
SAS®

Clinical Standards Toolkit 1.3
User's Guide

SAS® Documentation



The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2010. SAS® Clinical Standards Toolkit 1.3: User's Guide . Cary,
NC: SAS Institute Inc.

SAS® Clinical Standards Toolkit 1.3: User's Guide

Copyright © 2010, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book:Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights (June
1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, November 2010

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more
information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/
publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing
http://support.sas.com/publishing


Contents

What's New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1 • Introduction to SAS Clinical Standards Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
How to Use This Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
What Is the SAS Clinical Standards Toolkit? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 • Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Global Standards Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
What Is a Standard? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Common Framework Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Common Usage Scenarios for the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Maintenance Usage Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3 • Metadata File Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
StandardSASReferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Standardlookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
SASReferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Additional Metadata Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 4 • Supported Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
SAS Representation of Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
CDISC SDTM 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CDISC CRT-DDS 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
CDISC ODM 1.3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
CDISC Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Support for Upcoming Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 5 • SASReferences File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Building a SASReferences File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
How Is a SASReferences File Used? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 6 • Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Validation Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Metadata Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Building a Validation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Running a Validation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Validation Checks by Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Special Topic: Validation Check Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Special Topic: How SAS Clinical Standards Toolkit Interprets

Validation Check Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Special Topic: SAS Implementation of ISO 8601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



Special Topic: Debugging a Validation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Special Topic: Validation Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Special Topic: Performance Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Chapter 7 • XML-Based Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
SAS Support of XML-Based Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Reading XML Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Writing XML Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Validation of XML-Based Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Special Topic: A Round Trip Exercise Involving the CDISC SDTM

and CDISC CRT-DDS Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Chapter 8 • Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Sample Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Process Results Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Validation Check Metadata Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Appendix 1 • Global Macro Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Appendix 2 • Framework Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Appendix 3 • Macro Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Module CRT-DDS V1.0 (Run Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Module Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Module SDTM V3.1.1 (Run Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Module SDTM V3.1.2 (Run Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Module ODM V1.3.0 (Run Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Appendix 4 • CDISC SDTM Validation Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Appendix 5 • CDISC CRT-DDS 1.0 Validation Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

iv Contents



What's New

Overview

The following are some of the new capabilities in SAS Clinical Standards Toolkit 1.3:

• The CDISC SDTM 3.1.1 validation checks are updated to reflect WebSDM 3.0 updates
revised June 29, 2009. There are 10 new validation checks, eight modified validation
checks, and five deprecated validation checks in SAS Clinical Standards Toolkit 1.3.

• The SAS implementation of the CDISC SDTM 3.1.2 reference standard is published.
This reference standard now includes 32 domains (with seven new domains). SDTM
3.1.2 domain validation includes the WebSDM 3.0 updates revised June 29, 2009, and
applicable checks published by the open source community OpenCDISC.

• A new snapshot of the National Cancer Institute (NCI) Enterprise Vocabulary Services
(EVS) Thesaurus controlled terminology for CDISC is captured as the CDISC-
Terminology-201003 reference standard. This cumulative snapshot includes 60 distinct
code lists, many of which support CDISC SDTM 3.1.2 validation.

• There is an initial implementation of the CDISC ODM 1.3.0 reference standard, which
is targeted specifically at translating the (study) metadata and ClinicalData sections of
an odm.xml file into the SAS representation of the CDISC ODM standard.

• Updated sample reports that offer more user-friendly views of SAS Clinical Standards
Toolkit process results are provided. Comprehensive views of validation check
metadata for those standards that support validation are available.

• Sample driver programs that streamline and standardize setup tasks associated with
SAS Clinical Standards Toolkit processes are updated. These driver programs support
17 distinct tasks across the CDISC SDTM, CDISC CRT-DDS, and CDISC ODM
models.

• The SAS Clinical Standards Toolkit metadata and code base are significantly updated.
These changes are discussed in a following section.

Changes to Metadata and Code Base

Framework Changes
The following autocall macros are new. These macros can be found in the !sasroot/
cstframework/sasmacro directory:

v



• cstcheck_notimplemented is a placeholder validation check macro that documents in
the Results data set that a specific check has not yet been implemented in SAS Clinical
Standards Toolkit.

• cstcheckutil_formatlookup is used in the CDISC SDTM 3.1.2 Validation Master data
set in the check metadata codelogic field to evaluate value-level compliance with
CDISC terminology.

• cstutil_createmetadatareport is a driver macro that generates report output based on
all available check metadata information.

• cstutil_createreport is a driver macro that generates report output summarizing SAS
Clinical Standards Toolkit process results.

• cstutil_createunixsubdir is used in sample SAS Clinical Standards Toolkit driver
modules for UNIX users to create work subdirectories to support process write
operations.

• cstutil_processsetup is used in sample SAS Clinical Standards Toolkit driver modules
to perform necessary setup operations, including library and file allocations.

• cstutil_reportgeneralprocess is called by the cstutil_createreport macro to create the
General Process Reporting panel.

• cstutil_reportinputsoutputs is called by the cstutil_createreport macro to create the
Process Inputs/Outputs panel.

• cstutil_reportprocessmetrics is called by the cstutil_createreport macro to create the
Process Metrics panel.

• cstutil_reportprocessresults is called by the cstutil_createreport macro to create the
Process Results panel.

• cstutil_reportprocesssummary is called by the cstutil_createreport macro to create
the Process Summary panel.

• cstutil_reportsetup interprets information from either a SAS Clinical Standards
Toolkit Results data set or a SASReferences data set to perform setup functions for
SAS Clinical Standards Toolkit reporting.

• cstutil_reporttabledata is called by the cstutil_reportprocessmetrics and
cstutil_reportprocessresults macros to facilitate reporting by domain.

• cstutil_saveresults performs the common task of saving process results based on
SASReferences data set settings.

The following autocall macros have been modified. These macros are located in
the !sasroot/cstframework/sasmacro directory:

• cstcheck_metamismatch

• cstutil_getsasreference

The following framework properties have been modified. The properties can be found in
<global standards library directory>/standards/cst-
framework-1.3/programs/initialize.properties:

• The _cstSASRefsLoc=, _cstSASRefsName=, and _cstSASRefs=work._cstsasrefs
properties were moved from the CDISC SDTM initialize.properties file. The default
value for _cstSASRefsLoc was changed to &workpath.

• The default value for the _cstFMTLibraries properties was changed from WORK to
<blank>.

Eight type/subtype combinations were added and five type/subtype combinations were
removed from the Standardlookup data set. The data set can be found in <global

vi What's New



standards library directory>/standards/cst-framework-1.3/
control/standardlookup.sas7bdat.

The CST0009, CST0024, and CST0025 messages have been added to the Messages data
set.

The productRevision column has been added to standards.sas7bdat. The column is blank
for standards installed with SAS Clinical Standards Toolkit 1.2. The column value is 1.3
for standards added with SAS Clinical Standards Toolkit 1.3 or when SAS Clinical
Standards Toolkit 1.3 is allowed to overwrite any standard installed with SAS Clinical
Standards Toolkit 1.2. It can be found in <global standards library
directory>/metadata/standards.sas7bdat.

The codetype, uniqueid, and comment columns were added to the Validation Master data
set. The checkno column was removed. The data set can be found in <global
standards library
directory>/standards/cst-framework-1.3/templates/validation_
master.sas7bdat.

The SAS Note 37164, “An error can occur if you run the macro
%CSTUTIL_ALLOCATESASREFERENCES in SAS® Clinical Standards Toolkit more
than once in the same SAS® session,” is available on http://support.sas.com.

The SAS Note 38421, “SAS® Clinical Standards Toolkit folder is missing in SAS® 9.2,”
was added. The <global standards library directory>/standards/
<standard-version>/programs/development directory for each standard that is
provided by SAS should no longer be available for any SAS version.

CDISC SDTM Changes
CDISC SDTM 3.1.2 is the default for new SAS Clinical Standards Toolkit 1.3 installations.
For more information about upgrades from SAS Clinical Standards Toolkit 1.2, see Chapter
2, “Framework,” on page 5.

The following CDISC SDTM 3.1.1 macros are new. These macros are also available with
the CDISC SDTM 3.1.2 standard. These macros can be found in the <global
standards library directory>/standards/cdisc-sdtm-3.1.1-1.3/
macros directory:

• sdtmutil_createformatsfromcrtdds is a utility macro that creates a SAS format
catalog from CDISC CRT-DDS define.xml codelists.

• sdtmutil_createsasdatafromxpt is utility macro that creates SAS (SDTM) data sets
from reachable CDISC CRT-DDS define.xml referenced SAS transport files.

• sdtmutil_createsrcmetafromcrtdds is a utility macro that creates SAS (SDTM)
source metadata (study, table, column) from CDISC CRT-DDS define.xml metadata.

• sdtmutil_createsrcmetafromsaslib is utility macro that creates SAS (SDTM) source
metadata (study, table, column) from a library of CDISC SDTM domains.

The CDISC SDTM 3.1.1 validation checks have been updated to reflect WebSDM 3.0
updates revised June 29, 2009. This includes 10 new, eight modified, and five deprecated
validation checks. The modified checks have a UNIQUEID value that includes an effective
date substring that is not equal to ‘2009-05-13’.

The SAS Note 36343, “SAS Clinical Standards Toolkit sample data set needs to be
updated,” has been added. This note provides corrected paths in the sample SASReferences
data set.

The SAS Note 37853, “SAS Clinical Standards Toolkit validation master list contains an
error,” has been added. This note provides the corrected value for the

CDISC SDTM Changes vii



CHECKID=SDTM0651 record in the Validation Master data set. The column value for
SOURCEID should be IR4140.

CDISC CRT-DDS Changes
The following CDISC CRT-DDS macros are new. These macros can be found in the
<global standards library directory>/standards/cdisc-
crtdds-1.0-1.3/macros directory:

• crtdds_computationmethods is called by the crtdds_sdtm311todefine10 macro to
populate the CDISC CRT-DDS ComputationMethods data set from the CDISC SDTM
column metadata.

• crtdds_itemgroupleaf is called by the crtdds_sdtm311todefine10 macro to populate
the CDISC CRT-DDS ItemGroupLeaf data set from the CDISC SDTM table metadata.

• crtdds_itemgroupleaftitles is called by the crtdds_sdtm311todefine10 macro to
populate the CDISC CRT-DDS ItemGroupLeafTitles data set from the CDISC SDTM
table metadata.

• crtdds_read translates a define.xml file into the SAS representation of CDISC CRT-
DDS 1.0. The representation included 39 tables, table metadata, and column metadata.

• crtdds_buildchecktablelist is a utility macro that identifies the domains to be validated
by each check. The check is based on the contents of the tableScope and columnScope
check metadata columns in the Validation Master data set.

CDISC CRT-DDS column length and label metadata have been updated. This metadata
can be found in <global standards library
directory>/standards/cdisc-crtdds-1.0-1.3/metadata/reference_
columns.sas7bdat, !sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0/data, and !sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/metadata/source_columns.sas7bdat. These
metadata updates include:

• All *OID and FK* that reference *OIDs have been reset to a length of 128.

• Column labels have been added to some files.

SAS Note 38149, “%CRTDDS_XMLVALIDATE() macro might generate errors with
logging levels above 'Info',” has been added.

CDISC-Terminology Changes
201003 is the default CDISC-Terminology standard version for new SAS Clinical
Standards Toolkit 1.3 installations. For more information about upgrades from SAS
Clinical Standards Toolkit 1.2, see Chapter 2, “Framework,” on page 5. This version
can be found in the <global standards library directory>/metadata
Standard data set. It fully supports CDISC SDTM 3.1.2.

viii What's New



CDISC SDTM, CDISC ODM, and CDISC CRT-DDS Changes
The use of cstutil_saveresults was added to standardize the persistence of process results
to honor SASReferences type=results records. If there are no such records (by default),
results are written to work._cstresults.

Changes between SAS Clinical Standards Toolkit
1.2 and SAS Clinical Standards Toolkit 1.3

Global Changes
The validation check data set structure was modified. The following are the new column
details:

• codetype defines whether to use codelogic and what type of codelogic can be used in
the validation code. Valid values include:

• 0—No codelogic used.

• 1—DATA step statement level. (For example, if &_cstColumn <0 then
_cstError=1.)

• 2—Full DATA step, PROC SQL step, or multiple steps.

• 3—Calls a SAS macro or %include that can contain only DATA step statement
level code. (For example, codetype=1.)

• 4—Calls a SAS macro or %include that can contain only full DATA step or PROC
SQL step code. (For example, codetype=2.)

This column is required.

• uniqueid ensures uniqueness in the data set and in SAS Clinical Standards Toolkit.
This column allows any shipped or derived check to be uniquely identifiable over time.
This column is required. An example is
SDTM000100CST120SDTM3112009-05-12T12:00:00CDI. In the legend, characters
1 through 8 are checkid, characters 9 through 10 are checkid repeat indicator, characters
11 through 16 are the SAS Clinical Standards Toolkit version, characters 17 through
23 are standard version, characters 24 through 42 are implementation datetime, and
characters 43 through 48 are assigning authority.

• comment contains additional information for the check. This column is optional.

• checkno column was removed.

• All template, master (Validation Master), and run-specific (Validation Control) data
sets for all standards that support validation have been changed to include or exclude
these columns. For more information, see Table 6.3 on page 90.

The Results data set output for most primary SAS Clinical Standards Toolkit tasks was
modified. Results data sets now include records that report on the following process
metadata:

• PROCESS STANDARD (example: CDISC SDTM)

• PROCESS STANDARDVERSION (example: 3.1.2)

Global Changes ix



• PROCESS DRIVER (example: SDTM_VALIDATE)

• PROCESS DATE (example: 2010-07-16T13:25:11)

• PROCESS TYPE (example: VALIDATION)

• PROCESS SASREFERENCES (example: c:/…/_cstsasrefs.sas7bdat)

• PROCESS STUDYROOTPATH (example: c:/myStudy)

• PROCESS GLOBALLIBRARY (example: c:/cstGlobalLibrary)

• PROCESS CSTVERSION (example: 1.3)

Framework Changes
The following properties were modified:

• The installed location for properties is <global standards library
directory>/standards/cst-framework-1.3/programs/
initialize.properties.

• You should reset the default value for _cstFMTLibraries from WORK to <blank>. For
any SAS Clinical Standards Toolkit process, to include formats built in the SAS Work
directory in the format search path, you should:

1. Reset the property to WORK.<catalog>.

2. Issue %let _cstFMTLibraries=WORK.<catalog> after the call to
cst_setStandardProperties and before the call to cstutil_processsetup.

3. Issue the OPTIONS FMTSEARCH statement to include WORK.<catalog> at the
right point in the job stream.

The Standardlookup data set contents were modified.

• The installed location for the data set is <global standards library
directory>/standards/cst-framework-1.3/control/
standardlookup.sas7bdat.

• This data set serves as the primary lookup to perform basic validation of each
SASReferences data set. Any type and subtype values found in a SASReferences data
set must be registered in the Standardlookup data set.

• type=referencecontrol, subtype=validation These values point to the standard-
specific Validation Master data set.

• type=referencexml, subtype=map For XML-based standards, these values
reference a SAS XML map file that interprets an interim XML file that was
generated by SAS for any process reading from or writing to XML.

• type=report

• type=report, subtype=library

• type=report, subtype=outputfile For reporting processes, subtype=library points
to a destination library for report output, and subtype=outputfile points to a file
location for a specific report output file.

• type=sourcemetadata, subtype=study These values facilitate conversions to and
from CDISC CRT-DDS define.xml files, which contain metadata information that
is associated with the <Study> element.

• type=targetdata This value points to an output library where derived or target data
is to be written. For example, reading a define.xml file generates data sets
comprising the SAS representation of CDISC CRT-DDS files.

x What's New



• type=transport This value points to a library of SAS transport files as referenced
in CDISC CRT-DDS define.xml files.

The autocall macros were modified.

• The installed location for autocall macros is !sasroot/cstframework/
sasmacro.

• cstcheck_metamismatch: In codeLogic, you can produce two possible data sets that
are processed in the check macro. These data sets are work._cstnonmatch (mismatches
that prevent assessment) and work._cstmatch (reportable problems found).

• cstutil_getsasreference: A new parameter is available: _cstAllowZeroObs. If set to 1,
then it allows SASReferences to operate without warnings when a row that is requested
is not found and returns zero observations. The default value is 0. This default value
creates a warning when zero observations are encountered.

The Messages data set was modified. The following messages were added:

• CST0009: &_cstparm1 macro variable was not defined (error).

• CST0024: The column &_cstparm1 was not found in &_cstparm2. Compliance was
not assessed (warning: check incomplete).

• CST0025: Data set was not found in reference standard. Compliance was not assessed
(warning: check incomplete).

CDISC CRT-DDS Changes
A parameter was added to the crtdds_write macro.

• The installed location for the autocall macros is <global standards library
directory>/standards/cdisc-crtdds-1.0-1.3/macros.

• The new parameter is _cstLogLevel. This parameter is optional. It identifies the level
of error reporting. Valid values are Info, Warning, Error, and Fatal Error.

CDISC CRT-DDS Changes xi



xii What's New



Chapter 1

Introduction to SAS Clinical
Standards Toolkit

How to Use This Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

What Is the SAS Clinical Standards Toolkit? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

How to Use This Document
The following list provides suggestions for using this document:

• For an introduction to the software, see Chapter 1, “Introduction to SAS Clinical
Standards Toolkit,” on page 1.

• For an overview of the Toolkit framework including how standards are defined,
registered, and managed, see Chapter 2, “Framework,” on page 5.

• For a summary of the Toolkit metadata supporting key framework functions and
common tasks across multiple standards, see Chapter 3, “Metadata File Descriptions,”
on page 21.

• For an overview of the standards supported in Toolkit 1.3, see Chapter 4, “Supported
Standards,” on page 35.

• For a description of a key metadata file—SASReferences—which itemizes all inputs
and outputs of a Toolkit process, see Chapter 5, “SASReferences File,” on page 69.

• For information about one key feature of Toolkit 1.3, the validation of user metadata
and data against a registered Toolkit standard, see Chapter 6, “Validation,” on page
83.

• For information about another key feature of Toolkit 1.3, the creation of a CDISC CRT-
DDS define.xml file, see Chapter 7, “XML-Based Standards,” on page 165.

• For a list of all global macro variables, see Appendix A1, “Global Macro Variables,”
on page 211.

• For framework messages, see Appendix A2, “Framework Messages,” on page 219.

• For the macro application programming interface (API) reference, see Appendix A3,
“Macro Application Programming Interface,” on page 225.

• For the CDISC SDTM 3.1.1 validation checks, see Appendix A4, “CDISC SDTM
Validation Checks,” on page 281.

• For the CDISC CRT-DDS 1.0 validation checks, see Appendix A5, “CDISC CRT-DDS
1.0 Validation Checks,” on page 335.

1



What Is the SAS Clinical Standards Toolkit?
The purpose and scope of the SAS Clinical Standards Toolkit can best be described by
considering the product name.

Clinical
SAS Clinical Standards Toolkit focuses primarily on supporting clinical research
activities. These activities involve the discovery and development of new
pharmaceutical and biotechnology products and medical devices. These activities occur
from project initiation through product submission and throughout the full product
lifecycle. They do not include non-research patient records or health-care, pharmacy,
hospital, and insurance electronic records.

Standards
SAS Clinical Standards Toolkit initially focuses on standards defined by the Clinical
Data Interchange Standards Consortium (CDISC). CDISC is a global, open,
multidisciplinary, nonprofit organization that has established standards to support the
acquisition, exchange, submission, and archival of clinical research data and metadata.
The CDISC mission is to develop and support global, platform-independent data
standards that enable information-system interoperability, which, in turn, improves
medical research and related areas of health care. The Toolkit is not limited to
supporting CDISC standards. In time, the SAS Clinical Standards Toolkit will support
other evolving industry-standard data models. The Toolkit framework is designed to
support the specification and use of any user-defined standard.

Toolkit
The term “toolkit” connotes a collection of tools, products, and solutions. SAS Clinical
Standards Toolkit provides a set of standards and functionality that will evolve and
grow with future product updates and releases. Customer requirements and
expectations of Toolkit will play a key role in the deciding what functionality to provide
in future releases.

References
Table 1.1 References

Reference Web Address Description

CDISC SDTM 3.1.1 http://www.cdisc.org/
content1605

Provides access to CDISC SDTM
Implementation Guide V3.1.1 Final
and CDISC Study Data Tabulation
Model Version 1.1 Final.

CDISC SDTM 3.1.2 http://www.cdisc.org/
extranet/index.php?
a=1209

Provides access to the Study Data
Tabulation Model, Version 1.2 (SDTM
v1.2) and the SDTM Implementation
Guide for Human Clinical Trials
(SDTMIG v.3.1.2).

2 Chapter 1 • Introduction to SAS Clinical Standards Toolkit



Reference Web Address Description

CDISC CRT-DDS 1.0 http://www.cdisc.org/
define-xml

Provides access to Case Report
Tabulation Data Definition
Specification (CRT-DDS, also called
define.xml) Final Version 1.0.

CDISC ODM 1.3.0 http://www.cdisc.org/
contentmgr/
showdetails.php/id/2347

Provides access to ODMFinal Version
1.3.0 files and documentation.

CDISC Controlled Terminology http://www.cancer.gov/
cancertopics/
terminologyresources/
page6

Provides access to an FTP directory of
supported CDISC terminology.

Note: The site http://
evs.nci.nih.gov/ftp1/
CDISC/SDTM/ offers a current,
cumulative set of terminology that
supports CDISC SDTM.

CDISC ADaM 2.1 http://www.cdisc.org/
extranet/index.php?
a=1067

Provides access to the Analysis Data
Model Version 2.1 and the Analysis
Data Model Implementation Guide
Version 1.0.

Download Form for Validation Checks
Performed by WebSDM Version 2.6 on
SDTM Version 3.1.1 Data Sets

https://
www.phaseforward.com/
resource/whitepapers/
Validation%20Checks
%202.6/default.aspx

WebSDM Version 2.6 validation
checks.

Download Form for Validation Checks
Performed by WebSDM Version 3.0 on
SDTM Version 3.1.2 Data Sets

https://
www.phaseforward.com/
resource/whitepapers/
Validation%20Checks
%203.0/default.aspx

WebSDM Version 3.0 validation
checks.

OpenCDISC SDTM Validation Rules http://
www.opencdisc.org/
projects/validator/
cdisc-validation-rules-
repository

OpenCDISC CDISC validation rules
repository.

Janus Operational Pilot http://www.fda.gov/
ForIndustry/
DataStandards/
StudyDataStandards/
ucm155327.htm

Provides information about operational
pilots to date, including error checks.

ISO 8601:2004 Data Elements and
Interchange Formats—Information
Interchange—Representation of Dates
and Times

http://www.iso.org/
iso/iso_catalogue
/catalogue_tc/catalogue_
detail.htm?
csnumber=40874

The official ISO 8601 standard.

References 3



Reference Web Address Description

SAS Knowledge Base for SAS Clinical
Standards Toolkit

http://support.sas.com/
rnd/base/cdisc/cst/
index.html

Find current information and
documentation about SAS Clinical
Standards Toolkit.

SAS Clinical Standards Toolkit 1.3:
User’s Guide

http://support.sas.com/
documentation/onlinedoc/
clinical/index.html

Link to this document.

SAS Knowledge Base for SAS Clinical
Standards Toolkit Samples and SAS
Notes

http://support.sas.com/
notes/index.html

Provides access to SAS installation
problems, usage problems, and SAS
Notes that are associated with SAS
Clinical Standards Toolkit.

(Enter “Clinical Standards Toolkit” in
the search field.)

SAS and Clinical Trials Forum http://support.sas.com/
forums/forum.jspa?
forumID=9

Primary public discussion forum for
SAS Clinical Standards Toolkit.

4 Chapter 1 • Introduction to SAS Clinical Standards Toolkit



Chapter 2

Framework

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Global Standards Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

What Is a Standard? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Common Framework Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Common Usage Scenarios for the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Initializing the Framework's Global Macro Variables . . . . . . . . . . . . . . . . . . . . . . . . 9
Referencing the Default Version of a Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Getting a List of the Standards That Are Installed . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Determining Which Revision (Release) of a Standard Version Is Installed . . . . . . 11
Getting a List of the Files and Data Sets That Are Associated

with a Registered Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Creating Data Sets Used by the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Creating Table Shells Based on a Data Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Getting a Copy of the Reference Metadata for a Data Standard . . . . . . . . . . . . . . . 13
Inserting Information from Registered Standards into a SASReferences File . . . . . 14

Maintenance Usage Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Registering a New Version of a Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Setting the Default Version for a Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Unregistering a Standard Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Unregistering an Old Version of a Standard, and then

Registering a New Version of a Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Overview
The Framework module of SAS Clinical Standards Toolkit enables you to manage the
registration of standards, and provides the metadata and API infrastructure to interact with
those standards.

To understand the Framework module, you must understand the fundamentals of how the
files are structured and used. The Framework module has two distinct pieces:

• the components that are installed as part of the SAS Foundation and shared files (SAS
macros, JAR files, and so on)

• the global standards library

5



The following sections describe the structure of the global standards library. The sections
use some of the framework macros to show how the shared files are used.

Global Standards Library
The global standards library is the metadata repository for the SAS Clinical Standards
Toolkit. By default, the global standards library contains the metadata for the Framework
module and the metadata for each data standard that is provided by SAS (such as the CDISC
SDTM 3.1.2 standard).

During the installation and configuration of the SAS Clinical Standards Toolkit, the user
is prompted for the location where the global standards library should be installed. The
configuration process creates a series of directories in this location.

• metadata contains data sets that have information about the registered standards. For
more information, see “Common Framework Metadata” on page 8.

• schema-repository contains the schemas for XML-based standards that are
supported.

• standards contains a standard-specific directory hierarchy for each of the supported
standards.

• xsl-repository contains directories and XSL files used in reading and writing
XML files.

The metadata directory contains two data sets—Standards and StandardSASReferences.
The Standards data set has a list of the registered standards and basic information relating
to each standard. The following display provides the full content of the global standards
library Standards data set included with the SAS Clinical Standards Toolkit.

Display 2.1 Global Standards Library: Metadata Standards Data Set

Note: The &_cstGRoot directory in the rootpath column maps to the <global standards
library directory>.

The StandardSASReferences data set defines the typical inputs and outputs of SAS
processes that are associated with each standard. The following display shows some rows
and columns.

6 Chapter 2 • Framework



Display 2.2 Global Standards Library: Metadata StandardSASReferences Data Set

The type and subtype columns can be used to reference information that SAS Clinical
Standards Toolkit needs. This information is in the directory structures and file naming
standards used by the customer. A full list of valid types and subtypes are provided in this
document.

The standards directory contains subdirectories for each of the standard versions that
is provided by SAS. In addition, there are subdirectories for user-customized versions of
these standards and any new user-defined standards. Each subdirectory should be
considered a stand-alone module. This is how the SAS Clinical Standards Toolkit can keep
parallel standards and reduce the need for revalidation. Within each subdirectory, there
might be directories that group the files, data sets, and housekeeping programs. The
following display shows the directory structure for a Microsoft Windows global standards
library with cdisc-sdtm-3.1.1-1.3 expanded.

Display 2.3 Directory Structure for a Microsoft Windows Global Standards Library

The schema-repository directory contains XML schema definitions that are used to
validate XML files. Standards that use XML should have their schemas in this directory
so that they can be found. For example, the schema-repository directory for CDISC
CRT-DDS 1.0 as defined in the Standards data set maps to:

<global standards library directory>/schema-repository/cdisc-
crtdds-1.0.0

Global Standards Library 7



See Display 2.1 on page 6, row 1, schema column.

The xsl-repository directory contains files that are used to transform XML files from
one format to another. For example, the default style sheet directory for CDISC CRT-DDS
1.0 define.xml files created by the SAS Clinical Standards Toolkit as defined in the
Standards data set maps to:

<global standards library directory>/xsl-repository/CRT-DDS/
1.0/export

See Display 2.1 on page 6, row 1, exportxsl column.

What Is a Standard?
The answer to this question depends on what the standard is supposed to do. In the case of
terminology, it might be a format catalog and a data set. In the case of an XML-based
standard, it might be metadata that describes the SAS representation of the XML. It might
be data sets that control validating the SAS representation of the XML. It might be routines
to convert the SAS representation to the actual XML files. Or, it might be initialization
files for standard-specific properties.

The minimum number of items that are needed to register a standard to the framework are
the data sets that define the standard, as well as the standard's SASReferences data set. The
macro to register a standard is described in “Registering a New Version of a Standard” on
page 16.

For more information about what a SAS Clinical Standards Toolkit standard is, see Chapter
4, “Supported Standards,” on page 35.

Common Framework Metadata
The following SAS Clinical Standards Toolkit metadata files support the functions and
common tasks across multiple standards.

File structure and content for each of these metadata files are fully described in Chapter 3,
“Metadata File Descriptions,” on page 21. Use of these metadata files is documented in
sections that use the SAS Clinical Standards Toolkit metadata.

Standards
This data set has a list of the registered standards (for example, CDISC SDTM 3.1.1)
and basic information relating to each standard. The Standards data set can be found
in the global standards library metadata folder and within each registered standard
folder hierarchy at:

<global standards library directory>/standards/<standard>/
control

StandardSASReferences
This data set defines the typical inputs and outputs of SAS processes that are associated
with each standard. The StandardSASReferences data set can be found in the global
standards library metadata folder and within each registered standard folder hierarchy
at:

<global standards library directory>/standards/<standard>/
control

8 Chapter 2 • Framework



Standardlookup
This data set contains valid values for discrete variables in SAS Clinical Standards
Toolkit metadata files. The Standardlookup data set can be found within each registered
standard folder hierarchy at:

<global standards library directory>/standards/<standard>/
control

SASReferences
This data set defines generic system and study-specific input and output files that are
required by each SAS Clinical Standards Toolkit process. A sample SASReferences
data set is provided with each supported standard.

Properties
These files provide the set of name-value pairs that are required to establish the
environment for each SAS Clinical Standards Toolkit process. Properties are translated
into SAS global macro variables at the start of each process. Properties can be found
within each registered standard folder hierarchy at:

<global standards library directory>/standards/<standard>/
programs

Messages
This data set contains a list of codes and associated text that are specific to each standard.
It can contain specific actions (such as validation) that are used to report process results.
The Messages data set can be found within each registered standard folder hierarchy
at:

<global standards library directory>/standards/<standard>/
messages

Results
This data set summarizes each SAS Clinical Standards Toolkit process. It captures the
outcome of specific actions and uses the Messages data set to standardize output.

Other SAS Clinical Standards Toolkit metadata files specific to supported standards or
specific to actions (such as validation) are described in Chapter 3, “Metadata File
Descriptions,” on page 21. They are also discussed elsewhere in this document.

Common Usage Scenarios for the Framework

Overview
The following sections describe usage scenarios that the framework accommodates. Code
that is required to complete the usage scenario is included in each section. All macros that
are provided in the usage scenarios can be found in the primary SAS Clinical Data Standards
Toolkit autocall path:

!sasroot/cstframework/sasmacro

For complete macro documentation, see Appendix A3, “Macro Application Programming
Interface,” on page 225.

Initializing the Framework's Global Macro Variables
The framework requires certain global macro variables to execute properly. A user should
initialize these global macro variables at the start of each SAS Clinical Standards Toolkit

Common Usage Scenarios for the Framework 9



session. The same requirement might exist for a standard. The standard might need global
macro variables to call its macros. The framework provides a macro to help with this
requirement.

/*
initialize the global macro variables needed by the framework
*/
%cst_setStandardProperties(
_cstStandard=CST-FRAMEWORK
,_cstSubType=initialize
);

This code looks at the global SASReferences data set for a properties entry with a
SubType of initialize. By default, this entry is located at:

<global standards library directory>/standards/cst-
framework-1.3/programs/initialize.properties

Global macro variables are initialized based on the name-value pairs in this properties file.
After this macro has been called once, a user does not need to call it again during the SAS
session, unless the user wants to override macro variables or reset them.

Referencing the Default Version of a Standard
If a version must be specified, then the specification can usually be omitted if the default
version is to be used. The default version is specified in the global standards library
metadata Standards data set. For example, the code to initialize CDISC SDTM 3.1.2
properties can be written as:

/*
initialize the global macro variables needed by CDISC SDTM
*/
%cst_setStandardProperties(
_cstStandard=CDISC-SDTM
,_cstSubType=initialize
);

In this example, the initialization properties for the default version of the CDISC SDTM
standard (currently 3.1.2) are used without needing to specify a version.

Getting a List of the Standards That Are Installed
It is programmatically possible to get a list of the current standards that are registered to
the framework. The following code can be used:

/*
get a list of the registered standards
*/
%cst_getRegisteredStandards(
_cstOutputDS=work.regStds
);

The data set work.regStds contains the information from the global standards library
metadata Standards data set. The work.regStds data set's content matches the information
provided in Display 2.1 on page 6.

10 Chapter 2 • Framework



Determining Which Revision (Release) of a Standard Version Is
Installed

It is programmatically possible to determine which revision of a standard version is
installed. The following code can be used:

/* 
initialize the global macro variables needed by the framework
*/
%cst_setStandardProperties(
    _cstStandard=CST-FRAMEWORK
    ,_cstSubType=initialize
    );
/*
get a list of the registered standards
*/
%cst_getRegisteredStandards(
    _cstOutputDS=work.regStds
    );

The data set work.regStds contains the information from the global standards library
metadata Standards data set. The last column is productRevision. This column contains
the revision of each standard version. If the productRevision column is blank, then the
standard was originally registered with SAS Clinical Standards Toolkit 1.2.

Getting a List of the Files and Data Sets That Are Associated with a
Registered Standard

When standards are registered, information about the files and data sets that comprise the
standard is registered also. The following macro call returns records from the
StandardSASReferences data set that are associated with the specified standard. It returns
records for standardversion if applicable.

%cst_getStandardSASReferences(
_cstStandard=CST-FRAMEWORK
,_cstOutputDS=sasrefs
);

The parameters that are used in this macro call specify the standard CST-FRAMEWORK and
the data set to create to contain the information. Because the standard version is omitted,
the default standard version is used. The data set that is returned is a SASReferences data
set. For the macro call, the following shows the first few columns of data that are returned:

Display 2.4 StandardSASReferences Returned in work.sasrefs Data Set (Column Subset)

Common Usage Scenarios for the Framework 11



Note: If the cst_setStandardProperties macro has not been called before
invoking the cst_getStandardSASReferences macro, then the following errors
are reported in the SAS log:

WARNING: Apparent symbolic reference _CSTDEBUG not resolved.
ERROR: A character operand was found in the %EVAL function or %IF condition where 
a numeric operand is required. The condition was: (&_cstDebug))
ERROR: The macro CST_GETSTANDARDSASREFERENCES will stop executing.

Calling cst_setStandardProperties to create global macro variables for the SAS Clinical
Standards Toolkit session is a prerequisite for most SAS Clinical Standards Toolkit tasks.

Creating Data Sets Used by the Framework
Many macro calls to the framework require tables to be passed in or referenced. The
structure of these tables can be difficult to build manually, so the SAS Clinical Standards
Toolkit provides functionality to create table shells that can be filled in. The following is
an example of the macro call:

/*
Create the empty SASReferences data set used in the next
step
 */
%cst_createDS(
    _cstStandard=CST-FRAMEWORK,
    _cstType=control,
    _cstSubType=reference,
    _cstOutputDS=work.sasrefs
    );

The Type and SubType identify that it is a SASReferences table. The Standard
identifies the module to be used. If the standard version is not specified, then the default
for standard version is used. The output is a data set named work.sasrefs that contains 0
observations and 10 columns.

Creating Table Shells Based on a Data Standard
Data standards like CDISC SDTM have reference metadata that describes the tables and
columns that comprise the data standard. Creating table shells using this metadata is useful
and saves time. The following is the code to do this:

/*
Create the table shells for CDISC SDTM 3.1.1 in the work library
*/
%cst_createTablesForDataStandard(
    _cstStandard=CDISC-SDTM
    ,_cststandardVersion=3.1.1
    ,_cstOutputLibrary=work
    );

This code creates the 25 domains described by CDISC SDTM version 3.1.1 in the Work
library. Each domain contains 0 observations.

12 Chapter 2 • Framework



Getting a Copy of the Reference Metadata for a Data Standard
The SAS representation of many standards (such as CDISC SDTM) includes table and
column metadata for all domains that are specific to each standard. The SAS Clinical
Standards Toolkit framework provides a way to create and populate the metadata files.

/*
Step 1. Create the empty SASReferences data set used in
the next step
 */
%cst_createDS(
    _cstStandard=CST-FRAMEWORK,
    _cstType=control,
    _cstSubType=reference,
    _cstOutputDS=work.sasrefs);
/*
Step 2. Prep the type of information to be returned.
 */
data work.sasrefs;
    if 0 then set work.sasrefs;
    standard='CDISC-SDTM';
    standardVersion='3.1.2';
    * ----- REFERENCE METADATA -----;
    * tables metadata;
    type='referencemetadata';
    subType='table';
    sasRef='work';
    refType='libref';
    memname='refTables';
    output;
    * columns metadata;
    type='referencemetadata';
    subType='column';
    sasRef='work';
    refType='libref';
    memname='refColumns';
    output;
run;
/*
Step 3. Call the macro to get the metadata.
 */
%cst_getStandardMetadata(
    _cstSASReferences=work.sasrefs
    );

Step 1 uses one macro to create an empty SASReferences data set named
work.sasrefs.

Step 2 determines the information to be returned. The standard and version is CDISC
SDTM 3.1.2. The type and subType identify the types of metadata to be returned. The
sasRef and memname identify the target library and name for each data set.

Step 3 is the actual macro call that does the processing. The data set work.sasrefs is
read, and the global metadata is used to fulfill the request.

Common Usage Scenarios for the Framework 13



The outcome of these steps is two data sets. The data set work.refTables contains
metadata about the 32 CDISC SDTM 3.1.2 domains. The data set work.refColumns
contains metadata about each of the 723 columns defined in the 32 domains.

Inserting Information from Registered Standards into a
SASReferences File

When a standard is registered, information about the data sets and files that comprise the
standard is registered. These data sets and files are in a default folder hierarchy within the
global standards library. The SAS Clinical Standards Toolkit provides a mechanism to
reference the location of, and metadata about, these data sets and files. As a result, users
do not have to specify paths and member names in each SASReferences file they create.
When a SAS Clinical Standards Toolkit process encounters an incomplete file reference
in a SASReferences file, it looks in the standard-specific folder hierarchy for the
information. This mechanism is useful for a number of reasons:

• Programmers do not need to know all of the locations.

• If the global standards library needs to move, it can without having to change all of the
SASReferences files that use a standard.

• To change standard versions, you only need to change the contents of the
standardversion column.

The following code creates a partial SASReferences file:

/*
Step 1. Initialize the global macro variables needed by the
framework.
*/
%cst_setStandardProperties(
    _cstStandard=CST-FRAMEWORK
    ,_cstSubType=initialize
    );
/*
Step 2. Create the empty SASReferences data set.
*/
%cst_createDS(
    _cstStandard=CST-FRAMEWORK,
    _cstType=control,
    _cstSubType=reference,
    _cstOutputDS=sasrefs
    );
/*
Step 3. Fill in the minimal information for a series of
records
*/
data sasrefs;
    if 0 then set sasrefs;
         
    standard='CST-FRAMEWORK';
    standardversion='1.2';
    type='messages';
    subtype='';
    sasref='messages';
    reftype='libref';
    order=1;
    output;

14 Chapter 2 • Framework



    standard='CST-FRAMEWORK';
    standardversion='1.2';
    type='lookup';
    subtype='';
    sasref='template';
    reftype='libref';
    order=1;
    output;
    standard='CST-FRAMEWORK';
    standardversion='1.2';
    type='results';
    subtype='results';
    sasref='template';
    reftype='libref';
    order=1;
    output;
run;

Here is what the data set looks like:

Display 2.5 Example SASReferences Data Set

The path and memname columns are missing. The user has specified the standard,
standardversion, type, subtype, SASref, and reftype. This information is sufficient. The
rest of the information is available from the registered standard's metadata.

The following macro call attempts to insert the missing information if it is found in a
registered standard's metadata:

/*
Step 4. Insert the missing information from registered
standard.
*/
%cst_insertStandardSASRefs(
    _cstSASReferences=sasrefs
    ,_cstOutputDS=outSASRefs
    );

Here is what the output data set looks like:

Display 2.6 work.outSASRefs Data Set with Added Content

Common Usage Scenarios for the Framework 15



Maintenance Usage Scenarios

Overview
The following sections describe usage scenarios that the framework accommodates. Code
that is required to complete the usage scenario included in each section. All macros that
are provided in the usage scenarios can be found in the primary SAS Clinical Data Standards
Toolkit autocall path:

!sasroot/cstframework/sasmacro

For complete macro documentation, see Appendix A3, “Macro Application Programming
Interface,” on page 225.

Registering a New Version of a Standard
The following code defines and registers a new standard. The code can also be used to
register a new version of an existing standard.

/*
Step 1. Ensure that the macro variable pointing to the global standards
library exists.
*/
%cstutil_setcstgroot;
/*
Step 2. Register the standard with the Toolkit global standards
library
*/
%cst_registerStandard(
    _cstRootPath=%nrstr(&_cstGRoot./standards/myStandard),
    _cstControlSubPath=control,
    _cstStdDSName=standards,
    _cstStdSASRefsDSName=StandardSASReferences);

Step 1 ensures that the macro variable that contains the global standards library path is set.
Step 2 registers the standard by passing the following information:

• The main path to the directory that contains the standard version's files.

• The path to the registration data sets that are used to populate the global standards
library metadata data sets. This is the name of the subfolder in the _cstRootPath
parameter value.

• The names of the Standards and StandardSASReferences data sets. These data sets have
the same structure as the data sets in the global standards library metadata directory.
Both of these data sets are required to define a new standard or a new version of a
standard.

The _cstRootPath parameter uses %nrstr(&_cstGroot) so that the &_cstGroot
is registered as a macro variable. This specification allows the global standards library to
be moved or copied without reregistering the full path of the new standard.

16 Chapter 2 • Framework



When defining and registering a new standard, you should evaluate which of the metadata
files described in “Common Framework Metadata” on page 8 should be provided to support
new standard functionality. For example:

• Should a sample SASReferences file be created to perform some task?

• Should a Messages data set be added to provide standard-specific informational
messages?

• Should properties files be provided to set standard-specific global macro variables?

For more information about the metadata files that support SAS Clinical Standards Toolkit,
see Chapter 3, “Metadata File Descriptions,” on page 21.You can define new metadata
types. These new metadata types should be documented in the standard-specific
StandardSASReferences and Standardlookup data sets, and in the SAS Clinical Standards
Toolkit framework Standardlookup data set.

Setting the Default Version for a Standard
When multiple versions of a standard exist, the first version that is installed is set as the
default. The default version is used when multiple versions of a standard have been
registered, and a specific version is not provided in a macro call or in a SASReferences
file. The following code modifies the default version of a specific standard:

%cst_setStandardVersionDefault(
    _cstStandard=CDISC-SDTM
    ,_cstStandardVersion=3.1.1
    );

The version 3.1.1 is set as the default version for the CDISC SDTM standard.

Unregistering a Standard Version
If a standard becomes obsolete and needs to be unregistered, then use the framework to do
this. Unregistering a standard might be needed during the development of a custom
standard. The following macro call unregisters the CDISC SDTM 3.1.1 standard, removes
it from the global standards library metadata Standards data set, and removes all records
for 3.1.1 from the StandardSASReferences data set:

%cst_unregisterStandard(
    _cstStandard=CDISC-SDTM
    ,_cstStandardVersion=3.1.1
    );

Unregistering an Old Version of a Standard, and then Registering a
New Version of a Standard

Suppose SAS Clinical Standards Toolkit 1.2 is currently installed and used. SAS Clinical
Standards Toolkit 1.3 is released. You want the product updates for a standard version. In
the following steps, the CDISC SDTM standard is used as an example. However, the steps
apply to all other standard versions. You want to set version 3.1.2 as the default version
for the CDISC SDTM standard. The SAS Clinical Standards Toolkit installation process
does not do this automatically because you might have made updates to the SAS Clinical
Standards Toolkit 1.2 code base or metadata that you want to preserve. Or, you might want
to test the SAS Clinical Standards Toolkit 1.3 CDISC SDTM 3.1.2 implementation before
declaring it the new default version.

Maintenance Usage Scenarios 17



Step 1: Confirm that multiple versions of the standard are available. Confirm that
registration of a new version is needed.

1. Navigate to the global standards library Standards directory <global standards
library directory>/standards.

2. Confirm that multiple libraries exist for the same standard version. In the following
example, two subdirectories exist for CDISC SDTM 3.1.1:

Display 2.7 Multiple Versions per Standard in the Global Standards Library

The cdisc-sdtm-3.1.1 directory contains files installed with SAS Clinical
Standards Toolkit 1.2. The cdisc-sdtm-3.1.1-1.3 directory contains files
installed with SAS Clinical Standards Toolkit 1.3.

3. Confirm which revision of the standard-version is currently in use.

• Assign a LIBNAME to the metadata subdirectory in the global standards library.

• Open the Standards data set in the library, and confirm that the older version is the
one being used. The following display shows that the registered version CDISC
SDTM 3.1.1 has no product revision value that indicates that it is the original
version that was shipped with SAS Clinical Standards Toolkit 1.2. It is defined as
the default version for the CDISC SDTM standard.

Display 2.8 Global Standards Library Metadata Standards Data Set Before Updates

Step 2: Register the updated CDISC SDTM 3.1.1 metadata in the global standards library
to use the SAS Clinical Standards Toolkit 1.3.

1. Navigate to the Standards directory in the global standards library. Go to the
programs directory of the revision of the standard version that needs to be registered.
For example, go to <global standards library directory>/standards/
cdisc-sdtm-3.1.1-1.3/programs.

2. Start a SAS session. Make sure that the current directory is the programs directory.

3. To unregister the currently installed revision and version, submit the following code:

%cstutil_setcstgroot;
/* 
Set the framework properties used for the uninstall
*/
%cst_setStandardProperties(
    _cstStandard=CST-FRAMEWORK,
    _cstSubType=initialize
    );

/*

18 Chapter 2 • Framework



If the version to be replaced is the default, you must 
make another version the default.
In this case, this is the desired final outcome anyway.
*/
%cst_setStandardVersionDefault(
    _cstStandard=CDISC-SDTM
    ,_cstStandardVersion=3.1.2
    );

/*
Unregister the standard
*/
%cst_unregisterStandard(
    _cstStandard=CDISC-SDTM
    ,_cstStandardVersion=3.1.1
    );

Note: The cst_setStandardVersionDefault macro call needs to be used only
if the version being updated is the default version of the standard.

4. Check the Results data set. By default, the data set is work._cstResults. The final line
in the data set should report that the standard version is no longer registered as a
standard.

5. Open and submit the registerstandard.sas file from the programs directory into the
Program Editor.

6. Confirm that the new revision was registered.

• Assign a LIBNAME to the metadata subdirectory in the global standards library.

• Open the Standards data set in the library, and confirm that the newer revision is
the one being used. The following display shows that the CDISC SDTM 3.1.1
standard is now reregistered and the product revision in use is 1.3.

Display 2.9 Global Standards Library Metadata Standards Data Set After Updates

Maintenance Usage Scenarios 19



20 Chapter 2 • Framework



Chapter 3

Metadata File Descriptions

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

StandardSASReferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Standardlookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

SASReferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Additional Metadata Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Validation Master (Validation Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Reference_Tables(Source_Tables) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Reference_Columns(Source_Columns) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Validation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
CDISC CRT-DDS Style Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Overview
SAS Clinical Standards Toolkit provides and uses metadata files to support its basic core
functions, and to support specific functionality within the SAS Clinical Standards Toolkit.
The file content and structure are described in the following sections. The usage of each
of these metadata files is described in the document.

Standards
The Standards data set is used by the SAS Clinical Standards Toolkit framework to store
information about a standard version. All standards that are provided by SAS, and standards
that you might want to add are defined in the global standards library in the metadata/
standards data set. All calls to the %cst_registerStandard macro that are described in
Chapter 2 interact directly with the metadata/standards data set.

21



Table 3.1 Metadata/Standards Data Set Structure in the Global Standards Library

Column Name Column Length Description

standard ($20) The name of the registered standard. Must be unique within
the data set.

mnemonic ($4) A short mnemonic for the standard.

standardversion ($20) The version number of the registered standard. Must be unique
within the standard.

comment ($200) A description of the registered standard version.

rootpath ($200) The root path for the standard version's directory in the global
standards library.

isstandarddefault ($1) A value that identifies whether the version is the default for
the standard. More than one version can be registered and you
can still have a default version. Valid values are Y and N.

iscstframework ($1) A value that identifies whether the standard version is part of
the framework. This column can be used to subset the list of
registered standards. Valid values are Y and N.

isdatastandard ($1) A value that identifies whether the standard version is a data
standard. For example, CDISC SDTM versions are data
standards, and CDISC Terminology is not. Valid values are Y
and N.

supportsvalidation ($1) A value that identifies whether the standard version supports
validation. Valid values are Y and N.

isxmlstandard ($1) A value that identifies whether the standard version is based
on XML. CDISC SDTM is not, and CDISC CRT-DDS is.
Valid values are Y and N.

importxsl ($200) If the standard version is based on XML, then this is the path
to the XSL file to import the XML into the SAS representation.

exportxsl ($200) If the standard version is based on XML, then this is the path
to the XSL file to export the XML file.

schema ($200) If the standard version is based on XML, then this is the path
to the XML schema document that can be used to validate the
XML.

productrevision ($10) The revision of the standard and standardversion that is
currently installed.

The global standards library data set provided with the SAS Clinical Standards Toolkit can
be found at:

<global standards library directory>/metadata/
standards.sas7bdat

22 Chapter 3 • Metadata File Descriptions



The global standards library data set contains the following records. These records are
provided with SAS Clinical Standards Toolkit 1.3:

Display 3.1 Metadata/Standards Data Set Content in the Global Standards Library

The &_cstGRoot in the rootpath column maps to the <global standards library
directory> that is set by calling the cstutil_setcstgroot macro.

An example of the global standards library data set that is used to register a specific standard
can be found at:

<global standards library directory>/standards/cdisc-
sdtm-3.1.2-1.3/control/standards.sas7bdat

StandardSASReferences
The StandardSASReferences metadata data set specifies a set of library and file records
that are used by most processes that are provided with the SAS Clinical Standards Toolkit
implementation of each standard. It contains references to those libraries and files that are
installed with each standard that SAS provides. A standard-specific
StandardSASReferences data set exists for each SAS Clinical Standards Toolkit data
standard that is supported by SAS. For example, the CDISC SDTM 3.1.2
StandardSASReferences data set can be found at:

<global standards library directory>/standards/cdisc-
sdtm-3.1.2-1.3/control/standardsasreferences.sas7bdat

Display 3.2 Metadata/StandardSASReferences Data Set Content in the Global Standards Library

The type and subtype values are discussed in the following section. The SASref value is
the default value that is used in the library and filename allocation process. This value can
be overwritten by the user. The path value represents the global standards library
subdirectory, which is relative to the rootpath location that is specified in the standard-
specific Standards data set.

StandardSASReferences 23



The cross-standard global standards library StandardSASReferences data set that is
provided with the SAS Clinical Standards Toolkit can be found at:

<global standards library directory>/metadata/
standardsasreferences.sas7bdat

This data set contains the concatenation of each StandardSASReferences data set that is
provided for each supported standard in the SAS Clinical Standards Toolkit. The only
enhancement to the data set during concatenation is that the path column is populated with
the full global standards library path for each record. The following display shows the
content for the CDISC SDTM StandardSASReferences data set that is described in Display
3.2 on page 23.In the display, &_cstGRoot maps to the <global standards
library directory> that is set by calling the cstutil_setcstgroot macro.

Display 3.3 Metadata/StandardSASReferences Data Set in the Global Standards Library (CDISC SDTM 3.1.2 Excerpt)

The structure of the StandardSASReferences data set is the same structure for all
SASReferences data sets that are provided and used by the SAS Clinical Standards Toolkit.
This structure is described in “SASReferences” on page 25.

Standardlookup
The Standardlookup data set provides a mechanism to capture valid values for discrete
variables in the SAS Clinical Standards Toolkit metadata files. This data set supports such
tasks as validating the content of SAS Clinical Standards Toolkit metadata files and
providing selectable values in the user interfaces of other tools and solutions.

Table 3.2 Standardlookup Data Set Structure in the Global Standards Library

Column Name Column Length Description

sasref ($8) SAS libref

table ($32) A SAS Clinical Standards Toolkit table
name

column ($32) A SAS Clinical Standards Toolkit
column name

refcolumn ($32) Associated SAS Clinical Standards
Toolkit column name

refvalue ($200) Associated SAS Clinical Standards
Toolkit column value

24 Chapter 3 • Metadata File Descriptions



Column Name Column Length Description

value ($200) Unique SAS Clinical Standards Toolkit
column value

default ($200) Default SAS Clinical Standards Toolkit
column value

nonnull ($1) Value that specifies whether a SAS
Clinical Standards Toolkit column value
must be non-null

order (8.) A SAS Clinical Standards Toolkit
column value order

comment ($200) Explanatory comments

A Standardlookup data set is provided for most standards with the SAS Clinical Standards
Toolkit. This data set can be used to define and register custom standards in the SAS Clinical
Standards Toolkit.

An example of the Standardlookup data set can be found at:

<global standards library directory>/standards/cst-framework/
control/standardlookup.sas7bdat

An example of the records in a Standardlookup data set is provided in the following figure:

Display 3.4 Standardlookup Data Set Content in the Global Standards Library

These records show that the SASReferences data set allows a value of
referencemetadata for the type column. The type value in a SASReferences data set
must always be non-null. Two subtype values (table and column) are allowed when type is
referencemetadata. For more information about the columns and values in the
SASReferences data set, see the following section.

SASReferences
Each SAS Clinical Standards Toolkit process (for example, a primary task or action such
as validating source data against a SAS Clinical Standards Toolkit standard) requires using
a SASReferences data set. The SASReferences data set identifies all of the inputs required
and the outputs that are created by the process. Each process might have its own unique
SASReferences data set.

Chapter 5, “SASReferences File,” on page 69 describes the content and usage of
SASReferences data sets. The following table identifies and describes each column within
a SASReferences data set.

SASReferences 25



Table 3.3 SASReferences Data Set Structure

Column Name Column Length Description

standard ($20) Standard name. This value should match the standard field
in the Standards data set in <global standards
library directory>/metadata and in other metadata
files referenced in SASReferences (for example, CDISC SDTM
and CDISC CRT-DDS). This column is required.

standardversion ($20) Specific version of a standard. This value should match one of
the standardversion values associated with the standard field
in the Standards data set in <global standards
library directory>/metadata and in other metadata
files referenced in SASReferences (for example, 3.1.1 or 1.0).
This column is required.

type ($40) The type of input and output data or metadata. This is a predefined
set of values that are documented in the <global
standards library directory>/standards/
cst-framework-1.3/control/standardlookup
data set. These values are also itemized in Table 5.1. This column
is required.

subtype ($40) The specific subtype within type of input and output data or
metadata. This is a predefined set of values that are documented
in the <global standards library directory>/
standards/cst-framework-1.3/control/
standardlookup data set. These values are also itemized in
Table 5.1. This column is optional, depending on type.

SASref ($8) The SAS libref or fileref that references the library or file in the
SAS Clinical Standards Toolkit SAS process. This value should
match the value of sasref that is used in any other associated
metadata files (for example, in the Source Columns data set, the
value is type=srcmeta). This column is required. It must conform
to SAS libref or fileref naming conventions.

reftype ($8) Reference type. This column is required. Valid values are libref
and fileref.

path ($200) The path of the library or the path portion of the file reference. If
you want to use the default value for a standard, standardversion,
type, or subtype, then leave the path blank. The value is added to
the &_cstSASRefs working version of the SASReferences data
set from the standard-specific StandardSASReferences data set.
Specific paths should be provided for any type or subtype that is
study- or run-specific. Paths might be relative to an environment
variable (for example, !sasroot) or to a SAS macro variable (for
example, &studyrootpath).

26 Chapter 3 • Metadata File Descriptions



Column Name Column Length Description

order (8.) Processing or concatenation order within type. If this value exists,
then it should be a positive integer with no duplicates within type.
This column is optional, depending on type. The order should be
specified if one of the following is true:

1. Multiple records exist within these types—autocall,
fmtsearch, messages.

2. Library concatenation is wanted (multiple librefs are within
the same value of SASref for a type).

3. There is a need to establish precedence within a type (for
example, look first in this library, then look in another
library).

memname ($48) The name of a specific SAS file (data set or catalog) or file that
is not created by SAS (for example, properties or an XML file).
The memname column should be blank for library references.
This column is optional, depending on type. As a general rule,
memname should be provided if the path is provided, except
where individual file references are not appropriate (for example,
type=autocall and type=sourcedata). If you want to use the default
value for a standard, standardversion, type, or subtype, then leave
memname blank. The value is added to the &_cstSASRefs
working version of the SASReferences data set from the standard-
specific StandardSASReferences data set. The file suffix for SAS
files is optional.

comment ($200) Explanatory comments. This column is optional.

The following display shows some information in a typical SAS Clinical Standards Toolkit
SASReferences data set.

Display 3.5 A Sample SASReferences Data Set

From this display, you can see that the data set contains information about types of data
and metadata and where they are located. SAS Clinical Standards Toolkit imposes a rigid
SASReferences file structure. No additional or fewer columns are allowed. No changes to
column attributes are allowed (for example, changing column length).

SASReferences 27



Properties
SAS Clinical Standards Toolkit uses properties files to set default preferences for each
process. Properties are name-value pairs that are translated into SAS global macro
variables. These macro variables are available for the duration of a SAS Clinical Standards
Toolkit process. Properties can be defined in any number of files. Both text file and SAS
data set formats are supported. All SAS Clinical Standards Toolkit global macro variables
are documented in Appendix A1, “Global Macro Variables,” on page 211. These macro
variables are derived from properties files provided by SAS.

The following table describes the contents of a sample properties file in <global
standards library directory/standards/cst-framework/programs/
initialize.properties. Each property (global macro variable) is described in
Appendix 1.

Table 3.4 Properties File Structure

Name (Global Macro Variable) Default Value

_cstDebug 0

_cstDebugOptions mprint mlogic symbolgen mautolocdisplay

_cst_rc 0

_cst_MsgID

_cst_MsgParm1

_cst_MsgParm2

_cstResultSeq 0

_cstSeqCnt 0

_cstSrcData

_cstResultFlag 0

_cstResultsDS work._cstresults

_cstMessages work._cstmessages

_cstReallocateSASRefs 0

_cstFMTLibraries

_cstMessageOrder APPEND

_cstSASRefsLoc

28 Chapter 3 • Metadata File Descriptions



Name (Global Macro Variable) Default Value

_cstSASRefsName

_cstSASRefs work._cstsasrefs

Messages
By default, SAS Clinical Standards Toolkit provides a Messages data set for all SAS
Clinical Standards Toolkit framework standards and for each data standard provided by
SAS. Each Messages data set includes a list of codes and associated text that are specific
to each standard. In some cases, actions such as validation are used to report process results.
The structure of all the message files is described in the following table.

Table 3.5 Messages Data Set Structure

Column Name Column Length Description Optional or Required

resultid ($8) The message ID. SAS Clinical Standards Toolkit
has adopted a naming convention matching each
standard. The resultid values are prefixed with
an up to 4-character prefix (CST for framework
messaging; CDISC examples: ODM, SDTM,
ADAM, and CRT). By convention, the prefix
matches the mnemonic field in the Standards
data set in <global standards
library directory>/metadata.
This prefix is followed by a 4-digit numeric that
is unique within the standard (for example,
SDTM1234). Users can use any naming
convention limited to 8 characters. For CDISC
standards supporting validation, the resultid
should match the checkid from the Validation
Master data set for standard records that support
validation.

Required

standardversion ($20) A specific version of a standard. This value must
match one of the standard versions that is
associated with a registered standard. This value
must also match the standardversion
field in the SASReferences data set. The only
exception to this rule is that *** can be used to
signify that the check applies to all supported
versions of the standard (for example, 3.1.1, 1.0,
***). If a subsequent version of the standard is
released, then *** would be applicable if the
check is valid for the new version.

Required

Messages 29



Column Name Column Length Description Optional or Required

checksource ($40) A string that identifies the source of the message.
This string is used to provide source-specific
messages generated within the SAS Clinical
Standards Toolkit. CDISC examples include
Janus, OpenCDISC, SAS, and WebSDM. This
field can contain any user-defined value.

Required

sourceid ($8) A reference identifier for this message from the
checksource.

Optional

checkseverity ($40) The severity as assigned by checksource.
This value is mapped to the following
standardized values: Note (Low), Warning
(Medium), Error (High). A value is expected,
although it is not technically required. It is used
in reporting.

Optional

sourcedescription ($500) A full description of the validation check that is
associated with checksource if the source is
external to SAS Clinical Standards Toolkit. If
checksource is set to CST, then this field is
null.

Optional

messagetext ($500) The default message text to be written to the
Results data set. This field can contain 0, 1, or 2
parameters. By convention, parameters are
_cstParm1 and _cstParm2, but any _cst prefix
parameter is recognized. The fully resolved
messagetext that includes substituted
parameter values is written to the Results data
set.

Required

parameter1 ($100) The message parameter1 (_cstParm1) default
value. If the code using the message does not
provide a parameter value, then this default value
is used. This column can be null.

Optional

parameter2 ($100) The message parameter2 (_cstParm2) default
value. If the code using the message does not
provide a parameter value, then this default value
is used. This column can be null.

Optional

messagedetails ($200) Any additional information that explains the
message.

Optional

The Messages data set that supports the SAS Clinical Standards Toolkit framework can be
found at:

<global standards library directory>/standards/cst-
framework-1.3/messages/messages.sas7bdat

30 Chapter 3 • Metadata File Descriptions



The following display provides an excerpt of records and columns from the SAS Clinical
Standards Toolkit framework Messages data set.

Display 3.6 Framework Messages Data Set

For more information about messages supporting the SAS Clinical Standards Toolkit
framework, see Appendix A2, “Framework Messages,” on page 219. Other message-type
data sets that support non-framework standards are described in this document.

Results
Each SAS Clinical Standards Toolkit process generates a Results data set. The Results data
set can be persisted beyond the SAS session based on SASReferences data set settings.
Each Results data set captures the outcome of specific process actions. Each Results data
set uses the Messages data set to standardize output.

The structure of each SAS Clinical Standards Toolkit Results data set is described in the
following table:

Table 3.6 Results Data Set Structure

Column Name Column Length Description

resultid ($8) Result ID. The resultid is a message ID from the standard Messages
data set (for example, framework or CDISC SDTM). SAS Clinical
Standards Toolkit has adopted a naming convention matching a
resultid with each standard. The resultid values are prefixed with an
up to 4-character prefix (CST for framework messaging; CDISC
examples: ODM, SDTM, ADAM, and CRT). By convention, the
prefix matches the mnemonic field in the Standards data set in
<global standards library directory>/
metadata. This prefix is followed by a 4-digit numeric that is
unique within the standard (for example, SDTM1234). Users can use
any naming convention limited to 8 characters.

Value should be non-null.

checkid ($8) Validation check ID. SAS Clinical Standards Toolkit has adopted a
naming convention matching each standard to be validated. The
checkid values are prefixed with an up to 4-character prefix (CDISC
examples: ODM, SDTM, ADAM, and CRT). By convention, the
prefix matches the mnemonic field in the Standards data set in
<global standards library directory>/
metadata. This prefix is followed by a 4-digit numeric that is
unique within the standard (for example, SDTM1234). Users can use
any naming convention limited to 8 characters.

Value should be non-null for validation processes. Otherwise, this
column is optional.

Results 31



Column Name Column Length Description

resultseq (8.) Unique invocation of resultid. For validation processes, a sequence
number to indicate the record number relative to checkid in the
Validation Control run-time set of checks. If set to 1, then this is
incremented only with each repeat invocation of a check. For non-
validation processes, this value is generally a constant 1, but is reset
to 1 with each new invocation of the SAS Clinical Standards Toolkit
macro that is being run when the Results record is generated.

Value should be non-null positive integer.

seqno (8.) Sequence number relative to resultseq. This value is a unique
sequence number for the Results record in each unique value of
resultseq.

Value should be non-null positive integer.

srcdata ($200) Source data. This string generally specifies:

• (for validation) the domains evaluated or the check macro used

• (otherwise) the SAS Clinical Standards Toolkit macro that is
being run when the Results record is generated

Value should be non-null.

message ($500) Resolved message text from Messages data set. The message value
includes up to two run-time parameter values in message text.

Value should be non-null.

resultseverity ($40) Result severity (for example, warning or error).

Info Informational note
Note Problem detected, low severity
Warning Problem detected, medium

severity
Warning: Check not run No assessment able to be made
Warning: Check not completed Full compliance assessment could

not be made
Error Problem detected, high severity

Value should be non-null.

resultflag (8.) A value that determines whether a problem has been detected. The
values are 0=no, otherwise, yes.

-1 Validation check not run
0 No problem detected (value

always 0 when
resultseverity=Info)

1 Validation check run, error
detected

Value should be non-null.

_cst_rc (8.) Process status. Values are nonzero and aborted. A nonzero value
typically indicates that the process ended abnormally.

Value should be non-null.

32 Chapter 3 • Metadata File Descriptions



Column Name Column Length Description

actual ($240) Actual value observed. This value is generally used for validation
reporting. It provides the actual column values that are in error. This
column is optional.

keyvalues ($2000) Record-level keys and values. This value is generally used for
validation reporting. It provides domain key values for records that
are in error. This column is optional.

resultdetails ($200) Basis or explanation for result. This column is optional.

For an example of a SAS Clinical Standards Toolkit Results data set, see Display 6.9 on
page 116 and Display 6.10 on page 117.

Additional Metadata Files
The following metadata files can be used for specific tasks. In some cases, the file structures
might be unique to the supported or referenced standard. These metadata files are provided
by SAS Clinical Standards Toolkit.

Validation Master (Validation Control)
Each standard that supports validation has a Validation Master data set that provides the
full set of validation checks defined for that standard. (For a description of the
standards.supportsvalidation field, see Table 3.1 on page 22 .) This data set should have
the columns as defined in Table 6.3 on page 90, though additional columns are permitted
for user customizations. For each SAS Clinical Standards Toolkit validation process, the
set of run-specific checks is captured in a Validation Control data set. The Validation
Control data set is identical in structure to the Validation Master data set, but can be different
only in the number of records (checks) included.

Reference_Tables(Source_Tables)
Part of the definition of each standard is the itemization of the data tables that define the
SAS representation of that standard and version. The Reference_Tables data set captures
table-level metadata about each reference standard data set. The structure of this data set
can be standard specific. For example, Table 6.1 on page 86 describes the table metadata
for the CDISC SDTM standard. For selected actions, SAS Clinical Standards Toolkit
requires a similarly structured Source_Tables data set that defines study-specific tables.
For example, a SAS Clinical Standards Toolkit validation process compares the study
metadata in the Source_Tables data set with the reference standard metadata in the
Reference_Tables data set.

Reference_Columns(Source_Columns)
Part of the definition of each standard is the itemization of the columns in each data table
that defines the SAS representation of that standard and version. The
Reference_Columns data set captures column-level metadata about each reference standard
column. The structure of this data set can be standard specific. For example, Table 6.2 on
page 88 describes the column metadata for the CDISC SDTM standard. For selected

Additional Metadata Files 33



actions, SAS Clinical Standards Toolkit requires a similarly structured Source_Columns
data set that defines study-specific columns. For example, a SAS Clinical Standards Toolkit
validation process compares the study metadata in the Source_Columns data set with the
reference standard metadata in the Reference_Columns data set.

Validation Metrics
Each SAS Clinical Standards Toolkit validation process can generate a Summary data set
that provides a meaningful denominator for most validation checks. The Summary data set
enables you to more accurately assess the relative scope of errors that are detected. The
generation of this data set is based on validation property settings. This data set can be
persisted beyond the SAS session based on SASReferences data set settings. For example,
Table 6.9 on page 102 describes the metrics metadata for the CDISC SDTM standard, and
Display 6.2 on page 103 provides sample content for the CDISC SDTM standard.

CDISC CRT-DDS Style Sheet
A sample XML style sheet (define1-0-0.xsl) is provided with the CDISC CRT-DDS
standard. The style sheet is copied from http://www.cdisc.org/stuff/
contentmgr/files/
0/464923b10ea16b477151fcaa9f465166/misc/define1_0_0.xsl. A
define.xml file can be rendered in a human-readable form if it contains an explicit XML
style sheet reference, such as a reference to the default style sheet. Alternative style sheets
can be used to provide metadata support for CDISC CRT-DDS.

34 Chapter 3 • Metadata File Descriptions



Chapter 4

Supported Standards

SAS Representation of Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

CDISC SDTM 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Release Dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CDISC SDTM 3.1.1 Reference Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
CDISC SDTM 3.1.2 Reference Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CDISC CRT-DDS 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Release Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Regulatory Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
CDISC CRT-DDS 1.0 Reference Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

CDISC ODM 1.3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Release Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
CDISC ODM 1.3.0 Reference Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

CDISC Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Release Dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
CDISC Terminology Reference Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Support for Upcoming Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
CDISC ODM 1.3.0 and CDISC ODM 1.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
CDISC ADaM 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
CDISC Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

SAS Representation of Standards

Overview
SAS Clinical Standards Toolkit is designed to support various clinical standards. SAS
Clinical Standards Toolkit was initially built to support the Clinical Data Interchange
Standards Consortium (CDISC) standards. However, the generic framework enables you
to define any type of standard, including Health Level 7 (HL7) messages.

35



Each SAS Clinical Standards Toolkit standard provides a SAS representation of the
published source guidelines or source specification. The SAS representation is designed to
serve as a model or template of the source specification.

Two key design requirements shaped the implementation of SAS Clinical Standards
Toolkit standards.

• Each supported standard is represented in one or more SAS files. This facilitates the
following:

• It provides SAS users with an implementation of data models and standards that
are based on SAS.

• It enables you to use SAS routines to assess how well any user-defined set of data
and metadata conforms to the standard.

• It enables you to use SAS code to read and derive files in other formats (for example,
XML).

Each SAS Clinical Standards Toolkit standard is an optimized reference standard
from a SAS perspective.

• Users are able to define their own customized standards, or they are able to modify
existing SAS standards. For more information about how new standards are registered
in SAS Clinical Standards Toolkit, see “Registering a New Version of a Standard” on
page 16.

SAS anticipates providing new standards and updates to existing SAS Clinical Standards
Toolkit standards periodically. New standards and updates would be based on customer
requirements and changes to source guidelines and source specifications.

This document uses the term “reference standard” to refer to the SAS representation of
each source specification.

The definition of reference standard depends on several factors, including the complexity
of the external source standard, the intended use of the standard, and the user's preferred
implementation methodology. Here are three ways to define reference standard:

• A limited SAS representation of an external standard, defined as one or more SAS files.

For example, consider two of the CDISC standards supported in SAS Clinical Standards
Toolkit. Each CDISC Terminology standard can be represented in its simplest form as
either a SAS data set or SAS format catalog of acceptable values. Each CDISC SDTM
standard can be represented as a set of domains (SAS data sets), and as an associated
set of data sets that describe the data set and column metadata for those domains. For
some users, this might be the only information about the standards needed from SAS
Clinical Standards Toolkit.

• A distinct folder hierarchy within the global standards library, comprising the previous
definition and any supporting files required by SAS Clinical Standards Toolkit.

By default, reference standards are specified in the global standards library that is created
when SAS Clinical Standards Toolkit is deployed. Each reference standard can be unique

36 Chapter 4 • Supported Standards



in regard to the folder hierarchy and supporting files. Consider the CDISC SDTM standard.
The following global standards library folder hierarchy is provided for CDISC SDTM:

Display 4.1 Global Standards Library Folder Hierarchy

The metadata folder contains the data set and column metadata for each supported
domain. SAS Clinical Standards Toolkit provides a utility macro
(cst_createTablesForDataStandard) that reads this metadata, and builds an empty data
set for each supported SDTM domain. All supporting files required by SAS Clinical
Standards Toolkit to support the specific CDISC SDTM standard are provided in the
remaining folders.

• The control folder provides these data sets:

Standards is a single-record file that provides
metadata about the standard.

Standardlookup provides acceptable values for many
discrete-value columns for a number
of standard metadata files.

StandardSASReferences is a sample or template specification
of records that describes input or
output files relevant to using the
standard.

• The macros folder contains any SAS code specific to the CDISC SDTM standard.

• The messages folder contains messages that are associated with tasks (such as
validation) that are supported by SAS Clinical Standards Toolkit.

• The metadata folder provides these data sets:

Class_tables identifies a limited set of column
collections specific to one or more
SDTM domains. This data set is
unique to CDISC SDTM.

Class_columns identifies the full set of unique
column definitions used in the SDTM
domains. This data set is unique to
SDTM.

Reference_tables provides metadata for the specific
data sets (domains) that are supported
for CDISC SDTM. This information
is different for CDISC SDTM 3.1.1
and CDISC SDTM 3.1.2.

Reference_columns provides metadata for the specific
columns in the domains that are
supported for CDISC SDTM. This
information is different for CDISC

SAS Representation of Standards 37



SDTM 3.1.1 and CDISC SDTM
3.1.2.

• The programs folder contains several properties files that specify generic SAS
Clinical Standards Toolkit and specific CDISC SDTM properties translated into
SAS global macro variables for a SAS Clinical Standards Toolkit process.

• The validation/control folder provides check metadata that is associated
with the primary CDISC SDTM task supported by SAS Clinical Standards Toolkit.

Each of these folders is discussed in greater detail in this document.

• A logical set of files from multiple SAS libraries and multiple standards as defined in
the previous two definitions. These are all collated within a single SASReferences data
set.

Each reference standard can be defined by the files itemized in a SASReferences data
set and used to perform a standard task. The SASReferences data set documents all of
the input and output files that are associated with a SAS Clinical Standards Toolkit
process. These files do not need to be limited to a single standard or be resident in a
single standard folder hierarchy. Consider a SASReferences data set that supports a
process that builds a CDISC CRT-DDS define.xml file. That SASReferences data set
might point to CDISC SDTM source data and metadata, a CDISC Terminology SAS
format catalog, a set of reference table and column metadata documenting the SAS data
sets used to build the define.xml file, and a default style sheet for the generated
define.xml file. A broader view of what comprises the CDISC CRT-DDS reference
standard must recognize that the standard also references data and metadata from other
standards.

Best Practice Recommendation: Instead of changing an existing SAS standard, you
should define a new standard. This allows seamless updates to SAS standards, which
facilitates operational qualification, demo scripts, and Technical Support debugging a fixed
standard. There is a way for you to request a change to an existing standard if there are
errors. To define a new standard, which can be just changing an existing standard and saving
it as a new standard, see Chapter 2, “Framework,” on page 5.

CDISC SDTM 3.1.1

Purpose
CDISC SDTM defines a standard structure for data tabulations that are submitted as part
of a product application to a regulatory authority such as the FDA. The data sets and
columns required for a regulatory application are not prescribed by the standard. Instead,
these requirements are based on the trial protocol and discussions with the regulatory
authority in charge of reviewing the submission. Therefore, any SAS Clinical Standards
Toolkit standard, including any CDISC SDTM standard, is only a representative sample
or template.

Release Dates
CDISC SDTM 3.1.1

• CDISC SDTM Model, Final Version 1.1, May 4, 2005

• CDISC SDTM Implementation Guide, Final Version 3.1.1, September 8, 2005

CDISC SDTM 3.1.2

38 Chapter 4 • Supported Standards



• CDISC SDTM Model, Final Version 1.2, November 12, 2008

• CDISC SDTM Implementation Guide, Final Version 3.1.2, November 12, 2008

CDISC SDTM 3.1.1 Reference Standard
The CDISC SDTM 3.1.1 SAS Clinical Standards Toolkit reference standard includes the
following 25 domains:

Table 4.1 CDISC SDTM 3.1.1 Reference Standard Domains

CDISC SDTM 3.1.1 Domains

Special Purpose Domains Events

Demographics-DM Adverse Events-AE

Comments-CO Disposition-DS

Medical History-MH

Interventions Protocol Deviations-DV

Concomitant Medications-CM

Exposure-EX Trial Design Domains

Substance Use-SU Trial Elements-TE

Trial Arms-TA

Trial Visits-TV

Findings Subject Elements-SE

ECG Tests-EG Subject Visits-SV

Inclusion/Exclusion Exceptions-IE Trial Inclusion/Exclusion Criteria-TI

Laboratory Tests-LB Trial Summary-TS

Questionnaires-QS

Physical Examinations-PE Special Purpose Relationship Data Sets

Subject Characteristics-SC Supplemental Qualifiers-SUPPQUAL

Vital Signs-VS Related Records-RELREC

Within these 25 domains, 495 columns have been defined.

CDISC SDTM 3.1.1 39



Description
CDISC standards allow for the inclusion and exclusion of some columns. (For example,
timing variables can be included or excluded.) In addition, CDISC standards do not specify
a length for most columns. Therefore, any implementation of a CDISC standard requires
interpretation of that standard. This interpretation might lead to differences in the
implementation of that standard. Reference standards are derived based on internal
conventions and experiences, and discussions with regulatory authorities.

The domain and column metadata that constitute the SAS representation of CDISC SDTM
3.1.1 are derived from the global standards library in these formats:

• as empty data sets (using the utility macro cst_createTablesForDataStandard)

• as table metadata (reference_tables in the standard metadata folder)

• as column metadata for each domain (reference_columns in the standard metadata
folder)

The SAS Clinical Standards Toolkit CDISC SDTM reference standard provides metadata
and code to validate the structure and content of the SDTM domains. To enable validation,
supplemental files supporting SDTM validation processes include the following global
standards library files:

• The Validation Master data set in the validation/control folder contains the
super-set of checks validating domain structure and content.

• The Messages data set in the messages folder provides error messaging for all
Validation Master checks.

• SAS code in the macros folder provides code specific to SDTM that augments code
that is provided in the primary SAS Clinical Standards Toolkit autocall library
(!sasroot/cstframework/sasmacro).

It is this set of files, in whole or in part, that defines the CDISC SDTM reference standard.

CDISC SDTM 3.1.2 Reference Standard
The CDISC SDTM 3.1.2 SAS Clinical Standards Toolkit reference standard includes the
following 32 domains:

Table 4.2 CDISC SDTM 3.1.2 Reference Standard Domains

CDISC SDTM 3.1.2 Domains

Special Purpose Domains Events

Demographics-DM Adverse Events-AE

Comments-CO Clinical Events-CE

Subject Elements-SE Disposition-DS

Subject Visits-SV Protocol Deviations-DV

Medical History-MH

40 Chapter 4 • Supported Standards



CDISC SDTM 3.1.2 Domains

Findings

Drug Accountability-DA Interventions

ECG Tests-EG Concomitant Medications-CM

Inclusion/Exclusion Criterion Not Met-IE Exposure-EX

Laboratory Test Results-LB Substance Use-SU

Microbiology Specimen-MB

Microbiology Susceptibility Test-MS Trial Design Domains

PK Concentrations-PC Trial Arms-TA

Physical Examinations-PE Trial Elements-TE

PK Parameters-PP Trial Inclusion/Exclusion Criteria-TI

Questionnaires-QS Trial Summary-TS

Subject Characteristics-SC Trial Visits-TV

Vital Signs-VS

Relationship Data Sets

Findings About Supplemental Qualifiers-SUPPQUAL

Findings About-FA Related Records-RELREC

Within these 32 domains, 723 columns have been defined.

Description
CDISC standards allow for the inclusion and exclusion of some columns. (For example,
timing variables can be included or excluded.) CDISC standards do not specify a length
for most columns. Therefore, any implementation of a CDISC standard requires
interpretation of that standard. This interpretation might lead to differences in the
implementation of that standard. Reference standards are derived based on internal
conventions and experiences, and discussions with regulatory authorities.

The domain and column metadata that constitute the SAS representation of CDISC SDTM
3.1.2 are derived from the global standards library in the following formats:

• as empty data sets (using the utility macro cst_createTablesForDataStandard)

• as table metadata (reference_tables in the standard metadata folder (see the example in
the following table))

• as column metadata for each domain (reference_columns in the standard metadata
folder (see the example in Table 4.4 on page 42))

CDISC SDTM 3.1.1 41



Table 4.3 Sample Reference_Tables Record (CDISC SDTM 3.1.2)

Column Name Column Value

sasref REFDATA

table CE

label Clinical Events

class Events

xmlpath .../transport/ce.xpt

xmltitle Clinical Events SAS transport file

structure One record per event per subject

purpose Tabulation

keys STUDYID USUBJID CETERM CESTDTC

state Final

date November 12, 2008

standard CDISC-SDTM

standardversion 3.1.2

standardref

comment

Table 4.4 Sample Reference_Columns Record (CDISC SDTM 3.1.2)

Column Name Column Value

sasref REFDATA

table SU

column SUSTRF

label Start Relative to Reference Period

order 32

type C

length 20

displayformat

42 Chapter 4 • Supported Standards



Column Name Column Value

xmldatatype text

xmlcodelist STENRF

core Perm

origin Derived

role Timing

term ** BEFORE, DURING, AFTER

algorithm

qualifiers UPPERCASE

standard CDISC-SDTM

standardversion 3.1.2

standardref SDTMIG4.1.4.7

comment Identifies the start of the substance use period
with respect to the sponsor-defined reference
period. Sponsors should define the reference
period in the study metadata. SUSTRF should
be populated when a start date is not collected.
If information such as PRIOR, ONGOING, or
CONTINUING was collected, then this
information should be translated into SUSTRF.

The SAS Clinical Standards Toolkit CDISC SDTM reference standard provides metadata
and code to validate the structure and content of the SDTM domains. To enable validation,
supplemental files supporting SDTM validation processes include the following global
standards library files:

• The Validation Master data set in the validation/control folder contains the
super-set of checks validating domain structure and content.

• The Messages data set in the messages folder provides error messaging for all
Validation Master checks.

• SAS code in the macros folder provides code specific to SDTM that augments code
that is provided in the primary SAS Clinical Standards Toolkit autocall library
(!sasroot/cstframework/sasmacro).

It is this set of files, in whole or in part, that defines each CDISC SDTM reference standard.

CDISC SDTM 3.1.1 43



CDISC CRT-DDS 1.0

Purpose
The CDISC CRT-DDS standard defines the metadata structures in a machine-readable
XML format. These metadata structures are used to describe the CRT data sets and variables
for regulatory submissions. The XML schema that is used to define the metadata structures
in an XML format is based on an extension to the CDISC Operational Data Model (ODM).

Release Date
CDISC CRT-DDS, Final Version 1.0, February 10, 2005

Regulatory Basis
(Source: CDISC Case Report Tabulation Data Definition Specification)

In 1999, the FDA standardized the submission of clinical and non-clinical data and
metadata in a set of eSubmission guidelines to include metadata descriptions of the data
sets and columns within a Data Definition Document (define.pdf). In 2003, the FDA
published a set of guidance documents on receiving electronic product applications per the
International Conference on Harmonisation (ICH) electronic Common Technical
Document (eCTD) specifications. In these specifications, the FDA expanded the acceptable
file types to include the XML format.

CDISC CRT-DDS 1.0 Reference Standard
The domain and column metadata that constitute the SAS representation of CDISC CRT-
DDS 1.0 are derived from the global standards library in these formats:

• as empty data sets (using the utility macro cst_createTablesForDataStandard)

• as table metadata for 39 data sets (reference_tables in the standard metadata folder (see
the example in the following table))

• as column metadata for 176 columns in the 39 data sets (reference_columns in the
standard metadata folder (see the example in Table 4.6 on page 45))

Table 4.5 Sample Reference_Tables Record (CDISC CRT-DDS 1.0)

Column Name Column Value

sasref REFDATA

table ItemGroupDefs

label

keys OID

standard CDISC-CRTDDS

44 Chapter 4 • Supported Standards



Column Name Column Value

standardversion 1.0

standardref

comment

xmlelementname ItemGroupDefs

class ItemGroupDefs

qualifiers

Table 4.6 Sample Reference_Columns Record (CDISC CRT-DDS 1.0)

Column Name Column Value

sasref REFDATA

table DefineDocument

column FileType

label File type (Snapshot | Transactional)

order 5

type C

length 13

displayformat $13.

standard CDISC-CRTDDS

standardversion 1.0

standardref

comment

core Req

xmlcodelist FILETYPE

qualifiers

As a general rule, the SAS representation of the CDISC CRT-DDS standard is patterned
to match the XML element (data set) and attribute (column) structure of define.xml. For
example, for CDISC SDTM, domain-level metadata is represented by a define.xml

CDISC CRT-DDS 1.0 45



ItemGroupDef element. This metadata is captured in the ItemGroupDefs SAS data set. This
is shown in the following code and table that represent the TE domain metadata:

<ItemGroupDef OID="docroot.IG.TE"
    Name="TE"
    Repeating="No"
    IsReferenceData="Yes"
    Purpose="Tabulation"
    def:Label="Trial Elements"
    def:Structure="One record per planned element"
    def:DomainKeys="STUDYID,ETCD"
    def:Class="Trial Design"
    def:ArchiveLocationID="ArchiveLocation.te">
    !-- All ItemRefs would be listed here -->
    <def:leaf ID="ArchiveLocation.te"
    xlink:href="te.xpt"> <def:title>te.xpt</def:title>
  </def:leaf>
</ItemGroupDef>

Table 4.7 Sample Data Set Representation: ItemGroupDefs.sas7bdat

Column Value

OID docroot.IG.TE

Name TE

Repeating No

IsReferenceData Yes

SASDatasetName

Domain

Origin

Role

Purpose Tabulation

Comment

Label Trial Elements

Class Trial Design

Structure One record per planned element

DomainKeys STUDYID, ETCD

ArchiveLocationID ArchiveLocation.te

FK_MetaDataVersion

46 Chapter 4 • Supported Standards



Note: Empty or null attributes are not typically included in the XML file.

The following table lists the complete set of 39 tables that form the SAS Clinical Standards
Toolkit SAS representation of the CDISC CRT-DDS 1.0 standard.

Table 4.8 Data Sets in the SAS Representation of the CDISC CRT-DDS 1.0 Standard

Table Table

AnnotatedCRFs ItemQuestionTranslatedText

CLItemDecodeTranslatedText ItemRangeCheckValues

CodeListItems ItemRangeChecks

CodeLists ItemRole

ComputationMethods ItemValueListRefs

DefineDocument MDVLeaf

ExternalCodeLists MDVLeafTitles

FormDefArchLayouts MUTranslatedText

FormDefItemGroupRefs MeasurementUnits

FormDefs MetaDataVersion

ImputationMethods Presentation

ItemAliases ProtocolEventRefs

ItemDefs RCErrorTranslatedText

ItemGroupAliases Study

ItemGroupDefItemRefs StudyEventDefs

ItemGroupDefs StudyEventFormRefs

ItemGroupLeaf SupplementalDocs

ItemGroupLeafTitles ValueListItemRefs

ItemMURefs ValueLists

ItemQuestionExternal

The highly structured nature of CDISC CRT-DDS data requires that any mapping to a
relational format include a large number of data sets, with foreign key relationships to help
preserve the intended non-relational object structure. In the SAS Clinical Standards Toolkit,
foreign key relationships are enforced when validating the CDISC CRT-DDS data sets.

CDISC CRT-DDS 1.0 47



Field lengths in the CDISC CRT-DDS data sets are consistent by core data type. CDISC
has not specified any limit to the length of most character fields. Arbitrary lengths have
been chosen by data type. These lengths are listed in the following table. In the table,
standard data types are distilled into core data types. To be safe, larger lengths have been
chosen to ensure that no data loss occurs in the SAS Clinical Standards Toolkit pre-installed
data sets. Production tables might be compressed using SAS mechanisms to preserve disk
space.

Table 4.9 CDISC CRT-DDS Default Lengths by Data Type

Type Name Length Description

oid 128 A unique object identifier or a reference

text 2000 A character field that can accommodate a large
number of characters

name 128 A descriptive identifier

value 512 An item of collected or reference data

path 512 An absolute or relative file system path or URL

The following table lists the data sets with member columns that form the CDISC CRT-
DDS 1.0 data in the SAS Clinical Standards Toolkit.

No data set has more than one variable that acts as the key or index for that data set. The
names of key variables are prepended with two asterisks (**). Some data sets do not have
a key.

Foreign key variable names are prepended with two carat characters (^^). Foreign key
variable names reference, in brackets [ ], the name of the data set for which it is a foreign
key.

Required fields are marked with an X between brackets [X]. Required fields are fields for
which a non-nil and non-whitespace-only value must be supplied in any observation for
that data set.

Only the DefineDocument data set, which contains valid values for the FileOID and
FileType variables, is needed to create a minimal, but valid CDISC CRT-DDS-compliant
XML document. This is based on the CDISC CRT-DDS standard, which is very flexible.

All table and column names are case sensitive. They must be specified exactly as shown.

Table 4.10 CDISC CRT-DDS SAS Table Construction

Data Set Name Variable Name SAS Data Type
Length
(if char)

DefineDocument

**FileOID [X] character 128 (oid)

Archival character 3

AsOfDateTime character 24

48 Chapter 4 • Supported Standards



Data Set Name Variable Name SAS Data Type
Length
(if char)

Description character 2000
(text)

FileType [X] character 13

Granularity character 15

Id character 128 (oid)

ODMVersion character 2000
(text)

Originator character 2000
(text)

PriorFileOID character 128 (oid)

SourceSystem character 2000
(text)

SourceSystemVersion character 2000
(text)

Study

**OID [X] character 128 (oid)

StudyName [X] character 128
(name)

StudyDescription [X] character 2000
(text)

ProtocolName [X] character 128
(name)

^^FK_DefineDocument [DefineDocument] [X] character 128 (oid)

MeasurementUnits

**OID [X] character 128 (oid)

Name [X] character 128
(name)

^^FK_Study [Study] [X] character 128 (oid)

MUTranslatedText

CDISC CRT-DDS 1.0 49



Data Set Name Variable Name SAS Data Type
Length
(if char)

TranslatedText character 2000
(text)

lang character 128
(name)

^^FK_MeasurementUnits [MeasurementUnits][X] character 128 (oid)

MetaDataVersion

**OID [X] character 128 (oid)

Name [X] character 128
(name)

Description character 2000
(text)

IncludedOID character 128 (oid)

IncludedStudyOID character 128 (oid)

DefineVersion [X] character 2000
(text)

StandardName [X] character 2000
(text)

StandardVersion [X] character 2000
(text)

^^FK_Study [Study] [X] character 128 (oid)

AnnotatedCRFs

DocumentRef character 2000
(text)

^^leafID [MDVLeaf] [X] character 128 (oid)

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

SupplementalDocs

DocumentRef character 2000
(text)

^^leafID [MDVLeaf] [X] character 128 (oid)

50 Chapter 4 • Supported Standards



Data Set Name Variable Name SAS Data Type
Length
(if char)

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

MDVLeaf

**ID [X] character 128 (oid)

href character 512
(path)

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

MDVLeafTitles

title character 2000
(text)

^^FK_MDVLeaf [MDVLeaf] [X] character 128 (oid)

ComputationMethods

**OID [X] character 128 (oid)

method character 2000
(text)

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

ValueLists

**OID [X] character 128 (oid)

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

ValueListItemRefs

^^ItemOID [ItemDefs] [X] character 128 (oid)

OrderNumber numeric 8

Mandatory [X] character 3

KeySequence numeric 8

^^ImputationMethodOID [ImputationMethods] character 128 (oid)

CDISC CRT-DDS 1.0 51



Data Set Name Variable Name SAS Data Type
Length
(if char)

Role character 128
(name)

^^RoleCodeListOID [CodeLists] character 128 (oid)

^^FK_ValueLists [ValueLists] [X] character 128 (oid)

ProtocolEventRefs

Mandatory [X] character 3

OrderNumber numeric 8

^^StudyEventOID [StudyEventDefs] [X] character 128 (oid)

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

StudyEventDefs

**OID [X] character 128 (oid)

Category character 2000
(text)

Name [X] character 128
(name)

Repeating [X] character 3

Type [X] character 11

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

StudyEventFormRefs

^^FormOID [FormDefs] [X] character 128 (oid)

Mandatory [X] character 3

OrderNumber numeric 8

^^FK_StudyEventDefs [StudyEventDefs] [X] character 128 (oid)

FormDefs

**OID [X] character 128 (oid)

52 Chapter 4 • Supported Standards



Data Set Name Variable Name SAS Data Type
Length
(if char)

Name [X] character 128
(name)

Repeating [X] character 3

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

FormDefItemGroupRefs

^^ItemGroupOID [ItemGroupDefs] [X] character 128 (oid)

Mandatory [X] character 3

OrderNumber numeric 8

^^FK_FormDefs [FormDefs] [X] character 128 (oid)

FormDefArchLayouts

**OID [X] character 128 (oid)

PdfFileName [X] character 512
(path)

^^PresentationOID [Presentation] character 128 (oid)

^^FK_FormDefs [FormDefs] [X] character 128 (oid)

ItemGroupDefs

**OID [X] character 128 (oid)

Name [X] character 128
(name)

Repeating [X] character 3

IsReferenceData character 3

SASDatasetName character 8

Domain character 2000
(text)

Origin character 2000
(text)

CDISC CRT-DDS 1.0 53



Data Set Name Variable Name SAS Data Type
Length
(if char)

Role character 128
(name)

Purpose character 2000
(text)

Comment character 2000
(text)

Label [X] character 2000
(text)

Class character 2000
(text)

Structure character 2000
(text)

DomainKeys character 2000
(text)

^^ArchiveLocationID [ItemGroupLeaf] [X] character 128 (oid)

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

ItemGroupDefItemRefs

^^ItemOID [ItemDefs] [X] character 128 (oid)

Mandatory [X] character 3

OrderNumber numeric 8

KeySequence numeric 8

^^ImputationMethodOID [ImputationMethods] character 128 (oid)

Role [X] character 128
(name)

^^RoleCodeListOID [CodeLists] character 128 (oid)

^^FK_ItemGroupDefs [ItemGroupDefs][X] character 128 (oid)

ItemGroupAliases

Context [X] character 2000
(text)

54 Chapter 4 • Supported Standards



Data Set Name Variable Name SAS Data Type
Length
(if char)

Name [X] character 2000
(text)

^^FK_ItemGroupDefs [ItemGroupDefs] [X] character 128 (oid)

ItemGroupLeaf

**ID [X] character 128 (oid)

href character 512
(path)

^^FK_ItemGroupDefs [ItemGroupDefs] [X] character 128 (oid)

ItemGroupLeafTitles

title character 2000
(text)

^^FK_ItemGroupLeaf [ItemGroupLeaf] [X] character 128 (oid)

ItemDefs

**OID [X] character 128 (oid)

Name [X] character 128
(name)

DataType [X] character 8

Length numeric 8

SignificantDigits numeric 8

SASFieldName character 8

SDSVarName character 8

Origin character 2000
(text)

Comment character 2000
(text)

^^CodeListRef [CodeLists] character 128 (oid)

Label character 2000
(text)

CDISC CRT-DDS 1.0 55



Data Set Name Variable Name SAS Data Type
Length
(if char)

DisplayFormat character 2000
(text)

^^ComputationMethodOID[ComputationMethods] character 128 (oid)

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

ItemQuestionTranslatedText

TranslatedText character 2000
(text)

lang character 17

^^FK_ItemDefs [ItemDefs] [X] character 128 (oid)

ItemQuestionExternal

Dictionary character 2000
(text)

Version character 2000
(text)

Code character 2000
(text)

^^FK_ItemDefs [ItemDefs] [X] character 128 (oid)

ItemMURefs

^^MeasurementUnitOID [MeasurementUnits] [X] character 128 (oid)

^^FK_ItemDefs [ItemDefs] [X] character 128 (oid)

ItemRangeChecks

**OID [X] character 128 (oid)

Comparator [X] character 5

SoftHard [X] character 4

^^MURefOID [MeasurementUnits] character 128 (oid)

^^FK_ItemDefs [ItemDefs] [X] character 128 (oid)

56 Chapter 4 • Supported Standards



Data Set Name Variable Name SAS Data Type
Length
(if char)

ItemRangeCheckValues

CheckValue character 512
(value)

^^FK_ItemRangeChecks [ItemRangeChecks] [X] character 128 (oid)

RCErrorTranslatedText

TranslatedText character 2000
(text)

lang character 17

^^FK_ItemRangeChecks [ItemRangeChecks] [X] character 128 (oid)

ItemRole

Name character 2000
(text)

^^FK_ItemDefs [ItemDefs] [X] character 128 (oid)

ItemAliases

Context [X] character 2000
(text)

Name [X] character 2000
(text)

^^FK_ItemDefs [ItemDefs] [X] character 128 (oid)

ItemValueListRefs

^^ValueListOID [ValueLists] [X] character 128 (oid)

^^FK_ItemDefs [ItemDefs] [X] character 128 (oid)

CodeLists

**OID [X] character 128 (oid)

Name [X] character 128
(name)

CDISC CRT-DDS 1.0 57



Data Set Name Variable Name SAS Data Type
Length
(if char)

DataType [X] character 7

SASFormatName character 8

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

ExternalCodeLists

Dictionary character 2000
(text)

Version character 2000
(text)

^^FK_CodeLists [CodeLists] [X] character 128 (oid)

CodeListItems

**OID [X] character 128 (oid)

CodedValue character 512
(value)

^^FK_CodeLists [CodeLists] [X] character 128 (oid)

Rank numeric 8

CLItemDecodeTranslatedText

TranslatedText character 2000
(text)

lang character 17

^^FK_CodeListItems [CodeListItems] [X] character 128 (oid)

ImputationMethods

**OID [X] character 128 (oid)

method character 2000
(text)

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

Presentation

58 Chapter 4 • Supported Standards



Data Set Name Variable Name SAS Data Type
Length
(if char)

**OID [X] character 128 (oid)

presentation character 2000
(text)

lang character 17

^^FK_MetaDataVersion [MetaDataVersion] [X] character 128 (oid)

The SAS Clinical Standards Toolkit CDISC CRT-DDS reference standard supports reading
and representing in SAS a define.xml file, building a define.xml file, and validating the
structure and content of the SAS representation of a define.xml file. In addition, it validates
the structural integrity of the define.xml file. To support this functionality, supplemental
files include the following global standards library files:

• A SAS format catalog (crtddsct.sas7bcat) in the formats folder provides valid values
for selected columns in the 39 tables of the SAS representation.

• The Validation Master data set in the validation/control folder contains the
super-set of checks validating the structure and content of the 39 tables.

• The Messages data set in the messages folder provides error messaging for all
Validation Master checks.

• SAS code in the macros folder provides CDISC CRT-DDS-specific code that
augments code that is provided in the primary SAS Clinical Standards Toolkit autocall
library (!sasroot/cstframework/sasmacro).

• The style sheet folder contains the define1-0-0.xsl file. The style sheet is copied
from http://www.cdisc.org/stuff/contentmgr/files/
0/464923b10ea16b477151fcaa9f465166/misc/define1_0_0.xsl. A
define.xml file can be rendered in a human-readable form if it contains an explicit XML
style sheet reference, such as a reference to the default style sheet.

It is this set of files, in whole or in part, that defines the CDISC CRT-DDS reference
standard.

CDISC ODM 1.3.0

Purpose
(Source: CDISC Web site http://www.cdisc.org/odm)

The CDISC ODM standard facilitates the archival and interchange of the metadata and
data for clinical research. ODM is a vendor-neutral, platform-independent format for the
interchange and archival of clinical study data. ODM includes the clinical data and its
associated metadata, administrative data, reference data, and audit information. All of the
information that needs to be shared during setup, operation, analysis, and submission, as
well as for long-term retention as part of an archive, is included in ODM.

CDISC ODM 1.3.0 59



Release Date
CDISC ODM, Version 1.3.0, December 15, 2006

CDISC ODM 1.3.0 Reference Standard
SAS Clinical Standards Toolkit 1.3 provides only partial support of CDISC ODM 1.3.0.
The current release of SAS Clinical Standards Toolkit supports reading an odm.xml file,
and translating the metadata (<Study>) and clinical data (<ClinicalData>) sections of the
odm.xml file into a SAS representation. The domain and column metadata that constitute
the SAS representation of CDISC ODM 1.3.0 are derived from the global standards library
in these formats:

• as empty data sets (using the utility macro cst_createTablesForDataStandard)

• as table metadata for 52 data sets (reference_tables in the standard metadata folder (see
the example in the following table))

• as column metadata for 241 columns in the 52 data sets (reference_columns in the
standard metadata folder (see the example in Table 4.12 on page 60))

Table 4.11 Sample Reference_Tables Record (CDISC ODM 1.3.0)

Column Name Column Value

sasref REFDATA

table ItemGroupData

label Item group-level data information

keys OID

standard CDISC-ODM

standardversion 1.3.0

standardref

comment

xmlelementname ItemGroupData

class ItemGroupData

Table 4.12 Sample Reference_Columns Record (CDISC ODM 1.3.0)

Column Name Column Value

sasref REFDATA

table SubjectData

60 Chapter 4 • Supported Standards



Column Name Column Value

column SubjectKey

label Uniquely identifies a subject in a study

order 2

type C

length 2000

displayformat $2000.

standard CDISC-ODM

standardversion 1.3.0

standardref

comment

core Req

xmlcodelist

qualifier

As a general rule, the SAS representation of the CDISC ODM standard is patterned to
match the XML element (data set) and attribute (column) structure of odm.xml. For
example, consider the following XML extract:

<ClinicalData StudyOID="P2006-101" MetadataVersionOID="101.01">
 <SubjectData SubjectKey="1000" TransactionType="Insert">
  <StudyEventData StudyEventOID="101.Screen">
   <FormData FormOID="101.DEMOG">
    <ItemGroupData ItemGroupOID="101.DM">
     <ItemDataString ItemOID="101.USUBJID">101-01-01</ItemDataString>
     <ItemDataString ItemOID="101.SEX">F</ItemDataString>
    </ItemGroupData>
   </FormData>
  </StudyEventData>
 </SubjectData>
</ClinicalData>

The following table describes how the XML element and attribute information maps to the
SAS representation.

CDISC ODM 1.3.0 61



Table 4.13 Sample Mapping of odm.xml File to SAS Representation

XML Element or Attribute SAS Data Set SAS Column SAS Column Value

<ClinicalData StudyOID="P2006-101"
MetadataVersionOID="101.01">

ClinicalData StudyOID

MetaDataVersionOID

"P2006-101"

"101.01"

<SubjectData SubjectKey="1000"
TransactionType="Insert">

SubjectData SubjectKey

TransactionType

"1000"

"Insert"

<StudyEventData
StudyEventOID="101.Screen">

StudyEventData StudyEventOID "101.Screen"

<FormData FormOID="101.DEMOG"> FormData FormOID "101.DEMOG"

<ItemGroupData
ItemGroupOID="101.DM">

ItemGroupData ItemGroupOID "101.DM"

<ItemDataString
ItemOID="101.USUBJID">101-01-01
</ItemDataString>

ItemData ItemOID

ItemDataType

Value

"101.USUBJID"

"ItemDataString"

"101-01-01"

<ItemDataString
ItemOID="101.SEX">F</
ItemDataString>

ItemData ItemOID

ItemDataType

Value

"101.SEX"

"ItemDataString"

"F"

The following table lists the complete set of 52 tables that form the SAS Clinical Standards
Toolkit SAS representation of the CDISC ODM 1.3.0 standard.

Table 4.14 Data Sets in the SAS Representation of the CDISC ODM 1.3.0 Standard

Table Table

Annotations ItemMURefs

AuditRecords ItemQuestionExternal

CLItemDecodeTranslatedText ItemQuestionTranslatedText

ClinicalData ItemRCFormalExpression

CodeListItems ItemRangeCheckValues

CodeLists ItemRangeChecks

ConditionDefFormalExpression ItemRole

ConditionDefTranslatedText MUTranslatedText

ConditionDefs MeasurementUnits

EnumeratedItems MetaDataVersion

62 Chapter 4 • Supported Standards



Table Table

ExternalCodeLists MethodDefFormalExpression

FormData MethodDefTranslatedText

FormDefArchLayouts MethodDefs

FormDefItemGroupRefs ODM

FormDefTranslatedText Presentation

FormDefs ProtocolEventRefs

ImputationMethods ProtocolTranslatedText

ItemAliases RCErrorTranslatedText

ItemData ReferenceData

ItemDefTranslatedText SignatureDefs

ItemDefs Signatures

ItemGroupAliases Study

ItemGroupData StudyEventData

ItemGroupDefItemRefs StudyEventDefs

ItemGroupDefTranslatedText StudyEventFormRefs

ItemGroupDefs SubjectData

The highly structured nature of CDISC ODM data requires that any mapping to a relational
format include a large number of data sets, with foreign key relationships to help preserve
the intended non-relational object structure. In the SAS Clinical Standards Toolkit, foreign
key relationships are enforced when validating the CDISC ODM data sets.

Field lengths in the CDISC ODM data sets are consistent by core data type. CDISC has
not specified any limit to the length of most character fields. Arbitrary lengths have been
chosen by data type. These lengths are listed in the following table. In the table, standard
data types are distilled into core data types. To be safe, larger lengths have been chosen to
ensure that no data loss occurs in the SAS Clinical Standards Toolkit pre-installed data
sets. Production tables might be compressed using SAS mechanisms to preserve disk space.

Table 4.15 CDISC ODM Default Lengths by Data Type

Type Name Length Description

oid 128 A unique object identifier or a reference

text 2000 A character field that can accommodate a large number of characters

CDISC ODM 1.3.0 63



Type Name Length Description

name 128 A descriptive identifier

value 512 An item of collected or reference data

path 512 An absolute or relative file system path or URL

The table metadata for the 52 data sets and the column metadata for the 241 columns in
those data sets that comprise the SAS representation of the CDISC ODM 1.3.0 standard
are in the following folder:

<global standards library directory>/standards/cdisc-
odm-1.3.0-1.3/metadata.

Table metadata is in reference_tables.sas7bdat, and column metadata is in
reference_columns.sas7bdat.

In the future, the CDISC ODM reference standard will support reading and representing
in SAS a complete odm.xml file, building an odm.xml file, and validating the structure and
content of the SAS representation of an odm.xml file. In addition, it will validate the
structural integrity of the odm.xml file. To support this functionality, supplemental files
include the following global standards library files:

• The Messages data set in the messages folder provides error messaging for all
Validation Master checks.

• SAS code in the macros folder provides CDISC ODM-specific code that augments
code that is provided in the primary SAS Clinical Standards Toolkit autocall library
(!sasroot/cstframework/sasmacro).

It is this set of files, in whole or in part, that defines the CDISC ODM reference standard.

CDISC Terminology

Purpose
The CDISC Terminology standard supports standardizing values for columns in data
submitted to the regulatory authorities. Standardization facilitates loads into regulatory
databases, data review, and analysis. The initial standardization of values has primarily
been in support of SDTM submission data and the CDISC CDASH (Clinical Data
Acquisition Standards Harmonization) development of standardized data collection
instruments.

Release Dates

CDISC-Terminology-200810 Comprised of SDTM Packages 1, 2A, and
2B, and Labtest Packages 1 and 2.
September 24, 2008.

CDISC-Terminology-201003 All SDTM controlled terminology
developed and in production as of March
8, 2010, comprised of SDTM Packages 1,
2A, 2B, 3, and 4, and Labtest Packages 1,

64 Chapter 4 • Supported Standards



2, 3, and 4. Also contains commonly used
controlled terminology in the CDASH 1.0
standard.

CDISC Terminology Reference Standard
CDISC Terminology is maintained by and distributed as part of the National Cancer
Institute (NCI) Enterprise Vocabulary Services (EVS) Thesaurus. For more information,
see “References” on page 2. Periodically, CDISC Terminology is updated to include the
work of numerous terminology project teams. Updates are in the form of new packages or
sets of terminology.

SAS Clinical Standards Toolkit offers snapshots of the NCI EVS Thesaurus, These
snapshots are typically coordinated with the release of other CDISC standards that use the
thesaurus. Two snapshots are currently supported:

• The CDISC-Terminology-200810 snapshot was taken in October 2008 in support of
SAS Clinical Standards Toolkit 1.2. This snapshot supports CDISC SDTM 3.1.1.

• The CDISC-Terminology-201003 snapshot was taken in March 2010 in support of SAS
Clinical Standards Toolkit 1.3. This snapshot supports CDISC SDTM 3.1.2.

Each CDISC Terminology standard includes a SAS format catalog
(cterms.sas7bcat) and a SAS data set (cterms.sas7bdat). The catalog and data
set are found in the following global standards library folder (where xxxxxx is the specific
snapshot (200810 or 201003):

<global standards library directory>/standards/cdisc-
terminology-xxxxxx-1.3/formats.

The following 60 code lists (SAS formats) are in the cumulative CDISC-
Teminology-201003 snapshot:

Table 4.16 Supported CDISC Terminology Code Lists/Formats

Code List/Format Name Description Unique Values

ACN Action Taken with Study Treatment 7

AESEV Severity/Intensity Scale for Adverse Events 3

AGESPAN Age Span 8

AGEU Age Unit 5

COUNTRY Country 246

DATEST Drug Accountability Test Name 2

DATESTCD Drug Accountability Test Code 2

DICTNAM Dictionary Name 7

DOMAIN Domain Abbreviation 45

DSCAT Category for Disposition Event 3

CDISC Terminology 65



Code List/Format Name Description Unique Values

EGMETHOD ECG Test Method 22

EGSTRESC ECG Result 109

EGTEST ECG Test Name 46

EGTESTCD ECG Test Code 46

ETHNIC Ethnic Group 4

EVAL Evaluator 15

FREQ Frequency 50

FRM Pharmaceutical Dosage Form 168

IECAT Category for Inclusion/Exclusion 2

LBTEST Laboratory Test Name 580

LBTESTCD Laboratory Test Code 580

LOC Anatomical Location 303

MARISTAT Marital Status 9

METHOD Method 65

MICROORG Microorganism 868

MSRESCAT Microbiology Susceptibility Testing Result Category 7

NCF Never/Current/Former Classification 3

NCOMPLT Completion/Reason for Non-Completion 16

ND Not Done 1

NRIND Reference Range Indicator 4

NY No Yes Response 4

OUT Outcome of Event 6

PKUNIT PK Parameter Units of Measure 208

POSITION Position 10

RACE Race 5

RELTYPE Relationship Type 2

66 Chapter 4 • Supported Standards



Code List/Format Name Description Unique Values

ROUTE Route of Administration 112

SCCD Subject Characteristic Code 7

SEX Sex 4

SEXPOP Sex of Participants 3

SIZE Size 3

SKINCLAS Skin Classification 6

SKINTYP Skin Type 3

SOC CDISC System Organ Class 26

SPECCOND Specimen Condition 8

SPECTYPE Specimen Type 41

STENRF Relation to Reference Period 7

TBLIND Trial Blinding Schema 3

TCNTRL Control Type 3

TDIGRP Diagnosis Group 1

TINDTP Trial Indication Type 5

TOXGR Common Terminology Criteria for Adverse Events 5

TPHASE Trial Phase 12

TSPARM Trial Summary Parameter Test Name 24

TSPARMCD Trial Summary Parameter Test Code 24

TTYPE Trial Type 8

UNIT Unit 310

VSRESU Units for Vital Signs Results 14

VSTEST Vital Signs Test Name 14

VSTESTCD Vital Signs Test Code 14

CDISC Terminology 67



Support for Upcoming Standards
From a CDISC perspective, the following standards are candidates for future SAS Clinical
Standards Toolkit support. For more information, check with your on-site SAS support
personnel and SAS product management. Other CDISC standards might be considered as
candidates based on user requests.

CDISC ODM 1.3.0 and CDISC ODM 1.3.1
Completion of the CDISC ODM 1.3.0 standard. For example, support will include handling
the AdminData and ReferenceData sections, and validating the odm.xml file and the SAS
representation of CDISC ODM 1.3.1 is also a candidate for support.

CDISC ADaM 2.1
The CDISC ADaM standard defines a standard for analysis data sets that are to be submitted
in support of the statistical analyses performed by the sponsor. CDISC ADaM 2.1 and its
Implementation Guide were released in December 2009. CDISC ADaM 2.1 is a candidate
for support.

CDISC Terminology
Updates to the NCI EVS Thesaurus for CDISC Terminology after March 8, 2010 will be
packaged as a CDISC Terminology snapshot in a future SAS Clinical Standards Toolkit
release. These updates are expected to support CDISC ADaM 2.1.

68 Chapter 4 • Supported Standards



Chapter 5

SASReferences File

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Building a SASReferences File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

How Is a SASReferences File Used? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Communicating the Filename and Location to the SAS Clinical Standards Toolkit 78
Assessing Structural Integrity and Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Translating Content for a SAS Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Overview
SAS Clinical Standards Toolkit supports the submission of SAS processes using predefined
metadata files. These files are introduced and described in Chapter 3, “Metadata File
Descriptions,” on page 21. The key metadata file that supports this functionality is the
SASReferences file. This SAS data set essentially identifies all of the key inputs and outputs
for any SAS Clinical Standards Toolkit process. Each unique process can have an
associated, unique SASReferences file. However, SAS Clinical Standards Toolkit offers
many standardization aids, so more generic SASReferences files are preferable.

The required SASReferences file structure is provided in Table 3.3 on page 26 and example
content is provided in Display 3.5 on page 27.

Building a SASReferences File
Each SASReferences file requires content that is specific to its planned use. For example,
a SAS Clinical Standards Toolkit process that creates a define.xml file requires the
specification of XML and recommends the specification of style sheet information. A SAS
Clinical Standards Toolkit process that validates data against a standard requires the
specification of the validation checks to be run.

The SAS Clinical Standards Toolkit offers several ways to create a SASReferences file for
use in subsequent processes.

1. Use sample SASReferences files that are provided with the SAS Clinical Standards
Toolkit. These sample SASReferences files contain the required and optional contents
for specific tasks. For example, the task of validating the functionality of CDISC SDTM
3.1.2 uses the SASReferences file found at the following location in SAS 9.2:

69



!sasroot/../../SASClinicalStandardsToolkitSDTM312/1.3/
sample/cdisc-sdtm-3.1.2/sascstdemodata/control

An excerpt of this sample SASReferences file is provided in Display 3.5 on page 27.

2. The SAS Clinical Standards Toolkit provides SASReferences templates for use. These
templates are either zero-observation data sets or data sets containing records that must
be modified. A SASReferences data set template can be found in:

<global standards library directory>/standards/cst-
framework-1.3/templatesSAS.

The SAS Clinical Standards Toolkit provides default SASReferences data sets for each
supported standard. These default SASReferences data sets contain records that are
commonly required for certain SAS Clinical Standards Toolkit tasks (such as
validation). However, all records that are required might not be included. Or, all records
that are included might not be required for certain tasks. And, SAS librefs, filerefs,
paths, and memname values might require modification. For example, see the
StandardSASReferences data set found in:

<global standards library directory>/standards/cdisc-
sdtm-3.1.2-1.3/control.

3. The SAS Clinical Standards Toolkit provides the utility macros to build and return
many SAS Clinical Standards Toolkit metadata data sets.

• The %cst_getStandardSASReferences macro returns the StandardSASReferences
data set. (See the file description in Chapter 3, “Metadata File Descriptions,” on
page 21 for the specified standard.)

• The %cst_createds macro can be used to return an empty SASReferences data set.

Use of these utility macros is illustrated later in this chapter.

The primary function of the SASReferences file is to define the SAS Clinical Standards
Toolkit process inputs and outputs. What information does the process need to reference?
What does the process produce? Where does the information come from and go? The
“what” information is determined by the use of two SASReferences fields—type and
subtype. The “where” information is determined by path and memname. The values for all
of these fields are restricted for SAS Clinical Standards Toolkit to values itemized in the
framework Standardlookup data set found in:

<global standards library directory>/standards/cst-framework/
control/standardlookup.sas7bdat.

Customizing the type and subtype values in the Standardlookup data set is allowed.
Customization is a prerequisite if you want to use the field values in any SASReferences
data set that is used by the SAS Clinical Standards Toolkit.

The following table lists and describes the acceptable type and subtype values in the
framework Standardlookup data set.

70 Chapter 5 • SASReferences File



Table 5.1 SAS Clinical Standards Toolkit SASReferences Type and Subtype Values

Type Subtype Comments

autocall One record for each library that
contains macros to be included in the
SAS autocall path. Typically, this
includes one record for each standard
that is referenced in the SASReferences
file, excluding the SAS Clinical
Standards Toolkit framework. The
framework and cross-standard macros
are already included in the autocall path
at product deployment. User-written
macros, as referenced in one or more
additional code libraries, require an
autocall record for each library.

classmetadata column or table Identifies the SAS data sets
(sasref.memname) that contain the
column and table metadata for specific
CDISC SDTM template data sets that
are used to build standard SDTM-
compliant data sets. This type is
provided by default in
StandardSASReferences and is
optional.

control validation or reference Identifies any run-time process control
file, including the SASReferences data
set itself. (In other words, it is a self-
documentation record). For SAS
Clinical Standards Toolkit validation
processes, the Validation Control data
set that specifies the validation checks
to be run is identified with
subtype=validation.

externalxml xml Identifies an external XML file.
Depending on the standard version and
the subsequent macro that is called, this
file can be read or written. Using
CDISC CRT-DDS as an example, this
type specifies the define.xml file that is
created when the %crtdds_write()
macro is called. When the
%crtdds_read() macro is supported,
this type identifies the XML file to be
read.

Building a SASReferences File 71



Type Subtype Comments

fmtsearch Provides a way to build the format
search path for a validation process.
SAS Clinical Standards Toolkit sets the
SAS fmtsearch type based on each
record, specifying a SAS catalog that
uses the order=n sequence. This type is
not provided by default in
StandardSASReferences, so user
specification is required. The
type=fmtsearch value is optional unless
one or more checks are to be run that
assess value compliance against a SAS
format.

lookup Identifies a data set (Standardlookup)
that is associated with each SAS
Clinical Standards Toolkit standard
that contains valid values for discrete
metadata fields. This type is provided
by default in StandardSASReferences
and is required for each standard. For
example, the valid values for type and
subtype that are documented in this
table have been defined in one or more
SAS Clinical Standards Toolkit
Standardlookup data sets.

messages Identifies one or more Messages data
sets that are associated with each SAS
Clinical Standards Toolkit standard.
This type is provided by default in
StandardSASReferences. User
specification is necessary only with
user customizations that require new or
modified messages. SAS Clinical
Standards Toolkit populates the data set
that is referenced by the global macro
variable &_cstMessages with all
Messages data sets that are included in
SASReferences. This type is required
for each standard.

properties validation or initialize Initializes a standard version's required
macro variables. Specification in
SASReferences is optional. (These
macro variables can be defined with
calls to %cst_setstandardproperties or
%cst_setproperties instead.) Each
standard should have at least one
properties (initialize) file. Each
standard can have any additional files
that are needed. A subtype=validation
value is specific to SAS Clinical
Standards Toolkit validation processes.

72 Chapter 5 • SASReferences File



Type Subtype Comments

referencecontrol validation or standardref If subtype=validation, then the value
identifies the standard-supplied master
super-set of supported validation
checks. While this is key metadata, it is
not typically referenced at run time and
does not need to be included. It is the
Validation Control file that is identified
with type=control and
subtype=validation that must be
included.

If subtype=standardref, then the value
identifies an optional data set that
contains a list of references that provide
the basis for each validation check that
is included in the subtype=validation
data set.

referencecterm Identifies a SAS data set
(sasref.memname) that most often
contains controlled terminology, as
opposed to a SAS format containing
controlled terminology (for example,
medDRA). The type=referencecterm
value is optional unless one or more
checks are to be run that assess value
compliance against a SAS data set.

referencemetadata column or table Identifies the SAS data sets
(sasref.memname) that contain the
column and table metadata for a
standard version. This type is provided
by default in StandardSASReferences,
so user specification is required only to
override the default for the standard.
Records for both subtypes are required.

referencexml stylesheet or map If subtype=stylesheet, then this value
identifies the directory and filename of
an XML style sheet. In the production
of CDISC CRT-DDS XML files, this
value should point to the style sheet to
be copied into the directory with the
XML file.

If subtype=map, then this value
identifies the persisted location of a
SAS XML map file. The SAS XML
map file reads the Work cube.xml file
generated by SAS Clinical Standards
Toolkit that translates an XML file into
the SAS representation of the XML-
based standard (such as CDISC CRT-
DDS and CDISC ODM).

Building a SASReferences File 73



Type Subtype Comments

report library or outputfile Specifies the storage location of the
SAS Clinical Standards Toolkit process
reports. If a single, specific report is
referenced, then it can be specified with
a subtype of outputfile, a valid path, and
valid memname values. If the process
produces multiple reports, then a
subtype of library is used with a valid
path to the directory or folder. In the
latter case, default report names as
defined in the code are used.

results results or validationresults, metrics or
validationmetrics

Specifies the storage location of the
Results and Metrics data sets that are
generated by the SAS Clinical
Standards Toolkit process. The Metrics
data set is specific to SAS Clinical
Standards Toolkit validation processes
and is optional depending on property
settings. A results/
validationresults record is
required.

resultspackage xml or log This type is not used in SAS Clinical
Standards Toolkit 1.3. This type
bundles a set of process inputs and
outputs together for later access.

sourcedata Defines the folder location of the data
for a specific study. This type is
required for validation processes if one
or more checks are to be run that access
a specific source data domain.

sourcemetadata column, table, or study Identifies the SAS data sets
(sasref.memname) that contain the
column and table metadata for a study
or set of source data. This type is not
provided by default in
StandardSASReferences so user
specification is required. Records for
both subtypes are required.

standards registeredstandards or
registeredsasreferences

Identifies the template for the
registered Standards and
SASReferences data sets, respectively.
This value is used by the framework
when the global metadata library is
created. This type is not used in post-
deployment processes.

74 Chapter 5 • SASReferences File



Type Subtype Comments

targetdata Defines the location of the data to be
derived for a specific standard. For
example, for CDISC CTR-DDS, the
crtdds_read macro derives a set of
CRT-DDS data sets from the
referenced define.xml file. This type is
optional.

targetmetadata column, table, or study Identifies the SAS data sets
(sasref.memname) that contain the
column, table, and study metadata to be
derived for a specific standard. For
example, for CDISC CRT-DDS, the
crtdds_read macro derives files that
describe metadata about the targetdata
data sets that are derived from the
referenced define.xml file. If this type
is used, then a record for each subtype
is required.

transport This type is not used in SAS Clinical
Standards Toolkit 1.3. This type
identifies a library of SAS transport
files that are optionally referenced by a
define.xml file.

Every instance of the SASReferences file does not require a specific path and filename. At
the beginning of this section, a call to the following macro was described:

%cst_getStandardSASReferences(_cstStandard=CST-FRAMEWORK,_cstStandardVersion=1.2,
_cstOutputDS=sasreferences);

This macro call produces the following SASReferences file:

Display 5.1 Standard SASReferences File for CST-FRAMEWORK

Note the SASref and path fields. For most rows, SASref is set to csttmp and path is set
to &_cstGRoot/standards/cst-framework/templates. The memname field
points to empty examples of each file type. From a generic SAS Clinical Standards Toolkit
framework perspective, these are the best available file references. All SAS Clinical
Standards Toolkit processes require specification of some of these data and metadata
sources (for example, generic properties, messages, and process results).

Here is the information returned by the following call to
%cst_getStandardSASReferences for the CDISC SDTM standard: Display 5.2 on page
76.

%cst_getStandardSASReferences(_cstStandard=CDISC-SDTM, _cstOutputDS=sasreferences);

Building a SASReferences File 75



Display 5.2 Standard SASReferences for CDISC SDTM

A comparison of Display 5.1 on page 75 and Display 5.2 on page 76 shows little similarity
in the record types and no overlap in references to specific files. The target inputs and
outputs for CDISC SDTM are more focused on the task (for example, validating SDTM
domains). SAS Clinical Standards Toolkit validation processes require specification of a
comparative reference standard. Here, there are references to a standard-specific macro
library (autocall), Messages data set, and properties files. Unique SASref values by type
are provided, pointing to distinct files and folders in the global standards library.

Consider an actual SASReferences file built to support CDISC SDTM 3.1.2 validation.
The task of validating the functionality of CDISC SDTM 3.1.2 uses the SASReferences
file found at the following location in SAS 9.2:

!sasroot/../../SASClinicalStandardsToolkitSDTM312/1.3/sample/
cdisc-sdtm-3.1.2/sascstdemodata/control

The following figure shows the complete contents of the SASReferences file.

Display 5.3 Sample SASReferences File for CDISC SDTM Validation

Table 5.2 Explanation of Sample SASReferences File for CDISC SDTM Validation

Lines Comment

1 Instructs the SAS Clinical Standards Toolkit to add any
SDTM-specific macros to the autocall path.

2 Documents the name and location of this file. This
information is used in the sample reports that are discussed
in this document.

76 Chapter 5 • SASReferences File



Lines Comment

3 Points to the set of validation checks to be run in this
validation assessment. The framework default values for
SASref, path, and memname have been overridden.

4, 18 Two standards are referenced to create a format search path.
Line 4 references the SDTM study-specific formats catalog.
Line 18 references the more general CDISC Terminology
cterms catalog. The precedence is set by the order column.

5, 19 These records are identical to the CST-FRAMEWORK and
CDISC-SDTM StandardSASReferences records.

6 Illustrates the call to a standard-specific properties file that
is used to initialize a global macro variable that is specific to
that standard. Referencing a standard-specific properties
files in the SASReferences data set is recommended. The call
to the CST-FRAMEWORK initialize.properties file is a
prerequisite setup step outside of SASReferences and
performed before processing SASReferences.

7 The validation properties path has been modified to point to
a location in the study hierarchy, rather than to the global
standards library that is defined in the
StandardSASReferences file.

8–9

11–12

Points to the reference standard for CDISC SDTM 3.1.2, but
unlike the template defaults in Display 5.2 on page 76, path
and memname are blank. Leaving them blank tells SAS
Clinical Standards Toolkit to look in the CDISC SDTM 3.1.2
StandardSASReferences file and use the defaults for that
standard and version. This convention facilitates portability
of the data set by doing a run-time lookup for the current
information. The lookup results in the inclusion of the path
and memname values as defined in Display 5.2 on page 76.

10 References a medDRA data set that is maintained in the
study-specific hierarchy. A more common implementation
might reference a non-study-specific coding dictionary.

13-14 Specifies that process results are to be stored in a location in
the study hierarchy.

15 This is a new type not in the template files
(StandardSASReferences). It defines the location of the
study (source) data. The use of &studyRootPath, coupled
with the assumption of a fixed-folder hierarchy, enables
portability across studies. The memname value is not
relevant for a library of SAS data sets.

16-17 These source metadata references are new. These values
follow the style used in line 15 for source data. The same
SASref is used for multiple subtypes in a single type because
the subtypes reference two differently named SAS data sets
from the same folder.

Building a SASReferences File 77



An alternative way to build the SASReferences file is to use the %cst_createds utility
macro.

%cst_createds(_cstStandard=CST-FRAMEWORK,_cstType=control,_cstSubType=reference,
_cstOutputDS=work.sasreferences);
proc sql;
insert into work.sasreferences
values(CST-FRAMEWORK 1.2 messages messages libref 1 );
.
.
.
quit;

This macro copies the template. New records can be added various ways, including the
previous PROC SQL technique. There is no requirement that the SASReferences file has
to live outside the SAS Work area and be kept beyond the SAS Clinical Standards Toolkit
process. However, these are best practices that enable future capabilities such as process
reruns and reporting.

How Is a SASReferences File Used?

Overview
After a SASReferences file has been created for a task, three key steps occur.

1. The name and location of the file must be communicated to the SAS Clinical Standards
Toolkit.

2. The structural integrity and content of the file are assessed.

3. The file content is translated into allocated SAS libraries and filenames, system options
are set, and required work files are created.

After these steps are completed, a SAS environment has been properly established to
support subsequent SAS Clinical Standards Toolkit tasks.

Communicating the Filename and Location to the SAS Clinical
Standards Toolkit

Three global macro variables are used to define the name and location of the
SASReferences file:

• The _cstSASRefsLoc macro provides the path to the SAS library that contains the file.

• The _cstSASRefsName macro provides the SASReferences filename in
_cstSASRefsLoc.

• The _cstSASRefs macro provides libref.dset for the SASReferences file that is returned
from the call to the cst_insertstandardsasrefs macro. The libref.dset is used in SAS
Clinical Standards Toolkit code for the remainder of the process.

Sample driver modules are provided with the SAS Clinical Standards Toolkit. These driver
modules show how to perform the necessary setup tasks for SAS Clinical Standards Toolkit
processes, and how to reference and use sample data that is provided with the SAS Clinical
Standards Toolkit.

78 Chapter 5 • SASReferences File



The key macro cstutil_processsetup is called in all sample driver modules. This macro
interprets information about the location and name of the SASReferences file, and calls the
cstutil_allocatesasreferences macro to allocate SAS librefs and filerefs based on
SASReferences content.

Here is the macro code:

%macro cstutil_processsetup( _cstSASReferencesSource=SASREFERENCES,
           _cstSASReferencesName=sasreferences,
           _cstSASReferencesLocation=)  /des='CST: Setup Process Metadata';

The following table lists the parameters that are supported by the cstutil_processsetup
macro:

Parameter Description

_cstSASReferencesSource Specifies the initial source that setup should be
based on.

Valid values are SASReferences (default) or
Results.

If Results, then no other parameters are
required, setup responsibility is passed to the
cstutil_reportsetup macro, and the Results data
set name must be passed to cstutil_reportsetup
as libref.memname.

_cstSASReferencesLocation Specifies the path (folder location) of the
SASReferences data set. The default is the path
to the Work library. This is the value of the
global macro variable.

_cstSASReferencesName Specifies the name of the SASReferences data
set. The default is SASReferences. The value of
the global macro variable _cstSASRefsName is
set to this parameter value.

Excluding SAS Clinical Standards Toolkit reporting processes, to communicate with a
SASReferences file, use one of the following two methods.

Note: SAS Clinical Standards Toolkit reporting processes might use the
_cstSASReferencesSource=RESULTS parameter.

1. Create and reference the SASReferences file in the SAS Work library.

%* The following call assumes the existence of work.sasreferences;
%cstutil_processsetup();

2. Reference an existing SASReferences file.

data _null_;
  select("&sysver");
   when("9.1") call symput('studyRootPath',
        '!sasroot/../SASClinicalStandardsToolkitSDTM312/
         1.3/sample/cdisc-sdtm-3.1.2/sascstdemodata');
   otherwise   call symput('studyRootPath',
         '!sasroot/../../SASClinicalStandardsToolkitSDTM312/
         1.3/sample/cdisc-sdtm-3.1.2/sascstdemodata');
  end;

How Is a SASReferences File Used? 79



run;
%* Look for the data set named sasreferences in the specified folder ;
%cstutil_processsetup(_cstSASReferencesLocation=&studyrootpath/control);

Assessing Structural Integrity and Content
Two SAS Clinical Standards Toolkit framework utility macros perform key functions in
assessing whether the SASReferences file is valid.

The cst_insertstandardsasrefs macro looks up missing paths and memnames in the
constructed SASReferences file from each StandardSASReferences data set. For example,
this macro sets the path and memname values for lines 8 and 9 and 11 and 12 in the example
in Display 5.3 on page 76. This macro attempts to update only records for supported
standards (and standardversions) that have missing path and memname information. It does
not update records with non-null values, and it does not add any records from the
StandardSASReferences data set. If this macro runs successfully, then the resulting data
set has paths for all records and memnames for all records that require them. This does not
include autocall and sourcedata records. By default, the resulting data set is referenced by
the &_cstSASRefs global macro variable.

The cstutil_checkds macro checks the structure and content of the data sets used by SAS
Clinical Standards Toolkit, including SASReferences. This macro validates that
SASReferences has the structure and content defined by the StandardSASReferences and
Standardlookup data sets.

The following is the syntax of this macro:

%cstutil_checkDS(_cstDSname=, _cstType=, _cstSubType=, _cstStandard,
_cstStandardVersion);

_cstDSname specifies a two-level name of the data set to be validated. This value is
required.

_cstType specifies the type of the data set to be validated. This value is required. This value
comes from the Type column in the registered SASReferences for the standard-version
combination.

_cstSubType specifies the subtype for the corresponding type. This value comes from the
Subtype column in the registered SASReferences for the standard-version combination. If
the type has no subtypes registered, then this option can be omitted. Otherwise, this value
is required.

_cstStandard specifies the name of the data standard to validate against. This value is
optional. By default, all standards are included.

_cstStandardVersion specifies the version of the data standard to validate against. This
value is optional. By default, all standard versions are included.

Results are written to the Results data set defined by the &_cstResultsDS global macro
variable.

The following table describes the most common errors detected by the cstutil_checkds
macro. It suggests solutions as well.

80 Chapter 5 • SASReferences File



Table 5.3 Common Errors and Solutions

Error Location Where It Is Reported Possible Cause and Solution

Input parameters to macro insufficient
for cstutil_checkds macro to run.

Results Data Set One of the required macro variable
options is missing.

Location for Results data set is
undefined.

SAS Log Define the Results data set in the macro
variable _cstResultsDS.

Data set could not be found. Results Data Set The data set that is passed in via the
_cstdsname parameter cannot be found.
Verify that the data set exists in the
location specified.

Data set could not be opened. Results Data Set The data set that is passed in via the
_cstdsname parameter cannot be
opened. Make sure that you do not have
the data set open in another window.
Verify you have read access to the data
set.

Differences found between data set and
the template data set.

Results Data Set The data set that is passed in via the
_cstdsname parameter has a different
structure than the template data set.

Use the cst_createds macro to create a
valid empty version of the data set, and
then populate this data set with your
data.

Null values are not permitted for
column.

Results Data Set Some columns are required to be non-
null. If you receive this error, then you
are also informed which column must
contain a value. Enter a non-null value
for this column.

Invalid value for column
column_name, row ## in data set.

Results Data Set Some columns are limited to a set of
values. This error indicates that the
value for column_name, listed in row
##, has an invalid value.

The list of valid values can be found in
the Standardlookup data set that is
registered with each data standard.
Review the list of valid values, and
update the column value.

Translating Content for a SAS Session
After the SASReferences file has been built, its content must be translated for use by a SAS
Clinical Standards Toolkit process. A call to the SAS Clinical Standards Toolkit framework
utility macro %cstutil_processsetup performs the translation. If this macro runs
successfully, then the SAS session is properly configured for any tasks (such as validation)
that follow.

When the %cstutil_processsetup macro is called, the following happens:

How Is a SASReferences File Used? 81



1. The cstutil_allocatesasreferences macro is called.

2. The cst_insertstandardsasrefs macro is called to insert paths into any records that are
missing that information. The information is retrieved from the
StandardSASReferences data set for each standard.

3. The cstutil_checkds macro is called to perform internal validation on the
SASReferences data set updated in step 2.

4. All filerefs and librefs are allocated.

5. Any property files are passed to %cst_setProperties to create global macro variables.

6. The format search path is set if any type=fmtsearch records are found, based on the
order that is specified.

7. The autocall path is set if any type=autocall records are found, based on the order that
is specified. By default, the framework macro library was added to the autocall path
when SAS Clinical Standards Toolkit was deployed.

8. A Messages data set is created to contain records from each standard, based on the
properties or global macro variables _cstMessages and _cstMessageOrder. The
Messages data set is used for the duration of the process to add fully resolved messages
to the Results data set.

After all of these steps have been performed, all libraries should be allocated, all paths and
global macros should be set, and the global status macro variable _cst_rc should be set to
0. The process is ready to proceed.

This is a common process failure point because of the importance of the SASReferences
file, and the strict structural and content expectations of the file. SASReferences is key to
the process, and any errors will cause the process to fail. For tips on debugging problems
with the SASReferences file, see Table 5.3 on page 81.

Best Practice Recommendation: Each SASReferences file is customized for the specific
task to be completed. Later sections describe SASReferences implementations required by
these specific tasks.

82 Chapter 5 • SASReferences File



Chapter 6

Validation

Validation Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Metadata Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Reference Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Source Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Validation Check of Metadata: Validation Master . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Supplemental Validation Check Metadata: Validation Standard References . . . . . 97
Supplemental Validation Check Metadata: Domains by Check . . . . . . . . . . . . . . . . 98
Validation.Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Validation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Building a Validation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
SASReferences Customizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Validation Control: Specification of Run-Time Checks . . . . . . . . . . . . . . . . . . . . 105
Setting Properties for the Validation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Running a Validation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Sample CDISC SDTM 3.1.1 Driver Program: validate_data.sas . . . . . . . . . . . . . . 111
Validation Results and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Sample CDISC CRT-DDS 1.0 Driver Program: validate_crtdds_data.sas . . . . . . 120

Validation Checks by Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
CDISC SDTM 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
CDISC SDTM 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
CDISC CRT-DDS 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Special Topic: Validation Check Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Special Topic: How SAS Clinical Standards Toolkit Interprets
Validation Check Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Case Study 1: CDISC SDTM Check SDTM0604 . . . . . . . . . . . . . . . . . . . . . . . . . 142
Case Study 2: CDISC SDTM Check SDTM0623 . . . . . . . . . . . . . . . . . . . . . . . . . 144
Case Study 3: CDISC SDTM Check SDTM0452 . . . . . . . . . . . . . . . . . . . . . . . . . 146

Special Topic: SAS Implementation of ISO 8601 . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Special Topic: Debugging a Validation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Special Topic: Validation Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Case Study 1: Modifying an Existing Standard or Defining a

New Reference Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Case Study 2: Using Any Set of Source Data and Metadata . . . . . . . . . . . . . . . . . 159

83



Case Study 3: Modifying the SAS Validation Checks for Supported Standards . . 160
Case Study 4: Adding New Validation Checks for Supported Standards . . . . . . . 160
Case Study 5: Modifying Existing Validation Check Macros or

Adding New Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Case Study 6: Modifying SAS Clinical Standards Toolkit

Messaging, Including Internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Special Topic: Performance Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Validation Framework Overview
SAS Clinical Standards Toolkit validation assesses the compliance of data, and the
metadata describing the data, with an accepted reference standard. It assesses the
consistency of values in a specific column, between columns, across records in a specific
data set, and across data sets. The primary output is a Results data set that itemizes the
process findings, and an optional Metrics data set that summarizes the results.

The SAS Clinical Standards Toolkit provides a framework to build a process. The process
uses inputs or process controls to evaluate the compliance of source data with a reference
standard. Each SAS Clinical Standards Toolkit process uses a SAS program file to point
to a SASReferences control data set, and to execute a primary action SAS macro (such as
sdtm_validate). This SAS program file is referred to as a driver module in this document.

Generally, validation is performed by running SAS macros against the standard, which is
represented by SAS files. Validation of some standards, such as CDISC CRT-DDS, might
include validating files that are not SAS files (such as define.xml).

The following display shows a SAS Clinical Standards Toolkit validation process. Each
component is fully described in the following sections.

Display 6.1 Components of a SAS Clinical Standards Toolkit Validation Process

84 Chapter 6 • Validation



• Source Data is a set of SAS data sets in one or more libraries that collectively represents
a clinical study. These SAS data sets are referred to as study domains or study data sets.
One or more source data sets are required by a typical SAS Clinical Standards Toolkit
validation process. However, it is possible to test only the structural compliance of
source metadata by limiting validation to a subset of validation checks.

• Source Metadata is a set of SAS data sets in one or more libraries that provide metadata
about the source data. The source metadata is typically in a format specific to a standard.
For example, metadata about source data sets might be captured in a source_tables data
set. Metadata about columns in those source data sets might be captured in a
source_columns data set.

• Process Controls is the set of instructions that each SAS Clinical Standards Toolkit
process uses to perform a specific action. These instructions might be provided in a
varied number and in various type of files. For a SAS Clinical Standards Toolkit
validation process, these files include the following:

• Reference Metadata is a set of SAS data sets that provide metadata. This metadata
defines a specific standard and is typically in a format specific to a standard. For
example, metadata about data sets might be captured in a reference_tables data set.
Metadata about columns in those data sets might be captured in a
reference_columns data set. For an example, see Table 4.3 on page 42 and Table
4.4 on page 42.

• Properties are a series of name-value pairs that are translated into SAS global macro
variables. These macro variables are available for the duration of the SAS Clinical
Standards Toolkit process. Properties might be defined in a varied number of files.
Both text file format and SAS data set format are supported. For information about
a sample validation.properties file, see “Validation Check of Metadata: Validation
Master” on page 90. For information about the SAS Clinical Standards Toolkit
global macro variables, see Appendix A1, “Global Macro Variables,” on page
211.

• Set of Checks to Run is a set of checks that represent all or some of the checks
defined for a standard. Each check provides metadata that is used by the validation
code to perform a specific compliance assessment.

• Controlled Terminology is an optional set of lookup values against which source data
columns can be evaluated. These values can be in the form of SAS format catalogs or
SAS data sets.

• Results are presented in a Results data set that itemizes the process findings, and in a
Metrics data set that summarizes the results. The Results data set usually contains a
record indicating that each check was run successfully without error, or it contains a
record that itemizes the errors detected. Information about the process also might be
included. The generation of a Metrics data set is conditional based on property file
settings.

The SAS Clinical Standards Toolkit validation makes the following basic assumptions:

1. There is some combination of source data and metadata available as SAS files that the
user wants to validate.

2. A reference standard has been defined with which the source data and metadata are to
be compared. The SAS Clinical Standards Toolkit provides representative reference
metadata for each supported standard.

3. The source data can be in a varied number of SAS files, and those SAS files can have
any form. However, the metadata describing the source data must accurately represent
the source data. The metadata must be in a form specific to a supported standard and
defined by the SAS Clinical Standards Toolkit.

Validation Framework Overview 85



4. A set of validation checks must be defined, and the validation checks must conform to
a generic SAS Clinical Standards Toolkit SAS data set structure. The SAS Clinical
Standards Toolkit provides a representative set of validation checks for each supported
standard.

Metadata Requirements

Overview
As noted in Chapter 4, “Supported Standards,” on page 35, a standard consists of properties,
messages, and metadata files that collectively represent the standard in the SAS Clinical
Standards Toolkit. Each SAS Clinical Standards Toolkit registered standard can support
validation if the standards.supportsvalidation flag is set to Y. This setting indicates that the
required set of validation files defining the standard exist. By default, the set of validation
files that supports the standards that are supplied by SAS can be found in the
cstGlobalLibrary folder hierarchy.

For example, validation files defining the CDISC SDTM 3.1.1 standard can be found in
the folder hierarchy at:

<global standards library directory>/standards/cdisc-
sdtm-3.1.1 .

The following sections describe each type of file that defines metadata. The file type is
either entirely unique to a SAS Clinical Standards Toolkit validation process, it has
validation-specific elements. For information about metadata files that are common to all
SAS Clinical Standards Toolkit processes, see Chapter 3, “Metadata File Descriptions,”
on page 21.

Reference Metadata
For CDISC standards, reference metadata refers to metadata about data sets. Reference
metadata is defined in a reference_tables data set, and metadata about columns is defined
in a reference_columns data set. An example of a reference_tables record is provided in
Table 4.3 on page 42 and an example of a reference_columns record is provided in Table
4.4 on page 42. The reference metadata in these examples is required, and it serves as the
gold standard specifically describing the tables and columns of CDISC SDTM. As noted
in Chapter 4, each standard that is supplied by SAS provides a SAS interpretation of the
published source guidelines or specification of that standard. Each standard is designed to
serve as a representative model or template of the source specification. Each model or
template can be modified to establish your own gold standard.

Table 6.1 Reference_Tables Data Set

Column Name Column Length Description

sasref $8 The SAS libref that refers to the table in the SAS Clinical Standards Toolkit
process. This value should match the value of the SASReferences.sasref field,
where type=referencemetadata and subtype=table. This column is required.

table $32 The name of the domain being defined in the standard. The value must conform
to SAS naming conventions. This column is required.

86 Chapter 6 • Validation



Column Name Column Length Description

label $40 The label of the domain being defined in the standard. The value must conform
to SAS naming conventions. This column is optional.

class $40 The observation class in the standard. Example CDISC SDTM values are
Events, Findings, Interventions, Relates, Special Purpose, and Trial Design.
This column is optional and not relevant for all standards.

xmlpath $200 The path to the SAS transport file. This path can be specified as a relative path.
The value can be used when creating define.xml to populate the value for the
def:leaf xlink:href link to the domain file. The value should be the pathname
and filename of the SAS transport file relative to the location of define.xml
file. This column is optional and not relevant for all standards.

xmltitle $200 The title of the SAS transport file. The value can be used when creating a
define.xml file to populate the value for the def:leaf def:title value. It can
provide a meaningful description, label, or location of the domain leaf (for
example, crt/datasets/Protocol 1234/AE.xpt). This column is optional and not
relevant for all standards.

structure $200 The description of the general structure of the table. An example value is one
record per event per subject. This column is optional and not relevant for all
standards.

purpose $20 The description of the general purpose of the table. Examples are Tabulation
(required for CDISC SDTM) and Analysis (required for CDISC ADaM). This
column is optional and not relevant for all standards.

keys $200 A space-delimited string of keys that captures the table columns that uniquely
define records in the table. This set of keys can also define the sort order of
records in the table. Example is STUDYID USUBJID. This column is
required.

state $20 A description of the table state, such as Draft or Final. This column is optional.

date $20 A meaningful, distinguishing date that describes the table. For example,
release date, creation date, or modified date. This column is optional.

standard $20 This value captures the standard name. This value must match the name of a
registered standard in the SAS Clinical Standards Toolkit framework. For a
discussion of registered standards, see “Framework” on page 5. This value
must match the standard field in the SASReferences data set. Examples are
CDISC SDTM and CDISC CRT-DDS. This column is required.

standardversion $20 This value captures a specific version of a standard. This value must match
one of the standard versions associated with a registered standard. This value
must match the standardversion field in the SASReferences data set.
Examples are 3.1.1 and 1.0. This column is required.

standardref $200 Any reference to an associated standard definition, implementation guide,
schema, and so on, that provides additional information about the table or
describes the table in greater detail. This column is optional.

comment $200 Any character string that provides comments relevant to the table. This column
is optional.

Metadata Requirements 87



Table 6.2 Reference_Columns Data Set

Column Name Column Length Description

sasref $8 The SAS libref that refers to the table containing the column in
the SAS Clinical Standards Toolkit process. This value should
match the value of the SASReferences.sasref field, where
type=referencemetadata and subtype=column. This column is
required.

table $32 The name of the domain being defined in the standard. The value
must conform to SAS naming conventions. This column is
required.

column $32 The name of the column in the table. The value must conform to
SAS naming conventions. This column is required.

label $200 The label of the column. The value must conform to SAS naming
conventions. This column is optional.

order 8. The order of the columns in each table. Values must be integers
>0 and unique in each table. This column is required.

type $1 The SAS type, N for numeric, C for character. This column is
required.

length 8. The length of the column. Numeric columns have a length of 8.
This column is required.

displayformat $32 The display format for numeric variables. For example, 8.2
indicates that floating-point variable values should be displayed
to the second decimal place. This value is optional and not
relevant for all standards.

xmldatatype $8 The data type of the column as it is defined in the define.xml file.
Values are integer | float | date | datetime | time | text. This column
is optional and not relevant for all standards.

xmlcodelist $32 A SAS format name that is used to assess conformance to
controlled terminology. This value does not have a $ prefix for
character formats and does not have the trailing period. This value
is also the codelist name in the define.xml file. The SAS format
name must be in the format search path for successful column-
value validation. This record is optional and not relevant for all
standards.

core $10 The value indicates whether the column is required. Sample
CDISC SDTM values are Req (required), Exp (expected), Perm
(permissible), and Dep (deprecated). This column is optional and
not relevant for all standards.

origin $40 Information about the source of the column. Values can include
CRF page numbers and derived or variable references. Values
are user extensible. This column is optional and not relevant for
all standards.

88 Chapter 6 • Validation



Column Name Column Length Description

role $200 Space-delimited column classification. Examples are Identifier,
Topic, Qualifier, Timing, Selection, and Analysis. Columns can
have multiple roles. This column is optional and not relevant for
all standards.

term $80 The value indicates whether the column is subject to controlled
terminology as defined in each standard source specification.
This column is optional and not relevant for all standards.

algorithm $1000 Imputation or computation method to derive the column value.
This column is optional and not be relevant for all standards.

qualifiers $200 Space-delimited string containing supplemental column
attributes. Example CDISC SDTM values are MIXEDCASE,
UPPERCASE, DATETIME, and DURATION. This column is
optional and not relevant for all standards.

standard $20 This value captures the standard name. This value must match
the name of a registered standard in the SAS Clinical Standards
Toolkit framework. For a discussion of registered standards, see
“Framework” on page 5. This value must match the standard
field in the SASReferences data set. Examples are CDISC SDTM
and CDISC CRT-DDS. This column is required.

standardversion $20 This value captures a specific version of a standard. This value
must match one of the standard versions associated with a
registered standard. This value must match the
standardversion field in the SASReferences data set. Examples
are 3.1.1 and 1.0. This column is required.

standardref $200 Any reference to an associated standard definition,
implementation guide, schema, and so on, that provides
additional information about the column or describes the column
in greater detail. This column is optional.

comment $1000 Any character string that provides comments relevant to the
column. This column is optional.

The standard reference metadata provided by SAS can be found in the SAS Clinical
Standards Toolkit global standards library. By default, this library can be found at:

<global standards library directory>/standards/<specific
standard>/metadata

For example, for the CDISC SDTM 3.1.1 standard, the location is:

<global standards library directory>/standards/cdisc-
sdtm-3.1.1-1.3/metadata

This global standards library metadata folder can contain other standard-specific metadata.
For example, CDISC SDTM includes class_tables and class_columns data sets. These data
sets have more generic metadata than specific domain instances like DM or AE, and they
are most useful when deriving new, custom domains. For example, if a new CDISC SDTM
events domain is required, users can initialize table metadata based on the EVENTS record
in class_tables data set, and can initialize column metadata based on the EVENTS,
IDENTIFIERS, and TIMING records in the class_columns data set.

Metadata Requirements 89



Source Metadata
The SAS Clinical Standards Toolkit validation processes require source metadata that
describes source (study) domains and columns. This is the study data that is to be validated.
The SAS Clinical Standards Toolkit assumes that the reference metadata (that is,
reference_tables and reference_columns) for a standard serves as a model or template for
the source metadata (that is, source_tables and source_columns). It is recommended that
these two sets of metadata be structurally equivalent. However, additional metadata
attributes might exist if they are used for other purposes or for custom extensions to the
SAS Clinical Standards Toolkit.

The SAS Clinical Standards Toolkit assumes that source_tables and source_columns data
sets accurately reflect and are consistent with the source data that they describe. While
some standard-specific validation checks might look for discrepancies and report them in
detail, failure to accurately reflect and be consistent with the source data can lead to errors
in the SAS Clinical Standards Toolkit validation process. It can even halt the execution of
the process.

Validation Check of Metadata: Validation Master
The Validation Master data set contains all validation checks defined for a standard. By
default, this data set is deployed to the following directory in each supported standard:

<global standards library directory>/standards/<standard>/
validation/control

By default, the Validation Master SAS data set's actual name is
validation_master.sas7bdat.

The SAS Clinical Standards Toolkit requires that this data set have a fixed structure. The
following table lists the columns in the Validation Master data set. These columns are
described and examples are reviewed in the following sections.

Table 6.3 Column Descriptions of the Validation Master Data Set

Column Name Column Length Description

checkid $8 Validation check ID. The SAS Clinical Standards Toolkit has adopted a
naming convention matching each standard to be validated. The checkid
values are prefixed with an up to 4-character prefix (CDISC examples: ODM,
SDTM, ADAM, and CRT). By convention, the prefix matches the
mnemonic field in the Standards data set in <global standards
library directory>/metadata. This prefix is followed by a 4-
digit numeric that is unique within the standard (for example, SDTM1234).
Users can use any naming convention limited to 8 characters. By default, the
checkid column is the first (primary) sort field in the Validation Master data
set provided by SAS. Sorting by checkid is not required. This column is
required.

standard $20 This value captures the standard name. This value must match the name of a
registered standard in the SAS Clinical Standards Toolkit framework. For a
discussion of registered standards, see “Framework” on page 5. This value
must match the standard field in the SASReferences data set. Examples are
CDISC SDTM and CDISC CRT-DDS. This column is required.

90 Chapter 6 • Validation



Column Name Column Length Description

standardversion $20 This value captures a specific version of a standard. This value must match
one of the standard versions associated with a registered standard. This value
must match the standardversion field in the SASReferences data set. The
only exception to this rule is that *** can be used to signify that the check
applies to all supported versions of the standard. For example, 3.1.1, 1.0, ***.
If a subsequent version of the standard is released, then *** would be
applicable if the check is valid for the new version. This column is required.

checksource $40 A string that identifies the source of the check. CDISC examples include
Janus, JanusFR (FAIL-REJECT), SAS, WebSDM, and OpenCDISC. This
field can contain any user-defined value. A primary use of this field is to
subset the full set of checks in the run-time Validation Control data set. This
column is required.

sourceid $8 A reference identifier for this check from the checksource. In the Validation
Master data set, a SAS identifier (for example, SAS0001) is used for checks
provided by SAS with no external source. An example is IR4000 (WebSDM
identifier). This column is optional.

checkseverity $40 The severity as assigned by checksource. This value is mapped to the
following standardized values: Note (Low), Warning (Medium), Error
(High). A value is expected, although it is not technically required. It is used
in messages and reporting.

checktype $20 General type of check. This value categorizes checks and helps register
customized checks. Values are user extensible and can be standard specific.
A primary use of this field is to subset the full set of checks in the run-time
Validation Control data set. Example CDISC SDTM values are:

Metadata-structural—Checks some metadata-only property (no data access
required).

ColumnValue-content—Checks a column value or compares two column
values.

Date-content—Checks ISO 8601 compliance or compares two date values.

Multirecord-content—Looks across multiple records in a single domain.

Multitable-content—Looks across multiple domains.

Controlterm-content—Assesses whether column value is consistent with
controlled terminology.

This column is optional.

codesource $32 The name of the check macro. The name must conform to SAS naming
conventions. The value must be in the SAS autocall path. An example is
cstcheck_notunique. This column is required.

usesourcemetadata $1 The value indicates whether to use source metadata rather than reference
metadata. The metadata controls the derivation of domains and column lists
to be validated, program flow, and looping. Values are Y and N (default).
This column is optional.

Metadata Requirements 91



Column Name Column Length Description

tablescope $200 The value specifies the domains to be validated by the check. The domains
must exist in either or both of the reference metadata or source metadata. The
value can be in the form:

_ALL_-DM-DS—Multiple domains that exclude one or more specific
domains that are delimited with a -.

DM—Any single domain; can be specified as libref.domain.

DM+AE—Multiple domains delimited with a +.

_ALL_—Multiple DM domains that exclude specific domains delimited with
a -.

SUPP**—Wildcard to include multiple domains.

CLASS:EVENTS—All domains capturing event results. (This syntax
specifies to use table metadata column CLASS for EVENTS as the value-
similar syntax for all other fields and values.)

[_ALL_-DM][DM]—Bracket syntax to define sublists for comparative
purposes. In this example, all non-DM domains are compared with the DM
domain.

See the Validation Master data set for a full set of values.

This column is required.

columnscope $200 The value specifies one or more space-delimited columns identified for
inclusion or exclusion in the specified check. The value can be in the form:

_ALL_—All columns (equivalent to ** or a null value).

_NA_—Not applicable (that is, domain-level check).

AGE—Any single column. This value can be specified as
libref.domain.column or domain.column.

ARM+ARMCD—Multiple columns delimited with a +.

**BLFL-LBBLFL—Multiple columns that exclude specific columns
delimited with a -.

**DTC—Wildcard to include multiple columns with ** representing the
domain name.

xxx**—(For example, AE**, where ** is a column wildcard).

[**STDTC][**ENDTC]—Bracket syntax to define sublists for comparative
purposes. In this example, all start dates are compared with all end dates. The
number of columns in each sublist must be equivalent.

See the Validation Master data set for a full set of values.

This column is optional. (If null, the value is equivalent to _ALL_.)

92 Chapter 6 • Validation



Column Name Column Length Description

codelogic $2000 Check-specific code segment that is inserted into the check macro defined in
codesource and consistent with codetype. The codelogic value enables check-
level customization and allows the reuse of more general check macros. The
field length of $2000 limits the code to short code segments, although
referencing another macro or using %include expands this capability. The
codelogic value can use global and local macro variables (for example,
variables provided as macro input parameters and variables set within the
calling code). Examples include:

If ( . < &_cstColumn1 <

&_cstColumn2), then _cstError=1;

%include <fileref>

/* where <fileref> can be set outside of the SAS
Clinical Standards Toolkit

or in the SASReferences control data set */

The previous code is limited to filerefs set outside of the SAS Clinical
Standards Toolkit or in the SASReferences control data set.

%sdtmcheckutil_recordlookup

data _cstProblems;

set&_cstDSName;

if <some condition>;

run;

This column is optional.

codetype 8. This value defines whether to use codelogic and what type of codelogic can
be used in the validation code. Values include:

0—No codelogic used.

1—DATA step statement level. (For example, if &_cstColumn <0 then
_cstError=1.)

2—Full DATA step, PROC SQL step, or multiple steps.

3—Calls a SAS macro or %include that can contain only DATA step
statement level code. (For example, codetype=1.)

4—Calls a SAS macro or %include that can contain only full DATA step or
PROC SQL step code. (For example, codetype=2.)

This column is required.

Metadata Requirements 93



Column Name Column Length Description

lookuptype $20 This value defines the type of information to use for value comparison to
some standard. Values include:

Metadata—Use the SAS Clinical Standards Toolkit metadata. Specifically,
use the value of the column metadata field xmlcodelist to identify the codelist
(rendered as a SAS format).

Format—Use a SAS format from the SAS format search path.

Dataset—Use a reference SAS data set (for example, medDRA). There are
no SAS Clinical Standards Toolkit requirements for the structure and content
of the reference SAS data set.

<extensible>—Other user-defined values can be used if there are explicitly
referenced in user-written code.

This column in optional.

lookupsource $32 The specific SAS format or file associated with lookuptype. For example:

If lookuptype is metadata, then lookupsource should be blank. The code gets
the value from the source_columns.xmlcodelist field.

If lookuptype is format, then lookupsource should be the SAS format and
must be in the format search path if it is specified. This value should generally
match any value in source_columns.xmlcodelist for the columns specified in
columnscope. This field allows a run-time validation check against another
format.

If lookuptype is dataset, then lookupsource should be the name of a SAS data
set. This value is specified as the data set name (for example, meddra) or
libref.dataset. If a value is provided without a libref, then the SAS Clinical
Standards Toolkit looks for any SASReferences type=referencecterm records
for the sasref value.

This column is optional.

standardref $200 Any reference to an associated standard definition, implementation guide,
schema, and so on, that provides additional information about the check or
describes the basis for the check in greater detail. This column is optional.

reportingcolumns $200 This value includes columns not included in columnscope for code-
processing purposes and to help resolve errors. If this value is specified, then
it should be a space-delimited list of columns in the domains specified in the
tablescope field. The values of these columns can be reported in the Results
data set. This column is optional.

checkstatus 8. This value determines whether the check is ready to be used and included in
any Validation Control run-time data set. If the check is ready, then the value
should be set to any positive integer. Values include:

0—(inactive, default)

>0—(active)

-1—(deprecated, archived)

-2—(not implemented in this SAS Clinical Standards Toolkit release)

This column is optional, although it is expected.

94 Chapter 6 • Validation



Column Name Column Length Description

reportall $1 This value enables more concise reporting of errors. Values include:

Y—(yes, report all records, default)

N—(no)

This column is required although not all check macro modules support
abbreviated (N) reporting.

uniqueid $48 This value provides a unique ID for the check. It ensures uniqueness in the
data set and in the SAS Clinical Standards Toolkit. This value allows any
provided or derived check to be uniquely identifiable over time. An example
is SDTM000100CST120SDTM3112009-05-12T12:00:00CDI.

Legend:

characters 1-8—checkid

characters 9-10—checkid repeat indicator (00 unless multiple invocations of
checkid are included)

characters 11-16—the version of the SAS Clinical Standards Toolkit where
the check metadata was last materially modified

characters 17-23—standard version

characters 24-42—implementation datetime of the last metadata update

characters 43-48—assigning authority

This column is optional, although it is expected.

comment $200 Any character string that provides comments relevant to the check. This
column is optional.

The content of the Validation Master data set is based on a combination of compliance
requirements and the SAS representation of the standard.

The following table describes a sample Validation Master data set record for the CDISC
SDTM 3.1.2 standard.

Table 6.4 Sample CDISC SDTM 3.1.2 Validation Master Data Set Record

Column Name Column Value Comment

checkid SDTM0207 The SAS Clinical Standards Toolkit
check identifier used in validation
results and reports.

standard CDISC-SDTM The registered standard.

standardversion *** The standard version. A value of ***
indicates that the check is applicable to
all versions of the standard.

checksource WebSDM This check originated as a WebSDM
check.

sourceid IR5010 WebSDM check IR5010.

Metadata Requirements 95



Column Name Column Value Comment

checkseverity Warning

checktype ColumnValue

codesource cstcheck_column This check uses the cstcheck_column
check macro in the SAS Clinical
Standards Toolkit autocall library.

usesourcemetadata Y This check is run on source data
domains.

tablescope _ALL_ This check is run on all domains.

columnscope VISITNUM This check evaluates VISITNUM
values from each domain.

codelogic _vnum=strip(put(&_
cstColumn,best.));_
dot=indexc(_vnum,"."); if _dot then if
length(substr(_vnum,_dot+1))>3 then
_cstError=1;

This logic is used in cstcheck_column.
Errors are documented in a
work._cstProblems data set.

lookuptype

lookupsource

standardref

reportingcolumns

checkstatus 1

reportall Y This check reports all errors that are
identified.

uniqueid SDTM020700CST120SDTM3112009
-05-13T15:57:59CST

codetype 1 This code logic is used in the DATA
step.

comment

While the Validation Master data set contains all validation checks for a standard, the
Validation Control data set is the run-time equivalent and contains just the validation checks
to be run in a validation process. The Validation Control data set is structurally equivalent
to the Validation Master data set. For additional information about how the validation check
metadata in the Validation Control data set is used in the SAS Clinical Standards Toolkit
validation processes, see “Special Topic: How SAS Clinical Standards Toolkit Interprets
Validation Check Metadata” on page 142.

96 Chapter 6 • Validation



Supplemental Validation Check Metadata: Validation Standard
References

The validation standard references data set contains additional information about each of
the checks in the validation master data set. This data set is used in the validation metadata
reporting process to provide additional information to the user about the origin of the check.
It also provides any supporting documentation about the check. By default, this data set is
deployed to the following directory in each supported standard:

<global standards library directory>/standards/<standard>/
validation/control

Table 6.5 Column Descriptions of the Validation_StdRef Data Set

Column Name Column Length Description

checkid $8 The validation check ID, as specified in the validation master data set (see
Table 6.3 on page 90).

standard $20 This value captures the standard name. This value must match the standard in
the associated validation master data set. This column is required.

standardversion $20 This value captures a specific version of a standard. This value should be the
version for which the supplemental reference information is applicable. This
column is required.

informationsource $80 This value captures the origin of the reference information. The value can be
an implementation guide, Web site, harmonization document, and so on. It
can be any source that can be referenced that provides insight into the check.

sourcelocation $200 This value contains the location in the information source, such as a page
number or a section number.

seqno 8. This value provides a sequence number for checkid if multiple sources of
information are available for a check. This column is required.

sourcetext $2000 This value captures descriptive information from the source that supports the
check. This information attempts to provide a basis for inclusion of the check.

The content of the Validation_StdRef data set is based on information from any source that
supports the check.

The following table describes information about a specific check in the
Validation_StdRef data set for the CDISC SDTM 3.1.2 standard.

Table 6.6 Sample CDISC SDTM 3.1.2 Validation_StdRef Data Set for Check SDTM0207

Column Name Column Value Comment

Record 1

checkid SDTM0207 The SAS Clinical Standards Toolkit
check identifier used in results and
reports.

Metadata Requirements 97



Column Name Column Value Comment

standard CDISC-SDTM The registered standard.

standardversion 3.1.2 The standard version.

informationsource SDTM 3.1.2 Implementation Guide This reference information originated
from the SDTM 3.1.2 Implementation
Guide.

sourcelocation 5.3.2, page 72 Section 5.3.2, page 72 of the SDTM
3.1.2 Implementation Guide.

seqno 1 The first record for this checkid.

sourcetext Clinical encounter number. (Decimal
numbering might be useful for inserting
unplanned visits.)

The text of the information retrieved
from section 5.3.2, page 72 of the
SDTM 3.1.2 Implementation Guide.

Record 2

checkid SDTM0207 The SAS Clinical Standards Toolkit
check identifier used in results and
reports.

standard CDISC-SDTM The registered standard.

standardversion 3.1.2 The standard version.

informationsource WebSDM This reference information originated
from the WebSDM validation checks.

sourcelocation Convention Compliance convention set by
WebSDM.

seqno 2 The second record for this checkid.

sourcetext Compliance convention set by
WebSDM. No supporting
implementation guide found.

Representative text for an accepted
convention.

Supplemental Validation Check Metadata: Domains by Check
The SAS Clinical Standards Toolkit validation metadata, as specified in the Validation
Master data set, uses the tablescope and columnscope columns to define the scope of the
check. The scope being what domains (tables) and what columns will be validated when
the check is run. The SAS Clinical Standards Toolkit uses a shorthand syntax in these
columns that is interpreted by the SAS Clinical Standards Toolkit framework macros to
build a list of target tables and columns. For more information, see “Special Topic: How
SAS Clinical Standards Toolkit Interprets Validation Check Metadata” on page 142. The
Validation_DomainsByCheck data set is supplied in <global standards library
directory>/standards/<standard>/validation/control. It contains
records for each domain that is to-be-validated by each check in the Validation Master data

98 Chapter 6 • Validation



set. This data set is used by reporting tools that are provided with the SAS Clinical Standards
Toolkit to report domain-specific errors. For more information, see Chapter 8, “Reporting,”
on page 195. It is also available to other programs and applications that might need to
subset checks that are applicable to specific domains.

The version of the Validation_DomainsByCheck data set that is supplied by SAS is built
from the version of the Validation Master data set that is also supplied by SAS. If the
tableScope and columnScope columns are modified, then the
Validation_DomainsByCheck data set must also be modified or rebuilt.

Table 6.7 Column Descriptions of the Validation_DomainsByCheck Data Set

Column
Name

Column
Length Description

checkid $8 The validation check ID, as specified in the validation
master data set (see Table 6.3 on page 90).

table $32 This value captures the domain or table name. This column
is required.

standardversio
n

$20 This value captures a specific version of a standard. This
value must match standardversion in the associated
validation master data set.

checksource $40 A string that identifies the source of the check. This value
must match checksource in the associated validation master
data set.

resultseq 8. The unique invocation of a check within the validation
master data set. This value is incremented if multiple record
or domain combinations exist.

For CDISC SDTM 3.1.2 validation check SDTM0207, the
Validation_DomainsByCheck data set contains records for 14 domains. These 14 domains
are DA, EG, FA, IE, LB, MB, MS, PC, PE, PP, QS, SV, TV, and VS. The target domains
and columns for check SDTM0207 are defined as tableScope=_ALL_ and
columnScope=VISITNUM. This means there are 14 domains in the sample study metadata
provided for CDISC SDTM 3.1.2 that contain the column VISITNUM.

Validation.Properties
Properties specific to validation processes are provided with the SAS Clinical Standards
Toolkit. These properties enable you to specify how validation checks are to be processed
and whether metrics are to be reported.

As with all SAS Clinical Standards Toolkit properties files, a call to the
%cst_setProperties macro is required to translate the properties into SAS global macro
variables. This call can be explicitly made as a driver module setup task, or it can be made
by including the Validation.Properties file as a record in the SASReferences data set. For
all standards that support validation, the Validation.Properties file is required, even if no
metrics are wanted because the SAS Clinical Standards Toolkit validation process does
expect and use the metrics global macro variables.

The following table describes the properties in the Validation.Properties file:

Metadata Requirements 99



Table 6.8 Properties in the Validation.Properties File

Property Name Description

_cstCheckSortOrder This property determines the order in which
validation checks are processed. If no value is
provided, or the default value _DATA_ is used,
then the data set order is assumed. Or,
_cstCheckSortOrder can be set to sort the
Validation Control data set at run time by any
fields in that data set. For example,
CHECKSOURCE CHECKID.

_cstMetrics This property determines whether to calculate
and report metrics. An example value is 1=Yes.

_cstMetricsDS This property sets the SAS data set name to use
to accumulate metrics during the process. The
default value is work._cstmetrics.

_cstMetricsNumSubj

_cstMetricsCntNumSubj

This property determines whether to calculate
and report subject-level counts. An example
value is 1=Yes, initialize
_cstMetricsCntNumSubj to 0. The calculation
of subject-level counts might not be appropriate
for all check macros.

_cstMetricsNumRecs

_cstMetricsCntNumRecs

This property determines whether to calculate
and report record-level counts. An example
value is 1=Yes, initialize
cstMetricsCntNumRecs to 0.

_cstMetricsNumChecks

_cstMetricsCntNumChecks

This property determines whether to
summarize and report the number of checks
run. An example value is 1=Yes, initialize
cstMetricsCntNumChecks to 0.

_cstMetricsNumBadChecks

_cstMetricsCntNumBadChecks

This property determines whether to
summarize and report the number of check
invocations that failed. An example is 1=Yes,
initialize cstMetricsCntNumBadChecks to 0.

_cstMetricsNumErrors

_cstMetricsCntNumErrors

This property determines whether to
summarize and report the total number of errors
(resultseverity=Error) found. An example is
1=Yes, initialize cstMetricsCntNumErrors to 0.

_cstMetricsNumWarnings

_cstMetricsCntNumWarnings

This property determines whether to
summarize and report the total number of
warnings (resultseverity=Warning) found. An
example is 1=Yes, initialize
cstMetricsCntNumWarnings to 0.

_cstMetricsNumNotes

_cstMetricsCntNumNotes

This property determines whether to
summarize and report the total number of notes
(resultseverity=Note) found. An example value
is 1=Yes, initialize cstMetricsCntNumNotes to
0.

100 Chapter 6 • Validation



Property Name Description

_cstMetricsNumStructural

_cstMetricsCntNumStructural

This property determines whether to
summarize and report the total number of
structural (metadata) errors found. An example
value is 1=Yes, initialize
cstMetricsCntNumStructural to 0.

_cstMetricsNumContent

_cstMetricsCntNumContent

This property determines whether to
summarize and report the total number of
content (data) errors found. An example value
is 1=Yes, initialize cstMetricsCntNumContent
to 0.

_cstMetricsTimer This property determines whether to report the
elapsed time for each check invocation. An
example value is 1=Yes.

By default, for all standards that support validation, Validation.Properties can be found at:

<global standards library directory>/standards/<standard>/
programs

Properties can logically be associated with each study. Using the CDISC SDTM 3.1.1
sample study provided with the SAS Clinical Standards Toolkit as an example, a study-
specific instance of the Validation.Properties file can be found in a !sasroot subdirectory
similar to /sample/cdisc-sdtm-3.1.1/sascstdemodata/programs.

Messages
Each SAS Clinical Standards Toolkit registered standard that supports validation has a
Validation Master data set, and an associated Messages data set. The Validation Master
data set provides the super-set of checks defined for that standard. The Messages data set
provides messages to be generated during the execution of each validation process. A
distinct Messages data set record is expected for each set of checkid and checksource values
in the Validation Master data set. Messages can be parameterized and internationalized.

By default, the standard-specific Messages data set is deployed to the following directory
in each supported standard:

<global standards library directory>/standards/<standard>/
messages

All Messages data sets in the SAS Clinical Standards Toolkit should have the same
structure. The structure is defined in Chapter 3, “Metadata File Descriptions,” on page
21.

During a process, the SAS Clinical Standards Toolkit appends any standard-specific
messages that are required by the process to any generic SAS Clinical Standards Toolkit
framework messages that are available to all processes. This appended Messages data set
follows the naming convention that is defined within the global macro variable
_cstMessages.

For complete message lists supporting the SAS Clinical Standards Toolkit standards, see
the following appendices:

• Appendix A2, “Framework Messages,” on page 219

• Appendix A4, “CDISC SDTM Validation Checks,” on page 281

Metadata Requirements 101



• Appendix A5, “CDISC CRT-DDS 1.0 Validation Checks,” on page 335

Validation Metrics
Generating SAS Clinical Standards Toolkit validation metrics provides a meaningful
denominator for most validation checks. This enables you to more accurately assess the
relative scope of errors that are detected. Generally, the calculated denominator is a count
of the number of records processed in a domain.

The following code segment, which is extracted from a validation check macro, shows a
typical calculation of the number of records in a domain. It also shows the macro call to
add the count to the Metrics data set:

data _null_;
if 0 then set &_cstDSName nobs=_numobs;
call symputx('_cstMetricsCntNumRecs',_numobs);
stop;
run;
 
* Write applicable metrics *;
%if &_cstMetrics %then %do;
%if &_cstMetricsNumRecs %then
   %cstutil_writemetric(
     _cstMetricParameter=# of records tested,
     _cstResultID=&_cstCheckID,
     _cstResultSeqParm=&_cstResultSeq,
     _cstMetricCnt=&_cstMetricsCntNumRecs,
     _cstSrcDataParm=&_cstDSname
   );   
%end; 

Because a check can evaluate multiple columns in a domain, the count will be greater. In
addition, a metadata-level check that does not access the domain data directly might report
the number of metadata records instead.

Metrics processing is enabled based on settings in the Validation.Properties file. See Table
6.8 on page 100.

The following table provides a description of the Validation Metrics data set, including the
meaning of each field.

Table 6.9 Column Descriptions of the Validation Metrics Data Set

Column Name Column Length Description

metricparameter $40 A descriptive text string that specifies the metric of interest. This string is
hardcoded in the check macro and cannot be modified without code changes.
Values should be non-null.

reccount 8. A count of the number of records specific to the combination of metricparameter
and resultid. This number is derived in the check macro and cannot be modified
without code changes. This column can contain a summary count of records
written to the Results data set (resultid=METRICS). Reccount can be null for
selected metricparameters, such as the assessment of elapsed time for each
check.

102 Chapter 6 • Validation



Column Name Column Length Description

resultid $8 The resultid is either the checkid or a hardcoded constant such as METRICS.
The SAS Clinical Standards Toolkit has adopted a naming convention matching
each standard. The checkid (resultid) values are prefixed with an up to 4-
character prefix (CST for framework messaging; CDISC examples: ODM,
SDTM, ADAM, and CRT). By convention, the prefix matches the
mnemonic field in the Standards data set in <global standards
library directory>/metadata. This prefix is followed by a 4-digit
numeric that is unique within the standard (for example, SDTM1234). Users
can use any naming convention limited to 8 characters. Values should be non-
null.

srcdata $200 The string that specifies the domain or check macro to which the
metricparameter applies. Values should be non-null.

resultseq 8. A counter that indicates the record number in checkid in the Validation Control
run-time set of checks. If set to 1, then this counter is incremented only with
each repeat invocation of a check. This value enables you to link to the
Validation Control and Results data sets. Values should be non-null.

The following display illustrates Validation Metrics output from a SAS Clinical Standards
Toolkit validation process running CDISC SDTM 3.1.1 validation. The Validation Control
data set contains three records: two SDTM0451 checks and one SDTM0623 check.

Display 6.2 Sample Validation Metrics Data Set

Lines 1 through 2 document that the SDTM0451 check was invoked twice. The missing
recount value and the absence of other metrics indicate that the two check invocations
failed. This should be reported in the Results data set.

Lines 3 through 7 provide metrics information about the SDTM0623 check. SDTM0623
checks that multiple standard units do not exist for any test in the findings domains. The
SDTM0623 check was run on two domains using the cstcheck_notunique check macro.
The number of subjects and records tested, and the elapsed time to run the check are
reported.

Metadata Requirements 103



Lines 8 through 14 are summary metrics reported at the end of the SDTM validation process
in the sdtm_validate macro. There are no errors. It is noted that two checks could not be
run (lines 9 and 14).

For more information about the Validation Metrics data set, see Table 6.9 on page 102.

Building a Validation Process
Building a SAS Clinical Standards Toolkit validation process is similar to building any
SAS Clinical Standards Toolkit process. The differences are the validation process inputs
and outputs, as defined in the SASReferences data set, can differ, a standard-specific
validate macro is called, and process output can include an optional Metrics data set.

SASReferences Customizations
A SAS Clinical Standards Toolkit validation process requires that you specify a reference
standard with which the source data and metadata can be compared. The following three
records, specific to the standard and standardversion of interest, should be included in the
SASReferences data set:

Display 6.3 Defining the Reference Standard in the SASReferences Data Set

The empty path field signals that the path and memname information should be derived
from the StandardSASReferences data set associated with the standard and
standardversion. Including the referencecontrol and referencemetadata records is unique
to validation process in the SAS Clinical Standards Toolkit.

SAS Clinical Standards Toolkit validation can include references to the following files:

1. A validation-specific properties file.

Display 6.4 Defining the Validation-Specific Properties File in the SASReferences Data Set

The Validation.Properties file sets process global macro variables specific to validation,
such as metrics. For a complete discussion of these properties, see
“Validation.Properties” on page 99. For information about the derived global macro
variables, see Appendix A1, “Global Macro Variables,” on page 211. The
Validation.Properties file is a required file to support SAS Clinical Standards Toolkit
validation.

For CDISC CRT-DDS, validation properties have been included in the standard-
specific Initialize.Properties file. Validation properties do not need to be separately
referenced in SASReferences.

2. The output location of any process-generated Metrics data set.

Display 6.5 Defining the Metrics Output Location in the SASReferences Data Set

104 Chapter 6 • Validation



The Metrics data set provides a summary of the validation process, including error
counts, processing time, and denominators for specific checks. For a complete
discussion of validation metrics, see “Validation Metrics” on page 102 and “Validation
Results and Metrics” on page 116. For information about the global macro variables
that govern metrics output, see Appendix A1, “Global Macro Variables,” on page
211. The Metrics data set is typically output to the same location as the validation
Results data set. This location is common to all SAS Clinical Standards Toolkit
processes.

3. The location of any libraries containing controlled terminology, format catalogs, and
coding dictionary data sets.

Display 6.6 Defining Controlled Terminology in the SASReferences Data Set

The type=fmtsearch records enable you to specify multiple format catalogs (for
example, company-wide, compound, group-level, and study-level). Order in the format
search path is set by the order field. The type=referencecterm record enables you to
specify one or more lookup data sets (such as dictionary lookups like LOINC and
MedDRA). These lookup data sets do not need to conform to a specific structure, and
they do not need to be in a structure that can be read into a SAS format. Customized
code (typically in the Validation Master codelogic field) is required to join domain data
with each associated lookup data set.

4. The location of the run-time Validation Control data set.

Display 6.7 Defining the Run-Time Validation Control Location in the SASReferences Data Set

The Validation Control data set is required and discussed in the following section.

Validation Control: Specification of Run-Time Checks
Each SAS Clinical Standards Toolkit validation process requires you to specify the
validation checks to be run. This is accomplished by cloning, subsetting, or building a set
of validation checks based on the Validation Master data set. (See “Validation Check of
Metadata: Validation Master” on page 90.) The SAS Clinical Standards Toolkit assumes
that each Validation Control data set is structurally equivalent to the Validation Master
data set.

A sample CDISC SDTM 3.1.1 Validation Control data set is deployed to the following
SAS 9.1.3 directory. (The deployed location for SAS 9.2 is different, but similar.)

!sasroot/../SASClinicalStandardsToolkitSDTM311/1.3/sample/
cdisc-sdtm-3.1.1/sascstdemodata/control

By default, the Validation Control data set name is validation_control.sas7bdat.

As a required input to a validation process, the Validation Control data set must be
referenced in the run-time SASReferences file. The following display shows how the
SASReferences file and the Validation Control data set are defined in the sample CDISC
SDTM 3.1.1 SASReferences data set:

Building a Validation Process 105



Display 6.8 Defining Validation Control and SASReferences Data Set Locations

The &studyRootPath value is assumed to have been set to !sasroot/../
SASClinicalStandardsToolkitSDTM311/1.3/sample/cdisc-
sdtm-3.1.1/sascstdemodata.

The following table provides examples of how to create a Validation Control data set from
the Validation Master data set. The sample code is written assuming that the code will be
submitted in a context where libraries have been allocated and the format search and
autocall paths have been set.

Table 6.10 Sample Code to Create Validation Control Data Set

Check Subset Sample Code

All checks
provided with
the SAS
Clinical
Standards
Toolkit.

data control.validation_control;

set refcntl.validation_master;

run;

Structural
checks
(metadata-only
checks that do
not require
access to the
domain data).

data control.validation_control;

set refcntl.validation_master
(where=(upcase(checktype)="METADATA"));run;

Content checks
(checks that
require access to
the domain
data).

data control.validation_control;

set refcntl.validation_master (where=(upcase(checktype) ne
"METADATA"));

run;

Checks with a
production
status.

data control.validation_control;

set refcntl.validation_master (where=(checkstatus>0));

run;

WebSDM
checks (CDISC
SDTM only).

data control.validation_control;

set refcntl.validation_master (where=(upcase(checksource)=
"WEBSDM"));

run;

106 Chapter 6 • Validation



Check Subset Sample Code

Sampling of
checks, one for
each check
macro.

proc sort data=refcntl.validation_master out=work.control;

by codesource checkid;

run;

data work.control;

set work.control;

by codesource;

if first.codesource;

run;

proc sort data=work.control out=control.validation_control
(label="Check sampler");

by checkid;

run;

CDISC SDTM
3.1.1 checks.

data control.validation_control;

set refcntl.validation_master (where=(standardVersion = "3.1.1"
or standardVersion = "***"));

run;

All codelist-
related checks
(checks that use
the
cstcheck_
notincodelist
macro).

data control.validation_control;

set
refcntl.validation_master(where=(upcase(checksource)="CSTCHECK_
NOTINCODELIST"));

run;

Building a Validation Process 107



Check Subset Sample Code

All checks
applicable to a
specific domain.

%macro buildcheckdomainlist
(_cstCheckDS=,_cstOutputDS=work._cstcheckdomains);

%let _cstOldCheckID=;

%let _cstCheckSeqCount=0;

data _null_;

if 0 then set &_cstCheckDSnobs=_numobs;

call symputx('_cstCheckCnt',_numobs);

stop;

run;

data &_cstOutputDS;

attrib checkid format=$8. label="Validation check identifier"

table format=$32. label="Table Name"

standardversion format=$20. label="Standard version"

checksource format=$40. label="Source of check"

resultseq format=8. label="Unique invocation of check";

stop;

run;

%do check=1 %to &_cstCheckCnt;

data _null_;

set &_cstCheckDS (keep=checkid standardversion checksource
tablescope columnscope usesourcemetadata

firstObs=&check);

call symputx('_cstCheckID',checkid);

call symputx('_cstStandardVersion',standardversion);

call symputx('_cstChecksource',checksource);

call symputx('_cstTableScope',tablescope);

call symputx('_cstColumnScope',columnscope);

call symputx('_cstUseSourceMetadata',usesourcemetadata);

108 Chapter 6 • Validation



Check Subset Sample Code

stop;

run;

%if &_cstCheckID=&_cstOldCheckID %then %do;

%let _cstCheckSeqCount=%eval(&_cstCheckSeqCount+1) ;

%end;

%else %let _cstCheckSeqCount=1;

%* Call macro to interpret tableScope and columnScope to build
work._cstcolumnmetadata for each check *;

%* _cstDomSubOverride=Y parameter allows us to also look at check
records with unequal sublist lengths *;

%cstutil_buildcollist(_cstFormatType=DATASET,_
cstDomSubOverride=Y);

proc sql noprint;

create table work._csttempds as

select distinct table, "&_cstCheckID" as checkid length=8,

&_cstCheckSeqCount as resultseq,

"&_cstStandardVersion" as standardversion length=20,

"&_cstChecksource" as checksource length=40

from work._cstcolumnmetadata;

quit;

proc append base=&_cstOutputDSdata=work._csttempds force;

run;

%let _cstOldCheckID=&_cstCheckID;

* Clear contents for next loop, in case of problems *;

data work._csttempds;

set work._csttempds;

if _n_=1 then stop;

run;

%end;

%mend;

Building a Validation Process 109



Check Subset Sample Code

%* Run this only once per stable reference validation_master - it
takes a while... ;

%buildcheckdomainlist(_cstCheckDS=refcntl.validation_master);

%* The libname for validation_control is assigned in
sasreferences. In the sample study it is cntl_v. This might need
to be changed either in this macro or the call to it.;

%macro
subsetdomainlist(_cstInputDS=work._cstcheckdomains,_
cstOutputDS=cntl_v.validation_control,

_cstDomain=);

proc sql noprint;

create table &_cstOutputDS as

select vm.* from refcntl.validation_master vm

right join &_cstInputDS dom

on vm.checkid=dom.checkid and
vm.standardversion=dom.standardversion and

vm.checksource=dom.checksource

where table="&_cstDomain";

quit;

%mend;

%* Example call: subset validation data set just to those checks
for the specified domain ;

%* Returns all records for checkid/standardversion/checksource if
any matches domain - needs tweaking... ;

%subsetdomainlist(_cstDomain=AE);

Generally, the SAS Clinical Standards Toolkit processes validation checks in the order in
which they appear in the Validation Control data set. Each validation process honors the
default validation property _cstCheckSortOrder. If this property is not set, then the data set
order is assumed. As a part of the Validation Control derivation, checks can be sorted in
any user-defined order. Or, _cstCheckSortOrder can be set to sort the Validation Control
data set at run time by any fields in that data set.

Best Practice Recommendation: Users might find the prioritization of checks to be
helpful in identifying problems early in the process, or for using as prerequisites for checks
that follow.

Setting Properties for the Validation Process
Across all standards, the set of properties that are available for a validation process is
extensive. (For the full list of properties, see Appendix A1, “Global Macro Variables,” on
page 211.) However, only a few properties are modified on a regular basis. These include:

• _cstSASRefsLoc, If you want to point to another location for the SASReferences file.

• _cstSASRefsName, which points to another SASReferences filename.

110 Chapter 6 • Validation



• _cstSASRefs, which points to a specific libref.sasreferences file to use. (This file is
typically in Work.)

• _cstSubjectColumns, which resets the columns that identify a subject.

• _cstReallocateSASRefs, which reallocates SAS librefs and filerefs in the same SAS
session, typically when changing studies or standards.

• _cstFMTLibraries, which modifies the format search path built from SASReferences.
This change is most often used to add a reference to a Work format catalog.

• _cstCheckSortOrder, which provides a set of Validation Control columns to resort the
check processing order.

• _cstMetrics, set to 1 to enable metrics calculations and reporting.

• _cstDebug, which turns on or off debugging for the session.

• _cstDebugOptions, which alters the SAS options when debugging.

These changes should be made before the process setup begins (as changes to the properties
file), or after the process setup ends (as a series of %let statements in the code stream).

Best Practice Recommendation: Centralizing property changes in properties files, rather
than distributing them in code segments, offers advantages for debugging and documenting
processes. Properties are translated to global macro variables by calls to the
cst_setstandardproperties or cst_setproperties framework utility macros during process
setup. They are reported in the SAS log, and are generally documented in the process
SASReferences file.

Running a Validation Process

Sample CDISC SDTM 3.1.1 Driver Program: validate_data.sas
Each SAS Clinical Standards Toolkit process uses a SAS driver module to set up the
program execution flow. The following steps show the execution flow in a typical SAS
driver module to perform SAS Clinical Standards Toolkit validation. For example, in a
SAS 9.2 deployment, the CDISC SDTM 3.1.2 validation driver module can be found
in: !sasroot/../../SASClinicalStandardsToolkitSDTM312/1.3/
sample/cdisc-sdtm-3.1.2/sascstdemodata/programs/validate_
data.sas

Step 1: Define the study data and metadata locations.

/* There are several ways to define the study data and metadata 
locations. These include (but are not limited to):  
    - Pre-allocation of libraries through some user-defined set-up mechanism
    - Definition within a user-defined driver program such as this one
    - Full explicit definition within a work sasreferences control data set
    - Use of a global macro variable referenced within each sasreferences file
 
This driver program illustrates use of the last mechanism, setting the 
global macro variables studyRootPath and studyOutputPath, which are referenced
within the sample study sasreferences data set path column.
 
Note this example is dependent on the SAS version and installation folder structure. */
data _null_;
 select("&sysver");

Running a Validation Process 111



  when("9.1")
  do;
   call symput('studyRootPath','!sasroot/../SASClinicalStandardsToolkitSDTM312
    /1.3/sample/cdisc-sdtm-3.1.2/sascstdemodata');
   call symput('studyOutputPath','!sasroot/../SASClinicalStandardsToolkitSDTM312
    /1.3/sample/cdisc-sdtm-3.1.2/sascstdemodata');
  end;
  otherwise do;
   call symput('studyRootPath','!sasroot/../../SASClinicalStandardsToolkitSDTM312
    /1.3/sample/cdisc-sdtm-3.1.2/sascstdemodata');
   call symput('studyOutputPath','!sasroot/../../SASClinicalStandardsToolkitSDTM312
    /1.3/sample/cdisc-sdtm-3.1.2/sascstdemodata');
   end;
  end;
run;

The &studyRootPath and &studyOutputPath variables facilitate code standardization and
portability. They are not required.

%let workPath=%sysfunc(pathname(work));

The workPath value provides the path for the Work directory. This directory is referenced
within the sample study SASReferences data set path column. It is not required.

* Note the number of calls should match the unique 
studyOutputPath subdirectories in sasreferences  *;
%****cstutil_createunixsubdir(_cstSubDir=results);      *   <--- 
example UNIX override  *;

The SAS Clinical Standards Toolkit processes normally create one or more output files.
These files might reside in the Work directory or point to some external location. The
&studyRootPath variable points to read-only locations in the !sasroot folder hierarchy. The
&studyOutputPath variable points to writable locations for process output, often in
the !sasroot folder heirarchy. UNIX users (or any users) might find it necessary to reset
&studyOutputPath to some write-enabled location since the !sasroot directories are
typically write protected. For these users, calls to the %cstutil_createunixsubdir macro
create any workpath subdirectories that are expected by SASReferences records and set
&studyOutputPath to workpath.

%let _cstSetupSrc=SASREFERENCES;
%let _cstStandard=CDISC-SDTM;
%let _cstStandardVersion=3.1.2;

These convenience macro variables are used primarily for reporting purposes later in the
validation process.

Step 2: Set the SAS Clinical Standards Toolkit framework properties and global
macro variables. Create an empty work.sasreferences data set to be populated in the
validation process.

* Set properties provided as part of the CST-FRAMEWORK standard. ;
%cst_setStandardProperties(
_cstStandard=CST-FRAMEWORK,_cstSubType=initialize);
%cst_createds(_cstStandard=CST-FRAMEWORK, 
_cstType=control,_cstSubType=reference, 
_cstOutputDS=work.sasreferences);

Each registered standard should have its own initialize.properties. For each standard that
is included in a specific process, the %cst_setStandardProperties macro can be called at
this point. Alternatively, type=properties records can be added to the SASReferences data

112 Chapter 6 • Validation



set, and properties are processed when the %cstutil_allocatesasreferences macro is called.
This latter approach is followed in the SDTM validate_data.sas driver module.

Step 3: Build the work.sasreferences data set.

The validate_data.sas module initializes the SASReferences data set that is required for
SDTM validation. The SASReference data set defines the location and name of the
Validation Control data set. The Validation Control data set contains the set of checks to
be included in the validation process. The sample validate_data.sas driver progra, sets the
path of the Validation Control data set to &studyRootPath/control and name to
validation_control.sas7bdat. In SAS 9.2, this translates to !sasroot/../../
SASClinicalStandardsToolkitSDTM312/1.3/sample/cdisc-
sdtm-3.1.2/sascstdemodata/control/validation_control.sas7bdat.
For an explanation of the purpose and content of each SASReferences file, see Chapter 5,
“SASReferences File,” on page 69. For a fully initialized SASReferences data set for
SDTM validation, see Display 5.3 on page 76.

Step 4: Call the %cstutil_processsetup macro.

The %cstutil_processsetup macro completes process setup. It ensures that all SAS librefs
and filerefs are allocated; all system options, macro autocall paths and format search paths
are set; and that all global macro variables that are required by the process have been
appropriately initialized.

The %cstutil_processsetup macro uses the following parameters.

cstSASReferencesSource
This parameter determines what initial source setup should be based on. Valid values
are SASREFERENCES (default) or RESULTS. If RESULTS is specified, then no other
parameters are required, and setup responsibility is passed to the cstutil_reportsetup
macro. The Results data set name must be passed to cstutil_reportsetup as
libref.memname.

cstSASReferencesLocation
This parameter specifies the folder location of the SASReferences data set. (The default
value is the path to the Work library.)

cstSASReferencesName
This parameter specifies the name of the SASReferences data set. (The default value
is SASREFERENCES.)

The %cstutil_processsetup macro call:

%cstutil_processsetup();

in the validate_data.sas driver reflects the acceptance of the macro parameter defaults listed
above.

The %cstutil_processsetup macro parameter values tell the process where to find the
SASReferences data set.

*********************************************************************;
* Set global macro variables for the location of the sasreferences  *;
* file (overrides default properties initialized above              *;
*********************************************************************;

%let _cstSASRefsName=&_cstSASReferencesName;
%let _cstSASRefsLoc=&_cstSASReferencesLocation;

The final setup step for the %cstutil_processsetup macro is a call to the
%cstutil_allocatesasreferences utility macro. The SASReferences data set is now
interpreted by the SAS Clinical Standards Toolkit. The following actions complete the
process:

Running a Validation Process 113



1. The %cst_insertstandardsasrefs macro is called to insert paths into any records that are
missing path information. The information is captured from the
StandardSASReferences data set for each standard. For more information about how
this works, see “Inserting Information from Registered Standards into a SASReferences
File” on page 14.

2. The %cstutil_checkds macro is called to perform internal validation on the
SASReferences data set updated in the %cst_insertstandardsasrefs macro.

3. All filerefs and librefs are allocated. (This action is contingent on the
_cstReallocateSASRefs property or global macro variable value).

4. Any property files are passed to the %cst_setProperties macro to create global macro
variables.

5. The format search path is set if any type=fmtsearch records are found. This is based on
the order specified.

6. The autocall path is set if any type=autocall records are found. This is based on the
order specified.

7. A Messages data set is created to contain records from each referenced standard. This
data set is based on the _cstMessages and _cstMessageOrder properties or global macro
variable values. This data set is used for the duration of the process to add fully resolved
messages to the Results data set.

At this point, all libraries should be allocated, all paths and global macros should be set,
and the global status macro variable _cst_rc should be set to 0. The process is ready to
proceed.

This is a common process failure point because of the importance of the SASReferences
data set. The SASReferences data set is key to the process, and any errors will cause the
process to fail. For tips on debugging problems with the SASReferences data set, see
“Special Topic: Debugging a Validation Process” on page 153.

Step 5: Run validation tasks.

* Run the standard-specific validation macro. ;
%sdtm_validate;

The %sdtm_validate macro performs the following tasks:

1. The macro looks up the Validation Control data set reference from SASReferences.

2. The macro resorts the Validation Control data set based on the _cstCheckSortOrder
property or global macro variable value. This step is optional.

3. For each check in the Validation Control data set, this macro calls the check macro
specified in the Validation Control codesource field. It passes all of the check metadata
to the check macro.

4. After all of the checks are run, the following happens:

• The results are saved to the file specified in SASReferences (type=results,
subtype=validationresults).

• Any process results are summarized in the Metrics data set if specified.

• The metrics are saved to the file specified in SASReferences (type=results,
subtype=validationmetrics).

• Various SAS Work files are cleaned up if needed.

For tips on debugging if unexpected errors occur, see “Special Topic: Debugging a
Validation Process” on page 153.

114 Chapter 6 • Validation



Step 6: Clean up the session.

* Clean up the SAS Clinical Standards Toolkit process 
files, macro variables and macros.;
%*cstutil_cleanupcstsession(
     cstClearCompiledMacros=0
    ,cstClearLibRefs=0
    ,cstResetSASAutos=0
    ,cstResetFmtSearch=0
    ,cstResetSASOptions=1
    ,cstDeleteFiles=1
  ,cstDeleteGlobalMacroVars=0);

Step 6 is optional, and it is unnecessary with batch processing. You should not clean up
prematurely or aggressively if additional SAS Clinical Standards Toolkit processes are to
be run in the same interactive SAS session.

The following table summarizes what the SAS Clinical Standards Toolkit attempts to do
when each of the %cstutil_cleanupcstsession macro parameters is enabled:

Table 6.11 Parameter Details for the %cstutil_cleanupcstsession Macro

Macro Parameter Action Attempted

_cstClearCompiledMacros Delete all macros from the work.sasmacr
catalog.

_cstResetSASAutos Reset the SASAutos path based on the value of
the macro variable cstInitSASAutos. This
macro parameter is typically set in the driver
module to capture the SASAutos value at the
start of the SAS Clinical Standards Toolkit
process (before calling
%cstutil_allocatesasreferences). This
parameter is ignored if _cstInitSASAutos does
not exist.

_cstClearLibRefs Clear all filerefs and librefs included in
SASReferences, except any autocall filerefs.

_cstResetFmtSearch Reset the fmtsearch path based on the fmtsearch
value at the start of the SAS Clinical Standards
Toolkit process. This macro parameter is
ignored if the work._cstsessionoptions data set
does not exist. To support this functionality, this
data set is created in the
%cstutil_processsetup macro before calling the
%cstutil_allocatesasreferences macro.

_cstResetSASOptions Reset all SAS options back to their status at the
start of the SAS Clinical Standards Toolkit
process. This macro parameter is ignored if the
work._cstsessionoptions data set does not exist.
To support this functionality, this data set is
created in the %cstutil_processsetup macro
before calling the
%cstutil_allocatesasreferences macro.

Running a Validation Process 115



Macro Parameter Action Attempted

_cstDeleteFiles Delete files if the global macro variable
_cstDebug=0. Files are &_cstsasrefs,
&_cstmessages, and work._cstsessionoptions.

_cstDeleteGlobalMacroVars Call %symdel for all macro variables found in
sashelp.vmacro (where=(lowcase(name)
=:"_cst" and scope="GLOBAL")).

Validation Results and Metrics
For SAS Clinical Standards Toolkit validation processes, the primary products of each
validation process are the Results data set and the Metrics data set. These data sets itemize
and summarize the findings of the validation process.

The following displays summarize a sample validation process. A few facts about the
sample validation process follow:

1. The validation process was run on CDISC SDTM 3.1.1 source data.

2. It referenced a Validation Control data set that contained metadata for four checks.

3. It included SASReferences records to persist the results as results.validation_results
and results.validation_metrics.

Note: In the following displays, some rows have been hidden to reduce redundant
examples.

Display 6.9 Validation Results Data Set (#1)

116 Chapter 6 • Validation



Note: In the following display, some rows have been hidden to reduce redundant
examples.

Display 6.10 Validation Results Data Set (#2)

Table 6.12 Comments about the Validation Results Data Sets in Displays 6.9 and 6.10

Lines Comment

1,4,5 Informational notes about processing
theproperties files.

2 Informational note saying that the creation of
work.sasreferences was successful.

3 Informational note from
cstutil_processsetup that informs the user of
the location of the SASReferences data set.

6-14 Informational summary that provides internal
documentation about the process.

15-16 Check SDTM0011 detected an error.
SRCDATA.SUPPAE exists in the source
metadata (source_tables), but does not exist
in the reference metadata (reference_tables).
This is a metadata-only check that runs
against the source_columns metadata
(WORK._
CSTSRCCOLUMNMETADATA). A
warning message is displayed informing the
user that the check processing was
incomplete.

17 Check SDTM0218 informational note that is
produced by the check macro
cstcheck_notincodelist. Note is about the
availability of fmtsearch format catalogs.

18 Check SDTM0218 completed successfully.
No errors were detected.

Running a Validation Process 117



Lines Comment

35 Check SDTM0804 completed successfully.
No problems were found in the comparison
of SRCDATA.DS with SRCDATA.SV.

53 In check SDTM0804, one SRCDATA.SU
record was found that had invalid VISIT and
VISITNUM values, which are relative to
records in the SV domain. The actual value
in error is listed in the actual column. The
keyvalues column identifies the specific
record in error.

89-90 Check SDTM0851 completed successfully.
No errors were detected. Two records (1 and
2 in the resultseq column) are listed because
the check was run twice because there is a
record for each of two checksources in the
Validation Control data set.

Note: In the following display, some rows have been hidden to reduce redundant
examples.

118 Chapter 6 • Validation



Display 6.11 Validation Metrics Data Set

Table 6.13 Comments About the Validation Metrics Data Set

Lines Comment

1 In check SDTM0011, 466 columns were
evaluated.

2 Check SDTM0011 took one second to run
using cstcheck_metamismatch.

5-13 Check SDTM0218 ran against eight domains.
Record counts were provided for each
domain. The check took two seconds to run
using cstcheck_notincodelist.

23-32 Check SDTM0804 ran against nine domains.
Record counts were provided for each
domain. The check took two seconds to run
using cstcheck_comparedomains.

Running a Validation Process 119



Lines Comment

43-44 Check SDTM0851 evaluated 28 records in
the SRCDATA.CO domain. The check took
one second to run using
cstcheck_recmismatch.

47 A summary metric of unique check
invocations. Display 6.11 on page 119 does
not itemize all eight checks.

48 A summary metric of the number of checks
that failed to run. (These metrics are defined
as distinct checkid and resultseq
combinations in the Results data set where
resultflag=-1).

49-53 Summary metric counts of the number of
records, by type of metric, in the Results data
set.

Note: In Display 6.9 on page 116 and Display 6.10 on page 117, some records in the
validation Results data set have been deleted for brevity. This creates an inconsistency
with the metrics listed in Display 6.11 on page 119.

The following are some general observations:

• The absence of a value in the results.checkid field can be used as an indicator of whether
messaging has been set up. If the checkid field is nonmissing in a Results record, then
messaging related to a specific validation check is available.

• A resultseq value > 1 indicates a repeat invocation of a specific validation check. There
should be differences in the Validation Control metadata for the specific validation
check.

• The seqno field is intended to be a record (message) counter in each specific check
invocation. Generally, this value starts with 1 on the first record, and increments by 1
until the last record for each checkid and resultseq combination. One exception is with
the Validation Control column reportAll=N. This signals the code to not write a record
to the Results data set for each record in error. However, seqno continues to increment
in this case, resulting in a gap in seqno values, with the last seqno approximating the
total number of records in error.

A set of sample validation reports is available to summarize the SAS Clinical Standards
Toolkit validation process results and metrics. For more information, see Chapter 8,
“Reporting,” on page 195.

Sample CDISC CRT-DDS 1.0 Driver Program:
validate_crtdds_data.sas

SAS Clinical Standards Toolkit validation of the SAS representation of the CDISC CRT-
DDS standard follows the same pattern used for CDISC SDTM validation. A sample driver
module—validate_crtdds_data.sas—is provided to perform process setup steps and to call
the crtdds_validate.sas macro. For a more complete description of the validation of the SAS
representation of the CDISC CRT-DDS standard, see Chapter 7, “XML-Based Standards,”
on page 165. In this chapter, the use of the validate_crtdds_data driver module is described.

120 Chapter 6 • Validation



Validation Checks by Standard

CDISC SDTM 3.1.1
The SAS Clinical Standards Toolkit 1.3 provides 150 unique SDTM 3.1.1 validation
checks. These checks are derived from four sources.

• The SAS interpretation of the CDISC SDTM WebSDM 2.6 documented checks. See
the white paper at:

http://phaseforward.com/resource/whitepapers/Validation
Checks 2.6/WebSDM V2.6 Validation Checks FINAL.pdf

• An update to the WebSDM validation checks (Version 3.0, revised June 2009) available
at:

http://www.phaseforward.com/products/cdisc/

• Checks supporting loads into the Janus study data repository being developed by the
FDA and the NCI. This information is documented in the SDTM Validation
Specification, v.1.0, November 2007 available at:

http://www.fda.gov/downloads/ForIndustry/DataStandards/
StudyDataStandards/UCM190628.pdf

• SAS checks based on SAS data management and cleaning experiences building CDISC
SDTM domains.

The CDISC SDTM 3.1.1 Validation Master data set, as defined in the SAS Clinical
Standards Toolkit 1.3, contains 257 records. Even though the SAS Clinical Standards
Toolkit provides 150 unique CDISC SDTM 3.1.1 checks, there are 257 records in the
Validation Master data set. The Validation Master data set is built with multiple instances
of the checks. This better supports check selection by version or checksource (that is,
WebSDM, Janus, or customer-defined checks), and enables unique check logic and
messaging by version or checksource. Of these 257 checks, three are inactive, and 12 are
deprecated. Deprecated CDISC SDTM checks generally reflect changes in the WebSDM
specifications over time.

Note: The validation check data set column checkstatus is designed to provide an
indication of the “state” of each check. It says whether the check is ready to be run in
its current defined state, or should it be run based on some external criteria. Valid values
are 1 (active), 0 (inactive), -1 (deprecated), and -2 (not yet implemented). Values are
extensible to meet the user's given requirements. No SAS Clinical Standards Toolkit
code requires specific values. You can elect to use other values such as 0 (draft), 1
(test), and 2 (production). If a check is included in the run-time validation control data
set, then SAS Clinical Standards Toolkit attempts to run the check as defined, regardless
of the value of the checkstatus column.

The following table provides the distribution of all 257 CDISC SDTM validation checks
by the original source of the check (the Validation Master checksource field).

Table 6.14 Distribution of CDISC SDTM 3.1.1 Validation Checks

Check Source Count Deprecated Inactive

WebSDM 114 5 1

Validation Checks by Standard 121



Check Source Count Deprecated Inactive

Janus 53 2 0

JanusFR 58 3 1

SAS 32 2 1

Total 257 12 3

This does not mean that the SAS Clinical Standards Toolkit 1.3 supports 114 different
WebSDM checks or 32 unique SAS checks. There are multiple instances of specific checks
to handle different sets of SDTM domains. For example, check SDTM0604 assesses
whether the sequence numbers (**SEQ) are consecutively numbered. For most domains,
this is assessed within each patient (USUBJID). However, the trial summary (TS) domain
does not contain patient-level data, so the check logic differs. The Validation Master
metadata differs for these two instances of the SDTM0604 check, but reports the same error
message for the check.

Information about the 257 records in the CDISC SDTM 3.1.1 Validation Master data set
is itemized in Appendix A4, “CDISC SDTM Validation Checks,” on page 281. Only
selected columns are listed in the appendix. For a full description of a sample Validation
Master data set for the CDISC SDTM standard, see Table 6.4 on page 95.

Consider the interrelationships among SAS Clinical Standards Toolkit validation check
metadata. All run-time Validation Control data sets, any programs that build or derive from
these data sets, corresponding Messages data sets, and the Validation_StdRef data set are
examples of how interconnected many SAS Clinical Standards Toolkit metadata files are.
For more information about the Messages data set, see “Messages” on page 101. By default,
the Validation_StdRef data set is found in the <global standards library
directory>/standards/cdisc-sdtm-3.1.1-1.3/validation/control
folder.

Note:  Cuurently, the SAS Clinical Standards Toolkit does not fully support all WebSDM
checks. Checks that are not supported require a comparison between SDTM metadata
and an associated define.xml file. Loads into the Janus repository require the existence
and use of a define.xml file. However, the SAS Clinical Standards Toolkit 1.3 does not
require an associated define.xml file for SDTM validation. For more information, see
the SAS site support.sas.com for SAS Notes, other usage notes, and their current
status.

CDISC SDTM 3.1.2
SAS Clinical Standards Toolkit 1.3 provides 243 unique SDTM 3.1.2 validation checks.
These checks are derived from four sources.

• The SAS interpretation of the CDISC SDTM WebSDM 3.0 documented checks.
Documentation is available at http://www.phaseforward.com/products/
cdisc/.

• The SAS interpretation of OpenCDISC CDISC SDTM 3.1.2 validation rules. The
validation rules are available at http://www.opencdisc.org/projects/
validator/cdisc-sdtm-3.1.2-validation-rules.

• Checks supporting loads into the Janus study data repository being developed by the
FDA and the NCI. This information is documented in the SDTM Validation

122 Chapter 6 • Validation



Specification, v1.0, November 2007 available at http://www.fda.gov/
downloads/ForIndustry/DataStandards/StudyDataStandards/
UCM190628.pdf.

• SAS checks based on SAS data management and cleaning experiences building CDISC
SDTM domains.

The CDISC SDTM 3.1.2 Validation Master data set, as defined in the SAS Clinical
Standards Toolkit 1.3, contains 247 records. Even though the SAS Clinical Standards
Toolkit provides 243 unique CDISC SDTM 3.1.1 checks, there are 247 records in the
Validation Master data set. Of these 247 checks, one is inactive, eight are deprecated, and
18 are not implemented. Deprecated CDISC SDTM checks generally reflect changes in
the WebSDM specifications over time. Checks that are not implemented generally involve
a comparison of the CDISC SDTM data, metadata, or both with an associated define.xml
file. Such cross-standard validation is not supported in the current release of SAS Clinical
Standards Toolkit. In the SAS Clinical Standards Toolkit 1.3, the Janus and JanusFR checks
were dropped for SDTM 3.1.2.

The following table provides the distribution of all 247 CDISC SDTM validation checks
by the original source of the check (the Validation Master checksource field).

Table 6.15 Distribution of CDISC SDTM 3.1.2 Validation Checks

Check Source Count Inactive Deprecated
Not
Implemented

WebSDM 164 0 5 12

Janus 1 0 1 0

OpenCDISC 44 0 0 6

SAS 38 1 2 0

Total 247 1 8 18

Note: The SAS Clinical Standards Toolkit allows multiple invocations of the same
validation check. Multiple invocations for four checks account for the difference
between the 243 unique checks and 247 records in the validation master data set. For
example, check SDTM0604 assesses whether the sequence numbers (**SEQ) are
consecutively numbered. For most domains, this is assessed within each patient
(USUBJID). However, the trial summary (TS) domain does not contain patient-level
data, so the check logic differs. The Validation Master metadata differs for these two
instances of the SDTM0604 check, but reports the same error message for the check.

Information about the 247 records in the CDISC SDTM 3.1.2 Validation Master data set
is itemized in Appendix A4, “CDISC SDTM Validation Checks,” on page 281. Only
selected columns are listed in the appendix.

Consider the interrelationships among SAS Clinical Standards Toolkit validation check
metadata. All run-time Validation Control data sets, any programs that build or derive from
these data sets, corresponding Messages data sets, and the validation_stdref data set are
examples of how interconnected many SAS Clinical Standards Toolkit metadata files are.
For more information about the Messages data set, see “Messages” on page 101. By default,
the Validation_StdRef data set is found in the <global standards library
directory>/standards/cdisc-sdtm-3.1.2-13/validation/control
folder.

Validation Checks by Standard 123



Note: Currently, the SAS Clinical Standards Toolkit does not fully support all WebSDM
checks. Checks that are not supported require a comparison between SDTM metadata
and an associated define.xml file. Loads into the Janus repository require the existence
and use of a define.xml file. However, the SAS Clinical Standards Toolkit 1.3 does not
require an associated define.xml file for SDTM validation. For more information, see
the SAS site at support.sas.com for SAS Notes, other usage notes, and their current
status.

CDISC CRT-DDS 1.0
The SAS Clinical Standards Toolkit provides check macros that validate the data in the
SAS data sets representing CDISC CRT-DDS data. The goal of these check macros is to
ensure that all data is correctly specified and that referential integrity is maintained. As a
result, a standards-compliant CDISC define.xml file can be produced from these data sets.

The validity of CRT-DDS data is determined by the standard in the form of XML schema
definitions. These XML schema definitions must be translated into checks appropriate for
the relational and tabular format.

Checks fall into these general categories:

• Ensures that all cross-table references are satisfied and that the referenced item actually
exists (referential integrity).

• Ensures that required variables are not missing or empty for an observation or row.

• Ensures that character data conforms to a particular format.

Formats are specified in the standard in one of two ways:

• an enumeration

• a regular expression

The following table lists the types of checks for CRT-DDS data.

Each check type is assumed to operate on data that exists in a source column in a source
data set. A check type can reference one or more parameters that validate the source column
data. A parameter can be a character string or a representation of some column other than
the source column against which the source column data must be compared.

All character comparisons are case sensitive. Character data is assumed to have been
trimmed of leading or trailing white space.

Table 6.16 CRT-DDS Validation Check Types

Check Type Check ID Category Description

Unique in data set CRT0100 Structural No two values for the source column can be the same
in the same source data set.

Required character value CRT0101 Data The trimmed (white space removed) value of the
character data must consist of one or more characters.

Required numeric value CRT0101 Data The numeric value of the column cannot be missing.

Enumeration(s0,s1,...) CRT0114 Data If character data exists, its value must match one of
the enumerated character strings. All string
comparisons are case sensitive.

124 Chapter 6 • Validation



Check Type Check ID Category Description

Foreign key(targetColumn) CRT0110 Structural Each existing value in this column must have an
equivalent value in the target column.

Foreign key
required(targetColumn)

(1) Structural A value is required for this column in every row. Each
value must have an equivalent value in the target
column. This check is the equivalent of running the
required character value check, and this check failing
if that check fails. If the required character value
passes, the foreign key() check is run.

Character format: language CRT0106 Data The character data must consist of 1 to 8 alphabetical
characters of any case. It can be followed by a hyphen
and any sequence of 1 to 8 alphabetical characters in
any case or numeric digits after that hyphen. For
example, e is a legal value, as is en-us, english, and
english-d842. Illegal values include 1en,
mumblespeak, and en_us. The hyphen character
sequence can be repeated, making a value such as
english-mumbly-growly-47 a legal value. Regular
expression: [a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*.

Character format: fileName CRT0107 Data The character data must not contain any characters
other than uppercase and lowercase letters of the
alphabet, numeric digits, an underscore (_), or a
period. Regular expression: [A-Za-z0-9_.]+.

Character format: sasFormat CRT0109 Data The first character must be either a lowercase or
uppercase letter, an underscore (_), or the dollar sign
($). Any subsequent character must be either an
uppercase or lowercase letter, a numeric digit, an
underscore (_), or a period. Regular expression:
[A-Za-z_$][A-Za-z0-9_.]*.

Character format: sasName CRT0108 Data The first character must be either a lowercase or
uppercase letter or an underscore (_). Any subsequent
character must be either an uppercase or lowercase
letter, a numeric digit, or an underscore (_). Regular
expression: [A-Za-z_][A-Za-z0-9_]*.

Unique across data
sets(targetcolumn0,...)

CRT0112 Structural No value in this column can be the same as any value
in any of the data set columns.

Primary key (2) Data Must be unique in data set check type and the required
character value check type.

Must Have Corresponding
Value(targetColumn)

CRT0111 Structural For each distinct value in this column, there must be
at least one equivalent value in the target column.

No Duplicates Per Unique
Value(targetColumn)

CRT0113 Structural For each distinct value in the target column, each
value in the source column must be unique. That is,
the same value cannot appear more than once in the
source column for each distinct value in the target
column.

(1) This validation is a combination of checks CRT0101 and CRT0110.

Validation Checks by Standard 125



(2) This validation is a combination of checks CRT0100 and CRT0101.

Each check type belongs to one of two categories.

1. Data checks have no dependencies on data outside of the source table. An example is
ensuring that a value exists in a column in which values cannot be missing.

2. Structural checks deal with relationships and data integrity between tables. Foreign key
enforcement is an example of a structural check. Structural conditions must be met for
the successful generation of a define.xml file. A user might want to defer structural
checks until later in the process of populating the CRT-DDS data sets. This is because
foreign key relationships require that the data be made available in a particular order
(that is, a referenced key must be available before the foreign key to it can exist).

Table 6.17 CRT-DDS Validation Checks

CRT-DDS
Validation
Number Source Data Set Check ID

Variable Being
Checked Check

0000 DefineDocument CRT0100,

CRT0101

FileOID Primary key

0001 DefineDocument CRT0101 FileType Required character value

0002 DefineDocument CRT0100 ID Unique in data set

0003 DefineDocument CRT0112 ID Unique across data sets
(MDVLeaf.ID, ItemGroupLeaf.ID)

0005 DefineDocument CRT0114 FileType Enumeration ("Snapshot",
"Transactional")

0006 DefineDocument CRT0114 Archival Enumeration ("Yes")

0007 DefineDocument CRT0114 Granularity Enumeration ("All", "Metadata",
"AdminData", "ReferenceData",
"AllClinicalData", "SingleSite",
"SingleSubject")

0008 Study CRT0101,

CRT0110

FK_DefineDocument Foreign key required
(DefineDocument.FileOID)

0009 Study CRT0100,

CRT0101

OID Primary key

0147 Study CRT0101 StudyName Required character value

0148 Study CRT0101 StudyDescription Required character value

0149 Study CRT0101 ProtocolName Required character value

0010 MeasurementUnits CRT0100,

CRT0101

OID Primary key

0011 MeasurementUnits CRT0101 Name Required character value

126 Chapter 6 • Validation



CRT-DDS
Validation
Number Source Data Set Check ID

Variable Being
Checked Check

0012 MeasurementUnits CRT0101,

CRT0110

FK_Study Foreign key required (Study.OID)

0013 MUTranslatedText CRT0106 lang Character format: language

0014 MUTranslatedText CRT0101,

CRT0110

FK_
MeasurementUnits

Foreign key required
(MeasurementUnits.OID)

0015 MetaDataVersion CRT0100,

CRT0101

OID Primary key

0016 MetaDataVersion CRT0101 Name Required character value

0017 MetaDataVersion CRT0101,

CRT0110

FK_Study Foreign key required (Study.OID)

0150 MetaDataVersion CRT0101 DefineVersion Required character value

0151 MetaDataVersion CRT0101 StandardName Required character value

0152 MetaDataVersion CRT0101 StandardVersion Required character value

0018 AnnotatedCRFs CRT0101,

CRT0110

leafID Foreign key required
(MDVLeaf.ID)

0019 AnnotatedCRFs CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

0020 SupplementalDocs CRT0101,

CRT0110

leafID Foreign key required
(MDVLeaf.ID)

0021 SupplementalDocs CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

0022 MDVLeaf CRT0100,

CRT0101

ID Primary key

0023 MDVLeaf CRT0111 ID Must have corresponding value
(MDVLeafTitles.FK_MDVLeaf)

0024 MDVLeaf CRT0112 ID Unique across data sets
(DefineDocument.ID,
ItemGroupLeaf.ID)

0025 MDVLeaf CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

Validation Checks by Standard 127



CRT-DDS
Validation
Number Source Data Set Check ID

Variable Being
Checked Check

0026 MDVLeafTitles CRT0101,

CRT0110

FK_MDVLeaf Foreign key required
(MDVLeaf.ID)

0027 ComputationMethods CRT0100,

CRT0101

OID Primary key

0028 ComputationMethods CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

0029 ValueLists CRT0100,

CRT0101

OID Primary key

0030 ValueLists CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

0031 ValueListItemRefs CRT0101,

CRT0110

ItemOID Foreign key required
(ItemDefs.OID)

0032 ValueListItemRefs CRT0114 Mandatory Enumeration ("Yes", "No")

0033 ValueListItemRefs CRT0110 ImputationMethodOID Foreign key
(ImputationMethods.OID)

0034 ValueListItemRefs CRT0110 RoleCodeListOID Foreign key (CodeLists.OID)

0035 ValueListItemRefs CRT0101,

CRT0110

FK_ValueLists Foreign key required
(ValueLists.OID)

0036 ValueListItemRefs CRT0101 Mandatory Required character value

0037 ProtocolEventRefs CRT0101,

CRT0110

StudyEventOID Foreign key required
(StudyEventDefs.OID)

0038 ProtocolEventRefs CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

0039 ProtocolEventRefs CRT0114 Mandatory Enumeration ("Yes", "No")

0040 ProtocolEventRefs CRT0101 Mandatory Required character value

0041 ProtocolEventRefs CRT0113 StudyEventOID No duplicates per unique value
(FK_MetaDataVersion)

0042 ProtocolEventRefs CRT0113 OrderNumber No duplicates per unique value
(FK_MetaDataVersion)

0043 StudyEventDefs CRT0100,

CRT0101

OID Primary key

128 Chapter 6 • Validation



CRT-DDS
Validation
Number Source Data Set Check ID

Variable Being
Checked Check

0044 StudyEventDefs CRT0101 Name Required character value

0045 StudyEventDefs CRT0114 Repeating Enumeration ("Yes", "No")

0046 StudyEventDefs CRT0101 Repeating Required character value

0047 StudyEventDefs CRT0114 Type Enumeration ("Scheduled",
"Unscheduled", "Common")

0048 StudyEventDefs CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

0153 StudyEventDefs CRT0101 Type Required character value

0049 StudyEventFormRefs CRT0101,

CRT0110

FormOID Foreign key required
(FormDefs.OID)

0050 StudyEventFormRefs CRT0114 Mandatory Enumeration ("Yes", "No")

0051 StudyEventFormRefs CRT0101 Mandatory Required character value

0052 StudyEventFormRefs CRT0101,

CRT0110

FK_StudyEventDefs Foreign key required
(StudyEventDefs.OID)

0053 StudyEventFormRefs CRT0113 FormOID No duplicates per unique value
(StudyEventFormRefs.FK_
StudyEventDefs)

0054 StudyEventFormRefs CRT0113 OrderNumber No duplicates per unique value
(StudyEventFormRefs.FK_
StudyEventDefs)

0055 FormDefs CRT0100,

CRT0101

OID Primary key

0056 FormDefs CRT0101 Name Required character value

0057 FormDefs CRT0114 Repeating Enumeration ("Yes", "No")

0058 FormDefs CRT0101 Repeating Required character value

0059 FormDefs CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

0060 FormDefItemGroupRefs CRT0101,

CRT0110

ItemGroupOID Foreign key required
(ItemGroupDefs.OID)

0061 FormDefItemGroupRefs CRT0114 Mandatory Enumeration ("Yes", "No")

Validation Checks by Standard 129



CRT-DDS
Validation
Number Source Data Set Check ID

Variable Being
Checked Check

0062 FormDefItemGroupRefs CRT0101 Mandatory Required character value

0063 FormDefItemGroupRefs CRT0101,

CRT0110

FK_FormDefs Foreign key required
(FormDefs.OID)

0064 FormDefItemGroupRefs CRT0113 OrderNumber No duplicates per unique value
(FormDefItemGroupRefs.FK_
FormDefs)

0065 FormDefItemGroupRefs CRT0113 ItemGroupOID No duplicates per unique value
(FormDefItemGroupRefs.FK_
FormDefs)

0066 FormDefArchLayouts CRT0100,

CRT0101

OID Primary key

0067 FormDefArchLayouts CRT0101 PdfFileName Required character value

0068 FormDefArchLayouts CRT0107 PdfFileName Character format: filename

0069 FormDefArchLayouts CRT0110 PresentationOID Foreign key (Presentation.OID)

0070 FormDefArchLayouts CRT0101,

CRT0110

FK_FormDefs Foreign key required
(FormDefs.OID)

0071 ItemGroupDefs CRT0100,

CRT0101

OID Primary key

0072 ItemGroupDefs CRT0111 OID Must have corresponding value
(ItemGroupDefItemRefs.ItemOID)

0073 ItemGroupDefs CRT0101 Name Required character value

0074 ItemGroupDefs CRT0114 Repeating Enumeration ("Yes", "No")

0075 ItemGroupDefs CRT0101 Repeating Required character value

0076 ItemGroupDefs CRT0114 IsReferenceData Enumeration ("Yes", "No")

0077 ItemGroupDefs CRT0108 SASDatasetName Character Format: sasName

0078 ItemGroupDefs CRT0101 Label Required character value

0079 ItemGroupDefs CRT0101 ArchiveLocationID Required character value

0080 ItemGroupDefs CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

130 Chapter 6 • Validation



CRT-DDS
Validation
Number Source Data Set Check ID

Variable Being
Checked Check

0081 ItemGroupDefItemRefs CRT0101,

CRT0110

ItemOID Foreign key required
(ItemDefs.OID)

0082 ItemGroupDefItemRefs CRT0114 Mandatory Enumeration ("Yes", "No")

0083 ItemGroupDefItemRefs CRT0101 Mandatory Required character value

0084 ItemGroupDefItemRefs CRT0110 ImputationMethodOID Foreign key
(ImputationMethods.OID)

0085 ItemGroupDefItemRefs CRT0110 RoleCodeListOID Foreign key (CodeLists.OID)

0086 ItemGroupDefItemRefs CRT0101,

CRT0110

FK_ItemGroupDefs Foreign key required
(ItemGroupDefs.OID)

0087 ItemGroupDefItemRefs CRT0113 OrderNumber No duplicates per unique value
(ItemGroupDefItemRefs.FK_
ItemGroupDefs)

0088 ItemGroupDefItemRefs CRT0113 ItemOID No duplicates per unique value
(ItemGroupDefItemRefs.FK_
ItemGroupDefs)

0154 ItemGroupDefItemRefs CRT0101 Role Required character value

0089 ItemGroupAliases CRT0101 Context Required character value

0090 ItemGroupAliases CRT0101 Name Required character value

0091 ItemGroupAliases CRT0101,

CRT0110

FK_ItemGroupDefs Foreign key required
(ItemGroupDefs.OID)

0092 ItemGroupLeaf CRT0100,

CRT0101

ID Primary key

0093 ItemGroupLeaf CRT0112 ID Unique across data sets
(DefineDocument.ID,
MDVLeaf.ID)

0094 ItemGroupLeaf CRT0101,

CRT0110

FK_ItemGroupDefs Foreign key required
(ItemGroupDefs.OID)

0095 ItemGroupLeafTitles CRT0101,

CRT0110

FK_ItemGroupLeaf Foreign key required
(ItemGroupLeaf.ID)

0096 ItemDefs CRT0100,

CRT0101

OID Primary key

0097 ItemDefs CRT0101 Name Required character value

Validation Checks by Standard 131



CRT-DDS
Validation
Number Source Data Set Check ID

Variable Being
Checked Check

0098 ItemDefs CRT0114 DataType Enumeration ("integer", "float",
"date", "datetime", "time", "text",
"string")

0099 ItemDefs CRT0101 DataType Required character value

0100 ItemDefs CRT0108 SASFieldName Character format: sasName

0101 ItemDefs CRT0108 SDSVarName Character format: sasName

0102 ItemDefs CRT0110 CodeListRef Foreign key (CodeLists.OID)

0103 ItemDefs CRT0110 ComputationMethodO
ID

Foreign key
(ComputationMethods.OID)

0104 ItemDefs CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

0105 ItemQuestionTranslated
Text

CRT0106 lang Character format: language

0106 ItemQuestionTranslated
Text

CRT0101,

CRT0110

FK_ItemDefs Foreign key required
(ItemDefs.OID)

0107 ItemQuestionExternal CRT0101,

CRT0110

FK_ItemDefs Foreign key required
(ItemDefs.OID)

0108 ItemMURefs CRT0101,

CRT0110

MeasurementUnitOID Foreign key required
(MeasurementUnits.OID)

0109 ItemMURefs CRT0101,

CRT0110

FK_ItemDefs Foreign key required
(ItemDefs.OID)

0110 ItemRangeChecks CRT0100,

CRT0101

OID Primary key

0111 ItemRangeChecks CRT0111 OID Must have corresponding value
(ItemRangeCheckValues.OID)

0112 ItemRangeChecks CRT0101 Comparator Required character value

0113 ItemRangeChecks CRT0114 Comparator Enumeration ("LT", "LE", "GT",
"GE", "EQ", "NE", "IN", "NOTIN")

0114 ItemRangeChecks CRT0101 SoftHard Required character value

0115 ItemRangeChecks CRT0114 SoftHard Enumeration ("Soft", "Hard")

132 Chapter 6 • Validation



CRT-DDS
Validation
Number Source Data Set Check ID

Variable Being
Checked Check

0116 ItemRangeChecks CRT0101,

CRT0110

MURefOID Foreign key required
(MeasurementUnits.OID)

0117 ItemRangeChecks CRT0101,

CRT0110

FK_ItemDefs Foreign key required
(ItemDefs.OID)

0118 ItemRangeCheckValues CRT0101,

CRT0110

FK_ItemRangeChecks Foreign key required
(ItemRangeChecks.OID)

0119 RCErrorTranslatedText CRT0106 lang Character format: language

0120 RCErrorTranslatedText CRT0101,

CRT0110

FK_ItemRangeChecks Foreign key required
(ItemRangeChecks.OID)

0121 ItemRole CRT0101,

CRT0110

FK_ItemDefs Foreign key required
(ItemDefs.OID)

0122 ItemAliases CRT0101 Context Required character value

0123 ItemAliases CRT0101 Name Required character value

0124 ItemAliases CRT0101,

CRT0110

FK_ItemDefs Foreign key required
(ItemDefs.OID)

0125 ItemValueListRefs CRT0101,

CRT0110

ValueListOID Foreign key required
(ValueLists.OID)

0126 ItemValueListRefs CRT0101,

CRT0110

FK_ItemDefs Foreign key required
(ItemDefs.OID)

0127 CodeLists CRT0100,

CRT0101

OID Primary key

0128 CodeLists CRT0101 Name Required character value

0129 CodeLists CRT0114 DataType Enumeration ("integer", "float",
"text")

0130 CodeLists CRT0101 DataType Required character value

0131 CodeLists CRT0109 SASFormatName Character format: sasFormat

0132 CodeLists CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

0133 ExternalCodeLists CRT0101,

CRT0110

FK_CodeLists Foreign key required
(CodeLists.OID)

Validation Checks by Standard 133



CRT-DDS
Validation
Number Source Data Set Check ID

Variable Being
Checked Check

0134 ExternalCodeLists CRT0112 FK_CodeLists Unique across data sets
(CodeListItems.FK_CodeLists)

0135 CodeListItems CRT0100,

CRT0101

OID Primary key

0137 CodeListItems CRT0101,

CRT0110

FK_CodeLists Foreign key required
(CodeLists.OID)

0138 CodeListItems CRT0112 FK_CodeLists Unique across data sets
(ExternalCodeLists.FK_CodeLists)

0139 CodeListItems CRT0113 CodedValue No duplicates per unique value
(FK_CodeLists)

0140 CLItemDecodeTranslate
dText

CRT0106 lang Character format: language

0141 CLItemDecodeTranslate
dText

CRT0101,

CRT0110

FK_CodeListItems Foreign key required
(CodeListItems.OID)

0142 ImputationMethods CRT0100,

CRT0101

OID Primary key

0143 ImputationMethods CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

0144 Presentation CRT0100,

CRT0101

OID Primary key

0145 Presentation CRT0106 lang Character format: language

0146 Presentation CRT0101,

CRT0110

FK_MetaDataVersion Foreign key required
(MetaDataVersion.OID)

The CDISC CRT-DDS validation checks that are listed in Table 6.17 on page 126 are
performed by comparing the data against a set of expected values. The expected values
have been stored in a format catalog (crtddsct.sas7bcat) and a data set (crtddsct.sas7bdat).
They can be found in the <global standards library directory>/
standards/cdisc-crtdds-1.0-1.3/formats folder. The following table lists the
format names and values that are used during CRT-DDS validation. This methodology
ensures case-sensitivity compliance required by the XML schema validation. For example,
the ItemRangeChecks data set requires an enumeration edit for values such as LT and LE.
If mixed case or lowercase values are detected, then the validation check reports an error.
In this case, the validation check is CRT0114 , (see Table 6.17 on page 126) and it uses
the Comp format to report this as an error.

134 Chapter 6 • Validation



Table 6.18 Enumeration Validation Format Values*

Format Value 1 Value 2

Filetype Snapshot

Transactional

Snapshot

Transactional

NY Yes

No

Yes

No

Y Yes Yes

Gran All

Metadata

AdminData

ReferenceData

AllClinicalData

SingleSite

SingleSubject

All

Metadata

AdminData

ReferenceData

AllClinicalData

SingleSite

SingleSubject

Type Scheduled

Unscheduled

Common

Scheduled

Unscheduled

Common

IDType integer

float

date

datetime

time

text

string

integer

float

date

datetime

time

text

string

Comp LT

LE

GT

GE

EQ

NE

IN

NOTIN

LT

LE

GT

GE

EQ

NE

IN

NOTIN

Soft Soft

Hard

Soft

Hard

Validation Checks by Standard 135



Format Value 1 Value 2

CLType integer

float

text

integer

float

text

*Value 1 and Value 2 are case sensitive.

The SASReferences data set needs to contain a row for fmtsearch, with SAS libref set to
crtfmt and the Filename should refer to crtddsct.sas7bcat.

Display 6.12 Example SASReferences File

Special Topic: Validation Check Macros
The following SAS Clinical Standards Toolkit design requirements shaped the
implementation of SAS Clinical Standards Toolkit validation code:

1. Code modules should be generic and reusable across standards. Fourteen check macros
support CDISC SDTM 3.1.1 and 3.1.2 validation. CDISC CRT-DDS 1.0 uses six of
these macros.

2. Code must run with SAS 9.1.3 (that is, no functionality new to SAS 9.2).

3. Code should be written as SAS macros.

4. SAS macros should have simple parameter signatures. All macros accept a single
parameter, _cstControl, which is a single-observation data set that contains check-
specific metadata.

5. SAS macros should be implemented as non-compiled open code.

6. SAS macros should be callable using the SAS autocall facility. The SAS Clinical
Standards Toolkit framework supports a single sasmacros library. Each SAS Clinical
Standards Toolkit standard supports an additional macros library, and the macro library
is available using the SAS autocall path.

7. Code modules should be generic and reusable with multiple validation checks. The
SAS Clinical Standards Toolkit check macros support 150 unique CDISC SDTM 3.1.1
validation checks, 243 unique CDISC SDTM 3.1.2 validation checks, and 11 unique
CDISC CRT-DDS validation checks.

136 Chapter 6 • Validation



8. To support code generalization, use metadata-driven techniques to provide check-
specific information to the check macros, even including which check macro to call.

9. Code should write processing results to a single validation Results data set. This Results
data set should be available for post-process review and reporting.

These design requirements should be used when developing custom validation check
macros. The following table identifies and describes the purpose of each of the 14 check
macros provided with the SAS Clinical Standards Toolkit.

Table 6.19 SAS Clinical Standards Toolkit Validation Check Macros

Check Macro Code Logic Style Description of Purpose

cstcheck_notsorted (not used) Identifies any domain that is
not sorted by the keys defined
in the metadata.

cstcheck_zeroobs (not used) Identifies any data set with
zero observations.

cstcheck_metamismatch Step Identifies inconsistencies
between study and reference
column metadata.

cstcheck_column Statement Identifies any invalid column
values or attributes.

cstcheck_columncompare Step Supports comparison of
column values.

cstcheck_dsmismatch Step Identifies any data set
mismatches between study
and template metadata and the
source data library.

cstcheck_violatesstd Statement Identifies any invalid column
values defined in a reference
standard.

cstcheck_notunique Not used for functions 1
through 3; DATA step for
function 4

A multi-function macro that
assesses the uniqueness of data
sets, columns, or value-pairs
from two columns.

Function 1: Is data set unique
by a set of columns?

Function 2: For any subject,
are column values unique?

Function 3: Does a
combination of two columns
have unique values?

Function 4: Are the values in
one column (Column2)
consistent in each value of
another column (Column1)?

Special Topic: Validation Check Macros 137



Check Macro Code Logic Style Description of Purpose

cstcheck_notconsistent Step Identifies any inconsistent
column values across records.

cstcheck_recnotfound Step Compares the consistency of
one or more columns across
two tables or enables the
comparison of the consistency
of one <table>.<column> with
another <table>.<column>.

cstcheck_comparedomains Step Compares values for one or
more columns in one domain
with values for those same
columns in another domain.

cstcheck_recmismatch Step Identifies any record
mismatches across domains
(domain as referenced in
another domain).

cstcheck_notincodelist If lookuptype=DATASET,
DATA step code logic
required

Else, DATA step code logic is
optional

Identifies any column values
inconsistent with controlled
terminologies.

Requires reference to the SAS
format search path built based
on type=FMTSEARCH
records in the SASReferences
control file.

Example is a **STAT value is
found other than 'NOT
DONE.'

cstcheck_notimplemented (not used) Placeholder to report that a
check is not yet implemented.

Each validation check macro follows a standard basic workflow. Several of the 14
validation check macros perform more complex operations and multiple functions. The
basic workflow includes the following:

1. Call the utility macro %cstutil_readcontrol, which translates the validation check
metadata passed as the input parameter into local macro variables for check macro
processing.

2. Evaluate required check macro-specific metadata values.

3. Call the utility macro %cstutil_buildcollist (or, if processing only domains,
%cstutil_builddomlist), which evaluates the requested scope of the specific validation
check (that is, which tables and columns are to be included when running the check).

4. Loop through the target tables and columns identified in step 3.

5. Perform the logic required to properly assess the validation check. This might be the
check macro code itself, or the code in the validation check metadata codeLogic field.

6. Write any informational or error messages to the Results data set. Metrics are written
to the Metrics data set.

138 Chapter 6 • Validation



7. Clean up any Work files local to the check macro processing.

The following table provides the distribution of validation checks by check macro for both
CDISC SDTM 3.1.1 and 3.1.2. For the distribution of validation checks by check macro
for CDISC CRT-DDS 1.0, see Table 6.21 on page 140.

Table 6.20 CDISC SDTM Validation Checks

Check Macro (codesource) Type of Check (checktype)
Unique Check Identifier (checkid)
(add SDTM prefix)

cstcheck_notsorted Multirecord 0601

cstcheck_zeroobs Metadata 0001, 0002, 0003

cstcheck_metamismatch Metadata 0011, 0012, 0013, 0014, 0015, 0019,
0020, 0022, 0023, 0030, 0031, 0032,
0033

cstcheck_column Column 0271, 0493, 0494, 0860

ColumnAttribute 0124, 0125, 0126, 0127, 0128, 0129,
0130, 0131

ColumnValue 0204, 0205, 0206, 0207, 0217, 0220,
0222, 0251, 0352, 0354, 0355, 0452,
0490, 0506, 0521, 0562

Date 0101, 0102

cstcheck_columncompare Column 0208, 0212, 0213, 0214, 0215, 0216,
0219, 0223, 0225, 0226, 0231, 0232,
0233, 0351, 0353, 0405, 0406, 0408,
0409, 0410, 0411, 0412, 0413, 0414,
0415, 0416, 0417, 0418, 0419, 0422,
0423, 0462, 0463, 0500, 0501, 0502,
0503, 0507, 0511, 0534, 0541, 0551,
0561, 0843

Date 0209, 0210, 0211, 0407

cstcheck_dsmismatch Metadata 0004, 0005, 0006, 0017

cstcheck_violatesstd Column 0201, 0202, 0203, 0606

cstcheck_notunique Multirecord 0602, 0603, 0622, 0623, 0631, 0641,
0642, 0651, 0661, 0662, 0671, 0808,
0809

cstcheck_notconsistent Multirecord 0604, 0605, 0607, 0621, 0643, 0644

Multitable 0807

cstcheck_recnotfound Multitable 0802, 0803, 0805, 0806, 0811, 0821,
0822, 0823, 0831, 0836, 0841

Special Topic: Validation Check Macros 139



Check Macro (codesource) Type of Check (checktype)
Unique Check Identifier (checkid)
(add SDTM prefix)

cstcheck_comparedomains Multitable 0645, 0801, 0804, 0812, 0842, 0844,
0845, 0846

cstcheck_recmismatch Multitable 0851, 0861, 0862, 0863, 0864, 0865,
0866, 0871, 0872

cstcheck_notincodelist Cntlterm 0218, 0221, 0302, 0401, 0402, 0403,
0450, 0451, 0453, 0454, 0455, 0456,
0457, 0458, 0459, 0460, 0461, 0464,
0465, 0466, 0467, 0470, 0471, 0472,
0473, 0475, 0476, 0477, 0478, 0479,
0480, 0481, 0482, 0483, 0484, 0485,
0486, 0487, 0488, 0489, 0491, 0492,
0495, 0496, 0497, 0498, 0499, 0504,
0505, 0508, 0509, 0510, 0512, 0513,
0514, 0515, 0516, 0517, 0518, 0522,
0523, 0531, 0532, 0533, 0570, 0571,
0572, 0573, 0574, 0575, 0576, 0580

Column 0301, 0303

cstcheck_notimplemented Cntlterm 0449, 0474

Date 0190, 0191, 0192, 0193

Derivation 0441, 0442, 0443

Metadata 0016, 0034, 0035, 0036, 0037, 0038,
0039

Multirecord 0672, 0673

Table 6.21 CDISC CRT-DDS 1.0 Validation Checks

Check Macro
(codesource) Check Type (checktype)

Unique Check Identifier
(checkid) )

Corresponding CRT-DDS
Validation Number*

cstcheck_column ColumnValue CRT0106 0013, 0105, 0119, 0140,
0145

CRT0107 0068

CRT0108 0077, 0100, 0101

CRT0109 0131

140 Chapter 6 • Validation



Check Macro
(codesource) Check Type (checktype)

Unique Check Identifier
(checkid) )

Corresponding CRT-DDS
Validation Number*

cstcheck_violatesstd Column CRT0101 0000, 0001, 0008, 0009,
0010, 0011, 0012, 0014,
0015, 0016, 0017, 0018,
0019, 0020, 0021, 0022,
0025, 0026, 0027, 0028,
0029, 0030, 0031, 0035,
0036, 0037, 0038, 0040,
0043, 0044, 0046, 0048,
0049, 0051, 0052, 0055,
0056, 0058, 0059, 0060,
0062, 0063, 0066, 0067,
0070, 0071, 0073, 0075,
0078, 0079, 0080, 0081,
0083, 0086, 0089, 0090,
0091, 0092, 0094, 0095,
0096, 0097, 0099, 0104,
0106, 0107, 0108, 0109,
0110, 0112, 0114, 0116,
0117, 0118, 0120, 0121,
0122, 0123, 0124, 0125,
0126, 0127, 0128, 0130,
0132, 0133, 0135, 0137,
0141, 0142, 0143, 0144,
0146, 0147, 0148, 0149,
0150, 0151, 0152, 0153,
0154

cstcheck_notunique Multirecord CRT0100 0000, 0002, 0004, 0009,
0010, 0015, 0022, 0027,
0029, 0043, 0055, 0066,
0071, 0092, 0096, 0110,
0127, 0135, 0142, 0144

cstcheck_recnotfound Multitable CRT0110 0008, 0012, 0014, 0017,
0018, 0019, 0020, 0021,
0025, 0026, 0028, 0030,
0031, 0033, 0034, 0035,
0037, 0038, 0048, 0049,
0052, 0059, 0060, 0063,
0069, 0070, 0080, 0081,
0084, 0085, 0086, 0091,
0094, 0095, 0102, 0103,
0104, 0106, 0107, 0108,
0109, 0116, 0117, 0118,
0120, 0121, 0124, 0125,
0126, 0132, 0133, 0137,
0141, 0143, 0146

CRT0111 0023, 0072, 0111

CRT0112 0003, 0024, 0093, 0134,
0138

cstcheck_recmismatch Multitable CRT0113 0041, 0042, 0053, 0054,
0064, 0065, 0087, 0088,
0139

Special Topic: Validation Check Macros 141



Check Macro
(codesource) Check Type (checktype)

Unique Check Identifier
(checkid) )

Corresponding CRT-DDS
Validation Number*

cstcheck_notincodelist Controlterm CRT0114 0005, 0006, 0007, 0032,
0039, 0045, 0047, 0050,
0057, 0061, 0074, 0076,
0082, 0098, 0113, 0115,
0129

For a full listing of validation checks, see Appendix A5, “CDISC CRT-DDS 1.0 Validation
Checks,” on page 335.

More complete documentation is provided for each check macro in Appendix A3, “Macro
Application Programming Interface,” on page 225. This information is derived from the
code header. For tips on building new check macros, see “Special Topic: Validation
Customization” on page 158.

Special Topic: How SAS Clinical Standards Toolkit
Interprets Validation Check Metadata

Overview
Four Validation Master metadata fields are key to how the SAS Clinical Standards Toolkit
processes source data and source metadata: usesourcemetadata, tablescope, columnscope,
and codelogic.

The SAS Clinical Standards Toolkit uses usesourcemetadata to point to the correct
metadata. If usesourcemetadata is set to Y, then the SAS Clinical Standards Toolkit knows
that the source metadata (source_tables and source_columns) is to be used to derive the
domains and columns to be evaluated for compliance to the standard. If usesourcemetadata
is set to N, reference metadata (reference_tables and reference_columns) is to be used.

The SAS Clinical Standards Toolkit uses the tablescope and columnscope values to build
the work._csttablemetadata and work._cstcolumnmetadata data sets. Based on the values
of these fields, the SAS Clinical Standards Toolkit creates a subset of source metadata or
reference metadata that represents the union of tablescope and columnscope. The SAS
Clinical Standards Toolkit builds columns specified in columnscope that also exist in the
tables specified in tablescope.

For those checks that use codelogic, the SAS Clinical Standards Toolkit builds local macro
variables to communicate tablescope and columnscope settings to the code. Simple
examples are each domain is interpreted as &_cstDSName, and each column is interpreted
as &_cstColumn.

Code logic is run. If the check code logic is a statement (codetype=1 or 3), then
_cstError=1 is generally set. If the check code logic is a DATA step or PROC SQL code
segment (codetype=2 or 4), then work.cstproblems is created.

Case Study 1: CDISC SDTM Check SDTM0604
In this case study, whether the sequence numbers (**SEQ) used in various domains are
consecutively incremented beginning at 1 for each USUBJID is determined.

142 Chapter 6 • Validation



There are specific values to assign to usesourcemetadata, tablescope, and columnscope to
set up a proper test of sequence numbers. First, you want to include the domains you actually
have (that is, source data and metadata). So, set usesourcemetadata to Y. Next, you want
to test all domains that contain sequence numbers. So, set tablescope to _ALL_. Because
each domain uses a domain-specific name for sequence number, set columnscope to
"**SEQ".

The following is the code logic for CDISC SDTM check SDTM0604:

%let _cstLastKey=%scan(%quote(&_cstSubjectKeys),-1,",");
data work._cstproblems (drop=count);
 set &_cstDSName (keep=&_cstDSKeys &_cstColumn);
 by &_cstDSKeys;
 if first.&_cstLastKey then count=1;
 else count+1;
 if &_cstcolumn ne count then output;
run; 

The following five macro variables are used in this code. They are representative of
variables set in many of the check macros before calling code logic. See each validation
check macro for local macro variables available to code logic.

• _cstDSName is the name of the domain, as set in the calling code module.

• _cstSubjectKeys is the set of keys that define a subject. It is set once as a global macro
variable in a properties file.

• _cstDSKeys contains the data set keys for _cstDSName. Keys are derived from the
table metadata for that domain (source_tables.keys).

• _cstLastKey is the last subject key. In the CDISC SDTM case, the value is USUBJID.

• _cstColumn is the column of interest (sequence number). This variable is specific to
the _cstDSName domain.

Processing based on Validation Master metadata fields results in records being added to
work._cstproblems for any record that does not match the record counter within the subject.

However, there are two records in the Validation Master check data set for the CDISC
SDTM check SDTM0604. The tablescope and columnscope settings for each record differ
from the previous description. The CDISC SDTM TS (Trial Summary) domain does not
contain the subject key USUBJID. The previous code logic does run against the TS domain
without failing. (But, the SAS log indicates a problem: NOTE: Variable
first.USUBJID is uninitialized.). A better solution is offered in the Validation
Master check data set with the two records.

Special Topic: How SAS Clinical Standards Toolkit Interprets Validation Check Metadata
143



Table 6.22 Multiple Validation Check Invocations for a Specific CheckID

checkid tablescope columnscope code logic

SDTM0604 _ALL_-TS **SEQ %let
_cstLastKey=%scan(%quote(&_cstSubjectKeys),-1,",");

data work._cstproblems (drop=count);

set &_cstDSName (keep=&_cstDSKeys &_cstColumn);

by &_cstDSKeys;

if first.&_cstLastKey then count=1;

else count+1;

if &_cstcolumn ne count then output;

run;

SDTM0604 TS TSSEQ data work._cstproblems;

set &_cstDSName (keep=&_cstDSKeys &_cstColumn);

if &_cstcolumn ne _n_ then output;

run;

Case Study 2: CDISC SDTM Check SDTM0623
In this case study, whether the values for standard units (**STRESU) are consistent within
each test code (**TESTCD) across all records in the CDISC SDTM findings domains is
determined.

You want to include the domains you actually have (that is, source data and metadata). So,
set usesourcemetadata to Y. Next, you want to test all findings domains, which typically
contain these two domain columns (**STRESU and **TESTCD). So, you might want to
set tablescope to CLASS:FINDINGS. Because you want to compare two columns in each
domain, set columnscope to [**TESTCD][**STRESU]. For more information about
tablescope and columnscope syntax, see Table 6.3 on page 90.)

The code logic for CDISC SDTM check SDTM0623 is listed:

data work._cstunique;
   set work._cstunique;
          by &_cstColumn1 &_cstColumn2;
   if first.&_cstColumn1=0 or last.&_cstColumn1=0 then _checkError=1;
run;
proc sort data=&_cstDSName out=&_cstclds;
    by &_cstColumn1 &_cstColumn2;
run;
data work._cstuniqueerrors;
    merge work._cstunique (where=(_checkerror=1) in=un)
                 &_cstclds (in=ds);
      by &_cstColumn1 &_cstColumn2;
    if un and ds and first.&_cstColumn2;
run;

This case study shows how the SAS Clinical Standards Toolkit uses local macro variables
for column comparisons. The columnscope syntax [**TESTCD][**STRESU] tells the

144 Chapter 6 • Validation



SAS Clinical Standards Toolkit to create two sublists. The first sublist is for all TESTCD
columns, and the second is for all STRESU columns. These are referenced as
&_cstColumn1 and &_cstColumn2 in code logic, respectively.

In this case, the validation check macro that calls and interprets code logic output
(cstcheck_notunique) reports all work._cstuniqueerrors records as failing this instance of
CDISC SDTM check SDTM0623.

It fails now because of the way it has been configured. The following sections shows how
to solve the problem. The generated Results data set contains the following excerpt:

Display 6.13 Results Data Set Excerpt for Check SDTM0623

The actual and resultdetails values give clues about the problem. The SAS Clinical
Standards Toolkit resolves the columnscope sublist [**TESTCD] to five columns. It
resolves the sublist [**STRESU] to four columns. The SAS Clinical Standards Toolkit
column comparisons require sublists of equal length so that valid comparisons can be made.
There appears to be a findings domain that has TESTCD, but not STRESU. In this case,
the domain IE does not have the column IESTRESU. Attempting to compare IETESTCD
with LBSTRESU is not the intention.

Tablescope and columnscope syntax supports wildcarding and addition and subtraction
operators. However, this flexible functionality is not required. You can submit explicit table
and column references. CDISC SDTM check SDTM0623 could be defined in the
Validation Master data set as the following:

tablescope columnscope

EG [EGTESTCD][EGSTRESU]

LB [LBTESTCD][LBSTRESU]

SC [SCTESTCD][SCSTRESU]

VS [VSTESTCD][VSSTRESU]

Consider the following alternative definition for the check:

tablescope columnscope

CLASS:FINDINGS-IE [**TESTCD][**STRESU]

Both of the above definitions will run correctly, but do not yet match the record metadata
for SDTM0623 in the SAS Validation Master data set:

tablescope columnscope

CLASS:FINDINGS-LB-IE [**TESTCD][**STRESU]

Special Topic: How SAS Clinical Standards Toolkit Interprets Validation Check Metadata
145



The reason LB is excluded from tablescope is because CDISC SDTM check SDTM0631
is a specific test of these LB domain columns (the Validation Master checksource and
sourceid fields show SDTM0631 to be an implementation of the WebSDM check IR5006).
SDTM0623 is simply a generalization of SDTM0631 to include all findings domains. There
is no reason to redundantly test LB.

Case Study 3: CDISC SDTM Check SDTM0452
In the CDISC SDTM Adverse Events (AE) domain, AE is defined as serious
(AESER="Y"), but none of the serious qualifier columns has been set to "Y". (For example,
AE involves cancer (AESCAN).)

This case study is an example of a validation check with a specific implementation using
hardcoded column references with no wildcarding.

Display 6.14 Validation Check Metadata for Check SDTM0452

The tablescope and columnscope fields specify a single table and column. The
reportingcolumns value is used by the cstcheck_column check macro to include these
columns for check processing and to report the column values in the Results data set
actual field.

But what happens if, in your source study, you did not collect all eight of the qualifier
columns expected by the check metadata? By default, an error message such as the
following is written to the SAS log:

ERROR: The variable AESCAN in the DROP, KEEP, or RENAME list has
never been referenced.

The following are the options for solving this problem:

1. Do not run the check at all. The check can be removed from the run-time Validation
Control data set. Disabling a check can be done by removing it from the Validation
Master data set or by setting the checkstatus flag to some value other than 1. (This
assumes that the process that you use to extract checks into the run-time Validation
Control data set references the checkstatus field).

2. Add missing (all null) columns to your AE domain, and include those columns in the
source_columns metadata. (In this example, these columns are defined in the CDISC
SDTM standard as permissible columns.) While this solves the immediate problem, it
is not a recommended best practice, which is to exclude all-null columns defined as
permissible. In fact, adding all-null columns triggers the reporting of another check
(SDTM0605).

3. Can columnscope be modified to include the qualifier columns that you do have? The
answer is no. The columnscope field defines the scope of the primary columns to be
tested. The check macro code loops through the resolved set of columns from the

146 Chapter 6 • Validation



columnscope field, and it evaluates the validity of each column. In this case, you do
not want to test each of the qualifier columns against each other.

4. Modify the current check record metadata with updated codelogic and
reportingcolumns values. This seems simple enough. Remove the columns that are
not collected in the source study. Your best practices control this action. For example:

• Can existing checks be modified?

• Will any change in the Validation Master super-set of checks require a new
Validation Master data set?

• Will any change require you to assign a new checkid (for example, CUST0452)
and other new metadata (for example, checktype=CUSTOM)?

• How should the uniqueid field be modified to reflect the new check?

You should consider the implications of modifying existing checks with regard to future
product updates and synchronization of changes. For more information, see “Special
Topic: Validation Customization” on page 158.

5. Submit a request to SAS to modify the existing check to be more generic and flexible.
For example, modify the code logic to check that each variable exists first before
attempting to evaluate its value.

Special Topic: SAS Implementation of ISO 8601
ISO 8601 is a widely used data standard for dates, times, durations, and intervals. The
values are stored as text strings. They are formatted in a way that ensures that all of the
components are always unambiguous. ISO 8601 is both platform and software independent,
which makes it suitable for data interchange.

Many data standards use a simplified subset of ISO 8601 for specifying their own dates,
times, and durations. This is true of several CDISC standards, including SDTM.

A complete discussion of ISO 8601 and the CDISC subset of ISO 8601 is beyond the scope
of this document. The following tables provide a general idea of what the text strings look
like and how to interpret their values. Additional information can be found in the references.

The following list provides a summary of the SAS Clinical Standards Toolkit support of
ISO 8601:

• Consistent with CDISC SDTM guidelines, the SAS Clinical Standards Toolkit does
not support the ISO 8601 basic format. This means that the text strings must contain
the hyphen delimiter for parts of the dates, and the colon delimiter for parts of the time.

• The SAS Clinical Standards Toolkit does not support some of the rarely used formats
allowed by ISO 8601. The week (W) formats for dates, Julian dates, and extended dates
(used to denote years greater than 9999) are not supported.

• The SAS Clinical Standards Toolkit requires a SAS hot fix for ISO informats.

Several enhancements have been made to SAS informats $N8601B. and $N8601E. to
enable them to provide even better support of the CDISC usage of ISO 8601. This
includes backporting SAS informats for use with SAS 9.1.3. These enhancements are
available as a free download as a SAS hot fix. (See http://ftp.sas.com/
techsup/download/hotfix/hotfix.html and the SAS Clinical Standards
Toolkit installation instructions for more information.)

Special Topic: SAS Implementation of ISO 8601 147



This SAS hot fix is required to support ISO 8601-related SAS Clinical Standards
Toolkit validation checks. If this hot fix is not installed, SAS 9.1.3 generates SAS errors,
indicating that it cannot locate the SAS informats. In SAS 9.2, SAS errors are not
generated, but some of the values might not be validated correctly.

SAS provides capabilities for processing ISO 8601 text strings that are far beyond those
required by the SAS Clinical Standards Toolkit and CDISC standards.

• The SAS informats $N8601B. and $N8601E. convert an ISO 8601 text string to a
special string called an ISO 8601 entity.

The ISO 8601 entity is a complex binary value that is stored as a hexadecimal value in
a SAS string variable.

The ISO 8601 entity string is useful for reporting in the ISO 8601 format because it
prevents the loss of valuable information from the input ISO 8601 text string.

• The ISO 8601 entity value should not be confused with the traditional numeric SAS
date, time, or datetime value.

• The ISO 8601 entity should not be used in calculations or comparisons.

• The CALL IS8601_CONVERT routine can be used to generate traditional numeric
SAS dates, times, and datetime values from an ISO 8601 string.

• For additional information, see the online SAS documentation.

The following table provides an overview of some commonly found values. It groups the
comments based on the ISO 8601 string type.

Table 6.23 Example ISO 8601 Values

String Interpretation Comments

Dates and Times: Template

YYYY-MM-
DDTHH:MM:SS

A specific date and time YYYY: Four-digit year.

MM: # of month (01-12).

DD: # of day of month (01-31).

T: What follows is a time in a
24-hour clock.

HH: Hours.

MM: Minutes.

SS: Seconds.

Dates and Times: Full Datetime Examples

2009-03-25 March 25, 2009 Year must have four digits.

Month, day, hour, minute, and
second each must have two
digits. Single-digit values
must be preceded by a leading
zero.

148 Chapter 6 • Validation



String Interpretation Comments

2009-03-25T22:29:30 March 25, 2009 10:29 and 30
seconds p.m.

T is always required before a
time.

Times must always be in
military time (for example, 24-
hour clock).

Midnight must be written as
00:00. 24:00 is not valid.

The individual parts of a date
value must be separated by a
hyphen (-).

The individual parts of a time
value must be separated by a
colon (:).

2009-03-25T22:29:30.333+0
5:00

March 25, 2009 10:29 and
30.333 seconds p.m. in the
time zone GMT + 5 hours

If provided, the time zone must
be in HH:MM format. It
cannot be truncated or a partial
value.

Some values in ISO 8601
formats can have decimal
places. Most commonly, this is
seen in seconds. The decimal
place can be denoted as either
a period (.) or a comma (,).

When a time zone is provided,
it must be accompanied by a
complete date. The date
cannot be truncated or a partial
value. This is necessary
because the 24 global time
zones force the date to be
considered as part of the time.

2009-03-25T22:29Z March 25, 2009 10:29 p.m.
Zulu time

Z can be used to substitute for
times in GMT (or Zulu) time.

Dates and Times: Partial Datetime Examples

(One or more components of the date or time are not known. Partial values are denoted by a single
-, no matter how many digits are absent. Partial values can be expressed by truncating the missing
parts.)

-----T22:29 The time 10:29 p.m.

No value for the date is
provided.

A time value must always be
prefixed by a date value.

In this example, the date value
is completely missing, which
would be appropriate for time-
only fields.

2009 Year 2009. Trailing values can be
truncated when the values are
missing.

Special Topic: SAS Implementation of ISO 8601 149



String Interpretation Comments

2009---25 The 25th day of an unknown
month in the year 2009.

The month is missing.

If a missing value is embedded
in the string, then it must
always be denoted by a hyphen
(-).

--03-25 The 25th day of March in an
unknown year.

Missing year.

--03--T-:15 The 15th minute of an
unknown hour of an unknown
day of the third month of an
unknown year.

Missing year, day, and hour.

2009-03 Month of March 2009. Trailing partial values can be
omitted (truncated).

If time is omitted, then T must
also be omitted.

2009-03--T12 The 12th hour of an unknown
day in March 2009.

Missing day of month.

Durations: Template

PnYnMnDTnHnMnS Duration A span of time where n is the
number of the unit that follows
the unit.

P: indicates that the value is a
duration (period)

nY: n elapsed years

nM: n elapsed months

nD: n elapsed days

T: the elapsed time in hours,
minutes, and seconds

nH: n elapsed hours

nM: n elapsed minutes

nS: n elapsed seconds

Typically, only the units with
actual values are given. For
example, P0Y1M would be
P1M.

Durations: Examples

P1D The span of one day. Durations always start with P
for a period of time.

Units of time that are not
known are usually omitted. If
time is omitted, then T must
also be omitted.

150 Chapter 6 • Validation



String Interpretation Comments

P0000-00-01 The span of zero years + zero
months + one day.

Durations can be expressed in
an alternative format.

When expressed, the length of
time is stored in the same
format as date and time, but
preceded by a P. Instead of
expressing a specific point in
time, it expresses a period of
time.

P1Y2M3DT4H5M6S The span of 1 year, 2 months,
3 days, 4 hours, 5 minutes, and
6 seconds.

The units must be in the
correct order.

The T is required for all time
values, but it should not be
specified if no time value is
given.

Intervals: Template

PnYnMnDTnHnMnS/
YYYY-MM-
DDTHH:MM:SS

or

YYYY-MM-
DDTHH:MM:SS/
PnYnMnDTnHnMnS

or

YYYY-MM-
DDTHH:MM:SS/
PnYnMnDTnHnMnS

or

YYYY-MM-
DDTHH:MM:SS/YYYY-
MM-DDTHH:MM:SS

Intervals This is a duration that is
anchored to a specific point in
time.

Intervals: Examples

2009-03-25T22:29/P1Y The span of one year starting
on March 25, 2009 at 10:29
p.m.

Intervals can express the
period of time that starts at a
given point in time.

The end time is implied.

P0001-00-00/2009-03-25T22:
29

The span of one year ending on
March 25, 2009 at 10:29 p.m.

Intervals can express the
period of time that ends at a
given point in time.

The start time is implied.

Special Topic: SAS Implementation of ISO 8601 151



String Interpretation Comments

2008-03-25/2009-03-25 The span of time between
March 25, 2008 and March 25,
2009, which happens to be one
year.

Intervals can express the
period of time that starts at a
given point in time and ends at
a given point in time.

The duration value itself is
implied.

Table 6.24 SAS ISO 8601 References

Topic Link

SAS 9.2 Language Reference: Dictionary http://support.sas.com/
documentation/cdl/en/lrdict/
63026/HTML/default/
viewer.htm#a002295669.htm

Working with Dates and Times Using the ISO
8601 Basic and Extended Notations

http://support.sas.com/
documentation/cdl/en/lrdict/
63026/HTML/default/
viewer.htm#a003169814.htm

CALL IS8601_CONVERT Routine http://support.sas.com/
documentation/cdl/en/lrdict/
63026/HTML/default/
viewer.htm#a003156604.htm

$N8601Bw.d Informat http://support.sas.com/
documentation/cdl/en/lrdict/
63026/HTML/default/
viewer.htm#a003170563.htm

$N8601Ew.d Informat http://support.sas.com/
documentation/cdl/en/lrdict/
63026/HTML/default/
viewer.htm#a003170574.htm

Reading Dates and Times Using the ISO 860
Basic and Extended Notations

http://support.sas.com/
documentation/cdl/en/lrdict/
63026/HTML/default/
viewer.htm#a003169817.htm

SAS Hot Fixes http://ftp.sas.com/techsup/
download/hotfix/hotfix.html

152 Chapter 6 • Validation



Special Topic: Debugging a Validation Process
The SAS Clinical Standards Toolkit provides two properties or global macro variables for
debugging problems occurring with all processes. These are _cstDebug and
_cstDebugOptions.

The _cstDebug global macro variable toggles debugging options on and off. Many SAS
Clinical Standards Toolkit code modules have conditional branching such as:

%if &_cstDebug %then
%do;
    /* perform some action */
end;

If debugging is toggled on (_cstDebug=1), several things can happen.

• If code is in place, like the following excerpt from the sample driver module
(validate_data.sas) documented in “Running a Validation Process” on page 111,
additional messaging to the SAS log can be enabled.

data _null_;
  _cstDebug = input(symget('_cstDebug'),8.);
  if _cstDebug then call execute("options source source2
  &_cstDebugOptions;");
  else call execute("options source source2 nomlogic nomprint
        nosymbolgen;");
run;

By default, the &_cstDebugOptions global macro variable is set to:

mprint mlogic symbolgen mautolocdisplay

These SAS global macro variables generate a lot of information, and they quickly fill
the SAS log when running interactively. You might consider running the process in
batch or use PROC PRINTTO to redirect the SAS log to a file.

• Many Work files created during the process are not deleted. They remain available in
the Work library to help with debugging.

Each SAS Clinical Standards Toolkit process consists of two primary tasks. The first task
is to use set up routines to establish the SAS Clinical Standards Toolkit environment. The
second task is to perform some primary SAS Clinical Standards Toolkit action. Debugging
focus is different for these two tasks.

In SAS Clinical Standards Toolkit setup, errors most often occur because of problems with
the SASReferences data set. The following table lists some common errors with possible
causes: For recommendations on configuring the SASReferences data set appropriately,
see “Building a SASReferences File” on page 69.

Special Topic: Debugging a Validation Process 153



Table 6.25 Debugging Process Setup Errors

Error Location Where Error Is Reported
Possible Cause and Corrective
Action

Expected libraries are not allocated. SAS Log, Libraries window, SAS
DMS

(1) An invalid physical name for the
libref has been used.

Is the libref a valid SAS name?

A SAS name can contain one to 32
characters.

It must start with a letter or an
underscore (_), not a number.

Subsequent characters must be letters,
numbers, or underscores.

Blanks cannot appear in SAS names.

Is the libref a reserved SAS libref
name? You should not use Work,
Sasuser, or Sashelp.

(2) The path specified for the libref is
invalid; it points to a nonexistent
directory. Check the path in your
SASReferences data set.

Error: SAS system library WORK
cannot be reassigned.

SAS Log Work is being used as a sasref value
with or without a path being designated.
A similar error occurs if Sasuser or
Sashelp is used.

WARNING: One or more libraries
specified in the concatenated library
CSTTMP do not exist.

SAS Log One of the paths specified for a libref is
invalid; it points to a nonexistent
directory.

154 Chapter 6 • Validation



Error Location Where Error Is Reported
Possible Cause and Corrective
Action

Warning: Process ending prematurely
for CST0090-there were problems with
the sasreferences data set.

SAS Log There is a problem with the
SASReferences data set being used.
Check for these potential problems:

The SASReferences data set does not
exist.

The SASReferences data set exists but
it is empty.

The structure of the SASReferences
data set is incorrect. For example, it
might have an extra column that is not
required or an expected column that is
missing.

A column type might be incorrect. For
example, the Order column might be
character instead of numeric.

An invalid TYPE or SUBTYPE or
combination is used in the
SASReferences data set. Valid TYPE
and SUBTYPE values are provided in
the Standardlookup data set found in
<global standards
library directory>/
standards/cst-
framework-1.3/control.

A TYPE value is missing.

A SASREF value is missing or invalid.

A REFTYPE value is missing or is not
equal to libref or fileref (case
insensitive).

Error: Physical file does not exist. SAS Log (1) The SASReferences data set
references a file that does not exist.

(2) The filename is not a valid SAS
name.

Special Topic: Debugging a Validation Process 155



Error Location Where Error Is Reported
Possible Cause and Corrective
Action

WARNING: Apparent invocation of
macro SDTM_VALIDATE not
resolved.

SAS Log (1) The macro is misnamed or has not
been added to the expected autocall
library.

Does the macros folder for this standard
exist in the cstGlobalLibrary, in
the !sasroot hierarchy, or in some
correctly designated custom location?

(2) The expected autocall path was not
created correctly in the call to
%cstutil_allocatesasreferences.

Check that the SASReferences data set
contains a type=autocall record,
defined as a fileref, and points to the
correct folder location.

Check for an error occurring earlier in
the SAS log suggesting that
%cstutil_allocatesasreferences failed
before setting the autocall path.

If the task to perform the primary SAS Clinical Standards Toolkit action begins (that is,
the standard-specific validation macro, such as %sdtm_validate or %crtdds_validate, is
found and begins processing), then setup has completed successfully, and remaining
process failures are likely because of problems with the various validation components.

Most errors that halt a validation process are reported in the Results data set. As a general
rule, the following Results data set fields signal process failures and provide information
about the cause of the failure:

• the Process status field (_cst_rc), when the value is set to a nonzero value

• the Problem detected field (resultflag), when the value is set to -1

• the Source Data field (srcdata) identifies the macro reporting the problem

• the Resolved Message text field (message) provides a problem cause

• the Basis for Result field (resultdetails) can provide additional information pertinent to
the problem

Depending on the severity of the problem and when it occurs, the Results data set might
not be saved to the persisted location if that location was requested using a type=results
record in the SASReferences data set. In this case, the Results data set defined with the
&_cstResultsDS global macro variable might be referenced for the previous information.
By default, &_cstResultsDS is set to work._cstresults.

Generally, the SAS Clinical Standards Toolkit does not halt the validation process when
an error is detected in a specific check. The error is noted in the Results data set, the
resultflag value for that check is set to -1, _cst_rc is set to 0, and processing continues with
the next check. A validation process is most likely to be halted (by setting _cst_rc to 1)
when there is a significant metadata error that suggests subsequent checks would likely fail
to run.

The following table lists some common causes for premature process failure or the failure
of specific checks to run:

156 Chapter 6 • Validation



Table 6.26 Debugging Validation Process Errors

Error Resultid in Results Data Set Possible Cause/Corrective Action

No tables evaluated-check validation
control data set.

CST0002 No tables interpreted from the
tablescope value could be found in the
work._csttablemetadata data set.

CST0003 This error usually indicates that a
specific source column or data set could
not be found. The code loops through a
set of domains or columns built from
the source metadata data sets. This error
might result when the source metadata
does not accurately reflect the source
data.

No columns evaluated-check
Validation Control specification.

CST0004 No columns interpreted from the
columnscope value could be found in
the work._cstcolumnmetadata data set.

The SAS Clinical Standards Toolkit
looks at the union of both tablescope
and columnscope to build
work._cstcolumnmetadata. The
specified column might exist in a
domain, but not in any column
specified in a tablescope domain.

Lookup to SASreferences control data
set failed.

CST0006 The SAS Clinical Standards Toolkit
code has a call to the
cstutil_getsasreference utility macro
for a type or type and subtype
combination that cannot be found in the
SASReferences data set. This indicates
that SASReferences has been
incompletely defined for the SAS
Clinical Standards Toolkit validation
process.

Validation control parsing of
tablescope/column results in
inconsistent sublist lengths.

CST0023 This check involves a comparison of
tables or columns, as indicated by
multiple sets of brackets in tablescope
or columnscope. Each set of brackets
constitutes a sublist. However, the
number of items in the specified sublist
is inconsistent or unexpected by the
check macro. Options typically include
a more accurate specification of sublist
items, either using explicit table or
column names or more restrictive
tablescope syntax (that is, removing the
domain causing the inconsistency using
minus sign (-) syntax, such as
_ALL_-DM).

Special Topic: Debugging a Validation Process 157



Error Resultid in Results Data Set Possible Cause/Corrective Action

One or more check metadata column
values is invalid.

CST0026 A value in the Validation Control data
set for the check being run is invalid in
the context of the specific check macro.
Examples include conditions that are
required by the check macro but are not
found, such as no code logic found, an
unexpected usesourcemetadata value,
or no lookuptype or lookupsource for
valid value assessments.

Code failed due to SAS error-see log. CST0050 A SAS DATA step or SAS procedure
failed and the cause is reported in the
SAS log. This most commonly occurs
because of missing data sets, missing
columns, incorrectly sorted data sets,
and unexpected macro variable values.

<Message lookup failed to find
matching record>

<varies> The check macro code generates a
resultid value that does not find a match
in the Messages data set. Either the
wrong resultid has been specified, or
the standard-specific Messages data set
has not been updated to include the
resultid.

Other Debugging Tips

• Review available Work files for information about the errors (for example, _cstresults,
_csttablemetadata, and _cstcolumnmetadata). These files might remain in the Work
directory after a process by default. Toggling the _cstDebug global macro variable to
1 forces the Work files to remain after the process.

• When debugging, avoid setting the parameter flags in cstutil_cleanupcstsession to 1 (if
that cleanup macro is called).

%cstutil_cleanupcstsession(_cstClearCompiledMacros=0,
_cstClearLibRefs=0, _cstResetSASAutos=0, _cstResetFmtSearch=0,
_cstResetSASOptions=0,_cstDeleteFiles=0,_cstDeleteGlobalMacroVars=0);

• Use work._cstcolumnmetadata and work._csttablemetadata to resolve missing domain
and column issues. These data sets can also be used to resolve sublist length differences
for checks using sublist syntax [] in tablescope and columnscope.

• Use the resultid code (for example, CST0003) in the Results data set to search the check
macro code module used for a specific check for information about the error. The name
of the macro code module is set in the Validation Control codesource field.

Special Topic: Validation Customization

Overview
One of the significant benefits of the SAS Clinical Standards Toolkit is that users can
customize the solution to meet their needs. From a validation perspective, this includes:

158 Chapter 6 • Validation



• modifying an existing standard or defining a new reference standard

• using any set of source data and metadata

• modifying the SAS validation checks for supported standards

• adding new validation checks for supported standards

• modifying existing validation check macros or adding new macros

• modifying SAS Clinical Standards Toolkit messaging, including internationalization

Each of these customizations is described in the following case studies.

Case Study 1: Modifying an Existing Standard or Defining a New
Reference Standard

Source data and metadata are validated in the SAS Clinical Standards Toolkit against a
reference standard. For CDISC standards, the SAS Clinical Standards Toolkit provides a
SAS interpretation of the supported CDISC standards. Because CDISC standards are
guidelines, they are open to interpretation and customer-specific implementations. Not all
clinical studies have all CDISC-defined standard domains, and most clinical studies have
additional domains reflecting the focus of the clinical study. In addition, CDISC SDTM
domain classes (findings, events, and interventions) enable the inclusion and exclusion of
most columns, depending on the clinical data points collected in the study. CDISC
guidelines generally do not specify column lengths.

Each of these factors suggests that the SAS Clinical Standards Toolkit CDISC reference
standards will be modified or replaced with customer-derived standards. The SAS Clinical
Standards Toolkit offers the option of building a reference standard to encompass domain
and column customizations. Or, you can customize check macros and check logic to
perform specific compliance assessments to a standard. For example, in CDISC SDTM, it
is not uncommon to build multiple supplemental qualifier domains (for example, SUPPAE)
associated with a core reference domain (for example, AE). It is at the customer's discretion
whether the reference standard is modified to include each unique supplemental qualifier
domain, or to use existing SAS Clinical Standards Toolkit validation check macros with
unique code logic or custom check macros to validate the custom domains. These latter
options are discussed in the following case studies.

It is likely that customers will derive multiple reference standards. From a SAS Clinical
Standards Toolkit validation perspective, the only relevant reference standard is the one
defined in the SASReferences data set (as type=referencemetadata).

For information about registering a new standard in the SAS Clinical Standards Toolkit,
see “Registering a New Version of a Standard” on page 16.

Case Study 2: Using Any Set of Source Data and Metadata
From a SAS Clinical Standards Toolkit perspective, a source study is defined by the study
domains, the study metadata represented in the source_tables and source_columns data
sets, and anything that might be unique to a specific study, including controlled
terminologies, properties, validation checks, and associated messages.

One key SAS Clinical Standards Toolkit requirement is that source study elements should
be kept in synchronization. Another key requirement is that all relevant source study
elements should be accurately represented in a SASReferences data set. The
synchronization of study elements is a task that is often performed outside the SAS Clinical
Standards Toolkit. The study data libraries must contain the domains of interest, the study
metadata must provide the complete set of table-level and column-level metadata necessary

Special Topic: Validation Customization 159



to describe the source data, and any format catalogs and coding dictionaries supporting the
study must be available.

Best Practice: If a standard folder hierarchy is adopted for source studies, such as in the
SAS Clinical Standards Toolkit CDISC SDTM 3.1.2 sample study in SAS 9.2
(!sasroot/../../SASClinicalStandardsToolkitSDTM312/1.3/sample/
cdisc-sdtm-3.1.2/sascstdemodata), using generic SASReferences files that use
&studyRootPath in the path field might facilitate referencing new source studies.

Case Study 3: Modifying the SAS Validation Checks for Supported
Standards

This case study addresses adding multiple instances of existing checks. The most common
ways to modify SAS validation checks include:

• Altering the scope of the domains and columns to be validated. This change should not
be required frequently. Many checks are defined to be run against specific domains or
columns, against specific classes of domains (for example, CDISC SDTM findings,
events, or interventions), or against all available domains or columns. Changes are
likely to involve alterations to the Validation Control tablescope or columnscope
fields.

• Changing the Validation Control codelogic field to alter the logic used to identify error
conditions. This might be a necessary change if a check needs to be generalized to
accommodate new domains or columns. Or, customer conventions might differ from
those in the SAS Clinical Standards Toolkit checks.

• If customer code changes are sufficiently significant, then it might be better to create
a new validation check macro. (See “Case Study 5: Modifying Existing Validation
Check Macros or Adding New Macros” on page 161.) If a new validation check macro
is required, then the Validation Control codesource field needs to be modified to
contain the name of the new check macro.

• The Validation Control uniqueid field provides a way to uniquely identify a specific
validation check for reference. Any substantive change to any Validation Control data
set check field normally leads to a new uniqueid. For information about the structure
of uniqueid, see Table 6.3 on page 90.

• The Validation Control checkstatus field provides an easy way to identify selected
checks with a user-defined status (for example, draft, deprecated, or not available for
a given study). The SAS Clinical Standards Toolkit does not reference this field within
any validation check macro.

• The Validation Control lookupsource field can be changed to reference a different
SAS format or lookup data set (for example, a new version of MedDRA). In the latter
case, a change to the pathname, memname, or both fields in the SASReferences data
set might be a more appropriate action.

Case Study 4: Adding New Validation Checks for Supported
Standards

To add a new validation check, consider the following checklist:

• Check metadata must conform to the Validation Master structure. (For more
information, see Chapter 2, “Framework,” on page 5.)

• Certain Validation Master fields accept any user-defined value (for example,
checksource, sourceid, checktype, standardref, and checkstatus). These fields are not

160 Chapter 6 • Validation



referenced by the validation check macros. The remaining fields are used in the
validation check macros, so users must abide by SAS Clinical Standards Toolkit
conventions. These conventions are described in Chapter 2, “Framework,” on page 5.

• A new check should be added to the (run-time) Validation Control data set for testing.
After testing, it can be promoted to the Validation Master data set to be available to
applications and processes. These requirements follow a typical development process.

• For each new validation check, a matching message is required. This is the message
that you want written to the Results data set when an error condition is detected. For
details, see “Messages” on page 101.

Case Study 5: Modifying Existing Validation Check Macros or Adding
New Macros

The SAS Clinical Standards Toolkit provides 14 validation check macros. These macros
offer a variety of code samples that function in the general SAS Clinical Standards Toolkit
framework. These 14 macros support CDISC SDTM validation; CDISC CRT-DDS 1.0
uses six of these macros. (For full descriptions of these macros, see “Special Topic:
Validation Check Macros” on page 136.)

Some validation scenarios might require modifications to the SAS Clinical Standards
Toolkit check macros or the derivations of new macros. If so, the following guidelines
should be followed. These guidelines facilitate the use of these macros in the general SAS
Clinical Standards Toolkit framework and in the specific SAS Clinical Standards Toolkit
validation framework.

• Follow the current naming convention or adopt a consistent naming convention that
conforms to SAS naming conventions.

• Use the current autocall library or use a customized autocall library that has been
defined in the SASReferences data set (type=autocall).

• Conform to the basic check macro workflow. This workflow is described in “Special
Topic: Validation Check Macros” on page 136.

• Ensure that the macro correctly accepts and interprets the metadata provided as input
from the Validation Control data set. If the new macro fails to do so, then it can be
hardcoded to provide any specific functionality that is desired.

• Ensure that the macro writes appropriate output to the Results and Metrics data sets.

Case Study 6: Modifying SAS Clinical Standards Toolkit Messaging,
Including Internationalization

This case study considers the following three issues related to the support of SAS Clinical
Standards Toolkit messaging:

1. Maintain the relationship between SAS Clinical Standards Toolkit standard-specific
messages and standard-specific validation checks.

2. Maintain the relationship between messages and validation check macro code.

(Deviations are acceptable to the extent that missing parameters have suitable defaults.)

3. Internationalize messages.

A SAS Clinical Standards Toolkit message is created for each distinct combination of the
Validation Master standard and checksource fields. This allows the SAS Clinical
Standards Toolkit to support checksource-specific messaging and severity. A unique SAS

Special Topic: Validation Customization 161



Clinical Standards Toolkit message is required for each value of the Validation Master
standardversion field if that value is not the wildcard ***.

Consider the following CDISC SDTM 3.1.1 Validation Master record excerpts:

Display 6.15 Validation Master Data Set Excerpt for Check SDTM0013

The SAS Clinical Standards Toolkit representation of the SDTM0013 check in the
Messages data set is:

Display 6.16 Messages Data Set Excerpt for Check SDTM0013

The Messages data set contains two records because there are two distinct checksource
values for Validation Master checkid SDTM0013.

Consider the following CDISC SDTM Validation Master record excerpts:

Display 6.17 Validation Master Data Set Excerpt for Check CUST0073

Three separate invocations of CUST0073 are represented. Each record points to a different
domain (tablescope). This example assumes that the CDISC SDTM 3.1.2 standard has been
registered. The first and third records (AE and MH domains) indicate that this specific
implementation of the check is applicable to all versions of CDISC SDTM. However, the
second record is applicable to only CDISC SDTM 3.1.2 (because CE is a new domain in
SDTM 3.1.2).

Only two Messages data set records are required:

Display 6.18 Messages Data Set Excerpt for Check CUST0073

It is the distinct combinations of the Validation Master checkid, standardversion, and
checksource fields that control the associated Messages data set records.

162 Chapter 6 • Validation



It is important to maintain the relationship between messages and validation check macro
code. If the validation check macro code references an unknown resultid, the text
<Message lookup failed to find matching record> is written to the Results
data set.

The CUST0073 check defines a substitution parameter (&_cstParm1). (The SAS Clinical
Standards Toolkit code assumes that message substitution parameters begin with the string
&_cst.) For the calling validation check macro to support parameters when writing output
to the Results data set, the parameters that are passed should be syntactically consistent
with the messagetext field in the Messages data set.

Building the message record to use a default value (as specified in the parameter1 field)
solves the problem when the calling macro fails to pass a substitution value. Using
parameters is optional. Parameters might only be needed if the message is to be used in
multiple contexts where substitutions of parameter values help interpret the message.

The SAS Clinical Standards Toolkit supports the internationalization of messages through
specifying message file references in the SASReferences data set (type=messages). If
referenced message files conform to the structure expected by the SAS Clinical Standards
Toolkit, any text, including internationalized text, can be included.

Special Topic: Performance Considerations
Best Practice Recommendations:

• SAS Clinical Standards Toolkit validation should first be run on a subset of source data
to identify general process problems, missing or inconsistent process control metadata,
and common and perhaps correctable data errors.

• The SAS Clinical Standards Toolkit standard-specific Validation Master data set
should be subsetted to remove duplicate checks. For example, CDISC SDTM 3.1.1
Janus checks are generally duplicates of WebSDM checks with occasionally different
resultseverity values.

• The _cstDebug option should be toggled off except for when you want to debug specific
program errors to avoid exceeding the SAS log-size limitations or to avoid generating
large SAS log files.

• A SAS Clinical Standards Toolkit validation process that involves a large number of
checks, should be run in batch or using PROC PRINTTO. This is also true for a SAS
Clinical Standards Toolkit validation process that is run with the _cstDebug option
toggled on. Doing so avoids exceeding the SAS log-size limitations.

Special Topic: Performance Considerations 163



164 Chapter 6 • Validation



Chapter 7

XML-Based Standards

SAS Support of XML-Based Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Reading XML Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Overview of Basic Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Reading CDISC ODM XML Files: odm_read Macro . . . . . . . . . . . . . . . . . . . . . . 166
Sample Driver Program: create_sasodm_fromxml.sas . . . . . . . . . . . . . . . . . . . . . . 168
Reading CDISC CRT-DDS define.xml Files: crtdds_read Macro . . . . . . . . . . . . . 172
Sample Driver Program: create_sascrtdds_fromxml.sas . . . . . . . . . . . . . . . . . . . . 174

Writing XML Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Basic Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Creating the CDISC CRT-DDS 1.0 define.xml File . . . . . . . . . . . . . . . . . . . . . . . 179
Sample Driver Program: create_crtdds10_from_sdtm311.sas . . . . . . . . . . . . . . . . 180
Sample Driver Program: create_crtdds_define.sas . . . . . . . . . . . . . . . . . . . . . . . . . 183

Validation of XML-Based Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
XML Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Validating CDISC CRT-DDS 1.0 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Special Topic: A Round Trip Exercise Involving the CDISC
SDTM and CDISC CRT-DDS Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

SAS Support of XML-Based Standards
When processing XML-based standards (such as CDISC ODM and CDISC CRT-DDS),
the SAS Clinical Standards Toolkit attempts to create a representation in SAS that is based
on the standard. This typically includes a combination of metadata data sets, content data
sets, and SAS format catalogs. Once the standard is represented in SAS, additional
processing in SAS, such as model validation and reporting, is facilitated.

In general, when representing an XML-based standard in SAS, an XML element is mapped
to a SAS data set and its associated attributes are mapped to the columns of the SAS data
set. SAS Clinical Standards Toolkit 1.3 reads a CDISC ODM 1.3.0 or a CDISC CRT-DDS
1.0 XML file and converts the information into a SAS data set representation of each model.
For CDISC CRT-DDS 1.0, this means that 39 data sets (such as ItemDefs) containing 176
columns are derived from the define.xml element and attribute structure. The SAS
representation of each standard can be derived in part from other standards (such as CDISC-
SDTM) and can include supporting metadata from other sources. SAS Clinical Standards
Toolkit 1.3 can also create a CDISC CRT-DDS 1.0 XML file.

165



Reading XML Files

Overview of Basic Workflow
The following is the basic workflow for reading XML files:

1. Determine the existence of a valid XML file.

2. Use valid XSL style sheets for each target data set (such as ItemDefs.xsl).

3. Use the SAS DATA step component JavaObj to create a standardized intermediate
cubeXML file using the XSL style sheets.

4. Read the standardized cubeXML file using the SAS XML LIBNAME engine and
XMLMAP processing.

This basic workflow is used by all XML-based standards that are supported by the SAS
Clinical Standards Toolkit.

Reading CDISC ODM XML Files: odm_read Macro
The current SAS Clinical Standards Toolkit release supports the reading of portions of an
odm.xml file. It supports the translation of only the metadata (<Study>) and clinical data
(<ClinicalData>) sections of the file into a SAS representation of the file content.

In order to read an odm.xml file, a specialized macro named odm_read is available in the
ODM 1.3.0 standards macro folder. (For SAS 9.2, this folder is located at <global
standards library directory>/standards/cdisc-odm-1.3.0-1.3/
macros.) This macro is referenced from the create_sasodm_fromxml.sas driver program
(described more fully below). There are no input parameters in the call to the odm_read
macro. File references and other metadata that are required by the macro are set as global
macro variable values. Currently, those global macro variable values are set through the
framework initialization properties and the CDISC ODM 1.3.0 initialization properties.
Throughout the processing of the odm_read macro, the Results data set contains all
framework and ODM 1.3.0 specific messages generated during run time.

Based on file references from the SASReferences data set, odm_read accesses the odm.xml
file.

The following is a partial listing of the sample odm.xml file.

<?xml version="1.0" encoding="ISO-8859-1"?>
<ODM 
  xmlns="http://www.cdisc.org/ns/odm/v1.3"
  FileOID="Study1234" 
  ODMVersion="1.3" 
  FileType="Snapshot" 
  CreationDateTime="2004-07-28T12:34:13-06:00" 
  SourceSystem="ss00"
  AsOfDateTime="2004-07-29T12:34:13-06:00"
  Granularity="SingleSite"
  Description="Study to determine existence of ischemic stroke"
  Archival="Yes"
  PriorFileOID="Study-4321"

166 Chapter 7 • XML-Based Standards



  Originator="SAS Institute"
  SourceSystemVersion="Version 0.0.0"
  Id="DSSignature123">
<Study OID="1234">
<GlobalVariables>
    <StudyName>1234</StudyName>
    <StudyDescription>1234 Data Definition</StudyDescription>
    <ProtocolName>1234</ProtocolName>
</GlobalVariables>
<BasicDefinitions>
    <MeasurementUnit Name="My Unit" OID="MU_0001">
       <Symbol>
         <TranslatedText xml:lang="enus">Hello there text</TranslatedText>
       </Symbol>
    </MeasurementUnit>
    <MeasurementUnit Name="My Other Unit" OID="MU_0002">
       <Symbol>
          <TranslatedText xml:lang="jpn">Bye there text</TranslatedText>
       </Symbol>
    </MeasurementUnit>
</BasicDefinitions>
<MetaDataVersion OID="CDISC.SDTM.3.1.0"
    Name="Study 1234, Data Definitions"
    Description="Study 1234, Data Definitions">
    <Include StudyOID="1234" 
      MetaDataVersionOID="MDV000">
    </Include>
    <Protocol>
      <Description>

After the odm_read macro confirms that the odm.xml file exists, a call is made to the SAS
DATA step component JavaObj. In SAS 9.1.3, you get a warning in the log that states that
JavaObj is experimental. JavaObj processing converts the odm.xml file into the cubeXML
file through transformations using XSL files and processes. The cubeXML file is created
in the Work library. The name of the cubeXML file is _cubnnnn.xml, where nnnn is a
randomly generated number. The cubeXML file is accessed using the SAS XML
LIBNAME engine and XMLMAP processing. A default XMLMAP file is stored in the
sample ODM 1.3.0 study folder hierarchy under /referencexml as odm.map. The
odm.map file is required to process the cubeXML file. If it does not exist, then the
odm_read macro attempts to create one using the ODM reference metadata.

The following is a partial listing of the odm.map file.

<?xml version="1.0" encoding="windows-1252"?>
<SXLEMAP version="1.2">

<TABLE name="Annotations">
   <TABLE-PATH syntax="XPath">/LIBRARY/Annotations</TABLE-PATH>
   <TABLE-DESCRIPTION>Annotations associated with data</TABLE-DESCRIPTION>

   <COLUMN name="ID">
     <PATH syntax="Xpath">/LIBRARY/Annotations/ID</PATH>
     <TYPE>character</TYPE>
     <DATATYPE>character</DATATYPE>
     <DESCRIPTION>Unique ID for a specific Annotation element</DESCRIPTION>
     <LENGTH>128</LENGTH>
   </COLUMN>

Reading XML Files 167



   <COLUMN name="SeqNum">
     <PATH syntax="Xpath">/LIBRARY/Annotations/SeqNum</PATH>
     <TYPE>numeric</TYPE>
     <DATATYPE>numeric</DATATYPE>
     <DESCRIPTION>Uniquely identifies the annotation within its parent 
             entity</DESCRIPTION>
     <LENGTH>8</LENGTH>
   </COLUMN>
   <COLUMN name="Comment">
     <PATH syntax="Xpath">/LIBRARY/Annotations/Comment</PATH>
     <TYPE>character</TYPE>
     <DATATYPE>character</DATATYPE>
     <DESCRIPTION>Free-text (uninterpreted) comment about clinical data</DESCRIPTION>
     <LENGTH>2000</LENGTH>
   </COLUMN>
   <COLUMN name="SponsorOrSite">
     <PATH syntax="Xpath">/LIBRARY/Annotations/SponsorOrSite</PATH>
     <TYPE>character</TYPE>
     <DATATYPE>character</DATATYPE>
     <DESCRIPTION>Comment source (Sponsor | Site)</DESCRIPTION>
     <LENGTH>2000</LENGTH>
   </COLUMN>
   <COLUMN name="FlagType">
     <PATH syntax="Xpath">/LIBRARY/Annotations/FlagType</PATH>
     <TYPE>character</TYPE>
     <DATATYPE>character</DATATYPE>
     <DESCRIPTION>Type of flag</DESCRIPTION>
     <LENGTH>2000</LENGTH>
   </COLUMN>
   <COLUMN name="FlagValue">

When the cubeXML is processed, the data sets (such as ItemDefs) that are included in the
SAS representation of the CDISC ODM model are derived. The final step for the
odm_read macro is the derivation of table and column metadata that describe the data sets
in the SAS representation of the odm.xml file. At this point, the odm_read macro is ready
to create the source_tables and source_columns data sets. The tables in the source_tables
data sets are created and copied to the output library as defined in the SASReferences data
set.

Sample Driver Program: create_sasodm_fromxml.sas

Overview
Each primary SAS Clinical Standards Toolkit task, such as reading CDISC ODM XML
files, is guided by a sample driver module that is provided by SAS. For reading ODM XML
files, this module is create_sasodm_fromxml.sas.

For SAS 9.1.3, this driver program is located at:

!sasroot/../SASClinicalStandardsToolkitODM130/1.3/
sample/cdisc-odm-1.3.0/programs/create_sasodm_fromxml.sas

For SAS 9.2, the driver program is located at:

!sasroot/../../SASClinicalStandardsToolkitODM130/1.3/
sample/cdisc-odm-1.3.0/programs/create_sasodm_fromxml.sas

The value for !sasroot is the location of your SAS installation directory.

168 Chapter 7 • XML-Based Standards



The SASReferences Data Set
As a part of each SAS Clinical Standards Toolkit process setup, a valid SASReferences
data set is required. It references the input files that are needed (such as the odm.xml file),
the librefs and filenames to use, and the names and locations of data sets to be created by
the process. It can be modified to point to study-specific files. For an explanation of the
SASReferences data set, see Chapter 5, “SASReferences File,” on page 69.

In the SASReferences data set, there are two input file references and four output references
that are key to the successful completion of the driver program. The following table lists
these files and data sets, and they are discussed in separate sections. In the sample
create_sasodm_fromxml.sas driver module, the following values are set for
&studyRootPath and &studyOutputPath and are specific to a SAS release.

SAS 9.1.3

&studyRootPath=!sasroot/../
SASClinicalStandardsToolkitODM130/1.3/sample/cdisc-odm-1.3.0

&studyOutputPath=!sasroot/../
SASClinicalStandardsToolkitODM130/1.3/sample/cdisc-odm-1.3.0

SAS 9.2

&studyRootPath=!sasroot/../../
SASClinicalStandardsToolkitODM130/1.3/sample/cdisc-odm-1.3.0

&studyOutputPath=!sasroot/../../
SASClinicalStandardsToolkitODM130/1.3/sample/cdisc-odm-1.3.0

Table 7.1 Key Components of the SASReferences Data Set

Input or Output Metadata Type
SAS LIBNAME
or Fileref to Use Reference Type Path Name of File

Input externalxml odmxml fileref &studyRootPath/
sourcexml

odm.xml

Input referencexml odmmap fileref &studyRootPath/
referencexml

odm.map

Output sourcedata srcdata LIBNAME &studyOutputPat
h/data

*.*

Output sourcemetadata srcmeta LIBNAME &studyOutputPat
h/metadata

Source_
tables.sas7bdat

Output sourcemetadata srcmeta LIBNAME &studyOutputPat
h/metadata

Source_
columns.sas7bdat

Output results results LIBNAME &studyOutputPat
h/results

Read_
results.sas7bdat

Process Inputs
The metadata type externalxml refers to the odm.xml file that is being read. The filename
odmxml is defined in the SASReferences data set. This filename is used in the submitted
SAS code when referring to the ODM file.

Reading XML Files 169



The metadata type referencexml refers to the SAS map file that is used to generate the SAS
data sets that represent the ODM file metadata and content. The filename odmmap is
defined in the SASReferences data set. This filename is used in the submitted SAS code
when referring to the SAS map file. If a path and filename for the map file is not specified,
then a temporary map file is created as part of the odm_read processing.

Process Outputs
When the driver program finishes running, the read_results.sas7bdat data set is created in
the Results library. This data set contains informational, warning, and any error messages
that were generated by the submitted driver program. The following display shows an
example of the contents of a Results data set that was built while reading the sample
odm.xml file that was provided by SAS.

Display 7.1 Example of a Partial Results Data Set Created by the create_sasodm_fromxml.sas Driver

The odm_read macro creates the source_tables and source_columns data sets in the Srcmeta
library. These data sets contain the table and column metadata for each of the SAS data
sets that is derived from the odm.xml file.

Display 7.2 Example of Partial Source_Tables Data Set Derived During odm_read

170 Chapter 7 • XML-Based Standards



Display 7.3 Example of Partial Source_Columns Data Set Derived During odm_read

The Srcdata library contains the SAS data sets that represent the ODM file metadata and
content. By default, odm_read creates 52 unique data sets in SAS Clinical Standards Toolkit
1.3. Some of these data sets might be empty if no associated content was derived from the
odm.xml file. There is a one-to-one correspondence between the tables listed in the Srcdata
library and the tables contained in the source_tables metadata file in the Srcmeta library.

Display 7.4 Example of Partial Srcdata Library Derived During odm_read

Reading XML Files 171



Reading CDISC CRT-DDS define.xml Files: crtdds_read Macro
The process for reading CDISC CRT-DDS define.xml files is similar to reading CDISC
ODM XML files. SAS Clinical Standards Toolkit 1.3 supports reading a define.xml file
and translating the file metadata into a SAS representation of the CDISC CRT-DDS model.
To read the define.xml file, a specialized macro named crtdds_read.sas is available in the
CRT-DDS 1.0 standards macro folder, located at <global standards library
directory>/standards/cdisc-crtdds-1.0-1.3/macros. This macro is
referenced from the create_sascrtdds_fromxml.sas driver program. There are no input
parameters in the call to the crtdds_read macro. File references and other metadata that are
required by the macro are set as global macro variables. Currently, their values are set
through the framework initialization properties and the CDISC CRT-DDS 1.0 initialization
properties processes. Throughout processing of the crtdds_read macro, the Results data set
contains all framework and CRT-DDS 1.0 specific messages generated during run time.

Based on file references retrieved from the SASReferences data set, crtdds_read accesses
the define.xml file.

The following is a partial listing of a define.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="define1-0-0.xsl"?>

<!--Produced from SAS data using the SAS Clinical Toolkit.-->
<ODM xmlns="http://www.cdisc.org/ns/odm/v1.2" 
xmlns:def="http://www.cdisc.org/ns/def/v1.0" 
xmlns:xlink="http://www.w3.org/1999/xlink" FileOID="1" CreationDateTime=
"2010-10-07T11:41:05-04:00" AsOfDateTime="2010-08-05T09:35:59" 
Description="define1" FileType="Snapshot" Id="define1" ODMVersion="1.0" 
Originator="SAS Institute">
   <Study OID="1">
        <GlobalVariables>
            <StudyName>study1</StudyName>
            <StudyDescription>first study</StudyDescription>
            <ProtocolName>Protocol abc</ProtocolName>
        </GlobalVariables>
        <MetaDataVersion OID="1" Name="CDISC-SDTM 3.1.2" 
Description="CDISC-SDTM 3.1.2" def:DefineVersion="1.2" 
def:StandardName="CDISC-SDTM" def:StandardVersion="3.1.2">
            <ItemGroupDef OID="AE1" Name="AE" Repeating="Yes" IsReferenceData="No" 
SASDatasetName="AE" Domain="AE" Purpose="Tabulation" def:Label="Adverse Events" 
def:Class="Events" def:Structure="One record per adverse event per subject" 
def:DomainKeys="STUDYID USUBJID AEDECOD AESTDTC" def:ArchiveLocationID="AE1">
<ItemRef ItemOID="COL1" Mandatory="Yes" OrderNumber="1" 
         KeySequence="1" Role="Identifier"/>
<ItemRef ItemOID="COL2" Mandatory="Yes" OrderNumber="2" 
         Role="Identifier"/>
<ItemRef ItemOID="COL3" Mandatory="Yes" OrderNumber="3" 
         KeySequence="2" Role="Identifier"/>
<ItemRef ItemOID="COL4" Mandatory="Yes" OrderNumber="4" 
         Role="Identifier"/>
<ItemRef ItemOID="COL5" Mandatory="No" OrderNumber="5" 
         Role="Identifier"/>
<ItemRef ItemOID="COL6" Mandatory="No" OrderNumber="6" 
         Role="Identifier"/>
<ItemRef ItemOID="COL7" Mandatory="No" OrderNumber="7" 

172 Chapter 7 • XML-Based Standards



         Role="Identifier"/>
<ItemRef ItemOID="COL8" Mandatory="Yes" OrderNumber="8" 
         Role="Topic"/>
<ItemRef ItemOID="COL9" Mandatory="No" OrderNumber="9" 
         Role="SynonymQualifier"/>
<ItemRef ItemOID="COL10" Mandatory="Yes" OrderNumber="10" 
         KeySequence="3" Role="SynonymQualifier"/>
<ItemRef ItemOID="COL11" Mandatory="No" OrderNumber="11" 
         Role="GroupingQualifier"/>
<ItemRef ItemOID="COL12" Mandatory="No" OrderNumber="12" 
         Role="GroupingQualifier"/>
<ItemRef ItemOID="COL13" Mandatory="No" OrderNumber="13" 
         Role="RecordQualifier"/>
<ItemRef ItemOID="COL14" Mandatory="No" OrderNumber="14" 
         Role="RecordQualifier"/>
<ItemRef ItemOID="COL15" Mandatory="No" OrderNumber="15" 
         Role="RecordQualifier"/>
<ItemRef ItemOID="COL16" Mandatory="No" OrderNumber="16" 
         Role="RecordQualifier"/>
<ItemRef ItemOID="COL17" Mandatory="No" OrderNumber="17" 
         Role="RecordQualifier"/>
<ItemRef ItemOID="COL18" Mandatory="No" OrderNumber="18" 
         Role="RecordQualifier"/>
<ItemRef ItemOID="COL19" Mandatory="No" OrderNumber="19" 
         Role="RecordQualifier"/>
<ItemRef ItemOID="COL20" Mandatory="No" OrderNumber="20" 
         Role="RecordQualifier"/>

After the crtdds_read macro confirms that the define.xml file exists, a call is made to the
SAS data step component JavaObj. In SAS 9.1.3, you get a warning in the log that states
that JavaObj is experimental. The JavaObj processing converts the define.xml file into the
cubeXML file through transformations using XSL files and processes. The cubeXML file
is created in the Work library. The name of the cubeXML file is _cubnnnn.xml , where
nnnn is a randomly generated number. The cubeXML file is accessed using the SAS XML
LIBNAME engine and XMLMAP processing. A default XMLMAP file is stored in the
sample CRT-DDS 1.0 study folder hierarchy under /referencexml as define.map. The
define.map file must exist to process the cubeXML file. If it does not exist, then the
crtdds_read attempts to create one using the CRT-DDS reference metadata.

The following is a partial listing of the define.map file.

<?xml version="1.0" encoding="windows-1252"?>
<SXLEMAP version="1.2">

<TABLE name="AnnotatedCRFs">
   <TABLE-PATH syntax="XPath">/LIBRARY/AnnotatedCRFs</TABLE-PATH>
   <TABLE-DESCRIPTION></TABLE-DESCRIPTION>

   <COLUMN name="DocumentRef">
     <PATH syntax="Xpath">/LIBRARY/AnnotatedCRFs/DocumentRef</PATH>
     <TYPE>character</TYPE>
     <DATATYPE>character</DATATYPE>
     <DESCRIPTION></DESCRIPTION>
     <LENGTH>2000</LENGTH>
   </COLUMN>
   <COLUMN name="leafID">
     <PATH syntax="Xpath">/LIBRARY/AnnotatedCRFs/leafID</PATH>

Reading XML Files 173



     <TYPE>character</TYPE>
     <DATATYPE>character</DATATYPE>
     <DESCRIPTION></DESCRIPTION>
     <LENGTH>128</LENGTH>
   </COLUMN>
   <COLUMN name="FK_MetaDataVersion">
     <PATH syntax="Xpath">/LIBRARY/AnnotatedCRFs/FK_MetaDataVersion</PATH>
     <TYPE>character</TYPE>
     <DATATYPE>character</DATATYPE>
     <DESCRIPTION></DESCRIPTION>
     <LENGTH>128</LENGTH>
   </COLUMN>

</TABLE>

Processing of the cubeXML file results in the derivation of the data sets (such as ItemDefs)
currently included in the SAS representation of the CDISC CRT-DDS model.

The final step in crtdds_read processing is the derivation of table and column metadata that
describe the data sets in the SAS representation of the define.xml file. At this point, the
crtdds_read macro is ready to create the source_tables and source_columns data sets. The
tables in the source_tables data sets are created and copied to the output library as defined
in the SASReferences data set.

Sample Driver Program: create_sascrtdds_fromxml.sas

Overview
Each primary SAS Clinical Standards Toolkit task, such as reading CDISC CRT-DDS
XML files, is guided by a sample driver program that is provided by SAS. The
create_sascrtdds_fromxml.sas driver program is used to read define.xml files.

For SAS 9.1.3, the driver program is located at:

!sasroot/../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/programs/create_sascrtdds_fromxml.sas

For SAS 9.2, the driver program is located at:

!sasroot/../../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/programs/create_sascrtdds_fromxml.sas

The value for !sasroot is the location of your SAS installation directory.

The SASReferences Data Set
As a part of each SAS Clinical Standards Toolkit process setup, a valid SASReferences
data set is required. It can be modified to point to study-specific files. For an explanation
of the SASReferences data set, see Chapter 5, “SASReferences File,” on page 69.

In the SASReferences data set, there are two input file references and four output references
that are key to successful completion of the driver program. The following table lists these
files and data sets, and they are discussed in separate sections. In the sample
create_sascrtdds_fromxml.sas driver program, the following values are set for
&studyRootPath and &studyOutputPath and are specific to a SAS release.

SAS 9.1.3

&studyRootPath=!sasroot/../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

174 Chapter 7 • XML-Based Standards



&studyOutputPath=!sasroot/../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

SAS 9.2

&studyRootPath=!sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

&studyOutputPath=!sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

Table 7.2 Key Components of the SASReferences Data Set

Input or Output Metadata Type
SAS LIBNAME
or Fileref to Use Reference Type Path Name of File

Input externalxml crtxml fileref &studyRootPath/
sourcexml

define.xml

Input referencexml crtmap fileref &studyRootPath/
referencexml

define.map

Output sourcedata srcdata LIBNAME &studyOutputPat
h/data

*.*

Output sourcemetadata srcmeta LIBNAME &studyOutputPat
h/metadata

Source_
tables.sas7bdat

Output sourcemetadata srcmeta LIBNAME &studyOutputPat
h/metadata

Source_
columns.sas7bdat

Output results results LIBNAME &studyOutputPat
h/results

Read_
results.sas7bdat

Process Inputs
The metadata type externalxml refers to the define.xml file that is being read. The filename
crtxml is defined in the SASReferences data set. This filename is used in the submitted
SAS code when referring to the define.xml file.

The metadata type referencexml refers to the SAS map file that is used to generate the SAS
data sets that represent the define.xml file metadata and content. The filename crtmap is
defined in the SASReferences data set that is used in the submitted SAS code when referring
to the SAS map file. If a path and filename for the map file is not specified, then a temporary
map file is created as part of the crtdds_read processing.

Process Outputs
The sourcedata type is the library where the metadata files are created. These metadata files
are the data sets that comprise the CRT-DDS information. In the SAS Clinical Standards
Toolkit sample study, these data sets are written to the !sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0/deriveddata directory. This location is represented in the driver
program by the Srcdata library name.

Reading XML Files 175



The sourcemetadata type refers to two data sets that are created from the cubeXML file,
source_tables and source_columns. Both data sets are stored in the same library. The
source_tables data set contains metadata about each table that is derived from the CRT-
DDS process. The source_columns data set contains similar metadata, but it is at the column
level. In the SAS Clinical Standards Toolkit sample study, this metadata is written to
the !sasroot/../../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/derivedmetadata directory. This location is
represented in the driver program by the Srcmeta library name.

The results type refers to the Results data set that contains information from running the
CRT-DDS process. In the SAS Clinical Standards Toolkit sample study, this information
is written to the !sasroot/../../SASClinicalStandardsToolkit
CRTDDS10/1.3/sample/cdisc-crtdds-1.0/results directory. This location is
represented in the driver program by the Results library name.

Process Results
When the driver program finishes running, the read_results.sas7bdat data set is created in
the Results library. This data set contains informational, warning, and any error messages
that were generated by the submitted driver program. The following display shows an
example of the contents of a Results data set in the CRT-DDS sample study.

Display 7.5 Example of a Partial Results Data Set Created by the create_sascrtdds_fromxml.sas Driver

The crtdds_read macro creates the source_tables and source_columns data sets in the
Srcmeta library. These data sets contain the table and column metadata for the SAS
representation of CRT-DDS that is derived from the define.xml file. The Srcmeta library
corresponds to the location specified in SASReferences (&studyOutputPath/
derivedmetadata).

176 Chapter 7 • XML-Based Standards



Display 7.6 Example of Partial Source_Tables Data Set Derived During crtdds_read

Display 7.7 Example of Partial Source_Columns Data Set Derived During crtdds_read

The Srcdata library contains the driver-generated tables that comprise the SAS
representation of the CRT-DDS model. There is a one-to-one correspondence between the
tables listed in the Srcdata library and the tables contained in the source_tables metadata
file in the Srcmeta library. The Srcdata library corresponds to the location specified in
SASReferences ( &studyOutputPath/deriveddata).

Reading XML Files 177



Display 7.8 Example of Partial Srcdata Library Derived During crtdds_read

When running the driver programs against non-sample data, you need to populate the
SASReferences data set in the driver program with the proper values. For an explanation
of the SASReferences data set, see Chapter 5, “SASReferences File,” on page 69.

Writing XML Files

Overview
Support of CDISC XML-based standards such as CDISC CRT-DDS (define.xml) and
CDISC ODM includes the ability to render these files in SAS data set format and the ability
to create model-specific XML files from a SAS data set representation of those standards.

In SAS Clinical Standards Toolkit 1.3, you can create a CDISC CRT-DDS 1.0 define.xml
file that references a CDISC SDTM 3.1.1 or 3.1.2 study. CDISC ODM write capabilities
are under development. (For the latest updates, see the SAS Support Web site for SAS
Clinical Standards Toolkit at http://support.sas.com/rnd/base/cdisc/cst/
index.html).

The next section outlines the basic workflow for the creation of model-specific XML files.

Basic Workflow
The following is the basic workflow for writing XML files:

178 Chapter 7 • XML-Based Standards



1. Build the SAS representation of a given XML-based standard by referencing an existing
set of data and metadata about a clinical study, or by creating data and metadata about
a new clinical study.

2. Validate the SAS representation of the XML-based standard (to include foreign key
relationships, value conformance to a set of expected values, and so on). This step is
optional.

3. Create a standardized intermediate cubeXML file using the data and metadata contained
in the SAS representation of the standard.

4. (Build and) reference a set of valid XSL style sheets for each target data set (such as
ItemDefs.xsl).

5. Use the SAS DATA step component JavaObj to read the cubeXML file using the XSL
style sheets to create the target standard-specific XML file.

6. Validate the structure and syntax of the XML file that was created. This step is optional.

Creating the CDISC CRT-DDS 1.0 define.xml File
There are four key macros that are provided with the SAS Clinical Standards Toolkit that
support creation of the define.xml file. The four macros are listed in the order in which
they are executed:

• The crtdds_sdtm311todefine10.sas macro creates the 39 tables for the SAS
representation of the CRT-DDS files from SDTM metadata. This macro, using SDTM
table and column metadata as its source, populates a subset of 12 CRT-DDS data sets.
Although the macro name implies that it is specific to SDTM 3.1.1, it operates on both
CDISC SDTM 3.1.1 and 3.1.2 domains.

• The crtdds_validate.sas macro submits a set of validation checks based on what is
defined in the Validation Control data set to validate the referenced SAS representation
of the CRT-DDS files.

• The crtdds_write.sas macro creates the define.xml file from the SAS representation of
the CRT-DDS files.

• The crtdds_xmlvalidate.sas macro validates that the XML file is syntactically correct.
This macro is important if you customize the define.xml file outside of the workflow.
For example, if you edit the define.xml file to add links for annotated CRF pages, this
macro validates the syntax.

These macros are called by driver programs that are responsible for properly setting up
each SAS Clinical Standards Toolkit process to perform a specific SAS Clinical Standards
Toolkit task. Three sample driver modules are provided with the SAS Clinical Standards
Toolkit CDISC CRT-DDS standard. The following lists the purpose of each of these
drivers:

1. The create_crtdds10_from_sdtm311.sas driver program sets up the required metadata
and SASReferences data set for the sample study. It runs the
crtdds_sdtm311todefine10.sas macro. It creates the SAS representation of the CRT-
DDS define data sets from the sample study SDTM data sets.

2. The validate_crtdds_data.sas driver program validates the SAS representation of the
CRT-DDS define data sets based on the selected CRT-DDS validation checks. This
driver program can be run multiple times until data validation has been reconciled.

3. The create_crtdds_define.sas driver program creates the define.xml file. It runs the
crtdds_write and crtdds_xmlvalidate macros. This driver program creates and validates
the XML syntax for the define.xml file.

Writing XML Files 179



These three driver programs are examples that are provided with the SAS Clinical
Standards Toolkit. You can use these driver programs or create your own. The names of
these driver programs are not important. However, the content is important and
demonstrates how the various SAS Clinical Standards Toolkit framework macros are used
to generate the required metadata files.

Sample Driver Program: create_crtdds10_from_sdtm311.sas

Overview
The create_crtdds10_from_sdtm311.sas driver program sets up the required environment
variables and library references to initiate the crtdds_sdtm311todefine10.sas macro. This
macro extracts data from the SDTM 3.1.1 or 3.1.2 metadata files. (For more information
about the source_tables and source_columns data sets, see “Source Metadata” on page
90.) Depending on the available source information, the macro attempts to convert the
information into the 39 tables that represent the SAS interpretation of the CDISC CRT-
DDS 1.0 model. All 39 data sets are created, but only those data sets with the available data
are populated. The other tables contain zero observations.

The following parameters must be set by the user before submitting the macro:

Table 7.3 Parameters for the crtdds_sdtm311todefine10.sas Macro

Parameter Required Description

_cstOutLib Yes Identifies the library reference
(LIBNAME) where the tables
are created.

_cstSourceTables Yes A data set that contains the
SDTM metadata for the
domains to be included in the
CRT-DDS file.

_cstSourceColumns Yes A data set that contains the
SDTM metadata for the
domain columns to be
included in the CRT-DDS file.

_cstSourceStudy Yes A data set that contains the
SDTM metadata for the
studies to be included in the
CRT-DDS file.

The following is an example of a call to the crtdds_sdtm311todefine10.sas macro:

%crtdds_sdtm311todefine10(
_cstOutLib=srcdata,
_cstSourceTables=sampdata.source_tables,
_cstSourceColumns=sampdata.source_columns,
_cstSourceStudy=sampdata.source_study
);

In the example, the crtdds_sdtm311todefine10 macro sets _cstOutLib to srcdata. All
of the CRT-DDS-defined tables are written to the SAS Srcdata library. The
_cstSourceTables parameter accesses the source_tables data set that exists in the
Sampdata library (sampdata.source_tables). The _cstSourceColumns

180 Chapter 7 • XML-Based Standards



parameter accesses the source_columns data set that exists in the Sampdata library
(sampdata.source_columns). The _cstSourceStudy parameter accesses the
source_study data set that exists in the sampdata library (sampdata.source_study).

The create_crtdds10_from_sdtm311.sas driver program is provided with SAS, and it is
ready to run on any of the SDTM sample studies. Although the program name implies that
it is specific to SDTM 3.1.1, it operates on both CDISC SDTM 3.1.1 and 3.1.2 domains.
The driver program can be run interactively or in batch. To run the program interactively,
start a SAS session, and load the driver program into the SAS editor.

For SAS 9.1.3, the driver program is located at:

!sasroot/../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/programs/create_crtdds10_from_
sdtm311.sas

For SAS 9.2, the driver program is located at:

!sasroot/../../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/programs/create_crtdds10_from_
sdtm311.sas

The value for !sasroot is the location of your SAS installation directory.

The SASReferences Data Set
As a part of each SAS Clinical Standards Toolkit process setup, a valid SASReferences
data set is required. It can be modified to point to study-specific files. For an explanation
of the SASReferences data set, see Chapter 5, “SASReferences File,” on page 69.

In the SASReferences data set, there are two input file references and one output reference
that are key to successful completion of the create_crtdds10_from_sdtm311.sas driver
program. The following table lists these files and data sets, and they are discussed in
separate sections. In the sample create_crtdds10_from_sdtm311.sas driver program, the
following values are set for &studyRootPath and &studyOutputPath and are specific to a
SAS release.

SAS 9.1.3

&studyRootPath=!sasroot/../
SASClinicalStandardsToolkitSDTM312/1.3/sample/cdisc-
sdtm-3.1.2/sascstdemodata

&studyOutputPath=!sasroot/../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/

SAS 9.2

&studyRootPath=!sasroot/../../SASClinicalStandardsToolkit
SDTM312/1.3/sample/cdisc-sdtm-3.1.2/sascstdemodata

&studyOutputPath=!sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

Table 7.4 Key Components of the SASReferences Data Set

Input or Output Metadata Type
SAS LIBNAME
or Fileref to Use Reference Type Path Name of File

Input sourcemetadata sampdata LIBNAME &studyRootPath/
metadata

source_
tables.sas7bdat

Writing XML Files 181



Input or Output Metadata Type
SAS LIBNAME
or Fileref to Use Reference Type Path Name of File

Input sourcemetadata sampdata LIBNAME &studyRootPath/
metadata

source_
columns.sas7bdat

Output sourcedata srcdata LIBNAME &studyOutputPat
h/data

Process Inputs
The sourcemetadata type refers to two data sets that contain the SDTM domain metadata,
source_tables and source_columns. Both data sets are stored in the same library. Because
the sample create_crtdds10_from_sdtm311.sas driver program provided with the SAS
Clinical Standards Toolkit references a source CDISC SDTM 3.1.2 study, the
source_tables data set contains SDTM 3.1.2 metadata about each standard domain defined
in the CDISC-SDTM 3.1.2 Implementation Guide and includes any customizations that you
have added. The source_columns type contains similar metadata, but it is at the column
level. This source metadata is read from the !sasroot/../../
SASClinicalStandardsToolkitSDTM312/1.3/sample/cdisc-
sdtm-3.1.2/sascstdemodata/metadata directory. This location is represented in
the driver program by the Srcmeta library name.

A source study data set (source_study.sas7bdat) is required by this macro. The following
variables are required in this data set:

Table 7.5 Variables Required in the Source Study Data Set (source_study.sas7bdat)

Variable* Required Description

StudyName Yes Name of the study. This value
is used to populate the
srcdata.study.studyname
column.

DefineDocumentName Yes Name of the define document
being created. This value is
used to populate the
srcdata.definedocument.descr
iption and
srcdata.definedocument.id
columns.

SASref Yes Reference that ties the study
name to the corresponding
domains that are associated
with this study in the
source_tables and
source_columns data sets.

ProtocolName Yes Name of the protocol for the
study. This value is used to
populate the
srcdata.study.protocolname
column.

182 Chapter 7 • XML-Based Standards



Variable* Required Description

StudyDescription Yes Description of the study. This
value is used to populate the
srcdata.study.studydescriptio
n column.

Note: You should not use
commas, semicolons, or
quotation marks in the
description.

*All variables are required to be non-blank.

Multiple studies can be referenced in the source study data set, as well as
source_columns and source_tables, by using different SASref values to link them across
the tables.

Process Outputs
The sourcedata type is the library where the metadata files are created. These metadata files
are the data sets that constitute the SAS representation of the CDISC CRT-DDS 1.0
standard. The create_crtdds10_from_sdtm311.sas driver program creates 39 data sets.
Most of these data sets have zero observations because there is no default SDTM metadata
source. In the SAS Clinical Standards Toolkit sample study, these data sets are written to
the !sasroot/../../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/data directory. This location is represented in the driver
program by the srcdata library name.

Process Results
When the driver program finishes running, the work._cstresults.sas7bdat data set is created.
This data set contains informational, warning, and any error messages that were generated
by the submitted driver program. Because the create_crtdds10_from_sdtm311.sas sample
SASreferences data set does not include a results record, this example does not save the
process results data set after the SAS session ends.

Display 7.9 Example of a Partial Results Data Set from CRT-DDS Sample Study

Sample Driver Program: create_crtdds_define.sas

Overview
The create_crtdds_define.sas driver program sets up the required environment variables
and library references to initiate the crtdds_write.sas macro. This macro reads the 39 data

Writing XML Files 183



sets that comprise the SAS representation of the CDISC CRT-DDS 1.0 model, and converts
that information to the required define.xml structure. If source metadata or data are missing,
then empty elements and attributes are not created in the define.xml file. The inputs and
outputs are specified in the SASRferences data set. The following table lists the optional
parameters that can be set by the user when submitting the macro:

Table 7.6 Parameters for the crtdds_write.sas Macro

Parameter Required Description

_cstCreateDisplayStyleSheet Optional Identifies whether the macro
should create a style sheet in
the same directory as the
output XML file. If the value
is 1, then the macro looks in
the provided SASReferences
file for a record with a type and
subtype of referencexml and
stylesheet and uses that file. If
the value is 0, then the macro
does not create the XSL, even
if one is specified in the
SASReferences file. The
default setting is 1.

_cstOutputEncoding Optional XML encoding to use for the
CRT-DDS file that is created.
By default, UTF-8 is used.

_cstHeaderComment Optional A short comment is added at
the top of the CRT-DDS file.
If no comment is provided,
then a default comment is
used. The default comment
notes that the file was
produced by SAS Clinical
Standards Toolkit.

_cstResultsOverrideDS Optional Provides the opportunity to
designate
[LIBNAME.]member as the
name of the Results data set. If
this parameter is omitted
(default setting), then the
Results data set specified by
the &_cstResultsDS global
macro variable is used.

_cstLogLevel Optional Identifies the level of error
reporting. Valid values are
Info, Warning, Error, and
Fatal Error. The default setting
is Info.

The following is an example of a call to the crtdds_write.sas macro:

%crtdds_write(_cstCreateDisplayStyleSheet=1, _cstOutputEncoding=UTF-16,
             _cstResultsOverrideDS=&_cstResultsDS);

184 Chapter 7 • XML-Based Standards



In this example, a default style sheet is generated in the same directory as the XML output
based on the information in the SASReferences data set. XML encoding is set to UTF-16,
and process results are written to the default &_cstResultsDS data set.

The following is the call to the macro from the sample create_crtdds_define.sas driver
program:

%crtdds_write(_cstCreateDisplayStyleSheet=1);

The call creates a display style sheet, and uses default values for the parameters.

The create_crtdds_define.sas driver program is ready to run on any of the CDISC SDTM
sample studies. The driver program can be run interactively or in batch.

For SAS 9.1.3, the driver program is located at:

!sasroot/../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/programs/create_crtdds_define.sas

For SAS 9.2, the driver program is located at:

!sasroot/../../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/programs/create_crtdds_define.sas

The value for !sasroot is the location of your SAS installation directory.

Multiple tasks can be executed in any SAS Clinical Standards Toolkit driver program. The
create_crtdds_define.sas driver program calls both the crtdds_write macro to create the
define.xml file, and the crtdds_xmlvalidate macro to validate the syntax of the generated
define.xml file. For more information about the crtdds_xmlvalidate macro, see “Validation
of XML-Based Standards” on page 187.

The SASReferences Data Set
As a part of each SAS Clinical Standards Toolkit process setup, a valid SASReferences
data set is required. It can be modified to point to study-specific files. For an explanation
of the SASReferences data set, see Chapter 5, “SASReferences File,” on page 69.

In the SASReferences data set, there are two input file references and three output
references that are key to successful completion of the create_crtdds_define.sas driver
program. The following table lists these files and data sets, and they are discussed in
separate sections. In the sample create_crtdds_define.sas driver program, the following
values are set for &studyRootPath and &studyOutputPath and are specific to a SAS release.

SAS 9.1.3

&studyRootPath=!sasroot/../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

&studyOutputPath=!sasroot/../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

SAS 9.2

&studyRootPath=!sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

&studyOutputPath=!sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

Writing XML Files 185



Table 7.7 Key Components of the SASReferences Data Set

Input or Output Metadata Type
LIBNAME or
Fileref to Use Reference Type Path Name of File

Input control control LIBNAME &workpath sasreferences.sas
7bdat

Input sourcedata srcdata LIBNAME &studyRootPath/
data

Input or output referencexml xslt01 filename

Output results results LIBNAME &studyOutputPat
h/results

write_
results.sas7bdat

Output externalxml extxml filename &studyOutputPat
h/sourcexml

define.xml

Process Inputs
Use of the control library name that points to the path in the &workpath macro variable
illustrates a technique of documenting the derivation of the SASReferences data set in the
SAS Work library. The driver program initiates the macro variable &workpath with the
following SAS code:

%let workPath=%sysfunc(pathname(work));

The sourcedata type is the library that contains the 39 data sets that might have been
populated by the create_crtdds10_from_sdtm311.sas driver program. These metadata files
are the data sets that constitute the SAS representation of the CDISC CRT-DDS 1.0
standard. In the SAS Clinical Standards Toolkit sample study, these data sets are read from
the !sasroot/../../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/data directory. This location is represented in the driver
program by the Srcdata library name.

Process Outputs
The externalxml type refers to the define.xml file. This file is accessed in the driver program
from the extxml filename statement, and is written to the !sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0/sourcexml directory.

The referencexml type can serve as either an input or output file reference. Because the
path and filename are not provided, the crtdds_write macro interprets the
_cstCreateDisplayStyleSheet=1 parameter to use the default style sheet that is provided by
SAS Clinical Standards Toolkit in the Global Library. Had a path and filename been
provided, the referencexml type would serve as an output file reference for the
crtdds_write macro to copy the default style sheet from the Global Library to the path and
filename that were specified. The results type refers to the write_results data set that
documents the create define process results. In the SAS Clinical Standards Toolkit CDISC
CRT-DDS folder hierarchy, this information is written to the !sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0/results directory.

186 Chapter 7 • XML-Based Standards



Process Results
Inclusion of the results record (row) in the SASReferences data set signals that the process
results are to be copied to a write_results data set located in the specified SAS library.

Display 7.10 Example of a Partial Results Data Set from the CRT-DDS Sample Study

Validation of XML-Based Standards

XML Validation
When validating XML-based standards (such as CDISC ODM and CDISC CRT-DDS),
SAS Clinical Standards Toolkit offers two complementary methodologies. The first
methodology is described in Chapter 6, “Validation,” on page 83. It relies on the definition
of a master set of validation checks that are specific to the table and column metadata that
define a set of data, and checks that are specific to the data itself. This method uses SAS
files and SAS code to validate the SAS representation of the XML-based standard. Example
checks include the assessment of foreign key relationships across data sets and value
conformance to a set of expected values. The second methodology involves verification
that an XML file is valid structurally and syntactically according to the XML schema for
that standard.

SAS Clinical Standards Toolkit 1.3 provides both methodologies to support the validation
of CDISC CRT-DDS 1.0 files. CDISC ODM validation capabilities are under development.
(See the SAS Customer Support Web site for SAS Clinical Standards Toolkit at http://
support.sas.com/rnd/base/cdisc/cst/index.html for the latest updates.)

Validating CDISC CRT-DDS 1.0 Files

The crtdds_xmlvalidate Macro
The crtdds_xmlvalidate.sas macro validates the structure and syntax of the define.xml file
against the XML schema for the ODM standard. It can be run at any time. The SAS Clinical
Standards Toolkit includes a call to the crtdds_xmlvalidate.sas macro immediately
following the call to the crtdds_write.sas macro as the last step of the
create_crtdds_define.sas sample driver program. If you customize the define.xml file after
it is generated, then this macro can be used to validate the changes.

The following is an example of a call to the crtdds_xmlvalidate.sas macro:

%crtdds_xmlvalidate(_cstLogLevel=info,_cstResultsOverrideDS=work.xmlvalidate);

In this example, the %crtdds_xmlvalidate macro is being submitted with a log level of Info.
The Results data set is named XMLVALIDATE and resides in the Work library.

Validation of XML-Based Standards 187



Table 7.8 Parameters for the crtdds_xmlvalidate.sas Macro

Parameter Required Description

_cstLogLevel Yes Identifies the log level. Valid
values are Info, Warning,
Error, and Fatal Error. The
default value is Info.

_cstResultsOverrideDS Yes Provides the opportunity to
designate
[LIBNAME.]member as the
name of the Results data set. If
this parameter is omitted
(default setting), then the
Results data set specified by
the &_cstResultsDS global
macro variable is used.

XML schema validation results are logged using four log level settings. These log levels
refer to the XML-generated log, not the log that is generated by SAS.

Table 7.9 Log Levels for the crtdds_xmlvalidate.sas Macro

Log Level Description

Info Informational messages such as the system
properties of the current Java environment, and
progress messages. This is the default value.

Warning Messages that indicate that there might be an
issue with the CRT-DDS document or with the
execution of the validation process.

Error Messages that indicate that something in the
define.xml document is invalid with respect to
the normal XML schema for CRT-DDS. Or, a
non-fatal error has occurred during processing.

Fatal Error Messages that indicate that the XML document
could not be processed at all. There are many
causes, including, file system access errors,
incorrect file paths, and malformed XML.

Each message that is generated during XML validation is associated with one of these
levels. The level that you choose determines what other messages are generated. For
example, if you choose warning, then all Warning messages and anything more severe,
such as Error and Fatal Error messages, are generated. If you choose error, then only
Error and Fatal Error messages are generated.

The following is an example of a call to the crtdds_xmlvalidate.sas macro:

%crtdds_xmlvalidate(_cstLogLevel=info,
                                 _cstResultsOverrideDS=work.xmlvalidate);

188 Chapter 7 • XML-Based Standards



Validation of the SAS Representation: crtdds_validate Macro
The crtdds_validate.sas macro supports the first XML validation methodology outlined
above. This method is based on SAS and validates the SAS representation of the XML-
based standard.

In SAS Clinical Standards Toolkit, CDISC CRT-DDS validation uses the same types of
metadata and the same workflow process that is common to validation of all data standards.
SAS provides a set of validation checks for CDISC CRT-DDS that are designed to verify
the metadata definitions and values of the 39 data sets that comprise the SAS representation
of the CRT-DDS model. These checks were created by SAS. For more information about
these checks, see Chapter 6, “Validation,” on page 83 and Appendix A5, “CDISC CRT-
DDS 1.0 Validation Checks,” on page 335. Metadata about each check is provided in the
Validation Master data set which can be found in <global standards library
directory>/standards/cdisc-crtdds-1.0-1.3/validation/control.

The crtdds_validate.sas macro controls the validation workflow for CRT-DDS. As each
check is processed from the run-time validation check data set, the check determines the
source of the table and column metadata to use. The reference_tables and
reference_columns data sets contain the metadata for the 39 data sets that comprise the
SAS representation for CDISC CRT-DDS. Unless you make customizations or run-time
modifications, the source metadata source_tables and source_columns data sets contain the
same content as the reference metatadata reference_tables and reference_columns data sets.

If all 39 CRT-DDS tables contribute information to the define.xml file, then the validation
process can run directly against the reference tables and columns data sets. In this case, the
Use source data flag in the validation check data set needs to be set to N. However, most
users will run validation against a subset of the 39 tables. In this case, a source_tables data
set that contains the subset needs to be created from the reference_tables data set. And, a
corresponding source_columns data set needs to be created from the reference_columns
data set. The run-time validation check data set can contain all of the checks, and Use
source data can be left set to Y, which is the default value.

There are no parameters for the crtdds_validate macro.

Sample Driver Program: validate_crtdds_data.sas
The validate_crtdds_data.sas driver program sets up the required environment variables
and library references before a call is made to the crtdds_validate.sas macro.

For SAS 9.1.3, the driver program is located at:

!sasroot/../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/programs/validate_crtdds_data.sas

For SAS 9.2, the driver program is located at:

!sasroot/../../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/programs/validate_crtdds_data.sas

The value for !sasroot is the location of your SAS installation directory.

The SASReferences Data Set
As a part of each SAS Clinical Standards Toolkit process setup, a valid SASReferences
data set is required. It can be modified to point to study-specific files. For an explanation
of the SASReferences data set, see Chapter 5, “SASReferences File,” on page 69.

In the SASReferences data set, there are four input file references, one input library
reference and, and one output file reference that are key to successful completion of the
validation process. The following table lists these libraries and data sets, and they are
discussed in separate sections. In the sample validate_crtdds_data.sas driver program, the

Validation of XML-Based Standards 189



following values are set for &studyRootPath and &studyOutputPath and are specific to a
SAS release.

Note: The &studyRootPath and &studyOutputPath paths are the same for this driver. Two
macro variables have been retained to maintain consistency across SAS Clinical
Standards Toolkit driver programs.

SAS 9.1.3

&studyRootPath=!sasroot/../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

&studyOutputPath=!sasroot/../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

SAS 9.2

&studyRootPath=!sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

&studyOutputPath=!sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0

Table 7.10 Key Components of the SASReferences Data Set

Input or Output Metadata Type
LIBNAME or
Fileref to Use Reference Type Path Name of File

Input control cntl_s LIBNAME &workpath sasreferences.sas
7bdat

Input control cntl_v LIBNAME &studyRootPath/
control

validation_
control.sas7bdat

Input sourcemetadata srcmeta LIBNAME &studyRootPath/
metadata

source_
tables.sas7bdat

Input sourcemetadata srcmeta LIBNAME &studyRootPath/
metadata

source_
columns.sas7bdat

Input sourcedata srcdata LIBNAME &studyRootPath/
data

Output results results LIBNAME &studyOutputPat
h/results

validation_
results.sas7bdat

Process Inputs
The use of the cntl_s LIBNAME that points to the &workpath path illustrates a technique
of documenting the derivation of the SASreferences data set in the SAS Work library. The
driver program initiates the macro variable &workPath with the following statement:

%let workPath=%sysfunc(pathname(work));

190 Chapter 7 • XML-Based Standards



In this case, the cntl_s LIBNAME points to the same directory as the Work LIBNAME.
The second control record points to the validation_control.sas7bdat (run-time validation
check) data set, and is accessed by the cntl_v LIBNAME statement. This LIBNAME is
assigned to the !sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0/control directory.

The sourcemetadata type references two metadata data sets that describe the table
(source_tables) and column (source_columns) metadata for the 39 data sets that comprise
the SAS representation of the CRT-DDS model. Both data sets are stored in the same
library. In the SAS Clinical Standards Toolkit, this source metadata is read from
the !sasroot/../../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/metadata directory. This location is represented in the
driver program using the Srcmeta library name.

The sourcedata type is the library where the 39 data sets that comprise the SAS
representation of the CRT-DDS model are stored. These are the data sets that are being
validated. In the SAS Clinical Standards Toolkit, this library is read from
the !sasroot/../../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/data directory. This location is represented in the driver
program by the Srcdata library name.

Process Outputs
For SAS Clinical Standards Toolkit validation processes, the only process outputs that are
generated are the Validation Results and Validation Metrics data sets. These data sets are
described in the following section.

Process Results
When the validate_crtdds_data.sas driver program finishes running, the
validation_results.sas7bdat data set is created in the Results library. The Results data set
contains informational, warning, and error messages that were generated by the validation
program. Reporting of validation process metrics is supported, though it is not implemented
for CDISC CRT-DDS validation.

Display 7.11 Example of a CDISC CRT-DDS Results Data Set

Special Topic: A Round Trip Exercise Involving the
CDISC SDTM and CDISC CRT-DDS Standards

The typical SAS Clinical Standards Toolkit workflow in support of the CDISC standards
includes the definition and validation of SDTM submission data and the creation and
validation of a define.xml file based on the SDTM domain data. This exercise illustrates
how you can read a define.xml file to extract the data and metadata for the purposes of

Special Topic: A Round Trip Exercise Involving the CDISC SDTM and CDISC CRT-DDS
Standards 191



recreating the original source SDTM study. Recreating the original source study has value
as a standalone exercise, either to extract a new SDTM study from a define.xml file or to
create a new SDTM study using information in a define.xml file as a template.

As a round-trip exercise, this task validates the performance of the crtdds_write and
crtdds_read SAS Clinical Standards Toolkit macros and allows a comparison of original
and recreated SDTM metadata and data. The following display details the high-level
workflow for this exercise.

Display 7.12 Round Trip Process

The following steps describe the workflow in more detail. The first five steps describe the
derivation of the CDISC CRT-DDS 1.0 define.xml file.

1. Access a study that contains valid CDISC SDTM data and metadata. This is a study
that contains domain data (AE, DM, CO, and so on) and SAS Clinical Standards Toolkit
metadata about that SDTM study, such as source_tables and source_columns. SAS
Clinical Standards Toolkit also includes XSL style sheets, XML map files, and any
metadata that is provided by SAS during the SAS Clinical Standards Toolkit
installation.

2. Use the set of sample driver programs that are provided in the SAS Clinical Standards
Toolkit to define the input and output files for each process task and to invoke the
macros that support each standard-specific task. The driver programs are designed to
run with the sample studies, but can be modified as needed. New custom drivers can
also be created and used.

3. Submit the create_crtdds10_fromsdtm311.sas driver program to access the
crtdds_sdtm311todefine10.sas macro, and create the 39 data sets that comprise the SAS
representation of the CRT-DDS model. These 39 output data sets are written to
the !sasroot/../../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/data directory.

4. Validate the CRT-DDS data sets by submitting the validate_crtdds_data.sas driver
program. This step is optional.

192 Chapter 7 • XML-Based Standards



5. Create the define.xml file by submitting the create_crtdds_define.sas driver program.
This driver program generates the define.xml file from the 39 CRT-DDS data sets that
were created in step 3. It also calls the crtdds_xmlvalidate macro to validate the XML
file structure. The define.xml file is written to the !sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0/sourcexml directory.

At this point, a valid define.xml file has been created from the SAS representation of
the CRT-DDS model. In the next steps, the SDTM data and metadata are recreated
using the XML read process.

6. Submit the create_sascrtdds_fromxml.sas driver program. This driver program reads
the define.xml file created in step 5, and generates the SAS representation of the CRT-
DDS model using the crtdds_read.sas macro. The data sets created in this step should
match the data sets created in step 3. These data sets are written to
the !sasroot/../../SASClinicalStandardsToolkitCRTDDS10/1.3/
sample/cdisc-crtdds-1.0/deriveddata directory. This driver program
generates the source_tables and source_columns data sets in the !sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0/derivedmetadata directory. By specifying new target folder
locations (deriveddata and derivedmetadata), the data sets can be validated against the
data sets that were created or referenced in step 3.

7. SDTM domain data sets are created based on a reachable set of SAS transport files that
are specified in the define. xml file. Submit the create_sasdata_fromxpt.sas SDTM
driver program. For SDTM 3.1.2, the program is in the !sasroot/../../
SASClinicalStandardsToolkitSDTM312/1.3/sample/cdisc-
sdtm-3.1.2/sascstdemodata/programs directory. This driver program
accesses the sdtmutil_createsasdatafromxpt.sas macro to generate the SDTM domain
data sets from the SAS transport files. Creation of the SAS transport files is not
performed by SAS Clinical Standards Toolkit. These files would have been produced
as a prerequisite to the generation of the define.xml file as a part of the Electronic
Common Document preparation process. The sdtmutil_createsasdatafromxpt.sas
macro assumes that the SAS transport files are reachable from a folder relative to the
location of the referenced define.xml file. In the create_sasdata_fromxpt.sas SDTM
driver program, the XPT files are read from the !sasroot/../../
SASClinicalStandardsToolkitCRTDDS10/1.3/sample/cdisc-
crtdds-1.0/transport directory. The generated data sets are written to
the !sasroot/../../SASClinicalStandardsToolkitSDTM312/1.3/
sample/cdiscsdtm-3.1.2/sascstdemodata/derived/data directory. At
this point, the SDTM domain data sets should contain the same information as the
original domain data sets that were accessed at the beginning of this process. By
specifying a new target folder location, the SDTM data sets can be validated against
those referenced in steps 1 and 3 above.

8. Source metadata that describes the SDTM domains and columns is derived using
information contained in the CRT-DDS data sets derived in step 6. Submit the
create_sourcemetadata.sas SDTM driver program. For SDTM 3.1.2, it is installed in
the !sasroot/../../SASClinicalStandardsToolkitSDTM312/1.3/
sample/cdisc-sdtm-3.1.2/sascstdemodata/programs directory. In this
exercise, this driver program calls the sdtmutil_createsrcmetafromcrtdds macro, which
uses a library of SAS data sets that capture define.xml metadata (typically derived using
the crtdds_read macro). The output of this step is a set of SDTM metadata in
source_tables, source_columns, and source_study data sets. These data sets are written
to the !sasroot/../../SASClinicalStandardsToolkitSDTM312/1.3/
sample/cdiscsdtm-3.1.2/sascstdemodata/derived/metadata
directory. At this point, the SDTM metadata should contain the same information as
the original metadata that was accessed at the beginning of this process. By specifying

Special Topic: A Round Trip Exercise Involving the CDISC SDTM and CDISC CRT-DDS
Standards 193



a new target folder location, the SDTM metadata data sets can be validated against
those referenced in steps 1 and 3 above.

9. SAS formats that support SDTM controlled terminology are derived using information
contained in the CRT-DDS data sets that were derived in step 6. Submit the
create_formatsfromcrtdds.sas SDTM driver program. For SDTM 3.1.2, this program
is installed in the !sasroot/../../
SASClinicalStandardsToolkitSDTM312/1.3/sample/cdisc-
sdtm-3.1.2/sascstdemodata/programs directory. The driver program
accesses the sdtmutil_createformatsfromcrtdds.sas macro and generates the controlled
terminology SAS formats catalog based on codelists specified in the define.xml file.
The derived SAS format catalog is written to the !sasroot/../../
SASClinicalStandardsToolkitSDTM312/1.3/sample/
cdiscsdtm-3.1.2/sascstdemodata/derived/formats directory. These
formats should match those formats that were referenced by the SDTM columns at the
beginning of this process. By specifying a new target folder location, the SAS format
catalog can be validated against the catalog referenced in steps 1 and 3 above.

Note: When running multiple driver programs:

The SAS Clinical Standards Toolkit uses autocall macro libraries to contain and reference
standard-specific code libraries. Once the autocall path is set, and one or more macros have
been used in an autocall macro library, deallocation or reallocation of the autocall file
reference cannot occur unless the autocall path is reset to exclude the specific file reference.

This becomes a problem with repeated calls to %cstutil_processsetup() or
%cstutil_allocatesasreferences in the same SAS session. You might receive SAS errors,
such as the following one, unless you submit some specific SAS code:

ERROR - At least one file associated with fileref SDTMAUTO is still in use.
ERROR - Error in the FILENAME statement. 

If you call %cstutil_processsetup() or %cstutil_allocatesasreferences more than once in the
same SAS session, which typically uses %let _cstReallocateSASRefs=1 to tell the SAS
Clinical Standards Toolkit to attempt reallocation, use the following code between each
code submission:

%let _cstReallocateSASRefs=1;
%include "&_cstGRoot/standards/cst-framework-1.3/programs/resetautocallpath.sas";

In the driver programs provided with the SAS Clinical Standards Toolkit, the previous code
is commented so that it does not get submitted during run time.

Once the round trip exercise is complete, data derived from the process should match the
original data. There might be some metadata collected that does not match exactly
(particularly any date and time fields that collect real-time information). Differences can
be detected by doing a PROC COMPARE with any of the derived data and metadata data
sets against the original data and metadata data sets.

194 Chapter 7 • XML-Based Standards



Chapter 8

Reporting

Sample Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Process Results Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Validation Check Metadata Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Sample Reports

Overview
To show how SAS Clinical Standards Toolkit metadata and results can be summarized in
a report format, several sample reports are available with the SAS Clinical Standards
Toolkit. These reports are offered as templates that can be modified to facilitate data review.
The report templates are PROC REPORT implementations that use ODS to generate report
output in a variety of formats supported by ODS. Three sample reports are provided:

• Report 1: This report is applicable to most SAS Clinical Standards Toolkit processes.
It itemizes records that are written to the Results data by the process. In the case of
validation processes, this report itemizes Results data set records by validation check.

• Report 2: This report is specific to SAS Clinical Standards Toolkit validation processes
for standards that have the concept of source data domains (for example, CDISC SDTM
and CDISC ADaM). Results are summarized by domain.

• Report 3: This report is specific to SAS Clinical Standards Toolkit validation
functionality that summarizes all available metadata about validation checks for a
supported standard. This report offers a multi-panel or one-page-per-check presentation
format.

Process Results Reporting
Reports 1 and 2 have multiple sections or panels. Each section can be optionally generated.
Several sections are common to each report, including a report summary, a listing of key
process inputs and outputs as defined in the SASReferences data set, a summary of
validation metrics, and a general process messaging panel.

195



A sample driver program is provided to define the SAS Clinical Standards Toolkit
environment and to call the primary task framework macro (%cstutil_createreport). The
following excerpt from the driver program header provides a brief overview:

cst_report.sas

Sample driver program to perform a primary Toolkit task, in this case, 
reporting process results. This code performs any needed setup and data 
management tasks, followed by one or more calls to the %cstutil_createreport() 
macro to generate report output. 
 
Two options for invoking this routine are addressed in these scenarios: 
   (1) This code is run as a natural continuation of a CST process, in 
       the same SAS session, with all required files available. The working 
       assumption is that the SASReferences data set (referenced by the 
       _cstSASRefs macro) exists and contains information on all input files 
       required for reporting. 
  (2) This code is run in another SAS session with no CST setup 
       established, but the user has a CST Results data set and, therefore, can 
       derive the location of the SASReferences data set that can 
       provide the full CST setup needed to run the reports. 
 
Assumptions: 
  To generate all panels for both types of reports, the following metadata 
  is expected: 
        - the SASReferences data set must exist and be identified in the 
            call to cstutil_processsetup if it is not work.sasreferences. 
        - a Results data set. 
        - a (validation-specific) Metrics data set. 
        - the (validation-specific) run-time Control data set itemizing the    
            validation checks requested.
        - access to the (validation-specific) check Messages data set.

The reporting as implemented in the SAS Clinical Standards Toolkit attempts to address
the following two scenarios described in the driver module header above:

1. Some SAS Clinical Standards Toolkit task (such as validation against a reference
standard) has been completed. The Results data set has been created. And, in the same
SAS session (or batch job stream), you want to generate one or both reports. In this
scenario, the reporting process uses the SASReferences data set defined by the global
macro variable _cstSASRefs that was used by the previous process. The Results data
set to be summarized in the report is the data set that was previously created and perhaps
persisted to a location other than the SAS Work library. (Whether the data set was
persisted was specified in the SASReferences data set.) Other files required by the
report are identified in Table 8.1 on page 197.

Best Practice Recommendation: The cleanup macro, %cstutil_cleanupcstsession,
should not be called between primary tasks in a SAS Clinical Standards Toolkit SAS
session (such as between validation and reporting). This keeps required files, macro
variables, autocall paths, and so on, available for the reporting code.

2. The Results data set that was created in some prior SAS Clinical Standards Toolkit
session is available. You want to generate one or both reports. The SAS Clinical
Standards Toolkit processes add informational records to the Results data set,
documenting the process itself. For example, a SAS Clinical Standards Toolkit CDISC
SDTM validation process writes records to the Results data set that contains the
following sample message text:

196 Chapter 8 • Reporting



Message
PROCESS STANDARD: CDISC-SDTM
PROCESS STANDARDVERSION: 3.1.1
PROCESS DRIVER: SDTM_VALIDATE
PROCESS DATE: 2010-01-25T11:56:17
PROCESS TYPE: VALIDATION
PROCESS SASREFERENCES: 
      !sasroot/../SASClinicalStandardsToolkitSDTM311/
      9.1.3/sample/cdisc-sdtm-
      3.1.1/SASDemo/control/sasreferences.sas7bdat

From this information, a reporting process can attempt to find and open the referenced
SASReferences data set to derive information for some or all of the report sections.

Warning: There are obvious limits to how useful any SAS Clinical Standards Toolkit
Results data set can be in rebuilding a session for reporting purposes. For example, if
the SASReferences data set was built in the Work library in a previous session, then it
will not be available and the report process fails. Similarly, if the SASReferences data
set references library and file paths using a macro variable prefix (for example,
&_cstGRoot or &studyRootPath), and those macro variables are not set or point to a
different root path than the original process, then the report process might fail or yield
unpredictable results. This scenario or technique is most appropriate for sites that adopt
a consistent means of building and populating SASReferences data sets.

Table 8.1 Metadata Sources for Reporting

Data or Metadata Source
Scenario 1: Continuation of an
Active SAS Session

Scenario 2: Using a Results Data
Set from a Previous SAS Session

SASReferences &_cstSASRefs used by the prior task
that generated the Results data set.

The Results data set record containing
the message PROCESS
SASREFERENCES attempts to use the
referenced file. &_cstSASRefs is set to
this file.

Results Precedence:

1. The data set referenced in
&_cstSASRefs with type=results
and subtype is either results or
validationresults.

2. The data set referenced by
&_cstResultsDS.

As provided in the cst_report.sas driver
program _cstRptResultsDS macro
variable.

Metrics Precedence:

1. The data set referenced in
&_cstSASRefs with type=results
and subtype is either metrics or
validationmetrics.

2. The data set referenced by
&_cstMetricsDS.

The data set referenced in
&_cstSASRefs with type=results and
subtype is either metrics or
validationmetrics.

Validation_Control The data set referenced in
&_cstSASRefs with type=control and
subtype=validation.

The data set referenced in
&_cstSASRefs with type=control and
subtype=validation.

Process Results Reporting 197



Data or Metadata Source
Scenario 1: Continuation of an
Active SAS Session

Scenario 2: Using a Results Data
Set from a Previous SAS Session

Messages &_cstMessages used by the prior task. &_cstMessages built by a call to
%cstutil_allocatesasreferences.

Note: In the SAS Clinical Standards Toolkit 1.3, you are able to define report output
locations in the SASReferences data set. These locations can be defined with
type=report in SASReferences. They can be further specified in the framework
Standardlookup data set. For more information, see Chapter 2, “Framework,” on page
5.

The following code was excerpted from the cst_report.sas driver module and performs the
setup tasks that are specific to reporting:

* Initialize macro variables used for this task *; 
%let _cstRptControl=; 
%let _cstRptLib=; 
%let _cstRptMetricsDS=; 
%let _cstRptOutputFile=&studyOutputPath/results/cstreport.pdf; 
%let _cstRptResultsDS=; 
%let _cstSetupSrc=SASREFERENCES; 
%let _cstStandard=CDISC-SDTM; 
%let _cstStandardVersion=3.1.2; 

%cstutil_processsetup(_cstSASReferencesLocation=&studyrootpath/control); 
%cstutil_reportsetup(_cstRptType=Results);

In this piece of code:

• The report output is specified in the _cstRptOutputFile variable and can be found in
&studyOutputPath/results/cstreport.pdf. The studyOutputPath variable
was previously defined to point to a folder with write permissions.

• The _cstSetupSrc=SASREFERENCES statement tells the process that a
SASReferences data set is available and should be used to complete setup tasks.

• The call to the %cstutil_processsetup macro provides the location of the
SASReferences data set using the previously defined &StudyRootPath variable.

• The call to the %cstutil_reportsetup macro completes the setup steps that are required
to generate report 1, itemizing results data set records by validation check.

An alternative setup to support Scenario 2, as described on page 196, would include the
following code excerpts:

%let _cstSetupSrc=RESULTS; 
%cstutil_processsetup(); 
%let _cstRptResultsDS=work.validation_results; 
%cstutil_reportsetup(_cstRptType=Results);

In this piece of code:

• The _cstSetupSrc=RESULTS statement tells the process that a SAS Clinical Standards
Toolkit process results data set should be used as the initial metadata source to complete
the setup tasks.

198 Chapter 8 • Reporting



• The call to the %cstutil_processsetup macro without parameters, and with
_cstSetupSrc=RESULTS, defers the remaining setup steps to the
%cstutil_reportsetup macro.

• The call to the %cstutil_reportsetup macro completes the setup steps required to
generate teport 1, itemizing work.validation_results records.

As the final step, the reporting driver program makes one or more calls to the utility
reporting macro. At a minimum (using default parameter values), a simple macro call to
create report 2 might include the following:

%cstutil_createreport(_cstsasreferencesdset=&_cstSASRefs,_cstreportbydomain=Y, 
_cstreportoutput=&studyrootpath/results/cstchecktablereport.pdf);

The following table describes all supported parameters in the sample
%cstutil_createreport macro:

Table 8.2 Supported Parameters for the %cstutil_createreport Macro

Parameter Description

_cstsasreferencesdset The libref.dataset of SASReferences data set
used for a specific process. This parameter is
optional. If it is specified, then _cstresultsdset
and _cstmetricsdset parameters are ignored.
Either _cstsasreferencesdset or _cstresultsdset
must be provided.

_cstresultsdset The libref.dataset of SAS Clinical Standards
Toolkit process Results data set. This parameter
is optional. Either _cstsasreferencesdset or
_cstresultsdset must be provided. This
parameter is ignored if _cstsasreferencesdset is
specified.

_cstmetricsdset The libref.dataset of SAS Clinical Standards
Toolkit process Metrics data set. This
parameter is optional. This parameter is ignored
if _cstsasreferencesdset is specified.

_cstreporterrorsonly If N (default), then this parameter reports all
records in the Results data set, including
information and non-error results. If Y, then this
parameter reports only records in error (where
the Results data set field results.resultflag=1).

_cstreportobs If null (default), then this parameter reports all
records in error (where results.resultflag=1) in
the Results data set. Otherwise, set this
parameter to any integer value > 0, signifying
the number of records to print per checkid
(where results.checkid is non-null). If
_cstreportobs > 0 excludes any records, then a
footnote is printed, noting that not all records
were printed.

Process Results Reporting 199



Parameter Description

_cstreportbytable If N (default), then this parameter does not
report results by table (that is, run report 1). If
Y, then this parameter reports results by table
(that is, run report 2).

_csttablechecksdset Report 2 parameter. A data set that provides a
list of tables for each check. Using this
parameter assumes that this data set has been
built before running this report. For more
information, see “Supplemental Validation
Check Metadata: Domains by Check” on page
98. This parameter is optional. If this parameter
is not used, then the data set is created.

_csttablecheckscode Report 2 parameter. The code module (macro)
to build _csttablechecksdset if it does not exist,
or is not passed as a parameter. This parameter
is required only if _cstreportbytable=Y and
_csttablechecksdset is not provided.

_cstkeeptablechecklist Report 2 parameter. The value is Y or N
(default). If running report 2, then keep the
derived list of tables (_csttablechecklist) to
reuse in subsequent report requests. Building
this file takes awhile.

_csttablesubset Report 2 parameter. This parameter is optional.
It produces a report based on a specific table,
indicated by libref.data set. If the value is blank
or the keyword _ALL_ is specified, then all
tables are included in the report. This parameter
is ignored if _cstreportbytable=N.

_cstreportoutput The path and filename where report output is to
be written. File types HTML, RTF, and PDF are
supported. This parameter is required.

_cstsummaryReport The value is Y (default) or N. If set to Y, then
generate the report summary panel.

_cstioReport The value is Y (default) or N. If set to Y, then
generate the process inputs and outputs panel.

_cstmetricsReport The value is Y (default) or N. If set to Y, then
generate the process metrics panel. This
parameter should be set to N for any non-
validation reports and cases where metrics are
not generated.

_cstgeneralResultsReport The value is Y (default) or N. If set to Y, then
generate the general process reporting panel.

_cstcheckIdResultsReport The value is Y (default) or N. If set to Y, then
generate the process results panel.

200 Chapter 8 • Reporting



A more complete example of the %cstutil_createreport reporting macro includes the
following macro call:

%cstutil_createreport( 
   _cstsasreferencesdset=&_cstSASRefs, 
   _cstresultsdset=&_cstRptResultsDS, 
   _cstmetricsdset=&_cstRptMetricsDS, 
   _cstreportbytable=N, 
   _cstreporterrorsonly=Y, 
   _cstreportobs=50, 
   _cstreportoutput=%nrbquote(&_cstRptOutputFile), 
   _cstsummaryReport=Y, 
   _cstioReport=Y, 
   _cstmetricsReport=Y, 
   _cstgeneralResultsReport=Y, 
   _cstcheckIdResultsReport=Y);

Interpretation of this request, based on the parameter descriptions in Table 9.2, produces a
(validation) results listing that contains all five report panels and includes only the first 50
errors that are reported for each validation check.

The following displays show report content. The displays apply to report 1 (by checkid)
unless otherwise indicated.

Display 8.1 Report Summary

Process Results Reporting 201



Display 8.2 Process Inputs and Outputs

Display 8.3 Process Metrics (Report 1)

202 Chapter 8 • Reporting



Display 8.4 Process Metrics by Domain (Report 2)

Process Results Reporting 203



Display 8.5 General Process Reporting

Display 8.6 Validation Results by CheckID (Report 1)

Display 8.7  Validation Results by Domain (Report 2)

204 Chapter 8 • Reporting



Validation Check Metadata Reporting
Report 3 offers the complete set of metadata about each validation check that is available
in the SAS Clinical Standards Toolkit. The report can be printed in a multi-panel or one-
page-per-check presentation format.

A sample driver program is provided to define the SAS Clinical Standards Toolkit
environment and to call the primary task framework macro
(%cstutil_createmetadatareport). The following excerpt from the driver program header
provides a brief overview:

cst_metadatareport.sas

Sample driver program to perform the reporting of validation check metadata.
This code performs any needed setup and data management tasks, followed by
one or more calls to the %cstutil_createmetadatareport() macro to generate
report output.

Two options for invoking this routine are addressed in these scenarios:
  (1) This code is run as a natural continuation of a CST process, in
       the same SAS session, with all required files available. The working
       assumption is that the SASReferences data set (referenced by the 
       _cstSASRefs macro) exists and
       contains information on all input files required for reporting.
  (2) This code is run in another SAS session with no CST setup
       established. In this case, the user assumes responsibility for
       defining all librefs and macro variables needed to run the reports,
       although defaults are set.

Assumptions:
(1) SASReferences is not required for this task. If it is found, it will be used.
     If it is not found, default libraries and macro variables are set and may be
     overridden by the user.
(2) The user of this code may override any cstutil_createmetadatareport
     parameter values.
(3) Only the cstutil_createmetadatareport &_cstRptControl and &_cstMessages
     parameters are required.
(4) If the _cststdrefds parameter is not set, the associated panel cannot be
     generated.
(5) By default, a PDF report format is assumed. This may be overridden.
(6) Report output is written to cstcheckmetadatareport.pdf in the SAS
     Work library unless another location is specified in SASReferences or
     in the setup code below.
(7) The report macro cstutil_createmetadatareport only produces panel 1
     (Check Overview) unless any of the last 3 parameters are set to Y.

Report setup is similar to reporting on process results. The only key difference is that the
call to the %cstutil_reportsetup macro passes a different parameter value to request check
metadata reporting:

%cstutil_reportsetup(_cstRptType=Metadata);

To generate the metadata report, the reporting driver program makes one or more calls to
the utility reporting macro. At a minimum (using default parameter values), a simple macro
call to create report 3 might include the following:

Validation Check Metadata Reporting 205



%cstutil_CreateMetadataReport(
               _cstValidationDS=&_cstRptControl 
              ,_cstMessagesDS=&_cstMessages
              ,_cstReportOutput=%bquote(&_cstRptOutput)
              );

The following table describes all supported parameters in the sample
%cstutil_createmetadatareport macro:

Table 8.3 Supported Parameters for the %cstutil_createmetadatareport Macro

Parameter Description

_cstStandardTitle This parameter is optional. Title that defines the
title2 statement.

_cstValidationDS This parameter is required. The validation data
set that is used by a SAS Clinical Standards
Toolkit process. This is Validation Master,
Validation Control, or a derivative as specified
by the user.

_cstValidationDSWhClause Optional WHERE clause applied to
_cstValidationDS.

_cstMessagesDS This parameter is required. The Messages data
set used by a SAS Clinical Standards Toolkit
process.

_cstStdRefDS The Validation StdRef data set created for a
SAS Clinical Standards Toolkit standard. This
file is required if _cstStdRefReport=Y.

_cstReportOutput This parameter is required. The path and
filename where the report output is to be
written. File types HTML, RTF, and PDF are
supported.

_cstCheckMDReport Specifies whether panel 2 additional check
details is run. The default value is N.

_cstMessageReport Specifies whether panel 3 message details is
run. The default value is N.

_cstStdRefReport Specifies whether panel 4 reference
information is run. The default value is N.

_cstRecordView If the value is Y, then all available check
metadata is generated, by check, in a single
listing. Either this listing, or the multi-panel
report can be generated in a single invocation
of this macro, but not both. The default value is
N.

A more complete example of the %cstutil_createmetadatareport reporting macro includes
the following macro call:

206 Chapter 8 • Reporting



%cstutil_createmetadatareport( 
   _cststandardtitle=%str(CDISC-SDTM 3.1.1 Validation Check Metadata), 
   _cstvalidationds=refcntl.validation_master, 
   _cstvalidationdswhclause=, 
   _cstmessagesds=&_cstMessages, 
   _cststdrefds=refcntl.validation_stdref, 
   _cstreportoutput=%nrbquote(&studyOutputPath/results/cstcheckmetadatareport.pdf), 
   _cstcheckmdreport=Y, 
   _cstmessagereport=Y, 
   _cststdrefreport=Y, 
   _cstrecordview=N);

Interpretation of this request, based on the parameter descriptions in Table 9.3, produces a
validation check metadata report (cstcheckmetadatareport.pdf) that contains all four report
sections for the CDISC-SDTM 3.1.1 validation checks.

Display 8.8 Check Overview

Validation Check Metadata Reporting 207



Display 8.9 Additional Check Details (Panel 2) [_cstCheckMDReport=Y]

Display 8.10 Message Details (Panel 3) [_cstMessageReport=Y]

208 Chapter 8 • Reporting



Display 8.11 Reference Information (Panel 4) [_cstSTDRefReport=Y]

Display 8.12 Sample Report Using WHERE Clause [_cstValidationDSWhClause=checkid='SDTM0801']

Validation Check Metadata Reporting 209



Display 8.13 Sample Report By Record View [_cstRecordView=Y]

210 Chapter 8 • Reporting



Appendix 1

Global Macro Variables

The following global macro variables are used by the SAS Clinical Standards Toolkit. Most
SAS Clinical Standards Toolkit global macro variables that are provided by SAS are
defined in property files in the form of name and value pairs, such as:

_cstDebug=

Each registered standard, including CST-Framework, has an initialize.properties file. This
file specifies global macro variables that are required by the standard and are available for
use in any SAS Clinical Standards Toolkit processes that reference the standard. Each
registered standard might have an action-related properties file that specifies global macro
variables that are needed for processes performing the action. An example of this type of
file is validation.properties.

A properties file is processed in one of two ways:

A direct call is made to the SAS Clinical Standards Toolkit utility macro
%cstutil_setproperties in a code module, such as a driver program like validate_data.sas.

The file is included in the SASReferences data set (with type=properties), in which the
%cstutil_allocatesasreferences macro calls %cstutil_setproperties.

Global macro variables can be deleted at the end of a process if the SAS Clinical Standards
Toolkit utility macro %cstutil_cleanupcstsession is called with the
_cstDeleteGlobalMacroVars parameter set to 1.

Two commonly used global macro variables are not defined in the properties files
previously described. The _cstGRoot global macro variable defines the location of
_cstGlobalLibrary and is set with the autocall macro %cstutil_setcstgroot. This macro is
called in most framework macros. The &studyRootPath global macro variable defines the
location of the study data and metadata. It is often set in user-defined driver programs (for
example, validate_data.sas).

Table A1.1 Global Macro Variables

Global Macro Variable

Values

* default value Comments

CST-Framework initialize.properties

_cstDebug 0 (off)*

1 (on)

If on, then _cstDebugOptions are set.
Many files remain in the Work library
at process conclusion.

Note: When _cstDebug=1, the size of
the SAS log is significantly larger.

211



Global Macro Variable

Values

* default value Comments

_cstDebugOptions mprint mlogic symbolgen
mautolocdisplay*

SAS system options set when
_cstDebug=1.

_cst_rc 0 (no error)*

1 (error)

Set to 1 during processing if an error is
encountered that should halt the
process.

_cst_MsgID <blank>* The result or validation check ID that is
used for reporting process results. A
value is set in each code module.

_cst_MsgParm1 <blank>* Any result message parameter (1) that
is used for reporting process results. A
value is set in each code module.

_cst_MsgParm2 <blank>* Any result message parameter (2) that
is used for reporting process results. A
value is set in each code module.

_cstResultSeq 0* Sequence indicator that is used to signal
multiple instances of the same event
(such as running the same validation
check multiple times). This variable
should be initialized to 0. This variable
is used for reporting process results.
Values are incremented in each code
module. This variable is used to join the
Results and Metrics data sets.

_cstSeqCnt 0* Sequence indicator that is used to count
the number of records that were output
to the Results data set in
_cstResultSeq. This variable should be
initialized to 0. This variable is used for
reporting process results. Values are
incremented in each code module

_cstResultsDS work._cstresults * The default data set name that is used
to accumulate results during a process.
This variable might be persisted at the
end of the process based on the
SASReferences (type=results) entry.

_cstSrcData <blank>* This variable is used for reporting
process results. A value is set in each
code module.

212 Appendix 1 • Global Macro Variables



Global Macro Variable

Values

* default value Comments

_cstResultFlag 0*

-1

1

This variable reports the status of any
result. A value of 0 indicates an
informational or non-error status. A
positive integer indicates an error
status. A negative integer indicates that
the assessment could not be completed,
often because of metadata problems or
SAS errors.

_cstReallocateSASRefs 0* (no)

1 (yes)

This variable specifies whether the
SAS Clinical Standards Toolkit should
attempt to reallocate any SAS librefs
and filerefs if they are already
allocated. If the value is yes, then
allocation is based on SASReferences
content.

_cstFMTLibraries <blank>*

** work.fmt (example)

This variable enables users to change
the format search path built from
SASReferences (type=fmtsearch)
entries with <libref> or
<libref.catalog> references. If only
<libref> is provided, then SAS assumes
a catalog name of FORMATS. If the
value begins with ** (such as **
WORK), then the SAS Clinical
Standards Toolkit moves
WORK.FORMATS to the end of the
format search path.

_cstMessageOrder APPEND*

MERGE

This variable is used in the derivation
of _cstMessages. The value APPEND
appends message files based on the
order of SASReferences
(type=messages) entries. The value
MERGE allows references to multiple
standard-specific message files
(including internationalized messages),
retaining a single message per message
ID, standardversion, and checksource.

_cstMessages work._cstmessages* The default data set name that is used
to aggregate all standard messages
based on SASReferences
(type=messages) entries. This file is
used during processing to fully resolve
the results.message field.

Validation Check Metadata Reporting 213



Global Macro Variable

Values

* default value Comments

_cstSASRefsLoc &workpath* The path to a directory that contains the
SASReferences data that is specified in
_cstSASRefsName. By default, the
SAS Clinical Standards Toolkit
assumes that the SASRferences data set
is located in the SAS Work library
(signified by &workpath). Use of
&workpath is not required.

_cstSASRefsName sasreferences* The name of the SASReferences data
set (in _cstSASRefsLoc) to be used as
the initial source of information about
all inputs and outputs defined for a SAS
Clinical Standards Toolkit process. The
name of the data set that is a
SASReferences data set. This allows
more than one SASReferences data set
to be stored in a directory.

_cstSASRefs work._cstsasrefs* The SASReferences data set that is
used during processing that contains
fully resolved records (for example,
paths) based on using standard-level
SASReferences data sets for default
values.

CDISC SDTM (3.1.1 and 3.1.2) initialize.properties

_cstSubjectColumns studyid usubjid* The standard-specific set of columns
that identify a subject. Columns are
used by standard-specific macros and
for metrics calculations. Columns do
not need to be in all source tables (for
example, non-patient-level domains
like CDISC trial design domains).

_cstTableMetadata work._csttablemetadata* Data set that is used during processing
that contains table-level metadata
(derived from either the reference or
study table metadata) that is used by the
process.

_cstColumnMetadata work._cstcolumnmetadata* Data set that is used during processing
that contains column-level metadata
(derived from either the reference or
study column metadata) that is used by
the process.

CDISC SDTM (3.1.1 and 3.1.2) validation.properties

214 Appendix 1 • Global Macro Variables



Global Macro Variable

Values

* default value Comments

_cstCheckSortOrder _DATA_*

<keys>

This variable enables specification of
the order in which the checks are to be
run. The _DATA_ value indicates that
checks are to be processed in the order
defined in the Validation Control data
set. Users can specify a set of space-
delimited keys from Validation Control
columns (for example, checksource
checkid).

_cstMetrics 0 (off)*

1 (on)

Toggle this variable to enable or disable
metrics reporting. This variable
attempts to provide a denominator for
the errors that are detected. Increased
processing time can result.

_cstMetricsDS work._cstmetrics* The default data set name that is used
to accumulate results during a process.
This variable is typically stored at the
end of the process based on the
SASReferences (type=results) entry.

_cstMetricsTimer 0 (off)

1 (on)*

This variable estimates the elapsed time
to perform an action. Results are added
to _cstMetricsDS. The value is ignored
if _cstMetrics=0.

_cstMetricsNumSubj 0 (off)

1 (on)*

This variable enables counts on a
subject level. The value is ignored if
_cstMetrics=0.

_cstMetricsNumRecs 0 (off)

1 (on)*

This variable enables counts on the
number of records tested. The value is
ignored if _cstMetrics=0.

_cstMetricsNumChecks 0 (off)

1 (on)*

This variable specifies whether to
report the number of distinct validation
check invocations. The value is ignored
if _cstMetrics=0.

_cstMetricsNumBadChecks 0 (off)

1 (on)*

This variable specifies whether to
report the number of check invocations
that were not run. The value is ignored
if _cstMetrics=0.

_cstMetricsNumErrors 0 (off)

1 (on)*

This variable specifies whether to
report the number of
resultseverity="Error" records in the
Results data set. This value is ignored
if _cstMetrics=0.

Validation Check Metadata Reporting 215



Global Macro Variable

Values

* default value Comments

_cstMetricsNumWarnings 0 (off)

1 (on)*

This variable specifies whether to
report the number of
resultseverity="Warning" records in
the Results data set. This value is
ignored if _cstMetrics=0.

_cstMetricsNumNotes 0 (off)

1 (on)*

This variable specifies whether to
report the number of
resultseverity="Note" records in the
Results data set. The value is ignored if
_cstMetrics=0.

_cstMetricsNumStructural 0 (off)

1 (on)*

This variable specifies whether to
report the number of structural errors
that were detected. This variable is
based on the errors reported for checks
where checktype= "Metadata". This
excludes informational records in the
Results data set. The value is ignored if
_cstMetrics=0.

_cstMetricsNumContent 0 (off)

1 (on)*

This variable specifies whether to
report the number of content errors that
were detected. This variable is based on
the errors reported for checks where
checktype ^= "Metadata". This
excludes informational records in the
Results data set. The value is ignored if
_cstMetrics=0.

_cstMetricsCntNumSubj 0* Actual count of the number of subjects
that were tested. The value is not
calculated if _cstMetrics=0.

_cstMetricsCntNumRecs 0* Actual count of the number of records
that were tested. The value is not
calculated if _cstMetrics=0.

_cstMetricsCntNumChecks 0* Actual count of the number of
validation checks that were run. The
value is not calculated if
_cstMetrics=0.

_cstMetricsCntNumBadChecks 0* Actual count of the number of check
invocations that were not run. The
value is not calculated if
_cstMetrics=0.

_cstMetricsCntNumErrors 0* Actual count of the number of errors
that were reported. The value is not
calculated if _cstMetrics=0.

216 Appendix 1 • Global Macro Variables



Global Macro Variable

Values

* default value Comments

_cstMetricsCntNumWarnings 0* Actual count of the number of warnings
that were reported. The value is not
calculated if _cstMetrics=0.

_cstMetricsCntNumNotes 0* Actual count of the number of notes that
were reported. The value is not
calculated if _cstMetrics=0.

_cstMetricsCntNumStructural 0* Actual count of the number of
structural errors that were reported. The
value is not calculated if
_cstMetrics=0.

_cstMetricsCntNumContent 0* Actual count of the number of content
errors that were reported. The value is
not calculated if _cstMetrics=0.

_cstCRTVersion 1.0* Current CDISC CRT-DDS version.

Note: This variable might be
deprecated in a future release.

General Purpose (not set in properties files)

_cstGRoot Example:

C:\cstGlobalLibrary

This variable is required. It defines the
location of _cstGlobalLibrary. It is set
with the autocall macro
%cstutil_setcstgroot, which is called in
most framework macros. It is used most
often in SASReferences paths to enable
relative path mobility.

studyRootPath Example:

C:\Study1

This variable is optional. It defines the
location of study data and metadata. It
is often set in user-defined driver
programs (for example,
validate_data.sas). It is used in
SASReferences paths to limit the
changes that are required when
changing input data sources, which
facilitates portability.

* default value

Validation Check Metadata Reporting 217



218 Appendix 1 • Global Macro Variables



Appendix 2

Framework Messages

Table A2.1 Result IDs and Associated Message Text

Result ID Check Severity Message Text

CST0001 Error Fatal error encountered, process cannot
continue

CST0002 Warning: Check not run No tables evaluated-check validation
control data set

CST0003 Warning: Check not run &_cstparm1 could not be found

CST0004 Warning: Check not run No columns evaluated - check
validation_control specification

CST0005 Error Input parameters to macro insufficient
for &_cstparm1 macro to run

CST0006 Warning: Check not run Lookup to SASReferences control data
set failed

CST0007 Error SASReferences lookup returned no
records

CST0008 Error &_cstparm1 could not be found

CST0009 Error &_cstparm1 macro variable not
defined

CST0010 Error SASReferences lookup returned
multiple records

CST0012 Error SASReferences lookup returned
inconsistent SASref and memname
values

CST0014 Warning: Check not run Global macro variable &_cstparm1
cannot be null

CST0015 Warning: Check not run Invalid &_cstparm1 input parameter,
&_cstparm2 macro cannot run

CST0016 Warning: Check not run &_cstparm1 could not be found

219



Result ID Check Severity Message Text

CST0020 Info Check run but nonmissing codeLogic is
not used

CST0021 Warning: Check not run Table &_cstparm1 does not contain
&_cstparm2 column

CST0022 Warning: Check not run &_cstparm1 keys could not be found

CST0023 Warning: Check not run Validation control parsing of
&_cstparm1 results in inconsistent
sublist lengths

CST0024 Warning: Check incomplete The column &_cstparm1 was not found
in &_cstparm2 - compliance not
assessed

CST0025 Warning: Check incomplete Data set not found in reference standard
- compliance not assessed

CST0026 Warning: Check not run One or more check metadata column
values is invalid - &_cstparm1

CST0027 Warning: Check not run Global macro variable &_cstparm1
could not be found or contains an
invalid value

CST0028 Warning: Check not run Format search path has not been set

CST0029 Info Format catalog &_cstparm1 in
fmtsearch could not be found

CST0030 Warning: Check not run No catalogs in fmtsearch could be
found

CST0031 Warning: Check not run Reference terminology &_cstparm1
not found

CST0032 Info Reference terminology data set
&_cstparm1 was set to &_cstparm2

CST0033 Info Format search path has been set to
&_cstparm1

CST0034 Warning: Check not run &_cstParm1 has no observations for
&_cstParm2

CST0050 Warning: Check not run Code failed due to SAS error -
&_cstparm1

CST0051 Error Code failed due to SAS error -
&_cstparm1

220 Appendix 2 • Framework Messages



Result ID Check Severity Message Text

CST0070 Error Selected target directory, &_cstparm1,
does not exist. Please create the Target
Directory.

CST0071 Error The Standards directory, &_cstparm1,
is not available.

CST0072 Error Unable to create directory,
&_cstparm1.

CST0073 Info Study directories created in
&_cstparm1.

CST0074 Info Study reference data created in
&_cstparm1.

CST0075 Error Unable to allocate &_cstparm1 for
&_cstparm2.

CST0076 Info SAS &_cstparm1 from
SASref=&_cstparm2 SASReferences
record not allocated

CST0080 Info SASReferences for &_cstParm1 were
copied to &_cstParm2

CST0081 Error A required parameter was not supplied
&_cstParm1

CST0082 Error The standard &_cstParm1 is not
registered

CST0083 Error The version &_cstParm1 does not exist
for &_cstParm2

CST0084 Error The SASReferences type &_cstParm1
is not defined for &_cstParm2

CST0085 Error No version was supplied and there is no
default for the &_cstParm1 standard

CST0086 Error The SASReferences type &_cstParm1
has more than one subtype and none
was specified

CST0087 Error The type/subtype &_cstParm1 is not
defined for &_cstParm2

CST0088 Error The following columns of
&_cstParm1 cannot be empty:
&_cstParm2

CST0089 Error Only libraries are supported for this
operation

Validation Check Metadata Reporting 221



Result ID Check Severity Message Text

CST0090 Error There were problems with the
sasreferences data set

CST0099 Warning: Check not run &_cstparm1 is not supported in the
current release of CST

CST0100 Info No errors detected in &_cstparm1

CST0101 Error The libref &_cstparm1 must be
assigned prior to calling the macro

CST0102 Info &_cstparm1 was created as requested

CST0103 Error A SASReferences file must be passed
as a parameter or specified using the
CST global environment variable

CST0104 Error Unable to acquire exclusive locks on
the global metadata data sets

CST0106 Error The standard &_cstParm1 does not
have a properties file registered for
&_cstParm2

CST0107 Error Invalid location type &_cstParm1

CST0108 Info The properties were processed from the
&_cstParm1 &_cstParm2

CST0109 Info The default version for &_cstParm1
has been set to &_cstParm2

CST0110 Info &_cstParm1 is no longer registered as
a standard

CST0111 Error Unable to open data set &_cstParm1

CST0112 Error Data set &_cstParm1 has no
observations

CST0114 Error No lookup table found in registered
standards data set where
standard=&_cstParm1 and
version=&_cstParm2

CST0115 Error Null values are not permitted for
column &_cstParm2 in data set
&_cstParm1

CST0116 Error Invalid value for column &_cstParm1
in data set &_cstParm2

222 Appendix 2 • Framework Messages



Result ID Check Severity Message Text

CST0117 Error No template data set found for
type=&_cstParm1,
subtype=&_cstParm2 in the registered
data standards

CST0118 Error The standard &_cstParm1 is not a data
standard

CST0119 Error The standard &_cstParm1 is missing
referencemetadata for &_cstParm2

CST0120 Error Could not continue due to errors
encountered in assigning libraries

CST0121 Error Errors were encountered creating the
&_cstParm1 tables - check the log

CST0122 Info The tables were created for
&_cstParm1 in library &_cstParm2

CST0123 Warning The lookup table has no entries for
standard=&_cstParm1 and
version=&_cstParm2

CST0124 Error The default version &_cstParm1 for
&_cstParm2 cannot be unregistered
while other versions exist

CST0125 Error Differences found between data set
&_cstParm1 and the template data set
&_cstParm2

CST0200 Info &_cstParm1

Note: Not all message data set fields are displayed.

Validation Check Metadata Reporting 223



224 Appendix 2 • Framework Messages



Appendix 3

Macro Application Programming
Interface

Module CRT-DDS V1.0 (Run Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Macro Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Module Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Macro Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Module SDTM V3.1.1 (Run Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Macro Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Macro Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Module SDTM V3.1.2 (Run Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Macro Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Macro Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Module ODM V1.3.0 (Run Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Macro Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Macro Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Module CRT-DDS V1.0 (Run Time)

Overview
This is the CDISC CRT-DDS 1.0 run-time macro library.

Table A3.1 Module CRT-DDS V1.0 (Run Time) Macro Summary

Exposure Macro

%crtdds_clitemdecodetrans(_cstsourcestudy=, _cstsourcecolumns=, _cstcodelistitemsds=,
_cstmdvDS=, _cststudyds=, _cstcodelistsds=, _cstCLlang=, _cstoutclitemdecodetransds=);

%crtdds_codelistitems(_cstsourcecolumns=, _cstcodelistsds=, _cstoutcodelistitemsds=);

%crtdds_codelists(_cstsourcecolumns=, _cstmdvds=, _cstmdvname=, _cstoutcodelistsds=);

225



Exposure Macro

%crtdds_computationmethods(_cstsourcecolumns=, _cstsourcestudy=, _cstmdvds=,
_cstitemdefsds=, _cststudyds=, _cstoutcomputationmethodsds=);

%crtdds_definedocument(_cstname=, _cstdescr=, _cstoutdefinedocds=);

%crtdds_getStatic(_cstName=, _cstVar=);

%crtdds_itemdefs(_cstsourcecolumns=, _cstsourcestudy=, _cststudyds=, _cstmdvds=,
_cstcodelistsDS=, _cstoutitemdefsds=, _cstoutitemdefsds2=);

%crtdds_itemgroupdefitemrefs(_cstsourcecolumns=, _cstsourcetables=, _cstsourcestudy=,
_cstitemdefsds2=, _cstmdvds=, _cstitemgroupdefsds=, _cststudyds=,
_cstoutitemgroupdefitemrefsds=);

%crtdds_itemgroupdefs(_cstsourcetables=, _cstsourcestudy=, _cststudyds=, _cstmdvDS=,
_cstoutitemgroupdefsds=);

%crtdds_itemgroupleaf(_cstsourcetables=, _cstsourcestudy=, _cststudyds=, _cstmdvDS=,
_cstoutitemgroupleafds=);

%crtdds_itemgroupleaftitles(_cstsourcetables=, _cstsourcestudy=, _cststudyds=,
_cstmdvDS=, _cstoutitemgroupleaftitlesds=);

%crtdds_metadataversion(_cstname=, _cstdescr=, _cststandard=, _cstversion=,
_cstdefineversion=, _cststudyds=, _cststudyname=, _cstoutmdvds=);

External

CRTDDS

%crtdds_read;

External

CRTDDS

%crtdds_sdtm311todefine10(_cstOutLib=, _cstSourceTables=, _cstSourceColumns=,
_cstSourceStudy=);

%crtdds_study(_cstname=, _cstdescr=, _cstprotocol=, _cstdefineds=, _cstdefinename=,
_cstoutstudyds=);

External

CRTDDS

Validation

Process

%crtdds_validate /des='CST: Validate CDISC CRTDDS model files';

External

CRT-DDS

%crtdds_write(_cstCreateDisplayStyleSheet=1, _cstOutputEncoding=,
_cstHeaderComment=, _cstResultsOverrideDS=, _cstLogLevel=info);

External

CRTDDS

%crtdds_xmlvalidate(_cstLogLevel=info, _cstResultsOverrideDS=);

Internal

Framework
Utility

%crtddsutil_buildchecktablelist(_cstCheckDS=, _cstWhereClause=, _cstOutputDS=);

226 Appendix 3 • Macro Application Programming Interface



Macro Detail

%crtdds_clitemdecodetrans
%crtdds_clitemdecodetrans(_cstsourcestudy=, _cstsourcecolumns=,
_cstcodelistitemsds=, _cstmdvDS=, _cststudyds=, _cstcodelistsds=, _cstCLlang=,
_cstoutclitemdecodetransds=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstsourcestudy

• _cstsourcecolumns

• _cstcodelistitemsds

• _cstmdvDS

• _cststudyds

• _cstcodelistsds

• _cstCLlang

• _cstoutclitemdecodetransds

File: crtdds_clitemdecodetrans.sas

%crtdds_codelistitems
%crtdds_codelistitems(_cstsourcecolumns=, _cstcodelistsds=, _cstoutcodelistitemsds=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstsourcecolumns

• _cstcodelistsds

• _cstoutcodelistitemsds

File: crtdds_codelistitems.sas

%crtdds_codelists
%crtdds_codelists(_cstsourcecolumns=, _cstmdvds=, _cstmdvname=,
_cstoutcodelistsds=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstsourcecolumns

• _cstmdvds

• _cstmdvname

• _cstoutcodelistsds

File: crtdds_codelists.sas

Module CRT-DDS V1.0 (Run Time) 227



%crtdds_computationmethods
%crtdds_computationmethods(_cstsourcecolumns=, _cstsourcestudy=, _cstmdvds=,
_cstitemdefsds=, _cststudyds=, _cstoutcomputationmethodsds=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstsourcecolumns

• _cstsourcestudy

• _cstmdvds

• _cstitemdefsds

• _cststudyds

• _cstoutcomputationmethodsds

File: crtdds_computationmethods.sas

%crtdds_definedocument
%crtdds_definedocument(_cstname=, _cstdescr=, _cstoutdefinedocds=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstname

• _cstdescr

• _cstoutdefinedocds

File: crtdds_definedocument.sas

%crtdds_getStatic
%crtdds_getStatic(_cstName=, _cstVar=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstName

• _cstVar

File: crtdds_getstatic.sas

%crtdds_itemdefs
%crtdds_itemdefs(_cstsourcecolumns=, _cstsourcestudy=, _cststudyds=, _cstmdvds=,
_cstcodelistsDS=, _cstoutitemdefsds=, _cstoutitemdefsds2=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstsourcecolumns

• _cstsourcestudy

• _cststudyds

• _cstmdvds

• _cstcodelistsDS

228 Appendix 3 • Macro Application Programming Interface



• _cstoutitemdefsds

• _cstoutitemdefsds2

File: crtdds_itemdefs.sas

%crtdds_itemgroupdefitemrefs
%crtdds_itemgroupdefitemrefs(_cstsourcecolumns=, _cstsourcetables=,
_cstsourcestudy=, _cstitemdefsds2=, _cstmdvds=, _cstitemgroupdefsds=, _cststudyds=,
_cstoutitemgroupdefitemrefsds=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstsourcecolumns

• _cstsourcetables

• _cstsourcestudy

• _cstitemdefsds2

• _cstmdvds

• _cstitemgroupdefsds

• _cststudyds

• _cstoutitemgroupdefitemrefsds

File: crtdds_itemgroupdefitemrefs.sas

%crtdds_itemgroupdefs
%crtdds_itemgroupdefs(_cstsourcetables=, _cstsourcestudy=, _cststudyds=,
_cstmdvDS=, _cstoutitemgroupdefsds=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstsourcetables

• _cstsourcestudy

• _cststudyds

• _cstmdvDS

• _cstoutitemgroupdefsds

File: crtdds_itemgroupdefs.sas

%crtdds_itemgroupleaf
%crtdds_itemgroupleaf(_cstsourcetables=, _cstsourcestudy=, _cststudyds=, _cstmdvDS=,
_cstoutitemgroupleafds=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstsourcetables

• _cstsourcestudy

• _cststudyds

• _cstmdvDS

Module CRT-DDS V1.0 (Run Time) 229



• _cstoutitemgroupdefsds

File: crtdds_itemgroupleaf.sas

%crtdds_itemgroupleaftitles
%crtdds_itemgroupleaftitles(_cstsourcetables=, _cstsourcestudy=, _cststudyds=,
_cstmdvDS=, _cstoutitemgroupleaftitlesds=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstsourcetables

• _cstsourcestudy

• _cststudyds

• _cstmdvDS

• _cstoutitemgroupdefsds

File: crtdds_itemgroupleaftitles.sas

%crtdds_metadataversion
%crtdds_metadataversion(_cstname=, _cstdescr=, _cststandard=, _cstversion=,
_cstdefineversion=, _cststudyds=, _cststudyname=, _cstoutmdvds=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstname

• _cstdescr

• _cststandard

• _cstversion

• _cstdefineversion

• _cststudyds

• _cststudyname

• _cstoutmdvds

File: crtdds_metadataversion.sas

%crtdds_read
%crtdds_read;

[Exposure: external] [Macro Type: CRTDDS]

Reads a CDISC CRT-DDS 1.0 (define.xml) XML file into the SAS representation of CRT-
DDS 1.0.

This macro uses the SAS representation of a CDISC CRT-DDS XML file as source, and
converts it into SAS data sets. The inputs and outputs are specified in a SASReferences
file.

Required global macro variables:

• Framework initialization properties.

• CDISC CRT-DDS 1.0 initialization properties.

230 Appendix 3 • Macro Application Programming Interface



• _cstResultsDS should point to an existing Results data set. Otherwise,
work._cstResults is used.

File: crtdds_metadataversion.sas

%crtdds_sdtm311todefine10
%crtdds_sdtm311todefine10(_cstOutLib=, _cstSourceTables=, _cstSourceColumns=,
_cstSourceStudy=);

[ Exposure: external ] [ Macro Type: CRT-DDS ]

Populates 12 of the 39 tables in the SAS representation of the CRT-DDS standard.

This macro extracts data from the SDTM metadata files, and converts the metadata into a
subset (12) of the tables in the SAS representation of the CRT-DDS model. The following
CRT-DDS tables are created:

• clitemdecodetranslatedtext

• codelistitems

• codelists

• computationmethods

• definedocument

• itemdefs

• itemgroupdefitemrefs

• itemgroupdefs

• itemgroupleaf

• itemgroupleaftitles

• metadataversion

• study

The metadata source is specified in a SASReferences file.

Required global macro variables:

• framework initialization properties

• CRT-DDS 1.0 initialization properties

• _cstresultsds should point to an existing Results data set

Parameters:

• _cstOutLib—Required. Identifies library reference where the resulting tables should
be written to.

• _cstSourceTables—Required. A data set that contains the SDTM metadata for the
domains to be included in the CRT-DDS file.

• _cstSourceColumns—Required. A data set that contains the SDTM metadata for the
domain columns to be included in the CRT-DDS file.

• _cstSourceStudy—Required. A data set that contains the metadata for the studies to be
included in the CRT-DDS file.

File: crtdds_sdtm311todefine10.sas

Module CRT-DDS V1.0 (Run Time) 231



%crtdds_study
%crtdds_study(_cstname=, _cstdescr=, _cstprotocol=, _cstdefineds=, _cstdefinename=,
_cstoutstudyds=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstname

• _cstdescr

• _cstprotocol

• _cstdefineds

• _cstdefinename

• _cstoutstudyds

File: crtdds_study.sas

%crtdds_validate
%crtdds_validate /des='CST: Validate CDISC CRTDDS model files';

[ Exposure: external ] [ Macro Type: CRTDDS Validation Process ]

crtdds_validate

Validate CDISC CRT-DDS model files.

The basic function of this code module is to cycle through the validation checks to be run,
writing validation results to the process Results and Metrics data sets. These data sets are
persisted to any permanent location based on type=results records in a SASReferences file.
Process cleanup is based on the _cstDebug global macro variable.

Required global macro variables (beyond reporting and debugging variables):

(none)

Required File Inputs:

run-time (type=control,subtype=validation in a SASReferences file) check data set

File: crtdds_validate.sas

%crtdds_write
%crtdds_write(_cstCreateDisplayStyleSheet=1, _cstOutputEncoding=,
_cstHeaderComment=, _cstResultsOverrideDS=, _cstLogLevel=info);

[ Exposure: external ] [ Macro Type: CRT-DDS ]

Writes a CDISC CRT-DDS V1.0 XML file.

This macro uses the SAS representation of a CRT-DDS file as source data, and converts it
to the required XML structure. The inputs and outputs are specified in a SASReferences
file.

Required global macro variables:

• framework initialization properties

• CRT-DDS 1.0 initialization properties

• _cstresultsds should point to an existing Results data set, or it should override this value
using the _cstResultsOverrideDS parameter to this macro

232 Appendix 3 • Macro Application Programming Interface



Parameters:

• _cstCreateDisplayStyleSheet—Optional. Identifies whether the macro should create a
style sheet in the same directory as the output XML file. If this is set to 1, then the
macro looks in the provided SASReferences file for a record with a type and subtype
of referencexml and stylesheet, and uses that file. If this is set to 0, then the macro does
not create the XSL, even if one is specified in the SASReferences file.

• _cstOutputEncoding—Optional. The XML encoding to use for the CRT-DDS file that
is created.

• _cstHeaderComment—Optional. A short comment is added to the top of the CRT-DDS
file that is produced. If none is provided, then a default is used.

• _cstResultsOverrideDS—Optional. The (LIBNAME.)member that refers to a Results
data set to be created. If omitted, then the Results data set specified by the
&_cstResultsDS is used.

• _cstLogLevel—Optional. Identifies the level of error reporting. Valid values are Info,
Warning, Error, and Fatal Error.

File: crtdds_write.sas

%crtdds_xmlvalidate
%crtdds_xmlvalidate(_cstLogLevel=info, _cstResultsOverrideDS=);

[ Exposure: external ] [ Macro Type: CRT-DDS ]

Performs XML-level (not SAS) validation on a CRT-DDS V1.0 XML file.

General use of this macro is in combination with another macro (such as crtdds_write or
crtdds_read). Conditional code is included that writes metadata to the Results data set, and
checks the validity of the SASReferences data set if this macro is run independently.

Parameters:

• _cstLogLevel—Optional. Identifies the level of error reporting. Valid values are Info,
Warning, Error, and Fatal Error.

• _cstResultsOverrideDS—Optional. The (LIBNAME.)member that refers to a Results
data set to be created. If omitted, then the Results data set specified by the
&_cstResultsDS is used.

File: crtdds_xmlvalidate.sas

%crtddsutil_buildchecktablelist
%crtddsutil_buildchecktablelist(_cstCheckDS=, _cstWhereClause=, _cstOutputDS=);

[ Exposure: internal ] [ Macro Type: Framework utility]

Builds a data set that identifies the domains to be validated by each check. This is based
on the contents of the validation check data set columns tablescope and columnscope.

Required global macro variables:

(none)

Required File Inputs:

only as specified in the parameters

Parameters:

• _cstCheckDS—The validation check data set that contains the checks for a standard
and standardversion. Typically, this is the Validation Master data set.

Module CRT-DDS V1.0 (Run Time) 233



• _cstWhereClause—Optional. A WHERE clause to subset _cstCheckDS. The syntax
should comply with a SAS statement argument, such as any of the following:
VAR1=1 or upcase(var2)="Y" or checkstatus>0.

• _cstOutputDS—The output data set that is returned to the calling program. This data
set contains a record for each domain that is referenced by a checkid, standardversion,
and checksource.

File: crtddsutil_buildchecktablelist.sas

Module Framework

Overview
This is the framework description. It describes what the framework does, and how it fits
together.

Since: 1.2

See Appendix A1, “Global Macro Variables,” on page 211

Table A3.2 Module Framework Macro Summary

Exposure Macro

External

Framework

%cst_createDS(_cstStandard=, _cstStandardVersion=, _cstType=, _cstSubType=,
_cstOutputDS=, _cstResultsOverrideDS=);

External

standard_name

%cst_createEmptyTables;

Deprecated

External

Study Creation

%cst_createStudyFromStandard(_cstModel=, _cstVersion=, _cstStudyRootPath=);

External

Framework

%cst_createTablesForDataStandard(_cstStandard=, _cstStandardVersion=,
_cstOutputLibrary=, _cstResultsOverrideDS=);

External

Framework

%cst_deleteProperties(_cstPropertiesLocation=, _cstLocationType=,
_cstResultsOverrideDS=);

External

Framework

%cst_getRegisteredStandards(_cstOutputDS=, _cstResultsDS=);

External

standard_name

%cst_getStandardMetadata(_cstSASReferences=, _cstResultsOverrideDS=);

Deprecated

External

Framework

%cst_getStandardSASReferences(_cstStandard=, _cstStandardVersion=, _cstOutputDS=,
_cstResultsOverrideDS=);

234 Appendix 3 • Macro Application Programming Interface



Exposure Macro

External

Framework

%cst_getStatic(_cstName=, _cstVar=);

External %cst_insertStandardSASRefs(_cstSASReferences=, _cstOutputDS=,
_cstAddRequiredCSTRefs=0, _cstResultsOverrideDS=);

External

Framework

%cst_registerStandard(_cstRootPath=, _cstControlSubPath=, _cstStdDSName=,
_cstStdSASRefsDSName=, _cstOutputDS=);

External

Framework

%cst_setProperties(_cstPropertiesLocation=, _cstLocationType=,
_cstResultsOverrideDS=);

External

Framework

%cst_setStandardProperties(_cstStandard=, _cstStandardVersion=, _cstSubType=,
_cstResultsOverrideDS=);

External

Framework

%cst_setStandardVersionDefault(_cstStandard=, _cstStandardVersion=,
_cstResultsOverrideDS=);

External

Framework

%cst_unregisterStandard(_cstStandard=, _cstStandardVersion=, _cstResultsOverrideDS=);

External

Framework

%cst_unsetProperties(_cstPropertiesLocation=, _cstLocationType=,
_cstResultsOverrideDS=);

External

Validation Check

%cstcheck_column(_cstControl=);

External

Validation Check

%cstcheck_columncompare(_cstControl=);

External

Validation Check

%cstcheck_comparedomains(_cstControl=);

External

Validation Check

%cstcheck_dsmismatch(_cstControl=);

External

Validation Check

%cstcheck_metamismatch(_cstControl=);

External

Validation Check

%cstcheck_notconsistent(_cstControl=);

External

Validation Check

%cstcheck_notimplemented(_cstControl=);

External

Validation Check

%cstcheck_notincodelist(_cstControl=);

Module Framework 235



Exposure Macro

External

Validation Check

%cstcheck_notsorted(_cstControl=);

External

Validation Check

%cstcheck_notunique(_cstControl=);

External

Validation Check

%cstcheck_recmismatch(_cstControl=);

External

Validation Check

%cstcheck_recnotfound(_cstControl=);

External

Validation Check

%cstcheck_violatesstd(_cstControl=);

Internal

Framework Utility

%cstcheck_zeroobs(_cstControl=);

Internal

SAS Clinical Standards
Toolkit Validation Check
Utility

%cstcheckutil_formatlookup(_cstCol2=, _cstCol2Value=, _cstCol1=&_cstColumn,
_cstDomOnly=, _cstDSN=&_cstDSName, _cstRowCt=&_cstDSRowCount,
_cstC2Val=&_cstColumn2Value);

Internal

Framework Utility

%cstutil_allocatesasreferences / des='CST: Allocate sasreferences';

External

Framework

%cstutil_allocGlobalMetadataLib(_cstLibname=);

Internal

Framework Utility

%cstutil_appendresultds(_cstErrorDS=, _cstVersion=&_cstStandardVersion,
_cstSource=&_cstCheckSource, _cstStdRef=, _cstOrderBy=);

Internal

Framework Utility

%cstutil_buildcollist(_cstFormatType=DATASET, _cstColWhere=, _cstDomWhere=,
_cstColDSName=&_cstColumnMetadata, _cstDomDSName=&_cstTableMetadata,
_cstColSubOverride=N, _cstDomSubOverride=N);

Internal

Framework Utility

%cstutil_builddomlist(_cstFormatType=DATASET, _cstDomWhere=,
_cstDomDSName=&_cstTableMetadata, _cstSubOverride=N);

Internal

Framework Check

%cstutil_checkds(_cstdsname=, _csttype=, _cstsubtype=, _cststandard=*,
_cststandardversion=*);

Internal

Framework Check

Internal macro for the
cstutil_checkds macro

%chkvals;

236 Appendix 3 • Macro Application Programming Interface



Exposure Macro

Internal

Framework Utility

%cstutil_cleanupcstsession(_cstClearCompiledMacros=0, _cstClearLibRefs=0,
_cstResetSASAutos=0, _cstResetFmtSearch=0, _cstResetSASOptions=1,
_cstDeleteFiles=1, _cstDeleteGlobalMacroVars=0);

External

Framework Utility

%cstutil_CreateMetadataReport(_cstStandardTitle=, _cstValidationDS=,
_cstValidationDSWhClause=, _cstMessagesDS=, _cstStdRefDS=, _cstReportOutput=,
_cstCheckMDReport=N, _cstMessageReport=N, _cstStdRefReport=N,
_cstRecordView=N);

External

Framework Utility

%cstutil_createreport(_cstsasreferencesdset=, _cstresultsdset=&_cstRptResultsDS,
_cstmetricsdset=&_cstRptMetricsDS, _cstreporterrorsonly=N, _cstreportobs=,
_cstreportbytable=N, _csttablechecksdset=, _csttablecheckscode=,
_cstkeeptablechecklist=N, _csttablesubset=, _cstreportoutput=, _cstsummaryReport=Y,
_cstioReport=Y, _cstmetricsReport=Y, _cstgeneralResultsReport=Y,
_cstcheckIdResultsReport=Y);

Internal

Framework

%cstutil_createTempMessages(_cstCreationFlag=);

Internal

standard_name

%cstutil_deleteDataSet(_cstDataSetName=);

Internal

Framework

%cstutil_getRandomNumber(_cstVarname=);

Internal

Framework Utility

%cstutil_getsasreference(_cstStandard=, _cstStandardVersion=, _cstSASRefType=,
_cstSASRefSubtype=, _cstSASRefsasref=, _cstSASRefmember=, _cstConcatenate=0,
_cstFullname=0, _cstAllowZeroObs=0);

Internal

Framework Utility

%cstutil_getsubjectcount(_cstDS=, _cstsubid=&_cstSubjectColumns);

External

Framework

%cstutil_internalmanageresults(_cstAction=);

Internal

Framework Utility

%cstutil_messagesdsattr /des='CST: Messages data set column attributes';

Internal

Framework Utility

%cstutil_metricsdsattr /des='CST: Metrics data set column attributes';

Internal

Framework Utility

%cstutil_parsecolumnscope(_cstscopestr=, _cstopsource=, _cstsublistnum=);

Internal

Framework Utility

%cstutil_parsescopesegment(_cstPart=, _cstVarName=, _cstMessageID=CST0004);

Internal

Framework Utility

%cstutil_parsetablescope(_cstscopestr=, _cstopsource=, _cstsublistnum=);

Module Framework 237



Exposure Macro

Internal

SAS Clinical Standards
Toolkit Framework

%cstutil_processsetup(_cstSASReferencesSource=SASREFERENCES,
_cstSASReferencesName=sasreferences, _cstSASReferencesLocation=);

Internal

Framework Utility

%cstutil_readcontrol /des="CST: Create control file macro variables";

External

Framework Utility

%cstutil_reportgeneralprocess;

External

Framework Utility

%cstutil_reportinputsoutputs;

External

Framework Utility

%cstutil_reportprocessmetrics;

External

Framework Utility

%cstutil_reportprocessresults;

External

Framework Utility

%cstutil_reportprocesssummary;

External

Framework Utility

%cstutil_reportsetup(_cstRptType=Metadata);

External

Framework Utility

%cstutil_reporttabledata;

Internal

Framework Utility

%cstutil_resultsdsattr /des='CST: Results data set column attributes';

Internal

Framework Utility

%cstutil_resultsdskeep /des='CST: Results data set columns';

Internal

Framework Utility

%cstutil_saveresults(_cstIncludeValidationMetrics=0);

Automatically generated by
the CST-Framework post-
installation configuration
component

%cstutil_setcstgroot;

Internal

Framework Utility

%cstutil_setmodel /des="Set Which Model Definition to Use";

Internal

CDISC CRT-DDS

%cstutil_writecubexml(_cstXMLOut=, _cstMDPFile=, _cstDebug=);

238 Appendix 3 • Macro Application Programming Interface



Exposure Macro

Internal

Framework Utility

%cstutil_writemetric(_cstMetricParameter=, _cstResultID=, _cstResultSeqParm=,
_cstMetricCnt=, _cstSrcDataParm=, _cstMetricsDSParm=&_cstMetricsDS);

Internal

Framework Utility

%cstutil_writeresult(_cstResultID=, _cstValCheckID=, _cstResultParm1=,
_cstResultParm2=, _cstResultSeqParm=1, _cstSeqNoParm=1, _cstSrcDataParm=,
_cstResultFlagParm=0, _cstRCParm=0, _cstActualParm=, _cstKeyValuesParm=,
_cstResultDetails=, _cstResultsDSParm=&_cstResultsDS);

Macro Detail

%cst_createDS
%cst_createDS(_cstStandard=, _cstStandardVersion=, _cstType=, _cstSubType=,
_cstOutputDS=, _cstResultsOverrideDS=);

[ Exposure: external ] [ Macro Type: framework ]

Creates a zero observation data set based on those provided by a registered standard.

Parameters:

• _cstStandard—Required. The name of a registered standard.

• _cstStandardVersion—Optional. The version of the standard that the data set should
be created from. If this is omitted, then the default version for the standard is used. If
a default version is not defined, then an error is generated.

• _cstType—Required. The type of data set to be created. This value comes from the
TYPE column in the SASReferences file for the standard-version combination.

• _cstSubType—Optional. Specifies the subtype for the type. This value comes from the
SUBTYPE column in the SASReferences file for the standard-version combination. If
the type has no subtypes, then the value can be omitted. Otherwise, it must be provided.

• _cstOutputDS—Required. The name of the data set to be created.

• _cstResultsOverrideDS—Optional. The (LIBNAME.)member that refers to a Results
data set to be created. If omitted, then the Results data set specified by the
&_cstResultsDS is used.

File: cst_createds.sas

%cst_createEmptyTables
%cst_createEmptyTables;

[ Exposure: external ] [ Macro Type: standard_name ]

Create empty table shells using reference metadata.

Full, multi-line explanation

Required Global Macro Variables:

• _cstVar1

• _cstVar2

Deprecated. Explanation

File: cst_createemptytables.sas

Module Framework 239



%cst_createStudyFromStandard
%cst_createStudyFromStandard(_cstModel=, _cstVersion=, _cstStudyRootPath=);

[ Exposure: external ] [ Macro Type: study creation ]

cst_createStudyFromStandard

Creates a study from selected model and version.

Required Global Macro Variables: (none)

Required File Inputs: (none)

Parameters:

• _cstModel—The name of the data model to use for this study.

• _cstVersion—The version of the data model to use for this study.

• _cstStudyRootPath

File: cst_createStudyFromStandard.sas

%cst_createTablesForDataStandard
%cst_createTablesForDataStandard(_cstStandard=, _cstStandardVersion=,
_cstOutputLibrary=, _cstResultsOverrideDS=);

[ Exposure: external ] [ Macro Type: framework ]

Creates tables from registered reference metadata. This macro generates all of the table
shells that are defined for the standard in a library specified by the caller where a standard
is registered .

Required Global Macro Variables: CST-Framework standard variables

Parameters:

• _cstStandard—Required. The name of a registered standard.

• _cstStandardVersion—Optional. The version of the standard from which the data set
should be created. If this is omitted, then the default version for the standard is used.
If a default version is not defined, then an error is generated.

• _cstOutputLibrary—Required. Specifies the LIBNAME in which the table shells
should be created.

• _cstResultsOverrideDS—Optional. The (LIBNAME.)member that refers to a Results
data set to be created. If omitted, then the Results data set specified by the
&_cstResultsDS is used.

File: cst_createtablesfordatastandard.sas

%cst_deleteProperties
%cst_deleteProperties(_cstPropertiesLocation=, _cstLocationType=,
_cstResultsOverrideDS=);

[ Exposure: external ] [ Macro Type: framework ]

Reads a properties file or data set and unsets global macros, accordingly. Property files
should have the format name=value. Property data sets should have a character field for
name and value. They might have a comment field, but this field is ignored.

Parameters:

• _cstPropertiesLocation—Required. The location of the property file. The format
depends on the value of _cstLocationType.

240 Appendix 3 • Macro Application Programming Interface



• _cstLocationType—Required. Identifies the format for the value of
_cstPropertiesLocation. Valid values are: PATH (the path to a properties file),
FILENAME (a valid, assigned SAS filename to the properties file), and DATA (a
(LIBNAME.)membername of a SAS data set that contains the properties).

• _cstResultsOverrideDS—Optional. The (LIBNAME.)member that refers to a Results
data set to be created. If omitted, then the Results data set specified by the
&_cstResultsDS is used.

File: cst_deleteproperties.sas

%cst_getRegisteredStandards
%cst_getRegisteredStandards(_cstOutputDS=, _cstResultsDS=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstOutputDS

• _cstResultsDS

File: cst_getregisteredstandards.sas

%cst_getStandardMetadata
%cst_getStandardMetadata(_cstSASReferences=, _cstResultsOverrideDS=);

[ Exposure: external ] [ Macro Type: standard_name ]

Retrieves the standard metadata for standards.

A valid SASReferences data set is passed into the macro. It should contain records that
point to the metadata for the data standard. A row should exist for each metadata table that
is to be returned. The row should identify the standard, standardversion, type, and subtype
that can be mapped to the standard's registered information. In addition, the SASRef and
memName columns should identify where the new data set is to be created. The RefType
must be set to libref.

For example, to retrieve SDTM 3.1.1 reference metadata about tables, the data set should
have the columns standard=CDISC-SDTM and standardVersion=3.1.1. Type should be set
to “referencemetadata” and subtype to “table.” SASRef could be set to “Work” and
memname to “refTableMD.”

Deprecated. explanation

Parameters:

• _cstSASReferences—Required. The (LIBNAME.)member that refers to a valid
SASReferences file.

• _cstResultsOverrideDS—Optional. The (LIBNAME.)member that refers to a Results
data set to be created. If omitted, then the Results data set specified by the
&_cstResultsDS is used.

File: cst_getstandardmetadata.sas

%cst_getStandardSASReferences
%cst_getStandardSASReferences(_cstStandard=, _cstStandardVersion=,
_cstOutputDS=, _cstResultsOverrideDS=);

[ Exposure: external ] [ Macro Type: Framework ]

Retrieves the global SASReference records for the standard.

Module Framework 241



If the macro succeeds, then the global variable _cst_rc is set to 0. If it fails, then _cst_rc is
set to 1. The Results data set contains more information as to why it failed.

Parameters:

• _cstStandard—Required. The name of a registered standard.

• _cstStandardVersion—Optional. The version of the standard for which the caller wants
to retrieve the global SASReferences. This might be omitted if the caller is requesting
the default version for the standard.

• _cstOutputDS—Required. The (LIBNAME.)member name of the output data set to be
created.

• _cstResultsOverrideDS—Optional. The (LIBNAME.)member that refers to a Results
data set to be created. If omitted, then the Results data set specified by the
&_cstResultsDS is used.

File: cst_getstandardsasreferences.sas

%cst_getStatic
%cst_getStatic(_cstName=, _cstVar=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstName

• _cstVar

File: cst_getstatic.sas

%cst_insertStandardSASRefs
%cst_insertStandardSASRefs(_cstSASReferences=, _cstOutputDS=,
_cstAddRequiredCSTRefs=0, _cstResultsOverrideDS=);

[ Exposure: external ] [ Macro Type: Not specified ]

Inserts missing standards information into a SASReferences file.

It is possible to specify only the standard, standardversion, type, and subtype for
information that has been registered by the standard where a SASReferences uses a
standard. Calling this macro fills in the missing information. If a standardversion is not
specified, then the information for the default version of that standard is used.

Parameters:

• _cstSASReferences—Optional. The(LIBNAME.)member that points to a
SASReferences file to be completed. If this is not specified, then the global macro
variables _cstSASRefsLoc and _cstSASRefsName might be used to specify the
SASReferences file information. The _cstSASRefs macro variable is used if none of
the other mechanisms are provided or available.

• _cstOutputDS—Required. The output data set to create that contains the completed
information.

• _cstAddRequiredCSTRefs

• _cstResultsOverrideDS—Optional. The (LIBNAME.)member that refers to a Results
data set to be created. If omitted, then the Results data set specified by the
&_cstResultsDS is used.

File: cst_insertstandardsasrefs.sas

242 Appendix 3 • Macro Application Programming Interface



See Appendix A1, “Global Macro Variables,” on page 211.

%cst_registerStandard
%cst_registerStandard(_cstRootPath=, _cstControlSubPath=, _cstStdDSName=,
_cstStdSASRefsDSName=, _cstOutputDS=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstRootPath

• _cstControlSubPath

• _cstStdDSName

• _cstStdSASRefsDSName

• _cstOutputDS

File: cst_registerstandard.sas

%cst_setProperties
%cst_setProperties(_cstPropertiesLocation=, _cstLocationType=,
_cstResultsOverrideDS=);

[ Exposure: external ] [ Macro Type: framework ]

Reads a properties file or data set and sets global macros, accordingly. Property files should
have the format name=value. Property data sets should have a character field for name and
value. They might have a comment field, but this field is ignored.

Parameters:

• _cstPropertiesLocation—Required. The location of the property file. The format
depends on the value of _cstLocationType.

• _cstLocationType—Required. Identifies the format for the value of
_cstPropertiesLocation. Valid values are PATH (the path to a properties file),
FILENAME (a valid, assigned SAS filename to the properties file), and DATA (a
(LIBNAME.)membername of a SAS data set that contains the properties).

• _cstResultsOverrideDS—Optional. The (LIBNAME.)member that refers to a Results
data set to be created. If omitted, then the Results data set specified by the
&_cstResultsDS is used.

File: cst_setproperties.sas

%cst_setStandardProperties
%cst_setStandardProperties(_cstStandard=, _cstStandardVersion=, _cstSubType=,
_cstResultsOverrideDS=);

[ Exposure: external ] [ Macro Type: framework ]

When a standard is registered, it most likely also registers values in a SASReferences file.
A number of these values might be for properties files that are used by the standard, or
provided by the standard to help users. For example, CST_FRAMEWORK provides a
property subType of 'required' that points to a property file that has default settings for
required properties. A user can call this method using the following code to set these
properties:

%cst_setStandardProperties(
_cstStandard=CST_FRAMEWORK,

Module Framework 243



_cstStandardVersion=1.2,
_cstSubType=required);

Parameters:

• _cstStandard—Required. The name of a registered standard.

• _cstStandardVersion—Optional if the standard has a default set. Otherwise, it is
mandatory. This specifies the version of the standard.

• _cstSubType—Required. The name of the properties subtype that is to be read and from
where properties are set.

• _cstResultsOverrideDS—Optional. The (LIBNAME.)member that refers to a Results
data set to be created. If omitted, then the Results data set specified by the
&_cstResultsDS is used.

File: cst_setstandardproperties.sas

%cst_setStandardVersionDefault
%cst_setStandardVersionDefault(_cstStandard=, _cstStandardVersion=,
_cstResultsOverrideDS=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstStandard

• _cstStandardVersion

• _cstResultsOverrideDS

File: cst_setstandardversiondefault.sas

%cst_unregisterStandard
%cst_unregisterStandard(_cstStandard=, _cstStandardVersion=,
_cstResultsOverrideDS=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstStandard

• _cstStandardVersion

• _cstResultsOverrideDS

File: cst_unregisterstandard.sas

%cst_unsetProperties
%cst_unsetProperties(_cstPropertiesLocation=, _cstLocationType=,
_cstResultsOverrideDS=);

[ Exposure: external ] [ Macro Type: framework ]

Reads a properties file or data set and unsets global macros, accordingly. Property files
should have the format name=value. Property data sets should have a character field for
name and value. They might have a comment field, but this field is ignored.

Parameters:

• _cstPropertiesLocation—Required. The location of the property file. The format
depends on the value of _cstLocationType.

244 Appendix 3 • Macro Application Programming Interface



• _cstLocationType—Required. Identifies the format for the value of
_cstPropertiesLocation. Valid values are: PATH (the path to a properties file),
FILENAME (a valid, assigned SAS filename to the properties file), and DATA (a
(LIBNAME.)membername of a SAS data set that contains the properties).

• _cstResultsOverrideDS—Optional. The (LIBNAME.)member that refers to a Results
data set to be created. If omitted, then the Results data set specified by the
&_cstResultsDS is used.

File: cst_unsetproperties.sas

%cstcheck_column
%cstcheck_column(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation Check ]

cstcheck_column

Identifies any invalid column value or attribute.

Note: Macro requires use of _cstCodeLogic at a statement level in a SAS DATA step
context. _cstCodeLogic identifies records in errors by setting _cstError=1.

Example validation checks that use this macro include:

• Value of Visit Number is formatted to > 3 decimal places

• A column character value is not left-justified

• Study day of Visit/Collection/Exam (**DY) equals 0

• Length of **TEST > 40

Required Global Macro Variables (beyond reporting and debugging variables):
_cstSubjectColumns

Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_column.sas

%cstcheck_columncompare
%cstcheck_columncompare(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation Check ]

cstcheck_columncompare

Supports comparison of column values (much like cstcheck_multicolumn), providing
additional functionality in the form of step-level code (for example, optional reference to
column metadata).

Note: Macro requires use of _cstCodeLogic at a SAS DATA step level (that is, a full
DATA step or PROC SQL invocation). _cstCodeLogic creates a Work file
(_cstproblems) that contains records in error.

Example validation checks that use this macro: **DOSE and **DOSU inconsistencies for
expected columns

Required Global Macro Variables:

• _cstSubjectColumns

• _cstMetrics*

• <messaging, error>

Module Framework 245



Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_columncompare.sas

%cstcheck_comparedomains
%cstcheck_comparedomains(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation Check ]

cstcheck_comparedomains

Generally compares values for 1+ columns in one domain with values for those same
columns in another domain. For example, USUBJID value in any domain does not have a
matching USUBJID value in the DM domain.

Note: Macro requires use of _cstCodeLogic at a statement level in a SAS DATA step
context. _cstCodeLogic identifies records in error by setting _cstError=1.

Example validation checks that use this macro: Unique USUBJID+VISIT+VISITNUM
combinations in each domain not found in SV.

Required Global Macro Variables: (none)

Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_comparedomains.sas

%cstcheck_dsmismatch
%cstcheck_dsmismatch(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation Check ]

cstcheck_dsmismatch

Identifies any data set mismatches between study and template metadata and the source
data library.

Note: This macro module currently ignores tablescope and columnscope in the
_cstControl input data set.

Required Global Macro Variables: (none)

Required File Inputs: Single-record control data set identified by the control input
parameter.

Parameters:

• _cstControl—The single observation data set containing check-specific metadata.

File: cstcheck_dsmismatch.sas

%cstcheck_metamismatch
%cstcheck_metamismatch(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation Check ]

cstcheck_metamismatch

Identifies inconsistencies between study and reference column metadata.

Note: Macro requires use of _cstCodeLogic as a full SAS DATA step or PROC SQL
invocation. This DATA step or PROC SQL step assumes as input a Work copy of the

246 Appendix 3 • Macro Application Programming Interface



column metadata data set returned by the cstutil_buildcollist macro. Any resulting
records in the derived data set represent errors to be reported.

ASSUMPTIONS:

• No data content is accessed for this check.

• Both study and reference metadata must be present to assess compliance.

• Current coding approach assumes no reporting on non-errors.

Example validation checks that use this macro include:

• Required column not found (Error).

• Expected column not found (Warning).

• Permissible column not found (Note).

• Column found in data set but not in specification.

• Supplemental qualifier data set without USUBJID column.

• Column metadata attribute differences (for example, type, length, label, order, CT, and
so on).

Required Global Macro Variables: (none)

Required File Inputs: Single-record control data set identified by a control input parameter.

Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_metamismatch.sas

%cstcheck_notconsistent
%cstcheck_notconsistent(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation Check ]

cstcheck_notconsistent

Identifies any inconsistent column values across records.

Note: This macro requires use of _cstCodeLogic at a SAS DATA step level (that is, a full
DATA step or PROC SQL invocation). _cstCodeLogic creates a Work file
(_cstproblems) that contains records in error.

Example validation checks that use this macro include:

• **SEQ not consecutively incremented beginning at 1.

• Standard units inconsistent within **TESTCD across records.

Required Global Macro Variables:

• _cstSubjectColumns

• _cstMetrics*

• <messaging, error>

Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_notconsistent.sas

Module Framework 247



%cstcheck_notimplemented
%cstcheck_notimplemented(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation Check]

Placeholder to report that a check has not yet been implemented.

Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_notimplemented.sas

%cstcheck_notincodelist
%cstcheck_notincodelist(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation Check ]

cstcheck_notincodelist

Identifies any column values inconsistent with controlled terminologies. For example, a
**STAT value is found other than 'NOT DONE'.

Note: This macro requires reference to the SAS format search path built based on
type=FMTSEARCH records in the SASReferences control file.

Processing is based on the value of the check metadata LOOKUPTYPE field. When
LOOKUPTYPE=FORMAT, the code compares column values against a SAS format in
the format search path. Code logic is optional (that is, if the user does not specify any code
logic, then cstcheck_notincodelist uses default logic, which is PROC SQL code that creates
work._cstproblems if one or more errors are detected). The SAS format is specified in the
check metadata LOOKUPSOURCE field.

When LOOKUPTYPE=DATASET, the code requires the use of code logic to create the
data set work._cstproblems. LOOKUPSOURCE must contain the reference data set (for
example, MedDRA for AE preferred term lookups) used in code logic. Given that any
reference dictionary with any structure might be used, it is the responsibility of the user to
code correct joins and lookup logic in code logic.

When LOOKUPTYPE=CODELIST, functionality is deferred for SAS Clinical Standards
Toolkit 1.3.

When LOOKUPTYPE=METADATA, the code compares column values against a SAS
format in the format search path. Code logic is optional (that is, if the user does not specify
any code logic, then cstcheck_notincodelist uses default logic, which is PROC SQL code
that creates work._cstproblems if one or more errors are detected). The SAS format is
specified in the source column metadata XMLCODELIST field.

Required Global Macro Variables: (none)

Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_notincodelist.sas

%cstcheck_notsorted
%cstcheck_notsorted(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation check ]

cstcheck_notsorted

Identifies any domain that is not sorted by the keys defined in the metadata.

248 Appendix 3 • Macro Application Programming Interface



Example validation check that uses this macro: Identifies domain table that is not correctly
sorted.

Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_notsorted.sas

%cstcheck_notunique
%cstcheck_notunique(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation Check ]

cstcheck_notunique

This is a multi-function macro that assesses the uniqueness of data sets, columns, or value-
pairs from two columns. Each of these three functions accesses different code sections
within the macro.

Function 1: Is data set unique by a set of columns?

Data sets—It is assumed that if control column columnscope is blank, then code cycles
through domains that are specified in control column tablescope. Code identifies any
records that are not unique by the domain keys defined in the table-level metadata.

Multiple columns—This option allows the specification of a single set of columns (in the
form var1+var2+...varn). Code identifies any records that are not unique by the specified
set of columns within each domain specified in tablescope. For the purposes of reporting,
the specified columns are treated as the domain keys. No code logic is used or currently
checked.

Function 2: For any subject, are column values unique?

Single columns—For single columns (for example, **SEQ), code checks for uniqueness
in USUBJID (except TSSEQ, in TSPARMCD). No code logic is used or currently checked.

Function 3: Does a combination of two columns have unique values?

Column pairs—For multiple columns (for example, **TEST and **TESTCD), code
checks that there are a unique set of values for the pair of columns. These must be specified
in the form of matching columnscope sublists. Exactly and only two sublists can be
specified. No code logic is used or currently checked.

Function 4: Are the values in one column (Column2) consistent with the values in another
column (Column1)?

Column pairs—For multiple columns (for example, **TESTCD and **STRESU), code
checks that there is a unique value in Column2 for each value of Column1. These must be
specified in the form of matching columnscope sublists. Exactly and only two sublists can
be specified, with the first sublist containing Column1 (for example, VSTESTCD), and the
second sublist containing Column2 (for example, VSSTRESU). Code logic is required. It
is the presence of code logic that distinguishes Function 3 and Function 4 processing.

The columnscope sublists should be bounded by brackets in the following style:

[LBTEST+VSTEST][LBTESTCD+VSTESTCD]

The following limitations apply:

• The two lists must resolve to the same number of columns.

• The columns to be compared must be in the same data set.

• The first item in sublist 1 is paired with the first item in sublist 2, and so on.

Module Framework 249



The following are the example combinations of tablescope and columnscope:

tableScope columnScope        How code interprets *;
---------- -----------        --------------------------------------------- 
ALL                           For all domains, is each unique by its keys? 
FINDINGS   [**TEST][**TESTCD] For all FINDINGS domains, **TEST and **TESTCD 
                              must map 1:1 
ALL        **SEQ              For all domains, check **SEQ for uniqueness 
                              within USUBJID 
DM                            Is DM unique by its keys (STUDYID+USUBJID)? 
DV         [DVTERM][DVDECOD]  For DV, DVTERM and DVDECOD must map 1:1 
SUPP**                        For all SUPP** domains, are records unique by 
                              their keys? 
DV         USUBJID+DVTERM     For DV, are records unique by USUBJID and 
                              DVTERM?

Required Global Macro Variables:

• _cstSubjectColumns

• _cstMetrics*

• <messaging, error>

Required File Inputs: Single-record control data set identified by _cstControl input
parameter.

Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_notunique.sas

%cstcheck_recmismatch
%cstcheck_recmismatch(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation Check ]

cstcheck_recmismatch

Identifies any record mismatches across domains.

Note: Macro requires use of _cstCodeLogic at a SAS DATA step level (that is, a full
DATA step or PROC SQL invocation). _cstCodeLogic creates a Work file
(_cstproblems) containing records in error.

Example CDISC SDTM validation checks that use this macro: Comments, Relrec, or
Supplemental Qualifier RDOMAIN references to other domains or domain records that do
not exist.

Required Global Macro Variables:

• _cstMetrics*

• <messaging, error>

Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_recmismatch.sas

%cstcheck_recnotfound
%cstcheck_recnotfound(_cstControl=);

250 Appendix 3 • Macro Application Programming Interface



[ Exposure: external ] [ Macro Type: Validation Check ]

cstcheck_recnotfound

Generally compares the consistency of one or more columns across two tables. Or, it allows
the comparison of the consistency of one <table>.<column> with another
<table>.<column>. (For example, in CDISC SDTM, STUDYID in the TA domain does
not match STUDYID in the DM domain).

Note:  This macro requires the use of _cstCodeLogic at a statement level in a SAS DATA
step context. _cstCodeLogic identifies records in error by setting _cstError=1.

Note: This macro requires that tablescope syntax specifies two sublists in the form [DM]
[TA], comparing one or more columnscope fields across the tables in these sublists.

CDISC SDTM example validation check that uses this macro: DM subjects where no record
for the subject is found in the DS table.

Required Global Macro Variables (beyond reporting and debugging variables): (none)

Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_recnotfound.sas

%cstcheck_violatesstd
%cstcheck_violatesstd(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation Check ]

cstcheck_violatesstd

Identifies any invalid column value or values that are defined in a reference standard.

Note: This macro requires use of _cstCodeLogic at a statement level in a SAS DATA step
context. _cstCodeLogic identifies records in errors by setting _cstError=1.

Example validation checks that use this macro include:

• Identifies a null value found in a column where core attribute is REQ.

• Identifies a null value found in a column where core attribute is EXP.

• A column character value is not correctly in uppercase.

• A numeric column that contains nonnumeric entries.

Required Global Macro Variables:

• _cstSubjectColumns—Currently used only with the SDTM model. CRT-DDS does not
require this global macro. CRT-DDS does not use _cstMetricsNumSubj when running
metrics (not subject based).

Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_violatesstd.sas

%cstcheck_zeroobs
%cstcheck_zeroobs(_cstControl=);

[ Exposure: external ] [ Macro Type: Validation Check ]

cstcheck_zeroobs

Identifies any data set with zero observations.

Module Framework 251



Required Global Macro Variables: (none)

Required File Inputs: Single-record control data set identified by control input parameter.

Parameters:

• _cstControl—The single observation data set that contains check-specific metadata.

File: cstcheck_zeroobs.sas

%cstcheckutil_formatlookup
%cstcheckutil_formatlookup(_cstCol2=, _cstCol2Value=, _cstCol1=&_cstColumn,
_cstDomOnly=, _cstDSN=&_cstDSName, _cstRowCt=&_cstDSRowCount,
_cstC2Val=&_cstColumn2Value);

[ Exposure: external ] [ Macro Type: SAS Clinical Standards Toolkit Validation Check
Utility ]

cstcheckutil_formatlookup

Creates work._cstproblems that contains any records that are included in the
_cstSourceDS data set where the value of a column is not found in the format value column.
For example, in the TS domain, TSPARMCD has a value of SEX. The $SEXPOP format
is associated with this variable and has the following values: BOTH, F, and M. TSVAL
has to contain one of these values to be correct. An error condition exists otherwise.

Note: This macro is called within _cstCodeLogic at a SAS DATA step level (that is, a full
DATA step or PROC SQL invocation).

Required Global Macro Variables: (none)

Required File Inputs: Single-record control data set identified by control input parameter.

Parameters:

• _cstCol2—The variable that contains the value to check (TSPARMCD).

• _cstCol2Value—The actual value to check from _cstCol2.

• _cstCol1

• _cstDomOnly—The domain or table that contains _cstCol2.

• _cstDSN

• _cstRowCt

• _cstC2Val

File: cstcheckutil_formatlookup.sas

%cstutil_allocatesasreferences
%cstutil_allocatesasreferences / des='CST: Allocate sasreferences';

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_allocatesasreferences

Method to allocate any librefs and filerefs in the SASReferences data set, and set the
autocall and format search paths based on the SASReferences settings.

Must be called outside the context of a DATA step, typically as an initial step in any SAS
Clinical Standards Toolkit driver program (for example, cst_validate).

Note: A call to a framework macro to validate the structure and content of the
SASReferences data set is a required initial step.

252 Appendix 3 • Macro Application Programming Interface



Required Global Macro Variables:

• _cstResultsDS

• _cstSASRefsLoc (provides location of the SASReferences input file)

• _cstSASRefsName (provides name of the SASReferences input file)

• _cstSASRefs (Work library version of SASReferences)

• _cstFMTLibraries (include Work and Library in fmtsearch?)

• _cstMessageOrder (append or merge, where merge honors order precedence)

Required File Inputs: sasreferences.sas7bdat

File: cstutil_allocatesasreferences.sas

%cstutil_allocGlobalMetadataLib
%cstutil_allocGlobalMetadataLib(_cstLibname=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstLibname

File: cstutil_allocglobalmetadatalib.sas

%cstutil_appendresultds
%cstutil_appendresultds(_cstErrorDS=, _cstVersion=&_cstStandardVersion,
_cstSource=&_cstCheckSource, _cstStdRef=, _cstOrderBy=);

[ Exposure: internal ] [ Macro Type: Framework utility ]

Appends a check-level work Results data set to the process work Results data set.
Parameters passed are check-level, not record-level values.

Must be called outside the context of a DATA step.

Required File Inputs: (none)

Required Global Macro Variables: (none)

Parameters:

• _cstErrorDS—A SAS Work data set that contains one or more observations
documenting the results of check-level validation processing on a source data set record
level.

• _cstVersion—The specific version of the model. This defaults to the global
_cstStandardVersion macro variable value. Used to look up an associated message from
the Messages data set.

• _cstSource—The source of the check, allowing source-specific messaging. Used to
look up an associated message from the Messages data set.

• _cstStdRef—Optional. Reference in standard supporting checks.

• _cstOrderBy—Optional. The order of the records is important, so specify the column
order (SQL form, comma-separated columns) that the _cstErrorDS should have when
exiting this macro.

File: cstutil_appendresultds.sas

Module Framework 253



%cstutil_buildcollist
%cstutil_buildcollist(_cstFormatType=DATASET, _cstColWhere=, _cstDomWhere=,
_cstColDSName=&_cstColumnMetadata, _cstDomDSName=&_cstTableMetadata,
_cstColSubOverride=N, _cstDomSubOverride=N);

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_buildcollist

Builds a set of columns (in either list or data set format) based on the value from the
validation check control file Validation_Control.columnscope.

The expected result is that the work._csttablemetadata and work._cstcolumnmetadata data
sets are created and are in synchronization. This means that they are consistent with regard
to the tables based on resolving the tablescope and columnscope check macro fields.

Rules used to interpret columnscope values (using mostly CDISC SDTM examples):

• Validation_Control.columnscope might be null.

• Blanks are translated to + (for example, LBDTC LBENDTC becomes LBDTC
+LBENDTC).

• Value should not begin with a + or -.

• If the blank translation results in multiple + characters, then all but one of these
characters are removed (for example, AE1 +DM1 becomes AE1++DM1, which
becomes AE1+DM1).

• No attempt is made to assess the validity of the columnscope value (for example,
**TEST-AE1 is allowed, although no change to the resolved set of **TEST columns
occurs).

• The derived set of columns is built by parsing columnscope from left to columns).

• If <libref> is included, then it must be listed in the SASReferences.SASRef column.

Wildcard Conventions:

• must use the string **

• might appear as a suffix (for example, SUPP** for all columns that start with SUPP)

• might appear as a prefix (for example, **DTC for all columns that end with DTC)

• might appear alone (for example, **), equivalent to _ALL_

• <table>.** for all columns in the specified data set

• **.USUBJID for all USUBJID columns across referenced data sets

• sublists are delimited by brackets, and resolved lengths (that is, # columns) must be the
same unless _cst*SubOverride is set to Y, and they must conform to non-sublist rules
stated above

• A special naming convention of <column>:<value>, such as
QUALIFIERS:DATETIME allows specification of a _cstColumnMetadata column
and column value to subset columns. In this example, all
_cstColumnMetadata.QUALIFIERS= 'DATETIME' columns are returned.

Sample columnscope values:

• _ALL_ (all columns)

• AESEQ (a single column)

• LBDTC+LBENDTC (multiple columns)

• QUALIFIERS:DATETIME (_cstColumnMetadata.QUALIFIERS='DATETIME')

254 Appendix 3 • Macro Application Programming Interface



• **TEST (all columns ending in TEST)

• DM** (all columns beginning with DM)

• **TEST+**TESTCD (all columns ending in TEST or TESTCD)

• [AESTDY+CMSTDY+EXSTDY][AEENDY+CMENDY+EXENDY] (two paired
sublists)

• SRCDATA1.AE.AESTDY+SRCDATA2.AE.AESTDY (AESTDY column from AE
data sets in two different libraries)

• AE.** (all columns in the AE table)

• **.USUBJID (all USUBJID columns from all tables)

Required Global Macro Variables (beyond reporting and debugging variables):

• _cstTableMetadata

• _cstColumnMetadata

Required File Inputs: work._cstcolumnmetadata

Parameters:

• _cstFormatType—If the value is LIST, it sets macro variables of # tables and space-
delimited list of tables. The value DATASET is the default. Returns a data set of tables
matching tablescope specification.

• _cstColWhere—WHERE clause to subset returned set of columns. Any WHERE
clause is applied as the last step.

• _cstDomWhere—WHERE clause to subset returned set of tables. Any WHERE clause
is applied as the last step.

• _cstColDSName—Name of data set with column metadata returned when
_cstFormatType=DATASET.

• _cstDomDSName—Name of data set with table metadata returned when
_cstFormatType=DATASET.

• _cstColSubOverride—Y or N (default). If Y, then overrides sublist processing to allow
sublists of different lengths (such as columnScope=[**DTC][RFSTDTC] ).

• _cstDomSubOverride—Y or N (default). If Y, then overrides sublist processing to
allow sublists of different lengths (such as tableScope=[_ALL_-DM][DM] ).

File: cstutil_buildcollist.sas

%cstutil_builddomlist
%cstutil_builddomlist(_cstFormatType=DATASET, _cstDomWhere=,
_cstDomDSName=&_cstTableMetadata, _cstSubOverride=N);

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_builddomlist

Builds set of tables (in either list or data set format) based on the value from the validation
check control file Validation_Control.tablescope.

Rules used to interpret tablescope values (using mostly CDISC SDTM examples) include:

• Validation_Control.tablescope might not be null.

• Blanks are translated to + (for example, AE DM becomes AE+DM).

• Value should not begin with a + or -.

Module Framework 255



• If the blank translation results in multiple + characters, then all but one of the +
characters are removed (for example, AE +DM becomes AE++DM, which becomes
AE+DM).

• No attempt is made to assess the validity of the tablescope value (for example,
CLASS:FINDINGS-AE is allowed, although no change to the resolved set of
CLASS:FINDINGS tables occurs).

• The derived set of tables is built by parsing tablescope from left to right (for example,
_ALL_-CLASS:RELATES builds a set of all tables removing RELREC and SUPP**).

• If <libref> is included, then it must be listed in the SASReferences.SASRef column.

Wildcard Conventions:

• must use the string **

• might appear as a suffix (for example, SUPP** for all tables that start with SUPP)

• might appear as a prefix (for example, **DM for all tables that end with DM)

• might appear alone (for example, **), equivalent to _ALL_

• <libref>.** for all tables in the specified library

• **.AE for all AE tables across referenced libraries

• sublists are delimited by brackets, and resolved lengths (that is, # columns) must be the
same unless _cst*SubOverride is set to Y, and they must conform to non-sublist rules
stated above

• A special naming convention of <column>:<value>, such as: CLASS:EVENTS allows
specification of a _cstTableMetadata column and column value to subset tables. In this
example, all CLASS='EVENTS' tables are returned.

Sample tablescope values:

• _ALL_ (all tables)

• AE (a single table)

• DM+DS (multiple tables)

• CLASS:EVENTS (_cstTableMetadata.CLASS='EVENTS')

• SUPP** (all Supplemental Qualifier tables)

• _ALL_-SUPP** (all tables except Supplemental Qualifier tables)

• [DM][EX] (two sublists comparing DM with EX)

• SRCDATA1.AE+SRCDATA2.AE (AE table from two different libraries)

• SRCDATA.** (all tables from the SRCDATA library)

• **.AE (all AE tables from all sourcedata libraries)

Required Global Macro Variables (beyond reporting and debugging variables):

_cstTableMetadata

Required File Inputs: none

Parameters:

• _cstFormatType—If the value is LIST, it sets macro variables of # tables and space-
delimited list of tables. The value DATASET is the default. Returns a data set of tables
matching tablescope specification.

256 Appendix 3 • Macro Application Programming Interface



• _cstDomWhere—WHERE clause to subset returned set of tables. Any WHERE clause
is applied as the last step.

• _cstDomDSName—Name of data set returned when _cstFormatType=DATASET.

• _cstSubOverride—Y or N (default). If Y, then overrides sublist processing to allow
sublists of different lengths (such as tableScope=[_ALL_-DM][DM] ).

File: cstutil_builddomlist.sas

%cstutil_checkds
%cstutil_checkds(_cstdsname=, _csttype=, _cstsubtype=, _cststandard=*,
_cststandardversion=*);

[ Exposure: internal ] [ Macro Type: framework check ]

cstutil_checkDS

Validates the structure of the data set against the template data set structure that is provided
with the standard.

Required Global Macro Variables: assumes &_cstResultsDS macro is set to a valid two-
level name.

Required File Inputs:

Parameters:

• _cstdsname—Required. The two-level name of the data set to validate.

• _csttype—Required. The type of data set to be created. This value comes from the
TYPE column in the SASReferences file for the standard-version combination.

• _cstsubtype—Optional. Specifies the subtype for the type. This value comes from the
SUBTYPE column in the SASReferences file for the standard-version combination. If
the type has no subtypes, then this value can be omitted. Oherwise it must be provided.

• _cststandard—Optional. The name of the data standard to validate against. By default,
all standards are included.

• _cststandardversion—Optional. The version of the data standard to validate against.
By default, all values of standardversion are included.

File: cstutil_checkds.sas

%chkvals
%chkvals;

[ Exposure: Not specified ] [ Macro Type: Not specified ]

***********macro parameters not defined ************

Data set exists and has some records.

Dump contents of template table, compare it to the data set that is passed in.

Only keep those columns that have lookup values provided with the standard.

Load the list of columns to check into macro variable column.

Load the number of columns to check into macro variable numcol.

Separate which lookup columns have a dependency on the refcolumn in the lookup table.

Load the list of columns that have a dependency on a reference column into macro variable
refcol.

Module Framework 257



Load the number of columns that depend on a refcolumn into macro variable numrefcol.

Sort the lookup table.

File: cstutil_checkds.sas

%cstutil_cleanupcstsession
%cstutil_cleanupcstsession(_cstClearCompiledMacros=0, _cstClearLibRefs=0,
_cstResetSASAutos=0, _cstResetFmtSearch=0, _cstResetSASOptions=1,
_cstDeleteFiles=1, _cstDeleteGlobalMacroVars=0);

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_cleanupcstsession

Cleans up after a SAS Clinical Standards Toolkit session, including removing any process-
level SAS files and clearing the work.sasmacr catalog.

Most often used at the end of a SAS Clinical Standards Toolkit driver program, such as
validate_data. Should be called where a DATA step or PROC is allowed.

Required Global Macro Variables:

• _cstDeBug

• _cstsasrefs

• _cstmessages

Parameters:

• _cstClearCompiledMacros—Remove all compiled macros from the work.sasmacr
catalog. Values: 0 (No, default), 1 (Yes).

• _cstClearLibRefs—Deallocate all librefs and filerefs set based on the SASReferences
content. Values: 0 (No, default), 1 (Yes).

• _cstResetSASAutos—Reset the autocall search path to its initial state. Values: 0 (No,
default), 1 (Yes).

• _cstResetFmtSearch—Reset the format search path to its initial state. Values: 0 (No,
default), 1 (Yes).

• _cstResetSASOptions—Reset SAS options to their initial state. Values: 0 (No), 1 (Yes,
default).

• _cstDeleteFiles—Delete all SAS Clinical Standards Toolkit Work files and catalogs.
Values: 0 (No), 1 (Yes, default). If _cstDebug=1, then files are not deleted even if
_cstDeleteFiles=1.

• _cstDeleteGlobalMacroVars—Delete all SAS Clinical Standards Toolkit global macro
variables set based on property filename or value pairs. Values: 0 (No, default), 1 (Yes).

File: cstutil_cleanupcstsession.sas

%cstutil_CreateMetadataReport
%cstutil_CreateMetadataReport(_cstStandardTitle=, _cstValidationDS=,
_cstValidationDSWhClause=, _cstMessagesDS=, _cstStdRefDS=, _cstReportOutput=,
_cstCheckMDReport=N, _cstMessageReport=N, _cstStdRefReport=N,
_cstRecordView=N);

[ Exposure: external] [ Macro Type: Framework utility ]

cstutil_createmetadatareport

258 Appendix 3 • Macro Application Programming Interface



Create a report documenting a SAS Clinical Standards Toolkit process, based on the
Validation Master or Validation Control, Messages, and the Validation StdRef data sets.

Parameters:

• _cstStandardTitle—Optional. Title that defines the title2 statement for all reports.

• _cstValidationDS—Required. The validation data set that is used by a SAS Clinical
Standards Toolkit process. This would be Validation Master or Validation Control, or
a derivative provided by the user.

• _cstValidationDSWhClause—Optional. WHERE clause applied to
_cstValidationDS.

• _cstMessagesDS—Required. The Messages data set used by a SAS Clinical Standards
Toolkit process.

• _cstStdRefDS—The Validation StdRef data set created for a SAS Clinical Standards
Toolkit standard. This file is required if _cstStdRefReport=Y.

• _cstReportOutput—The file that contains the report. Acceptable files are PDF, RTF,
and HTML. The extension is used to determine ODS output.

• _cstCheckMDReport—Specifies whether panel 2 Check Details is run. Default is N.

• _cstMessageReport—Specifies whether panel 3 Message Details is run. Default is N.

• _cstStdRefReport—Specifies whether panel 4 Reference Information is run. Default is
N.

• _cstRecordView—If Y, then a full listing of all available check metadata is generated,
by check, in a single listing. Either this listing or the multi-panel report can be generated
in a single invocation of this macro, but not both. Default is N.

File: cstutil_createmetadatareport.sas

%cstutil_createreport
%cstutil_createreport(_cstsasreferencesdset=, _cstresultsdset=&_cstRptResultsDS,
_cstmetricsdset=&_cstRptMetricsDS, _cstreporterrorsonly=N, _cstreportobs=,
_cstreportbytable=N, _csttablechecksdset=, _csttablecheckscode=,
_cstkeeptablechecklist=N, _csttablesubset=, _cstreportoutput=, _cstsummaryReport=Y,
_cstioReport=Y, _cstmetricsReport=Y, _cstgeneralResultsReport=Y,
_cstcheckIdResultsReport=Y);

[ Exposure: external] [ Macro Type: Framework utility]

Creates a report documenting a SAS Clinical Standards Toolkit process, based on the
Results and Metrics data sets generated by that process.

Parameters:

• _cstsasreferencesdset—The SASReferences data set used by a SAS Clinical Standards
Toolkit process. Either this data set or the _cstresultsdset must exist.

• _cstresultsdset—The Results data set created by a SAS Clinical Standards Toolkit
process. Either this data set or the _cstsasreferencesdset must exist.

• _cstmetricsdset—Optional. The Metrics data set created by a SAS Clinical Standards
Toolkit process.

• _cstreporterrorsonly—(Y/N), If Y (default), then print only non-informational Results
data set records.

• _cstreportobs—The number of Results data set records (per checkid) to be printed. If
blank, then all records are printed.

Module Framework 259



• _cstreportbytable—Y/N. If N (default), then generate Report1 (by checkid) results. If
Y, then generate Report2 (by table) results. Any value that is not equal to Y is assumed
to be N.

• _csttablechecksdset—A data set providing a list of tables for each check. Use of this
parameter assumes that this data set has been built before running this report.

• _csttablecheckscode—The code module (macro) to build _csttablechecksdset if it does
not exist or is not passed as a parameter. Required only if _cstreportbytable=Y and
_csttablechecksdset is not provided.

• _cstkeeptablechecklist—Y or N (default). If running Report2, then keep the derived
list of tables (_csttablechecklist) to reuse in subsequent report requests. Building this
file might take awhile. Any value that is not equal to Y is assumed to be N.

• _csttablesubset—Report 2 parameter, subset Results data set to specified source data
set. If blank or _ALL_, then all records are printed. Example: DM.

• _cstreportoutput—Required. The path and filename where the report output is to be
written.

• _cstsummaryReport—Specifies whether to generate Report Summary panel. Valid
values are Y (default) and N. Any value that is not equal to N is assumed to be Y.

• _cstioReport—Specifies whether to generate Process Inputs/Outputs panel. Valid
values are Y (default) and N. Any value that is not equal to N is assumed to be Y.

• _cstmetricsReport—Specifies whether to generate Process Metrics panel. Valid values
are Y (default) and N. Any value that is not equal to N is assumed to be Y.

• _cstgeneralResultsReport—Specifies whether to generate General Process Reporting
panel. Valid values are Y (default) and N. Any value that is not equal to N is assumed
to be Y.

• _cstgeneralResultsReport—Specifies whether to generate General Process Reporting
panel. Valid values are Y (default) and N. Any value that is not equal to N is assumed
to be Y.

• _cstcheckIdResultsReport—Specifies whether to generate Process Results panel. Valid
values are Y (default) and N. Any value that is not equal to N is assumed to be Y.

File: cstutil_createreport.sas

%cstutil_createTempMessages
%cstutil_createTempMessages(_cstCreationFlag=);

[ Exposure: internal ] [ Macro Type: Framework ]

Creates a temporary Messages data set using the CST-FRAMEWORK messages. If the
Messages data set specified by the macro variable &_cstMessages does not exist, then this
macro creates a temporary version. It looks for the default version of the SAS Clinical
Standards Toolkit framework. It copies the Messages data set specified in the default
SASReferences file to the name specified in the &_cstMessages macro variable. If the
caller supplies the name of a macro variable in _cstCreationFlag, then this is set if the data
set was created in this macro.

Parameters:

• _cstCreationFlag—Optional. The name of a macro variable that is set in the macro. It
is set to 0 if the macro did not create the Messages data set (because it existed). It is set
to 1 if this macro created the data set. It is strongly suggested that the caller use this
variable to ensure that the temporary data set is cleaned up afterward.

File: cstutil_createtempmessages.sas

260 Appendix 3 • Macro Application Programming Interface



%cstutil_deleteDataSet
%cstutil_deleteDataSet(_cstDataSetName=);

[ Exposure: internal ] [ Macro Type: standard_name ]

Deletes a data set if it exists. _cst_rc is set to 0 if it is successful, and 1 otherwise. If the
library is not assigned, or the data set does not exist, then this still returns 0.

Parameters:

• _cstDataSetName—Required. The (LIBNAME.)memname of the data set to be
deleted.

File: cstutil_deletedataset.sas

%cstutil_getRandomNumber
%cstutil_getRandomNumber(_cstVarname=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstVarname

File: cstutil_getrandomnumber.sas

%cstutil_getsasreference
%cstutil_getsasreference(_cstStandard=, _cstStandardVersion=, _cstSASRefType=,
_cstSASRefSubtype=, _cstSASRefsasref=, _cstSASRefmember=, _cstConcatenate=0,
_cstFullname=0, _cstAllowZeroObs=0);

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_getsasreference

Gets the row-level metadata from the SASReferences data set given the type and subtype.

Assumptions: SASReferences exists and has interpretable content.

Required Global Macro Variables (beyond reporting and debugging variables):

• _cstTableMetadata

• _cstColumnMetadata

• _cstSASRefs

Required File Inputs: SASReferences data set (as defined by &_cstSASRefs)

Parameters:

• _cstStandard—Identifies the name of a registered standard. If blank, then no subsetting
by standard is attempted.

• _cstStandardVersion—Identifies the version of a registered standard. If blank, then no
subsetting by version is attempted.

• _cstSASRefType—Required. File or data type from sasreferences.type. Representative
values: autocall, control, fmtsearch, messages, properties, referencecontrol,
referencemetadata, results, sourcedata, and sourcemetadata.

• _cstSASRefSubtype—Optional. File or data subtype from sasreferences.subtype.
Values are specific to type. Some types do not have subtypes. Representative values:
column, data, log, lookup, metrics, package, reference, results, table, and validation.

• _cstSASRefsasref—Identifies the calling macro variable name to populate with the
value of sasreferences.sasref.

Module Framework 261



• _cstSASRefmember—Identifies the calling macro variable name to populate with the
value of sasreferences.memname, based on the value of the _cstFullname parameter.

• _cstConcatenate—If 1, then return multiple row values, space delimited, for each macro
variable requested (sasref, member).

• _cstFullname—If 1, then return full name from sasreferences.memname.

• _cstAllowZeroObs—If 1, then allow SASReferences to operate without warnings
when a row that is requested is not found and returns zero observations. Default=0.
Create warning when zero observations are encountered.

File: cstutil_getsasreference.sas

%cstutil_getsubjectcount
%cstutil_getsubjectcount(_cstDS=, _cstsubid=&_cstSubjectColumns);

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_getsubjectcount

Part of metrics processing. Populates the Metrics global macro variable
_cstMetricsCntNumSubj with the count of the number of subjects.

Called by any macro code module for which a count of the number of subjects is wanted.

Required Global Macro Variables (beyond reporting and debugging variables):
_cstSubjectColumns (used by default for a null _cstsubid input parameter)

Required File Inputs: source data set to be processed (as parameter _cstDS)

Parameters:

• _cstDS—The source data set that contains subject data of interest.

• _cstsubid—The set of subject identifiers appropriate for the _cstDS.

File: cstutil_getsubjectcount.sas

%cstutil_internalmanageresults
%cstutil_internalmanageresults(_cstAction=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstAction

File: cstutil_internalmanageresults.sas

%cstutil_messagesdsattr
%cstutil_messagesdsattr /des='CST: Messages data set column attributes';

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_messagesdsattr

Defines Messages data set column attributes.

Use: Statement level in a SAS DATA step, where a SAS ATTRIB statement might be used.

Required Global Macro Variables: (none)

Required File Inputs: (none)

File: cstutil_messagesdsattr.sas

262 Appendix 3 • Macro Application Programming Interface



%cstutil_metricsdsattr
%cstutil_metricsdsattr /des='CST: Metrics data set column attributes';

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_metricsdsattr

Defines Metrics data set column attributes.

Use: Statement level in a SAS DATA step, where a SAS ATTRIB statement might be used.

Required Global Macro Variables: (none)

Required File Inputs: (none)

File: cstutil_metricsdsattr.sas

%cstutil_parsecolumnscope
%cstutil_parsecolumnscope(_cstscopestr=, _cstopsource=, _cstsublistnum=);

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_parsecolumnscope

Parses input parameter strings to add or remove columns from the Work data set
_cstColumnMetadata.

Called only by cstutil_buildcollist.

Required Global Macro Variables (beyond reporting and debugging variables): (none)

Required File Inputs:

• work._csttempcolumnmetadata

• work._cstcolumnmetadata

Parameters:

• _cstscopestr—The string value being parsed. Generally, this is the entire columnscope
value if there are no sublists, or a specific sublist.

• _cstopsource—A modified string value used to populate the _cstRefValue macro value.

• _cstsublistnum—The sublist number in columnscope. If there is no sublist, then this is
set to 1.

File: cstutil_parsecolumnscope.sas

%cstutil_parsescopesegment
%cstutil_parsescopesegment(_cstPart=, _cstVarName=, _cstMessageID=CST0004);

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_parsescopesegment

Parses validation check metadata columns tablescope and columnscope to handle extended
values such as <libref>.<table>.<column> and wildcarding to build a logical SAS code
string to subset _cstTableMetadata and _cstColumnMetadata.

Called only by cstutil_parsecolumnscope and cstutil_parsetablescope.

Required Global Macro Variables (beyond reporting and debugging variables): (none)

Required File Inputs: (none)

Module Framework 263



Parameters:

• _cstPart—Which part of the tablescope or columnscope string is to be interpreted.
Expected values are _cstLibPart, _cstTabPart, or _cstColPart.

• _cstVarName—The column name in either _csttablemetadata or
_cstcolumnmetadata. Typical values are sasref, table, or column.

• _cstMessageID

File: cstutil_parsescopesegment.sas

%cstutil_parsetablescope
%cstutil_parsetablescope(_cstscopestr=, _cstopsource=, _cstsublistnum=);

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_parsetablescope

Parses input parameter strings to add or remove tables from the Work data set
_cstTableMetadata.

Called only by cstutil_builddomlist.

Required Global Macro Variables (beyond reporting and debugging variables): (none)

Required File Inputs:

• work._csttablemetadata

• work._csttemptablemetadata

Parameters:

• _cstscopestr—The string value being parsed. Generally, this is the entire tablescope
value if there are no sublists, or a specific sublist.

• _cstopsource—A modified string value used to populate the _cstRefValue macro value.

• _cstsublistnum—The sublist number within tablescope. If there is no sublist, then this
is set to 1.

File: cstutil_parsetablescope.sas

%cstutil_processsetup
%cstutil_processsetup(_cstSASReferencesSource=SASREFERENCES,
_cstSASReferencesName=sasreferences, _cstSASReferencesLocation=);

[ Exposure: external] [ Macro Type: SAS Clinical Standards Toolkit Framework]

cstutil_processsetup

Set up model-specific study metadata.

The basic function of this code module is to set up study metadata when using the various
SAS driver programs (for example, validate_data, cst_reports, and so on).

Required Global Macro Variables (beyond reporting and debugging variables): (none)

Required File Inputs: (none)

Parameters:

• _cstSASReferencesSource—Setup should be based on what initial source? Valid
values are SASREFERENCES (default) or RESULTS data set. If RESULTS, then no
other parameters are required, and set up responsibility is passed to the
cstutil_reportsetup macro.

264 Appendix 3 • Macro Application Programming Interface



• _cstSASReferencesName—The name of the SASReferences data set (default is
SASREFERENCES).

• _cstSASReferencesLocation—The path (folder location) of the SASReferences data
set (default is the path to the Work library).

File: cstutil_processsetup.sas

%cstutil_readcontrol
%cstutil_readcontrol /des=“CST: Create control file macro variables”;

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_readcontrol

To read a single Validation Control record, as passed in through the data set referenced by
the _cstThisCheckDS global macro variable, and to create local macro variables for each
column in the control file. These macro variables are available in the context of each
specific check macro.

Called by each check macro.

Required Global Macro Variables: _cstThisCheckDS

Required File Inputs: Control file as stored in _cstThisCheckDS

File: cstutil_readcontrol.sas

%cstutil_reportgeneralprocess
%cstutil_reportgeneralprocess;

[ Exposure: external] [ Macro Type: Framework utility ]

cstutil_reportinputsoutputs

Creates the General Process Reporting panel.

Parameters: (none)

File: cstutil_reportgeneralprocess.sas

%cstutil_reportinputsoutputs
%cstutil_reportinputsoutputs;

[ Exposure: external] [ Macro Type: Framework utility ]

cstutil_reportinputsoutputs

Creates the Process Inputs/Outputs panel.

Parameters: (none)

File: cstutil_reportinputsoutputs.sas

%cstutil_reportprocessmetrics
%cstutil_reportprocessmetrics

[ Exposure: external] [ Macro Type: Framework utility ]

cstutil_reportprocessmetrics

Creates the Process Metrics panel.

Parameters: (none)

File: cstutil_reportprocessmetrics.sas

Module Framework 265



%cstutil_reportprocessresults
%cstutil_reportprocessresults;

[ Exposure: external] [ Macro Type: Framework utility ]

cstutil_reportprocessresults

Creates the Process Results panel.

Parameters: (none)

File: cstutil_reportprocessresults.sas

%cstutil_reportprocesssummary
%cstutil_reportprocesssummary;

[ Exposure: external] [ Macro Type: Framework utility ]

cstutil_reportprocesssummary

Creates the Process Summary panel.

Parameters: (none)

File: cstutil_reportprocesssummary.sas

%cstutil_reportsetup
%cstutil_reportsetup(_cstRptType=Metadata);

[ Exposure: external] [ Macro Type: Framework utility ]

cstutil_reportsetup

Performs a setup function for SAS Clinical Standards Toolkit reporting. If
_cstSetupSrc=RESULTS, then the code interprets information from a Results data set
referenced by the _cstRptResultsDS macro variable. Otherwise, the code interprets
information from the SASReferences data set referenced by the _cstSASRefs global macro
variable.

Parameters:

• _cstRptType—Identifies the type of report to be generated. Valid values include
metadata (report on SAS Clinical Standards Toolkit validation check metadata) and
results (report on SAS Clinical Standards Toolkit process results and metrics).

Assumptions:

_cstSASRefs global macro variable exists and specifies a valid SASReferences data set.
(Either SASREFERENCES (default) or RESULTS).

File: cstutil_reportsetup.sas

%cstutil_reporttabledata
%cstutil_reporttabledata;

[ Exposure: external] [ Macro Type: Framework utility ]

cstutil_reporttabledata

Creates work._cstrptresultsdom, which represents work._cstrptresults expanded to include
records for each table applicable to the originally reported results.

Assumptions:

• This module is applicable only to Report2 and CDISC standards reporting table-level
results (that is, CDISC SDTM and CDISC ADaM).

266 Appendix 3 • Macro Application Programming Interface



• This module includes a call to a CDSIC SDTM specific macro that only is known or
found in a CDISC SDTM autocall path.

Parameters: (none)

File: cstutil_reporttabledata.sas

%cstutil_resultsdsattr
%cstutil_resultsdsattr /des='CST: Results data set column attributes';

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_resultsdsattr

Defines Results data set column attributes.

Use: Statement level in a SAS DATA step, where a SAS ATTRIB statement might be used.

Required Global Macro Variables: (none)

Required File Inputs: (none)

File: cstutil_resultsdsattr.sas

%cstutil_resultsdskeep
%cstutil_resultsdskeep /des='CST: Results data set columns';

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_resultsdskeep

Specifies Results data set columns to keep in a DATA step.

Use: Statement level in a SAS DATA step, where a SAS KEEP statement might be used.

Required Global Macro Variables: (none)

Required File Inputs: (none)

File: cstutil_resultsdskeep.sas

%cstutil_saveresults
%cstutil_saveresults(_cstIncludeValidationMetrics=0);

[ Exposure: internal] [ Macro Type: Framework utility ]

cstutil_saveresults

Saves process results to a file or files that are specified in SASReferences with type=
RESULTS values.

Required Global Macro Variables:

• _cstMetricsDS

• _cstResultsDS

Parameters:

• _cstIncludeValidationMetrics—Specifies whether process results includes validation
metrics. Valid values are 0 (No, default) and 1 (Yes).

File: cstutil_saveresults.sas

%cstutil_setcstgroot
%cstutil_setcstgroot;

Module Framework 267



[ Exposure: Not specified ] [ Macro Type: Not specified ]

File: cstutil_setcstgroot.sas

%cstutil_setmodel
%cstutil_setmodel /des=“Set Which Model Definition to Use”;

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_setmodel

To establish the comparison reference metadata for a check. This is based on the
Validation_Control.usesourcemetadata flag. If this flag is Y, then sourcemetadata.* serves
as the comparison metadata. Otherwise, reference metadata.* does.

Called for each check, but only by builddomlist and buildcollist macros.

Required Global Macro Variables (beyond reporting and debugging variables):

• _cstTableMetadata

• _cstColumnMetadata

Required File Inputs:

• Source tables and column metadata (derived from SASReferences)

• Reference tables and column metadata (derived from SASReferences)

Assumptions:

• While there should generally be only a single source of referencemetadata.* from the
SASReferences control data set, the code allows multiple sources. These are
concatenated in the derivation of the work._cstTableMetadata and
work._cstColumnMetadata data sets.

• There might be multiple sources of sourcemetadata.* from the SASReferences control
data set. These are concatenated in the derivation of the work._cstTableMetadata and
work._cstColumnMetadata data sets.

File: cstutil_setmodel.sas

%cstutil_writecubexml
%cstutil_writecubexml(_cstXMLOut=, _cstMDPFile=, _cstDebug=);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• _cstXMLOut

• _cstMDPFile

• _cstDebug

File: cstutil_writecubexml.sas

%cstutil_writemetric
%cstutil_writemetric(_cstMetricParameter=, _cstResultID=, _cstResultSeqParm=,
_cstMetricCnt=, _cstSrcDataParm=, _cstMetricsDSParm=&_cstMetricsDS);

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_writemetric

Adds a single record to the Metrics data set based solely on parameter values.

268 Appendix 3 • Macro Application Programming Interface



Must be called outside the context of a DATA step.

Required Global Macro Variables (beyond reporting and debugging variables): (none)

Required File Inputs: &_cstMetricsDS (as parameter _cstMetricsDSParm)

Parameters:

• _cstMetricParameter—Metric parameter. Extensible set of metrics. Examples include:
# of subjects, # of records tested, # of distinct check invocations, Errors (severity=High)
reported, Warnings (severity=Medium) reported, Notes (severity=Low) reported, # of
structural errors, and # of content errors. METRICS value.

• _cstResultID

• _cstResultSeqParm—Generally 1, unless duplicate values of resultid need to be
distinguished, such as multiple invocations of the same validation checkid.

• _cstMetricCnt—Record counter for _cstMetricParameter.

• _cstSrcDataParm—Information to link metric back to source (for example, SDTM
domain name or calling validation code module).

• _cstMetricsDSParm—The base (cross-check) Metrics data set to which this record is
to be appended. By default, this is the data set referenced by the _cstMetricsDS global
macro variable.

File: cstutil_writemetric.sas

%cstutil_writeresult
%cstutil_writeresult(_cstResultID=, _cstValCheckID=, _cstResultParm1=,
_cstResultParm2=, _cstResultSeqParm=1, _cstSeqNoParm=1, _cstSrcDataParm=,
_cstResultFlagParm=0, _cstRCParm=0, _cstActualParm=, _cstKeyValuesParm=,
_cstResultDetails=, _cstResultsDSParm=&_cstResultsDS);

[ Exposure: internal ] [ Macro Type: Framework utility ]

cstutil_writeresult

Adds a single record to the Results data set based solely on parameter values.

Must be called outside the context of a DATA step.

Required Global Macro Variables (beyond reporting and debugging variables): (none)

Required File Inputs:

• &_cstMessages (created by cstutil_allocatesasreferences)

• &_cstResultsDS (as parameter _cstResultsDSParm)

Parameters:

• _cstResultID—Set to validation process ID (for example, CST0017). Should have
matching entry in Messages data set.

• _cstValCheckID—Validation check identifier from Validation Control data set.

• _cstResultParm1—An optional parameter to appear in first substitution field of the
associated message with the same resultid.

• _cstResultParm2—An optional parameter to appear in second substitution field of the
associated message with the same resultid.

• _cstResultSeqParm—Generally 1, unless duplicate values of resultid need to be
distinguished, such as multiple invocations of the same validation checkid.

Module Framework 269



• _cstSeqNoParm—Sequence number within _cstResultSeqParm, beginning with 1 and
incremented by 1 for each observation that is written to a data set.

• _cstSrcDataParm—Information to link result back to source (for example, SDTM
domain name or calling validation code module).

• _cstResultFlagParm—Problem detected? Set to 0 if this is an informational rather than
error record. A positive value indicates that an error was detected. A negative value
indicates that the check failed to run for some reason.

• _cstRCParm—Value of _cst_rc at the point the result is written to data set.

• _cstActualParm—Source data value or values that are causing result to be written to
data set.

• _cstKeyValuesParm—Information to link result back to a specific source data record
(for example, data set key or XML row and column values).

• _cstResultDetails—Provides the ability to specify run-time details about the result.
These take precedence over metadata result details.

• _cstResultsDSParm—The base (cross-check) result data set to which this record is to
be appended. By default, this is the data set referenced by the _cstResultsDS global
macro variable.

File: cstutil_writeresult.sas

Module SDTM V3.1.1 (Run Time)

Overview
This is the SDTM 3.1.1 run-time macro library.

Since: V1.2

Macro Summary

Table A3.3 Module SDTM V3.1.1 (Run Time) Macro Summary

Exposure Macro

External

SDTM Validation Process

%sdtm_validate /des='CST: Validate CDISC SDTM model files';

Internal

SDTM Validation Check
Utility

%sdtmcheckutil_recordlookup(_cstSourceDS=&_cstDSName,
_cstSourceLib=&_cstRefOnly);

Internal

Framework Utility

%sdtmutil_buildcheckdomainlist(_cstCheckDS=, _cstWhereClause=, _cstOutputDS=);

External

Framework

%sdtmutil_buildsasreferences;

270 Appendix 3 • Macro Application Programming Interface



Exposure Macro

External

SDTM Tool

%sdtmutil_createsrcmetafromsaslib /des='CST: Create SDTM metadata from SAS
library';

%sdtmutil_getchecks(_cstControl=, _cstMeta=, _cstMsg=, _cstDomain="*",
_cstOutDS=, _cstIncludeDraft=true);

Internal

SDTM Utility

%sdtmutil_iso8601(_cstString=);

%sdtmutil_listsettings(group=_ALL_);

Macro Detail

%sdtm_validate
%sdtm_validate /des='CST: Validate CDISC SDTM model files';

[ Exposure: external ] [ Macro Type: SDTM Validation Process ]

sdtm_validate

Validate CDISC SDTM model files.

The basic function of this code module is to cycle through the validation checks to be run,
writing validation results to the process Results and Metrics data sets. These are persisted
to any permanent location based on type=results records in the SASReferences file. Process
cleanup is based on the _cstDebug global macro variable.

Required Global Macro Variables (beyond reporting and debugging variables): (none)

Required File Inputs: run-time (type=control,subtype=validation in SASReferences) check
data set

File: sdtm_validate.sas

%sdtmcheckutil_recordlookup
%sdtmcheckutil_recordlookup(_cstSourceDS=&_cstDSName,
_cstSourceLib=&_cstRefOnly);

[ Exposure: internal ] [ Macro Type: SDTM Validation Check Utility ]

sdtmcheckutil_recordlookup

Creates work._cstproblems that contains any records that are included in the
_cstSourceDS data set that cannot be found in the referenced lookup data set. For example,
SUPPAE includes a record that points to a record in the AE domain that does not exist with
the key values specified.

Note: This macro is called in _cstCodeLogic at a SAS DATA step level (that is, a full
DATA step or PROC SQL invocation).

Required Global Macro Variables: (none)

Parameters:

• _cstSourceDS—The source data set that is evaluated by the validation check.

Module SDTM V3.1.1 (Run Time) 271



• _cstSourceLib—The source libref for the lookup domain.

File: sdtmcheckutil_recordlookup.sas

%sdtmutil_buildcheckdomainlist
%sdtmutil_buildcheckdomainlist(_cstCheckDS=, _cstWhereClause=, _cstOutputDS=);

[ Exposure: internal ] [ Macro Type: Framework utility ]

sdtmutil_buildcheckdomainlist

Builds a data set that identifies the domains to be validated by each check based on the
contents of the validation check data set columns tablescope and columnscope.

Required Global Macro Variables: (none)

Required File Inputs: Only as specified in the parameters

Parameters:

• _cstCheckDS—The validation check data set that contains the checks for a standard
and standardversion. Typically, this is the Validation Master data set.

• _cstWhereClause—An optional WHERE clause to subset _cstCheckDS. The syntax
should comply with a SAS statement argument such as any of the following: VAR1=1,
upcase(var2)="Y", or checkstatus>0.

• _cstOutputDS—The output data set that is returned to the calling program. This data
set contains a record for each domain that is referenced by a checkid, standardversion,
and checksource.

File: sdtmutil_buildcheckdomainlist.sas

%sdtmutil_buildsasreferences
%sdtmutil_buildsasreferences;

[ Exposure: Not specified ] [ Macro Type: Not specified ]

File: sdtmutil_buildsasreferences.sas

%sdtmutil_createsrcmetafromsaslib
%sdtmutil_createsrcmetafromsaslib /des='CST: Create SDTM metadata from SAS
library';

[ Exposure: external] [ Macro Type: SDTM Tool]

sdtmutil_createsrcmetafromsaslib

SAS library for a CDISC SDTM study.

The following source metadata files are used by the SAS Clinical Standards Toolkit to
support CDISC SDTM validation and derivation of CDISC CRT-DDS (define.xml) files:

• source_tables

• source_columns

• source_study

The following is the general strategy that is used:

1. Use PROC CONTENTS output as the primary source of information.

2. Use reference_tables and reference_columns for matching columns.

3. Use class_columns as a generic source for metadata.

272 Appendix 3 • Macro Application Programming Interface



Note: This is only an attempted approximation of source metadata. No assumptions should
be made that the results accurately represent the study data.

Assumptions:

• Source data is read from a single SAS library. The code can be modified to reference
multiple libraries using library concatenation.

• Data set keys are estimated by the sort order of the source data (if set) and, if not,
assumed based on the presence of columns SAS uses to define keys in the reference
standard.

• For any unknown domain, the domain class (events, interventions, or findings) is
estimated based on the presence of the class-specific topic variable (that is, _TERM
(events), _TRT (interventions), and _TESTCD (findings)).

• Most column values in source_study are hardcoded because there is no metadata source.
These values are used only to build the define.xml file. These are marked as <---
HARDCODE.

Limitations:

The following are two scenarios that have not yet been addressed:

• Split domains, such as QS**

• SDTM 3.1.2 FA multiple domains (for example, FACM)

File: sdtmutil_createsrcmetafromsaslib.sas

%sdtmutil_getchecks
%sdtmutil_getchecks(_cstControl=, _cstMeta=, _cstMsg=, _cstDomain=*, _cstOutDS=,
_cstIncludeDraft=true);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

• _cstControl

• _cstMeta

• _cstMsg

• _cstDomain

• _cstOutDS

• _cstIncludeDraft

File: sdtmutil_getchecks.sas

%sdtmutil_iso8601
%sdtmutil_iso8601(_cstString=);

[ Exposure: internal ] [ Macro Type: SDTM utility ]

sdtmutil_iso8601

Verifies whether a string is in a valid ISO 8601 format. The verification includes tests that
are specific to SDTM and clinical trials data in general. Must be called from within a DATA
step. It might be called more than once within a single DATA step.

Required Global Macro Variables: (none)

Required File Inputs: (none)

Module SDTM V3.1.1 (Run Time) 273



Parameters:

• _cstString—String that designates the name of the SAS data set variable that is being
checked. Returns SAS data set variables. The programmer is expected to copy any
values he or she wants to keep. All variables are automatically dropped at the end of
the current data set.

_cstISOisValid—Numeric. Binary flag that denotes whether the ISO string is a valid
ISO 8601 string. Valid values are 0 (string is invalid) and 1 (string is valid).

_cstISOrc—Numeric return code. A value of 0 indicates that no problems were found.
Any other value is a coding error number.

_cstISOmsg—String. A message that describes the validity of the input string.

_cstISOinfo—String. An informational message that provides additional details about
the string.

_cstISOtype—String.

File: sdtmutil_iso8601.sas

%sdtmutil_listsettings
%sdtmutil_listsettings(group=_ALL_);

[ Exposure: Not specified ] [ Macro Type: Not specified ]

Parameters:

• group

File: sdtmutil_listsettings.sas

Module SDTM V3.1.2 (Run Time)

Overview
This is the SDTM 3.1.2 run-time macro library.

Since: V1.3

Macro Summary

Table A3.4 Module SDTM V3.1.2 (Run Time) Macro Summary

Exposure Macro

External

SDTM Validation Process

%sdtm_validate /des='CST: Validate CDISC SDTM model files';

Internal

SDTM Validation Check
Utility

%sdtmcheckutil_recordlookup(_cstSourceDS=&_cstDSName,
_cstSourceLib=&_cstRefOnly);

274 Appendix 3 • Macro Application Programming Interface



Exposure Macro

Internal

Framework Utility

%sdtmutil_buildcheckdomainlist(_cstCheckDS=, _cstWhereClause=, _cstOutputDS=);

External

SDTM Tool

%sdtmutil_createformatsfromcrtdds;

External

SDTM Tool

%sdtmutil_createsasdatafromxpt /des='CST: Create SAS Data Sets from XPT';

External

SDTM Tool

%sdtmutil_createsrcmetafromcrtdds /des='CST: Create SDTM metadata from CRTDDS
Data';

External

SDTM Tool

%sdtmutil_createsrcmetafromsaslib /des='CST: Create SDTM metadata from SAS
library';

Internal

SDTM Utility

%sdtmutil_iso8601(_cstString=);

Macro Detail

%sdtm_validate
%sdtm_validate /des='CST: Validate CDISC SDTM model files';

[ Exposure: external ] [ Macro Type: SDTM Validation Process ]

sdtm_validate

Validate CDISC SDTM model files.

The basic function of this code module is to cycle through the validation checks to be run,
writing validation results to the process Results and Metrics data sets. These are persisted
to any permanent location based on type=results records in the SASReferences file. Process
cleanup is based on the _cstDebug global macro variable.

Required Global Macro Variables (beyond reporting and debugging variables): (none)

Required File Inputs: run-time (type=control,subtype=validation in SASsreferences) check
data set

File: sdtm_validate.sas

%sdtmcheckutil_recordlookup
%sdtmcheckutil_recordlookup(_cstSourceDS=&_cstDSName,
_cstSourceLib=&_cstRefOnly);

[ Exposure: internal ] [ Macro Type: SDTM Validation Check Utility ]

sdtmcheckutil_recordlookup

Creates work._cstproblems that contains any records that are included in the
_cstSourceDS data set that cannot be found in the referenced lookup data set. For example,

Module SDTM V3.1.2 (Run Time) 275



SUPPAE includes a record that points to a record in the AE domain that does not exist with
the key values specified.

Note: This macro is called in _cstCodeLogic at a SAS DATA step level (that is, a full
DATA step or PROC SQL invocation).

Required Global Macro Variables: (none)

Parameters:

• _cstSourceDS—The source data set that is evaluated by the validation check.

• _cstSourceLib—The source libref for the lookup domain.

File: sdtmcheckutil_recordlookup.sas

%sdtmutil_buildcheckdomainlist
%sdtmutil_buildcheckdomainlist(_cstCheckDS=, _cstWhereClause=, _cstOutputDS=);

[ Exposure: internal ] [ Macro Type: Framework utility ]

sdtmutil_buildcheckdomainlist

Builds a data set that identifies the domains to be validated by each check based on the
contents of the validation check data set columns tablescope and columnscope.

Required Global Macro Variables: (none)

Required File Inputs: Only as specified in the parameters

Parameters:

• _cstCheckDS—The validation check data set that contains the checks for a standard
and standardversion. Typically, this is the Validation Master data set.

• _cstWhereClause—An optional WHERE clause to subset _cstCheckDS. The syntax
should comply with a SAS statement argument such as any of the following: VAR1=1,
upcase(var2)="Y", or checkstatus>0.

• _cstOutputDS—The output data set that is returned to the calling program. This data
set contains a record for each domain that is referenced by a checkid, standardversion,
and checksource.

File: sdtmutil_buildcheckdomainlist.sas

%sdtmutil_createformatsfromcrtdds
%sdtmutil_createformatsfromcrtdds;

[ Exposure: external] [ Macro Type: SDTM Tool]

sdtmutil_createformatsfromcrtdds

This sample utility macro attempts to derive code lists from a CRT-DDS data library
derived from define.xml file for a CDISC SDTM study.

The following source metadata files are used by the SAS Clinical Standards Toolkit to
create code lists as provided in CDISC CRT-DDS (define.xml) files:

• codelists

• codelistitems

• clitemdecodetranslatedtext

The following is the general strategy that is used:

1. Combine CRT-DDS data to create the cntlin data set.

276 Appendix 3 • Macro Application Programming Interface



2. Read the cntlin data set using PROC FORMAT to create a format catalog.

Assumptions:

• Source data is read from a single SAS library. The code can be modified to reference
multiple libraries using library concatenation.

• Only one study reference can be specified at this time. Multiple study references require
modification of the code.

File: sdtmutil_createformatsfromcrtdds.sas

%sdtmutil_createsasdatafromxpt
%sdtmutil_createsasdatafromxpt /des='CST: Create SAS Data Sets from XPT';

[ Exposure: external] [ Macro Type: SDTM Tool]

sdtmutil_createsasdatafromxpt

This sample utility macro attempts to derive source metadata files from a CRT-DDS data
library derived from define.xml file for a CDISC SDTM study.

The itemgroupleaf data set is used by this macro to generate a list of XPT files.

The following is the general strategy that is used:

1. Read itemgroupleaf to create a list of XPT files and generate SAS code to create SAS
data sets using the XPORT LIBNAME option.

2. Submit generated code to create SAS data sets.

Assumptions:

• CRT-DDS data is read from a single SAS library.

• Currently, you must supply the libref for the location of the XPT files.

File: sdtmutil_createsasdatafromxpt.sas

%sdtmutil_createsrcmetafromcrtdds
%sdtmutil_createsrcmetafromcrtdds /des='CST: Create SDTM metadata from CRTDDS
Data';

[ Exposure: external] [ Macro Type: SDTM Tool]

sdtmutil_createsrcmetafromcrtdds

This sample utility macro attempts to derive source metadata files from a CRT-DDS data
library derived from define.xml file for a CDISC SDTM study.

The following source metadata files are used by the SAS Clinical Standards Toolkit to
support CDISC SDTM validation and derivation of CDISC CRT-DDS (define.xml) files:

• source_tables

• source_columns

• source_study

The following is the general strategy that is used:

1. Use PROC CONTENTS output as the primary source of information.

2. Use reference_tables and reference_columns for matching columns.

Assumptions:

Module SDTM V3.1.2 (Run Time) 277



• Source data is read from a single SAS library. The code can be modified to reference
multiple libraries using library concatenation.

• Only one study reference can be specified at this time. Multiple study references require
modification of the code.

File: sdtmutil_createsrcmetafromcrtdds.sas

%sdtmutil_createsrcmetafromsaslib
%sdtmutil_createsrcmetafromsaslib /des='CST: Create SDTM metadata from SAS
library';

[ Exposure: external] [ Macro Type: SDTM Tool]

sdtmutil_createsrcmetafromsaslib

SAS library for a CDISC SDTM study.

The following source metadata files are used by the SAS Clinical Standards Toolkit to
support CDISC SDTM validation and derivation of CDISC CRT-DDS (define.xml) files:

• source_tables

• source_columns

• source_study

The following is the general strategy that is used:

1. Use PROC CONTENTS output as the primary source of information.

2. Use reference_tables and reference_columns for matching columns.

3. Use class_columns as a generic source for metadata.

Note: This is only an attempted approximation of source metadata. No assumptions should
be made that the results accurately represent the study data.

Assumptions:

• Source data is read from a single SAS library. The code can be modified to reference
multiple libraries using library concatenation.

• Data set keys are estimated by the sort order of the source data (if set) and, if not,
assumed based on the presence of columns SAS uses to define keys in the reference
standard.

• For any unknown domain, the domain class (events, interventions, or findings) is
estimated based on the presence of the class-specific topic variable (that is, _TERM
(events), _TRT (interventions), and _TESTCD (findings)).

• Most column values in source_study are hardcoded because there is no metadata source.
These values are used only to build the define.xml file. These are marked as <---
HARDCODE.

Limitations:

The following are two scenarios that have not yet been addressed:

• Split domains, such as QS**

• SDTM 3.1.2 FA multiple domains (for example, FACM)

File: sdtmutil_createsrcmetafromsaslib.sas

%sdtmutil_iso8601
%sdtmutil_iso8601(_cstString=);

278 Appendix 3 • Macro Application Programming Interface



[ Exposure: internal ] [ Macro Type: SDTM utility ]

sdtmutil_iso8601

Verifies whether a string is in a valid ISO 8601 format. The verification includes tests that
are specific to SDTM and clinical trials data in general. Must be called from within a DATA
step. It might be called more than once within a single DATA step.

Required Global Macro Variables: (none)

Required File Inputs: (none)

Parameters:

• _cstString—String that designates the name of the SAS data set variable that is being
checked. Returns SAS data set variables. The programmer is expected to copy any
values he or she wants to keep. All variables are automatically dropped at the end of
the current data set.

_cstISOisValid—Numeric. Binary flag that denotes whether the ISO string is a valid
ISO 8601 string. Valid values are 0 (string is invalid) and 1 (string is valid).

_cstISOrc—Numeric return code. A value of 0 indicates that no problems were found.
Any other value is a coding error number.

_cstISOmsg—String. A message that describes the validity of the input string.

_cstISOinfo—String. An informational message that provides additional details about
the string.

_cstISOtype—String.

File: sdtmutil_iso8601.sas

Module ODM V1.3.0 (Run Time)

Overview
This is the ODM V1.3.0 run-time macro library.

Since: V1.3

Macro Summary

Table A3.5 Module ODM V1.3.0 (Run Time) Macro Summary

Exposure Macro

External

Framework

%odm_getStatic(_cstName=, _cstVar=);

External

CDISC ODM

%odm_read;

Module ODM V1.3.0 (Run Time) 279



Macro Detail

%odm_getStatic
%odm_getStatic(_cstName=, _cstVar=);

[Exposure: Not Specified] [Macro Type: Not Specified]

Parameters:

• _cstName

• _cstVar

File: odm_getstatic.sas

%odm_read
%odm_read;

[Exposure: external] [Macro Type: CDISC-ODM]

Reads a CDISC ODM V1.3.0 XML file into the SAS representation of ODM 1.3.0.

This macro uses the SAS representation of a CDISC ODM XML file as source, and converts
it into SAS data sets. The inputs and outputs are specified in a SASReferences file.

Required Global Macro Variables:

File: sdtmcheckutil_recordlookup.sas

• framework initialization properties

• CDISC ODM 1.3.0 initialization properties

• _cstResultsDS should point to an existing Results data set. Otherwise,
work._cstResults is used.

File: odm_read.sas

280 Appendix 3 • Macro Application Programming Interface



Appendix 4

CDISC SDTM Validation Checks

The following table provides a complete list of CDISC SDTM validation checks. WebSDM
V3.0 changed the IR numbers for 3.1.2, and all begin with 5000. These numbers are listed
in parentheses.

Table A4.1 Validation Checks

checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0001 Janus IR4000

(IR5000)

Identifies domain table
that has zero rows and,
therefore, contains no
data.

_ALL_ X

SDTM0001 WebSDM IR4000

(IR5000)

Identifies domain table
that has zero rows and,
therefore, contains no
data.

_ALL_ X X

SDTM0002 JanusFR SAS0017 A load of data into Janus
requires that the DM, DS,
and EX domains be
submitted for each study
to be loaded.

DM+DS
+EX

X

SDTM0002 SAS SAS0017 A load of data into
JANUS requires that the
DM, DS, and EX domains
be submitted for each
study to be loaded.

DM+DS
+EX

X

SDTM0003 WebSDM SAS0018 WebSDM and the SDTM
model require only the
DM domain be present.

DM X X

SDTM0004 SAS SAS0033 Source metadata includes
domain data set not found
in reference metadata.

_ALL_ X X

SDTM0005 SAS SAS0034 Custom domain data set
does not conform to
specification naming
guidelines.

_ALL_ X X

281



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0006 SAS SAS0035 Source data library
contains domain data not
found in study metadata.

_ALL_ X X

SDTM0011 Janus IR4250 Identifies a column that
was described in the
domain description, but
not included in the SAS
data set for that domain.

_ALL_ X

SDTM0011 WebSDM IR4250

(IR5250)

Identifies a column that
was described in the
domain description, but
not included in the SAS
data set for that domain.

_ALL_ X X

SDTM0012 JanusFR IR4252 Identifies a column listed
in the domain description
as required (Req), but not
included in the SAS data
set for that domain.

_ALL_ X

SDTM0012 WebSDM IR4252

(IR5252)

Identifies a column listed
in the domain description
as required (Req), but not
included in the SAS data
set for that domain.

_ALL_ X X

SDTM0013 Janus IR4253 Identifies a column listed
in the domain description
as expected (Exp), but not
included in the SAS data
set for that domain.

_ALL_ X

SDTM0013 WebSDM IR4253

(IR5253)

Identifies a column listed
in the domain description
as expected (Exp), but not
included in the SAS data
set for that domain.

_ALL_ X X

SDTM0014 SAS SAS0008 Identifies a column listed
in the domain description
as permissible (Perm), but
not included in the SAS
data set for that domain.

_ALL_ X X

SDTM0015 Janus IR4254 Identifies a column that
appears in the SAS data
set, but is not listed in the
domain description.

_ALL_ X

282 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0015 WebSDM IR4254

(IR5254)

Identifies a column that
appears in the SAS data
set, but is not listed in the
domain description.

_ALL_ X X

SDTM0016 WebSDM IR5260 Identifies a variable that is
present in the SAS data
set, but not present in the
(study-specific)
description file.

_ALL_ X

SDTM0017 Janus IR4258 Identifies a domain that
appears to contain
supplemental qualifier
data, but does not contain
the unique subject
identifier (USUBJID).

SUPP** X

SDTM0017 WebSDM IR4258

(IR5258)

Identifies a domain that
appears to contain
supplemental qualifier
data, but does not contain
the unique subject
identifier (USUBJID).

SUPP** X X

SDTM0019 JanusFR IR4259 Identifies a variable
where data type in (study-
specific) description is
not consistent with data
type implicit in SAS data
set.

_ALL_ X

SDTM0019 WebSDM IR4259

(IR5259)

Identifies a variable
where data type in (study-
specific) description is
not consistent with data
type implicit in SAS data
set.

_ALL_ X X

SDTM0020 SAS SAS0006 Column order does not
match standard.

_ALL_ X X

SDTM0022 SAS SAS0001 Column length < length
defined in standard.

_ALL_ X X

SDTM0023 SAS SAS0002 Column length > length
defined in standard.

_ALL_ X X

SDTM0030 WebSDM IR4264

(IR5264)

Column label inconsistent
with label defined in
standard.

_ALL_ X X

Module ODM V1.3.0 (Run Time) 283



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0031 SAS SAS0004 Column format found, but
column not subject to
controlled terminology.

_ALL_ X X

SDTM0032 SAS SAS0005 Column format found, but
format name mismatch
with standard controlled
terminology name.

_ALL_ X X

SDTM0033 WebSDM IR4266

(IR5266)

Identifies a variable that
has been deprecated
according to the CDISC
SDTM standard.

_ALL_ X X

SDTM034 WebSDM IR5251 Identifies a column where
the expected data type that
is inferred from the
description file does not
match the data type in the
data set.

_ALL_ X

SDTM035 WebSDM IR5261 Identifies a domain that is
referenced in a
description file, but for
which there is no source
data.

_ALL_ X

SDTM036 WebSDM IR5262 Identifies a domain whose
source data failed to load.

_ALL_ X

SDTM037 WebSDM IR5263 Identifies a variable that
uses an unsupported event
dictionary.

_ALL_ X

SDTM038 WebSDM IR5265 Identifies a variable
whose referenced codelist
is not properly defined in
the associated define.xml
file.

_ALL_ X

SDTM039 WebSDM IR5267 Identifies a domain for
which metadata has not
been provided.

_ALL_ X

SDTM0101 JanusFR IR4002 Identifies values that do
not conform to the ISO
8601 standard for
datetimes.

_ALL_ **DTC
+**STDTC
+**ENDTC
+BRTHDTC
+RFSTDTC
+RFENDTC

X

284 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0101 WebSDM IR4002

(IR5002)

Identifies values that do
not conform to the ISO
8601 standard for
datetimes.

_ALL_ **DTC
+**STDTC
+**ENDTC
+BRTHDTC
+RFSTDTC
+RFENDTC

X X

SDTM0102 JanusFR IR4002 Identifies values that do
not conform to the ISO
8601 standard for
durations.

_ALL_ **DUR X

SDTM0102 WebSDM IR4002

(IR5002)

Identifies values that do
not conform to the ISO
8601 standard for
durations.

_ALL_ **DUR X X

SDTM0124 Janus IR4113 Identifies records that
violate the condition
[LENGTH(Name of
Measurement, Test, or
Examination (**TEST))
less than or equal to 40
characters].

CLASS:FI
NDINGS

**TEST X

SDTM0124 WebSDM IR4113

(IR5113)

Identifies records that
violate the condition
[LENGTH(Name of
Measurement, Test, or
Examination (**TEST))
less than or equal to 40
characters].

CLASS:FI
NDINGS

**TEST X X

SDTM0125 Janus IR4114 Identifies records that
violate the condition
[LENGTH(Sort Name of
Measurement, Test, or
Examination
(**TESTCD)) less than
or equal to 8 characters,
cannot start with a
number, or contain
special characters].

CLASS:FI
NDINGS

**TESTCD X

SDTM0125 WebSDM IR4114

(IR5114)

Identifies records that
violate the condition
[LENGTH(Sort Name of
Measurement, Test, or
Examination
(**TESTCD)) less than
or equal to 8 characters,
cannot start with a
number, or contain
special characters].

CLASS:FI
NDINGS

**TESTCD X X

Module ODM V1.3.0 (Run Time) 285



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0126 SAS SAS0017 Qualifier variable label
(QLABEL) length > 40.

SUPP** QLABEL X X

SDTM0127 SAS SAS0018 Qualifier variable name
(QNAM) length > 8, starts
with a number, or
contains special
characters.

SUPP** QNAM X X

SDTM0128 Janus IR4115 Identifies records that
violate the condition
[LENGTH(Trial
Summary Parameter
(**PARM)) less than or
equal to 40 characters].

TS TSPARM X

SDTM0128 WebSDM IR4115

(IR5115)

Identifies records that
violate the condition
[LENGTH(Trial
Summary Parameter
(**PARM)) less than or
equal to 40 characters].

TS TSPARM X X

SDTM0129 Janus IR4116 Identifies records that
violate the condition
[LENGTH(Trial
Summary Parameter Sort
Name (**PARMCD))
less than or equal to 8
characters, cannot start
with a number, or contain
special characters].

TS TSPARMC
D

X

SDTM0129 WebSDM IR4116

(IR5116)

Identifies records that
violate the condition
[LENGTH(Trial
Summary Parameter Sort
Name (**PARMCD))
less than or equal to 8
characters, cannot start
with a number, or contain
special characters].

TS TSPARMC
D

X X

SDTM0130 OpenCDISC SD1004 The value of planned arm
code (ARMCD) must not
be more than 20
characters in length.

X

SDTM0131 OpenCDISC SD1009 The value of the element
code (ETCD) must not be
no more than 8 characters
in length.

X

286 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0190 WebSDM IR5517 Identifies subjects with
records that violate the
condition [(Start date/
time of adverse event less
than or equal to start date/
time of collection less
than or equal to start date/
time of disposition event)
or (latest exposure date
less than or equal to start
date/time of disposition
event)], limited to records
where the cited variables
are not null.

DS+AE
+EG+LB
+VS+EX

X

SDTM0191 OpenCDISC SD0080 Start date/time of adverse
event (AESTDTC) must
be less than or equal to the
start date/time of the latest
disposition event
(DSSTDTC).

AE [AESTDTC]

[DSSTDTC]

X

SDTM0192 OpenCDISC SD0081 Date/time of collection
(DTC) must be less than
or equal to the start date/
time of the latest
disposition event
(DSSTDTC).

EG+LB
+VS

[**DTC]

[DSSTDTC]

X

SDTM0193 OpenCDISC SD0082 End of date/time of
treatment (EXENDTC)
must be less than or equal
to the start date/time of the
latest disposition event
(DSSTDTC).

EX [EXENDTC
]

[DSSTDTC]

X

SDTM0201 Janus IR4001 Identifies a null (empty)
value found in a column
where (Standard) Core
attribute is Req.

_ALL_ X

SDTM0201 WebSDM IR4001

(IR5001)

Identifies a null (empty)
value found in a column
where (Standard) Core
attribute is Req.

_ALL_ X X

SDTM0202 SAS SAS0015 Identifies a null (empty)
value found in a column
where (Standard) Core
attribute is Exp.

_ALL_ X X

SDTM0203 SAS SAS0010 Character column value is
not correctly uppercased
per specification.

_ALL_ X X

Module ODM V1.3.0 (Run Time) 287



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0204 SAS SAS0011 Character column value
contains the numeric
missing '.' or any special
missing value like '.N'.

_ALL_ X X

SDTM0205 SAS SAS0012 Column value is not left-
justified.

_ALL_ X X

SDTM0206 Janus IR4003 Identifies records where
the value in the Domain
Abbreviation column
(DOMAIN) does not
match the name of
Domain.

_ALL_
-SUPP**-
RELREC

DOMAIN X

SDTM0206 WebSDM IR4003

(IR5003)

Identifies records where
the value in the Domain
Abbreviation column
(DOMAIN) does not
match the name of
Domain.

_ALL_
-SUPP**-
RELREC

DOMAIN X X

SDTM0207 Janus IR4010 Identifies records where
the value for Visit
Number (VISITNUM) is
formatted to more than
three decimal places.

_ALL_ VISITNUM X

SDTM0207 WebSDM IR4010

(IR5010)

Identifies records where
the value for Visit
Number (VISITNUM) is
formatted to more than 3
decimal places.

_ALL_ VISITNUM X X

SDTM0208 Janus IR4009 Identifies records where
Result or Finding in
Original Units
(**ORRES) and Status
(**STAT) both have a
value, or where both are
null and Derived Flag
(**DRVFL) is not equal
to 'Y'.

CLASS:FI
NDINGS-
IE

[**ORRES]
[**STAT]

X

SDTM0208 WebSDM IR4009 Identifies records where
Result or Finding in
Original Units
(**ORRES) and Status
(**STAT) both have a
value, or where both are
null and Derived Flag
(**DRVFL) is not equal
to 'Y'.

CLASS:FI
NDINGS-
IE

[**ORRES]
[**STAT]

X

288 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0209 JanusFR IR4100 Identifies records that
violate the condition
[Study Day of Start of
Observation (**STDY)
less than or equal to Study
Day of End of
Observation (**ENDY)],
limited to records where
**STDY is not null and
**ENDY is not null.

_ALL_-DS [**STDY]
[**ENDY]

X

SDTM0209 WebSDM IR4100

(IR5100)

Identifies records that
violate the condition
[Study Day of Start of
Observation (**STDY)
less than or equal to Study
Day of End of
Observation (**ENDY)],
limited to records where
**STDY is not null and
**ENDY is not null.

_ALL_-DS [**STDY]
[**ENDY]

X X

SDTM0210 JanusFR IR4101 Identifies records that
violate the condition
[Start Date/Time of
Observation (**STDTC)
less than or equal to End
Date/Time of
Observation
(**ENDTC)], limited to
records where **STDTC
is not null and **ENDTC
is not null.

_ALL_
-DS-LB

[**STDTC]
[**ENDTC]

X

SDTM0210 WebSDM IR5101 Identifies records that
violate the condition
[Start Date/Time of
Observation (**STDTC)
less than or equal to End
Date/Time of
Observation
(**ENDTC)], limited to
records where **STDTC
is not null and **ENDTC
is not null.

_ALL_
-DS-LB-
PC-SV

[**STDTC]

[**ENDTC]

X

Module ODM V1.3.0 (Run Time) 289



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0210 WebSDM IR4101 Identifies records that
violate the condition
[Start Date/Time of
Observation (**STDTC)
less than or equal to End
Date/Time of
Observation
(**ENDTC)], limited to
records where **STDTC
is not null and **ENDTC
is not null.

_ALL_
-DS-LB

[**STDTC]
[**ENDTC]

X

SDTM0211 Janus IR4130 Identifies records that
violate the condition
[Start Date/Time of
Observation (**STDTC)
or Start Relative to
Reference Period
(**STRF) is not null],
limited to records where
[End Date/Time of
Observation (**ENDTC)
or End Relative to
Reference Period
(**ENRF) is not null].

CM+SU [**STRF]
[**ENRF]

X

SDTM0211 Janus IR4130 Identifies records that
violate the condition
[Start Date/Time of
Observation (**STDTC)
or Start Relative to
Reference Period
(**STRF) is not null],
limited to records where
[End Date/Time of
Observation (**ENDTC)
or End Relative to
Reference Period
(**ENRF) is not null].

_ALL_
-DS-LB

[**STDTC]
[**ENDTC]

X

SDTM0211 WebSDM IR4130 Identifies records that
violate the condition
[Start Date/Time of
Observation (**STDTC)
or Start Relative to
Reference Period
(**STRF) is not null],
limited to records where
[End Date/Time of
Observation (**ENDTC)
or End Relative to
Reference Period
(**ENRF) is not null].

CM+SU [**STRF]
[**ENRF]

X

290 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0211 WebSDM IR5130 Identifies records that
violate the condition [start
date/time of observation
(**STDTC) or start
relative to reference
period (**STRF) is not
null], limited to records
where [end date/time of
observation (**ENDTC)
or end relative to
reference period
(**ENDRF) is not null].

CE+CM
+SU

[**STRTF]

[**ENRF]

X

SDTM0211 WebSDM IR4130 Identifies records that
violate the condition
[Start Date/Time of
Observation (**STDTC)
or Start Relative to
Reference Period
(**STRF) is not null],
limited to records where
[End Date/Time of
Observation (**ENDTC)
or End Relative to
Reference Period
(**ENRF) is not null].

_ALL_
-DS-LB

[**STDTC]
[**ENDTC]

X

SDTM0211 WebSDM IR5130 Identifies records that
violate the condition [start
date/time of observation
(**STDTC) or start
relative to reference
period (**STRF) is not
null], limited to records
where [end date/time of
observation (**ENDTC)
or end relative to
reference period
(**ENDRF) is not null].

_ALL_
-DS-LB-
PC-SV

[**STDTC]

[**ENDTC]

X

SDTM0212 Janus IR4131 Identifies records that
violate the condition
[Planned Time Point
Name (**TPT) is not
null], limited to records
where [Planned Time
Point Number
(**TPTNUM) is not
null].

_ALL_ [**TPT]
[**TPTNU
M]

X

Module ODM V1.3.0 (Run Time) 291



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0212 WebSDM IR4131

(IR5131)

Identifies records that
violate the condition
[Planned Time Point
Name (**TPT) is not
null], limited to records
where [Planned Time
Point Number
(**TPTNUM) is not
null].

_ALL_ [**TPT]
[**TPTNU
M]

X X

SDTM0213 Janus IR4132 Identifies records that
violate the condition
[Planned Time Point
Number (**TPTNUM) is
not null], limited to
records where [Planned
Time Point Name
(**TPT) is not null].

_ALL_ [**TPT]
[**TPTNU
M]

X

SDTM0213 WebSDM IR4132

(IR5132)

Identifies records that
violate the condition
[Planned Time Point
Number (**TPTNUM) is
not null], limited to
records where [Planned
Time Point Name
(**TPT) is not null].

_ALL_ [**TPT]
[**TPTNU
M]

X X

SDTM0214 Janus IR4133 Identifies records that
violate the condition
[Time Point Reference
(**TPTREF) is not null],
limited to records where
[Elapsed Time from
Reference Point
(**ELTM) is not null].

_ALL_-PP [**TPTREF]
[**ELTM]

X

SDTM0214 WebSDM IR4133

(IR5133)

Identifies records that
violate the condition
[Time Point Reference
(**TPTREF) is not null],
limited to records where
[Elapsed Time from
Reference Point
(**ELTM) is not null].

_ALL_-PP [**TPTREF]
[**ELTM]

X X

292 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0215 WebSDM IR4117 Identifies records that
violate the condition [End
Relative to Reference
Period (**ENRF) is not
null], limited to records
where [End Date/Time of
Observation (**ENDTC)
is null] and [Occurrence
(**OCCUR) does not
equal 'N'].

AE+CM
+MH+SU

[**ENRF]
[**ENDTC]

X

SDTM0215 OpenCDISC SD0021 Identifies records that
violate the condition [End
relative to reference
period (**ENRF) is not
null], limited to records
where [end date/time of
observation (**ENDTC)
is null] and [occurrence
(**OCCUR) does not
equal 'N'].

AE+CE
+CM+MH
+SU

[**ENRF]

[**ENDTC]

X

SDTM0216 WebSDM IR4118 Identifies records that
violate the condition
[Start Relative to
Reference Period
(**STRF) is not null],
limited to records where
[Start Date/Time of
Observation (**STDTC)
is null] and [Occurrence
(**OCCUR) does not
equal 'N'].

CM+SU [**STRF]
[**STDTC]

X

SDTM0216 OpenCDISC SD022 Identifies records that
violate the condition [start
relative to reference
period (**STRF) is not
null], limited to records
where [start date/time of
observation (**STDTC)
is null] and [occurrence
(**OCCUR) does not
equal 'N'].

CE+CM
+SU

[**STRF]

[**STDTC]

X

SDTM0217 JanusFR IR4120 Identifies records that
violate the condition
[Evaluation Interval
(**EVLINT) greater than
or equal to 0], limited to
records where
**EVLINT is not null.

_ALL_ **EVLINT X

Module ODM V1.3.0 (Run Time) 293



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0217 WebSDM IR4120 Identifies records that
violate the condition
[Evaluation Interval
(**EVLINT) greater than
or equal to 0], limited to
records where
**EVLINT is not null.

_ALL_ **EVLINT X

SDTM0218 Janus IR4107 Identifies records that
violate the condition
[Status (**STAT) equals
NOT DONE ], limited to
records where **STAT is
not null.

_ALL_ **STAT X

SDTM0218 WebSDM IR4107

(IR5107)

Identifies records that
violate the condition
[Status (**STAT) equals
NOT DONE ], limited to
records where **STAT is
not null.

_ALL_ **STAT X X

SDTM0219 Janus IR4122 Identifies records that
violate the condition
[Reason Not Done
(**REASND) is null],
limited to records where
[Status (**STAT) is null].

CM+EG
+LB+MH
+PE+QS
+SC+SU
+VS

[**REASN
D][**STAT]

X

SDTM0219 WebSDM IR4122

(IR5122)

Identifies records that
violate the condition
[Reason Not Done
(**REASND) is null],
limited to records where
[Status (**STAT) is null].

CM+EG
+LB+MH
+PE+QS
+SC+SU
+VS

[**REASN
D][**STAT]

X

SDTM0219 WebSDM IR5122 Identifies records that
violate the condition
[reason not done
(**REASND) is null],
limited to records where
[status (**STST) is null].

_ALL_ [**REASN
D]

[**STAT]

X

SDTM0220 Janus IR4110 Identifies records that
violate the condition
[Duration (**DUR)
greater than or equal to 0],
limited to records where
**DUR is not null.

_ALL_ **DUR X

294 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0220 WebSDM IR4110

(IR5110)

Identifies records that
violate the condition
[Duration (**DUR)
greater than or equal to 0],
limited to records where
**DUR is not null.

_ALL_ **DUR X X

SDTM0221 Janus IR4136 Identifies records where
values are not found in the
study-specific codelist
attached to a variable.

_ALL_ X

SDTM0221 WebSDM IR4136

(IR5136)

Identifies records where
values are not found in the
study-specific codelist
attached to a variable.

_ALL_ X X

SDTM0222 Janus IR4137 Identifies records that
violate the condition
[Study Day of Visit/
Collection/Exam (**DY)
does not equal 0].

_ALL_ **DY
+**STDY
+**ENDY
+VISITDY

X

SDTM0222 WebSDM IR4137

(IR5137)

Identifies records that
violate the condition
[Study Day of Visit/
Collection/Exam (**DY)
does not equal 0].

_ALL_ **DY
+**STDY
+**ENDY
+VISITDY

X X

SDTM0223 SAS SAS0030 Identifies records with the
condition [Subcategory
(**SCAT) is not null
when category of related
records (**CAT) is null].

AE+CM
+DS+EG
+EX+IE
+LB+MH
+QS+SC
+SU+VS

[**SCAT]
[**CAT]

X

SDTM0223 SAS SAS0030 Identifies records with the
condition [subcategory
(**SCAT) is not null
when category of related
records (**CAT) is null].

_ALL_-TI [**SCAT]

[**CAT]

X

SDTM0223 SAS SAS0030 Identifies records with the
condition [subcategory
(**SCAT) is not null
when category of related
records (**CAT) is null].

TI [IESCAT]

[IECAT]

X

Module ODM V1.3.0 (Run Time) 295



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0225 WebSDM IR5162 Identifies records that
violate the condition
[result or finding in
original units cannot be
null unless status='NOT
DONE'], limited to
records where [derived
flag does not equal 'Y'].

CLASS-
FINDINGS
-IE

[**ORRES]

[**STAT]

X X

SDTM0226 WebSDM IR5163 Identifies records that
violate the condition [if
non-null result or finding
in original units is
provided, then status must
be null].

CLASS-
FINDINGS
-IE

[**ORRES]

[**STAT]

X X

SDTM0231 OpenCDISC SD1003 When age units (AGEU)
are not null, then age
(AGE) should be
provided.

DM [AGE]

[AGEU]

X

SDTM0232 OpenCDISC SD1010 When subjects experience
for a particular period of
time is represented as an
unplanned element,
where element code
(ETCD) is equal to
'UNPLAN”, then the
description element
(ELEMENT) should be
null.

SE [ETCD]

[ELEMENT
]

X

SDTM0233 OpenCDISC SD1019 For unplanned visits
where the description of
the unplanned visit
(SVUPDES) is populated,
the planned study day of
visit (VISITDY) should
be null.

SV [SVUPDES]

[VISITDY]

X

SDTM0251 Janus IR4121 Identifies records that
violate the condition
[Toxicity Grade
(**TOXGR) is a valid
number], limited to
records where **TOXGR
is not null.

CLASS:EV
ENTS

**TOXGR X

SDTM0251 SAS IR4121 Identifies records that
violate the condition
[toxicity grade
(**TOXGR) is a valid
number], limited to
records where **TOXGR
is not null.

_ALL_ **TOXGR X

296 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0251 WebSDM IR5121 Identifies records that
violate the condition
[Toxicity Grade
(**TOXGR) is a valid
number], limited to
records where **TOXGR
is not null.

_ALL_ **TOXGR X

SDTM0251 WebSDM IR4121 Identifies records that
violate the condition
[Toxicity Grade
(**TOXGR) is a valid
number], limited to
records where **TOXGR
is not null.

CLASS:EV
ENTS

**TOXGR X

SDTM0271 SAS SAS0036 Value for column defined
as a data set key is null.

_ALL_ X X

SDTM0301 JanusFR IR4104 Identifies records that
violate the condition [End
Relative to Reference
Period (**ENRF) in
( BEFORE , DURING ,
AFTER , DURING/
AFTER , U )], limited to
records where **ENRF is
not null.

CLASS:EV
ENTS
+CLASS:I
NTERVEN
TIONS

**ENRF X

SDTM0301 WebSDM IR4104

(IR5104)

Identifies records that
violate the condition [End
Relative to Reference
Period (**ENRF) in
( BEFORE , DURING ,
AFTER , DURING/
AFTER , U )], limited to
records where **ENRF is
not null.

CLASS:EV
ENTS
+CLASS:I
NTERVEN
TIONS

**ENRF X X

SDTM0302 JanusFR IR4106 Identifies records that
violate the condition
[Occurrence (**OCCUR)
in ( Y , N )], limited to
records where **OCCUR
is not null.

CLASS:EV
ENTS
+CLASS:I
NTERVEN
TIONS

**OCCUR X

SDTM0302 WebSDM IR4106

(IR5106)

Identifies records that
violate the condition
[Occurrence (**OCCUR)
in ( Y , N )], limited to
records where **OCCUR
is not null.

CLASS:EV
ENTS
+CLASS:I
NTERVEN
TIONS

**OCCUR X X

Module ODM V1.3.0 (Run Time) 297



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0303 JanusFR IR4108 Identifies records that
violate the condition
[Start Relative to
Reference Period
(**STRF) in ( BEFORE ,
DURING , AFTER ,'U')],
limited to records where
**STRF is not null.

CLASS:EV
ENTS
+CLASS:I
NTERVEN
TIONS

**STRF X

SDTM0303 WebSDM IR4108

(IR5108)

Identifies records that
violate the condition
[Start Relative to
Reference Period
(**STRF) in ( BEFORE ,
DURING , AFTER ,'U')],
limited to records where
**STRF is not null.

CLASS:EV
ENTS
+CLASS:I
NTERVEN
TIONS

**STRF X X

SDTM0351 JanusFR IR4134 Identifies records that
violate the condition
[Dose units (**DOSU) is
not null], limited to
records where [Dose
(**DOSE) is not null] and
(Standard) Core attribute
is 'Perm'.

CLASS:IN
TERVENT
IONS

[**DOSE]
[**DOSU]

X

SDTM0351 WebSDM IR4134

(IR5134)

Identifies records that
violate the condition
[Dose units (**DOSU) is
not null], limited to
records where [Dose
(**DOSE) is not null] and
(Standard) Core attribute
is 'Perm'.

CLASS:IN
TERVENT
IONS

[**DOSE]
[**DOSU]

X X

SDTM0352 JanusFR IR4109 Identifies records that
violate the condition
[Dose (**DOSE) greater
than or equal to 0], limited
to records where **DOSE
is not null.

CLASS:IN
TERVENT
IONS

**DOSE X

SDTM0352 WebSDM IR4109

(IR5109)

Identifies records that
violate the condition
[Dose (**DOSE) greater
than or equal to 0], limited
to records where **DOSE
is not null.

CLASS:IN
TERVENT
IONS

**DOSE X X

298 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0353 JanusFR IR4138 Identifies records that
violate the condition
[Dose units (**DOSU) is
not null], limited to
records where [Dose
(**DOSE) is not null] and
(Standard) Core attribute
is 'Exp'.

CLASS:IN
TERVENT
IONS

[**DOSE]
[**DOSU]

X

SDTM0353 WebSDM IR4138

(IR5138)

Identifies records that
violate the condition
[Dose units (**DOSU) is
not null], limited to
records where [Dose
(**DOSE) is not null] and
(Standard) Core attribute
is 'Exp'.

CLASS:IN
TERVENT
IONS

[**DOSE]
[**DOSU]

X X

SDTM0354 WebSDM IR4139

(IR5139)

Identifies records that
violate the condition
[Related Domain
(RDOMAIN) is not null].

SUPP**
+RELREC

RDOMAIN X X

SDTM0355 SAS SAS0040 Value for Related
Domain (RDOMAIN) is
inconsistent with data set
name.

SUPP**-
SUPPQUA
L

RDOMAIN X X

SDTM0401 Janus IR4102 Identifies records that
violate the condition
[Baseline Flag (**BLFL)
either 'Y' or null].

CLASS:FI
NDINGS

**BLFL X

SDTM0401 WebSDM IR4102

(IR5102)

Identifies records that
violate the condition
[Baseline Flag (**BLFL)
either 'Y' or null].

CLASS:FI
NDINGS

**BLFL X X

SDTM0402 JanusFR IR4103 Identifies records that
violate the condition
[Derived Flag
(**DRVFL) either 'Y' or
null].

CLASS:FI
NDINGS

**DRVFL X

SDTM0402 WebSDM IR4103

(IR5103)

Identifies records that
violate the condition
[Derived Flag
(**DRVFL) either 'Y' or
null].

CLASS:FI
NDINGS

**DRVFL X X

Module ODM V1.3.0 (Run Time) 299



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0403 JanusFR IR4105 Identifies records that
violate the condition
[Fasting Status (**FAST)
in ( Y , N , U )], limited to
records where **FAST is
not null.

CLASS:FI
NDINGS

**FAST X

SDTM0403 WebSDM IR4105

(IR5105)

Identifies records that
violate the condition
[Fasting Status (**FAST)
in ( Y , N , U )], limited to
records where **FAST is
not null.

CLASS:FI
NDINGS

**FAST X X

SDTM0405 Janus IR4112 Identifies records that
violate the condition
[Result or Finding in
Standard Format
(**STRESC) is not null],
limited to records where
[Derived Flag
(**DRVFL) equals 'Y'].

CLASS:FI
NDINGS-
DA-IE-PE-
PP-SC

[**STRESC
][**DRVFL]

X

SDTM0405 WebSDM IR4112

(IR5112)

Identifies records that
violate the condition
[Result or Finding in
Standard Format
(**STRESC) is not null],
limited to records where
[Derived Flag
(**DRVFL) equals 'Y'].

CLASS:FI
NDINGS-
DA-IE-PE-
PP-SC

[**STRESC
][**DRVFL]

X X

SDTM0406 Janus IR4123 Identifies records that
violate the condition
[Date/Time of Collection
(**DTC) is not null],
limited to records where
[End Date/Time of
Observation (**ENDTC)
is not null].

LB [LBDTC]
[LBENDTC]

X

SDTM0406 WebSDM IR4123 Identifies records that
violate the condition
[Date/Time of Collection
(**DTC) is not null],
limited to records where
[End Date/Time of
Observation (**ENDTC)
is not null].

LB [LBDTC]
[LBENDTC]

X

300 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0406 WebSDM IR5123 Identifies records that
violate the condition
[date/time of collection
(**DTC) is not null],
limited to records where
[end date/time of
observation (**ENDTC)
is not null].

LB+MH
+PC

[**DTC]

[**ENDTC]

X

SDTM0407 JanusFR IR4124 Identifies records that
violate the condition
[Date/Time of Collection
(**DTC) less than or
equal to End Date/Time of
Observation
(**ENDTC)], limited to
records where **DTC is
not null and **ENDTC
exists.

LB [LBDTC]
[LBENDTC]

X

SDTM0407 WebSDM IR4124 Identifies records that
violate the condition
[Date/Time of Collection
(**DTC) less than or
equal to End Date/Time of
Observation
(**ENDTC)], limited to
records where **DTC is
not null and **ENDTC
exists.

LB [LBDTC]
[LBENDTC]

X

SDTM0407 WebSDM IR5124 Identifies records that
violate the condition
[date/time of collection
(**DTC) less than or
equal to end date/time of
observation
(**ENDTC)], limited to
records where **DTC is
not null and **ENDTC
exists.

LB+MH
+PC

[**DTC]

[**ENDTC]

X

SDTM0408 Janus IR4125 Identifies records that
violate the condition
[Original units
(**ORRESU) is not null],
limited to records where
[Result or Finding in
Original Units
(**ORRES) is not null].

CLASS:FI
NDINGS-
IE

[**ORRES]
[**ORRESU
]

X

Module ODM V1.3.0 (Run Time) 301



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0408 WebSDM IR4125

(IR5125)

Identifies records that
violate the condition
[Original units
(**ORRESU) is not null],
limited to records where
[Result or Finding in
Original Units
(**ORRES) is not null].

CLASS:FI
NDINGS-
IE

[**ORRES]
[**ORRESU
]

X X

SDTM0409 Janus IR4126 Identifies records that
violate the condition
[Original units
(**ORRESU) is null],
limited to records where
[Result or Finding in
Original Units
(**ORRES) is null].

CLASS:FI
NDINGS-
IE

[**ORRES]
[**ORRESU
]

X

SDTM0409 WebSDM IR4126 Identifies records that
violate the condition
[Original units
(**ORRESU) is null],
limited to records where
[Result or Finding in
Original Units
(**ORRES) is null].

CLASS:FI
NDINGS-
IE

[**ORRES]
[**ORRESU
]

X X

SDTM0410 JanusFR IR4127 Identifies records that
violate the condition
[Normal Range Upper
Limit-Standard Units
(**STNRHI) greater than
or equal to Normal Range
Lower Limit-Standard
Units (**STNRLO)],
limited to records where
**STNRHI is not null and
**STNRLO is not null.

CLASS:FI
NDINGS

[**STNRHI]
[**STNRLO
]

X

SDTM0410 WebSDM IR4127 Identifies records that
violate the condition
[Normal Range Upper
Limit-Standard Units
(**STNRHI) greater than
or equal to Normal Range
Lower Limit-Standard
Units (**STNRLO)],
limited to records where
**STNRHI is not null and
**STNRLO is not null.

CLASS:FI
NDINGS

[**STNRHI]
[**STNRLO
]

X

302 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0410 WebSDM IR5127 Identifies records that
violate the condition
[normal range upper
limit-standard units
(**STNRLO)], limited to
records where
**STNRHI is not null and
**STNRLO is not null.

LB [LBSTNRHI
]

[LBSTNRL
O]

X

SDTM0411 SAS SAS0029 Identifies records that
violate the condition
[Normal Range Upper
Limit-Standard Units
(**STNRHI) is null and
Normal Range Lower
Limit-Standard Units
(**STNRLO) is null], or
the condition [**STNRHI
is not null and
**STNRLO is not null].

CLASS:FI
NDINGS

[**STNRHI]
[**STNRLO
]

X X

SDTM0412 Janus IR4128 Identifies records that
violate the condition
[Standard Units
(**STRESU) is not null],
limited to records where
[Result or Finding in
Standard Format
(**STRESC) is not null].

CLASS:FI
NDINGS-
IE

[**STRESC
]
[**STRESU
]

X

SDTM0412 WebSDM IR4128 Identifies records that
violate the condition
[Standard Units
(**STRESU) is not null],
limited to records where
[Result or Finding in
Standard Format
(**STRESC) is not null].

CLASS:FI
NDINGS-
IE

[**STRESC
]
[**STRESU
]

X

SDTM0412 WebSDM IR5128 Identifies records that
violate the condition
[standard units
(**STRESU) are not
null], limited to records
where [result or finding in
standard format
(**STRESC) is not null].

CLASS:FI
NDINGS-
IE-PE

[**STRESC
]

[**STRESU
]

X

Module ODM V1.3.0 (Run Time) 303



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0413 Janus IR4129 Identifies records that
violate the condition
[Standard Units
(**STRESU) is null],
limited to records where
[Result or Finding in
Standard Format
(**STRESC) is null].

CLASS:FI
NDINGS-
IE

[**STRESC
]
[**STRESU
]

X

SDTM0413 WebSDM IR4129 Identifies records that
violate the condition
[Standard Units
(**STRESU) is null],
limited to records where
[Result or Finding in
Standard Format
(**STRESC) is null].

CLASS:FI
NDINGS-
IE

[**STRESC
]
[**STRESU
]

X

SDTM0413 WebSDM IR5129 Identifies records that
violate the condition
[standard units
(**STRESU) is null],
limited to records where
[result or finding in
standard format
(**STRESC) is null].

CLASS:FI
NDINGS-
IE-PE

[**STRESC
]

[**STRESU
]

X

SDTM0414 JanusFR IR4135 Identifies records that
violate the condition
[Result or Finding in
Standard Format
(**STRESC) is not null],
limited to records where
[Result or Finding in
Original Units
(**ORRES) is not null].

CLASS:FI
NDINGS

[**ORRES]
[**STRESC
]

X

SDTM0414 WebSDM IR4135

(IR5135)

Identifies records that
violate the condition
[Result or Finding in
Standard Format
(**STRESC) is not null],
limited to records where
[Result or Finding in
Original Units
(**ORRES) is not null].

CLASS:FI
NDINGS

[**ORRES]
[**STRESC
]

X X

SDTM0415 WebSDM IR5143 Identifies records that
violate the condition [if
non-null occurrence
(**OCCUR) is provided,
then pre-specified
(**PRESP) must equal
'Y'].

CE+CM
+SU+MH

[**OCCUR]

[**PRESP]

X

304 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0416 WebSDM IR5144 Identifies records that
violate the condition [if
non-null occurrence
(**OCCUR) is provided
and pre-specified
(**PRESP) equal 'Y',
then completion status
(**STAT) must equal
'NOT DONE'].

CLASS:EV
ENTS
+CLASS:I
NTERVEN
TIONS

[**OCCUR]

[**STAT]

X

SDTM0417 WebSDM IR5145 Identifies records that
violate the condition
[treatment vehicle
(**TRTV) is not null],
limited to records where
[treatment vehicle
amount (**VAMT) is not
null].

EX [**TRTV]

[**VAMT]

X

SDTM0418 WebSDM IR5146 Identifies records that
violate the condition
[treatment vehicle
amount units
(**VAMTU) is not null],
limited to records where
[treatment vehicle
amount (**VAMT) is not
null].

EX [**VAMTU
]

[**VAMT]

X

SDTM0419 WebSDM IR5147 Identifies records that
violate the condition
[result or finding in
standard format
(**STRESC) is not null],
limited to records where
[result category
(**RESCAT) is not null].

MB+MS [**STRESC
]

[**RESCAT
]

X

SDTM0422 WebSDM IR5168 Identifies records that
violate the condition [if
non-null start relative to
reference time point
(**STRTPT) is provided,
then start reference time
point (**STTPT) must be
non-null].

_ALL_ [**STRTPT]

[**STTPT]

X

SDTM0423 WebSDM IR5169 Identifies records that
violate the condition [if
non-null end relative to
reference time point
(**ENRTPT) is provided,
then the end reference
time point (**ENTPT)
must be non-null].

_ALL_ [**ENRTPT
]

[**ENTPT]

X

Module ODM V1.3.0 (Run Time) 305



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0441 WebSDM IR5255 Identifies a sponsor-
derived flag variable for
'treatment emergent AE'
where the derivation
cannot be executed.

SUPPAE AETERM X

SDTM0442 WebSDM IR5256 Identifies a sponsor-
derived flag variable for
'clinically significant lab'
where the derivation
cannot be executed.

SUPPLB LBCLSIG X

SDTM0443 WebSDM IR5257 Identifies a sponsor-
derived flag variable for
'clinically significant vital
sign' where the derivation
cannot be executed.

SUPPVS VSCLSIG X

SDTM0449 WebSDM IR5141 Identifies user-defined
codelist values that are not
found in the
corresponding SDTM
codelist.

_ALL_ X

SDTM0450 SAS SAS0037 Identifies records where
the lookup value for a
coded field (such as
**DECOD, **BODSYS
or **LOINC) could not be
found in the associated
dictionary.

_ALL_ **DECOD X X

SDTM0451 JanusFR IR4007 Identifies records where
the value for the preferred
term could not be found in
the MedDRA dictionary.

AE AEDECOD X

SDTM0451 WebSDM IR4007

(IR5007)

Identifies records where
the value for the preferred
term could not be found in
the MedDRA dictionary.

AE AEDECOD X X

306 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0452 Janus IR4008 Identifies records where
Serious Event
(AESER)='Y' but none of
Involves Cancer
(AESCAN), Congenital
Anomaly or Birth Defect
(AESCONG), Persist or
Signif Disability/
Incapacity (AESDISAB),
Results in Death
(AESDTH), Requires or
Prolongs Hospitalization
(AESHOSP), Is Life
Threatening (AESLIFE),
Other Medically
Important Serious Event
(AESMIE), or Occurred
with Overdose (AESOD)
equals 'Y'.

AE AESER X

SDTM0452 WebSDM IR4008

(IR5008)

Identifies records where
Serious Event
(AESER)='Y' but none of
Involves Cancer
(AESCAN), Congenital
Anomaly or Birth Defect
(AESCONG), Persist or
Signif Disability/
Incapacity (AESDISAB),
Results in Death
(AESDTH), Requires or
Prolongs Hospitalization
(AESHOSP), Is Life
Threatening (AESLIFE),
Other Medically
Important Serious Event
(AESMIE), or Occurred
with Overdose (AESOD)
equals 'Y'.

AE AESER X X

SDTM0453 JanusFR R4019 Identifies records where
value for [Serious Event
(AESER)] is not found in
codelist [YESNO].

AE AESER X

SDTM0453 WebSDM R4019

(IR5019)

Identifies records where
value for [Serious Event
(AESER)] is not found in
Codelist [YESNO].

AE AESER X X

Module ODM V1.3.0 (Run Time) 307



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0454 JanusFR R4023 Identifies records where
value for [Congenital
Anomaly or Birth Defect
(AESCONG)] is not
found in Codelist
[YESNO], limited to
records where
AESCONG is not null.

AE AESCONG X

SDTM0454 WebSDM R4023

(IR5023)

Identifies records where
value for [Congenital
Anomaly or Birth Defect
(AESCONG)] is not
found in Codelist
[YESNO], limited to
records where
AESCONG is not null

AE AESCONG X X

SDTM0455 JanusFR R4024 Identifies records where
value for [Persist or Signif
Disability/Incapacity
(AESDISAB)] is not
found in Codelist
[YESNO], limited to
records where
AESDISAB is not null.

AE AESDISAB X

SDTM0455 WebSDM R4024

(IR5024)

Identifies records where
value for [Persist or Signif
Disability/Incapacity
(AESDISAB)] is not
found in Codelist
[YESNO], limited to
records where
AESDISAB is not null.

AE AESDISAB X X

SDTM0456 JanusFR R4025 Identifies records where
value for [Results in
Death (AESDTH)] is not
found in Codelist
[YESNO], limited to
records where AESDTH
is not null.

AE AESDTH X

SDTM0456 WebSDM R4025

(R5025)

Identifies records where
value for [Results in
Death (AESDTH)] is not
found in Codelist
[YESNO], limited to
records where AESDTH
is not null.

AE AESDTH X X

308 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0457 JanusFR R4026 Identifies records where
value for [Requires or
Prolongs Hospitalization
(AESHOSP)] is not found
in Codelist [YESNO],
limited to records where
AESHOSP is not null.

AE AESHOSP X

SDTM0457 WebSDM R4026

(R5026)

Identifies records where
value for [Requires or
Prolongs Hospitalization
(AESHOSP)] is not found
in Codelist [YESNO],
limited to records where
AESHOSP is not null.

AE AESHOSP X X

SDTM0458 JanusFR R4027 Identifies records where
value for [Is Life
Threatening (AESLIFE)]
is not found in Codelist
[YESNO], limited to
records where AESLIFE
is not null.

AE AESLIFE X

SDTM0458 WebSDM R4027

(R5027)

Identifies records where
value for [Is Life
Threatening (AESLIFE)]
is not found in Codelist
[YESNO], limited to
records where AESLIFE
is not null.

AE AESLIFE X X

SDTM0459 JanusFR R4045 Identifies records where
value for [Involves
Cancer (AESCAN)] is not
found in Codelist
[YESNO], limited to
records where AESCAN
is not null.

AE AESCAN X

SDTM0459 WebSDM R4045

(R5045)

Identifies records where
value for [Involves
Cancer (AESCAN)] is not
found in Codelist
[YESNO], limited to
records where AESCAN
is not null.

AE AESCAN X X

Module ODM V1.3.0 (Run Time) 309



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0460 JanusFR R4046 Identifies records where
value for [Other
Medically Important
Serious Event
(AESMIE)] is not found
in Codelist [YESNO],
limited to records where
AESMIE is not null.

AE AESMIE X

SDTM0460 WebSDM R4046

(R5046)

Identifies records where
value for [Other
Medically Important
Serious Event
(AESMIE)] is not found
in Codelist [YESNO],
limited to records where
AESMIE is not null.

AE AESMIE X X

SDTM0461 JanusFR R4047 Identifies records where
value for [Occurred with
Overdose (AESOD)] is
not found in Codelist
[YESNO], limited to
records where AESOD is
not null.

AE AESOD X

SDTM0461 WebSDM R4047

(R5047)

Identifies records where
value for [Occurred with
Overdose (AESOD)] is
not found in Codelist
[YESNO], limited to
records where AESOD is
not null.

AE AESOD X X

SDTM0462 Janus R4102 Identifies records that
violate the condition
[Results in Death
(AESDTH)= Y ], limited
to records where
[Outcome of Adverse
Event
(AEOUT)='FATAL'].

AE [AESDTH]
[AEOUT]

X

SDTM0462 WebSDM R4102

(R5102)

Identifies records that
violate the condition
[Results in Death
(AESDTH)= Y ], limited
to records where
[Outcome of Adverse
Event
(AEOUT)='FATAL'].

AE [AESDTH]
[AEOUT]

X X

310 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0463 Janus R4103 Identifies records that
violate the condition
[Outcome of Adverse
Event
(AEOUT)='FATAL'],
limited to records where
[Results in Death
(AESDTH)='Y'].

AE [AESDTH]
[AEOUT]

X

SDTM0463 WebSDM R4103

(R5103)

Identifies records that
violate the condition
[Outcome of Adverse
Event
(AEOUT)='FATAL'],
limited to records where
[Results in Death
(AESDTH)='Y'].

AE [AESDTH]
[AEOUT]

X X

SDTM0464 JanusFR R4043 Identifies records where
value for [Concomitant or
Additional Trtmnt Given
(AECONTRT)] is not
found in Codelist
[YESNO], limited to
records where
AECONTRT is not null.

AE AECONTR
T

X

SDTM0464 WebSDM R4043

(R5043)

Identifies records where
value for [Concomitant or
Additional Trtmnt Given
(AECONTRT)] is not
found in Codelist
[YESNO], limited to
records where
AECONTRT is not null.

AE AECONTR
T

X X

SDTM0465 WebSDM R5108 Identifies records where
value for [action taken
with study treatment
(AEACN)] is not found in
codelist [ACN], limited to
records where AEACN is
not null.

AE AEACN X

SDTM0466 WebSDM R5109 Identifies records where
value for [outcome of
adverse event (AEOUT)]
is not found in codelist
[OUT], limited to records
where AEOUT is not null.

AE AEOUT X

Module ODM V1.3.0 (Run Time) 311



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0467 WebSDM R5110 Identifies records where
value for [severity or
intensity (AESEV)] is not
found in codelist
[AESEV], limited to
records where AESEV is
not null.

AE AESEV X

SDTM0470 OpenCDISC CT0003 Variable values should be
populated with terms
found in AGESPAN
(C66780) CDISC
controlled terminology
codelist.

TS TSVAL X

SDTM0471 OpenCDISC CT0005 Variable values should be
populated with terms
found in AGEU (C66781)
CDISC terminology
codelist.

TS TSVAL X

SDTM0472 OpenCDISC CT0007 Variable values should be
populated with terms
found in drug
accountability test name
(C66731) CDISC
controlled terminology
codelist.

DA DATEST X

SDTM0473 OpenCDISC CT0008 Variable values should be
populated with terms
found in drug
accountability test code
(C66732) CDISC
controlled terminology
codelist.

DA DATESTCD X

SDTM0474 OpenCDISC CT0009 Variable values should be
populated with terms
found in 'Domain
Abbreviation' (C66734)
CDISC controlled
terminology codelist.

_ALL_ DOMAIN X

SDTM0475 OpenCDISC CT0016 Variable values should be
populated with terms
found in evaluator
(C78735) CDISC
controlled terminology
codelist.

CLASS:FI
NDINGS

**EVAL X

312 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0476 OpenCDISC CT0017 Variable values should be
populated with terms
found in evaluator
(C78735) CDISC
controlled terminology
codelist.

SUPP** QEVAL X

SDTM0477 OpenCDISC CT0024 Variable values should be
populated with terms
found in MARISTAT
(C76348) CDISC
controlled terminology
codelist.

SC SCSTRESC X

SDTM0478 OpenCDISC CT0026 Variable values should be
populated with terms
found in 'Reference
Range Indicator'
(C78736) CDISC
controlled terminology
codelist.

CLASS:FI
NDINGS

**NRIND X

SDTM0479 OpenCDISC CT0032 Variable values should be
populated with terms
found in ROUTE
(C66729) CDISC
controlled terminology
codelist.

TS TSVAL X

SDTM0480 OpenCDISC CT0035 Variable values should be
populated with terms
found in SEXPOP
(C66732) CDISC
controlled terminology
codelist.

TS TSVAL X

SDTM0481 OpenCDISC CT0037 Variable values should be
populated with terms
found in AGESPAN
(C66780) CDISC
controlled terminology
codelist.

CLASS:FI
NDINGS
+CLASS:E
VENTS

**BODSYS X

SDTM0482 OpenCDISC CT0040 Variable values should be
populated with terms
found in TBLIND
(C66735) CDISC
controlled terminology
codelist.

TS TSVAL X

Module ODM V1.3.0 (Run Time) 313



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0483 OpenCDISC CT0041 Variable values should be
populated with terms
found in TCNTRL
(C66785) CDISC
controlled terminology
codelist.

TS TSVAL X

SDTM0484 OpenCDISC CT0042 Variable values should be
populated with terms
found in TDIGRP
(C66787) CDISC
controlled terminology
codelist.

TS TSVAL X

SDTM0485 OpenCDISC CT0043 Variable values should be
populated with terms
found in TINDTP
(C66736) CDISC
controlled terminology
codelist.

TS TSVAL X

SDTM0486 OpenCDISC CT0045 Variable values should be
populated with terms
found in TPHASE
(C66737) CDISC
controlled terminology
codelist.

TS TSVAL X

SDTM0487 OpenCDISC CT0046 Variable values should be
populated with terms
found in Trial Summary
Parameter Test Name
(C67152) CDISC
controlled terminology
codelist.

TS TSPARM X

SDTM0488 OpenCDISC CT0047 Variable values should be
populated with terms
found in Trial Summary
Parameter Test Code
(C66738) CDISC
controlled terminology
codelist.

TS TSPARMC
D

X

SDTM0489 OpenCDISC CT0035 Variable values should be
populated with terms
found in TTYPE
(C66739) CDISC
controlled terminology
codelist.

TS TSVAL X

SDTM0490 WebSDM IR5150 Identifies records that
violate the condition [Pre-
specified (**PRESP) is
either 'Y' or null].

_ALL_ **PRESP X

314 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0491 WebSDM IR5159 Identifies records that
violate the condition
[route of administration
(**ROUTE) is in codelist
ROUTE or is null].

CLASS:IN
TERVENT
IONS

**ROUTE X

SDTM0492 WebSDM IR5164 Identifies records that
violate the condition
[position of subject
during observation
(**POS) is in codelist
POSITION or is null].

CLASS:FI
NDINGS

**POS X

SDTM0493 WebSDM IR5165 Identifies records that
violate the condition [start
relative to reference time
point (**STRTPT) is in
codelist STRTPT or is
null].

_ALL_ **STRTPT X

SDTM0494 WebSDM IR5166 Identifies records that
violate the condition [end
relative to reference time
point (**ENRTPT) is in
codelist ENRTPT or is
null].

_ALL_ **ENRTPT X

SDTM0495 WebSDM IR5173 Identifies records that
violate the condition
[dose units (**DOSU) is
in codelist UNIT or is
null].

_ALL_ **DOSU X

SDTM0496 WebSDM IR5174 Identifies records that
violate the condition
[Original Units
(**ORRESU) is in
codelist UNIT or is null].

_ALL_-VS **ORRESU X

SDTM0497 WebSDM IR5175 Identifies records that
violate the condition
[Standard Units
(**STRESU) is in
codelist UNIT or is null].

_ALL_-VS **STRESU X

SDTM0498 WebSDM IR5176 Identifies records that
violate the condition
[location used for the
measurement (**LOC) is
in codelist LOC or is
null].

_ALL_ **LOC X

Module ODM V1.3.0 (Run Time) 315



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0499 WebSDM IR5177 Identifies records that
violate the condition
[dosing frequency per
interval (**DOSFRQ) is
in codelist FREQ or is
null].

CLASS:IN
TERVENT
IONS

**DOSFRQ X

SDTM0500 WebSDM IR4172

(R5172)

Identifies records that
violate the condition [if
arm code
(ARMCD)='NOTASSG
N' then description of arm
(ARM) must equal 'Not
Assigned', and vice
versa].

DM+TA [ARM]

[ARMCD]

X X

SDTM0501 Janus IR4011 Identifies records that
violate the condition [If
Arm Code
(ARMCD)='SCRNFAIL'
then Description of Arm
(ARM) must equal
'Screen Failure', and vice
versa].

DM [ARM]
[ARMCD]

X

SDTM0501 WebSDM IR4011

(ir5011)

Identifies records that
violate the condition [If
Arm Code
(ARMCD)='SCRNFAIL'
then Description of Arm
(ARM) must equal
'Screen Failure', and vice
versa].

DM+TA [ARM]
[ARMCD]

X X

SDTM0502 JanusFR R4096 Identifies records that
violate the condition
[Subject Reference Start
Date and Time
(RFSTDTC) is not null],
limited to records where
upper(Arm Code
(ARMCD)) does not
equal 'SCRNFAIL'.

DM [RFSTDTC]
[ARMCD]

X

SDTM0502 WebSDM R4096

(R5096)

Identifies records that
violate the condition
[Subject Reference Start
Date and /Time
(RFSTDTC) is not null],
limited to records where
upper(Arm Code
(ARMCD)) does not
equal 'SCRNFAIL'.

DM [RFSTDTC]
[ARMCD]

X X

316 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0503 JanusFR R4097 Identifies records that
violate the condition
[Subject Reference End
Date and Time
(RFENDTC) is not null],
limited to records where
upper(Arm Code
(ARMCD)) does not
equal 'SCRNFAIL'.

DM [RFENDTC]
[ARMCD]

X

SDTM0503 WebSDM R4097

(R5097)

Identifies records that
violate the condition
[Subject Reference End
Date and Time
(RFENDTC) is not null],
limited to records where
upper(Arm Code
(ARMCD)) does not
equal 'SCRNFAIL'.

DM [RFENDTC]
[ARMCD]

X X

SDTM0504 JanusFR R4007 Identifies records where
value for [SEX] is not
found in codelist [SEX].

DM SEX X

SDTM0504 WebSDM R4007

(R5007)

Identifies records where
value for [SEX] is not
found in codelist [SEX].

DM SEX X X

SDTM0505 Janus R4008 Identifies records where
value for [COUNTRY] is
not found in codelist
[COUNTRY].

DM COUNTRY X

SDTM0505 WebSDM R4008

(R5008)

Identifies records where
value for [COUNTRY] is
not found in codelist
[COUNTRY].

DM COUNTRY X X

SDTM0506 JanusFR R4006 Identifies records that
violate the condition [age
(AGE) greater than or
equal to 0], limited to
records where AGE is not
null.

DM AGE X

SDTM0506 WebSDM R4006

(R5006)

Identifies records that
violate the condition [age
(AGE) greater than or
equal to 0], limited to
records where AGE is not
null.

DM AGE X X

Module ODM V1.3.0 (Run Time) 317



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0507 Janus R4106 Identifies records that
violate the condition [age
units (AGEU) is not null],
limited to records where
AGE is not null.

DM [AGE]
[AGEU]

X

SDTM0507 WebSDM R4106

(R5106)

Identifies records that
violate the condition [age
units (AGEU) is not null],
limited to records where
AGE is not null.

DM [AGE]
[AGEU]

X X

SDTM0508 JanusFR R4062 Identifies records where
value for [age units
(AGEU)] is not found in
codelist [AGEUNITS2],
limited to records where
AGEU is not null.

DM AGEU X

SDTM0508 WebSDM R4062

(R5062)

Identifies records where
value for [age units
(AGEU)] is not found in
codelist [AGEUNITS2],
limited to records where
AGEU is not null.

DM AGEU X X

SDTM0509 WebSDM R5113 Identifies records where
value for [ethnicity
(ETHNIC)] is not found
in codelist [ETHNIC],
limited to records where
ETHNIC is not null.

DM ETHNIC X

SDTM0510 WebSDM R5130 Identifies records where
value for [race] is not
found in codelist [RACE],
limited to records where
[race is not null].

DM RACE X

SDTM0511 WebSDM R5121 Identifies records that
violate the condition
[category for disposition
event (DSCAT) =
'DISPOSITION
EVENT'], limited to
records where [epoch
(EPOCH) is not null].

DS [DSCAT]

[EPOCH]

X

SDTM0512 WebSDM R5122 Identifies records where
value for [category for
disposition event
(DSCAT)] is not found in
codelist [DSCAT].

DS DSCAT X

318 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0513 WebSDM R5131 Identifies records where
value for [subject
characteristic short name
(SCTESTCD)] is not
found in codelist [SCCD].

SC SCTESTCD X

SDTM0514 WebSDM R5126 Identifies records where
value for [dose form
(CMDOSFRM)] is not
found in codelist [FRM],
limited to records where
[CMDOSFRM is not
null].

CM CMDOSFR
M

X

SDTM0515 WebSDM R5123 Identifies records where
value for [ECG Test or
Examination Name
(EGTEST)] is not found
in Codelist [EGTEST].

EG EGTEST X

SDTM0516 WebSDM R5124 Identifies records where
value for [ECG test or
examination short name
(EGTESTCD)] is not
found in codelist
[EGTESTCD].

EG EGTESTCD X

SDTM0517 WebSDM R5125 Identifies records where
value for [method of ECG
rest (EGMETHOD)] is
not found in codelist
[EGMETHOD], limited
to records where
[EGMETHOD is not
null].

EG EGMETHO
D

X

SDTM0518 WebSDM R5129 Identifies records where
value for [character result
or finding in standard
format (EGSTRESC)] is
not found in codelist
[EGSTRESC], limited to
records where
[EGSTRESC is not null].

EG EGSTRESC X

SDTM0521 Janus IR4119 Identifies records that
violate the condition
[Planned Elapsed Time
from Reference Point
(**ELTM) greater than or
equal to 0], limited to
records where **ELTM is
not null.

EX EXELTM X

Module ODM V1.3.0 (Run Time) 319



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0521 WebSDM IR4119

(IR5119)

Identifies records that
violate the condition
[Planned Elapsed Time
from Reference Point
(**ELTM) greater than or
equal to 0], limited to
records where **ELTM is
not null.

EX EXELTM X

SDTM0522 WebSDM R5127 Identifies records where
value for [dose form
(EXDOSFRM)] is not
found in codelist [FRM],
limited to records where
[EXDOSFRM is not
null].

EX EXDOSFR
M

X

SDTM0523 WebSDM R5128 Identifies records where
value for [treatment
vehicle amount units
(EXVAMTU)] is not
found in codelist [UNIT],
limited to records where
[EXVAMTU is not null].

EX EXVAMTU X

SDTM0531 JanusFR R4031 Identifies records where
value for [Inclusion or
Exclusion Category
(IECAT)] is not found in
codelist [INCEX], limited
to records where IECAT
is not null.

IE IECAT X

SDTM0531 WebSDM R4031

(R5031)

Identifies records where
value for [Inclusion or
Exclusion Category
(IECAT)] is not found in
codelist [INCEX], limited
to records where IECAT
is not null.

IE IECAT X X

SDTM0532 JanusFR R4071 Identifies records that
violate the condition [I/E
Criterion Original Result
(IEORRES)] is not found
in codelist[YESNO],
limited to records where
IEORRES is not null.

IE IEORRES X

320 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0532 WebSDM R4071

(R5071)

Identifies records that
violate the condition [I/E
Criterion Original Result
(IEORRES)] is not found
in codelist[YESNO],
limited to records where
IEORRES is not null.

IE IEORRES X X

SDTM0533 JanusFR R4072 Identifies records that
violate the condition [I/E
Criterion Original Result
in Standard Format
(IESTRESC)] is not
found in
codelist[YESNO],
limited to records where
IESTRESC is not null.

IE IESTRESC X

SDTM0533 WebSDM R4072

(R5072)

Identifies records that
violate the condition [I/E
Criterion Original Result
in Standard Format
(IESTRESC)] is not
found in
codelist[YESNO],
limited to records where
IESTRESC is not null.

IE IESTRESC X X

SDTM0534 Janus R4073 Identifies records that
violate the condition [I/E
Criterion Original Result
(IEORRES) = I/E
Criterion Original Result
in Std Format
(IESTRESC)].

IE [IEORRES]
[IESTRESC]

X

SDTM0534 WebSDM R4073

(R5073)

Identifies records that
violate the condition [I/E
Criterion Original Result
(IEORRES) = I/E
Criterion Original Result
in Std Format
(IESTRESC)].

IE [IEORRES]
[IESTRESC]

X X

SDTM0541 Janus R4105 Identifies records that
violate the condition
[Description of
Unplanned Element
(SEUPDES) is not null],
limited to records where
Subject Element Code
(ETCD) ='UNPLAN'.

SE [SEUPDES]
[ETCD]

X

Module ODM V1.3.0 (Run Time) 321



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0541 WebSDM R4105

(R5105)

Identifies records that
violate the condition
[Description of
Unplanned Element
(SEUPDES) is not null],
limited to records where
Subject Element Code
(ETCD) ='UNPLAN'.

SE [SEUPDES]
[ETCD]

X X

SDTM0551 JanusFR IR4012 Identifies records that
violate the condition [If
Arm Code
(ARMCD)='SCRNFAIL'
then Description of Arm
(ARM) must equal
'Screen Failure', and vice
versa].

TA [ARM]
[ARMCD]

X

SDTM0551 WebSDM IR4012

(IR5012)

Identifies records that
violate the condition [If
Arm Code
(ARMCD)='SCRNFAIL'
then Description of Arm
(ARM) must equal
'Screen Failure', and vice
versa].

TA [ARM]
[ARMCD]

X

SDTM0561 Janus R4101 Identifies records that
violate the condition
[Rule for End of Element
(TEENRL) is not null or
Planned Duration of
Element (TEDUR) is not
null].

TE [TEENRL]
[TEDUR]

X

SDTM0561 WebSDM R4101

(R5101)

Identifies records that
violate the condition
[Rule for End of Element
(TEENRL) is not null or
Planned Duration of
Element (TEDUR) is not
null].

TE [TEENRL]
[TEDUR]

X X

SDTM0562 OpenCDISC SD1008 When comments are
related to a specific parent
record or group of parent
records in a domain, then
the value of Date and
Time of Comment
(CODTC) should be null
because the timing of the
parent record or records is
inherited by the comment
record.

CO CODTC X

322 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0570 WebSDM R5114 Identifies records where
value for [lab test or
examination name
(LBTEST)] is not found
in codelist [LBTEST].

LB LBTEST X

SDTM0571 WebSDM R5115 Identifies records where
value for [lab test or
examination code
(LBTESTCD)] is not
found in codelist
[LBTESTCD].

LB LBTESTCD X

SDTM0572 WebSDM R5116 Identifies records where
value for [original units
(VSORRESU)] is not
found in codelist
[VSRESU], limited to
records where
[VSORRESU is not null].

VS VSORRESU X

SDTM0573 WebSDM R5117 Identifies records where
value for [character result
or finding in std format
(VSSTRESC)] is not
found in codelist [SIZE],
limited to records where
[vital signs test short
name (VSTESTCD) =
'FRMSIZE'].

VS VSSTRESC X

SDTM0574 WebSDM R5118 Identifies records where
value for [standard units
(VSSTRESU)] is not
found in codelist
[VSRESU], limited to
records where
[VSSTRESU is not null].

VS VSSTRESU X

SDTM0575 WebSDM R5119 Identifies records where
value for [vital signs test
name (VSTEST)] is not
found in codelist
[VSTEST].

VS VSTEST X

SDTM0576 WebSDM R5120 Identifies records where
value for [vital signs test
short name
(VSTESTCD)] is not
found in codelist
[VSTESTCD].

VS VSTESTCD X

Module ODM V1.3.0 (Run Time) 323



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0580 WebSDM R5112 Variable values should be
populated with terms
found in completion/
reason for non-
completion (C66727)
CDISC controlled
terminology codelist.

DS DSDECOD X

SDTM0601 SAS SAS0013 Domain not sorted by
keys as defined in
standard.

_ALL_ X X

SDTM0602 SAS SAS0007 Records are not unique by
the expected keys

_ALL_ X X

SDTM0603 JanusFR IR4004 Identifies records where
non-unique values for
Sequence Number
variable (**SEQ) exist
within a subject.

_ALL_-TS **SEQ X

SDTM0603 WebSDM IR4004

(IR5004)

Identifies records where
non-unique values for
Sequence Number
variable (**SEQ) exist
within a subject.

_ALL_-TS **SEQ X X

SDTM0604 SAS SAS0009 Sequence Number
(**SEQ) values are not
consecutively
incremented beginning at
1 for each USUBJID.

TS TSSEQ X X

SDTM0604 SAS SAS0009 Sequence Number
(**SEQ) values are not
consecutively
incremented beginning at
1 for each USUBJID.

_ALL_-TS **SEQ X X

SDTM0605 SAS SAS0014 Report any variable for
the domain that contains
all missing or null values.

_ALL_ _ALL_ X X

SDTM0606 JanusFR SAS0022 Identify any column
defined as numeric in the
standard that contains
non-numeric values.

_ALL_ X

SDTM606 SAS SAS0022 Identify any columns
defined as numeric in the
standard that contains
non-numeric values.

_ALL_ X

324 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0607 JanusFR SAS0038 Site Study Identifier
(SITEID) is null for all
records.

DM SITEID X

SDTM0607 SAS SAS0038 Site study identifier
(SITEID) is null for all
records.

DM SITEID X

SDTM0621 WebSDM IR4005

(IR5005)

Identifies subjects where
there are no records with
a value of 'Y' in the
baseline flag variable
(**BLFL), excluding
Arm Code
(ARMCD)='SCRNFAIL'
.

EG+LB
+QS+VS

**BLFL X X

SDTM0622 WebSDM IR4142

(IR5142)

Inconsistency between
test (**TEST) and test
code (**TESTCD).

CLASS:FI
NDINGS

[**TEST]
[**TESTCD
]

X X

SDTM0623 SAS SAS0027 Identifies Test Code
(**TESTCD) values
where Standard Units
(**STRESU) value is not
consistent across all
records.

CLASS:FI
NDINGS-
IE-PE

[**TESTCD
]
[**STRESU
]

X X

SDTM0631 JanusFR IR4006 Identifies Short Name of
Measurement, Test, or
Examination
(**TESTCD) values
where Standard Units
(**STRESU) value is not
consistent across all
records.

EG+LB
+QS+VS

[**TESTCD
]
[**STRESU
]

X

SDTM0631 WebSDM IR4006

(IR5006)

Identifies Short Name of
Measurement, Test, or
Examination
(**TESTCD) values
where Standard Units
(**STRESU) value is not
consistent across all
records.

EG+LB
+QS+VS

[**TESTCD
]
[**STRESU
]

X X

SDTM0641 JanusFR R4005 Identifies records where
values for Unique Subject
ID (USUBJID) are not
unique, limited to records
where USUBJID is not
null.

DM X

Module ODM V1.3.0 (Run Time) 325



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0641 WebSDM R4005

(R5005)

Identifies records where
values for Unique Subject
ID (USUBJID) are not
unique, limited to records
where USUBJID is not
null.

DM X X

SDTM0642 SAS SAS0028 Inconsistency between
Description of Arm
(ARM) and Arm Code
(ARMCD) values across
all records.

DM [ARM]
[ARMCD]

X X

SDTM0643 SAS SAS0016 AGE precision
inconsistent across
records.

DM AGE X X

SDTM0644 JanusFR SAS0019 The current version of
JANUS requires that the
STUDYID column have
the same value for all
records within a study.

_ALL_
-DM

STUDYID X

SDTM0644 JanusFR SAS0019 The current version of
JANUS requires that the
STUDYID column have
the same value for all
records within a study.

DM STUDYID X

SDTM0644 SAS SAS0019 STUDYID should have
the same value for all
records within a study.

DM STUDYID X

SDTM0645 OpenCDISC SD1005 Study identifier
(STUDYID) values must
match the STUDYID in
demographics (DM)
domain.

[_ALL_
-DM][DM]

STUDYID X

SDTM0661 JanusFR IR4083 Identifies records where
values for [Study
Identifier (STUDYID),
Unique Subject Identifier
(USUBJID), Identifying
Variable (IDVAR),
Identifying Variable
Value (IDVARVAL), and
Qualifier Variable Name
(QNAM)] variable or
variables are not unique.

SUPP** X

326 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0661 WebSDM IR4083

(IR5083)

Identifies records where
values for [Study
Identifier (STUDYID),
Unique Subject Identifier
(USUBJID), Identifying
Variable (IDVAR),
Identifying Variable
Value (IDVARVAL), and
Qualifier Variable Name
(QNAM)] variable or
variables are not unique.

SUPP** X X

SDTM0662 WebSDM IR4161

(IR5161)

Identifies qualifier
variable name (QNAM)
where variable label value
(Qualifier Variable Label
QLABEL) is not
consistent across all
records.

SUPP** [QNAM]
[QLABEL]

X X

SDTM0671 SAS SAS0032 Inconsistency between
Trial Summary Parameter
(TSPARM) and Trial
Summary Parameter
Short Name
(TSPARMCD).

TS [TSPARM]
[TSPARMC
D]

X X

SDTM0672 OpenCDISC SD0083 The value of unique
subject identifier
(USUBJID) variable must
be unique for each subject
across all trials in the
submission.

_ALL_ USUBJID X

SDTM0673 OpenCDISC SD1001 The value of subject
identifier for the study
(SUBJID) variable must
be unique for each subject
with the study.

DM SUBJID X

SDTM0801 JanusFR IR4500 Identifies non-
demographics domain
subjects (USUBJID) not
found in the
demographics domain.

[_ALL_
-DM][DM]

STUDYID
+USUBJID

X

SDTM0801 WebSDM IR4500

(IR5500)

Identifies non-
demographics domain
subjects (USUBJID) not
found in the
demographics domain.

[_ALL_
-DM][DM]

STUDYID
+USUBJID

X X

Module ODM V1.3.0 (Run Time) 327



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0802 Janus IR4505 Identifies demographics
subjects where no record
for the subject is found in
the disposition domain.

[DM][DS] STUDYID
+USUBJID

X

SDTM0802 WebSDM IR4505

(IR5505)

Identifies demographics
subjects where no record
for the subject is found in
the disposition domain.

[DM][DS] STUDYID
+USUBJID

X X

SDTM0803 Janus IR4506 Identifies demographics
subjects where no record
for the subject is found in
the exposure domain.

[DM][EX] STUDYID
+USUBJID

X

SDTM0803 WebSDM IR4506

(IR5506)

Identifies demographics
subjects where no record
for the subject is found in
the exposure domain.

[DM][EX] STUDYID
+USUBJID

X X

SDTM0804 Janus IR4501 Identifies Unique Subject
Identifier (USUBJID) +
Visit Name (VISIT) +
Visit Number
(VISITNUM)
combinations not found in
the SV domain.

[_ALL_
-SV][SV]

USUBJID
+VISITNU
M+VISIT

X

SDTM0804 WebSDM IR4501

(IR5501)

Identifies Unique Subject
Identifier (USUBJID) +
Visit Name (VISIT) +
Visit Number
(VISITNUM)
combinations not found in
the SV domain.

[_ALL_
-SV][SV]

USUBJID
+VISITNU
M+VISIT

X X

SDTM0805 Janus IR4502 Identifies records where
the value for ARM code
(ARMCD) is not found in
the TA domain, excluding
'SCRNFAIL'.

[DM][TA] ARMCD X

SDTM0805 WebSDM IR4502

(IR5502)

Identifies records where
the value for ARM code
(ARMCD) is not found in
the TA domain, excluding
'SCRNFAIL'.

[DM][TA] ARMCD X X

328 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0806 JanusFR IR4507 Identifies demographics
treatment arms
(Description of Arm
(ARM) + Arm Code
(ARMCD) combination)
not found in the TA
domain, excluding
'Screen Failure',
'SCRNFAIL'.

[DM][TA] ARM
+ARMCD

X

SDTM0806 WebSDM IR4507

(IR5507)

Identifies demographics
treatment arms
(Description of Arm
(ARM) + Arm Code
(ARMCD) combination)
not found in the TA
domain, excluding
'Screen Failure',
'SCRNFAIL'.

[DM][TA] ARM
+ARMCD

X X

SDTM0807 JanusFR SAS0039 TA domain is not
provided and Planned
Arm Code (ARMCD) is
null for all rows in the
demographics domain.

DM ARMCD X

SDTM0807 SAS SAS0039 TA domain is not
provided and Planned
Arm Code (ARMCD) is
null for all rows in the
demographics domain.

DM ARMCD X

SDTM0808 WebSDM IR4170

(IR5170)

Identifies records that
violate the condition
[Visit Name (VISIT)
must be the same for a
given value of Visit
Number (VISITNUM)].

SV [VISIT]
[VISITNUM
]

X X

SDTM0809 WebSDM IR4171

(IR5171)

Identifies records that
violate the condition
[Visit Number
(VISITNUM) must be the
same for a given value of
Visit Name (VISIT)].

SV [VISITNUM
] [VISIT]

X X

SDTM0811 Janus IR4503 Identifies records where
the value for Subject
Element Code (ETCD) is
not found in the TE
domain.

[TA][TE] ETCD X

Module ODM V1.3.0 (Run Time) 329



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0811 Janus IR4503 Identifies records where
the value for Subject
Element Code (ETCD) is
not found in the TE
domain.

[SE][TE] ETCD X

SDTM0811 WebSDM IR4503 Identifies records where
the value for Subject
Element Code (ETCD) is
not found in the TE
domain.

[TA][TE] ETCD X X

SDTM0811 WebSDM IR4503 Identifies records where
the value for Subject
Element Code (ETCD) is
not found in the TE
domain.

[SE][TE] ETCD X X

SDTM0812 WebSDM IR5516 Identifies records in
exposure that should not
be present since the
subject has Arm Code
(ARMCD)='NOTASSG
N'.

[EX][DM] USUBJID X

SDTM0821 JanusFR IR4504 Identifies records where
the value for Inclusion/
Exclusion Criterion Short
Name (IETESTCD) is not
found in the TI domain.

[IE][TI] IETESTCD X

SDTM0821 WebSDM IR4504 Identifies records where
the value for Inclusion/
Exclusion Criterion Short
Name (IETESTCD) is not
found in the TI domain.

[IE][TI] IETESTCD X X

SDTM0822 Janus SAS0023 Identifies records where
the value for Inclusion/
Exclusion Category
(IECAT) in the IE domain
does not exist in the TI
domain if the TI domain
was supplied.

[IE][TI] IECAT X

SDTM0822 SAS SAS0023 Identifies records where
the value for Inclusion/
Exclusion Category
(IECAT) in the IE domain
does not exist in the TI
domain if the TI domain
was supplied.

[IE][TI] IECAT

330 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0823 OpenCDISC SD1016 The combination of
Inclusion/Exclusion
Criterion Short Name
(IETESTCD), Criterion
(IETEST), and Category
(IECAT) values must
match entries in the Trial
Inclusion/Exclusion
Criteria (TI) data set.

[IE][TI] IETESTCD+
IETEST+
IECAT

X

SDTM0831 JanusFR SAS0020 The Study Identifier
(STUDYID) in the TA
domain does not match
STUDYID in the DM
domain.

[TA][DM] STUDYID X

SDTM0831 SAS SAS0020 The study identifier
(STUDYID) in the TA
domain does not match
STUDYID in the DM
domain.

[TA][DM] STUDYID

SDTM0836 JanusFR SAS0021 The study identifier
(STUDYID) in the TV
domain does not match
STUDYID in the DM
domain.

[TV][DM] STUDYID X

SDTM0836 SAS SAS0021 The study identifier
(STUDYID) in the TV
domain does not match
STUDYID in the DM
domain.

[TV][DM] STUDYID

SDTM0841 Janus SAS0026 Identifies records where a
value for VISITNUM in
the SV domain is not
found in the TV domain,
limited to records where
both the SV and TV
domains exist and the
Description of Unplanned
Visit (SVUPDES) is null.

[SV][TV] VISITNUM X

SDTM0841 OpenCDISC SD1017 Identifies records where a
value for VISITNUM in
the SV domain is not
found in the TV domain,
limited to records where
both the SV and TV
domains exist and the
Description of Unplanned
Visit (SVUPDES) is null.

[SV][TV] VISITNUM X

Module ODM V1.3.0 (Run Time) 331



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0842 OpenCDISC SD1012 The combination of
Element Code (ETCD)
and Description of
Element (ELEMENT)
values must match entries
in the Trial Elements (TE)
data set, except for
unplanned Element
(ETCD = 'UNPLAN').

[SE+TA]
[TE]

ETCD+
ELEMENT

X

SDTM0843 OpenCDISC SD1013 When subjects experience
for a particular period of
time is represented as an
unplanned element,
where Element Code
(ETCD) is equal to
'UNPLAN', then Planned
Order of Elements within
Arm (TAETORD) should
be null.

SE [ETCD]
[TAETORD
]

X

SDTM0844 OpenCDISC SD1014 Order of Element within
Arm (TAETORD) values
must match the entries in
the Trial Arms (TA) data
set.

[_ALL_
-TA][TA]

TAETORD X

SDTM0845 OpenCDISC SD1015 Epoch (EPOCH) values
must match the entries in
the Trial Arms (TA) data
set.

[_ALL_
-TA][TA]

EPOCH X

SDTM0846 OpenCDISC SD1018 For planned visits, where
Description of Unplanned
Visit (SVUPDES) is null,
the combination of Visit
Number (VISITNUM),
Visit Name (VISIT), and
Planned Study Day of
Visit (VISITDY) values
must match the entries in
the Trial Visits (TV) data
set.

[SV][TV] VISITNUM
+ VISIT+
VISITDY

X

SDTM0851 JanusFR IR4508 Identifies comments (CO)
domain reference to an
unknown related domain.

CO RDOMAIN X

SDTM0851 WebSDM IR4508

(IR5508)

Identifies comments (CO)
domain reference to an
unknown related domain.

CO RDOMAIN X X

332 Appendix 4 • CDISC SDTM Validation Checks



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0860 WebSDM R5132 Identifies records where
value for [Relationship
Type (RELTYPE)] is not
found in Codelist
[CARDINALITY],
limited to records where
[RELTYPE is not null].

RELREC RELTYPE X

SDTM0861 Janus IR4509 Identifies Related
Records (RELREC)
domain reference to an
unknown related domain.

RELREC RDOMAIN X

SDTM0861 WebSDM IR4509

(IR5509)

Identifies Related
Records (RELREC)
domain reference to an
unknown related domain.

RELREC RDOMAIN X X

SDTM0862 JanusFR IR4510 Identifies Supplemental
Qualifiers (SUPPQUAL)
domain reference to an
unknown related domain.

SUPP** RDOMAIN X

SDTM0862 WebSDM IR4510

(IR5510)

Identifies Supplemental
Qualifiers (SUPPQUAL)
domain reference to an
unknown related domain.

SUPP** RDOMAIN X X

SDTM0863 Janus IR4511 Identifies Related
Records (RELREC)
domain reference to a key
variable that is not defined
in the target domain.

RELREC IDVAR X

SDTM0863 WebSDM IR4511

(IR5511)

Identifies Related
Records (RELREC)
domain reference to a key
variable that is not defined
in the target domain.

RELREC IDVAR X X

SDTM0864 JanusFR IR4512 Identifies Supplemental
Qualifiers (SUPPQUAL)
domain reference to a key
variable that is not defined
in the target domain.

SUPP** IDVAR X

SDTM0864 WebSDM IR4512

(IR5512)

Identifies Supplemental
Qualifiers (SUPPQUAL)
domain reference to a key
variable that is not defined
in the target domain.

SUPP** IDVAR X X

Module ODM V1.3.0 (Run Time) 333



checkid

check

source sourceid*

source

description

table

scope

column

scope 3.1.1 3.1.2

SDTM0865 Janus IR4513 Identifies Related
Records (RELREC)
domain reference to a
record that does not exist
in the target domain.

RELREC IDVAR X

SDTM0865 WebSDM IR4513

(IR5513)

Identifies Related
Records (RELREC)
domain reference to a
record that does not exist
in the target domain.

RELREC IDVAR X X

SDTM0866 JanusFR IR4514 Identifies Supplemental
Qualifiers (SUPPQUAL)
domain reference to a
record that does not exist
in the target domain.

SUPP** IDVAR X

SDTM0866 WebSDM IR4514

(IR5514)

Identifies Supplemental
Qualifiers (SUPPQUAL)
domain reference to a
record that does not exist
in the target domain.

SUPP** IDVAR X X

SDTM0871 Janus SAS0024 Identifies comments (CO)
domain reference to a
record that does not exist
in the target domain.

CO IDVAR X

SDTM0871 OpenCDISC SD1007 Identifies comments (CO)
domain reference to a
record that does not exist
in the target domain.

CO IDVAR X

SDTM0872 OpenCDISC SD1006 When comments are
related to a specific parent
record or group of parent
records in a domain, then
the value of Identifying
Variable (IDVAR) must
reference a key variable
name in the parent
domain.

CO IDVAR X

334 Appendix 4 • CDISC SDTM Validation Checks



Appendix 5

CDISC CRT-DDS 1.0 Validation
Checks

The following table provides a complete list of all CDISC CRT-DDS 1.0 validation checks.

Table A5.1 Validation Checks

checkid checktype tablescope columnscope messagetext

CRT0100 Structural CodeListItems No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural CodeLists No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural ComputationMethods No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural DefineDocument No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural FormDefArchLayouts No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural FormDefs No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural ImputationMethods No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural ItemDefs No two values for the
source column can be
equivalent within the
same source data set.

335



checkid checktype tablescope columnscope messagetext

CRT0100 Structural ItemGroupDefs No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural ItemGroupLeaf No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural ItemRangeChecks No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural MDVLeaf No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural MeasurementUnits No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural MetadataVersion No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural Presentation No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural Study No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural StudyEventDefs No two values for the
source column can be
equivalent within the
same source data set.

CRT0100 Structural ValueLists No two values for the
source column can be
equivalent within the
same source data set.

CRT0101 Content AnnotatedCRFs Data is required for this
field.

CRT0101 Content CLItemDecodeTranslatedText Data is required for this
field.

336 Appendix 5 • CDISC CRT-DDS 1.0 Validation Checks



checkid checktype tablescope columnscope messagetext

CRT0101 Content CodeListItems Data is required for this
field.

CRT0101 Content CodeLists Data is required for this
field.

CRT0101 Content ComputationMethods Data is required for this
field.

CRT0101 Content DefineDocument Data is required for this
field.

CRT0101 Content ExternalCodeLists Data is required for this
field.

CRT0101 Content FormDefArchLayouts Data is required for this
field.

CRT0101 Content FormDefItemGroupRefs Data is required for this
field.

CRT0101 Content FormDefs Data is required for this
field.

CRT0101 Content ImputationMethods Data is required for this
field.

CRT0101 Content ItemAliases Data is required for this
field.

CRT0101 Content ItemDefs Data is required for this
field.

CRT0101 Content ItemGroupAliases Data is required for this
field.

CRT0101 Content ItemGroupDefItemRefs Data is required for this
field.

CRT0101 Content ItemGroupDefs Data is required for this
field.

CRT0101 Content ItemGroupLeaf Data is required for this
field.

CRT0101 Content ItemGroupLeafTitles Data is required for this
field.

CRT0101 Content ItemMURefs Data is required for this
field.

CRT0101 Content ItemQuestionExternal Data is required for this
field.

Module ODM V1.3.0 (Run Time) 337



checkid checktype tablescope columnscope messagetext

CRT0101 Content ItemQuestionTranslatedText Data is required for this
field.

CRT0101 Content ItemRangeCheckValues Data is required for this
field.

CRT0101 Content ItemRangeChecks Data is required for this
field.

CRT0101 Content ItemRole Data is required for this
field.

CRT0101 Content ItemValueListRefs Data is required for this
field.

CRT0101 Content MDVLeaf Data is required for this
field.

CRT0101 Content MDVLeafTitles Data is required for this
field.

CRT0101 Content MUTranslatedText Data is required for this
field.

CRT0101 Content MeasurementUnits Data is required for this
field.

CRT0101 Content MetaDataVersion Data is required for this
field.

CRT0101 Content Presentation Data is required for this
field.

CRT0101 Content ProtocolEventRefs Data is required for this
field.

CRT0101 Content RCErrorTranslatedText Data is required for this
field.

CRT0101 Content Study Data is required for this
field.

CRT0101 Content StudyEventDefs Data is required for this
field.

CRT0101 Content StudyEventFormRefs Data is required for this
field.

CRT0101 Content SupplementalDocs Data is required for this
field.

CRT0101 Content ValueListItemRefs Data is required for this
field.

338 Appendix 5 • CDISC CRT-DDS 1.0 Validation Checks



checkid checktype tablescope columnscope messagetext

CRT0101 Content ValueLists Data is required for this
field.

CRT0106 Content CLItemDecodeTranslatedText lang The data in the
&_cstparm1 field is
improperly constructed.
Must be in the form [A-
Za-z-0-9].

CRT0106 Content ItemQuestionTranslatedText lang The data in the
&_cstparm1 field is
improperly constructed.
Must be in the form [A-
Za-z-0-9].

CRT0106 Content MUTtranslatedText lang The data in the
&_cstparm1 field is
improperly constructed.
Must be in the form [A-
Za-z-0-9].

CRT0106 Content Presentation lang The data in the
&_cstparm1 field is
improperly constructed.
Must be in the form [A-
Za-z-0-9].

CRT0106 Content RCErrorTranslatedText lang The data in the
&_cstparm1 field is
improperly constructed.
Must be in the form [A-
Za-z-0-9].

CRT0107 Content FormDefArchLayouts PdfFileName The data in the
&_cstparm1 field is an
improperly constructed
filename. Must be in the
form [A-Za-z0-9_.].

CRT0108 Content ItemDefs SASFieldName
SDSVarName

The data in the
&_cstparm1 field is an
improperly constructed
SAS name. Must be in
the form [A-Za-z0-9_].

CRT0108 Content ItemGroupDefs SASDatasetName The data in the
&_cstparm1 field is an
improperly constructed
SAS name. Must be in
the form [A-Za-z0-9_].

Module ODM V1.3.0 (Run Time) 339



checkid checktype tablescope columnscope messagetext

CRT0109 Content CodeLists SASFormatName The data in the
&_cstparm1 field is an
improperly constructed
SAS format name. Must
be in the form
[($)A-Za-z0-9_].

CRT0110 Content [AnnotatedCRFs] [MDVLeaf] [AnnotatedCRFs.leafID
] [MDVLeaf.ID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [AnnotatedCRFs]
[MetaDataVersion]

[AnnotatedCRFs.FK_
MetaDataVersion]
[MetaDataVersion.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [CLItemDecodeTranslatedTe
xt] [CodeListItems]

[CLItemDecode
TranslatedText.FK_
CodeListItems]
[CodeListItems.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [CodeListItems] [CodeLists] [CodeListItems.FK_
CodeLists]
[CodeLists.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [CodeLists]
[MetaDataVersion]

[CodeLists.FK_
MetaDataVersion]
[MetaDataVersion.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ComputationMethods]
[MetaDataVersion]

[ComputationMethods.
FK_MetaDataVersion]
[MetaDataVersion.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ExternalCodeLists]
[CodeLists]

[ExternalCodeLists.FK_
CodeLists]
[CodeLists.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [FormDefArchLayouts]
[FormDefs]

[FormDefArchLayouts.
FK_FormDefs]
[FormDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

340 Appendix 5 • CDISC CRT-DDS 1.0 Validation Checks



checkid checktype tablescope columnscope messagetext

CRT0110 Content [FormDefArchLayouts]
[Presentation]

[FormDefArchLayouts.
PresentationOID]
[Presentation.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [FormDefItemGroupRefs]
[FormDefs]

[FormDefItemGroup
Refs.FK_FormDefs]
[FormDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [FormDefItemGroupRefs]
[ItemGroupDefs]

[FormDefItemGroupRef
s.ItemGroupOID]
[ItemGroupDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [FormDefs]
[MetaDataVersion]

[FormDefs.FK_
MetaDataVersion]
[MetaDataVersion.OID]

The foreign key
&_cstparm1; does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ImputationMethods]
[MetaDataVersion]

[ImputationMethods.FK_
MetaDataVersion]
[MetaDataVersion.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemAliases] [ItemDefs] [ItemAliases.FK_
ItemDefs]
[ItemDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemDefs] [CodeLists] [ItemDefs.CodeListRef]
[CodeLists.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemDefs]
[ComputationMethods]

[ItemDefs.Computation
MethodOID]
[ComputationMethods.
OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemDefs]
[MetaDataVersion]

[ItemDefs.FK_
MetaDataVersion]
[MetaDataVersion.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

Module ODM V1.3.0 (Run Time) 341



checkid checktype tablescope columnscope messagetext

CRT0110 Content [ItemGroupAliases]
[ItemGroupDefs]

[ItemGroupAliases.FK_
ItemGroupDefs]
[ItemGroupDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemGroupDefItemRefs]
[CodeLists]

[ItemGroupDefItemRef
s.RoleCodeListOID]
[CodeLists.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemGroupDefItemRefs]
[ImputationMethods]

[ItemGroupDefItemRef
s.ImputationMethodOI
D]
[ImputationMethods.OI
D]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemGroupDefItemRefs]
[ItemDefs]

[ItemGroupDefItemRef
s.ItemOID]
[ItemDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemGroupDefItemRefs]
[ItemGroupDefs]

[ItemGroupDefItemRef
s.FK_ItemGroupDefs]
[ItemGroupDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemGroupDefs]
[MetaDataVersion]

[ItemGroupDefs.FK_
MetaDataVersion]
[MetaDataVersion.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemGroupLeafTitles]
[ItemGroupLeaf]

[ItemGroupLeafTitles.
FK_ItemGroupLeaf]
[ItemGroupLeaf.ID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemGroupLeaf]
[ItemGroupDefs]

[ItemGroupLeaf.FK_
ItemGroupDefs]
[ItemGroupDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemMURefs] [ItemDefs] [ItemMURefs.FK_
ItemDefs]
[ItemDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

342 Appendix 5 • CDISC CRT-DDS 1.0 Validation Checks



checkid checktype tablescope columnscope messagetext

CRT0110 Content [ItemMURefs]
[MeasurementUnits]

[ItemMURefs.Measure
mentUnitOID]
[MeasurementUnits.OI
D]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemQuestionExternal]
[ItemDefs]

[ItemQuestionExternal.
FK_ItemDefs]
[ItemDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemQuestionTranslatedText]
[ItemDefs]

[ItemQuestionTranslate
dText.FK_ItemDefs]
[ItemDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemRangeCheckValues]
[ItemRangeChecks]

[ItemRangeCheckValue
s.FK_
ItemRangeChecks]
[ItemRangeChecks.OID
]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemRangeChecks]
[ItemDefs]

[ItemRangeChecks.FK_
ItemDefs]
[ItemDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemRangeChecks]
[MeasurementUnits]

[ItemRangeChecks.MU
RefOID]
[MeasurementUnits.OI
D]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemRole] [ItemDefs] [ItemRole.FK_
ItemDefs]
[ItemDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemValueListRefs]
[ItemDefs]

[ItemValueListRefs.FK_
ItemDefs]
[ItemDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ItemValueListRefs]
[ValueLists]

[ItemValueListRefs.Val
ueListOID]
[ValueLists.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

Module ODM V1.3.0 (Run Time) 343



checkid checktype tablescope columnscope messagetext

CRT0110 Content [MDVLeafTitles] [MDVLeaf] [MDVLeafTitles.FK_
MDVLeaf]
[MDVLeaf.ID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [MDVLeaf]
[MetaDataVersion]

[MDVLeaf.FK_
MetaDataVersion]
[MetaDataVersion.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [MUTranslatedText]
[MeasurementUnits]

[MUTranslatedText.FK_
MeasurementUnits]
[MeasurementUnits.OI
D]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [MeasurementUnits] [Study] [MeasurementUnits.FK_
Study] [Study.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [MetaDataVersion] [Study] [MetaDataVersion.FK_
Study] [Study.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [Presentation]
[MetaDataVersion]

[Presentation.FK_
MetaDataVersion]
[MetaDataVersion.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ProtocolEventRefs]
[MetaDataVersion]

[ProtocolEventRefs.FK_
MetaDataVersion]
[MetaDataVersion.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ProtocolEventRefs]
[StudyEventDefs]

[ProtocolEventRefs.Stu
dyEventOID]
[StudyEventDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [RCErrorTranslatedText]
[ItemRangeChecks]

[RCErrorTranslatedText
.FK_ItemRangeChecks]
[ItemRangeChecks.OID
]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

344 Appendix 5 • CDISC CRT-DDS 1.0 Validation Checks



checkid checktype tablescope columnscope messagetext

CRT0110 Content [StudyEventDefs]
[MetaDataVersion]

[StudyEventDefs.FK_
MetaDataVersion]
[MetaDataVersion.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [StudyEventFormRefs]
[FormDefs]

[StudyEventFormRefs.F
ormOID]
[FormDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [StudyEventFormRefs]
[StudyEventDefs]

[StudyEventFormRefs.
FK_StudyEventDefs]
[StudyEventDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [Study] [DefineDocument] [Study.FK_
DefineDocument]
[DefineDocument.FileO
ID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [SupplementalDocs]
[MDVLeaf]

[SupplementalDocs.leaf
ID] [MDVLeaf.ID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [SupplementalDocs]
[MetaDataVersion]

[SupplementalDocs.FK_
MetaDataVersion]
[MetaDataVersion.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ValueListItemRefs]
[CodeLists]

[ValueListItemRefs.Rol
eCodeListOID]
[CodeLists.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ValueListItemRefs]
[ImputationMethods]

[ValueListItemRefs.Imp
utationMethodOID]
[ImputationMethods.OI
D]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ValueListItemRefs]
[ItemDefs]

[ValueListItemRefs.Ite
mOID] [ItemDefs.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

Module ODM V1.3.0 (Run Time) 345



checkid checktype tablescope columnscope messagetext

CRT0110 Content [ValueListItemRefs]
[ValueLists]

[ValueListItemRefs.FK_
ValueLists]
[ValueLists.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0110 Content [ValueLists] [ValueLists] [ValueLists.FK_
MetaDataVersion]
[ValueLists.OID]

The foreign key
&_cstparm1 does not
have a corresponding
value in the target data
set &_cstparm2.

CRT0111 Content [ItemGroupDefs]
[ItemGroupDefItemRefs]

[ItemGroupDefs.OID]
[ItemGroupDefItemRef
s.FK_ItemGroupDefs]

Each distinct value of
&_cstparm1 must have a
corresponding value in
the target data set
&_cstparm2.

CRT0111 Content [ItemRangeChecks]
[ItemRangeCheckValues]

[ItemRangeChecks.OID
]
[ItemRangeCheckValue
s.FK_
ItemRangeChecks]

Each distinct value of
&_cstparm1 must have a
corresponding value in
the target data set
&_cstparm2.

CRT0111 Content [MDVLeaf] [MDVLeafTitles] [MDVLeaf.ID]
[MDVLeafTitles.FK_
MDVLeaf]

Each distinct value of
&_cstparm1 must have a
corresponding value in
the target data set
&_cstparm2.

CRT0112 Content [CodeListItems]
[ExternalCodeLists]

[CodeListItems.FK_
CodeLists]
[ExternalCodeLists.FK_
CodeLists]

No value in &_cstparm1
can be equal to any value
in &_cstparm2.

CRT0112 Content [DefineDocument]
[ItemGroupLeaf]

[DefineDocument.ID]
[ItemGroupLeaf.ID]

No value in &_cstparm1
can be equal to any value
in &_cstparm2.

CRT0112 Content [DefineDocument]
[MDVLeaf]

[DefineDocument.ID]
[MDVLeaf.ID]

No value in &_cstparm1
can be equal to any value
in &_cstparm2.

CRT0112 Content [ExternalCodeLists]
[CodeListItems]

[ExternalCodeLists.FK_
CodeLists]
[CodeListItems.FK_
CodeLists]

No value in &_cstparm1
can be equal to any value
in &_cstparm2.

CRT0112 Content [ItemGroupLeaf]
[DefineDocument]

[ItemGroupLeaf.ID]
[DefineDocument.ID]

No value in &_cstparm1
can be equal to any value
in &_cstparm2.

CRT0112 Content [ItemGroupLeaf] [MDVLeaf] [ItemGroupLeaf.ID]
[MDVLeaf.ID]

No value in &_cstparm1
can be equal to any value
in &_cstparm2.

346 Appendix 5 • CDISC CRT-DDS 1.0 Validation Checks



checkid checktype tablescope columnscope messagetext

CRT0112 Content [MDVLeaf]
[DefineDocument]

[MDVLeaf.ID]
[DefineDocument.ID]

No value in &_cstparm1
can be equal to any value
in &_cstparm2.

CRT0112 Content [MDVLeaf] [ItemGroupLeaf] [MDVLeaf.ID]
[ItemGroupLeaf.ID]

No value in &_cstparm1
can be equal to any value
in &_cstparm2.

CRT0113 Content CodeListItems [CodedValue]
[FK_CodeLists]

Foreign key variables
cannot have multiple
values in &_cstparm2.
They must be unique.

CRT0113 Content FormDefItemGroupRefs [ItemGroupOID]
[FK_FormDefs]

Foreign key variables
cannot have multiple
values in &_cstparm2.
They must be unique.

CRT0113 Content FormDefItemGroupRefs [OrderNumber]
[FK_FormDefs]

Foreign key variables
cannot have multiple
values in &_cstparm2.
They must be unique.

CRT0113 Content ItemGroupDefItemRefs [ItemOID]
[FK_ItemGroupDefs]

Foreign key variables
cannot have multiple
values in &_cstparm2.
They must be unique.

CRT0113 Content ItemGroupDefItemRefs [OrderNumber]
[FK_ItemGroupDefs]

Foreign key variables
cannot have multiple
values in &_cstparm2.
They must be unique.

CRT0113 Content ProtocolEventRefs [OrderNumber]
[FK_MetaDataVersion]

Foreign key variables
cannot have multiple
values in &_cstparm2.
They must be unique.

CRT0113 Content ProtocolEventRefs [StudyEventOID]
[FK_MetaDataVersion]

Foreign key variables
cannot have multiple
values in &_cstparm2.
They must be unique.

CRT0113 Content StudyEventFormRefs [FormOID]
[FK_StudyEventDefs]

Foreign key variables
cannot have multiple
values in &_cstparm2.
They must be unique.

CRT0113 Content StudyEventFormRefs [OrderNumber]
[FK_StudyEventDefs]

Foreign key variables
cannot have multiple
values in &_cstparm2.
They must be unique.

Module ODM V1.3.0 (Run Time) 347



checkid checktype tablescope columnscope messagetext

CRT0114 Content _ALL_ Coded value is either
incorrect, missing, or in
the wrong case.

348 Appendix 5 • CDISC CRT-DDS 1.0 Validation Checks



Index

C
CDISC 2
CDISC ADaM 2.1 68
CDISC CRT-DDS 1.0 44

purpose 44
reference standard 44
regulatory basis 44
release data 44

CDISC CRT-DDS standard
sample XML style sheet 34

CDISC ODM 1.3.0 59, 68
purpose 59
reference standard 60
release date 60

CDISC ODM 1.3.1 68
CDISC SDTM 3.1.1 38

description 40
purpose 38
reference standard 39
release dates 38

CDISC SDTM 3.1.2
description 41
reference standard 40

CDISC Terminology standard 64
purpose 64
reference standard 65
release dates 64
support for upcoming standards 68

Clinical Data Interchange Standards
Consortium

See CDISC
clinical research activities 2
columns

in data tables 33
common framework metadata 8
controlled terminology 85

D
data sets

creating data sets used by framework 12

list of data sets associated with registered
standard 11

data standards
creating table shells based on 12
getting a copy of the reference metadata

for 13
data tables 33

columns in 33
default version for a standard

setting 17
default version of standards

referencing 10

F
files

list of files associated with registered
standard 11

folder hierarchy
global standards library 36

framework
creating data sets used by 12
creating table shells based on a data

standard 12
determining which revision of a standard

version is installed 11
getting a copy of the reference metadata

for a data standard 13
getting a list of files and data sets

associated with a registered standard
11

getting a list of installed standards 10
initializing global macro variables 9
inserting information from registered

standards into SASReferences files
14

referencing default version of standards
10

usage scenarios 9
framework metadata 8
Framework module 5

349



G
global macro variables

initializing 9
global standards library 6

directories in 6
directory structure 7
folder hierarchy 36

I
initializing global macro variables 9
installed standards

getting a list of 10

L
list of files and data sets associated with

registered standard 11
list of installed standards 10

M
macro variables

initializing framework's global macro
variables 9

macros
utility macros for metadata files 70

maintenance usage scenaries 16
Messages data set 9

file content and structure 29
metadata

getting a copy of reference metadata 13
metadata directory 6
metadata files

additional files 33
common framework metadata 8
descriptions of 21
SASReferences files 69

metadata repository
See global standards library

P
process controls 85
properties 9, 85
properties files

structure of 28

R
Reference_Columns data set 33
Reference_Tables data set 33
reference metadata 85

getting a copy of 13
reference standards 36
references 2

referencing default version of standards 10
registered standards

inserting information from
SASReferences files into 14

list of files and data sets associated with
11

registering
new standards 16
new version of a standard 16
unregistering a standard version 17
unregistering an old version of a standard,

then registering a new version of a
standard 17

releases
determining which release is installed 11

results 85
Results data set 9

file content and structure 31
revisions

determining which revision is installed
11

S
SAS Clinical Standards Toolkit 2
SAS sessions

translating content of SASReferences file
for 81

SASReferences data set 9
file content and structure 25

SASReferences file
assessing structural integrity and content

80
communicating filename and location to

SAS Clinical Standards Toolkit 78
how it's used 78
translating content for SAS sessions 81

SASReferences files 69
building 69
inserting information from registered

standards into 14
sample files 69
templates 70
utility macros 70

scenarios
maintenance usage scenarios 16

scenarios for framework usage 9
schema-repository directory 7
set of checks to run 85
Source_Columns data set 33
Source_Tables data set 33
source data 85
source metadata 85
standard versions

unregistering 17
Standardlookup data set 9, 70

350 Index



file content and structure 24
type and subtype values 70

standards 2
CDISC ADaM 2.1 68
CDISC CRT-DDS 1.0 44
CDISC ODM 1.3.0 59, 68
CDISC ODM 1.3.1 68
CDISC SDTM 3.1.1 38
CDISC SDTM 3.1.2 40
CDISC Terminology 64, 68
creating table shells based on a data

standard 12
defined 8
determining which revision is installed

11
getting a copy of the reference metadata

for a data standard 13
getting a list of installed standards 10
inserting information from registered

standards into SASReferences files
14

list of files and data sets associated with
registered standard 11

reference standards 36
referencing default version of 10
registering a new standard 16
registering a new version 16
SAS representation of 35
setting the default version for a standard

17
support for upcoming standards 68
supported 35
unregistering an old version of a standard,

then registering a new version of a
standard 17

Standards data set 8
file content and structure 21

standards directory 7
StandardSASReferences data set 8

file content and structure 23
style sheet 34
Summary data set 34
supported standards 35

T
table shells

creating, based on a data standard 12
translating content of SASReferences file

81

U
unregistering

a standard version 17

an old version of a standard, and then
registering a new version of a
standard 17

usage scenaries
maintenance scenarios 16

usage scenarios 9
utility macros 70

V
validation checks 33
Validation Control data set 33
validation framework 84

building a validation process 104
components of 84
debugging validation processes 153
how SAS Clinical Standards Toolkit

interprets validation check metadata
142

messages 101
metadata requirements 86
performance considerations 163
reference metadata 86
running a validation process 111
sample CDISC CRT-DDS 1.0 driver

program: validate_crtdds_data.sas
120

sample CDISC SDTM 3.1.1 driver
program: validate_data.sas 111

SAS implementation of ISO 8601 147
SASReferences customization 104
setting properties for the validation

process 110
source metadata 90
supplemental validation check metadata:

domains by check 98
supplemental validation check metadata:

validation standard references 97
validation check macros 136
validation check of metadata: Validation

Master data set 90
validation checks by standard 121
validation control: specification of run-

time checks 105
validation customization 158
validation metrics 102
validation properties 99
validation results and metrics 116

Validation Master data set 33
validation metrics 34
variables

initializing framework's global macro
variables 9

versions
determining which revision is installed

11

Index 351



referencing default version of a standard
10

registering a new version 16
setting the default version for a standard

17
unregistering a standard version 17
unregistering an old version of a standard,

then registering a new version of a
standard 17

X
XML style sheet 34
xsl-repository directory 8

352 Index



Your Turn

We welcome your feedback.

• If you have comments about this book, please send them to yourturn@sas.com.
Include the full title and page numbers (if applicable).

• If you have comments about the software, please send them to suggest@sas.com.





support.sas.com/saspress

support.sas.com/documentation

support.sas.com/spn

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. © 2010 SAS Institute Inc. All rights reserved. 56836US.0510

SAS® Press
SAS Press titles deliver expert advice from SAS® users worldwide. Written by experienced SAS professionals, 
SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

SAS® Documentation 
We produce a full range of primary documentation:
• Online help built into the software 
• Tutorials integrated into the product 
• Reference documentation delivered in HTML and PDF formats—free on the Web 
• Hard-copy books 

SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information via e-mail about all new SAS titles, 
product news, special offers and promotions, and Web site features. 

SOCIAL MEDIA: JOIN THE CONVERSATION!
Connect with SAS Publishing through social media. Visit our Web site for links to our pages on Facebook, 
Twitter, and LinkedIn. Learn about our blogs, author podcasts, and RSS feeds, too.

SAS Publishing provides you with a wide range of resources to help you develop your SAS software expertise. 
Visit us online at support.sas.com/bookstore.

SAS® Publishing Delivers!

support.sas.com/socialmedia


	Contents
	What's New
	Overview
	Changes to Metadata and Code Base
	Framework Changes
	CDISC SDTM Changes
	CDISC CRT-DDS Changes
	CDISC-Terminology Changes
	CDISC SDTM, CDISC ODM, and CDISC CRT-DDS Changes

	Changes between SAS Clinical Standards Toolkit 1.2 and SAS
Clinical Standards Toolkit 1.3
	Global Changes
	Framework Changes
	CDISC CRT-DDS Changes


	Introduction to SAS Clinical Standards Toolkit
	How to Use This Document
	What Is the SAS Clinical Standards Toolkit?
	References

	Framework
	Overview
	Global Standards Library
	What Is a Standard?
	Common Framework Metadata
	Common Usage Scenarios for the Framework
	Overview
	Initializing the Framework's Global Macro Variables
	Referencing the Default Version of a Standard
	Getting a List of the Standards That Are Installed
	Determining Which Revision (Release) of a Standard Version
Is Installed
	Getting a List of the Files and Data Sets That Are Associated
with a Registered Standard
	Creating Data Sets Used by the Framework
	Creating Table Shells Based on a Data Standard
	Getting a Copy of the Reference Metadata for a Data Standard
	Inserting Information from Registered Standards into a SASReferences
File

	Maintenance Usage Scenarios
	Overview
	Registering a New Version of a Standard
	Setting the Default Version for a Standard
	Unregistering a Standard Version
	Unregistering an Old Version of a Standard, and then Registering
a New Version of a Standard


	Metadata File Descriptions
	Overview
	Standards
	StandardSASReferences
	Standardlookup
	SASReferences
	Properties
	Messages
	Results
	Additional Metadata Files
	Validation Master (Validation Control)
	Reference_Tables(Source_Tables)
	Reference_Columns(Source_Columns)
	Validation Metrics
	CDISC CRT-DDS Style Sheet


	Supported Standards
	SAS Representation of Standards
	Overview

	CDISC SDTM 3.1.1
	Purpose
	Release Dates
	CDISC SDTM 3.1.1 Reference Standard
	Description
	CDISC SDTM 3.1.2 Reference Standard
	Description

	CDISC CRT-DDS 1.0
	Purpose
	Release Date
	Regulatory Basis
	CDISC CRT-DDS 1.0 Reference Standard

	CDISC ODM 1.3.0
	Purpose
	Release Date
	CDISC ODM 1.3.0 Reference Standard

	CDISC Terminology
	Purpose
	Release Dates
	CDISC Terminology Reference Standard

	Support for Upcoming Standards
	CDISC ODM 1.3.0 and CDISC ODM 1.3.1
	CDISC ADaM 2.1
	CDISC Terminology


	SASReferences File
	Overview
	Building a SASReferences File
	How Is a SASReferences File Used?
	Overview
	Communicating the Filename and Location to the SAS Clinical
Standards Toolkit
	Assessing Structural Integrity and Content
	Translating Content for a SAS Session


	Validation
	Validation Framework Overview
	Metadata Requirements
	Overview
	Reference Metadata
	Source Metadata
	Validation Check of Metadata: Validation Master
	Supplemental Validation Check Metadata: Validation Standard
References
	Supplemental Validation Check Metadata: Domains by Check
	Validation.Properties
	Messages
	Validation Metrics

	Building a Validation Process
	SASReferences Customizations
	Validation Control: Specification of Run-Time Checks
	Setting Properties for the Validation Process

	Running a Validation Process
	Sample CDISC SDTM 3.1.1 Driver Program: validate_data.sas
	Validation Results and Metrics
	Sample CDISC CRT-DDS 1.0 Driver Program: validate_crtdds_data.sas

	Validation Checks by Standard
	CDISC SDTM 3.1.1
	CDISC SDTM 3.1.2
	CDISC CRT-DDS 1.0

	Special Topic: Validation Check Macros
	Special Topic: How SAS Clinical Standards Toolkit Interprets
Validation Check Metadata
	Overview
	Case Study 1: CDISC SDTM Check SDTM0604
	Case Study 2: CDISC SDTM Check SDTM0623
	Case Study 3: CDISC SDTM Check SDTM0452

	Special Topic: SAS Implementation of ISO 8601
	Special Topic: Debugging a Validation Process
	Special Topic: Validation Customization
	Overview
	Case Study 1: Modifying an Existing Standard or Defining a
New Reference Standard
	Case Study 2: Using Any Set of Source Data and Metadata
	Case Study 3: Modifying the SAS Validation Checks for Supported
Standards
	Case Study 4: Adding New Validation Checks for Supported Standards
	Case Study 5: Modifying Existing Validation Check Macros or
Adding New Macros
	Case Study 6: Modifying SAS Clinical Standards Toolkit Messaging,
Including Internationalization

	Special Topic: Performance Considerations

	XML-Based Standards
	SAS Support of XML-Based Standards
	Reading XML Files
	Overview of Basic Workflow
	Reading CDISC ODM XML Files: odm_read Macro
	Sample Driver Program: create_sasodm_fromxml.sas
	Reading CDISC CRT-DDS define.xml Files: crtdds_read Macro
	Sample Driver Program: create_sascrtdds_fromxml.sas

	Writing XML Files
	Overview
	Basic Workflow
	Creating the CDISC CRT-DDS 1.0 define.xml File
	Sample Driver Program: create_crtdds10_from_sdtm311.sas
	Sample Driver Program: create_crtdds_define.sas

	Validation of XML-Based Standards
	XML Validation
	Validating CDISC CRT-DDS 1.0 Files

	Special Topic: A Round Trip Exercise Involving the CDISC SDTM
and CDISC CRT-DDS Standards

	Reporting
	Sample Reports
	Overview

	Process Results Reporting
	Validation Check Metadata Reporting

	Global Macro Variables
	Framework Messages
	Macro Application Programming Interface
	Module CRT-DDS V1.0 (Run Time)
	Overview
	Macro Detail

	Module Framework
	Overview
	Macro Detail

	Module SDTM V3.1.1 (Run Time)
	Overview
	Macro Summary
	Macro Detail

	Module SDTM V3.1.2 (Run Time)
	Overview
	Macro Summary
	Macro Detail

	Module ODM V1.3.0 (Run Time)
	Overview
	Macro Summary
	Macro Detail


	CDISC SDTM Validation Checks
	CDISC CRT-DDS 1.0 Validation Checks
	Index



