
TW10128_Color_TitlePage.indd 1 4/13/10 9:10:50 AM

Application Messaging with
SAS® 9.2

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2010.
Application Messaging with SAS ® 9.2. Cary, NC: SAS Institute Inc.

Application Messaging with SAS® 9.2

Copyright © 2010, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-845-4
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009

1st printing, March 2009

2nd electronic book, April 2010
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their

respective companies.

Contents

P A R T 1 Concepts 1

Chapter 1 � Overview of Application Messaging 3

Application Messaging Overview 3

Supported Platforms for the SAS Messaging Interfaces 5

P A R T 2 IBM WebSphere MQ 7

Chapter 2 � Configuring WebSphere MQ 9

Configuring WebSphere MQ with the WebSphere MQ Explorer 9

Using Message Queue Polling with WebSphere MQ 13

Configure Multiple Clients to Read from a Single Queue 17

Configuring WebSphere MQ to Trigger SAS: An Example 20

Sample Trigger Programs 24

Chapter 3 � Using IBM WebSphere MQ 31

WebSphere MQ Functional Interface 31

Writing WebSphere MQ Applications 32

WebSphere MQ Coding Examples 34

Chapter 4 � WebSphere MQ Call Routines 69

Overview of MQ Call Routines 69

P A R T 3 Microsoft Message Queueing 103

Chapter 5 � Using Microsoft Message Queuing Services (MSMQ) 105

MSMQ Functional Interface 105

Writing MSMQ Applications 105

MSMQ Code Samples 106

Chapter 6 � MSMQ Call Routines 127

Overview of MSMQ Call Routines 127

P A R T 4 SAS Common Messaging Interface 167

Chapter 7 � Using the SAS Common Messaging Interface 169

Common Messaging Interface 170

Writing Applications Using the Common Messaging Interface 170

Using TIB/Rendezvous with the SAS Common Messaging Interface 173

TIB/Rendezvous Coding Example 174

TIB/Rendezvous Certified Messaging Coding Examples 176

iv

Using a Repository with Application Messaging 184

Using the SAS Registry with the Common Messaging Interface 184

Attachment Layout for WebSphere MQ and MSMQ 188

Attachment Layout for TIB/Rendezvous 191

Attachment Error Handling 201

Chapter 8 � Common Messaging Interface Call Routines 205

SAS CALL Routines for the Common Messaging Interface 205

P A R T 5 Message Queue Polling 253

Appendix 1 � Configuring Message Queue Polling 255

Overview of Message Queue Polling 255

Configure Your Third-Party Messaging Software 256

Define a Queue Manager 256

Define a Message Queue Polling Server 256

Add the Polling Server to the Object Spawner Definition 258

Index 259

1

P A R T1

Concepts

Chapter 1.Overview of Application Messaging 3

2

3

C H A P T E R

1
Overview of Application
Messaging

Application Messaging Overview 3

Supported Platforms for the SAS Messaging Interfaces 5

WebSphere MQ Functional Interface and the SAS Common Messaging Interface 5

MSMQ Functional Interface 5

TIB/Rendezvous 5

Application Messaging Overview

Application messaging architectures provide a platform that supports
interoperability among loosely coupled applications over a message passing bus. When
the targeted scope of interoperability is broad (for example, spanning multiple
application systems and organizational boundaries), application messaging
architectures might be required. This is because the likelihood of conformance in the
software implementation base (for example, the selected distributed object standard)
across the set of participating applications is diminished. Additionally, the set of
participating applications can exhibit asynchronous, disconnected operation. These
applications execute with no direct point-to-point communication session. However,
they require guaranteed fulfillment of requests for service or event delivery.

This degree of operational heterogeneity introduces several requirements that are
reflected in the application messaging infrastructure. Heterogeneity in the
implementation base of the various applications (including perhaps, retrofitted legacy
applications) suggests a need for a reasonably nonintrusive integration mechanism. The
semantics of application messaging satisfy this need, generally expressing open, close,
send, and receive functionality with flexible application-defined message structures.
Heterogeneity with respect to the asynchronous, disconnected execution and notification
modes of end-point participants introduces requirements for service qualities that
include routing, assured just-once delivery, and retained sequencing. The architecture
that has emerged within commercial application messaging products to express these
quality-of-service properties is store-and-forward queuing.

In a store-and-forward model, messages are sent to named queues, which are in turn
hosted at specific destination network addresses. The navigation of messages from their
origin occurs through a transmission network that ensures the integrity of message
delivery to the destination queue and presentation to the recipient process.

4 Application Messaging Overview � Chapter 1

Display 1.1 The Store and Forward Messaging Model

Ever more frequently, the simple design pattern of two identifiable applications that
interoperate over a message passing bus is inconsistent with the realities of an
event-driven enterprise. Interdependencies across multiple applications with respect to
events that occur within an enterprise combined with an ever-changing topology of
event supplier and consumer applications are often present. Decision-makers require
information pertinent to their domain of responsibility regardless of the reporting
applications. Automated business processes require modification in rapid response to
changing operational conditions. The ability to satisfy these requirements in a timely
manner, and thereby reduce the latencies too common in information interchange, is
critical to efficient and effective enterprise performance.

To support such dynamism, extended application messaging infrastructure facilities
in the form of message brokers are emerging. Message brokers are being effectively
positioned as enterprise application integration and event-management focal points,
which function as hub processes that manage the information flow throughout an
enterprise. Operationally, message brokers provide rules-based message routing and
distribution as well as message transformation and augmentation capabilities that
enable the removal of this aspect of implementation logic from participating
applications.

Interfaces to three principal commercial messaging platforms, IBM WebSphere MQ
(previously named MQSeries), Microsoft MSMQ, and TIBCO Software TIB/Rendezvous
(including the Certified Message Delivery transport) are provided with SAS Integration
Technologies. Support for these platforms enables SAS software’s information delivery
capabilities to be leveraged within various enterprise solution scenarios, including
application integration, asynchronous and mobile synchronization, and event
notification.

Support for client environments is broad. IBM provides WebSphere MQ on a vast
array of operating system platforms with programming language support including C/
C++, Java, and Cobol as well as ActiveX control support that enables Visual Basic
participation. The Enterprise Java JMS facility also anticipates a provider for
WebSphere MQ. Likewise, Microsoft provides full language support for MSMQ.

Overview of Application Messaging � TIB/Rendezvous 5

Supported Platforms for the SAS Messaging Interfaces

WebSphere MQ Functional Interface and the SAS Common Messaging
Interface

The SAS interfaces to WebSphere MQ version 6 and later are supported for the
following platforms:

3 all supported UNIX platforms
3 all supported 32–bit Windows platforms
3 Windows on x64 (WebSphere MQ version 7 and later only)
3 z/OS

The SAS interfaces to WebSphere MQ Client version 6 and later are supported in the
following platforms:

3 all supported UNIX platforms
3 all supported 32–bit Windows platforms
3 Windows on x64 (WebSphere MQ version 7 and later only)

MSMQ Functional Interface
The SAS interfaces to Microsoft Message Queuing Services (MSMQ) are supported on

all of the 32–bit and 64–bit Windows platforms that are supported by SAS.

TIB/Rendezvous
SAS Integration Technologies supports both the reliable and certified message

delivery features of TIB/Rendezvous Release 7.5.4 and later.
Support for using TIB/Rendezvous with the SAS Common Messaging Interface is

available in the following operating environments:

3 all supported UNIX platforms
3 all supported 32–bit Windows platforms

6

7

P A R T2

IBM WebSphere MQ

Chapter 2.Configuring WebSphere MQ 9

Chapter 3.Using IBM WebSphere MQ 31

Chapter 4.WebSphere MQ Call Routines 69

8

9

C H A P T E R

2
Configuring WebSphere MQ

Configuring WebSphere MQ with the WebSphere MQ Explorer 9

Configure a Queue Manager 9

Define Queues 10

Configuring WebSphere MQ Client Access 11

Overview of Configuring Client Access 11

Define a Server Connection Channel 11

Install the WebSphere MQ Client 11

Define the Queue Manager Connection on the Client Machine 11

Use the Configured Values in a SAS DATA Step Application 12

Using Message Queue Polling with WebSphere MQ 13

Overview of Message Queue Polling 13

Environment Variables for the Polling Server 14

Environment Variables that Are Set Automatically 14

Specifying Environment Variables on the SAS Command 14

Retrieving Environment Variable Values 14

Checking for Stop Messages 14

Message Queue Polling Example 15

Configure Multiple Clients to Read from a Single Queue 17

Configuring WebSphere MQ to Trigger SAS: An Example 20

Introduction 20

Configuration on the Windows XP Machine 21

Configuration on the AIX Machine 23

Sample Trigger Programs 24

mqclient.sas 24

mqserver.sas 27

Configuring WebSphere MQ with the WebSphere MQ Explorer

Configure a Queue Manager
Before you use the WebSphere MQ applications, you must create a queue manager.

The queue manager is a system program that is responsible for maintaining the queues
and ensuring that the messages in the queues reach their destination. It also performs
other functions that are associated with message queuing.

A queue is a named destination that applications use to send and receive messages.
A queue name must be unique within a queue manager. Special queue types can be
defined, such as transmission queues and dead letter queues.

10 Define Queues � Chapter 2

3 A transmission queue is a queue that holds messages that will eventually be sent
to a remote queue when a communication channel becomes available. Unless
otherwise specified, these messages are transmitted through the default
transmission queue.

3 A dead letter queue is a local queue where messages that cannot be delivered are
sent, either by the queue manager or an application. Some method should be in
place in production environments to monitor and process messages in this queue.

To configure a queue manager, perform the following steps:
1 From the WebSphere MQ Explorer window, expand the WebSphere MQ node, and

then right-click Queue Managers. Select New � Queue Manager from the pop-up
menu.

2 Enter the name for your queue manager. The examples in this section use the
name MYQMGR. Fill in names for the default transmission queue and dead letter
queue. Select Make this the default queue manager.

Note: All names in WebSphere MQ are case sensitive. �

Click Next to continue.
3 Click Next to accept the default values for the logging options.
4 Verify that Start Queue Manager is selected.

Click Next to continue.
5 Make sure that Create listener configured for TCP/IP is selected, and enter

1414 for the port number. This is the default port number for WebSphere MQ.
Check with your system administrator to verify that this is the correct port to use.

Click Finish to create your queue manager. It might take a minute to create
and start the queue manager.

Define Queues
Create one or more local queues for exchanging messages on your queue manager.

These are the queues that SAS applications will use to exchange messages with other
applications.

To define a queue, perform the following steps:
1 In the WebSphere MQ Explorer, locate your queue manager and expand the menu.

Right-click Queues, and then select New � Local Queue from the popup menu.
The Create Local Queue window appears.

2 In the Queue Name field, enter the name of the local queue that you want to
create. This queue name is specified in any application programs that use
WebSphere MQ. You might also want to change the Default Persistence value
from Not Persistent to Persistent. Setting a value of Persistent enables
messages to remain in the queue even if the queue manager is shut down. Click
each tab to see the types of values that can be defined.

3 (Optional) If you use high-volume messaging applications like scoring, then select
the Extended tab and increase the value of Maximum Queue Depth to 100,000 or
more. The value of Maximum Queue Depth represents the maximum number of
messages that a queue can hold.

4 Click OK to create the queue. Repeat the process for any additional local queues
that you want to create.

You should also create the dead letter queue that is specified in the queue manager
definition. If you will be exchanging messages with queues on other queue managers,

Configuring WebSphere MQ � Configuring WebSphere MQ Client Access 11

then create the default transmission queue. For information about configuring channels
and transmission queues, see the IBM WebSphere MQ documentation.

At this point, WebSphere MQ has enough information for you to run applications
that use message queuing locally within your machine through a single queue manager.

Configuring WebSphere MQ Client Access

Overview of Configuring Client Access

IBM provides a lighter client version of WebSphere MQ that can be installed and
used separately from the full WebSphere MQ Base or server installation. The client can
be installed on the same machine as the server or on a separate machine. The client
does not have its own queue manager and must communicate over the network or
within a machine to a queue manager that is defined elsewhere.

To configure client access, perform the following steps:

1 Define a server connection channel to support the client.

2 Install the WebSphere MQ Client software on the client machine.

3 Define the queue manager connection on the client machine.

Define a Server Connection Channel

You must define a server connection channel on the queue manager that will provide
support to the client. A channel is a definition that enables intercommunication
between queue managers, or between clients and queue managers.

To define a server connection channel, perform the following steps:

1	 In WebSphere MQ Explorer, select a queue manager and then select Advanced.

2	 Right-click Channels, and then select NEW � Server Connection Channel. The
Create Server Connection Channel window appears.

3	 Specify the name of the channel and an optional description, and then click OK to
save the channel.

Install the WebSphere MQ Client

The WebSphere MQ Client must be installed and configured on the client machine.
The WebSphere MQ Client is included as part of the typical installation.

Define the Queue Manager Connection on the Client Machine

You can use the following methods to define the connection from the client to the
queue manager:

3 Set the MQSERVER environment variable. The following code is an example of
how to set this variable on Windows:

set MQSERVER=ChannelName/TransportType/ConnectionName

Here is an example:

set MQSERVER=SERVER.CHANNEL1/TCP/server_address(port)

12 Use the Configured Values in a SAS DATA Step Application � Chapter 2

In this example, server_address is the TCP/IP host name (either the IP address
or complete host name) of the server, and port is the number of the TCP/IP port on
which the server is listening. The port is defined when you create the queue
manager. The default port number is 1414. Here is an example:

set MQSERVER=SERVER.CHANNEL1/TCP/1.2.3.4(1414)

3 Create a client channel definition table, and set the MQCHLLIB and MQCHLTAB
environment variables to identify the location of the table.

For more information, see the WebSphere MQ documentation at www.ibm.com.

Use the Configured Values in a SAS DATA Step Application
The queue and queue manager values are required in SAS applications that use the

WebSphere MQ functional interface. In the previous examples, the queue manager is
named MYQMGR, and the queue is named REQUEST. These values are used as follows
in the SAS DATA step application:

hConn=0;

Name="MYQMGR";

compCode=0;

reason=0;

CALL MQCONN(Name, hConn, compCode, reason);

action = "GEN";

parms="OBJECTNAME";

objname="REQUEST";

call mqod(hod, action, rc, parms, objname);

options="INPUT_SHARED";

call mqopen(hconn, hod, options, hobj, compCode, reason);

If a SAS application is running as a WebSphere MQ Client, then you must include
the following line of code before making any calls using the WebSphere MQ Functional
Interface. This line should be placed at the beginning of the application, before the
DATA step, as shown in the following example:

%let MQMODEL=CLIENT;

data _null_;

...

run;

Configuring WebSphere MQ � Overview of Message Queue Polling 13

Table 2.1 Common WebSphere MQ Application Error Codes

Reason Code Explanation Suggested Action

2018 A connection handle is invalid. A connection handle that is created by an
MQCONN call must be used within the
same DATA step where it was created.

2035 The user is not authorized to
perform the attempted action.

Verify that you are connecting to the
correct queue and queue manager. Verify
that you are authorized to connect to the
queue manager. If error is reported to a
client connecting to a queue manager, you
might need to set the user ID under the
MCA tab in the server connection channel
definition properties to a user ID that has
permission to access the queue manager on
the server machine.

2058 There is an error in the queue
manager name.

Check spelling and case of the queue
manager name that is used in the
application and is defined in the queue
manager.

2059 The queue manager is not
available.

Restart the queue manager.

2085 The object name is unknown. Check spelling and case of the queue name
that is used in the application and is
defined in the queue manager.

Others See WebSphere MQ Messages at
www.ibm.com.

Using Message Queue Polling with WebSphere MQ

Overview of Message Queue Polling
You can use a message queue polling server to monitor queues and to start SAS

programs. This feature can be useful when you want to deploy the WebSphere MQ
Functional Interface in high-volume, time-sensitive situations.

Message queue polling is most useful for DATA step applications that retrieve
messages from an MQSeries message queue and for incoming messages that are
independent of each other. Reply messages can be sent, but this feature should not be
used to start programs that are primarily used to send messages.

For information about configuring the message queue polling server, see Appendix 1,
“Configuring Message Queue Polling,” on page 255.

14 Environment Variables for the Polling Server � Chapter 2

Environment Variables for the Polling Server

Environment Variables that Are Set Automatically
When a polling server session is started, the object spawner automatically creates

the following environment variables for the session:

SASQSID

specifies the unique identifier for the object spawner.

SASQUEUE

specifies the name of the queue for the polling server.

SASQMGR
specifies the name of the queue manager that the polling server uses to access the
queue.

Specifying Environment Variables on the SAS Command
You can also set environment variables on the server by using the –SET option on

the SAS command for the server session. For example, you might want to specify the
queue model by using the MQMODEL variable. The following SAS command sets the
queue model to client and sets the MQSERVER variable to enable remote access:

sas	 -sysin "myfile.sas" -set MQMODEL client

-set MQSERVER "CHANNEL1/TCP/192.168.0.10(1414)"

Retrieving Environment Variable Values
You can retrieve the values of the environment variables by using the SYSGET()

function. For example, the following code retrieves the SASQMGR value and stores it
in the QMGR variable:

qmgr= sysget(’SASQUEUE’);

You can also use the %SYSGET macro function. Here is an example:

%let qmgr=%sysget(SASQUEUE);

On z/OS, if you use a UNIX shell script to invoke SAS, then you must use the -SET
invocation option to retrieve the environment variables within the script and pass them
to the SAS session. For example:

-set \"SASQSID ${SASQSID}\" -set \"SASQMGR ${SASQMGR}\"

Checking for Stop Messages
The message queue polling server uses SAS sessions to perform processing. These

sessions are managed by the object spawner. When the object spawner is stopped, it
puts high-priority stop messages on the message queue for each server session that it
started. Each stop message contains a unique identifier string that identifies the
spawner. By setting the SASQSID in the get message options (on the MQGMO CALL
routine), the MQGET call will check for this message. If the message is found, and the
SASQSID value matches the identifier in the message, then MQGET returns a
completion code of 2 and a reason code of -2. The DATA step program must check for
this, perform cleanup, and close immediately upon receiving the stop message.

Configuring WebSphere MQ � Message Queue Polling Example 15

The SASQSID value is passed to the polling server by the object spawner as an
environment variable. For more information, see “Environment Variables for the
Polling Server” on page 14.

For queues that are monitored by the message queue polling server, the
MsgDeliverySequence property must be set to Priority.

The following code fragment shows an MQGET call that checks for a stop message:

call mqget(hconn, hobj, hmd, hgmo, msglen, cc, reason);

if cc ^= 0 then do;

if reason = 2033 then do;

put ’No message available’;

end;
else do;

if reason = -2 then do;

put "MQGET: received stop message from object spawner";

goto exit;

end;
else put ’MQGET: failed with reason= ’ reason;

end;

end;

else put ’MQGET: message received: ’;

Message Queue Polling Example
The following code is a sample application that you can run with message queue

polling.

data _null_;

length hconn hobj cc reason 8;

length rc hod hgmo hmd hmap msglen 8;

length parms $ 200 options $ 200 action $ 3 msg $ 200;

length desc $ 50;

msglen=0;

hconn=0;

hobj=0;

hod=0;

hgmo=0;

hmd=0;

hmap=0;

/* Get the variables set by the object spawner for this session */

sid = sysget(’SASQSID’);

qmgr= sysget(’SASQMGR’);

qname= sysget(’SASQUEUE’);

put "Spawner job started.";

put "sid = " sid;

put "qmgr = " qmgr;

put "qname = " qname;

call mqconn(qmgr, hconn, cc, reason);

action = "GEN";

parms="OBJECTNAME";

16 Message Queue Polling Example � Chapter 2

objname=qname;

call mqod(hod, action, rc, parms, objname);

if rc ^= 0 then do;

put ’MQOD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

options="INPUT_SHARED";

call mqopen(hconn, hod, options, hobj, cc, reason);

if cc ^= 0 then do;

put ’MQOPEN: failed with reason= ’ reason;

goto exit;

end;

parms= "SASQSID";

call mqgmo(hgmo, action, rc, parms, sid);

if rc ^= 0 then do;

put ’MQGMO: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

desc="CHAR,,100";

call mqmap(hmap, rc, desc);

if rc ^= 0 then do;
put ’MQMAP: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

reason = 0;

do until (reason = 2033);

action = "GEN";

call mqmd(hmd, action, rc);

if rc ^= 0 then do;

put ’MQMD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

end;

call mqget(hconn, hobj, hmd, hgmo, msglen, cc, reason);

if cc ^= 0 then do;

if reason = 2033 then do;

put ’No message available’;

end;

else do;

if	 reason = -2 then do;

/* -2 indicates that a session-specific stop message has */

/* been received from the object spawner queue monitor */

Configuring WebSphere MQ � Configure Multiple Clients to Read from a Single Queue 17

/* application. We should clean up and shutdown immediately. */
put "MQGET: received stop message from object spawner";

goto exit;

end;

else put ’MQGET: failed with reason= ’ reason;

end;

end;

else put ’MQGET: message received: ’;

/*	 Do any application-specific processing of messages here. */

if hmd ^= 0 then do;
call mqfree(hmd);

end;

end; /* end do loop */

exit:

if	 hobj ^= 0 then do;

options="NONE";

call mqclose(hconn, hobj, options, cc, reason);

if cc ^= 0 then do;
put ’MQCLOSE: failed with reason= ’ reason;

end;

end;

if	 hconn ^= 0 then do;

call mqdisc(hconn, cc, reason);
if cc ^= 0 then do;

put ’MQDISC: failed with reason= ’ reason;

end;

end;

if	 hod ^= 0 then do;

call mqfree(hod);

end;

if hgmo ^= 0 then do;

call mqfree(hgmo);
end;

if hmd ^= 0 then do;

call mqfree(hmd);

end;

if hmap ^= 0 then do;

call mqfree(hmap);
end;

run;

Configure Multiple Clients to Read from a Single Queue

The WebSphere MQ interfaces and the message queue polling feature of the object
spawner can be used to distribute the processing of messages on a message queue

18 Configure Multiple Clients to Read from a Single Queue � Chapter 2

across one or more machines. The result is enhanced performance, load balancing, and
hardware redundancy.

Messages can be retrieved only from local queues. In order to enable multiple
machines to process messages on a single queue, you must have a full WebSphere MQ
(server) installation on the machine that will act as the server. The WebSphere MQ
Clients use the queue manager on the server as their queue manager, so any local
queues that are defined on that queue manager are also local to the client installations.
The WebSphere MQ Clients can connect to a WebSphere MQ server on any supported
platform. Message queuing applications on the machine where the queue manager is
installed can access the queues directly. Message queuing applications do not need to be
configured as clients.

The following diagram illustrates a sample configuration. The queue manager
(MYQMGR) is running on Server1 and is managing the queue for each of the
WebSphere MQ Clients (CLIENT1, CLIENT2, and CLIENT3). All three clients are
communicating with the queue manager through the same server connection channel
(SERVER.CHANNEL1). The object spawners on each of the clients can start one or
more SAS sessions as needed in order to receive messages from the queue. SAS
sessions can also be started by the object spawner and run on the server. A SAS session
running on the server does not need to run as a WebSphere MQ Client application; it
behaves as a WebSphere MQ server application.

Display 2.1 Example Messaging Configuration

To configure the queue manager on the server, perform the following steps:
1 Define a queue manager if this has not already been done. In the following

example, the queue manager is called MYQMGR.

crtmqm MYQMGR

2	 Start the queue manager by using the WebSphere MQ Explorer (Windows
platforms). You can also use the following command on the command line:

strmqm MYQMGR

Configuring WebSphere MQ � Configure Multiple Clients to Read from a Single Queue 19

3	 Define one or more local queues that will be used by the applications.
3 To define a local queue from the command line, start the WebSphere MQ

command program MQSC. Here is an example:

runmqsc MYQMGR

DEFINE QLOCAL(LOCAL) DEFPSIST(YES) DESCR(’Local Queue’)

Type end to exit MQSC.
3 To define a local queue from the WebSphere MQ Explorer, click MYQMGR to

expand the list. Right-click Queues, select New � Local Queue and enter the
queue name and properties.

4	 Define a server connection channel to enable WebSphere MQ Clients to
communicate with MYQMGR. You can also define a separate server connection
channel for each client.

3 To define a server connection channel from the command line, start the
WebSphere MQ command program MQSC. Here is an example:

runmqsc MYQMGR

DEFINE CHANNEL(SERVER.CHANNEL1) CHLTYPE(SVRCONN)

TRPTYPE(TCP) + MCAUSER(’ ’) DESCR(’Server

connection channel for Client1’)

Type end to exit MQSC.

3 To define a server connection channel from the WebSphere MQ Explorer, click
MYQMGR � Advanced to expand the list. Right-click Channels, select NEW
� Server Connection Channel and enter the channel name.

5	 On each client, install and configure the WebSphere MQ Client. Use the
MQSERVER environment variable to define the client connection to the server.
The following code shows examples of how to do this in Windows and UNIX
operating environments.

3 For Windows, use the following code:

set MQSERVER=ChannelName/TransportType/ConnectionName

Here is an example:

set MQSERVER=SERVER.CHANNEL1/TCP/server_address(port)

where server_address is the TCP/IP host name of the server and port is the
number of the TCP/IP port on which the server is listening. The default port
number is 1414. Here is an example:

set MQSERVER=SERVER.CHANNEL1/TCP/10.12.0.0(1414)

3 For UNIX, use the following code:

export MQSERVER=ChannelName/TransportType/ConnectionName

Here is an example:

export MQSERVER=SERVER.CHANNEL1/TCP/’10.12.0.0(1414)’

6	 The queue and queue manager values are required in SAS applications that use
the WebSphere MQ functional interface. In the previous examples, the queue
manager is named MYQMGR, and the queue is named LOCAL. These values are
used as follows in the SAS DATA step application:

hConn=0;

Name="MYQMGR";

compCode=0;

20 Configuring WebSphere MQ to Trigger SAS: An Example � Chapter 2

reason=0;

CALL MQCONN(Name, hConn, compCode, reason);

action = "GEN";

parms="OBJECTNAME";

objname="LOCAL";

call mqod(hod, action, rc, parms, objname);

options="INPUT_SHARED";

call mqopen(hconn, hod, options, hobj, compCode, reason);

If a SAS application is running as a WebSphere MQ Client, then you must include
the following line of code before making any calls that use the WebSphere MQ
Functional Interface. This line should go at the beginning of the application before
the DATA step:

%let MQMODEL=CLIENT;

data _null_;

...

run;

This example provides basic configuration information for configuring several clients
to receive messages from a queue on one server.

For more information, see the WebSphere MQ documentation at www.ibm.com.

Configuring WebSphere MQ to Trigger SAS: An Example

Introduction
SAS Integration Technologies provides two interfaces that can be used to send and

receive messages with WebSphere MQ, the Common Messaging Interface, and the
WebSphere MQ Interface. WebSphere MQ (formerly called MQSeries) enables you to
trigger, or start, an application automatically when a message arrives on a message
queue. There are many situations where it is useful to have a SAS DATA step
application started when a message arrives on a specific queue. However, SAS cannot
be started directly by the trigger monitor. An intermediate batch job is started by
WebSphere MQ, and this batch job calls SAS. The details of one such configuration and
batch job are included here.

The following example shows a SAS client that runs on Windows XP and uses
WebSphere MQ to communicate with a SAS server that runs on AIX. This SAS client
sends a message to a queue and queue manager on AIX. When the message arrives on
the queue, it triggers a batch job that starts the SAS server to receive the message and
return the requested data set. The WebSphere MQ Client can connect to a WebSphere
MQ server on any supported platform. WebSphere MQ requires that the trigger
monitor and the application to be started be on the same system, but they can be on
either the client or the server. The process definition, which defines the application to
be triggered, must be defined on the WebSphere MQ server. In this example, the
WebSphere MQ Queue Manager (server installation) is on the same AIX system as the
WebSphere MQ Client.

For more information about triggering, see the WebSphere MQ Client documentation
at www.ibm.com.

3

Configuring WebSphere MQ � Configuration on the Windows XP Machine 21

The following two sample programs demonstrate the triggering process:

3 “mqclient.sas” on page 24
3 “mqserver.sas” on page 27

The SAS DATA step mqclient.sas runs on the XP machine and requests a data set.
The mqserver.sas program is triggered by the startsas batch program that is
described below. It runs on the AIX machine. The mqserver.sas program reads the
message off of the queue and returns the requested data set.

Configuration on the Windows XP Machine
The trigger samples assume that the following configuration objects have been

created on the Windows machine:
3 a queue manager named XPQMGR
3 a local queue named REPLY, with the following settings:

Table 2.2 Configuration Settings for the Local Queue

Queue Name REPLY

Type Local

Put Messages Allowed

Get Messages Allowed

Default Priority 0

Default Persistence Not Persistent

Scope Queue Manager

Usage Normal

a remote queue named AIX.TRIGQUEUE, with the following settings:

Table 2.3 Configuration Settings for the Remote Queue

Queue Name AIX.TRIGQUEUE

Type Remote

Put Messages Allowed

Default Priority 0

Default Persistence Not Persistent

Scope Queue Manager

Remote Queue Name TRIGQUEUE

Remote Queue Manager Name AIX

Usage XMITQ

3

22 Configuration on the Windows XP Machine � Chapter 2

a receiver channel named XPQMGR.CHANNEL, with the following settings:

Table 2.4 Configuration Settings for the Receiver Channel

Channel Name XPQMGR.CHANNEL

Type Receiver

Transmission Protocol TCP/IP

3 a sender channel named AIX.CHANNEL, with the following settings:

Table 2.5 Configuration Settings for the Sender Channel

Channel Name AIX.CHANNEL

Type Sender

Transmission Protocol TCP/IP

Connection Name AIX-machine-name

Transmission Queue XMITQ

3 a process definition named AIX.PROCESS, with the following settings:

Table 2.6 Configuration Settings for the Process Definition

Process Definition Name AIX.PROCESS

Application Type Windows NT

User Data AIX.CHANNEL

3 a transmission queue named XMITQ, with the following settings:

Table 2.7 Configuration Settings for the Transmission Queue

Queue Name XMITQ

Type Local

Put Messages Allowed

Get Messages Allowed

Default Priority 0

Default Persistence Not Persistent

Scope Queue Manager

Usage Transmission

Trigger Control On

Trigger Type First

Trigger Depth 0

Trigger Message Priority 0

Configuring WebSphere MQ � Configuration on the AIX Machine 23

Initiation Queue Name CHANNEL.INITQ

Process Name AIX.PROCESS

Configuration on the AIX Machine
The following code can either be a part of a configuration file, or stanzas that can be

entered in the runmqsc tool. Modify the following templates and use the WebSphere
MQ tool runmqsc to define the required objects on a queue manager that is named AIX
for this example:

* Local Queue that triggers the batch job to start SAS

DEFINE	 QLOCAL(TRIGQUEUE) +

REPLACE DEFPSIST(YES) DESCR(’TRIGQUEUE Queue’) +

INITQ(MY.INITQ) +

TRIGGER TRIGTYPE(EVERY) PROCESS(TRIGSAS.PROCESS)

* TRIGTYPE can also be FIRST or DEPTH. EVERY will trigger

* the batch job every time a message arrives on the queue.

* Process to start the batch file that starts SAS

DEFINE	 PROCESS (TRIGSAS.PROCESS) +

REPLACE APPLICID(’/users/userid/startsas’) APPLTYPE(UNIX)

DEFINE QLOCAL(MY.INITQ)

* Receiver Channel for AIX Queue Manager

DEFINE	 CHANNEL(AIX.CHANNEL) CHLTYPE(RCVR) +

REPLACE DESCR(’Receiver Channel on AIX’) +

TRPTYPE(TCP)

--- remote definitions for Windows XP queue manager ---

* Remote Queue at XPQMGR

DEFINE	 QREMOTE(XPQMGR.REPLY) +

REPLACE RNAME(REPLY) RQMNAME(XPGMGR) XMITQ(XPQMGR.XMITQ)

* Transmission Queue

DEFINE	 QLOCAL(XPQMGR.XMITQ) +

REPLACE DESCR(’Transmit Queue to XP system’) +

USAGE(XMITQ) TRIGGER TRIGTYPE(FIRST) +

INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(XPQMGR.PROCESS)

* Process definition for XMITQ trigger

DEFINE PROCESS(XPQMGR.PROCESS) +

REPLACE DESCR(’Process definition +

to start XPQMGR Channel’) +

USERDATA(’XPQMGR.CHANNEL’)

* Sender Channel - started automatically

* when first message written to XMITQ

DEFINE	 CHANNEL(XPQMGR.CHANNEL) CHLTYPE(SDR) +

REPLACE DESCR(’Sender Channel to XPQMGR’) +

TRPTYPE(TCP) XMITQ(XPQMGR.XMITQ) +

CONNAME(’XPMACHINE.MYLOCATION.MYCOMPANY.COM’)

24 Sample Trigger Programs � Chapter 2

---- Setup Client/Server Server Connection Channel ----

DEFINE CHANNEL(MQCLIENT.CHANNEL) +

CHLTYPE(SVRCONN) TRPTYPE(TCP) +

REPLACE DESCR(’Server connection for client access’) +

MCAUSER(’ ’)

This example uses /users/userid/startsas as the name of the batch file triggered
to run a SAS DATA step. The contents of this file are:

Make sure the 64-bit WebSphere MQ client

libraries are in your LIBPATH.

export LIBPATH=/usr/mqm/lib64

Define the server that the SAS WebSphere MQ

client interface will connect through.

export MQSERVER=

MQCLIENT.CHANNEL/TCP/’<server IP address>(port)’

sas -sysin /users/userid/mqserver.sas

You must also make sure that the trigger monitor has been started on the AIX
machine for the proper initiation queue:

runmqsc -m AIX -q MY.INITQ

Sample Trigger Programs

mqclient.sas
The following program runs on the Windows XP machine and requests a data set:

data _null_;

length msg $ 200;

length qid2 tid rc 8;

length map $80;

length recv1 $50;

length event $10;

length rpname $256;

length type $8;

length qual1 qual2 $40;

libname out ’.’;

tid=0;

rc=0;

put ’----’;

put ’Call INIT’;

CALL INIT(tid, ’MQSERIES’, rc);

if rc ^= 0 then do;

put ’INIT: failed’;

msg = sysmsg();

put msg;

Configuring WebSphere MQ � mqclient.sas 25

end;

else put ’INIT: succeeded’;

rc=0;

qid=0;

put ’----’;

put ’Call OPENQUEUE to open the response queue’;

CALL OPENQUEUE(qid, tid, ’XPQMGR:REPLY’, ’fetch’,

rc, "POLL(TIMEOUT=20)");

if	 rc ^= 0 then do;

put ’OPENQUEUE: failed’;

msg = sysmsg();
put msg;

end;

else put ’OPENQUEUE: succeeded’;

rc=0;

qid2=0;

put ’Call OPENQUEUE to open the request queue on qid2’;

CALL OPENQUEUE(qid2, tid, ’XPQMGR:AIX.TRIGQUEUE’,

’DELIVERY’, rc, "POLL(Timeout=15)");

if	 rc ^= 0 then do;
put ’OPENQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’OPENQUEUE: succeeded’;

rc=0;

put ’----’;

put ’Call SETMAP’;

CALL SETMAP(’mqclientmap’, ’REGISTRY’, rc, ’CHAR,,50’);

if rc ^= 0 then do;

put ’SETMAP: failed’;

msg = sysmsg();

put msg;

end;

else put ’SETMAP: succeeded’;

parm1="calories";

put ’---- Send a message to the request queue qid

requesting the specified data set -----’;

put ’Call SENDMESSAGE’;

call sendmessage(qid2,rc,"map, respqueue",
"mqclientmap","R64:D8650",parm1);

if	 rc ^= 0 then do;

put ’send message failed: ’;

msg=sysmsg();

put msg;
end;

else put ’send message succeeded’;

slept = sleep(1);

rc = 0;

26 mqclient.sas � Chapter 2

put ’---- receive a data set from the reply queue ----’;

put ’Call RECEIVEMESSAGE’;

map = "mqclientmap";

call receivemessage(qid, rc, event,

attchflg,"map", map, recv1);

put ’response queue =’ rpname;
put ’qid =’ qid;

put ’event = ’ event;

put ’attchflg =’ attchflg;

if rc ^= 0 then do;

put ’receive message failed: ’;

msg=sysmsg();

put msg;

end;

else do;

put ’receive message succeeded’;

put "map =" map;
put "recv1 =" recv1;

end;

if	 event eq ’DELIVERY’ then

do;
put ’Message has been delivered’;

if attchflg = 1 then

do;

put ’---- check for attachments ----’;

call getattachment(qid, lastflag, attachid,

type, qual1, qual2, rc);
if	 rc ^= 0 then do;

put ’get attachment failed: ’;

msg=sysmsg();

put msg;

end;

else put ’get attachment succeeded’;

if type="DATASET" then

do;

put ’--- accept attachment into a data set ---’;
put "qual2 = " qual2;

call acceptattachment(qid, attachid,

"out", qual2, rc);

if	 rc ^= 0 then do;

put ’accept DATASET failed: ’;

msg=sysmsg();
put msg;

end;

else put ’accept DATASET succeeded’;

end;

end;
end;

rc=0;

put ’----’;

put ’Call CLOSEQUEUE for queue1’;

Configuring WebSphere MQ � mqserver.sas 27

CALL CLOSEQUEUE(qid, rc);
if	 rc ^= 0 then do;

put ’CLOSEQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’CLOSEQUEUE: succeeded’;

rc=0;

put ’----’;

put ’Call CLOSEQUEUE for queue2’;

CALL CLOSEQUEUE(qid2, rc);

if rc ^= 0 then do;

put ’CLOSEQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’CLOSEQUEUE: succeeded’;

rc=0;

put ’----’;

put ’Call TERM’;

CALL TERM(tid, rc);

if rc ^= 0 then do;

put ’TERM: failed’;

msg = sysmsg();

put msg;

end;

else put ’TERM: succeeded’;

run;

mqserver.sas

The following program runs on the AIX machine and returns a data set:

data calories;

input item $ 1 - 16 calories 18-20 ;

datalines;

ground beef 230

hot dog 100

banana 100

broccoli 45

skim milk 50

;

data _null_;

length msg $ 200;

length qid qid2 tid rc 8;

length map $80;

length recv1 $50;

length attachname $21;

28 mqserver.sas � Chapter 2

length event $10;

length rpname $256;

tid=0;

rc=0;

put ’----’;

put ’Call INIT’;

CALL INIT(tid, ’MQSERIES-C’, rc);

if rc ^= 0 then do;

put ’INIT: failed’;

msg = sysmsg();

put msg;

end;

else put ’INIT: succeeded’;

rc=0;

qid=0;

put ’----’;

put ’Call OPENQUEUE for queue1’;

CALL OPENQUEUE(qid, tid, ’AIX:TRIGQUEUE’,

’fetch’, rc, "POLL(Timeout=10)");

if	 rc ^= 0 then do;
put ’OPENQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’OPENQUEUE: succeeded’;

rc=0;

put ’----’;

put ’Call SETMAP’;

CALL SETMAP(’mqservermap’, ’REGISTRY’, rc, ’CHAR,,50’);

if rc ^= 0 then do;

put ’SETMAP: failed’;

msg = sysmsg();

put msg;

end;

else put ’SETMAP: succeeded’;

rc = 0;

put ’---- receive a message from the remote queue ----’;

put ’Call RECEIVEMESSAGE’;

map = "mqservermap";

rpname=’ ’;

call receivemessage(qid, rc, event, attchflg,"map,

respqueue", map, rpname, recv1);

put ’recv1 =’ recv1;

put ’response queue =’ rpname;
put ’qid =’ qid;

put ’event = ’ event;

put ’attchflg =’ attchflg;

if	 rc ^= 0 then do;

Configuring WebSphere MQ � mqserver.sas 29

put ’receive message failed: ’;

msg=sysmsg();

put msg;

end;

else do;

put ’receive message succeeded’;
put map;

end;

if	 event eq ’DELIVERY’ then

do;

rc = 0;
qid2=0;

put ’---- open the response queue qid2 ----’;

put ’Call OPENQUEUE for queue2’;

CALL OPENQUEUE(qid2, tid, rpname, ’delivery’,
rc, "POLL(Timeout=15)");

if	 rc ^= 0 then do;

put ’OPENQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’OPENQUEUE: succeeded’;

put ’rpname =’ rpname;

put ’---- send the requested data set

to the response queue ----’;
put ’Call SENDMESSAGE’;

attachname = ’dataset,work,’ || recv1;

put "attachname = " attachname;

call sendmessage(qid2,rc,"map, attachlist",

"mqservermap",attachname, recv1);
if	 rc ^= 0 then do;

put ’send message failed: ’;

msg=sysmsg();

put msg;

end;

else put ’send message succeeded’;

rc=0;

put ’----’;

put ’Call CLOSEQUEUE for queue2’;

CALL CLOSEQUEUE(qid2, rc);

if rc ^= 0 then do;

put ’CLOSEQUEUE: failed’;

msg = sysmsg();

put msg;

end;
else put ’CLOSEQUEUE: succeeded’;

end;

rc=0;

put ’----’;

30 mqserver.sas � Chapter 2

put ’Call CLOSEQUEUE for queue1’;
CALL CLOSEQUEUE(qid, rc);

if rc ^= 0 then do;

put ’CLOSEQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’CLOSEQUEUE: succeeded’;

rc=0;

put ’----’;

put ’Call TERM’;

CALL TERM(tid, rc);

if rc ^= 0 then do;

put ’TERM: failed’;

msg = sysmsg();

put msg;
end;

else put ’TERM: succeeded’;

run;

31

C H A P T E R

3
Using IBM WebSphere MQ

WebSphere MQ Functional Interface 31

Writing WebSphere MQ Applications 32

Overview of Writing WebSphere MQ Applications 32

Interface Models 32

Data Conversion 33

Overview of Data Conversion 33

Converting Data within WebSphere MQ 33

Converting Data in SAS 34

WebSphere MQ Coding Examples 34

Introduction to the WebSphere MQ Examples 34

DATA Step Coding Example: Put a Message on a Queue 34

DATA Step Coding Example: Retrieve a Message 38

Processing a Text File 42

Getting a Text File From a Queue 45

Processing a Binary File 50

Getting a Binary File from a Queue 53

Macro Language Coding Examples 59

WebSphere MQ Functional Interface

SAS Integration Technologies allows application developers to combine the power of
both SAS information delivery and IBM message queuing capabilities by providing a
SAS interface to the IBM WebSphere MQ product (formerly called MQSeries). With this
interface, SAS programs can create new WebSphere MQ message queues or take
advantage of existing ones that are available throughout the enterprise. This section
explains how to implement this interface by using the SAS DATA step and SAS Macro
Language.

Note: WebSphere MQ enables you to trigger, or start, an application automatically
when a message arrives on a message queue. For more information, see “Configuring
WebSphere MQ to Trigger SAS: An Example” on page 20. �

32 Writing WebSphere MQ Applications � Chapter 3

Writing WebSphere MQ Applications

Overview of Writing WebSphere MQ Applications
With WebSphere MQ messaging, two or more applications communicate with each

other indirectly and asynchronously using message queues. The applications do not
have to be running at the same time or even in the same operating environment. An
application can communicate with another application by sending a message to a
queue. The receiving application retrieves the message when it is ready.

A typical SAS program using WebSphere MQ services performs the following tasks:
1 Establishes a connection to a WebSphere MQ queue manager. The queue manager

is responsible for maintaining the queues and for ensuring that the messages in
the queues reach their destination. This insulates the application developer from
the details of the network. When a successful connection is made, the queue
manager issues a connection handle that is used to identify the connection in
subsequent function calls.

Note: A program can have connections to more than one queue manager if the
platform supports multiple queue managers running on it. �

2	 Opens the desired queue. When opening a queue, the program must define how it
intends to use it. For example, the program can send (put) messages to the queue,
receive (get) messages from the queue, or it can do both. If a queue is opened by
using the INQUIRE option, then the queue can be queried for information about
the queue itself. Similarly, if the queue is opened using the SET option, then
various queue attributes can be set. If the queue is opened successfully, then the
queue manager issues an object handle that is used to identify the queue in
subsequent function calls.

3	 (Optional) Puts messages on the queue by using the SAS CALL routine MQPUT.
The queue is identified using the connection handle for the queue manager and
the object handle for the queue. In addition, several other functions are available
for creating and manipulating the data in the message as well as setting options
that help the receiving program locate the message in the queue.

4	 (Optional) Opens the same queue (or a different one) for retrieving messages. The
program uses the MQGET routine specifying the connection handle to the queue
manager and the object handle for the queue from which it wants to retrieve the
message. There are a number of options that can be set to help identify the
message to get from the queue.

5	 (Optional) Releases the resources allocated by a SAS internal handle. These

resources are associated with message options and descriptors.

Interface Models
WebSphere MQ provides two Message Queue Interface (MQI) models:

Base/Server model
runs on the same machine as the WebSphere MQ Base product and WebSphere
MQ Server

Client model

runs on a different machine from the WebSphere MQ Base product and

WebSphere MQ Server

Using IBM WebSphere MQ � Data Conversion 33

IBM requires programs to be linked with different libraries according to the model
that will be used. The default model that is assumed by SAS is the Base/Server model.
If you do not want the default model, then you must specify the MQMODEL SAS macro
variable and set it to a value of CLIENT:

%let MQMODEL=CLIENT;

You must set this variable before calling any WebSphere MQ interface function.
If the program is using the client model, then it opens a remote queue manager.

WebSphere MQ clients always connect across a network. For information about
configuring remote access, see “Configuring WebSphere MQ Client Access” on page 11.

Data Conversion

Overview of Data Conversion

If you will be putting or getting messages from heterogeneous systems, then data
conversion must be considered. Data conversion is usually categorized as follows:

3 Character data conversion

3 Numeric data conversion

The Coded Character Set ID (CCSID) or code page is a number that represents a
character translation table to be used between two distinct systems. Encoding is the
term generally used to represent how numeric data is represented on a particular
system. WebSphere MQ channel communication (Transmission Segment Header and
Message Descriptor) data are converted internally by WebSphere MQ; however, the user
portion of a message is not. It is the responsibility of the program to convert this data.

Data conversion of this user portion can be handled by either WebSphere MQ
conversion exit routines or by SAS.

Converting Data within WebSphere MQ

For WebSphere MQ to perform the data conversion of the user portion of a message,
you must perform the following steps:

1	 When putting (MQPUT) a message on a queue, specify the FORMAT (conversion
exit) that the receiver should use to convert the incoming message.

2	 Convert a message:

3 WebSphere MQ provides an internal conversion format, MQSTR, that can be
used to convert a message comprised entirely of character data.

3 If the message is not comprised entirely of character data, then you must
create a conversion exit.

3	 The receiving (MQGET) program must tell WebSphere MQ to do the required data
conversion based on the incoming message format and data encoding. The program
does this by specifying the CONVERT option on the Get Message Options, which
is part of the MQGET call. If you do not want to set up static conversion exit
routines, then you can let SAS convert the data for you as an alternative solution.

For more information about conversion within WebSphere MQ, see the WebSphere
MQ documentation at www.ibm.com.

34 WebSphere MQ Coding Examples � Chapter 3

Converting Data in SAS
By default, if you do not specify the CONVERT Get Message Option, then SAS

converts the data conversion to the default encoding for the SAS session. To disable the
automatic SAS data conversion, specify the MQSASCNV SAS macro variable and set it
to a value of DISABLE or OFF:

%let MQSASCNV=OFF

You can use the KCVT function to convert your data manually. Converting data
manually is especially useful for programs that put reply messages on a queue.

For example, your SAS program might use messaging to interact with a Java Web
application that uses UTF-8 encoding. When receiving messages, SAS automatically
converts the message data to the session encoding. However, you must convert the data
back to UTF-8 before sending it to the reply queue. The following code converts the
variable TEXT from WLatin1 to UTF-8:

text= kcvt(text, wlatin1, utf8));

For more information, see "KCVT Function" in the SAS National Language Support
(NLS): Reference Guide.

WebSphere MQ Coding Examples

Introduction to the WebSphere MQ Examples
This section contains examples of using the WebSphere MQ interface to send and

receive messages to and from application messaging queues.
Please note the following points about freeing resources used in conjunction with the

WebSphere MQ Interface:

3 When a SAS DATA step ends, all resources consumed by this DATA step are
automatically freed. That is, all internal SAS handles are automatically freed, as
well as being disconnected from all queue managers that were connected during
this DATA step execution. However, it is good programming practice to free these
resources using the functions provided.

3 When using the SAS Macro Language to interface with WebSphere MQ, ensure
that all resources are freed programmatically. Unlike the DATA step, resources
consumed by the SAS Macro Language are never implicitly freed during SAS
execution.

DATA Step Coding Example: Put a Message on a Queue
This example puts a message on a queue.

data _null_;

length hconn hobj cc reason 8;

length rc hod hpmo hmd hmap hdata 8;

length parms $ 200 options $ 200 action $ 3 msg $ 200;

hconn=0;

Using IBM WebSphere MQ � DATA Step Coding Example: Put a Message on a Queue 35

hobj=0;

hod=0;

hpmo=0;

hmd=0;

hmap=0;

hdata=0;

put ’---------------- Connect to QMgr --------------’;

qmgr="TEST";

call mqconn(qmgr, hconn, cc, reason);

if cc ^= 0 then do;

if reason = 2002 then do;
put ’Already connected to QMgr ’ qmgr;

end;

else do;

if reason = 2059 then

put ’MQCONN: QMgr not available...

needs to be started’;

else

put ’MQCONN: failed with reason= ’ reason;

goto exit;

end;

end;

else put ’MQCONN: successfully connected to QMgr ’ qmgr;

put ’---------- Generate object descriptor ---------’;

action="GEN";

parms="OBJECTNAME";

objname="TEST";

call mqod(hod, action, rc, parms, objname);

if rc ^= 0 then do;

put ’MQOD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

else put ’MQOD: successfully generated
object descriptor’;

put ’-------- Open queue object for output ---------’;

options="OUTPUT";

call mqopen(hconn, hod, options, hobj, cc, reason);

if cc ^= 0 then do;

put ’MQOPEN: failed with reason= ’ reason;

goto exit;

end;

else put ’MQOPEN: successfully opened queue for output’;

put ’--------- Generate put message options --------’;

call mqpmo(hpmo, action, rc);

if rc ^= 0 then do;

36 DATA Step Coding Example: Put a Message on a Queue � Chapter 3

put ’MQPMO: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

else put ’MQPMO: successfully generated put
message options’;

put ’--------- Generate message descriptor ---------’;

parms="PERSISTENCE";

persist="PERSISTENT"; /* persistent message */

call mqmd(hmd, action, rc, parms, persist);

if rc ^= 0 then do;

put ’MQMD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

else put ’MQMD: successfully generated

message descriptor’;

put ’----------- Generate map descriptor -----------’;

/* data will not be aligned */

desc1="SHORT";

desc2="LONG";

desc3="DOUBLE";

desc4="CHAR,,50"; /* blank pad to 50 bytes */

call mqmap(hmap, rc, desc1, desc2, desc3, desc4);

if rc ^= 0 then do;

put ’MQMAP: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

else put ’MQMAP: successfully generated map descriptor’;

put ’--- Generate data descriptor - actual data ----’;

parm1=100;

parm2=9999;

parm3=9999.9999;

parm4="This is a test.";

call mqsetparms(hdata, hmap, rc, parm1,

parm2, parm3, parm4);

if	 rc ^= 0 then do;

put ’MQSETPARMS: failed with rc= ’ rc;

msg = sysmsg();
put msg;

goto exit;

end;

else put ’MQSETPARMS: successfully generated

data descriptor’;

Using IBM WebSphere MQ � DATA Step Coding Example: Put a Message on a Queue 37

put ’------------- Put message on queue ------------’;

call mqput(hconn, hobj, hmd, hpmo, hdata, cc, reason);

if cc ^= 0 then do;

put ’MQPUT: failed with reason= ’ reason;
goto exit;

end;

else do;

put ’MQPUT: successfully put message on queue’;

/* inquire about message descriptor
output parameters */

action="INQ";

parms="MSGID,PUTAPPLTYPE,PUTAPPLNAME,

PUTDATE,PUTTIME";

length msgid $ 48 applname $ 28 date $ 8 time $ 8;

call mqmd(hmd, action, rc, parms, msgid, appltype,

applname, date, time);

if	 rc ^= 0 then do;

put ’MQMD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

end;

else do;

put ’Message descriptor output parameters are:’;

put ’MSGID= ’ msgid;
put ’PUTAPPLTYPE= ’ appltype;

put ’PUTAPPLNAME= ’ applname;

put ’PUTDATE= ’ date;

put ’PUTTIME= ’ time;

end;
end;

exit:

if hobj ^= 0 then do;
put ’----------------- Close queue ---------------’;

options="NONE";

call mqclose(hconn, hobj, options, cc, reason);

if cc ^= 0 then do;

put ’MQCLOSE: failed with reason= ’ reason;

end;

else put ’MQCLOSE: successfully closed queue’;

end;

if hconn ^= 0 then do;
put ’------------ Disconnect from QMgr -----------’;

call mqdisc(hconn, cc, reason);

if cc ^= 0 then do;

put ’MQDISC: failed with reason= ’ reason;

end;

38 DATA Step Coding Example: Retrieve a Message � Chapter 3

else put ’MQDISC: successfully disconnected
from QMgr’;

end;

if hod ^= 0 then do;
call mqfree(hod);

put ’Object descriptor handle freed’;

end;

if hpmo ^= 0 then do;

call mqfree(hpmo);

put ’Put message options handle freed’;
end;

if hmd ^= 0 then do;

call mqfree(hmd);

put ’Message descriptor handle freed’;

end;
if hmap ^= 0 then do;

call mqfree(hmap);

put ’Map descriptor handle freed’;

end;

if hdata ^= 0 then do;
call mqfree(hdata);

put ’Data descriptor handle freed’;

end;

run;

DATA Step Coding Example: Retrieve a Message

This example retrieves a message from a queue.

data _null_;

length hconn hobj cc reason 8;

length rc hod hgmo hmd hmap msglen 8;

length parms $ 200 options $ 200 action $ 3 msg $ 200;

hconn=0;

hobj=0;

hod=0;

hgmo=0;

hmd=0;

hmap=0;

put ’---------------- Connect to QMgr --------------’;

qmgr="TEST";

call mqconn(qmgr, hconn, cc, reason);

if cc ^= 0 then do;

if reason = 2002 then do;

put ’Already connected to QMgr ’ qmgr;

end;

else do;
if reason = 2059 then

Using IBM WebSphere MQ � DATA Step Coding Example: Retrieve a Message 39

put ’MQCONN: QMgr not available...
needs to be started’;

else

put ’MQCONN: failed with reason= ’ reason;

goto exit;

end;
end;

else put ’MQCONN: successfully connected to QMgr ’ qmgr;

put ’---------- Generate object descriptor ---------’;

action="GEN";

parms="OBJECTNAME";

objname="TEST";

call mqod(hod, action, rc, parms, objname);

if rc ^= 0 then do;

put ’MQOD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

else put ’MQOD: successfully generated
object descriptor’;

put ’--------- Open queue object for input ---------’;

options="INPUT_SHARED";

call mqopen(hconn, hod, options, hobj, cc, reason);

if cc ^= 0 then do;

put ’MQOPEN: failed with reason= ’ reason;

goto exit;

end;

else put ’MQOPEN: successfully opened queue for output’;

put ’--------- Generate get message options --------’;

call mqgmo(hgmo, action, rc);

if rc ^= 0 then do;

put ’MQGMO: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

else put ’MQGMO: successfully generated get
message options’;

put ’--------- Generate message descriptor ---------’;

call mqmd(hmd, action, rc);

if rc ^= 0 then do;

put ’MQMD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

40 DATA Step Coding Example: Retrieve a Message � Chapter 3

end;
else put ’MQMD: successfully generated

message descriptor’;

put ’----------- Generate map descriptor -----------’;

desc1="SHORT";

desc2="LONG";

desc3="DOUBLE";

desc4="CHAR,,50";

call mqmap(hmap, rc, desc1, desc2, desc3, desc4);

if rc ^= 0 then do;

put ’MQMAP: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

else put ’MQMAP: successfully generated map descriptor’;

put ’------------ Get message from queue -----------’;

call mqget(hconn, hobj, hmd, hgmo, msglen, cc, reason);

if cc ^= 0 then do;

if reason = 2033 then put ’No message available’;

else put ’MQGET: failed with reason= ’ reason;

goto exit;

end;

else do;
put ’MQGET: successfully retrieved message

from queue’;

put ’message length= ’ msglen;

/* inquire about message descriptor
output parameters */

action="INQ";

parms="REPORT,MSGTYPE,FEEDBACK,MSGID,

CORRELID,USERIDENTIFIER,PUTAPPLTYPE,

PUTAPPLNAME,PUTDATE,PUTTIME";

length report $ 30 msgtype 8 feedback 8 msgid $ 48

correlid $ 48 userid $ 12 appltype 8

applname $ 28 date $ 8 time $8;

call mqmd(hmd, action, rc, parms, report,

msgtype, feedback, msgid, correlid, userid,

appltype, applname, date, time);

if	 rc ^= 0 then do;

put ’MQMD: failed with rc ’ rc;

msg = sysmsg();

put msg;

end;

else do;

put ’Message descriptor output parameters are:’;

put ’REPORT= ’ report;

Using IBM WebSphere MQ � DATA Step Coding Example: Retrieve a Message 41

put ’MSGTYPE= ’ msgtype;

put ’FEEDBACK= ’ feedback;

put ’MSGID= ’ msgid;

put ’CORRELID= ’ correlid;

put ’USERIDENTIFIER= ’ userid;

put ’PUTAPPLTYPE= ’ appltype;

put ’PUTAPPLNAME= ’ applname;

put ’PUTDATE= ’ date;

put ’PUTTIME= ’ time;

end;

end;

if msglen > 0 then do;

/* retrieve SAS variables from GET buffer */

length parm1 parm2 parm3 8 parm4 $ 50;

call mqgetparms(hmap, rc, parm1,

parm2, parm3, parm4);

put ’Display SAS variables:’;

put ’parm1= ’ parm1;

put ’parm2= ’ parm2;

put ’parm3= ’ parm3;

put ’parm4= ’ parm4;

if rc ^= 0 then do;

put ’MQGETPARMS: failed with rc= ’ rc;

msg = sysmsg();

put msg;

end;

end;

else put ’No data associated with message’;

exit:

if hobj ^= 0 then do;

put ’----------------- Close queue ---------------’;

options="NONE";

call mqclose(hconn, hobj, options, cc, reason);
if cc ^= 0 then do;

put ’MQCLOSE: failed with reason= ’ reason;

end;

else put ’MQCLOSE: successfully closed queue’;

end;

if hconn ^= 0 then do;

put ’------------ Disconnect from QMgr -----------’;

call mqdisc(hconn, cc, reason);

if cc ^= 0 then do;
put ’MQDISC: failed with reason= ’ reason;

end;

else put ’MQDISC: successfully disconnected

from QMgr’;

end;

42 Processing a Text File � Chapter 3

if hod ^= 0 then do;

call mqfree(hod);

put ’Object descriptor handle freed’;

end;
if hgmo ^= 0 then do;

call mqfree(hgmo);

put ’Get message options handle freed’;

end;

if hmd ^= 0 then do;

call mqfree(hmd);
put ’Message descriptor handle freed’;

end;

if hmap ^= 0 then do;

call mqfree(hmap);

put ’Map descriptor handle freed’;
end;

run;

Processing a Text File

This example puts a text file to a queue.

/** bits within md.msgflags **/

%let segment_allow=1;

%let segment=2;

%let last_segment=4;

%let group=8;

%let last_group=16;

data _null_;

length rc 8;

length msg $ 200;

length hconn hod hpmo hobj hmd hmap hdata 8;

length cc reason 8;

length record $ 256;

length msgflags 8;

/* send this file to the queue */

infile ’d:\test.txt’ length=reclen end=eof;

call mqconn("TESTQMGR", hconn, cc, reason);

if cc ^= 0 then do;

if reason = 2002 then do;
put ’Already connected to QMgr’;

end;

else do;

if reason = 2059 then

put ’MQCONN: QMgr not available...

needs to be started’;
else

Using IBM WebSphere MQ � Processing a Text File 43

put ’MQCONN: failed with reason= ’ reason;
goto exit;

end;

end;

put ’---------- Generate object descriptor ---------’;
call mqod(hod, "GEN", rc, "OBJECTNAME", "TESTQ");

if rc ^= 0 then do;

put ’MQOD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

put ’-------- Open queue object for output ---------’;

call mqopen(hconn, hod, "OUTPUT", hobj, cc, reason);

if cc ^= 0 then do;
put ’MQOPEN: failed with reason= ’ reason;

goto exit;

end;

put ’--------- Generate put message options --------’;
/** QMgr will generate a unique msgid on every put as **/

/** well as generate a groupid for all of the msgs **/

/** and incrementally keep up with the sequencing... **/

call mqpmo(hpmo, "GEN", rc, "OPTIONS",

"NEW_MSGID,LOGICAL_ORDER");

if	 rc ^= 0 then do;
put ’MQPMO: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

put ’--------- Generate message descriptor ---------’;

/** specify the message belongs to a group **/

msgflags=&group;

call mqmd(hmd, "GEN", rc, "PERSISTENCE,MSGTYPE,MSGFLAGS",

"PERSISTENT", 100000, msgflags);

if	 rc ^= 0 then do;

put ’MQMD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;
end;

put ’----------- Generate map descriptor -----------’;

/* longest record in file is 255 bytes+1 length byte... */

/* therefore all messages on the queue pertaining to */

/* this file will be blank-padded for 256 bytes... */

call mqmap(hmap, rc, "char,,256");

if rc ^= 0 then do;

put ’MQMAP: failed’;

msg = sysmsg();

44 Processing a Text File � Chapter 3

put msg;
goto exit;

end;

do	 until(eof);
input @;

input record $varying256. reclen;

call mqsetparms(hdata, hmap, rc, record);

if(rc) then do;

put ’MQSETPARMS: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

/** set last in group if eof **/

if(eof) then do;

msgflags + &last;_group;

call mqmd(hmd, "SET", rc, "MSGFLAGS", msgflags);

if rc ^= 0 then do;
put ’MQMD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

end;

put ’--- Put msg on queue ----’;

call mqput(hconn, hobj, hmd, hpmo, hdata,

cc, reason);

if	 cc ^= 0 then do;

put ’MQPUT: failed with reason= ’ reason;

msg = sysmsg();

put msg;

goto exit;

end;

/* free data */

call mqfree(hdata);

end;

exit:
if(hobj) then do;

call mqclose(hconn, hobj, "NONE", cc, reason);

if(cc) then do;

put ’MQCLOSE: failed with reason = ’ reason;

msg = sysmsg();

put msg;

end;

end;

if(hconn) then do;

Using IBM WebSphere MQ � Getting a Text File From a Queue 45

call mqdisc(hconn, cc, reason);
if(cc) then do;

put ’MQDISC: failed with reason = ’ reason;

msg = sysmsg();

put msg;

end;
end;

if hod ^= 0 then do;

call mqfree(hod);

put ’Object descriptor handle freed’;

end;
if hpmo ^= 0 then do;

call mqfree(hpmo);

put ’Put message options handle freed’;

end;

if hmd ^= 0 then do;
call mqfree(hmd);

put ’Message descriptor handle freed’;

end;

if hmap ^= 0 then do;

call mqfree(hmap);
put ’Map descriptor handle freed’;

end;

stop;

run;

Getting a Text File From a Queue

This example gets a text file from a queue.

/* Get first text file on a queue... ie. msgtype=100000 */

/* This example opens queue with a browse cursor and */

/* browses the first msg in every group looking for */
/* a msg with msgtype=100000... once it is found, */

/* open a fetch instance to remove all msgs in that */

/* particular group... */

/* if you knew upfront the groupid that you wanted, you */
/* could just open a single instance of the queue and */

/* remove the group in logical order without having to */

/* do any initial browsing... */

/* bit test macros */

%let segment_allow_mask=’.......1’b;

%let segment_mask=’......1.’b;

%let last_segment_mask=’.....1..’b;

%let group_mask=’....1...’b;

%let last_group_mask=’...1....’b;

filename output ’d:\testdup.txt’;

46 Getting a Text File From a Queue � Chapter 3

data _null_;

length rc 8;

length msg $ 200;

length cc reason 8;

length hconn hod hgmo hobj hmap 8;

length record $ 256;

length msgtype seqno msgflags 8;

length groupid $ 48;

fileid = fopen(’output’, ’o’, 256, ’v’);

if(fileid = 0) then do;

put ’Error opening output file...’;

goto exit;

end;

put ’---------------- Connect to QMgr --------------’;

call mqconn("TESTQMGR", hconn, cc, reason);

if cc ^= 0 then do;

if	 reason = 2002 then do;

put ’Already connected to QMgr’;

end;

else do;

if reason = 2059 then

put ’MQCONN: QMgr not available... needs to

be started’;

else
put ’MQCONN: failed with reason= ’ reason;

goto exit;

end;

end;

put ’---------- Generate object descriptor ---------’;

call mqod(hod, "GEN", rc, "OBJECTNAME", "TESTQ");

if rc ^= 0 then do;

put ’MQOD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

put ’--------- Open queue object for input ---------’;

call mqopen(hconn, hod, "INPUT_SHARED,BROWSE", hobj,

cc, reason);

if	 cc ^= 0 then do;

put ’MQOPEN: failed with reason= ’ reason;
goto exit;

end;

put ’--------- Generate get message options --------’;

call mqgmo(hgmo, "GEN", rc, "options, matchoptions",

Using IBM WebSphere MQ � Getting a Text File From a Queue 47

"browse_next", "seqnumber");
if	 rc ^= 0 then do;

put ’MQGMO: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;
end;

put ’--------- Generate message descriptor ---------’;

/** browse first msg in group only **/

call mqmd(hmd, "GEN", rc, "msgseqnumber", 1);

if rc ^= 0 then do;

put ’MQMD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

recv:

call mqget(hconn, hobj, hmd, hgmo, msglen, cc, reason);

if(cc) then do;

if(reason = 2033) then do;

put ’reached end of queue’;

goto exit;

end;

else do;

put ’MQGET: failed with reason = ’ reason;

msg = sysmsg();

put msg;

goto exit;

end;
end;

/* inquire about msg properties */

call mqmd(hmd, "INQ", rc,

"MSGTYPE,GROUPID,MSGSEQNUMBER,MSGFLAGS",
msgtype, groupid, seqno, msgflags);

if(rc) then do;

put ’MQMD failed’;

msg = sysmsg();

put msg;

goto exit;
end;

put msgtype=;

put groupid=;

put seqno=;
put msgflags=;

if(msgtype = 100000) then do;

/* file processing... */

48 Getting a Text File From a Queue � Chapter 3

put ’---------- Generate map descriptor ----------’;

/* all file messages were sent to the queue as

256 bytes blank-padded */

call mqmap(hmap, rc, "char,,256");

if(rc) then do;

put ’MQMAP: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

/* close browse instance */

call mqclose(hconn, hobj, "NONE", cc, reason);

if(cc) then do;

put ’MQCLOSE: failed with reason = ’ reason;

msg = sysmsg();

put msg;

end;

/* open queue in fetch mode */

hobj=0;

call mqopen(hconn, hod, "INPUT_SHARED", hobj,

cc, reason);

if	 cc ^= 0 then do;

put ’MQOPEN: failed with reason= ’ reason;

goto exit;

end;

call mqgmo(hgmo, "SET", rc, "options, matchoptions",

"logical_order,complete_msg,all_msgs_available",

"groupid");

if	 rc ^= 0 then do;

put ’MQGMO: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

call mqmd(hmd, "SET", rc, "groupid", groupid);

if	 rc ^= 0 then do;

put ’MQMD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

next:

call mqget(hconn, hobj, hmd, hgmo, msglen,
cc, reason);

if(cc) then do;

put ’MQGET: failed with reason = ’ reason;

msg = sysmsg();

put msg;

Using IBM WebSphere MQ � Getting a Text File From a Queue 49

goto exit;

end;

/* inquire about msg properties */

call mqmd(hmd, "INQ", rc,

"MSGTYPE,GROUPID,MSGSEQNUMBER,MSGFLAGS",
msgtype, groupid, seqno, msgflags);

if(rc) then do;

put ’MQMD failed’;

msg = sysmsg();

put msg;

goto exit;

end;

put msgtype=;

put groupid=;

put seqno=;

put msgflags=;

/* retrieve record from internal buffer */

call mqgetparms(hmap, rc, record);

if(rc) then do;

put ’MQGETPARMS: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

put ’write record to file’;

rc = fput(fileid, record);

if(rc) then do;

put ’Error writing to output file buffer...’;

goto exit;
end;

/* flush it to disk */

rc = fwrite(fileid);

if(rc) then do;

put ’Error writing to output file...’;

goto exit;

end;

/** receive until last in group **/
if((msgflags=&group;_mask) AND

(NOT(msgflags=&last;_group_mask)))

then goto next;

else goto exit;

end;

else goto recv;

exit:

if(hobj) then do;

50 Processing a Binary File � Chapter 3

call mqclose(hconn, hobj, "NONE", cc, reason);
if(cc) then do;

put ’MQCLOSE: failed with reason = ’ reason;

msg = sysmsg();

put msg;

end;

end;

if(hconn) then do;

call mqdisc(hconn, cc, reason);

if(cc) then do;

put ’MQDISC: failed with reason = ’ reason;

msg = sysmsg();

put msg;

end;

end;

if(hod) then

call mqfree(hod);

if(hgmo) then

call mqfree(hgmo);

if(hmd) then
call mqfree(hmd);

if(hmap) then

call mqfree(hmap);

/* close file */

rc = fclose(fileid);

if(rc) then put ’Error closing output file’;

run;

Processing a Binary File

This example puts a binary file on a queue.

data _null_;

length rc 8;

length msg $ 200;

length hconn hod hpmo hobj hmd hmap hdata 8;

length cc reason 8;

length corrid $ 48;

length msgbuf $ 256;

length seqno 8 seqstr $ 4;

/* send this file to the queue */

infile ’d:\test.exe’ recfm=f lrecl=1 end=eof;

call mqconn("TESTQMGR", hconn, cc, reason);

if cc ^= 0 then do;

if reason = 2002 then do;

put ’Already connected to QMgr’;

end;
else do;

Using IBM WebSphere MQ � Processing a Binary File 51

if reason = 2059 then
put ’MQCONN: QMgr not available... needs to

be started’;

else

put ’MQCONN: failed with reason= ’ reason;

goto exit;
end;

end;

put ’---------- Generate object descriptor ---------’;

call mqod(hod, "GEN", rc, "OBJECTNAME", "TESTQ");

if rc ^= 0 then do;
put ’MQOD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

put ’-------- Open queue object for output ---------’;

call mqopen(hconn, hod, "OUTPUT", hobj, cc, reason);

if cc ^= 0 then do;

put ’MQOPEN: failed with reason= ’ reason;
goto exit;

end;

put ’--------- Generate put message options --------’;

call mqpmo(hpmo, "GEN", rc);

if rc ^= 0 then do;

put ’MQPMO: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

put ’--------- Generate message descriptor ---------’;

call mqmd(hmd, "GEN", rc, "PERSISTENCE,MSGTYPE",

"PERSISTENT", 100001);

if	 rc ^= 0 then do;
put ’MQMD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

put ’----------- Generate map descriptor -----------’;

/* send 256 byte messages to the queue */

call mqmap(hmap, rc, "char,,256");

if rc ^= 0 then do;

put ’MQMAP: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

52 Processing a Binary File � Chapter 3

/* all of these messages will have the same
correlationid+seqno */

corrid="42696e46696c65212121"; /* BinFile!!! */

seqno = 0;

i=1;

do	 until(eof);

/* read a byte at a time */

input x $char1.;

i+1;

substr(msgbuf,i,1) = x;
if(i = 256 or eof) then do;

/* set length of this record embedded

as first byte of message */

substr(msgbuf,1,1) = put(i-1,pib1.);

call mqsetparms(hdata, hmap, rc, msgbuf);

if(rc) then do;

put ’MQSETPARMS: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

/* add sequence # to correlationid */

seqstr = put(seqno, hex4.);
substr(corrid,21,4) = seqstr;

seqno+1;

/* set correlation id and let MQ generate

msgid for this message */
call mqmd(hmd, "SET", rc, "CORRELID,MSGID",

corrid, "");

if	 rc ^= 0 then do;

put ’MQMD: failed with rc= ’ rc;

msg = sysmsg();
put msg;

goto exit;

end;

put ’--- Put msg on queue ----’;

call mqput(hconn, hobj, hmd, hpmo, hdata,
cc, reason);

if	 cc ^= 0 then do;

put ’MQPUT: failed with reason= ’ reason;

msg = sysmsg();

put msg;
goto exit;

end;

/* free data */

call mqfree(hdata);

Using IBM WebSphere MQ � Getting a Binary File from a Queue 53

/* reset message buffer entities */

i=1;

msgbuf="";

end;

end;

exit:

if(hobj) then do;

call mqclose(hconn, hobj, "NONE", cc, reason);

if(cc) then do;

put ’MQCLOSE: failed with reason = ’ reason;
msg = sysmsg();

put msg;

end;

end;

if(hconn) then do;

call mqdisc(hconn, cc, reason);

if(cc) then do;

put ’MQDISC: failed with reason = ’ reason;

msg = sysmsg();
put msg;

end;

end;

if hod ^= 0 then do;

call mqfree(hod);
put ’Object descriptor handle freed’;

end;

if hpmo ^= 0 then do;

call mqfree(hpmo);

put ’Put message options handle freed’;
end;

if hmd ^= 0 then do;

call mqfree(hmd);

put ’Message descriptor handle freed’;

end;
if hmap ^= 0 then do;

call mqfree(hmap);

put ’Map descriptor handle freed’;

end;

stop;

run;

Getting a Binary File from a Queue

This example gets the first binary file on a queue.

filename output ’d:\testdup.exe’;

data _null_;

54 Getting a Binary File from a Queue � Chapter 3

length rc 8;

length msg $ 200;

length cc reason 8;

length hconn hod hgmo hobj hobj2 hmap 8;

length corrid filecorrid $ 48;

length msgbuf stream $ 256;

length len 8;

length seqno 8;

fileid = fopen(’output’, ’o’, 0, ’b’);

if(fileid = 0) then do;
put ’Error opening output file...’;

goto exit;

end;

put ’---------------- Connect to QMgr --------------’;

call mqconn("TESTQMGR", hconn, cc, reason);

if cc ^= 0 then do;

if	 reason = 2002 then do;

put ’Already connected to QMgr’;

end;

else do;

if reason = 2059 then

put ’MQCONN: QMgr not available... needs to be

started’;

else

put ’MQCONN: failed with reason= ’ reason;
goto exit;

end;

end;

put ’---------- Generate object descriptor ---------’;

call mqod(hod, "GEN", rc, "OBJECTNAME", "TESTQ");

if rc ^= 0 then do;

put ’MQOD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

put ’--------- Open queue object for input ---------’;
call mqopen(hconn, hod, "INPUT_SHARED,BROWSE", hobj, cc,

reason);

if	 cc ^= 0 then do;

put ’MQOPEN: failed with reason= ’ reason;

goto exit;
end;

put ’--------- Generate get message options --------’;

call mqgmo(hgmo, "GEN", rc, "options", "browse_next");

Using IBM WebSphere MQ � Getting a Binary File from a Queue 55

if	 rc ^= 0 then do;
put ’MQGMO: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

put ’--------- Generate message descriptor ---------’;

call mqmd(hmd, "GEN", rc);

if rc ^= 0 then do;

put ’MQMD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

seqno=0;

recv:

call mqget(hconn, hobj, hmd, hgmo, msglen, cc, reason);

if(cc) then do;

if(reason = 2033) then do;

put ’reached end of queue’;

goto exit;

end;

else do;

put ’MQGET: failed with reason = ’ reason;

msg = sysmsg();

put msg;

goto exit;

end;
end;

/* inquire about msg properties */

call mqmd(hmd, "INQ", rc, "CORRELID,MSGTYPE",

corrid, msgtype);
if(rc) then do;

put ’MQMD failed’;

msg = sysmsg();

put msg;

goto exit;

end;

/* default for getting next msg on queue */

call mqgmo(hgmo, "SET", rc, "options", "browse_next");

if rc ^= 0 then do;

put ’MQGMO: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

56 Getting a Binary File from a Queue � Chapter 3

if(msgtype = 100001) then do;
/* file processing... */

outofseq=0;

if(filecorrid = "") then do;

/* file begins at this message */

/* write all correlating messages to this file */

filecorrid = substr(corrid,1,20);

put ’--------- Generate map descriptor ---------’;

/* all file messages were sent to the queue as 256
bytes blank-padded */

call mqmap(hmap, rc, "char,,256");

if(rc) then do;

put ’MQMAP: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

end;

/* make sure message belongs to this file */

if(substr(corrid,1,20) = filecorrid) then do;

if(seqno ^= input(substr(corrid,21,4), hex4.))

then do;

/* this message is out of sequence so

search for it */

outofseq=1;

/* open another instance to search for

out-of-seq message */

call mqopen(hconn, hod, "INPUT_SHARED,BROWSE",
hobj2, cc, reason);

if	 cc ^= 0 then do;

put ’MQOPEN: failed with reason= ’ reason;

goto exit;

end;

corrid = filecorrid;

substr(corrid,21,4) = put(seqno, hex4.);

call mqmd(hmd, "SET", rc, "MSGID,CORRELID",

"", corrid);

if(rc) then do;

put ’MQMD: failed’;

msg = sysmsg();

put msg;

end;

call mqgmo(hgmo, "SET", rc, "OPTIONS",

"BROWSE_FIRST");

if(rc) then do;

put ’MQGMO: failed’;

msg = sysmsg();

Using IBM WebSphere MQ � Getting a Binary File from a Queue 57

put msg;

goto exit;

end;

call mqget(hconn, hobj2, hmd, hgmo, msglen,

cc, reason);
if(cc) then do;

if(reason = 2033) then do;

put ’Error: reached end of queue while

searching for out-of-sequence msg’;

goto exit;

end;

else do;

put ’MQGET: failed with reason = ’ reason;

msg = sysmsg();

put msg;

goto exit;

end;

end;

end;

/* increment sequence number for

next expected message */

seqno+1;

/* retrieve record from internal buffer */

call mqgetparms(hmap, rc, msgbuf);

if(rc) then do;

put ’MQGETPARMS: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

/* length of this stream is embedded

as	 1st byte in msg */

len = input(substr(msgbuf,1,1), pib1.);

stream = substr(msgbuf,2);

put ’write stream to file’;

rc = fput(fileid, substr(stream,1,len));

if(rc) then do;

put ’Error writing to output file buffer...’;

goto exit;
end;

/* flush it to disk */

rc = fwrite(fileid);

if(rc) then do;

put ’Error writing to output file...’;

goto exit;

end;

58 Getting a Binary File from a Queue � Chapter 3

/* now remove it from the queue... */
call mqgmo(hgmo, "SET", rc, "OPTIONS",

"MSG_UNDER_CURSOR");

if(rc) then do;

put ’MQGMO: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

if(outofseq) then do;

call mqget(hconn, hobj2, hmd, hgmo, msglen,
cc, reason);

if(cc) then do;

put ’problems removing message from queue’;

msg = sysmsg();

put msg;
goto exit;

end;

/* close queue */

call mqclose(hconn, hobj2, "NONE", cc, reason);

/* re-read previous message */

call mqgmo(hgmo, "SET", rc, "OPTIONS",

"BROWSE_MSG_UNDER_CURSOR");

if(rc) then do;

put ’MQGMO: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

end;

else do;

call mqget(hconn, hobj, hmd, hgmo, msglen,

cc, reason);

if(cc) then do;

put ’problems removing message from queue’;
msg = sysmsg();

put msg;

goto exit;

end;

/* browse next message */
call mqgmo(hgmo, "SET", rc, "OPTIONS",

"BROWSE_NEXT");

if(rc) then do;

put ’MQGMO: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

end;

end;

Using IBM WebSphere MQ � Macro Language Coding Examples 59

end;

/* finish retrieving all messages belonging

to this file */

/* reset message descriptor */

call mqmd(hmd, "SET", rc, "MSGID,CORRELID", "", "");

if(rc) then do;

put ’MQMD: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

goto recv;

exit:
if(hobj) then do;

call mqclose(hconn, hobj, "NONE", cc, reason);

if(cc) then do;

put ’MQCLOSE: failed with reason = ’ reason;

msg = sysmsg();

put msg;

end;

end;

if(hconn) then do;

call mqdisc(hconn, cc, reason);
if(cc) then do;

put ’MQDISC: failed with reason = ’ reason;

msg = sysmsg();

put msg;

end;
end;

if(hod) then

call mqfree(hod);

if(hgmo) then
call mqfree(hgmo);

if(hmd) then

call mqfree(hmd);

if(hmap) then

call mqfree(hmap);

/* close file */

rc = fclose(fileid);

if(rc) then put ’Error closing output file’;

run;

Macro Language Coding Examples
This section shows examples of using the SAS Macro Language to make calls to the

MQSeries Interface.

60 Macro Language Coding Examples � Chapter 3

%macro putmsg;

%let hconn=0;

%let hobj=0;

%let hod=0;

%let hpmo=0;

%let hmd=0;

%let hmap=0;

%let hdata=0;

%put ---------------- Connect to QMgr --------------;

%let qmgr=TEST;

%let cc=0;

%let reason=0;

%syscall mqconn(qmgr, hconn, cc, reason);

%if &cc; ^= 0 %then %do;

%if &reason; = 2002 %then %do;

%put Already connected to QMgr &qmgr;

%end;
%else %do;

%if &reason; = 2059 %then

%put MQCONN: QMgr not available...

needs to be started;

%else
%put MQCONN: failed with reason= &reason;

%goto exit;

%end;

%end;

%put ---------- Generate object descriptor ---------;

%let action=GEN;

%let rc=0;

%let parms=OBJECTNAME;

%let objname=TEST;

%syscall mqod(hod, action, rc, parms, objname);

%if &rc; ^= 0 %then %do;

%put MQOD: failed with rc= &rc;

%put %sysfunc(sysmsg());

%goto exit;
%end;

%else %put MQOD: successfully generated

object descriptor;

%put -------- Open queue object for output ---------;

%let options=OUTPUT;

%syscall mqopen(hconn, hod, options, hobj, cc, reason);

%if &cc; ^= 0 %then %do;

%put MQOPEN: failed with Reason= &reason;

%goto exit;
%end;

%else %put MQOPEN: successfully opened queue for output;

%put --------- Generate put message options --------;

Using IBM WebSphere MQ � Macro Language Coding Examples 61

%syscall mqpmo(hpmo, action, rc);
%if &rc; ^= 0 %then %do;

%put MQPMO: failed with rc= &rc;

%put %sysfunc(sysmsg());

%goto exit;

%end;
%else %put MQPMO: successfully generated put

message options;

%put --------- Generate message descriptor ---------;

%let parms=PERSISTENCE;

%let persist=PERSISTENT;

%syscall mqmd(hmd, action, rc, parms, persist);

%if &rc; ^= 0 %then %do;

%put MQMD: failed with rc= &rc;

%put %sysfunc(sysmsg());

%goto exit;

%end;

%else %put MQMD: successfully generated

message descriptor;

%put ----------- Generate map descriptor -----------;

/* data will not be aligned */

%let desc1=SHORT;

%let desc2=LONG;

%let desc3=DOUBLE;

%let desc4=CHAR,,50;

%syscall mqmap(hmap, rc, desc1, desc2, desc3, desc4);

%if &rc; ^= 0 %then %do;

%put MQMAP: failed with rc= &rc;

%put %sysfunc(sysmsg());

%goto exit;

%end;

%else %put MQMAP: successfully generated map descriptor;

%put --- Generate data descriptor - actual data ----;

%let parm1=100;

%let parm2=9999;

%let parm3=9999.999;

%let parm4=This is a test.;

%syscall mqsetparms(hdata, hmap, rc, parm1,

parm2, parm3, parm4);

%if &rc; ^= 0 %then %do;

%put MQSETPARMS: failed with rc= &rc;

%put %sysfunc(sysmsg());

%goto exit;
%end;

%else %put MQSETPARMS: successfully generated

data descriptor;

62 Macro Language Coding Examples � Chapter 3

%put ------------- Put message on queue ------------;
%syscall mqput(hconn, hobj, hmd, hpmo,

hdata, cc, reason);

%if &cc; ^= 0 %then %do;

%put MQPUT: failed with reason= &reason;

%goto exit;
%end;

%else %do;

%put MQPUT: successfully put message on queue;

/* inquire about message descriptor

output parameters */

%let action=INQ;

%let parms=MSGID,PUTAPPLTYPE,PUTAPPLNAME,

PUTDATE,PUTTIME;

/* initialize msgid for return length of 48 */

%let msgid=" ";
%let appltype=0;

/* initialize applname for return length of 28 */

%let applname=" ";

/* initialize data, time for return length of 8 */

%let date=" ";
%let time=" ";

%syscall mqmd(hmd, action, rc, parms, msgid,

appltype, applname, date, time);

%if &rc; ^= 0 %then %do;

%put MQMD: failed with rc= &rc;

%put %sysfunc(sysmsg());

%end;

%else %do;

%put Message descriptor output parameters are:;

%put MSGID= &msgid;
%put PUTAPPLTYPE= &appltype;

%put PUTAPPLNAME= &applname;

%put PUTDATE= &date;

%put PUTTIME= &time;

%end;
%end;

%exit:

%if &hobj; ^= 0 %then %do;

%put ------------------ Close queue ----------------;
%let options=NONE;

%syscall mqclose(hconn, hobj, options, cc, reason);

%if &cc; ^= 0 %then %do;

%put MQCLOSE: failed with reason= &reason;

%end;

%else %put MQCLOSE: successfully closed queue;

%end;

%if &hconn; ^= 0 %then %do;

Using IBM WebSphere MQ � Macro Language Coding Examples 63

%put ------------- Disconnect from QMgr ------------;

%syscall mqdisc(hconn, cc, reason);

%if &cc; ^= 0 %then %do;

%put MQDISC: failed with reason= &reason;

%end;

%else %put MQDISC: successfully disconnected

from QMgr;

%end;

%if &hod; ^= 0 %then %do;

%syscall mqfree(hod);
%put Object descriptor handle freed;

%end;

%if &hpmo; ^= 0 %then %do;

%syscall mqfree(hpmo);

%put Put message options handle freed;
%end;

%if &hmd; ^= 0 %then %do;

%syscall mqfree(hmd);

%put Message descriptor handle freed;

%end;
%if &hmap; ^= 0 %then %do;

%syscall mqfree(hmap);

%put Map descriptor handle freed;

%end;

%if &hdata; ^= 0 %then %do;

%syscall mqfree(hdata);
%put Data descriptor handle freed;

%end;

%mend putmsg;

/** invoke macro to Put a message on a queue **/

%putmsg;

%macro getmsg;

%let hconn=0;

%let hobj=0;

%let hod=0;

%let hgmo=0;

%let hmd=0;

%let hmap=0;

%put ---------------- Connect to QMgr --------------;

%let qmgr=TEST;

%let cc=0;

%let reason=0;

%syscall mqconn(qmgr, hconn, cc, reason);

%if &cc; ^= 0 %then %do;

%if &reason; = 2002 %then %do;

%put Already connected to QMgr &qmgr;

%end;

64 Macro Language Coding Examples � Chapter 3

%else %do;
%if &reason; = 2059 %then

%put MQCONN: QMgr not available...

needs to be started;

%else

%put MQCONN: failed with reason= &reason;
%goto exit;

%end;

%end;

%else %put MQCONN: successfully connected

to QMgr &qmgr;

%put ---------- Generate object descriptor ---------;

%let rc=0;

%let action=GEN;

%let parms=OBJECTNAME;

%let objname=TEST;

%syscall mqod(hod, action, rc, parms, objname);

%if &rc; ^= 0 %then %do;

%put MQOD: failed with rc= &rc;

%put %sysfunc(sysmsg());

%goto exit;

%end;

%else %put MQOD: successfully generated

object descriptor;

%put --------- Open queue object for input ---------;

%let options=INPUT_SHARED;

%syscall mqopen(hconn, hod, options, hobj, cc, reason);

%if &cc; ^= 0 %then %do;

%put MQOPEN: failed with reason= &reason;
%goto exit;

%end;

%else %put MQOPEN: successfully opened queue for output;

%put --------- Generate get message options --------;

%syscall mqgmo(hgmo, action, rc);

%if &rc; ^= 0 %then %do;

%put MQGMO: failed with rc= &rc;

%put %sysfunc(sysmsg());

%goto exit;

%end;

%else %put MQGMO: successfully generated get

message options;

%put --------- Generate message descriptor ---------;

%syscall mqmd(hmd, action, rc);

%if &rc; ^= 0 %then %do;

%put MQMD: failed with rc= &rc;

%put %sysfunc(sysmsg());

Using IBM WebSphere MQ � Macro Language Coding Examples 65

%goto exit;
%end;

%else %put MQMD: successfully generated

message descriptor;

%put ----------- Generate map descriptor -----------;

%let desc1=SHORT;

%let desc2=LONG;

%let desc3=DOUBLE;

%let desc4=CHAR,,50;

%syscall mqmap(hmap, rc, desc1, desc2, desc3, desc4);

%if &rc; ^= 0 %then %do;

%put MQMAP: failed with rc= &rc;

%put %sysfunc(sysmsg());

%goto exit;

%end;

%else %put MQMAP: successfully generated map descriptor;

%put ------------ Get message from queue -----------;

%let msglen=0;

%syscall mqget(hconn, hobj, hmd, hgmo, msglen, cc,

reason);

%if &cc; ^= 0 %then %do;

%if &reason; = 2033 %then %put No message

available;

%else %put MQGET: failed with reason= &reason;

%goto exit;

%end;

%else %do;

%put MQGET: successfully retrieved message from queue;

%put message length= &msglen;

/* inquire about message descriptor

output parameters */

%let action=INQ;

%let parms=REPORT,MSGTYPE,FEEDBACK,MSGID,CORRELID,
USERIDENTIFIER,PUTAPPLTYPE,PUTAPPLNAME,PUTDATE,

PUTTIME;

/* initialize report for return length of 30 */

%let report=" ";

%let msgtype=0;

%let feedback=0;

/* initialize msgid, correlid for

return length of 48 */

%let msgid=" ";

%let correlid=" ";

/* initialize userid for return length of 12 */
%let userid=" ";

%let appltype=0;

/* initialize applname for return length of 28 */

%let applname=" ";

/* initiailze data, time for return length of 8 */

66 Macro Language Coding Examples � Chapter 3

%let date=" ";

%let time=" ";

%syscall mqmd(hmd, action, rc, parms, report,

msgtype, feedback, msgid, correlid, userid,

appltype, applname, date, time);

%if &rc; ^= 0 %then %do;

%put MQMD: failed with rc &rc;

%put %sysfunc(sysmsg());

%end;

%else %do;

%put Message descriptor output parameters are:;
%put REPORT= &report;

%put MSGTYPE= &msgtype;

%put FEEDBACK= &feedback;

%put MSGID= &msgid;

%put CORRELID= &correlid;
%put USERIDENTIFIER= &userid;

%put PUTAPPLTYPE= &appltype;

%put PUTAPPLNAME= &applname;

%put PUTDATE= &date;

%put PUTTIME= &time;
%end;

%end;

%if &msglen; > 0 %then %do;

/* retrieve SAS variables from GET buffer */
%let parm1=0;

%let parm2=0;

%let parm3=0;

/* initialize character return value length of 50 */

%let parm4=" ";

%syscall mqgetparms(hmap, rc, parm1,

parm2, parm3, parm4);

%put Display SAS macro variables:;

%put parm1= &parm1;

%put parm2= &parm2;

%put parm3= &parm3;

%put parm4= &parm4;

%if &rc; ^= 0 %then %do;

%put MQGETPARMS: failed with rc= &rc;

%put %sysfunc(sysmsg());

%end;

%end;

%else %put No data associated with message;

%exit:

%if &hobj; ^= 0 %then %do;

%put ------------------ Close queue ----------------;

%let options=NONE;

%syscall mqclose(hconn, hobj, options, cc, reason);

Using IBM WebSphere MQ � Macro Language Coding Examples 67

%if &cc; ^= 0 %then %do;
%put MQCLOSE: failed with reason= &reason;

%end;

%else %put MQCLOSE: successfully closed queue;

%end;

%if &hconn; ^= 0 %then %do;

%put ------------- Disconnect from QMgr ------------;

%syscall mqdisc(hconn, cc, reason);

%if &cc; ^= 0 %then %do;

%put MQDISC: failed with reason= &reason;
%end;

%else %put MQDISC: successfully

disconnected from QMgr;

%end;

%if &hod; ^= 0 %then %do;

%syscall mqfree(hod);

%put Object descriptor handle freed;

%end;
%if &hgmo; ^= 0 %then %do;

%syscall mqfree(hgmo);

%put Get message options handle freed;

%end;

%if &hmd; ^= 0 %then %do;

%syscall mqfree(hmd);
%put Message descriptor handle freed;

%end;

%if &hmap; ^= 0 %then %do;

%syscall mqfree(hmap);

%put Map descriptor handle freed;
%end;

%mend getmsg;

/** invoke macro to Get a message from a queue **/

%getmsg;

68

69

C H A P T E R

4
WebSphere MQ Call Routines

Overview of MQ Call Routines 69

Overview of MQ Call Routines

The SAS programming interface to MQSeries was designed to be as similar to
WebSphere MQI as possible. Where WebSphere MQI requires a structure, the SAS
programming interface requires a handle that represents a data structure. Each
supported SAS CALL routine is documented in this section.

MQBACK

Backs out all WebSphere MQ message puts and gets since the last synchpoint.

Syntax

CALL MQBACK(hConn, compCode, reason);

Arguments
For the complete syntax information, see the WebSphere MQ Application

Programming Reference at www.ibm.com.

Example

This example reverts the messages in a queue back to the last synchronization point.

compCode=0;

reason=0;

CALL MQBACK(hConn, compCode, reason);

70 MQCLOSE � Chapter 4

MQCLOSE

Relinquishes access to a WebSphere MQ object (queue, process definition, queue manager).

Syntax
CALL MQCLOSE(hConn, hObj, options, compCode, reason);

Arguments
For the complete syntax information, see the WebSphere MQ Application

Programming Reference at www.ibm.com.

Example

This example closes a queue.

options="NONE";

compCode=0;

reason=0;

CALL MQCLOSE(hConn, hObj, options, compCode, reason);

MQCMIT

Commits all WebSphere MQ message puts and gets since the last synchpoint.

Syntax
CALL MQCMIT(hConn, compCode, reason);

Arguments
For the complete syntax information, see the WebSphere MQ Application

Programming Reference at www.ibm.com.

Example

This example commits a unit of work.

compCode=0;

reason=0;

CALL MQCMIT(hConn, compCode, reason);

MQCONN

Connects Base SAS to a WebSphere MQ queue manager.

WebSphere MQ Call Routines � MQFREE 71

Syntax
CALL MQCONN(name, hConn, compCode, reason);

Arguments
For the complete syntax information, see the WebSphere MQ Application

Programming Reference at www.ibm.com.

Example

The following example connects the Base SAS session to the queue manager named
TEST.

hConn=0;

Name="TEST";

compCode=0;

reason=0;

CALL MQCONN(Name, hConn, compCode, reason);

MQDISC

Breaks the connection between a WebSphere MQ queue manager and Base SAS.

Syntax
CALL MQDISC(hConn, compCode, reason);

Arguments
For the complete syntax information, see the WebSphere MQ Application

Programming Reference at www.ibm.com.

Example

The following example disconnects the Base SAS session from a queue manager
identified by the parameter hConn.

compCode=0;

reason=0;

CALL MQDISC(hConn, compCode, reason);

MQFREE

Frees a Base SAS internal handle, thereby releasing its resources.

72 MQGET � Chapter 4

Syntax

CALL MQFREE(handle);

Arguments

handle
Numeric, input

Specifies the Base SAS internal handle that is obtained from one of the following
previous function calls:

3 MQPMO (hpmo)

3 MQGMO (hgmo)

3 MQOD (hod)

3 MQMD (hmd)

3 MQMAP (hMap)
3 MQRMH (hrmh)

3 MQSETPARMS (hData)

Example

This example frees the resources that are allocated by a handle.

CALL MQFREE(handle);

MQGET

Retrieves a message from a local WebSphere MQ queue that has been previously opened.

Syntax

CALL MQGET(hConn, hObj, hmd, hgmo, msglen, compCode, reason);

Arguments

hConn
Numeric, input

Specifies the WebSphere MQ connection handle that is obtained from a previous
MQCONN function call.

hObj
Numeric, input

Specifies the WebSphere MQ handle to an open object that is obtained from a
previous MQOPEN call.

WebSphere MQ Call Routines � MQGETPARMS 73

hmd
Numeric, input

Specifies the Base SAS internal message descriptor handle that is obtained from a
previous MQMD function call.

hgmo
Numeric, input

Specifies the Base SAS internal get message options handle that is obtained from
a previous MQGMO function call.

msglen
Numeric, output

Returns the length of the received message. A length of zero signifies a message
with no data. In that case, there is no need to call MQGETPARMS.

compCode
Numeric, output

Returns the WebSphere MQ completion code. This parameter can be used to
determine whether an error occurred during the execution of this routine. If an error
occurred, then the compCode parameter will be nonzero, and the reason parameter
will be set to the appropriate reason code.

reason
Numeric, output

Returns the WebSphere MQ reason code that qualifies the completion code.

Note: A reason code of -1 reflects a Base SAS internal error, not a WebSphere
MQ error. To obtain a textual description of a failure (either Base SAS or WebSphere
MQ), use the SYSMSG() Base SAS function call. �

Details
If data accompanies the message, it is retrieved into an internal Base SAS buffer. After
the MQGET call completes, you should call MQGETPARMS to set Base SAS variables
(parms) to that data or to retrieve the data into a physical binary or text file.

Example

This example gets a message from a queue.

msglen=0;

compCode=0;

reason=0;

CALL MQGET(hConn, hObj, hmd, hgmo, msglen,

compCode, reason);

MQGETPARMS

Retrieves values of Base SAS variables from a previous WebSphere MQ message that was
received by an MQGET call.

Syntax
CALL MQGETPARMS(hMap, rc, parm1<,parm2, parm3, ...>);

74 MQGMO � Chapter 4

Arguments

hMap
Numeric, input

Specifies a handle to a Base SAS internal map descriptor that is obtained from a
previous MQMAP function call.

rc
Numeric, output

Provides the Base SAS return code from this function. If an error occurs, then the
return code is nonzero. You can use the Base SAS function SYSMSG() to obtain a
textual description of the return code.

parms
Numeric or character, output

Returns the Base SAS variables.

Note: Initialize variables appropriately to guarantee that truncation does not
occur. �

Details

This message is available until the next MQGET call is performed.

Example

This example gets values of Base SAS variables from a received message.

length parm1 parm2 parm3;

length parm4 $ 200;

rc=0;

CALL MQGETPARMS(hMap, rc, parm1, parm2, parm3, parm4);

MQGMO

Manipulates WebSphere MQ get message options to be used on a subsequent MQGET call.

Syntax

CALL MQGMO(hgmo, action, rc <,parms ,value1,value2, ...>);

Arguments

hgmo
Numeric, input or output

WebSphere MQ Call Routines � MQGMO 75

On input, it specifies a Base SAS internal get message options handle. The handle
should be supplied when you are setting or querying an option. The handle is
generated as output when action is to generate default WebSphere MQ get options.

action
Character, input

Specifies the desired action of this routine. The following action values are valid:

GEN

Generate a handle representing default get message options as defined by

WebSphere MQ.

SET
After a get message options handle has been generated, you can continue to set
values as necessary.

INQ
After a get message options handle has been generated, you can query its values.

rc
Numeric, output

Provides the Base SAS return code from this function. If an error occurs, then the
return code is nonzero. You can use the Base SAS function SYSMSG() to obtain a
textual description of the return code.

parms
Character, input

Specifies an optional string of get message options that you want to set for
subsequent MQGET calls. Each option must be separated by a comma and must
have a value associated with it in the function’s parameter list.

value
Numeric or character, input or output

Provides the value for a get message option specified in the parms string. You
must provide a value parameter for each option specified in the parms string and the
data type must be of the proper type. Variables used to store character values being
returned in an inquiry (INQ action) should be initialized appropriately to guarantee
that truncation of a returned value does not occur.

The following get message options (parms) and values are valid:

OPTIONS
Character, input

Specifies a string of the attributes (options) to associate with subsequent MQGET
calls. Each option must be separated by a comma.

The following OPTIONS values are valid:

NONE

Used to unset previously set OPTIONS

NO_WAIT (default)

Return immediately if no suitable message

WAIT

Wait for message to arrive

SYNCPOINT

Get message with synchpoint control

NO_SYNCPOINT

Get message without synchpoint control

76 MQGMO � Chapter 4

BROWSE_FIRST

Browse from start of queue

BROWSE_NEXT

Browse from current position in queue

MSG_UNDER_CURSOR

Get message under browse cursor

LOCK

Lock message

This option is not supported on z/OS.

UNLOCK

Unlock message

This option is not supported on z/OS.

BROWSE_MSG_UNDER_CURSOR

Browse message under browse cursor

This option is not supported on z/OS.

FAIL_IF_QUIESCING

Fail if QMgr is quiescing

CONVERT

Convert message data

The following OPTIONS values support WebSphere MQ Version 5.1 and later

(these values are not supported on z/OS):

LOGICAL_ORDER
Messages in groups and segments of logical messages are returned in logical order.

COMPLETE_MSG

Only complete logical messages are retrievable.

ALL_MSGS_AVAILABLE

All messages in a group must be available.

ALL_SEGMENTS_AVAILABLE

All segments in a logical message must be available.

Notes:

3 ACCEPT_TRUNCATED_MSG is not allowed since Base SAS internally
maintains resizing of the internal GET buffer to handle any message size.

3 Specify CONVERT to allow WebSphere MQ to perform data conversion based on
the FORMAT of a PUT message via a conversion exit routine that has been
previously established at the QMgr. To allow Base SAS to perform the data
conversion instead of using a WebSphere MQ conversion exit routine, do not
specify the CONVERT option.

WAITINTERVAL
Numeric, input

Amount of time to wait for message to arrive in milliseconds.

RESOLVEDQNAME
Character48, output

Resolved name of destination queue.

SASQSID
Character36, input

A value equal to the environment variable of the same name, a 36–character string.
The environment variable can be retrieved using the following in a SAS DATA step:

WebSphere MQ Call Routines � MQGMO 77

sid = sysget(’SASQSID’);

For queues that are monitored by the object spawner, the MsgDeliverySequence
property must be set to Priority. For more information about this option, see “Using
Message Queue Polling with WebSphere MQ” on page 13.

The following get message options are supported by WebSphere MQ Version 5.1 and
later:

MATCHOPTIONS
Character, input

Character string of match options that is used to control selection criteria that are
associated with subsequent MQGET calls. Each option must be separated by a
comma. The following MATCHOPTIONS values are valid:

NONE

No matches

MSGID

Retrieve message with specified message identifier

CORRELID

Retrieve message with specified correlation identifier

GROUPID

Retrieve message with specified group identifier

This option is not supported on z/OS.

SEQNUMBER

Retrieve message with specified sequence number

This option is not supported on z/OS.

OFFSET

Retrieve message with specified offset

This option is not supported on z/OS.

GROUPSTATUS
Character, output

Flag indicating whether message was retrieved within a group

SEGMENTSTATUS
Character, output

Flag indicating whether message was retrieved within a segment of a logical

message

SEGMENTATION
Character, output

Flag indicating whether further segmentation is allowed for the retrieved message

Example

This example generates get message options to wait 3 seconds for a GET message
operation.

hgmo=0;

action="GEN";

rc=0;

parms="OPTIONS,WAITINTERVAL";

options="WAIT";

interval=3000;

CALL MQGMO(hgmo, action, rc, parms, options, interval);

78 MQINQ � Chapter 4

MQINQ

Queries the attributes of a WebSphere MQ object (queue, process definition, queue manager).

Syntax
CALL MQINQ(hConn, hObj, compCode, reason, parms, value1 <,value2, ...>);

Arguments

hConn
Numeric, input

Specifies the WebSphere MQ connection handle that is obtained from a previous
MQCONN function call.

hObj
Numeric, input

Specifies the WebSphere MQ Object handle that is obtained from a previous
MQOPEN function call that specified the INQUIRE option. This handle can
represent a queue, process definition, or queue manager object.

compCode
Numeric, output

Returns the WebSphere MQ completion code. This parameter can be used to
determine whether an error occurred during the execution of this routine. If an error
occurred, then the compCode parameter will be nonzero, and the reason parameter
will be set to the appropriate reason code.

reason
Numeric, output

Returns the WebSphere MQ reason code that qualifies the completion code.

Note: A reason code of -1 reflects a Base SAS internal error, not a WebSphere
MQ error. To obtain a textual description of a failure (either Base SAS or WebSphere
MQ), use the SYSMSG() Base SAS function call. �

parms
Character, input

Specifies a string of attributes that you want to query from the WebSphere MQ
object. Each object attribute is separated by a comma. The value that is associated
with each attribute is returned in a value parameter. Not all attributes are valid for
each type of object (queue, process definition, or queue manager). Valid object types
are listed under each attribute.

value
Numeric or character, output

Returns the value for an attribute specified in the parms string. You must provide
a value parameter for each attribute specified parms string. Variables used to store

WebSphere MQ Call Routines � MQINQ 79

character values should be initialized appropriately to guarantee that truncation of a
returned value does not occur.

The attributes in the following three tables are valid.

Table 4.1 Attributes for Queues

Attribute Data Type Description

ALTERATION_DATE Character12 Date definition last changed

ALTERATION_TIME Character8 Time definition was last changed

BACKOUT_REQ_Q_NAME Character48 Excessive backout requeue name

BACKOUT_THRESHOLD Numeric Backout threshold

BASE_Q_NAME Character48 Name of queue to which alias
resolves

CF_STRUC_NAME Character12 Coupling-facility structure name
(z/OS only)

CLUSTER_NAME Character48 Name of cluster to which queue
belongs

CLUSTER_NAMELIST Character48 Name of namelist containing
names of clusters to which queue
belongs

CLUSTER_WORKLOAD_DATA Character32 User data for cluster workload exit

CLUSTER_WORKLOAD_LENGTH Numeric Maximum length of message data
passed to cluster workload exit

CREATION_DATE Character12 Queue creation date

CREATION_TIME Character8 Queue creation time

CURRENT_Q_DEPTH Numeric Number of messages on queue

DEF_BIND Numeric Default binding

DEF_INPUT_OPEN_OPTION Numeric Default open-for-input option

DEF_PERSISTENCE Numeric Default message persistence

DEF_PRIORITY Numeric Default message priority

DEF_XMIT_Q_NAME Character48 Default transmission queue name

DEFINITION_TYPE Numeric Queue definition type

EXPIRY_INTERVAL Numeric Interval between scans for expired
messages (z/OS only)

HARDEN_GET_BACKOUT Numeric Whether to harden backout count

IGQ_PUT_AUTHORITY Numeric Intra-group queuing put authority
(z/OS only)

IGQ_USER_ID Character12 Intra-group queuing agent user ID
(z/OS only)

INDEX_TYPE Numeric Index type (z/OS only)

80 MQINQ � Chapter 4

Attribute Data Type Description

INHIBIT_GET Numeric Whether get operations are
allowed

This output type is not supported
on z/OS.

INHIBIT_PUT Numeric Whether put operations are
allowed

INITIATION_Q_NAME Character48 Initiation queue name

INTRA_GROUP_QUEUING Numeric Intra-group queuing support (z/OS
only)

MAX_MSG_LENGTH Numeric Maximum message length

MAX_Q_DEPTH Numeric Maximum number of messages
allowed on queue

MSG_DELIVERY_SEQUENCE Numeric Whether message priority is
relevant

OPEN_INPUT_COUNT Numeric Number of MQOPEN calls that
have the queue open for input

OPEN_OUTPUT_COUNT Numeric Number of MQOPEN calls that
have the queue open for output

PROCESS_NAME Character32 Name of process definition

Q_DEPTH_HIGH_EVENT Numeric Control attribute for queue depth
high events

This output type is not supported
on z/OS.

Q_DEPTH_HIGH_LIMIT Numeric High limit for queue depth

This output type is not supported
on z/OS.

Q_DEPTH_LOW_EVENT Numeric Control attribute for queue depth
low events

This output type is not supported
on z/OS.

Q_DEPTH_LOW_LIMIT Numeric Low limit for queue depth

This output type is not supported
on z/OS.

Q_DEPTH_MAX_EVENT Numeric Control attribute for queue depth
max events

This output type is not supported
on z/OS.

Q_DESC Character64 Queue description

Q_NAME Character48 Queue name

Q_SERVICE_INTERVAL Numeric Limit for queue service interval

This output type is not supported
on z/OS.

WebSphere MQ Call Routines � MQINQ 81

Attribute Data Type Description

Q_SERVICE_INTERVAL_EVENT Numeric Control for queue service interval
events

This output type is not supported
on z/OS.

Q_TYPE Numeric Queue type

QSG_DISP Numeric Queue-sharing group disposition
(z/OS only)

QSG_NAME Character4 Name of queue-sharing group (z/
OS only)

REMOTE_Q_MGR_NAME Character48 Name of remote queue manager

REMOTE_Q_NAME Character48 Name of remote queue as known
on remote queue manager

RETENTION_INTERVAL Numeric Queue retention interval

SCOPE Numeric Queue definition scope

This output type is not supported
on z/OS.

SHAREABILITY Numeric Whether queue can be shared

STORAGE_CLASS Character8 Storage class for queue (z/OS only)

TRIGGER_CONTROL Numeric Trigger control

TRIGGER_DATA Character64 Trigger data

TRIGGER_DEPTH Numeric Trigger depth

TRIGGER_MSG_PRIORITY Numeric Threshold message priority for
triggers

TRIGGER_TYPE Numeric Trigger type

USAGE Numeric Usage

XMIT_Q_NAME Character48 Default transmission queue name

Table 4.2 Attributes for Queue Managers

Attribute Data Type Description

AUTHORITY_EVENT Numeric Control attribute for authority
events

This output type is not supported on
z/OS.

CLUSTER_WORKLOAD_EXIT Character Variable Name of user exit for cluster
(MQ_EXIT_NAME_LENGTH) Length workload management

CODED_CHAR_SET_ID Numeric Coded character set identifier

COMMAND_INPUT_Q_NAME Character48 System command input queue name

COMMAND_LEVEL Numeric Command level supported by queue
manager

DEAD_LETTER_Q_NAME Character48 Dead letter queue name

82 MQINQ � Chapter 4

Attribute Data Type Description

INHIBIT_EVENT Numeric Control attribute for inhibit events

This output type is not supported on
z/OS.

LOCAL_EVENT Numeric Control attribute for local events

This output type is not supported on
z/OS.

MAX_HANDLES Numeric Maximum number of handles

MAX_MSG_LENGTH Numeric Maximum message length

MAX_PRIORITY Numeric Maximum priority

MAX_UNCOMMITTED_MSGS Numeric Maximum number of uncommitted
messages within a unit of work

This output type is not supported on
z/OS.

PERFORMANCE_EVENT Numeric Control attribute for performance
events

This output type is not supported on
z/OS.

PLATFORM Numeric Platform on which the queue
manager resides

Q_MGR_DESC Character64 Queue manager description

Q_MGR_IDENTIFIER Character48 Unique internally generated
identifier of queue manager

Q_MGR_NAME Character48 Queue manager name

REMOTE_EVENT Numeric (Queue Manager)

Control attribute for remote events

This output type is not supported on
z/OS.

REPOSITORY_NAME Character48 Name of cluster for which this queue
manager provides repository services

REPOSITORY_NAMELIST Character48 Name of namelist object containing
names of clusters for which this
queue manager provides repository
services

SYNCPOINT Numeric (Queue Manager)

Synchpoint availability

WebSphere MQ Call Routines � MQMAP 83

Attribute Data Type Description

START_STOP_EVENT Numeric (Queue Manager)

Control attribute for start stop
events

This output type is not supported on
z/OS.

TRIGGER_INTERVAL Numeric (Queue Manager)

Trigger interval

Table 4.3 Attributes for Process Definitions

Attribute Data Type Description

APPL_ID Character256 Application identifier

APPL_TYPE Numeric (Process Definition)

Application type

ENV_DATA Character128 Environment data

PROCESS_DESC Character48 Description of process definition

PROCESS_NAME Character32 Name of process definition

USER_DATA Character128 User data

Example

This example queries about a queue’s maximum depth and the maximum message
length.

length parms $ 30;

compCode=0;

reason=0;

parms="MAX_Q_DEPTH,MAX_MSG_LENGTH";

CALL MQINQ(hConn, hObj, compCode,

reason, parms, maxdepth, maxmsgl);

MQMAP

Defines a data map that can be subsequently used on an MQSETPARMS or MQGETPARMS call.

Syntax

CALL MQMAP(hMap, rc, desc1 <,desc2, desc3, ...>);

84 MQMAP � Chapter 4

Arguments

hMap
Numeric, output

Returns a Base SAS internal map descriptor handle. The handle generated will be
used to reference the data map when setting or getting Base SAS variables in a
message.

rc
Numeric, output

Provides the Base SAS return code from this function. If an error occurs, then the
return code is nonzero. You can use the Base SAS function SYSMSG() to obtain a
textual description of the return code.

descs
Character, input

Specifies a data map descriptor that defines the data type, data offset from the
beginning of the message, and data length. A descriptor has the following format:

"TYPE<,OFFSET,LENGTH>"

TYPE can be one of the following values:

3 CHAR (character data)

3 SHORT (short integer)

3 LONG (long integer)

3 DOUBLE (double precision floating point)

OFFSET is the offset from beginning of the message. This property is optional so
that by default data is not aligned (data starts at next available position in message).

LENGTH is the length of the data being represented. This property is optional in
most cases. The only time length is required is when setting up to receive character
data. Specifying length for numeric data is ignored since length is implicitly defined.

Note: Type coercion is performed transparently when you put Base SAS variables
into a WebSphere MQ message (MQSETPARMS) and also when you get Base SAS
variables from a WebSphere MQ message (MQGETPARMS). That is, if the data that
you are sending or receiving is of a different type than the Base SAS variable itself, the
data will be coerced into the appropriate data type. �

Example

This example defines a map to use to send and receive a message with a short, a
long, a double, and a character string. No alignment is specified for any data type, and
strings are always 200 characters in length (blank padded).

hMap=0;

rc=0;

desc1="SHORT";

desc2="LONG";

desc3="DOUBLE";

desc4="CHAR,,200";

CALL MQMAP(hMap, rc, desc1, desc2, desc3, desc4);

WebSphere MQ Call Routines � MQMD 85

MQMD

Manipulates message descriptor parameters to be used on a subsequent MQPUT, MQPUT1, or
MQGET call.

Syntax
CALL MQMD(hmd, action, rc <,parms ,value1, value2, ...>);

Arguments

hmd
Numeric, input or output

On input, specifies a Base SAS internal message descriptor handle. The handle
should be supplied when you are setting or querying a value. The handle is generated
as output when action is to generate default "message descriptor" parameters.

action
Character, input

Specifies the desired action of this routine. The following action values are valid:

GEN
Generate a handle that represents default message descriptor parameters as
defined by WebSphere MQ.

SET
After a message descriptor handle has been generated, you can continue to set
values as necessary.

INQ
After a message descriptor handle has been generated, you can query its values.

rc
Numeric, output

Provides the Base SAS return code from this function. If an error occurs, then the
return code is nonzero. You can use the Base SAS function SYSMSG() to obtain a
textual description of the return code.

parms
Character, input

Specifies an optional string of message descriptor parameters that you want to set
for subsequent MQPUT, MQPUT1, or MQGET calls. Each parameter must be
separated by a comma and must have a value associated with it in the function’s
parameter list.

value
Numeric or character, input or output

Provides a value for a message descriptor parameter specified in the parms string.
You must provide a value parameter for each message descriptor parameter specified
in the parms string and the data type must be of the proper type. Variables used to
store character values that are being returned in an inquiry (INQ action) should be
initialized appropriately to guarantee that truncation of a returned value does not
occur.

86 MQMD � Chapter 4

Note: This routine supports both sending a message (MQPUT and MQPUT1)
and receiving a message (MQGET). Therefore, the parameters and values serve as
both input and as output to the function. �

For a list of the parameters that you can specify, see the documentation for the
MQMD structure in the WebSphere MQ Application Programming Reference at
www.ibm.com.

Notes:

3 ENCODING and CODEDCHARSETID should not be set in most situations since
you want a message to be described by its native numeric and character encoding,
which are the default attributes for these parms.

3 FORMAT should be set if you intend for a WebSphere MQ QMgr conversion exit to
be invoked when an application GETs a message. The FORMAT name is the
actual name of the conversion exit that is invoked when an application GETs a
message with the CONVERT get message option specified. The FORMAT name in
the message descriptor is set when a message is PUT on a queue. Refer to
WebSphere MQ literature for details on creating a conversion exit.

3 MSGID and CORRELID are updated on PUTs and GETs, so remember to reset
their values appropriately when performing multiple PUTs or GETs with the same
message descriptor.

Example

This example sends a message to a queue, and then queries and displays the
message descriptor values.

length parms $ 57;

length report $ 30 msgtype $ 8 msgid $ 48 correlid $48

applname $ 28 putdate $ 8 puttime $ 8;

/* generate a message descriptor to PUT a persistent */

/* message on a permanent queue */

hmd=0;

action="GEN";

rc=0;

parms="PERSISTENCE"

persist="PERSISTENT";

CALL MQMD(hmd, action, rc, parms, persist);

/* inquire about message descriptor values after GET */

/* operation completes successfully */

action="INQ";

parms="REPORT,MSGTYPE,MSGID,CORRELID,

PUTAPPLNAME,PUTDATE,PUTTIME";

CALL MQMD(hmd, action, rc, parms, report, msgtype,

msgid, correlid, applname, putdate, puttime);

put ’report type is ’ report;

put ’message type is ’ msgtype;

put ’message id is ’ msgid;

put ’correlation id is ’ correlid;

put ’put application name is ’ applname;

put ’put date is ’ putdate;

put ’put time is ’ puttime;

WebSphere MQ Call Routines � MQOD 87

MQOD

Manipulates object descriptor parameters to be used on a subsequent MQOPEN or MQPUT1 call.

Syntax
CALL MQOD(hod, action, rc <,parms ,value1, value2, ...>);

Arguments

hod
Numeric, input or output

On input, it specifies a Base SAS internal object descriptor handle. The handle
should be supplied when you are setting or querying a value. The handle is
generated as output when action is to generate default object descriptor parameters.

action
Character, input

Specifies the desired action of this routine. The following action values are valid:

GEN
Generate a handle representing default object descriptor parameters as defined by
WebSphere MQ.

SET
After an object descriptor handle has been generated, you can continue to set
values as necessary.

INQ
After an object descriptor handle has been generated, you can query its values.

rc
Numeric, output

Provides the Base SAS return code from this function. If an error occurs, then the
return code is nonzero. You can use the Base SAS function SYSMSG() to obtain a
textual description of the return code.

parms
Character, input

Specifies an optional string of object descriptor parameters that you want to set for
subsequent MQOPEN or MQPUT1 calls. Each parameter must be separated by a
comma and must have a value associated with it in the function’s parameter list.

value
Numeric or character, input or output

Provides a value for an object descriptor parameter specified in the parms string.
You must provide a value parameter for each object descriptor parameter specified in
the parms string and the data type must be of the proper type. Variables used to
store character values being returned in an inquiry (INQ action) should be initialized
appropriately to guarantee that truncation of a returned value does not occur.

For a list of the parameters that you can specify, see the documentation for the
MQOD structure in the WebSphere MQ Application Programming Reference at
www.ibm.com.

88 MQOPEN � Chapter 4

Example

This example generates an object descriptor to OPEN a temporary dynamic queue
that begins with the name Base SAS and is unique within the system. The example
then queries the name of the temporary dynamic queue that was created after a
successful OPEN.

length qname $ 48;

hod=0;

action="GEN";

rc=0;

parms="OBJECTNAME,DYNAMICQNAME"

model="SAMPLE.TEMP.MODEL";

qname="SAS*";

CALL MQOD(hod, action, rc, parms, model, qname);

action="INQ";

parms="OBJECTNAME";

CALL MQOD(hod, action, rc, parms, qname);

put ’dynamic queue name = ’ qname;

MQOPEN

Establishes access to a WebSphere MQ object (queue, process definition, or queue manager).

Syntax
CALL MQOPEN(hConn, hod, options, hObj, compCode, reason <, compCode1, reason1,

compCode2, reason2, ...>);

Arguments

hConn
Numeric, input

Specifies the WebSphere MQ connection handle that is obtained from a previous
MQCONN function call.

hod
Numeric, input

Specifies the Base SAS internal object descriptor handle that is obtained from a
previous MQOD function call.

options
Character, input

Specifies a string of open options, each separated by a comma. The following open
options are valid:

INPUT_AS_Q_DEF
Open to get messages using queue-defined default.

INPUT_SHARED

Open to get messages with shared access.

WebSphere MQ Call Routines � MQOPEN 89

INPUT_EXCLUSIVE

Open to get messages with exclusive access.

BROWSE

Open to browse messages.

OUTPUT

Open to put messages.

INQUIRE

Open to query object attributes.

SET

Open to set object attributes.

SAVE_ALL_CONTEXT

Save context when message is received.

PASS_IDENTITY_CONTEXT

Allow identity context to be passed.

PASS_ALL_CONTEXT

Allow all context to be passed.

SET_IDENTITY_CONTEXT

Allow identity context to be set.

SET_ALL_CONTEXT

Allow all context to be set.

ALTERNATE_USER_AUTHORITY

Validate with specified user identifier.

FAIL_IF_QUIESCING

Fail if QMgr is quiescing.

The following options apply only when opening a cluster queue:

BIND_AS_Q_DEF

Use default binding for queue.

BIND_NOT_FIXED

Do not bind to a specific destination.

BIND_ON_OPEN

Bind handle to destination when queue is opened.

hObj
Numeric, output

Returns the WebSphere MQ handle that will be used in subsequent message
queuing calls to identify the object that is being accessed (a queue, a process
definition, or queue manager).

compCode
Numeric, output

Returns the WebSphere MQ completion code. This parameter can be used to
determine whether an error occurred during the execution of this routine. If an error
occurred, then the compCode parameter will be nonzero, and the reason parameter
will be set to the appropriate reason code.

reason
Numeric, output

Returns the WebSphere MQ reason code that qualifies compCode.

90 MQPMO � Chapter 4

Note: A reason code of -1 reflects a Base SAS internal error, not a WebSphere
MQ error. To obtain a textual description of a failure (either Base SAS or WebSphere
MQ), use the SYSMSG() Base SAS function call. �

compCodex, reasonx
Numeric, output

The compCodex and reasonx are an optional series of paired values that can be
used when opening a distribution list in order to discern failures for specific queues
within the distribution list. These parameters support features of WebSphere MQ
Version 5.1 and later.

Example

This example opens a queue for input and output.

options="INPUT_SHARED,OUTPUT";

hObj=0;

compCode=0;

reason=0;

CALL MQOPEN(hConn, hod, options, hObj,

compCode, reason);

MQPMO

Manipulates WebSphere MQ put message options to be used on a subsequent MQPUT call.

Syntax

CALL MQPMO(hpmo, action, rc <,parms ,value1, value2, ...>);

Arguments

hpmo
Numeric, input or output

On input, it specifies the Base SAS internal put message options handle. The
handle should be supplied when you are setting or querying an option. The handle is
generated as output when action is to generate default WebSphere MQ put options.

action
Character, input

Specifies the desired action of this routine. The following action values are valid:

GEN
Generate a handle representing default put message options as defined by
WebSphere MQ.

SET
After a put message options handle has been generated, you can continue to set
values as necessary.

WebSphere MQ Call Routines � MQPMO 91

INQ
After a put message options handle has been generated, you can query its values.

rc
Numeric, output

Provides the Base SAS return code from this function. If an error occurs, then the
return code is nonzero. You can use the Base SAS function SYSMSG() to obtain a
textual description of the return code.

parms
Character, input

Specifies an optional string of put message options that you want to set for
subsequent MQPUT calls. Each option must be separated by a comma and must
have a value associated with it in the function’s parameter list.

value
Numeric or character, input or output

Provides the value for an option specified in the parms string. You must provide a
value parameter for each option specified in the parms string and the data type must
be of the proper type. Variables used to store character values that are being
returned in an inquiry (INQ action) should be initialized appropriately to guarantee
that truncation of a returned value does not occur.

The following put message options (parms) are valid:

CONTEXT
Numeric, input

Object handle of input queue.

RESOLVEDQNAME
Character48, output

Resolved name of destination queue.

RESOLVEDQMGRNAME
Character48, output

Resolved name of destination queue manager.

OPTIONS
Character, input

Character string of the attributes (options) to associate with subsequent MQPUT
calls. Each option must be separated by a comma.

The following OPTIONS values are valid:

NONE

Default

SYNCPOINT

Put message inside current unit of work

NO_SYNCPOINT

Put message outside current unit of work

DEFAULT_CONTEXT

Associate default context with the message

PASS_IDENTITY_CONTEXT

Pass identity context from an input queue handle

PASS_ALL_CONTEXT

Pass all context from an input queue handle

92 MQPUT � Chapter 4

SET_IDENTITY_CONTEXT

Set identity context from the application

SET_ALL_CONTEXT

Set all context from the application

ALTERNATE_USER_AUTHORITY

Validate with specified user identifier

FAIL_IF_QUIESCING

Fail if QMgr is quiescing

NO_CONTEXT
Associate no context with the message
The following OPTIONS values support WebSphere MQ Version 5.1 and later

(these values are not supported on z/OS):

NEW_MSGID

Generate a new message identifier

NEW_CORRELID

Generate a new correlation identifier

LOGICAL_ORDER

Messages in groups and segments are put in logical order

Example

This example demonstrates the generate, set, and inquire actions of MQPMO routine.

length parms $ 30;

length rq rqmgr $ 48;

/* generate default put message options */

hpmo=0;

action="GEN";

rc=0;

CALL MQPMO(hpmo, action, rc);

/* set non-default put message options parameters */

action="SET";

parms="OPTIONS";

options="SYNCPOINT,FAIL_IF_QUIESCING";

CALL MQPMO(hpmo, action, rc, parms, options);

/* inquire about resolved names after successful PUT */

action="INQ";

parms="RESOLVEDQNAME,RESOLVEDQMGRNAME";

CALL MQPMO(hpmo, action, rc, parms, rq, rqmgr);

MQPUT

Puts a message on a WebSphere MQ queue that has been previously opened.

Syntax
CALL MQPUT(hConn, hObj, hmd, hpmo, hData, compCode, reason <, compCode1,

reason1, compCode2, reason2, ...>);

WebSphere MQ Call Routines � MQPUT 93

Arguments

hConn
Numeric, input

Specifies the WebSphere MQ Connection handle that is obtained from a previous
MQCONN function call.

hObj
Numeric, input

Specifies the WebSphere MQ handle to an open object that is obtained from a
previous MQOPEN call.

hmd
Numeric, input

Specifies the Base SAS internal message descriptor handle that is obtained from a
previous MQMD function call.

hpmo
Numeric, input

Specifies the Base SAS internal put message options handle that is obtained from
a previous MQPMO function call.

hData
Numeric, input

Specifies the Base SAS internal data descriptor handle that is obtained from a
previous MQSETPARMS function call. If set to zero, then it is assumed that no data
will accompany this message. For WebSphere MQ Version 5.1 and later, hData can
also represent a reference message header that is obtained from a previous MQRMH
function call.

compCode
Numeric, output

Returns the WebSphere MQ completion code. This parameter can be used to
determine whether an error occurred during the execution of this routine. If an error
occurred, then the compCode parameter will be nonzero, and the reason parameter
will be set to the appropriate reason code.

reason
Numeric, output

Returns the WebSphere MQ reason code that qualifies compCode.

Note: A reason code of -1 reflects a Base SAS internal error, not a WebSphere
MQ error. To obtain a textual description of a failure (either Base SAS or WebSphere
MQ), use the SYSMSG() Base SAS function call. �

compCodex, reasonx
Numeric, output

The compCodex and reasonx are an optional series of paired values that can be
used when opening a distribution list in order to discern failures for specific queues
within the distribution list. These parameters support features of WebSphere MQ
Version 5.1 and later.

Example

This example sends a message to a queue.

compCode=0;

reason=0;

94 MQPUT1 � Chapter 4

CALL MQPUT(hConn, hObj, hmd, hpmo, hData,
compCode, reason);

MQPUT1

Sends a single message, often a reply, to a queue.

Syntax
CALL MQPUT1(hConn, hod, hmd, hpmo, hData, compCode, reason <, compCode1,

reason2, compCode2, reason2, ...>);

Arguments

hConn
Numeric, input

Specifies the WebSphere MQ connection handle that is obtained from a previous
MQCONN function call.

hod
Numeric, input

Specifies the Base SAS internal object descriptor handle that is obtained from a
previous MQOD function call.

hmd
Numeric, input

Specifies the Base SAS internal message descriptor handle that is obtained from a
previous MQMD function call.

hpmo
Numeric, input

Specifies the Base SAS internal put message options handle that is obtained from
a previous MQPMO function call.

hData
Numeric, input

Specifies the Base SAS internal data descriptor handle that is obtained from a
previous MQSETPARMS function call. If set to zero, then it is assumed that no data
will accompany this message. For WebSphere MQ Version 5.1 and later, hData can
also represent a reference message header that is obtained from a previous MQRMH
function call.

compCode
Numeric, output

Returns the WebSphere MQ completion code. This parameter can be used to
determine whether an error occurred during the execution of this routine. If an error
occurred, then the compCode parameter will be nonzero, and the reason parameter
will be set to the appropriate reason code.

reason
Numeric, output

WebSphere MQ Call Routines � MQRMH 95

Returns the WebSphere MQ reason code that qualifies the completion code.

Note: A reason code of -1 reflects a Base SAS internal error, not a WebSphere
MQ error. To obtain a textual description of a failure (either Base SAS or WebSphere
MQ), use the SYSMSG() Base SAS function call. �

compCodex, reasonx
Numeric, output

The compCodex and reasonx are an optional series of paired values that can be
used when opening a distribution list in order to discern failures for specific queues
within the distribution list. These parameters support features of WebSphere MQ
Version 5.1 and later.

Details

Essentially, the MQPUT1 routine performs an MQOPEN, MQPUT and MQCLOSE in
one API call. The queue does not have to be open before you make this call. Also note
that the queue will be closed during the execution of this call.

Example

This example sends a message to a queue that might not already be opened.

compCode=0;

reason=0;

CALL MQPUT1(hConn, hod, hmd, hpmo, hData,

compCode, reason);

MQRMH

Creates or manipulates a reference message header so that an application can put a message in
this format, omitting the bulk data.

Syntax

CALL MQRMH(hrmh, action, rc, parms, value1, value2, ...);

Arguments

hrmh
Numeric, input or output

Specifies a Base SAS internal handle to a reference message header. The handle is
generated as output when action is to generate default message header parameters.
The handle should be supplied when you are setting or querying a parameter.

action
Character, input

Specifies the desired action of this routine. The following action values are valid:

96 MQRMH � Chapter 4

GEN
Generate a handle representing default reference message header parameters as
defined by WebSphere MQ.

SET

After a message header handle has been generated, you can set values as

necessary.

INQ

After a message header handle has been generated, you can query its values.

rc
Numeric, output

Provides the Base SAS return code from this function. If an error occurs, then the
return code is nonzero. You can use the Base SAS function SYSMSG() to obtain a
textual description of the return code.

parms
Character, input

Specifies an optional string of reference message header parameters that you want
to set. Each parameter must be separated by a comma and must have a value
associated with it in the function’s parameter list. The OBJECTTYPE, SRCNAME,
and DESTNAME parameters should be defined.

value
Numeric or character, input or output

Provides a value for a reference message header parameter that is specified in the
parms string. You must provide a value parameter for each reference message
header parameter that is specified in the parms string and the data type must be of
the proper type. Variables that are used to store character values being returned in
an inquiry (INQ action) should be initialized appropriately to guarantee that
truncation of a returned value does not occur.

The following reference message header parameters (parms) and values are valid:

ENCODING
Numeric, input

Data encoding

CODEDCHARSETID
Numeric, input

Coded character set identifier

FORMAT
Character8, input

Format name

OBJECTTYPE
Character8, input

Object type

SRCNAME
Character, input

Source object name

DESTNAME
Character, input

Destination object name

WebSphere MQ Call Routines � MQRMH 97

Details

When the reference message header is read from the transmission queue by a message
channel agent (MCA), a user-supplied message exit is invoked to process the reference
message. A sample message exit is supplied by WebSphere MQ, amqsxrm. You must
add this message exit to the sending and receiving channel definitions. The message
exit on the sending side can append to the reference message the bulk data identified
by the reference message header before the MCA sends the message through the
channel to the next queue manager.

When a reference message is received, the receiving message exit should create the
object from the bulk data that is associated with the reference message header, and
then pass on the reference message without the bulk data so that the reference message
(without the bulk data) can later be retrieved by a program.

Example

This example goes through the process of connecting to a queue manager, preparing
the queue, generating the message, closing the queue, and freeing all resources.

data _null_;

length hconn hobj cc reason 8;

length rc hod hpmo hmd hrmh 8;

length msg $ 200;

hconn=0;

hobj=0;

hod=0;

hpmo=0;

hmd=0;

hrmh=0;

put ’---------------- Connect to QMgr --------------’;

call mqconn("TESTQMGR", hconn, cc, reason);

if cc ^= 0 then do;

if reason = 2002 then do;

put ’Already connected to QMgr ’ qmgr;

end;

else do;

if reason = 2059 then

put ’MQCONN: QMgr not available...

needs to be started’;

else

put ’MQCONN: failed with reason= ’ reason;

goto exit;

end;

end;

else put ’MQCONN: successfully connected to QMgr ’ qmgr;

put ’---------- Generate object descriptor ---------’;

call mqod(hod, "GEN", rc, "OBJECTNAME", "TESTQ");

if rc ^= 0 then do;

put ’MQOD: failed with rc= ’ rc;

msg = sysmsg();

put msg;

98 MQRMH � Chapter 4

goto exit;
end;

else put ’MQOD: successfully generated

object descriptor’;

put ’-------- Open queue object for output ---------’;

call mqopen(hconn, hod, "OUTPUT", hobj, cc, reason);

if cc ^= 0 then do;

put ’MQOPEN: failed with reason= ’ reason;

goto exit;

end;
else put ’MQOPEN: successfully opened queue for output’;

put ’--------- Generate put message options --------’;

call mqpmo(hpmo, "GEN", rc);

if rc ^= 0 then do;

put ’MQPMO: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;

end;

else put ’MQPMO: successfully generated put

message options’;

put ’--------- Generate message descriptor ---------’;
/* format must be set to reference message header */

call mqmd(hmd, "GEN", rc, "PERSISTENCE,FORMAT",

"PERSISTENT", "MQHREF");

if	 rc ^= 0 then do;

put ’MQMD: failed with rc= ’ rc;
msg = sysmsg();

put msg;

goto exit;

end;

else put ’MQMD: successfully generated
message descriptor’;

/** reference message header **/

call mqrmh(hrmh, "GEN", rc,

"SRCNAME,DESTNAME,OBJECTTYPE",

"d:\test.txt", "d:\testdup.txt", "FLATFILE");
if	 rc ^= 0 then do;

put ’MQRMH: failed with rc= ’ rc;

msg = sysmsg();

put msg;

goto exit;
end;

else put ’MQRMH: successfully generated reference

message header’;

put ’------------- Put message on queue ------------’;

WebSphere MQ Call Routines � MQRMH 99

call mqput(hconn, hobj, hmd, hpmo, hrmh, cc, reason);
if	 cc ^= 0 then do;

put ’MQPUT: failed with reason= ’ reason;

msg = sysmsg();

put msg;

goto exit;
end;

else put ’MQPUT: successfully put message on queue’;

exit:

if hobj ^= 0 then do;
put ’----------------- Close queue ---------------’;

call mqclose(hconn, hobj, "NONE", cc, reason);

if cc ^= 0 then do;

put ’MQCLOSE: failed with reason= ’ reason;

end;

else put ’MQCLOSE: successfully closed queue’;

end;

if hconn ^= 0 then do;
put ’------------ Disconnect from QMgr -----------’;

call mqdisc(hconn, cc, reason);

if cc ^= 0 then do;

put ’MQDISC: failed with reason= ’ reason;

end;

else put ’MQDISC: successfully disconnected

from QMgr’;

end;

if hod ^= 0 then do;
call mqfree(hod);

put ’Object descriptor handle freed’;

end;

if hpmo ^= 0 then do;

call mqfree(hpmo);
put ’Put message options handle freed’;

end;

if hmd ^= 0 then do;

call mqfree(hmd);

put ’Message descriptor handle freed’;

end;
if hrmh ^= 0 then do;

call mqfree(hrmh);

put ’Reference message header handle freed’;

end;

run;

100 MQSET � Chapter 4

MQSET

Changes the attributes of a queue object.

Syntax
CALL MQSET(hConn, hObj, compCode, reason, parms, value1 <,value2, ...>);

Arguments

hConn
Numeric, input

Specifies the WebSphere MQ connection handle that is obtained from a previous
MQCONN function call.

hObj
Numeric, input

Specifies the WebSphere MQ object handle that is obtained from a previous
MQOPEN function call that specified the SET option. This handle represents a
queue object.

compCode
Numeric, output

Returns the WebSphere MQ completion code. This parameter can be used to
determine whether an error occurred during the execution of this routine. If an error
occurred, then the compCode parameter will be nonzero, and the reason parameter
will be set to the appropriate reason code.

reason
Numeric, output

Returns the WebSphere MQ reason code that qualifies the completion code.

Note: A reason code of -1 reflects a Base SAS internal error, not a WebSphere
MQ error. To obtain a textual description of a failure (either Base SAS or WebSphere
MQ), use the SYSMSG() Base SAS function call. �

parms
Character, input

Specifies a string of queue attributes that you want to set for a WebSphere MQ
queue. Each queue attribute must be separated by a comma and must have a value
associated with it. Only certain attributes (a subset of list for MQINQ) can be
changed by using this function call. Refer to the IBM WebSphere MQ documentation
for more details.

value
Numeric or character, input

Provides the value for an attribute that is specified in the parms string. You must
provide a value parameter for each attribute that is specified in the parms string,
and the data type must be of the proper type.

Example

This example changes the queue properties by inhibiting messages to be sent (put) to
the queue.

WebSphere MQ Call Routines � MQSETPARMS 101

length parms $ 30;

compCode=0;

reason=0;

parms="INHIBIT_PUT";

inhibit=1;

CALL MQSET(hConn, hObj, compCode,

reason, parms, inhibit);

MQSETPARMS

Creates a data descriptor that describes the actual Base SAS variables along with an associated
data mapping. This data descriptor can then be used on a subsequent MQPUT or MQPUT1 call.

Syntax
CALL MQSETPARMS(hData, hMap, rc, parm1 <,parm2, parm3, ...>);

Arguments

hData
Numeric, output

Returns a Base SAS internal data descriptor handle. The handle that is generated
can be used to reference the data when sending a message to a queue.

hMap
Numeric, input

Specifies a Base SAS internal map descriptor handle that is obtained from a
previous MQMAP function call. If set to zero, no external defined mapping is
assumed and therefore, all data is mapped according to Base SAS internal
representations. That is, all numerics are mapped as doubles and all strings are
mapped as character data of the current string length.

rc
Numeric, output

Provides the Base SAS return code from this function. If an error occurs, then the
return code is nonzero. You can use the Base SAS function SYSMSG() to obtain a
textual description of the return code.

parms
Numeric or character, input

Specifies the Base SAS variables to set.

Example

This example sets values of Base SAS variables into a message.

hData=0;

rc=0;

parm1=100;

parm2=9999;

102 MQSETPARMS � Chapter 4

parm3=9999.9999;

parm4="This is a test.";

CALL MQSETPARMS(hData, hMap, rc,

parm1, parm2, parm3, parm4);

103

P A R T3

Microsoft Message Queueing

Chapter 5.Using Microsoft Message Queuing Services (MSMQ) 105

Chapter 6.MSMQ Call Routines 127

104

105

C H A P T E R

5
Using Microsoft Message

Queuing Services (MSMQ)

MSMQ Functional Interface 105

Writing MSMQ Applications 105

MSMQ Code Samples 106

Introduction to the MSMQ Code Samples 106

DATA Step Coding Examples 107

Sending a Message to a Queue 107

Receiving a Message from a Queue 109

Processing a Text File 113

Getting a Text File from a Queue 115

Processing a Binary File 119

Getting a Binary File from a Queue 121

MSMQ Functional Interface

SAS Integration Technologies allows applications developers to combine the power of
both SAS information delivery and Microsoft message queuing capabilities by providing
a SAS interface to the Microsoft Message Queuing Services (MSMQ), which are part of
Windows. With this interface, SAS programs can create new MSMQ message queues or
use existing message queue that are available throughout the enterprise.

Writing MSMQ Applications

In MSMQ messaging, two or more applications communicate with each other
indirectly and asynchronously by using message queues. The applications do not have
to be running at the same time or even in the same operating environment. An
application can communicate with another application by sending a message to a
queue. The receiving application retrieves the message when it is ready.

A typical SAS program that uses MSMQ services performs the following tasks:

1	 A program must first either open an existing queue or create a new queue. A
function is available to help find queues based on their property values. If opening
an existing queue, the program supplies a queue identifier to select the
appropriate queue. If creating a new queue, a queue identifier is returned to the
program to be used in subsequent calls. The queue identifier is used by MSMQ in
a distributed database that maintains information about users, queues, queue
managers, host machines, and network layout. This database is referred to as the
MSMQ Information Store (MQIS) and helps to insulate the application developer
from the details of the network.

106 MSMQ Code Samples � Chapter 5

2	 When creating a queue, you can declare it public or private. Public queues are
registered in the MQIS and can be accessed throughout the network. Private
queues, on the other hand, can be accessed only by systems that know the queue’s
full pathname or format name. Other properties can be set when creating a queue
such as security, message handling, and types of services provided by the queue.
These same types of properties can also be retrieved from or set on a queue that
has been opened.

3	 A program that has opened a queue can compose and send a message. To compose
a message, a function is used to identify a data map that describes the format, the
number and the type of parameters to be sent as part of the message. The data
map is used by a function that creates a data descriptor of the actual values of the
SAS variables to be included in the message. If your distributed application uses a
Microsoft Transaction Server (MTS), then a transaction object can be used to send
the message based on the success of the transaction.

4	 A program can also retrieve messages from an opened queue. MSMQ uses the
concept of a cursor to identify the location of the message within a queue. A
message can be read from the current cursor location, or you can see the next
location. When a message is read, the program can elect to remove the message or
leave it on the queue. In addition, a number of message properties such as security
issues, size, identification, and statistics on the delivery can also be retrieved.

5	 After a program has sent or retrieved all its messages, queues can also be closed
or deleted. This releases the resources that were allocated when the queue was
opened or created.

Note: MSMQ uses several representations to identify a queue, such as format
name, pathname, instance UUID, and queue handle. There are functions available that
you can use to convert between representations. �

MSMQ Code Samples

Introduction to the MSMQ Code Samples
This section provides examples of using the MSMQ interface with DATA step code to

illustrate the semantics of sending a message to a queue and receiving the same
message from the queue.

For DATA step code examples that show how to send and receive files, see
“Processing a Text File” on page 113 and “Processing a Binary File” on page 119.

Note: When a SAS DATA step ends, all resources that are consumed by this DATA
step are automatically freed. That is, all internal SAS handles are automatically freed.
When using the SAS Macro Language to interface with MSMQ, ensure that all
resources are freed programmatically. Unlike the DATA step, resources consumed by
the SAS Macro Language are never implicitly freed during SAS execution. �

Using Microsoft Message Queuing Services (MSMQ) � DATA Step Coding Examples 107

DATA Step Coding Examples

Sending a Message to a Queue
This example sends a message to a queue. Note that it assumes that the queue

"respq" has been created before this example.

data _null_;

length rc 8;

length msg $ 200;

length Qid hQueue transobj 8;

length msgid $ 40;

length hData hMap 8;

length parm1 parm2 parm3 8;

length parm4 $ 50;

hQueue=0;

hMap=0;

hData=0;

put ’-------- Obtain formatname from pathname ------’;

Qid=0;

rc=0;

call msmqpathtoformat("pcpad\testq", Qid, rc);

if rc ^= 0 then do;

if	 rc = input(’03000EC0’x, ib4.) then do;

/* C00E0003 - MSMQ QUEUE_NOT_FOUND error */

/* so create it... */

put ’Queue does not exist so creating it...’;

call msmqcreatequeue(Qid, rc, "PATHNAME,LABEL",

"pcpad\testq", "Test Queue");
if	 rc ^= 0 then do;

put ’MSMQCreateQueue: failed’;

msg = sysmsg();

put msg;

goto exit;

end;
else put ’MSMQCreateQueue: succeeded’;

end;

else do;

put ’MSMQPathToFormat: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

end;

else put ’MSMQPathToFormat: succeeded’;

put ’----------- Open queue for sending -----------’;

call msmqopenqueue(Qid, "SEND", "SHARE", hQueue, rc);

if rc ^= 0 then do;

put ’MSMQOpenQueue: failed’;

msg = sysmsg();

108 DATA Step Coding Examples � Chapter 5

put msg;
goto exit;

end;

else put ’MSMQOpenQueue: succeeded’;

put ’----------- Generate map descriptor -----------’;

/* data will not be aligned */

desc1="SHORT";

desc2="LONG";

desc3="DOUBLE";

desc4="CHAR,,50"; /* blank pad to 50 bytes */

call msmqmap(hMap, rc, desc1, desc2, desc3, desc4);

if rc ^= 0 then do;

put ’MSMQMap: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

else put ’MSMQMap: succeeded’;

put ’--- Generate data descriptor - actual data ----’;

parm1=100;

parm2=9999;

parm3=9999.9999;

parm4="This is a test.";

call msmqsetparms(hData, hMap, rc, parm1,

parm2, parm3, parm4);

if	 rc ^= 0 then do;

put ’MSMQSetParms: failed’;

msg = sysmsg();

put msg;
goto exit;

end;

else put ’MSMQSetParms: succeeded’;

put ’------------ Send message to queue ------------’;

transobj=0;

msgid="";

call msmqsendmsg(hQueue, hData, transobj, rc,

"BODY_TYPE,CORRELATIONID,LABEL,MSGID,

PRIV_LEVEL,RESP_QUEUE",
999, "0102030405060708090A0B0C0D0E0F1011121314",

"Secret test message", msgid,

"PRIVATE", "pcpad\respq");

if	 rc ^= 0 then do;

put ’MSMQSendMsg: failed’;
msg = sysmsg();

put msg;

end;

else do;

put ’MSMQSendMsg: succeeded’;

Using Microsoft Message Queuing Services (MSMQ) � DATA Step Coding Examples 109

/* display MSMQ-generated MSGID */

put ’msgid is ’ msgid;

end;

exit:

if hQueue ^= 0 then do;

put ’----------------- Close queue ---------------’;

call msmqclosequeue(hQueue, rc);

if rc ^= 0 then do;

put ’MSMQCloseQueue: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQCloseQueue: succeeded’;

end;

if Qid ^= 0 then do;

call msmqfree(Qid);

put ’Qid handle freed’;

end;

if hMap ^= 0 then do;

call msmqfree(hMap);

put ’Map descriptor handle freed’;

end;

if hData ^= 0 then do;

call msmqfree(hData);

put ’Data descriptor handle freed’;

end;

run;

Receiving a Message from a Queue

This example receives a message from a queue.

data _null_;

length rc 8;

length msg $ 200;

length Qid hQueue transobj 8;

length hMap 8;

length arrivet auth size sentt 8;

length correlid msgid $ 40;

length label $ 80;

length parm1 parm2 parm3 8;

length parm4 $ 50;

length hRespQ 8;

length respq $ 80;

length respQid 8;

hQueue=0;

110 DATA Step Coding Examples � Chapter 5

hMap=0;

hRespQ=0;

respQid=0;

put ’-------- Obtain formatname from pathname ------’;

Qid=0;

rc=0;

call msmqpathtoformat("pcpad\testq", Qid, rc);

if rc ^= 0 then do;

put ’MSMQPathToFormat: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

else put ’MSMQPathToFormat: succeeded’;

put ’----------- Open queue for receiving ---------’;

call msmqopenqueue(Qid, "RECEIVE", "SHARE", hQueue, rc);

if rc ^= 0 then do;

put ’MSMQOpenQueue: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

else put ’MSMQOpenQueue: succeeded’;

put ’----------Receive message from queue ---------’;

transobj=0;

hCursor=0;

call msmqreceivemsg(hQueue, 0, "RECEIVE", hCursor,

transobj, rc, "ARRIVEDTIME,AUTHENTICATED,BODY_SIZE,
CORRELATIONID,LABEL,MSGID,RESP_QUEUE,SENTTIME",

arrivet, auth, size, correlid, label, msgid,

respq, sentt);

if	 rc ^= 0 then do;

put ’MSMQReceiveMsg: failed’;
msg = sysmsg();

put msg;

goto exit;

end;

else do;

put ’MSMQReceiveMsg: succeeded’;
/* convert MSMQ arrived time to

SAS datetime format */

arrivet =

arrivet + 10*365*24*3600 + 3*24*3600 - 5*3600;

put ’arrived time is’ arrivet datetime.;
if auth = 1 then put ’message was authenticated’;

else put ’message was not authenticated’;

put ’message body size is ’ size;

put ’correlation id is ’ correlid;

put ’label is ’ label;

Using Microsoft Message Queuing Services (MSMQ) � DATA Step Coding Examples 111

put ’msg id is ’ msgid;

put ’resp_queue Qid handle is ’ respq;

/* convert MSMQ sent time to SAS datetime format */

sentt = sentt + 10*365*24*3600 + 3*24*3600 - 5*3600;

put ’sent time was’ sentt datetime.;

end;

if size ^= 0 then do;

put ’---------- Generate map descriptor ----------’;

desc1="SHORT";

desc2="LONG";
desc3="DOUBLE";

desc4="CHAR,,50";

call msmqmap(hMap, rc, desc1, desc2, desc3, desc4);

if rc ^= 0 then do;

put ’MSMQMap: failed’;
msg = sysmsg();

put msg;

goto exit;

end;

else put ’MSMQMap: succeeded’;

call msmqgetparms(hMap, rc, parm1,

parm2, parm3, parm4);

if	 rc ^= 0 then do;

put ’MSMQGetParms: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

else do;

put ’MSMQGetParms: succeeded’;

put ’parm1 = ’ parm1;

put ’parm2 = ’ parm2;

put ’parm3 = ’ parm3;

put ’parm4 = ’ parm4;

end;
end;

else put ’No data was associated with the message’;

/* post a reply to the response queue if available */

if respq ^= "" then do;
call msmqpathtoformat(respq, respQid, rc);

if rc ^= 0 then do;

put ’MSMQPathToFormat: failed to

open response queue’;

msg = sysmsg();

goto exit;

end;

call msmqopenqueue(respQid, "SEND",

"SHARE", hRespQ, rc);

112 DATA Step Coding Examples � Chapter 5

if	 rc ^= 0 then do;

put ’MSMQOpenQueue: failed to

open response queue’;

msg = sysmsg();

put msg;

goto exit;

end;

hMap=0;

call msmqsetparms(hData, hMap, rc,

"Message received OK");

if rc ^= 0 then do;

put ’MSMQSetParms: failed to

send response message’;

msg = sysmsg();

put msg;

goto exit;

end;

transobj=0;

call msmqsendmsg(hRespQ, hData, transobj, rc);

if rc ^= 0 then do;

put ’MSMQSendMsg: failed to

send response message’;

msg = sysmsg();

put msg;

end;

else put ’reply sent to the response queue’;
end;

exit:

if	 hQueue ^= 0 then do;
put ’----------------- Close queue ---------------’;

call msmqclosequeue(hQueue, rc);

if rc ^= 0 then do;

put ’MSMQCloseQueue: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQCloseQueue: succeeded’;

end;

if	 hRespQ ^= 0 then do;
put ’------------ Close Response Queue -----------’;

call msmqclosequeue(hRespQ, rc);

if rc ^= 0 then do;

put ’MSMQCloseQueue: failed to

close response queue’;

msg = sysmsg();

put msg;

end;

else put ’MSMQCloseQueue: succeeded

to close response queue’;

Using Microsoft Message Queuing Services (MSMQ) � DATA Step Coding Examples 113

end;

if Qid ^= 0 then do;

call msmqfree(Qid);

put ’Qid handle freed’;

end;

if respQid ^= 0 then do;

call msmqfree(respQid);

put ’respQid handle freed’;

end;

if hMap ^= 0 then do;

call msmqfree(hMap);

put ’Map descriptor handle freed’;

end;

run;

Processing a Text File

This example shows how to put a text file on a queue.

data _null_;

length rc 8;

length msg $ 200;

length Qid hQueue hmap 8;

length appspec 8;

length corrid $ 40;

length record $ 256;

length seqno 8 seqstr $ 4;

/* send this file to the queue */

infile ’d:\test.txt’ length=reclen end=eof;

put ’--------- Obtain Formatname from Pathname -------’;

call msmqpathtoformat(".\testq", Qid, rc);

if(rc) then do;

if(rc = input(’03000EC0’x,ib4.)) then do;

put ’Queue does not exist so create it...’;

call msmqcreatequeue(Qid, rc, "pathname,label",

".\testq", "test queue");
if(rc) then do;

put ’MSMQCreateQueue: failed’;

msg = sysmsg();

put msg;

goto exit;
end;

end;

else do;

put ’MSMQPathToFormat: failed’;

msg = sysmsg();

put msg;

goto exit;

114 DATA Step Coding Examples � Chapter 5

end;
end;

put ’------------------ Open Queue ------------------’;

call msmqopenqueue(Qid, "SEND", "SHARE", hQueue, rc);

if(rc) then do;
put ’MSMQOpenQueue: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

put ’----------- Generate map descriptor -----------’;

/* longest record in file is 255 bytes+1 length byte... */

/* therefore all messages on the queue pertaining to */

/* this file will be blank-padded for 256 bytes... */

call msmqmap(hmap, rc, "char,,256");
if rc ^= 0 then do;

put ’MSMQMap: failed’;

msg = sysmsg();

put msg;

goto exit;
end;

/* designate that messages belong to a text file */

appspec=100000;

/* all of these messages will have
the same correlationid+seqno */

corrid="46696c65212121"; /* File!!! */

seqno = 0;

do	 until(eof);

input @;

input record $varying256. reclen;

call msmqsetparms(hdata, hmap, rc, record);

if(rc) then do;

put ’MSMQSetParms: failed’;

msg = sysmsg();

put msg;

goto exit;
end;

/* add sequence # to correlationid */

seqstr = put(seqno, hex4.);

substr(corrid,15,4) = seqstr;
seqno = seqno+1;

put ’--- Send message to queue ----’;

call msmqsendmsg(hQueue, hdata, 0, rc,

"appspecific,correlationid", appspec, corrid);

Using Microsoft Message Queuing Services (MSMQ) � DATA Step Coding Examples 115

if(rc) then do;

put ’MSMQSendMsg: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

/* free data */

call msmqfree(hdata);

end;

exit:
if(hQueue) then do;

call msmqclosequeue(hQueue, rc);

if(rc) then do;

put ’MSMQCloseQueue: failed’;

msg = sysmsg();

put msg;

end;

end;

if(Qid) then

call msmqfree(Qid);

if(hmap) then

call msmqfree(hmap);

stop;

run;

Getting a Text File from a Queue

This example shows how to receive the first text file on a queue. The appspecific
parameter is equal to 100000.

filename output ’d:\testdup.txt’;

data _null_;

length rc 8;

length msg $ 200;

length Qid hQueue hmap hCursor hCursor2 8;

length corrid corrid2 filecorrid $ 40;

length appspec 8;

length action action2 $ 12;

length record $ 256;

length seqno 8;

fileid = fopen(’output’, ’o’, 256, ’v’);

if(fileid = 0) then do;

put ’Error opening output file...’;

goto exit;

end;

116 DATA Step Coding Examples � Chapter 5

put ’--------- Obtain Formatname from Pathname -------’;

call msmqpathtoformat(".\testq", Qid, rc);

if(rc) then do;

put ’MSMQPathToFormat: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

put ’------------------ Open Queue ------------------’;

call msmqopenqueue(Qid, "RECEIVE", "SHARE", hQueue, rc);

if(rc) then do;
put ’MSMQOpenQueue: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

call msmqcreatecursor(hQueue, hCursor, rc);

if(rc) then do;

put ’MSMQCreateCursor failed’;

msg = sysmsg();
put msg;

end;

/* peek first to see if belongs to the file you want */

action="PEEK_CURRENT";

seqno=0;

recv:

call msmqreceivemsg(hQueue, 0, action, hCursor, 0, rc,

"APPSPECIFIC,CORRELATIONID", appspec, corrid);
if(rc) then do;

if(rc = input(’1B000EC0’x,ib4.)) then do;

put ’reached end of queue’;

goto exit;

end;

put ’MSMQReceiveMsg: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

/* default action */

action="PEEK_NEXT";

if(appspec = 100000) then do;
/* file processing... */

outofseq=0;

if(filecorrid = "") then do;

/* file begins at this message */

Using Microsoft Message Queuing Services (MSMQ) � DATA Step Coding Examples 117

/* write all correlating messages to this file */

filecorrid = substr(corrid,1,14);

put ’--------- Generate map descriptor ---------’;

/* all file messages were sent to the queue as
256 bytes blank-padded */

call msmqmap(hmap, rc, "char,,256");

if(rc) then do;

put ’MSMQMap: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

end;

/* make sure message belongs to this file */

if(substr(corrid,1,14) = filecorrid) then do;

if(seqno ^= input(substr(corrid,15,4),

hex4.)) then do;

/* this message is out of sequence

so search for it */

outofseq=1;

call msmqcreatecursor(hQueue, hCursor2, rc);

if(rc) then do;

put ’MSMQCreateCursor failed’;

msg = sysmsg();
put msg;

end;

action2="PEEK_CURRENT";

peeknxt:
call msmqreceivemsg(hQueue, 0, action2,

hCursor2, 0, rc, "CORRELATIONID", corrid2);

if(rc) then do;

if(rc = input(’1B000EC0’x,ib4.)) then do;

put ’Error: reached end of queue while
searching for out-of-sequence msg’;

goto exit;

end;

put ’MSMQReceiveMsg: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

if(seqno ^= input(substr(corrid2,15,4),
hex4.)) then do;

action2="PEEK_NEXT";

goto peeknxt;

end;

end;

118 DATA Step Coding Examples � Chapter 5

/*	 increment sequence number for next

expected message */

seqno=seqno+1;

/* retrieve record from internal buffer */
call msmqgetparms(hmap, rc, record);

if(rc) then do;

put ’MSMQGetParms: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

put ’write record to file’;

rc = fput(fileid, record);

if(rc) then do;

put ’Error writing to output file buffer...’;

goto exit;

end;

/* flush it to disk */

rc = fwrite(fileid);

if(rc) then do;

put ’Error writing to output file...’;

goto exit;

end;

/*	 now remove it from the queue...

don’t care about receiving body */

body=0;

if(outofseq) then do;
call msmqreceivemsg(hQueue, 0, "RECEIVE",

hCursor2, 0, rc, "body", body);

/*	 close this cursor */

call msmqclosecursor(hCursor2, rc);
end;

else do;

call msmqreceivemsg(hQueue, 0, "RECEIVE",

hCursor, 0, rc, "body", body);

end;

/* we are now pointing at the next message */

action="PEEK_CURRENT";

end;

end;

/*	 finish retrieving all messages belonging

to this file */

goto recv;

Using Microsoft Message Queuing Services (MSMQ) � DATA Step Coding Examples 119

exit:
if(hQueue) then do;

call msmqclosequeue(hQueue, rc);

if(rc) then do;

put ’MSMQCloseQueue: failed’;

msg = sysmsg();

put msg;

end;

end;

if(Qid) then

call msmqfree(Qid);

if(hmap) then

call msmqfree(hmap);

/* close file */

rc = fclose(fileid);

if(rc) then put ’Error closing output file’;

run;

Processing a Binary File

This example shows how to put a binary file on a queue. It assumes that the queue
named "adminq" has been created before this.

data _null_;

length rc 8;

length msg $ 200;

length Qid hQueue hmap 8;

length appspec 8;

length corrid $ 40;

length msgbuf $ 256;

length seqno 8 seqstr $ 4;

/* read in as a stream of bytes */

infile ’d:\test.exe’ recfm=f lrecl=1 end=eof;

put ’--------- Obtain Formatname from Pathname -------’;

call msmqpathtoformat(".\testq", Qid, rc);

if(rc) then do;

if(rc = input(’03000EC0’x,ib4.)) then do;

put ’Queue does not exist so create it’;

call msmqcreatequeue(Qid, rc, "pathname,label",

".\testq", "test queue:");

if(rc) then do;

put ’MSMQCreateQueue: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

end;

else do;

120 DATA Step Coding Examples � Chapter 5

put ’MSMQPathToFormat: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

end;

put ’------------------ Open Queue ------------------’;

call msmqopenqueue(Qid, "SEND", "SHARE", hQueue, rc);

if(rc) then do;

put ’MSMQOpenQueue: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

put ’----------- Generate map descriptor -----------’;

/* send 256 byte messages to the queue */

call msmqmap(hmap, rc, "char,,256");

if(rc) then do;

put ’MSMQMap: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

/* designate messages belong to a binary file */

appspec=100001;

/* all of these messages will have the

same correlationid */

corrid="42696e46696c65212121"; /* BinFile!!! */

seqno = 0;

i=1;

do	 until(eof);

/* read a byte at a time */
input x $char1.;

i+1;

substr(msgbuf,i,1) = x;

if i = 256 or eof then do;

/* set length of this record embedded

as first byte of message */
substr(msgbuf,1,1) = put(i-1,pib1.);

call msmqsetparms(hdata, hmap, rc, msgbuf);

if(rc) then do;

put ’MSMQSetParms: failed’;
msg = sysmsg();

put msg;

goto exit;

end;

Using Microsoft Message Queuing Services (MSMQ) � DATA Step Coding Examples 121

/* add sequence # to correlationid */
seqstr = put(seqno, hex4.);

substr(corrid,21,4) = seqstr;

seqno = seqno + 1;

put ’--- Send message to queue ----’;
call msmqsendmsg(hQueue, hdata, 0, rc,

"appspecific,correlationid,acknowledge,

admin_queue", appspec, corrid,

"nack_reach_queue", ".\adminq");

if(rc) then do;

put ’MSMQSendMsg: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

/* free data */

call msmqfree(hdata);

/* reset message buffer entities */

i=1;

msgbuf="";

end;

end;

exit:

if(hQueue) then do;

call msmqclosequeue(hQueue, rc);

if(rc) then do;

put ’MSMQCloseQueue: failed’;

msg = sysmsg();

put msg;

end;

end;

if(Qid) then

call msmqfree(Qid);

if(hmap) then

call msmqfree(hmap);

stop;

run;

Getting a Binary File from a Queue

This example shows how to receive the first binary file on a queue.

filename output ’d:\testdup.exe’;

data _null_;

122 DATA Step Coding Examples � Chapter 5

length rc 8;

length msg $ 200;

length Qid hQueue hmap hCursor hCursor2 8;

length corrid corrid2 filecorrid $ 40;

length appspec 8;

length action action2 $ 12;

length msgbuf stream $ 256;

length len 8;

length seqno 8;

fileid = fopen(’output’, ’o’, 0, ’b’);

if(fileid = 0) then do;
put ’Error opening output file...’;

goto exit;

end;

put ’--------- Obtain Formatname from Pathname -------’;

call msmqpathtoformat(".\testq", Qid, rc);

if(rc) then do;

put ’MSMQPathToFormat: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

put ’------------------ Open Queue ------------------’;

call msmqopenqueue(Qid, "RECEIVE", "SHARE", hQueue, rc);

if(rc) then do;
put ’MSMQOpenQueue: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

call msmqcreatecursor(hQueue, hCursor, rc);

if(rc) then do;

put ’MSMQCreateCursor failed’;

msg = sysmsg();
put msg;

end;

/* peek first to see if belongs to the file you want */

action="PEEK_CURRENT";

seqno=0;

recv:

call msmqreceivemsg(hQueue, 0, action, hCursor, 0, rc,

"APPSPECIFIC,CORRELATIONID", appspec, corrid);
if(rc) then do;

if(rc = input(’1B000EC0’x,ib4.)) then do;

put ’reached end of queue’;

goto exit;

end;

Using Microsoft Message Queuing Services (MSMQ) � DATA Step Coding Examples 123

put ’MSMQReceiveMsg: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

/* default action */

action="PEEK_NEXT";

if(appspec = 100001) then do;

/* file processing */
outofseq=0;

if(filecorrid = "") then do;

/* file begins at this message */

/* write all correlating messages to this file */

filecorrid = substr(corrid,1,20);

put ’--------- Generate map descriptor ---------’;

/* all file messages were sent to the queue as
256 bytes blank-padded */

call msmqmap(hmap, rc, "char,,256");

if(rc) then do;

put ’MSMQMap: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

end;

/* make sure message belongs to this file */

if(substr(corrid,1,20) = filecorrid) then do;

if(seqno ^= input(substr(corrid,21,4), hex4.))

then do;

/* this message is out of sequence

so search for it */

outofseq=1;

call msmqcreatecursor(hQueue, hCursor2, rc);

if(rc) then do;

put ’MSMQCreateCursor failed’;

msg = sysmsg();
put msg;

goto exit;

end;

action2="PEEK_CURRENT";
peeknxt:

call msmqreceivemsg(hQueue, 0, action2,

hCursor2, 0, rc, "CORRELATIONID", corrid2);

if(rc) then do;

if(rc = input(’1B000EC0’x, ib4.)) then do;

124 DATA Step Coding Examples � Chapter 5

put ’Error: reached end of queue while
searching for out-of-sequence msg’;

goto exit;

end;

put ’MSMQReceiveMsg: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

if(seqno ^= input(substr(corrid2,21,4), hex4.))
then do;

action2="PEEK_NEXT";

goto peeknxt;

end;

end;

/* increment sequence number for

next expected message */

seqno=seqno+1;

/* retrieve record from internal buffer */

call msmqgetparms(hmap, rc, msgbuf);

if(rc) then do;

put ’MSMQGetParms: failed’;

msg = sysmsg();

put msg;

goto exit;

end;

/* length of this stream is embedded

as 1st byte in msg */
len = input(substr(msgbuf,1,1), pib1.);

stream = substr(msgbuf,2);

put ’write stream to file’;

rc = fput(fileid, substr(stream,1,len));
if(rc) then do;

put ’Error writing to output file buffer...’;

goto exit;

end;

/* flush it to disk */
rc = fwrite(fileid);

if(rc) then do;

put ’Error writing to output file...’;

goto exit;

end;

/* now remove it from the queue...

don’t care about receiving body */

body=0;

Using Microsoft Message Queuing Services (MSMQ) � DATA Step Coding Examples 125

if(outofseq) then do;
call msmqreceivemsg(hQueue, 0, "RECEIVE",

hCursor2, 0, rc, "body", body);

/* close this cursor */

call msmqclosecursor(hCursor2, rc);
end;

else do;

call msmqreceivemsg(hQueue, 0, "RECEIVE",

hCursor, 0, rc, "body", body);

end;

/* we are now pointing at the next message */

action="PEEK_CURRENT";

end;

end;

/* finish retrieving all messages belonging

to this file */

goto recv;

exit:
if(hQueue) then do;

call msmqclosequeue(hQueue, rc);

if(rc) then do;

put ’MSMQCloseQueue: failed’;

msg = sysmsg();

put msg;

end;

end;

if(Qid) then

call msmqfree(Qid);

if(hmap) then

call msmqfree(hmap);

/* close file */

rc = fclose(fileid);

if(rc) then put ’Error closing output file’;

run;

126

127

C H A P T E R

6
MSMQ Call Routines

Overview of MSMQ Call Routines 127

Overview of MSMQ Call Routines

Integration Technologies supports a set of SAS CALL routines that interface directly
with the MSMQ API. This section documents those CALL routines.

MSMQABORTTRANS

Cancels a unit of work from an MSMQ transaction.

Syntax

CALL MSMQABORTTRANS(transObj, rc);

Arguments

transObj
Numeric, input

Specifies the transaction object that is obtained from a previous
MSMQBEGINTRANS function call.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example cancels a unit of work from an MSMQ transaction.

128 MSMQBEGINTRANS � Chapter 6

length msg $ 200;

rc=0;

CALL MSMQABORTTRANS(transobj, rc);

if rc ^= 0 then do;

put ’MSMQAbortTrans: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQAbortTrans: succeeded’;

MSMQBEGINTRANS

Creates an internal MSMQ transaction object that can be used to send messages to a queue or
read messages from a queue.

Syntax

CALL MSMQBEGINTRANS(transObj, rc);

Arguments

transObj
Numeric, output

Returns the transaction object.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example creates a transaction object.

length msg $ 200;

transobj=0;

rc=0;

CALL MSMQBEGINTRANS(transobj, rc);

if rc ^= 0 then do;

put ’MSMQBeginTrans: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQBeginTrans: succeeded’;

MSMQ Call Routines � MSMQCREATEQUEUE 129

MSMQCREATEQUEUE

Creates a queue at a specified MSMQ pathname.

Syntax
CALL MSMQCREATEQUEUE(qid, rc, propids, value1 <,value2, ...>);

Arguments

qid
Numeric, output

Returns the queue identifier that represents the format name of the queue that is
created. The format name of the queue is a unique name generated by MSMQ.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

propids
Character, input

Specifies one or more properties that the queue exhibits when it is created. This
parameter is a character string with each applicable property separated by a comma.
PATHNAME is the only required property. You must provide a value parameter for
each property specified in the propids string. Each property ID in the propids string
is associated positionally with a value parameter.

The following creation properties are valid:

AUTHENTICATE
Specifies whether the queue accepts only authenticated messages. The following
values are valid:

NONE (default)
Specifies the queue accepts either authenticated or non-authenticated messages.

130 MSMQCREATEQUEUE � Chapter 6

ALWAYS

Specifies the queue always requires authenticated messages.

BASEPRIORITY
Specifies a single base priority for all messages that are sent to a public queue.
Values range from -32768 to 32767, where 32767 is the highest priority and 0 is
the default priority.

JOURNAL
Determines whether messages retrieved from the queue are also copied to its
journal queue. The following values are valid:

NONE (default)

Specifies that messages that are removed from the queue are discarded.

ALWAYS
Specifies that messages removed from the queue are always stored in its journal
queue.

JOURNAL_QUOTA
Specifies the maximum size (in kilobytes) of the journal queue. The default size is
infinite.

LABEL
Describes the queue. The default is a blank label ().

PATHNAME
Specifies the MSMQ pathname of the queue. The format of a public queue is:

MachineName\QueueName

The format of a private queue is:

MachineName\PRIVATE$\QueueName

PRIV_LEVEL
Specifies the privacy level that is required by the queue. The following values are
valid:

NONE

Specifies that the queue accepts only non-private (clear) messages.

BODY

Specifies that the queue accepts only private (encrypted) messages.

OPTIONAL (default)

Specifies that the queue accepts both private and non-private messages.

QUOTA
Specifies the maximum size (in kilobytes) of the queue. The default size is infinite.

TRANSACTION
Specifies whether the queue is a transaction queue or a non-transaction queue.
The following values are valid:

NONE (default)

Specifies that the queue does not accept transaction operations.

ALWAYS
Specifies that all messages that are sent to the queue must always be done
through an MSMQ transaction.

MSMQ Call Routines � MSMQCLOSECURSOR 131

TYPE

Specifies the type of service that is provided by the queue. The value of the TYPE

property is a universal unique identifier (UUID) in the form of a character string

that represents the binary data.

Note: Security of the queue defaults as follows: �

3 Owner: process user

3 Group: process group

3 DACL: queue creator - has full control

3 Queue users

3 get queue properties

3 get queue security

3 send messages

These defaults can either be changed programmatically by using the

MSMQSETQSEC routine or via the MSMQ Explorer interface.

Details

The routine also registers the queue in the MSMQ Information Store (MQIS) for public
queues or registers it on the local computer for private queues.

Example

This example creates a public queue.

length msg $ 200;

qid=0;

rc=0;

CALL MSMQCREATEQUEUE(qid, rc, ’’PATHNAME,LABEL’’, ’’pcpad\testq’’, ’’Test Queue’’);

if rc ^= 0 then do;

put ’MSMQCreateQueue: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQCreateQueue: succeeded’;

MSMQCLOSECURSOR

Closes a given cursor thereby allowing MSMQ to release the associated resources.

Syntax

CALL MSMQCLOSECURSOR(hCursor, rc);

132 MSMQCLOSEQUEUE � Chapter 6

Arguments

hCursor
Numeric, input

Specifies the handle to a cursor that is used for looking at messages in the queue.
The MSMQCREATECURSOR routine is used to create a cursor and obtain its handle.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example closes a cursor.

length msg $ 200;

rc=0;

CALL MSMQCLOSECURSOR(hCursor, rc);

if rc ^= 0 then do;

put ’MSMQCloseCursor: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQCloseCursor: succeeded’;

MSMQCLOSEQUEUE

Closes a given queue.

Syntax

CALL MSMQCLOSEQUEUE(hQueue, rc);

Arguments

hQueue
Numeric, input

Specifies the MSMQ handle to an open queue. This parameter is obtained from a
previous MSMQOPENQUEUE function call.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,

MSMQ Call Routines � MSMQCOMMITTRANS 133

it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example closes a queue.

length msg $ 200;

rc=0;

CALL MSMQCLOSEQUEUE(hQueue, rc);

if rc ^= 0 then do;

put ’MSMQCloseQueue: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQCloseQueue: succeeded’;

MSMQCOMMITTRANS

Commits a unit of work from an MSMQ transaction.

Syntax
CALL MSMQCOMMITTRANS(transObj, rc);

Arguments

transObj
Numeric, input

Specifies the transaction object that is obtained from a previous
MSMQBEGINTRANS function call.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example commits a unit of work from an MSMQ transaction.

length msg $ 200;

rc=0;

CALL MSMQCOMMITTRANS(transobj, rc);

if rc ^= 0 then do;

put ’MSMQCommitTrans: failed’;

msg = sysmsg();

134 MSMQCREATECURSOR � Chapter 6

put msg;
end;

else put ’MSMQCommitTrans: succeeded’;

MSMQCREATECURSOR

Creates a cursor that is used to maintain a specific location in a queue when reading its messages.

Syntax
CALL MSMQCREATECURSOR(hQueue, hCursor, rc);

Arguments

hQueue
Numeric, input

Specifies the MSMQ handle to an open queue. This parameter is obtained from a
previous MSMQOPENQUEUE function call.

hCursor
Numeric, output

Returns the handle of the cursor that is used for looking at messages in the queue.
The MSMQCREATECURSOR routine is used to create a cursor and obtain its handle.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example creates a cursor.

length msg $ 200;

hCursor=0;

rc=0;

CALL MSMQCREATECURSOR(hQueue, hCursor, rc);

if rc ^= 0 then do;

put ’MSMQCreateCursor: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQCreateCursor: succeeded’;

MSMQ Call Routines � MSMQFREE 135

MSMQDELETEQUEUE

Deletes a queue from the MQIS in the case of public queues, or from the local computer in the
case of private queues.

Syntax

CALL MSMQDELETEQUEUE(qid, rc);

Arguments

qid
Numeric, input

Specifies the queue identifier that represents the format name of the queue to be
deleted.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example deletes a queue.

length msg $ 200;

rc=0;

CALL MSMQDELETEQUEUE(qid, rc);

if rc ^= 0 then do;

put ’MSMQDeleteQueue: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQDeleteQueue: succeeded’;

MSMQFREE

Frees a SAS internal handle, thereby releasing its resources.

Syntax

CALL MSMQFREE(handle);

136 MSMQFREESCONTEXT � Chapter 6

Arguments

handle
Numeric, input

Specifies a SAS internal handle that is obtained from a previous CALL routine.
The following CALL routines return handles that can be used as input to this routine
(the type of handle is also shown after the CALL routine name):

3 MSMQCREATEQUEUE - qid (format name representation)
3 MSMQPATHTOFORMAT - qid
3 MSMQINSTTOFORMAT - qid
3 MSMQHNDLTOFORMAT - qid
3 MSMQMAP - hMap
3 MSMQSETPARMS - hData

Example

This example frees a handle and its resources.

CALL MSMQFREE(Handle);

MSMQFREESCONTEXT

Frees the memory that is allocated by MSMQGETSCONTEXT.

Syntax
CALL MSMQFREESCONTEXT(hContext, rc);

Arguments

hContext
Numeric, input

Specifies the handle to the security context buffer that is allocated by MSMQ.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example frees the security context buffer.

length msg $ 200;

rc=0;

MSMQ Call Routines � MSMQGETPARMS 137

CALL MSMQFREESCONTEXT(hContext, rc);
if	 rc ^= 0 then do;

put ’MSMQFreeSContext: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQFreeSContext: succeeded’;

MSMQGETPARMS

Retrieves values of SAS variables from a previous MSMQ message that was received by an
MSMQRECEIVEMSG call.

Syntax

CALL MSMQGETPARMS(hMap, rc, parm1 <,parm2, parm3, ...>);

Arguments

hMap
Numeric, input

Specifies the SAS internal map descriptor handle that is obtained from a previous
MSMQMAP function call.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() to obtain a textual
description of the return code.

parms
Numeric or character, input

Specifies one or more parameters that are used to define the values of SAS
variables in a message. Initialize the variables appropriately to guarantee that
truncation of the returned values does not occur.

Details

This message is available until the next MSMQRECEIVEMSG call is performed.

Example

This example gets values of SAS variables from a received message.

length parm1 parm2 parm3;

length parm4 $ 200;

rc=0;

CALL MSMQGETPARMS(hMap, rc, parm1, parm2, parm3, parm4);

138 MSMQGETQPROP � Chapter 6

MSMQGETQPROP

Retrieves properties for a specific queue.

Syntax
CALL MSMQGETQPROP(qid, rc, propids, value1 <,value2, ...>);

Arguments

qid
Numeric, input

Specifies the queue identifier that represents the format name of the queue.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

propids
Character, input

Identifies one or more properties that you want to retrieve. This parameter is a
character string with each applicable property separated by a comma. For each
property identified by propids, you must provide a value parameter that specifies a
variable name to use to hold the returned property value.

The following propids and values are valid:

AUTHENTICATE
Retrieves whether the queue accepts only authenticated messages. Initialize the
variable appropriately to prevent truncation of the returned value from occurring.
The following values are valid:

NONE
Specifies the queue accepts either authenticated or non-authenticated messages.

ALWAYS
Specifies the queue always requires authenticated messages.

BASEPRIORITY
Retrieves the base priority for all messages that are sent to a public queue. The
value is a numeric that ranges from -32768 to 32767, where 32767 is the highest
priority and 0 is the default priority.

CREATE_TIME
Retrieves the time and date when the queue was created. The value is a numeric
that represents the number of seconds elapsed since midnight (00:00:00), January
1, 1970 (Coordinated Universal time).

INSTANCE
Retrieves the queue’s identifier (UUID). The value is a character string that
represents binary data. Initialize the variable appropriately to guarantee that
truncation of the returned value does not occur.

MSMQ Call Routines � MSMQGETQPROP 139

JOURNAL
Retrieves if messages are also copied to its journal queue. Initialize the variable to
a size of at least 32 to guarantee that truncation of the returned value does not
occur. The following values are valid:

NONE

Specifies that messages removed from the queue are discarded.

ALWAYS
Specifies that messages removed from the queue are always stored in its journal
queue.

JOURNAL_QUOTA
Retrieves the maximum size (in kilobytes) of the journal queue.

LABEL
Retrieves a description of the queue. The value is a character string. Initialize the
variable appropriately to prevent truncation of the returned value from occurring.

MODIFY_TIME
Retrieves the last time the queue’s properties were modified. The value is a
numeric that represents the number of seconds elapsed since midnight (00:00:00),
January 1, 1970 (Coordinated Universal time).

PATHNAME
Retrieves the MSMQ pathname of the queue. The value is a character string.
Initialize the variable appropriately to prevent truncation of the returned value
from occurring.

PRIV_LEVEL
Retrieves the privacy level that is required by the queue. The value is a character
string. Initialize the variable appropriately to prevent truncation of the returned
value from occurring. The following values are valid:

NONE

Specifies that the queue accepts only non-private (clear-text) messages.

BODY

Specifies that the queue accepts only private (encrypted) messages.

OPTIONAL

Specifies that the queue accepts both private and non-private messages.

QUOTA
Retrieves the maximum size (in kilobytes) of the queue.

TRANSACTION
Retrieves whether the queue uses MQMQ transactions. The value is a character
string. Initialize the variable appropriately to prevent truncation of the returned
value from occurring. The following values are valid:

NONE

Specifies that the queue does not accept transaction operations.

ALWAYS
Specifies that all messages that are sent to the queue must always be done
through an MSMQ transaction.

TYPE
Retrieves the type of service that is provided by the queue. The value of the TYPE
property is a universal unique identifier (UUID) in the form of a character string
that represents the binary data. Initialize the variable to a size of at least 32 to
guarantee that truncation of the returned value does not occur.

140 MSMQGETQSEC � Chapter 6

Example

This example gets the queue properties and displays them.

length msg $ 200;

length base createt jquota modifyt quota 8;

length auth journal priv trans $ 10;

length inst type $ 32;

length label path $ 80;

rc=0;

CALL MSMQGETQPROP(qid, rc, "AUTHENTICATE,BASEPRIORITY,CREATE_TIME,INSTANCE,JOURNAL,

JOURNAL_QUOTA,LABEL,MODIFY_TIME,PATHNAME,PRIV_LEVEL,

QUOTA,TRANSACTION,TYPE",

auth, base, createt, inst, journal, jquota, label,

modifyt, path, priv, quota, trans, type);

if rc ^= 0 then do;

put ’MSMQGetQProp: failed’;

msg = sysmsg();

put msg;

end;

else do;

put ’MSMQGetQProp: succeeded’;

put ’authenticate is ’ auth;

put ’base priority is ’ base;

/* convert MSMQ create time to SAS datetime format */

createt = createt + 10*365*24*3600 + 3*24*3600 - 5*3600;

put ’create time was ’ createt datetime.;

put ’instance identifier is ’ inst;

put ’journal enablement is ’ journal;

put ’journal quota is ’ jquota;

put ’label is ’ label;

/* convert MSMQ modify time to SAS datetime format */

modifyt = modifyt + 10*365*24*3600 + 3*24*3600 - 5*3600;

put ’last modification time was ’ modifyt datetime.;

put ’pathname is ’ path;

put ’privacy level is ’ priv;

put ’quota is ’ quota;

put ’transaction requirement is ’ trans;

put ’type of service is ’ type;

end;

MSMQGETQSEC

Retrieves the access control security information for the specified queue.

Syntax

CALL MSMQGETQSEC(qid, rc, owner, dacl);

MSMQ Call Routines � MSMQGETQSEC 141

Arguments

qid
Numeric, input

Specifies the queue identifier that represents the format name of the queue.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

owner
Character, output

Returns the owner of the queue. Initialize this variable appropriately to guarantee
that truncation of the returned value does not occur.

dacl
Character, output

Returns the discretionary access control list for the queue. Initialize this variable
appropriately to guarantee that truncation of the returned value does not occur. This
parameter is returned in the form of

Domain\Account:accessType:Permissions,...

where accessType is one of the following:
3 ALLOW (Permissions allowed)

3 DENY (Permissions denied)

Permissions is one or more of the following separated by ’+’:

3 Rj (Receive Journal)

3 Rq (Receive Message)
3 Pq (Peek Message)
3 Sq (Send Message)

3 Sp (Set Properties)
3 Gp (Get Properties)
3 D (Delete Queue)

3 Pg (Get Permissions)
3 Ps (Set Permissions)
3 O (Take Ownership)

Example

This example gets the queue security properties and displays them.

length msg $ 200;

length owner $ 60;

length dacl $ 200;

rc=0;

CALL MSMQGETQSEC(qid, rc, owner, dacl);

if rc ^= 0 then do;

put ’MSMQGetQSec: failed’;

142 MSMQGETSCONTEXT � Chapter 6

msg = sysmsg();
put msg;

end;

else do;

put ’MSMQGetQSec: succeeded’;

put ’owner is ’ owner;
put ’dacl is ’ dacl;

end;

MSMQGETSCONTEXT

Retrieves security information that is needed to authenticate messages.

Syntax
CALL MSMQGETSCONTEXT(certStor, hContext, rc);

Arguments

certStor
Character, input

Specifies the name of the system certificate store to use to locate the desired
external certificate. If NULL, then the internal security certificate that is provided
by MSMQ is used. Generally, MY is used. The corresponding registry entry is:

HKEY_CURRENTUSER\Software\Microsoft\SystemCertificates\MY\Certificates

hContext
Numeric, output

Returns a handle to the security context buffer that is allocated by MSMQ.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example gets the security context from internal MSMQ certificate.

length msg $ 200;

hContext=0;

rc=0;

CALL MSMQGETSCONTEXT(’’’’, hContext, rc);

if rc ^= 0 then do;

put ’MSMQGetSContext: failed’;

msg = sysmsg();

put msg;

MSMQ Call Routines � MSMQINSTTOFORMAT 143

end;

else put ’MSMQGetSContext: succeeded’;

MSMQHNDLTOFORMAT

Returns a queue identifier that represents a format name based on its open handle.

Syntax
CALL MSMQHNDLTOFORMAT(hQueue, qid, rc);

Arguments

hQueue
Numeric, input

Specifies the MSMQ handle to an open queue. This parameter is obtained from a
previous MSMQOPENQUEUE function call.

qid
Numeric, output

Returns the queue identifier that represents the format name of the queue.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example obtains the format name of a queue from a queue handle.

length msg $ 200;

qid=0;

rc=0;

CALL MSMQHDNLTOFORMAT(hQueue, qid, rc);

if rc ^= 0 then do;

put ’MSMQHndlToFormat: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQHndlToFormat: succeeded’;

MSMQINSTTOFORMAT

Returns a queue identifier that represents a format name based on the instance identifier provided.

144 MSMQLOCATE � Chapter 6

Syntax

CALL MSMQINSTTOFORMAT(instance, qid, rc);

Arguments

instance
Character, input

Specifies the universal unique identifier (UUID) instance of the queue.

qid
Numeric, output

Returns the queue identifier that represents the format name of the queue.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example obtains the format name of a queue from an instance UUID.

length msg $ 200;

qid=0;

rc=0;

CALL MSMQINSTTOFORMAT(guid, qid, rc);

if rc ^= 0 then do;

put ’MSMQInstToFormat: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQInstToFormat: succeeded’;

MSMQLOCATE

Provides a means of locating a single public queue (or set of public queues) based on a set of
criteria.

Syntax

CALL MSMQLOCATE(criteria, sortpref, rc, cProps, propids, value1 <,value2, ...>);

MSMQ Call Routines � MSMQLOCATE 145

Arguments

criteria
Character, input

Identifies the criteria to use for locating the queue or queues. The criteria are
based on a queue’s properties and each property’s value. The criteria parameter uses
the following format:

propid:op:value, ...

where propid is a queue property, value is the propid value, and op is an operator
used as the selection criteria. The op parameter can be:

3 LT (Less than)
3 LE (Less than or equal)
3 EQ (Equal)
3 NE (Not equal)
3 GE (Greater than or equal)
3 GT (Greater than)

sortpref
Character, input

Specifies the queue sorting preference. This parameter uses the following format:

propid:order, ...

where propid is a queue property, and order is the order preference. The order

parameter can be specified as:

3 ASCEND (Ascending order)
3 DESCEND (Descending order)

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

cProps
Numeric, output

Returns the number of property values that resulted from the criteria search.

propids
Character, input

Identifies one or more properties that you want to retrieve. This parameter is a
character string with each applicable property separated by a comma.

Note: The number of values specified should be a multiple of propids specified.
For example, if you specified two propids and wanted to retrieve these properties for
the first three queues that meet the specified criteria, you must specify six (3x2)
value parameters in order to retrieve these property values for all of the queues. �

The following propids and values are valid:

AUTHENTICATE
Retrieves whether the queue accepts only authenticated messages. Initialize the
variable appropriately to prevent truncation of the returned value from occurring.
The following values are valid:

146 MSMQLOCATE � Chapter 6

NONE
Specifies the queue accepts either authenticated or non-authenticated messages.

ALWAYS

Specifies the queue always requires authenticated messages.

BASEPRIORITY
Retrieves the base priority for all messages that are sent to a public queue. The
value is a numeric that ranges from -32768 to 32767, where 32767 is the highest
priority and 0 is the default priority.

CREATE_TIME
Retrieves the time and date when the queue was created. The value is a numeric
that represents the number of seconds elapsed since midnight (00:00:00), January
1, 1970 (Coordinated Universal time).

INSTANCE
Retrieves the queue’s identifier (UUID). The value is a character string that
represents binary data. Initialize the variable to a size of at least 32 to guarantee
that truncation of the returned value does not occur.

JOURNAL
Queries whether messages are also copied to its journal queue. Initialize the
variable to a size of at least 32 to guarantee that truncation of the returned value
does not occur. The following values are valid:

NONE

Specifies that messages removed from the queue are discarded.

ALWAYS
Specifies that messages removed from the queue are always stored in its journal
queue.

JOURNAL_QUOTA
Retrieves the maximum size (in kilobytes) of the journal queue.

LABEL
Retrieves a description of the queue. The value is a character string. Initialize the
variable appropriately to prevent truncation of the returned value from occurring.

PATHNAME
Retrieves the MSMQ pathname of the queue. The value is a character string.
Initialize the variable appropriately to prevent truncation of the returned value
from occurring.

PRIV_LEVEL
Retrieves the privacy level that is required by the queue. The value is a character
string. Initialize the variable appropriately to prevent truncation of the returned
value from occurring. The following values are valid:

NONE

Specifies that the queue accepts only non-private (clear-text) messages.

BODY

Specifies that the queue accepts only private (encrypted) messages.

OPTIONAL

Specifies that the queue accepts both private and non-private messages.

QUOTA
Retrieves the maximum size (in kilobytes) of the queue.

MSMQ Call Routines � MSMQLOCATE 147

TRANSACTION

Retrieves whether the queue uses MSMQ transactions. The value is a character

string. Initialize the variable appropriately to prevent truncation of the returned

value from occurring. The following values are valid:

NONE

Specifies that the queue does not accept transaction operations.

ALWAYS
Specifies that all messages that are sent to the queue must always be done
through an MSMQ transaction.

TYPE
Retrieves the type of service that is provided by the queue. The value of the TYPE
property is a universal unique identifier (UUID) in the form of a character string
that represents the binary data. Initialize the variable to a size of at least 32 to
guarantee that truncation of the returned value does not occur.

Example

This example locates the first three queues with a label Test Queue and returns
AUTHENTICATE, PRIV_LEVEL, and PATHNAME properties.

length msg $ 200;

length cProps 8;

length auth1 auth2 auth3 priv1 priv2 priv3 $ 10;

length path1 path2 path3 $ 80;

rc=0;

cProps=0;

CALL MSMQLOCATE("LABEL:EQ:Test Queue", "", rc, cProps,

"AUTHENTICATE,PRIV_LEVEL,PATHNAME",

auth1, priv1, path1, auth2, priv2, path2, auth3, priv3, path3);

if rc ^= 0 then do;

put ’MSMQLocate: failed’;

msg = sysmsg();

put msg;

end;

else do;

put ’MSMQLocate: succeeded’;

if cProps = 0 then put ’no queues were found’;

else do;

cProps = cProps/3; /* # queues */

if cProps GE 1 then do;

put ’queue 1 - authenticate is ’ auth1;

put ’queue 1 - privacy is ’ priv1;

put ’queue 1 - pathname is ’ path1;

end;

if cProps GE 2 then do;

put ’queue 2 - authenticate is ’ auth2;

put ’queue 2 - privacy is ’ priv2;

put ’queue 2 - pathname is ’ path2;

end;

148 MSMQMAP � Chapter 6

if cProps EQ 3 then do;
put ’queue 3 - authenticate is ’ auth3;

put ’queue 3 - privacy is ’ priv3;

put ’queue 3 - pathname is ’ path3;

end;

end;

MSMQMAP

Defines a data map that can be subsequently used on an MSMQSETPARMS or MSMQGETPARMS
call.

Syntax

CALL MSMQMAP(hMap, rc, desc1 <,desc2, desc3, ...>);

Arguments

hMap
Numeric, output

Returns the SAS internally generated map descriptor handle.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() to obtain a textual
description of the return code.

descs
Character, input

Specifies descriptor parameters that are used to describe the different data types
in a map. Each description (desc1, desc2, ...) defines the data type, an offset from the
beginning of the message, and the length of the data. A descriptor has the following
format:

TYPE<,OFFSET,LENGTH>

where:

TYPE is one of the following:

3 CHAR (Character data)

3 SHORT (Short binary)

3 LONG (Long binary)

3 DOUBLE (Floating point double)

OFFSET
Specifies the offset from the beginning of the message. This property is optional,
so by default the data is not aligned (data starts at next available position in
message).

MSMQ Call Routines � MSMQOPENQUEUE 149

LENGTH
Specifies the length of the data being represented. This property is optional in
most cases. The only time length is required is when setting up to receive
character data. Specifying length for numeric data is ignored because length is
implicitly defined.

Note: Type coercion is performed transparently when you put SAS variables into
an MSMQ message (MSMQSETPARMS) and also when you get SAS variables from
an MSMQ message (MSMQGETPARMS). That is, if the data that you are sending or
receiving is a different type than the SAS variable itself, then the data is coerced into
the appropriate data type. �

Example

This example defines a map to use to send and receive a message with a short, a
long, a double, and a character string. No alignment is specified for any data type, and
strings will always be 200 characters in length (blank padded).

hMap=0;

rc=0;

desc1=’’SHORT’’;

desc2=’’LONG’’;

desc3=’’DOUBLE’’;

desc4=’’CHAR,,200’’;

CALL MSMQMAP(hMap, rc, desc1, desc2, desc3, desc4);

MSMQOPENQUEUE

Opens a queue for sending message to the queue or for reading its messages.

Syntax

CALL MSMQOPENQUEUE(qid, access, shareMode, hQueue, rc);

Arguments

qid
Numeric, input

Specifies the queue identifier that represents the format name of the queue to be
opened.

access
Character, input

Indicates the level of access that users have to the messages in the queue being
opened. The following values are valid:

PEEK

Specifies that messages can only be looked at.

150 MSMQPATHTOFORMAT � Chapter 6

SEND

Specifies that messages can only be sent to the queue.

RECEIVE

Specifies that messages can be looked at and removed from the queue.

shareMode
Character, input

Specifies how the queue is shared. The following values are valid:

SHARE

Specifies that the queue is available to everyone.

DENY_SHARE
Specifies that the process making this function call is the only one that can receive
messages from this queue. If the queue is already opened for receiving messages
by another process, then this call will fail.

hQueue
Numeric, output

Returns the MSMQ handle of the opened queue. This handle is used by

subsequent CALL routines to identify and access the queue.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example opens a queue for sending messages.

length msg $ 200;

hQueue=0;

rc=0;

CALL MSMQOPENQUEUE(qid, ’’SEND’’, ’’SHARE’’, hQueue, rc);

if rc ^= 0 then do;

put ’MSMQOpenQueue: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQOpenQueue: succeeded’;

MSMQPATHTOFORMAT

Returns a queue identifier (qid) handle that represents the format name of the desired queue.

Syntax

CALL MSMQPATHTOFORMAT(pathName, qid, rc);

MSMQ Call Routines � MSMQPATHTOFORMAT 151

Arguments

pathName
Character, input

Represents the queue’s pathname or actual format name of the queue, if known. If
an MSMQ pathname is used to represent the queue, then it is converted to an
MSMQ format name. Possible pathName representations are as follows:

3 Public queue: machineName\QueueName

3 Public queue’s journal: machineName\QueueName;Journal
3 Private queue: machineName\PRIVATE$\QueueName

3 Private queue’s journal: machineName\PRIVATE$\QueueName;Journal
3 Machine journal queue: machineName\JOURNAL

3 Machine deadletter queue: machineName\DEADLETTER

3 Machine transaction deadletter queue: machineName\DEADXACT

Note: machineName can be substituted with ’.’ to designate the local machine. If
the actual format name of the queue is known, then this call can be used to
transform it into the expected unicode string. �

Possible format name representations are as follows:
3 Public queue: public=QueueGUID

3 Public queue’s journal: public=QueueGUID;JOURNAL

3 Private queue: private=machineGUID\QueueNumber

3 Private queue’s journal: private=machineGUID\QueueNumber;JOURNAL

3 Direct public queue: direct=AddressSpec\QueueName

3 Direct private queue: direct=AddressSpec\PRIVATE$\QueueName

where AddressSpec is of the form protocol:address (For example,
tcp:10.26.1.177)

3 Machine journal queue: machine=machineGUID;JOURNAL

3 Machine deadletter queue: machine=machineGUID;DEADLETTER

3 Machine transaction deadletter queue: machine=machineGUID;DEADXACT

3 Foreign queue: connector=ForeignCNGUID

3 Foreign transaction queue: connector=ForeignCNGUID:XACTONLY

qid
Numeric, output

Returns the queue identifier that represents the format name of the queue.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example obtains the format name of a queue from the pathname.

length msg $ 200;

qid=0;

rc=0;

152 MSMQRECEIVEMSG � Chapter 6

CALL MSMQPATHTOFORMAT(’’pcpad\testq’’, qid, rc);
if	 rc ^= 0 then do;

put ’MSMQPathToFormat: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQPathToFormat: succeeded’;

MSMQRECEIVEMSG

Reads a message from the queue.

Syntax

CALL MSMQRECEIVEMSG(hQueue, timeout, action, hCursor, transObj, rc <, propids,
value1, value2, ...>);

Arguments

hQueue
Numeric, input

Specifies the MSMQ handle to an open queue. This parameter is obtained from a
previous MSMQOPENQUEUE function call.

timeout
Numeric, input

Specifies the amount of time (in milliseconds) to wait for a message to be received
from the queue. If you want to wait indefinitely for the message to be received, then
set the timeout parameter to -1.

action
Character, input

Determines how and where the message is read from the queue. This parameter is
also used to determine whether the message is removed after reading. Possible valid
values:

RECEIVE
Reads the message at the current cursor location and removes it from the queue.

PEEK_CURRENT
Reads a message at the current cursor location but does not remove it from the
queue. The cursor remains at the current message. If the hCursor parameter is 0,
then the queue’s cursor can point only to the first message in the queue.

PEEK_NEXT
Reads the next message in the queue (skipping the message at the current cursor
location) but does not remove it from the queue. A cursor must already be created
(by calling MSMQCREATECURSOR) before calling this routine. (hCursor = 0 is
not allowed.)

MSMQ Call Routines � MSMQRECEIVEMSG 153

hCursor
Numeric, input

Specifies the handle to a cursor that is used for looking at messages in the queue.
The MSMQCREATECURSOR routine is used to create a cursor and obtain its handle.

transObj
Numeric, input

Specifies the transaction object that is obtained from a previous
MSMQBEGINTRANS function call. If this value is set to zero, then it is assumed
that this operation will not be part of a transaction.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

propids
Character, input

Identifies one or more message properties that affects the message being received
from the queue. This parameter is a character string with each applicable property
separated by a comma. You must provide a value parameter for each property
specified in the propids string. Each property ID in the propids string is associated
positionally with a value parameter. The CALL routine returns the corresponding
property value into each value parameter.

The following receive message properties and values are valid:

ACKNOWLEDGE
Retrieves the type of acknowledgment messages that MSMQ posts when the
message was sent. Initialize the variable appropriately to prevent truncation of
the retrieved value from occurring. Possible acknowledge types are as follows:

NONE

Specifies no acknowledgment messages are posted.

FULL_REACH_QUEUE
Specifies that positive and negative acknowledgments are posted, indicating
whether the message reaches the queue.

FULL_RECEIVE
Specifies that positive and negative acknowledgments are posted, depending on
whether the message is retrieved from the queue before its time-to-be-received
timer expires.

NACK_REACH_QUEUE
Specifies that negative acknowledgments are posted when a message cannot
reach the queue.

NACK_RECEIVE
Specifies that negative acknowledgments are posted when a message cannot be
retrieved from the queue.

ADMIN_QUEUE
Retrieves the queue used for MSMQ-generated acknowledgment messages. This
value is a character string that represents the pathname of the administration
queue. You can use the MSMQPATHTOFORMAT CALL routine to obtain a queue
identifier for this queue. Initialize the variable appropriately to prevent truncation
of the returned value from occurring.

154 MSMQRECEIVEMSG � Chapter 6

APPSPECIFIC
Retrieves the application-generated information. The value is numeric, and the
default is 0.

ARRIVEDTIME
Retrieves the time the message arrived at the queue. The value is a numeric that
represents the number of seconds elapsed since midnight (00:00:00), January 1,
1970 (Coordinated Universal time).

AUTHENTICATED
Retrieves whether the message was authenticated. The following values are valid:

3 0 : Message is not authenticated.

3 1 : Message is authenticated.

BODY
Specifies whether the message body should be received. The following values are
valid:

3 0 : Specifies not to retrieve the body of the message.

3 1 (default) : Specifies to retrieve the body of the message

BODY_SIZE
Retrieves the actual size of the message body. The body size is a numeric value.

BODY_TYPE
Retrieves the type of body the message contains. The value is numeric.

CLASS
Retrieves the class of the message. The value is a numeric.

CORRELATIONID
Retrieves the correlation identifier of the message. The value is a character string
that represents binary data. Initialize the variable to a size of at least 40 to
guarantee that truncation of the returned value does not occur.

DELIVERY
Retrieves how the message is delivered. Initialize the variable appropriately to
prevent truncation of the returned value from occurring. The following values are
valid:

EXPRESS

Specifies faster, non-guaranteed delivery.

RECOVERABLE

Specifies guaranteed delivery.

DEST_QUEUE
Retrieves the target queue of the message. This value is a character string that
represents the pathname of the destination queue. You can use the
MSMQPATHTOFORMAT CALL routine to obtain a queue identifier for this queue.
Initialize the variable appropriately to prevent truncation of the returned value
from occurring.

JOURNAL
Retrieves journal enablement. Initialize the variable appropriately to prevent
truncation of the returned value from occurring. The following values are valid:

NONE (default)
Specifies the message is not kept in the originating machine’s journal queue.

MSMQ Call Routines � MSMQRECEIVEMSG 155

JOURNAL

Specifies the message is kept in the originating machine’s journal queue.

DEADLETTER
Specifies the message is kept in a dead letter queue if it cannot be delivered.

Note: A combination can be specified by separating each value with a comma
(for example, JOURNAL,DEADLETTER.) �

LABEL
Retrieves a label for the message. The label value is a character string. Initialize
the variable appropriately to prevent truncation of the returned value from
occurring.

MSGID
Retrieves MSMQ-generated identifier of the message. The value is a character
string that represents binary data. Initialize the variable to a size of at least 40 to
guarantee that truncation of the returned value does not occur.

Note: This value is returned as a binary string. MSMQ Explorer displays the
message identifier as a UUID concatenated with a sequence number. �

PRIORITY
Retrieves the message’s priority. The value is a numeric between 0 and 7. The
highest priority is 7, and the default priority is 3.

PRIV_LEVEL
Retrieves the privacy level of the message. Initialize the variable appropriately to
prevent truncation of the returned value from occurring. The following values are
valid:

PUBLIC

Specifies the message is to be sent as clear-text.

PRIVATE

Specifies end-to-end encryption of the message body.

RESP_QUEUE
Retrieves the pathname of the queue where application-generated response
messages are returned. The value is a character string that represents the
pathname of the response queue. You can use the MSMQPATHTOFORMAT CALL
routine to obtain a queue identifier for this queue. Initialize the variable
appropriately to prevent truncation of the returned value from occurring.

SENDER_CERT
Retrieves the certificate that was used to authenticate the message. This value is
a character string. If an external certificate was used to authenticate the message,
the information that is returned can be used to verify who sent the message
(subject).

SENDERID
Retrieves who sent the message. The value is a character string.

SENTTIME
Retrieves the time the message was sent. The value is a numeric that represents
the number of seconds elapsed since midnight (00:00:00), January 1, 1970
(Coordinated Universal time).

SRC_MACHINE_ID
Retrieves the UUID of the computer where the message was sent. This value is a
UUID in the form of a character string that represents the binary data. Initialize

156 MSMQRECEIVEMSG � Chapter 6

the variable to a size of at least 32 to guarantee that truncation of the returned
value does not occur.

TIME_TO_BE_RECEIVED
Retrieves the total time (in seconds) that the message is to be available. The value
is a numeric with a default of infinity.

TIME_TO_REACH_QUEUE

Retrieves time limit (in seconds) for the message to reach the queue.

TRACE
Retrieves where report messages are sent when tracing a message. Initialize the
variable appropriately to guarantee that truncation of the returned value does not
occur. The following values are valid:

NONE

Specifies no tracing for this message.

REPORT
Specifies report messages are to be sent to the report queue that is specified by
the source queue manager.

VERSION
Retrieves the version of MSMQ that is used to send the message. The value is a
numeric.

Details
When reading messages, you can either peek at or retrieve them from the queue. The
message is retrieved into an internal SAS buffer at which time you should call
MSMQGETPARMS to set SAS variables (parameters) to that data.

Example

This example receives a message.

length msg $ 200;

length arrivet auth size respq sentt 8;

length correlid msgid $ 40;

length label $ 80;

rc=0;

hCursor=0;

transobj=0;

CALL MSMQRECEIVEMSG(hQueue, 0, "RECEIVE", hCursor, transobj, rc,

"ARRIVEDTIME,AUTHENTICATED,BODY_SIZE,CORRELATIONID,

LABEL,MSGID,RESP_QUEUE,SENTTIME",
arrivet, auth, size, correlid, label, msgid, respq, sentt);

if rc ^= 0 then do;

put ’MSMQReceiveMsg: failed’;

msg = sysmsg();

put msg;

end;

else do;

put ’MSMQReceiveMsg: succeeded’;

/* convert MSMQ arrived time to SAS datetime format */

arrivet = arrivet + 10*365*24*3600 + 3*24*3600 - 5*3600;

put ’arrived time is’ arrivet datetime.;

if auth = 1 then put ’message was authenticated’;

MSMQ Call Routines � MSMQRELEASETRANS 157

else put ’message was not authenticated’;

put ’message body size is ’ size;

put ’correlation id is ’ correlid;

put ’label is ’ label;

put ’msg id is ’ msgid;

put ’resp_queue qid handle is ’ respq;

/* convert MSMQ sent time to SAS datetime format */

sentt = sentt + 10*365*24*3600 + 3*24*3600 - 5*3600;

put ’sent time was’ sentt datetime.;

end;

MSMQRELEASETRANS

Releases an internal MSMQ transaction object, thereby allowing MSMQ to release the associated
resources.

Syntax

CALL MSMQRELEASETRANS(transObj, rc);

Arguments

transObj
Numeric, input

Specifies the transaction object that is obtained from a previous
MSMQBEGINTRANS function call.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

Example

This example releases a transaction unit of work.

length msg $ 200;

rc=0;

CALL MSMQRELEASETRANS(transobj, rc);

if rc ^= 0 then do;

put ’MSMQReleaseTrans: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQReleaseTrans: succeeded’;

158 MSMQSENDMSG � Chapter 6

MSMQSENDMSG

Sends a message to the specified queue.

Syntax

CALL MSMQSENDMSG(hQueue, hData, transObj, rc, propids, value1 <,value2, ...>);

Arguments

hQueue
Numeric, input

Specifies the MSMQ handle to an open queue. This parameter is obtained from a
previous MSMQOPENQUEUE function call.

hData
Numeric, input

Specifies the SAS internal data descriptor handle that is obtained from a previous
MSMQSETPARMS function call. If this value is set to zero, then it is assumed that
no data will accompany this message.

transObj
Numeric, input

Specifies the transaction object obtained from a previous MSMQBEGINTRANS
function call. If this value is set to zero, then it is assumed that this operation will
not be part of a transaction.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

propids
Character, input

Identifies one or more message properties that affects the message being sent.
This parameter is a character string with each applicable property separated by a
comma. You must provide a value parameter for each property specified in the
propids string. Each property ID in the propids string is associated positionally with
a value parameter.

Note: All values are inputs to the MSMQSENDMSG routine except MSGID
which returns a message identifier. �

The following send message properties and values are valid:

ACKNOWLEDGE
Specifies the type of acknowledgment messages that MSMQ posts when the
message is sent. A positive acknowledgment indicates the message sent was
received successfully. A negative acknowledgment indicates the message was not
received.

MSMQ Call Routines � MSMQSENDMSG 159

Possible acknowledge types are as follows:

NONE (default)

Specifies no acknowledgment messages are posted.

FULL_REACH_QUEUE
Specifies that positive and negative acknowledgments are posted, indicating
whether the message reaches the queue.

FULL_RECEIVE
Specifies that positive and negative acknowledgments are posted, indicating
whether the message is retrieved from the queue.

NACK_REACH_QUEUE
Specifies that negative acknowledgments are posted when a message cannot
reach the queue.

NACK_RECEIVE
Specifies that negative acknowledgments are posted when a message cannot be
retrieved from the queue.

ADMIN_QUEUE
Specifies the pathname of the queue that is used for MSMQ-generated
acknowledgment messages. The value is a character string that represents the
pathname of the administration queue.

APPSPECIFIC
Specifies application-generated information. The value is numeric and the default
is 0.

AUTH_LEVEL
Specifies whether the message needs to be authenticated.

The following AUTH_LEVEL types are valid:

NONE (default)

Specifies that no authentication is necessary. (Messages are not signed.)

ALWAYS
Specifies that messages are always signed and authenticated by the destination
queue manager.

BODY_TYPE
Specifies the type of body the message contains. The value is numeric and is
defined by the application and must be coordinated between the sending and
receiving portions of the application. The default value is 0.

CORRELATIONID
Specifies the correlation identifier of the message. The value is a character string
that represents binary data.

DELIVERY
Specifies how the message is delivered. The following values are valid:

EXPRESS (default)

Specifies faster, non-guaranteed delivery.

RECOVERABLE

Specifies guaranteed delivery.

160 MSMQSENDMSG � Chapter 6

ENCRYPTION_ALG
Specifies the encryption algorithm that is used to encrypt the message body of a
private message. Possible values are as follows:

3 RC2 (Block cipher) (Default)
3 RC4 (Stream cipher)

HASH_ALG
Specifies the hashing algorithm that is used when authenticating messages. The
following values are valid:

MD2

Message Digest 2 Algorithm

MD4

Message Digest 4 Algorithm

MD5 (default)

Message Digest 5 Algorithm

JOURNAL
Specifies whether the message should be kept in a machine journal, sent to a dead
letter queue, or neither. The following values are valid:

NONE (default)
Specifies the message is not kept in the originating machine’s journal queue.

JOURNAL

Specifies the message is kept in the originating machine’s journal queue.

DEADLETTER
Specifies the message is kept in a dead letter queue if it cannot be delivered.

Note: A combination can be specified by separating each value with a comma
(for example, JOURNAL,DEADLETTER.) �

LABEL
Specifies a label for the message. The default is a blank label ().

MSGID
Specifies MSMQ-generated identifier of the message. The value is a character
string that represents binary data. Initialize the variable to a size of at least 40 to
guarantee that truncation of the returned value does not occur.

Note: This value is returned as a binary string. MSMQ Explorer displays the
message identifier as a UUID concatenated with a sequence number. �

PRIORITY
Specifies the message’s priority. The value is a numeric between 0 and 7. The
highest priority is 7, and the default priority is 3.

PRIV_LEVEL
Specifies the privacy level of the message. The following values are valid:

PUBLIC (default)

Specifies the message is to be sent as clear-text.

PRIVATE

Specifies end-to-end encryption of the message body.

RESP_QUEUE
Specifies the pathname of the queue where application-generated response
messages are returned. The value is a character string that represents the
pathname of the response queue.

MSMQ Call Routines � MSMQSENDMSG 161

SECURITY_CONTEXT
Specifies security information that MSMQ uses to authenticate messages. The
value is the handle to the security context buffer that is returned from
MSMQGETCONTEXT.

SENDER_CERT
Specifies the name of the system certificate store to use in order to locate external
certificates during the authentication process. Generally, MY is used. For
example, if a value of MY is used, the registry location used to retrieve the system
certificate is as follows:

HKEY_CURRENTUSER\Software\Microsoft\SystemCertificates\MY\Certificates

TIME_TO_BE_RECEIVED

Specifies the total time (in seconds) that the message is to be available. The

default value is infinite.

TIME_TO_REACH_QUEUE

Specifies time limit (in seconds) for the message to reach the queue.

TRACE
Specifies where report messages are sent when tracing a message. The following
values are valid:

NONE (default)

Specifies no tracing for this message.

REPORT
Specifies report messages are to be sent to the report queue that is specified by
the source queue manager.

Note: The BODY message property is set internally, based on whether data is
present. �

Example

This example sends a message.

length msg $ 200;

rc=0;

transobj=0;

CALL MSMQSENDMSG(hQueue,

hData,

transobj,

rc,

‘‘AUTH_LEVEL,APPSPECIFIC,CORRELATIONID,LABEL,PRIV_LEVEL,RESP_QUEUE’’,

’’ALWAYS’’, 999, ’’0102030405060708090A0B0C0D0E0F1011121314’’,

’’Secret test message’’, ’’PRIVATE’’, ’’mypc\respq’’);

if rc ^= 0 then do;

put ’MSMQSendMsg: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQSendMsg: succeeded’;

162 MSMQSETPARMS � Chapter 6

MSMQSETPARMS

Creates a data descriptor that describes the actual SAS variables along with an associated data
mapping. This data descriptor can then be used on a subsequent MSMQSENDMSG call.

Syntax
CALL MSMQQSETPARMS(hData, hMap, rc, parm1 <,parm2, parm3, ...>);

Arguments

hData
Numeric, output

Returns the SAS internal data descriptor handle that is generated.

hMap
Numeric, input

Specifies the SAS internal map descriptor handle that is obtained from a previous
MSMQMAP function call. If set to zero, then no external defined mapping is
assumed and therefore, all data is mapped according to SAS internal
representations. That is, all numerics are mapped as doubles and all strings are
mapped as character data of the current string length.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() to obtain a textual
description of the return code.

parms
Numeric or character, input

Specifies one or more parameters that are used to define the values of SAS
variables in a message.

Example

This example sets values of SAS variables into a message.

hData=0;

rc=0;

parm1=100;

parm2=9999;

parm3=9999.9999;

parm4=’’This is a test.’’;

CALL MSMQSETPARMS(hData, hMap, rc, parm1, parm2, parm3, parm4);

MSMQSETQPROP

Sets the properties of a specific queue.

MSMQ Call Routines � MSMQSETQPROP 163

Syntax

CALL MSMQSETQPROP(qid, rc, propids, value1 <,value2, ...>);

Arguments

qid
Numeric, input

Specifies the queue identifier that represents the format name of the queue.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

propids
Character, input

Identifies one or more properties that you want to set. This parameter is a
character string with each applicable property separated by a comma. For each
property identified by propids, you must provide a value parameter that specifies the
value to use to set the property. The following propids and values are valid:

AUTHENTICATE
Specifies whether the queue accepts only authenticated messages. The following
values are valid:

NONE
Specifies the queue accepts either authenticated or non-authenticated messages.

ALWAYS

Specifies the queue always requires authenticated messages.

BASEPRIORITY
Specifies the base priority for all messages that are sent to a public queue. The
value is a numeric that ranges from -32768 to 32767, where 32767 is the highest
priority and 0 is the default priority.

JOURNAL
Specifies if messages are also copied to its journal queue. The following values are
valid:

NONE

Specifies that messages removed from the queue are discarded.

ALWAYS
Specifies that messages removed from the queue are always stored in its journal
queue.

JOURNAL_QUOTA

Specifies the maximum size (in kilobytes) of the journal queue.

LABEL

Specifies a description of the queue. The value is a character string.

164 MSMQSETQSEC � Chapter 6

PRIV_LEVEL
Specifies the privacy level that is required by the queue. The value is a character
string. The following values are valid:

NONE

Specifies that the queue accepts only non-private (clear-text) messages.

BODY

Specifies that the queue accepts only private (encrypted) messages.

OPTIONAL

Specifies that the queue accepts both private and non-private messages.

QUOTA

Specifies the maximum size (in kilobytes) of the queue.

TYPE
Specifies the type of service that is provided by the queue. The value of the TYPE
property is a universal unique identifier (UUID) in the form of a character string
that represents the binary data.

Example

This example sets the queue properties.

length msg $ 200;

rc=0;

CALL MSMQSETQPROP(qid, rc, "AUTHENTICATE,BASEPRIORITY,JOURNAL,JOURNAL_QUOTA,

LABEL,PRIV_LEVEL,QUOTA,TYPE",

"ALWAYS", 1, "ALWAYS", 32767, "New Label",
"BODY", 32767, "0A0B0C0D0E0F0102030405060708090A");

if rc ^= 0 then do;

put ’MSMQSetQProp: failed’;

msg = sysmsg();

put msg;
end;

else put ’MSMQSetQProp: succeeded’;

MSMQSETQSEC

Sets the access control information for a specified queue.

Syntax
CALL MSMQSETQSEC(qid, rc <,owner, dacl>);

Arguments

qid
Numeric, input

Specifies the queue identifier that represents the format name of the queue.

MSMQ Call Routines � MSMQSETQSEC 165

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. A return code of -1 reflects a SAS internal error. Otherwise,
it represents an MSMQ error code. You can use the SAS function SYSMSG() to
obtain a textual description of the return code.

owner
Character, input (Optional)

Identifies the owner of the queue. This parameter must be specified as

Domain\Account.

dacl
Character, input (Optional)

Specifies the discretionary access control list for the queue. This parameter must
be specified in the form of

Domain\Account:accessType:Permissions,...

where accessType is one of the following:

ALLOW

Permissions allowed

DENY (See the following note.)

Permissions denied

Note: Windows NT 4.0 supports DENY access control entries but cannot edit
security information that uses them. Therefore, this access type is not recommended
until Windows NT 5.0 or later. Permissions is one or more of the following separated
by ’+’:

3 Rj (Receive Journal)
3 Rq (Receive Message)
3 Pq (Peek Message)
3 Sq (Send Message)
3 Sp (Set Properties)
3 Gp (Get Properties)
3 D (Delete Queue)
3 Pg (Get Permissions)
3 Ps (Set Permissions)
3 O (Take Ownership)

�

Example

This example sets the queue security properties to allow NTDOMAIN\User6 to
Receive Messages (Rq), Get Properties (Gp), and Get Permissions (Pg).

length msg $ 200;

rc=0;

CALL MSMQSETQSEC(qid, rc, ’’’’, ’’NTDOMAIN\User6:ALLOW:Rq+Gp+Pg’’);

if rc ^= 0 then do;

put ’MSMQSetQSec: failed’;

msg = sysmsg();

put msg;

end;

else put ’MSMQSetQSec: succeeded’;

166

167

P A R T4

SAS Common Messaging Interface

Chapter 7.Using the SAS Common Messaging Interface 169

Chapter 8.Common Messaging Interface Call Routines 205

168

169

C H A P T E R

7
Using the SAS Common
Messaging Interface

Common Messaging Interface 170

Writing Applications Using the Common Messaging Interface 170

Introduction to Writing Applications with the Common Messaging Interface 170

Administrator Programs 171

User Programs 171

Using TIB/Rendezvous with the SAS Common Messaging Interface 173

Overview of Using TIB/Rendezvous with the SAS Common Messaging Interface 173

Rendezvous Certified Message Delivery (Rendezvous-CM) 173

TIB/Rendezvous Coding Example 174

TIB/Rendezvous Certified Messaging Coding Examples 176

Example 1: Sending and Receiving Messages in the Same DATA Step 176

Example 2: Sending and Receiving Messages in Separate DATA Steps 180

Overview 180

Sending DATA Step 180

Receiving DATA Step 182

Using a Repository with Application Messaging 184

Using the SAS Registry with the Common Messaging Interface 184

Overview of Using the SAS Registry 184

Using the SAS Registry Editor 185

Writing Applications to Access the SAS Registry 185

Attachment Layout for WebSphere MQ and MSMQ 188

Attachment Layout for TIB/Rendezvous 191

Overview of Attachment Layout for TIB/Rendezvous 191

Data Message Layout 191

Data Set Attachment Layout 192

External File Attachment Layout 192

Message Data - "MSG" or "DATA" 193

Attachment Header - "HDR" 194

Data Set Definition - "DAT" 195

Variable Definition - "VAR" 196

Data Set Observations - "ATO" 197

Data Set Index - "ATI" 197

Data Set Integrity Constraints - "ATC" 198

External File Descriptor - "FDC" 200

Text File Attachment - "ATX" 200

Binary File Attachment - "ATB" 200

Last Message of Attachment - "LST" 201

Attachment Error Handling 201

Transfer Errors: Queue versus Point-To-Point 201

Accept Errors 202

Attachment Error Codes 202

170 Common Messaging Interface � Chapter 7

Example 203

Common Messaging Interface

The SAS Common Messaging Interface provides the following:

3 a seamless environment for writing applications that access message queues of the
IBM WebSphere MQ (previously named MQSeries), Microsoft MSMQ, and TIBCO
TIB/Rendezvous transports

3 a way to use the local SAS registry to store and retrieve messaging information

The common interface to WebSphere MQ, MSMQ, and Rendezvous enables your
application programs to interact in a consistent manner that is independent of your
transport.

This section describes the use of the interface and provides reference information for
each SAS CALL routine. For the CALL routine reference, see Chapter 8, “Common
Messaging Interface Call Routines,” on page 205.

Writing Applications Using the Common Messaging Interface

Introduction to Writing Applications with the Common Messaging
Interface

Two general types of programs can use the common messaging interface. One uses
the interface to administer information about the message transports. Another uses the
interface to send and receive messages between applications. These two types of
programs are discussed in the sections below.

Note: The SAS®9 Common Messaging Interface uses the SAS®9 data set format by
default. In order to send and receive SAS Release 8 data sets, you must include the
"ATTACH_VERSION=VERSION_8" option in the data set option list on the
SENDMESSAGE call. If you do not use the "ATTACH_VERSION=VERSION_8" option
on the SENDMESSAGE call, then received data sets are stored in the SAS®9 format. If
you might be sending data sets to another SAS session that is running SAS Release 8.2
or earlier, then use the ATTACH_VERSION= option to exchange data sets in a format
that can be interpreted by both applications. �

Using the SAS Common Messaging Interface � User Programs 171

Administrator Programs
SAS programs can use the common messaging interface in order to administer the

information in the repository for the queues. The goal of such an administrator
program is to encapsulate all information about the queues so that all other programs
in the application can focus on using the queues rather than configuring them. This not
only simplifies the other programs, but also makes the queues easier to administer by
having all of this information in one location.

Administrator programs perform general functions, such as the following:

3 defining the transport-specific details that are required by the queue. The
available transports are MQSeries (WebSphere MQ), MSMQ, Rendezvous, or
Rendezvous-CM.

3 setting aliases for new transports and queues and retrieving aliases for existing
ones.

3 retrieving the properties of a queue.
3 defining and retrieving maps to data descriptors that identify the data type, offset,

and length.
3 setting and retrieving dynamic creation queue models for the MSMQ transport.
3 setting and retrieving transport definition models for Rendezvous (optional) and

Rendezvous-CM (required).

The following SAS CALL routines are used to administer the information repository:

3 “SETALIAS” on page 244
3 “SETMAP” on page 246
3 “SETMODEL” on page 247
3 “GETALIAS” on page 215
3 “GETMAP” on page 218
3 “GETMODEL” on page 220
3 “GETQUEUEPROPS” on page 221

Other functions of the administration process include removing any unneeded
information in the repository. This encompasses functions such as the following:

3 deleting a transport or queue alias definition
3 deleting a data descriptor definition map
3 deleting a dynamic or transport model definition

The following SAS CALL routines are used to administer these aspects of the
information repository:

3 “DELETEALIAS” on page 211
3 “DELETEMAP” on page 212
3 “DELETEMODEL” on page 213

User Programs
This section describes how a SAS program can use the common messaging interface

in order to access message queues to send and receive messages to other programs. The

172 User Programs � Chapter 7

common interface alleviates the need for these user programs to use transport-specific
code. This makes the user programs less vulnerable to changes in the queue’s
attributes. The programs interact with each queue in a consistent matter, independent
of the transport.

User programs perform general functions such as the following:

3 initializing the type of transport and obtaining a unique identifier

3 opening an existing queue by using a known transport identifier

3 sending messages to a queue by using a unique queue identifier

3 receiving messages (and possibly attachments) from a queue

3 parsing the message

3 getting attachments that are associated with a message (if necessary)

3 copying any desired attachments to local storage

3 closing all queues upon completion of the program tasks

3 terminating transports that are initialized by the program

The following SAS CALL routines are the basis for initializing or terminating a
transport, opening or closing a queue, and sending or receiving messages and
attachments:

3 “INIT” on page 224

3 “TERM” on page 251

3 “OPENQUEUE” on page 225

3 “CLOSEQUEUE” on page 209

3 “SENDMESSAGE” on page 236

3 “RECEIVEMESSAGE” on page 230

3 “PARSEMESSAGE” on page 229

3 “GETATTACHMENT” on page 216

3 “ACCEPTATTACHMENT” on page 206

In addition, user programs can perform transaction processing on transaction
queues. Such functions include the following:

3 creating a transaction object in order to begin progressing

3 committing or canceling work that is performed by using a transaction object

3 releasing a transaction object and any resource that is associated with it

The following SAS CALL routines are provided for applications that require
transaction processing:

3 “BEGINTRANSACTION” on page 208

3 “COMMIT” on page 210

3 “ABORT” on page 205

3 “FREETRANSACTION” on page 214

Using the SAS Common Messaging Interface � Rendezvous Certified Message Delivery (Rendezvous-CM) 173

Using TIB/Rendezvous with the SAS Common Messaging Interface

Overview of Using TIB/Rendezvous with the SAS Common Messaging
Interface

SAS Integration Technologies supports the message delivery features of TIB/
Rendezvous Release 7.5.4 and later.

TIB/Rendezvous is a leading messaging middleware product from TIBCO Software,
Inc. Like IBM WebSphere MQ (previously named MQSeries) and Microsoft MSMQ,
TIB/Rendezvous makes it easy to create distributed applications across heterogeneous
systems.

The SAS Common Messaging Interface includes messaging functions that are
common to WebSphere MQ, MSMQ, and Rendezvous. However, the TIB/Rendezvous
message delivery system differs from the other transports in some important ways.
Developers must take these differences into account when using the Common
Messaging Interface to support Rendezvous-based applications. The main differences
are as follows:

3 Rendezvous uses an approach called subject-based addressing. While both
WebSphere MQ and MSMQ deliver messages to specific destination queues using
queue names, Rendezvous broadcasts messages that have been labeled with
user-defined subject names. Data consumer applications listen for particular
subject names and receive messages only when the subject name matches a name
being listened for. The communicating programs must agree in advance on the
subject names to be used and the forms of messages to be exchanged.

3 Because messages are broadcast to subject names instead of specific destination
queues, a message can be received only by stations that are online and actively
listening for the subject name associated with the message.

Chapter 8, “Common Messaging Interface Call Routines,” on page 205 explains how
to use the SAS Common Messaging Interface to access the unique features of TIB/
Rendezvous. “TIB/Rendezvous Coding Example” on page 174 shows how to use the SAS
Common Messaging Interface with TIB/Rendezvous. For additional information, please
consult the TIBCO documentation.

Rendezvous Certified Message Delivery (Rendezvous-CM)
Certified message delivery features offers a stronger assurance of delivery than

reliable message delivery. Certified message delivery protocols also offer the following:

3 tighter control

3 greater flexibility

3 fine-grained reporting

To determine whether you should use Rendezvous certified message delivery, please
consult the TIBCO documentation.

Chapter 8, “Common Messaging Interface Call Routines,” on page 205 explains how
to use the SAS Common Messaging Interface to access the features of TIB/Rendezvous
Certified Message Delivery. “TIB/Rendezvous Certified Messaging Coding Examples” on

174 TIB/Rendezvous Coding Example � Chapter 7

page 176 shows how to use the SAS Common Messaging Interface with TIB/Rendezvous
Certified Message Delivery. For additional information, please consult the TIBCO
documentation.

TIB/Rendezvous Coding Example

The following example of a SAS DATA step shows how to use the SAS Common
Messaging Interface with the TIB/Rendezvous transport to send and receive messages
using subject-based addressing.

data _null_;

length msg $ 200;

length qid qid2 tid rc attchflg 8;

length parm1 parm2 parm3 recv1 recv2 recv3 8;

length parm4 recv4 $50;

length map $ 80;

length event $ 10;

tid=0;

rc=0;

put ’----’;

put ’Call INIT’;

CALL INIT(tid, ’RENDEZVOUS’, rc);

if rc ^= 0 then do;

put ’INIT: failed’;

msg = sysmsg();

put msg;

end;

else put ’INIT: succeeded’;

rc=0;

qid=0;

put ’----’;

put ’Call OPENQUEUE for queue1 to listen

for and receive messages’;
CALL OPENQUEUE(qid, tid, ’test.subject’,

’FETCH’, rc, "POLL(Timeout=15)");

if	 rc ^= 0 then do;

put ’OPENQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’OPENQUEUE: succeeded’;

rc=0;

qid2=0;

put ’----’;

put ’Call OPENQUEUE for queue2 to send messages’;

CALL OPENQUEUE(qid2, tid, ’test.subject’,

’DELIVERY’, rc);

if rc ^= 0 then do;

put ’OPENQUEUE: failed’;

Using the SAS Common Messaging Interface � TIB/Rendezvous Coding Example 175

msg = sysmsg();
put msg;

end;

else put ’OPENQUEUE: succeeded’;

rc=0;

put ’----’;

put ’Call SETMAP’;

CALL SETMAP(’mymap’, ’REGISTRY’, rc,

’SHORT;LONG;DOUBLE;CHAR,,50’);

if	 rc ^= 0 then do;

put ’SETMAP: failed’;
msg = sysmsg();

put msg;

end;

else put ’SETMAP: succeeded’;

parm1=100;

parm2=9999;

parm3=9999.1234;

parm4="ABCDEFGHIJKLMNOPQRSTUVWXYZ";

put ’----’;

put ’Call SENDMESSAGE’;

call sendmessage(qid2,rc,"map","mymap" ,

parm1,parm2,parm3,parm4);

if	 rc ^= 0 then do;

put ’send message failed: ’;
msg=sysmsg();

put msg;

end;

else put ’send message succeeded’;

rc = 0;

put ’----’;

put ’Call RECEIVEMESSAGE’;

map = "mymap";

call receivemessage(qid, rc, event,

attchflg,"map",map,recv1,recv2,recv3,recv4);

put ’qid =’ qid;

put ’event = ’ event;

put ’attchflg =’ attchflg;

if rc ^= 0 then do;
put ’receive message failed: ’;

msg=sysmsg();

put msg;

end;

else do;
put ’receive message succeeded’;

put map;

end;

if event eq ’DELIVERY’ then

do;

176 TIB/Rendezvous Certified Messaging Coding Examples � Chapter 7

put ’Message has been delivered’;
put ’recv1 = ’ recv1;

put ’recv2 = ’ recv2;

put ’recv3 = ’ recv3;

put ’recv4 = ’ recv4;

end;

rc=0;

put ’----’;

put ’Call CLOSEQUEUE for queue2’;

CALL CLOSEQUEUE(qid2, rc);

if rc ^= 0 then do;

put ’CLOSEQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’CLOSEQUEUE: succeeded’;

rc=0;

put ’----’;

put ’Call CLOSEQUEUE for queue1’;

CALL CLOSEQUEUE(qid, rc);

if rc ^= 0 then do;

put ’CLOSEQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’CLOSEQUEUE: succeeded’;

rc=0;

put ’----’;

put ’Call TERM’;

CALL TERM(tid, rc);

if rc ^= 0 then do;

put ’TERM: failed’;

msg = sysmsg();

put msg;

end;

else put ’TERM: succeeded’;

run;

TIB/Rendezvous Certified Messaging Coding Examples

Example 1: Sending and Receiving Messages in the Same DATA Step
In this example, the sender and listener use the same DATA step.

Using the SAS Common Messaging Interface � Example 1: Sending and Receiving Messages in the Same DATA Step 177

data _null_;

length msg $ 200;

length qid qid2 tid rc 8;

length map $80;

length recv1 recv2 recv3 8;

length recv4 $50;

length event $10;

tid=0;

rc=0;

put ’----’;

put ’Call INIT’;

CALL INIT(tid, ’RENDEZVOUS-CM’, rc);

if rc ^= 0 then do;

put ’INIT: failed’;

msg = sysmsg();

put msg;

end;

else put ’INIT: succeeded’;

call setmodel("RENDEZVOUS-CM", "RENDCMSENDER",
"REGISTRY", rc, "CMNAME, LEDGER",

"cmsender", "c:\cmsendledger.txt");

if	 rc ^= 0 then do;

put ’SETMODEL: failed’;

msg = sysmsg();

put msg;

end;

else put ’SETMODEL: succeeded’;

call setmodel("RENDEZVOUS-CM", "RENDCMRECEIVE",

"REGISTRY", rc, "CMNAME, LEDGER, REQUESTOLD,
SYNCLEDGER", "cmreceive", "c:\cmrcvledger.txt",

"YES", "NO");

if	 rc ^= 0 then do;

put ’SETMODEL: failed’;

msg = sysmsg();

put msg;

end;

else put ’SETMODEL: succeeded’;

rc=0;

put ’----’;

put ’Call SETMAP’;

CALL SETMAP(’rendmap’, ’REGISTRY’, rc,

’SHORT;LONG;DOUBLE;CHAR,,50’);

if	 rc ^= 0 then do;

put ’SETMAP: failed’;

msg = sysmsg();

put msg;

end;

else put ’SETMAP: succeeded’;

178 Example 1: Sending and Receiving Messages in the Same DATA Step � Chapter 7

rc=0;
qid2=0;

put ’----’;

put ’Call OPENQUEUE’;

CALL OPENQUEUE(qid2, tid, ’testcm.subject’,

’DELIVERY’, rc, "DYNAMIC(Model=rendcmsender)");
if	 rc ^= 0 then do;

put ’OPENQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’OPENQUEUE: succeeded’;
put "qid2= " qid2;

rc=0;

qid=0;

put ’----’;
put ’Call OPENQUEUE’;

CALL OPENQUEUE(qid, tid, ’testcm.subject’, ’FETCH’, rc,

"DYNAMIC(Model=rendcmreceive)", "POLL(Timeout=15)");

if	 rc ^= 0 then do;

put ’OPENQUEUE: failed’;
msg = sysmsg();

put msg;

end;

else put ’OPENQUEUE: succeeded’;

put "qid= " qid;

/* send a message */

parm1=100;

parm2=9999;

parm3=9999.1234;

parm4="Demonstrating the rendezvous message api.";

put ’----’;

put ’Call SENDMESSAGE’;

call sendmessage(qid2,rc,"map","rendmap" ,

parm1,parm2,parm3,parm4);
if	 rc ^= 0 then do;

put ’send message failed: ’;

msg=sysmsg();

put msg;

end;

else put ’send message succeeded’;

rc = 0;

put ’----’;

put ’Call RECEIVEMESSAGE’;

map = "rendmap";

call receivemessage(qid, rc, event,

attchflg,"map",map,recv1,recv2,recv3,recv4);

put ’qid =’ qid;

put ’event = ’ event;

Using the SAS Common Messaging Interface � Example 1: Sending and Receiving Messages in the Same DATA Step 179

put ’attchflg =’ attchflg;
if	 rc ^= 0 then do;

put ’receive message failed: ’;

msg=sysmsg();

put msg;

end;
else do;

put ’receive message succeeded’;

put map;

end;

if event eq ’DELIVERY’ then

do;

put ’Message has been delivered’;

if attchflg eq 1 then do;

put ’Attachments are associated

with this message’;

/* process attachments...*/

end;

put ’recv1 = ’ recv1;

put ’recv2 = ’ recv2;

put ’recv3 = ’ recv3;

put ’recv4 = ’ recv4;

end;

rc=0;

put ’----’;

put ’Call CLOSEQUEUE for sender’;

put "qid2= " qid2;

CALL CLOSEQUEUE(qid2, rc, "DELETE_PURGE");

if rc ^= 0 then do;

put ’CLOSEQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’CLOSEQUEUE: succeeded’;

rc=0;

put ’----’;

put ’Call CLOSEQUEUE for receiver’;

put "qid= " qid;

CALL CLOSEQUEUE(qid, rc, "DELETE_PURGE");

if rc ^= 0 then do;

put ’CLOSEQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’CLOSEQUEUE: succeeded’;

rc=0;

put ’----’;

put ’Call TERM’;

CALL TERM(tid, rc);

if rc ^= 0 then do;

180 Example 2: Sending and Receiving Messages in Separate DATA Steps � Chapter 7

put ’TERM: failed’;
msg = sysmsg();

put msg;

end;

else put ’TERM: succeeded’;

run;

Example 2: Sending and Receiving Messages in Separate DATA Steps

Overview
In this example, the sender and listener use separate DATA steps. Each DATA step

is run in a separate SAS session. The receiving DATA step needs to start running
before the sending DATA step ends.

Sending DATA Step
/*	 SAS DATA step to send a certified message */

data _null_;

length msg $ 200;

length qid2 tid rc 8;

length map $80;

length recv4 $50;

length event $10;

length queue $ 80;

tid=0;

rc=0;

call setmodel("RENDEZVOUS-CM", "RENDCMSENDER",

"REGISTRY", rc, "CMNAME, LEDGER", "cmsender",

"c:\sendledger.txt");

if	 rc ^= 0 then do;

put ’SETMODEL: failed’;

msg = sysmsg();

put msg;

end;

else put ’SETMODEL: succeeded’;

rc=0;

put ’----’;

put ’Call SETMAP’;

CALL SETMAP(’rendmap’, ’REGISTRY’, rc,

’SHORT;LONG;DOUBLE;CHAR,,50’);

if	 rc ^= 0 then do;

put ’SETMAP: failed’;

msg = sysmsg();

put msg;

end;

else put ’SETMAP: succeeded’;

Using the SAS Common Messaging Interface � Example 2: Sending and Receiving Messages in Separate DATA Steps 181

call setalias("queue", "tibcmalias", "REGISTRY",

rc, "RENDEZVOUS-CM", "send.cmmsg");

if	 rc ^= 0 then do;

put ’set_alias failed: ’;
msg=sysmsg();

put msg;

end;

else put ’set_alias succeeded’;

put ’ this should be next’;

rc=0;

qname = "tibcmalias";

qid2=0;

put ’----’;

put ’Call OPENQUEUE for queue2’;

CALL OPENQUEUE(qid2, tid, qname, ’DELIVERY’,

rc, "DYNAMIC(Model=rendcmsender)");

if	 rc ^= 0 then do;

put ’OPENQUEUE: failed’;

msg = sysmsg();
put msg;

end;

else put ’OPENQUEUE: succeeded’;

/* send a message */

parm1=100;

parm2=9999;

parm3=9999.1234;

parm4="Demonstrating the rendezvous message api.";

put ’----’;

put ’Call SENDMESSAGE’;

call sendmessage(qid2,rc,"map, addlistener","rendmap",

"cmreceive",parm1,parm2,parm3,parm4);

if	 rc ^= 0 then do;

put ’send message failed: ’;
msg=sysmsg();

put msg;

end;

else put ’send message succeeded’;

/*

* This or another instance of the certified transport

* named cmsender must be active to deliver certified

* messages to the listener.

*/

slept = sleep(15);

rc=0;

put ’----’;

put ’Call CLOSEQUEUE for queue2’;

CALL CLOSEQUEUE(qid2, rc);

182 Example 2: Sending and Receiving Messages in Separate DATA Steps � Chapter 7

if	 rc ^= 0 then do;

put ’CLOSEQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’CLOSEQUEUE: succeeded’;

run;

Receiving DATA Step
/*	 SAS DATA step to receive certified messages */

data _null_;

length msg $ 200;

length qid tid rc 8;

length map $80;

length event $10;

length queue $ 80;

length token $300;

length attach $10;

length recv1 recv2 recv3 8;

length recv4 $50;

length certified $8;

length sendername $50;

rc=0;

call setmodel("RENDEZVOUS-CM", "RENDCMRECEIVE",

"REGISTRY", rc, "CMNAME, LEDGER, REQUESTOLD",

"cmreceive", "c:\recvledger.txt", "YES");

if	 rc ^= 0 then do;

put ’SETMODEL: failed’;

msg = sysmsg();

put msg;

end;

else put ’SETMODEL: succeeded’;

call setalias("queue", "tibcmalias", "REGISTRY",

rc, "RENDEZVOUS-CM", "send.cmmsg");

if	 rc ^= 0 then do;

put ’set_alias failed: ’;

msg=sysmsg();

put msg;

end;

else put ’set_alias succeeded’;

rc=0;

qid=0;

tid = 0;

qname = "tibcmalias";

put ’----’;

put ’Call OPENQUEUE’;

Using the SAS Common Messaging Interface � Example 2: Sending and Receiving Messages in Separate DATA Steps 183

CALL OPENQUEUE(qid, tid, qname, ’FETCH’, rc,
"DYNAMIC(Model=rendcmreceive)", "POLL(TIMEOUT=30)");

if	 rc ^= 0 then do;

put ’OPENQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’OPENQUEUE: succeeded’;

put "qid= " qid;

put "CALL receivemessage";

map = "rendmap";

call receivemessage(qid, rc, event,

attchflg,"map,certified,sendername",map, certified,

sendername, recv1,recv2,recv3,recv4);

put ’qid =’ qid;

put ’event = ’ event;

put ’attchflg =’ attchflg;

put ’certified = ’ certified;

put ’sendername = ’ sendername;

if rc ^= 0 then do;

put ’receive message failed: ’;

msg=sysmsg();

put msg;

end;

else do;

put ’receive message succeeded’;

put map;

end;

if event eq ’DELIVERY’ then

do;

put ’Message has been delivered’;

if attchflg eq 1 then do;

put ’Attachments are associated

with this message’;

/* process attachments...*/

end;

put ’recv1 = ’ recv1;

put ’recv2 = ’ recv2;

put ’recv3 = ’ recv3;

put ’recv4 = ’ recv4;

end;

rc=0;
put ’----’;

put ’Call CLOSEQUEUE for queue1’;

CALL CLOSEQUEUE(qid, rc);

if rc ^= 0 then do;

put ’CLOSEQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’CLOSEQUEUE: succeeded’;

184 Using a Repository with Application Messaging � Chapter 7

rc=0;
put ’----’;

run;

Using a Repository with Application Messaging

The common messaging interface enables you to store information about message
queues in the local SAS registry. The information that can be stored and retrieved
include the following:

Transport alias is an alias name that describes a transport (MQSeries [refers to
WebSphere MQ], MSMQ, Rendezvous, or Rendezvous-CM)

Queue alias is an alias name that describes a transport and queue

Dynamic queue is a model name that describes a queue’s properties
model

Transport model is a model name that describes a Rendezvous or Rendezvous-CM
transport

Data map is a map name that describes the format of data within a message
description

Placing this type of information in storage provides both reusability and
encapsulation. A repository can contain all queue definitions, thereby enabling you to
focus on the application usage rather than the specific definition of a queue.

The SAS registry provides methods for defining your own queues or overriding
globally defined queues. It provides you with complete control and flexibility over a
queue.

To bypass the SAS Registry altogether, specify the following macro variable:

%let REGISTRY_BYPASS=1.

For more information about using a repository with application messaging, see
“Using the SAS Registry with the Common Messaging Interface” on page 184.

Using the SAS Registry with the Common Messaging Interface

Overview of Using the SAS Registry
The SAS registry can be used to store information about objects used for application

messaging. This document provides information about using the SAS registry editor to
view registry entries. It also provides a sample program for managing registry objects
under program control.

Using the SAS Common Messaging Interface � Writing Applications to Access the SAS Registry 185

Using the SAS Registry Editor
The SAS Registry Editor can be used to verify that values set programmatically for

application messaging objects were set properly. To invoke the Registry Editor, select
Solutions � Accessories � Registry Editor in the Base SAS menu.

The SAS registry has the following hierarchy for application messaging objects:

Products

Base

SAS Messaging

Maps

Models

Queues

Transports

Writing Applications to Access the SAS Registry
A typical program would configure information such as the following:

3 Map data descriptor
3 Queue and transport aliases
3 Dynamic model for transport processing.

The following code illustrates how to set and retrieve information within the SAS
Registry.

data _null_;

length rc 8 msg $ 200;

length descriptor transport queue label $ 80;

length type $ 32;

length auth journal priv trans $ 10;

length basep journalq quota 8;

put ’Registry Map creation...’;

call setmap(’mymap’, ’registry’, rc,

’char,0,80;double;’);

if	 rc ne 0 then do;

put ’Setmap failed’;

msg = sysmsg();

put msg;

end;

else put ’Setmap was successful’;

put ’Registry Map retrieval...’;

call getmap(’mymap’, ’registry’, rc, descriptor);

if rc ne 0 then do;

put ’Getmap failed’;

msg = sysmsg();

put msg;

end;

else do;

put ’Getmap was successful’;

put ’descriptor = ’ descriptor;

186 Writing Applications to Access the SAS Registry � Chapter 7

end;

put ’Registry Map deletion...’;

call deletemap(’mymap’, ’registry’, rc);

if rc ne 0 then do;

put ’Deletemap failed’;

msg = sysmsg();

put msg;

end;

else put ’Deletemap was successful’;

put ’-------------------------------’;

put ’Registry Queue creation...’;

call setalias(’queue’, ’myqueue’, ’registry’,

rc, ’msmq’, ’machine_name\queue_name’);

if	 rc ne 0 then do;
put ’Setalias failed’;

msg = sysmsg();

put msg;

end;

else put ’Setalias succeeded’;

put ’Registry Queue retrieval...’;

call getalias(’queue’, ’myqueue’, ’registry’,

rc, transport, queue);

if	 rc ne 0 then do;

put ’Getalias failed’;
msg = sysmsg();

put msg;

end;

else do;

put ’Getalias succeeded’;
put ’transport = ’ transport;

put ’queue = ’ queue;

end;

put ’-------------------------------’;

put ’Registry Transport creation...’;

call setalias(’transport’, ’mytransport’,

’registry’, rc, ’MSMQ’);

if	 rc ne 0 then do;

put ’Setalias failed’;
msg = sysmsg();

put msg;

end;

else put ’Setalias succeeded’;

put ’Registry Transport retrieval...’;

call getalias(’transport’, ’mytransport’,

’registry’, rc, transport);

if rc ne 0 then do;

put ’Getalias failed’;

Using the SAS Common Messaging Interface � Writing Applications to Access the SAS Registry 187

msg = sysmsg();
put msg;

end;

else do;

put ’Getalias succeeded’;

put ’transport = ’ transport;

put ’queue = ’ queue;

end;

put ’-------------------------------’;

put ’Registry Model creation...’;
call setmodel(’msmq’, ’mymodel’, ’registry’, rc,

’authenticate, label’,

’always’, ’Test Queue of MyModel’);

if	 rc ne 0 then do;

put ’Setmodel failed’;
msg = sysmsg();

put msg;

end;

else put ’Setmodel succeeded’;

put ’Registry Model retrieval...’;

call getmodel(’msmq’, ’mymodel’, ’registry’, rc,

’authenticate,basepriority,journal,

journalquota,label,privlevel,quota,

transaction,type’,

auth, basep, journal, journalq,
label, priv, quota, trans, type);

if	 rc ne 0 then do;

put ’Getmodel failed’;

msg = sysmsg();

put msg;
end;

else do;

put ’Getmodel succeeded’;

put ’authenticate = ’ auth;

put ’base priority = ’ basep;
put ’journal = ’ journal;

put ’journal quota = ’ journalq;

put ’label = ’ label;

put ’privacy level = ’ priv;

put ’quota = ’ quota;

put ’transaction = ’ trans;
put ’type = ’ type;

end;

run;

quit;

--

--

188 Attachment Layout for WebSphere MQ and MSMQ � Chapter 7

Attachment Layout for WebSphere MQ and MSMQ

Attachments consist of multiple physical messages. The beginning of an attachment
is recognized by having a message type of 100000. To identify this message, it will be
referred to as the attachment header.

Layout of an attachment header message:

Note: All character strings are null terminated. �

byte[24] - header correlid (correlationid of this header

message)

long - original msg type (msg type provided by the

sending application)

byte[24] - original msg correlid (msg correlationid

provided by the sending application)

byte[24] - message correlid (generated correlationid for

the msg)

int - number of attachments

int - attachment type

1 - SAS data set

2 - External text file

3 - External binary file

byte[24] - attachment correlid (correlationid associated

with this attachment)

int - length of qualifier 1

char[] - qualifier 1

external files: designates the sending file

specification "FILENAME" or "FILEREF"

dataset: designates the sending library name

int - length of qualifier 2

char[] - qualifier 2

external files: designates the sending

filename or fileref

dataset: designates the sending member name

int - length of attachment description

char[] - attachment description

int - user specified minor version number

int - user specified major version number

.

.

. repeat for each attachment in the list

Other physical messages are also needed to make up a complete attachment. These
messages will be called subordinated messages, and they all have a message type of
100001.

The subordinate message that usually follows after the attachment header message
is the application message. It can be filtered by using the message correlid located in
the attachment header message. It contains the actual application generated message.

The attachment (external file or SAS data set) subordinate messages follow next.
They contain the necessary information to recreate the file or data set.

To locate the subordinate message that contains the number of physical messages
that are associated with this attachment, filter it by using the attachment correlid that
is located in the attachment header message. The content of this message is a single

-------- ------------ ------------

Using the SAS Common Messaging Interface � Attachment Layout for WebSphere MQ and MSMQ 189

numeric integer that corresponds to the number of messages that are associated with
this attachment, excluding this message. To filter the rest of the messages that are
associated with this attachment, use the same attachment correlid that is located in the
attachment header message (16 bytes) with a sequence number (4 bytes) added to the
end of it. For example, if the attachment correlid was
000102030405060708090A0B0C0D0E0F, you would filter this message to find out how
many more messages are associated with this attachment. For example, if three more
messages make up this attachment, then you can locate these messages by filtering a
correlid of 000102030405060708090A0B0C0D0E0F00000001,
000102030405060708090A0B0C0D0E0F00000002, and
000102030405060708090A0B0C0D0E0F00000003, respectively. The sequenced
attachment correlid messages are actually sent to the queue before the non-sequenced
attachment correlid message. Therefore, if you are able to receive the non-sequenced
attachment correlid message (that is, a message that tells you how many messages
make up this attachment), then you can make sure that the complete attachment has
been queued.

At this point, attachment processing differs depending on the attachment type.
For external files, the first sequenced attachment correlid message

(attachment_correlid+00000001) contains two numeric integers that correspond to the
file’s logical record length and size, respectively. The rest of the attachment correlid
messages make up the file itself. The contents of these messages are as follows:

long - size of logical record

char[] - actual record

.

.

. repeat until the end of file or 32K limit is reached

These messages are limited to 32K. If a file is too large to fit, then it spans multiple
physical messages.

Here is an example of an external file attachment residing on a queue:

msg type msg correlid msg contents

100000 1111111111111111111111111111111100000000 1111111111111111111111111111111100000000

00000001

00

2222222222222222222222222222222200000000

00000001

00000003

3333333333333333333333333333333300000000

00000008

"FILENAME"

0000000D

"d:\mytext.txt"

0000000C

"Text file..."

00000000

00000000

100001 2222222222222222222222222222222200000000 "This is the actual application message."

100001 3333333333333333333333333333333300000001 lrecl|filesize

100001 3333333333333333333333333333333300000002 len|record|len|record|len|record...

100001 3333333333333333333333333333333300000003 len|record|len|record|len|record...

100001 3333333333333333333333333333333300000000 00000003

190 Attachment Layout for WebSphere MQ and MSMQ � Chapter 7

For data sets, the sequenced attachment correlid messages begin with a type
identifier. This identifier signifies the type of information that is in this message. A type
identifier of one signifies data set definitions. A type identifier of two signifies variable
definitions. A type identifier of three signifies actual observations. Type identifiers four
(indexes) and five (integrity constraints) usually have no use and can be ignored.

Note: All character strings are null terminated.

Layout of a data set definition message:

int

int
long

char[]

long

char[]

long
long

long

long

char[]

char

long
char[]

long

long

char[]

short
int

byte[4]

int

byte[4]

int

byte[4]

- type (data set definition=1)

- version (future)
- data set type length

- data set type

- data set label length

- data set label

- number of observations
- number of variables

- observation length

- length of compress

- compress

- reuse

- length of encrypt
- encrypt

- number of variables in sort key

- length of sort collating sequence

- sort collating sequence

- sort flags
- read password flag

- read password (encrypted)

- write password flag

- write password (encrypted)

- alter password flag

- alter password (encrypted)

Layout of a variable definition message:

int - type (variable definition=2)

long

char[]

long

char[]
long

char[]

long

char[]

char

long
long

long

long

long

char

- length of variable name

- variable name

- length of format name

- format name
- length of informat name

- informat name

- variable label length

- variable label

- variable type (1=double, otherwise character)

- variable length
- format field length

- format decimal

- informat field length

- informat decimal

- nsort

Using the SAS Common Messaging Interface � Data Message Layout 191

.

.

. repeat for each variable

Note: Variable definitions might span multiple physical

messages if definitions are larger than 32K.

Layout of an observation message:

int - type (observation=3)

data - the layout of data is defined by the variable

definition above

Note: Observations might span multiple physical messages

if they are larger than 32K.

Layout of an index message:

int - type (index=4)

long - upercmx

long - length of index/key name

char[] - index/key name
long - flags

long - number of variables in the index/key

long - variable lengths added together

char[] - all variables null terminated

.

.

. repeat for each index

Attachment Layout for TIB/Rendezvous

Overview of Attachment Layout for TIB/Rendezvous
An attachment consists of multiple physical messages. Each physical message has a

specific message type. The field name of the first field in each message specifies the
message type. Subsequent fields in the same message should use the same field name.

Data Message Layout
The following table shows the field name and purpose of the "MSG," or "DATA," type.

192 Data Set Attachment Layout � Chapter 7

Note: The message type "MSG," or "DATA," can be retrieved without a field ID. All
other message types must use a field ID. �

Table 7.1 Fields for the Data Message Layout

Field Name Purpose

"MSG" or "DATA" message data sent using a map

Data Set Attachment Layout
All attachments are required to have an attachment header and a "LST" message.

However, not all messages are required. For example, many data sets do not use
integrity constraints or indexes. If a data set does not contain the information that is
contained in a message type, then the message is not required to be sent. The following
table shows the field name, the purpose of each message type, and the order in which
messages should be sent for a data set.

Table 7.2 Fields for the Data Set Attachment Layout

Field Name Purpose

"HDR" attachment header

"MSG" or "DATA" message data sent using a map

"DAT" data set descriptor

"VAR" variable definition for data set

"ATO" data set observations

"ATI" data set index

"ATC" data set integrity constraints

"LST" last message of attachment

External File Attachment Layout
All attachments are required to have an attachment header and a "LST" message.

However, not all messages are required. For each "FDC" record, send either a text file
or a binary file. You can send more than one file in an attachment. Each file must have
an "FDC" message and then one of the following:

3 one or more "ATX" messages for the text files
3 one or more "ATB" messages for the binary files

The following table shows the field name, the purpose of each message type, and the
order in which messages should be sent for an external file.

Using the SAS Common Messaging Interface � Message Data - "MSG" or "DATA" 193

Table 7.3 Fields for the External File Attachment Layout

Field Name Purpose

"HDR" attachment header

"FDC" external file descriptor

"ATX" text file attachment body

"ATB" binary file attachment body

"LST" last message of attachment

The following sections contain the description and required format for each message
type.

Message Data - "MSG" or "DATA"
Note: The message type "MSG," or "DATA," can be retrieved without a field ID. All

other message types must use a field ID. �

If any message data is to be sent along with an attachment, that message is sent
following the attachment header. The field name for this type of message is either
"MSG" or "DATA." The following sample is based on the map that is used in the code
example provided on the Common Messaging Interface documentation.

The map for this message is described as: ’SHORT;LONG;DOUBLE;CHAR,,50’.
The following table shows the data values for the message data.

Table 7.4 Data Values for the Message Data

Parameter Value

parm1 100;

parm2 9999;

parm3 9999.1234;

parm4 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; (blank padded to 50)

The following table shows the data type values for the message data.

Table 7.5 Data Types for the Message Data

Data Type Value Description

short 1 add with tibrvMsg_AddI16()

long 2 add with tibrvMsg_AddI32() as appropriate

double 3 add with tibrvMsg_AddF64()

string(char) 4 add with tibrvMsg_AddString()

The following table shows the layout of the message data.

194 Attachment Header - "HDR" � Chapter 7

Table 7.6 Fields for the Message Data

Field ID Field Type Function Description

1 int tibrvMsg_AddI32() The number of data pieces to follow.
For this example, the value of the
field is "4".

2 int tibrvMsg_AddI32() The data type of the first data item.
Because this data item is a short, the
value for this field is "1".

3 short tibrvMsg_AddI16() The actual value of the first parameter
being sent. In this case, because it is
a short, the value is added to the
message by using tibrvMsg_AddI16().
The value for this field is "100".

For each parameter that is sent, repeat fields 2 and 3 in the previous table, setting
the appropriate values and incrementing the field IDs.

Attachment Header - "HDR"
The beginning of an attachment is recognized by processing the attachment header

message. This message type is recognized by the "HDR" field name in all fields.
The following table shows the layout of the attachment header.

Note: All character strings are null terminated. �

Table 7.7 Fields for the Attachment Header

Field

1

ID Field Type

byte[24]

Function

tibrvMsg_AddString()

Description

header correlid: can be set to all
blanks

2 unsigned long tibrvMsg_AddU32() reserved: set to 0

3 byte[24] tibrvMsg_AddString() reserved: set to all blanks

4 byte[24] tibrvMsg_AddString() message correlid: can be set to all
blanks

5 integer tibrvMsg_AddI32() number of attachments in message (1
per data set)

6 integer tibrvMsg_AddI32() attachment type: value is

3 "1" for SAS data set.

3 "2" for an external text file

3 "3" for an external binary file

7 byte[24] tibrvMsg_AddString() attachment correlid: can be set to all
blanks

8 int tibrvMsg_AddI32() length of qualifier 1 in field 9

Using the SAS Common Messaging Interface � Data Set Definition - "DAT" 195

Field ID

9

Field Type Function Description

char[] tibrvMsg_AddString() qualifier 1:

3 external files: designates the
sending file specification
"FILENAME" or "FILEREF"

3 data set: designates the
sending library name

10

11

int tibrvMsg_AddI32() length of qualifier 2 in field 11

char[] tibrvMsg_AddString() qualifier 2:

3 external files: designates the
sending filename or fileref

3 data set: designates the
sending member name

12

13

14

15

int tibrvMsg_AddI32() length of attachment description

char[] tibrvMsg_AddString() attachment description

int tibrvMsg_AddI32() user-specified minor version number

int tibrvMsg_AddI32() user-specified major version number

For each attachment in the list, repeat fields 6-15 in the previous table, incrementing
the field ID each time.

The attachment header is usually followed by the subordinate messages that contain
the information necessary to re-create the data set or the external file.

Data Set Definition - "DAT"
The data set definition message is sent following the message data. This message

type is recognized by the "DAT" field name in all fields.
The following table shows the layout of the data set definition.

Note: All character strings are null terminated. �

Table 7.8 Fields for the Data Set Definition

Field Field
ID Type Function Description

1 int tibrvMsg_AddI32() type of record is data set definition= 1

2 int tibrvMsg_AddI32() version information or 0

3 long tibrvMsg_AddI32() data set type length

4 char[] tibrvMsg_AddString() data set type

5 long tibrvMsg_AddI32() data set label length

6 char[] tibrvMsg_AddString() data set label

7 long tibrvMsg_AddI32() number of observations

8 long tibrvMsg_AddI32() number of variables

9 long tibrvMsg_AddI32() observation length

196 Variable Definition - "VAR" � Chapter 7

Field Field
ID Type Function Description

10 long tibrvMsg_AddI32() length of compress

11 char[] tibrvMsg_AddString() compress

12 char tibrvMsg_AddString() reuse ("R" or "E")

13 long tibrvMsg_AddI32() length of encrypt

14 char[] tibrvMsg_AddString() encrypt

15 long tibrvMsg_AddI32() number of variables in sort key

16 long tibrvMsg_AddI32() length of sort collating sequence or 1

17 char[] tibrvMsg_AddString() sort collating sequence or NULL

18 short tibrvMsg_AddI16() sort flags or 0

19 int tibrvMsg_AddI32() read password flag

20 byte[4] tibrvMsg_AddOpaque() read password (encrypted)

21 int tibrvMsg_AddI32() write password flag

22 byte[4] tibrvMsg_AddOpaque() write password (encrypted)

23 int tibrvMsg_AddI32() alter password flag

24 byte[4] tibrvMsg_AddOpaque() alter password (encrypted)

25 int tibrvMsg_AddI32() max_gen data set attribute

Variable Definition - "VAR"
The variable definition message is sent following the data set definition message.

This message type is recognized by the "VAR" field name in all fields.
The following table shows the layout of the variable definition.

Note: All character strings are null terminated. �

Table 7.9 Fields for the Variable Definition

Field ID Field Type Function Description

1 int tibrvMsg_AddI32() number of variables

2 int tibrvMsg_AddI32() type of record is variable definition=2

3 long tibrvMsg_AddI32() length of variable name

4 char[] tibrvMsg_AddString() name of variable

5 long tibrvMsg_AddI32() length of format name

6 char[] tibrvMsg_AddString() format name

7 long tibrvMsg_AddI32() length of informat name

8 char[] tibrvMsg_AddString() informat name

9 long tibrvMsg_AddI32() length of variable label

10 char[] tibrvMsg_AddString() variable label

11 char tibrvMsg_AddString() type of variable (1=numeric, 2=char)

12 long tibrvMsg_AddI32() length of variable

Using the SAS Common Messaging Interface � Data Set Index - "ATI" 197

Field ID

13

14

15

16

17

Field Type Function Description

long tibrvMsg_AddI32() format field length

long tibrvMsg_AddI32() format decimal

long tibrvMsg_AddI32() informat field length

long tibrvMsg_AddI32() informat decimal

char tibrvMsg_AddString() nsort information

For each variable, repeat the fields in the previous table.

Note: If definitions are larger than 32K, then variable messages might span
multiple physical messages. �

Data Set Observations - "ATO"
The data set observations message is sent following the variable definition message.

This message type is recognized by the "ATO" field name in all fields.
The following table shows the layout of the data set observations.

Note: All character strings are null terminated. �

Table 7.10 Fields for Data Set Observations

Field ID Field Type Function Description

1 int tibrvMsg_AddI32() number of observations

2 int tibrvMsg_AddI32() type of record is observation =
3

3 int tibrvMsg_AddI32() observation type (vtype)

4 double-
observation

tibrvMsg_AddF64() if observation type in field 3 is
numeric

4 char[] ­
observation

tibrvMsg_AddString() if observation type in field 3 is
character

For each observation, repeat the fields in the previous table.

Note: If observations are larger than 32K, then they might span multiple physical
messages. �

Data Set Index - "ATI"
If the data set index message is needed, the data set index message is sent following

the data set observations message. This message type is recognized by the "ATI" field
name in all fields.

The following table shows the layout of the index definition.

Note: All character strings are null terminated. �

198 Data Set Integrity Constraints - "ATC" � Chapter 7

Table 7.11 Fields for the Data Set Index

Field ID Field Type Function Description

1 int tibrvMsg_AddI32() type of record is index = 4

2 int tibrvMsg_AddI32() number of records in this message

3 long tibrvMsg_AddI32() upercmx

4 long tibrvMsg_AddI32() length of index/key name

5 char[] tibrvMsg_AddString() index/key name

6 long tibrvMsg_AddI32() flags

7 long tibrvMsg_AddI32() number of variables in the index/
key

8 long tibrvMsg_AddI32() number of keys

9 char[] tibrvMsg_AddString() key name

For each key, repeat field 9 in the previous table. For each record, repeat fields 3-9 in
the previous table.

Data Set Integrity Constraints - "ATC"
If the data set integrity constraints message is needed, then the data set integrity

constraints message is sent following the data set index message. This message type is
recognized by the "ATC" field name in all fields.

The following table shows the layout of the integrity constraints definition.

Note: All character strings are null terminated. �

Table 7.12 Fields for the Data Set Integrity Constraints

Field ID Field Type Function Description

1 int tibrvMsg_AddI32() type of record is integrity constraint
= 5

2 int tibrvMsg_AddI32() number of records in this message

3 long tibrvMsg_AddI32() IC type

Based on the value of field 3 in the previous table, use the following tables.
3 If the field type is CHECK for field 3, then use the fields in the following table.

Table 7.13 Fields for the CHECK Field Type

Field ID Field Type Function Description

4 long tibrvMsg_AddI32() max length for this IC

5 char[] tibrvMsg_AddString() name of IC

6 long tibrvMsg_AddI32() retval

7 long tibrvMsg_AddI32() total length

8 char[] tibrvMsg_AddString() list of wtnames

3

3

3

Using the SAS Common Messaging Interface � Data Set Integrity Constraints - "ATC" 199

Field ID Field Type Function Description

9 long tibrvMsg_AddI32() whlen

10 long tibrvMsg_AddI32() number of members in
tree

11 byte[] tibrvMsg_AddOpaque() whbuf buffer

For each buffer, repeat field 11 in the previous table, incrementing the field ID
each time.

If the field type is not CHECK for field 3, then use the fields in the following table.

Table 7.14 Fields for Field Types Other than CHECK

Field ID Field Type Function Description

4 long tibrvMsg_AddI32() max length for this IC

5 char[] tibrvMsg_AddString() name of IC

6 long tibrvMsg_AddI32() nvar - number of variables

7 long tibrvMsg_AddI32() number of NNAME
records

8 char[] tibrvMsg_AddString() NNAME

For each NNAME value, repeat field 8 in the previous table, incrementing the field
ID each time. Subsequent field IDs will increase from here.

If the field type is not CHECK or FOREIGN KEY for field 3, then use the

following table for field 9.

Table 7.15 Fields for Field Types Other than CHECK or FOREIGN KEY

Field ID Field Type Function Description

9 long tibrvMsg_AddI32() filler value = 1

If the field type is not CHECK but it is FOREIGN KEY for field 3, then use the
fields in the following table.

Table 7.16 Fields for the FOREIGN KEY Field Type

Field ID Field Type Function Description

9 long tibrvMsg_AddI32() total length of following
fields

10 long tibrvMsg_AddI32() fkdelt

11 long tibrvMsg_AddI32() fkupd

12 long tibrvMsg_AddI32() pklng + 1

13 char[] tibrvMsg_AddString() pkname

14 char[8] tibrvMsg_AddString() pkfname libref

15 long tibrvMsg_AddI32() length of member name

200 External File Descriptor - "FDC" � Chapter 7

Field ID Field Type Function Description

16 char[] tibrvMsg_AddString() member name.

17 long tibrvMsg_AddI32() ICP attributes

For each record in the message, repeat field 3 and all subsequent fields in the
previous tables.

External File Descriptor - "FDC"
This message type is recognized by the "FDC" field name in all fields. For each

"FDC" record, send either a text file or a binary file. You can send more than one file in
an attachment but the files must be either all text files or all binary files. Each file
must have an "FDC" message and then one of the following:

3 one or more "ATX" messages for the text files
3 one or more "ATB" messages for the binary files

The following table shows the layout of the external file descriptor.

Table 7.17 Fields for the External File Descriptor

Field ID Field Type Function Description

1 int tibrvMsg_AddI32() size of logical record

2 int tibrvMsg_AddI32() file size

Text File Attachment - "ATX"
This message type is recognized by the "ATX" field name in all fields.
The following table shows the layout of the text file attachment body.

Table 7.18 Fields for the Text File Attachment

Field ID Field Type Function Description

1 int tibrvMsg_AddI32() number of records in this message

2 long tibrvMsg_AddI32() length of data in field 3

3 char[] tibrvMsg_AddString file data

For each record in the message, repeat fields 2 and 3.

Binary File Attachment - "ATB"
This message type is recognized by the "ATB" field name in all fields.
The following table shows the layout of the binary file attachment body.

Using the SAS Common Messaging Interface � Transfer Errors: Queue versus Point-To-Point 201

Table 7.19 Fields for the Binary File Attachment

Field ID Field Type Function Description

1 int tibrvMsg_AddI32() number of records in this message

2 long tibrvMsg_AddI32() length of data in field 3

3 tibrv_u8 tibrvMsg_AddOpaque file data

For each record in the message, repeat fields 2 and 3.

Last Message of Attachment - "LST"
All attachments must end with an "LST" message. This message type is recognized

by the "LST" field name in all fields. This message type contains a count of the number
of messages sent for the attachment, not including itself.

The following table shows the layout of the last message.

Table 7.20 Fields for the Last Message

Field ID Field Type Function Description

1 int tibrvMsg_AddI32() number of messages sent for
attachment

Attachment Error Handling

Transfer Errors: Queue versus Point-To-Point
When sending a message to a message queue, all of the attachments (along with the

message) are transferred to the queue when the _SEND_ or _SENDLIST_ is invoked.
The attachments are stored at the domain server until they are fetched by a user. If an
error occurs while you send the attachments to the queue, then neither the message nor
the attachments are delivered to the queue. In this scenario, the return code from
SEND/_SENDLIST_ is set to _SEATTXF. This error indicates that neither the
message nor the attachments were delivered because one or more errors occurred
during attachment transfer.

When a message is sent using point-to-point messaging, only the attachment list,
along with the message, is sent to the receiving side initially. The receiver is then
responsible for determining which, if any, attachments should actually be transferred.
Because the message is delivered to the receiver before any attachments are actually
transferred, an error encountered during attachment transfer will not cause the
SEND to terminate. If an error is encountered, then the current attachment transfer
is terminated, but the remaining attachments selected to be received are sent to the
receiving side. If any errors are encountered during attachment transfer, the return
code from _SEND_/_SENDLIST_ is set to _SWATTXF. This is only a warning indicating
that the message was successfully sent, but one or more errors occurred during
attachment transfer.

---- --------------------

---- --------------------

202 Accept Errors � Chapter 7

Accept Errors
When a message includes attachments, the receiver has the responsibility to

determine which attachments are ultimately transferred, via the
_ACCEPT_ATTACHMENT_ method. If an error is encountered during attachment
transfer, then the current attachment transfer is terminated, but the transfer continues
with the next attachment in the attachlist. If any errors are encountered, then the
return code from _ACCEPT_ATTACHMENT_ is set to _SWATTXF. This is only a
warning indicating that one or more errors occurred during attachment transfer.

Attachment Error Codes
To review what was mentioned above, a specific return code is set if an error is

encountered during attachment transfer:

3 When sending on a Cnction instance, _SWATTXF is returned.

3 When sending on a Queue instance, _SEATTXF is returned.

3 When accepting attachments on either a Queue or Cnction instance, _SWATTXF is
returned.

When one of these scenarios occurs, the attachlist parameter passed to these methods
is updated. An additional named item, RC, is added to each separate attachment list.
The value of RC will be a numeric return code that can be used to determine what
caused the error for this particular attachment transfer. The defined return codes
include the following:

Input File Errors (error occurred on input file):

Value Meaning

20 general I/O error

21 libname does not exist

22 memname does not exist

23 invalid or missing password

24 invalid data set option value

25 invalid data set option name

26 general error parsing data set options

27 error parsing where stmt

28 bad physical filename

29 file in use

30 file does not exist

31 invalid authorization for external file

32 open failed for some reason other than

mentioned above

33 error obtaining Integrity Constraints

information

34 variable contains unsupported characters or

is too long

35 key name contains unsupported characters or

is too long

Output File Errors (error occurred on output file):

Value Meaning

---- --------------------

Using the SAS Common Messaging Interface � Attachment Error Codes 203

80 general I/O error

81 libname does not exist

82 invalid or missing password

83 bad physical filename

84 file in use

85 file does not exist

86 invalid authorization for external file

87 open failed for some reason other than

mentioned above

87 file already exists

88 engine does not support read passwords

89 engine does not support encryption

General/Misc. Errors:

Value Meaning

1 Out of memory error

2 Open of catalog by queue manager failed

3 Read error (of catalog) encountered by queue

manager

4 Write error (of catalog) encountered by queue

manager

5 Index create failure

6 Backwards compatibility error

7 Only SQL views supported

Example
In the following example, one attachment is accepted into a non-existent library

name:

/* build one attachment list, att1 */

att1 = makelist();

rc = setnitemc(att1, 1, "ATTACH_ID");

rc = setnitemc(att1, "NOEXIST", "OUTLIB");

rc = setnitemc(att1, "A , "OUT");

/* insert att1 into the main attachment list, alist */

alist = makelist();

alist = insertl(alist, att1, -1);

/* accept the attachment */

call send(obj, "_ACCEPT_ATTACHMENT_", alist, rc);

/* if error, dump out attachment list to view rc */

if (rc NE 0) then

call putlist(alist, "Attachment

list after accept:", 1);

After the accept method call, the attachment list alist has the following named items:

3 Named item ATTACH_ID has a value of 1.
3 Named item OUTLIB has a value of "NOEXIST."
3 Named item OUT has a value of "A."
3 Named item RC has a value of 81.

204 Attachment Error Codes � Chapter 7

The error code list maps the return code of 81 into output library is nonexistent.
Similarly, when the sender returns from the _SEND_/_SENDLIST_, the attachlist
parameter is updated with the RC named item to reflect that the attachment transfer
failed.

att1 = makelist();

rc = setnitemc(att1, "SASUSER", "LIBNAME");
rc = setnitemc(att1, "NAMES", "MEMNAME");

rc = setnitemc(att1, "DATASET", "TYPE");

attachlist = makelist();

attachlist = insertl(attachlist, att1, -1);

call send(cnctionObj, "_SEND_", msgtype, attachlist,
rc, "Message One");

if (%sysrc(_SWATTXF) = rc) then do;

call putlist(attachlist, "attachlist after send", -1);

end;

Assuming that the attachment was accepted by the receiving side as shown above,
the attachment list, attachlist, is updated with the RC named item to reflect that the
attachment transfer failed.

3 Named item LIBNAME has a value of "SASUSER."
3 Named item MEMNAME has a value of "NAMES."
3 Named item TYPE has a value of "DATASET."
3 Named item RC has a value of 81.

Again, the error code list maps the return code of 81 into output library is
nonexistent.

205

C H A P T E R

8
Common Messaging Interface
Call Routines

SAS CALL Routines for the Common Messaging Interface 205

SAS CALL Routines for the Common Messaging Interface

This section documents all of the available CALL routines within the common
messaging interface.

The beginning of the documentation for each CALL indicates which transports are
supported. Within the CALL Routines and CALL documentation, the term MQSeries is
used to refer to WebSphere MQ. When support for MQSeries (now known as WebSphere
MQ) is noted, this includes both MQSeries Base/Server and MQSeries Client.

ABORT

Cancels prior work that has been done via a transaction object.

Transports supported: MQSeries, MQSeries-C, MSMQ

Syntax

CALL ABORT(transid, rc);

Arguments

transid
Numeric, input

Specifies the handle to a transaction object that is obtained from the
BEGINTRANSACTION function.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

206 ACCEPTATTACHMENT � Chapter 8

Details

For MQSeries, all transactions are associated with a particular queue manager. So
when you cancel a unit of work that is associated with a particular queue manager, all
work performed by that particular queue manager under synchpoint control is canceled
at once. You can associate more than one transaction object with the same queue
manager, but it is not a good practice. Under MSMQ, all transaction objects are
autonomous.

Example

The following example cancels the processing of a transactional unit of work:

length msg $ 200;

length transid rc 8;

rc=0;

call abort(transid, rc);
if rc ^= 0 then do;

put ’ABORT: failed’;

msg = sysmsg();

put msg;

end;
else put ’ABORT: succeeded’;

ACCEPTATTACHMENT

Accepts an attachment by recreating it on the local machine.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax

CALL ACCEPTATTACHMENT(qid, attachid, qual1, qual2, rc);

Arguments

qid
Numeric, input

Specifies the handle of an open queue that is obtained from a previous
OPENQUEUE function call.

attachid
Numeric, input

Specifies an attachment identifier that is obtained from a previous
GETATTACHMENT function call.

qual1
Character, input

Specifies the first attachment qualifier. If this is an external file attachment, then
this qualifier designates the file specification that is used to receive it (either

Common Messaging Interface Call Routines � ACCEPTATTACHMENT 207

FILENAME or FILEREF). Otherwise, this qualifier designates the receiving library
name.

qual2
Character, input

Specifies the second attachment qualifier. If this is an external file attachment,
then this qualifier designates the receiving filename or fileref. Otherwise, this
qualifier designates the receiving member name.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

Details
For information about exception processing when you use attachments, see “Attachment
Error Handling” on page 201.

Example

This example accepts attachments from a message and stores them in the file
d:\myexternalfile.tmp.

length msg $ 200;

length qid lastflag attachid rc 8;

length type $ 13;

length qual1 qual2 $ 80;

length desc $ 80;

length minor major 8;

next:

rc=0;

lastflag=0;

attachid=0;

type=’’;

qual1=’’;

qual2=’’;

desc=’’;

minor=0;

major=0;

call getattachment(qid, lastflag, attachid, type,

qual1, qual2, rc, desc, minor, major);
if	 rc ^= 0 then do;

put ’GETATTACHMENT: failed’;

msg = sysmsg();

put msg;

end;
else do;

put ’GETATTACHMENT: succeeded’;

put ’Attachment type is ’ type;

if type eq ’EXTERNAL_TEXT’ OR type eq

’EXTERNAL_BIN’ then do;

put "Sender’s " qual1 " was " qual2;

208 BEGINTRANSACTION � Chapter 8

/* accept/receive the external attachment */
call acceptattachment(qid, attachid, ’filename’,

’d:\myexternalfile.tmp’, rc);

if	 rc ^= 0 then do;

put ’ACCEPTATTACHMENT: failed’;

msg = sysmsg();
put msg;

end;

else

put ’ACCEPTATTACHMENT: succeeded’;

end;

else do;
put "Sender’s library name was ’ qual1;

put "Sender’s member name was ’ qual2;

/* accept/receive the library/member */

libname tmp ’d:\tmp’;
call acceptattachment(qid, attachid,

’tmp’, ’test’, rc);

end;

if lastflag eq 0 then goto next;

BEGINTRANSACTION

Begins transaction processing by creating a transaction object.

Transports supported: MQSeries, MQSeries-C, MSMQ

Syntax
CALL BEGINTRANSACTION(transid, tid, rc);

Arguments

transid
Numeric, output

Returns a handle to a transaction object that is generated for committing and
canceling transactional processing, as well as freeing the resources that are
associated with the transaction object.

tid
Numeric, input

Specifies the transport handle that is obtained from the INIT function.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

Common Messaging Interface Call Routines � CLOSEQUEUE 209

Details
The created transaction object is used to commit or cancel prior processing
(SENDMESSAGE and RECEIVEMESSAGE calls) that use the transaction object as a
message property. Transaction processing is supported only by the MQSeries,
MQSeries-C, and MSMQ transports.

Example

The following example begins a transaction:

length msg $ 200;
length transid tid rc 8;

rc=0;

transid=0;

call begintransaction(transid, tid, rc);

if rc ^= 0 then do;

put ’BEGINTRANSACTION: failed’;
msg = sysmsg();

put msg;

end;

else put ’BEGINTRANSACTION: succeeded’;

CLOSEQUEUE

Closes a message queue.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax
CALL CLOSEQUEUE(qid,rc <, attr>);

Arguments

qid
Numeric, input

Specifies the handle of a queue that is obtained from a previous OPENQUEUE
function call.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

210 COMMIT � Chapter 8

attr
Character, input

Specifies a delete attribute. The following attributes are valid:

DELETE
Specifies that the queue is to be deleted after it successfully closes, but only if
there are no messages on the queue. This attribute is supported with MQSeries
only. It is not supported with MSMQ because there is no way to programmatically
determine the depth of the queue. It is not supported with Rendezvous because
Rendezvous handles this function internally.

DELETE_PURGE
Causes the queue to be deleted, even if the queue depth is greater than zero. This
attribute is supported with MQSeries, MQSeries-C, MSMQ, and Rendezvous-CM.
It is not supported with Rendezvous because Rendezvous handles this function
internally. If you are using Rendezvous Certified Message Delivery, when you close
a listener queue the default setting is for the sender to save messages for
persistent messaging. If you do not want messages to be saved by the sender or do
not want persistent messaging, specify the DELETE_PURGE attribute when you
close the queue. Setting the DELETE_PURGE attribute is the same as setting the
cancelAgreements argument on TIBRVCM_CANCEL(TRUE).

Example

The following example closes a queue:

length msg $ 200;

length qid rc 8;

rc=0;

call closequeue(qid, rc);

if rc ^= 0 then do;

put ’CLOSEQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’CLOSEQUEUE: succeeded’;

COMMIT

Commits prior work that has been done via a transaction object.

Transports supported: MQSeries, MQSeries-C, MSMQ

Syntax

CALL COMMIT(transid, rc);

Common Messaging Interface Call Routines � DELETEALIAS 211

Arguments

transid
Numeric, input

Specifies the handle to a transaction object that is obtained from the

BEGINTRANSACTION function.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

Details
For MQSeries, all transactions are associated with a particular queue manager. So
when you commit a unit of work that is associated with a particular queue manager, all
work that is performed by that particular queue manager under synchpoint control is
committed at once. You can associate more than one transaction object with the same
queue manager, but it is not a good practice. Under MSMQ, all transaction objects are
autonomous.

Example

The following example commits a transactional unit of work for processing:

length msg $ 200;

length transid rc 8;

rc=0;

call commit(transid, rc);

if rc ^= 0 then do;

put ’COMMIT: failed’;

msg = sysmsg();

put msg;

end;

else put ’COMMIT: succeeded’;

DELETEALIAS

Deletes a transport or queue alias definition from the information repository.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax
CALL DELETEALIAS(type, name, storage, rc);

212 DELETEMAP � Chapter 8

Arguments

type
Character, input

Specifies the type of alias that is to be deleted. The following types are valid:
3 TRANSPORT
3 QUEUE

name
Character, input

Identifies the transport alias or queue alias that is to be deleted.

storage
Character, input

Specifies the location of the alias definition. The REGISTRY location is valid.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

Example

The following example deletes a queue alias from the SAS registry:

length msg $ 200;

length rc 8;

rc=0;

call deletealias(’QUEUE’, ’MYQUEUE’, ’REGISTRY’, rc);

if rc ^= 0 then do;

put ’DELETEALIAS: failed’;

msg = sysmsg();

put msg;

end;

else put ’DELETEALIAS: succeeded’;

DELETEMAP

Deletes a map data descriptor definition from the information repository.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax
CALL DELETEMAP(name, storage, rc);

Common Messaging Interface Call Routines � DELETEMODEL 213

Arguments

name
Character, input

Identifies the map data descriptor that is defined by a previous SETMAP function
call.

storage
Character, input

Specifies the location for the map definition. The REGISTRY location is valid.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

Example

The following example deletes a map data descriptor definition from the SAS registry:

length msg $ 200;

length rc 8;

rc=0;

call deletemap(’MYMAP’, ’REGISTRY’, rc);

if rc ^= 0 then do;

put ’DELETEMAP: failed’;

msg = sysmsg();

put msg;

end;

else put ’DELETEMAP: succeeded’;

DELETEMODEL

Deletes a dynamic creation queue model from the information repository.

Transports supported: MSMQ, Rendezvous, Rendezvous-CM

Syntax

CALL DELETEMODEL(transport, name, storage, rc);

Arguments

transport
Character, input

Specifies the transport that is associated with this model. MSMQ, Rendezvous,
and Rendezvous-CM are the only valid transports for this CALL routine.

214 FREETRANSACTION � Chapter 8

name
Character, input

Identifies the dynamic model.

storage
Character, input

Specifies the location for the model definition. The REGISTRY location is valid.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

Example

The following example deletes an MSMQ model queue definition from the SAS
registry:

length msg $ 200;

length rc 8;

rc=0;

call deletemodel(’MSMQ’, ’MYMODEL’, ’REGISTRY’, rc);

if rc ^= 0 then do;

put ’DELETEMODEL: failed’;

msg = sysmsg();

put msg;

end;

else put ’DELETEMODEL: succeeded’;

FREETRANSACTION

Frees a transaction object and its associated resources.

Transports supported: MQSeries, MQSeries-C, MSMQ

Syntax
CALL FREETRANSACTION(transid, rc);

Arguments

transid
Numeric, input

Specifies the handle to a transaction object that is obtained from the
BEGINTRANSACTION function.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

Common Messaging Interface Call Routines � GETALIAS 215

Example

The following example frees the resources that are associated with a transaction
object:

length msg $ 200;

length transid rc 8;

rc=0;

call freetransaction(transid, rc);

if rc ^= 0 then do;

put ’FREETRANSACTION: failed’;

msg = sysmsg();

put msg;

end;

else put ’FREETRANSACTION: succeeded’;

GETALIAS

Obtains the current definition of a transport alias or queue alias that is set by the SETALIAS
function in the information repository.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax
CALL GETALIAS(type, name, storage, rc, transport <, queue>);

Arguments

type
Character, input

Specifies the type of alias. The following types are valid:
3 TRANSPORT
3 QUEUE

name
Character, input

Identifies the transport alias or queue alias that is set by the SETALIAS function.

storage
Character, input

Specifies the location for the alias definition. The REGISTRY location is valid.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

transport
Character, output

216 GETATTACHMENT � Chapter 8

Returns the transport name.

queue
Character, output

Returns the queue name.

Example

The following example obtains a queue alias in the SAS registry:

length msg $ 200;

length rc 8;

length transport queue $ 80;
rc=0;

transport=’’;

queue=’’;

call getalias(’QUEUE’, ’MYQUEUE’, ’REGISTRY’,

rc, transport, queue);
if rc ^= 0 then do;

put ’GETALIAS: failed’;

msg = sysmsg();

put msg;

end;
else do;

put ’GETALIAS: succeeded’;

put ’Transport = ’ transport;

put ’Queue = ’ queue;

end;

GETATTACHMENT

Gets attachment information that is associated with a particular message.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax
CALL GETATTACHMENT(qid, lastflag, attachid, type, qual1, qual2, rc <, desc<, minor

<, major>>>);

Arguments

qid
Numeric, input

Specifies the handle of an opened queue obtained from a previous OPENQUEUE
function call.

Common Messaging Interface Call Routines � GETATTACHMENT 217

lastflag
Numeric, output

Indicates whether you have reached the last attachment in a message. Possible
values are as follows:

0

Specifies that more attachments are to be presented.

1

Specifies that this is the final attachment.

attachid
Numeric, output

Returns an attachment identifier that is used with the ACCEPTATTACHMENT
function call when this attachment is accepted.

type
Character, output

Returns the type of attachment. The following types are valid:

3 EXTERNAL_TEXT
3 EXTERNAL_BIN
3 DATASET

qual1
Character, output

Returns the first attachment qualifier. If this is an external attachment, then this
qualifier designates the file specification that is used to send it (either FILENAME or
FILEREF). Otherwise, this qualifier designates the sending library name.

qual2
Character, output

Returns the second attachment qualifier. If this is an external attachment, then
this qualifier designates the sending filename or fileref. Otherwise, this qualifier
designates the sending member name.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

desc
Character, output

Returns a description of the attachment if the sender provides one. This

parameter is optional.

minor
Numeric, output

Returns a user-specified minor version number. This parameter is optional.

major
Numeric, output

Returns a user-specified major version number. This parameter is optional.

Details
You can repeatedly call this function until the final attachment has been presented.

Note: To receive an attachment from outside of the SAS environment, you must
know the layout of an attachment.

218 GETMAP � Chapter 8

For more information, see the “Attachment Layout for WebSphere MQ and MSMQ”
on page 188 and the “Attachment Layout for TIB/Rendezvous” on page 191. �

Example

The following example gets all of the attachment information from a message:

length msg $ 200;

length qid lastflag attachid rc 8;

length type $ 13;

length qual1 qual2 $ 80;

length desc $ 80;

length minor major 8;

next:

rc=0;

lastflag=0;

attachid=0;

type=’’;

qual1=’’;

qual2=’’;

desc=’’;

minor=0;

major=0;

call getattachment(qid, lastflag, attachid, type,

qual1, qual2, rc, desc, minor, major);

if	 rc ^= 0 then do;

put ’GETATTACHMENT: failed’;

msg = sysmsg();

put msg;

end;

else do;

put ’GETATTACHMENT: succeeded’;

put ’Attachment type is ’ type;

if type eq ’EXTERNAL_TEXT’ OR type eq

’EXTERNAL_BIN’ then do;

put "Sender’s " qual1 " was " qual2;

/* process external file... */

end;

else do;

put "Sender’s library name was ’ qual1;

put "Sender’s member name was ’ qual2;

/* process library member... */

end;

if lastflag eq 0 then goto next;

GETMAP

Obtains the current definition of a map data descriptor in the information repository.

Common Messaging Interface Call Routines � GETMAP 219

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax

CALL GETMAP(name, storage, rc, descriptor);

Arguments

name
Character, input

Identifies the map data descriptor that is defined by a previous SETMAP function
call.

storage
Character, input

Specifies the location for the map definition. The REGISTRY location is valid.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

descriptor
Character, output

Returns a string that describes the layout of the data. The format of the descriptor
is as follows:

"type,offset,length;type,offset,length;..."

where:

3 type is the type of data (SHORT, LONG, DOUBLE, CHAR)

3 offset is the offset from the beginning of the message which is the cursor
location in the case of the PARSEMESSAGE routine

3 length is the length of the data which is valid only for CHAR data type

Example

The following example obtains a map data descriptor definition in the SAS registry:

length msg $ 200;

length rc 8;

length descriptor $ 80;

rc=0;

descriptor=’’;

call getmap(’MYMAP’, ’REGISTRY’, rc, descriptor);

if rc ^= 0 then do;

put ’GETMAP: failed’;

msg = sysmsg();

put msg;

end;

220 GETMODEL � Chapter 8

else do;
put ’GETMAP: succeeded’;

put ’descriptor = ’ descriptor;

end;

GETMODEL

For MSMQ, obtains a dynamic creation queue model from the information repository. For
Rendezvous and Rendezvous-CM, obtains transport attributes.

Transports supported: MSMQ, Rendezvous, Rendezvous-CM

Syntax
CALL GETMODEL(transport, name, storage, rc, props, value1, <, value2, value3,...>)

Arguments

transport
Character, input

Specifies the transport that is associated with this model. MSMQ, Rendezvous,
and Rendezvous-CM are the only valid transports for this CALL routine.

name
Character, input

Identifies the dynamic model.

storage
Character, input

Specifies the location for the model definition. The REGISTRY location is valid.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

props
Character, input

Identifies one or more properties to be queried.

values
Character or numeric, output

Identifies one or more queue properties to be queried. This parameter is a
character string with each applicable output variable separated by a comma.

Details
You must associate a variable with each property that is identified by props.

For MSMQ, the following properties are valid:

AUTHENTICATE character

BASEPRIORITY numeric

Common Messaging Interface Call Routines � GETQUEUEPROPS 221

JOURNAL character

JOURNALQUOTA numeric

LABEL character

PRIVLEVEL character

QUOTA numeric

TRANSACTION character

TYPE binary string

For Rendezvous and Rendezvous-CM, the following transport properties are valid:

DAEMON character

NETWORK character

SERVICE character

For Rendezvous-CM only, the following transport properties are valid:

CMNAME character

LEDGER character

RELAYAGENT character

REQUESTOLD character

SYNCLEDGER character

Example

The following example obtains an MSMQ model queue definition in the SAS registry:

length msg $ 200;

length rc 8;

length auth priv $ 10;

length label $ 80;

rc=0;

auth=’’;

priv=’’;

label=’’;

call getmodel(’MSMQ’, ’MYMODEL’, ’REGISTRY’, rc,

’AUTHENTICATE,PRIVLEVEL,LABEL’, auth, priv, label);

if rc ^= 0 then do;

put ’GETMODEL: failed’;

msg = sysmsg();

put msg;

end;
else do;

put ’GETMODEL: succeeded’;

put ’authenticate = ’ auth;

put ’privacy level = ’ priv;

put ’label = ’ label;

end;

GETQUEUEPROPS

Gets information pertaining to a queue’s properties and security.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

222 GETQUEUEPROPS � Chapter 8

Syntax
CALL GETQUEUEPROPS(qid, rc, ttype, pmask, depth,maxdepth, maxmsgl, ctime,

desc<, inbox>);

Arguments

qid
Numeric, input

Specifies the handle to an open queue that is obtained from a previous

OPENQUEUE function call.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

ttype
Character, output

Identifies the transport type of the queue. Possible values are as follows:

3 MQSeries
3 MQSeries-C
3 MSMQ
3 Rendezvous
3 Rendezvous-CM

pmask
Numeric, output

Returns the property assertion mask that the queue accepts. This property is
valid only for the MQSeries, MQSeries-C, and MSMQ transports. Possible values are
as follows:

bit 0

In MSMQ, specifies that the queue only accepts authenticated messages.

bit 1

In MSMQ, specifies that the queue only accepts private messages.

bit 2

In MSMQ, specifies that the queue only accepts public messages.

bit 4

In MSMQ, specifies that the queue only accepts transactional messages. In

MQSeries, bit 4 specifies that the QMgr supports synchpoint.

depth
Numeric, output

Returns the current depth of the queue.

maxdepth
Numeric, output

Returns the maximum depth that is configured for the queue. This property is
valid only for the MQSeries, MQSeries-C, and MSMQ transports.

maxmsgl
Numeric, output

Common Messaging Interface Call Routines � GETQUEUEPROPS 223

Returns the maximum length that is configured for the queue. This property is
valid only for the MQSeries, MQSeries-C, and MSMQ transports.

ctime
Character, output

Returns the queue creation time stamp. This property is valid only for the

MQSeries, MQSeries-C, and MSMQ transports.

desc
Character, output

Returns a description of the queue. This property is valid only for the MQSeries,
MQSeries-C, and MSMQ transports.

inbox
Character, output

Returns the name of the private inbox created for a session opened with FETCHX.
This property is valid only for the Rendezvous transports. This parameter is optional.

Details
If a transport does not support a particular property, then the routine returns -2 for
numeric property values but does not change character property values.

Example

The following example obtains the properties of a queue:

length msg $ 200;

length qid rc 8;

length ttype $ 13;

length pmask depth maxdepth maxmsgl 8;

length ctime desc $ 80;

rc=0;

ttype=’’;

pmask=0;

depth=0;

maxdepth=0;

maxmsgl=0;

ctime=’’;

desc=’’;

call getqueueprops(qid, rc, ttype, pmask, depth,

maxdepth, maxmsgl, ctime, desc);

if	 rc ^= 0 then do;

put ’GETQUEUEPROPS: failed’;

msg = sysmsg();

put msg;

end;

else do;

put ’GETQUEUEPROPS: succeeded’;

put ’transport type = ’ ttype;

if ttype eq ’MQSERIES’ then do;

if	 pmask=’1...’b then put ’Syncpoint is enabled’;

else put ’Syncpoint is disabled’;

end;

else if ttype eq ’MSMQ’ then do;

224 INIT � Chapter 8

if pmask=’1’b then put ’Authenticated
messages are required’;

if pmask=’1.’b then put ’Private

messages are required’;

else if pmask=’1..’b then put ’Public

messages are required’;
else put ’Privacy is optional’;

if pmask=’1...’b then put ’Transactional

messages are required’;

else put ’Transactional messages

are not permitted’;

end;

put ’depth = ’ depth;

put ’maxdepth = ’ maxdepth;

put ’maxmsgl = ’ maxmsgl;

put ’creation time = ’ ctime;

put ’description = ’ desc;

end;

INIT

Initializes a particular transport. You must use the TERM CALL routine to terminate the transport
after you have completed a session.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax

CALL INIT(tid, tname, rc);

Arguments

tid
Numeric, output

Returns the transport handle that is used to open a queue or to begin transaction
processing.

tname
Character, input

Specifies the name of the transport that is initialized. The following transport
names are valid:

3 MQSERIES (trantab=SAS_trantab_override)

3 MQSeries-C (trantab=SAS_trantab_override)

3 MSMQ

3 RENDEZVOUS

3 RENDEZVOUS-CM

3 alias that is defined in the information repository

Common Messaging Interface Call Routines � OPENQUEUE 225

Note: With the MQSeries transport, if you use SAS to perform the conversion
instead of using an MQSeries conversion exit, then you can specify which TRANTAB
to use for converting the application data. �

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

Details

The following transports are valid: MQSeries (MQSeries Base/Server), MQSeries-C
(MQSeries Client), MSMQ (Microsoft Message Queue), RENDEZVOUS (TIBCO TIB/
Rendezvous), and RENDEZVOUS-CM (TIBCO TIB/Rendezvous Certified Message
Delivery). In addition, you can use a transport alias name that is defined in the
information repository to indirectly specify one of the transports.

Example

The following example initializes an MQSeries Base/Server transport:

length msg $ 200;

length tid rc 8;

tid=0;

rc=0;

call init(tid, ’MQSERIES’, rc);

if rc ^= 0 then do;

put ’INIT: failed’;

msg = sysmsg();

put msg;

end;

else put ’INIT: succeeded’;

OPENQUEUE

Opens a message queue. You must use the CLOSEQUEUE CALL routine to close the message
queue.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM
Note: For Rendezvous Certified Message Delivery (Rendezvous-CM), you must define a
model definition for certified message delivery. Use the SETMODEL call to define a
model definition.

Syntax

CALL OPENQUEUE(qid, tid, qname, mode, rc <, attr1 <, attr2>>);

226 OPENQUEUE � Chapter 8

Arguments

qid
Numeric, output

Returns the queue handle for the opened queue. This handle is used in subsequent
calls to send, receive, and parse messages and attachments, and close the queue.

tid
Numeric, input

Specifies the transport handle that is obtained from the INIT function.

Note: If transport handle is set to 0, then qname is assumed to be a queue alias
name that is defined in the information repository, and the transport is initialized
(and terminated at close) automatically. �

qname
Character, input

Specifies the name of the queue to open.

The syntax for an MQSeries transport is:

MQSeries:QMgr:Queue

The syntax for an MSMQ transport is:

MSMQ: PathName | FormatName

The following PathName representations are valid:
3 machineName\QueueName (public queue)
3 machineName\QueueName;Journal (public queue’s journal)
3 machineName\PRIVATE$\QueueName (private queue)
3 machineName\PRIVATE$\QueueName;Journal (private queue’s journal)
3 machineName\Journal (machine journal queue)
3 machineName\DeadLetter (machine deadletter queue)
3 machineName\DeadXACT (machine transaction deadletter queue)

Note: machineName can be substituted with "." to designate the local
machine. �

The following FormatName representations are valid:
3 PUBLIC=QueueGUID (public queue)
3 PUBLIC=QueueGUID;Journal (public queue’s journal)
3 PRIVATE=machineGUID\QueueNumber (private queue)
3 PRIVATE=machineGUID\QueueNumber;Journal (private queue’s journal)
3 DIRECT=AddressSpecification\QueueName (direct format for public queue)
3 DIRECT=AddressSpecification\PRIVATE$\QueueName (direct format for

private queue)

where AddressSpecification is protocol:address (for example, tcp:10.26.1.177).

Note: You can use direct format in certain situations. Consult MSMQ
documentation for details.

You can also use a queue alias name that is defined in the information repository
as the qname parameter. �

The syntax for a Rendezvous or Rendezvous-CM transport is:

SubjectName | InboxName

Common Messaging Interface Call Routines � OPENQUEUE 227

SubjectName
consists of one or more elements separated by dot characters (periods). The
elements can represent a subject name hierarchy. For example:

RUN.HOME

RUN.for.Elected_office.President

InboxName
is generated by the Rendezvous software. The syntax is the same as SubjectName,
but must begin with _INBOX as the first element.

Note: If an inbox name is specified, the name must have already been created
and returned by another call. For example, a RECEIVEMESSAGE call might have
returned an inbox name in its respq attribute.

When the queue is being opened for sending, wildcard characters (’*’ and ’>’) are
not allowed. �

mode
Character, input

Identifies the operational mode of the queue that is opened. You can use only one
mode to open a queue.

The following modes for the MSMQ and MQSeries transports are valid:

DELIVERY

Enables messages to be sent to a queue

FETCH

Enables messages to be destructively retrieved

FETCHX

The same as FETCH except it ensures exclusive usage

BROWSE

Enables messages to be nondestructively retrieved.

The following modes for the Rendezvous and Rendezvous-CM transport are valid:

DELIVERY

enables messages to be sent to a queue.

FETCH

enables messages to be retrieved.

FETCHX
same as FETCH except used for point-to-point or private messages (using inboxes)
instead of broadcast messages (using subject names). The qname property must be
left blank (’’) on the open call. A private inbox name is generated and associated
with the qid. To access this queue, retrieve the inbox name by using
GETQUEUEPROPS. Use the value returned as the response queue value on send
message calls when notifying a partner application of the private inbox name to
send responses to. For Rendezvous-CM, if persistent messaging is not required,
then you can use the FETCHX mode. The FETCHX mode should not be used with
persistent messaging because inbox names do not survive transport invalidation.

REQUEST
enables request messages to be sent to a subject (queue) that is being monitored
by a remote program that serves as an information supplier. The qname
parameter should specify the name of the queue to which the request message is

228 OPENQUEUE � Chapter 8

to be sent. Any responses received arrive on the queue that is specified in the
respqueue parameter of the SENDMESSAGE call.

REQUESTX
same as REQUEST except used for point-to-point or private messages (using
inboxes) instead of broadcast messages (using subject names). The qname
parameter should specify the name of the queue on which the request message is
to be sent. Any responses received use the inbox name associated with the qid.
This inbox name is created internally by Rendezvous when the respqueue
parameter is initialized to null. For Rendezvous-CM, if persistent messaging is not
required, then you can use the REQUESTX mode. The REQUESTX mode should
not be used with persistent messaging because inbox names do not survive
transport invalidation.

Note: Before any messages are sent with the Rendezvous transport, the
queues that receive the messages must be running and must have a listener (that
is, the queues must be opened for FETCH, FETCHX, REQUEST, or REQUESTX).
Otherwise, data will be lost. Queues that are opened for REQUEST and
REQUESTX automatically have their receiving (response) queues open to listen
for incoming messages when the initial request is sent. �

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

attrs
Character, input

Specifies one or more attributes to be associated with the queue. Each attribute
constitutes a separate parameter in the open call. The following attributes are valid:

POLL (Timeout=wait_period_in_seconds)
Allows you to specify how message reception is handled for this queue. By default,
the timeout period is set to INFINITE and a receive is blocked until a message
arrives. To override the default, specify POLL and the timeout period.

DYNAMIC (Model=model_name)
Signifies that the queue is to be dynamically created, and specifies a model name
that is defined in the information repository, which specifies how to create the
queue. For the MQSeries transport, the model is defined in the MQSeries
configuration, not in the SAS information repository.

CLUSTER (CLUSTER=BIND(bind_type))
Allows for setting of open options that enables MQSeries to connect to clusters.
This attribute is valid only for MQSeries. Values for bind_type can be:

OPEN

translates to MQOO_BIND_ON_OPEN

NOT_FIXED

translates to MQOO_BIND_NOT_FIXED

AS_Q_DEF

translates to MQOO_ BIND_AS_Q_DEF

Example

The following example opens a queue for delivery by using an alias name:

Common Messaging Interface Call Routines � PARSEMESSAGE 229

length msg $ 200;

length qid tid rc 8;

/* MYQUEUE exists as a queue alias definition

in the SAS information repository. */

rc=0;

qid=0;

tid=0;

call openqueue(qid, tid, ’MYQUEUE’,

’DELIVERY’, rc, "POLL(Timeout=5)");

if rc ^= 0 then do;

put ’OPENQUEUE: failed’;

msg = sysmsg();

put msg;

end;

else put ’OPENQUEUE: succeeded’;

PARSEMESSAGE

Parses a message body that has been received.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax

CALL PARSEMESSAGE(qid, cursor, rc, map, data);

Arguments

qid
Numeric, input

Specifies the handle of an open queue that is obtained from a previous
OPENQUEUE function call.

cursor
Numeric, input or output

Sets the cursor to zero in order to parse from the beginning. Upon return, the
cursor is positioned at the next data location, according to the specified map.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

map
Character, input

Specifies the map data descriptor that is defined by a previous SETMAP function
call.

230 RECEIVEMESSAGE � Chapter 8

data
Character or numeric, output

Identifies the data to be parsed from the internal receive buffer.

Example

The following example parses a message:

length msg $ 200;

length qid rc attchflg 8 event $ 10;

length msgtype 8 corrid $ 48 map $ 80;

length employee $ 20 id 8;

rc=0;

map=’employeerecord’;
/* data descriptor defined in repository...

ie., "char,,20;double" */

cursor=0;

call parsemessage(qid, cursor, rc, map, employee, id);

if rc ^= 0 then do;
put ’PARSEMESSAGE: failed’;

msg = sysmsg();

put msg;

end;

else do;

put ’PARSEMESSAGE: succeeded’;
put ’employee = ’ employee;

put ’id = ’ id;

end;

RECEIVEMESSAGE

Receives a message and optional attachments from a queue.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax

CALL RECEIVEMESSAGE(qid, rc, event, attchflg, props <, value1, value2,...< data1,
data2,...>>);

Arguments

qid
Numeric, input

Specifies the handle of an open queue that is obtained from a previous
OPENQUEUE function call.

rc
Numeric, output

Common Messaging Interface Call Routines � RECEIVEMESSAGE 231

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

event
Character, output

Contains a description of the event that occurs as a result of the message being
received. Possible event types are:

DELIVERY

Specifies that the message was delivered.

NO_MESSAGE

Specifies that no message is on queue.

ERROR
Specifies that an error has occurred. This event results in a nonzero value for rc.
You need to initialize this parameter to a length of at least 10 before making the

call so that there is room for the value to be placed in the string. Otherwise, the
message might be truncated.

attchflg
Numeric, output

Indicates whether an attachment is associated with the received message. Possible
return values are as follows:

0

Specifies that no attachments are associated with this message.

1

Specifies that attachments are associated with this message. You can call

GETATTACHMENT to receive the attachments.

props
Character, input

Identifies one or more message properties that are associated with the message
that is received. This parameter is a character string. Each property is separated by
a comma. The following receive message properties are valid for MQSeries:

3 ACCOUNTINGTOKEN

3 APPLIDENTITYDATA
3 APPLORIGINDATA
3 PUTAPPLNAME
3 PUTAPPLTYPE

The following receive message properties are valid for MSMQ:

3 ADMINQUEUE
3 AUTHENTICATE
3 DESCRIPTION
3 SENDERCERT

The following receive message properties are valid for both MQSeries and MSMQ:
3 CORRELATIONID
3 FEEDBACK
3 MAP
3 MSGID
3 MSGTYPE

232 RECEIVEMESSAGE � Chapter 8

3 OPTIONS
3 QUEUEDTIME
3 RESPQUEUE
3 TIMEOUT
3 TRANSACTION
3 USERID

The following receive message properties are valid for Rendezvous and

Rendezvous-CM:

3 MAP
3 RESPQUEUE
3 TIMEOUT

The following receive message properties are valid for Rendezvous-CM only:
3 CERTIFIED
3 RELAYAGENTACTION
3 SENDERNAME

values
Character or numeric

Provides the values that are associated with each property that is specified via the
props parameter. You must associate a value with each property that is identified
with the props parameter. The property values can be an input, output, or both.

Descriptions and values for the received message properties are:

ACCOUNTINGTOKEN

Binary string, output

Specifies an MQSeries accounting token.

ADMINQUEUE

Character, output

Specifies an MSMQ administrator queue.

APPLIDENTITYDATA

Character, output

Specifies MQSeries application identity data.

APPLORIGINDATA

Character, output

Specifies MQSeries application origin data.

AUTHENTICATE

Character, output

Indicates MSMQ authentication enablement. Possible authenticate return

values are as follows:

NO

Specifies that the message was not authenticated.

YES

Specifies that the message was authenticated.

CORRELATIONID

Binary string, input or output

Specifies a correlation identifier. For MQSeries and MSMQ transports, on input
this property can be used for filtering purposes. However, do not try to filter with
this property when you are receiving attachment messages. The original
CORRELATIONID is not associated with the attachment header message,

Common Messaging Interface Call Routines � RECEIVEMESSAGE 233

although the original CORRELATIONID is embedded within the attachment
header itself and will be presented accurately. This type of processing is needed
because an attachment consists of multiple messages that must be uniquely
identified. A CORRELATIONID that is set by the application is not guaranteed to
be unique.

CERTIFIED
Character, output

Specifies a Certified Message (CM) indicator. Possible return values are as
follows:

NO
Specifies that the message was received by the normal transport or the listener
has not been certified.

YES
Specifies that the message was received within the certified delivery transport.

DESCRIPTION
Character, output

Specifies a message description.

FEEDBACK
Numeric, output

For MQSeries, specifies a feedback code. For MSMQ, specifies a class.

MAP
Character, input

Specifies a data map name.

MSGID
Binary string, input or output

Indicates the message identifier. On input, this property can be used for
filtering purposes for both MQSeries and MSMQ transports.

MSGTYPE
Numeric, output

Indicates the message type.

OPTIONS
Character, input

Specifies the receive options. The following options are valid:

POSITIONFIRST

(MQSeries/MSMQ)

Indicates to reposition to the first message in the queue.

CONVERSION_EXIT
(MQSeries only)

Specifies to use the MQSeries conversion exit. Otherwise, SAS performs all
necessary data conversion internally.

PUTAPPLNAME
Character, output

Indicates an MQSeries application name.

PUTAPPLTYPE
Character, output

Indicates an MQSeries application type.

234 RECEIVEMESSAGE � Chapter 8

QUEUEDTIME
Character, output

Indicates the time at which the message was queued.

RELAYAGENTACTION
Character, input

Specifies connect or disconnect actions for the relay agent. The following values
are valid:

CONNECT

Indicates to connect to the relay agent before receiving messages and

attachments.

DISCONNECT
Indicates to disconnect from the relay agent after all messages associated with
the call have been processed. If an attachment is received, the disconnect call is
issued after the ACCEPTATTACHMENT call has processed all of the messages
associated with the attachment and before the call returns to the DATA step. If
ACCEPTATTACHMENT is not called, then the connection is not closed. If a
connection was made to the relay agent during the call and an error occurs,
then the error causes a disconnect from the relay agent.

BOTH
Indicates to connect to the relay agent, receive all messages, then disconnect
from the relay agent. If an attachment is received, the disconnect call is issued
after the ACCEPTATTACHMENT call has processed all of the messages
associated with the attachment and before the call returns to the DATA step. If
ACCEPTATTACHMENT is not called, then the connection is not closed. If an
error occurs in a call, then if a connection was made to the relay agent during
the call, an error causes a disconnect from the relay agent.

RESPQUEUE
Character, output

Indicates the response queue name.

SENDERCERT
Character, output

Indicates the subject within received certificate (MSMQ).

SENDERNAME
Character, output

Indicates the name of the certified message (CM) transport used by the sender.

TIMEOUT
Numeric, input

Specifies the number of seconds the RECEIVEMESSAGE call should wait for a
message to arrive before returning. A value of -1 resets the queue to a non-polling
state, and the RECEIVEMESSAGE call will wait indefinitely for a message to
arrive. If the POLL attribute was not specified on an OPENQUEUE call, using
this option on a RECEIVEMESSAGE call turns the queue into a polling queue
that does not wait indefinitely for a message to arrive. You can turn a polling
queue into a non-polling queue that waits indefinitely by specifying ’-1’ as the
value of the TIMEOUT property on a RECEIVEMESSAGE call. By setting a
TIMEOUT value on a RECEIVEMESSAGE call, the TIMEOUT value for the
current queue ID is set to the new value, and all subsequent RECEIVEMESSAGE
calls will wait for the new timeout specified.

TRANSACTION
Numeric, input

Common Messaging Interface Call Routines � RECEIVEMESSAGE 235

Indicates the transaction object obtained from BEGINTRANSACTION.

USERID

Character, output

Indicates the user identifier who sent the message.

data
Character or numeric, output

When you issue RECEIVEMESSAGE, all data that is associated with a message is
placed into an internal buffer. You can parse this data during the
RECEIVEMESSAGE call with these optional parameters, or you can call
PARSEMESSAGE at a later time to parse the data.

Example

The following example receives a message such as the one sent in the
SENDMESSAGE example:

length msg $ 200;

length qid rc attchflg 8 event $ 10;

length msgtype 8 corrid $ 48 map $ 80;

length employee $ 20 id 8;

rc=0;

corrid=’’;

/* no filtering */

map=’employeerecord’;

/* data descriptor defined in repository...

for example, "char,,20;double" */

call receivemessage(qid, rc, event, attchflg,

’MSGTYPE,CORRELATIONID,MAP’, msgtype, corrid,

map, employee, id);

if	 rc ^= 0 then do;

put ’RECEIVEMESSAGE: failed’;

msg = sysmsg();

put msg;

end;

else do;

put ’RECEIVEMESSAGE: succeeded’;

put ’Event = ’ event;

if event eq ’DELIVERY’ then do;

put ’Message has been delivered’;

if attchflg eq 1 then do;

put ’Attachment(s) are associated

with this message’;

/* process attachments...*/

end;

put ’employee = ’ employee;

put ’id = ’ id;

end;

end;

236 SENDMESSAGE � Chapter 8

SENDMESSAGE

Sends a message and optional attachments to a queue.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax
CALL SENDMESSAGE(qid, rc, props <, value1, value2,...<, data1, data2,...>>);

Arguments

qid
Numeric, input

Specifies the handle of an open queue that is obtained from a previous
OPENQUEUE function call.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

props
Character, input

Identifies one or more message properties that affect the message being sent. This
parameter is a character string with each applicable property separated by a comma.
All values except MSGID are input to the SENDMESSAGE routine.

The following are valid send message properties for MQSeries:
3 ACCOUNTINGTOKEN
3 APPLIDENTITYDATA
3 APPLORIGINDATA
3 CODEDCHARSETID
3 ENCODING
3 FEEDBACK
3 FORMAT
3 PUTAPPLNAME
3 PUTAPPLTYPE
3 PUTDATE
3 PUTTIME
3 REPORT
3 USERID

The following are valid send message properties for MSMQ:
3 ACKNOWLEDGE
3 ADMINQUEUE
3 AUTHENTICATE
3 DESCRIPTION

Common Messaging Interface Call Routines � SENDMESSAGE 237

3 ENCRYPT
3 ENCRYPTALG
3 HASHALG
3 JOURNAL
3 SENDERCERT

The following are valid send message properties for both MQSeries and MSMQ:
3 ALLOWREADPROTECT
3 ATTACHLIST
3 CORRELATIONID
3 MAP
3 MSGID
3 MSGTYPE
3 PERSIST
3 PRIORITY
3 RESPQUEUE
3 TIMEOUT
3 TRANSACTION

The following are valid send message properties for Rendezvous and

Rendezvous-CM:

3 ATTACHLIST
3 ALLOWREADPROTECT
3 MAP
3 RESPQUEUE

The following are valid send message properties for Rendezvous-CM only:
3 ADDLISTENER
3 ALLOWLISTENER
3 DISALLOWLISTENER
3 RELAYAGENTACTION
3 TIMEOUT

values
Character or numeric, input or output

Provides values that are associated with the properties specified via the props
parameter. You must associate a value with each property that is specified by props.
All values except MSGID are input to the routine. For the MQSeries transport,
MSGID is input and output. For the MSMQ transport, MSGID is only output.
Descriptions and values for the send message properties are listed by transport, and
the following values are valid:

ACCOUNTINGTOKEN

Binary string

MQSeries accounting token.

ACKNOWLEDGE

Character

MSMQ acknowledgment types. Possible acknowledge types are as follows:

NONE (Default)

Specifies that no acknowledgment messages are posted.

238 SENDMESSAGE � Chapter 8

FULL_REACH_QUEUE
Specifies that positive or negative acknowledgments are posted, depending on
whether the message reaches the queue.

FULL_RECEIVE
Specifies that positive or negative acknowledgments are posted, depending on
whether the message is retrieved from the queue.

NACK_REACH_QUEUE
Specifies that negative acknowledgments are posted when a message cannot
reach the queue.

NACK_RECEIVE
Specifies that negative acknowledgments are posted when a message cannot be
retrieved from the queue.

ADDLISTENER
Character

Identifies one or more certified message names (CMNAMEs) of the listeners.
This parameter is a character string with each CMNAME separated by a comma.

Anticipates a listener (or listeners) for certified delivery agreement.

Note: If a listener is added, this feature applies to all future messages within
the session. �

ADMINQUEUE
Character

Specifies the MSMQ administrator queue.

ALLOWLISTENER
Character

Identifies one or more certified message names (CMNAMEs) of the listeners.
This parameter is a character string with each CMNAME separated by a comma.

Allows listeners on the specified CMNAME to reinstate certified delivery. This
feature overrides any DISALLOWLISTENER for listener CMNAME.

Note: If a listener is allowed, this feature applies to all future messages

within the session. �

ALLOWREADPROTECT
Character

Specifies the value "YES". You must assert this property on read-protected data
sets in order for that data set to be sent as an attachment. This ensures that the
user realizes that the read password and encryption attributes are not preserved
when this data set is sent as a message attachment. If this property is not
applied, then the SENDMESSAGE call fails when the user tries to send a read
protected data set, and an error is returned.

Note: This property is supported in SAS 8.1 and later. The password and
encryption attributes are not preserved in the intermediate message format when
the attachment is on a message queue. Because of this exposure, take care when
sending password-protected or encrypted data sets as message attachments. �

APPLIDENTITYDATA
Character

Specifies the MQSeries application identity data.

APPLORIGINDATA
Character

Specifies the MQSeries application origin data.

Common Messaging Interface Call Routines � SENDMESSAGE 239

ATTACHLIST
Character

Specifies that a list of attachments is included with message. The format of the
list is as follows:

"type,qual1,qual2,options;

type,qual1,qual2,options;..."

where the parameters are defined as follows:

type
Is the attachment type, which can be one of the following:

EXTERNAL_TEXT

Is an external text file.

EXTERNAL_BIN

Is an external binary file.

DATASET

Is a SAS data set.

qual1
Is a qualifier. For EXTERNAL_TEXT and EXTERNAL_BIN attachment types,
this qualifier specifies the file specification type which can be one of the
following:

3 FILENAME
3 FILEREF

For the DATASET attachment type, this qualifier specifies the library name.

qual2
Is a qualifier. For EXTERNAL_TEXT and EXTERNAL_BIN attachment types,
this qualifier specifies the actual filename or fileref. For the DATASET
attachment type, this qualifier specifies the member name.

options
Specifies optional attachment specifications. Multiple options must be separated
by spaces. The following options are valid for all attachment types:

3 DESC=attachment description
3 MINOR=user specified minor version
3 MAJOR=user specified major version

The following options are valid for the DATASET attachment type:

3 DATASET_OPTIONS=data set options
3 WHERE=WHERE clause
3 INDEX=yes|no (default is yes so that indexes are sent)
3 IC=yes|no (default is yes so that integrity constraints are sent)
3 ATTACH_VERSION=VERSION_8

If the ATTACH_VERSION option is specified and value=VERSION_8, then
the data set is sent using the column types available in the data sets before
SAS®9. Use this option if you might be sending data sets to another SAS
session that is running SAS 8.2 or earlier.

If the ATTACH_VERSION option is omitted or if any other value is specified,
then the full data set, including all new types, is sent.

240 SENDMESSAGE � Chapter 8

AUTHENTICATE
Character

Specifies MSMQ authentication enablement. Possible authenticate types are as
follows:

NO (default)

Specifies that no authentication is necessary. The message is not signed.

YES
Specifies that the message is signed and authenticated by the destination queue
manager.

CODEDCHARSETID
Numeric

Specifies the MQSeries coded character set.

CORRELATIONID
Binary string

Specifies the correlation identifier.

DESCRIPTION
Character

Specifies the Message description.

DISALLOWLISTENER
Character

Specifies one or more certified message names (CMNAMEs) of the listeners.
This parameter is a character string with each CMNAME separated by a comma.

It cancels certified delivery to listeners with the specified CMNAME.

Note: If a listener is disallowed, this feature applies to all future messages
within the session. �

ENCODING
Numeric

Specifies MQSeries data encoding.

ENCRYPT
Character

Specifies MSMQ encryption enablement. Possible encryption types are as
follows:

NO (Default)

Specifies that the message is to be sent as clear-text.

YES

Specifies end-to-end encryption of the message body.

ENCRYPTALG
Character

Specifies the MSMQ encryption algorithms. The following choices are valid:

3 RC2 (default)

3 RC4

FEEDBACK
Numeric

Specifies MQSeries feedback code.

FORMAT
Character

Common Messaging Interface Call Routines � SENDMESSAGE 241

Specifies MQSeries format name.

HASHALG
Character

Specifies MSMQ hash algorithms. Possible hash types are as follows:

3 MD2

3 MD4

3 MD5 (default)

JOURNAL
Character

Specifies MSMQ journaling. Possible journal types are as follows:

NO (default)

Specifies that the message is not kept in the originating machine’s journal

queue.

YES
Specifies that the message is kept in the originating machine’s journal queue.

DEADLETTER
Specifies that the message is kept in a dead letter queue if it cannot be delivered.

MAP
Character

Specifies the data map name.

MSGID
Binary string

Specifies the message identifier.

MSGTYPE
Numeric

Specifies the message type.

PERSIST
Character

Specifies message persistence. Possible persist types are as follows:

NO

Indicates that the message is not persistent (default).

YES

Indicates that the message is persistent.

PRIORITY
Numeric

Specifies message priority.

PUTAPPLNAME
Character

Specifies MQSeries application name.

PUTAPPLTYPE
Numeric

Specifies MQSeries application type.

PUTDATE
Character

Specifies MQSeries put date.

242 SENDMESSAGE � Chapter 8

PUTTIME
Character

Specifies MQSeries put time.

RELAYAGENTACTION
Character

Specifies the connect and disconnect actions for the relay agent. The following
values are valid:

CONNECT

Indicates to connect to the relay agent before sending messages and

attachments.

DISCONNECT
Indicates to disconnect from the relay agent after all messages associated with
the call have been processed. The disconnect happens at the end of the call
before the call returns to the DATA step.

BOTH
Indicates to connect to the relay agent, send all messages, and then disconnect
from the relay agent. The disconnect happens at the end of the call before the
call returns to the DATA step.

REPORT
Character

Specifies the MQSeries reporting types. Possible report types are as follows:

NONE

Specifies that no reports are required.

PASS_CORREL_ID

Specifies to pass a correlation identifier.

PASS_MSG_ID

Specifies to pass a message identifier.

COA

Specifies that confirmation-on-arrival reports are required.

COA_WITH_DATA

Specifies that confirmation-on-arrival reports with data are required.

COA_WITH_FULL_DATA

Specifies that confirmation-on-arrival reports with full data are required.

COD

Specifies that confirmation-on-delivery reports are required.

COD_WITH_DATA

Specifies that confirmation-on-delivery reports with data are required.

COD_WITH_FULL_DATA
Specifies that confirmation-on-delivery reports with full data are required.

EXPIRATION

Specifies that expiration reports are required.

EXPIRATION_WITH_DATA

Specifies that expiration reports with data are required.

EXPIRATION_WITH_FULL_DATA

Specifies that expiration reports with full data are required.

Common Messaging Interface Call Routines � SENDMESSAGE 243

EXCEPTION

Specifies that exception reports are required.

EXCEPTION_WITH_DATA

Specifies that exception reports with data are required.

EXCEPTION_WITH_FULL_DATA

Specifies that exception reports with full data required.

DISCARD_MSG

Specifies to discard message if it is undeliverable.

RESPQUEUE

Character

Specifies the response queue name.

Note: If this attribute is specified with an empty string value (’’) when using a
Rendezvous or Rendezvous-CM queue that was opened using REQUESTX mode,
the generated inbox name will be sent. If another name is specified, it will be used
instead. �

SENDERCERT
Character

Specifies the MSMQ certificate store name that is used in order to search for
external certificates. "MY" is typically specified. This results in a search of the
current user’s certificates with their associated private keys. For example, if "MY"
is used, the corresponding registry entry is

HKEY_CURRENT_USER\Software\Microsoft\SystemCertificates\MY

TIMEOUT
Numeric

Specifies the timeout value in seconds.
For Rendezvous-CM, specify this timeout as the length of time this message is

to be sent using certified message delivery.

TRANSACTION
Numeric

Specifies the transaction object that is obtained from BEGINTRANSACTION.

USERID

Character

Specifies the MQSeries user identifier.

data
Character or numeric, input

Specifies the individual pieces of data that are sent with the message.

Details
If you intend to send attachments, use a queue that supports transactional processing.
In this way, all messages associated with a failed attachment can be backed out if any
part of the attachment processing fails. The IBM MQSeries queue manager supports
the synchpoint function. An MSMQ queue is a transactional queue. For information
about exception processing when using attachments, see “Attachment Error Handling”
on page 201.

Before any messages are sent with the TIB/Rendezvous transport, the queues that
receive the messages must be running and must have a listener (that is, the queues
must be opened for FETCH, FETCHX, REQUEST, or REQUESTX). Otherwise, data
will be lost. Queues that are opened for REQUEST and REQUESTX automatically have
their receiving (response) queues open to listen for incoming messages.

244 SETALIAS � Chapter 8

Note: If you are sending certified messages by using Rendezvous-CM, and plan to
close the sending queue immediately after sending the message, then you might want
to put a sleep() call in to sleep for a couple of seconds. This delay allows the Certified
Delivery Agreement to be established between the sending transport and the receiving
transport. This delay can also occur when a listener is first opened to receive certified
messages. �

Example

The following example sends an employee name and ID with records attached:

length msg $ 200;

length qid rc 8;

length msgtype 8 corrid $ 48 alist $ 80;

length employee $ 20 id 8;

rc=0;

/* message properties */

msgtype=1;

corrid=’0102030405060708090A0B0C0D0E0F’;

alist=’DATASET,EMPLOYEE,RECORDS,

DESC=employee records for John Doe’;

/* message data */

employee=’John Doe ’;

id=9999;

call sendmessage(qid, rc,

’MSGTYPE,CORRELATIONID,ATTACHLIST’,

msgtype, corrid, alist, employee, id);

if	 rc ^= 0 then do;

put ’SENDMESSAGE: failed’;

msg = sysmsg();

put msg;

end;

else put ’SENDMESSAGE: succeeded’;

SETALIAS

Defines a transport or queue alias in the information repository.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax

CALL SETALIAS(type, name, storage, rc, transport <, queue>);

Common Messaging Interface Call Routines � SETALIAS 245

Arguments

type
Character, input

Specifies the type of alias to be defined. The following types are valid:

3 TRANSPORT
3 QUEUE

name
Character, input

Identifies the transport alias or queue alias that is assigned.

storage
Character, input

Specifies the location for the alias definition. The REGISTRY location is valid.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

transport
Character, input

Identifies the name of the transport. The following transports are valid:

3 MQSERIES (trantab=SAS_trantab_override)

3 MQSeries-C (trantab=SAS_trantab_override)
3 MSMQ
3 RENDEZVOUS
3 RENDEZVOUS-CM

Note: With the MQSeries transport, if you use SAS to perform the conversion
instead of using an MQSeries conversion exit, then you can specify which TRANTAB
to use for converting the application data. If the TRANTAB is not specified, SAS will
use the session encoding information to convert the data. �

queue
Character, input

Identifies the name of the queue that is defined. This parameter is optional.

Note: This queue is valid only if a queue alias is being defined. �

Details

An alias provides a level of indirection that simplifies the programming interface by
encapsulating information for all other programs. For details about administrator
programs, see “Administrator Programs” on page 171.

Example

This example defines an MSMQ queue alias in the SAS registry.

length msg $ 200;

length rc 8;

246 SETMAP � Chapter 8

rc=0;

call setalias(’QUEUE’, ’MYQUEUE’, ’REGISTRY’, rc,

’MSMQ’, ’machine_name\queue_name’);

if rc ^= 0 then do;

put ’SETALIAS: failed’;

msg = sysmsg();
put msg;

end;

else put ’SETALIAS: succeeded’;

SETMAP

Defines a map data descriptor in the information repository.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax

CALL SETMAP(name, storage, rc, descriptor);

Arguments

name
Character, input

Identifies the map data descriptor that is assigned.

storage
Character, input

Specifies the location for the map definition. The REGISTRY location is valid.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

descriptor
Character, input

Describes the layout of the data within a message body. This parameter is a string
that contains the data type, the offset (optional), and (for character data) the length
of each SAS variable. This data is presented in the order in which it is passed to a
SENDMESSAGE call and returned from a RECEIVEMESSAGE call. The descriptor
has the following format:

"type,offset,length;type,offset,length;..."

where:

3 type is the type of data (SHORT, LONG, DOUBLE, or CHAR).

Common Messaging Interface Call Routines � SETMODEL 247

3 offset is the offset from the beginning of the message, which is the cursor
location in the case of the PARSEMESSAGE routine. This parameter is optional.

3 length is the length of the data, which is valid only for the CHAR data type.

Details

A map specifies the layout of the data within a message body. Maps can be used with
the MQSeries, MQSeries-C, MSMQ, Rendezvous, or Rendezvous-CM transport when
sending and receiving data.

Example

The following example defines a map data descriptor in the SAS registry:

length msg $ 200;

length rc 8;

rc=0;

call setmap(’MYMAP’, ’REGISTRY’, rc,

’SHORT;LONG,2;SHORT;DOUBLE,6;CHAR,,50’);

if rc ^= 0 then do;

put ’SETMAP: failed’;

msg = sysmsg();

put msg;

end;

else put ’SETMAP: succeeded’;

SETMODEL

For the MSMQ transport, defines a dynamic creation queue model. For the Rendezvous transport,
the SETMODEL call enables you to change one or more transport attributes from the default values.
For the Rendezvous-CM transport, defines a model definition for certified message delivery.

Transports supported: MSMQ, Rendezvous, Rendezvous-CM

Syntax

CALL SETMODEL(transport, name, storage, rc, props, value1 <, value2,...>)

Arguments

transport
Character, input

Specifies the transport that is associated with this model. MSMQ, Rendezvous,
and Rendezvous-CM are the only valid transports for this CALL routine.

name
Character, input

Identifies the dynamic model or transport model that is assigned.

248 SETMODEL � Chapter 8

storage
Character, input

Specifies the location for the model definition. The REGISTRY location is valid.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

props
Character, input

Identifies one or more properties that the queue exhibits once created. This
parameter is a character string. Each applicable property is separated by a comma.
You must associate a value with each property that is identified by props.

values
Character or numeric, input

Inputs the values for each property that is specified. Use one of the following

values for each of the properties listed in the props parameter.

AUTHENTICATE
Character

Specifies whether the queue accepts only authenticated messages. The following
values are valid:

NONE (Default)
Specifies the queue accepts either authenticated or nonauthenticated messages.

ALWAYS

Specifies the queue always requires authenticated messages.

BASEPRIORITY

Numeric

Specifies a single base priority for all messages sent to a public queue. Values
range from -32768 to 32767, where 32767 is the highest priority, and 0 is the
default priority.

JOURNAL

Character

Specifies whether messages retrieved from the queue are also copied to its

journal queue. The following values are valid:

NONE (default)
Indicates that messages that are removed from the queue are not stored in a
journal.

ALWAYS
Indicates that messages that are removed from the queue are always stored in
its journal queue.

JOURNALQUOTA
Numeric

Specifies the maximum size (in kilobytes) of the journal queue. The default size
is infinite.

LABEL

Character

Specifies a description of the queue. The default is a blank label ("").

Common Messaging Interface Call Routines � SETMODEL 249

PRIVLEVEL
Character

Specifies the privacy level that is required by the queue. The following values
are valid:

NONE

Specifies that the queue accepts only nonprivate (clear-text) messages.

BODY

Specifies that the queue accepts only private (encrypted) messages.

OPTIONAL (default)

Specifies that the queue accepts both private and nonprivate messages.

QUOTA
Numeric

Specifies the maximum size (in kilobytes) of the queue. The default size is
infinite.

TRANSACTION
Character

Specifies whether the queue is a transactional queue or a nontransactional
queue. The following values are valid:

NONE (default)

Indicates that the queue does not accept transactional operations.

ALWAYS
Indicates that all messages that are sent to the queue must be done through an
MSMQ transaction.

TYPE
Binary string

Specifies the type of service that is provided by the queue. The value of the
TYPE property is a universal unique identifier (UUID) character string that
represents binary data. The default is NULL_GUID.

For Rendezvous and Rendezvous-CM, the following transport properties are valid:

SERVICE

Character

Specifies the service name or port number. If you specify a null value, the
transport creation function looks for the service name "rendezvous" and uses
7500 if "rendezvous" is not found. The TIB/Rendezvous documentation strongly
recommends that administrators define "rendezvous" as a service, especially if
UDP port 7500 is already in use. For more information, consult the
TIB/Rendezvous documentation.

NETWORK
Character

Specifies the network name, Host IP, host name, or other identifier of the
network. For more information, see the TIB/Rendezvous documentation.

DAEMON

Character

Specifies the TCP socket number for a local daemon, or the remote host name
and socket number for a remote daemon. For more information, consult the
TIB/Rendezvous documentation.

Note: A model is not required if you are using default Rendezvous values. �

250 SETMODEL � Chapter 8

For Rendezvous-CM only, the following transport properties are valid:

CMNAME

Character

Specifies the reusable name of a certified message (CM) transport. This is the
CM Correspondent name, which can be omitted if persistent correspondents are
not required.

LEDGER
Character

Specifies the name of the file in which to store a file-based ledger. This
property can be omitted if persistent correspondents are not required.

RELAYAGENT
Character

Specifies the name of the relay agent. If you use this property, then it must
be configured by the Rendezvous administrator.

REQUESTOLD

Character

Indicates whether a persistent correspondent requires delivery of
unacknowledged messages that were sent to a previous certified delivery
transport with the same CMNAME. Possible types are as follows:

NO (default)
Specifies that the new CM transport does not require certified senders to
retain unacknowledged messages. Certified senders can delete those
messages from their ledgers.

YES
Specifies that the new CM transport requires certified senders to retain
unacknowledged messages sent to this persistent correspondent. When the
new CM transport begins listening to the appropriate subjects, the senders
can complete delivery. It is an error to specify YES when CMNAME is null.

SYNCLEDGER
Character

Specifies how to synchronize the ledger to its storage medium. Possible types
are as follows:

NO (default)
Specifies that the operating system writes changes to the storage medium
asynchronously.

YES
Specifies that the operations updating the ledger file do not return until the
changes are written to the storage medium.

Details
Dynamic models for MQSeries are defined within its own configuration.

Example

The following example defines an MSMQ model queue in the SAS registry:

length msg $ 200;

length rc 8;

rc=0;

Common Messaging Interface Call Routines � TERM 251

/* private queue model */

call setmodel(’MSMQ’, ’MYMODEL’, ’REGISTRY’, rc,

’AUTHENTICATE,PRIVLEVEL,LABEL’, ’ALWAYS’,

’BODY’, ’Private dynamic queue’);

if rc ^= 0 then do;

put ’SETMODEL: failed’;

msg = sysmsg();

put msg;

end;

else put ’SETMODEL: succeeded’;

TERM

Terminates a particular transport. If you initiate a transport with the INIT CALL routine, you must
use the TERM CALL routine to terminate the transport after you have completed the session.

Transports supported: MQSeries, MQSeries-C, MSMQ, Rendezvous, Rendezvous-CM

Syntax

CALL TERM(tid, rc);

Arguments

tid
Numeric, input

Specifies the transport handle that is obtained from the INIT function.

rc
Numeric, output

Provides the return code from the CALL routine. If an error occurs, then the
return code is nonzero. You can use the SAS function SYSMSG() in order to obtain a
textual description of the return code.

Example

The following example terminates a transport:

length msg $ 200;

length tid rc 8;

rc=0;

call term(tid, rc);

if rc ^= 0 then do;

put ’TERM: failed’;

msg = sysmsg();

put msg;

end;

else put ’TERM: succeeded’;

252

253

P A R T5

Message Queue Polling

Appendix 1.Configuring Message Queue Polling 255

254

255

A P P E N D I X

1
Configuring Message Queue
Polling

Overview of Message Queue Polling 255

Message Queue Polling Concepts 255

Overview of Configuring Message Queue Polling 255

Configure Your Third-Party Messaging Software 256

Define a Queue Manager 256

Define a Message Queue Polling Server 256

Add the Polling Server to the Object Spawner Definition 258

Overview of Message Queue Polling

Message Queue Polling Concepts
Message queue polling is a SAS feature that enables you to monitor a message queue

and start SAS programs to fulfill requests in the queue. You can configure message
queue polling for WebSphere MQ only.

Message queue polling is performed by the message queue polling server. The
message queue polling server is a specialized SAS server that monitors a queue and
performs SAS processing on the messages in the queue. Message queue polling servers
are managed by the Object Spawner. The spawner creates polling server sessions as
needed, and balances the workload between the server sessions.

For more information about using message queue polling with WebSphere MQ, see
“Using Message Queue Polling with WebSphere MQ” on page 13.

Overview of Configuring Message Queue Polling
To configure message queue polling, perform the following steps:
1 Configure your third-party messaging software.
2 Define a queue manager.
3 Define a message queue polling server.
4 Add the polling server to the object spawner definition.

256 Configure Your Third-Party Messaging Software � Appendix 1

Configure Your Third-Party Messaging Software

Before you can configure message queue polling, you must configure your third-party
messaging software (IBM WebSphere MQ).

For more information about configuring WebSphere MQ, see “Configuring WebSphere
MQ with the WebSphere MQ Explorer” on page 9.

Define a Queue Manager

To create a queue manager definition in the SAS Metadata Repository, perform the
following steps:

1 In SAS Management Console, select the Server Manager and then select
Actions � New Server. The New Server Wizard appears.

2 Select Queue manager for WebSphere MQ, and then click Next.

3 Specify a name and an optional description. Click Next.

4 Define the queues that are managed by the queue manager.

To create a new queue, perform the following steps:

a Click New. The New Queue window appears.

b Specify a name and an optional description.

c Click OK to create the queue and return to the New Server Wizard.

5	 Move the queues that you want to associate with the queue manager from the
Available items pane to the Selected items pane. Click Next.

6	 Specify the host name and port number for the queue manager (the
Authentication Domain field is not used). Click Next.

7	 Review the information that you have entered, and then click Finish to create the
queue manager definition.

Define a Message Queue Polling Server

To create a message queue polling server definition in the SAS Metadata Repository,
perform the following steps:

1 In SAS Management Console, select the Server Manager and then select
Actions � New Server. The New Server Wizard appears.

2 Select Message Queue Polling Server and then click Next.

3 Specify a name and an optional description. Click Next.

4 Specify your configuration settings for the following fields:

Command
specifies a command that is used to invoke SAS and process messages. You can
modify the command to include invocation options.

In your SAS command or in the script that you use to invoke SAS, you must
specify a SAS program file by using the –SYSIN option. The SAS program that
you specify should contain messaging code to read messages from the queue and
process the message contents.

Configuring Message Queue Polling � Define a Message Queue Polling Server 257

Multiuser credentials
select the credentials that are used to start SAS server sessions. The
credentials that you specify must have permissions to access the resources, such
as data libraries, that your SAS program will access.

If you select (None), then the object spawner’s credentials are used to start
the session.

Server machine list
specifies the machine where the polling server runs. The polling server must
run on the same machine as an object spawner that it is associated with.

Queue
specifies the queue that the polling server monitors for messages.

5 Click Advanced Options. Specify the following options on the Polling tab:

Message threshold
specifies the maximum ratio of messages to server sessions. If the message
threshold is exceeded, then the object spawner creates a new server session.
The default value is 10 (10 messages t o 1 server session).

For example, a polling server is configured with a message threshold value of
10. The message queue contains 21 messages, and two server sessions are
running. Because the ratio of messages per server session (10.5) is greater than
the threshold value (10), the object spawner creates a new server session.

Queue polling timeout
specifies the interval (in seconds) at which the server checks the depth of the
message queue. The default value is 10.

Maximum sessions
specifies the maximum number of server sessions that are running. If you
specify 0, then an unlimited number of server sessions can be created. The
default value is 1.

Minimum sessions
specifies the minimum number of server sessions that are running. The default
value is 0.

Note: If you specify 0, then one server session is created when the object
spawner is started. Also, the object spawner maintains at least one server
session if there are any messages in the queue. �

Queue polling process timeout
specifies the time (in seconds) to wait for the server sessions to end when the
object spawner is shutting down. If you specify a value that is greater than
zero, and any server sessions are still running after the time has elapsed, then
the spawner terminates the sessions. If you specify 0, then there is no time
limit for the server sessions to end. The default value is 0.

It is recommended that you use the default value of 0. Make sure that the
code that is run by your server sessions checks for stop messages. See
“Checking for Stop Messages” on page 14.

Note: If you specify a value that is greater than zero, then the spawner log
might contain an error message, "Failed to locate the server indicated in the kill
request" for each server session that ended normally. These messages do not
indicate a problem. �

Note: If you specify a value that is greater than zero, then the spawner
always waits the full timeout period when shutting down. For example, if you
specify 30 seconds as the timeout value, then the spawner always waits 30
seconds to shut down, even if all of the server sessions end before 30 seconds.

258 Add the Polling Server to the Object Spawner Definition � Appendix 1

If a spawner manages multiple polling servers, then the polling servers are
shut down sequentially. The time delay for shutting down the spawner is
cumulative. �

6	 On the WebSphere Options tab, specify whether the MQ Server interface is used
for monitoring the queue depth. If you choose to use the MQ Server interface, then
the object spawner and the queue manager must be on the same machine.

Note: If you do not choose the Server interface, then the connection to the remote
queue manager must be defined on the object spawner machine. For more
information, see “Define the Queue Manager Connection on the Client Machine”
on page 11. �

Click OK to return to the New Server Wizard, and then click Next.
7 Review your server settings, and then click Finish to create the server definition.

Add the Polling Server to the Object Spawner Definition

To assign a polling server to the object spawner definition, perform the following
steps:

1	 In SAS Management Console, expand the Server Manager, and then locate the
object spawner that you want to modify.

2	 Select File � Properties to open the Properties dialog box for the spawner.
3	 On the Servers tab, move the polling server from the Available servers pane

to the Selected servers pane.
4 Click OK to save your changes and return to the Server Manager.
5	 If the spawner is running, then refresh the spawner metadata by performing the

following steps:

a Expand the spawner definition and select the host name.
b	 Select Actions � Refresh Spawner to refresh the spawner metadata.

259

Index

A
administrator programs 171

AIX

triggering SAS with WebSphere MQ 23

application messaging 3

repositories with 184

applications

configured values in DATA step applications 12

to access SAS Registry 185

writing MSMQ applications 105

writing WebSphere MQ applications 32

writing with common messaging interface 170

attachment error codes 202

attachment error handling 201

attachment header

MSMQ 188

TIB/Rendezvous 194

WebSphere MQ 188

attachment layout

TIB/Rendezvous 191

WebSphere MQ and MSMQ 188

B
binary file attachment 200

binary files

getting from queue 53, 121

processing 50, 119

C
CALL routines

for common messaging interface 205

MQ 69

MSMQ 127

certified message delivery 173

coding examples 176

client access

configuring for WebSphere MQ 11

client installation

WebSphere MQ 11

clients

multiple clients reading from single queue 17

common messaging interface 170

administrator programs 171

repositories with application messaging 184

SAS CALL routines for 205

SAS Registry with 184

TIB/Rendezvous with 173

user programs 171

writing applications 170

configuration

message queue polling 255

multiple clients to read from single queue 17

queue managers 9

third-party messaging software 256

WebSphere client access 11

WebSphere MQ 9

WebSphere MQ, to trigger SAS 20

configured values

in DATA step applications 12

converting data 33

D
data conversions 33

data map description 184

data message layout 191

data set attachment layout 192

data set definition 195

data set index 197

data set integrity constraints 198

data set observations 197

DATA step applications

configured values in 12

dead letter queues 10

dynamic queue model 184

E
encoding 33

environment variables

for message queue polling server 14

error codes

attachment 202

WebSphere MQ 12

error handling
attachment 201

errors, transfer 201

external file attachment layout 192

external file descriptor 200

I

installation

WebSphere MQ client 11

260 Index

L
last message of attachment 201

listening 173

M
macro language

making calls to MQSeries Interface 59

message data 193

Message Queue Interface (MQI) models 32

message queue polling 13, 255

checking for stop messages 14

configuring 255

configuring third-party software for 256

defining queue manager 256

example 15

message queue polling servers 255

adding to object spawner definition 258

defining 256

environment variables for 14

messages

putting on queues 34

receiving from queue 109

retrieving 38

sending to queue 107

messaging interfaces

supported platforms for 5

Microsoft Message Queuing Services

See MSMQ

MQ

See WebSphere MQ

MQ CALL routines 69

MQI models 32

MQSeries Interface

making calls with macro language 59

MSMQ 5

attachment header 188

attachment layout 188

CALL routines 127

code samples 106

functional interface 5, 105

writing applications 105

O
object spawner definition

adding polling server to 258

P
platforms for messaging interfaces 5

polling

See message queue polling

Q
queue alias 184

queue managers

configuring 9

defining 256

defining connections on client machine 11

queues

dead letter queues 10

defining 10

getting binary file from 53, 121

getting text file from 45, 115

multiple clients reading from single queue 17

putting messages on 34

receiving messages from 109

sending messages to 107

transmission queues 10

R
Rendezvous-CM 173

coding examples 176

repositories

application messaging with 184

retrieving messages 38

S
SAS

triggering with WebSphere MQ 20

SAS CALL routines

for common messaging interface 205

SAS Common Messaging Interface

See common messaging interface
SAS Registry

common messaging interface with 184

writing applications to access 185

SAS Registry Editor 185

server connection channels 11

stop messages 14

store-and-forward queuing 3

subject-based addressing 173

subject names 173

T
text file attachment 200

text files

getting from queue 45, 115

processing 42, 113

third-party messaging software

configuring 256

TIB/Rendezvous 5

attachment header 194

attachment layout 191

certified message delivery 173

certified messaging coding examples 176

coding example 174

common messaging interface with 173

subject-based addressing 173

transfer errors 201

transmission queues 10

transport alias 184

transport model 184

trigger programs 24

triggering SAS

with WebSphere MQ 20

U
user programs 171

V

variable definition 196

Index 261

W
WebSphere MQ 5

application error codes 12

attachment header 188

attachment layout 188

coding examples 34

configured values in DATA step applications 12

configuring client access 11

configuring queue managers 9

configuring to trigger SAS 20

configuring with Explorer 9

data conversions 33

defining queues 10

functional interface 31

installing client 11

message queue polling 13

MQI models 32

multiple clients reading from single queue 17

writing applications 32

WebSphere MQ Explorer

configuring WebSphere MQ with 9

Windows XP

triggering SAS with WebSphere MQ 21

66

Your Turn

We welcome your feedback.
3 If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
3 If you have comments about the software, please send them to suggest@sas.com.

66

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

	Contents
	Part 1 Concepts
	Overview of Application Messaging
	Application Messaging Overview
	Supported Platforms for the SAS Messaging Interfaces
	WebSphere MQ Functional Interface and the SAS Common Messaging
	Interface
	MSMQ Functional Interface
	TIB/Rendezvous

	Part 2 IBM WebSphere MQ
	Configuring WebSphere MQ
	Configuring WebSphere MQ with the WebSphere MQ Explorer
	Configure a Queue Manager
	Define Queues
	Configuring WebSphere MQ Client Access
	Use the Configured Values in a SAS DATA Step Application

	Using Message Queue Polling with WebSphere MQ
	Overview of Message Queue Polling
	Environment Variables for the Polling Server
	Checking for Stop Messages
	Message Queue Polling Example

	Configure Multiple Clients to Read from a Single Queue
	Configuring WebSphere MQ to Trigger SAS: An Example
	Introduction
	Configuration on the Windows XP Machine
	Configuration on the AIX Machine

	Sample Trigger Programs
	mqclient.sas
	mqserver.sas

	Using IBM WebSphere MQ
	WebSphere MQ Functional Interface
	Writing WebSphere MQ Applications
	Overview of Writing WebSphere MQ Applications
	Interface Models
	Data Conversion

	WebSphere MQ Coding Examples
	Introduction to the WebSphere MQ Examples
	DATA Step Coding Example: Put a Message on a Queue
	DATA Step Coding Example: Retrieve a Message
	Processing a Text File
	Getting a Text File From a Queue
	Processing a Binary File
	Getting a Binary File from a Queue
	Macro Language Coding Examples

	WebSphere MQ Call Routines
	Overview of MQ Call Routines
	MQBACK
	MQCLOSE
	MQCMIT
	MQCONN
	MQDISC
	MQFREE
	MQGET
	MQGETPARMS
	MQGMO
	MQINQ
	MQMAP
	MQMD
	MQOD
	MQOPEN
	MQPMO
	MQPUT
	MQPUT1
	MQRMH
	MQSET
	MQSETPARMS

	Part 3 Microsoft Message Queueing
	Using Microsoft Message Queuing Services (MSMQ)
	MSMQ Functional Interface
	Writing MSMQ Applications
	MSMQ Code Samples
	Introduction to the MSMQ Code Samples
	DATA Step Coding Examples

	MSMQ Call Routines
	Overview of MSMQ Call Routines
	MSMQABORTTRANS
	MSMQBEGINTRANS
	MSMQCREATEQUEUE
	MSMQCLOSECURSOR
	MSMQCLOSEQUEUE
	MSMQCOMMITTRANS
	MSMQCREATECURSOR
	MSMQDELETEQUEUE
	MSMQFREE
	MSMQFREESCONTEXT
	MSMQGETPARMS
	MSMQGETQPROP
	MSMQGETQSEC
	MSMQGETSCONTEXT
	MSMQHNDLTOFORMAT
	MSMQINSTTOFORMAT
	MSMQLOCATE
	MSMQMAP
	MSMQOPENQUEUE
	MSMQPATHTOFORMAT
	MSMQRECEIVEMSG
	MSMQRELEASETRANS
	MSMQSENDMSG
	MSMQSETPARMS
	MSMQSETQPROP
	MSMQSETQSEC

	Part 4 SAS Common Messaging Interface
	Using the SAS Common Messaging Interface
	Common Messaging Interface
	Writing Applications Using the Common Messaging Interface
	Introduction to Writing Applications with the Common Messaging Interface
	Administrator Programs
	User Programs

	Using TIB/Rendezvous with the SAS Common Messaging Interface
	Overview of Using TIB/Rendezvous with the SAS Common Messaging Interface
	Rendezvous Certified Message Delivery (Rendezvous-CM)

	TIB/Rendezvous Coding Example
	TIB/Rendezvous Certified Messaging Coding Examples
	Example 1: Sending and Receiving Messages in the Same DATA Step
	Example 2: Sending and Receiving Messages in Separate DATA Steps

	Using a Repository with Application Messaging
	Using the SAS Registry with the Common Messaging Interface
	Overview of Using the SAS Registry
	Using the SAS Registry Editor
	Writing Applications to Access the SAS Registry

	Attachment Layout for WebSphere MQ and MSMQ
	Attachment Layout for TIB/Rendezvous
	Overview of Attachment Layout for TIB/Rendezvous
	Data Message Layout
	Data Set Attachment Layout
	External File Attachment Layout
	Message Data - "MSG" or "DATA"
	Attachment Header - "HDR"
	Data Set Definition - "DAT"
	Variable Definition - "VAR"
	Data Set Observations - "ATO"
	Data Set Index - "ATI"
	Data Set Integrity Constraints - "ATC"
	External File Descriptor - "FDC"
	Text File Attachment - "ATX"
	Binary File Attachment - "ATB"
	Last Message of Attachment - "LST"

	Attachment Error Handling
	Transfer Errors: Queue versus Point-To-Point
	Accept Errors
	Attachment Error Codes

	Common Messaging Interface Call Routines
	SAS CALL Routines for the Common Messaging Interface
	ABORT
	ACCEPTATTACHMENT
	BEGINTRANSACTION
	CLOSEQUEUE
	COMMIT
	DELETEALIAS
	DELETEMAP
	DELETEMODEL
	FREETRANSACTION
	GETALIAS
	GETATTACHMENT
	GETMAP
	GETMODEL
	GETQUEUEPROPS
	INIT
	OPENQUEUE
	PARSEMESSAGE
	RECEIVEMESSAGE
	SENDMESSAGE
	SETALIAS
	SETMAP
	SETMODEL
	TERM

	Part 5 Message Queue Polling
	Configuring Message Queue Polling
	Overview of Message Queue Polling
	Message Queue Polling Concepts
	Overview of Configuring Message Queue Polling

	Configure Your Third-Party Messaging Software
	Define a Queue Manager
	Define a Message Queue Polling Server
	Add the Polling Server to the Object Spawner Definition

	Index

