path/service−name/logs/appsrv_%v.log'
 −logparm rollover=auto

SAS Documentation

70

creates log files with unique log filenames. The rollover=auto option causes an automatic "rollover" of the log
when the directives in the value of the LOG option change. This is particularly useful for generating log files
for pool or launch services. This example creates log filenames such as appsrv_1.log, appsrv_2.log, and
appsrv_3.log.

Note: You must use a full path to specify the log file because there is limited control over what path the Load
Manager or spawner will use as the current directory for each Application Server.

For more information, see the documentation on the LOGPARM= system option in SAS Language Elements.

Removing a Service

A service can be removed by deleting the service root directory and its contents. Any active servers must be
stopped before deleting this directory.

SAS Documentation

71

Services on Windows Platforms

Creating a Service

To create a service for an Application Server running in a Windows operating environment, perform the
following steps:

From the Start menu, select Programs SAS IntrNet Create a New IntrNet Service.1.
Read the information in the IntrNet Config Utility Welcome window. Select Next to continue.2.
Select the type of service that you want to create. Select Next to continue.3.
Type the name of the new service. (Remember that service names must begin with either a letter or an
underscore and can contain letter, number, underscore, or dash characters.)

The default value for this field is default. Create this as your first service because this is what is
used when you run the samples. Select Next to continue.

4.

The configuration utility selects a default service root directory based on the location that you chose
for user files when you installed SAS software. This default location is recommended for most users,
although you can use the Browse button to select a different directory. Select Next to continue.

5.

If you are defining a socket service, you are prompted to specify the TCP/IP port numbers or names
for each Application Server that you want to define as part of this service. If you supply multiple
numbers or names, use a space to separate each entry. Select Next to continue.

6.

Review the contents of the Service Created window for information about your service. Note the
Application Broker configuration sample text. You are required to enter similar text in the
Application Broker configuration file in a later step. Select Next to continue.

7.

The Create Service window displays all of the information that you specified for this service. Verify
the information in this window before continuing. If it is not correct, select the Back button to change
the information. If it is correct, select Next to create the service.

8.

Select Next and then select Finish to exit the utility.9.
If you are creating a pool service, you must install the Application Load Manager. You might also
want to install the Load Manager if you have a socket service with more than one server. See Using
the Load Manager for more information.

10.

If you are creating a pool service, you might need to install the SAS Spawner. The Spawner is not
required if you configure the Application Load Manager to start the service directly. If you choose
this method, the servers must all execute on the same system as the Load Manager and under the same
user ID. Refer to the SAS/CONNECT documentation for installation instructions for the SAS
Spawner.

11.

The Application Broker must know about the new service before you can access it. Open the
Application Broker configuration file on your Web server in a text editor and add a service definition
block. Example service definitions are provided in the template configuration file that is installed with
the Application Broker. In addition, sample configuration text was generated by the configuration
utility in a preceding step. The following examples also show service definitions.

The following code is an example of a socket service definition:

 # This service contains one server (port 5801) on yourserver.
 SocketService service−name
 ServiceDescription "text−desc"
 ServiceAdmin "administrator−name"
 ServiceAdminMail "administrator−email−address@host"
 Server yourserver
 Port 5801

♦

The following code is an example of how to define a pool service that is started directly by♦

12.

72

the Load Manager:

 # Start up to 2 servers on the same node as the Load Manager. No
 # username/password or spawner is needed for this case. Servers
 # will time out after 30 minutes.
 PoolService service−name
 ServiceDescription "text−desc"
 ServiceAdmin "administrator−name"
 ServiceAdminMail "administrator−email−address@host"
 ServiceLoadManager load−manager−host:port
 SasCommand ""\"C:\\Program Files\\SAS\\SASFoundation\\9.2\\sas.exe\"+
 \"C:\\Program Files\\SAS\\IntrNet\\service−name\\appstart.sas\"+
 −rsasuser −noterminal −noprint −nolog −SYSPARM "
 IdleTimeout 30
 Server yourserver
 Port 2

The following code is an example of how to define a pool service that is started by the SAS
Spawner:

 # Start up to 5 servers on node yourserver using the spawner started
 # at port 7777. All servers will be started with the specified
 # username/password. At least 1 server will not timeout and
 # will be kept running.
 PoolService service−name
 ServiceDescription "text−desc"
 ServiceAdmin "administrator−name"
 ServiceAdminMail "administrator−email−address@host"
 ServiceLoadManager load−manager−host:port
 SasCommand ""\"C:\\Program Files\\SAS\\SASFoundation\\9.2\\sas.exe\"+
 \"C:\\Program Files\\SAS\\IntrNet\\service−name\\appstart.sas\"+
 −rsasuser −noterminal −noprint −log /dev/null −SYSPARM"
 Server yourserver
 Port 6000−6004
 Username your−username
 Password your−password
 SpawnerPort 7777
 MinRun 1

♦

The following code is an example of a launch service definition:

 LaunchService service−name
 ServiceDescription "text−desc"
 ServiceAdmin "administrator−name"
 ServiceAdminMail "administrator−email−address@host"
 SasCommand ""\"C:\\Program Files\\SAS\\SASFoundation\\9.2\\sas.exe\"+
 \"C:\\Program Files\\SAS\\IntrNet\\service−name\\appstart.sas\"+
 −rsasuser −noterminal −noprint −nolog −SYSPARM "

♦

Starting the Service

Socket services must be started manually. From the Start menu, select Programs SAS (or your SAS 9.2
program group) IntrNet. Select the entry for the service you just created, and then select Start
Interactively.

Launch services are started automatically by the Application Broker. Pool services are started automatically
by the Application Load Manager. See Using the Load Manager for more details.

After a service is started, you can test it from a Web browser. The URL depends on the platform and path
where your Application Broker is installed. For typical installations, use one of the following URLs to test (or

SAS Documentation

73

ping) a service:

Windows
http://yourserver/scripts/broker.exe?_service=service−name&_program=ping

UNIX and z/OS
http://yourserver/cgi−bin/broker?_service=service−name&_program=ping

Specify your Web server name in place of yourserver and your service name in place of service−name. You
might need to use a different URL path if you chose a different path when you installed the Application
Broker. If the service is running, an HTML page is returned stating that the Application Server is functioning.

Stopping the Service

Socket or pool services can be stopped from a Web browser. The URL depends on the platform and path
where your Application Broker is installed. For typical installations, use one of the following URLs to stop a
service:

Windows
http://yourserver/scripts/broker.exe?_service=service−name&_program=stop

UNIX and z/OS
http://yourserver/cgi−bin/broker?_service=service−name&_program=stop

Specify your Web server name in place of yourserver and your service name in place of service−name. You
might need to use a different URL path if you chose a different path when you installed the Application
Broker.

Modifying a Service or Accessing Service Log Files

Service configuration and log files are kept in a service directory tree. The service root directory can be
accessed from the Windows Start menu. From the Start menu, select Programs SAS (or your SAS 9.2
program group) IntrNet. Select the entry for the service you just created, and then select Service
Directory. This directory contains an appstart.sas file with the SAS code used to start the Application Servers
for this service. Other scripts and configuration files for this service are also located in this directory.

Log files are placed in the logs directory under the service root directory and are named <day>_<port>.log.
For example, Mon_5001.log or Tue_5001.log. By default, logs are kept for one week (six full days and one
partial day) and then overwritten.

SAS 9 has implemented a set of % codes that can be used in the −log parameter. You must add a −logparm
option in order to get the codes translated into the log. For example, adding the following options:

 −log 'C:\Program Files\Sas\IntrNet\service−name\logs\appsrv_%v.log'
 −logparm rollover=auto

creates log files with unique log filenames. The rollover=auto option causes an automatic "rollover" of the log
when the directives in the value of the LOG option change. This is particularly useful for generating log files
for pool or launch services. This example creates log filenames such as appsrv_1.log, appsrv_2.log, and
appsrv_3.log.

Note: You must use a full path to specify the log file because there is limited control over what path the Load
Manager or spawner will use as the current directory for each Application Server.

SAS Documentation

74

For more information, see the documentation on the LOGPARM= system option in SAS Language Elements.

Windows Services

Socket services can be installed as Windows services. Installing as a Windows service enables the service to
run automatically whenever the Windows system is booted, even if a user is not logged into the system. As
noted above, install the SAS Service Configuration Utility before you create any service that will be installed
as a Windows service. Information about the SAS Service Configuration Utility is located in the SAS 9.2
System Requirements documentation at support.sas.com/documentation/installcenter.

From the Start menu, select Programs SAS (or your SAS 9.2 program group) IntrNet. Select the
entry for the service you just created, and then select Install as Windows Service. This step does not start the
service. Once the service has been installed as a Windows service, each time the system reboots the service is
started automatically. You can manually start and stop the Windows service by using the Start Windows
Service and Stop Windows Service menu selections. Note that you can still run this service interactively by
using the Start Interactively menu selection, but only if the Windows service has been stopped.

A Windows service can also be uninstalled from the Uninstall Windows Service menu selection. This only
uninstalls the Windows service. The SAS/IntrNet service remains and can still be run interactively.

The Services icon in the Windows Control Panel enables you to see the current status of all Windows
services. Each SAS/IntrNet service display name begins with SAS App Server. Note that a separate Windows
service is created for each server in a multiple server socket service. Individual servers can be started and
stopped from the Services Control Panel. You can use the Start menu selections to start or stop all servers in
the service.

Removing a Service

You can remove a service by deleting the service directory and removing the associated Start menu entry.
Follow these steps:

If the service is running, stop it.1.
If the service is a socket service and has been installed as a Windows service, uninstall it as a
Windows service. From the Start menu, select Programs SAS (or your SAS 9.2 program group)

IntrNet. Select the entry for the service, and then select Uninstall as a Windows Service. Perform
this step even if you are not sure if this service is installed as a Windows service.

2.

Find the service directory, select Start Menu, and select Programs SAS (or whatever program
group under which you installed SAS 9.2) IntrNet. Select the entry for the service, and then select
Service Directory.

3.

Go up one level to the parent directory and delete the directory for the service that you want to
remove.

4.

Remove the Start menu entry for the service. To do this, right−click on the Start menu and select
Explore All Users (or Explore on Windows 95/98).

5.

Use the Explorer window to find the Programs folder.6.
Select SAS, then select IntrNet. Delete the service entry in this folder for the service that you want to
remove.

7.

SAS Documentation

75

Enhancing Performance
As more users access your applications, you might need to fine−tune the performance of your Application
Dispatcher setup. You can improve performance by

Using Multiple Servers (Random Load Balancing)•
Using the Load Manager (Intelligent Load Balancing)•
Increasing Timeout•
Using Server Weights•
Specifying a Backup Machine•

Using Multiple Servers (Random Load Balancing)

In a socket service definition in the Application Broker configuration file you can supply multiple names of
the physical machines on which Application Servers are installed or multiple TCP/IP port numbers that
represent many server processes on a single machine. The following example shows multiple servers and
ports:

 server machine_a machine_b machine_c machine_d
 port 5000−5002
 server machine_e
 port 5001 5003

This example provides 14 different Application Servers:

3 servers (5000,5001,5002) on machine_a•
3 servers (5000,5001,5002) on machine_b•
3 servers (5000,5001,5002) on machine_c•
3 servers (5000,5001,5002) on machine_d•
2 servers (5001,5003) on machine_e•

For the Application Broker to access these Application Servers, they must be running. If one or more of the
servers is not running, the Application Broker tries to access another one. If you need a diagnostic tool, you
can set a _DEBUG value to trace the connection attempts. Notice that you can specify a range of ports, for
example, 5000−5002. You can also specify any number of single ports or port ranges on one line.

When a Web browser request is made, the Application Broker uses one of two methods for selecting a server
out of the specified service:

If a Load Manager is defined in the configuration file, the Application Broker attempts to ask the
Load Manager for an available server in the list that is defined for the service.

•

If the Load Manager is unavailable or undefined, the Application Broker randomly chooses a server
from the list.

•

Using the Load Manager (Intelligent Load Balancing)

The Load Manager balances requests from Application Brokers for Application Server processing. Each time
an Application Broker is activated, it sends a list of Application Servers that are associated with the service to
the Load Manager. The Load Manager checks an in−memory list of server states to determine whether any
servers are idle. The first server found idle with the least number of outstanding sessions is returned to the
Application Broker and marked as in use. If no servers are idle, the request is queued by the Load Manager

76

until a server is free. If the Application Servers are configured with multiple programs enabled, the request is
sent to a server that is not handling the maximum number of programs.

Each Application Server contacts the Load Manager to record its state. As a job is received, the server sends a
message to the Load Manager indicating that the server is busy. When the job has been completed, an idle
state message is sent. In this manner, the Load Manager can maintain which servers are available for
Application Broker requests. The Load Manager also periodically checks server sockets to try to determine
whether each server is still functioning. The Load Manager log can be used to track the state changes and job
allocation for the Application Servers.

Increasing Timeout

The ServiceTimeout directive specifies the number of seconds that the Application Broker should wait for a
response from the Application Server. The default value is 60 seconds. This can be lengthened depending
upon your needs. When the specified time elapses, the Application Broker returns an error message to the
Web browser. To avoid receiving this error message and to increase your chances of connecting when the
server is very busy, increase the timeout period. The global directive Timeout overrides the default of 60
seconds. The directive ServiceTimeout further overrides the global timeout for a particular service.

Using Server Weights

If you are not using the Load Manager and you want to direct the connection to a particular machine out of a
range of the servers that you have predefined, specify weights for each machine. For example, if you have two
computers running Application Servers, each machine has a one−in−two chance of receiving a request from
the Application Broker. The Application Broker randomly selects one of your predefined servers. To increase
the likelihood that a server receives requests, assign a weight to the machine in the server directive, as shown
in the following example:

 server machine_a machine_b*5

Server A now has only a one−in−six chance of receiving a request. Server B now has a five−in−six chance.
You could rewrite the previous example to show the following and attain the same result. The weight
assignment of 5 eliminates the need to type the following line:

 server machine_a machine_b machine_b machine_b machine_b machine_b

If you are using the Load Manager, you can use weights to reorder the list of servers in the service. The
servers with higher weights appear first in the list that is sent to the Load Manager. Because the Load
Manager always selects the first available server in the list, those with higher weights are selected first.

Specifying a Backup Machine

You can also use weights to specify a backup machine that receives requests only if the server that is running
on the primary machine is not operating. To do so, set the weight to zero (0), as shown in the following
example:

 server machine_a machine_b*0

Under normal circumstances, server A acts as your primary machine and server B never receives requests.
However, if server A is not operating, the Application Broker attempts to connect to server B.

SAS Documentation

77

Note: Weights apply to server machines and not to individual ports on those machines. You cannot force the
Application Broker to favor one port over another on the same machine.

SAS Documentation

78

Development vs. Production Environments
In most cases, you will need separate services for your development and production Application Dispatcher
environments. Isolating your development environment from your production applications will help you
provide application stability and security to your end users, while providing flexibility and freedom to your
application developers.

Development Services

A development environment can typically be provided by a one−server socket service. A single server will
generally simplify debugging and will allow testing of most application features (other than performance).
The developer is free to start and stop the server as needed. You might want to create a separate service for
each developer to allow independent updates to the application under development.

Note: Applications that are intended to run in multiple−server services must be written and tested with this in
mind. Programs must allow for concurrent access to shared resources by multiple servers. Even if the
development is performed on a single−server service, some testing should be done on a multiple−server
service before deploying the application.

Launch services were recommended for development on previous releases of SAS/IntrNet software. This was
because the Version 6 SCL based Application Server was not tolerant of some common development errors
(such as mismatched quotes in SAS code). Later releases of the Application Server are much more tolerant of
these types of errors. Most programming errors will cause the individual request to fail without affecting the
server.

Production Services

Most production applications can be deployed on a socket service with one or more servers. Additional
servers can be added as the total system load grows. Servers can easily be distributed across multiple server
systems. Once your service uses more than one server, you should consider using the Application Load
Manager. The Load Manager provides intelligent load balancing between multiple servers in a socket service.

Applications with widely varying user loads or special security requirements might benefit from pool services.
Pool services enable servers to be started and stopped dynamically as the user load grows and shrinks.

79

Using the Load Manager
The Application Load Manager is a separate process that can be used to control distribution of client requests
across multiple Application Servers. The Load Manager can run on any node that is visible to both the
Application Brokers and Application Servers. The Load Manager keeps track of which Application Servers
are busy. When a new request arrives, it is routed to an idle server. If no servers are idle, the request queues at
the Load Manager and waits for the first available server. In the case of pool services, the Load Manager can
start another Application Server when all servers are busy. It can also shut down unused servers after an idle
timeout.

The Load Manager is not required for socket and launch services, but it is recommended for socket services
that have more than one server. The Load Manager is required for pool services. See Using Services for more
information about service types. The Load Manager requires only a few command line options to start and
that a single directive be added to the Application Broker configuration file. For more information, see

Application Load Manager Reference

Load Manager on Windows Platforms♦

•

Load Manager Log Files.•

80

Application Load Manager Reference
The Application Load Manager is available for z/OS, UNIX, and Windows systems. The Load Manager
executable (loadmgr.exe on Windows, loadmgr on other platforms) is included in the CGI Tools for the Web
Server package. After you have installed this package, you can find the Load Manager executable in the Web
server directory corresponding to the URL

 http://yourserver/sasweb/IntrNet9/tools

The Load Manager executable is also included in the SAS installation on UNIX and Windows systems. The
Load Manager can be found at the following locations:

UNIX
!SASROOT/utilities/bin/loadmgr

Windows
!SASROOT\intrnet\sasexe\loadmgr.exe

Starting the Load Manager

The syntax for starting the Load Manager is

loadmgr <options>

where <options> can be any of the following:

−background<=n>
specifies the number of Application Servers that can run in the background at one time. The default is
0, which disables backgrounding.

−delete<=service−name>
removes a previously installed Load Manager as a system service on Windows. This is useful if you
are running multiple Load Managers. If the service name is not specified, the name defaults to SAS
IntrNet Load Manager.

−install<=service−name>
installs the Load Manager on Windows as a system service. This is useful if you want to run multiple
Load Managers. If the service name is not specified, the Load Manager is installed as SAS
IntrNet Load Manager.

−localhost<=hostname>
forces the Load Manager to use the specified string as the local host name for all system host name
comparisons. This is useful if you want to override the default value for the local host name. In order
for the Load Manager to start a pool service, you might need to set the local host name explicitly to
match the requested host name.

−log<=filename>
specifies an optional log file. The STDOUT device is used if a filename is not specified. If the Load
Manager log file specification contains any of the following directives, the corresponding value will
be inserted into the filename:

 %a Day of week [Sun − Sat]
 %b Month [Jan − Dec]
 %d day [01 −31]
 %H hour [00 − 23]
 %m month [01 − 12]
 %w day of week [0=Sunday − 6=Saturday]
 %Y full year 81

 %y 2−digit year [00 − 99]

Note: Additional codes might be available depending upon the C library function strftime
implementation for a given platform.

For example, "/logs/loadmgr_%a.log" creates /logs/loadmgr_Mon.log if the Load Manager starts on a
Monday, /logs/loadmgr_Tue.log if it starts on a Tuesday, and so on.

Periodically, the Load Manager regenerates the log filename and checks to see whether it is different
from the current log file. If it is different, the current log file is closed, and the new log file with the
new name is opened. In the example above, shortly after midnight, early Tuesday morning, the log
file /logs/loadmgr_Mon.log is closed and the file /logs/loadmgr_Tue.log is opened.

If the Load Manager is started and finds a log file with the current name, it replaces the contents of an
existing log file if the last modification date is greater than 5 days, 23 hours ago. If the last
modification date is less than that, the Load Manager appends to the existing log file.

−maxreq=minutes
specifies the maximum time it should take for the Application Server to send a BUSY state after the
Application Server is allocated to the Application Broker. The default is 1 minute.

−maxrun=minutes
specifies the expected maximum job run time in minutes before an Application Server is declared to
be hung. The default is 60 minutes.

−maxstart=minutes
specifies the maximum time that it should take an Application Server to start. The default is 5
minutes.

−nokill
specifies not to kill a pool server that is marked as hung.

−passwd<=password>
specifies an optional password controlling access to the ENDLOADMGR and LOADSTAT
administration programs. If the −passwd option is specified without a password value, a prompt is
issued for the password.

−port=nnnn
specifies the port number or service name for the socket on which the Load Manager listens. If this
parameter is not specified, the /etc/services file is checked for an entry for LOADMGR.

−workdir=directory
enables you to specify the current working directory as a start parameter for the Load Manager.

On Windows platforms only, a setup wizard is available to configure the Load Manager. The setup wizard
allows you to create Start menu shortcuts to start the Load Manager, install or uninstall the Load Manager as a
Windows service, or view log files. See Load Manager on Windows Platforms for more information.

Stopping the Load Manager

The Load Manager can be stopped from a Web browser. The URL depends on the platform and path where
your Application Broker is installed. For typical installations, the URL to stop a service is one of the
following:

Windows
http://yourserver/scripts/broker.exe?_service=service−name&_program=endloadmgr

UNIX and z/OS
http://yourserver/cgi−bin/broker?_service=service−name&_program=endloadmgr

SAS Documentation

82

Specify your Web server name in place of yourserver and any service that uses the Load Manager in place of
service−name. You might need to use a different URL path if you chose a different path when you installed
the Application Broker. The ENDLOADMGR command also stops any pool service Application Servers that
have been started by the Load Manager. If the Load Manager was started with the −passwd option, the
specified password must be appended to the URL. For example:

 http://yourserver/scripts/broker.exe?
 _service=service−name&_program=endloadmgr&_passwd=secret

Application Broker Directives for the Load Manager

To use the Load Manager, add a directive to the Application Broker configuration file:

 LoadManager host:port

You can override this on a per−service basis with a corresponding ServiceLoadManager directive:

 ServiceLoadManager host:port

No other changes are required. All information in the Application Broker configuration file are passed to the
Load Manager by the Application Broker as needed.

Load Manager Statistics

Statistics are recorded for all Application Servers requested through the Load Manager. Data is kept for the
length of jobs and for the amount of time required to wait for a server. The job times are based on state
changes sent from the Application Servers and vary slightly from the job times reported by the Application
Broker.

A statistics report can be obtained by running a special program via the Application Broker. The Load
Manager statistics are returned when _PROGRAM is set to LOADSTAT and _SERVICE specifies any
service that uses the desired Load Manager. If the Load Manager was started with the −passwd option,
_PASSWD must be used to supply the password. For example, the URL

 http://yourserver/scripts/broker.exe?
 _service=default&_program=loadstat&_passwd=secret

might return the following report:

Load Manager serv.abc.com:5555

Service default

Server Port Total
Jobs

Max Job
Time

Average Job
Time

Percent
Waited

Average
Wait
Time

serv.abc.com 5197 2 0.52 0.38 0.00 0.00

Service pool1

SAS Documentation

83

Server Port Total
Jobs

Max Job
Time

Average Job
Time

Percent
Waited

Average Wait
Time

poolserv.abc.com 2909 12 10.40 2.20 10.00 1.79

poolserv.abc.com 2940 1 0.08 0.08 100.00 0.19

The columns of the report are defined as

Server
is the Application Server host.

Port
is the port number for the Application Server.

Total Jobs
is the number of complete Application Broker requests that were processed.

Max Job Time
is the length of the longest−running Application Broker request, in seconds.

Average Job Time
is the average length of all Application Broker requests, in seconds.

Percent Waited
is the percentage of Application Broker requests that had to wait for an Application Server.

Average Wait Time
is the average amount of time, in seconds, that an Application Broker request waited, if it had to wait.

Load Manager Data for Application Server Activity

An Application Server activity report can be obtained by running a special program via the Application
Broker. The activity data is returned when _PROGRAM is set to LOADCURRENT and _SERVICE specifies
any service that uses the desired Load Manager. It reports only information contained in the Load Manager
and does not contact any Application Servers. If the Load Manager was started with the −passwd option,
_PASSWD must be used to supply the password. For example, the URL

 http://yourserver/scripts/broker.exe?
 _service=default&_program=loadcurrent&_passwd=secret

might return the following report:

Load Manager serv.abc.com:5555

Service pool1

Server Port State Total
Jobs Last Job

poolserv.abc.com 2990 BUSY 1 Jan 15
14:32:04

poolserv.abc.com 2972 BUSY 3 Jan 15
14:32:01

poolserv.abc.com 2985 BUSY 2

SAS Documentation

84

Jan 15
14:32:04

Waiters: 2

The columns of this report are defined as

Server
is the Application Server host.

Port
is the port number for the Application Server.

State
is the current Application Server state, which specifies whether the Application Server is busy.

Total Jobs
is the number of complete Application Broker requests that were processed.

Last Job
is the time when the last Application Server was assigned to a job.

Waiters
is the number of clients that are waiting for an available Application Server.

SAS Documentation

85

Load Manager on Windows Platforms

Configuring and Starting the Load Manager

To configure the Load Manager in a Windows environment, perform the following steps:

From the Start menu, select Programs SAS IntrNet Create a New IntrNet Service.1.
Read the information in the IntrNet Config Utility Welcome window. Select Next to continue.2.
Select Configure the Load Manager. Select Next to continue.3.
Specify the TCP/IP port number or name for the Load Manager. Select Next to continue.4.
The Configure Load Manager window displays all of the information you specified for this service.
Verify the information in this window before continuing. If it is not correct, select the Back button to
change the information. If it is correct, select Next to configure the Load Manager.

5.

Select Finish to exit the wizard.6.

The Load Manager is now configured. You can start the Load Manager from the Windows Start menu by
selecting Programs SAS IntrNet Load Manager Start Interactively.

Return to the Application Load Manager Reference for general information about the Load Manager.

Accessing Log Files

Log files are kept in a Load Manager service directory. The service directory can be accessed from the
Windows Start menu. From the Start menu, select Programs SAS (or your SAS 9.2 program group)
IntrNet Load Manager Log Directory.

Windows Services

The Load Manager can be installed as a Windows service. Installing as a Windows service enables the Load
Manager to run automatically whenever the Windows system is booted, even if a user is not logged into the
system. As noted above, install the SAS Service Configuration Utility before you Configure a Load Manager
that will be installed as a Windows service. Information about the SAS Service Configuration Utility is
located in the SAS 9.2 System Requirements documentation at support.sas.com/documentation/installcenter.

From the Start menu, select Programs SAS (or your SAS 9.2 program group) IntrNet Load
Manager Install as Windows Service. This step does not start the Load Manager. After the Load
Manager has been installed as a Windows service, each time the system reboots the Load Manager is started
automatically. You can manually start and stop the Load Manager Windows service by using the Start
Windows Service and Stop Windows Service menu selections. Note that you can still run the Load Manager
interactively by using the Start Interactively menu selection, but only if the Windows service has been
stopped.

A Windows service can also be uninstalled from the Uninstall Windows Service menu selection. This only
uninstalls the Windows service. The Load Manager Start menu shortcut remains, and the Load Manager can
still be run interactively.

Selecting the Services icon in the Windows Control Panel opens a window that lists the current status of all
Windows services. The Load Manager service display name is SAS IntrNet Load Manager.

86

Application Load Manager Log Files
The Application Load Manager generates a log file that lists requests and events that are processed by the
Load Manager. This log can help you determine how Application Dispatcher requests are distributed among
available servers or to find problems when starting new servers.

Example 1

Here is a sample log file for a socket service:

Wed Jun 03 2000 09:16:14 GET SERVER default aaa.bbb.com:5612 3

Wed Jun 03 2000 09:16:14 Waiting for default

Wed Jun 03 2000 09:16:18 SET STATE default aaa.bbb.com:5612 IDLE 2

0/1 0
Wed Jun 03 2000 09:16:19 Returned default aaa.bbb.com:5612 3

Wed Jun 03 2000 09:16:23 SET STATE default aaa.bbb.com:5612 BUSY 3

1/1 0
Wed Jun 03 2000 09:16:26 SET STATE default aaa.bbb.com:5612 IDLE 3

0/1 0
Wed Jun 03 2000 09:16:26 SET STATE default aaa.bbb.com:5612 SHUTDOWN

This log file shows the following events:

The Application Broker requests an Application Server from the default service. This request is
assigned the number 3.

No server is available. Load Manager is waiting for an idle server.

The server completes a previous request and notifies the Load Manager that the server is IDLE. The
0/1 indicates that the Application Server does not have any programs running but has 1 space available.
The trailing 0 is the number of active server sessions.

The Load Manager releases the available server to Broker request 3.

The Broker has submitted its request to the server. The server notifies the Load Manager that the server
is BUSY, with the 1 available space in use and 0 server sessions active.

The server completes this request and becomes IDLE again.

The Application Server is shut down.

Example 2

Here is another sample log file showing a pool service:

Mon Aug 07 2000 13:22:53 GET SERVER pool1 xxx.yyy.com:2 5

Mon Aug 07 2000 13:22:53 Started pool1 on xxx.yyy.com Pid: 17979

Mon Aug 07 2000 13:22:53 Command:

/usr/local/bin/sas/usr/local/intrnet/pool1/appstart.sas
 −rsasuser −noterminal −noprint −nolog −SYSPARM
 "loadmgr=xxx.yyy.com:5555 serviceid=pool1 port=000000"

87

Mon Aug 07 2000 13:22:53 Waiting for: pool1 5

Mon Aug 07 2000 13:22:56 SET STATE pool1 xxx.yyy.com:4525 STARTED

Mon Aug 07 2000 13:22:56 Returning: pool1 xxx.yyy.com:4525 5

Mon Aug 07 2000 13:22:57 SET STATE pool1 xxx.yyy.com:4525 WORKING 5

1/3 1
Mon Aug 07 2000 13:22:58 SET STATE pool1 xxx.yyy.com:4525 IDLE 5 0/3

1

This log file shows the following events:

The Application Broker requests an Application Server from the pool1 service. This request is
assigned the number 5.

No server is available so the Load Manager starts a new Application Server.

This is the exact command that is used to start the server.

The requesting Broker is placed in the wait queue waiting for the server to start.

The server notifies the Load Manager that it has started.

The Load Manager releases the available server to Broker request 5

The Broker has submitted its request to the server. The server notifies the Load Manager that
the server is in a WORKING state, with 1 of the 3 available spaces in use and 1 server session
active.

Note: The WORKING state will only appear if the Applications Server was started with the
PROGRAMS parameter set to be greater than one.

The server completes this request and becomes IDLE again.

SAS Documentation

88

Running Jobs in the Background
Before SAS/IntrNet 9.2, a long−running job would occupy an Application Server until the job was completed.
This prevented new jobs from using that Application Server. Starting with SAS/IntrNet 9.2, long−running
jobs can run in the background. This new capability releases an Application Server from the pool of
Application Servers so that the server can continue to run on its own until the job has completed. Then, the
server exits. A new Application Server can be started in the pool service if it is needed for another job.

Long−running jobs also would often exceed the timeouts that are set for the Application Broker, Web server,
and Application Server. For example, the Web server typically has a default timeout of 5 minutes. By running
the Application Server in the background, timeouts can be avoided, and the job can run as long as required.

Starting with SAS/IntrNet 9.2, the APPSRVSET Application Server function has two parameters that are used
together to force an Application Server to run in the background. The BACKGROUND parameter removes
the Application Server from the pool service so that it can run on its own. The DISCONNECT parameter
releases the Application Broker (and subsequently the Web browser) from the Application Server. The Web
browser does not have to wait for a job to complete. A message could first be returned to the user indicating
that the job is running and where to find any output when it is finished. After the Application Server is
disconnected, no further text can be sent back to the Web browser. The results are returned using e−mail or
stored for subsequent retrieval.

You must use the Load Manager −background option to allow programs to request background processing.
The background jobs appear in the Load Manager status program under the special service $background.

89

The Input Component
An Application Dispatcher application consists of input and program components. The program component is
the actual SAS program that runs on the Application Server. The input component is the remainder of the
application, which runs on the Web server or the client. It normally consists of static or dynamically generated
HTML pages that contain one or more of the following:

an HTML form that has a Submit button. When the Web user provides the required information and
submits the request, the Web browser sends the data that was entered plus data from any hidden fields
to the Application Broker.

•

a hypertext link to the Application Broker. When the user selects the link, the Web browser sends a
request, which includes parameters that are specified in the link's uniform resource locator (URL), to
the Application Broker.

•

an inline image whose source is a reference to the Application Broker. When the user brings the page
up for viewing, the Web browser loads the image and sends a request to the Application Broker.
Similar to the process used for a hypertext link, parameters can be included in the URL.

•

a Java applet, ActiveX control, or Plug−in that contains a reference to the Application Broker.
Depending on the object, the Application Server might send a request to the Application Broker
immediately or wait for a user action, such as clicking a button.

•

The input component selects what program component to run and passes input data to the program component
as a list of name/value pairs. The name/value pairs can be specified in a URL, in input fields in an HTML
form, by an object such as a Java applet or ActiveX control, or in the Application Broker configuration file as
described below. The Web user, who does not need to know how the Application Dispatcher passes and
processes the information, receives the results of the application in the Web browser. The results are typically
displayed as an HTML page, but they can be presented as a downloaded file in more sophisticated
applications.

The Application Dispatcher uses macro variables to pass name/value pair data to your programs. SAS
Component Language (SCL) programs are supplied with an SCL list as an additional mechanism for
accessing the data. Usually, both the macro variable names and list−item names match the names supplied in
the HTML code. The HTML names that are used to create the macro variable names must be valid SAS
names and must be expected by the program. The Application Dispatcher rejects invalid SAS names.

Because the SAS rules for names are more restrictive than the rules for HTML names, Application Dispatcher
application developers use the following SAS naming rules for all fields:

Use between 1 and 32 characters.•
Begin the name with a letter or an underscore.•
Continue the name with letters, underscores, or digits.•

Reserved Names

Reserved names have special meaning to the Application Dispatcher. For example, every request must include
a _PROGRAM name/value pair to identify the program to be run by the Application Dispatcher. In most
cases, a _SERVICE name/value pair is required to identify the service that handles the request. More details
on these and other special variables (name/value pairs) are available in Reserved or Special Variables.

90

Specifying Name/Value Pairs in a URL

You can specify name/value pairs in a URL by using Application Broker CGI−parameter syntax. For
example, the URL

 http://yourserver/cgi−bin/broker?
 _service=default&_program=sample.webhello.sas

specifies two name/value pairs. Note the question mark (?) that follows BROKER. The section of the URL
that follows the question mark is called the query string. The query string contains the name/value pair data
that is input to the application. Each name is separated from the following value by an equal sign (=). Multiple
name/value pairs are separated by ampersands (&). In this example, the _SERVICE=DEFAULT pair specifies
the service that handles this request, and the _PROGRAM=SAMPLE.WEBHELLO.SAS pair specifies the
request program that is executed.

The Web browser has strict rules about the format of the query string. Any special characters (including
spaces) in a value must be URL encoded. Spaces can be encoded as a plus sign (+) or %20. For example, if
you want to pass the name AUTHOR with a value of John Doe, specify it in the URL as
AUTHOR=John+Doe or AUTHOR=John%20Doe. See the HTML Syntax Reference section and the
URLENCODE function in the SAS Language Reference: Dictionary for more complete information.

URLs with name/value pairs can be manually typed in a Web browser location field, saved as a Web browser
bookmark, included as an HREF attribute of an anchor tag, included as an SRC attribute of an IMG tag, or
used anywhere a URL can be used. Java or ActiveX components such as the SAS/GRAPH thin−client graphic
components might generate URLs with name/value pairs to activate Application Dispatcher programs.

URLs with name/value pairs that are included in an HTML page (for example, as an HREF= or SRC=
attribute) must be properly encoded to prevent incorrect interpretation of the ampersand characters. For
example, the anchor tag

 <A HREF="http://yourserver/cgi−bin/broker?
 _program=lib.pgm.sas©=true">

causes the Web browser to interpret © as the character entity reference for a copyright character. The
correct way to encode this URL is

 <A HREF="http://yourserver/cgi−bin/broker?
 _program=lib.pgm.sas&copy=true">

In addition, some Web browsers incorrectly identify a character entity reference even if it is not terminated by
punctuation. For example, ®ION=EAST might be interpreted as fiION=EAST by some (but not all) Web
browsers. To avoid this problem, encode all ampersands that separate name/value pairs in a URL as &
when used in an HTML tag.

Specifying Name/Value Pairs in an HTML Form

HTML forms provide the most versatile mechanism for data input in an Application Dispatcher application. A
form definition begins with the <FORM> tag and ends with the </FORM> tag. Between these two tags, other
HTML tags define the various components of the form, including input fields, selection lists, push buttons,
and more. Several forms of varying complexity are included in the HTML file section of the Application
Broker package sample directory. The HTML code in these files, as well as the descriptions in the following
sections, helps you learn how to create forms. A detailed list of form requirements and components can be

SAS Documentation

91

found in the HTML Syntax Reference section.

Hidden fields are name/value pairs that do not appear as buttons, selection lists, and so on, in the HTML page.
Here is an example of a hidden field:

 <INPUT TYPE="hidden" NAME="_service" VALUE="default">

This HTML tag passes the name/value pair _SERVICE=DEFAULT when the form that contains the
name/value pair is submitted. The required Application Dispatcher fields _SERVICE and _PROGRAM are
often passed as hidden fields, but you can also include your own fields as hidden fields. Although hidden
fields do not appear visually in the Web browser, you can use them to

pass parameters to the Application Dispatcher program. For example, you can pass a list of variables
to an Application Dispatcher program for processing. A single Application Dispatcher program can
then be referenced by many HTML files.

•

pass name/value pairs from one form to the next. The input component to a complicated application
often has more than one form and more than one page, which means that the name/value pair data
must be propagated through each of the forms until the final program is invoked. Hidden fields are an
easy way to accomplish this.

•

capture data generated by user interaction with screen widgets if your application uses JavaScript or
Visual Basic Script.

•

Specifying Name/Value Pairs in the Application Broker
Configuration File

You can specify name/value pairs in the Application Broker configuration file (broker.cfg). The Set directive
defines a constant name/value pair that is passed to all program components. For example, your broker.cfg
might contain

 Set IMGHOME http://server.xyz.com/images

This directive defines the name/value pair IMGHOME=http://server.xyz.com/images for all
requests executed by this Application Broker. The IMGHOME macro variable can then be used to construct
URL links to images in an HTML page without coding a fixed URL path in each Application Dispatcher
program. This feature is used to define the codebase location of SAS/GRAPH Java applets (in the
_GRAFLOC name/value pair) in a default SAS/IntrNet installation. The ServiceSet directive defines a
name/value pair for a specific service.

You can define name/value pairs by issuing the Export and ServiceExport directives. These directives enable
you to export a CGI environment variable as a name/value pair. The default configuration file exports a
number of variables. For example, the

 Export REMOTE_USER _RMTUSER

directive exports the REMOTE_USER environment variable as the _RMTUSER name/value pair. See
Exporting Environment Variables for more information.

Application Broker directives are documented in Configuration File Directives.

SAS Documentation

92

Multiple Value Pairs

In some cases, multiple name/value pairs with the same name are created. Because SAS macro variables do
not allow multiple values, the Application Broker creates a unique macro variable name for each value
provided. It does this by adding numbers to the end of the name.

As an example, assume you have a group of four check boxes, each named CBOX. The value associated with
each box is ONE, TWO, THREE, and FOUR, respectively. The HTML for these check boxes is

 <input type="CHECKBOX" name="CBOX" value="one">
 <input type="CHECKBOX" name="CBOX" value="two">
 <input type="CHECKBOX" name="CBOX" value="three">
 <input type="CHECKBOX" name="CBOX" value="four">

If you select all four boxes, part of the query string that is passed to the Application Broker looks like

 CBOX=one&CBOX=two&CBOX=three&CBOX=four

The Application Broker then sends the following name/value pairs to your application:

Name Value

CBOX0 4

CBOX one

CBOX1 one

CBOX2 two

CBOX3 three

CBOX4 four

The CBOX0 value indicates the number of boxes selected. The original variable name is passed with a value
equal to the first selection. Though it might seem redundant to have CBOX and CBOX1 with the same value,
it is done for consistency in the case of a single selection. This example also applies to a multiple selection list
named CBOX that contains the same four selected values.

The input types that can generate multiple values for one name are as follows:

check boxes
You can select multiple check boxes from a group of boxes. All of the check boxes can have the same
HTML name, which can create multiple values for one name.

selection lists
You can select multiple items from some selection lists. These lists generate multiple values with the
same name if more than one item is selected.

text entry fields
You can enter free−form text in text entry fields. Only one value is passed from the Web browser to
the Application Broker. If the text is too long for a single variable (usually 32000 characters), the
Application Broker splits the text into multiple name/value pairs.

SAS Documentation

93

HTML Syntax Reference
The information contained in this section is only a partial listing of the HTML tags that your Web browser
understands. For more detailed information about HTML and elements needed to create a basic form, see the
World Wide Web Consortium at www.w3.org or the Web Design Group at www.htmlhelp.com. Square
brackets in syntax indicates that an attribute is optional; do not include the square brackets in your code.

HTML Tags•
URL Syntax•

HTML Tags

Quotation Marks

You can use quotation marks to enclose the values provided in your HTML page, and you should use
quotation marks if the values contain blanks. Use double, not single, quotation marks. If you are entering text
that contains a single quotation mark, you must enclose the entire string in double quotation marks.

Anchor Tag

The HREF= attribute specifies a hypertext link. When selected by the user, this link invokes the Application
Dispatcher. For example:

 <A HREF="/cgi−bin/broker?
 _service=default&program=sample.webhello.sas">click me

See URL Syntax for more information on URLs.

FORM Tag

<FORM ACTION=broker−URL [METHOD=GET | POST]>

The ACTION= attribute, included in the FORM tag, specifies the location of the Application Broker CGI
program. For example:

 <FORM ACTION="/cgi−bin/broker">

The METHOD= attribute is optional. It specifies the value GET or POST. The broker−URL cannot contain a
question mark or have any parameters. For example:

 <FORM ACTION="/scripts/broker.exe" METHOD=PUT>

Use GET for nonupdate programs that have no side effects. GET is limited to between 256 and 1024
characters total URL length, depending on your Web browser. If your application is complex, the
resulting page's URL can become very long and might display variable information that you would
prefer the user not see. You can bookmark pages by using GET.

•

Use POST for operations that have potential side effects (such as writing to a data set). POST is a
simple security technique that hides the inner workings of your application from the user and hides
the variables that can appear on the URL location line from the users. It also prevents form data from

•

94

appearing in Web server logs. However, you cannot bookmark these pages.

On some Web browsers, such as Netscape, the reload button works with both GET and POST. On other Web
browsers, such as Internet Explorer 3.02, refresh does not repost the form data. This works only with GET. If
you omit the METHOD= attribute from the FORM tag, the Application Dispatcher uses the default GET.

Note: If you want to restrict applications from using either the GET or the POST method, use the ALLOW
directive in the Application Broker configuration file. If you want to invoke the Application Dispatcher with a
hypertext link, an inline image, or other URL, use the default method GET.

IMG Tag

A reference to an inline image causes the Application Dispatcher to be invoked as soon as the page is viewed.
For example:

See URL Syntax for more information on URLs.

INPUT Tag

<INPUT TYPE=input−type NAME=input−name VALUE=input−value>

The INPUT tag specifies a simple input element inside a form. The INPUT tag can include the following
attributes:

The TYPE= attribute identifies the type of input specified. Valid types are

Value Description

CHECKBOX specifies a single toggle button that is either on or off.

HIDDEN indicates not to display the fields in the form on the Web browser.

PASSWORD specifies a text−entry field where the entered characters are represented as asterisks.

RADIO specifies a single toggle button that is either on or off. Other fields that have the same NAME
are grouped into one−of−many behavior.

RESET specifies a push button that re−sets input elements on the form to their default values.

SUBMIT specifies a push button that packages data entered in the current form into a request that is
sent to the Application Broker CGI (and then to SAS software for processing).

TEXT A simple text−entry field.

The NAME= attribute identifies the name in a name/value pair that passes to the Application Broker CGI and
then on to SAS software for processing.

The VALUE= attribute depends on the TYPE=.

For TYPE= TEXT or PASSWORD, use VALUE= to specify the default contents of the field.•

SAS Documentation

95

For TYPE= CHECKBOX or RADIO, use VALUE= to specify the value that is passed in response to
a checked button. Unchecked buttons are not passed by the Web browser.

•

For TYPE= SUBMIT or RESET, use the NAME= attribute to specify the label for the push button.•

TEXTAREA Tag

<TEXTAREA NAME=field−name [ROWS=rows−value] [COLS=cols−value]>

The TEXTAREA tag inserts a free−form field for text, which enables the user to enter more than just a single
line of text. Use this with the _FLDWDTH attribute.

URL Syntax

URLs must be encoded according to strict rules whether they appear in static HTML pages, are created by
htmSQL or the Application Dispatcher in dynamic pages, or are typed manually into the Location field of the
Web browser. This section gives a quick overview. For more information, see W3C's Web Addressing
Overview at www.w3.org/Addressing.

Here is a sample URL that is broken into two lines for readability:

 http://yourcomp.com/cgi−bin/broker?_service=default
 &_program=dev.houses.sas&name=Fred%20Jones

where

http: is the protocol (must be http: for Application Broker invocations).

yourcomp.com indicates the name of the Web server.

cgi−bin is the path to the Application Broker; an alias or directory mapping set up in the Web
server.

broker is the name of the program to run. For the Application Dispatcher this will usually be
broker, broker.exe, or broker.cgi.

? (question
mark) indicates the start of parameters.

name=value
is a name/value pair. URLs can have zero or more name/value pairs, just like an HTML
form.

& separates name/value pairs.

%nn

indicates an escape character in hexadecimal notation. In the example, %20 is a space. This
escape notation is used for any characters in a name or value other than alphanumeric
characters or one of the following punctuation marks: "−_.!~*'()". Use the URLENCODE
function to escape characters in a URL string. For more information about the
URLENCODE function, see the SAS Language Reference: Dictionary.

A partial URL results if the protocol, the Web server, or the path is omitted. Partial URLs use information
from the currently viewed page to fill in the blanks. For example, if your current page is

 http://yourcomp.com/cgi−bin/broker?_debug=4

SAS Documentation

96

and the source code references the URL

 broker?_service=default&_program=x

then the actual URL is

 http://yourcomp.com/cgi−bin/broker?_service=default&_program=x

This is very useful when you move pages between directories or servers, because there are fewer changes to
make.

SAS Documentation

97

The Program Component
Application Dispatcher applications consist of program components and input components. The name
program component is a convenient name for the part of the Application Dispatcher application that runs on
the SAS server. It will be one of the four types of programs that are listed below. The input component is
stored on the Web server and is the interface between users and the program component (or SAS).

The Four Types of Programs
SAS Programs♦
Source Entries♦
SCL Entries♦
Macro Entries♦

•

Receiving Input Component Data•
Reserved or Special Variables•
HTTP Headers•
Using HTML Formatting Tools•
Using the Output Delivery System (ODS)•
Using the REPLAY Program•
Advanced Programming Techniques

Data Passing and Program Chaining♦
Embedded Graphics♦
Web Browser Referral with the Location Header♦
Creating Various Date/Time Formats♦

•

Creating Temporary Files•
Sessions•
Using Sessions: A Sample Web Application•
Uploading Files•
Application Server Functions

APPSRVGETC♦
APPSRVGETN♦
APPSRVSET♦
APPSRV_AUTHCLS♦
APPSRV_AUTHDS♦
APPSRV_AUTHLIB♦
APPSRV_HEADER♦
APPSRV_SESSION♦
APPSRV_UNSAFE♦

•

98

The Four Types of Programs
There are four types of Application Dispatcher programs:

SAS Programs•
Source Entries•
SCL Entries•
Macro Entries•

The input component of the Application Dispatcher application must pass a special variable named
_PROGRAM. This variable names the program to run and also specifies the program type. The value for
_PROGRAM is a three− or four−level name delimited by periods(.). The first level in the name indicates the
Application Dispatcher program library where the program is stored. The last level in the name must be sas,
source, scl, or macro.

SAS Programs

SAS programs are stored in external files, and these files must

have a .sas filename extension on directory−based platforms. The filename must match the combined
second and third levels in the value of _PROGRAM.

•

be contained in a partitioned data set (PDS) on z/OS systems. The PDS member name must match the
second level in the value of _PROGRAM.

•

SAS programs can contain a DATA step, procedures, and macro code. This is the only program type not
stored in a SAS catalog. The program name is case sensitive if the Application Server platform is case
sensitive. The proper query string syntax for specifying a SAS program is

 _program=library.program.sas

Source Entries

Source entries are stored in SAS catalog entries with an entry type of SOURCE. They can contain the same
code as SAS programs. The program names for source entries are not case sensitive. The proper query string
syntax for specifying a program of this type is

 _program=library.catalog.program.source

SCL Entries

SCL entries are stored in SAS catalog entries with an entry type of SCL. These entries contain SCL code that
must be compiled. The program names for SCL entries are not case sensitive. The proper query string syntax
for specifying an SCL entry program is

 _program=library.catalog.program.scl

Note: There are many visual functions, objects, and routines in SCL that require a windowing environment.
The Application Server normally does not run in an interactive windowing environment and cannot support
visual SCL components. Using visual components in Application Server programs can produce unpredictable
results and is not supported.

99

Macro Entries

Macro entries are stored in SAS catalog entries with an entry type of MACRO. They consist of compiled SAS
macro language statements. These programs can be created with the STORE option in the %macro statement
along with the SAS option SASMSTORE= to indicate a library. Using macro entries can speed up the
execution of macro code when compared to SAS programs or source entries. Because the macro code
contained within macro entries is stored in compiled form, there is a performance improvement. Names for
macro entries are not case sensitive. The proper query string syntax for specifying a macro entry program is

 _program=library.catalog.program.macro

SAS software automatically creates stored compiled macros in a catalog named SASMACR. The Application
Dispatcher enables you to copy these macro entries to any catalog name and run them. They do not have to be
in a catalog named SASMACR for the Application Dispatcher to access them.

SAS Documentation

100

Receiving Input Component Data
The name/value pair data provided by the input component are sent to the program component and made
available as macro variables. The Application Dispatcher creates these variables, assigns their values, and
clears their values after the program has completed. The name/value pair data are also supplied in an SCL list
to Application Dispatcher programs written in SCL.

Application developers must write their Application Dispatcher program to accept the proper macro variable
names. The macro variable values can be obtained by direct reference (for example, &var) or by using one of
the following:

the SYMGET function of the DATA step•
the SYMGET, SYMGETC, and SYMGETN functions in SCL.•

For example, if the HTML name/value pair for a text entry field is color=blue, all of the following store
the value blue in the DATA step variable color:

 color="&color";

or

 color=%superq(color);

or

 color=symget('color');

The left side of each assignment statement is the DATA step variable. The right side shows three different
techniques for extracting the macro variable value. All of these techniques return the 'safe' value of the input
value. The Application Server will strip any unsafe characters (as defined by the UNSAFE option on PROC
APPSRV). This means it is usually safe to use the &var reference in Application Dispatcher programs. Use
the APPSRV_UNSAFE function to retrieve the full input value, including any 'unsafe' characters:

color=appsrv_unsafe('color');

Because all macro variables are a character data type, some extra processing is required in DATA step code if
the value will be stored in a numeric variable. For example:

age=input(symget('age'),12.);

If the Application Dispatcher program is written in SCL, you have another option for accepting the variable
values. An SCL list is passed to each Application Dispatcher program written in SCL. Therefore, each SCL
program should contain the following statement:

 entry inputlist 8;

The input list contains named character items that correspond to the macro variables created. If your program
is written in SCL, you can use either the input list or macro variables. To access the same name/value pair as
above, a statement like this can be used:

 color=getnitemc(inputlist,'COLOR',1,1,'');

101

As with the macro variables, this SCL list is cleaned up by the Application Server when the Application
Dispatcher program completes.

The Application Dispatcher automatically creates several variables based on the program request and various
information in the Application Broker configuration file. These automatic variables are available to your
program as macro variables and SCL list items. For a complete list of these automatic variables, see the
sections Reserved or Special Variables and Exporting Environment Variables.

SAS Documentation

102

Reserved or Special Variables
Application Dispatcher variables are referred to as name/value pairs, symbols, fields, or variables. You define
most variables, such as the name of a data set to graph or a year to use in a WHERE clause. Some fields have
special meaning to the Application Dispatcher and are described here.

Value Description

_ADMAIL E−mail address of the administrator. Automatically generated by the
Application Broker according to the AdministratorMail directive.

_ADMIN Name of the administrator. Automatically generated by the Application Broker
according to the Administrator directive.

_DEBUG Debugging flags. Default value is set by the Debug directive. See also Setting
the Default Value of _Debug.

_PGM

The next to last level in the value of the _PROGRAM variable. Indicates the
name of the external file or catalog entry containing the current program code.
This variable is created by the Application Server and is not one of the symbols
passed from the Application Broker.

_PGMCAT

The second level in the value of the _PROGRAM variable. It indicates the SAS
catalog containing the current program. This variable is blank for programs of
type SAS because they have three−level names and are stored in external files.
This variable is created by the Application Server and is not one of the symbols
passed from the Application Broker.

_PGMLIB
The first level in the value of the _PROGRAM variable. It indicates the program
library for the current program. This variable is created by the Application
Server and is not one of the symbols passed from the Application Broker.

_PROGRAM

Name of the Application Dispatcher program that the Application Server should
run. The following lists the program types and the syntax for each:

A SAS program (an external file containing SAS source code with a .SAS
extension)

Specify the fully qualified, three−level name:
library.filename.sas.

A source entry (a catalog entry with a .SOURCE extension)
Specify the four−level name: library.catalog.entry.source.

A macro entry (a catalog entry with a .MACRO extension)
Specify the four−level name: library.catalog.entry.macro.

An SCL entry (a catalog entry with a .SCL extension)
Specify the four−level name: library.catalog.entry.scl.

You must specify a three− or four−level name in the _PROGRAM field, except
when using Application Dispatcher−reserved Server Administration Programs,
such as STATUS and STOP. For information about Application Server
Administration Programs, see Application Server Administration Programs.

For more information on _PROGRAM see The Four Types of Programs.

_PGMTYPE The last level in the value of the _PROGRAM variable. It indicates the type of
103

the current program. This variable is created by the Application Server and is
not one of the symbols passed from the Application Broker.

_PORT The TCP/IP port number of the current Application Server. Together with
_Server, it indicates the server selected out of the specified service.

_REPLAY

A complete URL for use with programs that use the Output Delivery System
(ODS). It is composed from the values of _URL, _SERVICE, and _TMPCAT.
ODS uses this URL to create links that will replay stored output when they are
loaded by the user's Web browser. See also Using the Output Delivery System.
This variable is created by the Application Server and is not one of the symbols
passed from the Application Broker.

_SERVER The DNS or IP address of the current Application Server. Together with
_PORT, it indicates the server selected out of the specified service.

_SERVICE Name of an Application Dispatcher Service defined in your configuration file
with the LaunchService or SocketService directives.

_STATDATALIBNAME

The LIBNAME, the physical name, and the options of the ALLOCATE FILE
statement for the statistics data set library. This variable enables the application
to assign a LIBNAME to the library with additional options (for example,
ACCESS=READONLY).

_STATDATASET The library.DATASET setting of the statistics data set for this server.

_STATDATASETAVAIL
The status of the statistics data set. This variable is set to one of the following
values: OK, NOADMINPW, or NOSTATS. See also the STATISTICS
statement.

_THISSRV
A URL composed from the values of _URL and _SERVICE. This variable is
created by the Application Server and is not one of the symbols passed from the
Application Broker.

_THISSESSION
A URL composed from the values of _URL, _SERVICE, _SERVER, _PORT,
and _SESSIONID. This variable is created by the Application Server and should
be used as the base URL for all URL references to the current session.

_TMPCAT

A unique, temporary catalog name. This catalog can be used to store temporary
entries to be retrieved later. In socket servers, the _TMPCAT catalog is deleted
after a number of minutes specified in the variable _EXPIRE. This variable is
created by the Application Server and is not one of the symbols passed from the
Application Broker. See Using the Output Delivery System.

_URL
Self−reference to the Application Broker CGI program. Useful for generating
pages that have links or inline images that reinvoke the Application Dispatcher.
See also the SelfURL directive.

_VERSION Application Broker version number. Automatically generated by the Application
Broker.

SAS Documentation

104

HTTP Headers
All output that is created by Application Dispatcher programs must contain an abbreviated HTTP header. This
header is everything from the beginning of the output up to the first null line.

Starting with Version 8.1, the Application Server provides Automatic Header Generation.

Here is some example output, including the header:

 Content−type: text/html
 Pragma: nocache

 <HTML>
 <HEAD><TITLE>Application Server Administrative Program</TITLE></HEAD>
 <BODY>
 <H1>Administrative Program</H1>
 <P>The application server has been shut down.</P>
 <HR>
 </BODY>
 </HTML>

In this example, the HTTP header contains two lines. The minimal requirements for Application Dispatcher
output are that the header contain Content−type or Location. The null line that terminates the HTTP
header is important. You can create the null line with a PUT statement:

 put ;

This, however, is incorrect because it produces a line containing one blank followed by carriage control:

 put " ";

A line with one blank is not a null line and is not recognized as terminating the header.

The output that follows the HTTP header depends upon the content type. If Location is used, then no output
follows the header because this header triggers the Web browser to redirect to another page. The most
common type of output is, of course, HTML. The HTML source for the Web page follows the header when
the content type is text/html.

No matter whether the program output is plain text, binary graphics, HTML code, or any other content type,
all output intended for the Web browser should be sent to the fileref _WEBOUT. This special fileref is
actually a TCP/IP socket connection to the Application Broker. Sending output to this socket will stream it
back to the Web browser. Think of the socket like a pipe through which data flows. Because it behaves in this
way, the fileref _WEBOUT is in a permanent append mode. It is not possible to write something to
_WEBOUT and then reopen the fileref and overwrite the previous output. It all gets appended. Therefore, the
mod parameter should not be used (and is not allowed) in any FILE _WEBOUT statements. Before Version 7
of SAS, an additional fileref _GRPHOUT was necessary on z/OS systems because of translation issues from
EBCDIC to ASCII. The two filerefs _GRPHOUT and _WEBOUT were synonyms on all hosts except for
z/OS under Version 6 of SAS. In SAS, Version 7 and later, these two filerefs are synonyms for all platforms
including z/OS. Though no longer needed, the fileref _GRPHOUT is still present for compatibility reasons.

Automatic Header Generation

Starting with Version 8.1, the Application Server provides Automatic Header Generation. The default header
105

is Content−type: text/html.

To add a header to the default header list or to modify a header already in the list, use the DATA step function
APPSRV_HEADER.

The Application Server detects whether the user application is writing its own headers. Preexisting
applications that write their own headers will continue to work as before. New applications that do not output
headers will have default headers generated for them.

Applications that want to use the default headers but also want to modify them or add to them can use the
APPSRV_HEADER DATA step function. For example,

 old = appsrv_header('Header name', 'Header value');

Calls to the APPSRV_HEADER function adds headers to the list of default headers when the header name
does not already exist in the list of default headers. In this case, the return value of the function call will be an
empty string.

If the header name passed into the APPSRV_HEADER function already exists in the list of default headers,
the header value of the existing header is replaced with the new value passed in, and the old value of the
header is returned as the return value of the function. If the header value passed in is an empty string, then the
header is removed from the list of default headers. The old value of the header is returned as the return value
of the function.

Example

With default headers of Content−type: text/html, the following calls to the APPSRV_HEADER
function will modify the default headers as shown:

 rc = appsrv_header('Expires','Thu, 18 Nov 1999 12:23:34 GMT');

results in

Content−type: text/html•
Expires: Thu, 18 Nov 1999 12:23:34 GMT•

 rc = appsrv_header('Pragma','nocache');

results in

Content−type: text/html•
Expires: Thu, 18 Nov 1999 12:23:34 GMT•
Pragma: nocache•

 rc = appsrv_header('Expires','');

results in

Content−type: text/html•
Pragma: nocache•

 rc = appsrv_header('Pragma','nocache');

SAS Documentation

106

results in

Content−type: text/html•
Pragma: nocache•

Disabling Automatic Header Generation

To disable Automatic Header Generation completely for a request, call the APPSRVSET DATA step
function, as follows:

 data _NULL_;
 rc = appsrvset("automatic headers", 0);
 run;

HTTP Output Reference

All Application Dispatcher output must be in the format of an HTTP header that is followed by a blank line
and optional data. This section provides introductory technical information on the most common headers you
will use. For detailed information about HTTP, see W3C's HTTP Protocol Area at www.w3.org/Protocols.

Content−type•
Expires•
Location•
Pragma•
Set−Cookie•

Content−type

The most basic HTTP header you can send is the content−type header, for example:

 Content−type: text/html

If you use ODS to generate content that is not HTML, then the header will be defined based on information
from the SAS registry or the Windows registry. For example, if you use ODS PDF to generate content, the
header will look like

 Content−type: Application/PDF

This informs the Web browser what kind of output follows by specifying it the Internet Media type (also
called MIME type). An unregistered MIME type can be used; just precede it with x−. Some of the more
important types are listed in the table below.

Content−type Description

application/octet−stream Unformatted binary data.

image/gif Image in the GIF (Graphics Interchange Format) format.

image/jpeg Image in the JPEG (Joint Photographic Expert Group) format.

text/html Regular HTML (Hypertext Markup Language).

text/plain Preformatted text.

SAS Documentation

107

text/x−comma−separated−values Spreadsheet data.

multipart/x−mixed−replace Differently formatted blocks of data (used for Netscape server push).

Expires

Sometimes Web browsers cache results when you intend for the Application Dispatcher to be reinvoked, and
sometimes they reinvoke when it is unnecessary. Setting the Expires header gives you control over these
conditions by specifying the date/time after which the response should be considered stale, for example:

 Expires: Thu, 01 Dec 1994 16:00:00 GMT

To mark a response as already expired, use an Expires date that is equal to or earlier than the current date. To
mark a response as never expires, use an Expires date approximately one year or more from the time the
response is sent. The date format should be followed exactly as given above.

Location

The location header redirects the Web browser immediately to a different URL. Use this as an alternative to
the content−type header. There is no data after a header containing Location: but you still need the blank
line at the end.

 Location: http://support.sas.com

Pragma

This header informs the Web browser and proxy servers to not cache the results of your program. It is similar
to using the Expires: header with a date in the past but might be somewhat better supported, for example:

 Pragma: nocache

Set−Cookie

The header sends a cookie to the Web browser to maintain the client−side state. The format is

 Set−Cookie: NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN_NAME; secure

For example:

 Set−Cookie: CUSTOMER=WILE_E_COYOTE; path=/cgi−bin/broker;
 expires=Wednesday, 09−Nov−1999 23:12:40 GMT

The next time your application is run, any matching cookies are returned in HTTP_COOKIE environment
variable (use Export directive to pass to application). You must parse them out in order to retrieve the
information that you save. The names and values can be anything you like, but you must devise a method to
encode special characters such as the equal sign (=) and the semicolon (;). The date format should be followed
exactly as above, with only the GMT time zone allowed, and dashes between the day, month, and year (this is
different from Expires:).

Most new Web browsers support cookies, but studies show that approximately 10% of users disable or
disallow them. Some users are concerned about the privacy considerations of using cookies. If you use
cookies, be sure to explain to your users why you need them and that they should let them pass through.

SAS Documentation

108

Using HTML Formatting Tools
The HTML Formatting Tools are often used to produce Application Dispatcher program output. There are
some important guidelines to follow when using the Formatting Tools in an Application Dispatcher program.

When using the Output Formatter and Tabulate Formatter mechanism, do not forget to turn capturing
off before the program completes. Each capture=on needs to have a corresponding
capture=off. The Application Server is not guaranteed to turn off these tools for you.

•

The listing output destination must be active or these two tools will not work. The listing destination
is active by default when you start SAS, and it is also turned on in the default server reset file.
However, it is possible that the listing could be closed if you remove the ODS statement from your
reset file and explicitly turn it off in one of your programs. If you need to turn the listing on, then
submit the following before you invoke the capture=on mechanism for either the Tabulate or the
Output Formatter:

 ods listing;

•

Use RUNMODE=S with each of the tools. This RUNMODE value designates that the tools are
running in server mode. If openmode=replace is used along with this run mode, then the tools
will generate a Content−type: text/html header automatically.

•

Use openmode=replace if this call to one of the tools will be creating the first output from this
program. This open mode will cause the formatting tools to generate the header (if RUNMODE=S),
the HTML head section of the document, and body tags.

•

Use openmode=append if this call to one of the tools will not be creating the first output from this
program. If the program has already produced some output, then it has already supplied the
content−type header and most likely the HTML head section, as well.

•

The Application Dispatcher is a very flexible programming environment because it provides procedures and
tools that automatically generate output, but it also allows exact control of the output. Many SAS
programmers have encountered the situation where they want to generate completely customized output. This
is often done by using the DATA step and PUT statements. The Application Dispatcher technology supports
PUT statement reporting and allows you to supplement such reports with powerful procedures and Formatting
Tools.

109

The Output Delivery System (ODS)
The Output Delivery System (ODS) enables SAS procedures to generate output in several formats. One of
these output formats is HTML. You can use ODS in your Application Dispatcher programs to easily create
Web pages containing HTML and graphics. This page discusses features and options of ODS that are
appropriate for the Application Dispatcher environment. ODS can be used in other SAS environments and can
generate other forms of output. For more information about ODS, refer to the SAS Output Delivery System:
User's Guide.

Creating Web Output with ODS

HTML output is enabled with the ODS HTML statement. The ODS HTML statement can create

an HTML file (called the body file) that contains the results from the procedures run in your
Application Dispatcher program

•

a table of contents that links to the body file•
a table of pages that links to the body file•
a frameset that displays the table of contents, the table of pages, and the body file.•

ODS might also generate additional HTML or image files if you split the output across multiple body pages or
you use embedded GIF or JPEG images to display graphics.

The HTTP protocol used by the Application Dispatcher can deliver only one output file back to the Web
browser per request. This output file is written to the _WEBOUT fileref. Because ODS generates multiple
output files in many cases, the extra files must be stored in a temporary location and retrieved by the Web
browser in subsequent requests. The Application Server automatically creates a unique temporary catalog for
every request for this purpose. The two−level catalog name is defined in the special macro variable
_TMPCAT. ODS must also put hyperlinks and inline image links into the HTML that it generates that will
retrieve the files from the temporary catalog. The special macro variable _REPLAY contains the base URL
used to create these links.

To enable the above features, any Application Dispatcher program that uses ODS to generate HTML should
include the following options on the ODS HTML statement:

 ods html path=&_tmpcat (url=&_replay) rs=none ...;

Note: The RS=none option forces ODS to perform record based output and is required when writing to the
_WEBOUT fileref or to a catalog entry.

ODS is capable of creating a number of different layouts for your output. All layouts have one thing in
common: the "primary" page must be returned directly to your Web browser (via the _WEBOUT fileref). The
page written to the _WEBOUT fileref must be preceded by an HTTP header with the appropriate
content−type field.

Starting with Release 8.2, the automatic HTTP header generation feature recognizes some ODS output types
and generates appropriate content−type headers. Supported output types include HTML, GIF, and JPEG. An
appropriate content type must be manually set with APPSRV_HEADER function for all other output types.

If you are writing to _WEBOUT using PUT statements while ODS has _WEBOUT open, when you execute
the code the PUT statement data might be out of sequence with the data generated by ODS. This problem
occurs because both your code and ODS are opening the same fileref at the same time. This problem can be

110

fixed by inserting your PUT statements before you open ODS, closing ODS while you write directly to the
fileref, or using the ODS HTML TEXT="string" option to write data. The following code is an example
of how you can use the ODS HTML TEXT="string" option to write data:

 ods listing close;
 ods html body=_webout path=&_tmpcat
 (url=&_replay) Style=Banker;
 ... other code ...
 ods html text='<p align="center"> </p>' ;
 ods html text='<p align="center">Test.
 If you see this in order, it worked.</p>';
 ... other code ...
 ods html close;

Layout Examples

The following annotated examples illustrate how to return various ODS layouts to your Web browser. For
these examples, we will use the following data set:

 data stocks;
 length symbol $4 price 8.;
 input @1 symbol price;
 label symbol = 'Symbol'
 price = 'Share Price';
 format price 7.2;
 cards;
 AMD 23.50
 BORL 9.31
 CA 47.25
 CPQ 32.06
 DELL 139.88
 GTW 44.00
 HWP 67.00
 IBM 104.44
 INTC 89.69
 MSFT 84.75
 ORCL 24.63
 SUNW 47.63
 ;
 run;

The examples are

Body Only•
Body and Table of Contents•
Table of Contents Only•
Graphics and Text.•

Body Only

When you return only the body output to your Web browser, the page will be rendered as a single, unframed
page. Sample code to produce such output is shown below.

 ods listing close;
 ods html body=_webout
 path=&_tmpcat (url=&_replay) rs=none;
 title 'Stock Prices';
 proc print data=stocks label noobs; run; quit;

SAS Documentation

111

 ods html close;

Because the body file is the only file created, it is the primary file and is directed to the fileref _WEBOUT.

Body and Table of Contents

You can return the Table of Contents (or Table of Pages) and the body file using ODS framed output. In this
case, the file created by the ODS HTML FRAME option is the primary file, and it must be directed to
_WEBOUT. Other files will be stored in the temporary catalog in the WORK library and will be replayed
automatically at the proper time.

The sample code below illustrates the creation of a Table of Contents in addition to the body file.

 ods listing close;
 ods html frame=_webout
 body=b.html
 contents=c.html
 path=&_tmpcat (url=&_replay)
 rs=none charset=' ';
 title 'Stock Prices';
 proc print data=stocks label noobs; run; quit;
 proc contents data=stocks; run; quit;
 ods html close;

Note: The charset=' ' option eliminates the CHARSET value in the <META> tag. For more information
about using the CHARSET option, see SAS Note #23971 at support.sas.com/kb.

The body and contents files are directed to the temporary catalog and will be named B.HTML and C.HTML,
respectively. You can choose any valid SAS name for the entries, but the object type must be HTML. Do not
enclose the name in quotes or it will be interpreted to be an external file rather than a catalog entry.

Table of Contents Only

You might want to return only the Table of Contents to your Web browser to avoid using HTML frames. The
page will be rendered as a single, unframed page. Links on the Table of Contents page will allow you to load
body output to the Web browser. A simple modification to the previous example will drop the FRAME
keyword and make the contents file the primary file returned to _WEBOUT.

 ods listing close;
 ods html contents=_webout
 body=b.html
 path=&_tmpcat (url=&_replay)
 rs=none charset=' ';
 title 'Stock Prices';
 proc print data=stocks label noobs; run; quit;
 proc contents data=stocks; run; quit;
 ods html close;

Note: The charset=' ' option eliminates the CHARSET value in the <META> tag. For more information
about using the CHARSET option, see SAS Note #23971 at support.sas.com/kb.

When you click on an item in the Table of Contents, the body file will be replayed from the temporary
WORK catalog.

SAS Documentation

112

Graphics and Text

The code below will return framed output consisting of the Table of Contents and the body, which contains
integrated graphics and text. Note that no special ODS keywords were required to create and store the graphic
images. This example is essentially the same as the Body and Table of Contents example with some
SAS/GRAPH code added.

 ods listing close;
 ods html frame=_webout
 body=b.html
 contents=c.html
 path=&_tmpcat (url=&_replay)
 rs=none charset=' ';
 goptions reset=all;
 goptions device=gif
 colors=(red orange yellow ligr green blue)
 ctext=black cback=white;
 title 'Stock Prices';
 axis1 major=none minor=none value=none;
 proc gchart data=stocks;
 hbar3d symbol / sumvar=price
 subgroup=symbol
 shape=cylinder
 patternid=subgroup
 raxis=axis1;
 run; quit;
 title;
 proc print data=stocks label noobs; run; quit;
 proc contents data=stocks; run; quit;
 ods html close;

Note: The charset=' ' option eliminates the CHARSET value in the <META> tag. For more information
about using the CHARSET option, see SAS Note #23971 at support.sas.com/kb.

Cleaning Up

HTML and graphics created by ODS in the _TMPCAT catalog must eventually be deleted. The Application
Server will handle this task automatically. By default, a temporary catalog will be deleted if it is not used for a
period of 15 minutes. This timeout value can be changed with the SESSION TIMEOUT=seconds option on
PROC APPSRV, or with the APPSRV_SET('session timeout',seconds) DATA step function. All temporary
catalogs are deleted immediately when a server is stopped.

SAS Documentation

113

Using the REPLAY Program
The REPLAY program replays an existing catalog entry to the Web browser. This program is used with
Application Dispatcher programs that invoke the Output Delivery System (ODS) and with other programs that
create output and retrieve it for later display. For details on ODS, see Using the Output Delivery System
(ODS).

A sample invocation of REPLAY looks like the following URL:

 http://yourserver/scripts/broker.exe?_service=default
 &_program=replay&_entry=SAMPDAT.WEBSAMP.RETAIL.HTML

The user must specify _SERVICE, _PROGRAM=REPLAY, and _ENTRY=lib.cat.entry.type.

If you are using the _REPLAY program with Microsoft Office, then you need to build a URL that uses the
_OUTPUTAPP= parameter. Supported values for the _OUTPUTAPP= parameter include EXCEL, WORD,
and POWERPOINT. For example, if you specify _OUTPUTAPP=EXCEL in the URL, then the content type
for the replayed output is application/vnd.ms−excel.

If you need to specify the name of the file that the _REPLAY program returns, use the _CONTDISP
parameter in the URL. The value of this parameter is returned as a content−disposition header.

114

Advanced Programming Techniques
The techniques described in this section will help you to expand the capabilities of your Application
Dispatcher applications. It is a good idea to review the basic programming techniques that are described in
The Four Types of Programs before continuing with this section.

Data Passing and Program Chaining•
Embedded Graphics•
Web Browser Referral by Using the Location Header•
Creating Various Date/Time Formats•

Data Passing and Program Chaining

Only the simplest Application Dispatcher applications contain a single page. With the addition of a second
and subsequent pages, you face the problem of passing information from one page to another. It is also typical
to have an application that contains more than a single program. This means that you must find a way to
connect the programs that compose your application and ensure that all the data collected along the way is
available in the appropriate places.

It is good programming practice to design applications so that they do not request the same information
multiple times. Because HTTP is a stateless environment, each program request is separate from all other
requests. If users enter a phone number on the first page of an application and submit the form, that phone
number is available only to the first program. But after that program completes, the state of the data values
passed is lost. If the third program in the application needs to know the specified phone number, the
application must ask for the phone number again or retrieve the data from a stored location. There are several
ways to solve this problem. You can store data values

on the client, in hidden form fields•
on the client, in cookies or Web page scripts•
on the server.•

Storing data on the client, in hidden fields, is the simplest technique. To do this, you must dynamically
generate all of the HTML pages in your application except for the first HTML page. Because each HTML
page functions as a mechanism for transporting data values from the previous program to the next program, it
cannot be static HTML stored in a file.

Usually, the process involves the following steps:

The first HTML form calls the first program.1.
The first program performs some kind of setup to initialize the user.2.
At the end of the first program, the second HTML page is created by writing to _WEBOUT.3.
When the HTML form on the second page is written out, you dynamically generate a series of HTML
fields by using the TYPE="hidden" attribute.

4.

Each hidden field in the second form can contain one name/value data pair passed from the first form. You
should use unique names for all of the data values in the entire application. In this way you can pass all of the
application data throughout the entire application.

At the same time that you dynamically generate the second form, you can write out the name of the second
program in the hidden field _PROGRAM. Because the first program contains the logic to determine the
second program, this is referred to as program chaining. Your application can have multiple second programs.

115

The logic in the first program can decide which second program the current user should run.

Here is an example.

First HTML Form

 <FORM ACTION="/cgi−bin/broker">
 Please enter your first name:
 <INPUT TYPE="text" NAME="fname">

 <INPUT TYPE="hidden" NAME="_service" VALUE="default">
 <INPUT TYPE="hidden" NAME="_program" VALUE="mylib.pgm1.sas">
 <INPUT TYPE="submit" VALUE="Run Program">
 </FORM>

This form passes the first name of the user as the variable FNAME to the program named PGM1.SAS in the
program library MYLIB.

First Program (PGM1.SAS)

 data _null_;
 file _webout;
 put 'Content−type: text/html';
 put;
 put '<HTML>';

 /*create reference to the broker from
 special automatic macro variable _url*/
 url=symget('_url');
 put '<FORM ACTION="' url +(−1) '">';

 /*supply service name*/
 service=symget('_service');
 put '<INPUT TYPE="hidden" NAME="_service" VALUE="'
 service +(−1) '">';

 /*use current program library so that this
 application can be easily moved to another library*/
 pgmlib=symget('_pgmlib');
 program=compress(pgmlib)||'.pgm2.sas';
 put '<INPUT TYPE="hidden" NAME="_program" VALUE="'
 program +(−1) '">';

 /*pass first name value on to next program*/
 fname=symget('fname');
 put '<INPUT TYPE="hidden" NAME="fname" VALUE="'
 fname +(−1) '">';

 put 'What is your favorite color?';
 put '<SELECT SIZE=1 NAME="fcolor">';
 put '<OPTION VALUE="red">red';
 put '<OPTION VALUE="green">green';
 put '<OPTION VALUE="blue">blue';
 put '<OPTION VALUE="other">other';
 put '</SELECT>
';
 put '<INPUT TYPE="submit" VALUE="Run Program">';
 put '</FORM>';
 put '</HTML>';
 run;

SAS Documentation

116

This program uses the special variables _URL, _SERVICE, and _PGMLIB to maintain program portability.
The second program name PGM2.SAS is hard−coded. The important section of this program is where the
variable FNAME is received by calling the SYMGET function and written out as a hidden form variable. This
is the key step that enables the data value to "live" beyond the stateless execution of this first program. In
addition to inserting the hidden data value, this program generates a selection list that asks the user to enter a
favorite color.

Second Program (PGM2.SAS)

 data _null_;
 file _webout;
 put 'Content−type: text/html';
 put;
 put '<HTML>';

 /*extract first name and favorite
 color and print them out*/
 fname=symget('fname');
 fcolor=symget('fcolor');
 put 'Your first name is ' fname '';
 put '
';
 put 'Your favorite color is ' fcolor '';
 put '
';
 put '</HTML>';
 run;

The second program prints the value of the variables from both the first and second form, illustrating that the
data has been correctly passed throughout the entire application. The technique of passing data by using
hidden fields has these advantages:

simple to do•
easy to debug•
state is maintained indefinitely•
works seamlessly across multiple Application Servers.•

The major disadvantage of this technique is that it is easy for a user to change the values in the form and
submit incorrect or falsified information to the application. Another technique that is nearly equivalent to
using hidden fields is to pass name/value pair data as part of the query string in a hyperlink. In the Second
Program, (PGM2.SAS), suppose the initial forms were the same, but you want the second page to contain a
list of hyperlinks instead of a selection list. In this case, you would generate a list of hyperlinks by using the
anchor tag, and the HTML source would look like this:

 Red
 Green
 Blue
 Other

Using this example, the path to Application Broker plus data would consist of the URL for the Application
Broker, which is stored in the special variable _URL followed by all of the name/value pair data that should
be passed from the first program to the second program. This data includes the required fields _SERVICE and
_PROGRAM. At least one additional parameter is added to each hyperlink that will be used to indicate which
link is chosen. In this case, that additional field is COLOR. To use hyperlinks instead of an HTML form that
has a select list, the first program must change to PGM1.SAS.

SAS Documentation

117

Modified Version of First Program (PGM1.SAS)

 data _null_;
 file _webout;
 put 'Content−type: text/html';
 put;
 put '<HTML>';

 /*store broker path in data step variable*/
 url=symget('_url');

 /*store current service name*/
 service=symget('_service');

 /*use current program library so that this
 application can be easily moved to another library*/
 pgmlib=symget('_pgmlib');
 program=compress(pgmlib)||'.pgm2.sas';

 /*pass first name value on to next program*/
 fname=symget('fname');

 /*build partial URL, color will be added later*/
 href=trim(left(url))||'?_service='||trim(left(service))||
 '&_program='||trim(left(program))||
 '&fname='||urlencode(trim(left(fname)));

 put '<HTML>';
 put 'What is your favorite color?
';
 put 'red
';
 put 'green
';
 put 'blue
';
 put 'other
';
 put '</HTML>';
 run;

This modified version uses a special function named URLENCODE in this program. The purpose of this
function is to encode any special characters that might be contained in the query string. Because the values for
_PROGRAM and _SERVICE do not contain any special characters, it is not necessary to encode them.

However, the value that the user supplies for a first name might contain some special characters. For the First
Program, (PGM1.SAS) to pass this value safely to the second program, (PGM2.SAS) it should be
URL−encoded. It does not harm a value to URL−encode it even when it does not contain special characters.
The URLENCODE function was not used because if data is passed through an HTML form, then the Web
browser would perform the encoding for you. Aside from the need to URL−encode data and the different
HTML syntax, the use of a hyperlink and hidden form fields are essentially the same.

Two alternatives to passing the data throughout every form in the application are: storing the data in a Web
browser cookie or storing data within the Application Server environment. Both of these techniques are more
difficult than using hidden form fields, but they have different advantages.

HTTP cookies are packets of information that are stored in the client Web browser. They are shuttled back and
forth with the CGI requests. In this general sense, they are quite similar to hidden form fields. Cookies have
the advantage of being nearly invisible to the user. They contain a built−in expiration mechanism, and they
are slightly more secure than hidden fields. They also work seamlessly across multiple Application Servers.

Storing data within the Application Server environment is a tempting way to solve the problem of passing
data. You can create a data set and assign each user a unique key variable. All the data collected for that user

SAS Documentation

118

can be stored in the data set within the Application Server environment. This is a much better mechanism for
applications that have a large volume of data to be collected and passed from program−to−program. The key
variable still needs to be passed along by the Web browser, and that can be done by using cookies or a hidden
form field. If the key is unique and sufficiently difficult to guess, then this data passing mechanism also has an
added level of security. The advantages to this technique are

it is easier if there is a large volume of data needs to be passed•
it is nearly invisible to the user•
it is a significant security improvement•
it reduces duplication of program code.•

You might experience contention problems if your service contains multiple servers and all servers try to
update the same data set that contains the user data. Using a SAS/SHARE data server to read and write to the
data set can overcome this problem.

Embedded Graphics

The typical Web page contains embedded graphic images. This is easy to do in static pages. To your static
HTML, add an IMG tag, for example:

In a dynamic environment such as the Application Dispatcher, the value for the SRC parameter must be a
URL that invokes the Application Broker. For example, inserting the following HTML code in a static HTML
page causes the sample graphics program to be run when the Web browser loads the image:

Programs called from an IMG tag must respond with a content type of image/gif or image/jpeg. You can add
multiple parameters to this type of URL to make your graphics program output more flexible and
customizable. Each dynamic image tag in your HTML page represents a separate request to the Application
Dispatcher and a separate program execution. It is important to keep that in mind when you design your
application. You might want to show only one or just a few graphics on each page. That will reduce the
demand on your Application Server.

Sometimes, you might be generating a dynamic HTML page, and you want that dynamic page to contain one
or more embedded graphics that are also dynamic. One way to accomplish this is to use the Output Delivery
System (ODS). Using ODS is convenient, because it lets you run procedures that produce HTML and graphics
within a single Application Dispatcher program.

If you choose not to use ODS, you must have separate programs for producing HTML and graphics. The first
program that is called produces the HTML page by writing to _WEBOUT. At the appropriate place in the
HTML source code, the first program writes an image tag that calls the second program −− the program that
produces the graphics. By using the concepts outlined in Data Passing and Program Chaining, the first
program passes any name/value pair data to the second program. Because the image tag is not an HTML form,
you cannot use hidden fields to pass the name/value pairs. You must encode them in the query string of the
URL that you generate for the SRC parameter.

Most of the time your embedded graphics represent some underlying data. If that underlying data changes,
you expect the Web browser to display a new picture.

Note: Unfortunately, there is a serious defect in some Web browsers that prevents the new graphic image

SAS Documentation

119

from being displayed. This is not a defect in SAS/IntrNet software. Web browsers exhibiting this defect will
load the URL, that causes the Application Dispatcher program to execute and deliver a new image; but the
old, cached image is displayed. When the user arrives at the page by selecting a hyperlink, a favorite, or a
bookmark, or submits a form, an old image might be seen. By clicking REFRESH or RELOAD in the Web
browser the new image will display. Unfortunately, sending the graphic image by using the Expires or the
Pragma: no−cache HTTP headers does not fix this problem.

One solution to this problem is to add a caption to your embedded graphics that tells the user to reload the
page for the most up−to−date graphic. If your data does not change too quickly, you might not need this
caption. The best solution is to trick the Web browser into not using a cached image. You can do this by
generating a unique URL every time the program is executed. Because HTML files and images are cached
according to their URLs, the Web browser will never have an old image that matches the unique URL that the
program generates.

To create a unique URL, generate the SRC= URL string that you need and append to the end of the URL a
name/value pair that has a value of the current SAS datetime, as shown in this example.

 data _null_;
 file _webout;

 /*store broker path in data step variable*/
 url=symget('_url');

 /*store current service name*/
 service=symget('_service');

 /*use current program library so that this
 application can be easily moved to another library*/
 pgmlib=symget('_pgmlib');
 program=compress(pgmlib)||'.graphit.sas';

 /*create partial URL*/
 src=trim(left(url))||'?_service='||trim(left(service))||
 '&_program='||trim(left(program));

 /*the above URL is enough to embed the graphic but a
 unique string must be added to avoid incorrect caching*/
 nocache=datetime();
 src=src||'&nocache='||trim(left(nocache));

 /*write out image tag*/
 put '';
 run;

Each time this code is executed, a different datetime value is returned. This process results in a unique URL.
The NOCACHE parameter is not used by the graphics program because its only purpose is to trick the Web
browser into not using its cache.

Note: On some systems it might be better to call one of the SAS random functions instead of datetime. If your
system is fast and you make repeated, close calls to the datetime function, it is possible to get the same value
returned.

Web Browser Referral by Using the Location Header

Another advanced programming technique is to have the output from one Application Dispatcher program
invoke another Application Dispatcher program without displaying a page from the first program. Suppose

SAS Documentation

120

that you have a program named PGM1.SAS, and it performs some error checking of the form data that is sent
as input. If your program detects an error condition, you want to run some additional code. The additional
code is contained in another program file named ERROR.SAS. Instead of copying the code from
ERROR.SAS into PGM1.SAS and having to maintain two pieces of identical code, you can invoke the error
program via the output of PGM1.SAS. This is another form of program chaining.

The HTTP header Location is a special header that the Web browser recognizes. This header re−directs the
Web browser to another Web page. The only parameter to this header line is the URL that the Web browser
should load. In your first program, you can dynamically construct this URL and refer the Web browser to
another Application Dispatcher program. The URL that you supply by using the location header should be
fully qualified and can contain any additional name/value pair data that you want to send to the second
program shown as shown in this example code.

 data _null_;
 if error>0 then do;
 /*construct referral URL*/
 file _webout;

 /*because URL is fully qualified get name of the Web server
 from automatic exported variable*/
 srvname=symget('_srvname');

 /*store broker path in data step variable
 _url is a special automatic variable*/
 url=symget('_url');

 /*store current service name
 _service is a special automatic variable*/
 service=symget('_service');

 /*use current program library so that this
 application can be easily moved to another library
 _pgmlib is a special automatic variable*/
 pgmlib=symget('_pgmlib');
 program=compress(pgmlib)||'.error.sas';

 /*create fully qualified URL*/
 loc='http://'||trim(left(srvname))||
 trim(left(url))||'?_service='||
 trim(left(service))||
 '&_program='||trim(left(program));

 /*put out location header instead of content−type header
 make sure to include null line to terminate HTTP header
 no content needed after location header because browser will
 refer to another page*/
 put 'Location: ' loc;
 put ;
 end;
 run;

It is also possible to perform Web browser referrals by using the <META> tag in the generated HTML page.

Creating Various Date/Time Formats

Occasionally, you might find the need to create various specialized date/time formats as part of your
Application Dispatcher output. These formats might not be compatible with the standard set of SAS date/time
formats that require you to create the format yourself. The most common format is the EXPIRES format. This

SAS Documentation

121

format is used to expire HTTP cookies and pages that are cached in the Web browser. The DATATYPE
option in the FORMAT procedure allows you to create specialized date/time formats easily, such the
EXPIRES format. By specifying DATATYPE= in the PICTURE statement, you can use a special set of codes
to represent both numerical and textual components of the date, the time, or the DATETIME value that you
are formatting. Here is an example of how you can use this feature to create DATETIME format that expires:

 proc format;
 picture expires other='%A, %d−%b−%y %0H:%0M:%0S GMT' (DATATYPE=DATETIME);
 run;

The special codes in the OTHER= parameter represent locale full weekday name, day of the month, locale
abbreviated month name, and so on. See the documentation on the FORMAT procedure in the SAS
Procedures Guide for more information. The test program below illustrates how to use the DATETIME
format.

 data _null_;
 x=datetime();
 /*adjust local datetime to GMT by adding five hours*/
 x=x+5*3600;
 put x expires33.;
 run;

This program produces the following output:

 Tuesday, 29−SEP−98 14:39:29 GMT

You can use this formatted output to create Expires headers or to set expiration dates and times for HTTP
cookies.

SAS Documentation

122

Creating Temporary Files
The Application Dispatcher program creates a temporary file for each request. When multiple requests are run
at the same time, one request might write over the temporary file of another. There are several ways to create
a unique file for the duration of a request so that files do not interfere with each other:

Creating a File with a Unique Name•
Creating a File in a Unique Subdirectory•
Storing a File in a Unique Catalog•

Creating a File with a Unique Name

To create a uniquely named file, use a random function to generate the filename. Then, use the name in a
FILENAME statement:

 /* Use a data step function RANUNI to generate a random number
 and format the number with some text to create the unique name.
 The RAN macro variable will be something like 'A2578900.txt' */

 data _null_;
 numb = ceil (ranuni(0)*10000000);
 r = 'A' || put(numb, Z7.) || '.txt';
 call symput ('ran', r);
 run;

 filename foo "c:\temp\&ran";
 /* prepend the temp subdirectory */

 data _null_;
 file foo;
 put 'This is output to a uniquely named file';
 run;

This technique requires that you explicitly delete the file when you are finished.

Creating a File in a Unique Subdirectory

You can avoid file interference by using a unique subdirectory. Beginning with Version 8 of SAS/IntrNet
Application Dispatcher, the WORK library is unique for each request. Find the path to the WORK library and
use it as the subdirectory to store the temporary file.

Note: To append text to a macro variable reference, use the period (.) operator.

 /* use pathname function to get work library's path and store
 in macro variable wpath */

 %let wpath=%sysfunc(pathname(work));

 /* use wpath macro variable and append filename to it in
 filename statement */

 filename foo "&wpath.\winapi.txt";

 data _null_;
 file foo;
 put 'This output is going to file in the work subdirectory';

123

 run;

If the SESSIONS feature is used, then you can specify the path of the SAVE library:

 %let spath=%sysfunc(pathname(save));
 filename foo "&spath.\winapi.txt";

This technique deletes the file automatically at the end of the request.

Storing a File in a Unique Catalog

You can create a unique file for each request by storing the file in a unique SAS catalog. Text can be easily
stored in a catalog SOURCE memtype by using the CATALOG access method.

 filename foo catalog "work.mytext.foo.source";
 data _null_;
 file foo;
 put 'This output is going to file in the work catalog';
 run;

Example

You can use any one of these techniques in an Application Dispatcher program to create unique files for each
request. To put it all together, here is an Application Dispatcher program that reports the user name for the
current process:

 /***/
 /* S A S S A M P L E L I B R A R Y */
 /* */
 /* NAME: HelloWorld with a twist */
 /* TITLE: Hello World */
 /* PRODUCT: SAS/IntrNet (Application Dispatcher) */
 /* SYSTEM: ALL */
 /* KEYS: */
 /* PROCS: */
 /* DATA: */
 /* */
 /* SUPPORT: Web Tools Group UPDATE: 20JAN1999 */
 /* REF: http://support.sas.com/rnd/web/intrnet/dispatch/ */
 /* MISC: */
 /***/

 /* create macro variable containing the path to the work subdirectory */
 %let wpath=%sysfunc(pathname(work));
 %put &wpath;

 filename sascbtbl "&wpath.\winapi.txt";

 /* write WINAPI GetUserNameA parameter list to the file for later use */

 data _null_;
 file sascbtbl;
 input line $char80.;
 put line $char80.;
 cards4;
 routine GetUserNameA
 minarg=2
 maxarg=2

SAS Documentation

124

 stackpop=called
 module=advapi32
 returns=short;
 arg 1 char update format=$cstr20;
 arg 2 num update format=pib4.;
 ;;;;
 run;

 /* Here's the DATA step: Modulen will use the filename sascbtbl for
 parameter list to the called API */

 data _null_;
 length Name $20.;
 name='';
 Size=20;
 rc=modulen('GetUserNameA',Name,Size);
 put rc= Name=;

 /* Store the current process user name in the macro named vqpname */

 call symput('vqpname',name);
 run;

 /*simply write out a Web page that says "Hello World!"*/

 /* use a DATA step variable and a macro variable in displayed text */

 data _null_;

 /* store macro variable value in data set variable named vname */

 vname=symget('vqpname');
 file _webout;
 put '<HTML>';

 /* Use data set variable in the output */

 put '<HEAD><TITLE>Hello World!' vname ' is running dispatcher!
 </TITLE></HEAD>';
 put '<BODY>';

 /* Use macro variable in the output */

 put "<H1>Hello World! Your work path is &wpath.
 vname is &vqpname.</H1>";
 put '</BODY>';
 put '</HTML>';
 run;

SAS Documentation

125

Using Sessions: A Sample Web Application
The following sample Web application demonstrates some of the features of Application Dispatcher sessions.
The sample application is an online library. Users can login, select one or more items to check out of the
library, and request by e−mail that the selected items be delivered. The sample code shows how to create a
session and then create, modify, and view macro variables and data sets in that session.

Sample Data

This sample requires a LIB_INVENTORY data set in the SAMPDAT library that is used for other
SAS/IntrNet samples. You can create the data set in Windows using the following code. You can also use the
code on other systems by making the appropriate modifications to the SAMPDAT LIBNAME statement.

 libname SAMPDAT '!SASROOT\intrnet\sample';
 data SAMPDAT.LIB_INVENTORY;
 length type $10 desc $80;
 input refno 1−5 type 7−16 desc 17−80;
 datalines4;
 17834 BOOK SAS/GRAPH Software: Reference
 32345 BOOK SAS/GRAPH Software: User's Guide
 52323 BOOK SAS Procedures Guide
 54337 BOOK SAS Host Companion for UNIX Environments
 35424 BOOK SAS Host Companion for z/OS Environment
 93313 AUDIO The Zen of SAS
 34222 VIDEO Getting Started with SAS
 34223 VIDEO Introduction to AppDev Studio
 34224 VIDEO Building Web Applications with SAS/IntrNet Software
 70001 HARDWARE Cellphone − Model 5153
 70002 HARDWARE Video Project − Model 79F15
 ;;;;

Login

The initial page is the login page. This can be a static HTML page, but in this sample the login page is built at
run time. The LIB_LOGIN.SAS program generates the login page as follows:

 /* LIB_LOGIN.SAS − Welcome to the Online Library */

 /* Print a welcome page that is static except for the Application Dispatcher
 variables _URL, _SERVICE, and _PGMLIB. */
 data _null_;
 file _webout;
 put '<HEAD>';
 put '<TITLE>Welcome to the Online Library</TITLE>';
 put '</HEAD>';
 put '<BODY vlink="#004488" link="#0066AA" bgcolor="#E0E0E0">';
 put "<H1 ALIGN=CENTER>Welcome to the Online Library</H1>";
 put '<HR>';
 put "<P>This is a demonstration of SAS/IntrNet Application Dispatcher
 sessions.</P>";
 put '<P>Before you can start, you must log in. Enter your login ID
 below: </P>';
 put '<FORM ACTION="' "&_url" '">';
 put '<INPUT TYPE="HIDDEN" NAME="_service" VALUE="' "&_service" '">';
 put '<INPUT TYPE="HIDDEN" NAME="_program"
 VALUE="' "&_pgmlib" '.lib_main.sas">';
 put 'Login ID: <INPUT SIZE=12 NAME="loginid"><P>';

126

 put 'Password: <INPUT SIZE=12 TYPE="password" NAME="password"><P>';
 put '<INPUT TYPE="SUBMIT" VALUE="Login">';
 put '<INPUT TYPE="RESET" VALUE="Reset">';
 put '</FORM>';
 put '</BODY>';
 put '</HTML>';
 run;

The LIB_LOGIN.SAS program generates the following page:

The login page is generated dynamically. The FORM ACTION= attribute, the _SERVICE value, and the
_PROGRAM library name are all generated at run time based on Application Server macro variables. This
enables you to move the application to different Web servers, Application Dispatcher services, or program
libraries without editing static HTML. Only the URL for the initial login page changes.

The login page allows the user to enter a login ID and password. Clicking the Login button runs the
LIB_MAIN.SAS program in order to verify the input data, create a session, and display the Main Aisle page.

Main Aisle

The main aisle page is generated by the LIB_MAIN.SAS program. The LIB_MAIN program also verifies the
information that is supplied from the login page.

 /* LIB_MAIN.SAS − Main Aisle of the Online Library */

 /* Use a macro here in order to use conditional logic. */

SAS Documentation

127

 %macro lib_main;

 /* Check to see if you are already in a session; if so, you don't need
 to validate login info. */
 %if %sysfunc(libref(SAVE)) %then %do;
 /* SAVE libref doesn't exist, so you have not successfully logged in. */

 /* Insert logic here in order to validate the login ID and password.
 For the purposes of this sample, assume that any non−blank password
 is valid. This is not usually a good idea; a real application
 can be expected to insert some real validation logic here. */
 %if &password ne %then %let IDCHECK=PASSED;
 %else %let IDCHECK=FAILED;

 %if &IDCHECK ne PASSED %then %do;

 /* Validation failed − print a failure page. */
 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>Invalid Login</TITLE></HEAD>';
 put '<BODY vlink="#004488" link="#0066AA" bgcolor="#E0E0E0">';
 put '<H1>Invalid Login</H1>';
 put;
 put '<P>The login ID and password that you supplied are invalid.';
 put 'Please return to the <A HREF="' @;
 put "&_URL?_SERVICE=&_service" '&_program=' "&_pgmlib" @;
 put '.lib_login.sas">login page and re−enter a valid';
 put 'login ID and password.</P>';
 put;
 put '<P>If you are unable to login, please contact the';
 put 'Library Help at extension 14325.</P>';
 put '</BODY></HTML>';
 run;
 %end;
 %else %do;
 /* Validation successful − create session and save login ID. */

 %let rc=%sysfunc(appsrv_session(create));

 /* SAVE_* variables must be global. */
 %global SAVE_LOGINID;
 /* Save the login ID in the session. */
 %let SAVE_LOGINID=&loginid;
 %end;
 %end;
 /* Assume valid login if session already exists. */
 %else %let IDCHECK=PASSED;

 %if &IDCHECK eq PASSED %then %do;

 /* Print the Main Aisle page. */
 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>Online Library Main Aisle</TITLE></HEAD>';
 put;
 put '<BODY vlink="#004488" link="#0066AA" bgcolor="#E0E0E0">';
 put '<H1>Online Library Main Aisle</H1>';
 put;
 put 'Select one of the following areas of the library:';
 put '';
 length hrefroot $400;

SAS Documentation

128

 hrefroot = "%superq(_THISSESSION)" || '&_PROGRAM=' ||
 "&_PGMLIB";
 put '<A HREF="' hrefroot +(−1)
 '.lib_aisle.sas&type=Book">Book Aisle';
 put '<A HREF="' hrefroot +(−1)
 '.lib_aisle.sas&type=Video">Video Aisle';
 put '<A HREF="' hrefroot +(−1)
 '.lib_aisle.sas&type=Audio">Audio Aisle';
 put '<A HREF="' hrefroot +(−1)
 '.lib_aisle.sas&type=Hardware">Hardware Aisle';
 put '<A HREF="' hrefroot +(−1)
 '.lib_cart.sas">View my shopping cart';
 put '<A HREF="' hrefroot +(−1)
 '.lib_logout.sas">Logout';
 put '';
 put '</BODY>';
 put '</HTML>';
 run;
 %end;
 %mend;

 %lib_main;

You should display the main aisle page only if the user has logged in; therefore, the first step is to verify user
login. First, verify that a session already exists. If the session exists (which is verified by testing whether the
SAVE libref exists), then you know that the user has already logged in and you can allow the user to view the
main aisle page section of the program.

If the session does not exist, then you can verify valid login information. This sample requires a non−blank
login ID and password. If a valid login ID and password are not supplied, the program will display an invalid
login page and redirect the user to the login page.

If the supplied login ID and password are valid, the program will create a session and then save the LOGINID
value in a session macro variable that is named SAVE_LOGINID. Because the SAVE_LOGINID is declared
as a global variable and its name begins with SAVE_, it will be saved for the duration of the session.

SAS Documentation

129

After the program verifies that the user has logged in, the main aisle page is displayed. The main aisle page
consists of a list of links to specific sections of the Online Library.

Each link in this page is built using the _THISSESSION macro variable. This variable includes all of the
values that are necessary in order to run another Application Dispatcher program in the same session. Use the
%SUPERQ function to quote the _THISSESSION variable; this prevents the variable's ampersand characters
from being interpreted as SAS macro variables.

Note: By default, sessions are identified entirely in the URLs or HTML form fields that reference the session.
You can use the SESSION VERIFY option to provide an increased level of session security.

Library Aisles

The library is divided into aisles for different categories of library items. The pages for each aisle are
generated by one shared LIB_AISLE.SAS program. The program accepts a TYPE input variable that
determines which items to display.

 /* LIB_AISLE.SAS − List items in a specified aisle. The aisle
 is specified by the TYPE variable. */

 %macro lib_aisle;

 /* Check for a valid session − verifies that the user has logged in. */
 %if %sysfunc(libref(SAVE)) %then %do;

 /* SAVE libref doesn't exist − redirect to login page. */
 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>Missing Login</TITLE></HEAD>';

SAS Documentation

130

 put '<BODY vlink="#004488" link="#0066AA" bgcolor="#E0E0E0">';
 put '<H1>Missing Login</H1>';
 put;
 put '<P>You must login before you can use this application.';
 put 'Please return to the <A HREF="' @;
 put "&_URL?_SERVICE=&_service" '&_program=' "&_pgmlib" @;
 put '.lib_login.sas">login page and enter a valid login ID';
 put 'and password.</P>';
 put;
 put '<P>If you are unable to log in, please contact the';
 put 'Library Help at extension 14325.</P>';
 put '</BODY></HTML>';
 run;
 %end;
 %else %do;

 /* Build a temporary data set that contains the selected type, and add
 links for selecting and adding items to the shopping cart. */
 data templist;
 set SAMPDAT.LIB_INVENTORY;
 where type="%UPCASE(&type)";
 length select $200;
 select = '<A HREF="' || "%superq(_THISSESSION)" || '&_program=' ||
 "&_PGMLIB" || '.LIB_ADDITEM.SAS&REFNO=' || trim(left(refno)) ||
 '&TYPE=' || "&TYPE" || '">Add to cart';
 run;

 ods html body=_webout(nobot) rs=none;
 title Welcome to the &type Aisle;
 proc print data=templist noobs label;
 var refno desc select;
 label refno='RefNo' desc='Description' select='Select';
 run;
 ods html close;

 data _null_;
 file _webout;
 put '<P>';
 put 'Return to <A HREF="' "%SUPERQ(_THISSESSION)" '&_PROGRAM='
 "&_PGMLIB" '.LIB_MAIN.SAS">main aisle
';
 put 'View my <A HREF="' "%SUPERQ(_THISSESSION)" '&_PROGRAM='
 "&_PGMLIB" '.LIB_CART.SAS">shopping cart
';
 put '</BODY>';
 put '</HTML>';
 run;

 %end;
 %mend;

 %lib_aisle;

The program selects a subset of the LIB_INVENTORY data set using a WHERE clause, and then uses PROC
PRINT to create an HTML table. A temporary data set is created that contains the selected items in order for
an additional column to be generated that has an HTML link for users to add the item to their shopping cart.

In this program, both ODS and a DATA step are used to generate HTML. The ODS HTML statement
includes the NOBOT option that indicates that more HTML will be appended after the ODS HTML CLOSE
statement. The navigation links are then added using a DATA step.

SAS Documentation

131

Add Items

The LIB_ADDITEM.SAS program is run when the user clicks the Add to cart link in the aisle item table. The
specified item is copied from the LIB_INVENTORY data set to a shopping cart data set in the session library
(SAVE.CART). The session and the data set will remain accessible to all programs in the same session until
the session is deleted or it times out.

 /* LIB_ADDITEM.SAS − Add a selected item to the shopping cart. This
 program uses REFNO and TYPE input variables to identify the
 item. */

 /* Perform REFNO and TYPE verification here. */

 /* Append the selected item. */
 proc append base=SAVE.CART data=SAMPDAT.LIB_INVENTORY;
 where refno=&refno;
 run;

 /* Print the page. */
 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>Selected Item Added to Shopping Cart</TITLE></HEAD>';
 put '<BODY vlink="#004488" link="#0066AA" bgcolor="#E0E0E0">';
 put "<H1>Item &refno Added</H1>";

SAS Documentation

132

 put 'Return to <A HREF="' "%SUPERQ(_THISSESSION)" '&_PROGRAM='
 "&_PGMLIB" '.LIB_AISLE.SAS&TYPE=' "&TYPE" '">' "&TYPE aisle
";
 put 'Return to <A HREF="' "%SUPERQ(_THISSESSION)" '&_PROGRAM='
 "&_PGMLIB" '.LIB_MAIN.SAS">main aisle
';
 put 'View my <A HREF="' "%SUPERQ(_THISSESSION)" '&_PROGRAM='
 "&_PGMLIB" '.LIB_CART.SAS">shopping cart
';
 put '</BODY>';
 put '</HTML>';
 run;

The program prints an information page that has navigation links.

Shopping Cart

The LIB_CART.SAS program displays the contents of the shopping cart.

 /* LIB_CART.SAS − Display contents of the shopping cart
 (SAVE.CART data set). */

 %macro lib_cart;

 %let CART=%sysfunc(exist(SAVE.CART));
 %if &CART %then %do;
 /* This program could use the same technique as the LIB_AISLE program
 in order to add a link to each line of the table that removes items
 from the shopping cart. */

 /* Print the CART contents. */
 ods html body=_webout(nobot) rs=none;
 title Your Selected Items;
 proc print data=SAVE.CART noobs label;
 var refno desc;
 label refno='RefNo' desc='Description';
 run;
 ods html close;

 %end;
 %else %do;
 /* No items in the cart. */

SAS Documentation

133

 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>No items selected</TITLE></HEAD>';
 put '<BODY vlink="#004488" link="#0066AA" bgcolor="#E0E0E0">';
 put '<H1>No Items Selected</H1>';
 put;
 run;
 %end;

 /* Print navigation links. */
 data _null_;
 file _webout;
 put '<P>';
 if &CART then do;
 put '<FORM ACTION="' "&_url" '">';
 put '<INPUT TYPE="HIDDEN" NAME="_service" VALUE="' "&_service" '">';
 put '<INPUT TYPE="HIDDEN" NAME="_program"
 VALUE="' "&_pgmlib" '.LIB_LOGOUT.SAS">';
 put '<INPUT TYPE="HIDDEN" NAME="_server" VALUE="' "&_server" '">';
 put '<INPUT TYPE="HIDDEN" NAME="_port" VALUE="' "&_port" '">';
 put '<INPUT TYPE="HIDDEN" NAME="_sessionid"
 VALUE="' "&_sessionid" '">';
 put '<INPUT TYPE="HIDDEN" NAME="CHECKOUT" VALUE="YES">';
 put '<INPUT TYPE="SUBMIT" VALUE="Request these items">';
 put '</FORM><P>';
 end;
 put 'Return to <A HREF="' "%SUPERQ(_THISSESSION)" '&_PROGRAM='
 "&_PGMLIB" '.LIB_MAIN.SAS">main aisle
';
 put '<A HREF="' "%SUPERQ(_THISSESSION)" '&_PROGRAM='
 "&_PGMLIB" '.LIB_LOGOUT.SAS&CHECKOUT=NO">Logout
';
 put '</BODY>';
 put '</HTML>';
 run;
 %mend;

 %lib_cart;

The contents of the shopping cart are displayed using a PROC PRINT statement. The page also includes a
request button and navigation links. The request button is part of an HTML form. In order to connect to the
same session, include _SERVER, _PORT, and _SESSIONID values in addition to the normal _SERVICE and
_PROGRAM values. These values are usually specified as hidden fields and set to the corresponding SAS
macro variables. This program has a hidden CHECKOUT field that is initialized to YES in order to indicate
that the user is requesting the items in the cart.

SAS Documentation

134

Checkout and Logout

The LIB_LOGOUT.SAS program checks the user out of the Online Library. If the CHECKOUT input
variable is YES, then all of the items in the user's shopping cart will be requested via e−mail.

 /* LIB_LOGOUT.SAS − logout of Online Library application. Send e−mail to the
 library@abc.com account with requested item if CHECKOUT=YES is specified. */

 %macro lib_logout;

 /* Define CHECKOUT in case it was not input. */
 %global CHECKOUT;
 %if %UPCASE(&CHECKOUT) eq YES %then %do;
 /* Checkout − send an e−mail request to the library. E−mail options
 must be specified in order for the Application Server to use the
 e−mail access method. */
 filename RQST EMAIL 'library@mybiz.xyz'
 SUBJECT="Online Library Request for &SAVE_LOGINID";
 ods listing body=RQST;
 title Request for &SAVE_LOGINID;
 proc print data=SAVE.CART label;
 var refno type desc;
 label refno='RefNo' type='Type' desc='Description';
 run;
 ods listing close;

 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>Library Checkout</TITLE></HEAD>';
 put '<BODY vlink="#004488" link="#0066AA" bgcolor="#E0E0E0">';

SAS Documentation

135

 put '<H1>Library Checkout</H1>';
 put;
 put 'The items in your shopping cart have been requested.';
 put '<P>Requested items will normally arrive via interoffice';
 put 'mail by the following day. Thank you for using the
 Online Library.';
 put '<P><A HREF="' "&_URL?_SERVICE=&_SERVICE" '&_PROGRAM='
 "&_PGMLIB" '.LIB_LOGIN.SAS">Click here to re−enter the';
 put 'application.';
 put '</BODY>';
 put '</HTML>';
 run;

 %end;
 %else %do;

 /* Logout without requesting anything. */
 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>Logout</TITLE></HEAD>';
 put '<BODY vlink="#004488" link="#0066AA" bgcolor="#E0E0E0">';
 put '<H1>Library Logout</H1>';
 put;
 put '<P>Thank you for using the Online Library.';
 put '<P><A HREF="' "&_URL?_SERVICE=&_SERVICE" '&_PROGRAM='
 "&_PGMLIB" '.LIB_LOGIN.SAS">Click here to re−enter the';
 put 'application.';
 put '</BODY>';
 put '</HTML>';
 run;
 %end;

 %mend;

 %lib_logout;

 /* User is finished − delete the session. */
 %let rc=%sysfunc(appsrv_session(delete));

An information page is displayed if the user chooses to request the shopping cart items.

SAS Documentation

136

A simple logout screen is displayed if the user selects the Logout link.

Note: Logging out is not required. All sessions have an associated timeout (the default is 15 minutes). If the
session is not accessed for the duration of the timeout, the session and all temporary data in the session will be
deleted. In this sample, the SAVE.CART data set and the SAVE_LOGINID macro variable would be
automatically deleted when the session timeout is reached. You can change the session timeout using the
TIMEOUT option of the PROC APPSRV SESSION statement or by using the APPSRV_SET('session
timeout',seconds) function inside the program.

SAS Documentation

137

Invalid Session Program

Users of the Online Library application might see an invalid session Application Error page. An invalid
session might happen for the following reasons:

The user logged into the application, but then the session expired because the user did not input
information during the session timeout period (default is 15 minutes).

•

The user logged out of the application and then attempted to re−enter by using the Web browser's
back button or history list.

•

The user bookmarked a page in the application and then attempted to return to that bookmark after
logging out of the application or after the session had expired.

•

The Application Server was stopped and restarted while the user was logged in to the application.•

The default invalid session page is not very useful to the typical user because it does not provide specific
information.

You can replace the default page by using the INVSESS= option of the PROC APPSRV SESSION statement.
The INVSESS= option specifies a program that will run when the Application Server finds a nonexistent
(invalid or expired) session. Note that the INVSESS program applies to all applications that use a particular
Application Dispatcher service. The INVSESS program can use the _USERPROGRAM variable to determine
which program or application the user was attempting to run, and then print a suitable error page. An
INVSESS program for the Online Library application follows:

 /* LIB_INVSESS.SAS − Display useful message for expired or
 invalid sessions. */

 %macro lib_invsess;

 %if %upcase(%substr(%scan(&_USERPROGRAM,2,.),1,4)) eq LIB_ and
 %upcase(%scan(&_USERPROGRAM,3,.)) eq SAS %then %do;
 /* If the program name (second part of three part name) starts with
 LIB_ and the program type (third part) is SAS, then this is the
 On−Line Library application and you can print an
 application−specific message. */

SAS Documentation

138

 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>Session Expired</TITLE></HEAD>';
 put '<BODY vlink="#004488" link="#0066AA" bgcolor="#E0E0E0">';
 put '<H1>Session Expired</H1>';
 put;
 put 'Your connection to the Online Library has expired. You must';
 put 'login again.';
 put '<P>';
 put '<A HREF="' "&_URL?_SERVICE=&_SERVICE" '&_PROGRAM='
 "%scan(&_USERPROGRAM,1,.).LIB_LOGIN.SAS"
 '">Click here to login.';
 put '</BODY>';
 put '</HTML>';
 run;
 %end;
 %else %do;
 /* Otherwise, this is an unknown application; print a generic
 error page. */
 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>Invalid or Expired Session</TITLE></HEAD>';
 put '<BODY vlink="#004488" link="#0066AA" bgcolor="#E0E0E0">';
 put '<H1>Invalid or Expired Session</H1>';
 put;
 put 'Your application session has expired. In order to continue,';
 put 'you must restart this application.';
 put '</BODY>';
 put '</HTML>';
 run;
 %end;
 %mend;

 %lib_invsess;

After the Application Server is configured to use the LIB_INVSESS.SAS program, an expired session
message for the Online Library application will display:

SAS Documentation

139

Uploading Files
Starting with SAS 9.1.3 Service Pack 4, you can use Application Dispatcher to upload one or more files to
your Application Server. The upload process is usually initiated by an HTML page that contains an INPUT
tag with the attribute TYPE set to "file":

 <input type="file" name="myfile">

This tag enables you to specify the file that you want to upload. After the form data is submitted, the file you
chose and any other name/value pairs that are contained in the HTML form are sent to the Application Server.
Your SAS program can then use both the name/value pairs and the file that was uploaded.

Reserved Macro Variables

The reserved SAS macro variables that are associated with uploading files all start with _WEBIN_.

_WEBIN_CONTENT_LENGTH
specifies the length, in bytes, of the file that was uploaded.

_WEBIN_CONTENT_TYPE
specifies the content type that is associated with the file.

_WEBIN_FILE_COUNT
specifies the number of files that were uploaded. If no files were uploaded, the value of this variable
will be set to zero.

_WEBIN_FILEEXT
specifies the extension of the file that was uploaded.

_WEBIN_FILENAME
specifies the original location of the file.

_WEBIN_FILEREF
specifies the SAS FILEREF that is automatically assigned to the uploaded file. You can use this
FILEREF to access the file. The uploaded file is stored in a temporary location on the Application
Server, and will be deleted when the request is completed. Be sure to copy the file to a permanent
location if you need to access it at a later date.

_WEBIN_NAME
specifies the value that is specified in the NAME attribute of the INPUT tag. In the example above,
the value would be myfile.

_WEBIN_SASNAME
specifies a unique name for the uploaded SAS table, view, or catalog. A value is set for this macro
variable only if a SAS table, view, or catalog was uploaded. All SAS data types are stored in the
Work library. The type of SAS file that was uploaded is stored in the _WEBIN_SASTYPE macro
variable. See also _WEBIN_SASNAME_ORI.

_WEBIN_SASNAME_ORI
specifies the original name of the uploaded SAS table, view, or catalog. If a SAS table named
mydata.sas7bdat was uploaded, then _WEBIN_SASNAME_ORI would contain the value
mydata. A value is set for this macro variable only if a SAS table, view, or catalog was uploaded.
All SAS data types are stored in the Work library. The type of SAS file that was uploaded is stored in
the _WEBIN_SASTYPE macro variable. See also _WEBIN_SASNAME.

_WEBIN_SASTYPE
specifies the type of SAS file that was uploaded: DATA for SAS tables, VIEW for SAS views, and
CATALOG for SAS catalogs. A value is set for this macro variable only if a SAS table, view, or
catalog was uploaded. The name of the uploaded file is stored in the _WEBIN_SASNAME macro
variable.

140

If you are uploading more than one file, unique macro variables will be created for each file. This applies to
all of the previous reserved macro variables except _WEBIN_FILE_COUNT. See Multiple Value Pairs for
more information.

Note: For z/OS, the SAS server must be invoked with the FILESYSTEM=HFS option in order to be able to
upload SAS file types.

Examples of How to Upload Files

Example 1: Uploading a single file

The following figure shows an HTML page that can be used to upload a single file to the Application Server:

The HTML for performing the upload might look like this:

 <form action="<BrokerURL>" method="post" enctype="multipart/form−data">
 <input type="hidden" name="_service" value="<ServiceName>">
 <input type="hidden" name="_program" value="<ProgramName>">
 <table border="0" cellpadding="5">
 <tr>
 <th>Choose a file to upload:</th>
 <td><input type="file" name="myfile"></td>
 </tr>
 <tr>
 <td colspan="2" align="center"><input type="submit" value="OK"></td>
 </tr>
 </table>
 </form>

In the previous lines of HTML, you must replace "<BrokerURL>" with the path to the SAS/IntrNet
Application Broker. For example, on Windows, this path is usually
http://YourServer/scripts/broker.exe, where YourServer corresponds to the domain name of
your Web server. Similarly, you will need to specify the service name and the program that you want to
execute after the file has been uploaded. You should specify the exact values that are shown for the METHOD
and ENCTYPE attributes of the FORM tag.

The INPUT tag in the previous lines of HTML is used to create the Browse button and text entry field in the
previous figure. The appearance of this control might be different depending on which Web browser you use,
but the functionality should be the same. Clicking the Browse button enables you to navigate to the file that
you want to upload. You can choose any file that you have access to. This example uses the file
readme.txt, which resides in the Windows directory C:\temp.

SAS Documentation

141

After you select a file and click OK, all form data is sent to the Application Broker, which in turn, forwards
the data to the Application Server. As a result, the following SAS macro variables are created:

Variable Name Value Description

_WEBIN_CONTENT_LENGTH 1465 Specifies the size of the uploaded file in bytes
(supplied automatically by the Web browser).

_WEBIN_CONTENT_TYPE text/plain
Specifies the content type that corresponds to the
uploaded file (supplied automatically by the Web
browser).

_WEBIN_FILE_COUNT 1 Specifies the number of files that were uploaded.

_WEBIN_FILEEXT txt Specifies the extension of the file that was
uploaded.

_WEBIN_FILENAME C:\temp\README.txt Specifies the name and original location of the
file that was uploaded.

_WEBIN_FILEREF #LN00197
Specifies the SAS FILEREF that you can use to
access the uploaded file. This FILEREF is
assigned for you by the SAS server.

_WEBIN_NAME myfile Specifies the value that corresponds to the
NAME attribute of the INPUT tag.

Your SAS/IntrNet program has access to the uploaded file via the FILEREF that is stored in the value of the
_WEBIN_FILEREF macro variable. The following code example returns the uploaded file to the client:

 * Set the Content−type header;
 %let RV = %sysfunc(appsrv_header(Content−type, &_WEBIN_CONTENT_TYPE));

 * Write the file back to the Web browser;
 data _null_;
 length data $1;

 infile &_WEBIN_FILEREF recfm=n;
 file _webout recfm=n;
 input data $char1. @@;
 put data $char1. @@;
 run;

The previous code shows how to use the _WEBIN_CONTENT_TYPE macro variable to set the content−type
header. The previous code also shows how to use the _WEBIN_FILEREF macro variable to access the
uploaded file.

Example 2: Uploading multiple files

The following figure shows an HTML page that can be used to upload multiple files to the Application
Server:

SAS Documentation

142

The HTML for performing the upload might look like this:

 <form action="<BrokerURL>" method="post" enctype="multipart/form−data">
 <input type="hidden" name="_service" value="<ServiceName>">
 <input type="hidden" name="_program" value="<ProgramName>">
 <table border="0" cellpadding="5">
 <tr>
 <th>Choose a file to upload:</th>
 <td><input type="file" name="firstfile"></td>
 </tr>
 <tr>
 <th>Choose another file to upload:</th>
 <td><input type="file" name="secondfile"></td>
 </tr>
 <tr>
 <td colspan="2" align="center"><input type="submit" value="OK"></td>
 </tr>
 </table>
 </form>

Refer to Example 1 for a basic discussion of the previous lines of HTML. This example uses the files
readme.txt and winter.jpg, which reside in the Windows directory C:\temp. Note that the two input
files do not need to be in the same directory.

After you select a file and click OK, all form data is sent to the Application Broker, which in turn, forwards
the data to the Application Server. As a result, the following SAS macro variables are created:

Variable Name Value Description

_WEBIN_CONTENT_LENGTH 1465
Specifies the size of the first uploaded file in
bytes (supplied automatically by the Web
browser).

_WEBIN_CONTENT_LENGTH0 2 Specifies the number of files that were
uploaded.

_WEBIN_CONTENT_LENGTH1 1465
Specifies the size of the first uploaded file in
bytes (supplied automatically by the Web
browser).

_WEBIN_CONTENT_LENGTH2 5367 Specifies the size of the second uploaded file in

SAS Documentation

143

bytes (supplied automatically by the Web
browser).

_WEBIN_CONTENT_TYPE text/plain
Specifies the content type that corresponds to
the first uploaded file (supplied automatically
by the Web browser).

_WEBIN_CONTENT_TYPE0 2 Specifies the number of files that were
uploaded.

_WEBIN_CONTENT_TYPE1 text/plain
Specifies the content type that corresponds to
the first uploaded file (supplied automatically
by the Web browser).

_WEBIN_CONTENT_TYPE2 image/pjpeg
Specifies the content type that corresponds to
the second uploaded file (supplied
automatically by the Web browser).

_WEBIN_FILE_COUNT 2 Specifies the number of files that were
uploaded.

_WEBIN_FILEEXT txt Specifies the extension of the first file that was
uploaded.

_WEBIN_FILEEXT0 2 Specifies the number of files that were
uploaded.

_WEBIN_FILEEXT1 txt Specifies the extension of the first file that was
uploaded.

_WEBIN_FILEEXT2 jpg Specifies the extension of the second file that
was uploaded.

_WEBIN_FILENAME C:\temp\README.txt Specifies the name and original location of the
first file that was uploaded.

_WEBIN_FILENAME0 2 Specifies the number of files that were
uploaded.

_WEBIN_FILENAME1 C:\temp\README.txt Specifies the name and original location of the
first file that was uploaded.

_WEBIN_FILENAME2 C:\temp\winter.jpg Specifies the name and original location of the
second file that was uploaded.

_WEBIN_FILEREF #LN00014 Specifies the SAS FILEREF that you can use to
access the first uploaded file.

_WEBIN_FILEREF0 2 Specifies the number of files that were
uploaded.

_WEBIN_FILEREF1 #LN00014 Specifies the SAS FILEREF that you can use to
access the first uploaded file.

_WEBIN_FILEREF2 #LN00016 Specifies the SAS FILEREF that you can use to
access the second uploaded file.

_WEBIN_NAME firstfile Specifies the value that corresponds to the
NAME attribute of the first INPUT tag.

SAS Documentation

144

_WEBIN_NAME0 2 Specifies the number of files that were
uploaded.

_WEBIN_NAME1 firstfile Specifies the value that corresponds to the
NAME attribute of the first INPUT tag.

_WEBIN_NAME2 secondfile Specifies the value that corresponds to the
NAME attribute of the second INPUT tag.

Examples of How to Use Uploaded Files

Example 3: Uploading a CSV file to a SAS table

After you have uploaded a CSV file, you can use the IMPORT procedure to import the file to a SAS table.
The following sample code shows one way of achieving this:

 %let CSVFILE=%sysfunc(pathname(&_WEBIN_FILEREF));

 proc import datafile="&CSVFILE"
 out=work.mydata
 dbms=csv
 replace;
 getnames=yes;
 run;

 title 'First 10 records of CSV file after importing to a SAS table.';

 ods html body=_webout style=Seaside path=&_tmpcat (url=&_replay) rs=none;
 proc print data=work.mydata(obs=10); run; quit;
 ods html close;

Because the IMPORT procedure requires a full path to the CSV file, you must first use the PATHNAME
function to get the path to the file. The GETNAMES statement uses the data in the first row of the CSV file
for the SAS column names. See the IMPORT procedure in the Base SAS Procedures Guide for further details.

An alternative method would be to write a DATA step to import the CSV file. This method would require
only Base SAS. The following code is an example of how to do this:

 data work.mydata;
 infile &_WEBIN_FILEREF dlm=',' dsd;
 * Your code to read the CSV file;
 run;

Example 4: Uploading an Excel XML workbook to multiple SAS tables

Starting with Excel XP (Excel 2002), a workbook can be saved as an XML file. This XML file can be read
into SAS using the SAS XML LIBNAME Engine and a SAS XMLMap. Each worksheet in the workbook will
be imported to a SAS table with the same name, and the column headings in the worksheets will be used for
the column names in the SAS tables. The following code is an example of how to do this. Be sure to include
the appropriate directory paths.

 %let XMLFILE=%sysfunc(pathname(&_WEBIN_FILEREF));

 * Include the XLXP2SAS macro;
 %include 'loadxl.sas';
 * Import the workbook into SAS tables;

SAS Documentation

145

 %XLXP2SAS(excelfile=&XMLFILE,
 mapfile=excelxp.map);

The %INCLUDE statement makes the XLXP2SAS macro available to SAS. The %XLXP2SAS macro
imports the data from all the worksheets into separate SAS tables with the help of a SAS XMLMap. For more
details, see the paper Moving Data and Analytical Results between SAS and Microsoft Office at
support.sas.com/rnd/papers. There are links available for you to download both the macro and the XMLMap.

Example 5: Uploading a SAS table or view

When a SAS data type (table, view, or catalog) has been uploaded, additional reserved macro variables are
created. For example, the following macro variables will be created if the file C:\temp\djia.sas7bdat
has been uploaded:

Variable Name Value Description

_WEBIN_SASNAME _B3FF5FCAF39482D93793AEEF05BB15F

Specifies a unique name
for the uploaded SAS
table, which is stored in
the Work library.

_WEBIN_SASNAME_ORI djia
Specifies the original
name of the uploaded
SAS table.

_WEBIN_SASTYPE DATA

Specifies the type of
SAS file that was
uploaded: DATA for a
SAS table; VIEW for a
SAS view.

To print the SAS table or view that has been uploaded, use the following code:

 title 'First 10 records of uploaded SAS data file.';

 ods listing close;
 ods html body=_webout style=Seaside path=&_TMPCAT (url=&_REPLAY) rs=none;
 proc print data=&_WEBIN_SASNAME(obs=10); run; quit;
 ods html close;

Example 6: Uploading a SAS catalog

You can use the following sample code to list the contents of a SAS catalog that has been uploaded:

 ods listing close;
 ods html body=_webout style=Seaside path=&_TMPCAT (url=&_REPLAY) rs=none;
 proc catalog c=&_WEBIN_SASNAME;
 contents;
 run; quit;
 ods html close;

Example 7: Uploading a SAS table, view, or catalog and saving a permanent
copy

SAS Documentation

146

You can use the following sample code to make a permanent copy of an uploaded SAS table, view, or catalog
and to retain the name of the original uploaded file:

 proc datasets library=<YourLibrary>;
 copy in=work out=<YourLibrary> memtype=&_WEBIN_SASTYPE;
 select &_WEBIN_SASNAME;
 run;
 change &_WEBIN_SASNAME=&_WEBIN_SASNAME_ORI;
 run;
 quit;

In the previous lines of SAS code, you must replace <YourLibrary> with the name of the SAS library in
which you want to store the SAS table, view, or catalog.

Example 8: Uploading an Excel workbook to a SAS table

You can use the IMPORT procedure to import an uploaded Excel workbook file to a SAS table. The
following sample code shows one way of achieving this:

 %let XLSFILE=%sysfunc(pathname(&_WEBIN_FILEREF));

 proc import datafile="&XLSFILE"
 out=work.mydata
 dbms=excel
 replace ;
 getnames=yes;
 run; quit;

 title 'First 10 records of Excel workbook after importing to a SAS table.';

 ods listing close;
 ods html body=_webout style=Seaside path=&_tmpcat (url=&_replay) rs=none;
 proc print data=work.mydata(obs=10); run; quit;
 ods html close;

Because the IMPORT procedure requires a full path to the Excel workbook, you must first use the
PATHNAME function to get the path to the file. The GETNAMES statement uses the data in the first row of
the workbook for the SAS column names. See the IMPORT procedure in the Base SAS Procedures Guide for
further details.

SAS Documentation

147

Application Server Functions
Application Server functions are DATA step functions that you use to define character, numeric, and
alphanumeric strings to generate output in the desired format within a PROC APPSRV statement. The
following list of Application Server functions can be used to return the correct character, numeric, or
alphanumeric value of a PROC APPSRV parameter setting.

APPSRVGETC•
APPSRVGETN•
APPSRVSET•
APPSRV_AUTHCLS•
APPSRV_AUTHDS•
APPSRV_AUTHLIB•
APPSRV_HEADER•
APPSRV_SESSION•
APPSRV_UNSAFE•

148

APPSRVGETC

Returns the character value of a PROC APPSRV parameter setting

Syntax
Arguments
Details
Examples

Syntax

VALUE = APPSRVGETC(valuecode)

Arguments

valuecode
is the character string name of the parameter.

Details

The APPSRVGETC function takes one character string parameter and returns a character string result.

Examples

SAS Statements Results

auth=appsrvgetc('auth');
put auth=;

auth=NONE

initpgm=appsrvgetc('request init');
put initpgm=;

initpgm=MYLIB.MYINIT.SAS

termpgm=appsrvgetc('request term');
put termpgm=;

termpgm=MYLIB.MYCAT.MYTERM.SCL

initpgm=appsrvgetc('session init');
put initpgm=;

initpgm=MYLIB.MYCAT.SESSINIT.SOURCE

termpgm=appsrvgetc('session term');
put termpgm=;

termpgm=MYLIB.MYCAT.MYTERM.SCL

version=appsrvgetc('version');
put version=;

version=SAS/IntrNet Application Server
 Release 9.2 (Build 664)

fname = appsrvgetc('log file');
put fname=;

fname=
 /u/intrnet/services/default/logs/Fri_5801.log

149

APPSRVGETN

Returns the numeric value of a PROC APPSRV parameter setting

Syntax
Arguments
Details
Examples

Syntax

VALUE = APPSRVGETN(valuecode)

Arguments

valuecode
is the character string name of the parameter.

Details

The APPSRVGETN function takes one character string parameter and returns a numeric string result.

Examples

SAS Statements Results

maxtimeout=appsrvgetn('request maxtimeout');
put maxtimeout=;

maxtimeout=900

timeout=appsrvgetn('request timeout');
put timeout=;

timeout=300

sessmaxtimeout=appsrvgetn('session maxtimeout');
put sessmaxtimeout=;

sessmaxtimeout=900

session=appsrvgetn('session timeout');
put session=;

session=900

starttime=appsrvgetn('server starttime');
put starttime=datetime.;

starttime=01SEP02:08:15:59

version=appsrvgetn('version');
put version=;

version=9.2

150

APPSRVSET

Returns the numeric value of a PROC APPSRV parameter setting

Syntax
Arguments
Details
Examples

Syntax

RC = APPSRVSET(valuecode, newvalue)

Arguments

valuecode
is the character string name of the parameter.

newvalue
is the numeric string name of the parameter.

The following table lists the valid parameters for valuecode and provides a description of each.

Valuecode Description

AUTOMATIC
HEADERS

specifies whether the APPSRV procedure returns headers. The value must be 0
(disabled) or 1 (enabled). Automatic header generation is enabled by default.

BACKGROUND specifies that the APPSRV procedure runs in the background. This parameter is valid
only for pool services. An optional parameter can also be set to specify a new request
timeout value.

DISCONNECT closes the socket that is opened to the Application Broker. This causes the
Application Broker to exit.

PROGRAM ERROR specifies the return code when there is an error. This can be set to any value.

REQUEST
TIMEOUT

specifies the number of seconds that a requested program is allowed to run before
it is terminated by the server. The default session timeout is 300 (5 minutes).

SESSION
TIMEOUT

specifies the number of seconds that elapse before a session expires. The default
session timeout is 900 (15 minutes).

Details

The APPSRVSET function takes one character string parameter and one numeric string parameter and returns
a numeric string result.

151

Examples

SAS Statements

rc=appsrvset('request timeout',300);

rc=appsrvset('session timeout',900);

rc=appsrvset('program error',256);

/* disable generation of MIME headers */

rc=appsrvset('automatic headers',0);

/* run the job in the background with */
/* a new timeout value of 5 minutes */

rc=appsrvset('background',300);

rc=appsrvset('disconnect');

SAS Documentation

152

APPSRV_AUTHCLS

Reads the AUTHLIB data set and returns a WHERE clause

Syntax
Arguments
Details
Examples

Syntax

CLAUSE = APPSRV_AUTHCLS(type)

Arguments

type
is one of the following character strings: LIBRARY, MEMBER, CATALOGENTRY.

Details

The APPSRV_AUTHCLS function reads the AUTHLIB data set and returns a WHERE clause. This clause
references the variable names LIBNAME, MEMNAME, MEMTYPE, OBJNAME, and OBJTYPE. It can be
applied to the SQL dictionary views and other views in the SASHELP library. The returned clause can be
used to subset the entities in the current SAS session to only the entities that are authorized by the AUTHLIB
data set. The returned clause can be combined with a user−determined clause by using the "and" token to
create a compound clause that selects the desired entities, provided that access is authorized.

If the value of type is LIBRARY, then the returned clause contains only the LIBNAME variable. If the value
of type is MEMBER, then the returned clause contains the LIBNAME, MEMNAME, and MEMTYPE
variables. If the value of type is CATALOGENTRY, then the returned clause contains the LIBNAME,
MEMNAME, MEMTYPE, OBJNAME, and OBJTYPE variables.

Examples

For the examples in Table 2, refer to the contents of the SASHELP.AUTHLIB data set in Table 1. Entities
are excluded by default, and all exclude rules supersede all include rules.

Table 1: Contents of SASHELP.AUTHLIB Data Set

Rule Libname Memname Memtype Objname Objtype

INCLUDE SASHELP * DATA * *

INCLUDE SASHELP * VIEW * *

INCLUDE SASHELP * MDDB * *

INCLUDE SAMPDAT * * * *

EXCLUDE SAMPDAT MYCAT CATALOG * *

153

Table 2: Examples

SAS Statements Results

clause=appsrv_authcls('LIBRARY');
put clause=;

clause=((upcase(libname)='SASHELP')or
(upcase(libname)='SASHELP')or
(upcase(libname)='SASHELP')or
(upcase(libname)='SAMPDAT'))

clause=appsrv_authcls('MEMBER');
put clause=;

clause=(((upcase(libname)='SASHELP'
 and upcase(memtype)='DATA') or
 (upcase(libname)='SASHELP' and
 upcase(memtype)='VIEW') or
 (upcase(libname)='SASHELP' and
 upcase(memtype)='MDDB') or
 (upcase(libname)='SAMPDAT')) and
((upcase(libname) ne 'SAMPDAT' or
 upcase(memname) ne 'MYCAT' or
 upcase(memtype) ne 'CATALOG')))

data null;
 length clause $ 32767;
 clause=appsrv_authcls('MEMBER');
 call symput('CLAUSE',clause);
run;

/*create a data set listing all
 allowed data sets excluding
 views*/

proc sql;
create table work.allowed as
select * from dictionary.tables
where memtype='DATA' and &clause;
quit;

Data set WORK.ALLOWED is created as
a subset from dictionary.tables. It
contains only data sets that are
allowed according to the AUTHLIB data
set. Views are excluded from this table
by the addition of the "memtype='DATA'"
clause.

SAS Documentation

154

APPSRV_AUTHDS

Enables the user to change the AUTHLIB data set name

Syntax
Arguments
Details
Examples

Syntax

RC = APPSRV_AUTHDS(dataset)

Arguments

dataset
is a character string that is the SAS data set name.

Details

The APPSRV_AUTHDS function enables the user to change the AUTHLIB data set name. The AUTHLIB
data set is the table that is examined by the APPSRV_AUTHLIB and APPSRV_AUTHCLS functions. By
default, these functions operate on the data set SASHELP.AUTHLIB. Calling the APPSRV_AUTHDS
function causes subsequent calls to these functions to use the same data set name. In an Application Server
environment, the effect of calling APPSRV_AUTHDS lasts for the duration of the request. To change the
AUTHLIB data set name for all requests, call the APPSRV_AUTHDS function in the program that is
specified by the INIT argument of the REQUEST statement. The function returns 1 if successful and 0 if
unsuccessful.

Examples

SAS Statements Results

rc=appsrv_authds('MYLIB.MYAUTH');
put rc=;

rc=1

155

APPSRV_AUTHLIB

Determines whether the Application Server program is authorized to access a specified data source

Syntax
Arguments
Details
Examples

Syntax

RC = APPSRV_AUTHLIB(libname, memname, memtype, objname, objtype)

Arguments

All arguments to this function are optional.

libname
is a character string that is the SAS libref.

memname
is a character string that is the SAS member name.

memtype
is a character string that is the SAS member type.

objname
is a character string that is the SAS catalog entry name.

objtype
is a character string that is the SAS catalog entry type.

Details

The APPSRV_AUTHLIB function determines whether the Application Server program is authorized to
access the specified data source. The function returns a value of 1 if authorized and 0 if not authorized.
Authorization is determined by the contents of the AUTHLIB data set. This data set contains rules for
including and excluding various data sources. For more details on the AUTHLIB data set, see Controlling
Access to Data Sources with the AUTHLIB Data Set. An asterisk (*) can be supplied for any of the arguments
to mean "any." If an argument is omitted, then an asterisk is assumed.

Examples

For the examples in Table 2, refer to the contents of the SASHELP.AUTHLIB data set in Table 1. Entities
are excluded by default, and all exclude rules supersede all include rules.

Table 1: Contents of SASHELP.AUTHLIB Data Set

Rule Libname Memname Memtype Objname Objtype

INCLUDE SASHELP * DATA * *

INCLUDE SASHELP * VIEW * *

156

INCLUDE SASHELP * MDDB * *

INCLUDE SAMPDAT * * * *

EXCLUDE SAMPDAT MYCAT CATALOG * *

Table 2: Examples

SAS Statements Results

rc=appsrv_authlib('SASHELP','RETAIL','DATA');
put rc=;

/*equivalent to
 rc=appsrv_authlib('SASHELP','RETAIL',
 'DATA','*','*');
*/

rc=1

if (appsrv_authlib('SASHELP','CORE',
 'CATALOG'))
 put 'You may proceed ...';
else put 'You are not authorized to access
 this SAS catalog';

/*equivalent to
 if (appsrv_authlib('SASHELP','CORE',
 'CATALOG','*','*'))
*/

You are not authorized to
 access this SAS catalog.

/*Check to see if access to any SCL catalog
 entries is allowed*/
/*NOTE: A true (1) response does not mean that
 you can see ALL SCL entries, just some.*/
/*This returns true because some catalogs in
 SAMPDAT are included*/

rc = appsrv_authlib('*','*','CATALOG','*',
 'SCL');
put rc=;

rc=1

/*Check to see if access to any of the entries
 in the MYDATA.MYCAT catalog is allowed*/

rc = appsrv_authlib('SAMPDAT','MYCAT',
 'CATALOG');
if (rc = 1) then put 'You can access at least
 some of the entries';
else put 'Access to this entire catalog is
 restricted';

Access to this entire catalog
 is restricted.

SAS Documentation

157

APPSRV_HEADER

The DATA step function used to add or modify a header

Syntax
Arguments
Details
Examples

Syntax

OLD−HEADER = APPSRV_HEADER(Header Name,Header Value);

Arguments

Header name
The name of the header to set or reset.

Header Value
The new value for the header.

Details

The APPSRV_HEADER function enables automatic header generation. You can add a header to the default
list or modify an existing header from the list. When you modify the value of an existing header, the old value
becomes the return value of the function.

The automatic HTTP header generation feature recognizes Output Delivery System (ODS) output types and
generates appropriate default content−type headers. If no content type is specified with APPSRV_HEADER,
ODS is not used and no HTTP header is written to _WEBOUT, a default Content−type: text/html
header is generated.

Examples

SAS Statements Resulting Headers

No calls to appsrv_header Content−type: text/html

/* add expires header */
rc = appsrv_header('Expires','Thu,
 18 Nov 1999 12:23:34 GMT');

Content−type: text/html
Expires: Thu, 18 Nov 1999 12:23:34 GMT

/* add expires header */
rc = appsrv_header('Expires','Thu,
 18 Nov 1999 12:23:34 GMT');
/* add pragma header*/
rc = appsrv_header('Cache−control',
 'no−cache');

Content−type: text/html
Expires: Thu, 18 Nov 1999 12:23:34 GMT
Cache−control: no−cache

/* add expires header */
rc = appsrv_header('Expires','Thu,
 18 Nov 1999 12:23:34 GMT');

Content−type: text/html
Cache−control: no−cache

158

/* add pragma header*/
rc = appsrv_header('Cache−control',
 'no−cache');
...
/* remove expires header, rc
 contains old value */
rc = appsrv_header('Expires','');

Disabling Automatic Header Generation

To completely disable Automatic Header Generation for a request, call the APPSRVSET DATA step
function, as so:

 data _NULL_;
 rc = appsrvset("automatic headers", 0);
 run;

SAS Documentation

159

APPSRV_SESSION

Creates or deletes a session

Syntax
Arguments
Details
Examples

Syntax

RC = APPSRV_SESSION('command' <, timeout>)

Arguments

command
is the command to be performed. Allowed values are "CREATE" and "DELETE."

timeout
is the optional session timeout. This parameter is valid only when you specify a value of "CREATE"
for the command parameter.

Details

The APPSRV_SESSION function creates or deletes a session. The function returns zero for a successful
completion. A non−zero return value indicates an error condition.

Examples

SAS Statements

rc=appsrv_session('create', 600);

rc=appsrv_session('delete');

160

Application Dispatcher Debugging
Debug flags are not used only for diagnostic purposes. At many sites, it might be necessary to disable debug
flags for security reasons. This section defines all of the debug flags, gives you some usage scenarios, and
provides diagnostic information. It also helps you determine which debug flags should be disabled and how to
identify valid debug values, which options are best suited for the four types of programs that constitute the
input component, and which debugging methods is best suited for your needs, (based on the debugging
options that are available in the programming component).

Debugging in the Input Component
List of Valid Debug Values♦
Disabling Debug Flags♦
Special Cases♦
Debugging Application Broker Installation Problems♦

•

Debugging in the Program Component
Examining the SAS Log♦
Using SAS Options♦
The DATA Step Debugger♦
The SCL Debugger♦

•

161

Debugging in the Input Component
The special variable _DEBUG provides you with several diagnostic options. Using this variable is a
convenient way to debug a problem, because you can supply the debug values by using the Web browser to
modify your HTML or by editing the URL in your Web browser location field.

List of Valid Debug Values•
Disabling Debug Flags•
Special Cases•
Debugging Application Broker Installation Problems•

List of Valid Debug Values

You can activate the various debugging options by passing the _DEBUG variable to the Application Broker
just as you pass the special variables _SERVICE and _PROGRAM. You can set more than one debug option
by adding the flag values together. For example, to set both the options 2048 and 2, use the value (2048 + 2) =
2050.

Keywords can also be used to set debug options. To set these same options using the keywords, you would
specify

 _DEBUG=TIME,TRACE

Multiple parameters (values or keywords) can be specified separated by commas or spaces. These values are
then logically put together to form one debug number.

Some debug flags might be locked out at your site in the Application Broker configuration file for security
reasons. Verify with your administrator which flags are locked out at your site. See Setting the Default Value
of _DEBUG for more information on setting the debug value. The following chart is a list of valid debug
values:

Value Keyword Description

1 FIELDS Echoes all fields. This is useful for debugging value−splitting problems.

2 TIME

Prints the Application Broker version number and elapsed time after each run, for
example, "This request took 2.46 seconds of real time (v9.2 build 1494)." Also, this
value displays the Powered by SAS logo if you provide additional settings as described
in Displaying the Powered by SAS Logo.

4 SERVICES Lists definitions of all services as defined by the administrator, but does not run the
program.

8 Skips all execution processing.

16 DUMP Displays output in hexadecimal. This is extremely helpful for debugging problems
with the HTTP header or graphics.

32 Displays the Powered by SAS logo without the Application Broker version or elapsed
time information. See also Displaying the SAS Powered Logo.

128 LOG Returns log file. This is useful for diagnosing problems in the SAS code.

256
162

Is not used in SAS 9 or later. Previous version socket debug data incorporated into
debug 2048.

512 Shows socket host and port number in status message (by default off for security
reasons).

1024 ECHO
Echoes data usually sent from the Application Broker to the Application Server. It does
not run the program. In the case of a launch service, this also shows the SAS command
that would have been invoked by the Application Broker.

2048 TRACE Traces socket connection attempts. This is helpful for diagnosing the machine
communication process.

4096 Prevents the deletion of temporary files that are created for launch. This is useful for
debugging configuration problems in a launch service (before Version 8).

8192 Returns entire SAS log file from a launched service (before Version 8).

16384 ENV Displays a selection of the Application Broker environment parameters.

Disabling Debug Flags

In the Application Broker configuration file, you can specify the debug values that you are and are not
allowed to set. The DebugMask and ServiceDebugMask directives control this. The information below
describes the DebugMask directive but it also applies to the ServiceDebugMask directive.

The default value for the DebugMask is 32767. This is adequate for most sites. The value 32767 indicates that
all debug values are allowed. This means that commenting out the DebugMask directive is the same as
allowing all debug values.

Note: Some debug values might pose a security risk. To avoid potential security risks, selectively disable
them by specifying a DebugMask value that is the sum of the values that you want to allow. The safest
approach is to set DebugMask to 0, 2, 32, or 34 (sum of 2 and 32). These values do not pose a security risk.

Below is an illustration of how the Application Broker uses DebugMask to restrict certain values. The value
32767 is the sum of all the allowed debug values (1 through 16384). The following chart shows all the bits
enabled for the DebugMask=32767 value (in binary notation):

16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

If you want to prevent the use of debug value 2048, disable the DebugMask bit for 2048, as shown next:

16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

To allow all debug values except 2048, specify a DebugMask value of 30719 (which is 32767 − 2048).

To allow only debug values of 2 and 2048, specify a DebugMask value of 2050 (which is 2 + 2048).

Note: The last technique is safer because additional debug values exist that are not documented. But if you do
enable them, these debug values could pose a security risk.

SAS Documentation

163

The Application Broker displays an error if the binary values for _DEBUG and DebugMask do not equal 0
using binary logic. The Application Broker performs error checking only on the _DEBUG value in the HTML
form or link. It does not check to confirm that Debug and DebugMask do not overlap. In other words, it does
not check Debug to see whether it has an allowed value in DebugMask. DebugMask is used to check values of
_DEBUG only.

Special Cases

Some combinations of content types and debug values do not produce the expected results. The debug values
2, 32, 128, and 8192 do not function correctly if the content type is anything other than TEXT or HTML. For
example, if your program sends a content type of IMAGE or GIF, then the Web browser expects the data that
follows to be binary graphic data. If you supply one of these debug values, then the Application Broker tries
to append HTML code to the end of the binary graphic data. This HTML is not displayed in the Web browser;
only the image is displayed. One way to work around this is to supply the debug value 1 in addition to the
value(s) above. This causes the Application Broker to send the content type TEXT or HTML before your
program can send the IMAGE or GIF content type. Because the Web browser sees the TEXT or HTML
content type first, it displays the debug output that you have requested. However, because the binary graphic
data is combined with HTML data, garbage characters will take the place of the expected image on the Web
page.

Keep in mind that setting the debug variable to 1 or 128 generates an HTTP header. This will affect the
behavior of a test that changes the HTTP header in any way.

Some HTML formatter macros create their own headers. For example, if you are using SETCOOKIE on a
header, the cookies do not work when DEBUG=1 or DEBUG=128 is set.

Debugging Application Broker Installation Problems

To verify that the Application Broker can be executed, run the image from a command line on the
Web server machine:

 broker "_service=default&_program=ping"

If the broker.cfg file is set up correctly and there is an Application Server running for service
"default", the results will be similar to

 Content−type: text/html
 Pragma: no−cache

 Ping. The Application Server your.server.com:5800 is
 functioning properly.

 −−−

 This request took 0.28 seconds of real time (v9.2 build nnnn).

Because CGI programs typically run as special nonprivileged users, it is sometimes useful to perform
this test with a guest account. On z/OS machines there are occasional problems with the installation of
the SAS/C transient library that will be revealed by performing this test.

1.

From a Web browser on the client machine, try to access the Application Broker image via a URL of
the form

 http://yourserver/cgi−bin/broker.exe?

2.

SAS Documentation

164

The Application Broker program in the URL will be the correct image to use for the Web server
machine. If the Web browser tries to download the program as a file, then you have discovered the
problem: the Web server is not configured correctly to execute CGI programs. For UNIX Web
servers, typically you must add a line to the Web server HTTP config file for the CGI directory.

When this command works correctly, the Web browser displays the following welcome page, which
contains a link to an administration page:

Note: If there is a customized Application Broker welcome page, then it will display instead of this
default welcome page when you enter the Application Broker URL in your Web browser. If this is the
case, and if you want to view the services that are available from the default welcome page, then add
_DEBUG=4 to the URL, as follows:

 http://yourserver/cgi−bin/broker.exe?_debug=4

To test the Applications Server from the Web browser, enter a URL of the form

 http://yourserver/cgi−bin/broker.exe?_service=default&_program=ping

If the broker.cfg file is set up correctly and there is an Application Server running for service
"default", the results will look like this:

If this test fails but the test in the first step succeeds, there is usually a permission problem with the
CGI running from the Web server. CGI programs are typically started under a nonprivileged account
that might not have access to required system resources. Try totally disabling anonymous access for
the CGI directory in the Web server. This forces the Application Broker to run with an authenticated
user name. On Windows systems, check the permissions on the entire \winnt\system32 directory tree
and verify that the user account IUSR_nodename has the user rights "Access this computer from
network" and "Log on locally."

3.

For pool service problems, verify that the Load Manager is running and a log is being created. When a
pool service request is initiated, the actual command that starts the Application Server is written to the
log. It is often useful to copy this command from the log and issue it on a command line to verify that
the server starts. If the SAS Spawner is not being used, the Applications Server runs under the user
name that started the Load Manager with the corresponding privileges and permissions. Occasionally

4.

SAS Documentation

165

the work directory does not get set correctly and you must add a "−work /tmp" parameter to the SAS
command.

If the server starts but the Application Broker times out, verify that there are not multiple TCP/IP
node names defined for a given host. The Application Broker and Load Manager hosts must resolve
all node names to the same value. Host name mismatches can cause various error messages to appear
in the Load Manager log.
To debug problems with launch and pool services, it is useful to obtain the SAS log and investigate
any errors concerning the SasCommand that was executed.

To see the SasCommand that is being processed, add the parameter _DEBUG=1024 to the URL that
is being used to start the service. This shows any errors with quotes or non−escaped backslashes.

Under UNIX, using the following syntax puts the SAS log, STDOUT, and STDERR messages into
files using the Application Broker PID for the filenames:

 SasCommand "/bin/ksh −c '/usr/local/bin/sas +
 /user/web/launchsas.sas −rsasuser −noterminal −noprint +
 −log $$.log −SYSPARM $$.out 2>$$.err'"

Note: The user name that the Application Broker runs under must be able to write to the directory
where the Application Broker runs.

5.

SAS Documentation

166

Debugging in the Program Component
There are four techniques for debugging Application Dispatcher programs:

Examining the SAS Log•
Using SAS Options•
The DATA Step Debugger•
The SCL Debugger•

Examining the SAS Log

Passing a name/value pair of _DEBUG=128 to the Application Dispatcher will cause the SAS log to be
returned to the Web browser. This is useful because you will be able to check for errors, which typically
appear in the log. The Application Dispatcher will highlight them in red. If the code that you are debugging
contains macro statements, turn on various options such as MPRINT and MLOGIC. Sometimes the
Application Dispatcher will return an error message that suggests to send a debug value of 131. This is the
values 1, 2, and 128 combined. See the List of Valid Debug Values section for a complete list of debug
values.

If you are unable to retrieve the SAS log with _DEBUG=128, then you should contact your Application
Server administrator. The administrator might need to examine the SAS log file that the Application Server
writes to disk. This file can often contain more information than is displayed in your Web browser.

Using SAS Options

There are several SAS options that can help you debug problems in your Application Dispatcher programs. If
you can return the SAS log to your Web browser, activating some of these options can make that log more
useful. If you are debugging a program that contains macro code, you should supply one or more of these
options at the beginning of your program: MPRINT, SYMBOLGEN, MLOGIC, MERROR.

If, for security reasons, you have disabled the display of submitted source code in your program using the
NOSOURCE option when you are debugging, you should enable this feature by supplying the SOURCE
option. You can then see your submitted SAS code in the log that is returned to your Web browser. After you
are done, you can revert to using NOSOURCE if your security model requires it.

The DATA Step Debugger

To use the DATA step debugger, you must start the Application Server in the SAS windowing environment,
and you must be working on the computer where SAS software will display the debugger windows. To debug
a DATA step, add /debug to the DATA statement, like this:

 data mylib.mydata/debug;

When the Application Server executes the program, the DATA step debugger windows will pop up and pause,
waiting for you to step through the code.

The SCL Debugger

To use the SCL debugger, you must start the Application Server with the AFPARMS='debug=yes' option.
The SCL program that you want to debug must be compiled with the debug option. The Application Server

167

must be running in the SAS windowing environment, and you must be working on the computer where SAS
software will display the debugger windows. When the Application Server executes the SCL program, the
debugger windows will appear and allow you to step through the code.

SAS Documentation

168

The APPSRV Procedure

The APPSRV procedure invokes the Application Server, which is the server component of the SAS/IntrNet
Application Dispatcher. It is recommended that you use the inetcfg utility to set up a new Application Server.
This utility creates a standard PROC APPSRV statement with reasonable default options that can be modified
to meet your requirements. See the syntax documentation below for more information about these options.

Syntax

PROC APPSRV PORT=n <options>;

ADMINLIBS libref−1 | libref−1.catalog−1 | fileref−1 <...libref−n | libref−n.catalog−n | fileref−n>;

ALLOCATE FILE fileref <device−type> 'directory−or−PDS−path' <host−options>;

ALLOCATE LIBRARY libref <engine> 'SAS−data−library' <options>;

DATALIBS libref−1 | fileref−1 <...libref−n | fileref−n>;

LOG <DISPLAY=NONE | ERRORS | ALL> <SYMBOLS=NONE | ERRORS | ALL> <FILE=fileref>
<APPEND | REPLACE>;

PROGLIBS libref−1 | libref−1.catalog−1 | fileref−1 <...libref−n | libref−n.catalog−n | fileref−n>;

REQUEST <INIT=program−name> <TERM=program−name> <LOGIN=program−name>
<TIMEOUT=seconds> <MAXTIMEOUT=seconds> <READ=seconds>
<FROMADR=("IP−address−1" <..."IP−address−n">)>;

SESSION <INIT=program−name> <INVSESS=program−name> <TERM=program−name>
<TIMEOUT=seconds> <MAXTIMEOUT=seconds> <VERIFY=(variable−1 <...variable−n>)>;

STATISTICS CREATE=library.dataset <(data−set−options)>;

STATISTICS DATA=library.dataset <(data−set−options)> <ADDPORT> <EXITONERROR>
<TEMPLATE=library.dataset <(data−set−options)>> <WRITECOUNT=n> <WRITEEVERY=n>;

To do this Use this statement

Declare which
libraries,
filerefs, and
catalogs
contain
programs that
can be run by
an
administrator
using the
_ADMINPW
password

ADMINLIBS

169

Define a file
that the
Application
Server assigns

ALLOCATE FILE

Define a library
that the
Application
Server assigns

ALLOCATE LIBRARY

Define librefs
and filerefs that
are available to
all programs
that are run by
the Application
Server

DATALIBS

Control content
and behavior of
the Application
Server log

LOG

Declare which
libraries,
filerefs, and
catalogs
contain
programs that
can be run on
the Application
Server

PROGLIBS

Control how a
request is
processed by
the Application
Server

REQUEST

Control how a
session is
administered by
the Application
Server

SESSION

Control writing
of request
statistics to a
data set

STATISTICS

SAS Documentation

170

PROC APPSRV Statement

PROC APPSRV PORT=n <options>;

Option Definition

ADMINPW='password'The optional server administration password. This option does not have a default setting.

AFPARMS='string' An optional quoted string of parameters that are passed when invoking SAS/AF to run
SCL programs. Users will pass AFPARMS='debug=yes' to invoke the SCL debugger.

AUTH=scheme The authentication scheme. The values that can be used with this option are HOST
(denotes a secure Application Server), META (denotes a metadata server), or NONE.
The default is NONE.

CHARSET=character−set−nameAppends the specified character set name to the HTTP content−type header for any text
output.

ENCODING=encoding−nameThe default character−set encoding for all data sent to and received from the Application
Broker.

GUESTP2='password'An optional second password to use for guest access.

GUESTPASS='password'The password to use for guest access.

GUESTUSER='username'The user name to use for guest access.

LOCALIP=IP−addressA manual override for GETSOCKNAME.

LRECL=n The logical record length for _WEBOUT and _GRPHOUT filerefs.

NETBUFFK=n The buffer size (in kilobytes) for _WEBOUT and _GRPHOUT output buffering.

NOCHARSET Disables any special content−type processing and reverts to existing SBCS behavior.

NOSHAREPOLL Disables polling of the SAS/SHARE server librefs.

PORT=n The only required option. The port number or name. Zero is used for dynamic ports.
PORT=n does not have a default setting.

PROGRAMS=n The maximum number of requests that can run concurrently. The default setting is 1.

SHAREPOLL=n controls the period of SAS/SHARE server libref polling. The period is equal to n, which
is a positive integer representing seconds. The default setting is 300 seconds (5 minutes).

UNSAFE='string' An optional list of characters that when used, enhances security by compressing
name/value pairs.

PROC APPSRV Arguments

ADMINPW=password
allows the user to restrict access to specific administrator programs. The server has several built−in
programs, such as STATUS and STOP. If ADMINPW is specified, the user must supply the password
in the request (using the _ADMINPW variable) in order to run the STOP program. When the request
is received, the server performs the following tasks:

verifies that the request is one of the administrator programs◊

171

searches the request data for the variable _ADMINPW◊
determines whether the variable value matches the ADMINPW password that is specified in
the PROC APPSRV statement

◊

if it is a match, the request is returned; if it is not a match, the request is rejected.◊
In addition to built−in programs, the ADMINLIBS statement can be used to declare various librefs
and filerefs as containing administrator−only programs. Programs in these libraries are not executed
unless _ADMINPW is passed and is verified.

Note: If a libref or fileref has been defined in both a PROGLIBS statement and an ADMINLIBS
statement, then the ADMINPW is not required for programs in that libref or fileref. General users will
have access to programs that might have been intended only for administrators.

AFPARMS='string'
is a quoted string that is appended to the SAS/AF command when users invoke user programs that are
written in SCL. It can be used to pass a variety of parameters to the SAS/AF environment, but the
primary use in the Application Server is to enable the SCL debugger. To invoke the SCL debugger,
compile your SCL program with debug on and then start the server with

 AFPARMS='debug=yes'

AUTH=scheme
specifies the authentication scheme. The default scheme (AUTH=NONE without GUESTUSER being
specified) causes all requests to be run with the credentials of the user name under which PROC
APPSRV was started. Specifying GUESTUSER (and the corresponding GUESTPASS) with the
default AUTH=NONE scheme causes all requests to be run with the credentials of the GUESTUSER
user name. All access to catalogs, data sets, and external files are checked against this user name.
Note that the AUTH=HOST special requirements listed below also apply to AUTH=NONE when
GUESTUSER and GUESTPASS are specified.

The AUTH=HOST scheme requires a user name and password with each request, which will run
using the credentials of the authenticated user name. All access to catalogs, data sets, and external
files are checked against this user name. The user name and password can be specified with the
reserved variables _USERNAME and _PASSWORD (and optionally _PASSWORD2). The
GUESTUSER and GUESTPASS (and optionally GUESTP2) options can be used to specify default
values if they are not specified with the request. If the user name is not specified by either the
_USERNAME variable or by the GUESTUSER option, the request is rejected (unless the LOGIN
option is used.) User names and passwords are saved with sessions, so requests that connect to an
existing session do not need to and cannot specify a new user name and password.

The AUTH=META option enables the PROC APPSRV statement to use a metadata server. The
credentials passed in _USERNAME and _PASSWORD are validated against the metadata server
instead of the host operating environment. META* SAS options must be set to valid values for
AUTH=META to function. The GUESTUSER and GUESTPASS options are supported for
AUTH=META. For more information about system options for metadata, see SAS Language
Interfaces to Metadata.

The AUTH schemes do not apply to administration programs. Unprotected administration programs
such as PING and STATUS can be run by any client without specifying a user name or password.
Protected administration programs such as STOP require only the _ADMINPW parameter (for more
details, see the ADMINPW option). ADMINPW is required if AUTH=HOST is specified.

See the Special Requirements section for more information about the AUTH=HOST option.
CHARSET=character−set−name

appends the specified character set name to the HTTP content−type header for any text output unless
the content−type was explicitly set by APPSRV_HEADER() or explicitly written to _WEBOUT by

SAS Documentation

172

the SAS program. If CHARSET= is not specified, then the content−type header character set name
will be determined from the _WEBOUT output encoding.

ENCODING=encoding−name
specifies the default character−set encoding for all data sent to and received from the Application
Broker. This option is not normally required unless the Web server uses a different encoding from the
one used by the Application Server. PROC APPSRV ENCODING defaults to the appropriate
Windows encoding regardless of the platform. The default output encoding is automatically set based
on the SAS session encoding. The SAS session encoding is normally determined by the locale setting
of your SAS installation, but can be set directly using the SAS ENCODING option.

The following are the default Windows SAS encodings based on the Application Server's locale.

SAS Locale Default PROC APPSRV ENCODING

Western Europe and the Americas wlatin1

Eastern Europe wlatin2

Cyrillic wcyrillic

Japanese ms−932

Encodings whose names include a dash (−) must be enclosed in quotation marks (').
GUESTP2='password'

See AUTH. This option is used only in OpenVMS environments because OpenVMS can accept two
passwords.

GUESTPASS='password'
See AUTH.

GUESTUSER='username'
See AUTH.

LOCALIP=IP−address
allows you to manually override the local IP address used by the Application Server. In rare cases, the
local IP address returned by the operating environment is not usable, and a manual override is
necessary.

LRECL=n
is the logical record length for _WEBOUT and _GRPHOUT filerefs. The default is 65535.

NETBUFFK=n
is the buffer size in kilobytes (KB) for _WEBOUT and _GRPHOUT output buffering. The buffer size
must be a value between 4 and 128. Output buffering is disabled by default. Use of this option is not
recommended without consulting SAS Technical Support.

NOCHARSET
disables any special content−type processing and reverts to existing SBCS behavior. You cannot use
this option with the CHARSET= option.

NOSHAREPOLL
disables polling of the SAS/SHARE server librefs. You cannot use this option with the
SHAREPOLL= option.

PORT=n
specifies the request socket for the Application Server.

If a numeric value other than zero is supplied, the value is used as the TCP/IP port number on
which the server listens for requests.

◊

If an alphanumeric value is supplied, it is assumed to be a network service name. The name is
searched in the system services file (for example, /etc/services) and translated to a port
number.

◊

SAS Documentation

173

If zero is supplied, PROC APPSRV chooses an available port. This feature is used only for
launch or pool services.

◊

PROGRAMS=n
specifies the maximum number of requests that can execute concurrently. The default setting is 1.

Note: This option should not be used if PROC APPSRV is run in the SAS windowing environment.
SHAREPOLL=n

controls the period of SAS/SHARE server libref polling. The period is equal to n, which is a positive
integer representing seconds. The default setting is 300 seconds (5 minutes). The SHAREPOLL
setting should be interpreted as the minimum amount of time between polls of the SAS/SHARE
server. SHARE polling has a lower priority than the servicing of client requests so in periods of high
client activity the SHARE polling will be delayed beyond the period specified by n. The
SHAREPOLL= option cannot be used at the same time as the NOSHAREPOLL option.

UNSAFE='string'
specifies a quoted string listing characters that should be stripped from values in the request data (the
name/value pairs). This option is normally used to strip characters from input values that could cause
unwanted SAS macro language processing.

The characters that users most often want to mark as unsafe are the following:

single quotation mark◊
double quotation mark◊
ampersand◊
percent◊
semicolon.◊

Because this list is enclosed by single quotation marks, you can represent a single quotation mark by
placing two single quotation marks within the quoted string in the following manner:

 UNSAFE='&"%;'''

There are times, such as processing free−format text input, when you might want to use the original,
complete value for an input name/value pair. The APPSRV_UNSAFE function can be used for this
purpose. For example, the complete text of an input variable named MYTEXT can be accessed in a
DATA step or SCL program with APPSRV_UNSAFE, as in the following:

 fulltext = appsrv_unsafe('MYTEXT');

The APPSRV_UNSAFE function can be called from macro with the %sysfunc function:

 %let fulltext = %sysfunc(appsrv_unsafe(MYTEXT));

Note: If you are using programs developed before Version 8 of SAS, you might need to omit the
UNSAFE option for proper operation of your application. If the UNSAFE option is not specified, no
unsafe processing is performed and all name/value pairs are passed unmodified to the request
program.

Special Requirements for AUTH=HOST

Using AUTH=HOST on OpenVMS systems

The AUTH=HOST option requires that the account that is running PROC APPSRV must have SYSPRV
privilege enabled to allow the server to verify login information. Note that all client requests will be rejected

SAS Documentation

174

as invalid if the server account does not have this privilege.

Using AUTH=HOST on z/OS systems

The AUTH=HOST option requires that the SAS SVC routine be installed on z/OS systems. The SAS SVC
control program routine is an interface between the z/OS operating environment and a specific request, such
as third−party checking. This facility provides verification in the form of calls for authentication of both the
user ID and password and of library authority. Perform the following steps before using the AUTH=HOST
option.

Install the SAS SVC routine, if necessary.
If you have already installed the SAS SVC routine for SAS 9.2, do not repeat the step here. If
you need to perform the installation, see the installation instructions for SAS under z/OS at
support.sas.com/documentation/installcenter for details.

♦

Because SAS SVC 9.2 is backward compatible, it replaces the SAS SVC routines from
previous releases. You can continue using previous releases of Base SAS and SAS/IntrNet or
SAS/SHARE with SAS SVC 9.2.

♦

1.

Verify the SAS options for the SVC routine.
You must verify that the SAS options for the SVC routine accurately reflect the way that the
SAS SVC is installed. The SAS option SVC0SVC should be set to the number at which the
SAS SVC is installed (for example, 251 or 109). If the SAS SVC is installed at 109 as an ESR
SVC, set the SAS option SVC0R15 to the ESR code (for example, 4).

♦
2.

Verify installation on all CPUs, as needed.
If you have more than one CPU, verify that the SAS SVC routine is installed on the systems
that will be running the Application Server at your site.

♦
3.

Using AUTH=HOST on UNIX systems

The AUTH=HOST option requires that the SAS User Authorization utilities (sasauth and sasperm) be
configured properly. See the section on configuring user authorization in the SAS 9.2 post−installation
instructions for UNIX at support.sas.com/documentation/installcenter for more information on these utilities.

Using AUTH=HOST on Windows systems

The AUTH=HOST option requires special user rights on Windows systems. Review the following
requirements carefully before enabling the AUTH=HOST option.

Any user name specified by a client (including the default GUESTUSER) must have Log on as a
batch job advanced user right enabled. If this permission is not enabled, the client request is rejected
as an invalid login.

•

On Windows NT and Windows 2000 only, the account that is running PROC APPSRV must have
Act as part of the operating system advanced user right enabled to allow the server to verify login
information. Note that all client requests are rejected as invalid if the server account does not have this
permission.

•

SAS Documentation

175

ADMINLIBS Statement

Declares which libraries, filerefs, and catalogs contain programs that can be run by an administrator
using the _ADMINPW password

Syntax

ADMINLIBS libref−1 | libref−1.catalog−1 | fileref−1 <...libref−n | libref−n.catalog−n | fileref−n>;

Arguments

Libraries, filerefs, and catalogs listed here can be run on the Application Server only if a valid _ADMINPW
value is passed in the request data and a password is specified.

Note: If a libref or fileref has been defined in both a PROGLIBS statement and an ADMINLIBS statement,
then the ADMINPW is not required for programs in that libref or fileref. General users will have access to
programs that might have been intended only for administrators.

libref−1
specifies a library that contains one or more catalogs that contain programs that can be run by the
Application Server. Programs must be SCL, SOURCE, or MACRO catalog entries.

libref−1.catalog−1
specifies a catalog that contains SCL, SOURCE, and MACRO programs that can be run by the
Application Server. If a libref is listed as a data library and a program library, then the library is
globally available and can contain programs. If you want to enable programs from one catalog in a
given library to be run without enabling everything in the library to be run, then list just that catalog in
a two−level name as in the following example:

 ADMINLIBS MYLIB.MYCAT . . .;

Listing both the library and a specific catalog within that library is redundant. For example,

 ADMINLIBS MYLIB MYLIB.MYCAT . . .;

enables all programs in MYLIB to run.
fileref−1

specifies a host directory or PDS that contains SAS programs that can be run by the Application
Server.

...libref−n | libref−n.catalog−n | fileref−n
specifies that you can list multiple librefs, catalogs, and filerefs for this statement.

Note: See also the ADMINPW option of the PROC APPSRV statement.

176

ALLOCATE FILE Statement

Defines a file that the Application Server assigns

Syntax

ALLOCATE FILE fileref <device−type> 'directory−or−PDS−path' <host−options>;

Note: The syntax of the ALLOCATE FILE statement is identical to that of the global FILENAME statement.
The above syntax is simplified. For a complete listing of arguments and explanations, see the FILENAME
statement in SAS Language Reference: Dictionary.

Arguments

fileref
associates a SAS fileref with an external file or directory. You can use any SAS name when you are
assigning a new fileref. You can list SAS filerefs that are defined in the ALLOCATE FILE statement
in a DATALIBS, PROGLIBS, or ADMINLIBS statement. SAS filerefs that are listed in a
DATALIBS statement are available to all programs that are run by the Application Server.

Note: SAS filerefs that are defined outside PROC APPSRV by using FILENAME statements are not
accessible by Application Server programs and cannot be listed in a DATALIBS, PROGLIBS, or
ADMINLIBS statement.

device−type
specifies the type of device. Values include

DISK
specifies that the device is a disk drive. When assigning a fileref to a file on a disk, you are
not required to specify DISK.

TAPE
specifies a tape drive.

DUMMY
specifies a bit bucket or null device.

directory−or−PDS−path
specifies a directory or partitioned data set (PDS) that is the pathname for a SAS fileref that is used in
a PROGLIBS or ADMINLIBS statement. A directory is assumed to contain SAS source code in
individual .sas flat files. A PDS is assumed to contain SAS source code in individual members. You
must enter the directory or path in one of the following forms, depending on which operating
environment the SAS server is using:

Operating Environment Example Directory or Path

UNIX /u/jdoe/samples

Windows C:\samples

z/OS (HFS directory) /u/jdoe/samples

z/OS (PDS) SAS.INTRNET.SAMPLES
host−options

indicates host− and device−specific details, such as file attributes and processing attributes. For
177

details about host and device options, see SAS Language Reference: Dictionary and the SAS
documentation for your operating environment.

SAS Documentation

178

ALLOCATE LIBRARY Statement

Defines a library that the Application Server assigns

Syntax

ALLOCATE LIBRARY libref <engine> 'SAS−data−library' <options>;

Note: The syntax of the ALLOCATE LIBRARY statement is identical to that of the global LIBNAME
statement. The above syntax is simplified. For a complete listing of arguments and explanations, see the
LIBNAME statement in SAS Language Reference: Dictionary.

Arguments

libref
associates a SAS libref (shortcut name) with a SAS data library. The libref specifies either the name
of an existing server library or the name of a new library reference that is defined when you enter this
statement. You can list SAS librefs that are defined in the ALLOCATE LIBRARY statement in a
DATALIBS, PROGLIBS, or ADMINLIBS statement.

SAS librefs that are listed in PROGLIBS or ADMINLIBS statements are assumed to contain catalogs
that contain SAS programs that can be executed by the Application Server. The SAS programs can be
SOURCE, MACRO, or SCL catalog entries.

SAS librefs that are listed in a DATALIBS statement are available to all programs that are run by the
Application Server.

Note: SAS librefs that are defined outside PROC APPSRV by using LIBNAME statements are not
accessible by Application Server programs and cannot be listed in a DATALIBS, PROGLIBS, or
ADMINLIBS statement.

engine
specifies the name of a valid SAS engine that you want to use to access the server library. Specify this
option only if you want to override the SAS default for a specific server, or if you want to reduce the
time that is needed for the client to determine which engine to use to access a specific server.

SAS−data−library
must be a valid physical name for the SAS data library on your host system. You must enclose the
physical name in single or double quotation marks.

The physical name of the SAS data library is the name that is recognized by the operating
environment.

options
See the LIBNAME statement in the SAS Language Reference: Dictionary for a complete list of
options.

Nesting Library Names in Concatenated Libraries

Concatenated Data Libraries

You must list all data libraries that are nested in a concatenated library in DATALIBS.
179

Single−level nested data libraries work properly regardless of the order of the libraries in the DATALIBS
statement. For example,

 PROC APPSRV;
 ALLOC LIBRARY ONE '/path/one';
 ALLOC LIBRARY TWO ('/path/two' ONE);
 DATALIBS ONE TWO;

works whether the order of the libraries is coded as DATALIBS ONE TWO or DATALIBS TWO ONE.

Multilevel nested libraries work only if the order in the DATALIBS statement is correct. The following code
does not work because library THREE is assigned before library TWO:

 PROC APPSRV;
 ALLOC LIBRARY ONE '/path/one';
 ALLOC LIBRARY TWO ('/path/two' ONE);
 ALLOC LIBRARY THREE ('/path/three' TWO);
 DATALIBS THREE TWO ONE;

Instead, use the following code:

 DATALIBS ONE TWO THREE; /* or DATALIBS TWO ONE THREE; */

ALLOC statements are order dependent. PROC APPSRV performs an automatic check on library and file
assignments during its startup phase. The code

 PROC APPSRV;
 ALLOC LIBRARY TWO ('/path/two' ONE);
 ALLOC LIBRARY ONE '/path/one';

fails because library ONE is not defined when the library TWO assignment is tested. This happens regardless
of how the libraries are listed in the DATALIBS, PROGLIBS, or ADMINLIBS statements. Remember that
the syntax is identical to that of a LIBNAME statement in SAS open code.

Every library that is used must be defined as a data library. The following code does not work because library
ONE is not defined as a data library:

 PROC APPSRV;
 ALLOC LIBRARY ONE '/path/one';
 ALLOC LIBRARY TWO ('/path/two' ONE);
 DATALIBS TWO;

Concatenated Program Libraries

Nested program libraries generally do not work as expected. For example, the following code does not work
when you attempt to run a program in library TWO. This is because library ONE is not assigned in the request
executive when you attempt to assign library TWO.

 PROC APPSRV;
 ALLOC LIBRARY ONE '/path/one';
 ALLOC LIBRARY TWO ('/path/two' ONE);
 PROGLIBS TWO ONE;

You must change library ONE to a DATALIB by using the following code:

 PROC APPSRV;

SAS Documentation

180

 ALLOC LIBRARY ONE '/path/one';
 ALLOC LIBRARY TWO ('/path/two' ONE);
 DATALIBS ONE;
 PROGLIBS TWO;

The same problem can occur when you use ADMINLIBS. This can cause the most confusion because it is not
always obvious what can be causing the problem.

SAS Documentation

181

DATALIBS Statement

Defines librefs and filerefs that are available to all programs that are run by the Application Server

Syntax

DATALIBS libref−1 | fileref−1 <...libref−n | fileref−n>;

Assign these logical libraries in an ALLOCATE statement in the same server procedure. Any libraries that are
defined externally to SAS (such as, in JCL code) are automatically permanent data libraries and should not be
listed in the DATALIBS statement. In previous versions of the Application Server, global data libraries or
files were allocated in the permdata.sas file. The Application Server now enables you to

assign the logical libraries externally to SAS•
allocate them with an ALLOCATE statement and then list them in the DATALIBS statement.•

Arguments

libref−1
specifies that the libref is assigned and accessible to all programs that run on the server. The libref
cannot be cleared by the user code. Use DATALIBS for globally accessible data repositories that
contain non−sensitive data. Keep private or application−specific data in its own library and assign it
by using a LIBNAME statement.

fileref−1
specifies that the fileref is assigned and accessible to all programs that run on the server. The fileref
cannot be cleared by the user code. Use DATALIBS for globally accessible data repositories that
contain non−sensitive data. Keep private or application−specific data in its own file and assign it by
using a FILENAME statement.

...libref−n | fileref−n
specifies that you can list multiple librefs and filerefs for this statement.

182

LOG Statement

Controls content and behavior of the Application Server log

Syntax

LOG <DISPLAY=NONE | ERRORS | ALL> <SYMBOLS=NONE | ERRORS | ALL> <FILE=fileref>
<APPEND | REPLACE>;

The Application Server has several options to control the content and operation of the SAS log. The SAS log
can be re−directed to a new file based on the date, the day of the week, or the time. The log contains
information about each client request. The log can be limited to a brief note for each request, or can capture
the complete SAS log for the request.

By default, the configuration utility (inetcfg) sets up the server so that a new log file is created each day of the
week. Separate log files are created for each unique port so that there are no conflicts when two or more
servers are active. Each time a server is started, it appends to an existing log file unless the log file has not
been modified in the last six days. If the log file is at least six days old, it is replaced by a new log file. See
Default Log File Append Behavior for a more complete description. You can change this behavior by editing
the LOG statement in the appstart.sas file that is created by the configuration utility and by using the options
described below.

Note: z/OS Application Servers always append to existing log files regardless of their last modified date
unless the REPLACE option is specified.

Arguments

DISPLAY=NONE | ERRORS | ALL
controls whether the SAS log for each client request is written to the Application Server log. The
request log can be ignored for all requests, written only for requests that complete with errors, or
written for all requests.

SYMBOLS=NONE | ERRORS | ALL
controls whether the client request symbols are written to the Application Server log. The symbols
can be logged for all requests, logged only for requests that complete with errors, or never logged.

FILE=fileref
enables you to re−direct the SAS log file of the Application Server to another file. The fileref should
be defined in an ALLOCATE FILE statement. The physical path of the fileref can contain any of the
following date and time directives.

Date and Time Directives

%a Day of week [Sun − Sat]

%b Month [Jan − Dec]

%d day [01 −31]

%H hour [00 − 23]

%m month [01 − 12]

%w day of week [1=Sunday − 7=Saturday]

%Y full year

183

%y 2−digit year [00 − 99]

%p port number of listen port

%n nodename up to first period (.)
For example:

 allocate file one '/u/username/%a_%p.log';

 ...

 log file=one;

creates /u/username/Mon_5001.log if the Application Server starts on a Monday,
/u/username/Tue_5001.log if it starts on a Tuesday, and so on.

Periodically, the Application Server regenerates the log file name and checks to see whether it is
different from the current log file. If it is different, the current log file is closed, and the new log file
with the new name is opened. In the previous example, shortly after midnight, early Tuesday
morning, the log file /u/username/Mon_5001.log is closed and the file /u/username/Tue_5001.log is
opened.

Note: On z/OS, this feature is supported only if the log file is specified as a hierarchical file system
(HFS) path, as shown in the previous ALLOCATE FILE statement. (In order to correctly specify an
HFS fileref for an Application Server on z/OS, SAS must be started with the HFS option.) You cannot
use partitioned data set members for log files on z/OS.

APPEND | REPLACE
specifies whether the Application Server always appends (APPEND) to an existing log file or replaces
(REPLACE) the contents of an existing log file.

Default Log File Append Behavior

The Application Server has special default behavior to simplify the management of server logs. If neither the
APPEND nor the REPLACE options are specified, the server replaces the contents of an existing log file if
the last modification date is greater than six days ago (actually, 5 days, 23 hours). If the last modification date
is less than six days ago, the server appends to the existing log file.

For example, if log file Mon_5001.log has a last modification date of 5:00 p.m., Monday, June 14, and the
Application Server is re−started at 8:00 p.m. on the same day, the server appends to the existing log. If the
server is restarted on Monday, June 21, the server replaces the contents of the log file. This behavior, together
with the service files that are created by the inetcfg utility, ensures that server logs are kept for six days and
then are automatically overwritten.

Note: z/OS Application Servers always append to an existing log file unless the REPLACE option is
specified. In addition, you cannot use partitioned data set members for log files on z/OS.

SAS Documentation

184

PROGLIBS Statement

Declares which libraries, catalogs, and filerefs contain programs that can be run on an Application
Server

Syntax

PROGLIBS libref−1 | libref−1.catalog−1 | fileref−1 <...libref−n | libref−n.catalog−n | fileref−n>;

When a request is received by the Application Server, the PROGLIBS list is scanned for a match on the first
one or two levels in the program name that is supplied in the special request variable _PROGRAM. If a match
is found, then the program is executed.

Arguments

libref−1
specifies a library that contains one or more catalogs that contain programs that can be run by the
Application Server. Programs must be SCL, SOURCE, or MACRO catalog entries.

libref−1.catalog−1
specifies a catalog that contains SCL, SOURCE, and MACRO programs that can be run by the
Application Server. If a libref is listed as a data library and a program library, then the library is both
globally available and can contain programs. If you want to enable programs from one catalog in a
specified library to be executed without enabling everything in the library to be executed, then list just
that catalog in a two−level name like this:

 PROGLIBS MYLIB.MYCAT . . .;

Listing both the library and a specific catalog within that library is redundant. For example:

 PROGLIBS MYLIB MYLIB.MYCAT . . .;

enables all programs in MYLIB to run.
fileref−1

specifies a fileref that corresponds to a host directory or a PDS that contains SAS programs that can
be executed by the Application Server.

...libref−n | libref−n.catalog−n | fileref−n
specifies that you can list multiple librefs, catalogs, and filerefs for this statement.

185

REQUEST Statement

Controls how a request is processed by the Application Server

Syntax

REQUEST <INIT=program−name> <TERM=program−name> <LOGIN=program−name>
<TIMEOUT=seconds> <MAXTIMEOUT=seconds> <READ=seconds>
<FROMADR=("IP−address−1" <..."IP−address−n">)>;

Arguments

INIT=program−name
specifies the name of a program to run before each requested program. By default, no program is run
before each request.

TERM=program−name
specifies the name of a program to run after each requested program. By default, no program is run
after each request.

LOGIN=program−name
specifies the name of a program to run when the server is running with AUTH=HOST (a secure
Application Server) and when _USERNAME and _PASSWORD are missing or incorrect. If the
option is omitted, the user will receive a default response stating that the login information is missing
or incorrect.

TIMEOUT=seconds
specifies the number of seconds that a requested program is allowed to run before it is terminated by
the server. By default, the TIMEOUT is set to 300 (5 minutes). This value can be changed in a request
program by calling the Application Dispatcher APPSRVSET function.

MAXTIMEOUT=seconds
is the maximum number of seconds that a timeout can be set to using the APPSRVSET function. The
default value is 900 (15 minutes). For more information about setting the request timeout from a
request program, see the SAS/IntrNet Application Dispatcher documentation for the APPSRVSET
function.

READ=seconds
sets the number of seconds the server waits for a request to be read. The default value for READ is 30
seconds. The majority of requests are read in less than one second.

FROMADR=("IP−address−1" <..."IP−address−n">)
specifies a space−delimited list of IP addresses from which the server accepts requests. Each address
must be enclosed in quotation marks. By default, requests are accepted from any address. This option
accepts numeric IP numbers only. Names and wildcards in addresses are not supported. Enclose each
IP address in quotation marks. Separate the IP addresses from each other with a white space and
enclose the complete list in parentheses.

An IPv6 host usually supports both the IPv6 and IPv4 stacks and, therefore, has two IP addresses: the
IPv6 address and the IPv4 address. The FROMADR= argument specifically uses an IP address to
identify an acceptable client host. To ensure that an IPv6 host is not erroneously rejected, include both
its IPv6 and IPv4 addresses in the FROMADR= argument. In the following example, the first
FROMADR= argument is the IPv6 address. The second argument is the IPv4 address:

 request fromadr=("fec0::1:230:6eff:fef4:c827" "10.41.9.53");

186

Note: Starting with SAS/IntrNet 9.2, an illegal FROMADR IP address terminates the Application
Server session. Before SAS/IntrNet 9.2, the illegal IP address appeared as a warning in the log and the
Application Server ran.

SAS Documentation

187

SESSION Statement

Controls how a session is administered by the Application Server

Syntax

SESSION <INIT=program−name> <INVSESS=program−name> <TERM=program−name>
<TIMEOUT=seconds> <MAXTIMEOUT=seconds> <VERIFY=(variable−1 <...variable−n>)>;

Arguments

INIT=program−name
specifies programs to be run when a session is created and destroyed (including those that expire by
timing out). By default, no program is run at the creation and destruction of a session. The program
names referenced here must be in the same format as the _PROGRAM variable. Also, the libraries or
files that contain these programs must be allocated in a previous ALLOCATE statement.

INVSESS=program−name
specifies a program that is to be run in the place of the requested program if the session that is
specified by _SESSIONID does not exist. This can happen if the session expired or if the session ID
was modified by the client.

Two special macro variables are created for the invalid session program. The _USERPROGRAM
variable contains the name of the program that was requested by the user. This is the value that is
specified by the _PROGRAM variable in the original request. The _INVSESSREASON variable has
NOSESSION as its value, which means that the session specified by _SESSIONID does not exist.

The invalid session program can be used to display an informative response when a user session has
expired or is otherwise inaccessible. The response can redirect the user to an application login screen,
explain how to restart the application, or provide a friendlier error message.

TERM=program−name
specifies programs to be run when a session is created and destroyed (including those that expire by
timing out). By default, no program is run at the creation and destruction of a session. The program
names referenced here must be in the same format as the _PROGRAM variable. Also, the libraries or
files that contain these programs must be allocated in a previous ALLOCATE statement.

Remember that when you delete a session, it is only marked for deletion. A session is not deleted until
the clean−up routine runs. A user creates a session only once throughout an application. The user can
reuse the session, but deletion of the session does not occur until the end of the application.

In the following example, a user creates a session and then deletes that session. When the user tries to
create a new session in the same test program they get a warning.

 testa.sas (creates session1 −> calls testb.sas)
 testb.sas (uses session1 −> deletes session1 −> creates new session2)

The user cannot create session2, because session1 is still being used. Furthermore, after a session is
marked for deletion, another user cannot access that same session, even before the clean−up process
runs.

TIMEOUT=seconds

188

specifies the number of seconds that elapse before a session expires. The default session timeout is
900 (15 minutes). This value can be changed in a request program by calling the Application
Dispatcher APPSRVSET function. An Application Server does not honor a pool service idle timeout
stop request from the Load Manager until all sessions have expired.

MAXTIMEOUT=seconds
is the maximum number of seconds that a timeout can be set to using the APPSRVSET function. For
more information about setting the session timeout from a request program, see the SAS/IntrNet
Application Dispatcher documentation for the APPSRVSET function.

VERIFY=(variable−1 <...variable−n>)
is a space−delimited list of variable names. A session reconnect is a request for a _SESSIONID for an
existing session. For enhanced security, the Application Server can verify other request variables in
addition to validating the _SESSIONID for all session re−connects. For example, the Application
Server can ensure that the variable _RMTUSER is the same for all session re−connects. This makes it
more difficult for one client to steal another client's URL and access the first client's session
information. Enclose the list of variables in parentheses.

SAS Documentation

189

STATISTICS Statement

Controls writing of request statistics to a data set

Syntax

STATISTICS CREATE=library.dataset <(data−set−options)>;

STATISTICS DATA=library.dataset <(data−set−options)> <ADDPORT> <EXITONERROR>
<TEMPLATE=library.dataset <(data−set−options)>> <WRITECOUNT=n> <WRITEEVERY=n>;

Server administrators can use the default data set variables that are supplied by the Application Server, or they
can modify the variables that are written to the data set, by removing default variables and adding variables of
their own.

Arguments

CREATE=library.dataset <(data−set−options)>
creates the specified data set with the default set of statistics variables. The use of the CREATE=
option is NOT required. The Application Server (when started with the STATISTICS
DATA=library.dataset statement) will create a default data set even if the CREATE= option is not
specified.

This option is used only in a stand−alone SAS session. Do NOT use it when starting the Application
Server for application processing. The CREATE= option creates an empty SAS data set containing
the default statistics data set variables. The data set can then be modified using a DATA step (to add
new variables or drop existing default variables). The modified data set can then be used with the
STATISTICS DATA= or TEMPLATE= option. See the Customizing the Statistics Data Set for an
example of how to create and modify the statistics data set.

DATA=library.dataset <(data−set−options)>
specifies the data set to which statistics are written. These data set options are not required. If the
specified data set exists, it is opened and used. If the specified data set does not exist, it is created. If
TEMPLATE= is specified, all of the variable definitions from the TEMPLATE data set are copied
into the new DATA data set. If TEMPLATE= is not specified, the new data set has the default
variables. Data set options should include options for creating the data set and for opening the data set
for update.

The library specification must be a library that is specified in one of the Application Server
ALLOCATE statements. This enables the Application Server to define the library for the server and
for administrative requests.

Note: On z/OS, the library containing the statistics data set cannot use the DISP=NEW option
because the library might be assigned multiple times. If you want to create a new statistics data set
when running PROC APPSRV, issue the LIBNAME statement with DISP=NEW before the PROC
APPSRV statement. For example,

 libname statds '...' disp=new;

 proc appsrv port=5800;
 allocate library statds '...';
 statistics data=statds.stats;

190

 run;

ADDPORT
tells the Application Server to append the port number of the current server to the member name of
the STATISTICS data set. This is useful when you want pool servers to write to different data sets.

EXITONERROR
causes the Application Server to exit when there is a failure writing to the statistics data set. Failures
can occur due to a disk−full condition, a SAS/SHARE server shutdown or other conditions that
disable access to the data set. Use this option if you must collect statistics on all server accesses (for
example, for security auditing purposes).

If EXITONERROR is not set, a write failure causes the Application Server to queue STATISTICS
observations and periodically attempt to write them to the data set. The Application Server will
continue to process client requests. If the error condition is not corrected and the Application Server is
stopped, any queued STATISTICS observations are lost.

TEMPLATE=library.dataset <(data−set−options)>
specifies a template data set. When the statistics data set is created, the variable definitions from the
template data set are used instead of the default variables for the statistics data set.

The specified library must be defined externally to PROC APPSRV.
WRITECOUNT=n

specifies the number of observations to place in the queue before writing to the data set. When the
data set is temporarily unavailable (for example, when a SAS/SHARE server is restarting) the queue
might grow larger than WRITECOUNT. The default value for WRITECOUNT is 50 observations.

WRITEEVERY=n
writes all observations that are in the queue every n minutes. The default value for WRITEEVERY is
5 minutes.

Default Contents of the Data Set

The following table shows the default variables:

Variable
Name

Variable Type Description

Obstype Character length 1 R = request, I = Internal, U = startup, D = shutdown, T = trace

Okay Character length 1 1 = request ran okay, 0 = error

Duplex Character length 1 H = half duplex, F = full duplex

Http Character length 1 1 = http request, 0= normal broker request

Program Character length
32

_PROGRAM variable

Peeraddr Character length
16

Peer address

Hostname Character length
20

Node name of the server

Username Character length
12

_USERNAME variable, if any

Entry _ENTRY variable, if any

SAS Documentation

191

Character length
32

Sessionid Character length
12

_SESSIONID, if any

Service Character length
12

Service name

Starttime Number Time the request started

Runtime Number Run time of the request

Port Number Server port number

Bytesin Number Number of input bytes (read from client)

Bytesout Number Number of output bytes (written to client)

Cputime Number Amount of usage time for CPU for the request. This field is available
only
on z/OS systems. The STIMER option must be enabled to get valid
Cputime values. The STIMER option is the default for z/OS.

Customizing the Statistics Data Set

In some cases, you might want to modify the list of variables in the data set. The example below shows how
to

eliminate the default SERVICE variable•
make the PROGRAM variable larger in size•
and add two new variables, EMPNO and EMPDEPT (input values used by applications that run in
this service).

•

First, create a default data set using the following code:

 proc appsrv port=0;
 statistics create=work.stdstat;
 run;

This command creates the data set called STDSTAT in the WORK library, and writes the default list of
variables to it. Next, use a DATA step to create a modified data set, as follows:

 libname statlib 'path−to−library';
 data statlib.stats;

 /* change program length to 40 − you must change var defns before
 anything else */
 length program $40;

 /* start with the default data set */
 set work.stdstat;

 /* set up EMPNO and EMPDEPT variables */
 attrib empno length=$8 label='Employee Number';
 attrib empdept length=$32 label='Employee Department';

 /* drop service */

SAS Documentation

192

 drop service;

 /* do not select any observations (there are none) from the previous
 data set */
 stop;
 run;

The STATLIB.STATS data set now contains the desired variables. Modify your appstart.sas file to save
statistics to this data set, as follows:

 proc appsrv ...;
 ...
 allocate library statlib 'path−to−library';
 statistics data=statlib.stats;
 run;

Application Server Access to the Data Set

The Application Server opens the statistics data set for WRITE access. This means that usually each server
needs to write to its own data set. However, if a data set is accessed by using SAS/SHARE software, multiple
servers can write to a single data set.

The following code is an example of a PROC APPSRV command that specifies that a single server accesses a
single data set:

 proc appsrv ... ;
 ...
 allocate library data '.';
 STATISTICS DATA=data.stats;
 ...
 run;

The following is an example of a PROC APPSRV command that specifies that a server write statistics to a
data set on a SAS/SHARE server:

 proc appsrv ... ;
 ...
 allocate library data '.' server=host.sasapp11;
 STATISTICS DATA=data.stats;
 ...
 run;

Refer to SAS/SHARE documentation for more information about configuring, running, and accessing
SAS/SHARE servers.

Application Access to the Data Set

User applications can access the data set by using the _STATDATASET and _STATDATALIBNAME macro
variables. The _STATDATASET macro variable contains the library.DATASET setting of the statistics data
set for this server. The _STATDATALIBNAME contains the LIBNAME, the physical name, and the options
of the ALLOCATE FILE statement for the statistics data set library. This enables the application to assign a
LIBNAME to the library with additional options (for example, ACCESS=READONLY).

Before you access the data set with the _STATDATASET or _STATDATALIBNAME macro variables,
check the status of the _STATDATASETAVAIL macro variable. It is set to one of the following values:

SAS Documentation

193

Value Description

OK The statistics data set is enabled and available for use.

NOADMINPW The statistics data set is enabled, but the _ADMINPW password was not supplied for this
request or was incorrect. The _STATDATASET and _STATDATALIBNAME variables
are not defined in this case.

NOSTATS The statistics data set is not enabled.

The following code is an example of assigning a LIBNAME and data access authority to the statistics data set
library:

 &_STATDATALIBNAME access=readonly;
 data RSTATS;
 set &_STATDATASET;
 where obstype='R';
 keep program starttime runtime;
 run;

Note: Only requests with administrator privileges (if the PROC APPSRV ADMINPW option is not specified,
all requests, otherwise only requests with a valid _ADMINPW) get these macro variables set. In this way, an
administrator can control access to the data set.

SAS Documentation

194

Samples
The Application Dispatcher includes some sample applications to help you understand how to create your
own applications. These samples are documented at http://support.sas.com/samples. You can also use these
applications to ensure that you installed and configured the Application Dispatcher correctly. The input
component for each sample application is installed along with the Application Broker in a default location of
http://yourserver/sasweb/IntrNet9/dispatch/. The program component is installed along with the Application
Server in the sample and samplib program libraries.

The Xplore sample application uses Application Dispatcher and Web Publishing Tools to browse data sets,
catalogs, catalog entries, perform drill−down on PROC SUMMARY data sets, and even download data sets as
comma−separated value files directly into your spread sheet program. This sample application provides an
explorer interface to SAS libraries and their contents. Xplore uses HTML frames, so it requires three HTML
files as input. To start this application, type the following URL into your Web browser:
http://your_server/sasweb/IntrNet9/xplore/webxplor.html.

195

196

Your Turn

We welcome your feedback.

• If you have comments about this book, please send them to
yourturn@sas.com. Include the full title and page numbers (if
applicable).

• If you have comments about the software, please send them to
suggest@sas.com.

197

198

SAS® Publishing delivers!
Whether you are new to the workforce or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart.

SAS® Press Series
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from the SAS Press Series. Written by experienced SAS professionals from
around the world, these books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information—SAS documentation. We
currently produce the following types of reference documentation: online help that is built into the software,
tutorials that are integrated into the product, reference documentation delivered in HTML and PDF—free on
the Web, and hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Learning Edition 4.1
Get a workplace advantage, perform analytics in less time, and prepare for the SAS Base Programming
exam and SAS Advanced Programming exam with SAS® Learning Edition 4.1. This inexpensive, intuitive
personal learning version of SAS includes Base SAS® 9.1.3, SAS/STAT®, SAS/GRAPH®, SAS/QC®, SAS/ETS®,
and SAS® Enterprise Guide® 4.1. Whether you are a professor, student, or business professional, this is a
great way to learn SAS.

s u p p o r t . s a s . c o m / L E

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2008 SAS Institute Inc. All rights reserved. 474059_1US.0108

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Table of Contents
	What's New in SAS/IntrNet 9.2Application Dispatcher
	 About Application Dispatcher
	An Overview of the Application Dispatcher
	What Is the Application Dispatcher?
	What Are Application Dispatcher Services?
	What Are Application Dispatcher Applications?
	What Is the Application Load Manager?
	Who Uses the Application Dispatcher?

	How the Application Dispatcher Works
	How a Request Is Submitted to the Application Broker
	How the Application Broker Processes a Request
	How the Application Server Processes a Request
	How Program Output Is Sent to the Application Broker
	How the Load Manager Works

	Requirements for the Application Dispatcher
	Requirements for the Application Broker
	Requirements for the Application Server
	Requirements for the Application Load Manager

	Application Dispatcher Security
	Related Topics

	Application Broker and Web Server Security
	Using a Secure Web Server
	Hiding Sensitive Information from Web Server Logs
	Protecting the Application Broker Configuration File
	Creating Encrypted User Names and Passwords
	Authenticating the Application Broker

	Application Server Security
	The Application Server Should Not Trust the Application Broker
	Application Server May Restrict Application Broker Access
	Supplying a Password When Starting the Application Server
	Hiding Passwords and Other Sensitive Data from the SAS Log
	Restricting Access to Program Libraries
	Disabling Sample Programs
	Reviewing New or Modified Code

	Controlling Access to Data Sources with the AUTHLIB Data Set
	AUTHLIB Functions
	Verifying the AUTHLIB Data Set

	Application Dispatcher Program Security
	Using SCL or Compiled Macro Code
	Using Password-Protected Data Sets

	Upgrading from Version 8 to Version 9
	Completing the Installation
	Create and Start the Default Service
	Windows Platforms
	UNIX Platforms
	z/OS
	OpenVMS

	Add the Default Service Definition
	Testing the Installation
	Completing the Application Dispatcher Installation

	Customizing the Application Dispatcher
	Customizing the Application Broker
	Customizing the Application Server

	Using the Application Broker Configuration File
	Template Configuration File
	Modifying the Application Broker Configuration File

	Creating a Customized Welcome Page
	ISAPI/GWAPI Application Brokers
	ISAPI
	GWAPI

	Specifying the Global Administrator
	Specifying the Self-Referencing URL
	Specifying HTTP Methods
	Setting the Default Value of _DEBUG
	Using DebugMask and ServiceDebugMask
	Displaying the Powered by SAS Logo
	Exporting Environment Variables
	Configuration File Directives
	Administrator Directives
	Debugging Directives
	File and Variable Manipulation Directives
	General Service Directives
	Service-Specific Directives
	LaunchService
	LaunchService Directives for Previous Version Servers
	PoolService
	SocketService

	URL Directives

	Running Multiple Application Servers at Your Site
	Application Server Administration Programs
	Application Server Libraries
	Program Libraries
	Data Libraries

	Using Services
	Choosing a Service Type
	Socket Services
	Advantages
	Disadvantages

	Pool Services
	Advantages
	Disadvantages

	Launch Services
	Advantages
	Disadvantages

	Services on OpenVMS
	Creating a Service
	Starting the Service
	Stopping the Service
	Service Log Files
	Removing a Service

	Services on z/OS
	Creating a Service
	Starting the Service
	Stopping the Service
	Service Log Files
	Removing a Service

	Services on UNIX Platforms
	Creating a Service
	Starting the Service
	Stopping the Service
	Service Log Files
	Removing a Service

	Services on Windows Platforms
	Creating a Service
	Starting the Service
	Stopping the Service
	Modifying a Service or Accessing Service Log Files
	Windows Services
	Removing a Service

	Enhancing Performance
	Using Multiple Servers (Random Load Balancing)
	Using the Load Manager (Intelligent Load Balancing)
	Increasing Timeout
	Using Server Weights
	Specifying a Backup Machine

	Development vs. Production Environments
	Development Services
	Production Services

	Using the Load Manager
	Application Load Manager Reference
	Starting the Load Manager
	Stopping the Load Manager
	Application Broker Directives for the Load Manager
	Load Manager Statistics
	Load Manager serv.abc.com:5555

	Load Manager Data for Application Server Activity
	Load Manager serv.abc.com:5555

	Load Manager on Windows Platforms
	Configuring and Starting the Load Manager
	Accessing Log Files
	Windows Services

	Application Load Manager Log Files
	Running Jobs in the Background
	The Input Component
	Reserved Names
	Specifying Name/Value Pairs in a URL
	Specifying Name/Value Pairs in an HTML Form
	Specifying Name/Value Pairs in the Application Broker Configuration File
	Multiple Value Pairs

	HTML Syntax Reference
	HTML Tags
	Quotation Marks
	Anchor Tag
	FORM Tag
	IMG Tag
	INPUT Tag
	TEXTAREA Tag

	URL Syntax

	The Program Component
	The Four Types of Programs
	SAS Programs
	Source Entries
	SCL Entries
	Macro Entries

	Receiving Input Component Data
	Reserved or Special Variables
	HTTP Headers
	Automatic Header Generation
	Example
	Disabling Automatic Header Generation
	HTTP Output Reference
	Content-type
	Expires
	Location
	Pragma
	Set-Cookie

	Using HTML Formatting Tools
	The Output Delivery System (ODS)
	Creating Web Output with ODS
	Layout Examples
	Body Only
	Body and Table of Contents
	Table of Contents Only
	Graphics and Text

	Cleaning Up

	Using the REPLAY Program
	Advanced Programming Techniques
	Data Passing and Program Chaining
	First HTML Form
	First Program (PGM1.SAS)
	Second Program (PGM2.SAS)
	Modified Version of First Program (PGM1.SAS)

	Embedded Graphics
	Web Browser Referral by Using the Location Header
	Creating Various Date/Time Formats

	Creating Temporary Files
	Creating a File with a Unique Name
	Creating a File in a Unique Subdirectory
	Storing a File in a Unique Catalog
	Example

	Using Sessions: A Sample Web Application
	Sample Data
	Login
	Main Aisle
	Library Aisles
	Add Items
	Shopping Cart
	Checkout and Logout
	Invalid Session Program

	Uploading Files
	Reserved Macro Variables
	Examples of How to Upload Files
	Example 1: Uploading a single file
	Example 2: Uploading multiple files

	Examples of How to Use Uploaded Files
	Example 3: Uploading a CSV file to a SAS table
	Example 4: Uploading an Excel XML workbook to multiple SAS tables
	Example 5: Uploading a SAS table or view
	Example 6: Uploading a SAS catalog
	Example 7: Uploading a SAS table, view, or catalog and saving a permanent copy
	Example 8: Uploading an Excel workbook to a SAS table

	Application Server Functions
	APPSRVGETC
	Syntax
	Arguments
	Details
	Examples

	APPSRVGETN
	Syntax
	Arguments
	Details
	Examples

	APPSRVSET
	Syntax
	Arguments
	Details
	Examples

	APPSRV_AUTHCLS
	Syntax
	Arguments
	Details
	Examples

	APPSRV_AUTHDS
	Syntax
	Arguments
	Details
	Examples

	APPSRV_AUTHLIB
	Syntax
	Arguments
	Details
	Examples

	APPSRV_HEADER
	Syntax
	Arguments
	Details
	Examples
	Disabling Automatic Header Generation

	APPSRV_SESSION
	Syntax
	Arguments
	Details
	Examples

	Application Dispatcher Debugging
	Debugging in the Input Component
	List of Valid Debug Values
	Disabling Debug Flags
	Special Cases
	Debugging Application Broker Installation Problems

	Debugging in the Program Component
	Examining the SAS Log
	Using SAS Options
	The DATA Step Debugger
	The SCL Debugger

	The APPSRV Procedure
	Syntax

	PROC APPSRV Statement
	PROC APPSRV Arguments
	Special Requirements for AUTH=HOST
	Using AUTH=HOST on OpenVMS systems
	Using AUTH=HOST on z/OS systems
	Using AUTH=HOST on UNIX systems
	Using AUTH=HOST on Windows systems

	ADMINLIBS Statement
	Syntax
	Arguments

	ALLOCATE FILE Statement
	Syntax
	Arguments

	ALLOCATE LIBRARY Statement
	Syntax
	Arguments
	Nesting Library Names in Concatenated Libraries
	Concatenated Data Libraries
	Concatenated Program Libraries

	DATALIBS Statement
	Syntax
	Arguments

	LOG Statement
	Syntax
	Arguments
	Default Log File Append Behavior

	PROGLIBS Statement
	Syntax
	Arguments

	REQUEST Statement
	Syntax
	Arguments

	SESSION Statement
	Syntax
	Arguments

	STATISTICS Statement
	Syntax
	Arguments
	 Default Contents of the Data Set
	Customizing the Statistics Data Set
	Application Server Access to the Data Set
	Application Access to the Data Set

	Samples

