
SAS® 9.2
Interface to Application
Response Measurement
(ARM)
Reference

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 Interface to Application Response Measurement (ARM): Reference. Cary, NC:
SAS Institute Inc.

SAS® 9.2 Interface to Application Response Measurement (ARM): Reference
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-445-6
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009
2nd electronic book, September 2009
3rd electronic book, May 2010

1st printing, February 2009
2nd printing, September 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

P A R T 1 Application Response Measurement (ARM) 1

Chapter 1 � SAS ARM Interface Overview 3
What Is ARM? 3

Why Is ARM Needed? 3

Will ARM Affect an Application’s Performance? 4

What Are the SAS ARM Interface Features? 4

Comparing the SAS 9.1 ARM Interface with the SAS 9.2 ARM Interface 4

Chapter 2 � ARM Logging 7
ARM Logging Overview 7

SAS Logging Facility 7

SAS Logging Facility Process 8

Configuring ARM Logging in a Configuration File 8

ARM Logging Using the SAS Language 12

Traditional ARM Log 13

Key Behaviors That Change with the SAS Logging Facility 14

P A R T 2 ARM Macro Environment 17

Chapter 3 � Enabling ARM Macro Execution 19
Setting the _ARMEXEC Macro Variable 19

Enabling ARM Macro Execution with SCL 19

Conditional ARM Macro Execution for ARM 20

P A R T 3 Using the ARM Interface 23

Chapter 4 � Using the ARM Interface 25
ARM Interface Overview 25

How the ARM Interface Works 25

Using ARM System Options 26

ARM API Function Calls 27

Using the SAS Logging Facility and the ARM Appender 28

Using Performance Macros 28

Default User Metrics and Performance Macros 31

Default Correlators 32

Chapter 5 � Using SAS 9.2 ARM Interface with Existing ARM Applications 35
SAS 9.2 ARM Interface with Existing SAS Applications Overview 35

iv

Requirement for ARM Appender 35

Adding ARM to an Existing SAS Application 36

Adding ARM to an Existing SAS Application that Contains Basic ARM
Instrumentation 36

Adding ARM to an Existing SAS Application that Contains Extensive Use of ARM
Instrumentation 37

Chapter 6 � ARM Interface and SAS Logging Facility 39
Creating Logs Using a Configuration File 39

Chapter 7 � The ARM Logger 45
ARM Logger Overview 45

Chapter 8 � ARM and SAS OLAP Server 47
Using ARM with SAS OLAP Server 47

Understanding the ARM Records Written for SAS OLAP Server 47

P A R T 4 Logging Facility ARM Appender 55

Chapter 9 � The ARM Appender 57
ARM Appender Overview 57

Chapter 10 � ARM Appender Syntax 59
ARMAppender Syntax 59

ARMAppender Syntax Description 60

ARMAppender Example 61

Chapter 11 � ARM Appender Configuration Parameters 63
Description of ARM Appender Configuration Parameters 63

Chapter 12 � ARM Appender Pattern Layouts for ARM Messages 65
Description of ARM Appender Pattern Layouts 65

P A R T 5 Language Reference Dictionary 69

Chapter 13 � ARM Macros 71
Introduction to ARM Macros 71

Chapter 14 � ARM Performance Macros 89
Introduction to ARM Performance Macros 89

Example: ARM Performance Macros 93

Chapter 15 � ARM System Options 97

Chapter 16 � ARM Category Table 105
ARM Categories and Descriptions 105

P A R T 6 Appendices 107

v

Appendix 1 � SAS Logging Facility Configuration File 109
XML Configuration File 109

Glossary 111

Index 113

vi

vii

What’s New

Overview

In 9.2, the SAS ARM interface uses the SAS logging facility to enhance and simplify
gathering performance data for analysis. The SAS logging facility is a flexible and
configurable framework that you can use to collect, categorize, and filter events, and
write them to a variety of output devices. The SAS 9.2 ARM interface offers two logging
methods, the SAS logging facility and the ARM log. The SAS ARM interface contains
the following new features:

� APPNAME or APPLNAME, which specifies the application name
� ARM appender, which processes ARM transaction events and sends the events to a

specified output destination

� correlators, which are used to track parent and child transactions
� user metrics, which are used to measure start, update, and stop times

� performance macros, which contain default user metrics
� SAS logging facility, which enables more flexibility and control of the ARM log

locations and message formats

viii What’s New

1

P A R T1

Application Response Measurement (ARM)

Chapter 1.SAS ARM Interface Overview 3

Chapter 2.ARM Logging 7

2

3

C H A P T E R

1
SAS ARM Interface Overview

What Is ARM? 3
Why Is ARM Needed? 3

Will ARM Affect an Application’s Performance? 4

What Are the SAS ARM Interface Features? 4

Comparing the SAS 9.1 ARM Interface with the SAS 9.2 ARM Interface 4

What Is ARM?

Application Response Measurement (ARM) enables you to monitor the availability
and performance of transactions within and across diverse applications. ARM enables
enterprise management tools to extend directly to applications to measure application
availability, performance, usage, and transaction response time.

The SAS ARM interface implements a number of features, which are compliant with
the ARM 4.0 standards. SAS cooperates with open source ARM agents or vendor
products that implement the ARM open API standard.

Why Is ARM Needed?

There are many techniques for measuring response times, but only ARM measures
them accurately. Other techniques, although useful in other ways, might measure
business service levels by assuming or guessing what a business transaction is, and
when it begins and ends. Also, other techniques cannot provide the important
information that ARM can, such as whether a transaction completed successfully.

Using ARM, you can log transaction records from an application to do the following:

� determine the application response times

� determine the workload and throughput of your applications

� verify that service-level objectives are being met

� determine why the application is not available

� verify who is using an application

� determine why a user is experiencing poor response time

� determine what queries are being issued by an application

� determine the subcomponents of an application’s response time

� determine which servers are being used

� calculate the load time for data warehouses

4 Will ARM Affect an Application’s Performance? � Chapter 1

Will ARM Affect an Application’s Performance?
ARM is designed to be a high-speed interface that has minimal impact on

applications. An ARM agent is designed to quickly extract the information that is
needed and to return control to the application immediately. Processing of the
information is done in a different process that can run when the application is
otherwise idle.

What Are the SAS ARM Interface Features?
The SAS ARM interface uses the following features to measure and log application

availability, performance, usage, and transaction response time:
� ARM agent, which is an executable program that contains an implementation of

the ARM API
� ARM appender, which processes ARM transaction events and sends the events to a

specified output destination
� ARM macros, which you strategically place in your SAS programs to define, start,

and stop ARM data collection
� ARM system options:

� ARMAGENT=, which specifies an executable module or keyword
� ARMLOC=, which specifies the location of an ARM log
� ARMSUBSYS=, which specifies whether to initialize the ARM subsystems

� default correlators, which are used to track parent and child transactions
� user metrics, which are used to measure start, update, and stop times
� performance macros, which contain default user metrics
� SAS logging facility, which enables more flexibility and control of the ARM log

locations and message formats

Comparing the SAS 9.1 ARM Interface with the SAS 9.2 ARM Interface
The following table lists the differences between the SAS 9.1 ARM interface and the

SAS 9.2 ARM interface.

SAS ARM Interface Overview � Comparing the SAS 9.1 ARM Interface with the SAS 9.2 ARM Interface 5

Table 1.1

Feature SAS 9.1 ARM Interface SAS 9.2 ARM Interface SAS 9.2 ARM Interface
Using the SAS Logging
Facility

ARM macros %ARMEND

%ARMGTID

%ARMINIT

%ARMSTRT

%ARMSTOP

%ARMUPDT

%ARMEND

%ARMGTID

%ARMINIT

%ARMSTRT

%ARMSTOP

%ARMUPDT

%PERFEND

%PERFINIT

%PERFSTOP

%PERFSTRT

%ARMEND

%ARMGTID

%ARMINIT

%ARMSTRT

%ARMSTOP

%ARMUPDT

%PERFEND

%PERFINIT

%PERFSTOP

%PERFSTRT

ARMAGENT= ARM agent
or SAS (default)

ARMAGENT= ARM agent
or SAS (default)

ARMAGENT= ARM agent or
SAS (default)

ARMAGENT=LOG4SAS

ARMLOC= yes yes no

ARMSUBSYS= yes yes yes

Correlators yes, user-defined correlators yes, user-defined correlators by default

Post-processing macros %ARMJOIN

%ARMPROC

%ARMJOIN

%ARMPROC

none

User metrics limited user-defined metrics user-defined metrics;
additional user metrics are
memory, thread count, and
Read and Write statistics,
which are default metrics
when using %PERFSTRT and
%PERFSTOP

all user metrics, by default,
when using %PERFSTRT and
%PERFSTOP macros

6

7

C H A P T E R

2
ARM Logging

ARM Logging Overview 7
SAS Logging Facility 7

SAS Logging Facility Process 8

Configuring ARM Logging in a Configuration File 8

ARM Logging Using the SAS Language 12

Traditional ARM Log 13
Key Behaviors That Change with the SAS Logging Facility 14

ARM Logging Overview
Logging is an integral part of ARM processing. The SAS 9.2 ARM interface offers

two logging methods, the SAS logging facility and the ARM log. As the SAS ARM agent
collects ARM information and statistics for the transactions, they are written to the
SAS logging facility or the ARM log. If neither logging method is used, ARM
information and statistics for the transactions are written to the SAS log.

Note: If you perform a planned installation, then the SAS Deployment Wizard
provides logging configuration files for your SAS servers. You can dynamically adjust
thresholds by using the server manager features of the SAS Management Console. �

SAS Logging Facility
The SAS logging facility is a flexible and configurable framework that you can use to

collect, categorize, and filter events, and write them to a variety of output devices. The
logging facility supports problem diagnosis and resolution, performance and capacity
management, and auditing and regulatory compliance.

To use the SAS logging facility, you can define a logging configuration file, which
configures appenders and loggers. You can use the SAS logging facility in SAS
programs. (For information, see “ARM Logging Using the SAS Language” on page 12.)
SAS provides sample SAS logging facility configuration files in the SAS Help and
Documentation. To access the sample configuration files, do the following:

1 From the SAS main window, select Help � SAS Help and Documentation.
2 From SAS Help and Documentation, expand Learning to Use SAS � Base SAS.
3 Select Samples, and scroll to the SAS logging facility configuration file examples.

The SAS logging facility provides flexibility for processing transactions, and enables
you to customize the formatting of messages that can be written to logs.

8 SAS Logging Facility Process � Chapter 2

The ARM appender processes all ARM messages submitted by an external ARM
agent or by SAS ARM processing. ARM messages are formatted based on various
diagnostic contexts. To log ARM messages using a configuration file, you configure an
ARMAppender, a FileAppender, and a logger. The ARMAppender definition specifies
ARM appender parameters. The FileAppender definition contains the log file location
and the message pattern layout. The logger specifies the PERF (performance) message
category. You can also configure appenders and loggers in SAS programs.

For ARM appender information, see “ARM Appender Overview” on page 57. For
logger information, see “ARM Logger Overview” on page 45.

In the programming environment, if the SAS logging facility is initialized for SAS
server logging, messages are written to SAS logging facility locations. If the SAS
logging facility is not initialized for SAS server logging, messages are written only to
SAS logging facility locations that are created in a SAS program, and they are written
to the SAS log.

SAS Logging Facility Process
To use the SAS logging facility, do the following:
� Define a logging configuration file, which configures appenders and loggers. You

can define the configuration in an XML file, or by using SAS language elements. If
you perform a planned installation, then logging configuration files are provided
for your SAS servers.

� Specify the LOGCONFIGLOC= system option to enable logging if you are using
configuration files. The LOGCONFIGLOC= system option does not have to be
specified for the logging facility to operate in SAS programs. If you perform a
planned installation, then the LOGCONFIGLOC= system option is included in the
configuration files for your SAS servers.

� Issue log events in a format that can be processed by the SAS logging facility if
you are developing your own SAS programs.

Configuring ARM Logging in a Configuration File
Using the ARM interface, the SAS logging facility, and a configuration file, one or

more logs can be created. Each log is a file appender that contains pattern layouts. The
file appender is defined in the configuration file. The following syntax creates a file
appender:

<appender class="FileAppender" name="LOG">
<param name="File" value="logs/trace.log"/>
<param name="Append" value="false"/>
<layout>

<param name="ConversionPattern"
value="%d %-5p [%t] %c (%F:%L) - %m"/>

</layout>
</appender>

For more information about the configuration parameters in the file appender syntax,
see “Description of ARM Appender Configuration Parameters” on page 63.

A pattern layout is needed to create the output message format.

<layout>
<param name="ConversionPattern"

value="%d,

ARM Logging � Configuring ARM Logging in a Configuration File 9

%X{App.Name},
%X{ARM.GroupName},
%X{ARM.TranName},
%X{ARM.TranState},
%X{ARM.ParentCorrelator},
%X{ARM.CurrentCorrelator},
%X{ARM.TranStatus},
%X{ARM.TranStart.Time},
%X{ARM.TranStop.Time},
%X{ARM.TranResp.Time}

"/>
</layout>

For more information about pattern layouts, see “Description of ARM Appender Pattern
Layouts” on page 65.

The following configuration file creates three logs:

<?xml version=’’1.0’’?>
<logging:configuration xmlns:log4sas="http://www.sas.com/xml/logging/1.0/"

<appender class="FileAppender" name="LOG">
<param name="File" value="logs/trace.log"/>
<param name="Append" value="false"/>
<layout>

<param name="ConversionPattern"
value="%d %-5p [%t] %c (%F:%L) - %m"/>

</layout>
</appender>

<appender class="FileAppender" name="ARM2LOG">
<param name="File" value="logs/arm2.log"/>
<param name="Append" value="false"/>
<layout>

<param name="ConversionPattern ‘‘
value="%X{ARM2.Record}"/>

</layout>
</appender>

<appender class="FileAppender" name="ARM4LOG’’>
<param name="File" value="logs/arm4.log"/>
<param name="Append" value="false"/>
<layout>

<param name="ConversionPattern"
value="%d,
%X{App.Name},
%X{ARM.GroupName},
%X{ARM.TranName},
%X{ARM.TranState},
%X{ARM.ParentCorrelator},
%X{ARM.CurrentCorrelator},
%X{ARM.TranStatus},
%X{ARM.TranStart.Time},
%X{ARM.TranStop.Time},
%X{ARM.TranResp.Time}

"/>

10 Configuring ARM Logging in a Configuration File � Chapter 2

</layout>
</appender>

<appender class="ARMAppender" name="ARM">
<param name="GetTimes" value="TRUE"/>
<appender-ref ref="ARM4LOG"/>
<appender-ref ref="ARM2LOG"/>

</appender>

<logger name="Perf.ARM" additivity="true">
<level value="all"/>
<appender-ref ref="ARM"/>
</logger>

<root>
<level value="trace"/>
<appender-ref ref="LOG"/>
</root>

</logging:configuration>

Here are the three logs that are created by the configuration file (ARM2.LOG,
ARM4.LOG, and TRACE.LOG):

Output 2.1 ARM2.LOG

I,1523810344.972000,1,0.062500,0.453125,SAS,
G,1523810344.972000,1,1,SAS,MVA SAS session
S,1523810344.972000,1,1,1,0.062500,0.453125
G,1523810344.972000,1,2,PROCEDURE,PROC START/STOP,PROC_NAME,

ShortStr,PROC_IO,Count64,PROC_MEM,Count64,PROC_LABEL,LongStr
I,1523810345.566000,2,0.203125,0.734375,OpenCodeARMGTID test w/ user metrics,*
G,1523810345.691000,2,3,OpenCode02,,ShtStr,ShortStr,cnt32,Count32
S,1523810345.831000,2,3,2,0.359375,0.828125
S,1523810345.847000,1,2,3,0.359375,0.828125,DATASTEP,0,0,
P,1523810345.956000,1,2,3,0.375000,0.890625,0,DATASTEP,311110,283296,
S,1523810345.972000,1,2,4,0.375000,0.890625,SORT ,0,0,
P,1523810346.128000,1,2,4,0.421875,0.953125,0,SORT ,532806,2103048,
P,1523810346.191000,2,3,2,0.453125,0.984375,0
E,1523810346.238000,2,0.468750,1.000000
P,1523810346.285000,1,1,1,0.468750,1.015625,0
E,1523810346.300000,1,0.484375,1.015625

ARM Logging � Configuring ARM Logging in a Configuration File 11

Output 2.2 ARM4.LOG

2008-04-14T12:39:04,972 | SAS | USERID | | INIT | | | | | |
2008-04-14T12:39:04,972 | SAS | USERID | SAS | REGISTER | | | | | |
2008-04-14T12:39:04,972 | SAS | USERID | SAS | START | |

ACj/ADExOUUzQkI3LUJGQTgtNDlBOS04RTg1LUVDOTJCRTQ2RTY4OA== | |
1523810344.972000 | |

2008-04-14T12:39:04,972 | SAS | USERID | PROCEDURE | REGISTER | | | | | |
2008-04-14T12:39:05,565 | OpenCodeARMGTID_test_w/_user_metrics |

USERID | | INIT | | | | | |
2008-04-14T12:39:05,690 | OpenCodeARMGTID_test_w/_user_metrics |

USERID | OpenCode02 | REGISTER | | | | | |
2008-04-14T12:39:05,830 | OpenCodeARMGTID_test_w/_user_metrics |

USERID | OpenCode02 | START | ACj/
ADExOUUzQkI3LUJGQTgtNDlBOS04RTg1LUVDOTJCRTQ2RTY4OA== |
ACj/AEY3MjJDNDJCLTAxNkEtNDMxNy1BNzc4LTc2OTA5Mjg1QzRGNQ== | |
1523810345.831000 | |

2008-04-14T12:39:05,847 | SAS | USERID | PROCEDURE | START |
ACj/AEY3MjJDNDJCLTAxNkEtNDMxNy1BNzc4LTc2OTA5Mjg1QzRGNQ== |
ACj/AERGNDc3OEFELTlCNzItNEE3NC1CNjNFLTU5OTI2QTFERTQ4Ng== | |
1523810345.847000 | |

2008-04-14T12:39:05,955 | SAS | USERID | PROCEDURE | STOP |
ACj/AEY3MjJDNDJCLTAxNkEtNDMxNy1BNzc4LTc2OTA5Mjg1QzRGNQ== |
ACj/AERGNDc3OEFELTlCNzItNEE3NC1CNjNFLTU5OTI2QTFERTQ4Ng== |
GOOD | 1523810345.847000 | 1523810345.956000 | 0.109000

2008-04-14T12:39:05,972 | SAS | USERID | PROCEDURE | START |
ACj/AEY3MjJDNDJCLTAxNkEtNDMxNy1BNzc4LTc2OTA5Mjg1QzRGNQ== |
ACj/AEQ5QkY3MkE3LTVBMzQtNDg1Qi05MUQyLUI0MjZDMzE2MDk0NA== | |
1523810345.972000 | |

2008-04-14T12:39:06,128 | SAS | USERID | PROCEDURE | STOP |
ACj/AEY3MjJDNDJCLTAxNkEtNDMxNy1BNzc4LTc2OTA5Mjg1QzRGNQ== |
ACj/AEQ5QkY3MkE3LTVBMzQtNDg1Qi05MUQyLUI0MjZDMzE2MDk0NA== |
GOOD | 1523810345.972000 | 1523810346.128000 | 0.156000

2008-04-14T12:39:06,190 | OpenCodeARMGTID_test_w/_user_metrics |
USERID | OpenCode02 | STOP |
ACj/ADExOUUzQkI3LUJGQTgtNDlBOS04RTg1LUVDOTJCRTQ2RTY4OA== |
ACj/AEY3MjJDNDJCLTAxNkEtNDMxNy1BNzc4LTc2OTA5Mjg1QzRGNQ== |
GOOD | 1523810345.831000 | 1523810346.191000 | 0.360000

2008-04-14T12:39:06,237 | OpenCodeARMGTID_test_w/_user_metrics |
USERID | | TERM | | | | | |

2008-04-14T12:39:06,284 | SAS | USERID | SAS | STOP | |
ACj/ADExOUUzQkI3LUJGQTgtNDlBOS04RTg1LUVDOTJCRTQ2RTY4OA== |
GOOD | 1523810344.972000 | 1523810346.285000 | 1.313000

2008-04-14T12:39:06,299 | SAS | USERID | | TERM | | | | | |

12 ARM Logging Using the SAS Language � Chapter 2

Output 2.3 TRACE.LOG

2008-04-14T12:39:04,924 DEBUG [00000003] Logging (l4sasutil.c:830) -
Loading the tk4afile support extension (1.0.0).

2008-04-14T12:39:04,924 DEBUG [00000003] Logging.Appender.File
(tk4afile.c:1082) - Creating FileAppender LOG

2008-04-14T12:39:04,924 DEBUG [00000003] Logging.Appender.File
(tk4afile.c:1082) - Creating FileAppender ARM2LOG

2008-04-14T12:39:04,924 DEBUG [00000003] Logging.Appender.File
(tk4afile.c:1082) - Creating FileAppender ARM4LOG

2008-04-14T12:39:04,955 DEBUG [00000003] Logging (l4sasutil.c:830) -
Loading the tk4aarm4 support extension (1.0.0).

2008-04-14T12:39:04,955 DEBUG [00000003] Logging.Appender.ARM
(tk4aarm4.c:1192) - Creating ARM Appender ARM

2008-04-14T12:39:04,955 DEBUG [00000003] Logging.Appender.ARM
(tk4aarm4.c:1345) - Created ARM Appender ARM (0x1fa5f40)

2008-04-14T12:39:04,955 DEBUG [00000003] Logging.Appender.ARM
(tk4aarm4.c:947) - ARM Appender SetOption(GetTimes, TRUE)

2008-04-14T12:39:04,972 INFO [00000003] Perf.ARM.SAS.APPL
(tka_api.c:275) - INIT SAS 13eec00 I,1523810344.972000,1,0.062500,
0.453125,SAS,

2008-04-14T12:39:04,972 INFO [00000003] Perf.ARM.SAS.APPL
(tka_2api.c:576) - REGISTER SAS 13eee58 G,1523810344.972000,1,1,
SAS,MVA SAS session

2008-04-14T12:39:04,972 INFO [00000003] Perf.ARM.SAS.APPL
(tka_api.c:1107) - START SAS 13eee58 0 S,1523810344.972000,1,1,1,
0.062500,0.453125

2008-04-14T12:39:04,972 INFO [00000003] Perf.ARM.SAS.PROC
(tka_2api.c:576) - REGISTER PROCEDURE 13ef148 G,1523810344.972000,
1,2,PROCEDURE,PROC START/STOP,PROC_NAME,ShortStr,
PROC_IO,Count64,PROC_MEM,Count64,PROC_LABEL,LongStr

2008-04-14T12:39:05,299 INFO [00000008] App.Program (ynl4sas.c:123) - 1
The SAS System 12:39 Monday, April 14, 2008

2008-04-14T12:39:05,299 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:05,299 INFO [00000008] App.Program (ynl4sas.c:123) -

NOTE: Copyright (c) 2002-2008 by SAS Institute Inc., Cary, NC, USA.
2008-04-14T12:39:05,299 INFO [00000008] App.Program (ynl4sas.c:123) -

NOTE: SAS (r) Proprietary Software 9.2 (TS2B0)
2008-04-14T12:39:05,299 INFO [00000008] App.Program (ynl4sas.c:123) -

Licensed to SAS Institute Inc., Site 0000000001.
2008-04-14T12:39:05,299 INFO [00000008] App.Program (ynl4sas.c:123) -

NOTE: This session is executing on the XP_PRO platform.
2008-04-14T12:39:05,315 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:05,315 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:05,315 INFO [00000008] App.Program (ynl4sas.c:123) -
...

ARM Logging Using the SAS Language

The SAS language enables you to use the SAS logging facility in a DATA step and in
macro programs. Using SAS logging facility language elements, you can create
appenders, loggers, and log events in your SAS programs. Loggers that you create in
your SAS program can reference appenders that are created in your SAS program, or
appenders that are defined in a logging configuration file. When you create a log event
in your SAS program, the logger that you specify in the log event can be one that was
created in your SAS program, or one that is defined in the logging configuration file.
For more information, see SAS Logging: Configuration and Programming Reference.

SAS processes the logging facility language elements whether the
LOGCONFIGLOC= system option specifies a logging configuration file. If the
LOGCONFIGLOC= system option does not specify a logging configuration file, all SAS

ARM Logging � Traditional ARM Log 13

logging facility messages are written to the SAS log, and they are written to the SAS
logging facility location specified in the log event.

The following list contains other information needed to use the SAS logging facility
and the SAS language:

� The logging facility is enabled for SAS programs at all times. The
LOGCONFIGLOC= system option does not have to be specified for the logging
facility to operate in SAS programs.

� Initializing the logging facility for SAS programs is necessary only if you use the
logging facility autocall macros. SAS has no initialization process for the logging
facility functions and DATA step objects.

� You create appenders in your SAS program before you create loggers or invoke a
log event. The only appender class that you can create is FileRefAppender, which
specifies to write messages to a file that is referenced by a fileref. For information
about ARMAppender, see “ARM Appender Overview” on page 57.

� You create loggers in your SAS program by using either the %LOG4SAS_LOGGER
autocall macro, the LOG4SAS_LOGGER function, or the logger object DECLARE
statement. Loggers must be created after you create appenders and before you
invoke a log event. For information about the Perf.ARM logger, see “ARM Logger
Overview” on page 45.

� After loggers and appenders are created, you can add log events to your SAS
program. You insert log events anywhere in your program or DATA step that you
want to log a message. A log event takes three arguments, a logger name, a level,
and the log message.

Traditional ARM Log

The SAS 9.2 ARM interface preserves the existing SAS 9.1 ARM interface as much as
possible, including the ARM log. After you install SAS 9.2, you do not have to use the
SAS logging facility or the performance macros. You can continue using user-defined
correlators, ARM macros with user-defined metrics, and the ARMLOC= system option.

The ARM log is a preformatted output file, which contains comma-separated contents.
The format includes a one-character identifier that represents the ARM call, a date.time
group, transaction ID, user CPU time, and system CPU time. This information is
followed by transaction-unique details, such as correlators and user metrics.

Instructions for defining correlators and user metrics are in the SAS 9.1
documentation.

The following code uses the ARM macros, user-defined metrics, and correlators:

%let _armexec=1;
%let _armacro=1;

%arminit(appname="OpenCodeARMGTID test w/ user metrics");
%armgtid(txnname="OpenCode02",txnidvar=txn1,

metrNam1="ShtStr",
metrDef1=short,
metrNam2="cnt32",
metrDef2=count32);

%put SYSPARM=&sysparm
%armstrt(txnidvar=txn1,metrval1=&sysparm);

data x;

14 Key Behaviors That Change with the SAS Logging Facility � Chapter 2

do i=1 to 10000;
x=i; y=0-i;
output;
end; run;

proc sort data=x threads; by y; run;

%armstop;
%armend;

The default name of the log file is ARMLOG.LOG. To specify a different name, use
the ARMLOC= system option. The following is the ARM log output:

I,1523811290.756000,1,0.015625,0.468750,SAS,USERID
G,1523811290.771000,1,1,PROCEDURE,PROC START/STOP,PROC_NAME,

ShortStr,PROC_IO,Count64,PROC_MEM,Count64,PROC_LABEL,LongStr
I,1523811291.396000,2,0.093750,0.750000,OpenCodeARMGTID test w/ user metrics,*
G,1523811291.537000,2,2,OpenCode02,,ShtStr,ShortStr,cnt32,Count32
S,1523811291.678000,2,2,1,0.281250,0.828125
S,1523811291.693000,1,1,2,0.281250,0.843750,DATASTEP,0,0,
P,1523811291.787000,1,1,2,0.296875,0.906250,0,DATASTEP,311169,257544,
S,1523811291.803000,1,1,3,0.296875,0.906250,SORT ,0,0,
P,1523811291.975000,1,1,3,0.343750,1.000000,0,SORT ,532865,2099080,
P,1523811292.021000,2,2,1,0.375000,1.015625,0
E,1523811292.068000,2,0.375000,1.046875
E,1523811292.131000,1,0.375000,1.078125

After performance data is written to the ARM log, you can use the ARM
postprocessing macros to read the log and to create SAS data sets for reporting and
analysis. The postprocessing macros are specific to the SAS ARM implementation; they
are not part of the ARM open API standard. The postprocessing macros cannot be used
with the SAS logging facility.

Note: If you use the SAS 9.2 ARM interface, the SAS logging facility, and the
performance macros, do not use the postprocessing macros. �

The following example uses the %ARMPROC and %ARMJOIN postprocessing macros:

filename ARMLOG ’d:\armlog’;
%armproc();
%armjoin();

Key Behaviors That Change with the SAS Logging Facility

When you migrate an application containing ARM to the SAS logging facility, and the
application was created in SAS 9.1 or earlier, the SAS 9.2 ARM interface enables the
application, tools, and facilities to execute without change.

The following table lists the key behaviors or results for the SAS 9.1 ARM interface
option or configuration value when the ARM appender is configured and enabled
through the SAS logging facility.

ARM Logging � Key Behaviors That Change with the SAS Logging Facility 15

Table 2.1 SAS 9.1 ARM Application and SAS 9.2 ARM Integration

Option or Configuration Value Behavior or Results SAS Logging Facility Processing

SAS ARM or PERF macro events,
such as %ARMINIT or %PERFINIT

SAS macro processing is the same. The SAS logging facility namespace
is Perf.ARM.APPL. 1

ARMAGENT=LOG4SAS Enables the SAS logging facility ARM
appender. ARM transactions are
processed by the ARM appender.

SAS 9.1 ARM interface record
formats are available through the
SAS logging facility
%X{ARM2.Record} pattern layout.

ARMSUBSYS=ARM_DSIO Enables the ARM_DSIO subsystem. The SAS logging facility namespace
is Perf.ARM.DSIO.

ARMSUBSYS=ARM_PROC Enables the ARM_PROC subsystem. The SAS logging facility namespace
is Perf.ARM.PROC.

ARMLOG/ARMLOC ARM transaction records are emitted
into the SAS logging facility
architecture.

SAS 9.1 ARM interface record
formats are available through the
SAS logging facility
%X{ARM2.Record} pattern layout.
This option is ignored.

%ARMGTID and %ARMSTRT
macros with user metrics

SAS macro processing is the same.
Metrics are sent to the SAS logging
facility ARM appender and made
available as SAS logging facility
pattern layout values.

SAS 9.1 ARM interface record
formats are available via the SAS
logging facility %X{ARM2.Record}
pattern layout.

1 The name value is obtained from the SAS system option LOGAPPLNAME=, %ARMINIT macro, or the SAS logging facility
configuration specifications.

If the SAS logging facility is disabled, existing SAS applications that include ARM
transaction support continue to execute without change.

16

17

P A R T2

ARM Macro Environment

Chapter 3.Enabling ARM Macro Execution 19

18

19

C H A P T E R

3
Enabling ARM Macro Execution

Setting the _ARMEXEC Macro Variable 19
Enabling ARM Macro Execution with SCL 19

Conditional ARM Macro Execution for ARM 20

Setting the _ARMEXEC Macro Variable

All performance macros and ARM macros are disabled by default so that inserting
these macros within code does not result in inadvertent, unwanted logging. To globally
enable performance macros and ARM macros, you must set the _ARMEXEC macro
variable to a value of 1. Any other value for _ARMEXEC disables the macros.

There are two methods of setting the _ARMEXEC macro variable. The first method
sets the variable during DATA step or SCL program compilation uses the %LET macro
statement:

%let _armexec = 1;

The second method uses CALL SYMPUT statement during execution. To set the
_ARMEXEC macro variable during DATA step or SCL program execution using CALL
SYMPUT:

call symput(’_armexec’, ’1’);

With this method, the macro checks the _ARMEXEC variable during program
execution and the ARM function call is executed or bypassed as appropriate.

If the _ARMEXEC value is not set to 1, then no code is generated and a message is
written in the log:

NOTE: ARMSTRT macro bypassed by _armexec.

Enabling ARM Macro Execution with SCL

The two methods of setting the _ARMEXEC macro variable are during compilation or
execution. Both methods are explained in “Setting the _ARMEXEC Macro Variable” on
page 19. You can use a combination of these methods. For example, set _ARMEXEC to
1 using the compilation method (perhaps in an autoexec file at SAS initialization). Then
code a menu option or element within the application to turn _ARMEXEC on and off
dynamically using the CALL SYMPUT statement.

In SCL, if _ARMEXEC is not set to 1, when the program compiles, all macros are set
to null, and the ARM interface is unavailable until it is recompiled with _ARMEXEC
set to 1.

20 Conditional ARM Macro Execution for ARM � Chapter 3

Additionally, to enable proper compilation of the macros within SCL, you must set
the _ARMSCL global macro variable to 1 before issuing any ARM macros. The
_ARMSCL macro variable suppresses the generation of DROP statements, which are
invalid in SCL.

Conditional ARM Macro Execution for ARM

It is useful to code the ARM macros in your program, but to execute them only when
they are needed. All ARM macros support a LEVEL= option that specifies the execution
level of that particular macro.

If the LEVEL= option is coded, then the execution level of the macro is compared to
two global macro variables, _ARMGLVL and _ARMTLVL. _ARMGLVL is the global level
macro variable. If the LEVEL= value on the ARM macro is less than or equal to the
_ARMGLVL value, then the macro is executed. If the LEVEL= value on the performance
or ARM macro is greater than the _ARMGLVL value, then the macro is not executed:

/* Set the global level to 10 */
%let _armglvl = 10;

data _null_;
%arminit(appname=’Appl 1’, appuser=’userid’);
%armgtid(txnname=’Txn 1’, txndet=’Transaction #1 detail’);

/* These macros are executed */
%armstrt(level=9);
%armstop(level=9);

/* These macros are executed */
%armstrt(level=10);
%armstop(level=10);

/* These macros are NOT executed */
%armstrt(level=11);
%armstop(level=11);

%armend
run;

_ARMTLVL is the target level macro variable and works similarly to _ARMGLVL,
except the LEVEL= value on the ARM macro must be equal to the _ARMTLVL value
for the macro to execute:

/* Set the target level to 10 */
%let _armtlvl = 10;

data _null_;
%arminit(appname=’Appl 1’, appuser=’userid’);
%armgtid(txnname=’Txn 1’, txndet=’Transaction #1 detail’);

/* These macros are NOT executed */
%armstrt(level=9);
%armstop(level=9);

/* These macros are executed */

Enabling ARM Macro Execution � Conditional ARM Macro Execution for ARM 21

%armstrt(level=10);
%armstop(level=10);

/* These macros are NOT executed */
%armstrt(level=11);
%armstop(level=11);

%armend
run;

The LEVEL= option can be used in any ARM macro, which is highly recommended.
It enables you to design more granular levels of logging that can serve as a filter by
logging only as much data as you want. If you set both _ARMGLVL and _ARMTLVL at
the same time, then both values are compared to determine whether the macro should
be executed.

22

23

P A R T3

Using the ARM Interface

Chapter 4.Using the ARM Interface 25

Chapter 5.Using SAS 9.2 ARM Interface with Existing ARM
Applications 35

Chapter 6.ARM Interface and SAS Logging Facility 39

Chapter 7.The ARM Logger 45

Chapter 8.ARM and SAS OLAP Server 47

24

25

C H A P T E R

4
Using the ARM Interface

ARM Interface Overview 25
How the ARM Interface Works 25

Using ARM System Options 26

ARM API Function Calls 27

Using the SAS Logging Facility and the ARM Appender 28

Using Performance Macros 28
Default User Metrics and Performance Macros 31

Default Correlators 32

ARM Interface Overview

The SAS 9.2 ARM interface preserves the existing SAS 9.1 ARM interface as much as
possible. The ARM interface enables applications, tools, and facilities developed in
ARM 2.0 to execute without change using ARM 4.0. The ARM interface offers several
simplifications for ARM reporting transactions, and interface enhancements to
customize ARM transaction reports. The performance (PERF) macros contain default
user metrics. Default correlators are available by setting the MANAGECORRELATORS
parameter in the configuration file or within your SAS program. The ARM interface has
been integrated with the SAS logging facility. You can customize how your ARM logs
are formatted and where they are stored.

How the ARM Interface Works
The ARM API is an application programming interface that a vendor, such as SAS,

can implement to monitor the availability and performance of transactions in
distributed or client/server applications. The ARM API consists of definitions for a
standard set of function calls that are callable from an application.

You determine the transactions within your application that you want to measure. To
log specific SAS subsystem transactions, simply use the ARMSUBSYS= system option
to turn on the transactions that you want to log.

You insert performance macros at strategic points in the application’s code where you
want transaction response times and other statistics collected. The performance macros
generate calls to the ARM API function calls within the ARM agent. The SAS program
accepts the function call parameters, checks for errors, and passes the ARM data to the
ARM agent to calculate the statistics and to log the records.

Typically, an ARM API function call occurs just before a transaction is initiated to
signify the beginning of the transaction. Then, an associated ARM API function call

26 Using ARM System Options � Chapter 4

occurs in the application where the transaction is known to be completed. Basically, the
application calls the ARM agent before a transaction starts, and then calls again after
it ends, enabling the transaction to be measured and monitored. The transaction’s
response time and statistics are routed to the ARM agent, which logs the information.

In addition to the ARM API, SAS implemented several key elements that create the
ARM environment. These key elements include:

ARMAGENT=
system option

is an executable module that contains an implementation of the
ARM API

ARM macros are macros that are placed strategically in SAS programs to create
and manage ARM transactions. You must create the user-defined
metrics and correlators.

ARMSUBSYS=
system option

enables you to collect ARM data on internal SAS components, such
as procedures and DATA steps

default user
metrics

are metrics that are collected in ARM transaction details using the
performance macros.

default
correlators

are correlators that are collected in ARM transaction details using
the performance macros.

performance
macros

are macros that are placed strategically in SAS programs to create
and manage ARM transactions. Default user metrics and correlators
are included in the performance macros.

SAS logging
facility

can produce one log or several logs that contain ARM transaction
details.

Using ARM System Options

SAS provides ARM system options, which are SAS system options that manage the
ARM environment and enable you to log internal SAS processing transactions, such as
file opening and closing, and DATA step and procedure response time.

The following is a list of ARM system options:

� “ARMAGENT= System Option” on page 97, which specifies another vendor’s ARM
agent that is an executable module that contains an implementation of the ARM
API. By default, SAS uses ARMAGENT=SAS. To use the SAS logging facility, set
ARMAGENT=LOG4SAS.

� “ARMLOC= System Option” on page 98, specifies the location of the ARM log.
ARMLOC= is not used with the SAS logging facility.

� “ARMSUBSYS= System Option” on page 99, enables you to use internal SAS
components, such as procedures and DATA steps.

You can specify the ARM system options in the following ways:

� in a configuration file so that they are set automatically when you invoke SAS

� on the command line when you invoke SAS

� using the global OPTIONS statement in the SAS program or in an autoexec file

� from the System Options window

Using the ARM Interface � ARM API Function Calls 27

ARM API Function Calls
The ARM API function calls are contained in the SAS ARM agent. For the SAS

implementation, you do not insert ARM API function calls in a SAS application, you
insert performance macros, which generate calls to the ARM API function calls.

Here are the six ARM API function calls:

ARM_INIT
names the application and the users of the application and initializes the ARM
environment for the application.

ARM_GETID
names a transaction.

ARM_START
signals the start of a unique transaction.

ARM_UPDATE
(optional) provides information about the progress of a transaction.

ARM_STOP
signals the end of a unique transaction.

ARM_END
terminates the ARM environment and signals the end of an application.

ARM API function calls use numeric identifiers (IDs) to uniquely identify the ARM
objects that are input and output from the calls. There are three classes of IDs:

� application IDs
� transaction class IDs
� start handles (start times) for each instance of a transaction

IDs are numeric, assigned integers. The ARM agent assigns IDs. The scheme for
assigning IDs varies from one vendor’s agent to another, but, at a minimum, a unique
ID within a single session is guaranteed. Some agents enable you to pre-assign IDs.

The following table shows the relationships between the ARM API function calls, the
ARM macros, and the performance macros:

Table 4.1 Relationships between ARM API Function Calls, ARM Macros, and
Performance Macros

ARM API Function Calls ARM Macros Performance Macros

ARM_INIT %ARMINIT %PERFINIT

ARM_GETID %ARMGTID

ARM_START %ARMSTRT %PERFSTRT

ARM_UPDATE %ARMUPDT

ARM_STOP %ARMSTOP %PERFSTOP

ARM_END %ARMEND %PERFEND

28 Using the SAS Logging Facility and the ARM Appender � Chapter 4

Using the SAS Logging Facility and the ARM Appender

The SAS logging facility provides greater flexibility and control for processing the ARM
log, tracing, and providing better diagnostic messages. The SAS logging facility
incorporates the ARM appender, which is configured and customized using the SAS
logging facility. The primary role of the ARM appender is:

� capture ARM transaction events
� process the events
� route the events to an appropriate output destination
� emit ARM 4.0 compatible events

For more information about the ARM appender, see “ARM Appender Overview” on
page 57. For more information about the SAS logging facility, see SAS Logging:
Configuration and Programming Reference.

Using Performance Macros

When you use the performance macros, you do not need to define user metrics. There
are default user metrics within the %PERFSTRT and %PERFSTOP macros. The
default user metrics simplify performance tracking. To compare the features of
performance macros and ARM macros, see “Comparing the SAS 9.1 ARM Interface with
the SAS 9.2 ARM Interface” on page 4. There are four performance macros:

“%PERFINIT Macro” on page 90
names the application instance and initializes the ARM interface. Typically, you
insert this macro in your code once.

“%PERFSTRT Macro” on page 91
specifies the start of an instance of a transaction. Insert the %PERFSTRT macro
before each transaction that you want to log.

“%PERFSTOP Macro” on page 90
ends an instance of a transaction. Insert the %PERFSTOP macro where the
transaction is known to be completed.

“%PERFEND Macro” on page 89
signals the termination of the application.

Using the ARM Interface � Using Performance Macros 29

The %PERFSTRT and %PERFSTOP macros contain default user metrics, which
alleviates defining and adding user-metric definitions, types, and values to the macros.

The following program uses the performance macros:

%log4sas();
%log4sas_logger(Perf.ARM, ’level=info’);
options armagent=log4sas;
options armsubsys=(arm_proc);
%let _armexec = 1;
%perfinit(appname="Perf_App");

%perfstrt(txnname="Perf_Tran_1");
data x;
do i=1 to 10000;
x=i; y=0-i;
output;
end; run;

proc sort data=x threads; by y; run;
%perfstop;

%perfstrt(txnname="Perf_Tran_2");
data x;
do i=1 to 10000;
x=i; y=0-i;
output;
end;
run;

proc sort data=x threads; by y; run;
%perfstop;

%perfend;
run;

30 Using Performance Macros � Chapter 4

Here is the output to the SAS log:

39 %log4sas();
40 %log4sas_logger(Perf.ARM, ’level=info’);
41 options armagent=log4sas;
42 options armsubsys=(arm_proc);
43 %let _armexec = 1;
44 %perfinit(appname="Perf_App");
NOTE: INIT Perf_App 13f01e0 I,1533752349.599000,3,2.093750,8.437500,Perf_App,userid
45
46 %perfstrt(txnname="Perf_Tran_1");

NOTE: REGISTER Perf_Tran_1 13f0438

G,1533752349.599000,3,5,Perf_Tran_1,,_IOCOUNT_,Count64,_MEMCURR_,

Gauge64,_MEMHIGH_,Gauge64,_THREADCURR_,Gauge32,_THREADHIGH_,
Gauge32NOTE: START Perf_Tran_1 13f0438 0
S,1533752349.599000,3,5,8,2.093750,8.437500,266202463,13754368,15114240,3,7

47 data x;
NOTE: START PROCEDURE 13ef148 0 S,1533752349.614000,1,2,9,2.125000,8.437500,

DATASTEP,0,0,
48 do i=1 to 10000;
49 x=i; y=0-i;
50 output;
51 end; run;

NOTE: The data set WORK.X has 10000 observations and 3 variables.
NOTE: STOP PROCEDURE 13ef148 0

P,1533752349.630000,1,2,9,2.125000,8.453125,0,DATASTEP,278854,164944,
NOTE: DATA statement used (Total process time):

real time 0.01 seconds
cpu time 0.01 seconds

52
53 proc sort data=x threads; by y; run;
NOTE: START PROCEDURE 13ef148 0 S,1533752349.630000,1,2,10,2.125000,8.453125,

SORT ,0,0,

NOTE: There were 10000 observations read from the data set WORK.X.
NOTE: The data set WORK.X has 10000 observations and 3 variables.
NOTE: STOP PROCEDURE 13ef148 0 P,1533752358.681000,1,2,10,2.171875,8.453125,0,SORT

,524967,1989360,
NOTE: PROCEDURE SORT used (Total process time):

real time 9.05 seconds
cpu time 0.04 seconds

54 %perfstop;

NOTE: STOP Perf_Tran_1 13f0438 0

P,1533752358.697000,3,5,8,2.171875,8.468750,0,267014988,13754368,15114240,3,7
5556 %perfstrt(txnname="Perf_Tran_2");

NOTE: REGISTER Perf_Tran_2 13f0b68

G,1533752358.697000,3,6,Perf_Tran_2,,_IOCOUNT_,Count64,_MEMCURR_,
Gauge64,_MEMHIGH_,Gauge64,_THREADCURR_,Gauge32,_THREADHIGH_,Gauge32

NOTE: START Perf_Tran_2 13f0b68 0
S,1533752358.697000,3,6,11,2.171875,8.468750,267019084,13754368,15114240,3,7

57 data x;
NOTE: START PROCEDURE 13ef148 0 S,1533752358.712000,1,2,12,2.187500,8.468750,

DATASTEP,0,0,
58 do i=1 to 10000;
59 x=i; y=0-i;
60 output;
61 end;
62 run;

Using the ARM Interface � Default User Metrics and Performance Macros 31

NOTE: The data set WORK.X has 10000 observations and 3 variables.
NOTE: STOP PROCEDURE 13ef148 0

P,1533752358.728000,1,2,12,2.187500,8.484375,0,DATASTEP,278854,164944,
NOTE: DATA statement used (Total process time):

real time 0.01 seconds
cpu time 0.01 seconds

63
64 proc sort data=x threads; by y; run;
NOTE: START PROCEDURE 13ef148 0 S,1533752358.728000,1,2,13,2.187500,8.484375,

SORT ,0,0,

NOTE: There were 10000 observations read from the data set WORK.X.
NOTE: The data set WORK.X has 10000 observations and 3 variables.
NOTE: STOP PROCEDURE 13ef148 0 P,1533752358.822000,1,2,13,2.234375,8.484375,0,SORT

,524614,1989840,
NOTE: PROCEDURE SORT used (Total process time):

real time 0.07 seconds
cpu time 0.04 seconds

65 %perfstop;

NOTE: STOP Perf_Tran_2 13f0b68 0

P,1533752358.837000,3,6,11,2.250000,8.484375,0,267835352,13754368,15114240,3,7
66
67 %perfend;

NOTE: END Perf_App 13f01e0 E,1533752358.837000,3,2.250000,8.484375
68 run;

Default User Metrics and Performance Macros
All of the ARM user metrics are defaults within the %PERFSTRT and %PERFSTOP

macros. You do not have to specify user-metric definitions, types, and values within
your code.

The following table shows the relationships between the %PERFSTRT macro,
%PERFSTOP macro, and the default user metrics:

Table 4.2 Default User Metrics within Performance Macros

Metric Name1 Metric Type Description

IOCOUNT COUNT64 The metric value is the total number of disk,
tape, or related input and output operations
at each %PERFSTRT and %PERFSTOP
event. The metric value is obtained from the
host operating system and is associated with
the input and output operations for that
process. The value is a running count at the
time of the event.

MEMCURR GAUGE64 The metric value is the current value for
memory used in the process at each
%PERFSTRT and %PERFSTOP event. The
metric value is obtained from the host
operating system.

32 Default Correlators � Chapter 4

Metric Name1 Metric Type Description

MEMHIGH GAUGE64 The metric value is the highest amount of
memory used for the life cycle of the current
process at each ARM event. The metric value
is obtained from the host operating system.

_THREADCURR GAUGE32 The metric value is the current thread count
of the process at each ARM event. The metric
value is obtained from internal SAS counters.

_THREADHIGH GAUGE32 The metric value is the highest number of
active threads for the life cycle of the current
process at each ARM event. The metric value
is obtained from internal SAS counters.

1 The predefined metric names and metric types on the %PERFSTRT macro can be specified in
the %ARMGTID macro. The SAS 9.2 ARM interface processes the predefined metrics. The
results are sent to the SAS logging facility ARM appender or to the ARM log.

Default Correlators

Correlators are used to track parent and child transactions. A primary or parent
transaction can contain several component or child transactions nested within it. Child
transactions can contain other child transactions. It can be useful to know how much
each child transaction contributes to the total response time of the parent transaction.
If a parent transaction fails, knowing which child transaction contains the failure is
useful.

Correlators can be recorded when you use the ARM appender. You obtain correlated
transaction by default when you use the MANAGECORRELATORS parameter. When
specified, transaction correlation is enabled for all ARM transactions processed by the
ARM appender. The transaction correlators are in the SAS logging facility configuration
file or in your SAS program. See “Description of ARM Appender Configuration
Parameters” on page 63 for the appropriate format and specification for the
configuration file.

The following table shows the transaction correlation behavior in certain events
when the MANAGECORRELATORS parameter is enabled (VALUE=TRUE) by the SAS
logging facility:

Using the ARM Interface � Default Correlators 33

Table 4.3 SAS 9.2 Transaction Correlator Behavior

Event SAS Logging Facility
Transaction Correlator

Behavior

SAS initialization ARM.CurrentCorrelator A default SAS transaction is started
and ARM.CurrentCorrelator is
created by the default SAS
transaction. The default SAS
ARM.CurrentCorrelator becomes the
ARM.ParentCorrelator. Each
%ARMSTRT or %PERFSTRT macro
creates a new
ARM.CurrentCorrelator.

ARM.ParentCorrelator The previous ARM.CurrentCorrelator
becomes the ARM.ParentCorrelator.

SAS 9.1 and 9.2
%ARMSTRT macro; SAS
9.2 %PERFSTRT macro ARM.CurrentCorrelator The value is created by the correlator

associated with the %ARMSTRT or
%PERFSTRT transaction event.

ARM.ParentCorrelator The previous ARM.CurrentCorrelator
becomes the ARM.ParentCorrelator.

SAS 9.2
ARMSUBSYS=START
transaction event ARM.CurrentCorrelator The value is created by the correlator

associated with the %ARMSTRT or
%PERFSTRT transaction event.

SAS 9.1 and SAS 9.2
%ARMSTOP macro; SAS
9.2 %PERFSTOP macro; or
ARMSUBSYS=STOP
transaction event

ARM.ParentCorrelator

ARM.CurrentCorrelator

All information associated with the
current transaction is cleared from
the ARM infrastructure and the
parent transaction is maintained.

If the MANAGECORRELATORS parameter has VALUE=FALSE, you must define and
manage the parent correlators.

34

35

C H A P T E R

5
Using SAS 9.2 ARM Interface
with Existing ARM Applications

SAS 9.2 ARM Interface with Existing SAS Applications Overview 35
Requirement for ARM Appender 35

Adding ARM to an Existing SAS Application 36

Adding ARM to an Existing SAS Application that Contains Basic ARM Instrumentation 36

Adding ARM to an Existing SAS Application that Contains Extensive Use of ARM Instrumentation 37

SAS 9.2 ARM Interface with Existing SAS Applications Overview
The SAS 9.2 ARM interface preserves the existing SAS 9.1 ARM interface as much as

possible. The ARM interface enables applications, tools, and facilities developed in SAS
9.1 ARM interface and ARM 2.0 to execute without change using ARM 4.0. But, adding
the new performance (PERF) macros reduces performance overhead. The following
sections document how to add the SAS 9.2 ARM interface to existing SAS applications:

� “Adding ARM to an Existing SAS Application” on page 36
� “Adding ARM to an Existing SAS Application that Contains Basic ARM

Instrumentation” on page 36
� “Adding ARM to an Existing SAS Application that Contains Extensive Use of

ARM Instrumentation” on page 37

Requirement for ARM Appender

When using ARM, a certain order must be followed when setting up the ARM appender:
1 the ARM appender must be enabled at the INFO diagnostic level before specifying

the ARMAGENT= option
2 the ARMAGENT= option must be specified before the ARMSUBSYS= option

These options can be specified using the SAS command line or OPTIONS statement.
Here is an example using a SAS command line:

"<SAS92_installation_path\sas.exe>"
-CONFIG "<SAS92_installation_path\nls\en\SASV9.CFG>"
-logconfigloc logconfig.xml -armagent log4sas -armsubsys=(arm_proc)

Here is an example using the OPTIONS statement:

%log4sas();
%log4sas_logger(Perf.ARM, ’level=info’);
options armagent=log4sas;
options armsubsys=(arm_proc);

36 Adding ARM to an Existing SAS Application � Chapter 5

Adding ARM to an Existing SAS Application

You have a SAS application, and you want to track the application’s performance.
Using the SAS logging facility and the ARM interface, you can get the performance
information you want with little development time. There are two options available:

� enable the ARMSUBSYS= option (for example, in ARM_PROC), which gathers
metric data at the PROC or DATA step boundaries

� enable the performance macros at key points in the SAS code to obtain metric data

Adding performance macros results in reduced performance overhead. Use the
following steps to add ARM to an application using a configuration file:

1 Create a SAS logging facility -logconfigloc configuration file. For an example of a
SAS logging facility configuration file, see “XML Configuration File” on page 109.
For more information about the SAS logging facility, see SAS Logging:
Configuration and Programming Reference.

2 Specify ARMAGENT=LOG4SAS in a configuration file or within SAS language code.

3 Enable the ARMSUBSYS= system option (ARMSUBSYS= can be enabled in a SAS
option).

4 Add %PERFINIT and %PERFEND macros to the beginning and end of your SAS
language functions.

5 Add %PERFSTRT and %PERFSTOP macros around key events, such as
procedures or DATA step functions.

6 Specify the SAS macro variable _armexec=1 in a SAS configuration file to enable
or disable ARM.

The SAS logging facility contains transaction metrics for key events. The output
destination, output format, and quantity of the information can be defined in a file
appender.

Adding ARM to an Existing SAS Application that Contains Basic ARM
Instrumentation

The SAS 9.2 ARM interface enables applications to conform to ARM 2.0 without
modification, supports enhanced metric capabilities, and, by using the SAS logging
facility, provides greater flexibility and control of the output data formats. Basic ARM
2.0 instrumentation does not contain user-defined metrics or correlation.

The following steps are the recommended changes to an application that contains
basic ARM instrumentation:

1 Create a SAS logging facility -logconfigloc configuration file. For an example, see
“XML Configuration File” on page 109. For more information about the SAS
logging facility, see SAS Logging: Configuration and Programming Reference.

2 Specify ARMAGENT=LOG4SAS in a configuration file or within SAS language code.

3 Replace the %ARMINIT and %ARMEND macros with the %PERFINIT and
%PERFEND macros.

4 Replace the %ARMSTRT and %ARMSTOP macros with the %PERFSTRT and
%PERFSTOP macros.

Using SAS 9.2 ARM Interface with Existing ARM Applications � Extensive Use of ARM Instrumentation 37

Note: The simplified syntax of the %PERFSTRT and %PERFSTOP macros
contains the additional default user metrics, which include memory, thread count,
and disk Read and Write statistics. �

The SAS logging facility contains transaction metrics for key events. The output
destination, output format, and quantity of the information can be defined in a file
appender.

Adding ARM to an Existing SAS Application that Contains Extensive Use
of ARM Instrumentation

An application created before SAS 9.2 that extensively uses ARM user-defined metrics
and correlators continues to execute without modification.

Although you can execute the application without modification, you can enhance
performance by making the following changes to the application:

1 Create a SAS logging facility -logconfigloc configuration file. For an example, see
“XML Configuration File” on page 109. For more information about the SAS
logging facility, see SAS Logging: Configuration and Programming Reference.

2 Specify <name="ManageCorrelators"> and <value="FALSE"> (if correlators are
defined) in the SAS logging facility configuration file.

3 Specify ARMAGENT=LOG4SAS in a configuration file or within SAS language code.

4 Review the additional user metrics in Table 4.2 on page 31, and add these metric
definitions and values to your %ARMGTID, %ARMSTRT, and %ARMSTOP macros.

The SAS logging facility, using the pattern layouts and conversion specifiers, enables
you to customize output format and layout. Using default correlation and the additional
user metrics enables you to isolate performance issues within the application.

38

39

C H A P T E R

6
ARM Interface and SAS Logging
Facility

Creating Logs Using a Configuration File 39

Creating Logs Using a Configuration File

Using the ARM interface, the SAS logging facility, and a configuration file, the following
two logs are created:

<?xml version=’’1.0’’?>
<logging:configuration xmlns:log4sas="http://www.sas.com/xml/logging/1.0/"

<appender class="FileAppender" name="LOG">
<param name="File" value="logs/trace.log"/>
<param name="Append" value="false"/>
<layout>

<param name="ConversionPattern"
value="%d %-5p [%t] %c (%F:%L) - %m"/>

</layout>
</appender>

<appender class="FileAppender" name="ARM4LOG">
<param name="File" value="logs/arm4.log"/>
<param name="Append" value="false"/>
<layout>

<param name="ConversionPattern"
value="%d,
%X{App.Name},
%X{ARM.GroupName},
%X{ARM.TranName},
%X{ARM.TranState},
%X{ARM.ParentCorrelator},
%X{ARM.CurrentCorrelator},
%X{ARM.TranStatus},
%X{ARM.TranStart.Time},
%X{ARM.TranStop.Time},
%X{ARM.TranResp.Time}
"/>

</layout>
</appender>

40 Creating Logs Using a Configuration File � Chapter 6

<appender class="ARMAppender" name="ARM">
<param name="GetTimes" value="TRUE"/>
<appender-ref ref="ARM4LOG"/>

</appender>

<logger name="Perf.ARM" additivity="true">
<level value="all"/>
<appender-ref ref="ARM"/>
</logger>

<root>
<level value="trace"/>
<appender-ref ref="LOG"/>
</root>

</logging:configuration>

The ARM4.LOG file and TRACE.LOG file are created by the configuration file:

Output 6.1 ARM4.LOG

2008-04-14T12:39:04,972 | SAS | USERID | | INIT | | | | | |
2008-04-14T12:39:04,972 | SAS | USERID | SAS | REGISTER | | | | | |
2008-04-14T12:39:04,972 | SAS | USERID | SAS | START | |

ACj/ADExOUUzQkI3LUJGQTgtNDlBOS04RTg1LUVDOTJCRTQ2RTY4OA== | |
1523810344.972000 | |

2008-04-14T12:39:04,972 | SAS | USERID | PROCEDURE | REGISTER | | | | | |
2008-04-14T12:39:05,565 | OpenCodeARMGTID_test_w/_user_metrics |

USERID | | INIT | | | | | |
2008-04-14T12:39:05,690 | OpenCodeARMGTID_test_w/_user_metrics |

USERID | OpenCode02 | REGISTER | | | | | |
2008-04-14T12:39:05,830 | OpenCodeARMGTID_test_w/_user_metrics |

USERID | OpenCode02 | START | ACj/
ADExOUUzQkI3LUJGQTgtNDlBOS04RTg1LUVDOTJCRTQ2RTY4OA== |
ACj/AEY3MjJDNDJCLTAxNkEtNDMxNy1BNzc4LTc2OTA5Mjg1QzRGNQ== | |
1523810345.831000 | |

2008-04-14T12:39:05,847 | SAS | USERID | PROCEDURE | START |
ACj/AEY3MjJDNDJCLTAxNkEtNDMxNy1BNzc4LTc2OTA5Mjg1QzRGNQ== |
ACj/AERGNDc3OEFELTlCNzItNEE3NC1CNjNFLTU5OTI2QTFERTQ4Ng== | |
1523810345.847000 | |

2008-04-14T12:39:05,955 | SAS | USERID | PROCEDURE | STOP |
ACj/AEY3MjJDNDJCLTAxNkEtNDMxNy1BNzc4LTc2OTA5Mjg1QzRGNQ== |
ACj/AERGNDc3OEFELTlCNzItNEE3NC1CNjNFLTU5OTI2QTFERTQ4Ng== |
GOOD | 1523810345.847000 | 1523810345.956000 | 0.109000

2008-04-14T12:39:05,972 | SAS | USERID | PROCEDURE | START |
ACj/AEY3MjJDNDJCLTAxNkEtNDMxNy1BNzc4LTc2OTA5Mjg1QzRGNQ== |
ACj/AEQ5QkY3MkE3LTVBMzQtNDg1Qi05MUQyLUI0MjZDMzE2MDk0NA== | |
1523810345.972000 | |

2008-04-14T12:39:06,128 | SAS | USERID | PROCEDURE | STOP |
ACj/AEY3MjJDNDJCLTAxNkEtNDMxNy1BNzc4LTc2OTA5Mjg1QzRGNQ== |
ACj/AEQ5QkY3MkE3LTVBMzQtNDg1Qi05MUQyLUI0MjZDMzE2MDk0NA== |
GOOD | 1523810345.972000 | 1523810346.128000 | 0.156000

2008-04-14T12:39:06,190 | OpenCodeARMGTID_test_w/_user_metrics |
USERID | OpenCode02 | STOP |
ACj/ADExOUUzQkI3LUJGQTgtNDlBOS04RTg1LUVDOTJCRTQ2RTY4OA== |
ACj/AEY3MjJDNDJCLTAxNkEtNDMxNy1BNzc4LTc2OTA5Mjg1QzRGNQ== |
GOOD | 1523810345.831000 | 1523810346.191000 | 0.360000

2008-04-14T12:39:06,237 | OpenCodeARMGTID_test_w/_user_metrics |
USERID | | TERM | | | | | |

2008-04-14T12:39:06,284 | SAS | USERID | SAS | STOP | |
ACj/ADExOUUzQkI3LUJGQTgtNDlBOS04RTg1LUVDOTJCRTQ2RTY4OA== |
GOOD | 1523810344.972000 | 1523810346.285000 | 1.313000

2008-04-14T12:39:06,299 | SAS | USERID | | TERM | | | | | |

ARM Interface and SAS Logging Facility � Creating Logs Using a Configuration File 41

Output 6.2 TRACE.LOG

2008-04-14T12:39:04,924 DEBUG [00000003] Logging (l4sasutil.c:830) -
Loading the tk4afile support extension (1.0.0).

2008-04-14T12:39:04,924 DEBUG [00000003] Logging.Appender.File
(tk4afile.c:1082) - Creating FileAppender LOG

2008-04-14T12:39:04,924 DEBUG [00000003] Logging.Appender.File
(tk4afile.c:1082) - Creating FileAppender ARM2LOG

2008-04-14T12:39:04,924 DEBUG [00000003] Logging.Appender.File
(tk4afile.c:1082) - Creating FileAppender ARM4LOG

2008-04-14T12:39:04,955 DEBUG [00000003] Logging (l4sasutil.c:830) -
Loading the tk4aarm4 support extension (1.0.0).

2008-04-14T12:39:04,955 DEBUG [00000003] Logging.Appender.ARM
(tk4aarm4.c:1192) - Creating ARM Appender ARM

2008-04-14T12:39:04,955 DEBUG [00000003] Logging.Appender.ARM
(tk4aarm4.c:1345) - Created ARM Appender ARM (0x1fa5f40)

2008-04-14T12:39:04,955 DEBUG [00000003] Logging.Appender.ARM
(tk4aarm4.c:947) - ARM Appender SetOption(GetTimes, TRUE)

2008-04-14T12:39:04,972 INFO [00000003] Perf.ARM.SAS.APPL
(tka_api.c:275) - INIT SAS 13eec00 I,1523810344.972000,1,0.062500,
0.453125,SAS,

2008-04-14T12:39:04,972 INFO [00000003] Perf.ARM.SAS.APPL
(tka_2api.c:576) - REGISTER SAS 13eee58 G,1523810344.972000,1,1,
SAS,MVA SAS session

2008-04-14T12:39:04,972 INFO [00000003] Perf.ARM.SAS.APPL
(tka_api.c:1107) - START SAS 13eee58 0 S,1523810344.972000,1,1,1,
0.062500,0.453125

2008-04-14T12:39:04,972 INFO [00000003] Perf.ARM.SAS.PROC
(tka_2api.c:576) - REGISTER PROCEDURE 13ef148 G,1523810344.972000,
1,2,PROCEDURE,PROC START/STOP,PROC_NAME,ShortStr,
PROC_IO,Count64,PROC_MEM,Count64,PROC_LABEL,LongStr

2008-04-14T12:39:05,299 INFO [00000008] App.Program (ynl4sas.c:123) - 1
The SAS System 12:39 Monday, April 14, 2008

2008-04-14T12:39:05,299 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:05,299 INFO [00000008] App.Program (ynl4sas.c:123) -

NOTE: Copyright (c) 2002-2008 by SAS Institute Inc., Cary, NC, USA.
2008-04-14T12:39:05,299 INFO [00000008] App.Program (ynl4sas.c:123) -

NOTE: SAS (r) Proprietary Software 9.2 (TS2B0)
2008-04-14T12:39:05,299 INFO [00000008] App.Program (ynl4sas.c:123) -

Licensed to SAS Institute Inc., Site 0000000001.
2008-04-14T12:39:05,299 INFO [00000008] App.Program (ynl4sas.c:123) -

NOTE: This session is executing on the XP_PRO platform.
2008-04-14T12:39:05,315 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:05,315 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:05,315 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:05,315 INFO [00000003] Admin.Session (yaxbtch.c:555) -

SAH231999I Batch, State, started, Startup command-line is:
"C:\SASv9\sasgen\dev\mva-v920\sas_dvd\com\dntnd\sas.exe" test1.sas

-config "C:\SASv9\tmp\SASv9-832.cfg" -
sashost "C:\SASv9\sasgen\dev\mva-v920\sas_dvd\com\dntnd\sashost.dll"
-logconfigloc ./log4sasarm.xml -armsubsys "(arm_proc)" -armagent log4sas

2008-04-14T12:39:05,362 INFO [00000008] App.Program (ynl4sas.c:123) -
NOTE: SAS initialization used:

2008-04-14T12:39:05,362 INFO [00000008] App.Program (ynl4sas.c:123) -
real time 0.79 seconds

2008-04-14T12:39:05,362 INFO [00000008] App.Program (ynl4sas.c:123) -
cpu time 0.78 seconds

2008-04-14T12:39:05,362 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:05,393 INFO [00000008] App.Program (ynl4sas.c:123) - 1

%let _armexec = 1;
2008-04-14T12:39:05,393 INFO [00000008] App.Program (ynl4sas.c:123) - 2

%let _armacro = 1;
2008-04-14T12:39:05,455 INFO [00000008] App.Program (ynl4sas.c:123) - 3
2008-04-14T12:39:05,455 INFO [00000008] App.Program (ynl4sas.c:123) - 4

%arminit(appname="OpenCodeARMGTID test w/ user metrics");

42 Creating Logs Using a Configuration File � Chapter 6

2008-04-14T12:39:05,565 INFO [00000003]
Perf.ARM.OpenCodeARMGTID_test_w/_user_metrics.APPL (tka_api.c:275) -
INIT OpenCodeARMGTID_test_w/_user_metrics 13f01e0 I,1523810345.566000,2,
0.203125,0.734375,OpenCodeARMGTID test w/ user metrics,*

2008-04-14T12:39:05,565 INFO [00000008] App.Program (ynl4sas.c:123) - 5
%armgtid(txnname="OpenCode02",txnidvar=txn1,

2008-04-14T12:39:05,597 INFO [00000008] App.Program (ynl4sas.c:123) - 6
metrNam1="ShtStr",

2008-04-14T12:39:05,612 INFO [00000008] App.Program (ynl4sas.c:123) - 7
metrDef1=short,

2008-04-14T12:39:05,612 INFO [00000008] App.Program (ynl4sas.c:123) - 8
metrNam2="cnt32",

2008-04-14T12:39:05,612 INFO [00000008] App.Program (ynl4sas.c:123) - 9
metrDef2=count32);

2008-04-14T12:39:05,690 INFO [00000003]
Perf.ARM.OpenCodeARMGTID_test_w/_user_metrics.APPL (tka_api.c:632) -
REGISTER OpenCode02 13f0438 G,1523810345.691000,2,3,OpenCode02,,
ShtStr,ShortStr,cnt32,Count32

2008-04-14T12:39:05,690 INFO [00000008] App.Program (ynl4sas.c:123) - 10
2008-04-14T12:39:05,705 INFO [00000008] App.Program (ynl4sas.c:123) - 11

%put SYSPARM=&sysparm
2008-04-14T12:39:05,705 INFO [00000008] App.Program (ynl4sas.c:123) -

SYSPARM=
2008-04-14T12:39:05,705 INFO [00000008] App.Program (ynl4sas.c:123) - 12

%armstrt(txnidvar=txn1,metrval1=&sysparm);
2008-04-14T12:39:05,830 INFO [00000003]

Perf.ARM.OpenCodeARMGTID_test_w/_user_metrics.APPL (tka_api.c:1120) -
START OpenCode02 13f0438 0 S,1523810345.831000,2,3,2,0.359375,0.828125

2008-04-14T12:39:05,830 INFO [00000008] App.Program (ynl4sas.c:123) - 13
2008-04-14T12:39:05,847 INFO [00000003] Perf.ARM.SAS.PROC (tka_api.c:1107) -

START PROCEDURE 13ef148 0 S,1523810345.847000,1,2,3,0.359375,0.828125,
DATASTEP,0,0,

2008-04-14T12:39:05,878 INFO [00000009] App.Program (ynl4sas.c:123) - 14
data x;

2008-04-14T12:39:05,878 INFO [00000009] App.Program (ynl4sas.c:123) - 15
do i=1 to 10000;

2008-04-14T12:39:05,878 INFO [00000009] App.Program (ynl4sas.c:123) - 16
x=i; y=0-i;

2008-04-14T12:39:05,878 INFO [00000009] App.Program (ynl4sas.c:123) - 17
output;

2008-04-14T12:39:05,878 INFO [00000009] App.Program (ynl4sas.c:123) - 18
end; run;

2008-04-14T12:39:05,878 INFO [00000009] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:05,940 INFO [00000009] App.Program (ynl4sas.c:123) -

NOTE: The data set WORK.X has 10000 observations and 3 variables.
2008-04-14T12:39:05,955 DEBUG [00000003] App.Program (yaktksri.c:418) -

Remove appenders in a reb.
2008-04-14T12:39:05,315 INFO [00000003] Admin.Session (yaxbtch.c:555) -

SAH231999I Batch, State, started, Startup command-line is:
"C:\SASv9\sasgen\dev\mva-v920\sas_dvd\com\dntnd\sas.exe" test1.sas

-config "C:\SASv9\tmp\SASv9-832.cfg" -
sashost "C:\SASv9\sasgen\dev\mva-v920\sas_dvd\com\dntnd\sashost.dll"
-logconfigloc ./log4sasarm.xml -armsubsys "(arm_proc)" -armagent log4sas

2008-04-14T12:39:05,362 INFO [00000008] App.Program (ynl4sas.c:123) -
NOTE: SAS initialization used:

2008-04-14T12:39:05,362 INFO [00000008] App.Program (ynl4sas.c:123) -
real time 0.79 seconds

2008-04-14T12:39:05,362 INFO [00000008] App.Program (ynl4sas.c:123) -
cpu time 0.78 seconds

2008-04-14T12:39:05,362 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:05,393 INFO [00000008] App.Program (ynl4sas.c:123) - 1

%let _armexec = 1;
2008-04-14T12:39:05,393 INFO [00000008] App.Program (ynl4sas.c:123) - 2

%let _armacro = 1;
2008-04-14T12:39:05,455 INFO [00000008] App.Program (ynl4sas.c:123) - 3
2008-04-14T12:39:05,455 INFO [00000008] App.Program (ynl4sas.c:123) - 4

%arminit(appname="OpenCodeARMGTID test w/ user metrics");

ARM Interface and SAS Logging Facility � Creating Logs Using a Configuration File 43

2008-04-14T12:39:05,955 INFO [00000003] Perf.ARM.SAS.PROC
(tka_api.c:1750) - STOP PROCEDURE 13ef148 0 P,1523810345.956000,1,2,
3,0.375000,0.890625,0,DATASTEP,311110,283296,

2008-04-14T12:39:05,955 INFO [00000009] App.Program (ynl4sas.c:123) -
NOTE: DATA statement used (Total process time):

2008-04-14T12:39:05,955 INFO [00000009] App.Program (ynl4sas.c:123) -
real time 0.10 seconds

2008-04-14T12:39:05,955 INFO [00000009] App.Program (ynl4sas.c:123) -
cpu time 0.07 seconds

2008-04-14T12:39:05,955 INFO [00000009] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:05,955 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:05,955 INFO [00000008] App.Program (ynl4sas.c:123) - 19
2008-04-14T12:39:05,972 INFO [00000003] Perf.ARM.SAS.PROC

(tka_api.c:1107) - START PROCEDURE 13ef148 0 S,1523810345.972000,1,
2,4,0.375000,0.890625,SORT ,0,0,

2008-04-14T12:39:05,972 INFO [00000010] App.Program (ynl4sas.c:123) -
20 proc sort data=x threads; by y; run;

2008-04-14T12:39:05,972 INFO [00000010] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:06,065 INFO [00000010] App.Program (ynl4sas.c:123) -

NOTE: There were 10000 observations read from the data set WORK.X.
2008-04-14T12:39:06,128 INFO [00000010] App.Program (ynl4sas.c:123) -

NOTE: The data set WORK.X has 10000 observations and 3 variables.
2008-04-14T12:39:06,128 DEBUG [00000003] App.Program (yaktksri.c:418) -

Remove appenders in a reb.
2008-04-14T12:39:06,128 INFO [00000003] Perf.ARM.SAS.PROC

(tka_api.c:1750) - STOP PROCEDURE 13ef148 0 P,1523810346.128000,
1,2,4,0.421875,0.953125,0,SORT ,532806,2103048,

2008-04-14T12:39:06,128 INFO [00000010] App.Program (ynl4sas.c:123) -
NOTE: PROCEDURE SORT used (Total process time):

2008-04-14T12:39:06,128 INFO [00000010] App.Program (ynl4sas.c:123) -
real time 0.15 seconds

2008-04-14T12:39:06,128 INFO [00000010] App.Program (ynl4sas.c:123) -
cpu time 0.10 seconds

2008-04-14T12:39:06,128 INFO [00000010] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:06,128 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:06,143 INFO [00000008] App.Program (ynl4sas.c:123) - 21
2008-04-14T12:39:06,143 INFO [00000008] App.Program (ynl4sas.c:123) - 22

%armstop;
2008-04-14T12:39:06,190 INFO [00000003]

Perf.ARM.OpenCodeARMGTID_test_w/_user_metrics.APPL (tka_api.c:1761) -
STOP OpenCode02 13f0438 0 P,1523810346.191000,2,3,2,0.453125,0.984375,0

2008-04-14T12:39:06,205 INFO [00000008] App.Program (ynl4sas.c:123) - 23
%armend;

2008-04-14T12:39:06,237 INFO [00000003]
Perf.ARM.OpenCodeARMGTID_test_w/_user_metrics.APPL (tka_api.c:1927) -
END OpenCodeARMGTID_test_w/_user_metrics 13f01e0 E,1523810346.238000,
2,0.468750,1.000000

2008-04-14T12:39:06,237 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:06,237 INFO [00000003] Admin.Session (yaxbtch.c:886) -

SAH239999I Batch, State, stopped
2008-04-14T12:39:06,237 INFO [00000008] App.Program (ynl4sas.c:123) -

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414
2008-04-14T12:39:06,237 INFO [00000008] App.Program (ynl4sas.c:123) -

NOTE: The SAS System used:
2008-04-14T12:39:06,237 INFO [00000008] App.Program (ynl4sas.c:123) - 2

The SAS System 12:39 Monday, April 14, 2008
2008-04-14T12:39:06,237 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:06,237 INFO [00000008] App.Program (ynl4sas.c:123) -

real time 1.67 seconds
2008-04-14T12:39:06,237 INFO [00000008] App.Program (ynl4sas.c:123) -

cpu time 1.46 seconds

44 Creating Logs Using a Configuration File � Chapter 6

2008-04-14T12:39:06,237 INFO [00000008] App.Program (ynl4sas.c:123) -
2008-04-14T12:39:06,253 DEBUG [00000003] App.Program (yaktksri.c:418) -

Remove appenders in a reb.
2008-04-14T12:39:06,268 DEBUG [00000003] Logging.Appender.FileRef

(tk4afref.c:1072) - FileRef appender factory is being destroyed
2008-04-14T12:39:06,284 INFO [00000003] Perf.ARM.SAS.APPL

(tka_api.c:1750) - STOP SAS 13eee58 0 P,1523810346.285000,1,1,1,
0.468750,1.015625,0

2008-04-14T12:39:06,299 INFO [00000003] Perf.ARM.SAS.APPL
(tka_api.c:1927) - END SAS 13eec00 E,1523810346.300000,
1,0.484375,1.015625

2008-04-14T12:39:06,378 DEBUG [00000000] Logging.Appender.Boot
(tk4aboot.c:228) - Destroying Boot appender <2008-04-14T12:39:06,
378 DEBUG [00000000] Logging.Appender.ARM (tk4aarm4.c:797) -
Destroying ARMAppender ARM

2008-04-14T12:39:06,378 DEBUG [00000000] Logging.Appender.File
(tk4afile.c:562) - Destroying FileAppender ARM2LOG

2008-04-14T12:39:06,378 DEBUG [00000000] Logging.Appender.File (tk4afile.c:562) -
Destroying FileAppender ARM4LOG

45

C H A P T E R

7
The ARM Logger

ARM Logger Overview 45

ARM Logger Overview

A logger is a named entity that identifies a message category. The logger includes a
level and one or more appenders. The appenders process the log events for the message
category. The name of the ARM message category is Perf.ARM. The level indicates the
threshold (or lowest event) that will be processed for this message category.

Loggers are specified in log events. This associates the log event with a message
category. By categorizing log events, messages of the same category are written to the
same location. You configure loggers in a logging configuration file for SAS server
logging. Or, you configure loggers by using SAS language elements in a DATA step or
macro program. The following defines the Perf.ARM performance message logger in the
configuration file:

<logger name="Perf.ARM" additivity="true">
<level value="info"/>
<appender-ref ref="ARM"/>

</logger>

For an example of a configuration file, see Appendix 1, “SAS Logging Facility
Configuration File,” on page 109.

You create loggers in SAS programs using the following SAS language elements:

� %LOG4SAS, which initializes the autocall macro logging environment. For more
information, see "Using Autocall Macros to Log Messages" in SAS Logging:
Configuration and Programming Reference.

� %LOG4SAS_LOGGER() autocall macro for macro programming. For more
information, see "Using Autocall Macros to Log Messages" in SAS Logging:
Configuration and Programming Reference.

� LOG4SAS_LOGGER function in a DATA step. For more information, see "Using
the Logging Facility Functions In the DATA Step" in SAS Logging: Configuration
and Programming Reference.

� DCL logger object constructor in a DATA step. For more information, see "The
Logger and Appender Component Object Interface" in SAS Logging: Configuration
and Programming Reference.

Loggers that are created using SAS language elements exist for the duration of the
SAS session. You define the ARM performance message logger using the following SAS
language elements:

46 ARM Logger Overview � Chapter 7

%log4sas();
%log4sas_logger(Perf.ARM, ’level=info’);

For more information about loggers, see "Loggers" in SAS Logging: Configuration and
Programming Reference.

47

C H A P T E R

8
ARM and SAS OLAP Server

Using ARM with SAS OLAP Server 47
Understanding the ARM Records Written for SAS OLAP Server 47

Using ARM with SAS OLAP Server

A SAS OLAP Server is started as a system process and waits for clients to connect to
it. Each client connection establishes a session on the SAS OLAP Server. Each session
can then submit MDX queries. Typically, each MDX query is split into one or more
regions, which translate calls against the OLAP cube’s data, which are called data
queries.

ARM writes SAS OLAP Server records to an ARM log using the SAS logging facility.
There are two ways to activate ARM logging:

� On a running SAS OLAP Server. No server restart is necessary. Logging is valid
for the currently running server only, and will not continue when the server is
restarted.

� By making a change to the logconfig.xml file. Logging will activate automatically,
but requires a server restart.

For information, see "Using ARM with SAS OLAP Server" in SAS Intelligence
Platform: System Administration Guide.

Understanding the ARM Records Written for SAS OLAP Server

The initialization and termination records give you summary information for each
SAS OLAP Server session. The ARM records for the SAS OLAP Server are written to
the SAS logging facility or the ARM log. The following explains the output:

I (initialization) record
is an initialization record, with one record written per SAS OLAP Server
invocation when the ARM subsystem is initialized. It starts with an I, followed by:

� the SAS datetime value of the SAS OLAP Server invocation

� an application ID

� a user CPU (start) time

� a system CPU (start) time

� an application name (OLAP_SERVER)

48 Understanding the ARM Records Written for SAS OLAP Server � Chapter 8

Output:

I,1320592800.822000,2,0.380547,0.630907,OLAP_SERVER,

E (end) record
is a termination record, with one record written per SAS OLAP Server
termination. It starts with an E, followed by:

� the SAS datetime value of the SAS OLAP Server termination

� the application ID from the I record

� a user CPU (stop) time
� a system CPU (stop) time

Output:

E,1320592802.805000,2,1.281843,0.791137

Note: The E records are written for the OLAP_SESSION transaction,
which records each SAS OLAP Server session that is started by a client
connection. The E records provide the user ID of the client user that started
the SAS OLAP Server session. �

G (GetID) record
is an OLAP_SESSION transaction record, with one record written per SAS OLAP
Server invocation. It starts with a G, followed by:

� the SAS datetime value when the record was written

� the application ID from the I record

� a transaction class ID
� a transaction class name (OLAP_SESSION)

� a transaction class description (OLAP Session)

� a description of the values that are provided in subsequent S (start) and P
(stop) records

Output:

G,1337615817.801000,2,1,OLAP_SESSION,OLAP Session,User Name,LongStr

Note: User Name is the user ID of the client user that started the SAS
OLAP Server session. �

S (start) record
is a start record, with one record written for each SAS OLAP Server session. It
starts with an S, followed by:

� the SAS datetime value when the SAS OLAP Server session started

� the application ID from the I record

� the transaction class ID from the G record

� a transaction ID
� a user CPU (start) time

� a system CPU (start) time

� the user ID of the client user

Output:

S,1337615818.502000,2,1,2,2.52952,0.901296,sasabc

P (stop) record

ARM and SAS OLAP Server � Understanding the ARM Records Written for SAS OLAP Server 49

is a stop record, with one record written for each SAS OLAP Server session. It
starts with a P, followed by:

� the SAS datetime value when the SAS OLAP Server session ended
� the application ID from the I record
� the transaction class ID from the G record
� the transaction ID from the associated S record
� a user CPU (stop) time
� a system CPU (stop) time
� the status 0=OK

Output:

P,1337615819.383000,2,1,2,2.113038,0.931339,0

U (update) record
is an update record, with one record written for each hierarchy in each OLAP
cube. The U record for the OLAP_SESSION transaction is written only when the
DATA_QUERY transaction occurs. It starts with a U, followed by:

� the SAS datetime value when the record was written
� the application ID from the I record
� the transaction class ID from the G record
� the transaction ID from the S record
� a user CPU time
� a system CPU time
� a buffer type (always 2, which indicates that 1,024 bytes of text follows)
� a string with the following format:

� char(32) cube name
� char(4) hierarchy number—used in the DATA_QUERY update record to

identify region and aggregation
� char(32) hierarchy name
� char(4) number of hierarchy levels

Output:

U,1355324046.943000,2,1,2,1.625000,2.15625,2,SALES 1CUSTOMER 4
U,1355324046.943000,2,1,2,1.625000,2.15625,2,SALES 2PRODUCT 5
U,1355324046.943000,2,1,2,1.625000,2.15625,2,SALES 3TIME 4

The following records are written for MDX_QUERY transactions, which log each
query that is sent to the OLAP cube. These records provide the cube name and the size
of the result set in cells:

G (GetID) record
is an MDX_QUERY transaction record, with one record written per SAS OLAP
Server invocation. It starts with a G, followed by:

� the SAS datetime value when the record was written
� the application ID from the I record
� a transaction class ID
� a transaction name (MDX_QUERY)
� a transaction description (MDX Query)
� a description of the values that are provided in subsequent S or C (start) and

P (stop) records

50 Understanding the ARM Records Written for SAS OLAP Server � Chapter 8

Output:

G,1320594857.747000,3,2,MDX_QUERY,MDX Query,Result Set Size,Gauge32,
Cube Name,LongStr

Note: Result Set Size is the size of the result set in cells. Cube Name is
the name of the cube that is being queried. �

S or C (start) record
is a start record, with one record written for each MDX_QUERY transaction. It
starts with an S, followed by:

� the SAS datetime value when the MDX_QUERY started
� the application ID from the I record

� the transaction class ID from the G record
� a transaction ID

� a user CPU (start) time
� a system CPU (start) time

Output:

S,1320594857.787000,3,2,2,1.341929,0.731051

If the OLAP_SESSION level was also requested, then the MDX_QUERY
transaction record is correlated to its parent session record, and starts with a C,
followed by:

� the SAS datetime value when the MDX_QUERY started
� the application ID from the I record

� the transaction class ID from the G record
� a transaction ID

� the parent transaction class ID
� the parent transaction ID

� a user CPU (start) time
� a system CPU (start) time

Output:

C,1320594857.787000,3,2,2,1,2,1.341929,0.731051

P (stop) record
is a stop record, with one record written for each MDX_QUERY transaction. It
starts with a P, followed by:

� the SAS datetime value when the MDX_QUERY ended
� the application ID from the I record

� the transaction class ID from the G record
� the transaction ID from the associated S or C record

� a user CPU (stop) time
� a system CPU (stop) time

� a status (0=OK, 2=query failed)
� the size of the result set in cells

� the name of the cube that was queried

Output:

P,1320594858.948000,3,2,2,2.52952,0.781123,0,5,MDDBCARS

ARM and SAS OLAP Server � Understanding the ARM Records Written for SAS OLAP Server 51

The following records are written for DATA_QUERY transactions, which log each
region execution (that is, each data retrieval from stored OLAP cube aggregations or
from the cache). The following records provide region IDs, aggregate IDs, the number of
returned records, the source type, and the thread index. The DATA_QUERY
transaction is the primary input for both automatic and manual cube optimization.

G (GetID) record
is a DATA_QUERY transaction ID record, with one record written per SAS OLAP
session. It starts with a G, followed by:

� the SAS datetime value when the record was written
� the application ID from the I record
� a transaction class ID
� the transaction name (DATA_QUERY)
� the transaction description (Plug-in Call)
� a description of the values that are provided in subsequent S or C (start) and

P (stop) records. The values are:
� query aggregate
� source aggregate
� result set size
� source type
� thread index
� cube name

Output:

G,1359310645.798000,2,4,DATA_QUERY,Plugin Call,Query Aggregate,Id32,Source
Aggregate,Id32,Result Set Size,Gauge32,Source Type,Id32,Thread Index,
Gauge32,Cube Name,LongStr

S or C (start subquery) record
is a start subquery record, with one record written for each data access. It starts
with an S, followed by:

� the SAS datetime value when the subquery started
� the application ID from the I record
� the transaction class ID from the G record
� a transaction ID
� the CPU (start) time
� the system CPU (start) time

Output:

S,1320596204.653000,2,2,2,1.51512,0.630907

If the MDX_QUERY level was also requested, then the DATA_QUERY
transaction record is correlated to its parent MDX_QUERY record, and starts with
a C, followed by:

� the SAS datetime value when the subquery started
� the application ID from the I record
� the transaction class ID from the G record
� a transaction ID
� the parent transaction class ID
� the parent transaction ID

52 Understanding the ARM Records Written for SAS OLAP Server � Chapter 8

� a user CPU (start) time

� a system CPU (start) time

Output:

C,1320596204.653000,2,2,2,1,1,1.51512,0.630907

P (stop subquery) record
is a stop subquery record, with one record written for each data access. It starts
with a P, followed by:

� the SAS datetime value when the subquery ended

� the application ID from the I record

� the transaction class ID from the G record

� the transaction ID from the S or C record

� a user CPU (stop) time

� a system CPU (stop) time

� a status (0=OK, 2=subquery failed)

� a region sequential number (per update record)

� an aggregation sequential number (per update record)

� the size of the result set in records

� the plug-in type (0=CSPDS, 1=CSAS, 2=CACHE, 3=MOLAP)

� the thread index

� the cube name

Output:

P,1320596205.485000,2,2,2,1.181699,0.670964,0,1,31,5,0,0,SALES

U (update) record
is an update record, with one record written for each new region and stored
aggregation. It starts with a U, followed by:

� the SAS datetime value when the record was written

� the application ID from the I record

� the transaction class ID from the G record

� the transaction ID from the S record

� a user CPU time

� a system CPU time

� a buffer type (always 2, which indicates that 1,024 bytes of text follows)

� a string with the following format:

� char(32) cube name

� char(16) unique sequential number—used in the DATA_QUERY stop
record to identify region and aggregation

� char(4) number of hierarchies in the region or aggregation repeated for
each hierarchy in the region or aggregate:

� char(4) hierarchy number (per OLAP_SESSION update record)

� char(3) hierarchy level

Output:

U,1355324092.960000,2,3,61,6.93750,5.734375,2,SALES 4 1 1 1

ARM and SAS OLAP Server � Understanding the ARM Records Written for SAS OLAP Server 53

The following update record is written for the MDX_STRING transaction, which
writes an additional record for the MDX_QUERY transaction. The record contains the
actual MDX query string.

U (update) record
is an update record, with one record written for each MDX_STRING transaction.
It starts with a U, followed by:

� the SAS datetime value when the record was written
� the application ID from the I record
� the transaction class ID from the G record
� the transaction ID from the S record
� a user CPU time
� a system CPU time
� a buffer type (always 2, which indicates that 1,024 bytes of text follows)
� the actual MDX string

Output:

U,1320589796.262000,2,1,1,0.670964,2,SELECT {[DATE].[DATEH].[ALL DATE].
CHILDREN} ON COLUMNS, {[MEASURES].[MEASURES].[SALES_SUM]}
ON ROWS FROM MDDBCARS

When using the SAS logging facility and ARM 2.0, these records are written to
ARM2.RECORD.

54

55

P A R T4

Logging Facility ARM Appender

Chapter 9.The ARM Appender 57

Chapter 10.ARM Appender Syntax 59

Chapter 11.ARM Appender Configuration Parameters 63

Chapter 12.ARM Appender Pattern Layouts for ARM Messages 65

56

57

C H A P T E R

9
The ARM Appender

ARM Appender Overview 57

ARM Appender Overview
The ARM appender is a standard SAS logging facility appender, which is configured

and customized for accessing performance data. The primary role of the ARM appender
is to capture ARM transaction events, process the events, route the events to an output
destination, and emit ARM 4.0 compatible events.

Key features of the ARM appender are:

� supports ARM 2.0 and ARM 4.0 standards
� supports default transaction correlation

� converts SAS 9.1 and earlier ARM transaction events into SAS logging facility
events

� is controlled by the SAS logging facility configuration, pattern layouts, and output
methods

The ARM appender can be defined in the SAS logging facility configuration file. The
output destination can be a file appender, an external agent, or an internal SAS
appender. You can also use the SAS logging facility in SAS programs.

58

59

C H A P T E R

10
ARM Appender Syntax

ARMAppender Syntax 59
ARMAppender Syntax Description 60

ARMAppender Example 61

ARMAppender Syntax
ARMAppender syntax is case sensitive.

XML Configuration

<appender class="FileAppender" name="ARM-log-name">
<param name="File" value="file-name"/>
<layout>
<param name="ConversionPattern"

value="%d,
%X{App.Name},
%X{ARM.Id},
%X{ARM.GroupName},
%X{ARM.TranName},
%X{ARM.TranState},
%X{ARM.TranId},
%X{ARM.TranHandle},
%X{ARM.ParentCorrelator},
%X{ARM.CurrentCorrelator},
%X{ARM.TranStatus},
%X{ARM.TranStart.Time},
%X{ARM.TranStop.Time},
%X{ARM.TranBlocked.Time},
%X{ARM.TranResp.Time}
"/>

</layout>

</appender>

<appender class="ARMAppender" name="ARM">
<param name="Agent" value="libarm4"/>

<param name="Encoding" value="encoding-value"/>

<param name="GetTimes" value="TRUE | FALSE"/>

60 ARMAppender Syntax Description � Chapter 10

<param name="ManageCorrelators" value= "TRUE | FALSE"/>

<param name="AppName" value="application-name"/>

<param name="GroupName" value="group-name"/>

<appender-ref ref="ARM-log-names"/>

</appender>

ARMAppender Syntax Description
appender class="ARMAppender" name="ARM"

specifies ARM as the appender name. The ARMAppender name must be ARM.
Default: None
Required: Yes. ARM must be the name of the ARMAppender.
Restriction: Only a single instance of an ARMAppender per process.

name="Agent" value="library-name"
specifies the name of the library that contains the external ARM 4.0 agent library
that receives the events. See your vendor documentation for the correct library
name. Two values that can be used:

value=" "
if no agent is specified, output is sent to any referenced appenders. In the
syntax example, the output is sent to the file appender, "ARM-log-name".

value="library-name"
specifies the name of the library that contains the external ARM 4.0 agent
library that receives the events.

Default: Output is sent to any referenced appenders.
Required: No

name="AppName" value="application-name"
specifies the name of the application. The maximum length of the value is 128
characters, which includes the termination character (/). This value is sent to the
ARM_REGISTER_APPLICATION() function call. To override this value, specify
the SAS start-up option LOGAPPLNAME=application-name.
Default: SAS
Required: No

name="ConversionPattern" value="conversion-pattern"
specifies how the log event is written to the ARM log.
Required: No
Default: None. If a conversion pattern is not specified, then the log event

produces an empty string.

name="Encoding" value="encoding-value"
specifies the type of character set encoding that is used for strings that are sent to
and calls that are received by the ARM 4.0 agent library.
Default: Native Unicode character set for the host, or UTF-8 as required by the

ARM 4.0 standards.
Required: No

ARM Appender Syntax � ARMAppender Example 61

name="File" value="path-and-filename"
specifies the path and filename of the file to which ARM messages are written.
Default: None
Required: Yes

name="GetTimes" value="TRUE | FALSE"
enables the ARM appender to compute transaction response time metrics.

TRUE
enables the appender to compute transaction response times.

FALSE
disables the appender to compute transaction response times.

Default: FALSE
Required: No

name="ManageCorrelators" value="TRUE | FALSE"
specifies whether ARMAppender manages transaction correlation.

TRUE
enables automatic transaction correlation. The true value might affect
existing benchmarks for ARM 2.0 records.

FALSE
enables the application to manage transaction correlation.

Default: true
Required: No

name="GroupName" value="group-name"
specifies the name of a group of application instances, if any. Application instances
that are started with a common run-time purpose are candidates for using the
same group name. The maximum length of the value is 256 characters. This value
is passed to the ARM_START_APPLICATION() function call.
Default: current user ID if available, otherwise NULL
Required: No

ARMAppender Example
The following example is a SAS logging facility configuration file that includes

ARMAppender:

<?xml version="1.0" encoding="UTF-8"?>
<logging:configuration xmlns:logging="http://www.sas.com/xml/logging/1.0/">

<appender class="FileAppender" name="ARM2LOG">
<param name="File" value="arm2.log"/>
<param name="ImmediateFlush" value="true"/>
<layout>

<param name="ConversionPattern" value="%X{ARM2.Record}"/>
</layout>

</appender>

<appender class="FileAppender" name="ARM4LOG">
<param name="File" value="arm4.log"/>
<param name="ImmediateFlush" value="true"/>

62 ARMAppender Example � Chapter 10

<layout>
<param name="ConversionPattern"
value="%d,
%12X{App.Name},
%14X{ARM.GroupName},
%12X{ARM.TranName},
%8X{ARM.TranState},
%8X{ARM.TranStatus},
%20X{ARM.TranStart.Time},
%20X{ARM.TranStop.Time},
%56X{ARM.ParentCorrelator},
%56X{ARM.CurrentCorrelator}
"/>

</layout>
</appender>

<appender class="ARMAppender" name="ARM">
<param name="Encoding" value="UTF-8"/>
<param name="GetTimes" value="true"/>
<param name="ManageCorrelators" value="true"/>
<param name="AppName" value="yourSampleApp"/>
<param name="GroupName" value="SAS"/>
<appender-ref ref="ARM4LOG"/>
<appender-ref ref="ARM2LOG"/>

</appender>

<appender class="FileAppender" name="LOG">
<param name="File" value="root.log"/>
<param name="ImmediateFlush" value="true"/>
<layout>

<param name="ConversionPattern" value="%d %c %m"/>
</layout>

</appender>

<logger name="Perf.ARM" additivity="false">
<level value="info"/>
<appender-ref ref="ARM"/>

</logger>

<root>
<level value="info"/>
<appender-ref ref="LOG"/>

</root>

</logging:configuration>

63

C H A P T E R

11
ARM Appender Configuration
Parameters

Description of ARM Appender Configuration Parameters 63

Description of ARM Appender Configuration Parameters
The ARM appender includes unique configuration parameters to modify the appender

execution behavior. These parameters are configured within the SAS logging facility
configuration file. The location of the file is specified using the LOGCONFIGLOC= SAS
system option. The syntax within the configuration file is:

<param name="<config.param>" value="<config_value>"

The following table lists the SAS logging facility ARM appender configuration
parameters, values, and descriptions:

Table 11.1 SAS 9.2 ARM Appender Configuration Parameters

Configuration Parameter Value Description

Agent value=""
value="libarm4"

The value represents the name of an
external ARM 4.0 agent library that
receives ARM events. See your vendor
documentation.

Encoding value="" The value represents the character set
encoding to be used for strings passed to
and calls received by the ARM agent
library. The default is the native Unicode
character set for the host or UTF-8 as
required by the ARM standards.

GetTimes value="TRUE"
value="FALSE"

The TRUE value enables the appender to
compute transaction response times. The
default value is FALSE.

ManageCorrelators value="TRUE"
value="FALSE"

The default value is TRUE. This option
specifies whether the ARM appender
manages transaction correlation. Setting
the value to TRUE enables automatic
transaction correlation. Setting this value
to TRUE might affect existing benchmarks
for ARM 2.0 records. Setting the value to
FALSE enables the application to manage
transaction correlation.

64 Description of ARM Appender Configuration Parameters � Chapter 11

Configuration Parameter Value Description

AppName value="SAS" The value represents the name of the
application. The maximum length of the
value is 127 characters. This value is
passed to the
ARM_REGISTER_APPLICATION()
function call. To override this value, specify
the SAS start-up option
LOGAPPLNAME=value. The default value
is SAS.

GroupName value="user ID" The value represents the name of a group
of application instances, if any. Application
instances that are started with a common
run-time purpose are good candidates for
using the same group name. The maximum
length of the value is 256 characters. This
value is passed to the
ARM_START_APPLICATION() function
call. The default value is the current user
ID if available, otherwise NULL.

65

C H A P T E R

12
ARM Appender Pattern Layouts
for ARM Messages

Description of ARM Appender Pattern Layouts 65

Description of ARM Appender Pattern Layouts
The ARM appender includes options to create the output message format. The

options are in the form of pattern layouts, which consist of a named diagnostic context
recognized by the ARM appender. The following tables list the diagnostic context
pattern layouts for the ARM appender.

All text is case sensitive in the SAS logging configuration file. Enter elements, names,
attribute names, and literal values as they are shown in the ConversionPattern syntax.

Table 12.1 Application Level Specifications

Specification Description

%X{App.Name} Application name that is specified in the configuration file.
A SAS ARM macro initializes the application call or the
LOGAPPLNAME= option.

%X{ARM.AppHandle} A unique ID that is associated with an application instance.

%X{ARM.AppId} A unique ID that is associated with the application class.

%X{ARM.GroupName} The group name of the application instances. The value is
specified in the configuration file or user ID, if available.

Table 12.2 Application Metric Specifications

Specification Description

%X{ARM.AppStart.Time} The time-of-day value for the ARM application start event.

%X{ARM.AppStart.System_CPU_Time} The process system CPU time at the ARM application start
event.

%X{ARM.AppStart.User_CPU_Time} The process user CPU time at the ARM application start
event.

%X{ARM.AppStop.Time} The time-of-day value for the ARM application end event.

66 Description of ARM Appender Pattern Layouts � Chapter 12

Specification Description

%X{ARM.AppStop.System_CPU_Time} System CPU time for the ARM application end event.

%X{ARM.AppStop.User_CPU_Time} User CPU time for the ARM application end event.

All text is case sensitive in the SAS logging configuration file. Enter elements, names,
attribute names, and literal values as they are shown in the ConversionPattern syntax.

Table 12.3 Transaction Level Specifications

Specification Description

%X{ARM.TranName} Transaction name, specified in the appropriate ARM start
transaction call.

%X{ARM.TranState} The transaction state: init, start, stop, update, block,
unblock, or discard.

%X{ARM.TranId} A unique ID that is associated with the transaction class.

%X{ARM.TranHandle} A unique ID that is associated with a transaction instance.

%X{ARM.CurrentCorrelator} The transaction correlator for the transaction instance
returned by the start transaction event.

%X{ARM.ParentCorrelator} The transaction correlator for the direct ancestor
transaction, automatically generated when the
ManageCorrelators parameter is enabled.

%X{ARM.TranStatus} The value specified for the stop transaction event, such as
good, aborted, failed, or unknown.

%X{ARM.Userid} The current user ID that is associated with the transaction.

Table 12.4 Transaction Metric Specifications

Specification Description

%X{ARM.TranBlocked.Time} The time-of-day value for the current transaction
block event. (Reserved for future use.)

%X{ARM.TranStop.Time} The time-of-day value for the current transaction stop
event.

%X{ARM.IO_Count} The total number of process disk, tape, or related
input and output operations for a transaction. The
computed delta between start and stop transaction
events.*

%X{ARM.System_CPU_Time} Process current system CPU time for the ARM event.

%X{ARM.TimeStamp} Current time-of-day value for the ARM event.

%X{ARM.TranBlocked.System_CPU_Time} Process system CPU time for the current transaction
block event. (Reserved for future use.)

%X{ARM.TranBlocked.User_CPU_Time} Process user CPU time for the current transaction
block event. (Reserved for future use.)

%X{ARM.TranResp.System_CPU_Time} Calculated system CPU time for the duration of the
transaction.

%X{ARM.TranResp.Time} Calculated elapsed time for the duration of the
transaction.

ARM Appender Pattern Layouts for ARM Messages � Description of ARM Appender Pattern Layouts 67

Specification Description

%X{ARM.TranResp.User_CPU_Time} Calculated user CPU time for the duration of the
transaction.

%X{ARM.TranStart.IO_Count} The total number of process disk, tape, or related
input and output operations for the transaction
event.*

%X{ARM.TranStart.Mem_Current} Current process memory utilization for the
transaction event.

%X{ARM.TranStart.Mem_High} Process the highest amount of memory used for the
transaction event.

%X{ARM.TranStart.System_CPU_Time} Process system CPU time for the current transaction
start event.

%X{ARM.TranStart.Thread_Current} Current process thread count for the transaction
event.

%X{ARM.TranStart.Thread_High } Process the highest thread count for the transaction
event.

%X{ARM.TranStart.Time} The time-of-day value for the current transaction
start event.

%X{ARM.TranStart.User_CPU_Time} Process user CPU time for the current transaction
start event.

%X{ARM.TranStop.IO_Count} The total number of process disk, tape, or related
input and output operations for the transaction
event.*

%X{ARM.TranStop.Mem_Current} Current process memory utilization for the
transaction event.

%X{ARM.TranStop.Mem_High} Process the highest amount of memory used for the
transaction event.

%X{ARM.TranStop.System_CPU_Time} Process system CPU time for the current transaction
stop event.

%X{ARM.TranStop.Thread_Current} Current process thread count for the transaction
event.

%X{ARM.TranStop.Thread_High } Process the highest thread count for the transaction
event.

%X{ARM.TranStop.User_CPU_Time} Process user CPU time for the current transaction
stop event.

%X{ARM.User_CPU_Time} Process current user CPU time for the ARM event.

* %X{ARM.IO_Count} is the computed delta between start and stop transaction events.
%X{ARM.TranStart.IO_Count} and %X{ARM.TranStop.IO_Count} are just counts, not computed
deltas.

68 Description of ARM Appender Pattern Layouts � Chapter 12

Table 12.5 ARM 2.0 Transaction Metric Specifications

Specification Description

%X{ARM2.Metric.Data} ARM 2.0 format 1 metric data.

%X{ARM2.F2.Data} ARM 2.0 format 2 data buffer contents for ARM update
records.

%X{ARM2.Metric.MData} ARM 2.0 format 101 metric metadata data buffer contents.

%X{ARM2.Record} ARM 2.0 output record format message contents.

%X{ARM2.TranIdentity} ARM 2.0 transaction detail information.

Table 12.6 ARM Sub-Buffer* Metric Values

Specification Description

%X{ARM.Metricn.Type} ARM sub-buffer metric type (n value can be 1 ... 7).

%X{ARM.Metricn.Usage} ARM sub-buffer metric usage (n value can be 1 ... 7),
values are general, transaction, or transaction name.

%X{ARM.Metricn.Value} ARM sub-buffer metric value (n value can be 1 ... 7).

%X{ARM.Metricn.Unit} String description of the metric, such as files transferred (n
value can be 1 ... 7).

* ARM 2.0 data buffers are changed to ARM 4.0 sub-buffers.

Table 12.7 ARM Transaction Identity and Context Sub-Buffers*

Specification Description

%X{ARM.TranIdentityn.Name} Optional transaction class name properties.

%X{ARM.TranIdentityn.Value} Optional transaction class value properties.

%X{ARM.TranIdentity.URI} Optional transaction URI.

%X{ARM.TranContextn.Name} Optional transaction context instance name.

%X{ARM.TranContextn.Value} Optional transaction context instance value.

%X{ARM.TranContext.URI} Optional transaction context instance URI.

* ARM 2.0 data buffers are changed to ARM 4.0 sub-buffers.

69

P A R T5

Language Reference Dictionary

Chapter 13.ARM Macros 71

Chapter 14.ARM Performance Macros 89

Chapter 15.ARM System Options 97

Chapter 16.ARM Category Table 105

70

71

C H A P T E R

13
ARM Macros

Introduction to ARM Macros 71

Introduction to ARM Macros
When you use ARM macros, you must define user metrics and correlators. You can

use your existing programs that contain ARM macros and continue to get similar
results written to the ARM log or written to the SAS logging facility. However,
changing the ARM macros to performance macros is recommended when using the SAS
logging facility. To compare the features of ARM macros and performance macros, see
“Comparing the SAS 9.1 ARM Interface with the SAS 9.2 ARM Interface” on page 4.

%ARMEND Macro

Indicates the termination of an application.

Category: ARM Macro

Syntax
%ARMEND< (option-1 <, ...option-n>)>;

Options

APPID=numeric variable or constant
is the application ID to use on the ARM_GETID function call. The value must be a
numeric variable or constant.

Note: Use APPIDVAR= instead of APPID= in new applications. APPID= is
obsolete. �

APPIDVAR=numeric variable
is the application ID. The value must be a numeric variable.

LEVEL=numeric variable or constant
is a variable that specifies the execution level. The value must be a numeric constant
or variable.

72 %ARMEND Macro � Chapter 13

MACONLY=NO | YES
enables the %ARMEND macro to be issued in open code. You set the value to YES if
the macro can be issued in open code, and NO if it can be issued only in a DATA step.

Default: NO

SCL=NO | YES
is used only in SCL programs and specifies whether the macro is in an SCL
environment. Set the value to YES if the macro is in an SCL environment, and NO if
it is not.

Default: NO

Details
Use the %ARMEND macro when you are finished initiating new activity with the

ARM interface. The %ARMEND macro is typically called when an application or user
instance is terminating. Each %ARMEND macro is paired with an %ARMINIT. The
%ARMEND macro means that the application does not issue any more ARM calls.
ARM calls issued after an application has been terminated with the %ARMEND macro
result in an error. All transaction class identifiers are cleared and are no longer
available after the %ARMEND macro.

Note: You must terminate ARM with an %ARMEND macro to avoid getting a
warning or an error from the %ARMPROC macro. �

Input
The input is an application ID that is generated by a previous %ARMINIT macro. If the
APPID= or APPIDVAR= option is provided, the specified value is used as the
application ID. Otherwise, the value of the global macro variable _ARMAPID is used.

Output
The output is the _ARMRC variable, which is the error status code that was returned
from the ARM_END function call.

Examples

Example 1: Basic Usage

data _null_;
%armend;

run;

Example 2: Supplying an Application ID Using APPIDVAR=

%let _armexec=1;
%let _armacro=1;

data _null_;
%arminit(appname=application-name, appuser=’sasxyz’, appidvar=myapp);

run;

data _null_;
%armend(appidvar=myapp);

run;

ARM Macros � %ARMGTID Macro 73

%ARMGTID Macro

Assigns a unique identifier to a transaction class.

Category: ARM Macro

Syntax
%ARMGTID (TXNNAME=’transaction-name’ < option-1 <, ...option-n>>);

Required Argument

TXNNAME=’transaction-name’
is a transaction name. The value is a SAS character variable or quoted literal value.

Restriction: The transaction name has a 127-character limit.

Options

APPID=numeric variable or constant
is the application ID to use on the ARM_GETID function call. The value must be a
numeric variable or constant.

Note: Use APPIDVAR= instead of APPID= in new applications. APPID= is
obsolete. �

APPIDVAR=numeric variable
is the application ID. The value must be a numeric variable.

LEVEL=numeric constant or variable
is a variable that specifies the execution level. The value must be a numeric constant
or variable.

MACONLY=NO | YES
enables the %ARMINIT macro to be issued in open code, outside of a DATA step. You
set the value to YES if the macro can be issued in open code, and NO if it can be
issued only in a DATA step.

Default: NO

METRNAM1–7=’name’
is the name of the user-defined metric. The value must be a SAS character variable
or quoted literal value.

Requirement: The name and user-defined metric definition must be specified.

METRDEF1–7=option
is the definition of the user-defined metric. The value must be one of the following:

COUNT32, COUNT64, or COUNTDIV
use the counter to sum the values of an interval. A counter can calculate average
values, maximums, and minimums per transaction, and other statistics.

74 %ARMGTID Macro � Chapter 13

GAUGE32, GAUGE64, or GAUGEDIV
use the gauge when a sum of values is not needed. A gauge can calculate average
values, maximums, and minimums per transaction, and other statistics.

ID32 or ID64
use the numeric ID as an identifier, but not as a measurement value. A numeric
might be an error code or an employee ID. No calculations can be performed on the
numeric ID.

SHORTSTR or LONGSTR
use the string ID as an identifier. No calculations can be performed on the string
ID.
Restriction: METRDEF7= can equal only LONGSTR and can be a long string of

32 bytes. METRDEF1–6= cannot equal LONGSTR.
Requirement: The user name and user-defined metric definition must be specified.

SCL=NO | YES
is used only in SCL programs and specifies whether the macro is in an SCL
environment. Set the value to YES if the macro is in an SCL environment, and NO if
it is not.
Default: NO

TXNDET=’name’
is a transaction detail. The value is a SAS character variable or quoted literal.
Restriction: The transaction detail has a 127-character limit.

TXNIDVAR=numeric variable
is a numeric variable that contains the value of the transaction ID.

Details
Use the %ARMGTID macro to name a transaction class. Transaction classes are

related units of work within an application. One or more %ARMGTID macros are
typically issued when the application starts to name each of the transaction classes
used by the application. The %ARMGTID macro produces only one record for each
transaction class, even if there are multiple %ARMGTID macros for the same
transaction class.

Input
The input is an application ID that is generated by a previous %ARMINIT macro. If the
APPID= or APPIDVAR= option is provided, the specified value is used as the
application ID. Otherwise, the value of the global macro variable _ARMAPID used.

Output
The output is the _ARMTXID variable, which is the transaction class ID that was
returned from the ARM_GETID function call. Any variable for the TXNIDVAR= option
is updated.

Examples

Example 1: Basic Usage

data _null_;
%armgtid(txnname=’txn OE’, txndet=’Order Entry txn class’);

run;

ARM Macros � %ARMINIT Macro 75

Example 2: Saving the Transaction ID

%let _armexec=1;
%let _armacro=1;

data _null_;
%arminit(appname=application-name, appuser=’sasxyz’);
%armgtid(txnname=’txn OE’, txndet=’Order Entry txn class’,

txnidvar=txn1);
put ‘‘transaction id is ‘‘ txn1;

run;

%ARMINIT Macro

Initializes an application.

Category: ARM Macro

Syntax
%ARMINIT (APPNAME=’application-name’ <, option-1 <, ...option-n>>);

Required Argument

APPNAME=’application-name’
is the application name. The value is a SAS character variable or quoted literal.

Restriction: The application name has a 127-character limit.

Options

APPIDVAR=numeric variable
is the application ID. The value must be a numeric variable.

APPUSER=’application-userID’
is the application user ID. The value is a SAS character variable or quoted literal.

Restriction: The application user ID has a 127-character limit.

GETID=NO | YES
is optional and denotes whether to generate an ARM_GETID function call after
ARM_INIT. If the value is YES, you can define the user metrics.

Default: NO

Requirement: TXNNAME= is required when you use GETID=YES.

LEVEL=numeric constant or variable
is a variable that specifies the execution level. The value must be a numeric constant
or variable.

MACONLY=NO | YES

76 %ARMINIT Macro � Chapter 13

enables the %ARMINIT macro to be issued in open code. You set the value to YES if
the macro can be issued in open code, and NO if it can be issued only in a DATA step.
Default: NO

SCL=NO | YES
is used only in SCL programs and specifies whether the macro is in an SCL
environment. Set the value to YES if the macro is in an SCL environment, and NO if
it is not.
Default: NO

TXNIDVAR=numeric variable
is a numeric variable that contains the value of the transaction ID.
Restriction: Use TXNIDVAR= only when you use GETID=YES.

TXNDET=’name’
is a transaction detail. The value is a SAS character variable or quoted literal.
Restriction: The transaction detail has a 127-character limit. Use TXNDET= only

when you use GETID=YES.

TXNNAME=’transaction-name’
is the transaction name. The value is a SAS character variable or quoted literal value.
Requirement: TXNNAME= is required only when you use GETID=YES.

Details
A %ARMINIT macro call names the application and the users of the application.
Additionally, it initializes the ARM interface if a previous %ARMINIT macro has not
been issued. Typically, it is executed when the application initializes.

Note: You must globally enable ARM macros by setting the _ARMEXEC macro
variable to a value of 1. For more information, see “Setting the _ARMEXEC Macro
Variable” on page 19. �

Input
None

Output
The output is the _ARMAPID variable, which is the application ID that was returned
from the ARM_INIT function call. If GETID=YES, then _ARMTXID is returned also.
Any variables for APPIDVAR= and TXNIDVAR= are updated.

Examples

Example 1: Basic Usage

%let _armexec=1;
%let _armacro=1;

data _null_;
%arminit(appname=’General Ledger’);

run

Example 2: Supplying the User ID

%let _armexec=1;
%let _armacro=1;

ARM Macros � %ARMJOIN Macro 77

data _null_;
name=’Order Entry Application’;
%arminit(appname=application-name, appuser=’sasxyz’);

run;

Example 3: Generating an ARM_GETID in Addition to an ARM_INIT

%let _armexec=1;
%let _armacro=1;

data _null_;
%arminit(appname=’Warehouse App’, getid=YES,

txnname=’Query 1’, txndet=’My long query’);
run;

Example 4: Saving the Application ID

%let _armexec=1;
%let _armacro=1;

data _null_;
%arminit(appname=application-name, appuser=’sasxyz’, appidvar=appl);
put ‘‘application id is ‘‘ appl;

run;

%ARMJOIN Macro

Reads the six SAS data sets that are created by the %ARMPROC macro, and creates SAS data
sets and SQL views that contain common information about applications and transactions.

Category: ARM Postprocessing Macro

Restriction: Do not use with ARMAGENT=LOG4SAS.

Syntax
%ARMJOIN (<option-1 <, ...option-n>>);

Options

LIBIN=libref
is the libref for the SAS library that contains the six SAS data sets that are created
by the %ARMPROC macro.

Default: WORK

LIBOUT=libref
is the libref for the SAS library that contains the application and transaction data
sets.

Default: WORK

78 %ARMJOIN Macro � Chapter 13

Restriction: If a Read-only library is specified in the LIBOUT= option, an error
message is written to the ARM log and processing is stopped.

TXNDS=YES | NO
specifies whether the transaction data sets are to be created.

Default: YES

UPDTDS=YES | NO
specifies whether the update data sets are to be created.

Default: YES

Details
The %ARMJOIN macro reads the six SAS data sets that are created by the

%ARMPROC macro. It merges the information from those data sets to create data sets
and SAS views for easier reporting of ARM data.

Note: The %ARMJOIN macro does not work from SCL. It must be run in a DATA
step. �

Input
The input is the SAS data sets from the %ARMPROC macro. You must run the
%ARMPROC macro before running the %ARMJOIN macro.

Output
The output is a single SAS library that contains the following:

� information about applications (APP)

� a DATA step view that contains information about all start handles, including
parent correlator class and parent start handles (TXNVIEW)

� a SAS view that contains information about all update transactions (UPDTVIEW)

� one transaction data set for each application

� one update data set for each application

The application data set is named APP and contains one observation for every
application that is found in the input data. Each observation contains information such
as application name, user ID, transaction counts, average application response time,
and so on. Additionally, each observation contains a numeric variable APPNO that is
the identifier of the related transaction or update data set that contains more detailed
transaction information.

The transaction data sets are named TXN1, TXN2, TXN3, and so on. Each data set
corresponds to a single application, and each observation represents a single ARM
transaction containing start and stop times, elapsed times, and CPU time.

The TXNVIEW view joins all transaction data sets into a single data set. Start
handle elapsed time and CPU time are calculated from the start and stop transactions.
If the start handle has a parent start handle, then the class ID and start handle of the
parent are included using the variables PARCLS= and PARHDL=. If no parent is
specified, these variables contain missing values.

The update data sets are named UPDT1, UPDT2, UPDT3, and so on. Each data set
corresponds to a single application, and contains multiple observations for each ARM
transaction. Each observation contains the ARM call datetime, an ARM call sequence
ID, and, if applicable, elapsed time, CPU time, and update data.

The UPDTVIEW view joins all update data sets into a single data set.

ARM Macros � %ARMPROC Macro 79

The transaction data sets are easier to use for analyzing individual ARM transactions
because all information about a transaction is represented in one observation. However,
the transaction data sets do not contain any information from %ARMUPDT macros.

The update data sets are similar to the transaction data sets. However, information
about a single transaction is spread over several observations. Update data sets contain
logged data buffer information from all %ARMUPDT macros.

Examples

Example 1: Basic Usage

filename ARMLOG ’d:\armlog’;
%armproc();
%armjoin();

Example 2: Defining a Permanent Library to Read %ARMPROC Macro Output and Store
%ARMJOIN Macro Views

libname user ’c:\arm\user’;
%armjoin(libin=user,libout=user);

run;

%ARMPROC Macro

Processes the ARM log, and creates six SAS data sets that contain the information from the log.

Category: ARM Postprocessing Macro

Restriction: Do not use with ARMAGENT=LOG4SAS.

Syntax
%ARMPROC (<option-1 <, ...option-n>>);

Options

LIB=libref
is the libref for the SAS library that contains the six SAS data sets.

Default: WORK

LOG=pathname
is the pathname for the physical location of the ARM log. If a pathname is not
specified, you must pre-assign the ARMLOG fileref before calling the macro.

LOGNEW=pathname
is the pathname of the physical location of the new ARM log. It is used when ARM
processing is resumed.

80 %ARMSTRT Macro � Chapter 13

Details

The %ARMPROC macro reads an ARM log and creates six SAS data sets that contain
the information from the log. This macro reads the variable name and value pairs from
the ARM log as named input (VAR=VALUE). You should pre-assign the ARMLOG fileref
before calling the macro or supply the LOG= option. If the ARMLOC= option is ignored,
an actual FILENAME statement is required to pre-assign the ARMLOG fileref.

Note: The %ARMPROC macro does not work from SCL. A comma in the name of
the log causes the log to be parsed incorrectly. A comma in the data of the UPDATE
record does not cause any issues. �

Input

The input is the external file containing the ARM log.

Output

The %ARMPROC macro creates six SAS data sets. These SAS data sets contain
information from calls to the ARM API function calls. The following lists the six SAS
data sets:

� INIT—contains information from all ARM_INIT calls

� GETID—contains information from all ARM_GETID calls

� START—contains information from all ARM_START calls

� UPDATE—contains information from all ARM_UPDATE calls

� STOP—contains information from all ARM_STOP calls

� END—contains information from all ARM_END calls

Examples

Example 1: Defining a Permanent Library to Store %ARMPROC Macro Output

libname user ’f:\arm\user’;
%armproc(lib=user);

run;

Example 2: Supplying the LIB= and LOG= Options

libname armout ’sas library name’;
%armproc(lib=armout,log=c:\userID\arm\armlog);

%ARMSTRT Macro

Specifies the start of a unique transaction, and returns a handle that is passed to the %ARMUPDT
and %ARMSTOP macros.

Category: ARM Macro

ARM Macros � %ARMSTRT Macro 81

Syntax
%ARMSTRT (option-1 <, ...option-n>);

Options

APPID=numeric variable or constant
is the application ID to use on the ARM_GETID function call. The value must be a
numeric variable or constant.
Restriction: Use APPID= only when you use GETID=YES. See the %ARMINIT

macro for information about GETID=YES.
Note: Use APPIDVAR= instead of APPID= in new applications. APPID= is

obsolete. �

APPIDVAR=numeric variable
is the application ID. The value must be a numeric variable.
Restriction: Use APPIDVAR= only when you use GETID=YES. See the %ARMINIT

macro for information about GETID=YES.

CORR=n
defines the type of parent and child transactions.
Default: 0
Requirement: Use CORR= only when you use correlators.

GETID=NO | YES
is optional and denotes whether to generate an ARM_GETID function call before
ARM_START. If the value is YES, you can define the user metrics.
Default: NO
Requirement: TXNNAME= is required when you use GETID=YES.

LEVEL=numeric constant or variable
is a variable that specifies the execution level. The value must be a numeric constant
or variable.

MACONLY=NO | YES
enables the %ARMSTRT macro to be issued in open code. You set the value to YES if
the macro can be issued in open code, and NO if it can be issued only in a DATA step.
Default: NO

METRVAL1–7=’name’
is the value of the user-defined metric. The value must be a SAS character variable
or a quoted literal. The value can be up to eight characters in length.
Requirement: The value of the user-defined metric must correspond to the user

metric defined in the %ARMGTID macro.

PARNTVAR=numeric variable
is a numeric variable that contains the value of the parent transaction start handle.
Use PARNTVAR= only when you define a child transaction and only when the
CORR= option has a value of 2 or 3.

SCL=NO | YES
is used only in SCL programs and specifies whether the macro is in an SCL
environment. Set the value to YES if the macro is in an SCL environment, and NO if
it is not.
Default: NO

82 %ARMSTRT Macro � Chapter 13

SHDLVAR=numeric variable
is a numeric variable that contains the value of the start handle. SHDLVAR= is
required when you use correlators to define parent and child transactions.

TXNDET=’name’
is a transaction detail. The value is a SAS character variable or quoted literal.
Requirement: Use TXNDET= only when you use GETID=YES.
Restriction: The transaction detail has a 127-character limit.

TXNID=numeric variable or constant
is the transaction ID to use in the ARM_START function call. The value must be a
numeric variable or constant.

Note: Use TXNIDVAR= instead of TXNID= in new applications. TXNID= is
obsolete. �

TXNIDVAR=numeric variable
is a numeric variable that contains the value of the transaction ID when GETID=NO.
It contains the value of the TXNID when GETID=YES.

TXNNAME=’transaction-name’
is the transaction name. The value is a SAS character variable or quoted literal.
Requirement: TXNNAME= is required only when you use GETID=YES.
Restriction: The transaction name has a 127-character limit.

Details
The %ARMSTRT macro signals the start of a unique transaction, also known as a

transaction instance. A transaction instance is an instantiation of a transaction class
that was previously defined by the %ARMGTID macro.

If user metrics are defined for a transaction class using the %ARMGTID macro, the
values for the user metrics begin with the METRVAL1–7= option.

The CORR= option defines the type of parent (primary) and child (component)
transactions using the following values:

0 not part of a related group

1 parent transaction

2 child transaction

3 child of one transaction and parent of another

Note: You use CORR= only when you use correlators. �

Each child start handle variable must be defined with a parent start handle variable.
Here is a code fragment that shows the use of correlator types and the SHLDVAR= and
PARNTVAR= options:

%armstrt(txnidvar=txnid,corr=1,shdlvar=HDL100);
%armstrt(txnidvar=txnid,corr=0,shdlvar=HDL200<,...user metrics>);
%armstrt(txnidvar=txnid,corr=2,shldvar=HDL110,parntvar=HDL100);
%armstrt(txnidvar=txnid,corr=3,shldvar=HDL120,parntvar=HDL100);

Input
The input is the transaction class ID that is generated by a previous %ARMGTID
macro. If the TXNID= or TXNIDVAR= option is specified, the value is used as the
transaction ID. Otherwise, the value of the global macro variable _ARMTXID is used.

ARM Macros � %ARMSTRT Macro 83

If GETID=YES and the APPID= or APPIDVAR= options are supplied, the supplied
value is used as the application ID. Otherwise, the value of the global macro variable
_ARMAPID is used.

Output
The output is the _ARMSHDL variable, which is the start handle that was returned
from the ARM_START function call. If GETID=YES, then the _ARMTXID variable is
updated. Any variables for TXNIDVAR= and SHDLVAR= are updated.

Examples

Example 1: Basic Usage

%let _armexec=1;
%let _armacro=1;

data _null_;
%arminit (appname=’Forecast’);
%armgtid (txnname=’Txn 1A’, txndet=’Forecasting Txn Class’);
%armstrt;

run;

Example 2: Supplying the Transaction ID Using TXNIDVAR=

%let _armexec=1;
%let _armacro=1;

data _null_;
%arminit(appname=application-name, appuser=’sasxyz’);
%armgtid(txnname=’txn OE’, txndet= ’Order Entry txn class’

txnidvar=txnnum);

data _null_;
%armstrt(txnidvar=txnname);

run;

Example 3: Generating an ARM_GETID Call and an ARM_START

%let _armexec=1;
%let _armacro=1;

data _null_;
%arminit(appname=’Forecast’, appidvar=savapp);

run;

data _null_;
%armstrt(getid=YES, txnname=’Txn 1A’,

txndet=’Forecasting Txn Class’,
appidvar=savapp);

run;

84 %ARMSTOP Macro � Chapter 13

%ARMSTOP Macro
Specifies the end of a transaction instance.

Category: ARM Macro

Syntax
%ARMSTOP (<option1 <, ...option-n>>);

Options

LEVEL=numeric constant or variable
is a variable that specifies the execution level. The value must be a numeric constant
or variable.

MACONLY=NO | YES
enables the %ARMSTOP macro to be issued in open code. You set the value to YES if
the macro can be issued in open code, and NO if it can be issued only in a DATA step.
Default: NO

METRVAL1–7=’name’
is the value of the user-defined metric. The value must be a SAS character variable
or a quoted literal value up to eight characters in length.
Requirement: The value of the user-defined metric must correspond to the user

metric defined in %ARMGTID.

SCL=NO | YES
is used only in SCL programs and specifies whether the macro is in an SCL
environment. Set the value to YES if the macro is in an SCL environment, and NO if
it is not.
Default: NO

SHANDLE=numeric variable or constant
is the start handle to use on the ARM_UPDATE function call. The value must be a
numeric variable or constant.

SHDLVAR=numeric variable
is a numeric variable that contains the value of the start handle.

STATUS=numeric variable or numeric constant
is a transaction status value to pass to the ARM_STOP function call. The value must
be a numeric variable or numeric constant 0, 1, or 2. The default is 0.
Default: NO

Details
The %ARMSTOP macro signals the end of a transaction that was started using an
%ARMSTRT macro.

Input
The input is a start handle that is generated by a previous %ARMSTRT macro. If the
SHANDLE= or SHDLVAR= option is specified, the value is used as the start handle.
Otherwise, the value of the global macro variable _ARMSHDL is used.

ARM Macros � %ARMUPDT Macro 85

Output
The output is the _ARMRC variable, which contains the error status code that was
returned from the ARM_STOP function call.

Examples

Example 1: Basic Usage

data _null_;
%armstop; /* status defaults to zero*/

run;

Example 2: Supplying a Nonzero Status

data _null_;
rc=2;
%armstop(status=rc);

run;

Example 3: Supplying a Start Handle Using SHDLVAR=

%let _armexec=1;
%let _armacro=1;

data _null_;
%arminit(appname=application-name, appuser=’sasxyz’);
%armgtid(txnname=’txn OE’, txndet=’Order Entry txn class’);
%armstrt(shdlvar=sh1);

run;

data _null_;
%armstop(shdlvar=sh1);

run;

%ARMUPDT Macro

Updates a transaction instance that was previously started.

Category: ARM Macro

Syntax
%ARMUPDT (DATA=<option>, <option-1 <, ...option-n>>);

Recommended Argument

DATA=’variable’
is a SAS character variable or a quoted literal from the user-supplied data buffer
that contains text to pass to the ARM_UPDATE function call. DATA= is not

86 %ARMUPDT Macro � Chapter 13

required, but it is highly recommended. This information is mutually exclusive of
user-defined metric values.

Restriction: The data value has a 1,020-character limit.

Options

LEVEL=numeric constant or variable
is a variable that specifies the execution level. The value must be a numeric constant
or variable.

MACONLY=NO | YES
enables the %ARMUPDT macro to be issued in open code. You set the value to YES if
the macro can be issued in open code, and NO if it can be issued only in a DATA step.

Default: NO

METRVAL1–7=’name’
is the value of the user-defined metric. The value must be a SAS character variable
or a quoted literal. The value can be up to eight characters in length. The value is
ignored if the DATA= option is used.

Requirement: The value of the user-defined metric must correspond to the user
metric defined in the %ARMGTID macro.

SCL=NO | YES
is used only in SCL programs and specifies whether the macro is in an SCL
environment. Set the value to YES if the macro is in an SCL environment, and NO if
it is not.

Default: NO

SHANDLE=numeric or constant
is the start handle to use on the ARM_UPDATE function call. The value must be a
numeric or constant.

Note: Use SHDLVAR= instead of SHANDLE= in new applications. SHANDLE=
is obsolete. �

SHDLVAR=numeric variable
is a numeric variable that contains the value of the start handle.

Details
The %ARMUPDT macro can be executed multiple times after the %ARMSTRT macro
and before the %ARMSTOP macro. It enables you to get information about the
transaction instance that is in progress. The %ARMUPDT macro provides a snapshot of
information for the transaction instance.

Input
The input is a start handle that is generated by a previous %ARMSTRT macro. If the
SHANDLE= or SHDLVAR= option is specified, the value is used as the start handle.
Otherwise, the value of the global macro variable _ARMSHDL is used.

Note: User-metric values and user-supplied data buffers are mutually exclusive
parameters. Each requires its own update call to get both types of data into the update
records. �

ARM Macros � %ARMUPDT Macro 87

Output
The output is the _ARMRC variable, which contains the error status code that was
returned from the ARM_UPDATE function call.

Examples

Example 1: Basic Usage

data _null_;
updtdata=’Txn still running at’ || put (time(),time.);
%armupdt(data=updtdata);

run;

Example 2: Supplying a Start Handle Using SHDLVAR=

%let _armexec=1;
%let _armacro=1;

data _null_;
%arminit(appname=applicaiton-name, appuser=’sasxyz’);
%armgtid(txnname=’txn OE’, txndet=’Order Entry txn class’);
%armstrt(shdlvar=sh1);

run;

data _null_;
%armupdt(data=’OE txn pre-processing complete’, shdlvar=sh1);

run;

88

89

C H A P T E R

14
ARM Performance Macros

Introduction to ARM Performance Macros 89
Example: ARM Performance Macros 93

Introduction to ARM Performance Macros

Four ARM performance (PERF) macros replace eight ARM macros. With
performance macros, you do not have to specify user-metric definitions, types, and
values in your code.

%PERFEND Macro

Indicates the termination of the application.

Category: ARM Performance Macro

Restriction: SAS 9.2 and later

Syntax
%PERFEND;

Details
There are no input parameters for the %PERFEND macro.

Use the %PERFEND macro to terminate an application or user event. Each
%PERFEND macro is paired with one %PERFINIT macro to mark the end of an
application. The %PERFEND means that the application does not issue any more ARM
calls. ARM calls issued after an application has been terminated with the %PERFEND
macro result in an error. All transaction class identifiers are cleared and are no longer
available after the %PERFEND macro. For an example, see “Example: ARM
Performance Macros” on page 93.

Note: If the %PERFEND macro is not set, the ARM application terminates at the
end of the SAS session and you receive a warning. �

90 %PERFINIT Macro � Chapter 14

%PERFINIT Macro

Names the application instance and initializes the ARM interface.

Category: ARM Performance Macro

Restriction: SAS 9.2 and later

Syntax
%PERFINIT(APPNAME=’application-name’);

%PERFINIT (APPLNAME=’application-name’);

Required Arguments

APPNAME=’application-name’;
APPLNAME=’application-name’;

is the application name, which must be a SAS character variable or a literal enclosed
in single or double quotation marks. If both APPNAME= and APPLNAME=
arguments are used, APPLNAME= takes precedence. If neither APPNAME= or
APPLNAME= argument is used, then the value of SAS is the default.

Restriction: The application name has a 127-character limit.

Details
The %PERFINIT macro names the application and initializes the ARM interface if a
previous %PERFINIT macro has not been issued. Typically, it is executed when the
application initializes. For an example, see “Example: ARM Performance Macros” on
page 93.

Note: You must globally enable ARM macros by setting the _ARMEXEC macro
variable to a value of 1. For more information, see “Setting the _ARMEXEC Macro
Variable” on page 19. �

%PERFSTOP Macro

Specifies the end of a transaction.

Category: ARM Performance Macro

Restriction: SAS 9.2 and later

Syntax
%PERFSTOP;

ARM Performance Macros � %PERFSTRT Macro 91

Details
There are no input parameters for the %PERFSTOP macro.

Use the %PERFSTOP macro to signal the end of a transaction that was started using
the %PERFSTRT macro. The %PERFSTOP macro contains default user metrics. To see
the relationships between %PERFSTOP and the default user metrics, see “Default User
Metrics and Performance Macros” on page 31. For an example, see “Example: ARM
Performance Macros” on page 93.

The %PERFSTRT and %PERFSTOP macros can be nested in other %PERFSTRT
and %PERFSTOP macros. When nested, each %PERFSTOP macro that is initiated is
paired with the currently active %PERFSTRT macro. In the figure on page 92, there
are three %PERFSTRT and %PERFSTOP macro pairs. The first %PERFSTOP macro
terminates the transaction for the third %PERFSTRT macro, and so on. For an
example, see “Example: ARM Performance Macros” on page 93.

%PERFSTRT Macro

Specifies the start of a transaction.

Category: ARM Performance Macro
Restriction: SAS 9.2 and later

Syntax
%PERFSTRT (TXNNAME=’transaction-name’);

Required Argument

TXNNAME=’transaction-name’
is the transaction name, which must be a SAS character variable or a literal enclosed
in single or double quotation marks.
Restriction: The transaction name has a 127-character limit.

Details
Use the %PERFSTRT macro to signal the start of a transaction. The %PERFSTRT
macro contains default user metrics. To see the relationships between %PERFSTRT
and the default user metrics, see “Default User Metrics and Performance Macros” on
page 31. For an example, see “Example: ARM Performance Macros” on page 93.

The %PERFSTRT and %PERFSTOP macros can be nested in other %PERFSTRT
and %PERFSTOP macros. When nested, each %PERFSTOP macro that is initiated is
paired with the currently active %PERFSTRT macro. In the following figure, there are
three %PERFSTRT and %PERFSTOP macro pairs. The first %PERFSTOP macro
terminates the transaction for the third %PERFSTRT macro, and so on. The following
code creates nested macro pairs:

/*
* Enable ARM subsystem; if needed, set the _armexec=1
*/

92 %PERFSTRT Macro � Chapter 14

%let _armexec=1;

%PERFINIT(APPNAME=’SAS 9.2 Studio Test Application’);
%PERFSTRT(TXNNAME=’SAS 9.2 Studio Transaction One’);
%PERFSTRT(TXNNAME=’First Nested Macro Pair’);
%PERFSTRT(TXNNAME=’Second Nested Macro Pair’);

/*
*
* SAS code that represents a discrete unit of work,
* *
*/
%PERFSTOP; /* PERFSTOP for the Second Nested Macro Pair */
%PERFSTOP; /* PERFSTOP for the First Nested Macro Pair */
%PERFSTOP; /* PERFSTOP for the SAS 9.2 Studio Transaction One */
%PERFEND;

Figure 14.1 Nested %PERFSTRT and %PERFSTOP Macros

ARM Performance Macros � Example: ARM Performance Macros 93

Example: ARM Performance Macros

The following example code writes output to the SAS log. The application name is
Perf_App. There are two transactions, Perf_Tran_1 and Perf_Tran_2. The
performance macros are highlighted within the code.

%log4sas();
%log4sas_logger(Perf.ARM, ’level=info’);
options armagent=log4sas;
%let _armexec=1;
%perfinit(appname="Perf_App");

%perfstrt(txnname="Perf_Tran_1");
data x;
do i=1 to 10000;
x=i; y=0-i;
output;
end;

run;

proc sort data=x threads; by y;
run;
%perfstop;

%perfstrt(txnname="Perf_Tran_2");
data x;
do i=1 to 10000;
x=i; y=0-i;
output;
end;

run;
proc sort data=x threads; by y;

run;
%perfstop;

%perfend;
run;

94 Example: ARM Performance Macros � Chapter 14

The following is the SAS log output for the example code. Note the performance
macros that were highlighted in the example code.

Output 14.1 SAS Log

1 %log4sas();
2 %log4sas_logger(Perf.ARM, ’level=info’);
3 options armagent=log4sas;
NOTE: INIT SAS 13eec00 I,1533837807.104000,1,0.468750,2.437500,SAS,
NOTE: REGISTER SAS 13eee58 G,1533837807.386000,1,1,SAS,MVA SAS session
NOTE: START SAS 13eee58 0 S,1533837807.386000,1,1,1,0.468750,2.437500
4 %let _armexec = 1;
5 %perfinit(appname="Perf_App");
NOTE: INIT Perf_App 13efa30 I,1533837840.315000,2,0.500000,2.484375,Perf_App,userID
6
7 %perfstrt(txnname="Perf_Tran_1");
NOTE: REGISTER Perf_Tran_1 13efc88

G,1533837840.487000,2,2,Perf_Tran_1,,_IOCOUNT_,Count64,_MEMCURR_,
Gauge64,_MEMHIGH_,Gauge64, THREADCURR_,Gauge32,_THREADHIGH_,Gauge32

NOTE: START Perf_Tran_1 13efc88 0
S,1533837840.487000,2,2,2,0.515625,2.500000,68346709,5095424,5095424,3,3

8 data x;
9 do i=1 to 10000;
10 x=i; y=0-i;
11 output;
12 end; run;

NOTE: The data set WORK.X has 10000 observations and 3 variables.
NOTE: DATA statement used (Total process time):

real time 5.67 seconds
cpu time 0.17 seconds

13
14 proc sort data=x threads; by y; run;

NOTE: There were 10000 observations read from the data set WORK.X.
NOTE: The data set WORK.X has 10000 observations and 3 variables.
NOTE: PROCEDURE SORT used (Total process time):

real time 3.78 seconds
cpu time 0.14 seconds

15 %perfstop;

NOTE: STOP Perf_Tran_1 13efc88 0
P,1533837851.224000,2,2,2,0.562500,2.812500,0,79383442,6144000,7606272,3,7

16
17 %perfstrt(txnname="Perf_Tran_2");
NOTE: REGISTER Perf_Tran_2 13f0338

G,1533837851.239000,2,3,Perf_Tran_2,,_IOCOUNT_,Count64,_MEMCURR_,
Gauge64,_MEMHIGH_,Gauge64,_THREADCURR_,Gauge32,_THREADHIGH_,
Gauge32

NOTE: START Perf_Tran_2 13f0338 0
S,1533837851.239000,2,3,3,0.578125,2.812500,79395730,6144000,7606272,3,7

18 data x;
19 do i=1 to 10000;
20 x=i; y=0-i;
21 output;
22 end; run;

ARM Performance Macros � Example: ARM Performance Macros 95

NOTE: The data set WORK.X has 10000 observations and 3 variables.
NOTE: DATA statement used (Total process time):

real time 0.01 seconds
cpu time 0.01 seconds

23 proc sort data=x threads; by y; run;

NOTE: There were 10000 observations read from the data set WORK.X.
NOTE: The data set WORK.X has 10000 observations and 3 variables.
NOTE: PROCEDURE SORT used (Total process time):

real time 0.09 seconds
cpu time 0.04 seconds

24 %perfstop;

NOTE: STOP Perf_Tran_2 13f0338 0
P,1533837851.364000,2,3,3,0.625000,2.843750,0,80203806,6144000,7606272,3,7

25
26 %perfend;
NOTE: END Perf_App 13efa30 E,1533837851.458000,2,0.625000,2.859375
27 run;

96

97

C H A P T E R

15
ARM System Options

ARMAGENT= System Option 97
ARMLOC= System Option 98

ARMSUBSYS= System Option 99

ARMAGENT= System Option

Specifies another vendor’s ARM agent, which is an executable module or keyword (such as,
LOG4SAS), that contains a specific implementation of the ARM API.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: System administration: Performance

Restriction: After you initialize the ARM subsystem, you cannot specify a different ARM
agent using ARMAGENT=.

Restriction: If ARMAGENT=LOG4SAS, ARMLOC= is ignored.

PROC OPTIONS GROUP= PERFORMANCE

See: ARMAGENT= System Option in the documentation for your operating
environment.

Syntax
ARMAGENT=module

Syntax Description

module
is the name of the executable module that contains an ARM agent, which is a
program that contains a vendor’s implementation of the ARM API.

Operating Environment Information: The maximum length for the module name is
specific to your operating environment. For many operating environments, the
maximum length is 32 characters. For the z/OS operating environment, see SAS
Companion for z/OS. �

Default for SAS 9.2 ARM interface: SAS

98 ARMLOC= System Option � Chapter 15

Details
An ARM agent is an executable module that contains an implementation of the ARM
API. The ARM agent contains executable routines that are called from an application.
The ARM agent and SAS run concurrently. SAS passes transaction information to the
ARM agent, which collects, manages, and writes the ARM records to the ARM log or
the SAS logging facility. SAS and other vendors provide an ARM agent.

By default, SAS uses ARMAGENT=SAS. Use ARMAGENT= to specify another
executable module or keyword to monitor the internal SAS processing transactions
(using ARMSUBSYS=) and user-defined transactions using ARM macros. If you specify
ARMAGENT=LOG4SAS, the output is sent to the SAS logging facility, which enables
you to have several logs.

See Also

System Options:

“ARMLOC= System Option” on page 98

“ARMSUBSYS= System Option” on page 99

ARMLOC= System Option

Specifies the location of the ARM log.

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window

Category: System administration: Performance

Restriction: If ARMAGENT=LOG4SAS, ARMLOC= is ignored.

Syntax
ARMLOC=fileref | filename

Syntax Description

fileref
is a SAS name that is associated with the physical location of the ARM log. To assign
a fileref, use the FILENAME statement.

’filename’
is the physical location of the log. Include the complete pathname and the filename.
You can use single or double quotation marks.

Default for SAS 9.1 ARM Interface: Filename: ARMLOG.LOG

Default for SAS 9.2 ARM Interface: none

Restriction: For all operating environments except z/OS, if you specify the
ARMLOC= system option in your configuration file, you must specify the filename,
not a fileref.

ARM System Options � ARMSUBSYS= System Option 99

Details
The ARM log is an external output file that contains the logged ARM transaction
records. The ARM log gathers transaction information for the internal SAS processing
transactions (depending on the value of the ARMSUBSYS= system option) and for
user-defined transactions (using ARM macros).

You can change the location of the ARM log after initializing an ARM subsystem.
Any records that were written to the ARM log in the old location are not copied to the
ARM log in the new location. Therefore, you should issue ARMLOC= before initializing
the first ARMSUBSYS= so that all records are written to the same ARM log.

See Also

System Options:
“ARMAGENT= System Option” on page 97
“ARMSUBSYS= System Option” on page 99

ARMSUBSYS= System Option

Specifies whether to initialize the ARM subsystems, which determine the internal SAS processing
transactions to be monitored.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: System administration: Performance
Restriction: After you initialize the ARM subsystems, you cannot specify a different ARM
agent using ARMAGENT=.
Default: (ARM_NONE)

Syntax
ARMSUBSYS=(ARM_NONE | ARM_ALL | subsystem1 <item1 <item2 <...> > > <,

subsystem2 <item1 <item2 <...> > > ><OFF>)

Syntax Description

ARM_NONE
specifies that no internal SAS processing transactions are written to the SAS logging
facility or the ARM log. This is the default setting.

ARM_ALL
specifies that all internal SAS processing transactions are written to the SAS logging
facility or the ARM log.

subsystem
specifies an ARM subsystem, which is a group of internal SAS processing
transactions that are to be written to the SAS logging facility or the ARM log. The
following subsystems are available:

100 ARMSUBSYS= System Option � Chapter 15

ARM_DSIO
collects SAS data set I/O processing information.

ARM_PROC
collects SAS procedure and DATA step processing information.

item
specifies a name that determines the type and amount of transaction logging for each
subsystem. Use item specifications as filters so that only the information that you
are interested in is logged. For example, if you want one type of transaction, list the
single item. If you want multiple transactions for a subsystem, list each item. Items
are associated with each subsystem as follows:

ARM_DSIO

OPENCLOSE
logs a SAS data set open and close transactions as a start record when a data
set is opened, and as a stop record when it is closed.

VARDEF
logs OPENCLOSE records and an update record for each defined variable
(output opens).

VARSEL
logs OPENCLOSE records and an update record for each selected variable
(input and update opens).

VARINFO
logs OPENCLOSE, VARDEF, and VARSEL records.

WHEREOPT
logs OPENCLOSE records and an update record for each selected index from a
WHERE processing optimization. Available for the default Base SAS engine
and the V6 compatibility engine only.

WHEREINFO
logs OPENCLOSE, WHEREOPT, and WHERETXT records.

WHERETXT
logs OPENCLOSE records and one or more update records that contain a
textual representation of the active WHERE expression. Each record can hold
approximately 1,000 bytes.

MIN
logs the minimum amount of information. For SAS 9, MIN logs the
OPENCLOSE records.

MAX
logs the maximum amount of information. For SAS 9 and later, MAX logs all of
the ARM_DSIO records. This is the default for ARM_DSIO.

LEVEL1
logs OPENCLOSE, VARDEF, and VARSEL records.

LEVEL2
logs LEVEL1, WHEREOPT, and WHERETXT records.

For more information about the logged records, see “Understanding the Records
Written by the ARM_DSIO Subsystem” on page 101.

ARM_PROC
For more information about the logged records, see “Understanding the Records
Written by the ARM_PROC Subsystem” on page 103.

ARM System Options � ARMSUBSYS= System Option 101

OFF
disables the specified subsystem. In the following code, all subsystems are enabled
for the DATA step, and then the ARM_PROC subsystem is disabled for the PRINT
procedure:

options armsubsys=(arm_all);
data a;

x=1;
run;

options armsubsys=(arm_proc off);
proc print;
run;

Details

Overview of ARM Subsystems The ARMSUBSYS= system option specifies whether to
initialize the ARM subsystems, which determine the internal SAS processing
transactions to be monitored. An ARM subsystem is a group of internal SAS processing
transactions. When using the SAS logging facility and ARM 2.0, the records are routed
to ARM2.Record.

If you want to specify a different ARM log location by using the ARMLOC= system
option, be sure to issue the ARMLOC= option before you initialize an ARM subsystem.
The subsystem start record is written to the new ARM log using the ARM2.Record
pattern layout. For more information on pattern layouts, see “Description of ARM
Appender Pattern Layouts” on page 65.

Understanding the Records Written by the ARM_DSIO Subsystem The ARM_DSIO
subsystem writes records to the SAS logging facility or the ARM log. This subsystem
collects SAS data set I/O processing information. The records that are written to the
SAS logging facility or the ARM log are:

I (initialization) record
is an initialization record, with one record written per session when the ARM
subsystem is initialized. It starts with an I, followed by:

� the SAS datetime value for session start
� an application ID
� a user start time
� a system start time
� an application name
� a user ID

Output:

I,1326479452.427000,1,1.171684,1.532203,SAS,sasabc

G (GetID) record
is a transaction ID record, with one record written per transaction. It starts with a
G, followed by:

� the SAS datetime value when the record was written
� the application ID from the I record
� a transaction class ID
� a transaction name
� a transaction description

102 ARMSUBSYS= System Option � Chapter 15

� a description of the values provided in subsequent S (start) and P (stop)
records

Output:

G,1326479452.447000,1,1,MVA_DSIO.OPEN_CLOSE,DATA SET OPEN/CLOSE,
LIBNAME,ShortStr,MEMTYPE,ShortStr,MEMNAME,LongStr

LIBNAME refers to the libref for a SAS library, MEMTYPE refers to the
member type (DATA or VIEW), and MEMNAME refers to a SAS data set name.

S (start) record
is a start record, with one record written each time a file is opened. It starts with
an S, followed by:

� the SAS datetime value when the record was written
� the application ID from the I record

� the transaction class ID from the G record

� a transaction ID
� a user start time

� a system start time
� the actual libref, member type, and member name of the opened file

Output:

S,1326479486.396000,1,1,1,1.311886,2.22908,WORK ,DATA ,GRADES

P (stop) record
is a stop record, with one record written each time a file is closed. It starts with a
P, followed by:

� the SAS datetime value when the record was written

� the application ID from the I record
� the transaction class ID from the G record

� the transaction ID from the associated S record
� a user start time

� a system start time

� the actual libref, member type, and member name of the closed file

Output:

P,1326479486.706000,1,1,1,1.331915,2.22908,0,WORK ,DATA
,GRADES

U (update) record
is an update record, with one record written each time a variable is defined or
selected, and each time an index is used during WHERE processing optimization.
A U record displays the text of a WHERE expression. It starts with a U, followed
by:

� the SAS datetime value when the record was written
� the application ID from the I record

� the transaction class ID from the G record

� the transaction ID from the associated S record
� a user start time

� a system start time
� the detailed information for the type of U record being written

ARM System Options � ARMSUBSYS= System Option 103

For variable definition and selection, the variable type is specified with a 1 for a
numeric variable, or with a 2 for a character variable. The variable type with the
name of the variable are followed by DEF for definition or SEL for selection.

Output:

U,1326479486.406000,1,1,1,1.321900,2.22908,2,VAR(2,Student),DEF
U,1326479508.508000,1,1,2,1.612318,2.443513,2,VAR(2,Student),SEL

For index selection, the index type is specified with an S for simple, or with a C
for complex, followed by the name of the index.

U,1326479606.48000,1,1,4,2.403456,3.915630,2,INDEX(S,Test1),SEL

For WHERE expression text information, the expression is specified as:

U,1326479606.48000,1,1,4,2.403456,3.915630,2,WHERE(0),test1>60

E (end) record
is an end record, with one record written per session. It starts with an E, followed
by:

� the SAS datetime value when the record was written
� the application ID from the I record
� a user stop time
� a system stop time

Output:

E,1326480210.737000,1,2.533643,4.25788

Understanding the Records Written by the ARM_PROC Subsystem The ARM_PROC
subsystem writes records to the SAS logging facility or the ARM log. This subsystem
collects SAS procedure and DATA step processing information. The records that are
written to the SAS logging facility or the ARM log are:

G (GetID) record
is a transaction ID record, with one record written per transaction. It starts with a
G, followed by:

� the SAS datetime value when the record was written
� the application ID from the I record
� a transaction class ID
� a transaction name
� a transaction description
� a description of the values that are provided in subsequent S (start) and P

(stop) records

Output:

G,1501177361.426000,1,2,PROCEDURE,PROC START/STOP,PROC_NAME,ShortStr,
PROC_IO,Count64,PROC_MEM,Count64,PROC_LABEL,LongStr

S (start) record
is a start record, with one record written immediately before the procedure
executes. It starts with an S, followed by:

� the SAS datetime value when the record was written
� an application ID
� a transaction class ID
� a transaction ID

104 ARMSUBSYS= System Option � Chapter 15

� a user CPU (start) time

� a system CPU (start) time

� the procedure or DATA step name

� the procedure or I/O count

� the amount of memory used

� the label name

Output:

S,1501177361.436000,1,2,2,0.350504,0.620892,DATASTEP,0,0,
GLMSTEPONE

P (stop) record
is a stop record, with one record written when the procedure terminates. It starts
with a P, followed by:

� the SAS datetime value when the record was written

� an application ID

� a transaction class ID

� a transaction ID from the associated S record

� a user CPU (start) time

� a system CPU (start) time

� the procedure or DATA step name

� the procedure or I/O count

� the amount of memory used

� the label name

Output:

P,1501177361.776000,1,2,2,0.510734,0.741065,0,DATASTEP,8123483,333792,
GLMSTEPONE

Examples
The following example shows the ARM subsystem ARM_DSIO, which collects SAS data
set I/O processing information. The OPENCLOSE item logs the SAS data set open and
close transaction.

options armsubsys=(ARM_DSIO OPENCLOSE);

The following example shows the ARM subsystem ARM_ALL, which specifies that all
internal SAS processing transactions are written to the SAS logging facility or the ARM
log.

options
armagent=SAS
armsubsys=arm_all;

See Also

System Options:

“ARMAGENT= System Option” on page 97

“ARMLOC= System Option” on page 98

105

C H A P T E R

16
ARM Category Table

ARM Categories and Descriptions 105

ARM Categories and Descriptions

Table 16.1 ARM Categories and Descriptions

ARM Categories Description

ARM Macros

“%ARMEND Macro” on page 71 Indicates the termination of an application.

“%ARMGTID Macro” on page 73 Assigns a unique identifier to a transaction class.

“%ARMINIT Macro” on page 75 Initializes an application.

“%ARMSTOP Macro” on page 84 Specifies the end of a transaction instance.

“%ARMSTRT Macro” on page 80 Specifies the start of a unique transaction, and returns a handle that is
passed to the %ARMUPDT and %ARMSTOP macros.

“%ARMUPDT Macro” on page 85 Updates a transaction instance that was previously started.

ARM Performance Macros

“%PERFEND Macro” on page 89 Indicates the termination of an application.

“%PERFINIT Macro” on page 90 Names the application instance and initializes the ARM interface.

“%PERFSTOP Macro” on page 90 Specifies the end of a transaction.

“%PERFSTRT Macro” on page 91 Specifies the start of a transaction.

ARM Post-processing Macros

“%ARMJOIN Macro” on page 77 Reads the six SAS data sets that are created by the %ARMPROC macro, and
creates SAS data sets and SQL views that contain common information
about applications and transactions.

“%ARMPROC Macro” on page 79 Processes the ARM log, and creates six SAS data sets that contain the
information from the log.

ARM System Options

“ARMAGENT= System Option” on
page 97

Specifies another vendor’s ARM agent, which is an executable module or
keyword (such as, LOG4SAS), that contains a specific implementation of the
ARM API.

106 ARM Categories and Descriptions � Chapter 16

ARM Categories Description

“ARMLOC= System Option” on page
98

Specifies the location of the ARM log.

“ARMSUBSYS= System Option” on
page 99

Specifies whether to initialize the ARM subsystems, which determine the
internal SAS processing transactions to be monitored.

107

P A R T6

Appendices

Appendix 1.SAS Logging Facility Configuration File 109

108

109

A P P E N D I X

1
SAS Logging Facility
Configuration File

XML Configuration File 109

XML Configuration File
The following SAS logging facility configuration file represents a possible SAS logging

facility XML configuration, which contains specifications for the ARM appender. The
file is customized using standard XML language syntax, and includes the following
definitions or parameters:

� <appender> statement: creates an instance of an appender
� <logger> statement: creates a named logger to receive SAS logging facility events
� <root> statement: by default, a root logger is required and it receives all SAS

logging facility messages
� <appender-ref> statement: references an appender, used in a <logger> or

<appender> definition
� <param> statement: optional parameter definitions for an appender, can be used

for unique appender options or output format specifications
� Class="<value>" statement: defines a type of appender, such as FileAppender or

ARMAppender
� %d, %c, %m, %X specifications: optional pattern conversion specifiers that map to

the SAS logging facility values; see SAS Logging: Configuration and Programming
Reference for a complete range and description of format specifiers.

Note: XML is case sensitive. �

<?xml version="1.0" encoding="UTF-8"?>
<logging:configuration xmlns:logging="http://www.sas.com/xml/logging/1.0/">

<appender class="FileAppender" name="ARM2LOG">
<param name="File" value="arm2.log"/>
<param name="ImmediateFlush" value="true"/>
<layout>

<param name="ConversionPattern"
value="%X{ARM2.Record}"/>

</layout>
</appender>
<appender name="ARM4LOG" class="FileAppender">

<param name="File" value="arm4.log"/>
<param name="ImmediateFlush" value="true"/>

110 XML Configuration File � Appendix 1

<layout>
<param name="ConversionPattern"

value="%d,
%12X{App.Name},
%14X{ARM.GroupName},
%12X{ARM.TranName},
%8X{ARM.TranState},
%8X{ARM.TranStatus},
%20X{ARM.TranStart.Time},
%20X{ARM.TranStop.Time},
%56X{ARM.ParentCorrelator},
%56X{ARM.CurrentCorrelator}

"/>
</layout>

</appender>

<appender class="ARMAppender" name="ARM">
<param name="Encoding" value="UTF-8"/>
<param name="GetTimes" value="true"/>
<param name="ManageCorrelators" value="true"/>
<param name="AppName" value="yourSampleApp"/>
<param name="GroupName" value="SAS"/>
<appender-ref ref="ARM4LOG"/>
<appender-ref ref="ARM2LOG"/>

</appender>

<appender class="FileAppender" name="LOG">
<param name="File" value="root.log"/>
<param name="ImmediateFlush" value="true"/>
<layout>

<param name="ConversionPattern"
value="%d{yyyyMMdd:HH.mm.ss,SS} %c %m"/>

<layout>
</appender>

<logger name="Perf.ARM" additivity="false">
<level value="info"/>
<appender-ref ref="ARM"/>

</logger>

<root>
<level value="info"/>
<appender-ref ref="LOG"/>

</root>

</logging:configuration>

111

Glossary

application
a computer program that processes data for a specific use such as for payroll,
inventory, or billing.

Application Response Measurement
See ARM (Application Response Management).

ARM
an application programming interface that was developed by an industry partnership
and which is used to monitor the availability and performance of software
applications. ARM monitors the application tasks that are important to a particular
business.

ARM agent
a software vendor’s implementation of the ARM API. Each ARM agent is a set of
executable routines that can be called by applications. The ARM agent runs
concurrently with SAS. The SAS application passes transaction information to the
agent, which collects the ARM transaction records and writes them to the ARM log.

ARM appender
a standard logging facility appender, which is configured and customized for
accessing performance data. The primary role of the ARM appender is to record
ARM transaction events, process the events, and route the events to a specified
output destination.

ARM log
an external file that contains records of ARM transactions. See also external file.

ARM macro
a macro that measures the response time of an application. ARM macros invoke
ARM API function calls. They permit conditional execution by setting the
appropriate macro parameters and macro variables. ARM macros are not part of the
SAS macro facility.

ARM performance macros
SAS macros that enable you to identify transactions that you want to log using the
SAS logging facility. Insert ARM performance macros in your SAS program at
strategic points.

112 Glossary

ARM subsystem
a group of internal SAS processing transactions such as PROC and DATA step
processing and file input/output processing. You use the ARM system option
ARMSUBSYS= to turn on a subsystem or all subsystems.

ARM system options
a group of SAS system options that control various aspects of the SAS ARM
interface. See also SAS system option and SAS ARM interface.

pattern layout
a template that you create to format log messages. The pattern layout identifies the
type, order, and format of the data that is generated in a log event and delivered as
output.

SAS ARM interface
an interface that can be used to monitor the performance of SAS applications. In the
SAS ARM interface, the ARM API is implemented as an ARM agent. In addition,
SAS supplies ARM macros, which generate calls to the ARM API function calls, and
ARM system options, which enable you to manage the ARM environment and to log
internal SAS processing transactions. See also ARM (Application Response
Measurement).

transaction
a unit of work that is meaningful for monitoring an application’s performance. A
transaction can be started and stopped one or more times within a single execution of
an application. For example, in a SAS application, a transaction could be a step that
updates a customer database. In SAS/MDDB Server software, a transaction might be
a query on a subcube. Another type of transaction could be internal SAS processing
that you want to monitor, such as how many times a SAS file is opened and closed or
how long it takes to process a DATA step.

113

Index

A
appenders

See also ARM appender
ARM logging 12
ARMAppender 8
file appenders 8
FileAppender 8
SAS logging facility 8

Application Response Measurement
See ARM

applications 35
See also SAS applications
ARM and performance of 4
information about 77
initializing 75
initializing ARM interface 90
naming application instance 90
terminating 71, 89

ARM 3
adding to SAS applications 36
adding to SAS applications, basic instrumentation 36
adding to SAS applications, extensive instrumentation 37
categories and descriptions 105
need for 3
performance and 4
SAS OLAP Server with 47

ARM agents
specifying 97

ARM API function calls 25, 27
ARM macros and 27
performance macros and 27

ARM appender 8, 28
configuration parameters 63
example 61
overview 57
pattern layouts 65
SAS applications and 35
syntax 59
syntax description 60
XML configuration file 109

ARM log 13
data sets containing log information 79
location of 98
processing 79

ARM logging 7
configuring 8
log events 12
LOGCONFIGLOC= system option 12
loggers 12

SAS language for 12
ARM macros 71

ARM API function calls and 27
conditional execution 20
enabling 19
enabling with SCL 19
performance macros and 27

ARM subsystems 101
ARM_DSIO 101
ARM_PROC 103
initializing 99

ARM system options 26
ARMAGENT= system option 26, 97
ARMAppender 8
ARM_DSIO subsystem 101
ARM_END function call 27
%ARMEND macro 71
_ARMEXEC macro variable 19
ARM_GETID function call 27
%ARMGTID macro 73
ARM_INIT function call 27
%ARMINIT macro 75
%ARMJOIN macro 77
ARMLOC= system option 26, 98
%ARMPROC macro 79

%ARMJOIN macro and 77
ARM_PROC subsystem 103
ARM_START function call 27
ARM_STOP function call 27
%ARMSTOP macro 84
%ARMSTRT macro 81
ARMSUBSYS= system option 26, 99

ARM subsystems 101
ARM_DSIO subsystem 101
ARM_PROC subsystem 103
examples 104

ARM_UPDATE function call 27
%ARMUPDT macro 85

C
child transactions

tracking 32
conditional macro execution 20
configuration files

ARM logging 8, 12
creating logs with 39
SAS logging facility 7, 8, 63
XML 109

114 Index

configuration parameters
ARM appender 63

correlators, default 32

D
data queries 47
data sets

containing log information 79
I/O processing information 101

DATA step
processing information 103

default correlators 32
default user metrics 31
diagnostic context 65

F
file appenders 8
FileAppender 8

I
I/O processing information 101
initialization records 47
interface 4

how it works 25
initializing 90
overview 25
SAS 9.1 compared with SAS 9.2 4
SAS applications with 35

internal SAS processing transactions 99

L
LEVEL= option 20
log events

ARM logging 12
SAS logging facility 8

LOGCONFIGLOC= system option
ARM logging 12
SAS logging facility 8

loggers 45
ARM logging 12
SAS logging facility 8

logging
See ARM logging
See SAS logging facility

logs
See also ARM log
creating with configuration file 39

M
macro execution

conditional 20
enabling with SCL 19
setting _ARMEXEC macro variable 19

macro variables 19
macros

See ARM macros
See performance macros

message format 65
metrics 31

migration
SAS logging facility and 14

O
output message format 65

P
parent transactions

tracking 32
pattern layouts 8, 65
%PERFEND macro 28, 89
%PERFINIT macro 28, 90
performance 4
performance macros 28, 89

ARM API function calls and 27
ARM macros and 27
default user metrics and 31
enabling 19
example 93

%PERFSTOP macro 28, 91
%PERFSTRT macro 28, 91
procedures

processing information 103
processing transactions, internal 99

Q
queries 47

R
regions 47

S
SAS applications 35

See also applications
adding ARM to 36
adding ARM to, basic instrumentation 36
adding ARM to, extensive instrumentation 37
ARM appender and 35
interface with 35

SAS ARM interface
See interface

SAS language
for ARM logging 12

SAS logging facility 7
ARM appender and 28, 57
behavior changes with 14
configuration files 8, 63
log events 8
LOGCONFIGLOC= system option 8
loggers 8
migration and 14
process 8
sample configuration files 7
XML configuration file 109

SAS OLAP Server
ARM records written for 47
ARM with 47
session information 47

SAS processing transactions, internal 99

Index 115

SCL
enabling ARM macro execution 19

sessions 47
system options 26

T
termination records 47
tracking parent and child transactions 32
transaction classes

unique identifier for 73
transaction monitoring

See ARM
transactions

end of a transaction instance 84
ending 91
handle for unique transactions 81

information about 77

internal SAS processing transactions 99

starting 91

starting unique transactions 81

updating a transaction instance 85

U
unique identifiers 73

unique transactions 81

user metrics

default, within performance macros 31

X
XML configuration file 109

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Contents
	What’s New
	Overview

	Application Response Measurement (ARM)
	SAS ARM Interface Overview
	What Is ARM?
	Why Is ARM Needed?
	Will ARM Affect an Application’s Performance?
	What Are the SAS ARM Interface Features?
	Comparing the SAS 9.1 ARM Interface with the SAS 9.2 ARM Interface

	ARM Logging
	ARM Logging Overview
	SAS Logging Facility
	SAS Logging Facility Process
	Configuring ARM Logging in a Configuration File
	ARM Logging Using the SAS Language
	Traditional ARM Log
	Key Behaviors That Change with the SAS Logging Facility

	ARM Macro Environment
	Enabling ARM Macro Execution
	Setting the _ARMEXEC Macro Variable
	Enabling ARM Macro Execution with SCL
	Conditional ARM Macro Execution for ARM

	Using the ARM Interface
	ARM Interface Overview
	How the ARM Interface Works
	Using ARM System Options
	ARM API Function Calls
	Using the SAS Logging Facility and the ARM Appender
	Using Performance Macros
	Default User Metrics and Performance Macros
	Default Correlators

	Using SAS 9.2 ARM Interface with Existing ARM Applications
	SAS 9.2 ARM Interface with Existing SAS Applications Overview
	Requirement for ARM Appender
	Adding ARM to an Existing SAS Application
	Adding ARM to an Existing SAS Application that Contains Basic ARM Instrumentation
	Adding ARM to an Existing SAS Application that Contains Extensive Use of ARM Instrumentation

	ARM Interface and SAS Logging Facility
	Creating Logs Using a Configuration File

	The ARM Logger
	ARM Logger Overview

	ARM and SAS OLAP Server
	Using ARM with SAS OLAP Server
	Understanding the ARM Records Written for SAS OLAP Server

	Logging Facility ARM Appender
	The ARM Appender
	ARM Appender Overview

	ARM Appender Syntax
	ARMAppender Syntax
	ARMAppender Syntax Description
	ARMAppender Example

	ARM Appender Configuration Parameters
	Description of ARM Appender Configuration Parameters

	ARM Appender Pattern Layouts for ARM Messages
	Description of ARM Appender Pattern Layouts

	Language Reference Dictionary
	ARM Macros
	Introduction to ARM Macros
	%ARMEND Macro
	%ARMGTID Macro
	%ARMINIT Macro
	%ARMJOIN Macro
	%ARMPROC Macro
	%ARMSTRT Macro
	%ARMSTOP Macro
	%ARMUPDT Macro

	ARM Performance Macros
	Introduction to ARM Performance Macros
	%PERFEND Macro
	%PERFINIT Macro
	%PERFSTOP Macro
	%PERFSTRT Macro

	Example: ARM Performance Macros

	ARM System Options
	ARMAGENT= System Option
	ARMLOC= System Option
	ARMSUBSYS= System Option

	ARM Category Table
	ARM Categories and Descriptions

	Appendices
	SAS Logging Facility Configuration File
	XML Configuration File

	Glossary
	Index

