
SAS® Analytics Accelerator 1.2
for Teradata
Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2010. SAS® Analytics Accelerator 1.2
for Teradata: Guide. Cary, NC: SAS Institute Inc.

SAS® Analytics Accelerator 1.2 for Teradata: Guide

Copyright © 2010, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the
publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at
the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation
by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19,
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, June 2010

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to
its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the
SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents
Chapter 1. SAS Analytics Accelerator 1.2 for Teradata: Guide 1

Subject Index 69

Syntax Index 71

iv

Chapter 1

SAS Analytics Accelerator 1.2 for Teradata:
Guide

Contents
What’s New in SAS Analytics Accelerator 1.2 for Teradata 2

Overview . 2
New Procedures . 3
Syntax Changes . 3
Licensing Requirements . 3

Overview of In-Database Computing . 3
Teradata and the SAS System . 4
SQL Generation . 5
SAS In-Database Functions . 5

SAS In-Database Procedures . 6
Base SAS In-Database Procedures . 6
SAS/STAT In-Database Procedures . 6
SAS/ETS In-Database Procedures . 9
Limitations of In-Database Procedures . 10

Performance and Numerical Accuracy Issues with In-Database Computing 10
Enabling and Controlling In-Database Computing 10
LIBNAME Statement Options for In-Database Computing 14
Using SAS/ACCESS Software with Teradata: Some Cautionary Notes 19

Indeterminate Row Order in a DBMS Table 28
SAS/ACCESS Data Set Options for Teradata . 31
Base SAS Data Set Options . 35
Deploying and Using SAS Formats in Teradata . 37

Using SAS Formats . 37
How It Works . 39
Formats That SAS Supplies in the Teradata EDW 41
User-Defined Formats in the Teradata EDW 41
Overview of the Publishing Process . 42
Using SAS Formats . 43

BY Groups and In-Database Computing . 43
Support for Teradata Data Types . 47

Variables in the DATA= Data Set . 47
Numeric Computations . 48

2 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

BY Processing . 49
Conditions That Prevent In-Database Processing 50

Options . 50
LIBNAME Properties . 53
Data Set and Variable Properties . 53
BY Processing . 53
Compatibility of the DATA= and OUT= Data Sets 54
Other Conditions . 55

In-Database Computing for the DATA= Data Set by the CANCORR, FACTOR,
PRINCOMP, REG, and VARCLUS Procedures 55

ODS Tables for the CANCORR, FACTOR, PRINCOMP, REG, and VARCLUS
Procedures . 56

In-Database Computing for the OUT= Data Set by the CANCORR, FACTOR,
PRINCOMP, and SCORE Procedures . 56

SAS/STAT Procedure Options Affected by In-Database Computing 57
CANCORR Procedure Options Affected by In-Database Computing 57
FACTOR Procedure Options Affected by In-Database Computing 58
PRINCOMP Procedure Options Affected by In-Database Computing 58
REG Procedure Options Affected by In-Database Computing 59
SCORE Procedure Options Affected by In-Database Computing 61
VARCLUS Procedure Options Affected by In-Database Computing 61

SAS/ETS Procedure Options Affected by In-Database Computing 62
TIMESERIES Procedure Options Affected by In-Database Computing . . . 62

Base SAS Procedure Options Affected by In-Database Computing 62
CORR Procedure Options Affected by In-Database Computing 62
FREQ Procedure Options Affected by In-Database Computing 63

Miscellaneous Details . 64
Example . 64

What’s New in SAS Analytics Accelerator 1.2 for Teradata

Overview

The third maintenance of SAS Analytics Accelerator 1.2 for Teradata includes two new SAS/STAT
procedures, one new SAS/ETS procedure, and one new Base SAS procedure. There is also a notable
change to the syntax of the SQLGENERATION option and one licensing requirement change for
installations in a Linux operating system environment.

New Procedures F 3

New Procedures

In-database versions of the CANCORR and FACTOR procedures are available in SAS/STAT 9.22.
The CANCORR procedure performs canonical correlation, partial canonical correlation, and canon-
ical redundancy analysis. The FACTOR procedure performs a variety of common factor and
component analyses and rotations.

An in-database version of the TIMESERIES procedure is available in SAS/ETS 9.22. The
TIMESERIES procedure analyzes time-stamped transactional data with respect to time and ac-
cumulates the data into a times series format. The procedure can perform trend and seasonal analysis
on the transactions. After the transactional data are accumulated, time domain analysis and frequency
domain analysis can be performed on the accumulated time series.

An in-database version of the Base SAS CORR procedure is also now available. The CORR
procedure computes correlation coefficients, three nonparametric measures of association, and the
probabilities associated with these statistics.

Syntax Changes

In the initial release of SAS Analytics Accelerator for Teradata, the SQLGENERATION option of
the LIBNAME and OPTIONS statements had four suboptions: NONE, DBMS, ALL, and DBMUST.
In this latest release, the DBMUST suboption has been eliminated.

Licensing Requirements

Installation of SAS Analytics Accelerator 1.2 for Teradata in a Linux operating system environment
now requires the installation of Teradata 13 with Global and Persistent Memory (GLOP) feature
support. Consult Teradata Support for the specific database version.

Overview of In-Database Computing

SAS applications are often built to work with large volumes of data in environments that demand
rigorous IT security and management. When the data are stored in an external database, such as
Teradata, the transfer of large data sets to the computers that run the SAS System can cause a
performance bottleneck and possible unwanted security and resource management consequences for
local data storage. SAS Analytics Accelerator 1.2 for Teradata addresses these challenges by moving
computational tasks closer to the data and by improving the integration between the SAS System
and the database management system (DBMS). At present, there are in-database versions of six
SAS/STAT procedures and one SAS/ETS procedure. The SAS/STAT in-database procedures include

4 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

CANCORR, FACTOR, PRINCOMP, REG, SCORE, and VARCLUS, and the SAS/ETS procedure
is TIMESERIES. There are also five Base SAS in-database procedures (CORR, FREQ, MEANS,
RANK, and SUMMARY) but Base SAS in-database procedures, with the exception of the CORR
procedure, do not require the installation of SAS Analytics Accelerator 1.2 for Teradata. Table 1.1
lists the software licenses that are required to take advantage of in-database computing.

Table 1.1 Software Licensing Requirements for In-Database Computing

Procedures Licenses Required

SAS/STAT procedures Base SAS 9.2M3
(CANCORR, FACTOR, PRINCOMP, SAS/ACCESS 9.2 (SAS/ACCESS Interface to Teradata)
REG, VARCLUS, and SCORE) SAS/STAT 9.22

SAS Analytics Accelerator 1.2 for Teradata

SAS/ETS procedure Base SAS 9.2M3
(TIMESERIES) SAS/ACCESS 9.2 (SAS/ACCESS Interface to Teradata)

SAS/ETS 9.22
SAS Analytics Accelerator 1.2 for Teradata

Base SAS statistical procedures Base SAS 9.2M3
(FREQ, MEANS, RANK, and SUMMARY) SAS/ACCESS 9.2 (SAS/ACCESS Interface to Teradata)

BASE SAS statistical procedures Base SAS 9.2M3
(CORR) SAS/ACCESS 9.2 (SAS/ACCESS Interface to Teradata)

SAS Analytics Accelerator 1.2 for Teradata

Installation instructions for SAS Analytics Accelerator 1.2 for Teradata are published in the section
“Configuring SAS Analytics Accelerator for Teradata” in the Configuration Guide for SAS 9.2
Foundation for UNIX Environments and the Configuration Guide for SAS 9.2 Foundation for Microsoft
Windows.

In SAS 9.2M3, SAS/STAT 9.22, and SAS/ETS 9.22 in-database computing is available only for the
Teradata DBMS. Future releases might provide in-database computing for other DBMSs.

Teradata and the SAS System

In a conventional environment where in-database computing is not possible, a large amount of data
is stored in the Teradata database. When a SAS procedure executes, it must read the data through the
SAS/ACCESS engine. This movement of data from the database to the SAS workspace server causes
a performance penalty. In an environment where in-database computing is possible, such as that
provided by SAS Analytics Accelerator 1.2 for Teradata, when a comparable Base SAS, SAS/STAT,
or SAS/ETS in-database procedure executes, some of the procedure’s computations are performed
within Teradata, and only the results of those computations, rather than the raw data, are passed
to the SAS workspace server. The benefit is a reduction in data movement between the database
and the SAS workspace server. The cost of this reduction in data movement is the difference in

SQL Generation F 5

processing time due to using Teradata versus the SAS System to process the data. The trade-off in
processing time versus data movement time depends on several dynamic factors, including client and
server workloads, network speed and workload, and data size. The net benefit from using in-database
procedures varies based on the particular environment. In general, the net benefit increases as the
number of rows in a database table increases.

SQL Generation

When performing in-database modeling, a SAS/STAT or SAS/ETS procedure dynamically generates
SQL code, which is based on the procedure options and statements. It then submits the SQL code
directly to the database. The code can be standard SQL that can be interpreted by any database, or it
can be tuned specifically for Teradata. The choice for the type of SQL code is determined by the
complexity of the required analysis. The code can include SAS formats that are executed in Teradata.
The query returns result sets that are used by the in-database procedure to complete the analysis
before supplying the results to one of the following: the SAS output listing, the ODS listing, ODS
Graphics, or output tables. The end result is usually the same as when you use Base SAS tables
rather than Teradata tables. However, with in-database computing the relational database software is
responsible for optimizing and executing the query. When the table to be analyzed is very large, the
in-database computing approach can result in significantly lower total elapsed processing time and in
reduced data movement between the SAS System and the Teradata database.

SAS In-Database Functions

When a SAS/STAT or SAS/ETS procedure dynamically creates and submits SQL code, this code
includes references to new user-defined functions (UDFs), developed by SAS, which are installed
on the Teradata system. These UDFs are the key to performing advanced statistical computations
efficiently in-database. For example, SAS has developed a Teradata UDF called SAS_ZACORR
for computing uncorrected sum of squares and crossproducts (SSCP) matrices (also known as X’X
matrices) and related statistics in-database. The SAS/STAT procedures CANCORR, FACTOR,
PRICOMP, REG, and VARCLUS have been modified to take advantage of the SAS_ZACORR
UDF, which enables them to perform advanced statistical computations on a DBMS table without
downloading the entire table with SAS/ACCESS software.

To better understand how the SAS_ZACORR UDF enhances computing efficiency, consider the
following. The SSCP matrix is a condensed representation of the relationships between variables.
The size of the SSCP matrix is determined by the number of variables that are used by the procedure
and does not depend on the number of rows. For example, a data set that contains 100 numeric
columns and 5 million rows of data produces an SSCP matrix that contains, nominally, 100x100
cells. However, a SAS/STAT in-database procedure needs only the lower triangle of 100x50 cells.
Thus, the data that is transferred from Teradata to SAS is reduced from 500,000,000 raw data cells to
5,000 SSCP data cells, which is a reduction of 99.999 percent. As the example illustrates, the benefit
of computing the SSCP matrix in-database versus passing the raw data to the SAS System increases

6 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

greatly as the number of rows increases. Large data applications benefit the most from in-database
processing.

The SAS/STAT in-database procedure constructs SQL code that uses the SAS in-database function
to create the SSCP matrix. This function is not intended for general-purpose SQL queries, but it is
useful for SAS/STAT in-database procedures. The elements of the SSCP are created and transferred
to the SAS System. After the crossproducts have been transferred to the SAS System, the database is
available to continue processing queries while the SAS/STAT procedure continues the analysis.

SAS In-Database Procedures

Several SAS/STAT, SAS/ETS, and Base SAS procedures have been modified to move critical data-
intensive operations into the database. Such operations include basic summarization and exploratory
data analysis. These SAS procedures are commonly found in many SAS programs and represent a
large opportunity to improve efficiency when working with relational databases. Current changes are
optimized for the Teradata relational database. The modifications to the SAS/STAT and SAS/ETS
in-database procedures, as well as the Base SAS CORR procedure, require the installation of the
SAS Analytics Accelerator 1.2 for Teradata and are documented here.

Base SAS In-Database Procedures

Base SAS currently offers in-database implementations of the CORR, FREQ, MEANS, RANK,
and SUMMARY procedures. The Base SAS in-database procedures work differently from the
SAS/STAT and SAS/ETS in-database procedures and do not require the installation of the SAS
Analytics Accelerator for Teradata (with the exception of the CORR procedure). The Base SAS
in-database procedures are included in the Base SAS software and are documented in Base SAS
Procedures Guide. However, some notes about the options that affect the Base SAS in-database
procedures are included in this document for convenience.

SAS/STAT In-Database Procedures

In-database versions of the CANCORR, FACTOR, PRINCOMP, REG, SCORE, and VARCLUS
procedures are available in SAS/STAT 9.22. Each procedure generates SQL code which, except for
the SCORE procedure, calls the SAS in-database function for SSCP creation. These procedures are
commonly used in exploratory data analysis and regression model building. The procedure syntax
and output for in-database computing is identical to the syntax and output for conventional SAS
processing in most cases. In those cases, existing procedure steps in SAS programs are able to run
in-database without modification.

SAS/STAT In-Database Procedures F 7

However, some issues with in-database processing can cause the output to differ because of numerical
precision issues and BY processing issues. These issues are discussed in the section “Conditions
That Prevent In-Database Processing.” Together with the in-database Base SAS procedures, the
SAS/STAT procedures can be used for basic tasks that are often executed at the beginning of larger
analytical tasks. Use of these techniques can greatly reduce the total data transfer between relational
databases and the SAS System.

The CANCORR Procedure

The CANCORR procedure performs canonical correlation, partial canonical correlation, and canoni-
cal redundancy analysis.

Canonical correlation is a generalization of multiple correlation for analyzing the relationship
between two sets of variables. In multiple correlation, you examine the relationship between a linear
combination of a set of explanatory variables, X, and a single response variable, Y. In canonical
correlation, you examine the relationship between linear combinations of the set of X variables and
linear combinations of a set of Y variables. These linear combinations are called canonical variables
or canonical variates. Either set of variables can be considered explanatory or response variables,
since the statistical model is symmetric in the two sets of variables. Simple and multiple correlation
are special cases of canonical correlation in which one or both sets contain a single variable.

The SSCP matrix is computed in-database and is transferred to the SAS System for further processing.
The options in the CANCORR procedure that are affected by in-database processing are detailed in
the section “CANCORR Procedure Options Affected by In-Database Computing.”

The FACTOR Procedure

The FACTOR procedure performs a variety of common factor and component analyses and rotations.
The methods for factor extraction are principal component analysis, principal factor analysis, iterated
principal factor analysis, unweighted least squares factor analysis, maximum likelihood (canonical)
factor analysis, alpha factor analysis, image component analysis, and Harris component analysis. A
variety of methods for prior communality estimation are also available.

The SSCP matrix is computed in-database and is transferred to the SAS System for further processing.
The options in the FACTOR procedure that are affected by in-database processing are detailed in the
section “FACTOR Procedure Options Affected by In-Database Computing.”

The PRINCOMP Procedure

The PRINCOMP procedure computes a principal component transformation of the SSCP matrix into
orthogonal components. The first component accounts for the maximum amount of variation; the
second accounts for the next largest amount of variation; and so on. This procedure is typically used
in exploratory data analysis and visualization. Scatter plots that are generated from the principal
component dimensions often reveal interesting relationships among the data points.

Principal component analysis (PCA) reduces the dimensionality of data for predictive modeling
by replacing the variables in the original data with fewer principal component terms in the final

8 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

model. The SSCP matrix is computed in-database and is transferred to the SAS System for further
processing. The options in the PRINCOMP procedure that are affected by in-database processing
are detailed in the section “PRINCOMP Procedure Options Affected by In-Database Computing.”

The REG Procedure

The REG procedure computes a model in which a dependent variable is modeled as a linear equation
of multiple independent variables by a least squares function. PROC REG has numerous model-fitting
options, which include many model selection variations and hypothesis tests. Regression analysis is
often used to identify a subset of independent variables that have unique and significant relationships
with the dependent variable. In this case, PROC REG is used for its exploratory analysis, in addition
to its extensive model fitting and reporting functions. You might want to use the REG procedure
to compute candidate models in the database. A full SSCP matrix is computed in Teradata and is
transferred to the SAS System, in which the model fitting occurs.

PROC REG includes an option that uses a CORR or SSCP matrix as input and creates a CORR or
SSCP matrix as output. For both in-database processing and matrix input, any option that requires
access to individual rows of data is disabled. The disabled options include the general class of residual
analysis, plot options, and confidence intervals. Complete details of which options and statements
are affected by in-database processing are provided in the section “REG Procedure Options Affected
by In-Database Computing.”

The SCORE Procedure

Many statistical procedures create output data sets (using the OUTEST= or OUTSTAT= options) that
contain coefficients. The SCORE procedure can apply the coefficients in those data sets to a raw data
set and compute new variables that are generically called scores. Each new score variable is formed
as a linear combination of the raw data and the scoring coefficients. That is, for each observation in
the raw data set, PROC SCORE multiplies the value of a variable in the raw data set by the matching
scoring coefficient from the data set of scoring coefficients. This multiplication process is repeated
for each variable in the VAR statement. The resulting products are then summed to produce the value
of the new score variable. In other words, PROC SCORE performs a matrix multiplication on the
two data sets.

For example, you can use the SCORE procedure to produce output in the form of a table in Teradata
that contains predicted values or residuals from a model that is estimated using the REG procedure
in-database. The SCORE procedure dynamically generates SQL code for the given model. PROC
SCORE then submits the SQL code to the database, which produces a Teradata table without having
to extract any rows of data into the SAS System. Details of which options in the SCORE procedure
are affected by in-database processing are provided in the section “SCORE Procedure Options
Affected by In-Database Computing.”

PROC SCORE cannot be used for scoring nonlinear models.

The following SAS procedures produce output data sets that contain scoring coefficients that can be
used by PROC SCORE:

SAS/ETS In-Database Procedures F 9

� ACECLUS procedure

� CALIS procedure

� CANCORR procedure

� CANDISC procedure

� DISCRIM procedure

� FACTOR procedure

� PRINCOMP procedure

� TCALIS procedure

� VARCLUS procedure

� ORTHOREG procedure

� QUANTREG procedure

� REG procedure

� ROBUSTREG procedure

You can also use a DATA step or the IML procedure to output any coefficients you want in a data set
to use with PROC SCORE.

The VARCLUS Procedure

The VARCLUS procedure groups variables into clusters that are based on their correlations. The full
SSCP matrix is created, and then clusters are chosen to maximize the variance that is associated with
the first principal component within the cluster. An iterative process assigns variables to clusters to
maximize the sum across clusters of the variance of the original variables, which is explained by the
centroid cluster measure.

Similar to principle components, variable clustering is another technique that is used for exploratory
data analysis and for variable reduction, which reduces the number of terms that are used in successive
analyses. The SSCP matrix is computed in-database and is then transferred to the SAS System for
further processing.

Details of which options in the VARCLUS procedure are affected by in-database processing are
provided in the section “VARCLUS Procedure Options Affected by In-Database Computing.”

SAS/ETS In-Database Procedures

The TIMESERIES procedure analyzes time-stamped transactional data with respect to time and
accumulates the data into a time series format. The procedure can perform trend and seasonal

10 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

analysis on the transactions. After the transactional data are accumulated, time domain analysis and
frequency domain analysis can be performed on the accumulated time series.

Details of which options in the TIMESERIES procedure are affected by in-database processing are
provided in the section “TIMESERIES Procedure Options Affected by In-Database Computing.”

Limitations of In-Database Procedures

Some features of SAS procedures do not execute in-database. The ability to perform in-database
processing depends on the specific type of analysis that is provided by the statements and options of
a procedure. These limitations are considered reasonable for the use case of accessing and exploring
data. After a subset of data has been selected and a model form has been established, a data sample
can be defined by using PROC SQL. This subset of data can then be accessed directly by the SAS
procedure to execute an analysis that includes functions that do not execute in-database. Use of the
SAS in-database procedures reduces the amount of data that is transferred and makes use of the
resources of the Teradata system.

Performance and Numerical Accuracy Issues with
In-Database Computing

Consider the following issues when performing in-database computations:

� In-database computation can be either faster or slower than computation that uses
SAS/ACCESS software, depending on client performance, network performance, server
performance, and the type of computations involved.

� In-database computation tends to be slow when the number of variables in the analysis is large
or when the number of BY groups is large.

� Additional overhead is involved with in-database computation, and therefore more memory is
required on the client for in-database computation compared to out-of-database computation.

� The SSCP matrix is computed with less accuracy in-database when the variables have small
coefficients of variation.

Enabling and Controlling In-Database Computing

You control in-database computing with options in the LIBNAME statement and the OPTIONS
statement.

Enabling and Controlling In-Database Computing F 11

SQLGENERATION=NONE | DBMS | ALL
specifies the type of in-database computing to be performed. The SQLGENERATION= option
can be specified as either a LIBNAME statement option or as a system option in an OPTIONS
statement. The value used for the SQLGENERATION= option depends on whether the option
is specified in the LIBNAME statement, an OPTIONS statement, or both as follows:

� If the SQLGENERATION= option is specified in the LIBNAME statement for a data set,
then with respect to that data set, any value of the SQLGENERATION= option that is
specified in any OPTIONS statement is ignored.

� If the SQLGENERATION= option is not specified in a LIBNAME statement for a data
set, then with respect to that data set, the value of the SQLGENERATION= option that
is specified in the most recent OPTIONS statement is used.

� If the SQLGENERATION= option is not specified in either the LIBNAME statement
for a data set or in an OPTIONS statement, then by default with respect to that data set,
SQLGENERATION=DBMS.

You can specify different values of the SQLGENERATION= option for the DATA= and OUT=
data sets by using different LIBNAME statements for the two data sets.

The values of the SQLGENERATION option are interpreted as follows:

NONE specifies that no in-database computation be performed. In this case, a
SAS/STAT procedure uses SAS/ACCESS to copy the raw data from Tera-
data to the SAS Work directory, and the procedure performs all computa-
tions within the SAS System.

DBMS specifies that in-database computation be performed for data sets that
are DBMS tables if no system options, LIBNAME options, data set at-
tributes, or procedure options are incompatible with in-database computa-
tion. DBMS is the default value, and it automatically enables in-database
processing.

When the value is DBMS, the procedure uses in-database processing (when
possible) and uses conventional SAS processing when the specific proce-
dure statements and options do not support in-database processing. For
example, a REG procedure statement that contains a residual option com-
putes the SSCP matrix in-database, but transfers the detail data to the SAS
System to create residual analysis and output.

If the procedure attempts to perform a computation in-database but the
SQL command fails, the procedure tries to perform that computation out-
of-database.

ALL specifies that in-database computation be performed whenever possible.

In-database computation is not applicable to data sets that contain summary statistics, such
as OUTEST= and OUTSTAT= data sets, or DATA= data sets for which the TYPE= attribute
is CORR, EST, SSCP, FACTOR, and so on. (See the “Special SAS Data Sets” chapter in
SAS/STAT User’s Guide for the complete list of TYPE= attributes.) Because the data in these
tables are already summaries, no additional summarization can be performed in-database. The

12 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

SQLGENERATION= option is ignored with respect to those data sets for which in-database
computation is not applicable.

The following system options, which are specified in an OPTIONS statement, also control
in-database computing for SAS/STAT and SAS/ETS procedures:

MSGLEVEL=N | I
specifies the level of messages to be printed to the log. N is the default value.

N specifies that the following messages be printed in the log:

� a confirmatory note that states that SQL is used for in-database com-
putations, when that is the case

� error messages if anything goes wrong with the SQL commands sub-
mitted for in-database computations

� note that states whether SQL is used, when there are SQL error mes-
sages

I specifies that everything printed by MSGLEVEL=N be printed plus the
following notes:

� note that explains why SQL is not used for in-database computations,
if that is the case (however, no note is printed when OPTIONS SQL-
GENERATION=NONE is specified)

� note that explains that the TYPE= attribute is not stored in DBMS
tables when you try to create a special SAS data set (that is, a data set
that has a non-blank value of the TYPE= attribute) as a DBMS table

SQL_IP_TRACE=NOTE | SOURCE | ALL
specifies the level of information to be included in the trace output. You can specify more than
one value by enclosing the values in parentheses.

NOTE specifies that the trace output include the following information:

� all original messages from the DBMS (ordinarily, the SAS System in-
tercepts certain confusing messages from the DBMS and replaces them
with messages that can be more easily understood by SAS customers)

� note that indicates whether SQL is used for in-database computations,
even when SQLGENERATION=NONE is specified. By default, a
note is printed when SQL is used, but no note is printed when SQL is
not used. If you specify SQL_IP_TRACE=NOTE, a note is always
printed.

� notes that state the name of the data set engine, the name of the DBMS
database, and so on

� notes that explain what kinds of SAS passwords apply to the data set,
because the drivers used for in-database computation do not support
SAS passwords

� note that indicates that no system options or data set attributes prevent
using SQL for in-database computation, when that is the case (this note
does not rule out the possibility that some procedure options might
prevent in-database computation)

Enabling and Controlling In-Database Computing F 13

SOURCE specifies that trace output include the major SQL commands that are sub-
mitted for in-database computation, but not minor SQL commands such as
those used to obtain metadata.

ALL specifies that trace output include the output for NOTE and SOURCE,
plus all SQL commands that are submitted (including those used to obtain
metadata and to verify that UDFs are published), plus additional details.

SQLMAPPUTTO=NONE | SAS_PUT
is not applicable to the SAS/STAT or SAS/ETS procedures but is included here for complete-
ness.

The Base SAS procedures use implicit pass-through to send SQL commands to Teradata. With
implicit pass-through, the SQL commands are written in the SAS dialect of SQL and then
the SAS System translates those commands to the Teradata dialect of SQL. The SAS dialect
of SQL uses the PUT function to format variables. The Teradata dialect of SQL uses the
SAS_PUT UDF to format variables. The SQLMAPPUTTO=SAS_PUT option specifies that
the PUT function in SAS SQL be translated (mapped) to the SAS_PUT function in Teradata
SQL.

The SAS/STAT and SAS/ETS procedures write SQL commands directly in the Teradata dialect
of SQL instead of using implicit pass-through. Therefore, this option has no effect on the
SAS/STAT and SAS/ETS procedures. See the section “SQLMAPPUTTO= System Option” in
SAS/ACCESS for Relational Databases: Reference.

FMTERR | NOFMTERR
specifies whether to refrain from using unpublished formats.

If a procedure needs to format a BY variable but that format has not been published (that is,
not installed on the Teradata server in SYSLIB or the current database), the procedure does
not perform in-database computation unless you specify NOFMTERR. NOFMTERR tells
the procedure to refrain from using unpublished formats and to use the unformatted values
of the BY variables instead. If you specify NOFMTERR and a Teradata error occurs when
the procedure tests a format, the procedure uses the unformatted values of the BY variables to
define BY groups.

For each BY variable that has a format that cannot be used, a message is printed to that effect.
That message is an error if FMTERR is specified or a note if NOFMTERR is specified. In
addition, a note states whether SQL is used.

For information about publishing formats, see the section “Deploying and Using SAS Formats
in Teradata” on page 37 in this document or the section “Deploying and Using SAS Formats
in Teradata” in SAS/ACCESS 9.2 for Relational Databases: Reference.

DBFMTIGNORE | NODBFMTIGNORE
specifies which type of formats be used for DBMS columns.

Ordinarily, SAS formats control how data values are displayed rather than how data values
are stored. However, SAS/ACCESS software works differently from other SAS products with
respect to formats.

14 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

NODBFMTIGNORE (the default) causes SAS/ACCESS software, when it creates a DBMS
table, to use the SAS formats assigned to SAS variables to decide which DBMS data types
to assign to the corresponding DBMS columns. For example, the following SAS statements
create a DBMS table named pi_table which contains a column named pi with a DBMS data
type of decimal (3,2) with a total of 3 digits with 2 decimal places:

data dbms.pi_table;
pi = 22/7;
format pi 3.2;

run;

The value that SAS/ACCESS software inserts in the column pi is 3.14 rather than
3.142857142 . . . (that is, the actual numeric value of the column is truncated to the two
decimal places that are specified in the SAS format). Computations performed with the DBMS
column pi suffer from loss of precision and possibly numeric overflow.

If you specify OPTIONS DBFMTIGNORE, SAS/ACCESS software creates numeric DBMS
columns with the data type DOUBLE PRECISION. This data type is the same as the default
data type that the SAS System uses for numeric variables in ordinary SAS data sets.

The DBFMTIGNORE option does not apply to datetime or character formats.

See the section “Using SAS/ACCESS Software with Teradata: Some Cautionary Notes” for more
details.

LIBNAME Statement Options for In-Database Computing

To perform in-database computations, the SAS/STAT and SAS/ETS procedures connect to the
DBMS by using the credentials (username, password, and so on) in the LIBNAME statement for the
DATA= data set. This connection is separate from any connection made by SAS/ACCESS software.
Therefore, some SAS/ACCESS options such as the CONNECTION= option do not work with the
SAS/STAT and SAS/ETS in-database procedures. Also, LIBNAME concatenation cannot be used
for in-database computation because the procedure cannot determine which credentials to use for the
connection.

Although the DATABASE= and SCHEMA= options are aliases as data set options, they are not
aliases in a LIBNAME statement. Table 1.2 describes the effects of the DATABASE= and SCHEMA=
options in a LIBNAME statement.

LIBNAME Statement Options for In-Database Computing F 15

Table 1.2 DATABASE= and SCHEMA= Options for Teradata

Options
specified in
LIBNAME
statement

Option that
specifies name
of database
where the SAS
System
searches for
DATA= table*

Option that
specifies name of
database where
OUT= table is
stored**

Option that specifies
name of database where
Teradata looks for
UDFs***

Neither
DATABASE=
nor SCHEMA=

USER= USER= USER=

DATABASE=
but not
SCHEMA=

DATABASE= DATABASE= DATABASE=

SCHEMA= but
not
DATABASE=

SCHEMA= SCHEMA= USER=

Both
DATABASE=
and SCHEMA=

SCHEMA= SCHEMA= DATABASE=

* The DBMS
user for the
DATA= table
must have the
SELECT
privilege for the
named database.

** The DBMS user
for the DATA=
table must have the
CREATE TABLE,
SELECT, and
INSERT privileges
for the named
database.

*** If Teradata does not
find the UDF in the
named database, then
Teradata looks in SYSLIB.
The DBMS user for the
DATA= table must have
the EXECUTE
FUNCTION privilege for
the database where the
UDF is found.

Table 1.3 describes whether SAS/ACCESS LIBNAME options for Teradata work correctly with the
DATA= and OUT= options for the SAS/STAT and SAS/ETS in-database procedures. The cell entries
in the DATA= and OUT= columns have the following values:

� Yes—indicates that the option works for in-database computing

� No—indicates that the option does not work for in-database computing

� N/A (not applicable)—indicates that the option does not apply to in-database computing

16 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Some cell entries in the DATA= and OUT= columns are color coded and have superscripts that are
intended to convey additional information. The meaning of the colors and superscripts are as follows:

� A superscript of 1 (Yes1 or No1) indicates an option that is recommended for statistical
applications and correctly affects in-database processing as expected.

� A superscript of 2 (Yes2 or No2) indicates an option that correctly affects in-database process-
ing as expected.

� A superscript of 3 (Yes3 or No3) indicates an option that causes the procedure to use
SAS/ACCESS for out-of-database computing.

� A superscript of 4 (Yes4 or No4) indicates an option that neither works for in-database
computing nor prevents in-database computing, but is unlikely to cause a serious error. See
the Comment column for more information.

Table 1.3 SAS/ACCESS LIBNAME Options for Teradata

LIBNAME option DATA= OUT= Comments

ACCESS=READONLY Yes2 Yes2 For an OUT= data set, you
correctly receive a
SAS/ACCESS error message.

BULKLOAD= N/A N/A For out-of-database I/O.

CAST= N/A N/A For out-of-database I/O.

CAST_OVERHEAD_MAXPERCENT= N/A N/A For out-of-database I/O.

CONNECTION= No4 No4 In-database SAS/STAT and
SAS/ETS procedures use
separate connections from
SAS/ACCESS software and
therefore work as if
CONNECTION=UNIQUE is
specified.

CONNECTION_GROUP= No3 No3 In-database SAS/STAT and
SAS/ETS procedures use
separate connections from
SAS/ACCESS software.

DBCOMMIT= N/A N/A For out-of-database I/O.

DBCONINIT= No3 No3 In-database SAS/STAT and
SAS/ETS procedures use
separate connections from
SAS/ACCESS software.

LIBNAME Statement Options for In-Database Computing F 17

LIBNAME option DATA= OUT= Comments

DBCONTERM= No3 No3 In-database SAS/STAT and
SAS/ETS procedures use
separate connections from
SAS/ACCESS software.

DBCREATE_TABLE_OPTS= N/A Yes2

DBGEN_NAME=SAS

DBINDEX= N/A N/A For out-of-database I/O.

DBLIBINIT= N/A N/A Executed when LIBNAME
connection is made.

DBLIBTERM= N/A N/A Executed when LIBNAME is
disconnected.

DBMSTEMP=YES No3 No3 In-database SAS/STAT and
SAS/ETS procedures use
separate connections from
SAS/ACCESS software.
Temporary tables can be
accessed only within the
connection in which they are
created, so DBMSTEMP=YES
causes Teradata errors that say
the table does not exist. The
default value NO works.

DBPROMPT= N/A N/A Executed when LIBNAME
connection is made.

DBSASLABEL= Yes1 N/A DBSASLABEL=NONE is
recommended for correct
procedure output.

DBSLICEPARM= N/A N/A For out-of-database I/O.

DEFER=NO No4 No4 In-database SAS/STAT and
SAS/ETS procedures use
separate connections from
SAS/ACCESS software and
therefore work as if
DEFER=YES is specified.

18 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

LIBNAME option DATA= OUT= Comments

DIRECT_EXE=DELETE N/A N/A

DIRECT_SQL= N/A N/A PROC SQL only.

ERRLIMIT= N/A N/A For out-of-database I/O.

LOGDB= N/A N/A For out-of-database I/O.

MODE= N/A N/A Applies to explicit pass-through
in PROC SQL.

MULTISTMT= N/A N/A For out-of-database I/O.

MULTI_DATASRC_OPT= N/A N/A For out-of-database I/O with
PROC SQL.

PASSWORD= Yes2 Yes2

PREFETCH= N/A N/A For out-of-database I/O.

PRESERVE_COL_NAMES=NO No3 No3 The default value YES works.

PRESERVE_NAMES=NO No3 No3 The default value YES works.

PRESERVE_TAB_NAMES=NO No3 No3 The default value YES works.

READ_ISOLATION_LEVEL= No4 No4 The option is ignored.

READ_LOCK_TYPE= No4 No4 The option is ignored.

READ_MODE_WAIT= No4 No4 The option is ignored.

REREAD_EXPOSURE= N/A N/A

SERVER= Yes2 Yes2 Same as TDPID=.

SPOOL= N/A N/A For out-of-database I/O.

SQL_FUNCTIONS= N/A N/A For PROC SQL.

SQL_FUNCTIONS_COPY= N/A N/A For PROC SQL.

Using SAS/ACCESS Software with Teradata: Some Cautionary Notes F 19

LIBNAME option DATA= OUT= Comments

SQLGENERATION= Yes2 Yes2 If SQLGENERATION= is
specified in the LIBNAME
statement, any value specified in
an OPTIONS statement is
ignored.

TDPID= Yes2 Yes2 Same as SERVER=.

UPDATE_ISOLATION_LEVEL= No4 No4 The option is ignored.

UPDATE_LOCK_TYPE= No4 No4 The option is ignored.

UPDATE_MODE_WAIT= No4 No4 The option is ignored.

USER= Yes2 Yes2

UTILCONN_TRANSIENT= N/A N/A In-database SAS/STAT and
SAS/ETS procedures use
separate connections from
SAS/ACCESS software.

Using SAS/ACCESS Software with Teradata: Some
Cautionary Notes

See the chapter “SAS/ACCESS Interface to Teradata” in SAS/ACCESS for Relational Databases:
Reference for the complete documentation regarding the use of SAS/ACCESS software with Teradata.

� When a SAS/STAT or SAS/ETS procedure performs in-database computation, SAS/ACCESS
software is not used for downloading the rows of the DATA= data set from the DBMS or for
uploading the rows of the OUT= data set to the DBMS. Rather, SAS/ACCESS software is
used as follows:

– When the SAS System parses the statements of a SAS/STAT or SAS/ETS procedure,
SAS/ACCESS software looks up the variable names in the DATA= data set. Or, when
you do not specify an explicit variable list, SAS/ACCESS software obtains the names of
the variables from the DBMS.

– SAS/ACCESS software tells the procedure which SAS data types and SAS formats are
assigned to the variables in both the DATA= and OUT= data sets when those data sets
are DBMS tables.

20 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

– When a SAS/STAT or SAS/ETS procedure attempts to create an OUT= data set,
SAS/ACCESS software generates the CREATE TABLE command and sends it to the
DBMS.

Because SAS/ACCESS software is used for these purposes, numerous SAS/ACCESS options
affect in-database computation as described in this and subsequent sections. In addition,
SAS/ACCESS options are important for using the DATA step or out-of-database procedures
to create DBMS tables, and these options can have important consequences for subsequent
analyses that are performed using in-database procedures.

� In statistical applications, you should exercise extreme caution with the BULKLOAD=YES
option in the LIBNAME statement. The BULKLOAD=YES option omits duplicate rows. It
is not unusual for statistical data sets to have duplicate rows, and omitting them produces
incorrect answers. This behavior affects the DATA step and procedures that do not perform
in-database computation. This behavior does not affect OUT= data sets that are created
in-database by the PRINCOMP or SCORE procedures.

� You should usually specify the following SAS/ACCESS options regardless of whether you are
performing in-database computations:

– Either specify OPTIONS NOLABEL or specify the DBSASLABEL=NONE option in a
LIBNAME statement to prevent SAS/ACCESS software from assigning default labels
and thus adding spurious variable labels to procedure listings, ODS tables, and output
SAS data sets. (Teradata tables do not store SAS variable labels. Variable labels must
be specified in the PROC step using a LABEL or ATTRIB statement. However, when
SAS/ACCESS software creates a SAS data set from a DBMS table, it assigns the variable
names as labels by default.)

– Specify DBFMTIGNORE in an OPTIONS statement to prevent SAS/ACCESS software
from assigning data types to output variables based on their SAS formats. Without the
DBFMTIGNORE option, output data sets in the DBMS (including ODS tables) might
suffer from loss of precision or numeric overflow, causing loss of data. See the subsection
“LIBNAME Statement Data Conversions” in the section “Data Types for Teradata” in
SAS/ACCESS 9.2 for Relational Databases: Reference.

� When SAS/ACCESS software reads a Teradata table or creates an ordinary SAS data set from
a Teradata table, it assigns formats to the SAS variables based on the Teradata data types.
These formats are often inappropriate and can interfere with the proper operation of SAS/STAT,
SAS/ETS, and Base SAS procedures such as PRINT, PRINCOMP, and TRANSREG, especially
for character variables. When using such a data set, you might want to specify a FORMAT
statement to remove the formats, such as the following:

FORMAT _CHARACTER_;

� If you use a RENAME= data set option, SAS/ACCESS software assigns the old variable
names as variable labels.

� Most SAS data set options are not stored in Teradata tables. In particular, the TYPE= data set
option is not stored in Teradata tables. For example, if you run the CORR procedure to create
a TYPE=CORR data set as a Teradata table, the data set TYPE= is lost and you must specify
the TYPE= data set option every time you use that table.

Using SAS/ACCESS Software with Teradata: Some Cautionary Notes F 21

� Teradata has nulls instead of missing values. SAS software has 28 kinds of numeric missing
values, but SAS/ACCESS software converts all of them to null when it creates a Teradata table
from SAS input. SAS character missing values are the same as blank strings, but Teradata
nulls are different from blank strings. When SAS/ACCESS software creates a Teradata table
from SAS input, blank strings are converted to nulls. Conversely, when a Teradata table is
converted to a SAS data set, numeric nulls are converted to ordinary SAS numeric missing
values, and character nulls are converted to blank strings.

� Comparisons with Teradata nulls work differently from comparisons with SAS missing values.
Teradata uses three-valued logic, so a comparison with a null produces an “unknown” logical
value. In the SAS System, numeric missing values are regarded as less than any nonmissing
value, and character missing values are (equal to) blank strings. Comparisons between two
SAS missing values that the SAS System considers equal might yield either a null or a true
value on Teradata, depending on how the SAS System translates the syntax.

� When the SAS System copies a column from a DBMS table to a new DBMS table, the new
DBMS data type can differ from that of the original table. This is true for both in-database
and out-of-database processing and is a consequence of the manner in which SAS/ACCESS
software handles DBMS data types and SAS formats. See the subsection “LIBNAME State-
ment Data Conversions” in the section “Data Types for Teradata” in SAS/ACCESS 9.2 for
Relational Databases: Reference. The change in data types happens in a DATA step with a
SET or MERGE statement and in procedure statements that copy variables from the DATA=
data set to the OUT= data set.

You can exercise limited control over data types in output tables by using FORMAT or ATTRIB
statements to assign formats. For out-of-database processing, you can use the DBTYPE= data
set option to specify data types for output tables. However, the DBTYPE= data set option is
not supported for in-database computation by the SAS/STAT and SAS/ETS procedures.

SAS/ACCESS software does not change the following data types:

– BYTE

– CHAR

– DATE

– FLOAT (also known as REAL or DOUBLE PRECISION)

– TIME

– TIMESTAMP

22 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Table 1.4 shows how data types are changed when the SAS System copies a Teradata column.

Table 1.4 Data Type Changes

Original Data Type New Data Type

Byte Data Types
VarByte(n) Byte(n)

Character Data Types
VarChar(n) Char(n)

Numeric Data Types
BYTEINT SMALLINT
SMALLINT INTEGER
INTEGER DECIMAL(11)
DECIMAL INTEGER
DECIMAL(1) BYTEINT
DECIMAL(1,0) BYTEINT
DECIMAL(1,1) DECIMAL(2,1)
DECIMAL(2) SMALLINT
DECIMAL(2,0) SMALLINT
DECIMAL(2,1) DECIMAL(3,1)
DECIMAL(2,2) DECIMAL(3,2)
DECIMAL(3) SMALLINT
DECIMAL(3,0) SMALLINT
DECIMAL(3,1) DECIMAL(4,1)
DECIMAL(3,2) DECIMAL(4,2)
DECIMAL(3,3) DECIMAL(4,3)
DECIMAL(4) INTEGER
DECIMAL(4,0) INTEGER
DECIMAL(4,1) DECIMAL(5,1)
DECIMAL(4,2) DECIMAL(5,2)
DECIMAL(4,3) DECIMAL(5,3)
DECIMAL(4,4) DECIMAL(5,4)
DECIMAL(5) INTEGER
DECIMAL(5,0) INTEGER
DECIMAL(5,1) DECIMAL(6,1)
DECIMAL(5,2) DECIMAL(6,2)
DECIMAL(5,3) DECIMAL(6,3)
DECIMAL(5,4) DECIMAL(6,4)
DECIMAL(5,5) DECIMAL(6,5)
DECIMAL(6) INTEGER
DECIMAL(6,0) INTEGER
DECIMAL(6,1) DECIMAL(7,1)
DECIMAL(6,2) DECIMAL(7,2)
DECIMAL(6,3) DECIMAL(7,3)
DECIMAL(6,4) DECIMAL(7,4)

Using SAS/ACCESS Software with Teradata: Some Cautionary Notes F 23

Original Data Type New Data Type

DECIMAL(6,5) DECIMAL(7,5)
DECIMAL(6,6) DECIMAL(7,6)
DECIMAL(7) INTEGER
DECIMAL(7,0) INTEGER
DECIMAL(7,1) DECIMAL(8,1)
DECIMAL(7,2) DECIMAL(8,2)
DECIMAL(7,3) DECIMAL(8,3)
DECIMAL(7,4) DECIMAL(8,4)
DECIMAL(7,5) DECIMAL(8,5)
DECIMAL(7,6) DECIMAL(8,6)
DECIMAL(7,7) DECIMAL(8,7)
DECIMAL(8) INTEGER
DECIMAL(8,0) INTEGER
DECIMAL(8,1) DECIMAL(9,1)
DECIMAL(8,2) DECIMAL(9,2)
DECIMAL(8,3) DECIMAL(9,3)
DECIMAL(8,4) DECIMAL(9,4)
DECIMAL(8,5) DECIMAL(9,5)
DECIMAL(8,6) DECIMAL(9,6)
DECIMAL(8,7) DECIMAL(9,7)
DECIMAL(8,8) DECIMAL(9,8)
DECIMAL(9) DECIMAL(10)
DECIMAL(9,0) DECIMAL(10)
DECIMAL(9,1) DECIMAL(10,1)
DECIMAL(9,2) DECIMAL(10,2)
DECIMAL(9,3) DECIMAL(10,3)
DECIMAL(9,4) DECIMAL(10,4)
DECIMAL(9,5) DECIMAL(10,5)
DECIMAL(9,6) DECIMAL(10,6)
DECIMAL(9,7) DECIMAL(10,7)
DECIMAL(9,8) DECIMAL(10,8)
DECIMAL(9,9) DECIMAL(10,9)
DECIMAL(10) DECIMAL(11)
DECIMAL(10,0) DECIMAL(11)
DECIMAL(10,1) DECIMAL(11,1)
DECIMAL(10,2) DECIMAL(11,2)
DECIMAL(10,3) DECIMAL(11,3)
DECIMAL(10,4) DECIMAL(11,4)
DECIMAL(10,5) DECIMAL(11,5)
DECIMAL(10,6) DECIMAL(11,6)
DECIMAL(10,7) DECIMAL(11,7)
DECIMAL(10,8) DECIMAL(11,8)
DECIMAL(10,9) DECIMAL(11,9)
DECIMAL(10,10) DECIMAL(11,10)
DECIMAL(11) DECIMAL(12)
DECIMAL(11,0) DECIMAL(12)

24 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Original Data Type New Data Type

DECIMAL(11,1) DECIMAL(12,1)
DECIMAL(11,2) DECIMAL(12,2)
DECIMAL(11,3) DECIMAL(12,3)
DECIMAL(11,4) DECIMAL(12,4)
DECIMAL(11,5) DECIMAL(12,5)
DECIMAL(11,6) DECIMAL(12,6)
DECIMAL(11,7) DECIMAL(12,7)
DECIMAL(11,8) DECIMAL(12,8)
DECIMAL(11,9) DECIMAL(12,9)
DECIMAL(11,10) DECIMAL(12,10)
DECIMAL(11,11) DECIMAL(12,11)
DECIMAL(12) DECIMAL(13)
DECIMAL(12,0) DECIMAL(13)
DECIMAL(12,1) DECIMAL(13,1)
DECIMAL(12,2) DECIMAL(13,2)
DECIMAL(12,3) DECIMAL(13,3)
DECIMAL(12,4) DECIMAL(13,4)
DECIMAL(12,5) DECIMAL(13,5)
DECIMAL(12,6) DECIMAL(13,6)
DECIMAL(12,7) DECIMAL(13,7)
DECIMAL(12,8) DECIMAL(13,8)
DECIMAL(12,9) DECIMAL(13,9)
DECIMAL(12,10) DECIMAL(13,10)
DECIMAL(12,11) DECIMAL(13,11)
DECIMAL(12,12) DECIMAL(13,12)
DECIMAL(13) DECIMAL(14)
DECIMAL(13,0) DECIMAL(14)
DECIMAL(13,1) DECIMAL(14,1)
DECIMAL(13,2) DECIMAL(14,2)
DECIMAL(13,3) DECIMAL(14,3)
DECIMAL(13,4) DECIMAL(14,4)
DECIMAL(13,5) DECIMAL(14,5)
DECIMAL(13,6) DECIMAL(14,6)
DECIMAL(13,7) DECIMAL(14,7)
DECIMAL(13,8) DECIMAL(14,8)
DECIMAL(13,9) DECIMAL(14,9)
DECIMAL(13,10) DECIMAL(14,10)
DECIMAL(13,11) DECIMAL(14,11)
DECIMAL(13,12) DECIMAL(14,12)
DECIMAL(13,13) DECIMAL(14,13)
DECIMAL(14) DECIMAL(15)
DECIMAL(14,0) DECIMAL(15)
DECIMAL(14,1) DECIMAL(15,1)
DECIMAL(14,2) DECIMAL(15,2)
DECIMAL(14,3) DECIMAL(15,3)
DECIMAL(14,4) DECIMAL(15,4)

Using SAS/ACCESS Software with Teradata: Some Cautionary Notes F 25

Original Data Type New Data Type

DECIMAL(14,5) DECIMAL(15,5)
DECIMAL(14,6) DECIMAL(15,6)
DECIMAL(14,7) DECIMAL(15,7)
DECIMAL(14,8) DECIMAL(15,8)
DECIMAL(14,9) DECIMAL(15,9)
DECIMAL(14,10) DECIMAL(15,10)
DECIMAL(14,11) DECIMAL(15,11)
DECIMAL(14,12) DECIMAL(15,12)
DECIMAL(14,13) DECIMAL(15,13)
DECIMAL(14,14) DECIMAL(15,14)
DECIMAL(15) DECIMAL(16)
DECIMAL(15,0) DECIMAL(16)
DECIMAL(15,1) DECIMAL(16,1)
DECIMAL(15,2) DECIMAL(16,2)
DECIMAL(15,3) DECIMAL(16,3)
DECIMAL(15,4) DECIMAL(16,4)
DECIMAL(15,5) DECIMAL(16,5)
DECIMAL(15,6) DECIMAL(16,6)
DECIMAL(15,7) DECIMAL(16,7)
DECIMAL(15,8) DECIMAL(16,8)
DECIMAL(15,9) DECIMAL(16,9)
DECIMAL(15,10) DECIMAL(16,10)
DECIMAL(15,11) DECIMAL(16,11)
DECIMAL(15,12) DECIMAL(16,12)
DECIMAL(15,13) DECIMAL(16,13)
DECIMAL(15,14) DECIMAL(16,14)
DECIMAL(15,15) DECIMAL(16,15)
DECIMAL(16) DECIMAL(17)
DECIMAL(16,0) DECIMAL(17)
DECIMAL(16,1) DECIMAL(17,1)
DECIMAL(16,2) DECIMAL(17,2)
DECIMAL(16,3) DECIMAL(17,3)
DECIMAL(16,4) DECIMAL(17,4)
DECIMAL(16,5) DECIMAL(17,5)
DECIMAL(16,6) DECIMAL(17,6)
DECIMAL(16,7) DECIMAL(17,7)
DECIMAL(16,8) DECIMAL(17,8)
DECIMAL(16,9) DECIMAL(17,9)
DECIMAL(16,10) DECIMAL(17,10)
DECIMAL(16,11) DECIMAL(17,11)
DECIMAL(16,12) DECIMAL(17,12)
DECIMAL(16,13) DECIMAL(17,13)
DECIMAL(16,14) DECIMAL(17,14)
DECIMAL(16,15) DECIMAL(17,15)
DECIMAL(16,16) DECIMAL(17,16)
DECIMAL(17) DECIMAL(18)

26 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Original Data Type New Data Type

DECIMAL(17,0) DECIMAL(18)
DECIMAL(17,1) DECIMAL(18,1)
DECIMAL(17,2) DECIMAL(18,2)
DECIMAL(17,3) DECIMAL(18,3)
DECIMAL(17,4) DECIMAL(18,4)
DECIMAL(17,5) DECIMAL(18,5)
DECIMAL(17,6) DECIMAL(18,6)
DECIMAL(17,7) DECIMAL(18,7)
DECIMAL(17,8) DECIMAL(18,8)
DECIMAL(17,9) DECIMAL(18,9)
DECIMAL(17,10) DECIMAL(18,10)
DECIMAL(17,11) DECIMAL(18,11)
DECIMAL(17,12) DECIMAL(18,12)
DECIMAL(17,13) DECIMAL(18,13)
DECIMAL(17,14) DECIMAL(18,14)
DECIMAL(17,15) DECIMAL(18,15)
DECIMAL(17,16) DECIMAL(18,16)
DECIMAL(17,17) DECIMAL(18,17)
DECIMAL(n) for n > 17 FLOAT

Time Data Types
TIME with TIMEZONE CHAR(21)
TIME(0) with TIMEZONE CHAR(14)
TIME(1) with TIMEZONE CHAR(16)
TIME(2) with TIMEZONE CHAR(17)
TIME(3) with TIMEZONE CHAR(18)
TIME(4) with TIMEZONE CHAR(19)
TIME(5) with TIMEZONE CHAR(20)
TIME(6) with TIMEZONE CHAR(21)

Timestamp Data Types
TIMESTAMP with TIMEZONE CHAR(32)
TIMESTAMP(0) with TIMEZONE CHAR(25)
TIMESTAMP(1) with TIMEZONE CHAR(27)
TIMESTAMP(2) with TIMEZONE CHAR(28)
TIMESTAMP(3) with TIMEZONE CHAR(29)
TIMESTAMP(4) with TIMEZONE CHAR(30)
TIMESTAMP(5) with TIMEZONE CHAR(31)
TIMESTAMP(6) with TIMEZONE CHAR(32)

Interval Data Types
INTERVAL YEAR CHAR(3)
INTERVAL YEAR(1) CHAR(2)
INTERVAL YEAR(2) CHAR(3)
INTERVAL YEAR(3) CHAR(4)
INTERVAL YEAR(4) CHAR(5)

Using SAS/ACCESS Software with Teradata: Some Cautionary Notes F 27

Original Data Type New Data Type

INTERVAL YEAR to MONTH CHAR(6)
INTERVAL YEAR(1) to MONTH CHAR(5)
INTERVAL YEAR(2) to MONTH CHAR(6)
INTERVAL YEAR(3) to MONTH CHAR(7)
INTERVAL YEAR(4) to MONTH CHAR(8)
INTERVAL MONTH CHAR(3)
INTERVAL MONTH(1) CHAR(2)
INTERVAL MONTH(2) CHAR(3)
INTERVAL MONTH(3) CHAR(4)
INTERVAL MONTH(4) CHAR(5)
INTERVAL DAY CHAR(3)
INTERVAL DAY(1) CHAR(2)
INTERVAL DAY(2) CHAR(3)
INTERVAL DAY(3) CHAR(4)
INTERVAL DAY(4) CHAR(5)
INTERVAL DAY to HOUR CHAR(6)
INTERVAL DAY(1) to HOUR CHAR(5)
INTERVAL DAY(2) to HOUR CHAR(6)
INTERVAL DAY(3) to HOUR CHAR(7)
INTERVAL DAY(4) to HOUR CHAR(8)
INTERVAL DAY to MINUTE CHAR(9)
INTERVAL DAY(1) to MINUTE CHAR(8)
INTERVAL DAY(2) to MINUTE CHAR(9)
INTERVAL DAY(3) to MINUTE CHAR(10)
INTERVAL DAY(4) to MINUTE CHAR(11)
INTERVAL DAY to SECOND CHAR(19)
INTERVAL DAY(1) to SECOND CHAR(18)
INTERVAL DAY(2) to SECOND CHAR(19)
INTERVAL DAY(3) to SECOND CHAR(20)
INTERVAL DAY(4) to SECOND CHAR(21)
INTERVAL HOUR CHAR(3)
INTERVAL HOUR(1) CHAR(2)
INTERVAL HOUR(2) CHAR(3)
INTERVAL HOUR(3) CHAR(4)
INTERVAL HOUR(4) CHAR(5)
INTERVAL HOUR to MINUTE CHAR(6)
INTERVAL HOUR(1) to MINUTE CHAR(5)
INTERVAL HOUR(2) to MINUTE CHAR(6)
INTERVAL HOUR(3) to MINUTE CHAR(7)
INTERVAL HOUR(4) to MINUTE CHAR(8)
INTERVAL HOUR to SECOND CHAR(16)
INTERVAL HOUR(1) to SECOND CHAR(15)
INTERVAL HOUR(2) to SECOND CHAR(16)
INTERVAL HOUR(3) to SECOND CHAR(17)
INTERVAL HOUR(4) to SECOND CHAR(18)
INTERVAL MINUTE CHAR(3)

28 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Original Data Type New Data Type

INTERVAL MINUTE(1) CHAR(2)
INTERVAL MINUTE(2) CHAR(3)
INTERVAL MINUTE(3) CHAR(4)
INTERVAL MINUTE(4) CHAR(5)
INTERVAL MINUTE to SECOND CHAR(13)
INTERVAL MINUTE(1) to SECOND CHAR(12)
INTERVAL MINUTE(2) to SECOND CHAR(13)
INTERVAL MINUTE(3) to SECOND CHAR(14)
INTERVAL MINUTE(4) to SECOND CHAR(15)
INTERVAL SECOND CHAR(10)
INTERVAL SECOND(1) CHAR(9)
INTERVAL SECOND(2) CHAR(10)
INTERVAL SECOND(3) CHAR(11)
INTERVAL SECOND(4) CHAR(12)

Indeterminate Row Order in a DBMS Table

In an ordinary SAS data set, the observations are ordered in a consistent way. For example, if you
run the PRINT procedure several times, the observations are always printed in the same order. But
in a DBMS table, the order of the rows is not defined. If you run PROC PRINT several times on
a DBMS table, the rows might be printed in a different order every time. If you run a statistical
analysis that depends on row order in a DBMS table (such as the Durbin-Watson statistic in the REG
procedure or tables with ORDER=DATA in the FREQ procedure), the results might differ every time
you run the analysis.

To get a consistent row order for a DBMS table, you can use the DBCONDITION= data set option
to specify an ORDER BY clause with one or more variables that defines a unique order for the
rows. However, the DBCONDITION= option works only for out-of-database processing. The
DBCONDITION= option does not work with in-database processing.

Following is an example that uses the DBCONDITION= option for out-of-database processing to
control the row order in PROC PRINT:

options ls=72 options nodate nostimer nonumber;
%let server =sl91204;
%let user =sas;
%let password=sas;
libname tera teradata server=&server user=&user password=&password;

The SAS System generates the following note:

NOTE: Libref TERA was successfully assigned as follows:
Engine: TERADATA
Physical Name: sl91204

Indeterminate Row Order in a DBMS Table F 29

proc delete data=tera.test;
run;

The SAS System generates the following warning:

WARNING: File TERA.test.DATA does not exist.

data tera.test;
do i=1 to 3;

do j=1 to 4;
x=rannor(12345);
output;

end;
end;

run;

The SAS System generates the following note:

NOTE: The data set TERA.test has 12 observations and 3 variables.

title "Indeterminate Row Order";
proc print data=tera.test;
run;

The SAS System generates the following output:

Indeterminate Row Order
Obs i j x
1 1 1 -0.04298
2 3 1 0.57221
3 1 2 -0.09999
4 3 2 0.17571
5 1 3 -0.24349
6 3 3 -1.44361
7 1 4 -0.22226
8 3 4 0.44887
9 2 1 0.07353

10 2 2 0.49937
11 2 3 -1.52119
12 2 4 0.79180

NOTE: There were 12 observations read from the data set TERA.test.

title "Order Rows by I and J";
proc print data=tera.test(dbcondition="order by i, j");
run;

The SAS System generates the following output:

30 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Order Rows by I and J
Obs i j x
1 1 1 -0.04298
2 1 2 -0.09999
3 1 3 -0.24349
4 1 4 -0.22226
5 2 1 0.07353
6 2 2 0.49937
7 2 3 -1.52119
8 2 4 0.79180
9 3 1 0.57221

10 3 2 0.17571
11 3 3 -1.44361
12 3 4 0.44887

NOTE: There were 12 observations read from the data set TERA.test.

title "Order Rows by X";
proc print data=tera.test(dbcondition="order by x");
run;

The SAS System generates the following output:

Order Rows by X
Obs i j x
1 2 3 -1.52119
2 3 3 -1.44361
3 1 3 -0.24349
4 1 4 -0.22226
5 1 2 -0.09999
6 1 1 -0.04298
7 2 1 0.07353
8 3 2 0.17571
9 3 4 0.44887

10 2 2 0.49937
11 3 1 0.57221
12 2 4 0.79180

NOTE: There were 12 observations read from the data set TERA.test.

proc delete data=tera.test;
run;

The SAS System generates the following note:

NOTE: Deleting TERA.test (memtype=DATA).

SAS/ACCESS Data Set Options for Teradata F 31

SAS/ACCESS Data Set Options for Teradata

Table 1.5 describes whether SAS/ACCESS data set options for Teradata work correctly with the
DATA= and OUT= SAS/STAT and SAS/ETS procedure options. The cell entries in the DATA= and
OUT= columns have the following values:

� Yes—indicates that the option works for in-database computing

� No—indicates that the option does not work for in-database computing

� N/A (not applicable)—indicates that the option does not apply to in-database computing

� Sometimes—see Comment column for details

Some cell entries in the DATA= and OUT= columns are color coded and have superscripts that are
intended to convey additional information. The meaning of the colors and superscripts are as follows:

� A superscript of 1 (Yes1 or No1) indicates an option that correctly affects in-database process-
ing as expected.

� A superscript of 2 (Yes2 or No2) indicates an option that works differently for in-database
computing compared to out-of-database computing.

� A superscript of 3 (Yes3, No3 N/A3, or Sometimes3) indicates an option that causes the
procedure to use SAS/ACCESS for out-of-database computing.

� A superscript of 4 (Yes4 or No4) indicates an option that neither works for in-database
computing nor prevents in-database computing, but is unlikely to cause a serious error. See
the Comment column for more information.

� A superscript of 5 (Yes5 or No5) indicates an option that might cause incorrect answers or
Teradata syntax errors.

NOTE: As a data set option, DATABASE= is an alias for SCHEMA=, but as LIBNAME op-
tions, DATABASE= and SCHEMA= are distinct options. The data set options DATABASE= and
SCHEMA= work the same way as the LIBNAME option SCHEMA=.

If you specify the same option as both a data set option and as a LIBNAME option, the value of the
data set option is used for that data set.

Table 1.5 SAS/ACCESS Data Set Options for Teradata

Data Set Option DATA= OUT= Comments

BL_CONTROL= N/A N/A For out-of-database I/O.

BL_DATAFILE= N/A N/A For out-of-database I/O.

32 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Data Set Option DATA= OUT= Comments

BL_LOG= N/A N/A For out-of-database I/O.

BUFFERS= N/A N/A For out-of-database I/O.

BULKLOAD= N/A N/A For out-of-database I/O.

CAST= N/A N/A For out-of-database I/O.

CAST_OVERHEAD_MAXPERCENT= N/A N/A For out-of-database I/O.

DATABASE= No5 No5 DATABASE= is an alias for
SCHEMA= as a data set option.
DATABASE= as a data set
option does not work like
DATABASE= as a LIBNAME
option.

DBCOMMIT= N/A N/A For out-of-database I/O.

DBCONDITION= No3 No3

DBCREATE_TABLE_OPTS= N/A Yes1

DBFORCE= N/A N/A In-database computation works
like DBFORCE=YES,
regardless of what value is
specified for DBFORCE=.
SAS/ACCESS software defaults
to DBFORCE=NO. However,
DBFORCE= would have an
effect on in-database
computation only if DBTYPE=
specified a Teradata data type
that resulted in truncation,
whereas specifying DBTYPE=
prevents in-database
computation.

DBINDEX= N/A N/A For out-of-database I/O.

DBKEY= N/A N/A For out-of-database I/O.

SAS/ACCESS Data Set Options for Teradata F 33

Data Set Option DATA= OUT= Comments

DBLABEL= N/A N/A DBLABEL= applies only when
the DATA= data set is a SAS
data set with variable labels and
the OUT= data set is a DBMS
table. In-database computation
cannot be performed when the
DATA= data set is not a DBMS
table.

DBMASTER= N/A N/A

DBNULL= N/A3 No3

DBSASLABEL= Yes1 N/A DBSASLABEL=NONE is
recommended for correct
procedure output, but it is
normally easier to specify this in
the LIBNAME statement.

DBSLICE= N/A N/A For out-of-database I/O.

DBSLICEPARM= N/A N/A For out-of-database I/O.

DBTYPE= N/A3 Sometimes3 DBTYPE= prevents in-database
computation because some
Teradata types such as DATE
and TIMESTAMP have not been
implemented.

ERRLIMIT= N/A N/A For out-of-database I/O.

MBUFSIZE= N/A N/A For out-of-database I/O.

ML_CHECKPOINT= N/A N/A For out-of-database I/O.

ML_ERROR1= N/A N/A For out-of-database I/O.

ML_ERROR2= N/A N/A For out-of-database I/O.

ML_LOG= N/A N/A For out-of-database I/O.

ML_RESTART= N/A N/A For out-of-database I/O.

ML_WORK= N/A N/A For out-of-database I/O.

MULTILOAD= N/A N/A For out-of-database I/O.

34 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Data Set Option DATA= OUT= Comments

MULTISTMT= N/A N/A For out-of-database I/O.

NULLCHAR= N/A3 No3

NULLCHARVAL= N/A3 No3

PRESERVE_COL_NAMES=NO No3 No3 The default value YES works.

READ_ISOLATION_LEVEL= No4 No4 The option is ignored.

READ_LOCK_TYPE= No4 No4 The option is ignored.

READ_MODE_WAIT= No4 No4 The option is ignored.

SCHEMA= Yes1 Yes1

SET= N/A Yes2 If the DATA= table contains
duplicate rows, the procedure
attempts to insert duplicate rows
into the OUT= table, and the
results for in-database and
out-of-database processing differ.
With in-database processing,
duplicate rows are discarded and
do not cause errors. With
out-of-database processing,
duplicate rows cause errors and a
ROLLBACK is issued. With
MODE=TERADATA, the
ROLLBACK produces an empty
or incomplete table. With
MODE=ANSI, the ROLLBACK
produces an empty table.

SLEEP= N/A N/A For out-of-database I/O.

TENACITY= N/A N/A For out-of-database I/O.

UPDATE_ISOLATION_LEVEL= No4 No4 The option is ignored.

UPDATE_LOCK_TYPE= No4 No4 The option is ignored.

UPDATE_MODE_WAIT= No4 No4 The option is ignored.

Base SAS Data Set Options F 35

Base SAS Data Set Options

Table 1.6 describes whether the Base SAS data set options work with the DATA= and OUT=
SAS/STAT and SAS/ETS procedure options for in-database computing. The cell entries in the
DATA= and OUT= columns have the following values:

� Yes—indicates that the option works for in-database computing

� No—indicates that the option does not work for in-database computing

� N/A (not applicable)—indicates that the option does not apply to in-database computing

Some cell entries in the DATA= and OUT= columns are color coded and have superscripts that are
intended to convey additional information. The meaning of the colors and superscripts are as follows:

� A superscript of 1 (Yes1 or No1) indicates an option that correctly affects in-database process-
ing as expected.

� A superscript of 2 (Yes2, No2, or N/A2) indicates an option that causes SAS/ACCESS syntax
errors or warnings. When SAS/ACCESS software issues a warning message, the option is
ignored by the procedure.

� A superscript of 3 (Yes3, No3, or N/A3) indicates an option that causes the procedure to use
SAS/ACCESS for out-of-database computing.

Table 1.6 Base SAS Data Set Options

Data set option DATA= OUT= Comments

ALTER= No2 No2 SAS passwords are not supported on DBMSs.

BUFNO= N/A N/A For out-of-database I/O.

BUFSIZE= N/A N/A For out-of-database I/O.

CNTLLEV= N/A N/A For SAS data sets only.

COMPRESS= N/A N/A For SAS data sets only.

DLDMGACTION= N/A N/A For SAS data sets only.

DROP= Yes1 No3

ENCODING= No2 No2

ENCRYPT= No2 No2 Requires SAS passwords.

36 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Data set option DATA= OUT= Comments

FILECLOSE= N/A N/A For tape data sets only.

FIRSTOBS= No3 No3 DBMS tables have no inherent row order, and
FIRSTOBS= is defined in terms of row order.

GENMAX= No2 No2 Neither the Teradata nor TSSQL drivers
support generation options that are explicitly
specified in the procedure statement, and the
procedure does not know whether a
generation number is explicit or implicit.

GENNUM= No2 No2 Neither the Teradata nor TSSQL drivers
support generation options that are explicitly
specified in the procedure statement, and the
procedure does not know whether a
generation number is explicit or implicit.

IDXNAME= N/A N/A For out-of-database I/O.

IDXWHERE= N/A N/A For out-of-database I/O.

IN= N/A N/A For DATA step only.

INDEX= N/A2 No2 For SAS data sets only.

KEEP= Yes1 No3

LABEL= No2 No2 SAS data set attributes cannot be stored in
Teradata. However, LABEL= should work on
DATA=, just as TYPE= works on DATA=.

OBS= No3 No3 DBMS tables have no inherent row order, and
FIRSTOBS= is defined in terms of row order.

OBSBUF= N/A N/A For SAS views only.

OUTREP= N/A N/A For SAS data sets only.

POINTOBS= N/A N/A For SAS data sets only.

PW= No2 No2 SAS passwords are not supported on DBMSs.

PWREQ= No2 No2 SAS passwords are not supported on DBMSs.

READ= No2 No2 SAS passwords are not supported on DBMSs.

Deploying and Using SAS Formats in Teradata F 37

Data set option DATA= OUT= Comments

RENAME= No3 No3 SAS supervisor does not tell the procedure
what the old names are.

REPEMPTY= N/A N/A For SAS data sets only.

REPLACE= N/A N/A For SAS data sets only.

REUSE= N/A N/A For SAS data sets only.

SORTEDBY= N/A N/A For SAS data sets only.

SPILL= N/A N/A For SAS views only.

TOBSNO= N/A N/A For out-of-database I/O.

TYPE= No3 No3 SAS data set attributes cannot be stored in
Teradata, and most TYPE= values indicate
that the data set contains summary statistics.

WHERE= Yes1 No3

WHEREUP= N/A N/A For updating a table, usually via
out-of-database I/O.

WRITE= No2 No2 SAS passwords are not supported on DBMSs.

Deploying and Using SAS Formats in Teradata

Using SAS Formats

SAS formats are basically mapping functions that change an element of data from one format to
another. For example, some SAS formats change numeric values to various currency formats and
date-and-time formats.

38 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

The SAS System supplies many formats. You can also use the SAS FORMAT procedure to define
custom formats that replace raw data values with formatted character values. For example, the
following PROC FORMAT code creates a custom format called $REGION that maps ZIP codes to
geographic regions.

proc format;
value $region
'02129', '03755', '10005' = 'Northeast'
'27513', '27511', '27705' = 'Southeast'
'92173', '97214', '94105' = 'Pacific';

run;

SAS programs frequently use both user-defined formats and formats that the SAS System supplies.
Although they are referenced in numerous ways, using the PUT function in the SQL procedure is of
particular interest for SAS in-database processing.

The PUT function takes a format reference and a data item as input and returns a formatted value.
For example, this SQL procedure query uses the PUT function to summarize sales by region from a
table of all customers:

select put(zipcode,$region.) as region,
sum(sales) as sum_sales from sales.customers
group by region;

The SAS SQL processor knows how to process the PUT function. Currently, SAS/ACCESS Interface
to Teradata returns all rows of unformatted data in the SALES.CUSTOMERS table in the Teradata
database to the SAS System for processing.

The SAS in-database technology deploys (“publishes”) the PUT function implementation to Teradata
as a new function named SAS_PUT(). Similar to any other programming language function, the
SAS_PUT() function can take one or more input parameters and return an output value.

The SAS_PUT() function supports the use of SAS formats. You can specify the SAS_PUT() function
in SQL queries that the SAS System submits to Teradata in one of two ways:

� implicitly by enabling the SAS System to automatically map PUT function calls to SAS_PUT()
function calls

� explicitly by using the SAS_PUT() function directly in your SAS program

If you used the SAS_PUT() function in the previous example, Teradata formats the ZIP code values
with the $REGION format and processes the GROUP BY clause using the formatted values.

By publishing the PUT function implementation to Teradata as the SAS_PUT() function to support
you can realize these advantages:

� You can process the entire SQL query inside the database, which minimizes data transfer (I/O).

� The SAS format processing leverages the scalable architecture of the DBMS.

� The results are grouped by the formatted data and are extracted from the Teradata Enterprise
Data Warehouse (EDW).

How It Works F 39

Deploying SAS formats to execute inside a Teradata database can enhance performance and exploit
Teradata parallel processing. This is accomplished when you install the SAS/ACCESS Interface to
Teradata software, which consists of the following three components:

� SAS/ACCESS Interface to Teradata engine—controls the exchange of information between
the SAS System and the Teradata EDW

� SAS Formats Library for Teradata—contains a library of SAS formats and the SAS_PUT UDF
that maps the SAS PUT() function to the SAS_PUT function in Teradata

� SAS Accelerator Publishing Agent—contains macros that enable you to publish the SAS
formats and user-defined formats to Teradata

How It Works

By using a SAS formats publishing macro, you can generate a SAS_PUT() function that enables you
to execute PUT function calls inside the Teradata EDW. You can reference the formats that the SAS
System supplies and most custom formats that you create using the FORMAT procedure.

The SAS formats publishing macro takes a SAS format catalog and publishes it to the Teradata EDW.
Inside the Teradata EDW, a SAS_PUT() function, which emulates the PUT function, is created and
registered for use in SQL queries.

40 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Figure 1.1 Process Flow Diagram

Here is the basic process flow:

1. Install the SAS 9.2 Formats Library for Teradata in the Teradata EDW. This library contains
many of the formats that are available in Base SAS software.

NOTE: This is a one-time installation process.

For more information, see the section “Formats That SAS Supplies in the Teradata EDW.”

2. If necessary, create your custom formats by using PROC FORMAT and create a permanent
catalog by using the LIBRARY= option.

For more information, see the section “User-Defined Formats in the Teradata EDW” in
SAS/ACCESS 9.2 for Relational Databases: Reference, Second Edition and the FORMAT
procedure in the Base SAS Procedures Guide.

Formats That SAS Supplies in the Teradata EDW F 41

3. Start SAS 9.2 and run the %INDTD_PUBLISH_FORMATS macro. This macro creates the
files that are needed to build the SAS_PUT() function and publishes those files to the Teradata
EDW.

The %INDTD_PUBLISH_FORMATS macro performs these tasks:

� produces the set of .c and .h files that are necessary to build the SAS_PUT() function

� produces a script of the Teradata commands that are necessary to register the SAS_PUT()
function on the Teradata EDW

4. After the %INDTD_PUBLISH_FORMATS macro creates the script, SAS/ACCESS Interface
to Teradata executes the script and publishes the files to the Teradata EDW.

5. Teradata compiles the .c and .h files and creates the SAS_PUT() function.

The SAS_PUT() function is available to use in any SQL expression and to use typically
wherever you would use Teradata built-in functions. For more information, see “Using the
SAS_PUT() Function in the Teradata EDW” in SAS/ACCESS 9.2 for Relational Databases:
Reference, Second Edition.

NOTE: The SAS_PUT() function uses Latin-1 encoding. Any character that cannot be
represented in Latin-1 might cause unexpected or unsuccessful behavior.

Formats That SAS Supplies in the Teradata EDW

The SAS System supplies many formats for use in the SAS_PUT() function.

You must install the SAS 9.2 Formats Library for Teradata on the same machine where you have
installed SAS Foundation. This is a one-time installation process.

After you install the SAS 9.2 Formats Library and run the %INDTD_PUBLISH_FORMATS macro,
the SAS_PUT() function can call these formats.

For information about how to install and configure the SAS 9.2 Formats Library for Teradata, see the
chapter on post-installation configuration for the SAS Accelerator Publishing Agent software in the
Configuration Guide for SAS 9.2 Foundation for your operating environment.

NOTE: The SAS Scoring Accelerator for Teradata also uses these libraries. For more information
about this product, see the SAS Scoring Accelerator for Teradata: User’s Guide.

User-Defined Formats in the Teradata EDW

You can use PROC FORMAT to create user-defined formats and store them in a format catalog.
You can then use the %INDTD_PUBLISH_FORMATS macro to export the user-defined format
definitions to the Teradata EDW where the SAS_PUT() function can reference them.

42 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

If you use the FMTCAT= option to specify a format catalog in the %INDTD_PUBLISH_FORMATS
macro, these restrictions and limitations apply:

� Trailing blanks in PROC FORMAT labels are lost when publishing a picture format.

� Avoid using PICTURE formats with the MULTILABEL option. You cannot successfully
create a CNTLOUT= data set when PICTURE formats are present. This is a known problem
in PROC FORMAT.

� If you use the MULTILABEL option, only the first label that is found is returned. For more
information, see the PROC FORMAT MULTILABEL option in the Base SAS Procedures
Guide.

� The %INDTD_PUBLISH_FORMATS macro rejects a format unless the LANGUAGE= option
is set to English or is not specified.

� Although the format catalog can contain informats, the %INDTD_PUBLISH_FORMATS
macro ignores the informats.

� User-defined formats that include a format that SAS supplies are not supported.

Overview of the Publishing Process

The %INDTD_PUBLISH_FORMATS macro creates the files that are needed to build the SAS_PUT()
function and publishes these files to the Teradata EDW.

The %INDTD_PUBLISH_FORMATS macro also publishes the formats that are included in the
SAS 9.2 Formats Library for Teradata. This makes many formats that SAS supplies available inside
Teradata.

In addition to SAS formats, you can also publish the PROC FORMAT definitions that are contained
in a single SAS format catalog by using the FMTCAT= option. The process of publishing a PROC
FORMAT catalog entry converts the range label pairs into embedded data in Teradata.

NOTE: If you specify more than one format catalog using the FMTCAT= option, the last format that
you specify is published.

The %INDTD_PUBLISH_FORMATS macro creates .h and .c files, which are necessary to build the
SAS_PUT() function. This macro also produces a script of Teradata commands that are necessary to
register the SAS_PUT() function in the Teradata EDW.

After the %INDTD_PUBLISH_FORMATS macro creates the script, SAS/ACCESS Interface to
Teradata executes the script and publishes the files to the Teradata EDW.

For information about publishing formats, see the section “Deploying and Using SAS Formats in
Teradata” in SAS/ACCESS 9.2 for Relational Databases: Reference.

Using SAS Formats F 43

Using SAS Formats

To each variable in an ordinary SAS data set, you can assign a format, field width, and optional
number of decimal places. The SAS System stores the format information for each variable in the
SAS data set along with other attributes such as variable labels. Once you have published the SAS
formats and any user-defined formats that you want to use, those formats can be used for in-database
processing. However, a Teradata table cannot explicitly store the name of the SAS format, field
width, and number of decimal places for each column. Instead, when SAS/ACCESS software opens
a Teradata table, SAS/ACCESS assigns format information to each column based on the Teradata
data type of the column (see the section “Data Types for Teradata” in SAS/ACCESS 9.2 for Relational
Databases: Reference). If you want to use a format for any column that differs from the format that
SAS/ACCESS software assigns to that column, you must specify the FORMAT statement in the
same PROC step in which you want the format to be used.

BY Groups and In-Database Computing

By default, SAS/STAT and SAS/ETS procedures that perform in-database computation define BY
groups according to the formatted values of the BY variables. However, except for the $w. and
$CHARw. formats, which do not truncate the data values, SAS formats must first be “published”
before they can be used for in-database computing. If your SAS program uses PROC FORMAT to
create one or more user-defined formats, you need to publish those user-defined formats as well. The
process of publishing SAS formats is described in the section “Deploying and Using SAS Formats
in Teradata” in this document. Additional details are also available in the section “Deploying and
Using SAS Formats in Teradata” in SAS/ACCESS 9.2 for Relational Databases: Reference.

As indicated previously in the section “Using SAS Formats,” after you have published the SAS
formats and any user-defined formats that you want to use, those formats can be used for in-database
computing. However, a Teradata table cannot explicitly store the name of the SAS format, field
width, and number of decimal places for each column. Instead, when SAS/ACCESS software
opens a Teradata table, it assigns format information to each column based on the Teradata data
type of the column (see the section “Data Types for Teradata” in SAS/ACCESS 9.2 for Relational
Databases: Reference). If you want to use a format for any column that differs from the format that
SAS/ACCESS software assigns to that column, you must specify the FORMAT statement in the
same PROC step in which you want the format to be used.

By default, if the SAS formats are not published or if any specific format used for a BY variable is
not published, then the procedure prints error messages about the UDFs or specific formats that have
not been published. If you want the procedure to run anyway without using the SAS_PUT UDF for
unpublished formats, specify the following statement:

OPTIONS NOFMTERR;

This statement causes the SAS/STAT or SAS/ETS procedure to define BY groups according to
the unformatted values of the BY variables when the formats of the BY variables have not been
published.

44 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

You should also be aware of the following conditions regarding BY groups and in-database comput-
ing:

� The DESCENDING option in the BY statement is supported for in-database computation.

� The NOTSORTED option in the BY statement is not supported for in-database computation,
because the results with NOTSORTED depend on the order of the rows in a SAS data set,
whereas the rows in a DBMS table do not have any defined order.

� For BY processing in-database, the SAS session encoding must be Latin-1. SAS_PUT uses the
Latin-1 encoding, and any character that cannot be represented in Latin-1 can cause problems.

� SAS_PUT does not support Teradata columns with types of BYTE, VARBYTE, BLOB,
GRAPHIC, or VARGRAPHIC. If you try to use SAS_PUT with any of these types, you
are likely to get a Teradata error message saying, “Function sas_put does not exist”, even if
SAS_PUT has been published.

There are also unusual situations in which the BY groups for in-database computation differ from
the BY groups for out-of-database computation. This arises from the fact that BY groups for out-of-
database computation depend on the order of the observations, in addition to the formatted values.
The in-database behavior is a feature, not a defect. Here is an example:

title "Try To Use a Discontiguous Format for BY Groups";
options nolabel nodate nostimer;

%let server =sl91204;
%let user =sas;
%let password=sas;

%let indconn=%str(user=&user password=&password server=&server);
libname dbms teradata &indconn;

The parity format assigns a formatted value of O to odd numbers and X to even numbers:

proc format;
value parity

1='O'
2='X'
3='O'
4='X'
5='O'
6='X'
7='O';

run;

Next, you publish the user-defined format on the DBMS:

%indtdpf;
%indtd_publish_formats(

fmtcat=work.formats,
action=create,
mode=unprotected,

BY Groups and In-Database Computing F 45

outdir=sasuser,
permdir=sasuser,
fmttable=format_table);

proc print data=dbms.format_table;
where fmtname='PARITY';
run;

However, you cannot simply use the parity format to define BY groups based on odd and even
numbers when using ordinary SAS data sets, as opposed to DBMS tables. The SAS System requires
each BY group to be a contiguous sequence of observations, so you would have to create a new
variable that contains the formatted value and then sort the data set by that new variable.

An out-of-database analysis of a DBMS table works the same way, because SAS/ACCESS software
returns the rows ordered by the unformatted values of the BY variable. On the other hand, suppose
you perform an in-database analysis. The rows in the DBMS table have no inherent order, so the
BY groups are defined solely by the formatted values of the BY variable. To illustrate, suppose you
create a data set that contains a variable named group with integer values from 1 to 7 and a variable
named formatted_group with the formatted values of group.

proc delete data=dbms.par_test;
data dbms.par_test;

retain random group value formatted_group;
do group = 1 to 7;

random = ranuni(123456);
value = ceil(group/2);
formatted_group = put(group, parity1.);
output;

end;
run;

proc print data=dbms.par_test(dbcondition='order by "group"');
run;

The following analysis fails because the two groups defined by the formatted values are not contiguous
sequences of observations when sorted by the unformatted values. There are many error messages
because each BY group contains only one observation, which the PRINCOMP procedure considers
to be an error.

title2 "Analysis 0: DATA out-of-db, OUT out-of-db, by group";
title3 "Should produce many error messages";
options sqlgeneration=none;
proc princomp data=dbms.par_test out=out;

var random value;
by group;
format group parity1.;

run;

To get an out-of-database analysis to work, you have to use the explicitly formatted variable,
formatted_group as in the following statements. Having both variables in the BY statement is
redundant, but necessary, to get the variable group copied to the OUTSTAT= data set for comparisons.

46 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

title2 "Analysis 1: DATA out-of-db, OUT out-of-db, by formatted_group group";
title3 "This analysis is correct";
options sqlgeneration=none;
proc princomp data=dbms.par_test out=out1 outstat=stat1 cov;

by formatted_group group;
format group parity1.;

run;

Next, sort by the variable formatted_group first to get the comparisons to work:

proc sort data=stat1;
by formatted_group group _type_ _name_;
format _all_;

run;

proc print data=stat1;
run;

proc sort data=out1 out=sort1;
by formatted_group group value;
format _all_;

run;

proc print data=sort1;
run;

The in-database analysis works correctly because the BY groups are defined solely by the formatted
values. Having both variables in the BY statement is redundant, but necessary, to get the variable
group copied to the OUTSTAT= data set for comparisons.

title2 "Analysis 2: DATA in-db, OUT in-db, by group formatted_group";
title3 "This analysis is correct";
options sqlgeneration=dbms;
proc delete data=dbms.out2;
run;

proc princomp data=dbms.par_test out=dbms.out2 outstat=stat2 cov;
var random value;
by group formatted_group;
format group parity1.;

run;

Next, swap the order of the BY variables to make the comparisons work:

proc sort data=stat2;
by formatted_group group _type_ _name_;
format _all_;

run;

proc print data=stat2;
run;

proc sort data=dbms.out2 out=sort2(LABEL='Principal Component Scores');
by formatted_group group value;
format _all_;

Support for Teradata Data Types F 47

run;

proc print data=sort2;
run;

proc compare data=stat1 compare=stat2
method=absolute criterion=1e-10 error;

run;

proc compare data=sort1 compare=sort2
method=absolute criterion=1e-10 error;

run;

Finally, you perform a clean up, deleting unneeded data sets and dropping the formats:

proc delete data=dbms.par_test;
proc delete data=dbms.out2;
run;

%indtd_publish_formats(
action=drop,
outdir=sasuser,
permdir=sasuser,
fmttable=format_table);

Support for Teradata Data Types

Variables in the DATA= Data Set

When performing in-database computation with the SAS/STAT or SAS/ETS in-database procedures,
all of the variables in the DATA= data set must be confined to the following Teradata data types,
regardless of whether they are used in the analysis:

� BYTEINT

� SMALLINT

� INTEGER

� DECIMAL (ANSI NUMERIC)

� FLOAT (ANSI REAL or DOUBLE PRECISION)

� DATE

� TIME

� TIMESTAMP

48 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

� CHARACTER

� VARCHAR

� LONG VARCHAR

� CLOB

If the DATA= data set contains any variables of the following types, the procedure cannot perform
in-database computation, but performs out-of-database computation instead:

� BYTE

� VARBYTE

� BLOB

� INTERVAL

� TIME WITH TIME ZONE

� TIMESTAMP WITH TIME ZONE

The following Teradata data types are not supported by SAS/ACCESS software:

� BIGINT

� GRAPHIC

� VARGRAPHIC

� LONG VARGRAPHIC

Numeric Computations

SAS/STAT procedures that support in-database computing can perform numeric in-database compu-
tations for the following Teradata data types, all of which are converted to FLOAT before being used
in any arithmetic computation:

� BYTEINT

� SMALLINT

� INTEGER

� DECIMAL (ANSI NUMERIC)

� FLOAT (ANSI REAL or DOUBLE PRECISION)

BY Processing F 49

� DATE

� TIME

� TIMESTAMP

The following Teradata data types cannot be used for numeric in-database computations because
they are character types:

� CHARACTER

� VARCHAR

� LONG VARCHAR

� CLOB

BY Processing

Columns with the following Teradata data types can be used as BY variables:

� BYTEINT

� SMALLINT

� INTEGER

� DECIMAL (ANSI NUMERIC)

� FLOAT (ANSI REAL OR DOUBLE PRECISION)

� DATE

� TIME

� TIMESTAMP

� CHARACTER

� VARCHAR

� LONG VARCHAR

� CLOB

50 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Conditions That Prevent In-Database Processing

This section describes conditions that are checked by the SAS/STAT and SAS/ETS procedures
that support in-database computing. Specific procedures might have other conditions that prevent
in-database computing. One example is any option that requires all rows of a table to be downloaded
without summarization. All specific conditions are discussed in detail in the following sections that
are devoted to the individual SAS/STAT and SAS/ETS in-database procedures:

� CANCORR Procedure Options Affected by In-Database Computing

� FACTOR Procedure Options Affected by In-Database Computing

� PRINCOMP Procedure Options Affected by In-Database Computing

� REG Procedure Options and Statements Affected by In-Database Computing

� SCORE Procedure Options Affected by In-Database Computing

� TIMESERIES Procedure Options Affected by In-Database Computing

� VARCLUS Procedure Options Affected by In-Database Computing

Options

In-database computation is not supported when any of the options described in Table 1.7 are specified.

Table 1.7 Options That Do Not Support In-Database Computation

Option Option
Value

Specified in
OPTIONS
Statement

Specified in
LIBNAME
Statement

Specified as
Data Set
Option

Reason

SQLGENERATION NONE x x

VALIDVARNAME V6 or
UPCASE

x DBMS identifiers
are usually
case-sensitive.

ENCODING Anything
other
than
Latin-1
when
there is a
BY
statement

x The SAS_PUT
UDF supports only
Latin-1.

Options F 51

Table 1.7 continued

Option Option
Value

Specified in
OPTIONS
Statement

Specified in
LIBNAME
Statement

Specified as
Data Set
Option

Reason

OBS Any x x DBMS tables have
no inherent row
order.

FIRSTOBS >1 x x DBMS tables have
no inherent row
order.

RENAME Any x

DROP or KEEP Any In OUT=

WHERE Any In OUT=

READ Any x SAS passwords are
not supported in
SQL, which has a
very different
security system.

WRITE Any x SAS passwords are
not supported in
SQL, which has a
very different
security system.

ALTER Any x SAS passwords are
not supported in
SQL, which has a
very different
security system.

GENMAX Any x

GENNUM Any x

DBCONDITION Any x

DBTYPE Any x

DBNULL Any x

52 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Table 1.7 continued

Option Option
Value

Specified in
OPTIONS
Statement

Specified in
LIBNAME
Statement

Specified as
Data Set
Option

Reason

DBGEN_NAME SAS x x Causes SQL syntax
errors.

PRESERVE_COL_NAMES No x x Causes SQL syntax
errors.

PRESERVE_TAB_NAMES No x x Causes SQL syntax
errors.

PRESERVE_NAMES No x x Causes SQL syntax
errors.

CONNECTION_GROUP Any x x The in-database
SAS/STAT and
SAS/ETS
procedures cannot
share connections
with SAS/ACCESS
software.

DBMSTEMP Yes x x The in-database
SAS/STAT and
SAS/ETS
procedures cannot
share connections
with SAS/ACCESS
software.

DBCONINIT Any x x The in-database
SAS/STAT and
SAS/ETS
procedures cannot
share connections
with SAS/ACCESS
software.

DBCONTERM Any x x The in-database
SAS/STAT and
SAS/ETS
procedures cannot
share connections
with SAS/ACCESS
software.

LIBNAME Properties F 53

LIBNAME Properties

In-database computation is not supported when either of the following conditions is true:

� The engine is not TERADATA.

� The LIBNAME statement specifies a concatenated library.

Data Set and Variable Properties

In-database computation is not supported when any of the following conditions is true:

� The data set is not a DBMS table.

� The data set TYPE= attribute is not blank.

� The data set is a DBMS table and has variables named _TYPE_ and _NAME_, but
TYPE=CORR, COV, or SSCP was not specified as a data set option.

� Any variable in the OUT= data set has a HEXw. format.

� The DATA= data set contains any variables with the following DBMS data types:

– BYTE

– VARBYTE

– BLOB

– INTERVAL

– TIME WITH TIME ZONE

– TIMESTAMP WITH TIME ZONE

– BIGINT

– GRAPHIC

– VARGRAPHIC

– LONG VARGRAPHIC

BY Processing

In-database computation is not supported when any of the following conditions is true:

� The BY statement contains the NOTSORTED option.

54 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

� Any BY variable has a length or format width that exceeds 256 characters, the maximum
supported by the SAS_PUT UDF.

� The total length of the BY variables exceeds 2,048 bytes, the maximum supported by the
SAS_ZACORR UDF.

� The total formatted width of the BY variables exceeds 2,048 bytes, the maximum supported
by the SAS_ZACORR UDF.

� One or more variables cannot be formatted because the SAS_PUT UDF has not been published
in SYSLIB or in the current database and the NOFMTERR option was not specified.

Compatibility of the DATA= and OUT= Data Sets

In-database computation is not supported for the DATA= data set when in-database computation is
not used for the OUT= data set and there is a BY statement. This is because BY groups sometimes
are not the same for both in-database and out-of-database computations.

In-database computation is not supported for the OUT= data set when in-database computation is
not used for the DATA= data set.

In-database computation is not supported when the DATA= and OUT= data sets have different
engines.

In-database computation is not supported when any variable has the following properties:

� is in both the DATA= and OUT= data sets

� does not have a DBMS character data type (CHAR, VARCHAR, CLOB)

� has a DBMS data type in the DATA= data set that belongs to a different group than the DBMS
type of the corresponding variable in the OUT= data set, where the groups are as follows:

– Numeric types:

� BYTEINT
� SMALLINT
� INTEGER
� DECIMAL
� NUMERIC
� FLOAT
� REAL
� DOUBLE PRECISION

– Character types:

� CHAR
� VARCHAR
� CLOB

Other Conditions F 55

– DATE

– TIME

– TIMESTAMP

In most circumstances, if a procedure cannot perform in-database computation, it performs out-of-
database computation instead. However, if the DBMS type of a variable belongs to different groups
in the DATA= and OUT= data sets, the procedure issues an error message and quits. It might be
possible to run the procedure by using SQLGENERATION=NONE.

If OPTIONS SQL_IP_TRACE=NOTE or OPTIONS SQL_IP_TRACE=ALL is specified, the proce-
dure also issues a message if any variable has different DBMS types in the DATA= and OUT= data
sets because Teradata often has trouble converting data from one type to another.

Other Conditions

In-database computation is not supported when any of the following conditions is true:

� A variable is used more than once in a VAR, PARTIAL, or MODEL statement in the PRIN-
COMP, REG, or VARCLUS procedures.

� Two or more variables in the OUT= data set have the same name in the PRINCOMP or SCORE
procedures.

� Any UDF required for in-database computation cannot be found in SYSLIB or the current
database.

In-Database Computing for the DATA= Data Set by the
CANCORR, FACTOR, PRINCOMP, REG, and VARCLUS
Procedures

The DATA= data set must be a Teradata table for in-database computing.

When the CANCORR, FACTOR, PRINCOMP, REG, or VARCLUS procedure performs in-database
computation for the DATA= data set, the procedure generates an SQL query that computes the SSCP
matrix. The query is passed to the DBMS and executed in-database. The results of the query are
then passed back to the SAS System and stored in an ordinary SAS data set called Work._Mkxpx_. If
there is a BY statement, Work._Mkxpx_ contains results for all of the BY groups. You do not need
to understand the contents of Work._Mkxpx_. The contents are not documented and might change
in future releases. Work._Mkxpx_ does not become the default input data set (_LAST_) even if the
procedure creates no other data sets.

56 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

The SQL query requires the SAS_ZACORR and SAS_TOVB UDFs to be published on the DBMS
server. If these UDFs are absent, or if you do not have the privilege required for executing the UDFs,
the SQL query fails. Usually, the database administrator installs these UDFs and grants the necessary
privileges to people who want to use them.

ODS Tables for the CANCORR, FACTOR, PRINCOMP, REG,
and VARCLUS Procedures

ODS does not perform in-database processing. Most ODS tables contain statistics or other summaries
of the data, so in-database processing would not be applicable. Although the statistics in an ODS
table might have been computed using in-database processing, after the statistics are computed, there
is nothing for ODS to do in-database.

When ODS creates an output data set, ODS assumes that it is an ordinary SAS data set. You can ask
ODS to create tables on a DBMS by assigning a libref to the table in a LIBNAME statement and
then using that libref to declare a two-level name for the ODS table in an ODS OUTPUT statement.
ODS then uses SAS/ACCESS software to write the tables. Occasionally, ODS might fail to write a
DBMS table for the following reasons:

� Some ODS tables are created with SAS formats assigned to some variables. SAS formats
cannot be stored in a DBMS table. However, SAS/ACCESS Interface to Teradata sets the
Teradata data type based on the SAS format. If SAS/ACCESS software assigns a Teradata
data type with insufficient range or precision, the ODS table might fail because of numerical
overflow or loss of precision. To avoid these problems, use OPTIONS DBFMTIGNORE to
tell the SAS/ACCESS software to create all numeric columns with the Teradata data type
FLOAT, which is equivalent to the ANSI DOUBLE PRECISION type.

� In some cases, ODS attempts to update an ODS table that has already been created.
SAS/ACCESS software does not allow Teradata tables to be updated or replaced.

In-Database Computing for the OUT= Data Set by the
CANCORR, FACTOR, PRINCOMP, and SCORE Procedures

Both the OUT= and the DATA= data sets must be Teradata tables in order for in-database computation
to be used for the OUT= data set.

When the CANCORR, FACTOR, PRINCOMP, or SCORE procedure computes the OUT= data set
in-database, SAS/ACCESS software submits an SQL command to create an empty DBMS table.
Then the procedure submits an SQL command to insert data into the DBMS table. If there is a BY
statement, a separate SQL command is issued for each BY group.

SAS/STAT Procedure Options Affected by In-Database Computing F 57

The SAS/STAT procedures connect to the DBMS using the credentials (user, password, and so on) in
the LIBNAME statement for the DATA= data set. This connection is separate from any connection
made by SAS/ACCESS software. If in-database computations are also performed for the OUT= data
set, the DBMS user specified in the LIBNAME statement for the DATA= data set must have the
INSERT privilege for the database where the OUT= data set resides.

When the OUT= data set is computed in-database, the procedure does not print the usual note
about the number of observations and variables in the data set, because the procedure cannot
determine precisely how many observations are in the OUT= data set. Instead, the procedure prints
a note that states how many rows were inserted as reported by the SQL command. If OPTIONS
SQL_IP_TRACE=ALL is specified, a separate note is generated for each BY group, in addition to a
note for the total of all the BY groups. The numbers reported by SQL seem to be accurate, but it is
difficult to tell whether they are always exact. One possible situation that might cause a discrepancy
is other users of the database inserting or deleting rows at the same time the procedure is running so
that the total number of rows that SQL inserts is not necessarily the actual number of rows in the
table.

In-database computation cannot be used for the DATA= data set if both of the following conditions
exist:

� There is a BY statement.

� The OUT= data set is specified but is not computed in-database.

SAS/STAT Procedure Options Affected by In-Database
Computing

CANCORR Procedure Options Affected by In-Database Computing

Table 1.8 shows the options for the CANCORR procedure that are affected by in-database computing.

Table 1.8 CANCORR Procedure Options Affected by In-Database Computing

Option Comment

DATA= The SSCP matrix can be computed in-database. The SSCP matrix
is then used to compute the correlation or covariance matrix on
the client.

OUT= Canonical variable scores can be computed in-database provided
that in-database computation is also used for the DATA= data set.

OUTSTAT= In-database computation is not applicable.

58 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

The PARTIAL statement is not currently supported for in-database computing.

FACTOR Procedure Options Affected by In-Database Computing

Table 1.9 shows the options for the FACTOR procedure that are affected by in-database computing.

Table 1.9 FACTOR Procedure Options Affected by In-Database Computing

Option Comment

DATA= The SSCP matrix can be computed in-database. The SSCP matrix
is then used to compute the correlation or covariance matrix on
the client.

OUT= Estimated factor scores can be computed in-database provided
that in-database computation is also used for the DATA= data set.

OUTSTAT= In-database computation is not applicable.

The PARTIAL statement is not currently supported for in-database computing.

PRINCOMP Procedure Options Affected by In-Database Computing

Table 1.10 shows the options for the PRINCOMP procedure that are affected by in-database comput-
ing.

Table 1.10 PRINCOMP Procedure Options Affected by In-Database Computing

Option Comment

DATA= The SSCP matrix can be computed in-database. The SSCP matrix
is then used to compute the correlation or covariance matrix on
the client.

OUT= Principal component scores can be computed in-database
provided that in-database computation is also used for the DATA=
data set.

OUTSTAT= In-database computation is not applicable.

REG Procedure Options Affected by In-Database Computing F 59

REG Procedure Options Affected by In-Database Computing

Table 1.11 shows the options for the REG procedure that are affected by in-database computing.

Table 1.11 REG Procedure Options and Statements Affected by In-Database Computing

Option Comment

COVOUT In-database computation is not applicable.

DATA= The SSCP matrix can be computed in-database.

EDF In-database computation is not applicable.

OUTEST= In-database computation is not applicable.

OUTSEB In-database computation is not applicable.

OUTSSCP= In-database computation is not applicable.

OUTSTB In-database computation is not applicable.

OUTVIF In-database computation is not applicable.

PCOMIT In-database computation is not applicable.

PLOTS= This option requires row-level access and therefore cannot be
used in-database.

PRESS This option requires row-level access and therefore cannot be
used in-database.

RIDGE In-database computation is not applicable.

RSQUARE In-database computation is not applicable.

TABLEOUT In-database computation is not applicable.

The following statements require row-level access and therefore cannot be used in-database:

� OUTPUT

� PAINT

� PLOT

� REWEIGHT

60 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

The following MODEL statement options require row-level access and therefore cannot be used
in-database:

� ACOV

� CLI

� CLM

� INFLUENCE

� LACKFIT

� P

� PARTIAL

� PARTIALDATA

� PRESS

� R

� SPEC

� WHITE

The following MODEL statement options are never available with Teradata because they depend
upon the row order of the data, which is not guaranteed to be consistent:

� DW

� DWPROB

The following PRINT statement options require row-level access and therefore cannot be used
in-database:

� ACOV

� CLI

� CLM

� DW

� INFLUENCE

� MODELDATA

� P

� PARTIAL

� R

� SPEC

SCORE Procedure Options Affected by In-Database Computing F 61

SCORE Procedure Options Affected by In-Database Computing

Table 1.12 shows the options for the SCORE procedure that are affected by in-database computing.

Table 1.12 SCORE Procedure Options Affected by In-Database Computing

Option Comment

DATA= The DATA= data set can be used for computing the OUT= data
set in-database.

OUT= Scores can be computed in-database provided that the DATA=
data set is a table in the same DBMS.

SCORE= In-database computation is not applicable.

When performing in-database computation, the SCORE procedure does not know the number of
observations in the DATA= data set. If the data set contains zero observations, PROC SCORE does
not print the usual note that says that there are no observations in the DATA= data set. Instead,
SCORE prints a note that says that SQL inserted zero rows in the OUT= data set.

VARCLUS Procedure Options Affected by In-Database Computing

Table 1.13 shows the options for the VARCLUS procedure that are affected by in-database computing.

Table 1.13 VARCLUS Procedure Options Affected by In-Database Computing

Option Comment

DATA= The SSCP matrix can be computed in-database. The SSCP matrix
is then used to compute the correlation or covariance matrix on
the client.

OUTSTAT= In-database computation is not applicable.

OUTTREE= In-database computation is not applicable.

62 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

SAS/ETS Procedure Options Affected by In-Database
Computing

TIMESERIES Procedure Options Affected by In-Database Computing

Table 1.14 shows the options for the TIMESERIES procedure that are affected by in-database
computing.

Table 1.14 TIMESERIES Procedure Options Affected by In-Database Computing

Option Comment

ACCUMULATE= The time-stamped rows of the data table are accumulated to
periodic time series in-database. The accumulated time series are
then processed on the client.

Base SAS Procedure Options Affected by In-Database
Computing

CORR Procedure Options Affected by In-Database Computing

The ID statement requires row-level access and therefore cannot be used in-database.

Table 1.15 shows the options for the CORR procedure that are affected by in-database computing.

FREQ Procedure Options Affected by In-Database Computing F 63

Table 1.15 CORR Procedure Options Affected by In-Database Computing

Option Comment

EXCLNPWGT If in-database computation is used, the EXCLNPWGT option is
activated to exclude observations with nonpositive weights.

HOEFFDING This option requires row-level access and therefore cannot be
used in-database.

KENDALL This option requires row-level access and therefore cannot be
used in-database.

SPEARMAN This option requires row-level access and therefore cannot be
used in-database.

OUTH= This option requires row-level access and therefore cannot be
used in-database.

OUTK= This option requires row-level access and therefore cannot be
used in-database.

OUTS= This option requires row-level access and therefore cannot be
used in-database.

PLOTS This option requires row-level access and therefore cannot be
used in-database.

NOTSORTED If you specify the NOTSORTED option in the BY statement,
PROC CORR in-database computation ignores it and uses the
default ASCENDING order for BY variables.

FREQ Procedure Options Affected by In-Database Computing

Table 1.16 shows the options for the FREQ procedure that are affected by in-database computing.

64 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

Table 1.16 FREQ Procedure Options Affected by In-Database Computing

Option Comment

NOTSORTED If you specify the NOTSORTED option in the BY statement,
PROC FREQ in-database computation ignores it and uses the
default ASCENDING order for BY variables.

ORDER=DATA If you specify the ORDER=DATA option for input data in a
DBMS table, PROC FREQ computation might produce different
results for separate runs of the same analysis. In addition to
determining the order of variable levels in crosstabulation table
displays, the ORDER= option can also affect the values of many
of the test statistics and measures that PROC FREQ computes.

Miscellaneous Details

When SAS procedures perform out-of-database processing, SAS/ACCESS software runs SQL
commands on Teradata in ANSI mode by default. When SAS/STAT and SAS/ETS procedures
perform in-database processing, the procedures run SQL commands on Teradata in Teradata mode.
The difference in mode causes some differences in behavior as shown in Table 1.17.

Table 1.17 Mode Differences for Data Insertion

Procedures ANSI Mode Teradata Mode

Trying to insert a duplicate Teradata error Duplicate row is dropped
row when SET=YES and rollback without error

Trying to insert a value Teradata error Value is truncated
that is too big for column and rollback and inserted without error

Example

A simple case that illustrates the use of SAS in-database procedures is provided in the following
statements:

1 Starting with data that is already in Teradata, the first step is to issue a LIBNAME statement that
uses the Teradata SAS/ACCESS engine. If the Teradata LIBNAME engine has been correctly
configured and SAS Analytics Accelerator 1.2 for Teradata has been installed on the Teradata
system, then successful in-database computing is possible.

Example F 65

title1 "German Credit Data";
title2 "Teradata Pass-Through Example";
options ls=max nonumber nocenter;
ods html select default;
libname tera teradata server=davetd user=emdev password="test" database=emdev;

2 You can now examine the data by using standard SAS techniques. PROC CONTENTS reports
only on the table information and does not download any rows of detail data. You might print the
list of variables for continued use.

title3 'Variables List';
proc contents data=tera.dmagecr out=c noprint ;
run;

proc print data=c;
var name type format;

run ;

3 Now that you have the list of variables, you can write the SAS statements for the analysis. The
first use of SAS in-database procedures is in PROC FREQ and PROC MEANS. They are used
to report summary measures that help you determine how to use these variables in the analysis.
Both procedures are enabled for in-database processing. They dynamically generate SQL code
that runs on Teradata and report only the results. As a SAS user, you have not modified any code
to enable in-database computing.

title3 'Frequencies of Class Variables';
proc freq data=tera.dmagecr;

table good_bad purpose;
run;

proc means data=tera.dmagecr ;
run;

4 You might continue the data exploration with a principal component analysis, which also runs in
the database. Suppose you want to create plots. You should use the ODS SELECT statement to list
only those plots that are compatible with in-database computing. (You can use the ODS TRACE
option to find the graphics elements that are available for any procedure.) After the unmodified
SAS statements run, the ODS graphics output is displayed in the SAS session.

ods select
princomp.NObsNVar
princomp.SimpleStatistics
princomp.Corr
princomp.EigenValues
princomp.EigenVectors
princomp.PrincompPatternPlot
princomp.EigenvaluePlot;

proc princomp data=tera.tera.dmagecr outstat= work.pcastat;

66 F Chapter 1: SAS Analytics Accelerator 1.2 for Teradata: Guide

VAR age amount checking coapp depends duration employed existcr
history housing installp job marital other property foreign
resident savings telephon target;

run;

5 Next, save a copy of the output table in the SAS System because the output table contains several
measures, such as the correlation matrix, which can be used for further analysis.

title3 'Output from PCA';
data corr;

set pcastat(where=(_type_ eq "CORR"));
run;

proc print data=corr noobs;
run;

6 Now suppose you want to run a regression analysis. By looking at the output of these procedures,
you can see that the dependent variable GOOD_BAD is a character variable. To use PROC REG,
you must transform the GOOD_BAD character variable to a numeric variable. Use PROC SQL to
push SAS code to the database for this operation. Pushing code to the database eliminates data
movement. You need to use the explicit pass-through syntax to force processing in-database. For
the column named Foreign, you must enclose the column name in quotation marks to prevent
Foreign from being interpreted as a Teradata keyword. You must be careful when formatting your
SQL code for in-database processing.

Proc SQL noerrorstop;
connect to &dbms. (&connopt.);
execute (
create view tera.tdview_reg as select
age, amount, checking, coapp, depends, duration, employed, existcr,
'foreign', history, housing, installp, job, marital, other,
property, purpose, resident, savings, telephon,
case when good_bad = 'good' then 0 else 1 end as target
from tera.dmagecr) by &dbms;
execute (commit) by &dbms. ;

run;

7 Finally, you build a regression model. Even though the conversion of a binary character dependent
variable to a numeric variable for use in a linear regression model is not optimal, it is a common
operation for using the efficient REG procedure for model selection and exploratory modeling
steps. SAS output provides clues about how the factors are used in the model.

title3 'Linear Regression on raw data in teradata';
ods select SelectionSummary;
proc reg data=tera.tdview_reg;

model target = age amount checking coapp depends
duration employed existcr history housing installp
job marital other property foreign resident savings
telephon / selection = stepwise;

Example F 67

run;
quit;

8 Suppose you want to run several model statements, selecting different combinations of variables
and options. You can use the CORR matrix that you saved from the output of the PROC PRIN-
COMP step. PROC CORR and PROC REG can also produce this matrix as output. Because you
saved the matrix data locally, you can execute any PROC REG step without accessing the raw
data in Teradata.

title3 'Linear Regression on CORR from princomp';
ods trace on;
ods graphics on;
ods select SelectionSummary;

proc reg data= pcastat(type=corr) outset= est;
model target = age amount marital other property

foreign resident savings telephon;
run;
quit;

ods graphics off trace off;
ods html close;

9 Now suppose that you want to apply the model to a data set that contains new independent variable
values to produce a new table that contains predicted values. This process is called scoring. The
OUTPUT statement in PROC REG does not support in-database computing. However, the SCORE
procedure does support in-database computing, and produces scores for a variety of models. You
use the OUTEST data set that you saved locally in the PROC REG step to parameterize the model.
PROC SCORE generates and pushes the appropriate SQL code to the database. Both the input
and output tables are in Teradata, and no data is transferred to SAS.

proc score data= tera.newdata out= tera.scores score=est type=parms;
var age amount marital other property foreign resident savings telephon;

run;

68

Subject Index

BULKLOAD=YES option
LIBNAME statement, 20

DBCONDITION= option
data set option, 28

DBFMTIGNORE option
OPTIONS statement, 20

DESCENDING option
BY statement, 44

missing values, 20

NOLABEL option
OPTIONS statement, 20

NOTSORTED option
BY statement, 44

RENAME=
data set option, 20

software licenses required, 4

TYPE=
data set option, 20

user-defined function (UDF), 5

70

Syntax Index

DATABASE= option
LIBNAME statement, 14

DBFMTIGNORE option
OPTIONS statement, 13

FMTERR option
OPTIONS statement, 13

MSGLEVEL= option
OPTIONS statement, 12

SCHEMA= option
LIBNAME statement, 14

SQL_IP_TRACE= option
OPTIONS statement, 12

SQLGENERATION= option
LIBNAME statement or OPTIONS

statement, 10
SQLMAPPUTTO= option

OPTIONS statement, 13

Your Turn

We welcome your feedback.

� If you have comments about this book, please send them to
yourturn@sas.com. Include the full title and page numbers (if
applicable).

� If you have comments about the software, please send them to
suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

	Contents
	SAS Analytics Accelerator 1.2 for Teradata: Guide
	What's New in SAS Analytics Accelerator 1.2 for Teradata
	Overview
	New Procedures
	Syntax Changes
	Licensing Requirements

	Overview of In-Database Computing
	Teradata and the SAS System
	SQL Generation
	SAS In-Database Functions

	SAS In-Database Procedures
	Base SAS In-Database Procedures
	SAS/STAT In-Database Procedures
	SAS/ETS In-Database Procedures
	Limitations of In-Database Procedures

	Performance and Numerical Accuracy Issues with In-Database Computing
	Enabling and Controlling In-Database Computing
	LIBNAME Statement Options for In-Database Computing
	Using SAS/ACCESS Software with Teradata: Some Cautionary Notes
	Indeterminate Row Order in a DBMS Table

	SAS/ACCESS Data Set Options for Teradata
	Base SAS Data Set Options
	Deploying and Using SAS Formats in Teradata
	Using SAS Formats
	How It Works
	Formats That SAS Supplies in the Teradata EDW
	User-Defined Formats in the Teradata EDW
	Overview of the Publishing Process
	Using SAS Formats

	BY Groups and In-Database Computing
	Support for Teradata Data Types
	Variables in the DATA= Data Set
	Numeric Computations
	BY Processing

	Conditions That Prevent In-Database Processing
	Options
	LIBNAME Properties
	Data Set and Variable Properties
	BY Processing
	Compatibility of the DATA= and OUT= Data Sets
	Other Conditions

	In-Database Computing for the DATA= Data Set by the CANCORR, FACTOR, PRINCOMP, REG, and VARCLUS Procedures
	ODS Tables for the CANCORR, FACTOR, PRINCOMP, REG, and VARCLUS Procedures
	In-Database Computing for the OUT= Data Set by the CANCORR, FACTOR, PRINCOMP, and SCORE Procedures
	SAS/STAT Procedure Options Affected by In-Database Computing
	CANCORR Procedure Options Affected by In-Database Computing
	FACTOR Procedure Options Affected by In-Database Computing
	PRINCOMP Procedure Options Affected by In-Database Computing
	REG Procedure Options Affected by In-Database Computing
	SCORE Procedure Options Affected by In-Database Computing
	VARCLUS Procedure Options Affected by In-Database Computing

	SAS/ETS Procedure Options Affected by In-Database Computing
	TIMESERIES Procedure Options Affected by In-Database Computing

	Base SAS Procedure Options Affected by In-Database Computing
	CORR Procedure Options Affected by In-Database Computing
	FREQ Procedure Options Affected by In-Database Computing

	Miscellaneous Details
	Example

	Subject Index
	Syntax Index

