
SAS/ACCESS® 9.2
for Relational Databases
Reference
Fourth Edition

Here is the correct bibliographic citation for this document: SAS Institute Inc. 2010.
SAS/ACCESS ® 9.2 for Relational Databases: Reference, Fourth Edition. Cary, NC: SAS
Institute Inc.

SAS/ACCESS® 9.2 for Relational Databases: Reference, Fourth Edition
Copyright © 2010, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-60764-619-8
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, November 2010

1st printing, November 2010
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New xiii

Overview xiii

All Supported SAS/ACCESS Interfaces to Relational Databases xiv

SAS/ACCESS Interface to Aster nCluster xiv

SAS/ACCESS Interface to DB2 under UNIX and PC Hosts xiv

SAS/ACCESS Interface to DB2 under z/OS xv

SAS/ACCESS Interface to Greenplum xvi

SAS/ACCESS Interface to HP Neoview xvi

SAS/ACCESS Interface to Informix xvii

SAS/ACCESS Interface to MySQL xvii

SAS/ACCESS Interface to Netezza xvii

SAS/ACCESS Interface to ODBC xvii

SAS/ACCESS Interface to OLE DB xvii

SAS/ACCESS Interface to Oracle xviii

SAS/ACCESS Interface to Sybase xviii

SAS/ACCESS Interface to Sybase IQ xviii

SAS/ACCESS Interface to Teradata xix

Documentation Enhancements xx

P A R T 1 Concepts 1

Chapter 1 � Overview of SAS/ACCESS Interface to Relational Databases 3
About This Document 3

Methods for Accessing Relational Database Data 4

Selecting a SAS/ACCESS Method 4

SAS Views of DBMS Data 6

Choosing Your Degree of Numeric Precision 7

Chapter 2 � SAS Names and Support for DBMS Names 11
Introduction to SAS/ACCESS Naming 11

SAS Naming Conventions 12

SAS/ACCESS Default Naming Behaviors 13

Renaming DBMS Data 14

Options That Affect SAS/ACCESS Naming Behavior 15

Naming Behavior When Retrieving DBMS Data 15

Naming Behavior When Creating DBMS Objects 16

SAS/ACCESS Naming Examples 17

Chapter 3 � Data Integrity and Security 25
Introduction to Data Integrity and Security 25

DBMS Security 25

SAS Security 26

iv

Potential Result Set Differences When Processing Null Data 31

Chapter 4 � Performance Considerations 35
Increasing Throughput of the SAS Server 35

Limiting Retrieval 35

Repeatedly Accessing Data 37

Sorting DBMS Data 37

Temporary Table Support for SAS/ACCESS 38

Chapter 5 � Optimizing Your SQL Usage 41
Overview of Optimizing Your SQL Usage 41

Passing Functions to the DBMS Using PROC SQL 42

Passing Joins to the DBMS 43

Passing the DELETE Statement to Empty a Table 45

When Passing Joins to the DBMS Will Fail 45

Passing DISTINCT and UNION Processing to the DBMS 46

Optimizing the Passing of WHERE Clauses to the DBMS 47

Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options 48

Chapter 6 � Threaded Reads 51
Overview of Threaded Reads in SAS/ACCESS 51

Underlying Technology of Threaded Reads 51

SAS/ACCESS Interfaces and Threaded Reads 52

Scope of Threaded Reads 52

Options That Affect Threaded Reads 53

Generating Trace Information for Threaded Reads 54

Performance Impact of Threaded Reads 57

Autopartitioning Techniques in SAS/ACCESS 57

Data Ordering in SAS/ACCESS 58

Two-Pass Processing for SAS Threaded Applications 58

When Threaded Reads Do Not Occur 59

Summary of Threaded Reads 59

Chapter 7 � How SAS/ACCESS Works 61
Introduction to How SAS/ACCESS Works 61

How the SAS/ACCESS LIBNAME Statement Works 62

How the SQL Pass-Through Facility Works 63

How the ACCESS Procedure Works 64

How the DBLOAD Procedure Works 65

Chapter 8 � Overview of In-Database Procedures 67
Introduction to In-Database Procedures 67

Running In-Database Procedures 69

In-Database Procedure Considerations and Limitations 70

Using MSGLEVEL Option to Control Messaging 72

P A R T 2 General Reference 73

v

Chapter 9 � SAS/ACCESS Features by Host 75
Introduction 75

SAS/ACCESS Interface to Aster nCluster: Supported Features 75

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts: Supported Features 76

SAS/ACCESS Interface to DB2 Under z/OS: Supported Features 77

SAS/ACCESS Interface to Greenplum: Supported Features 77

SAS/ACCESS Interface to HP Neoview: Supported Features 78

SAS/ACCESS Interface to Informix: Supported Features 78

SAS/ACCESS Interface to Microsoft SQL Server: Supported Features 79

SAS/ACCESS Interface to MySQL: Supported Features 79

SAS/ACCESS Interface to Netezza: Supported Features 80

SAS/ACCESS Interface to ODBC: Supported Features 81

SAS/ACCESS Interface to OLE DB: Supported Features 82

SAS/ACCESS Interface to Oracle: Supported Features 82

SAS/ACCESS Interface to Sybase: Supported Features 83

SAS/ACCESS Interface to Sybase IQ: Supported Features 84

SAS/ACCESS Interface to Teradata: Supported Features 85

Chapter 10 � The LIBNAME Statement for Relational Databases 87
Overview of the LIBNAME Statement for Relational Databases 87

Assigning a Libref Interactively 88

LIBNAME Options for Relational Databases 92

Chapter 11 � Data Set Options for Relational Databases 203
About the Data Set Options for Relational Databases 207

Chapter 12 � Macro Variables and System Options for Relational Databases 401
Introduction to Macro Variables and System Options 401

Macro Variables for Relational Databases 401

System Options for Relational Databases 403

Chapter 13 � The SQL Pass-Through Facility for Relational Databases 425
About SQL Procedure Interactions 425

Syntax for the SQL Pass-Through Facility for Relational Databases 426

P A R T 3 DBMS-Specific Reference 437

Chapter 14 � SAS/ACCESS Interface to Aster nCluster 439
Introduction to SAS/ACCESS Interface to Aster nCluster 439

LIBNAME Statement Specifics for Aster nCluster 440

Data Set Options for Aster nCluster 443

SQL Pass-Through Facility Specifics for Aster nCluster 445

Autopartitioning Scheme for Aster nCluster 446

Passing SAS Functions to Aster nCluster 448

Passing Joins to Aster nCluster 449

Bulk Loading for Aster nCluster 450

vi

Naming Conventions for Aster nCluster 451

Data Types for Aster nCluster 452

Chapter 15 � SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts 455
Introduction to SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts 456

LIBNAME Statement Specifics for DB2 Under UNIX and PC Hosts 456

Data Set Options for DB2 Under UNIX and PC Hosts 460

SQL Pass-Through Facility Specifics for DB2 Under UNIX and PC Hosts 462

Autopartitioning Scheme for DB2 Under UNIX and PC Hosts 464

Temporary Table Support for DB2 Under UNIX and PC Hosts 467

DBLOAD Procedure Specifics for DB2 Under UNIX and PC Hosts 468

Passing SAS Functions to DB2 Under UNIX and PC Hosts 470

Passing Joins to DB2 Under UNIX and PC Hosts 472

Bulk Loading for DB2 Under UNIX and PC Hosts 472

In-Database Procedures in DB2 under UNIX and PC Hosts 475

Locking in the DB2 Under UNIX and PC Hosts Interface 475

Naming Conventions for DB2 Under UNIX and PC Hosts 477

Data Types for DB2 Under UNIX and PC Hosts 477

Chapter 16 � SAS/ACCESS Interface to DB2 Under z/OS 483
Introduction to SAS/ACCESS Interface to DB2 Under z/OS 485

LIBNAME Statement Specifics for DB2 Under z/OS 485

Data Set Options for DB2 Under z/OS 487

SQL Pass-Through Facility Specifics for DB2 Under z/OS 489

Autopartitioning Scheme for DB2 Under z/OS 491

Temporary Table Support for DB2 Under z/OS 492

Calling Stored Procedures in DB2 Under z/OS 494

ACCESS Procedure Specifics for DB2 Under z/OS 496

DBLOAD Procedure Specifics for DB2 Under z/OS 498

The DB2EXT Procedure 500

The DB2UTIL Procedure 502

Maximizing DB2 Under z/OS Performance 507

Passing SAS Functions to DB2 Under z/OS 510

Passing Joins to DB2 Under z/OS 511

SAS System Options, Settings, and Macros for DB2 Under z/OS 512

Bulk Loading for DB2 Under z/OS 515

Locking in the DB2 Under z/OS Interface 520

Naming Conventions for DB2 Under z/OS 521

Data Types for DB2 Under z/OS 521

Understanding DB2 Under z/OS Client/Server Authorization 527

DB2 Under z/OS Information for the Database Administrator 529

Chapter 17 � SAS/ACCESS Interface to Greenplum 533
Introduction to SAS/ACCESS Interface to Greenplum 534

LIBNAME Statement Specifics for Greenplum 534

Data Set Options for Greenplum 537

vii

SQL Pass-Through Facility Specifics for Greenplum 539

Autopartitioning Scheme for Greenplum 540

Passing SAS Functions to Greenplum 542

Passing Joins to Greenplum 544

Bulk Loading for Greenplum 544

Naming Conventions for Greenplum 547

Data Types for Greenplum 548

Chapter 18 � SAS/ACCESS Interface to HP Neoview 553
Introduction to SAS/ACCESS Interface to HP Neoview 554

LIBNAME Statement Specifics for HP Neoview 554

Data Set Options for HP Neoview 557

SQL Pass-Through Facility Specifics for HP Neoview 559

Autopartitioning Scheme for HP Neoview 561

Temporary Table Support for HP Neoview 562

Passing SAS Functions to HP Neoview 564

Passing Joins to HP Neoview 565

Bulk Loading and Extracting for HP Neoview 565

Naming Conventions for HP Neoview 568

Data Types for HP Neoview 568

Chapter 19 � SAS/ACCESS Interface for Informix 573
Introduction to SAS/ACCESS Interface to Informix 574

LIBNAME Statement Specifics for Informix 574

Data Set Options for Informix 576

SQL Pass-Through Facility Specifics for Informix 577

Autopartitioning Scheme for Informix 580

Temporary Table Support for Informix 581

Passing SAS Functions to Informix 582

Passing Joins to Informix 583

Locking in the Informix Interface 584

Naming Conventions for Informix 585

Data Types for Informix 585

Overview of Informix Servers 588

Chapter 20 � SAS/ACCESS Interface to Microsoft SQL Server 591
Introduction to SAS/ACCESS Interface to Microsoft SQL Server 591

LIBNAME Statement Specifics for Microsoft SQL Server 592

Data Set Options for Microsoft SQL Server 595

SQL Pass-Through Facility Specifics for Microsoft SQL Server 597

DBLOAD Procedure Specifics for Microsoft SQL Server 598

Passing SAS Functions to Microsoft SQL Server 600

Locking in the Microsoft SQL Server Interface 600

Naming Conventions for Microsoft SQL Server 601

Data Types for Microsoft SQL Server 602

viii

Chapter 21 � SAS/ACCESS Interface for MySQL 605
Introduction to SAS/ACCESS Interface to MySQL 605

LIBNAME Statement Specifics for MySQL 605

Data Set Options for MySQL 608

SQL Pass-Through Facility Specifics for MySQL 609

Autocommit and Table Types 610

Understanding MySQL Update and Delete Rules 611

Passing SAS Functions to MySQL 612

Passing Joins to MySQL 613

Naming Conventions for MySQL 614

Data Types for MySQL 615

Case Sensitivity for MySQL 619

Chapter 22 � SAS/ACCESS Interface to Netezza 621
Introduction to SAS/ACCESS Interface to Netezza 622

LIBNAME Statement Specifics for Netezza 622

Data Set Options for Netezza 625

SQL Pass-Through Facility Specifics for Netezza 626

Temporary Table Support for Netezza 628

Passing SAS Functions to Netezza 630

Passing Joins to Netezza 631

Bulk Loading and Unloading for Netezza 632

Deploying and Using SAS Formats in Netezza 634

Naming Conventions for Netezza 648

Data Types for Netezza 648

Chapter 23 � SAS/ACCESS Interface to ODBC 653
Introduction to SAS/ACCESS Interface to ODBC 654

LIBNAME Statement Specifics for ODBC 656

Data Set Options for ODBC 660

SQL Pass-Through Facility Specifics for ODBC 662

Autopartitioning Scheme for ODBC 666

DBLOAD Procedure Specifics for ODBC 670

Temporary Table Support for ODBC 672

Passing SAS Functions to ODBC 674

Passing Joins to ODBC 675

Bulk Loading for ODBC 676

Locking in the ODBC Interface 676

Naming Conventions for ODBC 677

Data Types for ODBC 678

Chapter 24 � SAS/ACCESS Interface to OLE DB 681
Introduction to SAS/ACCESS Interface to OLE DB 681

LIBNAME Statement Specifics for OLE DB 682

Data Set Options for OLE DB 689

SQL Pass-Through Facility Specifics for OLE DB 690

ix

Temporary Table Support for OLE DB 695

Passing SAS Functions to OLE DB 697

Passing Joins to OLE DB 698

Bulk Loading for OLE DB 699

Locking in the OLE DB Interface 699

Accessing OLE DB for OLAP Data 700

Naming Conventions for OLE DB 703

Data Types for OLE DB 704

Chapter 25 � SAS/ACCESS Interface to Oracle 707
Introduction to SAS/ACCESS Interface to Oracle 708

LIBNAME Statement Specifics for Oracle 708

Data Set Options for Oracle 711

SQL Pass-Through Facility Specifics for Oracle 713

Autopartitioning Scheme for Oracle 715

Temporary Table Support for Oracle 718

ACCESS Procedure Specifics for Oracle 719

DBLOAD Procedure Specifics for Oracle 721

Maximizing Oracle Performance 723

Passing SAS Functions to Oracle 723

Passing Joins to Oracle 725

Bulk Loading for Oracle 725

In-Database Procedures in Oracle 727

Locking in the Oracle Interface 728

Naming Conventions for Oracle 729

Data Types for Oracle 729

Chapter 26 � SAS/ACCESS Interface to Sybase 739
Introduction to SAS/ACCESS Interface to Sybase 740

LIBNAME Statement Specifics for Sybase 740

Data Set Options for Sybase 743

SQL Pass-Through Facility Specifics for Sybase 744

Autopartitioning Scheme for Sybase 745

Temporary Table Support for Sybase 747

ACCESS Procedure Specifics for Sybase 748

DBLOAD Procedure Specifics for Sybase 750

Passing SAS Functions to Sybase 751

Passing Joins to Sybase 753

Reading Multiple Sybase Tables 753

Locking in the Sybase Interface 754

Naming Conventions for Sybase 755

Data Types for Sybase 755

Case Sensitivity in Sybase 761

National Language Support for Sybase 762

Chapter 27 � SAS/ACCESS Interface to Sybase IQ 763

x

Introduction to SAS/ACCESS Interface to Sybase IQ 763

LIBNAME Statement Specifics for Sybase IQ 764

Data Set Options for Sybase IQ 767

SQL Pass-Through Facility Specifics for Sybase IQ 768

Autopartitioning Scheme for Sybase IQ 770

Passing SAS Functions to Sybase IQ 771

Passing Joins to Sybase IQ 772

Bulk Loading for Sybase IQ 773

Locking in the Sybase IQ Interface 774

Naming Conventions for Sybase IQ 775

Data Types for Sybase IQ 776

Chapter 28 � SAS/ACCESS Interface to Teradata 781
Introduction to SAS/ACCESS Interface to Teradata 783

LIBNAME Statement Specifics for Teradata 784

Data Set Options for Teradata 788

SQL Pass-Through Facility Specifics for Teradata 790

Autopartitioning Scheme for Teradata 792

Temporary Table Support for Teradata 796

Passing SAS Functions to Teradata 798

Passing Joins to Teradata 800

Maximizing Teradata Read Performance 800

Maximizing Teradata Load Performance 804

Teradata Processing Tips for SAS Users 812

Deploying and Using SAS Formats in Teradata 816

In-Database Procedures in Teradata 831

Locking in the Teradata Interface 832

Naming Conventions for Teradata 837

Data Types for Teradata 838

P A R T 4 Sample Code 845

Chapter 29 � Accessing DBMS Data with the LIBNAME Statement 847
About the LIBNAME Statement Sample Code 847

Creating SAS Data Sets from DBMS Data 848

Using the SQL Procedure with DBMS Data 851

Using Other SAS Procedures with DBMS Data 859

Calculating Statistics from DBMS Data 864

Selecting and Combining DBMS Data 865

Joining DBMS and SAS Data 866

Chapter 30 � Accessing DBMS Data with the SQL Pass-Through Facility 867
About the SQL Pass-Through Facility Sample Code 867

Retrieving DBMS Data with a Pass-Through Query 867

Combining an SQL View with a SAS Data Set 870

Using a Pass-Through Query in a Subquery 871

xi

Chapter 31 � Sample Data for SAS/ACCESS for Relational Databases 875
Introduction to the Sample Data 875

Descriptions of the Sample Data 875

P A R T 5 Converting SAS/ACCESS Descriptors to PROC SQL Views 879

Chapter 32 � The CV2VIEW Procedure 881
Overview of the CV2VIEW Procedure 881

Syntax: PROC CV2VIEW 882

Examples: CV2VIEW Procedure 886

P A R T 6 Appendixes 891

Appendix 1 � The ACCESS Procedure for Relational Databases 893
Overview: ACCESS Procedure 893

Syntax: ACCESS Procedure 895

Using Descriptors with the ACCESS Procedure 907

Examples: ACCESS Procedure 909

Appendix 2 � The DBLOAD Procedure for Relational Databases 911
Overview: DBLOAD Procedure 911

Syntax: DBLOAD Procedure 913

Example: Append a Data Set to a DBMS Table 924

Appendix 3 � Recommended Reading 925
Recommended Reading 925

Glossary 927

Index 933

xii

xiii

What’s New

Overview
SAS/ACCESS 9.2 for Relational Databases has these new features and enhancements:
� In the second maintenance release for SAS 9.2, “SAS/ACCESS Interface to

Greenplum” on page xvi and “SAS/ACCESS Interface to Sybase IQ” on page xviii
are new. In the December 2009 release, “SAS/ACCESS Interface to Aster
nCluster” on page xiv is new.

� Pass-through support is available for database management systems (DBMSs) for
new or additional SAS functions. This support includes new or enhanced function
for the SQL_FUNCTIONS= LIBNAME option, a new SQL_FUNCTIONS_COPY=
LIBNAME option for specific DBMSs, and new or enhanced hyperbolic,
trigonometric, and dynamic SQL dictionary functions. For more information, see
the “SQL_FUNCTIONS= LIBNAME Option” on page 186,
“SQL_FUNCTIONS_COPY= LIBNAME Option” on page 189, and “Passing
Functions to the DBMS Using PROC SQL” on page 42.

� You can create temporary tables using DBMS-specific syntax with the new
DBMSTEMP= LIBNAME option for most DBMSs. For more information, see the
“DBMSTEMP= LIBNAME Option” on page 131.

� SAS/ACCESS supports additional hosts for existing DBMSs. For more
information, see Chapter 9, “SAS/ACCESS Features by Host,” on page 75.

� You can use the new SAS In-Database technology to generate a SAS_PUT()
function that lets you execute PUT function calls inside Teradata, Netezza, and
DB2 under UNIX. You can also reference the custom formats that you create by
using PROC FORMAT and most formats that SAS supplies. For more information,
see “Deploying and Using SAS Formats in Teradata” on page 816, “Deploying and
Using SAS Formats in Netezza” on page 634, and .

� In the second maintenance release for SAS 9.2, you can use the new SAS
In-Database technology to run some Base SAS and SAS/STAT procedures inside
Teradata, DB2 under UNIX and PC Hosts, and Oracle. For more information, see
Chapter 8, “Overview of In-Database Procedures,” on page 67.

� In the third maintenance release for SAS 9.2, three additional Base SAS
procedures have been enhanced to run inside the database: REPORT, SORT, and
TABULATE. Three additional SAS/STAT procedures have been enhanced to run

xiv What’s New

inside the database: CORR, CANCORR, and FACTOR. In addition, the Base SAS
procedures can be run now inside Oracle and DB2 UNIX and PC Hosts. For more
information, see Chapter 8, “Overview of In-Database Procedures,” on page 67.

� The second maintenance release for SAS 9.2 contains “Documentation
Enhancements” on page xx.

All Supported SAS/ACCESS Interfaces to Relational Databases
These options are new.
� AUTHDOMAIN= LIBNAME option
� DBIDIRECTEXEC= system option, including DELETE statements
� brief trace capability (’,,,db’ flag) on the SASTRACE= system option

To boost performance when reading large tables, you can set the OBS= option to limit
the number of rows that the DBMS returns to SAS across the network.

Implicit pass-through tries to reconstruct the textual representation of a SAS SQL
query in database SQL syntax. In the second maintenance release for SAS 9.2, implicit
pass-through is significantly improved so that you can pass more SQL code down to the
database. These textualization improvements have been made.

� aliases for:
� inline views
� SQL views
� tables
� aliased expressions
� expressions that use the CALCULATED keyword
� SELECT, WHERE, HAVING, ON, GROUP BY, and ORDER BY clauses

� more deeply nested queries or queries involving multiple data sources
� PROC SQL and ANSI SQL syntax

SAS/ACCESS Interface to Aster nCluster
In the December 2009 release for SAS 9.2, SAS/ACCESS Interface to Aster nCluster

is a new database engine that runs on specific UNIX and Windows platforms.
SAS/ACCESS Interface to Aster nCluster provides direct, transparent access to Aster
nCluster databases through LIBNAME statements and the SQL pass-through facility.
You can use various LIBNAME statement options and data set options that the
LIBNAME engine supports to control the data that is returned to SAS.

For more information, see Chapter 14, “SAS/ACCESS Interface to Aster nCluster,” on
page 439 and “SAS/ACCESS Interface to Aster nCluster: Supported Features” on page
75.

In the third maintenance release for SAS 9.2, these options are new or enhanced:
� PARTITION_KEY= LIBNAME (new) and data set (enhanced) option

SAS/ACCESS Interface to DB2 under UNIX and PC Hosts
These options are new or enhanced.
� FETCH_IDENTITY= LIBNAME and data set options
� automatically calculated INSERTBUFF= and READBUFF= LIBNAME options for

use with pass-through

What’s New xv

� SQLGENERATION= LIBNAME and system option (in the third maintenance
release for SAS 9.2)

These bulk-load data set options are new:
� BL_ALLOW_READ_ACCESS=
� BL_ALLOW_WRITE_ACCESS=
� BL_CPU_PARALLELISM=
� BL_DATA_BUFFER_SIZE=
� BL_DELETE_DATAFILE=
� BL_DISK_PARALLELISM=
� BL_EXCEPTION=
� BL_PORT_MAX=
� BL_PORT_MIN=

BLOB and CLOB data types are new.
In the third maintenance release for SAS 9.2, this new feature is available.
� You can use the new SAS In-Database technology to run these Base SAS

procedures inside DB2 under UNIX and PC Hosts:
� FREQ
� RANK
� REPORT
� SORT
� SUMMARY/MEANS
� TABULATE

These procedures dynamically generate SQL queries that reference DB2 SQL
functions. Queries are processed and only the result set is returned to SAS for the
remaining analysis.

For more information, see Chapter 8, “Overview of In-Database Procedures,” on
page 67 and the specific procedure in the Base SAS Procedures Guide.

SAS/ACCESS Interface to DB2 under z/OS
These options are new or enhanced.
� DB2CATALOG= system option
� support for multivolume SMS-managed and non-SMS-managed data sets through

BL_DB2DATACLAS= , BL_DB2MGMTCLAS=, BL_DB2STORCLAS=, and
BL_DB2UNITCOUNT= data set options

� DB2 parallelism through the DEGREE= data set option
� LOCATION= connection, LIBNAME, and data set options

The BLOB and CLOB data types are new.
In the third maintenance release for SAS 9.2, SAS/ACCESS Interface to DB2 under

z/OS included many important overall enhancements, such as:
� significant performance improvements
� reduced overall memory consumption
� improved buffered reads
� improved bulk-loading capability
� improved error management, including more extensive tracing and the ability to

retrieve multiple error messages for a single statement at once

xvi What’s New

� extended SQL function support
� dynamic SQL dictionary
� EXPLAIN functionality
� database read-only access support

IBM z/OS is the successor to the IBM OS/390 (formerly MVS) operating system.
SAS/ACCESS 9.1 and later for z/OS is supported on both OS/390 and z/OS operating
systems. Throughout this document, any reference to z/OS also applies to OS/390
unless otherwise stated.

SAS/ACCESS Interface to Greenplum
In the October 2009 release for SAS 9.2, SAS/ACCESS Interface to Greenplum is a

new database engine that runs on specific UNIX and Windows platforms. SAS/ACCESS
Interface to Greenplum provides direct, transparent access to Greenplum databases
through LIBNAME statements and the SQL pass-through facility. You can use various
LIBNAME statement options and data set options that the LIBNAME engine supports
to control the data that is returned to SAS.

For more information, see Chapter 17, “SAS/ACCESS Interface to Greenplum,” on
page 533 and “SAS/ACCESS Interface to Greenplum: Supported Features” on page 77.

SAS/ACCESS Interface to HP Neoview
You can use the new BULKEXTRACT= LIBNAME and data set options, as well as

these new data set options for bulk loading and extracting:
� BL_BADDATA_FILE=
� BL_DATAFILE=
� BL_DELIMITER=
� BL_DISCARDS=
� BL_ERRORS=
� BL_DELETE_DATAFILE=
� BL_FAILEDDATA=
� BL_HOSTNAME=
� BL_NUM_ROW_SEPS= LIBNAME and data set options (in the third maintenance

release for SAS 9.2)
� BL_PORT=
� BL_RETRIES=
� BL_ROWSETSIZE=
� BL_STREAMS=
� BL_SYNCHRONOUS=
� BL_SYSTEM=
� BL_TENACITY=
� BL_TRIGGER=
� BL_TRUNCATE=
� BL_USE_PIPE=
� BULKEXTRACT=

What’s New xvii

� BULKLOAD=

SAS/ACCESS Interface to Informix
These items are new.
� AUTOCOMMIT= LIBNAME option
� GLOBAL and SHARED options for the CONNECTION= LIBNAME option
� DBSASTYPE= data set option
� DBDATASRC environmental variable
� DATEPART and TIMEPART SAS functions
� support for special characters in naming conventions

SAS/ACCESS Interface to MySQL
The ESCAPE_BACKSLASH= data set and LIBNAME options are new.

SAS/ACCESS Interface to Netezza
The BULKUNLOAD= LIBNAME option is new.
In the third maintenance release for SAS 9.2, you can specify a database other than

SASLIB in which to publish the SAS_COMPILEUDF function. If you publish the
SAS_COMPILEUDF function to a database other than SASLIB, you must specify that
database in the new COMPILEDB argument for the %INDNZ_PUBLISH_FORMATS
macro.

In the third maintenance release for SAS 9.2, the SAS_PUT() function supports
UNICODE (UTF8) encoding.

In the June 2010 release, the SAS/ACCESS Interface to Netezza supports the
Netezza TwinFin system. The new Netezza TwinFin system adds supports for shared
libraries. The shared library technology makes the scoring functions more efficient and
robust. In addition, the use of SFTP for file transfer during the format publishing
process has been replaced with the Netezza External Table Interface.

SAS/ACCESS Interface to ODBC
These items are new.
� LOGIN_TIMEOUT= LIBNAME option
� READBUFF= data set option, LIBNAME option, and pass-through support for

improved performance

SAS/ACCESS Interface to OLE DB
These items are new.
� GLOBAL and SHARED options for the CONNECTION= LIBNAME option
� BULKLOAD= data set option
� DBTYPE_GUID and DBTYPE_VARIANT input data types

xviii What’s New

SAS/ACCESS Interface to Oracle
These items are new.
� ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=,

ADJUST_NCHAR_COLUMN_LENGTHS=, DB_LENGTH_SEMANTICS_BYTE=,
DBCLIENT_MAX_BYTES=, and DBSERVER_MAX_BYTES= LIBNAME options
for more flexible adjustment of column lengths with CHAR, NCHAR, VARCHAR,
and NVARCHAR data types to match encoding on both database and client servers

� BL_DELETE_ONLY_DATAFILE= data set option
� GLOBAL and SHARED options for the CONNECTION= LIBNAME option
� OR_ENABLE_INTERRUPT= LIBNAME option
� BL_DEFAULT_DIR= data set option
� BL_USE_PIPE= data set option
� function and default value for SHOW_SYNONYMS LIBNAME option
� SQLGENERATION= LIBNAME and system option (in the third maintenance

release for SAS 9.2)
� In the third maintenance release for SAS 9.2, you can use the new SAS

In-Database technology feature to run these Base SAS procedures inside Oracle:
� FREQ
� RANK
� REPORT
� SORT
� SUMMARY/MEANS
� TABULATE

These procedures dynamically generate SQL queries that reference Oracle SQL
functions. Queries are processed and only the result set is returned to SAS for the
remaining analysis.

For more information, see Chapter 8, “Overview of In-Database Procedures,” on
page 67 and the specific procedure in the Base SAS Procedures Guide.

SAS/ACCESS Interface to Sybase
These LIBNAME options are new or enhanced.
� GLOBAL and SHARED options for CONNECTION=
� SQL_FUNCTIONS= and SQL_FUNCTIONS_COPY=
� SQL_OJ_ANSI=

Pass-through support is available for new or additional SAS functions, including
hyperbolic, trigonometric, and dynamic SQL dictionary functions.

SAS/ACCESS Interface to Sybase IQ
In the December 2009 release for SAS 9.2, SAS/ACCESS Interface to Sybase IQ is a

new database engine that runs on specific UNIX and Windows platforms. SAS/ACCESS
Interface to Sybase IQ provides direct, transparent access to Sybase IQ databases
through LIBNAME statements and the SQL pass-through facility. You can use various

What’s New xix

LIBNAME statement options and data set options that the LIBNAME engine supports
to control the data that is returned to SAS.

For more information, see Chapter 27, “SAS/ACCESS Interface to Sybase IQ,” on
page 763 and “SAS/ACCESS Interface to Sybase IQ: Supported Features” on page 84.

SAS/ACCESS Interface to Teradata
These options are new or enhanced.
� BL_CONTROL= and BL_DATAFILE= data set options
� GLOBAL and SHARED options for the CONNECTION= LIBNAME option
� DBFMTIGNORE= system option for bypassing Teradata data type hints based on

numeric formats for output processing (in the second maintenance release for SAS
9.2)

� DBSASTYPE= data set option
� FASTEXPORT= LIBNAME options
� MODE= LIBNAME option (in the second maintenance release for SAS 9.2)
� MULTISTMT= LIBNAME and data set option
� QUERY_BAND= LIBNAME and data set options
� SQLGENERATION= LIBNAME and system option (in the second maintenance

release for SAS 9.2)
� The Teradata Parallel Transporter (TPT) application programming interface (API)

is now supported for loading and reading data using Teradata load, update,
stream, and export drivers. This support includes these new options:

� TPT= LIBNAME and data set options
� TPT_APPL_PHASE= data set option
� TPT_BUFFER_SIZE= data set option
� TPT_CHECKPOINT= data set option
� TPT_DATA_ENCRYPTION= data set option
� TPT_ERROR_TABLE_1= data set option
� TPT_ERROR_TABLE_2= data set option
� TPT_LOG_TABLE= data set option
� TPT_MAX_SESSIONS= data set option
� TPT_MIN_SESSIONS= data set option
� TPT_PACK= data set option
� TPT_PACKMAXIMUM= data set option
� TPT_RESTART= data set option
� TPT_TRACE_LEVEL= data set option
� TPT_TRACE_LEVEL_INF= data set option
� TPT_TRACE_OUTPUT= data set option
� TPT_WORK_TABLE= data set option

� LDAP function for the USER= and PASSWORD= connection options in the
LIBNAME statement

You can use a new SAS formats publishing macro, %INDTD_PUBLISH_FORMATS,
and a new system option, SQLMAPPUTTO, to generate a SAS_PUT() function that
enables you to execute PUT function calls inside the Teradata EDW. You can also

xx What’s New

reference the custom formats that you create by using PROC FORMAT and most of the
formats that SAS supplies.

In the second maintenance release for SAS 9.2, this new feature is available.
� You can use the new SAS In-Database technology to run these Base SAS and

SAS/STAT procedures inside the Teradata Enterprise Data Warehouse (EDW):
� FREQ
� PRINCOMP
� RANK
� REG
� SCORE
� SUMMARY/MEANS
� VARCLUS

These procedures dynamically generate SQL queries that reference Teradata
SQL functions and, in some cases, SAS functions that are deployed inside
Teradata. Queries are processed and only the result set is returned to SAS for the
remaining analysis.

For more information, see Chapter 8, “Overview of In-Database Procedures,” on
page 67 and the specific procedure in either the Base SAS Procedures Guide or the
SAS Analytics Accelerator for Teradata: User’s Guide.

In the third maintenance release for SAS 9.2, these procedures have been enhanced
to run inside the Teradata EDW:

� CORR
� CANCORR
� FACTOR
� REPORT
� SORT
� TABULATE

In the third maintenance release for SAS 9.2, the SAS_PUT() function supports
UNICODE (UCS2) encoding.

Documentation Enhancements
In addition to information about new and updated features, this edition of

SAS/ACCESS for Relational Databases: Reference includes information about these
items:

� BL_RETURN_WARNINGS_AS_ERRORS= data set option
� DB_ONE_CONNECT_PER_THREAD data set option for Oracle (in the third

maintenance release for SAS 9.2)
� DBSERVER_MAX_BYTES= LIBNAME option for Oracle and Sybase
� SESSIONS= and LIBNAME and data set options for Teradata
� special queries for data sources and DBMS info for DB2 under UNIX and PC

Hosts and ODBC“Special Catalog Queries” on page 664
� significant performance improvement when you work with large tables by using

the OBS= option to transmit a limited number of rows across the network
� the importance of choosing the degree of numeric precision that best suits your

business needs

1

P A R T1

Concepts

Chapter 1.Overview of SAS/ACCESS Interface to Relational
Databases 3

Chapter 2.SAS Names and Support for DBMS Names 11

Chapter 3.Data Integrity and Security 25

Chapter 4.Performance Considerations 35

Chapter 5.Optimizing Your SQL Usage 41

Chapter 6.Threaded Reads 51

Chapter 7.How SAS/ACCESS Works 61

Chapter 8.Overview of In-Database Procedures 67

2

3

C H A P T E R

1
Overview of SAS/ACCESS
Interface to Relational
Databases

About This Document 3
Methods for Accessing Relational Database Data 4

Selecting a SAS/ACCESS Method 4

Methods for Accessing DBMS Tables and Views 4

SAS/ACCESS LIBNAME Statement Advantages
4

SQL Pass-Through Facility Advantages 5

SAS/ACCESS Features for Common Tasks 5

SAS Views of DBMS Data 6

Choosing Your Degree of Numeric Precision 7

Factors That Can Cause Calculation Differences 7

Examples of Problems That Result in Numeric Imprecision 7
Representing Data 7

Rounding Data 8

Displaying Data 8

Selectively Extracting Data 8

Your Options When Choosing the Degree of Precision That You Need 9
References 10

About This Document

This document provides conceptual, reference, and usage information for the
SAS/ACCESS interface to relational database management systems (DBMSs). The
information in this document applies generally to all relational DBMSs that
SAS/ACCESS software supports.

Because availability and behavior of SAS/ACCESS features vary from one interface
to another, you should use the general information in this document with the
DBMS-specific information in reference section of this document for your SAS/ACCESS
interface.

This document is intended for applications programmers and end users with these
skills:

� They are familiar with the basics of their DBMS and its SQL (Structured Query
Language).

� They know how to use their operating environment.

� They can use basic SAS commands and statements.

Database administrators might also want to read this document to understand how
to implement and administer a specific interface.

4 Methods for Accessing Relational Database Data � Chapter 1

Methods for Accessing Relational Database Data
SAS/ACCESS Interface to Relational Databases is a family of interfaces—each

licensed separately—with which you can interact with data in other vendor databases
from within SAS. SAS/ACCESS provides these methods for accessing relational DBMS
data.

� You can use the LIBNAME statement to assign SAS librefs to DBMS objects such
as schemas and databases. After you associate a database with a libref, you can
use a SAS two-level name to specify any table or view in the database. You can
then work with the table or view as you would with a SAS data set.

� You can use the SQL pass-through facility to interact with a data source using its
native SQL syntax without leaving your SAS session. SQL statements are passed
directly to the data source for processing.

� You can use ACCESS and DBLOAD procedures for indirect access to DBMS data.
Although SAS still supports these procedures for database systems and
environments on which they were available for SAS 6, they are no longer the
recommended method for accessing DBMS data.

See “Selecting a SAS/ACCESS Method” on page 4 for information about when to use
each method.

Not all SAS/ACCESS interfaces support all of these features. To determine which
features are available in your environment, see “Introduction” on page 75.

Selecting a SAS/ACCESS Method

Methods for Accessing DBMS Tables and Views
In SAS/ACCESS, you can often complete a task in several ways. For example, you

can access DBMS tables and views by using the LIBNAME statement or the SQL
pass-through facility. Before processing complex or data-intensive operations, you might
want to test several methods first to determine the most efficient one for your particular
task.

SAS/ACCESS LIBNAME Statement Advantages

You should use the SAS/ACCESS LIBNAME statement for the fastest and most
direct method of accessing your DBMS data except when you need to use SQL that is
not ANSI-standard. ANSI-standard SQL is required when you use the SAS/ACCESS
library engine in the SQL procedure. However, the SQL pass-through facility accepts
all SQL extensions that your DBMS provides.

Here are the advantages of using the SAS/ACCESS LIBNAME statement.
� Significantly fewer lines of SAS code are required to perform operations on your

DBMS. For example, a single LIBNAME statement establishes a connection to
your DBMS, lets you specify how data is processed, and lets you easily view your
DBMS tables in SAS.

� You do not need to know the SQL language of your DBMS to access and
manipulate data on your DBMS. You can use such SAS procedures as PROC SQL

Overview of SAS/ACCESS Interface to Relational Databases � SAS/ACCESS Features for Common Tasks 5

or DATA step programming on any libref that references DBMS data. You can
read, insert, update, delete, and append data. You can also create and drop DBMS
tables by using SAS syntax.

� The LIBNAME statement gives you more control over DBMS operations such as
locking, spooling, and data type conversion through the use of LIBNAME and data
set options.

� The engine can optimize processing of joins and WHERE clauses by passing them
directly to the DBMS, which takes advantage of the indexing and other processing
capabilities of your DBMS. For more information, see “Overview of Optimizing
Your SQL Usage” on page 41.

� The engine can pass some functions directly to the DBMS for processing.

SQL Pass-Through Facility Advantages
Here are the advantages of using the SQL pass-through facility.

� You can use SQL pass-through facility statements so the DBMS can optimize
queries, particularly when you join tables. The DBMS optimizer can take
advantage of indexes on DBMS columns to process a query more quickly and
efficiently.

� SQL pass-through facility statements let the DBMS optimize queries when queries
have summary functions (such as AVG and COUNT), GROUP BY clauses, or
columns that expressions create (such as the COMPUTED function). The DBMS
optimizer can use indexes on DBMS columns to process queries more rapidly.

� On some DBMSs, you can use SQL pass-through facility statements with SAS/AF
applications to handle transaction processing of DBMS data. Using a SAS/AF
application gives you complete control of COMMIT and ROLLBACK transactions.
SQL pass-through facility statements give you better access to DBMS return codes.

� The SQL pass-through facility accepts all extensions to ANSI SQL that your
DBMS provides.

SAS/ACCESS Features for Common Tasks
Here is a list of tasks and the features that you can use to accomplish them.

Table 1.1 SAS/ACCESS Features for Common Tasks

Task SAS/ACCESS Features

LIBNAME statement*

SQL Pass-Through Facility

Read DBMS
tables or views

View descriptors**

LIBNAME statement*

DBLOAD procedure

Create DBMS
objects, such as
tables

SQL Pass-Through Facility EXECUTE statement

LIBNAME statement*

View descriptors**

Update, delete,
or insert rows
into DBMS
tables SQL Pass-Through Facility EXECUTE statement

6 SAS Views of DBMS Data � Chapter 1

Task SAS/ACCESS Features

DBLOAD procedure with APPEND option

LIBNAME statement and APPEND procedure*

SQL Pass-Through Facility EXECUTE statement

Append data to
DBMS tables

SQL Pass-Through Facility INSERT statement

LIBNAME statement and SAS Explorer window*

LIBNAME statement and DATASETS procedure*

LIBNAME statement and CONTENTS procedure*

List DBMS
tables

LIBNAME statement and SQL procedure dictionary tables*

LIBNAME statement and SQL procedure DROP TABLE statement*

LIBNAME statement and DATASETS procedure DELETE statement*

DBLOAD procedure with SQL DROP TABLE statement

Delete DBMS
tables or views

SQL Pass-Through Facility EXECUTE statement

* LIBNAME statement refers to the SAS/ACCESS LIBNAME statement.
** View descriptors refer to view descriptors that are created in the ACCESS procedure.

SAS Views of DBMS Data
SAS/ACCESS enables you to create a SAS view of data that exists in a relational

database management system. A SAS data view defines a virtual data set that is
named and stored for later use. A view contains no data, but rather describes data that
is stored elsewhere. There are three types of SAS data views:

� DATA step views are stored, compiled DATA step programs.
� SQL views are stored query expressions that read data values from their

underlying files, which can include SAS data files, SAS/ACCESS views, DATA step
views, other SQL views, or relational database data.

� SAS/ACCESS views (also called view descriptors) describe data that is stored in
DBMS tables. This is no longer a recommended method for accessing relational
DBMS data. Use the CV2VIEW procedure to convert existing view descriptors into
SQL views.

You can use all types of views as inputs into DATA steps and procedures. You can
specify views in queries as if they were tables. A view derives its data from the tables
or views that are listed in its FROM clause. The data accessed by a view is a subset or
superset of the data in its underlying table(s) or view(s).

You can use SQL views and SAS/ACCESS views to update their underlying data if
the view is based on only one DBMS table or if it is based on a DBMS view that is
based on only one DBMS table and if the view has no calculated fields. You cannot use
DATA step views to update the underlying data; you can use them only to read the data.

Your options for creating a SAS view of DBMS data are determined by the
SAS/ACCESS feature that you are using to access the DBMS data. This table lists the
recommended methods for creating SAS views.

Overview of SAS/ACCESS Interface to Relational Databases � Examples of Problems That Result in Numeric Imprecision 7

Table 1.2 Creating SAS Views

Feature You Use to Access DBMS Data SAS View Technology You Can Use

SAS/ACCESS LIBNAME statement SQL view or DATA step view of the DBMS table

SQL Pass-Through Facility SQL view with CONNECTION TO component

Choosing Your Degree of Numeric Precision

Factors That Can Cause Calculation Differences
Different factors affect numeric precision. This issue is common for many people,

including SAS users. Though computers and software can help, you are limited in how
precisely you can calculate, compare, and represent data. Therefore, only those people
who generate and use data can determine the exact degree of precision that suits their
enterprise needs.

As you decide the degree of precision that you want, you need to consider that these
system factors can cause calculation differences:

� hardware limitations
� differences among operating systems
� different software or different versions of the same software
� different database management systems (DBMSs)

These factors can also cause differences:
� the use of finite number sets to represent infinite real numbers
� how numbers are stored, because storage sizes can vary

You also need to consider how conversions are performed—on, between, or across any
of these system or calculation factors.

Examples of Problems That Result in Numeric Imprecision
Depending on the degree of precision that you want, calculating the value of r can

result in a tiny residual in a floating-point unit. When you compare the value of r to
0.0, you might find that r≠0.0. The numbers are very close but not equal. This type of
discrepancy in results can stem from problems in representing, rounding, displaying,
and selectively extracting data.

Representing Data
Some numbers can be represented exactly, but others cannot. As shown in this

example, the number 10.25, which terminates in binary, can be represented exactly.

data x;
x=10.25;
put x hex16.;

run;

The output from this DATA step is an exact number: 4024800000000000. However,
the number 10.1 cannot be represented exactly, as this example shows.

8 Examples of Problems That Result in Numeric Imprecision � Chapter 1

data x;
x=10.1;
put x hex16.;

run;

The output from this DATA step is an inexact number: 4024333333333333.

Rounding Data
As this example shows, rounding errors can result from platform-specific differences.

No solution exists for such situations.

data x;
x=10.1;
put x hex16.;
y=100000;
newx=(x+y)-y;
put newx hex16.;

run;

In Windows and Linux environments, the output from this DATA step is
4024333333333333 (8/10-byte hardware double). In the Solaris x64 environment, the
output is 4024333333334000 (8/8-byte hardware double).

Displaying Data
For certain numbers such as x.5, the precision of displayed data depends on whether

you round up or down. Low-precision formatting (rounding down) can produce different
results on different platforms. In this example, the same high-precision (rounding up)
result occurs for X=8.3, X=8.5, or X=hex16. However, a different result occurs for X=8.1
because this number does not yield the same level of precision.

data;
x=input(’C047DFFFFFFFFFFF’, hex16.);
put x= 8.1 x= 8.3 x= 8.5 x= hex16.;

run;

Here is the output under Windows or Linux (high-precision formatting).

x=-47.8
x=-47.750 x=-47.7500
x=C047DFFFFFFFFFFF

Here is the output under Solaris x64 (low-precision formatting).

x=-47.7
x=-47.750 x=-47.7500
x=C047DFFFFFFFFFFF

To fix the problem that this example illustrates, you must select a number that yields
the next precision level—in this case, 8.2.

Selectively Extracting Data
Results can also vary when you access data that is stored on one system by using a

client on a different system. This example illustrates running a DATA step from a
Windows client to access SAS data in the z/OS environment.

data z(keep=x);
x=5.2;

Overview of SAS/ACCESS Interface to Relational Databases � Choosing the Degree of Precision That You Need 9

output;
y=1000;
x=(x+y)-y; /*almost 5.2 */
output;

run;

proc print data=z;
run;

Here is the output this DATA step produces.

Obs x
1 5.2
2 5.2

The next example illustrates the output that you receive when you execute the DATA
step interactively under Windows or under z/OS.

data z1;
set z(where=(x=5.2));

run;

Here is the corresponding z/OS output.

NOTE: There were 1 observations read from the data set WORK.Z.
WHERE x=5.2;
NOTE: The data set WORK.Z1 has 1 observations and 1 variables.
The DATA statement used 0.00 CPU seconds and 14476K.

In the above example, the expected count was not returned correctly under z/OS
because the imperfection of the data and finite precision are not taken into account.
You cannot use equality to obtain a correct count because it does not include the
“almost 5.2” cases in that count. To obtain the correct results under z/OS, you must run
this DATA step:

data z1;
set z(where=(compfuzz(x,5.2,1e-10)=0));

run;

Here is the z/OS output from this DATA step.

NOTE: There were 2 observations read from the data set WORK.Z.
WHERE COMPFUZZ(x, 5.2, 1E-10)=0;
NOTE: The data set WORK.Z1 has 2 observations and 1 variables.

Your Options When Choosing the Degree of Precision That You Need
After you determine the degree of precision that your enterprise needs, you can refine

your software. You can use macros, sensitivity analyses, or fuzzy comparisons such as
extractions or filters to extract data from databases or from different versions of SAS.

If you are running SAS 9.2, use the COMPFUZZ (fuzzy comparison) function.
Otherwise, use this macro.

/***/
/* This macro defines an EQFUZZ operator. The subsequent DATA step shows */
/* how to use this operator to test for equality within a certain tolerance. */
/***/
%macro eqfuzz(var1, var2, fuzz=1e-12);
abs((&var1 - &var2) / &var1) < &fuzz

10 References � Chapter 1

%mend;

data _null_;
x=0;
y=1;
do i=1 to 10;

x+0.1;
end;
if x=y then put ’x exactly equal to y’;
else if %eqfuzz(x,y) then put ’x close to y’;
else put ’x nowhere close to y’;

run;

When you read numbers in from an external DBMS that supports precision beyond
15 digits, you can lose that precision. You cannot do anything about this for existing
databases. However, when you design new databases, you can set constraints to limit
precision to about 15 digits or you can select a numeric DBMS data type to match the
numeric SAS data type. For example, select the BINARY_DOUBLE type in Oracle
(precise up to 15 digits) instead of the NUMBER type (precise up to 38 digits).

When you read numbers in from an external DBMS for noncomputational purposes,
use the DBSASTYPE= data set option, as shown in this example.

libname ora oracle user=scott password=tiger path=path;
data sasdata;

set ora.catalina2(dbsastype= (c1=’char(20)’)) ;
run;

This option retrieves numbers as character strings and preserves precision beyond 15
digits. For details, see the DBSASTYPE= data set option.

References
See these resources for more detail about numeric precision, including variables that

can affect precision.

The Aggregate. 2008. "Numerical Precision, Accuracy, and Range." Aggregate.Org:
Unbridled Computing. Lexington, KY: University of Kentucky. Available http://
aggregate.org/NPAR.

IEEE. 2008. “IEEE 754: Standard for Binary Floating-Point Arithmetic.” Available
http://grouper.ieee.org/groups/754/index.html. This standard defines 32-bit and
64-bit floating-point representations and computational results.

SAS Institute Inc. 2007. TS-230. Dealing with Numeric Representation Error in SAS
Applications. Cary, NC: SAS Institute Inc. Available http://support.sas.com/
techsup/technote/ts230.html.

SAS Institute Inc. 2007. TS-654. Numeric Precision 101. Cary, NC: SAS Institute
Inc. Available http://support.sas.com/techsup/technote/ts654.pdf. This document is
an overview of numeric precision and how it is represented in SAS applications.

11

C H A P T E R

2
SAS Names and Support for
DBMS Names

Introduction to SAS/ACCESS Naming 11
SAS Naming Conventions 12

Length of Name 12

Case Sensitivity 12

SAS Name Literals 13

SAS/ACCESS Default Naming Behaviors 13
Modification and Truncation 13

ACCESS Procedure 13

DBLOAD Procedure 14

Renaming DBMS Data 14

Renaming SAS/ACCESS Tables 14

Renaming SAS/ACCESS Columns 14
Renaming SAS/ACCESS Variables 14

Options That Affect SAS/ACCESS Naming Behavior 15

Naming Behavior When Retrieving DBMS Data 15

Naming Behavior When Creating DBMS Objects 16

SAS/ACCESS Naming Examples 17
Replacing Unsupported Characters 17

Preserving Column Names 18

Preserving Table Names 19

Using DQUOTE=ANSI 20

Using Name Literals 22
Using DBMS Data to Create a DBMS Table 22

Using a SAS Data Set to Create a DBMS Table 23

Introduction to SAS/ACCESS Naming

Because some DBMSs allow case-sensitive names and names with special characters,
show special consideration when you use names of such DBMS objects as tables and
columns with SAS/ACCESS features. This section presents SAS/ACCESS naming
conventions, default naming behaviors, options that can modify naming behavior, and
usage examples. See the documentation for your SAS/ACCESS interface for information
about how SAS handles your DBMS names.

12 SAS Naming Conventions � Chapter 2

SAS Naming Conventions

Length of Name
SAS naming conventions allow long names for SAS data sets and SAS variables. For

example, MYDB.TEMP_EMPLOYEES_QTR4_2000 is a valid two-level SAS name for a
data set.

The names of the following SAS language elements can be up to 32 characters in
length:

� members of SAS libraries, including SAS data sets, data views, catalogs, catalog
entries, and indexes

� variables in a SAS data set

� macros and macro variables

The following SAS language elements have a maximum length of eight characters:

� librefs and filerefs

� SAS engine names

� names of SAS/ACCESS access descriptors and view descriptors

� variable names in SAS/ACCESS access descriptors and view descriptors

For a complete description of SAS naming conventions, see the SAS Language
Reference: Dictionary.

Case Sensitivity
When SAS encounters mixed-case or case-sensitive names in SAS code, SAS stores

and displays the names as they are specified. If the SAS variables, Flight and dates,
are defined in mixed case—for example,

input Flight $3. +3 dates date9.;

then SAS displays the variable names as defined. Note how the column headings
appear as defined:

Output 2.1 Mixed-Case Names Displayed in Output

SAS System

Obs Flight dates

1 114 01MAR2000
2 202 01MAR2000
3 204 01MAR2000

Although SAS stores variable names as they are defined, it recognizes variables for
processing without regard to case. For example, SAS processes these variables as
FLIGHT and DATES. Likewise, renaming the Flight variable to "flight" or "FLIGHT"
would result in the same processing.

SAS Names and Support for DBMS Names � ACCESS Procedure 13

SAS Name Literals
A SAS name literal is a name token that is expressed as a quoted string, followed by

the letter n. Name literals enable you to use special characters or blanks that are not
otherwise allowed in SAS names when you specify a SAS data set or variable. Name
literals are especially useful for expressing database column and tables names that
contain special characters.

Here are two examples of name literals:

data mydblib.’My Staff Table’n;

data Budget_for_1999;
input ’$ Amount Budgeted’n ’Amount Spent’n;

Name literals are subject to certain restrictions.
� You can use a name literal only for SAS variable and data set names, statement

labels, and DBMS column and table names.
� You can use name literals only in a DATA step or in the SQL procedure.
� If a name literal contains any characters that are not allowed when

VALIDVARNAME=V7, then you must set the system option to
VALIDVARNAME=ANY. For details about using the VALIDVARNAME= system
option, see “VALIDVARNAME= System Option” on page 423.

SAS/ACCESS Default Naming Behaviors

Modification and Truncation
When SAS/ACCESS reads DBMS column names that contain characters that are not

standard in SAS names, the default behavior is to replace an unsupported character
with an underscore (_). For example, the DBMS column name Amount Budgeted$
becomes the SAS variable name Amount_Budgeted_.

Note: Nonstandard names include those with blank spaces or special characters
(such as @, #, %) that are not allowed in SAS names. �

When SAS/ACCESS encounters a DBMS name that exceeds 32 characters, it
truncates the name.

After it has modified or truncated a DBMS column name, SAS appends a number to
the variable name, if necessary, to preserve uniqueness. For example, DBMS column
names MY$DEPT, My$Dept, and my$dept become SAS variable names MY_DEPT,
MY_Dept0, and my_dept1.

ACCESS Procedure
If you attempt to use long names in the ACCESS procedure, you get an error

message advising you that long names are not supported. Long member names, such as
access descriptor and view descriptor names, are truncated to eight characters. Long
DBMS column names are truncated to 8-character SAS variable names within the SAS
access descriptor. You can use the RENAME statement to specify 8-character SAS
variable names, or you can accept the default truncated SAS variable names that are
assigned by the ACCESS procedure.

14 DBLOAD Procedure � Chapter 2

The ACCESS procedure converts DBMS object names to uppercase characters unless
they are enclosed in quotation marks. Any DBMS objects that are given lowercase
names when they are created, or whose names contain special or national characters,
must be enclosed in quotation marks.

DBLOAD Procedure
You can use long member names, such as the name of a SAS data set that you want

to load into a DBMS table, in the DBLOAD procedure DATA= option. However, if you
attempt to use long SAS variable names, you get an error message advising you that
long variable names are not supported in the DBLOAD procedure. You can use the
RENAME statement to rename the 8-character SAS variable names to long DBMS
column names when you load the data into a DBMS table. You can also use the SAS
data set option RENAME to rename the columns after they are loaded into the DBMS.

Most DBLOAD procedure statements convert lowercase characters in user-specified
values and default values to uppercase. If your host or database is case sensitive and
you want to specify a value that includes lowercase alphabetic characters (for example,
a user ID or password), enclose the entire value in quotation marks. You must also put
quotation marks around any value that contains special characters or national
characters.

The only exception is the DBLOAD SQL statement. The DBLOAD SQL statement is
passed to the DBMS exactly as you enter it with case preserved.

Renaming DBMS Data

Renaming SAS/ACCESS Tables
You can rename DBMS tables and views using the CHANGE statement, as shown in

this example:

proc datasets lib=x;
change oldtable=newtable;

quit;

You can rename tables using this method for all SAS/ACCESS engines. However, if
you change a table name, any view that depends on that table no longer works unless
the view references the new table name.

Renaming SAS/ACCESS Columns
You can use the RENAME statement to rename the 8-character default SAS variable

names to long DBMS column names when you load the data into a DBMS table. You
can also use the SAS data set option RENAME= to rename the columns after they are
loaded into the DBMS.

Renaming SAS/ACCESS Variables
You can use the RENAME statement to specify 8-character SAS variable names such

as access descriptors and view descriptors.

SAS Names and Support for DBMS Names � Naming Behavior When Retrieving DBMS Data 15

Options That Affect SAS/ACCESS Naming Behavior
To change how SAS handles case-sensitive or nonstandard DBMS table and column

names, specify one or more of the following options.

PRESERVE_COL_NAMES=YES
is a SAS/ACCESS LIBNAME and data set option that applies only to creating
DBMS tables. When set to YES, this option preserves spaces, special characters,
and mixed case in DBMS column names. See “PRESERVE_COL_NAMES=
LIBNAME Option” on page 166 for more information about this option.

PRESERVE_TAB_NAMES=YES
is a SAS/ACCESS LIBNAME option. When set to YES, this option preserves
blank spaces, special characters, and mixed case in DBMS table names. See
“PRESERVE_TAB_NAMES= LIBNAME Option” on page 168 for more information
about this option.

Note: Specify the alias PRESERVE_NAMES=YES | NO if you plan to specify
both the PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options in
your LIBNAME statement. Using this alias saves time when you are coding. �

DQUOTE=ANSI
is a PROC SQL option. This option specifies whether PROC SQL treats values
within double quotation marks as a character string or as a column name or table
name. When you specify DQUOTE=ANSI, your SAS code can refer to DBMS
names that contain characters and spaces that are not allowed by SAS naming
conventions. Specifying DQUOTE=ANSI enables you to preserve special
characters in table and column names in your SQL statements by enclosing the
names in double quotation marks.

To preserve table names, you must also specify PRESERVE_TAB_NAMES=YES.
To preserve column names when you create a table, you must also specify
PRESERVE_COL_NAMES=YES.

VALIDVARNAME=ANY
is a global system option that can override the SAS naming conventions. See
“VALIDVARNAME= System Option” on page 423 for information about this option.

The availability of these options and their default settings are DBMS-specific, so see the
SAS/ACCESS documentation for your DBMS to learn how the SAS/ACCESS engine for
your DBMS processes names.

Naming Behavior When Retrieving DBMS Data
The following two tables illustrate how SAS/ACCESS processes DBMS names when

retrieving data from a DBMS. This information applies generally to all interfaces. In
some cases, however, it is not necessary to specify these options because the option
default values are DBMS-specific. See the documentation for your SAS/ACCESS
interface for details.

16 Naming Behavior When Creating DBMS Objects � Chapter 2

Table 2.1 DBMS Column Names to SAS Variable Names When Reading DBMS Data

DBMS Column Name Desired SAS Variable Name Options

Case-sensitive DBMS column
name, such as Flight

Case-sensitive SAS variable name,
such as Flight

No options are necessary

DBMS column name with
characters that are not valid in
SAS names, such as My$Flight

Case-sensitive SAS variable name
where an underscore replaces the
invalid characters, such as
My_Flight

No options are necessary

DBMS column name with
characters that are not valid in
SAS names, such as My$Flight

Nonstandard, case-sensitive SAS
variable name, such as My$Flight

PROC SQL DQUOTE=ANSI or, in
a DATA or PROC step, use a SAS
name literal such as ’My$Flight’n
and VALIDVARNAME=ANY

Table 2.2 DBMS Table Names to SAS Data Set Names When Reading DBMS Data

DBMS Table Name Desired SAS Data Set Name Options

Default DBMS table name, such as
STAFF

Default SAS data set or member
name (uppercase), such as STAFF

PRESERVE_TAB_NAMES=NO

Case-sensitive DBMS table name,
such as Staff

Case-sensitive SAS data set, such
as Staff

PRESERVE_TAB_NAMES=YES

DBMS table name with characters
that are not valid in SAS names,
such as All$Staff

Nonstandard, case-sensitive SAS
data set name, such as All$Staff

PROC SQLDQUOTE=ANSI and
PRESERVE_TAB_NAMES=YES or,
in a DATA step or PROC, use a
SAS name literal such as
’All$Staff’n and
PRESERVE_TAB_NAMES=YES

Naming Behavior When Creating DBMS Objects
The following two tables illustrate how SAS/ACCESS handles variable names when

creating DBMS objects such as tables and views. This information applies generally to
all interfaces. In some cases, however, it is not necessary to specify these options
because the option default values are DBMS-specific. See the documentation for your
DBMS for details.

SAS Names and Support for DBMS Names � Replacing Unsupported Characters 17

Table 2.3 SAS Variable Names to DBMS Column Names When Creating Tables

SAS Variable Name as Input Desired DBMS Column Name Options

Any SAS variable name, such as
Miles

Default DBMS column name
(normalized to follow the DBMS’s
naming conventions), such as MILES

PRESERVE_COL_NAMES=NO

A case-sensitive SAS variable
name, such as Miles

Case-sensitive DBMS column name,
such as Miles

PRESERVE_COL_NAMES=YES

A SAS variable name with
characters that are not valid in a
normalized SAS name, such as
Miles-to-Go

Case-sensitive DBMS column name
that matches the SAS name, such as
Miles-to-Go

PROC SQL DQUOTE=ANSI and
PRESERVE_COL_NAMES=YES
or, in a DATA or PROC step, use a
SAS name literal and
PRESERVE_COL_NAMES=YES
and VALIDVARNAME=ANY

Table 2.4 SAS Data Set Names to DBMS Table Names

SAS Data Set Name as Input Desired DBMS Table Name Options

Any SAS data set name, such as
Payroll

Default DBMS table name
(normalized to follow the DBMS’s
naming conventions), such as
PAYROLL

PRESERVE_TAB_NAMES=NO

Case-sensitive SAS data set name,
such as Payroll

Case-sensitive DBMS table name,
such as Payroll

PRESERVE_TAB_NAMES=YES

Case-sensitive SAS data set name
with characters that are not valid
in a normalized SAS name, such as
Payroll-for-QC

Case-sensitive DBMS table name
that matches the SAS name, such
as Payroll-for-QC

PROC SQL DQUOTE=ANSI and
PRESERVE_TAB_NAMES=YES or,
in a DATA or PROC step, use a
SAS name literal and
PRESERVE_TAB_NAMES=YES

SAS/ACCESS Naming Examples

Replacing Unsupported Characters
In the following example, a view, myview, is created from the Oracle table, mytable.

proc sql;
connect to oracle (user=testuser password=testpass);
create view myview as

select * from connection to oracle
(select "Amount Budgeted$", "Amount Spent$"

from mytable);
quit;

proc contents data=myview;

18 Preserving Column Names � Chapter 2

run;

In the output produced by PROC CONTENTS, the Oracle column names (that were
processed by the SQL view of MYTABLE) are renamed to different SAS variable names:
Amount Budgeted$ becomes Amount_Budgeted_ and Amount Spent$ becomes
Amount_Spent_.

Preserving Column Names

The following example uses the Oracle table, PAYROLL, to create a new Oracle table,
PAY1, and then prints the table. Both the PRESERVE_COL_NAMES=YES and the
PROC SQL DQUOTE=ANSI options are used to preserve the case and nonstandard
characters in the column names. You do not need to quote the column aliases in order
to preserve the mixed case. You only need double quotation marks when the column
name has nonstandard characters or blanks.

By default, most SAS/ACCESS interfaces use DBMS-specific rules to set the case of
table and column names. Therefore, even though the new pay1 Oracle table name is
created in lowercase in this example, Oracle stores the name in uppercase as PAY1. If
you want the table name to be stored as "pay1", you must set
PRESERVE_TAB_NAMES=NO.

options linesize=120 pagesize=60 nodate;

libname mydblib oracle user=testuser password=testpass path=’ora8_servr’
schema=hrdept preserve_col_names=yes;

proc sql dquote=ansi;
create table mydblib.pay1 as

select idnum as "ID #", sex, jobcode, salary,
birth as BirthDate, hired as HiredDate

from mydblib.payroll
order by birth;

title "Payroll Table with Revised Column Names";
select * from mydblib.pay1;
quit;

SAS recognizes the JOBCODE, SEX, and SALARY column names, whether you
specify them in your SAS code as lowercase, mixed case, or uppercase. In the Oracle
table, PAYROLL, the SEX, JOBCODE, and SALARY columns were created in
uppercase. They therefore retain this case in the new table unless you rename them.
Here is partial output from the example:

Output 2.2 DBMS Table Created with Nonstandard and Standard Column Names

Payroll Table with Revised Column Names

ID # SEX JOBCODE SALARY BirthDate HiredDate
--
1118 M PT3 11379 16JAN1944:00:00:00 18DEC1980:00:00:00
1065 M ME2 35090 26JAN1944:00:00:00 07JAN1987:00:00:00
1409 M ME3 41551 19APR1950:00:00:00 22OCT1981:00:00:00
1401 M TA3 38822 13DEC1950:00:00:00 17NOV1985:00:00:00
1890 M PT2 91908 20JUL1951:00:00:00 25NOV1979:00:00:00

SAS Names and Support for DBMS Names � Preserving Table Names 19

Preserving Table Names
The following example uses PROC PRINT to print the DBMS table PAYROLL. The

DBMS table was created in uppercase and since PRESERVE_TAB_NAMES=YES, the
table name must be specified in uppercase. (If you set the
PRESERVE_TAB_NAMES=NO, you can specify the DBMS table name in lowercase.) A
partial output follows the example.

options nodate linesize=64;
libname mydblib oracle user=testuser password=testpass

path=’ora8_servr’ preserve_tab_names=yes;

proc print data=mydblib.PAYROLL;
title ’PAYROLL Table’;

run;

Output 2.3 DBMS Table with a Case-Sensitive Name

PAYROLL Table
Obs IDNUM SEX JOBCODE SALARY BIRTH
1 1919 M TA2 34376 12SEP1960:00:00:00
2 1653 F ME2 35108 15OCT1964:00:00:00
3 1400 M ME1 29769 05NOV1967:00:00:00
4 1350 F FA3 32886 31AUG1965:00:00:00
5 1401 M TA3 38822 13DEC1950:00:00:00

The following example submits a SAS/ACCESS LIBNAME statement and then opens
the SAS Explorer window, which lists the Oracle tables and views that are referenced
by the MYDBLIB libref. Notice that 16 members are listed and that all of the member
names are in the case (initial capitalization) that is set by the Explorer window. The
table names are capitalized because PRESERVE_TAB_NAMES= defaulted to NO.

libname mydblib oracle user=testuser pass=testpass;

Display 2.1 SAS Explorer Window Listing DBMS Objects

20 Using DQUOTE=ANSI � Chapter 2

If you submit a SAS/ACCESS LIBNAME statement with
PRESERVE_TAB_NAMES=YES and then open the SAS Explorer window, you see a
different listing of the Oracle tables and views that the MYDBLIB libref references.

libname mydblib oracle user=testuser password=testpass
preserve_tab_names=yes;

Display 2.2 SAS Explorer Window Listing Case-Sensitive DBMS Objects

Notice that there are 18 members listed, including one that is in lowercase and one that
has a name separated by a blank space. Because PRESERVE_TAB_NAMES=YES, SAS
displays the tables names in the exact case in which they were created.

Using DQUOTE=ANSI
The following example creates a DBMS table with a blank space in its name. Double

quotation marks are used to specify the table name, International Delays. Both of the
preserve names LIBNAME options are also set by using the alias
PRESERVE_NAMES=. Because PRESERVE_NAMES=YES, the schema airport is now
case sensitive for Oracle.

options linesize=64 nodate;

libname mydblib oracle user=testuser password=testpass path=’airdata’
schema=airport preserve_names=yes;

proc sql dquote=ansi;
create table mydblib."International Delays" as

select int.flight as "FLIGHT NUMBER", int.dates,
del.orig as ORIGIN,
int.dest as DESTINATION, del.delay

from mydblib.INTERNAT as int,
mydblib.DELAY as del

where int.dest=del.dest and int.dest=’LON’;
quit;

proc sql dquote=ansi outobs=10;

SAS Names and Support for DBMS Names � Using DQUOTE=ANSI 21

title "International Delays";
select * from mydblib."International Delays";

Notice that you use single quotation marks to specify the data value for London
(int.dest=’LON’) in the WHERE clause. Because of the preserve name LIBNAME
options, using double quotation marks would cause SAS to interpret this data value as
a column name.

Output 2.4 DBMS Table with Nonstandard Column Names

International Delays

FLIGHT
NUMBER DATES ORIGIN DESTINATION DELAY

219 01MAR1998:00:00:00 LGA LON 18
219 02MAR1998:00:00:00 LGA LON 18
219 03MAR1998:00:00:00 LGA LON 18
219 04MAR1998:00:00:00 LGA LON 18
219 05MAR1998:00:00:00 LGA LON 18
219 06MAR1998:00:00:00 LGA LON 18
219 07MAR1998:00:00:00 LGA LON 18
219 01MAR1998:00:00:00 LGA LON 18
219 02MAR1998:00:00:00 LGA LON 18
219 03MAR1998:00:00:00 LGA LON 18

If you query a DBMS table and use a label to change the FLIGHT NUMBER column
name to a standard SAS name (Flight_Number), a label (enclosed in single quotation
marks) changes the name only in the output. Because this column name and the table
name, International Delays, each have a space in their names, you have to enclose the
names in double quotation marks. A partial output follows the example.

options linesize=64 nodate;

libname mydblib oracle user=testuser password=testpass path=’airdata’
schema=airport preserve_names=yes;

proc sql dquote=ansi outobs=5;
title "Query from International Delays";

select "FLIGHT NUMBER" label=’Flight_Number’, dates, delay
from mydblib."International Delays";

Output 2.5 Query Renaming a Nonstandard Column to a Standard SAS Name

Query from International Delays

Flight_
Number DATES DELAY

219 01MAR1998:00:00:00 18
219 02MAR1998:00:00:00 18
219 03MAR1998:00:00:00 18
219 04MAR1998:00:00:00 18
219 05MAR1998:00:00:00 18

You can preserve special characters by specifying DQUOTE=ANSI and using double
quotation marks around the SAS names in your SELECT statement.

22 Using Name Literals � Chapter 2

proc sql dquote=ansi;
connect to oracle (user=testuser password=testpass);
create view myview as
select "Amount Budgeted$", "Amount Spent$"
from connection to oracle

(select "Amount Budgeted$", "Amount Spent$"
from mytable);

quit;
proc contents data=myview;
run;

Output from this example would show that Amount Budgeted$ remains Amount
Budgeted$ and Amount Spent$ remains Amount Spent$.

Using Name Literals
The following example creates a table using name literals. You must specify the SAS

option VALIDVARNAME=ANY in order to use name literals. Use PROC SQL to print
the new DBMS table because name literals work only with PROC SQL and the DATA
step. PRESERVE_COLUMN_NAMES=YES is required only because the table is being
created with nonstandard SAS column names.

options ls=64 validvarname=any nodate;

libname mydblib oracle user=testuser password=testpass path=’ora8servr’
preserve_col_names=yes preserve_tab_names=yes ;

data mydblib.’Sample Table’n;
’EmpID#’n=12345;
Lname=’Chen’;
’Salary in $’n=63000;

proc sql;
title "Sample Table";
select * from mydblib.’Sample Table’n;

Output 2.6 DBMS Table to Test Column Names

Sample Table

Salary
EmpID# Lname in $

12345 Chen 63000

Using DBMS Data to Create a DBMS Table
The following example uses PROC SQL to create a DBMS table based on data from

other DBMS tables. You preserve the case sensitivity of the aliased column names by
using PRESERVE_COL_NAMES=YES. A partial output is displayed after the code.

libname mydblib oracle user=testuser password=testpass
path=’hrdata99’ schema=personnel preserve_col_names=yes;

SAS Names and Support for DBMS Names � Using a SAS Data Set to Create a DBMS Table 23

proc sql;
create table mydblib.gtforty as

select lname as LAST_NAME,
fname as FIRST_NAME,
salary as ANNUAL_SALARY

from mydblib.staff a,
mydblib.payroll b

where (a.idnum eq b.idnum) and
(salary gt 40000)

order by lname;

proc print noobs;
title ’Employees with Salaries over $40,000’;

run;

Output 2.7 Updating DBMS Data

Employees with Salaries over $40,000

ANNUAL_
LAST_NAME FIRST_NAME SALARY

BANADYGA JUSTIN 88606
BAREFOOT JOSEPH 43025
BRADY CHRISTINE 68767
BRANCACCIO JOSEPH 66517
CARTER-COHEN KAREN 40260
CASTON FRANKLIN 41690
COHEN LEE 91376
FERNANDEZ KATRINA 51081

Using a SAS Data Set to Create a DBMS Table

The following example uses a SAS DATA step to create a DBMS table,
College-Hires-1999, from a temporary SAS data set that has case-sensitive names. It
creates the temporary data set and then defines the LIBNAME statement. Because it
uses a DATA step to create the DBMS table, it must specify the table name as a name
literal and specify the PRESERVE_TAB_NAMES= and PRESERVE_COL_NAMES=
options (in this case, by using the alias PRESERVE_NAMES=).

options validvarname=any nodate;

data College_Hires_1999;
input IDnum $4. +3 Lastname $11. +2

Firstname $10. +2 City $15. +2
State $2.;

datalines;
3413 Schwartz Robert New Canaan CT
3523 Janssen Heike Stamford CT
3565 Gomez Luis Darien CT
;

libname mydblib oracle user=testuser password=testpass
path=’hrdata99’ schema=hrdept preserve_names=yes;

24 Using a SAS Data Set to Create a DBMS Table � Chapter 2

data mydblib.’College-Hires-1999’n;
set College_Hires_1999;

proc print;
title ’College Hires in 1999’;

run;

Output 2.8 DBMS Table with Case-Sensitive Table and Column Names

College Hires in 1999

Obs IDnum Lastname Firstname City State

1 3413 Schwartz Robert New Canaan CT
2 3523 Janssen Heike Stamford CT
3 3565 Gomez Luis Darien CT

25

C H A P T E R

3
Data Integrity and Security

Introduction to Data Integrity and Security 25
DBMS Security 25

Privileges 25

Triggers 26

SAS Security 26

Securing Data 26
Assigning SAS Passwords 26

Protecting Connection Information 28

Extracting DBMS Data to a SAS Data Set 28

Defining Views and Schemas 29

Controlling DBMS Connections 29

Locking, Transactions, and Currency Control 30
Customizing DBMS Connect and Disconnect Exits 31

Potential Result Set Differences When Processing Null Data 31

Introduction to Data Integrity and Security

This section briefly describes DBMS security issues and then presents measures you
can take on the SAS side of the interface to help protect DBMS data from accidental
update or deletion. This section also provides information about how SAS handles null
values that help you achieve consistent results.

DBMS Security

Privileges

The database administrator controls who has privileges to access or update DBMS
objects. This person also controls who can create objects, and creators of the objects
control who can access the objects. A user cannot use DBMS facilities to access DBMS
objects through SAS/ACCESS software unless the user has the appropriate DBMS
privileges or authority on those objects. You can grant privileges on the DBMS side by
using the SQL pass-through facility to EXECUTE an SQL statement, or by issuing a
GRANT statement from the DBLOAD procedure SQL statement.

26 Triggers � Chapter 3

You should give users only the privileges on the DBMS that they must have.
Privileges are granted on whole tables or views. You must explicitly grant to users the
privileges on the DBMS tables or views that underlie a view so they can use that view.

See your DBMS documentation for more information about ensuring security on the
DBMS side of the interface.

Triggers
If your DBMS supports triggers, you can use them to enforce security authorizations

or business-specific security considerations. When and how triggers are executed is
determined by when the SQL statement is executed and how often the trigger is
executed. Triggers can be executed before an SQL statement is executed, after an SQL
statement is executed, or for each row of an SQL statement. Also, triggers can be
defined for DELETE, INSERT, and UPDATE statement execution.

Enabling triggers can provide more specific security for delete, insert, and update
operations. SAS/ACCESS abides by all constraints and actions that are specified by a
trigger. For more information, see the documentation for your DBMS.

SAS Security

Securing Data
SAS preserves the data security provided by your DBMS and operating system;

SAS/ACCESS does not override the security of your DBMS. To secure DBMS data from
accidental update or deletion, you can take steps on the SAS side of the interface such
as the following:

� specifying the SAS/ACCESS LIBNAME option DBPROMPT= to avoid saving
connection information in your code

� creating SQL views and protecting them from unauthorized access by applying
passwords.

These and other approaches are discussed in detail in the following sections.

Assigning SAS Passwords
By using SAS passwords, you can protect SQL views, SAS data sets, and descriptor

files from unauthorized access. The following table summarizes the levels of protection
that SAS passwords provide. Note that you can assign multiple levels of protection.

Data Integrity and Security � Assigning SAS Passwords 27

Table 3.1 Password Protection Levels and Their Effects

File Type READ= WRITE= ALTER=

PROC SQL
view of
DBMS
data

Protects the underlying
data from being read or
updated through the
view; does not protect
against replacement of
the view

Protects the underlying
data from being updated
through the view; does
not protect against
replacement of the view

Protects the view from
being modified, deleted,
or replaced

Access
descriptor

No effect on descriptor No effect on descriptor Protects the descriptor
from being read or edited

View
descriptor

Protects the underlying
data from being read or
updated through the
view

Protects the underlying
data from being updated
through the view

Protects the descriptor
from being read or edited

You can use the following methods to assign, change, or delete a SAS password:
� the global SETPASSWORD command, which opens a dialog box
� the DATASETS procedure’s MODIFY statement.

The syntax for using PROC DATASETS to assign a password to an access descriptor,
a view descriptor, or a SAS data file is as follows:

PROC DATASETS LIBRARY=libref MEMTYPE=member-type;
MODIFY member-name (password-level = password-modification);

RUN;

The password-level argument can have one or more of the following values: READ=,
WRITE=, ALTER=, or PW=. PW= assigns read, write, and alter privileges to a
descriptor or data file. The password-modification argument enables you to assign a
new password or to change or delete an existing password. For example, this PROC
DATASETS statement assigns the password MONEY with the ALTER level of
protection to the access descriptor ADLIB.SALARIES:

proc datasets library=adlib memtype=access;
modify salaries (alter=money);

run;

In this case, users are prompted for the password whenever they try to browse or
update the access descriptor or try to create view descriptors that are based on
ADLIB.SALARIES.

In the next example, the PROC DATASETS statement assigns the passwords MYPW
and MYDEPT with READ and ALTER levels of protection to the view descriptor
VLIB.JOBC204:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw alter=mydept);

run;

In this case, users are prompted for the SAS password when they try to read the DBMS
data or try to browse or update the view descriptor VLIB.JOBC204. You need both
levels to protect the data and descriptor from being read. However, a user could still
update the data that VLIB.JOBC204 accesses—for example, by using a PROC SQL
UPDATE. Assign a WRITE level of protection to prevent data updates.

Note: When you assign multiple levels of passwords, use a different password for
each level to ensure that you grant only the access privileges that you intend. �

28 Protecting Connection Information � Chapter 3

To delete a password, put a slash after the password:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw/ alter=mydept/);

run;

Protecting Connection Information

In addition to directly controlling access to data, you can protect the data indirectly
by protecting the connection information that SAS/ACCESS uses to reach the DBMS.
Generally, this is achieved by not saving connection information in your code.

One way to protect connection information is by storing user name, password, and
other connection options in a local environment variable. Access to the DBMS is denied
unless the correct user and password information is stored in a local environment
variable. See the documentation for your DBMS to determine whether this alternative
is supported.

Another way to protect connection information is by requiring users to manually
enter it at connection time. When you specify DBPROMPT=YES in a SAS/ACCESS
LIBNAME statement, each user has to provide DBMS connection information in a
dynamic, interactive manner. This is demonstrated in the following statement. The
statement causes a dialog box to prompt the user to enter connection information, such
as a user name and password:

libname myoralib oracle dbprompt=yes defer=no;

The dialog box that appears contains the DBMS connection options that are valid for
the SAS/ACCESS engine that is being used; in this case, Oracle.

Using the DBPROMPT= option in the LIBNAME statement offers several
advantages. DBMS account passwords are protected because they do not need to be
stored in a SAS program or descriptor file. Also, when a password or user name
changes, the SAS program does not need to be modified. Another advantage is that the
same SAS program can be used by any valid user name and password combination that
is specified during execution. You can also use connection options in this interactive
manner when you want to run a program on a production server instead of testing a
server without modifying your code. By using the prompt window, the new server name
can be specified dynamically.

Note: The DBPROMPT= option is not available in SAS/ACCESS Interface to DB2
under z/OS. �

Extracting DBMS Data to a SAS Data Set

If you are the owner of a DBMS table and do not want anyone else to read the data,
you can extract the data (or a subset of the data) and not distribute information about
either the access descriptor or view descriptor.

Note: You might need to take additional steps to restrict LIBNAME or
Pass-Through access to the extracted data set. �

If you extract data from a view that has a SAS password assigned to it, the new SAS
data file is automatically assigned the same password. If a view does not have a
password, you can assign a password to the extracted SAS data file by using the
MODIFY statement in the DATASETS procedure. See the Base SAS Procedures Guide
for more information.

Data Integrity and Security � Controlling DBMS Connections 29

Defining Views and Schemas
If you want to provide access to some but not all fields in a DBMS table, create a

SAS view that prohibits access to the sensitive data by specifying that particular
columns be dropped. Columns that are dropped from views do not affect the underlying
DBMS table and can be reselected for later use.

Some SAS/ACCESS engines support LIBNAME options that restrict or qualify the
scope, or schema, of the tables in the libref. For example, the DB2 engine supports the
AUTHID= and LOCATION= options, and the Oracle engine supports the SCHEMA=
and DBLINK= options. See the SAS/ACCESS documentation for your DBMS to
determine which options are available to you.

This example uses SAS/ACCESS Interface to Oracle:

libname myoralib oracle user=testuser password=testpass
path=’myoraserver’ schema=testgroup;

proc datasets lib=myoralib;
run;

In this example the MYORALIB libref is associated with the Oracle schema named
TESTGROUP. The DATASETS procedure lists only the tables and views that are
accessible to the TESTGROUP schema. Any reference to a table that uses the libref
MYORALIB is passed to the Oracle server as a qualified table name; for example, if the
SAS program reads a table by specifying the SAS data set MYORALIB.TESTTABLE,
the SAS/ACCESS engine passes the following query to the server:

select * from "testgroup.testtable"

Controlling DBMS Connections
Because the overhead of executing a connection to a DBMS server can be

resource-intensive, SAS/ACCESS supports the CONNECTION= and DEFER= options
to control when a DBMS connection is made, and how many connections are executed
within the context of your SAS/ACCESS application. For most SAS/ACCESS engines, a
connection to a DBMS begins one transaction, or work unit, and all statements issued
in the connection execute within the context of the active transaction.

The CONNECTION= LIBNAME option enables you to specify how many connections
are executed when the library is used and which operations on tables are shared within
a connection. By default, the value is CONNECTION=SHAREDREAD, which means
that a SAS/ACCESS engine executes a shared read DBMS connection when the library
is assigned. Every time a table in the library is read, the read-only connection is used.
However, if an application attempts to update data using the libref, a separate
connection is issued, and the update occurs in the new connection. As a result, there is
one connection for read-only transactions and a separate connection for each update
transaction.

In the example below, the SAS/ACCESS engine issues a connection to the DBMS
when the libref is assigned. The PRINT procedure reads the table by using the first
connection. When the PROC SQL updates the table, the update is performed with a
second connection to the DBMS.

libname myoralib oracle user=testuser password=testpass
path=’myoraserver’;

proc print data=myoralib.mytable;
run;

30 Locking, Transactions, and Currency Control � Chapter 3

proc sql;
update myoralib.mytable set acctnum=123

where acctnum=456;
quit;

This example uses SAS/ACCESS Interface to DB2 under z/OS. The LIBNAME
statement executes a connection by way of the DB2 Call Attach Facility to the DB2
DBMS server:

libname mydb2lib db2 authid=testuser;

If you want to assign more than one SAS libref to your DBMS server, and if you do
not plan to update the DBMS tables, SAS/ACCESS enables you to optimize the way in
which the engine performs connections. Your SAS librefs can share a single read-only
connection to the DBMS if you use the CONNECTION=GLOBALREAD option. The
following example shows you how to use the CONNECTION= option with the
ACCESS= option to control your connection and to specify read-only data access.

libname mydblib1 db2 authid=testuser
connection=globalread access=readonly;

If you do not want the connection to occur when the library is assigned, you can
delay the connection to the DBMS by using the DEFER= option. When you specify
DEFER=YES in the LIBNAME statement, the SAS/ACCESS engine connects to the
DBMS the first time a DBMS object is referenced in a SAS program:

libname mydb2lib db2 authid=testuser defer=yes;

Note: If you use DEFER=YES to assign librefs to your DBMS tables and views in
an AUTOEXEC program, the processing of the AUTOEXEC file is faster because the
connections to the DBMS are not made every time SAS is invoked. �

Locking, Transactions, and Currency Control

SAS/ACCESS provides options that enable you to control some of the row, page, or
table locking operations that are performed by the DBMS and the SAS/ACCESS engine
as your programs are executed. For example, by default, the SAS/ACCESS Oracle
engine does not lock any data when it reads rows from Oracle tables. However, you can
override this behavior by using the locking options that are supported in SAS/ACCESS
Interface to Oracle.

To lock the data pages of a table while SAS is reading the data to prevent other
processes from updating the table, use the READLOCK_TYPE= option, as shown in the
following example:

libname myoralib oracle user=testuser pass=testpass
path=’myoraserver’ readlock_type=table;

data work.mydata;
set myoralib.mytable(where=(colnum > 123));

run;

In this example, the SAS/ACCESS Oracle engine obtains a TABLE SHARE lock on
the table so that other processes cannot update the data while your SAS program reads
it.

In the next example, Oracle acquires row-level locks on rows read for update in the
tables in the libref.

Data Integrity and Security � Potential Result Set Differences When Processing Null Data 31

libname myoralib oracle user=testuser password=testpass
path=’myoraserver’ updatelock_type=row;

Note: Each SAS/ACCESS interface supports specific options; see the SAS/ACCESS
documentation for your DBMS to determine which options it supports. �

Customizing DBMS Connect and Disconnect Exits
To specify DBMS commands or stored procedures to run immediately after a DBMS

connection or before a DBMS disconnect, use the DBCONINIT= and DBCONTERM=
LIBNAME options. Here is an example:

libname myoralib oracle user=testuser password=testpass
path=’myoraserver’ dbconinit="EXEC MY_PROCEDURE";

proc sql;
update myoralib.mytable set acctnum=123

where acctnum=567;
quit;

When the libref is assigned, the SAS/ACCESS engine connects to the DBMS and
passes a command to the DBMS to execute the stored procedure MY_PROCEDURE. By
default, a new connection to the DBMS is made for every table that is opened for
updating. Therefore, MY_PROCEDURE is executed a second time after a connection is
made to update the table MYTABLE.

To execute a DBMS command or stored procedure only after the first connection in a
library assignment, you can use the DBLIBINIT= option. Similarly, the DBLIBTERM=
option enables you to specify a command to run before the disconnection of only the first
library connection, as in the following example:

libname myoralib oracle user=testuser password=testpass
dblibinit="EXEC MY_INIT" dblibterm="EXEC MY_TERM";

Potential Result Set Differences When Processing Null Data
When your data contains null values or when internal processing generates

intermediate data sets that contain null values, you might get different result sets
depending on whether the processing is done by SAS or by the DBMS. Although in
many cases this does not present a problem, it is important to understand how these
differences occur.

Most relational database systems have a special value called null, which means an
absence of information and is analogous to a SAS missing value. SAS/ACCESS
translates SAS missing values to DBMS null values when creating DBMS tables from
within SAS. Conversely, SAS/ACCESS translates DBMS null values to SAS missing
values when reading DBMS data into SAS.

There is, however, an important difference in the behavior of DBMS null values and
SAS missing values:

� A DBMS null value is interpreted as the absence of data, so you cannot sort a
DBMS null value or evaluate it with standard comparison operators.

� A SAS missing value is interpreted as its internal floating-point representation
because SAS supports 28 missing values (where a period (.) is the most common
missing value). Because SAS supports multiple missing values, you can sort a SAS
missing value and evaluate it with standard comparison operators.

32 Potential Result Set Differences When Processing Null Data � Chapter 3

This means that SAS and the DBMS interpret null values differently, which has
significant implications when SAS/ACCESS passes queries to a DBMS for processing.
This can be an issue in the following situations:

� when filtering data (for example, in a WHERE clause, a HAVING clause, or an
outer join ON clause). SAS interprets null values as missing; many DBMS exclude
null values from consideration. For example, if you have null values in a DBMS
column that is used in a WHERE clause, your results might differ depending on
whether the WHERE clause is processed in SAS or is passed to the DBMS for
processing. This is because the DBMS removes null values from consideration in a
WHERE clause, but SAS does not.

� when using certain functions. For example, if you use the MIN aggregate function
on a DBMS column that contains null values, the DBMS does not consider the null
values, but SAS interprets the null values as missing. This interpretation affects
the result.

� when submitting outer joins where internal processing generates nulls for
intermediate result sets.

� when sorting data. SAS sorts null values low; most DBMSs sort null values high.
(See “Sorting DBMS Data” on page 37 for more information.)

For example, create a simple data set that consists of one observation and one
variable.

libname myoralib oracle user=testuser password=testpass;
data myoralib.table;
x=.; /*create a missing value */
run;

Then, print the data set using a WHERE clause, which SAS/ACCESS passes to the
DBMS for processing.

proc print data=myoralib.table;
where x<0;

run;

The log indicates that no observations were selected by the WHERE clause, because
Oracle interprets the missing value as the absence of data, and does not evaluate it
with the less-than (<) comparison operator.

When there is the potential for inconsistency, consider using one of these strategies.
� Use the LIBNAME option DIRECT_SQL= to control whether SAS or the DBMS

handles processing.
� Use the SQL pass-through facility to ensure that the DBMS handles processing.
� Add the "is not null" expression to WHERE clauses and ON clauses to ensure that

you get the same result regardless of whether SAS or the DBMS does the
processing.

Note: Use the NULLCHAR= data set option to specify how the DBMS interprets
missing SAS character values when updating DBMS data or inserting rows into a
DBMS table. �

You can use the first of these strategies to force SAS to process the data in this
example.

libname myoralib oracle user=testuser password=testpass
direct_sql=nowhere; /* forces SAS to process WHERE clauses */

data myoralib.table;
x=.; /*create a missing value */
run;

Data Integrity and Security � Potential Result Set Differences When Processing Null Data 33

You can then print the data set using a WHERE clause:

proc print data=myoralib.table;
where x<0;

run;

This time the log indicates that one observation was read from the data set because
SAS evaluates the missing value as satisfying the less-than-zero condition in the
WHERE clause.

34

35

C H A P T E R

4
Performance Considerations

Increasing Throughput of the SAS Server 35
Limiting Retrieval 35

Row and Column Selection 35

The KEEP= and DROP= Options 36

Repeatedly Accessing Data 37

Sorting DBMS Data 37
Temporary Table Support for SAS/ACCESS 38

Overview 38

General Temporary Table Use 39

Pushing Heterogeneous Joins 39

Pushing Updates 39

Increasing Throughput of the SAS Server
When you invoke SAS as a server that responds to multiple clients, you can use the

DBSRVTP= system option to improve the performance of the clients. The DBSRVTP=
option tells the SAS server whether to put a hold (or block) on the originating client
while making performance-critical calls to the database. By holding or blocking the
originating client, the SAS/ACCESS server remains available for other clients; they do
not have to wait for the originating client to complete its call to the database.

Limiting Retrieval

Row and Column Selection
Limiting the number of rows that the DBMS returns to SAS is an extremely

important performance consideration. The less data that the SAS job requests, the
faster the job runs.

Wherever possible, specify selection criteria that limits the number of rows that the
DBMS returns to SAS. Use the SAS WHERE clause to retrieve a subset of the DBMS
data.

If you are interested in only the first few rows of a table, consider adding the OBS=
option. SAS passes this option to the DBMS to limit the number of rows to transmit
across the network, which can significantly improve performance against larger tables.
To do this if you are using SAS Enterprise Guide, select View � Explorer, select the

36 The KEEP= and DROP= Options � Chapter 4

table that you want from the list of tables, and select the member that you want to see
the contents of the table.

Likewise, select only the DBMS columns that your program needs. Selecting
unnecessary columns slows your job.

The KEEP= and DROP= Options
Just as with a SAS data set you can use the DROP= and KEEP= data set options to

prevent retrieving unneeded columns from your DBMS table.
In this example the KEEP= data set option causes the SAS/ACCESS engine to select

only the SALARY and DEPT columns when it reads the MYDBLIB.EMPLOYEES table.

libname mydblib db2 user=testid password=testpass database=testdb;

proc print data (keep=salary dept);
where dept=’ACC024’;

quit;

The generated SQL that the DBMS processes is similar to the following code:

SELECT "SALARY", "DEPT" FROM EMPLOYEES
WHERE(DEPT="ACC024")

Without the KEEP option, the SQL processed by the DBMS would be similar to the
following:

SELECT * FROM EMPLOYEES WHERE(DEPT="ACC024")

This would result in all of the columns from the EMPLOYEES table being read in to
SAS.

The DROP= data set option is a parallel option that specifies columns to omit from
the output table. Keep in mind that the DROP= and KEEP= data set options are not
interchangeable with the DROP and KEEP statements. Use of the DROP and KEEP
statements when selecting data from a DBMS can result in retrieval of all column into
SAS, which can seriously impact performance.

For example, the following would result in all of the columns from the EMPLOYEES
table being retrieved into SAS. The KEEP statement would be applied when creating
the output data set.

libname mydblib db2 user=testid password=testpass database=testdb;

data temp;
set mydblib.employees;
keep salary;

run;

The following is an example of how to use the KEEP data set option to retrieve only
the SALARY column:

data temp;
set mydblib.employees(keep=salary);

run;

Performance Considerations � Sorting DBMS Data 37

Repeatedly Accessing Data

CAUTION:
If you need to access the most current DBMS data, access it directly from the database
every time. Do not follow the extraction suggestions in this section. �

It is sometimes more efficient to extract (copy) DBMS data to a SAS data file than to
repeatedly read the data by using a SAS view. SAS data files are organized to provide
optimal performance with PROC and DATA steps. Programs that use SAS data files are
often more efficient than SAS programs that read DBMS data directly.

Consider extracting data when you work with a large DBMS table and plan to use the
same DBMS data in several procedures or DATA steps during the same SAS session.

You can extract DBMS data to a SAS data file by using the OUT= option, a DATA
step, or ACCESS procedures.

Sorting DBMS Data

Sorting DBMS data can be resource-intensive—whether you use the SORT
procedure, a BY statement, or an ORDER BY clause on a DBMS data source or in the
SQL procedure SELECT statement. Sort data only when it is needed for your program.

Here are guidelines for sorting data.

� If you specify a BY statement in a DATA or PROC step that references a DBMS
data source, it is recommended for performance reasons that you associate the BY
variable (in a DATA or PROC step) with an indexed DBMS column. If you
reference DBMS data in a SAS program and the program includes a BY statement
for a variable that corresponds to a column in the DBMS table, the SAS/ACCESS
LIBNAME engine automatically generates an ORDER BY clause for that variable.
The ORDER BY clause causes the DBMS to sort the data before the DATA or
PROC step uses the data in a SAS program. If the DBMS table is very large, this
sorting can adversely affect your performance. Use a BY variable that is based on
an indexed DBMS column in order to reduce this negative impact.

� The outermost BY or ORDER BY clause overrides any embedded BY or ORDER
BY clauses, including those specified by the DBCONDITION= option, those
specified in a WHERE clause, and those in the selection criteria in a view
descriptor. In the following example, the EXEC_EMPLOYEES data set includes a
BY statement that sorts the data by the variable SENIORITY. However, when that
data set is used in the following PROC SQL query, the data is ordered by the
SALARY column and not by SENIORITY.

libname mydblib oracle user=testuser password=testpass;
data exec_employees;

set mydblib.staff (keep=lname fname idnum);
by seniority;
where salary >= 150000;

run;

proc sql;
select * from exec_employees

order by salary;

� Do not use PROC SORT to sort data from SAS back into the DBMS because this
impedes performance and has no effect on the order of the data.

38 Temporary Table Support for SAS/ACCESS � Chapter 4

� The database does not guarantee sort stability when you use PROC SORT. Sort
stability means that the ordering of the observations in the BY statement is
exactly the same every time the sort is run against static data. If you absolutely
require sort stability, you must place your database data into a SAS data set, and
then use PROC SORT.

� When you use PROC SORT, be aware that the sort rules for SAS and for your
DBMS might be different. Use the Base SAS system option SORTPGM to specify
which rules (host, SAS, or DBMS) are applied:

SORTPGM=BEST
sorts data according to the DBMS sort rules, then the host sort rules, and
then the SAS sort rules. (Sorting uses the first available and pertinent
sorting algorithm in this list.) This is the default.

SORTPGM=HOST
sorts data according to host rules and then SAS rules. (Sorting uses the first
available and pertinent sorting algorithm in this list.)

SORTPGM=SAS
sorts data by SAS rules.

Temporary Table Support for SAS/ACCESS

Overview
DBMS temporary table support in SAS consists of the ability to retain DBMS

temporary tables from one SAS step to the next. This ability is a result of establishing
a SAS connection to the DBMS that persists across multiple SAS procedures and DATA
steps.

Temporary table support is available for these DBMSs.

� Aster nCluster

� DB2 under UNIX and PC Hosts

� DB2 under z/OS

� Greenplum

� HP Neoview

� Informix

� Netezza

� ODBC

� OLE DB

� Oracle

� Sybase

� Sybase IQ

� Teradata

The value of DBMS temporary table support in SAS is increased performance
potential. By pushing processing to the DBMS in certain situations, you can achieve an
overall performance gain. These processes provide a general outline of how to use
DBMS temporary tables.

Performance Considerations � Pushing Updates 39

General Temporary Table Use
Follow these steps to use temporary tables on the DBMS.
1 Establish a global connection to the DBMS that persists across SAS procedure and

DATA step boundaries.
2 Create a DBMS temporary table and load it with data.
3 Use the DBMS temporary table with SAS.

Closing the global connection causes the DBMS temporary table to close as well.

Pushing Heterogeneous Joins
Follow these steps to push heterogeneous joins to the DBMS.

1 Establish a global connection to the DBMS that persists across SAS procedure and
DATA step boundaries.

2 Create a DBMS temporary table and load it with data.
3 Perform a join on the DBMS using the DBMS temporary and DBMS permanent

tables.
4 Process the result of the join with SAS.

Pushing Updates
Follow these steps to push updates (process transactions) to the DBMS.
1 Establish a global connection to the DBMS that persists across SAS procedure and

DATA step boundaries.
2 Create a DBMS temporary table and load it with data.
3 Issue SQL that uses values in the temporary table to process against the

production table.
4 Process the updated DBMS tables with SAS.

Although these processing scenarios are purposely generic, they apply to each DBMS
that supports temporary tables. For details, see the “DBMSTEMP= LIBNAME Option”
on page 131.

40

41

C H A P T E R

5
Optimizing Your SQL Usage

Overview of Optimizing Your SQL Usage 41
Passing Functions to the DBMS Using PROC SQL 42

Passing Joins to the DBMS 43

Passing the DELETE Statement to Empty a Table 45

When Passing Joins to the DBMS Will Fail 45

Passing DISTINCT and UNION Processing to the DBMS 46
Optimizing the Passing of WHERE Clauses to the DBMS 47

General Guidelines for WHERE Clauses 47

Passing Functions to the DBMS Using WHERE Clauses 47

Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options 48

Overview of Optimizing Your SQL Usage
SAS/ACCESS takes advantage of DBMS capabilities by passing certain SQL

operations to the DBMS whenever possible. This can reduce data movement, which can
improve performance. The performance impact can be significant when you access large
DBMS tables and the SQL that is passed to the DBMS subsets the table to reduce the
amount of rows. SAS/ACCESS sends operations to the DBMS for processing in the
following situations:

� When you use the SQL pass-through facility, you submit DBMS-specific SQL
statements that are sent directly to the DBMS for execution. For example, when
you submit Transact-SQL statements to be passed to a Sybase database.

� When SAS/ACCESS can translate the operations into the SQL of the DBMS.
When you use the SAS/ACCESS LIBNAME statement and PROC SQL, you
submit SAS statements that SAS/ACCESS can often translate into the SQL of the
DBMS and then pass to the DBMS for processing.

By using the automatic translation abilities, you can often achieve the performance
benefits of the SQL pass-through facility without needing to write DBMS-specific SQL
code. The following sections describe the SAS SQL operations that SAS/ACCESS can
pass to the DBMS for processing. See “Optimizing the Passing of WHERE Clauses to
the DBMS” on page 47 for information about passing WHERE clauses to the DBMS.

42 Passing Functions to the DBMS Using PROC SQL � Chapter 5

Note: There are certain conditions that prevent operations from being passed to the
DBMS. For example, when you use an INTO clause or any data set option, operations
are processed in SAS instead of being passed to the DBMS. Re-merges, union joins, and
truncated comparisons also prevent operations from being passed to the DBMS.

Additionally, it is important to note that when you join tables across multiple tables,
implicit pass-through uses the first connection. Consequently, LIBNAME options from
subsequent connections are ignored.

You can use the SASTRACE= system option to determine whether an operation is
processed by SAS or is passed to the DBMS for processing. �

To prevent operations from being passed to the DBMS, use the LIBNAME option
DIRECT_SQL=.

Passing Functions to the DBMS Using PROC SQL
When you use the SAS/ACCESS LIBNAME statement, it automatically tries to pass

the SAS SQL aggregate functions (MIN, MAX, AVG, MEAN, FREQ, N, SUM, and
COUNT) to the DBMS because these are SQL ANSI-defined aggregate functions.

Here is a sample query of the Oracle EMP table being passed to the DBMS for
processing:

libname myoralib oracle user=testuser password=testpass;
proc sql;

select count(*) from myoralib.emp;
quit;

This code causes Oracle to process this query:

select COUNT(*) from EMP

SAS/ACCESS can also translate other SAS functions into DBMS-specific functions so
they can be passed to the DBMS.

In this next example, the SAS UPCASE function is translated into the Oracle
UPPER function:

libname myoralib oracle user=testuser password=testpass;
proc sql;

select customer from myoralib.customers
where upcase(country)="USA";

quit;

Here is the translated query that is processed in Oracle:

select customer from customers where upper(country)=’USA’

Functions that are passed are different for each DBMS. Select your DBMS to see a
list of functions that your SAS/ACCESS interface translates.

� Aster nCluster

� DB2 Under UNIX and PC Hosts
� DB2 Under z/OS

� Greenplum

� HP Neoview

� Informix

� Microsoft SQL Server
� MySQL

Optimizing Your SQL Usage � Passing Joins to the DBMS 43

� Netezza
� ODBC
� OLE DB
� Oracle
� Sybase
� Sybase IQ
� Teradata

Passing Joins to the DBMS
When you perform a join across SAS/ACCESS librefs in a single DBMS, PROC SQL

can often pass the join to the DBMS for processing. Before implementing a join, PROC
SQL checks to see whether the DBMS can process the join. A comparison is made using
the SAS/ACCESS LIBNAME statement for the librefs. Certain criteria must be met for
the join to proceed. Select your DBMS to see the criteria that it requires before PROC
SQL can pass the join.

� Aster nCluster
� DB2 Under UNIX and PC Hosts
� DB2 Under z/OS
� Greenplum
� HP Neoview
� Informix
� MySQL
� Netezza
� ODBC
� OLE DB
� Oracle
� Sybase
� Sybase IQ
� Teradata

If it is able, PROC SQL passes the join to the DBMS. The DBMS then performs the
join and returns only the results to SAS. PROC SQL processes the join if the DBMS
cannot.

These types of joins are eligible for passing to the DBMS.
� For all DBMSs, inner joins between two or more tables.
� For DBMSs that support ANSI outer join syntax, outer joins between two or more

DBMS tables.
� For ODBC and Microsoft SQL Server, outer joins between two or more tables.

However, the outer joins must not be mixed with inner joins in a query.
� For such DBMSs as Informix, Oracle, and Sybase that support nonstandard outer

join syntax, outer joins between two or more tables with these restrictions:
Full outer joins are not supported.
Only a comparison operator is allowed in an ON clause. For Sybase, the only

valid comparison operator is ’=’.
For Oracle and Sybase, both operands in an ON clause must reference a column

name. A literal operand cannot be passed to the DBMS. Because these
DBMSs do not support this, all ON clauses are transformed into WHERE

44 Passing Joins to the DBMS � Chapter 5

clauses before trying to pass the join to the DBMS. This can result in queries
not being passed to the DBMS if they include additional WHERE clauses or
contain complex join conditions.

For Informix, outer joins can neither consist of more than two tables nor contain
a WHERE clause.

Sybase evaluates multijoins with WHERE clauses differently than SAS.
Therefore, instead of passing multiple joins or joins with additional WHERE
clauses to the DBMS, use the SAS/ACCESS DIRECT_SQL= LIBNAME
option“DIRECT_SQL= LIBNAME Option” on page 143 to allow PROC SQL to
process the join internally.

Note: If PROC SQL cannot successfully pass down a complete query to the DBMS,
it might try again to pass down a subquery. You can analyze the SQL that is
passed to the DBMS by turning on SAS tracing options. The SAS trace information
displays the exact queries that are being passed to the DBMS for processing. �

In this example, two large DBMS tables named TABLE1 and TABLE2 have a column
named DeptNo, and you want to retrieve the rows from an inner join of these tables
where the DeptNo value in TABLE1 is equal to the DeptNo value in TABLE2. PROC
SQL detects the join between two tables in the DBLIB library (which references an
Oracle database), and SAS/ACCESS passes the join directly to the DBMS. The DBMS
processes the inner join between the two tables and returns only the resulting rows to
SAS.

libname dblib oracle user=testuser password=testpass;
proc sql;

select tab1.deptno, tab1.dname from
dblib.table1 tab1,
dblib.table2 tab2
where tab1.deptno = tab2.deptno;

quit;

The query is passed to the DBMS and generates this Oracle code:

select table1."deptno", table1."dname" from TABLE1, TABLE2
where TABLE1."deptno" = TABLE2."deptno"

In this example, an outer join between two Oracle tables, TABLE1 and TABLE2, is
passed to the DBMS for processing.

libname myoralib oracle user=testuser password=testpass;
proc sql;

select * from myoralib.table1 right join myoralib.table2
on table1.x = table2.x
where table2.x > 1;

quit;

The query is passed to the DBMS and generates this Oracle code:

select table1."X", table2."X" from TABLE1, TABLE2
where TABLE1."X" (+)= TABLE2."X"
and (TABLE2."X" > 1)

Optimizing Your SQL Usage � When Passing Joins to the DBMS Will Fail 45

Passing the DELETE Statement to Empty a Table
When you use the SAS/ACCESS LIBNAME statement with the DIRECT_EXE option

set to DELETE, the SAS SQL DELETE statement gets passed to the DBMS for
execution as long as it contains no WHERE clause. The DBMS deletes all rows but does
not delete the table itself.

This example shows how a DELETE statement is passed to Oracle to empty the EMP
table.

libname myoralib oracle user=testuser password=testpass direct_exe=delete;
proc sql;

delete from myoralib.emp;
quit;

Oracle then executes this code:

delete from emp

When Passing Joins to the DBMS Will Fail
By default, SAS/ACCESS tries to pass certain types of SQL statements directly to

the DBMS for processing. Most notable are SQL join statements that would otherwise
be processed as individual queries to each data source that belonged to the join. In that
instance, the join would then be performed internally by PROC SQL. Passing the join to
the DBMS for direct processing can result in significant performance gains.

However, there are several reasons why a join statement under PROC SQL might
not be passed to the DBMS for processing. In general, the success of the join depends
upon the nature of the SQL that was coded and the DBMS’s acceptance of the
generated syntax. It is also greatly influenced by the use of option settings. The
following are the primary reasons why join statements might fail to be passed:

� The generated SQL syntax is not accepted by the DBMS.
PROC SQL attempts to pass the SQL join query directly to the DBMS for

processing. The DBMS can reject the syntax for any number of reasons. In this
event, PROC SQL attempts to open both tables individually and perform the join
internally.

� The SQL query involves multiple librefs that do not share connection
characteristics.

If the librefs are specified using different servers, user IDs, or any other
connection options, PROC SQL does not attempt to pass the statement to the
DBMS for direct processing.

� The use of data set options in the query.
The specification of any data set option on a table that is referenced in the SQL

query prohibits the statement from successfully passing to the DBMS for direct
processing.

� The use of certain LIBNAME options.
The specification of LIBNAME options that request member level controls, such

as table locks (“READ_LOCK_TYPE= LIBNAME Option” on page 176 or
“UPDATE_LOCK_TYPE= LIBNAME Option” on page 196), prohibits the
statement from successfully passing to the DBMS for direct processing.

� The “DIRECT_SQL= LIBNAME Option” on page 143 option setting.

46 Passing DISTINCT and UNION Processing to the DBMS � Chapter 5

The DIRECT_SQL= option default setting is YES. PROC SQL attempts to pass
SQL joins directly to the DBMS for processing. Other settings for the
DIRECT_SQL= option influence the nature of the SQL statements that PROC
SQL tries to pass down to the DBMS or if it tries to pass anything at all.

DIRECT_SQL=YES
PROC SQL automatically attempts to pass the SQL join query to the DBMS.
This is the default setting for this option. The join attempt could fail due to a
DBMS return code. If this happens, PROC SQL attempts to open both tables
individually and perform the join internally.

DIRECT_SQL=NO
PROC SQL does not attempt to pass SQL join queries to the DBMS. Other
SQL statements can be passed, however. If the “MULTI_DATASRC_OPT=
LIBNAME Option” on page 160 is in effect, the generated SQL can also be
passed.

DIRECT_SQL=NONE
PROC SQL does not attempt to pass any SQL directly to the DBMS for
processing.

DIRECT_SQL=NOWHERE
PROC SQL attempts to pass SQL to the DBMS including SQL joins. However,
it does not pass any WHERE clauses associated with the SQL statement.
This causes any join that is attempted with direct processing to fail.

DIRECT_SQL=NOFUNCTIONS
PROC SQL does not pass any statements in which any function is present to
the DBMS. Normally PROC SQL attempts to pass down any functions coded
in the SQL to the DBMS, provided the DBMS supports the given function.

DIRECT_SQL=NOGENSQL
PROC SQL does not attempt to pass SQL join queries to the DBMS. Other
SQL statements can be passed down, however. If the
MULTI_DATASRC_OPT= option is in effect, the generated SQL can be
passed.

DIRECT_SQL=NOMULTOUTJOINS
PROC SQL does not attempt to pass any multiple outer joins to the DBMS
for direct processing. Other SQL statements can be passed, however,
including portions of a multiple outer join.

� Using of SAS functions on the SELECT clause can prevent joins from being passed.

Passing DISTINCT and UNION Processing to the DBMS

When you use the SAS/ACCESS LIBNAME statement to access DBMS data, the
DISTINCT and UNION operators are processed in the DBMS rather than in SAS. For
example, when PROC SQL detects a DISTINCT operator, it passes the operator to the
DBMS to check for duplicate rows. The DBMS then returns only the unique rows to
SAS.

In this example, the CUSTBASE Oracle table is queried for unique values in the
STATE column.

libname myoralib oracle user=testuser password=testpass;
proc sql;

select distinct state from myoralib.custbase;
quit;

Optimizing Your SQL Usage � Passing Functions to the DBMS Using WHERE Clauses 47

The DISTINCT operator is passed to Oracle and generates this Oracle code:

select distinct custbase."STATE" from CUSTBASE

Oracle then passes the results from this query back to SAS.

Optimizing the Passing of WHERE Clauses to the DBMS

General Guidelines for WHERE Clauses
Follow these general guidelines for writing efficient WHERE clauses.
� Avoid the NOT operator if you can use an equivalent form.

Inefficient: where zipcode not>8000

Efficient: where zipcode<=8000

� Avoid the >= and <= operators if you can use the BETWEEN predicate.
Inefficient: where ZIPCODE>=70000 and ZIPCODE<=80000

Efficient: where ZIPCODE between 70000 and 80000

� Avoid LIKE predicates that begin with % or _ .
Inefficient: where COUNTRY like ’%INA’

Efficient: where COUNTRY like ’A%INA’

� Avoid arithmetic expressions in a predicate.
Inefficient: where SALARY>12*4000.00

Efficient: where SALARY>48000.00

� Use DBKEY=, DBINDEX=, and MULTI_DATASRC_OPT= when appropriate. See
“Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options” on page
48 for details about these options.

Whenever possible, SAS/ACCESS passes WHERE clauses to the DBMS, because the
DBMS processes them more efficiently than SAS does. SAS translates the WHERE
clauses into generated SQL code. The performance impact can be particularly
significant when you are accessing large DBMS tables. The following section describes
how and when functions are passed to the DBMS. For information about passing
processing to the DBMS when you are using PROC SQL, see “Overview of Optimizing
Your SQL Usage” on page 41.

If you have NULL values in a DBMS column that is used in a WHERE clause, be
aware that your results might differ depending on whether the WHERE clause is
processed in SAS or is passed to the DBMS for processing. This is because DBMSs tend
to remove NULL values from consideration in a WHERE clause, while SAS does not.

To prevent WHERE clauses from being passed to the DBMS, use the LIBNAME
option DIRECT_SQL= NOWHERE.

Passing Functions to the DBMS Using WHERE Clauses
When you use the SAS/ACCESS LIBNAME statement, SAS/ACCESS translates

several SAS functions in WHERE clauses into DBMS-specific functions so they can be
passed to the DBMS.

In the following SAS code, SAS can translate the FLOOR function into a DBMS
function and pass the WHERE clause to the DBMS.

48 Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options � Chapter 5

libname myoralib oracle user=testuser password=testpass;
proc print data=myoralib.personnel;

where floor(hourlywage)+floor(tips)<10;
run;

Generated SQL that the DBMS processes would be similar to this code:

SELECT "HOURLYWAGE", "TIPS" FROM PERSONNEL
WHERE ((FLOOR("HOURLYWAGE") + FLOOR("TIPS")) < 10)

If the WHERE clause contains a function that SAS cannot translate into a DBMS
function, SAS retrieves all rows from the DBMS and then applies the WHERE clause.

The functions that are passed are different for each DBMS. See the documentation
for your SAS/ACCESS interface to determine which functions it translates.

Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options
When you code a join operation in SAS, and the join cannot be passed directly to a

DBMS for processing, the join is performed by SAS. Normally, this processing will
involve individual queries to each data source that belonged to the join, and the join
being performed internally by SAS. When you join a large DBMS table and a small SAS
data set or DBMS table, using the DBKEY= , DBINDEX=, and
MULTI_DATASRC_OPT= options might enhance performance. These options enable
you to retrieve a subset of the DBMS data into SAS for the join.

When MULTI_DATASRC_OPT=IN_CLAUSE is specified for DBMS data sources in a
PROC SQL join operation, the procedure retrieves the unique values of the join column
from the smaller table to construct an IN clause. This IN clause is used when SAS is
retrieving the data from the larger DBMS table. The join is performed in SAS. If a SAS
data set is used, no matter how large, it is always in the IN_CLAUSE. For better
performance, it is recommended that the SAS data set be smaller than the DBMS table.
If not, processing can be extremely slow.

MULTI_DATASRC_OPT= generates a SELECT COUNT to determine the size of data
sets that are not SAS data sets. If you know the size of your data set, you can use
DBMASTER to designate the larger table.

MULTI_DATASRC_OPT= might provide performance improvements over DBKEY=.
If you specify options, DBKEY= overrides MULTI_DATASRC_OPT=.

MULTI_DATASRC_OPT= is used only when SAS is processing a join with PROC
SQL. It is not used for SAS DATA step processing. For certain joins operations, such as
those involving additional subsetting applying to the query, PROC SQL might
determine that it is more efficient to process the join internally. In these situations it
does not use the MULTI_DATASRC_OPT= optimization even when specified. If PROC
SQL determines it can pass the join directly to the DBMS it also does not use this
option even though it is specified.

In this example, the MULTI_DATASRC_OPT= option is used to improve the
performance of an SQL join statement. MULTI_DATASRC_OPT= instructs PROC SQL
to pass the WHERE clause to the SAS/ACCESS engine with an IN clause built from the
SAS table. The engine then passes this optimized query to the DBMS server. The IN
clause is built from the unique values of the SAS DeptNo variable. As a result, only
rows that match the WHERE clause are retrieved from the DBMS. Without this option,
PROC SQL retrieves all rows from the Dept table and applies the WHERE clause
during PROC SQL processing in SAS. Processing can be both CPU-intensive and
I/O-intensive if the Oracle Dept table is large.

data keyvalues;
deptno=30;

Optimizing Your SQL Usage � Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options 49

output;
deptno=10;
output;

run;

libname dblib oracle user=testuser password=testpass
path=’myorapath’ multi_datasrc_opt=in_clause;

proc sql;
select bigtab.deptno, bigtab.loc
from dblib.dept bigtab,

keyvalues smallds
where bigtab.deptno=smallds.deptno;

quit;

The SQL statement that SAS/ACCESS creates and passes to the DBMS is similar to
the following

SELECT "DEPTNO", "LOC" FROM DEPT WHERE (("DEPTNO" IN (10,30)))

Using DBKEY or DBINDEX decreases performance when the SAS data set is too
large. These options cause each value in the transaction data set to generate a new
result set (or open cursor) from the DBMS table. For example, if your SAS data set has
100 observations with unique key values, you request 100 result sets from the DBMS,
which might be very expensive. Determine whether use of these options is appropriate,
or whether you can achieve better performance by reading the entire DBMS table (or by
creating a subset of the table).

DBINDEX= and DBKEY= are mutually exclusive. If you specify them together,
DBKEY= overrides DBINDEX=. Both of these options are ignored if you specify the
SAS/ACCESS data set option DBCONDITION= or the SAS data set option WHERE=.

DBKEY= does not require that any database indexes be defined; nor does it check
the DBMS system tables. This option instructs SAS to use the specified DBMS column
name or names in the WHERE clause that is passed to the DBMS in the join.

The DBKEY= option can also be used in a SAS DATA step, with the KEY= option in
the SET statement, to improve the performance of joins. You specify a value of
KEY=DBKEY in this situation. The following DATA step creates a new data file by
joining the data file KEYVALUES with the DBMS table MYTABLE. The variable
DEPTNO is used with the DBKEY= option to cause SAS/ACCESS to issue a WHERE
clause.

data sasuser.new;
set sasuser.keyvalues;
set dblib.mytable(dbkey=deptno) key=dbkey;

run;

Note: When you use DBKEY= with the DATA step MODIFY statement, there is no
implied ordering of the data that is returned from the database. If the master DBMS
table contains records with duplicate key values, using DBKEY= can alter the outcome
of the DATA step. Because SAS regenerates result sets (open cursors) during
transaction processing, the changes you make during processing have an impact on the
results of subsequent queries. Therefore, before you use DBKEY= in this context,
determine whether your master DBMS file has duplicate values for keys. Remember
that the REPLACE, OUTPUT, and REMOVE statements can cause duplicate values to
appear in the master table. �

The DBKEY= option does not require or check for the existence of indexes created on
the DBMS table. Therefore, the DBMS system tables are not accessed when you use
this option. The DBKEY= option is preferred over the DBINDEX= option for this

50 Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options � Chapter 5

reason. If you perform a join and use PROC SQL, you must ensure that the columns
that are specified through the DBKEY= option match the columns that are specified in
the SAS data set.

CAUTION:
Before you use the DBINDEX= option, take extreme care to evaluate some characteristics
of the DBMS data. The number of rows in the table, the number of rows returned in
the query, and the distribution of the index values in the table are among the factors
to take into consideration. Some experimentation might be necessary to discover the
optimum settings. �

You can use the DBINDEX= option instead of the DBKEY= option if you know that
the DBMS table has one or more indexes that use the column(s) on which the join is
being performed. Use DBINDEX=index-name if you know the name of the index, or use
DBINDEX=YES if you do not know the name of the index. Use this option as a data set
option, and not a LIBNAME option, because index lookup can potentially be an
expensive operation.

DBINDEX= requires that the join table must have a database index that is defined
on the columns involved in the join. If there is no index, then all processing of the join
takes place in SAS, where all rows from each table are read into SAS and SAS performs
the join.

Note: The data set options NULLCHAR= and NULLCHARVAL= determine how SAS
missing character values are handled during DBINDEX= and DBKEY= processing. �

51

C H A P T E R

6
Threaded Reads

Overview of Threaded Reads in SAS/ACCESS 51
Underlying Technology of Threaded Reads 51

SAS/ACCESS Interfaces and Threaded Reads 52

Scope of Threaded Reads 52

Options That Affect Threaded Reads 53

Generating Trace Information for Threaded Reads 54
Performance Impact of Threaded Reads 57

Autopartitioning Techniques in SAS/ACCESS 57

Data Ordering in SAS/ACCESS 58

Two-Pass Processing for SAS Threaded Applications 58

When Threaded Reads Do Not Occur 59

Summary of Threaded Reads 59

Overview of Threaded Reads in SAS/ACCESS
In SAS 8 and earlier, SAS opened a single connection to the DBMS to read a table.

SAS statements requesting data were converted to an SQL statement and passed to the
DBMS. The DBMS processed the SQL statement, produced a result set consisting of
table rows and columns, and transferred the result set back to SAS on the single
connection.

With a threaded read, you can reduce the table read time by retrieving the result set
on multiple connections between SAS and the DBMS. SAS can create multiple threads,
and a read connection is established between the DBMS and each SAS thread. The
result set is partitioned across the connections, and rows are passed to SAS
simultaneously (in parallel) across the connections, which improves performance.

Underlying Technology of Threaded Reads
To perform a threaded read, SAS first creates threads within the SAS session.

Threads are standard operating system tasks that SAS controls. SAS then establishes a
DBMS connection on each thread, causes the DBMS to partition the result set, and
reads one partition per thread. To cause the partitioning, SAS appends a WHERE
clause to the SQL so that a single SQL statement becomes multiple SQL statements,
one for each thread. Here is an example.

52 SAS/ACCESS Interfaces and Threaded Reads � Chapter 6

proc reg SIMPLE
data=dblib.salesdata (keep=salesnumber maxsales);

var _ALL_;
run;

Previous versions of SAS opened a single connection and issued:

SELECT salesnumber,maxsales FROM SALESDATA;

Assuming that SalesData has an integer column EmployeeNum, SAS 9.1, might open
two connections by issuing these statements:

SELECT salesnumber,maxsales FROM salesdata WHERE (EMPLOYEENUM mod 2)=0;

and

SELECT salesnumber,maxsales FROM SALESDATA WHERE (EMPLOYEENUM mod 2)=1;

See “Autopartitioning Techniques in SAS/ACCESS” on page 57 for more information
about MOD.

Note: Might is an important word here. Most but not all SAS/ACCESS interfaces
support threaded reads in SAS 9.1. The partitioning WHERE clauses that SAS
generates vary. In cases where SAS cannot always generate partitioning WHERE
clauses, the SAS user can supply them. In addition to WHERE clauses, other ways to
partition data might also exist. �

SAS/ACCESS Interfaces and Threaded Reads
Here are the SAS/ACCESS interfaces that support threaded reads. More interfaces

are expected to support threaded reads in future releases.
� Aster nCluster
� DB2 Under UNIX and PC Hosts
� DB2 Under z/OS
� Greenplum
� HP Neoview
� Informix
� ODBC
� Oracle (not supported under z/OS)
� Sybase
� Sybase IQ
� Teradata (supports only FastExport threaded reads on z/OS and UNIX; see

Teradata documentation for details)

Threaded reads work across all UNIX and Windows platforms where you run SAS.
For details about special considerations for Teradata on z/OS, see “Autopartitioning
Scheme for Teradata” on page 792.

Scope of Threaded Reads
SAS steps called threaded applications are automatically eligible for a threaded read.

Threaded applications are bottom-to-top fully threaded SAS procedures that perform

Threaded Reads � Options That Affect Threaded Reads 53

data reads, numerical algorithms, and data analysis in threads. Only some SAS
procedures are threaded applications. Here is a basic example of PROC REG, a SAS
threaded application:

libname lib oracle user=scott password=tiger;
proc reg simple
data=lib.salesdata (keep=salesnumber maxsales);
var _all_;
run;

For DBMSs, many more SAS steps can become eligible for a threaded read,
specifically, steps with a read-only table. A libref has the form Lib.DbTable, where Lib
is a SAS libref that "points" to DBMS data, and DbTable is a DBMS table. Here are
sample read-only tables for which threaded reads can be turned on:

libname lib oracle user=scott password=tiger;
proc print data=lib.dbtable;
run;

data local;
set lib.families;
where gender="F";
run;

An eligible SAS step can require user assistance to actually perform threaded reads.
If SAS cannot automatically generate a partitioning WHERE clause or otherwise
perform threaded reads, the user can code an option that supplies partitioning. To
determine whether SAS can automatically generate a partitioning WHERE clause, use
the SASTRACE= and SASTRACELOC= system options.

Threaded reads can be turned off altogether. This eliminates additional DBMS
activity associated with SAS threaded reads, such as additional DBMS connections and
multiple SQL statements.

Threaded reads are not supported for the Pass-Through Facility, in which you code
your own DBMS-specific SQL that is passed directly to the DBMS for processing.

Options That Affect Threaded Reads
For threaded reads from DBMSs, SAS/ACCESS provides these data set options:

DBLICE= and DBSLICEPARM=.
DBSLICE= applies only to a table reference. You can use it to code your own

WHERE clauses to partition table data across threads, and it is useful when you are
familiar with your table data. For example, if your DBMS table has a CHAR(1) column
Gender and your clients are approximately half female, Gender equally partitions the
table into two parts. Here is an example:

proc print data=lib.dbtable (dbslice=("gender=’f’" "gender=’m’"));
where dbcol>1000;
run;

SAS creates two threads and about half of the data is delivered in parallel on each
connection.

When applying DBSLICEPARM=ALL instead of DBSLICE=, SAS attempts to
"autopartition" the table for you. With the default DBSLICEPARM=THREADED_APPS
setting, SAS automatically attempts threaded reads only for SAS threaded applications,
which are SAS procedures that thread I/O and numeric operations.
DBSLICEPARM=ALL extends threaded reads to more SAS procedures, specifically

54 Generating Trace Information for Threaded Reads � Chapter 6

steps that only read tables. Or, DBSLICEPARM=NONE turns it off entirely. You can
specify it as a data set option, a LIBNAME option, or a global SAS option.

The first argument to DBSLICEPARM= is required and extends or restricts threaded
reads. The second optional argument is not commonly used and limits the number of
DBMS connections. These examples demonstrate the different uses of
DBSLICEPARM=.

� UNIX or Windows SAS invocation option that turns on threaded reads for all
read-only libref.

--dbsliceparm ALL

� Global SAS option that turns off threaded reads.

option dbsliceparm=NONE;

� LIBNAME option that restricts threaded reads to just SAS threaded applications.

libname lib oracle user=scott password=tiger dbsliceparm=THREADED_APPS;

� Table option that turns on threaded reads, with a maximum of three connections
in this example.

proc print data=lib.dbtable(dbsliceparm=(ALL,3));
where dbcol>1000;
run;

DBSLICE= and DBSLICEPARM= apply only to DBMS table reads. THREADS= and
CPUCOUNT= are additional SAS options that apply to threaded applications. For more
information about these options, see the SAS Language Reference: Dictionary.

Generating Trace Information for Threaded Reads
A threaded read is a complex feature. A SAS step can be eligible for a threaded read,

but not have it applied. Performance effect is not always easy to predict. Use the
SASTRACE option to see whether threaded reads occurred and to help assess
performance. These examples demonstrate usage scenarios with SAS/ACCESS to
Oracle. Keep in mind that trace output is in English only and changes from release to
release.

/*Turn on SAS tracing */
options sastrace=’’,,t,’’ sastraceloc=saslog nostsuffix;

/* Run a SAS job */

data work.locemp;
set trlib.MYEMPS(DBBSLICEPARM=(ALL,3));
where STATE in (’GA’, ’SC’, ’NC’) and ISTENURE=0;
run;

The above job produces these trace messages:

406 data work.locemp;
407 set trlib.MYEMPS(DBSLICEPARM=(ALL, 3));
408 where STATE in (’GA’, ’SC’, ’NC’) and ISTENURE=0;
409 run;

Threaded Reads � Generating Trace Information for Threaded Reads 55

ORACLE: DBSLICEPARM option set and 3 threads were requested
ORACLE: No application input on number of threads.

ORACLE: Thread 2 contains 47619 obs.
ORACLE: Thread 3 contains 47619 obs.
ORACLE: Thread 1 contains 47619 obs.
ORACLE: Threaded read enabled. Number of threads created: 3

If you want to see the SQL that is executed during the threaded read, you can set
tracing to sastrace=’,,t,d’ and run the job again. This time the output will contain the
threading information as well as all of the SQL statements processed by Oracle:

ORACLE_9: Prepared:
SELECT * FROM MYEMPS 418 data work.locemp;

419 set trlib.MYEMPS(DBSLICEPARM=(ALL, 3));
420 where STATE in (’GA’, ’SC’, ’NC’) and ISTENURE=0;
421 run;

ORACLE: DBSLICEPARM option set and 3 threads were requested
ORACLE: No application input on number of threads.

ORACLE_10: Executed:
SELECT "HIREDATE", "SALARY", "GENDER", "ISTENURE", "STATE", "EMPNUM", "NUMCLASSES"

FROM MYEMPS WHERE ((("STATE" IN (’GA’ , ’NC’ , ’SC’))) AND
("ISTENURE" = 0)) AND ABS(MOD("EMPNUM",3))=0

ORACLE_11: Executed:
SELECT "HIREDATE", "SALARY", "GENDER", "ISTENURE", "STATE", "EMPNUM", "NUMCLASSES"

FROM MYEMPS WHERE ((("STATE" IN (’GA’ , ’NC’ , ’SC’))) AND
("ISTENURE" = 0)) AND ABS(MOD("EMPNUM",3))=1

ORACLE_12: Executed:
SELECT "HIREDATE", "SALARY", "GENDER", "ISTENURE", "STATE", "EMPNUM", "NUMCLASSES"

FROM MYEMPS WHERE ((("STATE" IN (’GA’ , ’NC’ , ’SC’))) AND
("ISTENURE" = 0)) AND (ABS(MOD("EMPNUM",3))=2 OR "EMPNUM" IS NULL)

ORACLE: Thread 2 contains 47619 obs.
ORACLE: Thread 1 contains 47619 obs.
ORACLE: Thread 3 contains 47619 obs.
ORACLE: Threaded read enabled. Number of threads created: 3

Notice that the Oracle engine used the EMPNUM column as a partitioning column.
If a threaded read cannot be done either because all of the candidates for

autopartitioning are in the WHERE clause, or because the table does not contain a
column that fits the criteria, you will see a warning in your log. For example, the data
set below uses a WHERE clause that contains all possible autopartitioning columns:

data work.locemp;
set trlib.MYEMPS (DBLISCEPARM=ALL);
where EMPNUM<=30 and ISTENURE=0 and SALARY<=35000 and NUMCLASSES>2;
run;

56 Generating Trace Information for Threaded Reads � Chapter 6

You receive these warnings:

ORACLE: No application input on number of threads.
ORACLE: WARNING: Unable to find a partition column for use w/ MOD()
ORACLE: The engine cannot automatically generate the partitioning WHERE clauses.
ORACLE: Using only one read connection.
ORACLE: Threading is disabled due to an error. Application reverts to nonthreading

I/O’s.

If the SAS job contains any options that are invalid when the engine tries to perform
threading, you also receive a warning.

libname trlib oracle user=orauser pw=orapw path=oraserver DBSLICEPARM=(ALL);

proc print data=trlib.MYEMPS (OBS=10);
where EMPNUM<=30;
run;

This produces these message:

ORACLE: Threading is disabled due to the ORDER BY clause or the FIRSTOBS/OBS option.
ORACLE: Using only one read connection.

To produce timing information, add an ’s’ in the last slot of sastrace, as shown in this
example.

options sastrace=’,,t,s’ sastraceloc=saslog nostsuffix;

data work.locemp;
set trlib.MYEMPS (DBSLICEPARM=ALL);
where EMPNUM<=10000;
run;

Here is the resulting timing information.

ORACLE: No application input on number of threads.
ORACLE: Thread 1 contains 5000 obs.
ORACLE: Thread 2 contains 5000 obs.

Thread 0 fetched 5000 rows
DBMS Threaded Read Total Time: 1234 mS
DBMS Threaded Read User CPU: 46 mS
DBMS Threaded Read System CPU: 0 mS

Thread 1 fetched 5000 rows
DBMS Threaded Read Total Time: 469 mS
DBMS Threaded Read User CPU: 15 mS
DBMS Threaded Read System CPU: 15 mS
ORACLE: Threaded read enabled. Number of threads created: 2
NOTE: There were 10000 observations read from the data set TRLIB.MYEMPS.

WHERE EMPNUM<=10000;

Summary Statistics for ORACLE are: Total SQL prepare seconds were: 0.001675
Total seconds used by the ORACLE ACCESS engine were 7.545805

For more information about tracing, please see the SASTRACE documentation.

Threaded Reads � Autopartitioning Techniques in SAS/ACCESS 57

Performance Impact of Threaded Reads
Threaded reads only increase performance when the DBMS result set is large.

Performance is optimal when the partitions are similar in size. Using threaded reads
should reduce the elapsed time of your SAS step, but unusual cases can slow the SAS
step. They generally increase the workload on your DBMS.

For example, threaded reads for DB2 under z/OS involve a tradeoff, generally
reducing job elapsed time but increasing DB2 workload and CPU usage. See the auto
partitioning documentation for DB2 under z/OS for details.

SAS automatically tries to autopartition table references for SAS in threaded
applications. To determine whether autopartitioning is occurring and to assess its
performance, complete these tasks:

� Turn on SAS tracing to see whether SAS is autopartitioning and to view the SQL
associated with each thread.

� Know your DBMS algorithm for autopartitioning.
� Turn threaded reads on and off, and compare the elapsed times.

Follow these guidelines to ensure optimal tuning of threaded reads.
� Use it only when pulling large result sets into SAS from the DBMS.
� Use DBSLICE= to partition if SAS autopartitioning does not occur.
� Override autopartitioning with DBSLICE= if you can manually provide

substantially better partitioning. The best partitioning equally distributes the
result set across the threads.

� See the DBMS-specific reference section in this document for information and tips
for your DBMS.

Threaded reads are most effective on new, faster computer hardware running SAS,
and with a powerful parallel edition of the DBMS. For example, if SAS runs on a fast
uniprocessor or on a multiprocessor machine and your DBMS runs on a high-end SMP
server, you can experience substantial performance gains. However, you can experience
minimal gains or even performance degradation when running SAS on an old desktop
model with a nonparallel DBMS edition running on old hardware.

Autopartitioning Techniques in SAS/ACCESS
SAS/ACCESS products share an autopartitioning scheme based on the MOD

function. Some products support additional techniques. For example, if your Oracle
tables are physically partitioned in the DBMS, SAS/ACCESS Interface to Oracle
automatically partitions in accordance with Oracle physical partitions rather than
using MOD. SAS/ACCESS Interface to Teradata uses FastExport, if available, which
lets the FastExport Utility direct partitioning.

MOD is a mathematical function that produces the remainder of a division operation.
Your DBMS table must contain a column to which SAS can apply the MOD function —
a numeric column constrained to integral values. DBMS integer and small integer
columns suit this purpose. Integral decimal (numeric) type columns can work as well.
On each thread, SAS appends a WHERE clause to your SQL that uses the MOD
function with the numeric column to create a subset of the result set. Combined, these
subsets add up to exactly the result set for your original single SQL statement.

For example, assume that your original SQL that SAS produced is SELECT CHR1,
CHR2 FROM DBTAB and that table Dbtab contains integer column IntCol. SAS creates
two threads and issues:

58 Data Ordering in SAS/ACCESS � Chapter 6

SELECT CHR1, CHR2 FROM DBTAB WHERE (MOD(INTCOL,2)=0)

and

SELECT CHR1, CHR2 FROM DBTAB WHERE (MOD(INTCOL,2)=1)

Rows with an even value for IntCol are retrieved by the first thread. Rows with an odd
value for IntCol are retrieved by the second thread. Distribution of rows across the two
threads is optimal if IntCol has a 50/50 distribution of even and odd values.

SAS modifies the SQL for columns containing negative integers, for nullable
columns, and to combine SAS WHERE clauses with the partitioning WHERE clauses.
SAS can also run more than two threads. You use the second parameter of the
DBSLICEPARM= option to increase the number of threads.

The success of this technique depends on the distribution of the values in the chosen
integral column. Without knowledge of the distribution, your SAS/ACCESS product
attempts to pick the best possible column. For example, indexed columns are given
preference for some DBMSs. However, column selection is more or less a guess, and the
SAS guess might cause poor distribution of the result set across the threads. If no
suitable numeric column is found, MOD cannot be used at all, and threaded reads will
not occur if your SAS/ACCESS product has no other partitioning technique. For these
reasons, you should explore autopartitioning particulars for your DBMS and judiciously
use DBSLICE= to augment autopartitioning. See the information for your DBMS for
specific autopartitioning details.

� Aster nCluster
� DB2 Under UNIX and PC Hosts
� DB2 Under z/OS
� Greenplum
� HP Neoview
� Informix
� ODBC
� Oracle (not supported under z/OS)
� Sybase
� Sybase IQ
� Teradata (supports only FastExport threaded reads on z/OS and UNIX; see

Teradata documentation for details)

Data Ordering in SAS/ACCESS
The order in which table rows are delivered to SAS varies each time a step is rerun

with threaded reads. Most DBMS editions, especially increasingly popular parallel
editions, do not guarantee consistent ordering.

Two-Pass Processing for SAS Threaded Applications
Two-pass processing occurs when a SAS Teradata requests that data be made

available for multiple pass reading (that is, more than one pass through the data set).
In the context of DBMS engines, this requires that as the data is read from the
database, temporary spool files are written containing the read data. There is one
temporary spool file per thread, and each spool file will contain all data read on that

Threaded Reads � Summary of Threaded Reads 59

thread. If three threads are specified for threaded reads, then three temporary spool
files are written.

As the application requests subsequent passes of data, data is read from the
temporary spool files, not reread from the database. The temporary spool files can be
written on different disks, reducing any disk read contention, and enhancing
performance. To accomplish this, the SAS option UTILLOC= is used to define different
disk devices and directory paths when creating temporary spool files. There are several
ways to specify this option:

� In the SAS config file, add the line:

--utilloc("C:\path" "D:\path" "E:\path")

� Specify the UTILLOC= option on the SAS command line:
on Windows:

sas --utilloc(c:\path d:\path e:\path)

on UNIX:

sas --utilloc ’(\path \path2 \path3)’

For more information about the UTILLOC= SAS option, see the SAS Language
Reference: Dictionary.

When Threaded Reads Do Not Occur
Threading does not occur under these circumstances:
� when a BY statement is used in a PROC or DATA step
� when the OBS or the FIRSTOBS option is in a PROC or DATA step
� when the KEY or the DBKEY option is used PROC or DATA step
� if no column in the table exists to which SAS can apply the MOD function. For

more information, see “Autopartitioning Techniques in SAS/ACCESS” on page 57.
� if all columns within a table to which SAS can apply the MOD function are in

WHERE clauses. For more information, see “Autopartitioning Techniques in SAS/
ACCESS” on page 57.

� if the NOTHREADS system option is set
� if DBSLICEPARM=NONE

Summary of Threaded Reads
For large reads of table data, SAS threaded reads can speed up SAS jobs. They are

particularly useful when you understand the autopartitioning technique specific to your
DBMS and use DBSLICE= to manually partition only when appropriate. Look for
enhancements in future SAS releases.

60

61

C H A P T E R

7
How SAS/ACCESS Works

Introduction to How SAS/ACCESS Works 61
Installation Requirements

61

SAS/ACCESS Interfaces 61

How the SAS/ACCESS LIBNAME Statement Works 62

Accessing Data from a DBMS Object 62
Processing Queries, Joins, and Data Functions 62

How the SQL Pass-Through Facility Works 63

How the ACCESS Procedure Works 64

Overview of the ACCESS Procedure 64

Reading Data 64

Updating Data 65
How the DBLOAD Procedure Works 65

Introduction to How SAS/ACCESS Works

Installation Requirements

Before you use any SAS/ACCESS features, you must install Base SAS, the
SAS/ACCESS interface for the DBMS that you are accessing, and any required DBMS
client software. See SAS installation instructions and DBMS client installation
instructions for more information.

Not all SAS/ACCESS interfaces support all features. See the documentation for your
SAS/ACCESS interface to determine which features are supported in your environment.

SAS/ACCESS Interfaces
Each SAS/ACCESS interface consists of one or more data access engines that

translate read and write requests from SAS into appropriate calls for a specific DBMS.
The following image depicts the relationship between a SAS/ACCESS interface and a
relational DBMS.

62 How the SAS/ACCESS LIBNAME Statement Works � Chapter 7

Figure 7.1 How SAS Connects to the DBMS

SAS/ACCESS software

Engine

Interface
view engine

Pass-Through
Facility

DBMS
communication

module

ACCESS
procedure*

DBLOAD
procedure*

Vendor
client

libraries

Vendor
relational

DBMS

Client** Client** Server**

* The ACCESS procedure and the DBLOAD procedure are not supported by all SAS/ACCESS interfaces.
** In some cases, both client and server software can reside on the same machine.

You can invoke a SAS/ACCESS relational DBMS interface by using either a LIBNAME
statement or a PROC SQL statement. (You can also use the ACCESS and DBLOAD
procedures with some of the SAS/ACCESS relational interfaces. However, these
procedures are no longer the recommended way to access relational database data.)

How the SAS/ACCESS LIBNAME Statement Works

Accessing Data from a DBMS Object
You can use SAS/ACCESS to read, update, insert, and delete data from a DBMS

object as if it were a SAS data set. Here is how to do that:
1 You start a SAS/ACCESS interface by specifying a DBMS engine name and the

appropriate connection options in a LIBNAME statement.
2 You enter SAS requests as you would when accessing a SAS data set.
3 SAS/ACCESS generates DBMS-specific SQL statements that are equivalent to the

SAS requests that you enter.
4 SAS/ACCESS submits the generated SQL to the DBMS.

The SAS/ACCESS engine defines which operations are supported on a table and calls
code that translates database operations such as open, get, put, or delete into
DBMS-specific SQL syntax. SAS/ACCESS engines use an established set of routines
with calls that are tailored to each DBMS.

Processing Queries, Joins, and Data Functions
To enhance performance, SAS/ACCESS can also transparently pass queries, joins,

and data functions to the DBMS for processing (instead of retrieving the data from the

How SAS/ACCESS Works � How the SQL Pass-Through Facility Works 63

DBMS and then doing the processing in SAS). For example, an important use of this
feature is the handling of PROC SQL queries that access DBMS data. Here is how it
works:

1 PROC SQL examines each query to determine whether it might be profitable to
send all or part of the query to the DBMS for processing.

2 A special query textualizer in PROC SQL translates queries (or query fragments)
into DBMS-specific SQL syntax.

3 The query textualizer submits the translated query to the SAS/ACCESS engine for
approval.

4 If SAS/ACCESS approves the translation, it sends an approval message to PROC
SQL. The DBMS processes the query or query fragment and returns the results to
SAS. Any queries or query fragments that cannot be passed to the DBMS are
processed in SAS.

See the chapter on performance considerations for detailed information about tasks that
SAS/ACCESS can pass to the DBMS.

How the SQL Pass-Through Facility Works
When you read and update DBMS data with the SQL pass-through facility,

SAS/ACCESS passes SQL statements directly to the DBMS for processing. Here are
the steps:

1 Invoke PROC SQL and submit a PROC SQL CONNECT statement that includes a
DBMS name and the appropriate connection options to establish a connection with
a specified database.

2 Use a CONNECTION TO component in a PROC SQL SELECT statement to read
data from a DBMS table or view.

In the SELECT statement (that is, the PROC SQL query) that you write, use
the SQL that is native to your DBMS. SAS/ACCESS passes the SQL statements
directly to the DBMS for processing. If the SQL syntax that you enter is correct,
the DBMS processes the statement and returns any results to SAS. If the DBMS
does not recognize the syntax that you enter, it returns an error that appears in
the SAS log. The SELECT statement can be stored as a PROC SQL view. Here is
an example.

proc sql;
connect to oracle (user=scott password=tiger);
create view budget2000 as select amount_b,amount_s

from connection to oracle
(select Budgeted, Spent from annual_budget);

quit;

3 Use a PROC SQL EXECUTE statement to pass any dynamic, non-query SQL
statements (such as INSERT, DELETE, and UPDATE) to the database.

As with the CONNECTION TO component, all EXECUTE statements are
passed to the DBMS exactly as you submit them. INSERT statements must
contain literal values. For example:

proc sql;
connect to oracle(user=scott password=tiger);
execute (create view whotookorders as select ordernum, takenby,

firstname, lastname,phone from orders, employees
where orders.takenby=employees.empid) by oracle;

execute (grant select on whotookorders to testuser) by oracle;

64 How the ACCESS Procedure Works � Chapter 7

disconnect from oracle;
quit;

4 Terminate the connection with the DISCONNECT statement.

For more details, see Chapter 13, “The SQL Pass-Through Facility for Relational
Databases,” on page 425.

How the ACCESS Procedure Works

Overview of the ACCESS Procedure
When you use the ACCESS procedure to create an access descriptor, the

SAS/ACCESS interface view engine requests the DBMS to execute an SQL SELECT
statement to the data dictionary tables in your DBMS dynamically (by using
DBMS-specific call routines or interface software). The ACCESS procedure then issues
the equivalent of a DESCRIBE statement to gather information about the columns in
the specified table. Access descriptor information about the table and its columns is
then copied into the view descriptor when it is created. Therefore, it is not necessary for
SAS to call the DBMS when it creates a view descriptor.

Here is the process:
1 When you supply the connection information to PROC ACCESS, the SAS/ACCESS

interface calls the DBMS to connect to the database.
2 SAS constructs a SELECT * FROM table-name statement and passes it to the

DBMS to retrieve information about the table from the DBMS data dictionary. This
SELECT statement is based on the information you supplied to PROC ACCESS. It
enables SAS to determine whether the table exists and can be accessed.

3 The SAS/ACCESS interface calls the DBMS to get table description information,
such as the column names, data types (including width, precision, and scale), and
whether the columns accept null values.

4 SAS closes the connection with the DBMS.

Reading Data
When you use a view descriptor in a DATA step or procedure to read DBMS data, the

SAS/ACCESS interface view engine requests the DBMS to execute an SQL SELECT
statement. The interface view engine follows these steps:

1 Using the connection information that is contained in the created view descriptor,
the SAS/ACCESS interface calls the DBMS to connect to the database.

2 SAS constructs a SELECT statement that is based on the information stored in
the view descriptor (table name and selected columns and their characteristics)
and passes this information to the DBMS.

3 SAS retrieves the data from the DBMS table and passes it back to the SAS
procedures as if it were observations in a SAS data set.

4 SAS closes the connection with the DBMS.

For example, if you run the following SAS program using a view descriptor, the
previous steps are executed once for the PRINT procedure and a second time for the
GCHART procedure. (The data used for the two procedures is not necessarily the same

How SAS/ACCESS Works � How the DBLOAD Procedure Works 65

because the table might have been updated by another user between procedure
executions.)

proc print data=vlib.allemp;
run;

proc gchart data=vlib.allemp;
vbar jobcode;

run;

Updating Data
You use a view descriptor, DATA step, or procedure to update DBMS data in a

similar way as when you read in data. Any of these steps might also occur:
� Using the connection information that is contained in the specified access

descriptor, the SAS/ACCESS interface calls the DBMS to connect to the database.
� When rows are added to a table, SAS constructs an SQL INSERT statement and

passes it to the DBMS. When you reference a view descriptor, use the ADD
command in FSEDIT and FSVIEW, the APPEND procedure, or an INSERT
statement in PROC SQL to add data to a DBMS table. (You can also use the
EXECUTE statement for the SQL pass-through facility to add, delete, or modify
DBMS data directly. Literal values must be used when inserting data with the
SQL pass-through facility.)

� When rows are deleted from a DBMS table, SAS constructs an SQL DELETE
statement and passes it to the DBMS. When you reference a view descriptor, you
can use the DELETE command in FSEDIT and FSVIEW or a DELETE statement
in PROC SQL to delete rows from a DBMS table.

� When data in the rows is modified, SAS constructs an SQL UPDATE statement
and passes it to the DBMS. When you reference a view descriptor, you can use
FSEDIT, the MODIFY command in FSVIEW, or an INSERT statement in PROC
SQL to update data in a DBMS table. You can also reference a view descriptor in
the DATA step’s UPDATE, MODIFY, and REPLACE statements.

� SAS closes the connection with the DBMS.

How the DBLOAD Procedure Works
When you use the DBLOAD procedure to create a DBMS table, the procedure issues

dynamic SQL statements to create the table and insert data from a SAS data file,
DATA step view, PROC SQL view, or view descriptor into the table.

The SAS/ACCESS interface view engine completes these steps:
1 When you supply the connection information to PROC DBLOAD, the

SAS/ACCESS interface calls the DBMS to connect to the database.
2 SAS uses the information that is provided by the DBLOAD procedure to construct a

SELECT * FROM table-name statement, and passes the information to the DBMS
to determine whether the table already exists. PROC DBLOAD continues only if a
table with that name does not exist, unless you use the DBLOAD APPEND option.

3 SAS uses the information that is provided by the DBLOAD procedure to construct
an SQL CREATE TABLE statement and passes it to the DBMS.

4 SAS constructs an SQL INSERT statement for the current observation and passes
it to the DBMS. New INSERT statements are constructed and then executed
repeatedly until all observations from the input SAS data set are passed to the

66 How the DBLOAD Procedure Works � Chapter 7

DBMS. Some DBMSs have a bulk-copy capability that allows a group of
observations to be inserted at once. See your DBMS documentation to determine
whether your DBMS has this capability.

5 Additional non-query SQL statements that are specified in the DBLOAD
procedure are executed as the user submitted them. The DBMS returns an error
message if a statement does not execute successfully.

6 SAS closes the connection with the DBMS.

67

C H A P T E R

8
Overview of In-Database
Procedures

Introduction to In-Database Procedures 67
Running In-Database Procedures 69

In-Database Procedure Considerations and Limitations 70

Overview 70

Row Order 70

BY-Groups 70
LIBNAME Statement 71

Data Set-related Options 71

Miscellaneous Items 71

Using MSGLEVEL Option to Control Messaging 72

Introduction to In-Database Procedures
In the second and third maintenance releases for SAS 9.2, the following Base SAS,

SAS Enterprise Miner, SAS/ETS, and SAS/STAT procedures have been enhanced for
in-database processing.

Table 8.1 Procedures Enhanced for In-Database Processing

Procedure Name DBMS Supported

CORR* Teradata

CANCORR* Teradata

DMDB* Teradata

DMINE* Teradata

DMREG* Teradata

FACTOR* Teradata

FREQ Teradata, DB2 under UNIX and PC Hosts, Oracle

PRINCOMP* Teradata

RANK Teradata, DB2 under UNIX and PC Hosts, Oracle

REG* Teradata

REPORT Teradata, DB2 under UNIX and PC Hosts, Oracle

SCORE* Teradata

SORT Teradata, DB2 under UNIX and PC Hosts, Oracle

SUMMARY/MEANS Teradata, DB2 under UNIX and PC Hosts, Oracle

68 Introduction to In-Database Procedures � Chapter 8

Procedure Name DBMS Supported

TABULATE Teradata, DB2 under UNIX and PC Hosts, Oracle

TIMESERIES* Teradata

VARCLUS* Teradata

* SAS Analytics Accelerator is required to run these procedures inside the database. For more
information, see SAS Analytics Accelerator for Teradata: Guide.

Using conventional processing, a SAS procedure (by means of the SAS/ACCESS
engine) receives all the rows of the table from the database. All processing is done by
the procedure. Large tables mean that a significant amount of data must be transferred.

Using the new in-database technology, the procedures that are enabled for processing
inside the database generate more sophisticated queries that allow the aggregations
and analytics to be run inside the database. Some of the in-database procedures
generate SQL procedure syntax and use implicit pass-through to generate the native
SQL. Other in-database procedures generate native SQL and use explicit pass-through.
For more information about how a specific procedure works inside the database, see the
documentation for that procedure.

The queries submitted by SAS in-database procedures reference DBMS SQL
functions and, in some cases, the special SAS functions that are deployed inside the
database. One example of a special SAS function is the SAS_PUT() function that
enables you to execute PUT function calls inside Teradata. Other examples are SAS
functions for computing sum-of-squares-and-crossproducts (SSCP) matrices.

For most in–database procedures, a much smaller result set is returned for the
remaining analysis that is required to produce the final output. As a result of using the
in-database procedures, more work is done inside the database and less data movement
can occur. This could result in significant performance improvements.

This diagram illustrates the in-database procedure process.

Overview of In-Database Procedures � Running In-Database Procedures 69

Figure 8.1 Process Flow Diagram

SAS

Client Application

Install
Script

Format Publishing
(optional)

In-Database
Procedures

SQL +
SAS/ACCESS

Interfaces

DBMS

Format
Definitions

Deployed
Components

for In-Database
Processing

Running In-Database Procedures

To run in-database procedures, these actions must be taken:

� The SQLGENERATION system option or the SQLGENERATION LIBNAME
option must be set to DBMS.

The SQLGENERATION system option or LIBNAME statement option controls
whether and how in-database procedures are run inside the database. By default,
the SQLGENERATION system option is set to NONE and the in-database
procedures are run using conventional SAS processing, not inside the database.

Conventional SAS processing is also used when specific procedure statements
and options do not support in-database processing. For complete information, see
the “SQLGENERATION= System Option” on page 420 or “SQLGENERATION=
LIBNAME Option” on page 190.

70 In-Database Procedure Considerations and Limitations � Chapter 8

� The LIBNAME statement must point to a valid version of the DBMSs:
� Teradata server running version 12 or above for Linux
� DB2 UDB9.5 Fixpack 3 running only on AIX or Linus x64
� Oracle 9i

.

In-Database Procedure Considerations and Limitations

Overview
The considerations and limitations in the following sections apply to both Base SAS

and SAS/STAT in-database procedures.

Note: Each in-database procedure has its own specific considerations and
limitations. For more information, see the documentation for the procedure. �

Row Order
� DBMS tables have no inherent order for the rows. Therefore, the BY statement

with the NOTSORTED option, the OBS option, and the FIRSTOBS option will
prevent in-database processing.

� The order of rows written to a database table from a SAS procedure is not likely to
be preserved. For example, the SORT procedure can output a SAS data set that
contains ordered observations. If the results are written to a database table, the
order of rows within that table might not be preserved because the DBMS has no
obligation to maintain row order.

� You can print a table using the SQL procedure with an ORDER BY clause to get
consistent row order or you can use the SORT procedure to create an ordinary SAS
data set and use the PRINT procedure on that SAS data set.

BY-Groups
BY-group processing is handled by SAS for Base SAS procedures. Raw results are

returned from the DBMS, and SAS BY-group processing applies formats as necessary to
create the BY group.

For SAS/STAT procedures, formats can be applied, and BY-group processing can occur
inside the DBMS if the SAS_PUT() function and formats are published to the DBMS.
For more information, see the SAS Analytics Accelerator for Teradata: User’s Guide.

The following BY statement option settings apply to the in-database procedures:
� The DESCENDING option is supported.
� The NOTSORTED option is not supported because the results are dependent on

row order. DBMS tables have no inherent order for the rows.

By default, when SAS/ACCESS creates a database table, SAS/ACCESS uses the SAS
formats that are assigned to variables to decide which DBMS data types to assign to
the DBMS columns. If you specify the DBFMTIGNORE system option for numeric
formats, SAS/ACCESS creates DBMS columns with a DOUBLE PRECISION data type.
For more information, see the “Overview of the LIBNAME Statement for Relational

Overview of In-Database Procedures � Miscellaneous Items 71

Databases” on page 87, “LIBNAME Statement Data Conversions” on page 841, and
“DBFMTIGNORE= System Option” on page 404.

LIBNAME Statement
� These LIBNAME statement options and settings prevent in-database processing:

� DBMSTEMP=YES

� DBCONINIT

� DBCONTERM

� DBGEN_NAME=SAS

� PRESERVE_COL_NAMES=NO

� PRESERVE_TAB_NAMES=NO

� PRESERVE_NAMES=NO

� MODE=TERADATA

� LIBNAME concatenation prevents in-database processing.

Data Set-related Options
These data set options and settings prevent in-database processing:

� RENAME= on a data set.

� OUT= data set on DBMS and DATA= data set not on DBMS.

For example, you can have data=td.foo and out=work.fooout where WORK is the
Base SAS engine.

� DATA= and OUT= data sets are the same DBMS table.

� OBS= and FIRSTOBS= on DATA= data set.

Miscellaneous Items
These items prevent in-database processing:

� DBMSs do not support SAS passwords.

� SAS encryption requires passwords which are not supported.

� Teradata does not support generation options that are explicitly specified in the
procedure step, and the procedure does not know whether a generation number is
explicit or implicit.

� When the database resolves function references. the database searches in this
order:

1 fully qualified object name

2 current database

3 SYSLIB

If you need to reference functions that are published in a nonsystem, nondefault
database, you must use one of these methods:

� explicit SQL

� DATABASE= LIBNAME option

� map the fully qualified name (schema.sas_put) in the external mapping

72 Using MSGLEVEL Option to Control Messaging � Chapter 8

Using MSGLEVEL Option to Control Messaging
The MSGLEVEL system option specifies the level of detail in messages that are

written to the SAS log. When the MSGLEVEL option is set to N—the default
value—these messages are printed to the SAS log:

� A note that says SQL is used for in-database computations when in-database
processing is performed.

� Error messages if something goes wrong with the SQL commands that are
submitted for in-database computations.

� If there are SQL error messages, a note that says whether SQL is used.

When the MSGLEVEL option is set to I, all the messages that are printed when
MSGLEVEL=N are printed to the SAS log. These messages are also printed to the SAS
log:

� A note that explains why SQL was not used for in-database computations, if SQL
is not used.

Note: No note is printed if you specify SQLGENERATION=NONE. �
� A note that says that SQL cannot be used because there are no observations in the

data source.

Note: This information is not always available to the procedure. �

� If you try to create a special SAS data set as a DBMS table for PROC MEANS or
PROC SUMMARY, a note that says that the TYPE= attribute is not stored in
DBMS tables.

� If you are using a format that SAS supplies or a user-defined format, a note that
says if the format was or was not found in the database.

73

P A R T2

General Reference

Chapter 9.SAS/ACCESS Features by Host 75

Chapter 10.The LIBNAME Statement for Relational Databases 87

Chapter 11.Data Set Options for Relational Databases 203

Chapter 12.Macro Variables and System Options for Relational
Databases 401

Chapter 13.The SQL Pass-Through Facility for Relational Databases 425

74

75

C H A P T E R

9
SAS/ACCESS Features by Host

Introduction 75
SAS/ACCESS Interface to Aster nCluster: Supported Features 75

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts: Supported Features 76

SAS/ACCESS Interface to DB2 Under z/OS: Supported Features 77

SAS/ACCESS Interface to Greenplum: Supported Features 77

SAS/ACCESS Interface to HP Neoview: Supported Features 78
SAS/ACCESS Interface to Informix: Supported Features 78

SAS/ACCESS Interface to Microsoft SQL Server: Supported Features 79

SAS/ACCESS Interface to MySQL: Supported Features 79

SAS/ACCESS Interface to Netezza: Supported Features 80

SAS/ACCESS Interface to ODBC: Supported Features 81

SAS/ACCESS Interface to OLE DB: Supported Features 82
SAS/ACCESS Interface to Oracle: Supported Features 82

SAS/ACCESS Interface to Sybase: Supported Features 83

SAS/ACCESS Interface to Sybase IQ: Supported Features 84

SAS/ACCESS Interface to Teradata: Supported Features 85

Introduction

This section lists by host environment the features that are supported in each
SAS/ACCESS relational interface.

SAS/ACCESS Interface to Aster nCluster: Supported Features

Here are the features that SAS/ACCESS Interface to Aster nCluster supports. To
find out which versions of your DBMS are supported, see your system requirements
documentation.

Table 9.1 Features by Host Environment for Aster nCluster

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Linux x64 X X X

Linux for
Intel

X X X

76 SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts: Supported Features � Chapter 9

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Microsoft
Windows
x64

X X X

Microsoft
Windows
for Intel
(32- and
64-bit)

X X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4 and “Bulk Loading for Aster nCluster” on page 450.

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts: Supported
Features

Here are the features that SAS/ACCESS Interface to DB2 under UNIX and PC Hosts
supports. To find out which versions of your DBMS are supported, see your system
requirements documentation.

Table 9.2 Features by Host Environment for DB2 Under UNIX and PC Hosts

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX X X X X

HP-UX X X X X

HP-UX for
Itanium

X X X X

Linux x64 X X X X

Linux for
Intel

X X X X

Microsoft
Windows
x64

X X X X

Microsoft
Windows
for Intel

X X X X

Microsoft
Windows
for Itanium

X X X X

SAS/ACCESS Features by Host � SAS/ACCESS Interface to Greenplum: Supported Features 77

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Solaris for
SPARC

X X X X

Solaris x64 X X X X

For information about these features, see “Methods for Accessing Relational Database
Data” on page 4 and “Bulk Loading for DB2 Under UNIX and PC Hosts” on page 472.

SAS/ACCESS Interface to DB2 Under z/OS: Supported Features
Here are the features that SAS/ACCESS Interface to DB2 under z/OS supports. To

find out which versions of your DBMS are supported, see your system requirements
documentation.

Table 9.3 Features by Host Environment for DB2 Under z/OS

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

z/OS X X X X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4 and “Bulk Loading for DB2 Under z/OS” on page 515.

SAS/ACCESS Interface to Greenplum: Supported Features
Here are the features that SAS/ACCESS Interface to Greenplum supports. To find

out which versions of your DBMS are supported, see your system requirements
documentation.

Table 9.4 Features by Host Environment for Greenplum

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX X X X

HP-UX for
Itanium

X X X

Linux x64 X X X

Linux for
Intel

X X X

Microsoft
Windows
for Intel
(32-bit)

X X X

78 SAS/ACCESS Interface to HP Neoview: Supported Features � Chapter 9

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Microsoft
Windows
for Itanium

X X X

Solaris for
SPARC

X X X

Solaris x64 X X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4 and “Bulk Loading for Greenplum” on page 544.

SAS/ACCESS Interface to HP Neoview: Supported Features

Here are the features that SAS/ACCESS Interface to HP Neoview supports. To find
out which versions of your DBMS are supported, see your system requirements
documentation.

Table 9.5 Features by Host Environment for HP Neoview

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX X X X

HP-UX X X X

HP-UX for
Itanium

X X X

Linux for
Intel

X X X

Microsoft
Windows
for Intel

X X X

Solaris for
SPARC

X X X

For information about these features, see “Methods for Accessing Relational Database
Data” on page 4 and “Bulk Loading and Extracting for HP Neoview” on page 565.

SAS/ACCESS Interface to Informix: Supported Features

Here are the features that SAS/ACCESS Interface to Informix supports. To find out
which versions of your DBMS are supported, see your system requirements
documentation.

SAS/ACCESS Features by Host � SAS/ACCESS Interface to MySQL: Supported Features 79

Table 9.6 Features by Host Environment for Informix

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX X X

HP-UX X X

HP-UX for
Itanium

X X

Linux x64 X X

Solaris for
SPARC

X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4.

SAS/ACCESS Interface to Microsoft SQL Server: Supported Features
Here are the features that SAS/ACCESS Interface to Microsoft SQL Server supports.

To find out which versions of your DBMS are supported, see your system requirements
documentation.

Table 9.7 Features by Host Environment for Microsoft SQL Server

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX X X X

HP-UX X X X

HP-UX for
Itanium

X X X

Linux x64 X X X

Linux for
Intel

X X X

Solaris for
SPARC

X X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4.

SAS/ACCESS Interface to MySQL: Supported Features
Here are the features that SAS/ACCESS Interface to MySQL supports. To find out

which versions of your DBMS are supported, see your system requirements
documentation.

80 SAS/ACCESS Interface to Netezza: Supported Features � Chapter 9

Table 9.8 Features by Host Environment for MySQL

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX X X

HP-UX X X

HP-UX for
Itanium

X X

Linux x64 X X

Linux for
Intel

X X

Microsoft
Windows
for Intel

X X

Microsoft
Windows
for Itanium

X X

Solaris for
SPARC

X X

Solaris x64 X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4.

SAS/ACCESS Interface to Netezza: Supported Features

Here are the features that SAS/ACCESS 9.2 Interface to Netezza supports. To find
out which versions of your DBMS are supported, see your system requirements
documentation.

Table 9.9 Features by Host Environment for Netezza

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX X X X

HP-UX X X X

HP-UX for
Itanium

X X X

Linux x64 X X X

Linux for
Intel

X X X

SAS/ACCESS Features by Host � SAS/ACCESS Interface to ODBC: Supported Features 81

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Microsoft
Windows
x64

X X X

Microsoft
Windows
for Intel

X X X

Microsoft
Windows
for Itanium

X X X

OpenVMS
for Itanium

X X X

Solaris for
SPARC

X X X

Solaris x64 X X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4 and “Bulk Loading and Unloading for Netezza” on page 632.

SAS/ACCESS Interface to ODBC: Supported Features

Here are the features that SAS/ACCESS Interface to ODBC supports. To find out
which versions of your DBMS are supported, see your system requirements
documentation.

Table 9.10 Features by Host Environment for ODBC

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX X X X

HP-UX X X X

HP-UX for
Itanium

X X X

Linux x64 X X X

Linux for
Intel

X X X

Microsoft
Windows
x64

X X X X*

Microsoft
Windows
for Intel

X X X X*

82 SAS/ACCESS Interface to OLE DB: Supported Features � Chapter 9

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Microsoft
Windows
for Itanium

X X X X*

Solaris for
SPARC

X X X

Solaris x64 X X X

* Bulk-load support is available only with the Microsoft SQL Server driver on Microsoft Windows
platforms.

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4 and “Bulk Loading for ODBC” on page 676.

SAS/ACCESS Interface to OLE DB: Supported Features
Here are the features that SAS/ACCESS Interface to OLE DB supports. To find out

which versions of your DBMS are supported, see your system requirements
documentation.

Table 9.11 Features by Host Environment for OLE DB

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Microsoft
Windows
x64

X X X

Microsoft
Windows
for Intel

X X X

Microsoft
Windows
for Itanium

X X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4 and “Bulk Loading for OLE DB” on page 699.

SAS/ACCESS Interface to Oracle: Supported Features
Here are the features that SAS/ACCESS Interface to Oracle supports. To find out

which versions of your DBMS are supported, see your system requirements
documentation.

SAS/ACCESS Features by Host � SAS/ACCESS Interface to Sybase: Supported Features 83

Table 9.12 Features by Host Environment for Oracle

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX X X X X X

HP-UX X X X X X

HP-UX for
Itanium

X X X X X

Linux x64 X X X X X

Linux for
Intel

X X X X X

Linux for
Itanium

X X X X X

Microsoft
Windows
x64

X X X X X

Microsoft
Windows
for Intel

X X X X X

Microsoft
Windows
for Itanium

X X X X X

OpenVMS
for Itanium

X X X X X

Solaris for
SPARC

X X X X X

Solaris x64 X X X X X

z/OS X X X X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4 and “Bulk Loading for Oracle” on page 725.

SAS/ACCESS Interface to Sybase: Supported Features
Here are the features that SAS/ACCESS Interface to Sybase supports. To find out

which versions of your DBMS are supported, see your system requirements
documentation.

Table 9.13 Features by Host Environment for Sybase

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX X X X X X

HP-UX X X X X X

84 SAS/ACCESS Interface to Sybase IQ: Supported Features � Chapter 9

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

HP-UX for
Itanium

X X X X X

Linux x64 X X X X X

Linux for
Intel

X X X X X

Microsoft
Windows
for Intel

X X X X X

Microsoft
Windows
for Itanium

X X X X X

Solaris for
SPARC

X X X X X

Solaris x64 X X X X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4 and the BULKLOAD= data set option.

SAS/ACCESS Interface to Sybase IQ: Supported Features

Here are the features that SAS/ACCESS Interface to Sybase IQ supports. To find out
which versions of your DBMS are supported, see your system requirements
documentation.

Table 9.14 Features by Host Environment for Sybase IQ

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX X X X

HP-UX X X X

HP-UX for
Itanium

X X X

Linux x64 X X X

Linux for
Intel

X X X

Microsoft
Windows
for Intel

X X X

Microsoft
Windows
for x64

X X X

SAS/ACCESS Features by Host � SAS/ACCESS Interface to Teradata: Supported Features 85

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Solaris for
SPARC

X X X

Solaris x64 X X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4 and “Bulk Loading for Sybase IQ” on page 773.

SAS/ACCESS Interface to Teradata: Supported Features
Here are the features that SAS/ACCESS Interface to Teradata supports. To find out

which versions of your DBMS are supported, see your system requirements
documentation.

Table 9.15 Features by Host Environment for Teradata

Platform
SAS/ACCESS

LIBNAME
Statement

SQL Pass-
Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX (RS/
6000)

X X X

HP-UX X X X

HP-UX for
Itanium

X X X

Linux x64 X X X

Linux for
Intel

X X X

Microsoft
Windows
for Intel

X X X

Solaris for
SPARC

X X X

Solaris x64 X X X

Microsoft
Windows
for Itanium

X X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 4 and “Maximizing Teradata Load Performance” on page 804.

86

87

C H A P T E R

10
The LIBNAME Statement for
Relational Databases

Overview of the LIBNAME Statement for Relational Databases 87
Assigning Librefs 87

Sorting Data 87

Using SAS Functions 88

Assigning a Libref Interactively 88

LIBNAME Options for Relational Databases 92

Overview of the LIBNAME Statement for Relational Databases

Assigning Librefs
The SAS/ACCESS LIBNAME statement extends the SAS global LIBNAME

statement to enable you to assign a libref to a relational DBMS. This feature lets you
reference a DBMS object directly in a DATA step or SAS procedure. You can use it to
read from and write to a DBMS object as if it were a SAS data set. You can associate a
SAS libref with a relational DBMS database, schema, server, or group of tables and
views. This section specifies the syntax of the SAS/ACCESS LIBNAME statement and
provides examples. For details about the syntax, see “LIBNAME Statement Syntax for
Relational Databases” on page 89.

Sorting Data
When you use the SAS/ACCESS LIBNAME statement to associate a libref with

relational DBMS data, you might observe some behavior that differs from that of
normal SAS librefs. Because these librefs refer to database objects, such as tables and
views, they are stored in the format of your DBMS. DBMS format differs from the
format of normal SAS data sets. This is helpful to remember when you access and work
with DBMS data.

For example, you can sort the observations in a normal SAS data set and store the
output to another data set. However, in a relational DBMS, sorting data often has no
effect on how it is stored. Because you cannot depend on your data to be sorted in the
DBMS, you must sort the data at the time of query. Furthermore, when you sort DBMS
data, the results might vary depending on whether your DBMS places data with NULL
values (which are translated in SAS to missing values) at the beginning or the end of
the result set.

88 Using SAS Functions � Chapter 10

Using SAS Functions
When you use librefs that refer to DBMS data with SAS functions, some functions

might return a value that differs from what is returned when you use the functions
with normal SAS data sets. For example, the PATHNAME function might return a
blank value. For a normal SAS libref, a blank value means that the libref is not valid.
However, for a libref associated with a DBMS object, a blank value means only that
there is no pathname associated with the libref.

Usage of some functions might also vary. For example, the LIBNAME function can
accept an optional SAS-data-library argument. When you use the LIBNAME function to
assign or de-assign a libref that refers to DBMS data, you omit this argument. For full
details about how to use SAS functions, see the SAS Language Reference: Dictionary.

Assigning a Libref Interactively
An easy way to associate a libref with a relational DBMS is to use the New Library

window. One method to open this window is to issue the DMLIBASSIGN command
from your SAS session’s command box or command line. You can also open the window
by clicking the file cabinet icon in the SAS Explorer toolbar. In the following display,
the user Samantha assigns a libref MYORADB to an Oracle database that the SQL*Net
alias ORAHRDEPT references. By using the SCHEMA= LIBNAME option, Samantha
can access database objects that another user owns.

Display 10.1 New Library Window

Here is to use the features of the New Library window.
� Name: enter the libref that you want to assign to a SAS library or a relational

DBMS.
� Engine: click the down arrow to select a name from the pull-down listing.
� Enable at startup: click this if you want the specified libref to be assigned

automatically when you open a SAS session.
� Library Information: these fields represent the SAS/ACCESS connection

options and vary according to the SAS/ACCESS engine that you specify. Enter the
appropriate information for your site’s DBMS. The Options field lets you enter
SAS/ACCESS LIBNAME options. Use blanks to separate multiple options.

� OK : click this button to assign the libref, or click Cancel to exit the window
without assigning a libref.

The LIBNAME Statement for Relational Databases � LIBNAME Statement Syntax for Relational Databases 89

LIBNAME Statement Syntax for Relational Databases

Associates a SAS libref with a DBMS database, schema, server, or a group of tables and views.

Valid: Anywhere

Syntax
u LIBNAME libref engine-name

<SAS/ACCESS-connection-options>
<SAS/ACCESS-LIBNAME-options>;

v LIBNAME libref CLEAR|_ALL_ CLEAR;

w LIBNAME libref LIST|_ALL_ LIST;

Arguments
The SAS/ACCESS LIBNAME statement takes the following arguments:

libref
is any SAS name that serves as an alias to associate SAS with a database, schema,
server, or group of tables and views. Like the global SAS LIBNAME statement, the
SAS/ACCESS LIBNAME statement creates shortcuts or nicknames for data storage
locations. While a SAS libref is an alias for a virtual or physical directory, a
SAS/ACCESS libref is an alias for the DBMS database, schema, or server where
your tables and views are stored.

engine-name
is the SAS/ACCESS engine name for your DBMS, such as oracle or db2. The engine
name is required. Because the SAS/ACCESS LIBNAME statement associates a libref
with a SAS/ACCESS engine that supports connections to a particular DBMS, it
requires a DBMS-specific engine name. See the DBMS-specific reference section for
details.

SAS/ACCESS-connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS; these arguments are different for each
database. For example, to connect to an Oracle database, your connection options are
USER=, PASSWORD=, and PATH=:

libname myoralib oracle user=testuser password=testpass path=’voyager’;

If the connection options contain characters that are not allowed in SAS names,
enclose the values of the arguments in quotation marks. On some DBMSs, if you
specify the appropriate system options or environment variables for your database,
you can omit the connection options. For detailed information about connection
options for your DBMS, see the reference section for your SAS/ACCESS interface .

SAS/ACCESS-LIBNAME-options
define how DBMS objects are processed by SAS. Some LIBNAME options can
enhance performance; others determine locking or naming behavior. For example,
the PRESERVE_COL_NAMES= option lets you specify whether to preserve spaces,
special characters, and mixed case in DBMS column names when creating tables.
The availability and default behavior of many of these options are DBMS-specific.
For a list of the LIBNAME options that are available for your DBMS, see the

90 LIBNAME Statement Syntax for Relational Databases � Chapter 10

reference section for your SAS/ACCESS interface . For more information about
LIBNAME options, see “LIBNAME Options for Relational Databases” on page 92.

CLEAR
disassociates one or more currently assigned librefs.

Specify libref to disassociate a single libref. Specify _ALL_ to disassociate all
currently assigned librefs.

ALL
specifies that the CLEAR or LIST argument applies to all currently assigned librefs.

LIST
writes the attributes of one or more SAS/ACCESS libraries or SAS libraries to the
SAS log.

Specify libref to list the attributes of a single SAS/ACCESS library or SAS library.
Specify _ALL_ to list the attributes of all libraries that have librefs in your current
session.

Details

u Using Data from a DBMS You can use a LIBNAME statement to read from and
write to a DBMS table or view as if it were a SAS data set.

For example, in MYDBLIB.EMPLOYEES_Q2, MYDBLIB is a SAS libref that points
to a particular group of DBMS objects, and EMPLOYEES_Q2 is a DBMS table name.
When you specify MYDBLIB.EMPLOYEES_Q2 in a DATA step or procedure, you
dynamically access the DBMS table. SAS supports reading, updating, creating, and
deleting DBMS tables dynamically.

v Disassociating a Libref from a SAS Library To disassociate or clear a libref from a
DBMS, use a LIBNAME statement. Specify the libref (for example, MYDBLIB) and the
CLEAR option as shown here:

libname mydblib CLEAR;

You can clear a single specified libref or all current librefs.
The database engine disconnects from the database and closes any free threads or

resources that are associated with that libref’s connection.

w Writing SAS Library Attributes to the SAS Log Use a LIBNAME statement to write
the attributes of one or more SAS/ACCESS libraries or SAS libraries to the SAS log.
Specify libref to list the attributes of a single SAS/ACCESS library or SAS library, as
follows:

libname mydblib LIST;

Specify _ALL_ to list the attributes of all libraries that have librefs in your current
session.

SQL Views with Embedded LIBNAME Statements
With SAS software, you can embed LIBNAME statements in the definition of an SQL
view. This means that you can store a LIBNAME statement in an SQL view that
contains all information that is required to connect to a DBMS. Whenever the SQL view
is read, PROC SQL uses the embedded LIBNAME statement to assign a libref. After
the view has been processed, PROC SQL de-assigns the libref.

In this example, an SQL view of the Oracle table DEPT is created. Whenever you
use this view in a SAS program, the ORALIB library is assigned. The library uses the

The LIBNAME Statement for Relational Databases � LIBNAME Statement Syntax for Relational Databases 91

connection information (user name, password, and data source) that is provided in the
embedded LIBNAME statement.

proc sql;
create view sasuser.myview as

select dname from oralib.dept
using libname oralib oracle

user=scott pw=tiger datasrc=orsrv;
quit;

Note: You can use the USING LIBNAME syntax to embed LIBNAME statements in
SQL views. For more information about the USING LIBNAME syntax, see the PROC
SQL topic in the Base SAS Procedures Guide. �

Assigning a Libref with a SAS/ACCESS LIBNAME Statement

The following statement creates a libref, MYDBLIB, that uses the SAS/ACCESS
interface to DB2:

libname mydblib db2 ssid=db2a authid=testid server=os390svr;

The following statement associates the SAS libref MYDBLIB with an Oracle
database that uses the SQL*Net alias AIRDB_REMOTE. You specify the SCHEMA=
option on the SAS/ACCESS LIBNAME statement to connect to the Oracle schema in
which the database resides. In this example Oracle schemas reside in a database.

libname mydblib oracle user=testuser password=testpass
path=airdb_remote schema=hrdept;

The AIRDB_REMOTE database contains a number of DBMS objects, including
several tables, such as STAFF. After you assign the libref, you can reference the Oracle
table like a SAS data set and use it as a data source in any DATA step or SAS
procedure. In the following SQL procedure statement, MYDBLIB.STAFF is the
two-level SAS name for the STAFF table in the Oracle database AIRDB_REMOTE:

proc sql;
select idnum, lname

from mydblib.staff
where state=’NY’
order by lname;

quit;

You can use the DBMS data to create a SAS data set:

data newds;
set mydblib.staff(keep=idnum lname fname);

run;

You can also use the libref and data set with any other SAS procedure. This
statement prints the information in the STAFF table:

proc print data=mydblib.staff;
run;

This statement lists the database objects in the MYDBLIB library:

proc datasets library=mydblib;
quit;

92 LIBNAME Options for Relational Databases � Chapter 10

Using the Prompting Window When Specifying LIBNAME Options

The following statement uses the DBPROMPT= LIBNAME option to cause the DBMS
connection prompting window to appear and prompt you for connection information:

libname mydblib oracle dbprompt=yes;

When you use this option, you enter connection information into the fields in the
prompting window rather than in the LIBNAME statement.

You can add the DEFER=NO LIBNAME option to make the prompting window
appear at the time that the libref is assigned rather than when the table is opened:

libname mydblib oracle dbprompt=yes defer=no;

Assigning a Libref to a Remote DBMS

SAS/CONNECT (single-user) and SAS/SHARE (multiple user) software give you
access to data by means of remote library services (RLS). RLS lets you access your data
on a remote machine as if it were local. For example, it permits a graphical interface to
reside on the local machine while the data remains on the remote machine.

This access is given to data stored in many types of SAS files. Examples include
external databases (through the SAS/ACCESS LIBNAME statement and views that are
created with it) and SAS data views (views that are created with PROC SQL, the DATA
step, and SAS/ACCESS software). RLS lets you access SAS data sets, SAS views, and
relational DBMS data that SAS/ACCESS LIBNAME statements define. For more
information, see the discussion about remote library services in the SAS/SHARE User’s
Guide.

You can use RLS to update relational DBMS tables that are referenced with the
SAS/ACCESS LIBNAME statement.

In the following example, the SAS/ACCESS LIBNAME statement makes a
connection to a DB2 database that resides on the remote SAS/SHARE server
REMOS390. This LIBNAME statement is submitted in a local SAS session. The
SAS/ACCESS engine name is specified in the remote option RENGINE=. The DB2
connection option and any LIBNAME options are specified in the remote option
ROPTIONS=. Options are separated by a blank space. RLSDB2.EMPLOYEES is a SAS
data set that references the DB2 table EMPLOYEES.

libname rlsdb2 rengine=db2 server=remos390
roptions="ssid=db2a authid=testid";

proc print data=rlsdb2.employees;
run;

See Also
“Overview of the LIBNAME Statement for Relational Databases” on page 87

LIBNAME Options for Relational Databases
When you specify an option in the LIBNAME statement, it applies to all objects (such

as tables and views) in the database that the libref represents. For information about

The LIBNAME Statement for Relational Databases � ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS= LIBNAME Option 93

options that you specify on individual SAS data sets, see “About the Data Set Options
for Relational Databases” on page 207. For general information about the LIBNAME
statement, see “LIBNAME Statement Syntax for Relational Databases” on page 89.

Many LIBNAME options are also available for use with the SQL pass-through
facility. See the section on the SQL pass-through facility in the documentation for your
SAS/ACCESS interface to determine which LIBNAME options are available in the SQL
pass-through facility for your DBMS. For general information about SQL pass-through,
see “Overview of the SQL Pass-Through Facility” on page 425.

For a list of the LIBNAME options available in your SAS/ACCESS interface, see the
documentation for your SAS/ACCESS interface.

When a like-named option is specified in both the LIBNAME statement and after a
data set name, SAS uses the value that is specified on the data set name.

ACCESS= LIBNAME Option

Determines the access level with which a libref connection is opened.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
ACCESS=READONLY

Syntax Description

READONLY
specifies that you can read but not update tables and views.

Details
Using this option prevents writing to the DBMS. If this option is omitted, you can read
and update tables and views if you have the necessary DBMS privileges.

ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS= LIBNAME Option

Specifies whether to adjust the lengths of CHAR or VARCHAR data type columns that byte
semantics specify.

Default value: conditional (see “Syntax Description”)
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Oracle

94 ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS= LIBNAME Option � Chapter 10

Syntax
ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=YES | NO

Syntax Description

YES
indicates that column lengths are divided by the DBSERVER_MAX_BYTES= value
and then multiplied with the DBCLIENT_MAX_BYTES= value. So if
DBCLIENT_MAX_BYTES is greater than 1, then
ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=YES.

NO
indicates that any column lengths that byte semantics specify on the server are used
as is on the client. So if DBCLIENT_MAX_BYTES=1, then
ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=NO.

Examples

When ADJUST_BYTE_SEMANTICS_COLUMN_LENGTHS=YES, column lengths
that byte semantics creates are adjusted with client encoding, as shown in this example.

libname x3 &engine &connopt ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=YES;
proc contents data=x3.char_sem; run;
proc contents data=x3.nchar_sem; run;
proc contents data=x3.byte_sem; run;
proc contents data=x3.mixed_sem; run;

In this example, various options have different settings.

libname x5 &engine &connopt ADJUST_NCHAR_COLUMN_LENGTHS=NO
ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=NO DBCLIENT_MAX_BYTES=3;
proc contents data=x5.char_sem; run;
proc contents data=x5.nchar_sem; run;
proc contents data=x5.byte_sem; run;
proc contents data=x5.mixed_sem; run;

This example also uses different settings for the various options.

libname x6 &engine &connopt ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=YES
ADJUST_NCHAR_COLUMN_LENGTHS=YES DBCLIENT_MAX_BYTES=3;
proc contents data=x6.char_sem; run;
proc contents data=x6.nchar_sem; run;
proc contents data=x6.byte_sem; run;
proc contents data=x6.mixed_sem; run;

See Also
“ADJUST_NCHAR_COLUMN_LENGTHS= LIBNAME Option” on page 95
“DBCLIENT_MAX_BYTES= LIBNAME Option” on page 119
“DBSERVER_MAX_BYTES= LIBNAME Option” on page 136

The LIBNAME Statement for Relational Databases � ADJUST_NCHAR_COLUMN_LENGTHS= LIBNAME Option 95

ADJUST_NCHAR_COLUMN_LENGTHS= LIBNAME Option

Specifies whether to adjust the lengths of CHAR or VARCHAR data type columns.

Default value: YES

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Oracle

Syntax
ADJUST_NCHAR_COLUMN_LENGTHS=YES | NO

Syntax Description

YES
indicates that column lengths are multiplied by the DBSERVER_MAX_BYTES=
value.

NO
indicates that column lengths that NCHAR or NVARCHAR columns specify are
multiplied by the maximum number of bytes per character value of the national
character set for the database.

Examples

NCHAR column lengths are no longer adjusted to client encoding when
ADJUST_NCHAR_COLUMN_LENGTHS=NO, as shown in this example.

libname x2 &engine &connopt ADJUST_NCHAR_COLUMN_LENGTHS=NO;
proc contents data=x2.char_sem; run;
proc contents data=x2.nchar_sem; run;
proc contents data=x2.byte_sem; run;
proc contents data=x2.mixed_sem; run;

In this example, various options have different settings.

libname x5 &engine &connopt ADJUST_NCHAR_COLUMN_LENGTHS=NO
ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=NO DBCLIENT_MAX_BYTES=3;
proc contents data=x5.char_sem; run;
proc contents data=x5.nchar_sem; run;
proc contents data=x5.byte_sem; run;
proc contents data=x5.mixed_sem; run;

This example also uses different settings for the various options.

libname x6 &engine &connopt ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=YES
ADJUST_NCHAR_COLUMN_LENGTHS=YES DBCLIENT_MAX_BYTES=3;
proc contents data=x6.char_sem; run;
proc contents data=x6.nchar_sem; run;
proc contents data=x6.byte_sem; run;
proc contents data=x6.mixed_sem; run;

96 AUTHDOMAIN= LIBNAME Option � Chapter 10

See Also
“ADJUST_NCHAR_COLUMN_LENGTHS= LIBNAME Option” on page 95

“DBCLIENT_MAX_BYTES= LIBNAME Option” on page 119
“DBSERVER_MAX_BYTES= LIBNAME Option” on page 136

AUTHDOMAIN= LIBNAME Option

Allows connection to a server by specifying the name of an authentication domain metadata object.

Default value: none

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
AUTHDOMAIN=auth-domain

Syntax Description

auth-domain
name of an authentication domain metadata object.

Details
If you specify AUTHDOMAIN=, you must specify SERVER=. However, the
authentication domain references credentials so that you do not need to explicitly
specify USER= and PASSWORD=. An example is authdomain=MyServerAuth.

An administrator creates authentication domain definitions while creating a user
definition with the User Manager in SAS Management Console. The authentication
domain is associated with one or more login metadata objects that provide access to the
server and is resolved by the DBMS engine calling the SAS Metadata Server and
returning the authentication credentials.

The authentication domain and the associated login definition must be stored in a
metadata repository and the metadata server must be running in order to resolve the
metadata object specification.

For complete information about creating and using authentication domains, see the
credential management topic in SAS Intelligence Platform: Security Administration
Guide.

AUTHID= LIBNAME Option

Allows qualified table names with an authorization ID, a user ID, or a group ID.

The LIBNAME Statement for Relational Databases � AUTOCOMMIT= LIBNAME Option 97

Alias: SCHEMA=
Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: DB2 under z/OS

Syntax
AUTHID=authorization-ID

Syntax Description

authorization-ID
cannot exceed eight characters.

Details
When you specify the AUTHID= option, every table that is referenced by the libref is
qualified as authid.tablename before any SQL code is passed to the DBMS. If you do not
specify a value for AUTHID=, the table name is not qualified before it is passed to the
DBMS. After the DBMS receives the table name, it automatically qualifies it with your
user ID. You can override the LIBNAME AUTHID= option by using the AUTHID= data
set option. This option is not validated until you access a table.

See Also
To apply this option to an individual data set, see the “AUTHID= Data Set Option”

on page 208.

AUTOCOMMIT= LIBNAME Option

Indicates whether updates are committed immediately after they are submitted.

Default value: DBMS-specific (see “Details”)
Valid in: SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. See the DBMS-specific reference section for details.
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP Neoview,
Informix, Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Sybase, Sybase IQ

Syntax
AUTOCOMMIT=YES | NO

98 BL_KEEPIDENTITY= LIBNAME Option � Chapter 10

Syntax Description

YES
specifies that all updates, deletes, and inserts are committed (that is, saved to a
table) immediately after they are submitted, and no rollback is possible.

NO
specifies that the SAS/ACCESS engine automatically performs the commit when it
reaches the DBCOMMIT= value, or the default number of rows if DBCOMMIT is not
set.

Details
If you are using the SAS/ACCESS LIBNAME statement, the default is NO if the data
source provider supports transactions and the connection is to update data.

Informix, MySQL: The default is YES.
Netezza: The default is YES for PROC PRINT but NO for updates and for the main

LIBNAME connection. For read-only connections and the SQL pass-through facility, the
default is YES.

See Also
To apply this option to an individual data set, see the “AUTOCOMMIT= Data Set

Option” on page 209.

BL_KEEPIDENTITY= LIBNAME Option

Determines whether the identity column that is created during bulk loading is populated with
values that Microsoft SQL Server generates or with values that the user provides.

Default value: NO

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: OLE DB

Syntax
BL_KEEPIDENTITY=YES | NO

Syntax Description

YES
specifies that the user must provide values for the identity column.

NO
specifies that Microsoft SQL Server generates values for an identity column in the
table.

The LIBNAME Statement for Relational Databases � BL_KEEPNULLS= LIBNAME Option 99

Details
This option is valid only when you use the Microsoft SQL Server provider.

See Also
To apply this option to an individual data set, see the “BL_KEEPIDENTITY= Data

Set Option” on page 260.

BL_KEEPNULLS= LIBNAME Option

Indicates how NULL values in Microsoft SQL Server columns that accept NULL are handled during
bulk loading.

Default value: YES
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: OLE DB

Syntax
BL_KEEPNULLS=YES | NO

Syntax Description

YES
specifies that Microsoft SQL Server preserves NULL values inserted by the OLE DB
interface.

NO
specifies that Microsoft SQL Server replaces NULL values that are inserted by the
OLE DB interface with a default value (as specified in the DEFAULT constraint).

Details
This option only affects values in Microsoft SQL Server columns that accept NULL and
have a DEFAULT constraint.

See Also
To apply this option to an individual data set, see the “BL_KEEPNULLS= Data Set

Option” on page 261.

100 BL_LOG= LIBNAME Option � Chapter 10

BL_LOG= LIBNAME Option

Specifies the name of the error file to which all errors are written when BULKLOAD=YES.

Default value: none

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Microsoft SQL Server, ODBC

Syntax

BL_LOG=filename

Details

This option is valid only for connections to Microsoft SQL Server. If BL_LOG= is not
specified, errors are not recorded during bulk loading.

See Also

To apply this option to an individual data set, see the “BL_LOG= Data Set Option”
on page 263.

BL_NUM_ROW_SEPS= LIBNAME Option

Specifies the number of newline characters to use as the row separator for the load or extract data
stream.

Default value: 1

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: HP Neoview

Syntax

BL_NUM_ROW_SEPS=<integer>

Details

To specify this option, you must first set BULKLOAD=YES.
For this option you must specify an integer that is greater than 0.
If your character data contains newline characters and you want to avoid parsing

issues, you can specify a greater number for BL_NUM_ROW_SEPS=. This corresponds
to the records separated by clause in the HP Neoview Transporter control file.

The LIBNAME Statement for Relational Databases � BL_OPTIONS= LIBNAME Option 101

See Also
“BL_NUM_ROW_SEPS= Data Set Option” on page 266
“BULKEXTRACT= LIBNAME Option” on page 102
“BULKEXTRACT= Data Set Option” on page 289
“BULKLOAD= Data Set Option” on page 290

BL_OPTIONS= LIBNAME Option

Passes options to the DBMS bulk-load facility, which affects how it loads and processes data.

Default value: not specified
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: ODBC, OLE DB

Syntax
BL_OPTIONS=’option <…, option>’

Details
You can use BL_OPTIONS= to pass options to the DBMS bulk-load facility when it is
called, thereby affecting how data is loaded and processed. You must separate multiple
options with commas and enclose the entire string of options in quotation marks.

By default, no options are specified. This option takes the same values as the -h
HINT option of the Microsoft BCP utility. See the Microsoft SQL Server documentation
for more information about bulk copy options.

This option is valid only when you use the Microsoft SQL Server driver or the
Microsoft SQL Server provider on Windows platforms.

ODBC: Supported hints are ORDER, ROWS_PER_BATCH,
KILOBYTES_PER_BATCH, TABLOCK, and CHECK_CONSTRAINTS. If you specify
UPDATE_LOCK_TYPE=TABLE, the TABLOCK hint is automatically added.

See Also
To apply this option to an individual data set, see the “BL_OPTIONS= Data Set

Option” on page 267.
“UPDATE_LOCK_TYPE= LIBNAME Option” on page 196

102 BULKEXTRACT= LIBNAME Option � Chapter 10

BULKEXTRACT= LIBNAME Option

Rapidly retrieves (fetches) a large number of rows from a data set.

Default value: NO

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: HP Neoview

Syntax
BULKEXTRACT=YES | NO

Syntax Description

YES
calls the HP Neoview Transporter to retrieve data from HP Neoview.

NO
uses standard HP Neoview result sets to retrieve data from HP Neoview.

Details
Using BULKEXTRACT=YES is the fastest way to retrieve large numbers of rows from
an HP Neoview table.

See Also
To apply this option to an individual data set, see the “BULKEXTRACT= Data Set

Option” on page 289.
“Bulk Loading and Extracting for HP Neoview” on page 565

BULKLOAD= LIBNAME Option

Determines whether SAS uses a DBMS facility to insert data into a DBMS table.

Alias: FASTLOAD= [Teradata]

Default value: NO

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: ODBC, OLE DB, Teradata

Syntax
BULKLOAD=YES | NO

The LIBNAME Statement for Relational Databases � BULKUNLOAD= LIBNAME Option 103

Syntax Description

YES
calls a DBMS-specific bulk-load facility to insert or append rows to a DBMS table.

NO
does not call the DBMS bulk-load facility.

Details
See these DBMS-specific reference sections for details.

� “Bulk Loading for ODBC” on page 676
� “Bulk Loading for OLE DB” on page 699
� “Maximizing Teradata Load Performance” on page 804

See Also
“BULKUNLOAD= LIBNAME Option” on page 103
“BULKLOAD= Data Set Option” on page 290
“BULKUNLOAD= Data Set Option” on page 291

BULKUNLOAD= LIBNAME Option

Rapidly retrieves (fetches) a large number of rows from a data set.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Netezza

Syntax
BULKUNLOAD=YES | NO

Syntax Description

YES
calls the Netezza Remote External Table interface to retrieve data from the Netezza
Performance Server.

NO
uses standard Netezza result sets to retrieve data from the DBMS.

104 CAST= LIBNAME Option � Chapter 10

Details
Using BULKUNLOAD=YES is the fastest way to retrieve large numbers of rows from a
Netezza table.

See Also
To apply this option to an individual data set, see the “BULKUNLOAD= Data Set

Option” on page 291.
“BULKLOAD= LIBNAME Option” on page 102
“Bulk Loading and Unloading for Netezza” on page 632

CAST= LIBNAME Option

Specifies whether SAS or the Teradata DBMS server performs data conversions.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Teradata

Syntax
CAST=YES | NO

Syntax Description

YES
forces data conversions (casting) to be done on the Teradata DBMS server and
overrides any data overhead percentage limit.

NO
forces data conversions to be done by SAS and overrides any data overhead
percentage limit.

The LIBNAME Statement for Relational Databases � CAST= LIBNAME Option 105

Details

Internally, SAS numbers and dates are floating-point values. Teradata has varying
formats for numbers, including integers, floating-point values, and decimal values.
Number conversion must occur when you are reading Teradata numbers that are not
floating point (Teradata FLOAT). SAS/ACCESS can use the Teradata CAST= function to
cause Teradata to perform numeric conversions. The parallelism of Teradata makes it
suitable for performing this work. This is especially true when running SAS on z/OS,
where CPU activity can be costly.

CAST= can cause more data to be transferred from Teradata to SAS, as a result of
the option forcing the Teradata type into a larger SAS type. For example, the CAST=
transfer of a Teradata BYTEINT to SAS floating point adds seven overhead bytes to
each row transferred.

The following Teradata types are candidates for casting:

� INTEGER

� BYTEINT

� SMALLINT

� DECIMAL

� DATE

SAS/ACCESS limits data expansion for CAST= to 20% to trade rapid data conversion
by Teradata for extra data transmission. If casting does not exceed a 20% data increase,
all candidate columns are cast. If the increase exceeds this limit, then SAS attempts to
cast Teradata DECIMAL types only. If casting only DECIMAL types still exceeds the
increase limit, data conversions are done by SAS.

You can alter the casting rules by using the CAST= or
CAST_OVERHEAD_MAXPERCENT= LIBNAME option. With
CAST_OVERHEAD_MAXPERCENT=, you can change the 20% overhead limit. With
CAST=, you can override the percentage rules:

� CAST=YES forces Teradata to cast all candidate columns.

� CAST=NO cancels all Teradata casting.

CAST= only applies when you are reading Teradata tables into SAS. It does not
apply when you are writing Teradata tables from SAS.

Also, CAST= only applies to SQL that SAS generates for you. If you supply your own
SQL with the explicit SQL feature of PROC SQL, you must code your own casting
clauses to force data conversions to occur in Teradata instead of SAS.

Examples

The following example demonstrates the use of the CAST= option in a LIBNAME
statement to force casting for all tables referenced:

libname mydblib teradata user=testuser pw=testpass cast=yes;
proc print data=mydblib.emp;
where empno<1000;
run;

proc print data=mydblib.sal;
where salary>50000;
run;

106 CAST_OVERHEAD_MAXPERCENT= LIBNAME Option � Chapter 10

The following example demonstrates the use of the CAST= option in a table reference
in order to turn off casting for that table:

proc print data=mydblib.emp (cast=no);
where empno<1000;
run;

See Also
“CAST= Data Set Option” on page 292
“CAST_OVERHEAD_MAXPERCENT= LIBNAME Option” on page 106

CAST_OVERHEAD_MAXPERCENT= LIBNAME Option

Specifies the overhead limit for data conversions to perform in Teradata instead of SAS.

Default value: 20%
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Teradata

Syntax
CAST_OVERHEAD_MAXPERCENT=<n>

Syntax Description

<n>
Any positive numeric value. The engine default is 20.

Details
Teradata INTEGER, BYTEINT, SMALLINT, and DATE columns require conversion
when read in to SAS. Either Teradata or SAS can perform conversions. When Teradata
performs the conversion, the row size that is transmitted to SAS using the Teradata
CAST operator can increase. CAST_OVERHEAD_MAXPERCENT= limits the allowable
increase, also called conversion overhead.

Examples

This example demonstrates the use of CAST_OVERHEAD_MAXPERCENT= to
increase the allowable overhead to 40%:

proc print data=mydblib.emp (cast_overhead_maxpercent=40);
where empno<1000;
run;

See Also
For more information about conversions, conversion overhead, and casting, see the

“CAST= LIBNAME Option” on page 104.

The LIBNAME Statement for Relational Databases � COMMAND_TIMEOUT= LIBNAME Option 107

CELLPROP= LIBNAME Option

Modifies the metadata and content of a result data set that the MDX command defines.

Default value: VALUE
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: OLE DB

Syntax
CELLPROP=VALUE | FORMATTED_VALUE

Syntax Description

VALUE
specifies that the SAS/ACCESS engine tries to return actual data values. If all
values in a column are numeric, then that column is defined as NUMERIC.

FORMATTED_VALUE
specifies that the SAS/ACCESS engine returns formatted data values. All columns
are defined as CHARACTER.

Details
When an MDX command is issued, the resulting data set might have columns that
contain one or more types of data values—the actual value of the cell or the formatted
value of the cell.

For example, if you issue an MDX command and the resulting data set contains a
column named SALARY, the column could contain data values of two types. It could
contain numeric values, such as 50000, or it could contain formatted values, such as
$50,000. Setting the CELLPROP= option determines how the values are defined and
the value of the column.

It is possible for a column in a result set to contain both NUMERIC and
CHARACTER data values. For example, a data set might return the data values of
50000, 60000, and UNKNOWN. SAS data sets cannot contain both types of data. In this
situation, even if you specify CELLPROP=VALUE, the SAS/ACCESS engine defines the
column as CHARACTER and returns formatted values for that column.

See Also
For more information about MDX commands, see “Accessing OLE DB for OLAP

Data” on page 700.

COMMAND_TIMEOUT= LIBNAME Option

Specifies the number of seconds to wait before a data source command times out.

Default value: 0

108 CONNECTION= LIBNAME Option � Chapter 10

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: OLE DB

Syntax
COMMAND_TIMEOUT=number-of-seconds

Syntax Description

number-of-seconds
is an integer greater than or equal to 0.

Details
The default value is 0, which means there is no time-out.

See Also
To apply this option to an individual data set, see the “COMMAND_TIMEOUT= Data

Set Option” on page 294.

CONNECTION= LIBNAME Option

Specifies whether operations on a single libref share a connection to the DBMS and whether
operations on multiple librefs share a connection to the DBMS.

Default value: DBMS-specific

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
CONNECTION=SHAREDREAD | UNIQUE | SHARED | GLOBALREAD | GLOBAL

Syntax Description
Not all values are valid for all SAS/ACCESS interfaces. See “Details.”

SHAREDREAD
specifies that all READ operations that access DBMS tables in a single libref share a
single connection. A separate connection is established for every table that is opened
for update or output operations.

Where available, this is usually the default value because it offers the best
performance and it guarantees data integrity.

The LIBNAME Statement for Relational Databases � CONNECTION= LIBNAME Option 109

UNIQUE
specifies that a separate connection is established every time a DBMS table is
accessed by your SAS application.

Use UNIQUE if you want each use of a table to have its own connection.

SHARED [not valid for MySQL]
specifies that all operations that access DBMS tables in a single libref share a single
connection.

Use this option with caution. When you use a single SHARED connection for
multiple table opens, a commit or rollback that is performed on one table that is
being updated also applies to all other tables that are opened for update. Even if you
open a table only for READ, its READ cursor might be resynchronized as a result of
this commit or rollback. If the cursor is resynchronized, there is no guarantee that
the new solution table will match the original solution table that was being read.

Use SHARED to eliminate the deadlock that can occur when you create and load a
DBMS table from an existing table that exists in the same database or tablespace.
This happens only in certain output processing situations and is the only
recommended for use with CONNECTION=SHARED.

Note: The CONNECTION= option influences only connections that you use to
open tables with a libref. When you set CONNECTION=SHARED, it has no
influence on utility connections or explicit pass-through connections. �

GLOBALREAD
specifies that all READ operations that access DBMS tables in multiple librefs share
a single connection if the following is true:

� the participating librefs are created by LIBNAME statements that specify
identical values for the CONNECTION=, CONNECTION_GROUP=,
DBCONINIT=, DBCONTERM=, DBLIBINIT=, and DBLIBTERM= options

� the participating librefs are created by LIBNAME statements that specify
identical values for any DBMS connection options.

A separate connection is established for each table that is opened for update or
output operations.

GLOBAL [not valid for MySQL]
specifies that all operations that access DBMS tables in multiple librefs share a
single connection if the following is true:

� All participating librefs that LIBNAME statements create specify identical
values for the CONNECTION=, CONNECTION_GROUP=, DBCONINIT=,
DBCONTERM=, DBLIBINIT=, and DBLIBTERM= options.

� All participating librefs that LIBNAME statements create specify identical
values for any DBMS connection options.

One connection is shared for all tables that any libref references for which you
specify CONNECTION=GLOBAL.

Use this option with caution. When you use a GLOBAL connection for multiple
table opens, a commit/rollback that is performed on one table that is being updated
also applies to all other tables that are opened for update. Even if you open a table
only for READ, its READ cursor might be resynchronized as a result of this commit/
rollback. If the cursor is resynchronized, there is no guarantee that the new solution
table will match the original solution table that was being read.

When you set CONNECTION=GLOBAL, any pass-through code that you include
after the LIBNAME statement can share the connection. For details, see the
“CONNECT Statement Example” on page 431 for the pass-through facility.

110 CONNECTION= LIBNAME Option � Chapter 10

Details
For most SAS/ACCESS interfaces, there must be a connection, also known as an attach,
to the DBMS server before any data can be accessed. Typically, each DBMS connection
has one transaction, or work unit, that is active in the connection. This transaction is
affected by any SQL commits or rollbacks that the engine performs within the
connection while executing the SAS application.

The CONNECTION= option lets you control the number of connections, and
therefore transactions, that your SAS/ACCESS interface executes and supports for each
LIBNAME statement.

GLOBALREAD is the default value for CONNECTION= when you specify
CONNECTION_GROUP=.

This option is supported by the SAS/ACCESS interfaces that support single
connections or multiple, simultaneous connections to the DBMS.

Aster nCluster, MySQL: The default value is UNIQUE.
Greenplum, HP Neoview, Microsoft SQL Server, Netezza, ODBC, Sybase IQ: If the

data source supports only one active open cursor per connection, the default value is
CONNECTION=UNIQUE. Otherwise, the default value is
CONNECTION=SHAREDREAD.

Teradata: For channel-attached systems (z/OS), the default is SHAREDREAD; for
network attached systems (UNIX and PC platforms), the default is UNIQUE.

Examples

In the following SHAREDREAD example, MYDBLIB makes the first connection to
the DBMS. This connection is used to print the data from MYDBLIB.TAB. MYDBLIB2
makes the second connection to the DBMS. A third connection is used to update
MYDBLIB.TAB. The third connection is closed at the end of the PROC SQL UPDATE
statement. The first and second connections are closed with the CLEAR option.

libname mydblib oracle user=testuser /* connection 1 */
pw=testpass path=’myorapath’
connection=sharedread;

libname mydblib2 oracle user=testuser /* connection 2 */
pw=testpass path=’myorapath’
connection=sharedread;

proc print data=mydblib.tab ...
proc sql; /* connection 3 */

update mydblib.tab ...

libname mydblib clear;
libname mydblib2 clear;

The LIBNAME Statement for Relational Databases � CONNECTION= LIBNAME Option 111

In the following GLOBALREAD example, the two librefs, MYDBLIB and
MYDBLIB2, share the same connection for read access because
CONNECTION=GLOBALREAD and the connection options are identical. The first
connection is used to print the data from MYDBLIB.TAB while a second connection is
made for updating MYDBLIB.TAB. The second connection is closed at the end of the
step. Note that the first connection is closed with the final LIBNAME statement.

libname mydblib oracle user=testuser /* connection 1 */
pw=testpass path=’myorapath’
connection=globalread;

libname mydblib2 oracle user=testuser
pw=testpass path=’myorapath’
connection=globalread;

proc print data=mydblib.tab ...
proc sql; /* connection 2 */

update mydblib.tab ...

libname mydblib clear; /* does not close connection 1 */
libname mydblib2 clear; /* closes connection 1 */

In the following UNIQUE example, the libref, MYDBLIB, does not establish a
connection. A connection is established in order to print the data from MYDBLIB.TAB.
That connection is closed at the end of the print procedure. Another connection is
established to update MYDBLIB.TAB. That connection is closed at the end of the PROC
SQL. The CLEAR option in the LIBNAME statement at the end of this example does
not close any connections.

libname mydblib oracle user=testuser
pw=testpass path=’myorapath’
connection=unique;

proc print data=mydblib.tab ...
proc sql;

update mydblib.tab ...

libname mydblib clear;

112 CONNECTION= LIBNAME Option � Chapter 10

In the following GLOBAL example for DB2 under z/OS, both PROC DATASETS
invocations appropriately report “no members in directory” because SESSION.B, as a
temporary table, has no entry in the system catalog SYSIBM.SYSTABLES. However,
the DATA _NULL_ step and SELECT * from PROC SQL step both return the expected
rows. For DB2 under z/OS, when SCHEMA=SESSION the database first looks for a
temporary table before attempting to access any physical schema named SESSION.

libname x db2 connection=global schema=SESSION;
proc datasets lib=x;
quit;

/*
* DBMS-specific code to create a temporary table impervious
* to commits, and then populate the table directly in the
* DBMS from another table.
*/
proc sql;
connect to db2(connection=global schema=SESSION);
execute (DECLARE GLOBAL TEMPORARY TABLE SESSION.B LIKE SASDXS.A

ON COMMIT PRESERVE ROWS
) by db2;

execute (insert into SESSION.B select * from SASDXS.A
) by db2;

quit;

/* Get at the temp table through the global libref. */
data _null_;
set x.b;
put _all_;
run;

/* Get at the temp table through the global connection. */
proc sql;
connect to db2 (connection=global schema=SESSION);
select * from connection to db2
(select * from SESSION.B);
quit;

proc datasets lib=x;
quit;

In the following SHARED example, DB2DATA.NEW is created in the database TEST.
Because the table DB2DATA.OLD exists in the same database, the option
CONNECTION=SHARED enables the DB2 engine to share the connection both for
reading the old table and for creating and loading the new table.

libname db2data db2 connection=shared;
data db2data.new (in = ’database test’);

set db2data.old;
run;

The LIBNAME Statement for Relational Databases � CONNECTION_GROUP= LIBNAME Option 113

In the following GLOBAL example, two different librefs share one connection.

libname db2lib db2 connection=global;
libname db2data db2 connection=global;
data db2lib.new(in=’database test’);

set db2data.old;
run;

If you did not use the CONNECTION= option in the above two examples, you would
deadlock in DB2 and get the following error:

ERROR: Error attempting to CREATE a DBMS table.
ERROR: DB2 execute error DSNT408I SQLCODE = --911,
ERROR: THE CURRENT UNIT OF WORK HAS BEEN ROLLED

BACK DUE TO DEADLOCK.

See Also
“ACCESS= LIBNAME Option” on page 93
“CONNECTION_GROUP= LIBNAME Option” on page 113
“DEFER= LIBNAME Option” on page 139

CONNECTION_GROUP= LIBNAME Option

Causes operations on multiple librefs and on multiple SQL pass-through facility CONNECT
statements to share a connection to the DBMS.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
CONNECTION_GROUP=connection-group-name

Syntax Description

connection-group-name
is the name of a connection group.

114 CONNECTION_GROUP= LIBNAME Option � Chapter 10

Details

This option causes a DBMS connection to be shared by all READ operations on multiple
librefs if the following is true:

� All participating librefs that LIBNAME statements create specify the same value
for CONNECTION_GROUP=.

� All participating librefs that LIBNAME statements create specify identical DBMS
connection options.

To share a connection for all operations against multiple librefs, specify
CONNECTION=GLOBAL on all participating LIBNAME statements. Not all
SAS/ACCESS interfaces support CONNECTION=GLOBAL.

If you specify CONNECTION=GLOBAL or CONNECTION=GLOBALREAD,
operations on multiple librefs can share a connection even if you omit
CONNECTION_GROUP=.

Informix: The CONNECTION_GROUP option enables multiple librefs or multiple
SQL pass-through facility CONNECT statements to share a connection to the DBMS.
This overcomes the Release 8.2 limitation where users were unable to access scratch
tables across step boundaries as a result of new connections being established with
every procedure.

Example

In the following example, the MYDBLIB libref shares a connection with MYDBLIB2
by specifying CONNECTION_GROUP=MYGROUP and by specifying identical
connection options. The libref MYDBLIB3 makes a second connection to another
connection group called ABC. The first connection is used to print the data from
MYDBLIB.TAB, and is also used for updating MYDBLIB.TAB. The third connection is
closed at the end of the step. Note that the first connection is closed by the final
LIBNAME statement for that connection. Similarly, the second connection is closed by
the final LIBNAME statement for that connection.

libname mydblib oracle user=testuser /* connection 1 */
pw=testpass
connection_group=mygroup;

libname mydblib2 oracle user=testuser
pw=testpass
connection_group=mygroup;

libname mydblib3 oracle user=testuser /* connection 2 */
pw=testpass
connection_group=abc;

proc print data=mydblib.tab ...
proc sql; /* connection 1 */

update mydblib.tab ...

libname mydblib clear; /* does not close connection 1*/
libname mydblib2 clear; /* closes connection 1 */
libname mydblib3 clear; /* closes connection 2 */

The LIBNAME Statement for Relational Databases � CURSOR_TYPE= LIBNAME Option 115

See Also
“CONNECTION= LIBNAME Option” on page 108

CONNECTION_TIMEOUT= LIBNAME Option

Specifies the number of seconds to wait before a connection times out.

Alias: CON_TIMEOUT=
Default value: 0
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: HP Neoview

Syntax
CONNECTION_TIMEOUT=number-of-seconds

Syntax Description

number-of-seconds
a number greater than or equal to 0. It represents the number of seconds that
SAS/ACCESS Interface to HP Neoview waits for any operation on the connection to
complete before returning to SAS. If the value is 0, which is the default, no time-out
occurs.

CURSOR_TYPE= LIBNAME Option

Specifies the cursor type for read-only and updatable cursors.

Default value: DBMS- and operation-specific
Valid in: SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. See the DBMS-specific reference section for details.
DBMS support: DB2 under UNIX and PC Hosts, Microsoft SQL Server, ODBC, OLE DB

116 CURSOR_TYPE= LIBNAME Option � Chapter 10

Syntax
CURSOR_TYPE=DYNAMIC | FORWARD_ONLY | KEYSET_DRIVEN | STATIC

Syntax Description

DYNAMIC
specifies that the cursor reflects all changes that are made to the rows in a result set
as you move the cursor. The data values and the membership of rows in the cursor
can change dynamically on each fetch. This is the default for the DB2 under UNIX
and PC Hosts, Microsoft SQL Server, and ODBC interfaces. For OLE DB details, see
“Details” on page 116.

FORWARD_ONLY [not valid for OLE DB]
specifies that the cursor functions like a DYNAMIC cursor except that it supports
only sequential fetching of rows.

KEYSET_DRIVEN
specifies that the cursor determines which rows belong to the result set when the
cursor is opened. However, changes that are made to these rows are reflected as you
scroll around the cursor.

STATIC
specifies that the cursor builds the complete result set when the cursor is opened. No
changes that are made to the rows in the result set after the cursor is opened are
reflected in the cursor. Static cursors are read-only.

Details
Not all drivers support all cursor types. An error is returned if the specified cursor type
is not supported. The driver is allowed to modify the default without an error. See your
database documentation for more information.

When no options have been set yet, here are the initial DBMS-specific defaults.

DB2 under UNIX
and PC Hosts

Microsoft SQL
Server ODBC OLE DB

KEYSET_DRIVEN DYNAMIC FORWARD_ONLY FORWARD_ONLY

The LIBNAME Statement for Relational Databases � CURSOR_TYPE= LIBNAME Option 117

Here are the operation-specific defaults.

Operation
DB2 under
UNIX and PC
Hosts

Microsoft
SQL Server ODBC OLE DB

insert

(UPDATE_SQL=NO)
KEYSET_DRIVEN DYNAMIC KEYSET_DRIVEN FORWARD_ONLY

read

(such as PROC PRINT)
driver default

driver default

(FORWARD_ONLY)

update

(UPDATE_SQL=NO)
KEYSET_DRIVEN DYNAMIC KEYSET_DRIVEN FORWARD_ONLY

CONNECTION=GLOBAL

CONNECTION=SHARED
DYNAMIC DYNAMIC

* n in Sybase IQ data types is equivalent to w in SAS formats.

OLE DB: Here are the OLE DB properties that are applied to an open row set. For
details, see your OLE DB programmer reference documentation.

CURSOR_TYPE= OLE DB Properties Applied

FORWARD_ONLY/DYNAMIC (see
“Details”)

DBPROP_OTHERINSERT=TRUE,
DBPROP_OTHERUPDATEDELETE=TRUE

KEYSET_DRIVEN DBPROP_OTHERINSERT=FALSE,
DBPROP_OTHERUPDATEDELET=TRUE

STATIC DBPROP_OTHERINSERT=FALSE,
DBPROP_OTHERUPDATEDELETE=FALSE

See Also
To apply this option to an individual data set, see the “CURSOR_TYPE= Data Set

Option” on page 295.

118 DB_LENGTH_SEMANTICS_BYTE= LIBNAME Option � Chapter 10

DB_LENGTH_SEMANTICS_BYTE= LIBNAME Option

Indicates whether CHAR/VARCHAR2 column lengths are specified in bytes or characters when
creating an Oracle table.

Default value: YES
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Oracle

Syntax
DB_LENGTH_SEMANTICS_BYTE=YES | NO

Syntax Description

YES
specifies that CHAR and VARCHAR2 column lengths are specified in characters
when creating an Oracle table. The byte length is derived by multiplying the number
of characters in SAS with DBSERVER_MAX_BYTES= value.

NO
specifies that CHAR and VARCHAR2 column lengths are specified in bytes when
creating an Oracle table. The CHAR keyword is also added next to the length value
to indicate that this is the character, not byte, length. For fixed-width encoding, the
number of characters is derived by dividing the byte length in SAS for the variable
by the value in DBCLIENT_MAX_BYTES=. For variable-width encoding, the
number of characters remains the same as the number of bytes.

Details
This option is appropriate only when creating Oracle tables from SAS. It is therefore

ignored in other contexts, such as reading or updating tables.
Length values chosen for variable-width encodings might be more than what is

actually needed.

See Also
“DBSERVER_MAX_BYTES= LIBNAME Option” on page 136

The LIBNAME Statement for Relational Databases � DBCLIENT_MAX_BYTES= LIBNAME Option 119

DBCLIENT_MAX_BYTES= LIBNAME Option

Specifies the maximum number of bytes per single character in the database client encoding,
which matches SAS encoding.

Default value: always set to match the maximum bytes per single character of SAS
session encoding (see “Details”)
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Oracle

Syntax
DBCLIENT_MAX_BYTES=max-client-bytes

Details
Use this option as the multiplying factor to adjust column lengths for CHAR and
NCHAR columns for client encoding. In most cases, you need not set this option
because the default is sufficient.

Examples

This example uses default values for all options.

libname x1 &engine &connopt
proc contents data=x1.char_sem; run;
proc contents data=x1.nchar_sem; run;
proc contents data=x1.byte_sem; run;
proc contents data=x1.mixed_sem; run;

In this example, various options have different settings.

libname x5 &engine &connopt ADJUST_NCHAR_COLUMN_LENGTHS=NO
ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=NO DBCLIENT_MAX_BYTES=3;
proc contents data=x5.char_sem; run;
proc contents data=x5.nchar_sem; run;
proc contents data=x5.byte_sem; run;
proc contents data=x5.mixed_sem; run;

This example also uses different settings for the various options.

libname x6 &engine &connopt ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=YES
ADJUST_NCHAR_COLUMN_LENGTHS=YES DBCLIENT_MAX_BYTES=3;
proc contents data=x6.char_sem; run;
proc contents data=x6.nchar_sem; run;
proc contents data=x6.byte_sem; run;
proc contents data=x6.mixed_sem; run;

120 DBCOMMIT= LIBNAME Option � Chapter 10

See Also

“ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS= LIBNAME Option” on page
93

“ADJUST_NCHAR_COLUMN_LENGTHS= LIBNAME Option” on page 95
“DBSERVER_MAX_BYTES= LIBNAME Option” on page 136

DBCOMMIT= LIBNAME Option

Causes an automatic COMMIT (a permanent writing of data to the DBMS) after a specified number
of rows have been processed.

Default value: 1000 when a table is created and rows are inserted in a single step (DATA
STEP); 0 when rows are inserted, updated, or deleted from an existing table (PROC
APPEND or PROC SQL inserts, updates, or deletes)

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP Neoview,
Informix, Microsoft SQL Server, Netezza, ODBC, OLE DB, Oracle, Sybase, Sybase IQ,
Teradata

Syntax

DBCOMMIT=n

Syntax Description

n
specifies an integer greater than or equal to 0.

Details

DBCOMMIT= affects update, delete, and insert processing. The number of rows that are
processed includes rows that are not processed successfully. If you set DBCOMMIT=0,
COMMIT is issued only once—after the procedure or DATA step completes.

If you explicitly set the DBCOMMIT= option, SAS/ACCESS fails any update with a
WHERE clause.

Note: If you specify both DBCOMMIT= and ERRLIMIT= and these options collide
during processing, COMMIT is issued first and ROLLBACK is issued second. Because
COMMIT is issued (through the DBCOMMIT= option) before ROLLBACK (through the
ERRLIMIT= option), DBCOMMIT= overrides ERRLIMIT=. �

DB2 under UNIX and PC Hosts: When BULKLOAD=YES, the default is 10000.
Teradata: See the FastLoad description in the Teradata section for the default

behavior of this option. DBCOMMIT= and ERRLIMIT= are disabled for MultiLoad to
prevent any conflict with ML_CHECKPOINT= data set option.

The LIBNAME Statement for Relational Databases � DBCONINIT= LIBNAME Option 121

See Also
To apply this option to an individual data set, see the “DBCOMMIT= Data Set

Option” on page 297.
“BULKLOAD= Data Set Option” on page 290
“ERRLIMIT= Data Set Option” on page 325
“Maximizing Teradata Load Performance” on page 804
“ML_CHECKPOINT= Data Set Option” on page 336
“Using FastLoad” on page 804

DBCONINIT= LIBNAME Option

Specifies a user-defined initialization command to execute immediately after every connection to
the DBMS that is within the scope of the LIBNAME statement or libref.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBCONINIT=<’>DBMS-user-command<’>

Syntax Description

DBMS-user-command
is any valid command that can be executed by the SAS/ACCESS engine and that
does not return a result set or output parameters.

Details
The initialization command that you select can be a stored procedure or any DBMS
SQL statement that might provide additional control over the interaction between your
SAS/ACCESS interface and the DBMS.

The command executes immediately after each DBMS connection is successfully
established. If the command fails, then a disconnect occurs and the libref is not
assigned. You must specify the command as a single, quoted string.

Note: The initialization command might execute more than once, because one
LIBNAME statement might have multiple connections—for example, one for reading
and one for updating. �

122 DBCONTERM= LIBNAME Option � Chapter 10

Examples

In the following example, the DBCONINIT= option causes the DBMS to apply the
SET statement to every connection that uses the MYDBLIB libref.

libname mydblib db2
dbconinit="SET CURRENT SQLID=’myauthid’";

proc sql;
select * from mydblib.customers;

insert into mydblib.customers
values(’33129804’, ’VA’, ’22809’, ’USA’,

’540/545-1400’, ’BENNETT SUPPLIES’, ’M. JONES’,
’2199 LAUREL ST’, ’ELKTON’, ’22APR97’d);

update mydblib.invoices
set amtbill = amtbill*1.10
where country = ’USA’;

quit;

In the following example, a stored procedure is passed to DBCONINIT=.

libname mydblib oracle user=testuser pass=testpass
dbconinit="begin dept_test(1001,25)";

end;

The SAS/ACCESS engine retrieves the stored procedure and executes it.

See Also
“DBCONTERM= LIBNAME Option” on page 122

DBCONTERM= LIBNAME Option

Specifies a user-defined termination command to execute before every disconnect from the DBMS
that is within the scope of the LIBNAME statement or libref.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBCONTERM=<’>DBMS-user-command<’>

The LIBNAME Statement for Relational Databases � DBCONTERM= LIBNAME Option 123

Syntax Description

DBMS-user-command
is any valid command that can be executed by the SAS/ACCESS engine and that
does not return a result set or output parameters.

Details
The termination command that you select can be a stored procedure or any DBMS SQL
statement that might provide additional control over the interaction between the
SAS/ACCESS engine and the DBMS. The command executes immediately before SAS
terminates each connection to the DBMS. If the command fails, then SAS provides a
warning message but the library deassignment and disconnect still occur. You must
specify the command as a single, quoted string.

Note: The termination command might execute more than once, because one
LIBNAME statement might have multiple connections—for example, one for reading
and one for updating. �

Examples

In the following example, the DBMS drops the Q1_SALES table before SAS
disconnects from the DBMS.

libname mydblib db2 user=testuser using=testpass
db=invoice bconterm=’drop table q1_sales’;

In the following example, the stored procedure, SALESTAB_STORED_PROC, is
executed each time SAS connects to the DBMS, and the BONUSES table is dropped
when SAS terminates each connection.

libname mydblib db2 user=testuser
using=testpass db=sales
dbconinit=’exec salestab_stored_proc’
dbconterm=’drop table bonuses’;

See Also
“DBCONINIT= LIBNAME Option” on page 121

124 DBCREATE_TABLE_OPTS= LIBNAME Option � Chapter 10

DBCREATE_TABLE_OPTS= LIBNAME Option

Specifies DBMS-specific syntax to add to the CREATE TABLE statement.

Default value: none

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBCREATE_TABLE_OPTS=’DBMS-SQL-clauses’

DBMS-SQL-clauses
are one or more DBMS-specific clauses that can be appended to the end of an SQL
CREATE TABLE statement.

Details
You can use DBCREATE_TABLE_OPTS= to add DBMS-specific clauses to the end of
the SQL CREATE TABLE statement. The SAS/ACCESS engine passes the SQL
CREATE TABLE statement and its clauses to the DBMS, which executes the statement
and creates the DBMS table. DBCREATE_TABLE_OPTS= applies only when you are
creating a DBMS table by specifying a libref associated with DBMS data.

See Also
To apply this option to an individual data set, see the “DBCREATE_TABLE_OPTS=

Data Set Option” on page 299.

DBGEN_NAME= LIBNAME Option

Specifies how SAS automatically renames to valid SAS variable names any DBMS columns that
contain characters that SAS does not allow.

Default value: DBMS

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBGEN_NAME=DBMS | SAS

The LIBNAME Statement for Relational Databases � DBINDEX= LIBNAME Option 125

Syntax Description

DBMS
specifies that SAS renames DBMS columns to valid SAS variable names. SAS
converts to underscores any characters that it does not allow. If it converts a column
to a name that already exists, it appends a sequence number at the end of the new
name.

SAS
specifies that SAS converts DBMS columns that contain characters that SAS does
not allow into valid SAS variable names. SAS uses the format _COLn, where n is the
column number, starting with 0. If SAS converts a name to a name that already
exists, it appends a sequence number at the end of the new name.

Details
SAS retains column names when it reads data from DBMS tables unless a column
name contains characters that SAS does not allow, such as $ or @. SAS allows
alphanumeric characters and the underscore (_).

This option is intended primarily for National Language Support, notably for the
conversion of kanji to English characters. English characters that are converted from
kanji are often those that SAS does not allow. Although this option works for the
single-byte character set (SBCS) version of SAS, SAS ignores it in the double-byte
character set (DBCS) version. So if you have the DBCS version, you must first set
VALIDVARNAME=ANY before using your language characters as column variables.

Each of the various SAS/ACCESS interfaces handled name collisions differently in
SAS 6. Some interfaces appended at the end of the name, some replaced one or more of
the final characters in the name, some used a single sequence number, and others used
unique counters. When you specify VALIDVARNAME=V6, SAS handles name collisions
as it did in SAS 6.

Examples

If you specify DBGEN_NAME=SAS, SAS renames a DBMS column named Dept$Amt
to _COLn. If you specify DBGEN_NAME=DBMS, SAS renames the Dept$Amt column to
Dept_Amt.

See Also
To apply this option to an individual data set, see the “DBGEN_NAME= Data Set

Option” on page 302.
“VALIDVARNAME= System Option” on page 423

DBINDEX= LIBNAME Option

Improves performance when processing a join that involves a large DBMS table and a small SAS
data set.

Default value: DBMS-specific

Valid in: SAS/ACCESS LIBNAME statement

126 DBLIBINIT= LIBNAME Option � Chapter 10

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP
Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Oracle,
Sybase, Sybase IQ, Teradata

Syntax
DBINDEX=YES | NO

Syntax Description

YES
specifies that SAS uses columns in the WHERE clause that have defined DBMS
indexes.

NO
specifies that SAS does not use indexes that are defined on DBMS columns.

Details
When you are processing a join that involves a large DBMS table and a relatively small
SAS data set, you might be able to use DBINDEX= to improve performance.

CAUTION:
Improper use of this option can degrade performance. �

See Also
To apply this option to an individual data set, see the “DBINDEX= Data Set Option”

on page 303.
For detailed information about using this option, see “Using the DBINDEX=,

DBKEY=, and MULTI_DATASRC_OPT= Options” on page 48.

DBLIBINIT= LIBNAME Option

Specifies a user-defined initialization command to execute once within the scope of the LIBNAME
statement or libref that established the first connection to the DBMS.

Default value: none

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBLIBINIT=<’>DBMS-user-command<’>

The LIBNAME Statement for Relational Databases � DBLIBINIT= LIBNAME Option 127

Syntax Description

DBMS-user-command
is any DBMS command that can be executed by the SAS/ACCESS engine and that
does not return a result set or output parameters.

Details
The initialization command that you select can be a script, stored procedure, or any
DBMS SQL statement that might provide additional control over the interaction
between your SAS/ACCESS interface and the DBMS.

The command executes immediately after the first DBMS connection is successfully
established. If the command fails, then a disconnect occurs and the libref is not
assigned. You must specify the command as a single, quoted string, unless it is an
environment variable.

DBLIBINIT= fails if either CONNECTION=UNIQUE or DEFER=YES, or if both of
these LIBNAME options are specified.

When multiple LIBNAME statements share a connection, the initialization command
executes only for the first LIBNAME statement, immediately after the DBMS
connection is established. (Multiple LIBNAME statements that use
CONNECTION=GLOBALREAD and identical values for CONNECTION_GROUP=,
DBCONINIT=, DBCONTERM=, DBLIBINIT=, and DBLIBTERM= options and any
DBMS connection options can share the same connection to the DBMS.)

Example

In the following example, CONNECTION=GLOBALREAD is specified in both
LIBNAME statements, but the DBLIBINIT commands are different. Therefore, the
second LIBNAME statement fails to share the same physical connection.

libname mydblib oracle user=testuser pass=testpass
connection=globalread dblibinit=’Test’;

libname mydblib2 oracle user=testuser pass=testpass
connection=globalread dblibinit=’NoTest’;

See Also
“CONNECTION= LIBNAME Option” on page 108
“DBLIBTERM= LIBNAME Option” on page 128
“DEFER= LIBNAME Option” on page 139

128 DBLIBTERM= LIBNAME Option � Chapter 10

DBLIBTERM= LIBNAME Option

Specifies a user-defined termination command to execute once, before the DBMS that is
associated with the first connection made by the LIBNAME statement or libref disconnects.

Default value: none

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax

DBLIBTERM=<’>DBMS-user-command<’>

Syntax Description

DBMS-user-command
is any DBMS command that can be executed by the SAS/ACCESS engine and that
does not return a result set or output parameters.

Details

The termination command that you select can be a script, stored procedure, or any
DBMS SQL statement that might provide additional control over the interaction
between the SAS/ACCESS engine and the DBMS. The command executes immediately
before SAS terminates the last connection to the DBMS. If the command fails, then
SAS provides a warning message but the library deassignment and disconnect still
occurs. You must specify the command as a single, quoted string.

DBLIBTERM= fails if either CONNECTION=UNIQUE or DEFER=YES or both of
these LIBNAME options are specified.

When two LIBNAME statements share the same physical connection, the
termination command is executed only once. (Multiple LIBNAME statements that use
CONNECTION=GLOBALREAD and identical values for CONNECTION_GROUP=,
DBCONINIT=, DBCONTERM=, DBLIBINIT=, and DBLIBTERM= options and any
DBMS connection options can share the same connection to the DBMS.)

Example

In the following example, CONNECTION=GLOBALREAD is specified on both
LIBNAME statements, but the DBLIBTERM commands are different. Therefore, the
second LIBNAME statement fails to share the same physical connection.

libname mydblib oracle user=testuser pass=testpass
connection=globalread dblibterm=’Test’;

libname mydblib2 oracle user=testuser pass=testpass
connection=globalread dblibterm=’NoTest’;

The LIBNAME Statement for Relational Databases � DBLINK= LIBNAME Option 129

See Also
“CONNECTION= LIBNAME Option” on page 108
“DBLIBINIT= LIBNAME Option” on page 126
“DEFER= LIBNAME Option” on page 139

DBLINK= LIBNAME Option

Specifies a link from your local database to database objects on another server [Oracle], or
specifies a link from your default database to another database on the server to which you are
connected [Sybase].

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Oracle, Sybase

Syntax
DBLINK=database-link

Details
Oracle: A link is a database object that is used to identify an object stored in a remote
database. A link contains stored path information and might also contain user name
and password information for connecting to the remote database. If you specify a link,
SAS uses the link to access remote objects. If you omit DBLINK=, SAS accesses objects
in the local database.

Sybase: This option lets you link to another database within the same server to
which you are connected. If you omit DBLINK=, SAS can access only objects in your
default database.

See Also
To apply this option to an individual data set, see the “DBMASTER= Data Set

Option” on page 308.

130 DBMAX_TEXT= LIBNAME Option � Chapter 10

DBMAX_TEXT= LIBNAME Option

Determines the length of any very long DBMS character data type that is read into SAS or written
from SAS when using a SAS/ACCESS engine.

Default value: 1024
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP Neoview,
MySQL, Microsoft SQL Server, Netezza, ODBC, OLE DB, Oracle, Sybase, Sybase IQ

Syntax
DBMAX_TEXT=<integer>

Syntax Description

integer
is an integer between 1 and 32,767.

Details
This option applies to reading, appending, and updating rows in an existing table. It
does not apply when you are creating a table.

Examples of a DBMS data type are the Sybase TEXT data type or the Oracle CLOB
(character large object) data type.

Oracle: This option applies for CHAR, VARCHAR2, CLOB, and LONG data types.

See Also
To apply this option to an individual data set, see the “DBMAX_TEXT= Data Set

Option” on page 309.

The LIBNAME Statement for Relational Databases � DBMSTEMP= LIBNAME Option 131

DBMSTEMP= LIBNAME Option

Specifies whether SAS creates temporary or permanent tables.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB,
Oracle, Sybase IQ, Teradata

Syntax
DBMSTEMP=YES | NO

Syntax Description

YES
specifies that SAS creates one or more temporary tables.

NO
specifies that SAS creates permanent tables.

Details
To specify this option, you must first specify CONNECTION=GLOBAL, except for
Microsoft SQL Server, which defaults to UNIQUE. To significantly improve
performance, you must also set DBCOMMIT=0. The value for SCHEMA= is ignored.
You can then access and use the DBMS temporary tables using SAS/ACCESS engine
librefs that share the global connection that SAS used to create those tables.

To join a temporary and a permanent table, you need a libref for each table and these
librefs must successfully share a global connection.

DB2 under z/OS, Oracle, and Teradata: Set INSERTBUFF=1000 or higher to
significantly improve performance.

ODBC: This engine supports DB2, MS SQL Server, or Oracle if you are connected to
them.

Examples

This example shows how to use this option to create a permanent and temporary
table and then join them in a query. The temporary table might not exist beyond a
single PROC step. However, this might not be true for all DBMSs.

options sastrace=(,,d,d) nostsuffix sastraceloc=saslog;

LIBNAME permdata DB2 DB=MA40 SCHEMA=SASTDATA connection=global dbcommit=0
USER=sasuser PASSWORD=xxx;

LIBNAME tempdata DB2 DB=MA40 SCHEMA=SASTDATA connection=global dbcommit=0
dbmstemp=yes USER=sasuser PASSWORD=xxx;

proc sql;
create table tempdata.ptyacc as

132 DBMSTEMP= LIBNAME Option � Chapter 10

(
select pty.pty_id
from permdata.pty_rb pty,

permdata.PTY_ARNG_PROD_RB acc
where acc.ACC_PD_CTGY_CD = ’LOC’
and acc.pty_id = pty.pty_id

group by pty.pty_id having count(*) > 5
);

create table tempdata.ptyacloc as
(
select ptyacc.pty_id,

acc.ACC_APPSYS_ID,
acc.ACC_CO_NO,
acc.ACCNO,
acc.ACC_SUB_NO,
acc.ACC_PD_CTGY_CD

from tempdata.ptyacc ptyacc,
perm data.PTY_ARNG_PROD_RB acc

where ptyacc.pty_id = acc.pty_id
and acc.ACC_PD_CTGY_CD = ’LOC’

);

create table tempdata.righttab as
(
select ptyacloc.pty_id
from permdata.loc_acc loc,

tempdata.ptyacloc ptyacloc
where

ptyacloc.ACC_APPSYS_ID = loc.ACC_APPSYS_ID
and ptyacloc.ACC_CO_NO = loc.ACC_CO_NO
and ptyacloc.ACCNO = loc.ACCNO
and ptyacloc.ACC_SUB_NO = loc.ACC_SUB_NO
and ptyacloc.ACC_PD_CTGY_CD = loc.ACC_PD_CTGY_CD
and loc.ACC_CURR_LINE_AM - loc.ACC_LDGR_BL > 20000

);

select * from tempdata.ptyacc
except
select * from tempdata.righttab;

drop table tempdata.ptyacc;
drop table tempdata.ptyacloc;
drop table tempdata.righttab;
quit;

.

See Also
“CONNECTION= LIBNAME Option” on page 108
“Temporary Table Support for SAS/ACCESS” on page 38

The LIBNAME Statement for Relational Databases � DBNULLKEYS= LIBNAME Option 133

DBNULLKEYS= LIBNAME Option

Controls the format of the WHERE clause when you use the DBKEY= data set option.

Default value: DBMS-specific
Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, Netezza, ODBC, OLE DB,
Oracle, Sybase IQ

Syntax
DBNULLKEYS=YES | NO

Details
If there might be NULL values in the transaction table or the master table for the
columns that you specify in the DBKEY= data set option, use DBNULLKEYS=YES.
This is the default for most interfaces. When you specify DBNULLKEYS=YES and
specify a column that is not defined as NOT NULL in the DBKEY= data set option,
SAS generates a WHERE clause that can find NULL values. For example, if you
specify DBKEY=COLUMN and COLUMN is not defined as NOT NULL, SAS generates
a WHERE clause with the following syntax:

WHERE ((COLUMN = ?) OR ((COLUMN IS NULL) AND (? IS NULL)))

This syntax enables SAS to prepare the statement once and use it for any value
(NULL or NOT NULL) in the column. Note that this syntax has the potential to be
much less efficient than the shorter form of the following WHERE clause. When you
specify DBNULLKEYS=NO or specify a column that the DBKEY= option defines as
NOT NULL, SAS generates a simple WHERE clause.

If you know that there are no NULL values in the transaction table or the master
table for the columns that you specify in the DBKEY= option, then you can use
DBNULLKEYS=NO. This is the default for the interface to Informix. If you specify
DBNULLKEYS=NO and specify DBKEY=COLUMN, SAS generates a shorter form of
the WHERE clause, regardless of whether the column specified in DBKEY= is defined
as NOT NULL:

WHERE (COLUMN = ?)

See Also
To apply this option to an individual data set, see the “DBNULLKEYS= Data Set

Option” on page 311.
“DBKEY= Data Set Option” on page 305

134 DBPROMPT= LIBNAME Option � Chapter 10

DBPROMPT= LIBNAME Option
Specifies whether SAS displays a window that prompts the user to enter DBMS connection
information before connecting to the DBMS in interactive mode.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
Interaction: DEFER= LIBNAME option
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP
Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC, Oracle, Sybase,
Sybase IQ, Teradata

Syntax
DBPROMPT=YES | NO

Syntax Description

YES
specifies that SAS displays a window that interactively prompts you for the DBMS
connection options the first time the libref is used.

NO
specifies that SAS does not display the prompting window.

Details
If you specify DBPROMPT=YES, it is not necessary to provide connection options with
the LIBNAME statement. If you do specify connection options with the LIBNAME
statement and you specify DBPROMPT=YES, then the connection option values are
displayed in the window (except for the password value, which appears as a series of
asterisks). You can override all of these values interactively.

The DBPROMPT= option interacts with the DEFER= LIBNAME option to determine
when the prompt window appears. If DEFER=NO, the DBPROMPT window opens
when the LIBNAME statement is executed. If DEFER=YES, the DBPROMPT window
opens the first time a table or view is opened. The DEFER= option normally defaults to
NO but defaults to YES if DBPROMPT=YES. You can override this default by explicitly
setting DEFER=NO.

The DBPROMPT window usually opens only once for each time that the LIBNAME
statement is specified. It might open multiple times if DEFER=YES and the connection
fails when SAS tries to open a table. In these cases, the DBPROMPT window opens
until a successful connection occurs or you click Cancel .

The maximum password length for most of the SAS/ACCESS LIBNAME interfaces is
32 characters.

Oracle: You can enter 30 characters for the USERNAME and PASSWORD and up to
70 characters for the PATH, depending on your platform.

Teradata: You can enter up to 30 characters for the USERNAME and PASSWORD.

Examples

In the following example, the DBPROMPT window does not open when the
LIBNAME statement is submitted because DEFER=YES. The DBPROMPT window

The LIBNAME Statement for Relational Databases � DBSASLABEL= LIBNAME Option 135

opens when the PRINT procedure is processed, a connection is made, and the table is
opened.

libname mydblib oracle dbprompt=yes
defer=yes;

proc print data=mydblib.staff;
run;

In the following example, the DBPROMPT window opens while the LIBNAME
statement is processing. The DBPROMPT window does not open in subsequent
statements because the DBPROMPT window opens only once per LIBNAME statement.

libname mydblib oracle dbprompt=yes
defer=no;

In the following example, values provided in the LIBNAME statement are pulled into
the DBPROMPT window. The values testuser and ABC_server appear in the
DBPROMPT window and can be edited and confirmed by the user. The password value
appears in the DBPROMPT window as a series of asterisks; it can also be edited by the
user.

libname mydblib oracle
user=testuser pw=testpass
path=’ABC_server’ dbprompt=yes defer=no;

See Also
To apply this option to a view descriptor, see the “DBPROMPT= Data Set Option” on

page 312.
“DEFER= LIBNAME Option” on page 139

DBSASLABEL= LIBNAME Option

Specifies the column labels an engine uses.

Default value: COMPAT
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBSASLABEL=COMPAT | NONE

Syntax Description

136 DBSERVER_MAX_BYTES= LIBNAME Option � Chapter 10

COMPAT
specifies that the labels returned should be compatible with what the application
normally receives—meaning that engines exhibit their normal behavior.

NONE
specifies that the engine does not return a column label. The engine returns blanks
for the column labels.

Details
By default, the SAS/ACCESS interface for your DBMS generates column labels from
the column names, rather than from the real column labels.

You can use this option to override the default behavior. It is useful for when PROC
SQL uses column labels as headers instead of column aliases.

Examples

The following example demonstrates how DBSASLABEL= is used as a LIBNAME
option to return blank column labels so that PROC SQL can use the column aliases as
the column headings.

libname x oracle user=scott pw=tiger;
proc sql;

select deptno as Department ID, loc as Location from mylib.dept(dbsaslabel=none);

Without DBSASLABEL=NONE, aliases would be ignored, and DEPTNO and LOC
would be used as column headings in the result set.

DBSERVER_MAX_BYTES= LIBNAME Option

Specifies the maximum number of bytes per single character in the database server encoding.

Default value: usually 1 (see “Details”)
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: DB2 under UNIX and PC Hosts, Oracle, Sybase

Syntax
DBSERVER_MAX_BYTES=max-server-bytes

Details
Use this option to derive (adjust the value of) the number of characters from the client
column lengths that byte semantics initially creates. Although the default is usually 1,
you can use this option to set it to another value if this information is available from
the Oracle server.

Sybase: You can use this option to specify different byte encoding between the SAS
client and the Sybase server. For example, if the client uses double-byte encoding and
the server uses multibyte encoding, specify DBSERVER_MAX_BYTES=3. In this case,
the SAS/ACCESS engine evaluates this option only if you specify a value that is greater
than 2. Otherwise, it indicates that both client and server use the same encoding
scheme.

The LIBNAME Statement for Relational Databases � DBSLICEPARM= LIBNAME Option 137

Examples

Only the lengths that you specify with DBSERVER_MAX_BYTES= affect column
lengths that byte semantics created initially.

libname x4 &engine &connopt DBSERVER_MAX_BYTES=4 DBCLIENT_MAX_BYTES=1
ADJUST_NCHAR_COLUMN_LENGTHS=no;
proc contents data=x4.char_sem; run;
proc contents data=x4.nchar_sem; run;
proc contents data=x4.byte_sem; run;
proc contents data=x4.mixed_sem; run;

In this example, various options have different settings.

libname x5 &engine &connopt ADJUST_NCHAR_COLUMN_LENGTHS=NO
ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=NO DBCLIENT_MAX_BYTES=3;
proc contents data=x5.char_sem; run;
proc contents data=x5.nchar_sem; run;
proc contents data=x5.byte_sem; run;
proc contents data=x5.mixed_sem; run;

This example also uses different settings for the various options.

libname x6 &engine &connopt ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=YES
ADJUST_NCHAR_COLUMN_LENGTHS=YES DBCLIENT_MAX_BYTES=3;
proc contents data=x6.char_sem; run;
proc contents data=x6.nchar_sem; run;
proc contents data=x6.byte_sem; run;
proc contents data=x6.mixed_sem; run;

See Also
“ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS= LIBNAME Option” on page

93
“ADJUST_NCHAR_COLUMN_LENGTHS= LIBNAME Option” on page 95
“DBCLIENT_MAX_BYTES= LIBNAME Option” on page 119
“DB_LENGTH_SEMANTICS_BYTE= LIBNAME Option” on page 118

DBSLICEPARM= LIBNAME Option

Controls the scope of DBMS threaded reads and the number of threads.

Default value: THREADED_APPS,2 (DB2 under z/OS, Oracle, Teradata),
THREADED_APPS,2 or 3 (DB2 under UNIX and PC Hosts, HP Neoview, Informix,
Microsoft SQL Server, ODBC, Sybase, Sybase IQ)
Valid in: SAS/ACCESS LIBNAME statement (Also available as a SAS configuration
option, SAS invocation option, global SAS option, or data set option)
DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, HP Neoview, Informix,
Microsoft SQL Server, ODBC, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBSLICEPARM=NONE | THREADED_APPS | ALL

138 DBSLICEPARM= LIBNAME Option � Chapter 10

DBSLICEPARM=(NONE | THREADED_APPS | ALL<max-threads>)

DBSLICEPARM=(NONE | THREADED_APPS | ALL<, max-threads>)

Syntax Description
Two syntax diagrams are shown here in order to highlight the simpler version. In

most cases, the simpler version suffices.

NONE
disables DBMS threaded read. SAS reads tables on a single DBMS connection, as it
did with SAS 8 and earlier.

THREADED_APPS
makes fully threaded SAS procedures (threaded applications) eligible for threaded
reads.

ALL
makes all read-only librefs eligible for threaded reads. This includes SAS threaded
applications, as well as the SAS DATA step and numerous SAS procedures.

max-threads
a positive integer value that specifies the number of threads that are used to read
the table in parallel. The second parameter of the DBSLICEPARM= LIBNAME
option determines the number of threads to read the table in parallel. The number of
partitions on the table determine the number of connections made to the Oracle
server for retrieving rows from the table. A partition or portion of the data is read on
each connection. The combined rows across all partitions are the same regardless of
the number of connections. Changes to the number of connections do not change the
result set. Increasing the number of connections instead redistributes the same
result set across more connections.

If the database table is not partitioned, SAS creates max-threads number of
connections with WHERE MOD()... predicates and the same number of threads.

There are diminishing returns when increasing the number of connections. With
each additional connection, more burden is placed on the DBMS, and a smaller
percentage of time saved on the SAS step. See the DBMS-specific reference section
for details about partitioned reads before using this parameter.

Details
You can use DBSLICEPARM= in numerous locations. The usual rules of option
precedence apply: A table option has the highest precedence, then a LIBNAME option,
and so on. SAS configuration file option has the lowest precedence because
DBSLICEPARM= in any of the other locations overrides that configuration setting.

DBSLICEPARM=ALL and DBSLICEPARM=THREADED_APPS make SAS programs
eligible for threaded reads. To see whether threaded reads are actually generated, turn
on SAS tracing and run a program, as shown in this example:

options sastrace=’’,,t’’ sastraceloc=saslog nostsuffix;
proc print data=lib.dbtable(dbsliceparm=(ALL));

where dbcol>1000;
run;

If you want to directly control the threading behavior, use the DBSLICE= data set
option.

DB2 under UNIX and PC Hosts, Informix, Microsoft SQL Server, ODBC, Sybase,
Sybase IQ: The default thread number depends on whether an application passes in the
number of threads (CPUCOUNT=) and whether the data type of the column that was
selected for purposes of data partitioning is binary.

The LIBNAME Statement for Relational Databases � DEFER= LIBNAME Option 139

Examples

Here is how to use DBSLICEPARM= in a PC SAS configuration file entry to turn off
threaded reads for all SAS users:

-dbsliceparm NONE

This example shows how to use DBSLICEPARM= as a z/OS invocation option to turn
on threaded reads for read-only references to DBMS tables throughout a SAS job:

sas o(dbsliceparm=ALL)

In this example, you can use DBSLICEPARM= as a SAS global option, most likely as
one of the first statements in your SAS code, to increase maximum threads to three for
SAS threaded applications:

option dbsliceparm=(threaded_apps,3);

You can use DBSLICEPARM= as a LIBNAME option to turn on threaded reads for
read-only table references that use this particular libref, as shown in this example:

libname dblib oracle user=scott password=tiger dbsliceparm=ALL;

In this example, you can use DBSLICEPARM= as a table level option to turn on
threaded reads for this particular table, requesting up to four connections:

proc reg SIMPLE;
data=dblib.customers (dbsliceparm=(all,4));
var age weight;
where years_active>1;

run;

See Also
“DBSLICEPARM= Data Set Option” on page 317

DEFER= LIBNAME Option

Specifies when the connection to the DBMS occurs.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DEFER=YES| NO

Syntax Description

140 DEGREE= LIBNAME Option � Chapter 10

NO
specifies that the connection to the DBMS occurs when the libref is assigned by a
LIBNAME statement.

YES
specifies that the connection to the DBMS occurs when a table in the DBMS is
opened.

Details
The default value of NO is overridden if DBPROMPT=YES.

The DEFER= option is ignored when CONNECTION=UNIQUE, because a
connection is performed every time a table is opened.

HP Neoview, Microsoft SQL Server, Netezza, ODBC: When you set DEFER=YES, you
must also set the PRESERVE_TAB_NAMES= and PRESERVE_COL_NAMES= options
to the values that you want. Normally, SAS queries the data source to determine the
correct defaults for these options during LIBNAME assignment, but setting
DEFER=YES postpones the connection. Because these values must be set at the time of
LIBNAME assignment, you must assign them explicitly when you set DEFER=YES.

See Also
“CONNECTION= LIBNAME Option” on page 108
“DBPROMPT= LIBNAME Option” on page 134

DEGREE= LIBNAME Option

Determines whether DB2 uses parallelism.

Default value: ANY
Valid in: SAS/ACCESS LIBNAME statement

DBMS support: DB2 under z/OS

Syntax
DEGREE=ANY | 1

Syntax Description

ANY
enables DB2 to use parallelism, and issues the SET CURRENT DEGREE =’xxx’ for
all DB2 threads that use that libref.

1
explicitly disables the use of parallelism.

Details
When DEGREE=ANY, DB2 has the option of using parallelism, when it is appropriate.

The LIBNAME Statement for Relational Databases � DIMENSION= LIBNAME Option 141

Setting DEGREE=1 prevents DB2 from performing parallel operations. Instead, DB2
is restricted to performing one task that, while perhaps slower, uses less system
resources.

DELETE_MULT_ROWS= LIBNAME Option

Indicates whether to allow SAS to delete multiple rows from a data source, such as a DBMS table.

Default value: NO

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, Greenplum, HP Neoview, Microsoft SQL Server, Netezza,
ODBC, OLE DB, Sybase IQ

Syntax
DELETE_MULT_ROWS=YES | NO

Syntax Description

YES
specifies that SAS/ACCESS processing continues if multiple rows are deleted. This
might produce unexpected results.

NO
specifies that SAS/ACCESS processing does not continue if multiple rows are deleted.

Details
Some providers do not handle these DBMS SQL statement well and therefore delete
more than the current row:

DELETE ... WHERE CURRENT OF CURSOR

See Also
“UPDATE_MULT_ROWS= LIBNAME Option” on page 197

DIMENSION= LIBNAME Option

Specifies whether the database creates dimension tables or fact tables.

Default value: NO

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster

142 DIRECT_EXE= LIBNAME Option � Chapter 10

Syntax
DIMENSION=YES | NO

Syntax Description

YES
specifies that the database creates dimension tables.

NO
specifies that the database creates fact tables.

DIRECT_EXE= LIBNAME Option

Allows an SQL delete statement to be passed directly to a DBMS with pass-through.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DIRECT_EXE=DELETE

Syntax Description

DELETE
specifies that an SQL delete statement is passed directly to the DBMS for processing.

Details
Performance improves significantly by using DIRECT_EXE=, because the SQL delete
statement is passed directly to the DBMS, instead of SAS reading the entire result set
and deleting one row at a time.

Examples

The following example demonstrates the use of DIRECT_EXE= to empty a table from
a database.

libname x oracle user=scott password=tiger
path=oraclev8 schema=dbitest

direct_exe=delete; /* Create an Oracle table of 5 rows. */
data x.dbi_dft;

The LIBNAME Statement for Relational Databases � DIRECT_SQL= LIBNAME Option 143

do col1=1 to 5;
output;
end;
run;

options sastrace=",,,d" sastraceloc=saslog nostsuffix;
proc sql;
delete * from x.dbi_dft;
quit;

By turning trace on, you should see something similar to this:

Output 10.1 SAS Log Output

ORACLE_9: Executed:
delete from dbi_dft

DIRECT_SQL= LIBNAME Option

Specifies whether generated SQL is passed to the DBMS for processing.

Default value: YES
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS, HP
Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Oracle,
Sybase, Sybase IQ, Teradata

Syntax
DIRECT_SQL=YES | NO | NONE | NOGENSQL | NOWHERE | NOFUNCTIONS |

NOMULTOUTJOINS

Syntax Description

YES
specifies that generated SQL from PROC SQL is passed directly to the DBMS for
processing.

144 DIRECT_SQL= LIBNAME Option � Chapter 10

NO
specifies that generated SQL from PROC SQL is not passed to the DBMS for
processing. This is the same as specifying the value NOGENSQL.

NONE
specifies that generated SQL is not passed to the DBMS for processing. This includes
SQL that is generated from PROC SQL, SAS functions that can be converted into
DBMS functions, joins, and WHERE clauses.

NOGENSQL
prevents PROC SQL from generating SQL to be passed to the DBMS for processing.

NOWHERE
prevents WHERE clauses from being passed to the DBMS for processing. This
includes SAS WHERE clauses and PROC SQL generated or PROC SQL specified
WHERE clauses.

NOFUNCTIONS
prevents SQL statements from being passed to the DBMS for processing when they
contain functions.

NOMULTOUTJOINS
specifies that PROC SQL does not attempt to pass any multiple outer joins to the
DBMS for processing. Other join statements might be passed down however,
including portions of a multiple outer join.

Details
By default, processing is passed to the DBMS whenever possible, because the database
might be able to process the functionality more efficiently than SAS does. In some
instances, however, you might not want the DBMS to process the SQL. For example,
the presence of null values in the DBMS data might cause different results depending
on whether the processing takes place in SAS or in the DBMS. If you do not want the
DBMS to handle the SQL, use DIRECT_SQL= to force SAS to handle some or all SQL
processing.

If you specify DIRECT_SQL=NOGENSQL, then PROC SQL does not generate DBMS
SQL. This means that SAS functions, joins, and DISTINCT processing that occur within
PROC SQL are not passed to the DBMS for processing. (SAS functions outside PROC
SQL can still be passed to the DBMS.) However, if PROC SQL contains a WHERE
clause, the WHERE clause is passed to the DBMS, if possible. Unless you specify
DIRECT_SQL=NOWHERE, SAS attempts to pass all WHERE clauses to the DBMS.

If you specify more than one value for this option, separate the values with spaces
and enclose the list of values in parentheses. For example, you could specify
DIRECT_SQL=(NOFUNCTIONS, NOWHERE).

DIRECT_SQL= overrides the SQL_FUNCTIONS= LIBNAME option. If you specify
SQL_FUNCTIONS=ALL and DIRECT_SQL=NONE, no functions are passed.

Examples

The following example prevents a join between two tables from being processed by
the DBMS, by setting DIRECT_SQL=NOGENSQL. Instead, SAS processes the join.

proc sql;
create view work.v as

select tab1.deptno, dname from
mydblib.table1 tab1,
mydblib.table2 tab2

The LIBNAME Statement for Relational Databases � ENABLE_BULK= LIBNAME Option 145

where tab1.deptno=tab2.deptno
using libname mydblib oracle user=testuser

password=testpass path=myserver direct_sql=nogensql;

The following example prevents a SAS function from being processed by the DBMS.

libname mydblib oracle user=testuser password=testpass direct_sql=nofunctions;
proc print data=mydblib.tab1;

where lastname=soundex (’Paul’);

See Also
“SQL_FUNCTIONS= LIBNAME Option” on page 186

ENABLE_BULK= LIBNAME Option

Allows the connection to process bulk copy when loading data into a Sybase table.

Default value: YES

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Sybase

Syntax
ENABLE_BULK=YES | NO

Syntax Description

NO
disables the bulk copy ability for the libref.

YES
enables the connection to perform a bulk copy of SAS data into Sybase.

Details
Bulk copy groups rows so that they are inserted as a unit into the Sybase table. Using
bulk copy can improve performance.

If you use both the, ENABLE_BULK= LIBNAME option and the BULKLOAD=data
set option, the values of the two options must be the same or an error is returned.
However, since the default value of ENABLE_BULK= is YES, you do not have to
specify ENABLE_BULK= in order to use the BULKLOAD= data set option.

Note: In SAS 7 and previous releases, this option was called BULKCOPY=. In SAS
8 and later, an error is returned if you specify BULKCOPY=. �

See Also
“BULKLOAD= Data Set Option” on page 290

146 ERRLIMIT= LIBNAME Option � Chapter 10

ERRLIMIT= LIBNAME Option

Specifies the number of errors that are allowed while using the Fastload utility before SAS stops
loading data to Teradata.

Default value: 1 million
Valid in: DATA and PROC steps (wherever Fastload is used)
DBMS support: Teradata

Syntax
ERRLIMIT=integer

Syntax Description

integer
specifies a positive integer that represents the number of errors after which SAS
stops loading data.

Details
SAS stops loading data when it reaches the specified number of errors and Fastload
pauses. When Fastload pauses, you cannot use the table that is being loaded. Restart
capability for Fastload is not yet supported, so you must manually delete the error
tables before SAS can reload the table.

Example

In the following example, SAS stops processing and pauses Fastload when it
encounters the tenth error.

libname mydblib teradata user=terauser pw=XXXXXX ERRLIMIT=10;

data mydblib.trfload(bulkload=yes dbtype=(i=’int check (i > 11)’));
do

i=1 to 50000;output;
end;

run;

ESCAPE_BACKSLASH= LIBNAME Option

Specifies whether backslashes in literals are preserved during data copy from a SAS data set to a
table.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: MySQL

The LIBNAME Statement for Relational Databases � FASTEXPORT= LIBNAME Option 147

Syntax
ESCAPE_BACKSLASH=YES | NO

Syntax Description

YES
specifies that an additional backslash is inserted in every literal value that already
contains a backslash.

NO
specifies that backslashes that exist in literal values are not preserved. An error
results.

Details
MySQL uses the backslash as an escape character. When data that is copied from a
SAS data set to a MySQL table contains backslashes in literal values, the MySQL
interface can preserve these if ESCAPE_BACKSLASH=YES.

See Also
To apply this option to an individual data set, see the “ESCAPE_BACKSLASH= Data

Set Option” on page 326.

FASTEXPORT= LIBNAME Option

Specifies whether the SAS/ACCESS engine uses the TPT API to read data.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Teradata

Syntax
FASTEXPORT=YES | NO

Syntax Description

YES
specifies that the SAS/ACCESS engine uses the Teradata Parallel Transporter (TPT)
API to read data from a Teradata table.

NO
specifies that the SAS/ACCESS engine does not use the TPT API to read data from a
Teradata table.

148 FETCH_IDENTITY= LIBNAME Option � Chapter 10

Details
By using the TPT API, you can read data from a Teradata table without working
directly with the stand-alone Teradata FastExport utility. When FASTEXPORT=YES,
SAS uses the TPT API export driver for bulk reads. If SAS cannot use the TPT API due
to an error or because it is not installed on the system, it still tries to read the data but
does not produce an error. To check whether SAS used the TPT API to read data, look
for this message in the SAS log:

NOTE: Teradata connection: TPT FastExport has read n row(s).

When you specify a query band on this option, you must set the DBSLICEPARM=
LIBNAME option. The query band is passed as a SESSION query band to the
FastExport utility.

To see whether threaded reads are actually generated, turn on SAS tracing by setting
OPTIONS SASTRACE=”,,,d” in your program.

Example

In this example, the TPT API reads SAS data from a Teradata table. SAS still tries
to read data even if it cannot use the TPT API.

Libname tera Teradata user=testuser pw=testpw FASTEXPORT=YES;
/* Create data */
Data tera.testdata;
Do i=1 to 100;
Output;
End;
Run;
/* Read using FastExport TPT. This note appears in the SAS log if SAS uses TPT.
NOTE: Teradata connection: TPT FastExport has read n row(s).*/
Data work.testdata;
Set tera.testdata;
Run;

See Also
“BULKLOAD= LIBNAME Option” on page 102
BULKLOAD= data set option“BULKLOAD= Data Set Option” on page 290
“DBSLICEPARM= LIBNAME Option” on page 137
“Maximizing Teradata Load Performance” on page 804
“MULTILOAD= Data Set Option” on page 342
“QUERY_BAND= LIBNAME Option” on page 172
“QUERY_BAND= Data Set Option” on page 360

FETCH_IDENTITY= LIBNAME Option

Returns the value of the last inserted identity value.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: DB2 under UNIX and PC Hosts

The LIBNAME Statement for Relational Databases � IGNORE_ READ_ONLY_COLUMNS= LIBNAME Option 149

Syntax
FETCH_IDENTITY=YES | NO

Syntax Description

YES
returns the value of the last inserted identity value.

NO
disables this option.

Details
You can use this option instead of issuing a separate SELECT statement after an
INSERT statement. If FETCH_IDENTITY=YES and the INSERT that is executed is a
single-row INSERT, the engine calls the DB/2 identity_val_local() function and places
the results into the SYSDB2_LAST_IDENTITY macro variable. Because the DB2
engine default is multirow inserts, you must set INSERTBUFF=1 to force a single-row
INSERT.

See Also
“FETCH_IDENTITY= Data Set Option” on page 327

IGNORE_ READ_ONLY_COLUMNS= LIBNAME Option

Specifies whether to ignore or include columns whose data types are read-only when generating
an SQL statement for inserts or updates.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP
Neoview, Microsoft SQL Server, Netezza, ODBC, OLE DB, Sybase IQ

Syntax
IGNORE_READ_ONLY_COLUMNS=YES | NO

Syntax Description

YES
specifies that the SAS/ACCESS engine ignores columns whose data types are
read-only when you are generating insert and update SQL statements.

NO
specifies that the SAS/ACCESS engine does not ignore columns whose data types are
read-only when you are generating insert and update SQL statements.

150 IN= LIBNAME Option � Chapter 10

Details
Several databases include data types that can be read-only, such as the data type of the
Microsoft SQL Server timestamp. Several databases also have properties that allow
certain data types to be read-only, such as the Microsoft SQL Server identity property.

When IGNORE_READ_ONLY_COLUMNS=NO and a DBMS table contains a column
that is read-only, an error is returned indicating that the data could not be modified for
that column.

Example

For the following example, a database that contains the table Products is created
with two columns: ID and PRODUCT_NAME. The ID column is defined by a read-only
data type and PRODUCT_NAME is a character column.

CREATE TABLE products (id int IDENTITY PRIMARY KEY, product_name varchar(40))

Assume you have a SAS data set that contains the name of your products, and you
would like to insert the data into the Products table:

data work.products;
id=1;
product_name=’screwdriver’;
output;
id=2;
product_name=’hammer’;
output;
id=3;
product_name=’saw’;
output;
id=4;
product_name=’shovel’;
output;

run;

With IGNORE_READ_ONLY_COLUMNS=NO (the default), an error is returned by
the database because in this example the ID column cannot be updated. However, if
you set the option to YES and execute a PROC APPEND, the append succeeds, and the
SQL statement that is generated does not contain the ID column.

libname x odbc uid=dbitest pwd=dbigrp1 dsn=lupinss
ignore_read_only_columns=yes;

options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;
proc append base=x.PRODUCTS data=work.products;
run;

See Also
To apply this option to an individual data set, see the “IGNORE_

READ_ONLY_COLUMNS= Data Set Option” on page 328.

IN= LIBNAME Option
Allows specification of the database and tablespace in which you want to create a new table.

The LIBNAME Statement for Relational Databases � INSERT_SQL= LIBNAME Option 151

Alias: TABLESPACE=
Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS

Syntax
IN=’database-name.tablespace-name’| ’DATABASE database-name’

Syntax Description

database-name.tablespace-name
specifies the names of the database and tablespace, which are separated by a period.
Enclose the entire specification in single quotation marks.

DATABASE database-name
specifies only the database name. Specify the word DATABASE, then a space, then
the database name. Enclose the entire specification in single quotation marks.

Details
The IN= option is relevant only when you are creating a new table. If you omit this
option, the default is to create the table in the default database, implicitly creating a
simple tablespace.

See Also
To apply this option to an individual data set, see the “IN= Data Set Option” on page

330.

INSERT_SQL= LIBNAME Option

Determines the method to use to insert rows into a data source.

Default value: DBMS-specific, see the details in this section
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Microsoft SQL Server, ODBC, OLE DB

Syntax
INSERT_SQL=YES | NO

Syntax Description

YES
specifies that SAS/ACCESS uses the data source’s SQL insert method to insert new
rows into a table.

152 INSERTBUFF= LIBNAME Option � Chapter 10

NO
specifies that SAS/ACCESS uses an alternate (DBMS-specific) method to insert new
rows into a table.

Details
Flat file databases (such as dBASE, FoxPro, and text files) generally have improved
insert performance when INSERT_SQL=NO. Other databases might have inferior
insert performance (or might fail) with this setting, so you should experiment to
determine the optimal setting for your situation.

HP Neoview: The default is YES.
Microsoft SQL Server: The Microsoft SQL Server default is YES. When

INSERT_SQL=NO, the SQLSetPos (SQL_ADD) function inserts rows in groups that are
the size of the INSERTBUFF= option value. The SQLSetPos (SQL_ADD) function does
not work unless it is supported by your driver.

Netezza: The default is YES.
ODBC: The default is YES, except for Microsoft Access, which has a default of NO.

When INSERT_SQL=NO, the SQLSetPos (SQL_ADD) function inserts rows in groups
that are the size of the INSERTBUFF= option value. The SQLSetPos (SQL_ADD)
function does not work unless your driver supports it.

OLE DB: By default, the OLE DB interface attempts to use the most efficient row
insertion method for each data source. You can use the INSERT_SQL option to override
the default in the event that it is not optimal for your situation. The OLE DB alternate
method (used when this option is set to NO) uses the OLE DB IRowsetChange interface.

See Also
To apply this option to an individual data set, see the “INSERT_SQL= Data Set

Option” on page 330.
“INSERTBUFF= LIBNAME Option” on page 152
“DBCOMMIT= Data Set Option” on page 297

INSERTBUFF= LIBNAME Option

Specifies the number of rows in a single DBMS insert.

Default value: DBMS-specific
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP
Neoview, Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase IQ

Syntax
INSERTBUFF=positive-integer

Syntax Description

positive-integer
specifies the number of rows to insert.

The LIBNAME Statement for Relational Databases � INTERFACE= LIBNAME Option 153

Details

SAS allows the maximum number of rows that the DBMS allows. The optimal value for
this option varies with factors such as network type and available memory. You might
need to experiment with different values in order to determine the best value for your
site.

SAS application messages that indicate the success or failure of an insert operation
represent information for only a single insert, even when multiple inserts are
performed. Therefore, when you assign a value that is greater than INSERTBUFF=1,
these messages might be incorrect.

If you set the DBCOMMIT= option with a value that is less than the value of
INSERTBUFF=, then DBCOMMIT= overrides INSERTBUFF=.

When you insert rows with the VIEWTABLE window or the FSVIEW or FSEDIT
procedure, use INSERTBUFF=1 to prevent the DBMS interface from trying to insert
multiple rows. These features do not support inserting more than one row at a time.

Additional driver-specific restrictions might apply.
DB2 under UNIX and PC Hosts: Before you can use this option, you must first set

INSERT_SQL=YES. If one row in the insert buffer fails, all rows in the insert buffer
fail. The default is calculated based on the row length of your data.

HP Neoview and Netezza: The default is automatically calculated based on row
length.

Microsoft SQL Server: Before you can use this option, you must first set
INSERT_SQL=YES. The default is 1.

MySQL: The default is 0. Values greater than 0 activate the INSERTBUFF= option,
and the engine calculates how many rows it can insert at one time, based on the row
size. If one row in the insert buffer fails, all rows in the insert buffer might fail,
depending on your storage type.

ODBC: The default is 1.
OLE DB: The default is 1.
Oracle: When REREAD_EXPOSURE=YES, the (forced) default value is 1.

Otherwise, the default is 10.

See Also

To apply this option to an individual data set, see the “INSERTBUFF= Data Set
Option” on page 331.

“DBCOMMIT= LIBNAME Option” on page 120
“DBCOMMIT= Data Set Option” on page 297
“INSERT_SQL= LIBNAME Option” on page 151
“INSERT_SQL= Data Set Option” on page 330

INTERFACE= LIBNAME Option

Specifies the name and location of the interfaces file that is searched when you connect to the
Sybase server.

Default value: none

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Sybase

154 KEYSET_SIZE= LIBNAME Option � Chapter 10

Syntax
INTERFACE=<’>filename<’>

Details
The interfaces file contains names and access information for the available servers on
the network. If you omit a filename, the default action for your operating system occurs.
INTERFACE= is not used in some operating environments. Contact your database
administrator to see whether this statement applies to your computing environment.

KEYSET_SIZE= LIBNAME Option

Specifies the number of rows that are driven by the keyset.

Default value: 0
Valid in: SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. See the DBMS-specific reference section for details.

DBMS support: Microsoft SQL Server, ODBC

Syntax
KEYSET_SIZE=number-of-rows

Syntax Description

number-of-rows
is an integer with a value between 0 and the number of rows in the cursor.

Details
This option is valid only when CURSOR_TYPE=KEYSET_DRIVEN.

If KEYSET_SIZE=0, then the entire cursor is keyset driven. If you specify a value
greater than 0 for KEYSET_SIZE=, the chosen value indicates the number of rows
within the cursor that functions as a keyset-driven cursor. When you scroll beyond the
bounds that are specified by KEYSET_SIZE=, the cursor becomes dynamic and new
rows might be included in the cursor. This becomes the new keyset and the cursor
functions as a keyset-driven cursor again. Whenever the value that you specify is
between 1 and the number of rows in the cursor, the cursor is considered to be a mixed
cursor because part of the cursor functions as a keyset-driven cursor and part of the
cursor functions as a dynamic cursor.

See Also
To apply this option to an individual data set, see the “KEYSET_SIZE= Data Set

Option” on page 333.
“CURSOR_TYPE= LIBNAME Option” on page 115

The LIBNAME Statement for Relational Databases � LOCKTABLE= LIBNAME Option 155

LOCATION= LIBNAME Option

Allows further qualification of exactly where a table resides.

Alias: LOC=

Default value: none

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: DB2 under z/OS

Syntax
LOCATION=location

Details
The location name maps to the location in the SYSIBM.LOCATION catalog in the
communication database.

In SAS/ACCESS Interface to DB2 under z/OS, the location is converted to the first
level of a three-level table name: location.authid.table. The DB2 Distributed Data
Facility (DDF) makes the connection implicitly to the remote DB2 subsystem when DB2
receives a three-level name in an SQL statement.

If you omit this option, SAS accesses the data from the local DB2 database unless
you have specified a value for the SERVER= option. This option is not validated until
you access a DB2 table.

If you specify LOCATION=, you must also specify the AUTHID= LIBNAME option.

See Also
To apply this option to an individual data set, see the “LOCATION= Data Set Option”

on page 333.
For information about accessing a database server on Linux, UNIX, or Windows

using a libref, see the “REMOTE_DBTYPE= LIBNAME Option” on page 178.
“AUTHID= LIBNAME Option” on page 96

LOCKTABLE= LIBNAME Option

Places exclusive or shared locks on tables.

Default value: no locking

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Informix

Syntax
LOCKTABLE=EXCLUSIVE | SHARE

156 LOCKTIME= LIBNAME Option � Chapter 10

Syntax Description

EXCLUSIVE
specifies that other users are prevented from accessing each table that you open in
the libref.

SHARE
specifies that other users or processes can read data from the tables, but they cannot
update the data.

Details
You can lock tables only if you are the owner or have been granted the necessary
privilege.

See Also
To apply this option to an individual data set, see the “LOCKTABLE= Data Set

Option” on page 334.

LOCKTIME= LIBNAME Option

Specifies the number of seconds to wait until rows are available for locking.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Informix

Syntax
LOCKTIME=positive-integer

Details
You must specify LOCKWAIT=YES for LOCKTIME= to have an effect. If you omit the
LOCKTIME= option and use LOCKWAIT=YES, SAS suspends your process indefinitely
until a lock can be obtained.

See Also
“LOCKWAIT= LIBNAME Option” on page 156

LOCKWAIT= LIBNAME Option

Specifies whether to wait indefinitely until rows are available for locking.

The LIBNAME Statement for Relational Databases � LOGDB= LIBNAME Option 157

Default value: DBMS-specific

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Informix, Oracle

Syntax
LOCKWAIT=YES | NO

Syntax Description

YES
specifies that SAS waits until rows are available for locking.

NO
specifies that SAS does not wait and returns an error to indicate that the lock is not
available.

LOGDB= LIBNAME Option

Redirects to an alternate database-specific table that FastExport creates or MultiLoad uses.

Default value: default Teradata database for the libref

Valid in: DATA and PROC steps, wherever you use FastExport or MultiLoad

DBMS support: Teradata

Syntax
LOGDB=<database-name>

Syntax Description

database-name
the name of the Teradata database.

Details
Teradata FastExport utility: The FastExport restart capability is not yet supported.
When you use this option with FastExport, FastExport creates restart log tables in an
alternate database. You must have the necessary permissions to create tables in the
specified database, and FastExport creates only restart tables in that database.

Teradata MultiLoad utility: To specify this option, you must first specify
MULTILOAD=YES. When you use this option with the Teradata MultiLoad utility,
MultiLoad redirects the restart table, the work table, and the required error tables to
an alternate database.

158 LOGIN_TIMEOUT= LIBNAME Option � Chapter 10

Examples

In this example, PROC PRINT calls the Teradata FastExport utility, if it is installed.
FastExport creates restart log tables in the ALTDB database.

libname mydblib teradata user=testuser pw=testpass logdb=altdb;
proc print data=mydblib.mytable(dbsliceparm=all);
run;

In this next example, MultiLoad creates the restart table, work table, and error
tables in the alternate database that LOGDB= specifies.

/* Create work tables in zoom database, where I have create & drop privileges. */
libname x teradata user=prboni pw=xxxxx logdb=zoom;

data x.testload(multiload=YES);
do i=1 to 100;

output;
end;

run;

LOGIN_TIMEOUT= LIBNAME Option

Specifies the default login time-out for connecting to and accessing data sources in a library.

Default value: 0
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, HP Neoview, Netezza, ODBC, Sybase IQ

Syntax
LOGIN_TIMEOUT=numeric-value

MAX_CONNECTS= LIBNAME Option

Specifies the maximum number of simultaneous connections that Sybase allows.

Default value: 25
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Sybase

Syntax
MAX_CONNECTS=numeric-value

The LIBNAME Statement for Relational Databases � MODE= LIBNAME Option 159

Details
If you omit MAX_CONNECTS=, the default for the maximum number of connections is
25. Note that increasing the number of connections has a direct impact on memory.

MODE= LIBNAME Option

Specifies whether the connection to Teradata uses the ANSI mode or the Teradata mode.

Default value: ANSI
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Teradata

Syntax
MODE=TERADATA | ANSI

Syntax Description

TERADATA
specifies that SAS/ACCESS opens Teradata connections in Teradata mode.

ANSI
specifies that SAS/ACCESS opens Teradata connections in ANSI mode.

Details
This option allows opening of Teradata connections in the specified mode. Connections
that are opened with MODE=TERADATA use Teradata mode rules for all SQL requests
that are passed to the Teradata DBMS. This impacts transaction behavior and can
cause case insensitivity when processing data.

During data insertion, not only is each inserted row committed implicitly, but
rollback is not possible when the error limit is reached if you also specify ERRLIMIT=.
Any update or delete that involves a cursor does not work.

ANSI mode is recommended for all features that SAS/ACCESS supports, while
Teradata mode is recommended only for reading data from Teradata.

Examples

This example does not work because it requires the use of a cursor.

libname x teradata user=prboni pw=XXXX mode=teradata;
/* Fails with "ERROR: Cursor processing is not allowed in Teradata mode." */
proc sql;
update x.test
set i=2;
quit;

This next example works because the DBIDIRECTEXEC= system option sends the
delete SQL directly to the database without using a cursor.

160 MULTI_DATASRC_OPT= LIBNAME Option � Chapter 10

libname B teradata user=prboni pw=XXX mode=Teradata;
options dbidirectexec;
proc sql;
delete from b.test where i=2;
quit;

See Also
“SQL Pass-Through Facility Specifics for Teradata” on page 790

MULTI_DATASRC_OPT= LIBNAME Option

Used in place of DBKEY to improve performance when processing a join between two data sources.

Default value: NONE
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
MULTI_DATASRC_OPT=NONE | IN_CLAUSE

Syntax Description

NONE
turns off the functionality of the option.

IN_CLAUSE
specifies that an IN clause containing the values read from a smaller table are used
to retrieve the matching values in a larger table based on a key column designated in
an equijoin.

Details
When processing a join between a SAS data set and a DBMS table, the SAS data set
should be smaller than the DBMS table for optimal performance. However, in the event
that the SAS data set is larger than that DBMS table, the SAS data set is still used in
the IN clause.

When SAS processes a join between two DBMS tables, SELECT COUNT (*) is issued
to determine which table is smaller and if it qualifies for an IN clause. You can use the
DBMASTER= data set option to prevent the SELECT COUNT (*) from being issued.

Currently, the IN clause has a limit of 4,500 unique values.
Setting DBKEY= automatically overrides MULTI_DATASRC_OPT=.
DIRECT_SQL= can impact this option as well. If DIRECT_SQL=NONE or

NOWHERE, the IN clause cannot be built and passed to the DBMS, regardless of the
value of MULTI_DATASRC_OPT=. These settings for DIRECT_SQL= prevent a
WHERE clause from being passed.

The LIBNAME Statement for Relational Databases � MULTISTMT= LIBNAME Option 161

Oracle: Oracle can handle an IN clause of only 1,000 values. Therefore, it divides
larger IN clauses into multiple, smaller IN clauses. The results are combined into a
single result set. For example if an IN clause contained 4,000 values, Oracle produces 4
IN clauses that each contain 1,000 values. A single result is produced, as if all 4,000
values were processed as a whole.

OLE DB: OLE DB restricts the number of values allowed in an IN clause to 255.

Examples

This example builds and passes an IN clause from the SAS table to the DBMS table,
retrieving only the necessary data to process the join.

proc sql;
create view work.v as
select tab2.deptno, tab2.dname from
work.sastable tab1, dblib.table2 tab2
where tab12.deptno = tab2.deptno
using libname dblib oracle user=testuser password=testpass
multi_datasrc_opt=in_clause;

quit;

The next example prevents the building and passing of the IN clause to the DBMS. It
requires all rows from the DBMS table to be brought into SAS to process the join.

libname dblib oracle user=testuser password=testpass multi_datasrc_opt=none;
proc sql;

select tab2.deptno, tab2.dname from
work.table1 tab1,
dblib.table2 tab2

where tab1.deptno=tab2.deptno;
quit;

See Also
“DBMASTER= Data Set Option” on page 308

MULTISTMT= LIBNAME Option

Specifies whether insert statements are sent to Teradata one at a time or in a group.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Teradata

Syntax
MULTISTMT=YES | NO

Syntax Description

162 OR_ENABLE_INTERRUPT= LIBNAME Option � Chapter 10

YES
attempts to send as many inserts to Teradata that can fit in a 64K buffer. If
multistatement inserts are not possible, processing reverts to single-row inserts.

NO
send inserts to Teradata one row at a time.

Details
When you request multistatement inserts, SAS first determines how many insert
statements that it can send to Teradata. Several factors determine the actual number
of statements that SAS can send, such as how many SQL insert statements can fit in a
64K buffer, how many data rows can fit in the 64K data buffer, and how many inserts
the Teradata server chooses to accept. When you need to insert large volumes of data,
you can significantly improve performance by using MULTISTMT= instead of inserting
only single-row.

When you also specify the DBCOMMIT= option, SAS uses the smaller of the
DBCOMMIT= value and the number of insert statements that can fit in a buffer as the
number of insert statements to send together at one time.

You cannot currently use MULTISTMT= with the ERRLIMIT= option.

See Also
To apply this option to an individual data set or a view descriptor, see the

“MULTISTMT= Data Set Option” on page 348.

OR_ENABLE_INTERRUPT= LIBNAME Option

Allows interruption of any long-running SQL processes on the DBMS server.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Oracle

Syntax
OR_ENABLE_INTERRUPT=YES | NO

Syntax Description

YES
enables interrupt of long-running SQL processes on the DBMS server.

NO
disables interrupt of long-running SQL processes on the DBMS server.

Details
You can use this option to interrupt these statements:

The LIBNAME Statement for Relational Databases � OR_UPD_NOWHERE= LIBNAME Option 163

� any SELECT SQL statement that was submitted by using the SELECT * FROM
CONNECTION as a pass-through statement

� any statement other than the SELECT SQL statement that you submitted by
using the EXECUTE statement as a pass-through statement

OR_UPD_NOWHERE= LIBNAME Option

Specifies whether SAS uses an extra WHERE clause when updating rows with no locking.

Alias: ORACLE_73_OR_ABOVE=

Default value: YES

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Oracle

Syntax
OR_UPD_NOWHERE=YES | NO

Syntax Description

YES
specifies that SAS does not use an additional WHERE clause to determine whether
each row has changed since it was read. Instead, SAS uses the SERIALIZABLE
isolation level (available with Oracle 7.3 and above) for update locking. If a row
changes after the serializable transaction starts, the update on that row fails.

NO
specifies that SAS uses an additional WHERE clause to determine whether each row
has changed since it was read. If a row has changed since being read, the update fails.

Details

Use this option when you are updating rows without locking
(UPDATE_LOCK_TYPE=NOLOCK).

By default (OR_UPD_NOWHERE=YES), updates are performed in serializable
transactions. It lets you avoid extra WHERE clause processing and potential WHERE
clause floating point precision problems.

Note: Due to the published Oracle bug 440366, an update on a row sometimes fails
even if the row has not changed. Oracle offers the following solution: When creating a
table, increase the number of INITRANS to at least 3 for the table. �

See Also
To apply this option to an individual data set or a view descriptor, see the

“OR_UPD_NOWHERE= Data Set Option” on page 355.
“Locking in the Oracle Interface” on page 728
“UPDATE_LOCK_TYPE= LIBNAME Option” on page 196

164 PACKETSIZE= LIBNAME Option � Chapter 10

PACKETSIZE= LIBNAME Option

Allows specification of the packet size for Sybase to use.

Default value: current server setting
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Sybase

Syntax
PACKETSIZE=numeric-value

Syntax Description

numeric-value
is any multiple of 512, up to the limit of the maximum network packet size setting on
your server.

Details
If you omit PACKETSIZE=, the default is the current server setting. You can query the
default network packet value in ISQL by using the Sybase sp_configure command.

PARTITION_KEY= LIBNAME Option

Specifies the column name to use as the partition key for creating fact tables.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster

Syntax
PARTITION_KEY=’column-name’

Details
You must enclose the column name in quotation marks.

Aster nCluster uses dimension and fact tables. To create a data set in Aster nCluster
without error, you must set both the DIMENSION= and PARTITION_KEY=
(LIBNAME or data set) options.

Examples

This first example shows how you can use the SAS data set, SASFLT. flightschedule,
to create an Aster nCluster dimension table, flightschedule.

The LIBNAME Statement for Relational Databases � PARTITION_KEY= LIBNAME Option 165

LIBNAME sasflt ’SAS-data-library’;
LIBNAME net_air ASTER user=louis pwd=fromage server=air2 database=flights;

data net_air.flightschedule(dimension=yes);
set sasflt. flightschedule;

run;

You can create the same Aster nCluster dimension table by setting
DIMENSION=YES.

LIBNAME sasflt ’SAS-data-library’;
LIBNAME net_air ASTER user=louis pwd=fromage server=air2

database=flights dimension=yes;

data net_air.flightschedule;
set sasflt. flightschedule;

run;

If you do not set DIMENSION=YES by using either the LIBNAME or data set
option, the Aster nCluster engine tries to create an Aster nCluster fact table. To do
this, however, you must set the PARTITION_KEY= LIBNAME or data set option, as
shown in this example.

LIBNAME sasflt ’SAS-data-library’;
LIBNAME net_air ASTER user=louis pwd=fromage server=air2 database=flights;

data net_air.flightschedule(dbtype=(flightnumber=integer)
partition_key=’flightnumber’);

set sasflt. flightschedule;
run;

You can create the same Aster nCluster fact table by using the PARTITION_KEY=
LIBNAME option.

LIBNAME sasflt ’SAS-data-library’;
LIBNAME net_air ASTER user=louis pwd=fromage server=air2 database=flights

partition_key=’flightnumber’;

data net_air.flightschedule(dbtype=(flightnumber=integer));
set sasflt. flightschedule;

run;

The above examples use the DBTYPE= data set option so that the data type of the
partition-key column meets the limitations of the Aster nCluster’s partition key column.

See Also

To apply this option to an individual data set or a view descriptor, see the
“PARTITION_KEY= Data Set Option” on page 357.

“DIMENSION= Data Set Option” on page 322

166 PREFETCH= LIBNAME Option � Chapter 10

PREFETCH= LIBNAME Option

Enables the PreFetch facility on tables that the libref (defined with the LIBNAME statement)
accesses.

Default value: not enabled

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Teradata

Syntax
PREFETCH=’unique_storename, [#sessions,algorithm]’

Syntax Description

unique_storename
is a unique name that you specify. This value names the Teradata macro that
PreFetch creates to store selected SQL statements in the first run of a job. During
subsequent runs of the job, SAS/ACCESS presubmits the stored SQL statements in
parallel to the Teradata DBMS.

#sessions
controls the number of statements that PreFetch submits in parallel to Teradata. A
valid value is 1 through 9. If you do not specify a #sessions value, the default is 3.

algorithm
specifies the algorithm that PreFetch uses to order the selected SQL statements.
Currently, the only valid value is SEQUENTIAL.

Details
Before using PreFetch, see the description for it in the Teradata section for more
detailed information, including when and how the option enhances read performance of
a job that is run more than once.

See Also
“Using the PreFetch Facility” on page 800

PRESERVE_COL_NAMES= LIBNAME Option

Preserves spaces, special characters, and case sensitivity in DBMS column names when you
create DBMS tables.

Alias: PRESERVE_NAMES= (see “Details”)
Default value: DBMS-specific

Valid in: SAS/ACCESS LIBNAME statement (when you create DBMS tables)

The LIBNAME Statement for Relational Databases � PRESERVE_COL_NAMES= LIBNAME Option 167

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase IQ, Teradata

Syntax
PRESERVE_COL_NAMES=YES | NO

Syntax Description

NO
specifies that column names that are used to create DBMS tables are derived from
SAS variable names (VALIDVARNAME= system option) by using the SAS variable
name normalization rules. However, the database applies its DBMS-specific
normalization rules to the SAS variable names when creating the DBMS column
names.

The use of N-Literals to create column names that use database keywords or
special symbols other than the underscore character might be illegal when DBMS
normalization rules are applied. To include nonstandard SAS symbols or database
keywords, specify PRESERVE_COL_NAMES=YES.

NO is the default for most DBMS interfaces.

YES
specifies that column names that are used in table creation are passed to the DBMS
with special characters and the exact, case-sensitive spelling of the name preserved.

Details
This option applies only when you use SAS/ACCESS to create a new DBMS table. When
you create a table, you assign the column names by using one of the following methods:

� To control the case of the DBMS column names, specify variables using the case
that you want and set PRESERVE_COL_NAMES=YES. If you use special symbols
or blanks, you must set VALIDVARNAME= to ANY and use N-Literals. For more
information, see the SAS/ACCESS naming topic in the DBMS-specific reference
section for your interface in this document and also the system options section in
SAS Language Reference: Dictionary.

� To enable the DBMS to normalize the column names according to its naming
conventions, specify variables using any case and set
PRESERVE_COLUMN_NAMES= NO.

When you use SAS/ACCESS to read from, insert rows into, or modify data in an
existing DBMS table, SAS identifies the database column names by their spelling.
Therefore, when the database column exists, the case of the variable does not matter.

To save some time when coding, specify the PRESERVE_NAMES= alias if you plan
to specify both the PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options
in your LIBNAME statement.

To use column names in your SAS program that are not valid SAS names, you must
use one of the following techniques:

� Use the DQUOTE= option in PROC SQL and then reference your columns using
double quotation marks. For example:

proc sql dquote=ansi;
select "Total$Cost" from mydblib.mytable;

168 PRESERVE_TAB_NAMES= LIBNAME Option � Chapter 10

� Specify the global system option VALIDVARNAME=ANY and use name literals in
the SAS language. For example:

proc print data=mydblib.mytable;
format ’Total$Cost’n 22.2;

If you are creating a table in PROC SQL, you must also include the
PRESERVE_COL_NAMES=YES option in your LIBNAME statement. Here is an
example:

libname mydblib oracle user=testuser password=testpass
preserve_col_names=yes;

proc sql dquote=ansi;
create table mydblib.mytable ("my$column" int);

PRESERVE_COL_NAMES= does not apply to the SQL pass-through facility.

See Also
To apply this option to an individual data set, see the naming in your DBMS

interface for the “PRESERVE_COL_NAMES= Data Set Option” on page 358.
Chapter 2, “SAS Names and Support for DBMS Names,” on page 11
“VALIDVARNAME= System Option” on page 423

PRESERVE_TAB_NAMES= LIBNAME Option

Preserves spaces, special characters, and case sensitivity in DBMS table names.

Alias: PRESERVE_NAMES= (see “Details”)

Default value: DBMS-specific
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase IQ, Teradata

Syntax
PRESERVE_TAB_NAMES=YES | NO

Syntax Description

NO
specifies that when you create DBMS tables or refer to an existing table, the table
names are derived from SAS member names by using SAS member name
normalization. However, the database applies DBMS-specific normalization rules to
the SAS member names. Therefore, the table names are created or referenced in the
database following the DBMS-specific normalization rules.

When you use SAS to read a list of table names (for example, in the SAS Explorer
window), the tables whose names do not conform to the SAS member name

The LIBNAME Statement for Relational Databases � PRESERVE_TAB_NAMES= LIBNAME Option 169

normalization rules do not appear in the output. In SAS line mode, here is how SAS
indicates the number of tables that do not display from PROC DATASETS because of
this restriction:

Note: "Due to the PRESERVE_TAB_NAMES=NO LIBNAME option setting, 12
table(s) have not been displayed." �

You do not get this warning when using SAS Explorer.
SAS Explorer displays DBMS table names in capitalized form when

PRESERVE_TAB_NAMES=NO. This is now how the tables are represented in the
DBMS.

NO is the default for most DBMS interfaces.

YES
specifies that table names are read from and passed to the DBMS with special
characters, and the exact, case-sensitive spelling of the name is preserved.

Details
For more information, see the SAS/ACCESS naming topic in the DBMS-specific
reference section for your interface in this document.

To use table names in your SAS program that are not valid SAS names, use one of
these techniques.

� Use the PROC SQL option DQUOTE= and place double quotation marks around
the table name. The libref must specify PRESERVE_TAB_NAMES=YES. For
example:

libname mydblib oracle user=testuser password=testpass
preserve_tab_names=yes;

proc sql dquote=ansi;
select * from mydblib."my table";

� Use name literals in the SAS language. The libref must specify
PRESERVE_TAB_NAMES=YES. For example:

libname mydblib oracle user=testuser password=testpass preserve_tab_names=yes;
proc print data=mydblib.’my table’n;
run;

To save some time when coding, specify the PRESERVE_NAMES= alias if you plan
to specify both the PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options
in your LIBNAME statement.

Oracle: Unless you specify PRESERVE_TAB_NAMES=YES, the table name that you
enter for SCHEMA= LIBNAME option or for the DBINDEX= data set option is
converted to uppercase.

Example

If you use PROC DATASETS to read the table names in an Oracle database that
contains three tables, My_Table, MY_TABLE, and MY TABLE. The results differ
depending on the setting of PRESERVE_TAB_NAMES.

If the libref specifies PRESERVE_TAB_NAMES=NO, then the PROC DATASETS
output is one table name, MY_TABLE. This is the only table name that is in Oracle
normalized form (uppercase letters and a valid symbol, the underscore). My_Table does
not display because it is not in a form that is normalized for Oracle, and MY TABLE is
not displayed because it is not in SAS member normalized form (the embedded space is
a nonstandard SAS character).

170 QUALIFIER= LIBNAME Option � Chapter 10

If the libref specifies PRESERVE_TAB_NAMES=YES, then the PROC DATASETS
output includes all three table names, My_Table, MY_TABLE, and MY TABLE.

See Also
To apply this option to an individual data set, see the naming in your DBMS

interface for the “PRESERVE_COL_NAMES= LIBNAME Option” on page 166.
“DBINDEX= Data Set Option” on page 303
Chapter 2, “SAS Names and Support for DBMS Names,” on page 11
“SCHEMA= LIBNAME Option” on page 181

QUALIFIER= LIBNAME Option

Allows identification of such database objects tables and views with the specified qualifier.

Default value: none

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: HP Neoview, Microsoft SQL Server, Netezza, ODBC, OLE DB

Syntax
QUALIFIER=<qualifier-name>

Details
If you omit this option, the default is the default DBMS qualifier name, if any. You can
use QUALIFIER= for any DBMS that allows three-part identifier names, such as
qualifier.schema.object.

MySQL: The MySQL interface does not support three-part identifier names, so a
two-part name is used (such as qualifier.object).

Examples

In the following LIBNAME statement, the QUALIFIER= option causes ODBC to
interpret any reference to mydblib.employee in SAS as mydept.scott.employee.

libname mydblib odbc dsn=myoracle
password=testpass schema=scott
qualifier=mydept;

In the following example, the QUALIFIER= option causes OLE DB to interpret any
reference in SAS to mydblib.employee as pcdivision.raoul.employee.

libname mydblib oledb provider=SQLOLEDB
properties=("user id"=dbajorge "data source"=SQLSERVR)
schema=raoul qualifier=pcdivision;

proc print data=mydblib.employee;
run;

The LIBNAME Statement for Relational Databases � QUALIFY_ROWS= LIBNAME Option 171

See Also
To apply this option to an individual data set, see the “QUALIFIER= Data Set

Option” on page 359.

QUALIFY_ROWS= LIBNAME Option

Uniquely qualifies all member values in a result set.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: OLE DB

Syntax
QUALIFY_ROWS=YES | NO

Syntax Description

YES
specifies that when the OLE DB interface flattens the result set of an MDX
command, the values in each column are uniquely identified using a hierarchical
naming scheme.

NO
specifies that when the OLE DB interface flattens the result set of an MDX command,
the values in each column are not qualified, which means they might not be unique.

Details
For example, when this option is set to NO, a GEOGRAPHY column might have a value
of PORTLAND for Portland, Oregon, and the same value of PORTLAND for Portland,
Maine. When you set this option to YES, the two values might become
[USA].[Oregon].[Portland] and [USA].[Maine].[Portland], respectively.

Note: Depending on the size of the result set, QUALIFY_ROWS=YES can have a
significant, negative impact on performance, because it forces the OLE DB interface to
search through various schemas to gather the information needed to created unique
qualified names. �

See Also
For more information about MDX commands, see “Accessing OLE DB for OLAP

Data” on page 700.

172 QUERY_BAND= LIBNAME Option � Chapter 10

QUERY_BAND= LIBNAME Option

Specifies whether to set a query band for the current session.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Teradata

Syntax
QUERY_BAND=”pair-name=pair_value” FOR SESSION;

Syntax Description

pair-name=pair_value
specifies a name and value pair of a query band for the current session.

Details
Use this option to set unique identifiers on Teradata sessions and to add them to the
current session. The Teradata engine uses this syntax to pass the name-value pair to
Teradata:

SET QUERY_BAND="org=Marketing;report=Mkt4Q08;" FOR SESSION;

For more information about this option and query-band limitations, see Teradata
SQL Reference: Data Definition Statements.

See Also
To apply this option to an individual data set, see the “QUERY_BAND= Data Set

Option” on page 360.
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“FASTEXPORT= LIBNAME Option” on page 147
“Maximizing Teradata Load Performance” on page 804
“MULTILOAD= Data Set Option” on page 342

QUERY_TIMEOUT= LIBNAME Option

Specifies the number of seconds of inactivity to wait before canceling a query.

Default value: 0
Valid in: SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. Please see your DBMS for details.
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP
Neoview, Microsoft SQL Server, Netezza, ODBC, Sybase IQ

The LIBNAME Statement for Relational Databases � QUOTE_CHAR= LIBNAME Option 173

Syntax

QUERY_TIMEOUT=number-of-seconds

Details

The default value of 0 indicates that there is no time limit for a query. This option is
useful when you are testing a query or if you suspect that a query might contain an
endless loop.

See Also

To apply this option to an individual data set, see the “QUERY_TIMEOUT= Data Set
Option” on page 361.

QUOTE_CHAR= LIBNAME Option

Specifies which quotation mark character to use when delimiting identifiers.

Default value: none

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, Greenplum, HP Neoview, Microsoft SQL Server, Netezza,
ODBC, OLE DB, Sybase IQ

Syntax

QUOTE_CHAR=character

Syntax Description

character
is the quotation mark character to use when delimiting identifiers, such as the
double quotation mark (").

Details

The provider usually specifies the delimiting character. However, when there is a
difference between what the provider allows for this character and what the DBMS
allows, the QUOTE_CHAR= option overrides the character returned by the provider.

Microsoft SQL Server: QUOTE_CHAR= overrides the Microsoft SQL Server default.
ODBC: This option is mainly for the ODBC interface to Sybase, and you should use it

with the DBCONINIT and DBLIBINIT LIBNAME options. QUOTE_CHAR= overrides
the ODBC default because some drivers return a blank for the identifier delimiter even
though the DBMS uses a quotation mark—for example, ODBC to Sybase.

174 QUOTED_IDENTIFIER= LIBNAME Option � Chapter 10

Examples

If you would like your quotation character to be a single quotation mark, then specify
the following:

libname x odbc dsn=mydsn pwd=mypassword quote_char="’";

If you would like your quotation character to be a double quotation mark, then
specify the following:

libname x odbc dsn=mydsn pwd=mypassword quote_char=’"’;

QUOTED_IDENTIFIER= LIBNAME Option

Allows specification of table and column names with embedded spaces and special characters.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Sybase

Syntax
QUOTED_IDENTIFIER=YES | NO

Details
You use this option in place of the PRESERVE_COL_NAMES= and
PRESERVE_TAB_NAMES= LIBNAME options. They have no effect on the Sybase
interface because it defaults to case sensitivity.

See Also
“PRESERVE_COL_NAMES= LIBNAME Option” on page 166
“PRESERVE_TAB_NAMES= LIBNAME Option” on page 168

READBUFF= LIBNAME Option

Specifies the number of rows of DBMS data to read into the buffer.

Alias: ROWSET_SIZE= (DB2 under UNIX and PC Hosts, DB2 under z/OS, HP
Neoview, Microsoft SQL Server, Netezza, ODBC, OLE DB, Sybase)
Default value: DBMS-specific
Valid in: SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. See the DBMS-specific reference section for details.
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Microsoft SQL Server, Netezza, ODBC, OLE DB, Oracle,
Sybase, Sybase IQ

The LIBNAME Statement for Relational Databases � READ_ISOLATION_LEVEL= LIBNAME Option 175

Syntax
READBUFF=integer

Syntax Description

integer
is the positive number of rows to hold in memory. SAS allows the maximum number
that the DBMS allows.

Details
This option improves performance by specifying a number of rows that can be held in
memory for input into SAS. Buffering data reads can decrease network activities and
increase performance. However, because SAS stores the rows in memory, higher values
for READBUFF= use more memory. In addition, if too many rows are selected at once,
rows that are returned to the SAS application might be out of date. For example, if
someone else modifies the rows, you do not see the changes.

When READBUFF=1, only one row is retrieved at a time. The higher the value for
READBUFF=, the more rows the DBMS engine retrieves in one fetch operation.

DB2 under UNIX and PC Hosts: If you do not specify this option, the buffer size is
automatically calculated based on the row length of your data and the
SQLExtendedFetch API call is used (this is the default).

DB2 under z/OS: For SAS 9.2 and above, the default is 1 and the maximum value is
32,767.

Microsoft SQL Server, ODBC: If you do not specify this option, the SQLFetch API call
is used and no internal SAS buffering is performed (this is the default). When you set
READBUFF=1 or greater, the SQLExtendedFetch API call is used.

HP Neoview, Netezza: The default is automatically calculated based on row length.
OLE DB: The default is 1.
Oracle: The default is 250.
Sybase: The default is 100.

See Also
To apply this option to an individual data set, see the “READBUFF= Data Set

Option” on page 364.

READ_ISOLATION_LEVEL= LIBNAME Option

Defines the degree of isolation of the current application process from other concurrently running
application processes.

Default value: DBMS-specific
Valid in: SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. See the DBMS-specific reference section for details.
DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, Informix, Microsoft
SQL Server, ODBC, OLE DB, Oracle, Sybase, Sybase IQ, Teradata

176 READ_LOCK_TYPE= LIBNAME Option � Chapter 10

Syntax
READ_ISOLATION_LEVEL=DBMS-specific value

Syntax Description
See the documentation for your SAS/ACCESS interface for the values for your DBMS.

Details
Here is what the degree of isolation defines:

� the degree to which rows that are read and updated by the current application are
available to other concurrently executing applications

� the degree to which update activity of other concurrently executing application
processes can affect the current application

This option is ignored in the DB2 under UNIX and PC Hosts and ODBC interfaces if
you do not set the READ_LOCK_TYPE= LIBNAME option to ROW. See the locking
topic for your interface in the DBMS-specific reference section for details.

See Also
To apply this option to an individual data set, see the “READ_ISOLATION_LEVEL=

Data Set Option” on page 361.
“READ_LOCK_TYPE= LIBNAME Option” on page 176

READ_LOCK_TYPE= LIBNAME Option

Specifies how data in a DBMS table is locked during a READ transaction.

Default value: DBMS-specific
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, Microsoft SQL Server,
ODBC, OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
READ_LOCK_TYPE=ROW | PAGE | TABLE | NOLOCK |VIEW

Syntax Description

ROW [valid for DB2 under UNIX and PC Hosts, Microsoft SQL Server, ODBC,
Oracle, Sybase IQ]

locks a row if any of its columns are accessed. If you are using the interface to ODBC
or DB2 under UNIX and PC Hosts, READ_LOCK_TYPE=ROW indicates that locking
is based on the READ_ISOLATION_LEVEL= LIBNAME option.

The LIBNAME Statement for Relational Databases � READ_MODE_WAIT= LIBNAME Option 177

PAGE [valid for Sybase]
locks a page of data, which is a DBMS-specific number of bytes. (This value is valid
in the Sybase interface.)

TABLE [valid for DB2 under UNIX and PC Hosts, DB2 under z/OS, Microsoft SQL
Server, ODBC, Oracle, Sybase IQ, Teradata]

locks the entire DBMS table. If you specify READ_LOCK_TYPE=TABLE, you must
also specify CONNECTION=UNIQUE, or you receive an error message. Setting
CONNECTION=UNIQUE ensures that your table lock is not lost—for example, due
to another table closing and committing rows in the same connection.

NOLOCK [valid for Microsoft SQL Server, ODBC with Microsoft SQL Server driver,
OLE DB, Oracle, Sybase]

does not lock the DBMS table, pages, or rows during a read transaction.

VIEW [valid for Teradata]
locks the entire DBMS view.

Details
If you omit READ_LOCK_TYPE=, the default is the DBMS’ default action. You can set
a lock for one DBMS table by using the data set option or for a group of DBMS tables
by using the LIBNAME option. See the locking topic for your interface in the
DBMS-specific reference section for details.

Example

In this example, the libref MYDBLIB uses SAS/ACCESS Interface to Oracle to
connect to an Oracle database. USER=, PASSWORD=, and PATH= are SAS/ACCESS
connection options. The LIBNAME options specify that row-level locking is used when
data is read or updated:

libname mydblib oracle user=testuser password=testpass
path=myorapth read_lock_type=row update_lock_type=row;

See Also
To apply this option to an individual data set, see the “READ_LOCK_TYPE= Data

Set Option” on page 362.
“CONNECTION= LIBNAME Option” on page 108
“READ_ISOLATION_LEVEL= LIBNAME Option” on page 175

READ_MODE_WAIT= LIBNAME Option

Specifies during SAS/ACCESS read operations whether Teradata should wait to acquire a lock or
should fail the request when a different user has already locked the DBMS resource.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Teradata

178 REMOTE_DBTYPE= LIBNAME Option � Chapter 10

Syntax
READ_MODE_WAIT=YES | NO

Syntax Description

YES
specifies for Teradata to wait to acquire the lock, so SAS/ACCESS waits indefinitely
until it can acquire the lock.

NO
specifies for Teradata to fail the lock request if the specified DBMS resource is locked.

Details
If you specify READ_MODE_WAIT=NO and if a different user holds a restrictive lock,
then the executing SAS step fails. SAS/ACCESS continues processing the job by
executing the next step. For more information, see “Locking in the Teradata Interface”
on page 832.

If you specify READ_MODE_WAIT=YES, SAS/ACCESS waits indefinitely until it can
acquire the lock.

A restrictive lock means that another user is holding a lock that prevents you from
obtaining the lock that you want. Until the other user releases the restrictive lock, you
cannot obtain your lock. For example, another user’s table level WRITE lock prevents
you from obtaining a READ lock on the table.

See Also
To apply this option to an individual data set, see the “READ_MODE_WAIT= Data

Set Option” on page 363.

REMOTE_DBTYPE= LIBNAME Option

Specifies whether the libref points to a database server on z/OS or to one on Linux, UNIX, or
Windows (LUW).

Default value: ZOS
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: DB2 under z/OS

Syntax
REMOTE_DBTYPE=LUW | ZOS

The LIBNAME Statement for Relational Databases � REMOTE_DBTYPE= LIBNAME Option 179

Syntax Description

LUW
specifies that the database server that is accessed through the libref resides on
Linux, UNIX, or Windows.

ZOS
specifies that the database server that is accessed through the libref runs on z/OS
(default).

Details
Specifying REMOTE_DBTYPE= in the LIBNAME statement ensures that the SQL that
is used by some SAS procedures to access the DB2 catalog tables is generated properly,
and that it is based on the database server type.

This option also enables special catalog calls (such as DBMS::Indexes) to function
properly when the target database does not reside on a mainframe computer.

Use REMOTE_DBTYPE= with the SERVER= CONNECT statement option or the
LOCATION= LIBNAME option. If you use neither option, REMOTE_DBTYPE= is
ignored.

Example

This example uses REMOTE_DBTYPE= with the SERVER= option.

libname mylib db2 ssid=db2a server=db2_udb remote_dbtype=luw;
proc datasets lib=mylib;

quit;

By specifying REMOTE_DBTYPE=LUW, this SAS code lets the catalog call work
properly for this remote connection.

proc sql;
connect to db2 (ssid=db2a server=db2_udb remote_dbtype=luw);

select * from connection to db2
select * from connection to db2

(DBMS::PrimaryKeys ("", "JOSMITH", ""));
quit;

See Also
See these options for more information about other options that work with

REMOTE_DBTYPE=:
“LOCATION= LIBNAME Option” on page 155
SERVER= CONNECT statement option (SQL Pass-Through Facility Specifics for

DB2 Under z/OS - Key Information)

180 REREAD_EXPOSURE= LIBNAME Option � Chapter 10

REREAD_EXPOSURE= LIBNAME Option

Specifies whether the SAS/ACCESS engine functions like a random access engine for the scope of
the LIBNAME statement.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
REREAD_EXPOSURE=YES | NO

Syntax Description

NO
specifies that the SAS/ACCESS engine functions as an RMOD engine, which means
that your data is protected by the normal data protection that SAS provides.

YES
specifies that the SAS/ACCESS engine functions like a random access engine when
rereading a row so that you cannot guarantee that the same row is returned. For
example, if you read row 5 and someone else deletes it, then the next time you read
row 5, you read a different row. You have the potential for data integrity exposures
within the scope of your SAS session.

Details
CAUTION:

Using REREAD_EXPOSURE= could cause data integrity exposures. �

HP Neoview, Netezza, ODBC, and OLE DB: To avoid data integrity problems, it is
advisable to set UPDATE_ISOLATION_LEVEL=S (serializable) if you set
REREAD_EXPOSURE=YES.

Oracle: To avoid data integrity problems, it is advisable to set
UPDATE_LOCK_TYPE=TABLE if you set REREAD_EXPOSURE=YES.

See Also
“UPDATE_ISOLATION_LEVEL= LIBNAME Option” on page 195
“UPDATE_LOCK_TYPE= LIBNAME Option” on page 196

The LIBNAME Statement for Relational Databases � SCHEMA= LIBNAME Option 181

SCHEMA= LIBNAME Option

Allows reading of such database objects as tables and views in the specified schema.

Default value: DBMS-specific
Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, Netezza, ODBC, OLE DB,
Oracle, Sybase, Sybase IQ, Teradata

Syntax
SCHEMA=schema-name

Syntax Description

schema-name
specifies the name that is assigned to a logical classification of objects in a relational
database.

Details
For this option to work, you must have appropriate privileges to the schema that is
specified.

If you do not specify this option, you connect to the default schema for your DBMS.
The values for SCHEMA= are usually case sensitive, so use care when you specify

this option.
Aster nCluster: The default is none, which uses the database user’s default schema.

However, the user name is used instead when the user’s default scheme is the user
name—for example, when SQLTables is called to get a table listing using PROC
DATASETS or SAS Explorer.

Oracle: Specify a schema name to be used when referring to database objects. SAS
can access another user’s database objects by using a specified schema name. If
PRESERVE_TAB_NAMES=NO, SAS converts the SCHEMA= value to uppercase
because all values in the Oracle data dictionary are uppercase unless quoted.

Sybase: You cannot use the SCHEMA= option when you use
UPDATE_LOCK_TYPE=PAGE to update a table.

Teradata: If you omit this option, a libref points to your default Teradata database,
which often has the same name as your user name. You can use this option to point to
a different database. This option lets you view or modify a different user’s DBMS tables
or views if you have the required Teradata privileges. (For example, to read another
user’s tables, you must have the Teradata privilege SELECT for that user’s tables.) For
more information about changing the default database, see the DATABASE statement
in your Teradata documentation.

182 SCHEMA= LIBNAME Option � Chapter 10

Examples

In this example, SCHEMA= causes DB2 to interpret any reference in SAS to
mydb.employee as scott.employee.

libname mydb db2 SCHEMA=SCOTT;

To access an Oracle object in another schema, use the SCHEMA= option as shown in
this example. The schema name is typically a user name or ID.

libname mydblib oracle user=testuser
password=testpass path=’hrdept_002’ schema=john;

In this next example, the Oracle SCHEDULE table resides in the AIRPORTS schema
and is specified as AIRPORTS.SCHEDULE. To access this table in PROC PRINT and
still use the libref (CARGO) in the SAS/ACCESS LIBNAME statement, you specify the
schema in the SCHEMA= option and then put the libref.table in the DATA statement
for the procedure.

libname cargo oracle schema=airports user=testuser password=testpass
path="myorapath";

proc print data=cargo.schedule;
run;

In this Teradata example, the testuser user prints the emp table, which is located in
the otheruser database.

libname mydblib teradata user=testuser pw=testpass schema=otheruser;
proc print data=mydblib.emp;
run;

See Also
To apply this option to an individual data set, see the “SCHEMA= Data Set Option”

on page 367.
“PRESERVE_TAB_NAMES= LIBNAME Option” on page 168

The LIBNAME Statement for Relational Databases � SESSIONS= LIBNAME Option 183

SESSIONS= LIBNAME Option

Specifies how many Teradata sessions to be logged on when using FastLoad, FastExport, or
Multiload.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Teradata

Syntax
SESSIONS=number-of-sessions

Syntax Description

number-of-sessions
specifies a numeric value that indicates the number of sessions to be logged on.

Details
When reading data with FastExport or loading data with FastLoad and MultiLoad, you
can request multiple sessions to increase throughput. Using large values might not
necessarily increase throughput due to the overhead associated with session
management. Check whether your site has any recommended value for the number of
sessions to use. See your Teradata documentation for details about using multiple
sessions.

Example

This example uses SESSIONS= in a LIBNAME statement to request that five
sessions be used to load data with FastLoad.

libname x teradata user=prboni pw=prboni SESSIONS=2;

proc delete data=x.test;run;
data x.test(FASTLOAD=YES);
i=5;
run;

See Also
To apply this option to an individual data set, see the “SESSIONS= Data Set Option”

on page 369.

184 SHOW_SYNONYMS= LIBNAME Option � Chapter 10

SHOW_SYNONYMS= LIBNAME Option

Specifies whether PROC DATASETS shows synonyms, tables, views, or materialized views for the
current user and schema if you specified the SCHEMA= option.

Default value: YES
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Oracle

Syntax
SHOW_SYNONYMS=<YES | NO>

Syntax Description

YES
specifies that PROC DATASETS shows only synonyms that represent tables, views,
or materialized views for the current user.

NO
specifies that PROC DATASETS shows only tables, views, or materialized views for
the current user.

Details
Instead of submitting PROC DATASETS, you can click the libref for the SAS Explorer
window to get this same information. By default, no PUBLIC synonyms display unless
you specify SCHEMA=PUBLIC.

When you specify only the SCHEMA option, the current schema always displays with
the appropriate privileges.

Tables, views, materialized views, or synonyms on the remote database always
display when you specify the DBLINK= LIBNAME option. If a synonym represents an
object on a remote database that you might not be able to read, such as a synonym
representing a sequence, you might receive an Oracle error.

Synonyms, tables, views, and materialized views in a different schema also display.

See Also
“DBLINK= LIBNAME Option” on page 129

The LIBNAME Statement for Relational Databases � SPOOL= LIBNAME Option 185

SPOOL= LIBNAME Option

Specifies whether SAS creates a utility spool file during read transactions that read data more
than once.

Default value: YES
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
SPOOL=YES | NO | DBMS

Syntax Description

YES
specifies that SAS creates a utility spool file into which it writes the rows that are
read the first time. For subsequent passes through the data, the rows are read from
the utility spool file rather than being re-read from the DBMS table. This guarantees
that the row set is the same for every pass through the data.

NO
specifies that the required rows for all passes of the data are read from the DBMS
table. No spool file is written. There is no guarantee that the row set is the same for
each pass through the data.

DBMS
is valid for Oracle only. The required rows for all passes of the data are read from
the DBMS table but additional enforcements are made on the DBMS server side to
ensure that the row set is the same for every pass through the data. This setting
causes SAS/ACCESS Interface to Oracle to satisfy the two-pass requirement by
starting a read-only transaction. SPOOL=YES and SPOOL=DBMS have comparable
performance results for Oracle. However, SPOOL=DBMS does not use any disk
space. When SPOOL is set to DBMS, you must set CONNECTION=UNIQUE or an
error occurs.

Details
In some cases, SAS processes data in more than one pass through the same set of rows.
Spooling is the process of writing rows that have been retrieved during the first pass of
a data read to a spool file. In the second pass, rows can be reread without performing
I/O to the DBMS a second time. When data must be read more than once, spooling
improves performance. Spooling also guarantees that the data remains the same
between passes, as most SAS/ACCESS interfaces do not support member-level locking.

MySQL: Do not use SPOOL=NO with the MySQL interface.
Teradata: SPOOL=NO requires SAS/ACCESS to issue identical SELECT statements

to Teradata twice. Additionally, because the Teradata table can be modified between
passes, SPOOL=NO can cause data integrity problems. Use SPOOL=NO with
discretion.

186 SQL_FUNCTIONS= LIBNAME Option � Chapter 10

See Also
“CONNECTION= LIBNAME Option” on page 108

SQL_FUNCTIONS= LIBNAME Option

Customizes the in-memory SQL dictionary function list for this particular LIBNAME statement.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase,
Sybase IQ, Teradata

Syntax
SQL_FUNCTIONS=ALL | "<libref.member>" |

"EXTERNAL_APPEND=<libref.member>"

Syntax Description

ALL
customizes the in-memory SQL dictionary function list for this particular LIBNAME
statement by adding the set of all existing functions, even those that might be risky
or untested.

EXTERNAL_REPLACE=<libref.member> [not valid for Informix, OLE DB]
indicates a user-specified, external SAS data set from which the complete function
list in the SQL dictionary is to be built. The assumption is that the user has already
issued a LIBNAME statement to the directory where the SAS data set exists.

EXTERNAL_APPEND=<libref.member> [not valid for Informix, OLE DB]
indicates a user-specified, external SAS data set from which additional functions are
to be added to the existing function list in the SQL dictionary. The assumption is
that the user has already issued a LIBNAME statement to the directory where the
SAS data set exists.

Details
Use of this option can cause unexpected results, especially if used for NULL processing
and date, time, and timestamp handling. For example, when executed without
SQL_FUNCTIONS= enabled, this SAS code returns the SAS date 15308:

proc sql;
select distinct DATE () from x.test;

quit;

However, with SQL_FUNCTIONS=ALL, the same code returns 2001-1-29, which is
an ODBC date format. So you should exercise care when you use this option.

Functions that are passed are different for each DBMS. See the documentation for
your SAS/ACCESS interface for list of functions that it supports.

The LIBNAME Statement for Relational Databases � SQL_FUNCTIONS= LIBNAME Option 187

Limitations
� Informix and OLE DB support only SQL_FUNCTIONS=ALL.
� You must specify a two-part data set name, such as <libref.member> or an error

results.
� <libref.member> must be a SAS data set. No check is performed to ensure that it

is assigned to the default Base SAS engine.
� This table provides additional details to keep in mind when you add to or modify

the SAS data set.

Variable Required* Optional**
Read-
Only** Valid Values

SASFUNCNAME X

Truncated to 32
characters if
length is greater
than 32

SASFUNCNAMELEN X

Must correctly
reflect the length
of
SASFUNCNAME

DBMSFUNCNAME X

Truncated to 50
characters if
length is greater
than 50

DBMSFUNCNAMELEN X

Must correctly
reflect the length
of
DBMSFUNCNAME

FUNCTION_CATEGORY X
AGGREGATE ,
CONSTANT,
SCALAR

FUNC_USAGE_CONTEXT X
SELECT_LIST,
WHERE_ORDERBY

FUNCTION_RETURNTYP X

BINARY, CHAR,
DATE,
DATETIME,
DECIMAL,
GRAPHIC,
INTEGER,
INTERVAL,
NUMERIC,
TIME, VARCHAR

FUNCTION_NUM_ARGS X 0

188 SQL_FUNCTIONS= LIBNAME Option � Chapter 10

Variable Required* Optional**
Read-
Only** Valid Values

CONVERT_ARGSS X
Must be set to 0
for a newly added
function.

ENGINEINDEX X

Must remain
unchanged for
existing
functions. Set to
0 for a newly
added function.

* An error results when a value is missing.
** For new and existing functions.

Examples

You can use EXTERNAL_APPEND= to include one or more existing functions to the
in-memory function list and EXTERNAL_REPLACE= to exclude them. In this example
the DATEPART function in a SAS data set of Oracle functions by appending the
function to an existing list of SAS functions:

proc sql;
create table work.append as select * from work.allfuncs where sasfuncname=’DATEPART’;
quit;

libname mydblib oracle sql_functions="EXTERNAL_APPEND=work.append"
sql_functions_copy=saslog;

In this next example, the equivalent Oracle functions in a SAS data set replace all
SAS functions that contain the letter I:

proc sql;
create table work.replace as select * from work.allfuncs where sasfuncname like ’%I%’;
quit;

libname mydblib oracle sql_functions="EXTERNAL_REPLACE=work.replace"
sql_functions_copy=saslog;

This example shows how to add a new function:

data work.newfunc;

SASFUNCNAME = "sasname";
SASFUNCNAMELEN = 7;
DBMSFUNCNAME = "DBMSUDFName";
DBMSFUNCNAMELEN = 11;

FUNCTION_CATEGORY = "CONSTANT";
FUNC_USAGE_CONTEXT = "WHERE_ORDERBY";
FUNCTION_RETURNTYP = "NUMERIC";
FUNCTION_NUM_ARGS = 0;

CONVERT_ARGS = 0;
ENGINEINDEX = 0;

The LIBNAME Statement for Relational Databases � SQL_FUNCTIONS_COPY= LIBNAME Option 189

output;
run;

/* Add function to existing in-memory function list */
libname mydblib oracle sql_functions="EXTERNAL_APPEND=work.newfunc"

sql_functions_copy=saslog;

See Also

“SQL_FUNCTIONS_COPY= LIBNAME Option” on page 189

SQL_FUNCTIONS_COPY= LIBNAME Option

Writes the function associated with this particular LIBNAME statement to a SAS data set or the
SAS log.

Default value: none

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, MySQL, Netezza, ODBC, Oracle, Sybase, Sybase IQ, Teradata

Syntax

SQL_FUNCTIONS_COPY=<libref.member> | SASLOG

Syntax Description

<libref.member>
For this particular LIBNAME statement, writes the current in-memory function list
to a user-specified SAS data set.

SASLOG
For this particular LIBNAME statement, writes the current in-memory function list
to the SAS log.

Limitations

These limitations apply.

� You must specify a two-part data set name, such as <libref.member> or an error
results.

� <libref.member> must be a SAS data set. It is not checked to make sure that it is
assigned to the default Base SAS engine.

See Also

“SQL_FUNCTIONS= LIBNAME Option” on page 186

190 SQL_OJ_ANSI= LIBNAME Option � Chapter 10

SQL_OJ_ANSI= LIBNAME Option

Specifies whether to pass ANSI outer-join syntax through to the database.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Sybase

Syntax
SQL_OJ_ANSI=YES | NO

Syntax Description

YES
specifies that ANSI outer-join syntax is passed through to the database.

NO
disables pass-through of ANSI outer-joins.

Details
Sybase can process SQL outer joins only if the version of the Adaptive Server
Enterprise (ASE) database is 12.5.2 or higher.

SQLGENERATION= LIBNAME Option

Specifies whether and when SAS procedures generate SQL for in-database processing of source
data.

Default value: NONE DBMS=’Teradata’
Valid in: SAS/ACCESS LIBNAME statement
DBMS Support: DB2 under UNIX and PC Hosts, Oracle, Teradata

Syntax
SQLGENERATION=<(>NONE | DBMS <DBMS=’engine1 engine2 ... enginen’>

<<EXCLUDEDB=engine | ’engine1 engine2 ... enginen’>>

<<EXCLUDEPROC="engine=’proc1 proc2 ... procn’ enginen=’proc1 proc2 ... procn’ ">
<)>>

SQLGENERATION=" "

Syntax Description

The LIBNAME Statement for Relational Databases � STRINGDATES= LIBNAME Option 191

NONE
prevents those SAS procedures that are enabled for in-database processing from
generating SQL for in-database processing. This is a primary state.

DBMS
allows SAS procedures that are enabled for in-database processing to generate SQL
for in-database processing of DBMS tables through supported SAS/ACCESS engines.
This is a primary state.

DBMS=’engine1 engine2 ... enginen’
specifies one or more SAS/ACCESS engines. It modifies the primary state.
Restriction: The maximum length of an engine name is 8 characters.

EXCLUDEDB=engine | ’engine1 engine2 ... enginen’
prevents SAS procedures from generating SQL for in-database processing for one or
more specified SAS/ACCESS engines.
Restriction: The maximum length of an engine name is 8 characters.

EXCLUDEPROC="engine=’proc1 proc2 ... procn’ enginen=’proc1 proc2 ... procn’ "
identifies engine-specific SAS procedures that do not support in-database processing.

Restrictions: The maximum length of a procedure name is 16 characters.
An engine can appear only once, and a procedure can appear only once for a

given engine.

" "
resets the value to the default that was shipped.

Details
Use this option with such procedures as PROC FREQ to indicate what SQL is
generated for in-database processing based on the type of subsetting that you need and
the SAS/ACCESS engines that you want to access the source table.

You must specify NONE and DBMS, which indicate the primary state.
The maximum length of the option value is 4096. Also, parentheses are required

when this option value contains multiple keywords.
Not all procedures support SQL generation for in-database processing for every

engine type. If you specify a setting that is not supported, an error message indicates
the level of SQL generation that is not supported, and the procedure can reset to the
default so that source table records can be read and processed within SAS. If this is not
possible, the procedure ends and sets SYSERR= as needed.

You can specify different SQLGENERATION= values for the DATA= and OUT= data
sets by using different LIBNAME statements for each of these two data sets.

See Also
“SQLGENERATION= System Option” on page 420
Chapter 8, “Overview of In-Database Procedures,” on page 67
Table 12.2 on page 421

STRINGDATES= LIBNAME Option

Specifies whether to read date and time values from the database as character strings or as
numeric date values.

192 TPT= LIBNAME Option � Chapter 10

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP
Neoview, Microsoft SQL Server, Netezza, ODBC, OLE DB, Sybase IQ

Syntax
STRINGDATES=YES | NO

Syntax Description

YES
specifies that SAS reads date and time values as character strings.

NO
specifies that SAS reads date and time values as numeric date values.

Details
Use STRINGDATES=NO for SAS 6 compatibility.

TPT= LIBNAME Option
Specifies whether SAS uses the Teradata Parallel Transporter (TPT) API to load data when SAS
requests a Fastload, MultiLoad, or Multi-Statement insert.

Default value: YES
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Teradata

Syntax
TPT=YES | NO

Syntax Description

YES
specifies that SAS uses the TPT API when Fastload, MultiLoad, or Multi-Statement
insert is requested.

NO
specifies that SAS does not use the TPT API when Fastload, MultiLoad, or
Multi-Statement insert is requested.

Details
By using the TPT API, you can load data into a Teradata table without working directly
with such stand-alone Teradata utilities as Fastload, MultiLoad, or TPump. When

The LIBNAME Statement for Relational Databases � TPT= LIBNAME Option 193

TPT=NO, SAS uses the TPT API load driver for FastLoad, the update driver for
MultiLoad, and the stream driver for Multi-Statement insert.

When TPT=YES, sometimes SAS cannot use the TPT API due to an error or because
it is not installed on the system. When this happens, SAS does not produce an error,
but it still tries to load data using the requested load method (Fastload, MultiLoad, or
Multi-Statement insert). To check whether SAS used the TPT API to load data, look for
a similar message to this one in the SAS log:

NOTE: Teradata connection: TPT FastLoad/MultiLoad/MultiStatement insert
has read n row(s).

Example

In this example, SAS data is loaded into Teradata using the TPT API. This is the
default method of loading when Fastload, MultiLoad, or Multi-Statement insert are
requested. SAS still tries to load data even if it cannot use the TPT API.

libname tera teradata user=testuser pw=testpw TPT=YES;
/* Create data */
data testdata;
do i=1 to 100;
output;
end;
run;

* Load using MultiLoad TPT. This note appears in the SAS log if SAS uses TPT.
NOTE: Teradata connection: TPT MultiLoad has inserted 100 row(s).*/
data tera.testdata(MULTILOAD=YES);
set testdata;
run;

See Also
To apply this option to an individual data set, see the “TPT= Data Set Option” on

page 373.
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“MULTISTMT= Data Set Option” on page 348
“TPT_APPL_PHASE= Data Set Option” on page 374
“TPT_BUFFER_SIZE= Data Set Option” on page 376
“TPT_CHECKPOINT_DATA= Data Set Option” on page 377
“TPT_DATA_ENCRYPTION= Data Set Option” on page 379
“TPT_ERROR_TABLE_1= Data Set Option” on page 380
“TPT_ERROR_TABLE_2= Data Set Option” on page 381
“TPT_LOG_TABLE= Data Set Option” on page 382
“TPT_MAX_SESSIONS= Data Set Option” on page 384
“TPT_MIN_SESSIONS= Data Set Option” on page 384
“TPT_PACK= Data Set Option” on page 385
“TPT_PACKMAXIMUM= Data Set Option” on page 386
“TPT_RESTART= Data Set Option” on page 387
“TPT_TRACE_LEVEL= Data Set Option” on page 389
“TPT_TRACE_LEVEL_INF= Data Set Option” on page 390
“TPT_TRACE_OUTPUT= Data Set Option” on page 392

194 TRACE= LIBNAME Option � Chapter 10

“TPT_WORK_TABLE= Data Set Option” on page 393

TRACE= LIBNAME Option

Specifies whether to turn on tracing information for use in debugging.

Default value: NO
Valid in: SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. See the DBMS-specific reference section for details.
DBMS support: Aster nCluster, Greenplum, HP Neoview, Microsoft SQL Server, Netezza,
ODBC, Sybase IQ

Syntax
TRACE=YES | NO

Syntax Description

YES
specifies that tracing is turned on, and the DBMS driver manager writes each
function call to the trace file that TRACEFILE= specifies.

NO
specifies that tracing is not turned on.

Details
This option is not supported on UNIX platforms.

See Also
“TRACEFILE= LIBNAME Option” on page 194

TRACEFILE= LIBNAME Option

Specifies the filename to which the DBMS driver manager writes trace information.

Default value: none
Valid in: SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. See the DBMS-specific reference section for details.
DBMS support: Aster nCluster, Greenplum, HP Neoview, Microsoft SQL Server, Netezza,
ODBC, Sybase IQ

Syntax
TRACEFILE= filename | <’>path-and-filename<’>

The LIBNAME Statement for Relational Databases � UPDATE_ISOLATION_LEVEL= LIBNAME Option 195

Details
TRACEFILE= is used only when TRACE=YES. If you specify a filename without a
path, the SAS trace file is stored with your data files. If you specify a directory, enclose
the fully qualified filename in single quotation marks.

If you do not specify the TRACEFILE= option, output is directed to a default file.
This option is not supported on UNIX platforms.

See Also
“TRACE= LIBNAME Option” on page 194

UPDATE_ISOLATION_LEVEL= LIBNAME Option

Defines the degree of isolation of the current application process from other concurrently running
application processes.

Default value: DBMS-specific
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, Microsoft SQL Server,
ODBC, OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
UPDATE_ISOLATION_LEVEL=DBMS-specific-value

Syntax Description
The values for this option are DBMS-specific. See the DBMS-specific reference

section for details.

Details
Here is what the degree of isolation defines:

� the degree to which rows that are read and updated by the current application are
available to other concurrently executing applications

� the degree to which update activity of other concurrently executing application
processes can affect the current application.

This option is ignored in the interfaces to DB2 under UNIX and PC Hosts and ODBC
if you do not set UPDATE_LOCK_TYPE=ROW. See the locking topic for your interface
in the DBMS-specific reference section for details.

See Also
To apply this option to an individual data set, see the

“UPDATE_ISOLATION_LEVEL= Data Set Option” on page 396.
“UPDATE_LOCK_TYPE= LIBNAME Option” on page 196

196 UPDATE_LOCK_TYPE= LIBNAME Option � Chapter 10

UPDATE_LOCK_TYPE= LIBNAME Option
Specifies how data in a DBMS table is locked during an update transaction.

Default value: DBMS-specific
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, Microsoft SQL Server,
ODBC, OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
UPDATE_LOCK_TYPE=ROW | PAGE | TABLE | NOLOCK |VIEW

Syntax Description

ROW [valid for DB2 under UNIX and PC Hosts, Microsoft SQL Server, ODBC,
Oracle]

locks a row if any of its columns are to be updated.

PAGE [valid for Sybase]
locks a page of data, which is a DBMS-specific number of bytes. This value is not
valid for the Sybase interface when you use the .

TABLE [valid for DB2 under UNIX and PC Hosts, DB2 under z/OS, Microsoft SQL
Server, ODBC, Oracle, Sybase IQ, Teradata]

locks the entire DBMS table.

NOLOCK [valid for Microsoft SQL Server, ODBC with Microsoft SQL Server driver,
OLE DB, Oracle, Sybase]

does not lock the DBMS table, page, or any rows when reading them for update. (This
value is valid in the Microsoft SQL Server, ODBC, Oracle, and Sybase interfaces.)

VIEW [valid for Teradata]
locks the entire DBMS view.

Details
You can set a lock for one DBMS table by using the data set option or for a group of
DBMS tables by using the LIBNAME option. See the locking topic for your interface in
the DBMS-specific reference section for details.

See Also
To apply this option to an individual data set, see the “UPDATE_LOCK_TYPE= Data

Set Option” on page 397.
“SCHEMA= LIBNAME Option” on page 181

UPDATE_MODE_WAIT= LIBNAME Option
Specifies during SAS/ACCESS update operations whether Teradata should wait to acquire a lock or
fail the request when a different user has locked the DBMS resource.

The LIBNAME Statement for Relational Databases � UPDATE_MULT_ROWS= LIBNAME Option 197

Default value: none
Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Teradata

Syntax
UPDATE_MODE_WAIT=YES | NO

Syntax Description

YES
specifies for Teradata to wait to acquire the lock, so SAS/ACCESS waits indefinitely
until it can acquire the lock.

NO
specifies for Teradata to fail the lock request if the specified DBMS resource is locked.

Details
If you specify UPDATE_MODE_WAIT=NO and if a different user holds a restrictive
lock, then the executing SAS step fails. SAS/ACCESS continues processing the job by
executing the next step.

A restrictive lock means that a different user is holding a lock that prevents you from
obtaining the lock that you want. Until the other user releases the restrictive lock, you
cannot obtain your lock. For example, another user’s table level WRITE lock prevents
you from obtaining a READ lock on the table.

Use SAS/ACCESS locking options only when the standard Teradata standard locking
is undesirable.

See Also
To apply this option to an individual data set, see the “UPDATE_MODE_WAIT=

Data Set Option” on page 398.
“Locking in the Teradata Interface” on page 832

UPDATE_MULT_ROWS= LIBNAME Option

Indicates whether to allow SAS to update multiple rows from a data source, such as a DBMS table.

Default value: NO

Valid in: SAS/ACCESS LIBNAME statement
DBMS support: Aster nCluster, Greenplum, HP Neoview, Microsoft SQL Server, Netezza,
ODBC, OLE DB, Sybase IQ

Syntax
UPDATE_MULT_ROWS=YES | NO

198 UPDATE_SQL= LIBNAME Option � Chapter 10

Syntax Description

YES
specifies that SAS/ACCESS processing continues if multiple rows are updated. This
might produce unexpected results.

NO
specifies that SAS/ACCESS processing does not continue if multiple rows are
updated.

Details
Some providers do not handle the following DBMS SQL statement well and therefore
update more than the current row with this statement:

UPDATE ... WHERE CURRENT OF CURSOR

UPDATE_MULT_ROWS= enables SAS/ACCESS to continue if multiple rows were
updated.

UPDATE_SQL= LIBNAME Option

Determines the method that is used to update and delete rows in a data source.

Default value: YES (except for the Oracle drivers from Microsoft and Oracle)

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Microsoft SQL Server, ODBC

Syntax
UPDATE_SQL=YES | NO

Syntax Description

YES
specifies that SAS/ACCESS uses Current-of-Cursor SQL to update or delete rows in a
table.

NO
specifies that SAS/ACCESS uses the SQLSetPos() application programming interface
(API) to update or delete rows in a table.

Details
This is the update/delete equivalent of the INSERT_SQL= LIBNAME option. The
default for the Oracle drivers from Microsoft and Oracle is NO because these drivers do
not support Current-Of-Cursor operations.

The LIBNAME Statement for Relational Databases � USE_ODBC_CL= LIBNAME Option 199

See Also
To apply this option to an individual data set, see the “UPDATE_SQL= Data Set

Option” on page 398.
“INSERT_SQL= LIBNAME Option” on page 151

UPDATEBUFF= LIBNAME Option

Specifies the number of rows that are processed in a single DBMS update or delete operation.

Default value: 1

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Oracle

Syntax
UPDATEBUFF=positive-integer

Syntax Description

positive-integer
is the number of rows in an operation. SAS allows the maximum that the DBMS
allows.

Details
When updating with the VIEWTABLE window or the FSVIEW procedure, use
UPDATEBUFF=1 to prevent the DBMS interface from trying to update multiple rows.
By default, these features update only observation at a time (since by default they use
record-level locking, they lock only the observation that is currently being edited).

See Also
To apply this option to an individual data set, see the “UPDATEBUFF= Data Set

Option” on page 399.

USE_ODBC_CL= LIBNAME Option

Indicates whether the Driver Manager uses the ODBC Cursor Library.

Default value: NO

Valid in: SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. See the DBMS-specific reference section for details.

DBMS support: Aster nCluster, HP Neoview, Microsoft SQL Server, Netezza, ODBC

200 UTILCONN_TRANSIENT= LIBNAME Option � Chapter 10

Syntax
USE_ODBC_CL=YES | NO

Syntax Description

YES
specifies that the Driver Manager uses the ODBC Cursor Library. The ODBC Cursor
Library supports block scrollable cursors and positioned update and delete
statements.

NO
specifies that the Driver Manager uses the scrolling capabilities of the driver.

Details
For more information about the ODBC Cursor Library, see your vendor-specific
documentation.

UTILCONN_TRANSIENT= LIBNAME Option

Enables utility connections to maintain or drop, as needed.

Default value: YES (DB2 under z/OS), NO (Aster nCluster, DB2 under UNIX and PC
Hosts, Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza,
ODBC, OLEDB, Oracle, Sybase, Sybase IQ, Teradata)
Valid in: SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. See the DBMS-specific reference section for details.
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
UTILCONN_TRANSIENT=YES | NO

Syntax Description

NO
specifies that a utility connection is maintained for the lifetime of the libref.

YES
specifies that a utility connection is automatically dropped as soon as it is no longer
in use.

Details
For engines that can lock system resources as a result of operations such DELETE or
RENAME, or as a result of queries on system tables or table indexes, a utility

The LIBNAME Statement for Relational Databases � UTILCONN_TRANSIENT= LIBNAME Option 201

connection is used. The utility connection prevents the COMMIT statements that are
issued to unlock system resources from being submitted on the same connection that is
being used for table processing. Keeping the COMMIT statements off of the table
processing connection alleviates the problems they can cause such as invalidating
cursors and committing pending updates on the tables being processed.

Because a utility connection exists for each LIBNAME statement, the number of
connection to a DBMS can get large as multiple librefs are assigned across multiple
SAS sessions. Setting UTILCONN_TRANSIENT=YES keeps these connections from
existing when they are not being used. This setting reduces the number of current
connections to the DBMS at any given point in time.

UTILCONN_TRANSIENT= has no effect on engines that do not support utility
connections.

See Also
“DELETE_MULT_ROWS= LIBNAME Option” on page 141

202

203

C H A P T E R

11
Data Set Options for Relational
Databases

About the Data Set Options for Relational Databases 207
Overview 207

AUTHID= Data Set Option 208

AUTOCOMMIT= Data Set Option 209

BL_ALLOW_READ_ACCESS= Data Set Option 210

BL_ALLOW_WRITE_ACCESS= Data Set Option 210
BL_BADDATA_FILE= Data Set Option 211

BL_BADFILE= Data Set Option 212

BL_CLIENT_DATAFILE= Data Set Option 213

BL_CODEPAGE= Data Set Option 213

BL_CONTROL= Data Set Option 214

BL_COPY_LOCATION= Data Set Option 216
BL_CPU_PARALLELISM= Data Set Option 216

BL_DATA_BUFFER_SIZE= Data Set Option 217

BL_DATAFILE= Data Set Option 218

BL_DATAFILE= Data Set Option [Teradata only] 220

BL_DB2CURSOR= Data Set Option 221
BL_DB2DATACLAS= Data Set Option 222

BL_DB2DEVT_PERM= Data Set Option 222

BL_DB2DEVT_TEMP= Data Set Option 223

BL_DB2DISC= Data Set Option 223

BL_DB2ERR= Data Set Option 224
BL_DB2IN= Data Set Option 224

BL_DB2LDCT1= Data Set Option 225

BL_DB2LDCT2= Data Set Option 226

BL_DB2LDCT3= Data Set Option 226

BL_DB2LDEXT= Data Set Option 227

BL_DB2MGMTCLAS= Data Set Option 228
BL_DB2MAP= Data Set Option 229

BL_DB2PRINT= Data Set Option 229

BL_DB2PRNLOG= Data Set Option 230

BL_DB2REC= Data Set Option 230

BL_DB2RECSP= Data Set Option 231
BL_DB2RSTRT= Data Set Option 232

BL_DB2SPC_PERM= Data Set Option 232

BL_DB2SPC_TEMP= Data Set Option 233

BL_DB2STORCLAS= Data Set Option 233

BL_DB2TBLXST= Data Set Option 234
BL_DB2UNITCOUNT= Data Set Option 236

BL_DB2UTID= Data Set Option 236

BL_DBNAME= Data Set Option 237

204 Contents � Chapter 11

BL_DEFAULT_DIR= Data Set Option 238
BL_DELETE_DATAFILE= Data Set Option 238

BL_DELETE_ONLY_DATAFILE= Data Set Option 240

BL_DELIMITER= Data Set Option 242

BL_DIRECT_PATH= Data Set Option 243

BL_DISCARDFILE= Data Set Option 244
BL_DISCARDS= Data Set Option 245

BL_DISK_PARALLELISM= Data Set Option 246

BL_ENCODING= Data Set Option 247

BL_ERRORS= Data Set Option 247

BL_ESCAPE= Data Set Option 248

BL_EXECUTE_CMD= Data Set Option 249
BL_EXECUTE_LOCATION= Data Set Option 250

BL_EXCEPTION= Data Set Option 251

BL_EXTERNAL_WEB= Data Set Option 252

BL_FAILEDDATA= Data Set Option 253

BL_FORCE_NOT_NULL= Data Set Option 254
BL_FORMAT= Data Set Option 255

BL_HEADER= Data Set Option 255

BL_HOST= Data Set Option 256

BL_HOSTNAME= Data Set Option 257

BL_INDEX_OPTIONS= Data Set Option 258
BL_INDEXING_MODE= Data Set Option 259

BL_KEEPIDENTITY= Data Set Option 260

BL_KEEPNULLS= Data Set Option 261

BL_LOAD_METHOD= Data Set Option 261

BL_LOAD_REPLACE= Data Set Option 262

BL_LOCATION= Data Set Option 263
BL_LOG= Data Set Option 263

BL_METHOD= Data Set Option 265

BL_NULL= Data Set Option 265

BL_NUM_ROW_SEPS= Data Set Option 266

BL_OPTIONS= Data Set Option 267
BL_PARFILE= Data Set Option 268

BL_PATH= Data Set Option 269

BL_PORT= Data Set Option 270

BL_PORT_MAX= Data Set Option 271

BL_PORT_MIN= Data Set Option 271
BL_PRESERVE_BLANKS= Data Set Option 272

BL_PROTOCOL= Data Set Option 273

BL_QUOTE= Data Set Option 274

BL_RECOVERABLE= Data Set Option 274

BL_REJECT_LIMIT= Data Set Option 275

BL_REJECT_TYPE= Data Set Option 276
BL_REMOTE_FILE= Data Set Option 277

BL_RETRIES= Data Set Option 278

BL_RETURN_WARNINGS_AS_ERRORS= Data Set Option 278

BL_ROWSETSIZE= Data Set Option 279

BL_SERVER_DATAFILE= Data Set Option 280
BL_SQLLDR_PATH= Data Set Option 281

BL_STREAMS= Data Set Option 281

BL_SUPPRESS_NULLIF= Data Set Option 282

BL_SYNCHRONOUS= Data Set Option 283

BL_SYSTEM= Data Set Option 284

Data Set Options for Relational Databases � Contents 205

BL_TENACITY= Data Set Option 284
BL_TRIGGER= Data Set Option 285

BL_TRUNCATE= Data Set Option 286

BL_USE_PIPE= Data Set Option 286

BL_WARNING_COUNT= Data Set Option 287

BUFFERS= Data Set Option 288
BULK_BUFFER= Data Set Option 289

BULKEXTRACT= Data Set Option 289

BULKLOAD= Data Set Option 290

BULKUNLOAD= Data Set Option 291

CAST= Data Set Option 292

CAST_OVERHEAD_MAXPERCENT= Data Set Option 293
COMMAND_TIMEOUT= Data Set Option 294

CURSOR_TYPE= Data Set Option 295

DB_ONE_CONNECT_PER_THREAD= Data Set Option 296

DBCOMMIT= Data Set Option 297

DBCONDITION= Data Set Option 298
DBCREATE_TABLE_OPTS= Data Set Option 299

DBFORCE= Data Set Option 300

DBGEN_NAME= Data Set Option 302

DBINDEX= Data Set Option 303

DBKEY= Data Set Option 305
DBLABEL= Data Set Option 306

DBLINK= Data Set Option 307

DBMASTER= Data Set Option 308

DBMAX_TEXT= Data Set Option 309

DBNULL= Data Set Option 310

DBNULLKEYS= Data Set Option 311
DBPROMPT= Data Set Option 312

DBSASLABEL= Data Set Option 313

DBSASTYPE= Data Set Option 314

DBSLICE= Data Set Option 316

DBSLICEPARM= Data Set Option 317
DBTYPE= Data Set Option 319

DEGREE= Data Set Option 322

DIMENSION= Data Set Option 322

DISTRIBUTED_BY= Data Set Option 323

DISTRIBUTE_ON= Data Set Option 324
ERRLIMIT= Data Set Option 325

ESCAPE_BACKSLASH= Data Set Option 326

FETCH_IDENTITY= Data Set Option 327

IGNORE_ READ_ONLY_COLUMNS= Data Set Option 328

IN= Data Set Option 330

INSERT_SQL= Data Set Option 330
INSERTBUFF= Data Set Option 331

KEYSET_SIZE= Data Set Option 333

LOCATION= Data Set Option 333

LOCKTABLE= Data Set Option 334

MBUFSIZE= Data Set Option 335
ML_CHECKPOINT= Data Set Option 336

ML_ERROR1= Data Set Option 336

ML_ERROR2= Data Set Option 337

ML_LOG= Data Set Option 339

ML_RESTART= Data Set Option 340

206 Contents � Chapter 11

ML_WORK= Data Set Option 341
MULTILOAD= Data Set Option 342

MULTISTMT= Data Set Option 348

NULLCHAR= Data Set Option 350

NULLCHARVAL= Data Set Option 351

OR_PARTITION= Data Set Option 352
OR_UPD_NOWHERE= Data Set Option 355

ORHINTS= Data Set Option 356

PARTITION_KEY= Data Set Option 357

PRESERVE_COL_NAMES= Data Set Option 358

QUALIFIER= Data Set Option 359

QUERY_BAND= Data Set Option 360
QUERY_TIMEOUT= Data Set Option 361

READ_ISOLATION_LEVEL= Data Set Option 361

READ_LOCK_TYPE= Data Set Option 362

READ_MODE_WAIT= Data Set Option 363

READBUFF= Data Set Option 364
SASDATEFMT= Data Set Option 365

SCHEMA= Data Set Option 367

SEGMENT_NAME= Data Set Option 368

SESSIONS= Data Set Option 369

SET= Data Set Option 370
SLEEP= Data Set Option 371

TENACITY= Data Set Option 372

TPT= Data Set Option 373

TPT_APPL_PHASE= Data Set Option 374

TPT_BUFFER_SIZE= Data Set Option 376

TPT_CHECKPOINT_DATA= Data Set Option 377
TPT_DATA_ENCRYPTION= Data Set Option 379

TPT_ERROR_TABLE_1= Data Set Option 380

TPT_ERROR_TABLE_2= Data Set Option 381

TPT_LOG_TABLE= Data Set Option 382

TPT_MAX_SESSIONS= Data Set Option 384
TPT_MIN_SESSIONS= Data Set Option 384

TPT_PACK= Data Set Option 385

TPT_PACKMAXIMUM= Data Set Option 386

TPT_RESTART= Data Set Option 387

TPT_TRACE_LEVEL= Data Set Option 389
TPT_TRACE_LEVEL_INF= Data Set Option 390

TPT_TRACE_OUTPUT= Data Set Option 392

TPT_WORK_TABLE= Data Set Option 393

TRAP151= Data Set Option 394

UPDATE_ISOLATION_LEVEL= Data Set Option 396

UPDATE_LOCK_TYPE= Data Set Option 397
UPDATE_MODE_WAIT= Data Set Option 398

UPDATE_SQL= Data Set Option 398

UPDATEBUFF= Data Set Option 399

Data Set Options for Relational Databases � Overview 207

About the Data Set Options for Relational Databases

Overview
You can specify SAS/ACCESS data set options on a SAS data set when you access

DBMS data with the SAS/ACCESS LIBNAME statement. A data set option applies
only to the data set on which it is specified, and it remains in effect for the duration of
the DATA step or procedure. For options that you can assign to a group of relational
DBMS tables or views, see “LIBNAME Options for Relational Databases” on page 92.

Here is an example of how you can SAS/ACCESS data set options:

libname myoralib oracle;
proc print myoralib.mytable(data-set-option=value)

You can also use SAS/ACCESS data set options on a SAS data set when you access
DBMS data using access descriptors, see “Using Descriptors with the ACCESS
Procedure” on page 907. Here is an example:

proc print mylib.myviewd(data-set-option=value)

You cannot use most data set options on a PROC SQL DROP (table or view)
statement.

You can use the CNTLLEV=, DROP=, FIRSTOBS=, IN=, KEEP=, OBS=, RENAME=,
and WHERE= SAS data set options when you access DBMS data. SAS/ACCESS
interfaces do not support the REPLACE= SAS data set option. For information about
using SAS data set options, see the SAS Language Reference: Dictionary.

The information in this section explains all applicable data set options. The
information includes DBMS support and the corresponding LIBNAME options, and
refers you to documentation for your SAS/ACCESS interface when appropriate. For a
list of the data set options available in your SAS/ACCESS interface with default values,
see the reference section for your DBMS.

Specifying data set options in PROC SQL might reduce performance, because it
prevents operations from being passed to the DBMS for processing. For more
information, see “Overview of Optimizing Your SQL Usage” on page 41.

208 AUTHID= Data Set Option � Chapter 11

AUTHID= Data Set Option

Lets you qualify the specified table with an authorization ID, user ID, or group ID.

Alias: SCHEMA=
Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under z/OS

Syntax
AUTHID=authorization-ID

Syntax Description

authorization-ID
is limited to eight characters.

Details
If you specify a value for the AUTHID= option, the table name is qualified as
authid.tablename before any SQL code is passed to the DBMS. If AUTHID= is not
specified, the table name is not qualified before it is passed to the DBMS, and the
DBMS uses your user ID as the qualifier. If you specify AUTHID= in a SAS/SHARE
LIBNAME statement, the ID of the active server is the default ID.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“AUTHID= LIBNAME Option” on page 96.

Data Set Options for Relational Databases � AUTOCOMMIT= Data Set Option 209

AUTOCOMMIT= Data Set Option

Specifies whether to enable the DBMS autocommit capability.

Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: MySQL, Sybase

Syntax
AUTOCOMMIT=YES | NO

Syntax Description

YES
specifies that all updates, inserts, and deletes are committed immediately after they
are executed and no rollback is possible.

NO
specifies that SAS performs the commit after processing the number of row that are
specified by using DBCOMMIT=, or the default number of rows if DBCOMMIT= is
not specified.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“AUTOCOMMIT= LIBNAME Option” on page 97.
“DBCOMMIT= Data Set Option” on page 297

210 BL_ALLOW_READ_ACCESS= Data Set Option � Chapter 11

BL_ALLOW_READ_ACCESS= Data Set Option

Specifies that the original table data is still visible to readers during bulk load.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under UNIX and PC Hosts

Syntax
BL_ALLOW_READ_ACCESS=YES | NO

Syntax Description

YES
specifies that the original (unchanged) data in the table is still visible to readers
while bulk load is in progress.

NO
specifies that readers cannot view the original data in the table while bulk load is in
progress.

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
For more information about using this option, see the

SQLU_ALLOW_READ_ACCESS parameter in the IBM DB2 Universal Database Data
Movement Utilities Guide and Reference.

“BL_ALLOW_WRITE_ACCESS= Data Set Option” on page 210
“BULKLOAD= Data Set Option” on page 290

BL_ALLOW_WRITE_ACCESS= Data Set Option

Specifies that table data is still accessible to readers and writers while import is in progress.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under UNIX and PC Hosts

Syntax
BL_ALLOW_WRITE_ACCESS=YES | NO

Data Set Options for Relational Databases � BL_BADDATA_FILE= Data Set Option 211

Syntax Description

YES
specifies that table data is still visible to readers and writers during data import.

NO
specifies that readers and writers cannot view table data during data import.

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
For more information about using this option, see the

SQLU_ALLOW_WRITE_ACCESS parameter in the IBM DB2 Universal Database Data
Movement Utilities Guide and Reference.

“BL_ALLOW_READ_ACCESS= Data Set Option” on page 210
“BULKLOAD= Data Set Option” on page 290

BL_BADDATA_FILE= Data Set Option

Specifies where to put records that failed to process internally.

Default value: creates a data file in the current directory or with the default file
specifications
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: HP Neoview

Syntax
BL_BADDATA_FILE=filename

Syntax Description

filename
specifies where to put records that failed to process internally.

Details
To specify this option, you must first set BULKLOAD=YES or BULKEXTRACT=YES.

For bulk load, these are source records that failed internal processing before they
were written to the database. For example, a record might contain only six fields, but
eight fields were expected. Load records are in the same format as the source file.

For extraction, these are records that were retrieved from the database that could
not be properly written into the target format. For example, a database value might be

212 BL_BADFILE= Data Set Option � Chapter 11

a string of ten characters, but a fixed-width format of only eight characters was
specified for the target file.

See Also
“BL_DISCARDS= Data Set Option” on page 245
“BULKEXTRACT= Data Set Option” on page 289
“BULKLOAD= Data Set Option” on page 290

BL_BADFILE= Data Set Option

Identifies a file that contains records that were rejected during bulk load.

Default value: creates a data file in the current directory or with the default file
specifications
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: Oracle

Syntax
BL_BADFILE=path-and-filename

Syntax Description

path-and-filename
is an SQL*Loader file to which rejected rows of data are written. On most platforms,
the default filename takes the form BL_<table>_<unique-ID>.bad:

table specifies the table name

unique-ID specifies a number that is used to prevent collisions in the event
of two or more simultaneous bulk loads of a particular table. The
SAS/ACCESS engine generates the number.

Details
To specify this option, you must first set BULKLOAD=YES.

If you do not specify this option and a BAD file does not exist, a file is created in the
current directory (or with the default file specifications). If you do not specify this
option and a BAD file already exists, the Oracle bulk loader reuses the file, replacing
the contents with rejected rows from the new load.

Either the SQL*Loader or Oracle can reject records. For example, the SQL*Loader
can reject a record that contains invalid input, and Oracle can reject a record because it
does not contain a unique key. If no records are rejected, the BAD file is not created.

On most operating systems, the BAD file is created in the same format as the DATA
file, so the rejected records can be loaded after corrections have been made.

Operating Environment Information: On z/OS operating systems, the BAD file is
created with default DCB attributes. For details about overriding this, see the

Data Set Options for Relational Databases � BL_CODEPAGE= Data Set Option 213

information about SQL*Loader file attributes in the SQL*Loader chapter in your
Oracle user’s guide for z/OS. �

See Also
“BULKLOAD= Data Set Option” on page 290

BL_CLIENT_DATAFILE= Data Set Option

Specifies the client view of the data file that contains DBMS data for bulk load.

Default value: the current directory
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Sybase IQ

Syntax
BL_CLIENT_DATAFILE=path-and-data-filename

Syntax Description

path-and-data-filename
specifies the file that contains the rows of data to load or append into a DBMS table
during bulk load. On most platforms, the default filename takes the form
BL_<table>_<unique-ID>.dat:

table specifies the table name.

unique-ID specifies a number that is used to prevent collisions in the event
of two or more simultaneous bulk loads of a particular table. The
SAS/ACCESS engine generates the number.

dat specifies the .DAT file extension for the data file.

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_CODEPAGE= Data Set Option

Identifies the codepage that the DBMS engine uses to convert SAS character data to the current
database codepage during bulk load.

214 BL_CONTROL= Data Set Option � Chapter 11

Default value: the codepage ID of the current window
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under UNIX and PC Hosts

Syntax
BL_CODEPAGE=numeric-codepage-ID

Syntax Description

numeric-codepage-ID
is a numeric value that represents a character set that is used to interpret multibyte
character data and determine the character values.

Details
To specify this option, you must first set BULKLOAD=YES.

The value for this option must never be 0. If you do not wish any codepage
conversions to take place, use the BL_OPTIONS= option to specify ’FORCEIN’.
Codepage conversions only occur for DB2 character data types.

See Also
“BL_OPTIONS= Data Set Option” on page 267
“BULKLOAD= Data Set Option” on page 290

BL_CONTROL= Data Set Option

Identifies the file that contains control statements.

Alias: FE_EXECNAME [Teradata]
Default value: DBMS-specific
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Oracle, Teradata

Syntax
BL_CONTROL=path-and-control-filename [Oracle]

BL_CONTROL=path-and-data-filename [Teradata]

Data Set Options for Relational Databases � BL_CONTROL= Data Set Option 215

Syntax Description

path-and-control-filename [Oracle]
specifies the SQL*Loader file to which SQLLDR control statements are written that
describe the data to include in bulk load.

path-and-data-filename [Teradata]
specifies the name of the control file to generate for extracting data with
SAS/ACCESS Interface to Teradata using FastExport multithreaded read.

On most platforms, the default filename is BL_<table>_<unique-ID>.ctl [Oracle,
Teradata]:

table specifies the table name

unique-ID specifies a number that is used to prevent collisions in the event of
two or more simultaneous bulk loads of a particular table. The
SAS/ACCESS engine generates the number.

Details
To specify this option, you must first set BULKLOAD=YES.

Oracle: The Oracle interface creates the control file by using information from the
input data and SAS/ACCESS options. The file contains Data Definition Language
(DDL) definitions that specify the location of the data and how the data corresponds to
the database table. It is used to specify exactly how the loader should interpret the
data that you are loading from the DATA file (.DAT file). By default it creates a control
file in the current directory or with the default file specifications. If you do not specify
this option and a control file does not already exist, a file is created in the current
directory or with the default file specifications. If you do not specify this option and a
control file already exists, the Oracle interface reuses the file and replaces the contents
with the new control statements.

Teradata: To specify this option, you must first set DBSLICEPARM=ALL as a
LIBNAME or data set option for threaded reads. By default SAS creates a data file in
the current directory or with a platform-specific name. If you do not specify this option
and a control file does not exist, SAS creates a script file in the current directory or
with the default file specifications. If you do not specify this option and a control file
already exists, the DATA step. SAS/ACCESS Interface to Teradata creates the control
file by using information from the input data and SAS/ACCESS options. The file
contains FastExport Language definitions that specify the location of the data and how
the data corresponds to the database table. It is used to specify exactly how the
FastExport should interpret the data that you are loading from the DATA (.DAT) file.
Because the script file that SAS generates for FastExport must contain login
information in clear text, it is recommended that you secure the script file by specifying
a directory path that is protected.

Examples

This example generates a Teradata script file, C:\protdir\fe.ctl on Windows.

DATA test;
SET teralib.mydata(DBSLICEPARM=ALL BL_CONTROL="C:\protdir\fe.ctl");
run;

This example generates a Teradata script file, /tmp/fe.ctl, on UNIX.

216 BL_COPY_LOCATION= Data Set Option � Chapter 11

DATA test;
SET teralib.mydata(DBSLICEPARM=ALL BL_CONTROL="/tmp/fe.ctl");
run;

This example generates a script file, USERID.SECURE.SCR.CTL, by appending CTL
and prepending the user ID.

DATA test;
SET teralib.mydata(DBSLICEPARM=ALL BL_CONTROL="SECURE.SCR");
run;

See Also
“BL_DATAFILE= Data Set Option” on page 218
“BL_DELETE_DATAFILE= Data Set Option” on page 238
“BL_DELETE_ONLY_DATAFILE= Data Set Option” on page 240
“BULKLOAD= Data Set Option” on page 290
“DBSLICEPARM= LIBNAME Option” on page 137
“DBSLICEPARM= Data Set Option” on page 317

BL_COPY_LOCATION= Data Set Option

Specifies the directory to which DB2 saves a copy of the loaded data.

Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts

Syntax
BL_COPY_LOCATION=pathname

Details
To specify this option, you must first set BULKLOAD=YES. This option is valid only
when BL_RECOVERABLE=YES.

See Also
“BL_RECOVERABLE= Data Set Option” on page 274
“BULKLOAD= Data Set Option” on page 290

BL_CPU_PARALLELISM= Data Set Option

Specifies the number of processes or threads to use when building table objects.

Data Set Options for Relational Databases � BL_DATA_BUFFER_SIZE= Data Set Option 217

Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts

Syntax
BL_CPU_PARALLELISM=number of processes or threads

Syntax Description

number of processes or threads
specifies the number of processes or threads that the load utility uses to parse,
convert, and format data records when building table objects.

Details
To specify this option, you must first set BULKLOAD=YES.

This option exploits intrapartition parallelism and significantly improves load
performance. It is particularly useful when loading presorted data, because record
order in the source data is preserved.

The maximum number that is allowed is 30. If the value of this parameter is 0 or
has not been specified, the load utility selects an intelligent default that is based on the
number of available CPUs on the system at run time. If there is insufficient memory to
support the specified value, the utility adjusts the value.

When BL_CPU_PARALLELISM is greater than 1, the flushing operations are
asynchronous, permitting the loader to exploit the CPU. If tables include either LOB or
LONG VARCHAR data, parallelism is not supported and this option is set to 1,
regardless of the number of system CPUs or the value that the user specified.

Although use of this parameter is not restricted to symmetric multiprocessor (SMP)
hardware, you might not obtain any discernible performance benefit from using it in
non-SMP environments.

See Also
For more information about using BL_CPU_PARALLELISM=, see the

CPU_PARALLELISM parameter in the IBM DB2 Universal Database Data Movement
Utilities Guide and Reference.

“BL_DATA_BUFFER_SIZE= Data Set Option” on page 217
“BL_DISK_PARALLELISM= Data Set Option” on page 246
“BULKLOAD= Data Set Option” on page 290

BL_DATA_BUFFER_SIZE= Data Set Option

Specifies the total amount of memory to allocate for the bulk load utility to use as a buffer for
transferring data.

Default value: none

218 BL_DATAFILE= Data Set Option � Chapter 11

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts

Syntax
BL_DATA_BUFFER_SIZE=buffer-size

Syntax Description

buffer-size
specifies the total amount of memory (in 4KB pages)—regardless of the degree of
parallelism—that is allocated for the bulk load utility to use as buffered space for
transferring data within the utility.

Details
To specify this option, you must first set BULKLOAD=YES.

If you specify a value that is less than the algorithmic minimum, the minimum
required resource is used and no warning is returned. This memory is allocated directly
from the utility heap, the size of which you can modify through the util_heap_sz
database configuration parameter. If you do not specify a valued, the utility calculates
an intelligent default at run time that is based on a percentage of the free space that is
available in the utility heap at the time of instantiation of the loader, as well as some
characteristics of the table.

It is recommended that the buffer be several extents in size. An extent is the unit of
movement for data within DB2, and the extent size can be one or more 4KB pages. The
DATA BUFFER parameter is useful when you are working with large objects (LOBs)
because it reduces I/O waiting time. The data buffer is allocated from the utility heap.
Depending on the amount of storage available on your system, you should consider
allocating more memory for use by the DB2 utilities. You can modify the database
configuration parameter util_heap_sz accordingly. The default value for the Utility
Heap Size configuration parameter is 5000 4KB pages. Because load is only one of
several utilities that use memory from the utility heap, it is recommended that no more
than 50% of the pages defined by this parameter be made available for the load utility,
and that the utility heap be defined large enough.

See Also
For more information about using this option, see the DATA BUFFER parameter in

the IBM DB2 Universal Database Data Movement Utilities Guide and Reference.
“BL_CPU_PARALLELISM= Data Set Option” on page 216
“BL_DISK_PARALLELISM= Data Set Option” on page 246
“BULKLOAD= Data Set Option” on page 290

BL_DATAFILE= Data Set Option

Identifies the file that contains DBMS data for bulk load.

Data Set Options for Relational Databases � BL_DATAFILE= Data Set Option 219

Default value: DBMS-specific
Valid in: DATA and PROC steps (when accessing data using SAS/ACCESS software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP Neoview,
Netezza, Oracle, Sybase IQ

Syntax
BL_DATAFILE=path-and-data-filename

Syntax Description

path-and-data-filename
specifies the file that contains the rows of data to load or append into a DBMS table
during bulk load. On most platforms, the default filename takes the form
BL_<table>_<unique-ID>.ext:

table specifies the table name.

unique-ID specifies a number that is used to prevent collisions in the event
of two or more simultaneous bulk loads of a particular table. The
SAS/ACCESS engine generates the number.

ext specifies the file extension (.DAT or .IXF) for the data file.

Details
To specify this option, you must first set BULKLOAD=YES or BULKEXTRACT=YES.

DB2 under UNIX and PC Hosts: The default is the current directory.
Greenplum: This option specifies the name of the external file to load. It is

meaningful only when BL_PROTOCOL= is set to gpfdist or file. If you do not specify
this option, the filename is generated automatically. When you specify the filename
with a full path, the path overrides the value of the GPLOAD_HOME environment
variable. However, bulk load might fail if the path does not match the base directory
that the gpfdist utility used.

HP Neoview, Netezza: You can use this option only when BL_USE_PIPE=NO. The
default is that the SAS/ACCESS engine creates a data file from the input SAS data set
in the current directory or with the default file specifications before calling the bulk
loader. The data file contains SAS data that is ready to load into the DBMS. By default,
the data file is deleted after the load is completed. To override this behavior, specify
BL_DELETE_DATAFILE=NO.

Oracle: The SAS/ACCESS engine creates this data file from the input SAS data set
before calling the bulk loader. The data file contains SAS data that is ready to load into
the DBMS. By default, the data file is deleted after the load is completed. To override
this behavior, specify BL_DELETE_DATAFILE=NO. If you do not specify this option
and a data file does not exist, the file is created in the current directory or with the
default file specifications. If you do not specify this option and a data file already exists,
SAS/ACCESS reuses the file, replacing the contents with the new data. SAS/ACCESS
Interface to Oracle on z/OS is the exception: The data file is never reused because the
interface causes bulk load to fail instead of reusing a data file.

Sybase IQ: By default, the SAS/ACCESS engine creates a data file with a .DAT file
extension in the current directory or with the default file specifications. Also by default,
the data file is deleted after the load is completed. To override this behavior, specify
BL_DELETE_DATAFILE=NO.

220 BL_DATAFILE= Data Set Option [Teradata only] � Chapter 11

See Also
“BL_CONTROL= Data Set Option” on page 214
“BL_DELETE_DATAFILE= Data Set Option” on page 238
“BL_DELETE_ONLY_DATAFILE= Data Set Option” on page 240
“BL_PROTOCOL= Data Set Option” on page 273
“BL_USE_PIPE= Data Set Option” on page 286
“BULKEXTRACT= Data Set Option” on page 289
“BULKLOAD= Data Set Option” on page 290

BL_DATAFILE= Data Set Option [Teradata only]

Identifies the file that contains control statements.

Default value: creates a MultiLoad script file in the current directory or with a
platform-specific name
Valid in: DATA and PROC steps (when accessing data using SAS/ACCESS software)
DBMS support: Teradata

Syntax
BL_DATAFILE=path-and-data-filename

Syntax Description

path-and-data-filename
specifies the name of the control file to generate for loading data with SAS/ACCESS
Interface to Teradata using MultiLoad. On most platforms, the default filename
takes the form BL_<table>_<unique-ID>.ctl:

table specifies the table name.

unique-ID specifies a number that is used to prevent collisions in the event
of two or more simultaneous bulk loads of a particular table. The
SAS/ACCESS engine generates the number.

Details
To specify this option, you must first set YES for the MULTILOAD= data set option.
The file contains MultiLoad Language definitions that specify the location of the data
and how the data corresponds to the database table. It specifies exactly how MultiLoad
should interpret the data that you are loading. Because the script file that SAS
generates for MultiLoad must contain login information in clear text, it is recommended
that you secure the script file by specifying a directory path that is protected.

Data Set Options for Relational Databases � BL_DB2CURSOR= Data Set Option 221

Examples

This example generates a Teradata script file, C:\protdir\ml.ctl, on Windows.

DATA teralib.test(DBSLICEPARM=ALL BL_DATAFILE="C:\protdir\ml.ctl");
SET teralib.mydata;
run;

This next example generates a Teradata script file, fe.ctl, for FastExport and ml.ctl
for MultiLoad.

data teralib.test1(MULTILOAD=YES TPT=NO BL_DATAFILE="ml.ctl");
SET teralib.test2(DBSLICEPARM=ALL BL_CONTROL="fe.ctl");
run;

See Also
“BL_CONTROL= Data Set Option” on page 214
“MULTILOAD= Data Set Option” on page 342

BL_DB2CURSOR= Data Set Option

Specifies a string that contains a valid DB2 SELECT statement that points to either local or remote
objects (tables or views).

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under z/OS

Syntax
BL_DB2CURSOR=’SELECT * from filename’

Details
To use this option, you must specify BULKLOAD=YES and then specify this option.

You can use it to load DB2 tables directly from other DB2 and non-DB2 objects.
However, before you can select data from a remote location, your database administrator
must first populate the communication database with the appropriate entries.

See Also
“BULKLOAD= Data Set Option” on page 290

222 BL_DB2DATACLAS= Data Set Option � Chapter 11

BL_DB2DATACLAS= Data Set Option

Specifies a data class for a new SMS-managed data set.

Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 under z/OS

Syntax
BL_DB2DATACLAS=data-class

Details
This option applies to the control file (BL_DB2IN=), the input file (BL_DB2REC=), and
the output file (BL_DB2PRINT=) for the bulk loader. Use this option to specify a data
class for a new SMS-managed data set. SMS ignores this option if you specify it for a
data set that SMS does not support. If SMS is not installed or active, the operating
environment ignores any data class that BL_DB2DATACLAS= passes. Your site storage
administrator defines the data class names that you can specify when you use this
option.

For sample code, see the “BL_DB2STORCLAS= Data Set Option” on page 233.

See Also
“BL_DB2MGMTCLAS= Data Set Option” on page 228
“BL_DB2STORCLAS= Data Set Option” on page 233
“BL_DB2UNITCOUNT= Data Set Option” on page 236
“BULKLOAD= Data Set Option” on page 290

BL_DB2DEVT_PERM= Data Set Option

Specifies the unit address or generic device type to use for permanent data sets that the LOAD
utility creates—also SYSIN, SYSREC, and SYSPRINT when SAS allocates them.

Default value: SYSDA

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 under z/OS

Syntax
BL_DB2DEVT_PERM=unit-specification

Data Set Options for Relational Databases � BL_DB2DISC= Data Set Option 223

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2DEVT_TEMP= Data Set Option

Specifies the unit address or generic device type to use for temporary data sets that the LOAD
utility creates (Pnch, Copy1, Copy2, RCpy1, RCpy2, Work1, Work2).

Default value: SYSDA

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 under z/OS

Syntax
BL_DB2DEVT_TEMP=unit-specification

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2DISC= Data Set Option

Specifies the SYSDISC data set name for the LOAD utility.

Default value: a generated data set name

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 under z/OS

Syntax
BL_DB2DISC=data-set-name

224 BL_DB2ERR= Data Set Option � Chapter 11

Details
To specify this option, you must first set BULKLOAD=YES.

The DSNUTILS procedure with DISP=(NEW,CATLG,CATLG) allocates this option.
This option must be the name of a nonexistent data set, except on a RESTART because
it would already have been created. The LOAD utility allocates it as
DISP=(MOD,CATLG,CATLG) on a RESTART. The default is a generated data set name,
which appears in output that is written to the DB2PRINT location.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2ERR= Data Set Option

Specifies the SYSERR data set name for the LOAD utility.

Default value: a generated data set name
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under z/OS

Syntax
BL_DB2ERR=data-set-name

Details
To specify this option, you must first set BULKLOAD=YES.

The DSNUTILS procedure with DISP=(NEW,CATLG,CATLG) allocates this option.
This option must be the name of a nonexistent data set, except on a RESTART because
it would already have been created. The LOAD utility allocates it as
DISP=(MOD,CATLG,CATLG) on a RESTART. The default is a generated data set name,
which appears in output that is written to the DB2PRINT location.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2IN= Data Set Option

Specifies the SYSIN data set name for the LOAD utility.

Default value: a generated data set name

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

Data Set Options for Relational Databases � BL_DB2LDCT1= Data Set Option 225

DBMS Support: DB2 under z/OS

Syntax
BL_DB2IN=data-set-name

Details
To specify this option, you must first set BULKLOAD=YES.

This option is allocated based on the value of BL_DB2LDEXT=. It is initially
allocated as SPACE=(trk,(10,1),rlse) with the default being a generated data set name,
which appears in the DB2PRINT output, with these DCB attributes:

DSORG=PS
RECFM=VB
LRECL=516
BLKSZE=23476.

It supports these DCB attributes for existing data sets:
DSORG=PS
RECFM=F, FB, FS, FBS, V, VB, VS, or VBS
LRECL=any valid value for RECFM, which is < 32,760
BLKSIZE=any valid value for RECFM, which is < 32,760.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2LDCT1= Data Set Option

Specifies a string in the LOAD utility control statement between LOAD DATA and INTO TABLE.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under z/OS

Syntax
BL_DB2LDCT1=’string’

Details
To specify this option, you must first set BULKLOAD=YES.

This option specifies a string that contains a segment of the Load Utility Control
Statement between ’LOAD DATA’ and ’INTO TABLE’. Valid control statement options
include but are not limited to RESUME, REPLACE, LOG, and ENFORCE.

226 BL_DB2LDCT2= Data Set Option � Chapter 11

You can use DB2 bulk-load control options (BL_DB2LDCT1=, BL_DB2LDCT2=, and
BL_DB2DCT3= options to specify sections of the control statement, which the engine
incorporates into the control statement that it generates. These options have no effect
when BL_DB2LDEXT=USERUN. You can use these options as an alternative to
specifying BL_DB2LDEXT=GENONLY and then editing the control statement to
include options that the engine cannot generate. In some cases, it is necessary to
specify at least one of these options—for example, if you run the utility on an existing
table where you must specify either RESUME or REPLACE.

The LOAD utility requires that the control statement be in uppercase—except for
objects such as table or column names, which must match the table. You must specify
values for DB2 bulk-load control options using the correct case. SAS/ACCESS Interface
to DB2 under z/OS cannot convert the entire control statement to uppercase because it
might contain table or column names that must remain in lower case.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2LDCT2= Data Set Option

Specifies a string in the LOAD utility control statement between INTO TABLE table-name and
(field-specification).

Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 under z/OS

Syntax
BL_DB2LDCT2=’string’

Details
To specify this option, you must first set BULKLOAD=YES.

Valid control statement options include but are not limited to PART, PREFORMAT,
RESUME, REPLACE, and WHEN.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2LDCT3= Data Set Option

Specifies a string in the LOAD utility control statement after (field-specification).

Data Set Options for Relational Databases � BL_DB2LDEXT= Data Set Option 227

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under z/OS

Syntax
BL_DB2LDCT3=’string’

Details
To specify this option, you must first set BULKLOAD=YES.

This option handles any options that might be defined for this location in later
versions of DB2.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2LDEXT= Data Set Option

Specifies the mode of execution for the DB2 LOAD utility.

Default value: GENRUN
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under z/OS

Syntax
BL_DB2LDEXT=GENRUN | GENONLY | USERUN

Syntax Description

GENRUN
generates the control (SYSIN) file and the data (SYSREC) file, and runs the utility
with them.

GENONLY
generates the control (SYSIN) file and the data (SYSREC) file but does not run the
utility. Use this method when you need to edit the control file or to verify the
generated control statement or data before you run the utility.

USERUN
uses existing control and data files, and runs the utility with them. Existing files can
be from a previous run or from previously run batch utility jobs. Use this method
when you restart a previously stopped run of the utility.

228 BL_DB2MGMTCLAS= Data Set Option � Chapter 11

All valid data sets that the utility accepts are supported when
BL_DB2LDEXT=USERUN. However, syntax errors from the utility can occur
because no parsing is done when reading in the SYSIN data set. Specifically, neither
imbedded comments (beginning with a double dash ’–’) nor columns 73 through 80 of
RECFM=FB LRECL=80 data sets are stripped from the control statement. The
solution is to remove imbedded comments and columns 73 through 80 of RECFM=FB
LRECL=80 data sets from the data set. However, this is not an issue when you use
engine-generated SYSIN data sets because they are RECFM=VB and therefore have
no imbedded comments.

Details
To specify this option, you must first set BULKLOAD=YES .

This option specifies the mode of execution for the DB2 LOAD utility, which involves
creating data sets that the utility needs and to call the utility.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2MGMTCLAS= Data Set Option

Specifies a management class for a new SMS-managed data set.

Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 under z/OS

Syntax
BL_DB2MGMTCLAS=management-class

Details
This option applies to the control file (BL_DB2IN), the input file (BL_DB2REC), and the
output file (BL_DB2PRINT) for the bulk loader. Use this option to specify a
management class for a new SMS-managed data set. If SMS is not installed or active,
the operating environment ignores any management class that BL_DB2MGMTCLAS=
passes. Your site storage administrator defines the management class names that you
can specify when you use this option.

For sample code, see the “BL_DB2STORCLAS= Data Set Option” on page 233.

See Also
“BL_DB2DATACLAS= Data Set Option” on page 222
“BL_DB2STORCLAS= Data Set Option” on page 233
“BL_DB2UNITCOUNT= Data Set Option” on page 236
“BULKLOAD= Data Set Option” on page 290

Data Set Options for Relational Databases � BL_DB2PRINT= Data Set Option 229

BL_DB2MAP= Data Set Option

Specifies the SYSMAP data set name for the LOAD utility .

Default value: a generated data set name

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 under z/OS

Syntax
BL_DB2MAP=data-set-name

Details
To specify this option, you must first set BULKLOAD=YES.

The DSNUTILS procedure with DISP=(NEW,CATLG,CATLG) allocates this option.
This option must be the name of a nonexistent data set, except on a RESTART because
it would already have been created. The LOAD utility allocates it as
DISP=(MOD,CATLG,CATLG) on a RESTART. The default is a generated data set name,
which appears in output that is written to the DB2PRINT location.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2PRINT= Data Set Option

Specifies the SYSPRINT data set name for the LOAD utility.

Default value: a generated data set name

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 under z/OS

Syntax
BL_DB2PRINT=data-set-name

Details
To specify this option, you must first set BULKLOAD=YES. You must also specify
BL_DB2PRNLOG= so you can see the generated data set name in the SAS log.

230 BL_DB2PRNLOG= Data Set Option � Chapter 11

It is allocated with DISP=(NEW,CATLG,DELETE) and SPACE=(trk,(10,1),rlse). The
default is a generated data set name, which appears in the DB2PRINT dsn, with these
DCB attributes:

DSORG=PS
RECFM=VBA
LRECL=258
BLKSIZE=262 – 32760.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2PRNLOG= Data Set Option

Determines whether to write SYSPRINT output to the SAS log.

Default value: YES
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under z/OS

Syntax
BL_DB2PRNLOG=YES | NO

Syntax Description

YES
specifies that SYSPRINT output is written to the SAS log.

NO
specifies that SYSPRINT output is not written to the SAS log.

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BULKLOAD= Data Set Option” on page 290
“Bulk Loading for DB2 Under z/OS” on page 515

BL_DB2REC= Data Set Option

Specifies the SYSREC data set name for the LOAD utility.

Data Set Options for Relational Databases � BL_DB2RECSP= Data Set Option 231

Default value: a generated data set name

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 under z/OS

Syntax
BL_DB2REC=data-set-name

Details
To specify this option, you must first set BULKLOAD=YES.

This option is allocated based on the value of BL_DB2LDEXT=. It is initially
allocated as SPACE=(cyl,(BL_DB2RECSP, 10%(BL_DB2RECSP)),rlse) with the default
being a generated data set name, which appears in output that is written to the
DB2PRINT data set name. It supports these DCB attributes for existing data sets:

DSORG=PS

RECFM=FB

LRECL=any valid value for RECFM

BLKSIZE=any valid value for RECFM.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2RECSP= Data Set Option

Determines the number of cylinders to specify as the primary allocation for the SYSREC data set
when it is created.

Default value: 10

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 under z/OS

Syntax
BL_DB2RECSP=primary-allocation

Details
To specify this option, you must first set BULKLOAD=YES.

The secondary allocation is 10% of the primary allocation.

232 BL_DB2RSTRT= Data Set Option � Chapter 11

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2RSTRT= Data Set Option

Tells the LOAD utility whether the current load is a restart and, if so, indicates where to begin.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under z/OS

Syntax
BL_DB2RSTRT=NO | CURRENT | PHASE

Syntax Description

NO
specifies a new run (not restart) of the LOAD utility.

CURRENT
specifies to restart at the last commit point.

PHASE
specifies to restart at the beginning of the current phase.

Details
To specify this option, you must first set BULKLOAD=YES.

When you specify a value other than NO for BL_DB2RSTRT=, you must also specify
BL_DB2TBLXST=YES and BL_DB2LDEXT=USERUN.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2SPC_PERM= Data Set Option

Determines the number of cylinders to specify as the primary allocation for permanent data sets
that the LOAD utility creates.

Default value: 10
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under z/OS

Data Set Options for Relational Databases � BL_DB2STORCLAS= Data Set Option 233

Syntax
BL_DB2SPC_PERM=primary-allocation

Details
To specify this option, you must first set BULKLOAD=YES.

Permanent data sets are Disc, Maps, and Err. The DSNUTILS procedure controls
the secondary allocation, which is 10% of the primary allocation.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DB2SPC_TEMP= Data Set Option

Determines the number of cylinders to specify as the primary allocation for temporary data sets
that the LOAD utility creates.

Default value: 10
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 under z/OS

Syntax
BL_DB2SPC_TEMP=primary-allocation

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BULKLOAD= Data Set Option” on page 290
“Bulk Loading for DB2 Under z/OS” on page 515

BL_DB2STORCLAS= Data Set Option

Specifies a storage class for a new SMS-managed data set.

Default value: none

234 BL_DB2TBLXST= Data Set Option � Chapter 11

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 under z/OS

Syntax
BL_DB2STORCLAS=storage-class

Details
A storage class contains the attributes that identify a storage service level that SMS
uses for storage of the data set. It replaces any storage attributes that you specify in
BL_DB2DEVT_PERM=.

This option applies to the control file (BL_DB2IN), the input file (BL_DB2REC), and
the output file (BL_DB2PRINT) for the bulk loader. Use this option to specify a
management class for a new SMS-managed data set. If SMS is not installed or active,
the operating environment ignores any storage class that BL_DB2MGMTCLAS=
passes. Your site storage administrator defines the storage class names that you can
specify when you use this option.

Example

This example generates SMS-managed control and data files. It does not create the
table, and you need not run the utility to load it.

libname db2lib db2 ssid=db2a;

data db2lib.customers (bulkload=yes
bl_db2ldext=genonly
bl_db2in=’testuser.sysin’
bl_db2rec=’testuser.sysrec’
bl_db2tblxst=yes
bl_db2ldct1=’REPLACE’
bl_db2dataclas=’STD’
bl_db2mgmtclas=’STD’
bl_db2storclas=’STD’);

set work.customers;
run;

See Also
“BL_DB2DATACLAS= Data Set Option” on page 222
“BL_DB2DEVT_PERM= Data Set Option” on page 222
“BL_DB2MGMTCLAS= Data Set Option” on page 228
“BL_DB2UNITCOUNT= Data Set Option” on page 236
“BULKLOAD= Data Set Option” on page 290

BL_DB2TBLXST= Data Set Option

Indicates whether the LOAD utility runs against an existing table.

Data Set Options for Relational Databases � BL_DB2TBLXST= Data Set Option 235

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under z/OS

Syntax
BL_DB2TBLXST=YES | NO

Syntax Description

YES
specifies that the LOAD utility runs against an existing table. This is not a
replacement operation. (See “Details.”)

NO
specifies that the LOAD utility does not run against an existing table.

Details
To specify this option, you must first set BULKLOAD=YES.

SAS/ACCESS does not currently support table replacement. You cannot simply
create a new copy of an existing table, replacing the original table. Instead, you must
delete the table and then create a new version of it.

The DB2 LOAD utility does not create tables—it loads data into existing tables. The
DB2 under z/OS interface creates a table before loading data into it whether you use
SQL INSERT statements or start the LOAD utility) You might want to start the utility
for an existing table that the DB2 engine did not create. If so, specify
BL_DB2TBLXST=YES to tell the engine that the table already exists. When
BL_DB2TBLXST=YES, the engine neither verifies that the table does not already exist,
which eliminates the NO REPLACE error, nor creates the table. Because BULKLOAD=
is not valid for update opening of tables, which include appending to an existing table,
use BL_DB2TBLXST= with an output open, which would normally create the table, to
accomplish appending, or use the LOAD utility against a previously created table. You
can also use BL_DB2TBLXST= with BL_DB2LDEXT=GENONLY if the table does not
yet exist and you do not want to create or load it yet. In this case the control and data
files are generated but the table is neither created nor loaded.

Because the table might be empty or might contain rows, specify the appropriate
LOAD utility control statement values for REPLACE, RESUME, or both by using
BL_DB2LDCT1, BL_DB2LDCT2 , or both.

The data to be loaded into the existing table must match the table column types. The
engine does not try to verify input data with the table definition. The LOAC utility
flags any incompatible differences.

See Also
“BULKLOAD= Data Set Option” on page 290

236 BL_DB2UNITCOUNT= Data Set Option � Chapter 11

BL_DB2UNITCOUNT= Data Set Option

Specifies the number of volumes on which data sets can be extended.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under z/OS

Syntax
BL_DB2UNITCOUNT=number-of-volumes

Syntax Description

number-of-volumes
specifies the number of volumes across which data sets can be extended. It must be
an integer between 1 and 59. This option is ignored if the value is greater than 59.
See the details in this section.

Details
This option applies only to the input file (BL_DB2REC data set), which is the file that
must be loaded into the DB2 table.

You must specify an integer from 1–59 as a value for this option. This option is
ignored if the value is greater than 59. However, the value depends on the unit name in
BL_DB2DEVT_PERM=. At the operating environment level an association exists that
defines the maximum number of volumes for a unit name. Ask your storage
administrator for this number.

An error is returned if you specify a value for this option that exceeds the maximum
number of volumes for the unit.

The data class determines whether SMS-managed data sets can be extended on
multiple volumes. When you specify both BL_DB2DATACLAS= and
BL_DB2UNITCOUNT=, BL_DB2UNITCOUNT= overrides the unit count values for the
data class.

For sample code, see the “BL_DB2STORCLAS= Data Set Option” on page 233.

See Also
“BL_DB2DATACLAS= Data Set Option” on page 222
“BL_DB2DEVT_PERM= Data Set Option” on page 222
“BL_DB2MGMTCLAS= Data Set Option” on page 228
“BL_DB2STORCLAS= Data Set Option” on page 233
“BULKLOAD= Data Set Option” on page 290

BL_DB2UTID= Data Set Option
Specifies a unique identifier for a given run of the DB2 LOAD utility.

Data Set Options for Relational Databases � BL_DBNAME= Data Set Option 237

Default value: user ID and second level DSN qualifier
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 under z/OS

Syntax
BL_DB2UTID=utility-ID

Details
To specify this option, you must first set BULKLOAD=YES.

This option is a character string up to 16 bytes long. By default, it is the user ID
concatenated with the second-level data set name qualifier. The generated ID appears
in output that is written to the DB2PRINT data set name. This name generation
makes it easy to associate all information for each utility execution and to separate it
from other executions.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DBNAME= Data Set Option

Specifies the database name to use for bulk loading.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster

Syntax
BL_DBNAME=’database-name’

Syntax Description

database-name
specifies the database name to use for bulk loading.

Details
To specify this option, you must first set BULKLOAD=YES or BULKEXTRACT=YES.

Use this option to pass the database name to the DBMS bulk-load facility. You must
enclose the database name in quotation marks.

238 BL_DEFAULT_DIR= Data Set Option � Chapter 11

See Also
“BL_HOST= Data Set Option” on page 256
“BL_PATH= Data Set Option” on page 269
“BULKLOAD= Data Set Option” on page 290

BL_DEFAULT_DIR= Data Set Option

Specifies where bulk load creates all intermediate files.

Default value: <database-name>
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Oracle

Syntax
BL_DEFAULT_DIR=<host-specific-directory-path>

<host-specific-directory-path>
specifies the host-specific directory path where intermediate bulk-load files (CTL,
DAT, LOG, BAD, DSC) are to be created

Details
To specify this option, you must first set BULKLOAD=YES.

The value that you specify for this option is prepended to the filename. Be sure to
provide the complete, host-specific directory path, including the file and directory
separator character to accommodate all platforms.

Example

In this example, bulk load creates all related files in the C:\temp directory.

data x.test (bulkload=yes BL_DEFAULT_DIR="c:\temp\" bl_delete_files=no);
c1=1;
run;

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DELETE_DATAFILE= Data Set Option

Specifies whether to delete only the data file or all files that the SAS/ACCESS engine creates for
the DBMS bulk-load facility.

Data Set Options for Relational Databases � BL_DELETE_DATAFILE= Data Set Option 239

Alias: BL_DELETE_FILES= [Oracle]
Default value: YES
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP Neoview,
Netezza, Oracle, Sybase IQ

Syntax
BL_DELETE_DATAFILE=YES | NO

Syntax Description

YES
deletes all (data, control, and log) files that the SAS/ACCESS engine creates for the
DBMS bulk-load facility.

NO
does not delete these files.

Details
To specify this option, you must first set BULKLOAD=YES or BULKEXTRACT=YES.

DB2 under UNIX and PC Hosts: Setting BL_DELETE_DATAFILE=YES deletes only
the temporary data file that SAS/ACCESS creates after the load completes.

Greenplum: When BL_DELETE_DATAFILE=YES, the external data file is deleted
after the load completes.

HP Neoview, Netezza: You can use this option only when BL_USE_PIPE=NO.
Oracle: When BL_DELETE_DATAFILE=YES, all files (DAT, CTL, and LOG) are

deleted.

Examples

The default is YES in this example, so all files are deleted:

libname x oracle &connopts
proc delete data=x.test1;
run;

data x.test1 (bulkload=yes);
c1=1;
run;

x dir BL_TEST1*.*;

No files are deleted in this example:

libname x oracle &connopts
proc delete data=x.test2;
run;

data x.test2 (bulkload=yes bl_delete_files=no);

240 BL_DELETE_ONLY_DATAFILE= Data Set Option � Chapter 11

c1=1;
run;

x dir BL_TEST2*.*;

See Also
“BL_CONTROL= Data Set Option” on page 214
“BL_DATAFILE= Data Set Option” on page 218
“BL_DELETE_ONLY_DATAFILE= Data Set Option” on page 240
“BL_USE_PIPE= Data Set Option” on page 286
“BULKEXTRACT= Data Set Option” on page 289
“BULKLOAD= Data Set Option” on page 290

BL_DELETE_ONLY_DATAFILE= Data Set Option

Specifies whether to delete the data file that the SAS/ACCESS engine creates for the DBMS
bulk-load facility.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Oracle

Syntax
BL_DELETE_ONLY_DATAFILE=YES | NO

Syntax Description

YES
deletes only the data file that the SAS/ACCESS engine creates for the DBMS
bulk-load facility.

NO
does not delete the data file.

Details
To specify this option, you must first set BULKLOAD=YES or BULKEXTRACT=YES.
Setting this option overrides the BL_DELETE_DATAFILE= option.

Data Set Options for Relational Databases � BL_DELETE_ONLY_DATAFILE= Data Set Option 241

Examples

BL_DELETE_DATAFILE=YES is the default in this example, so only the control and
log files are deleted:

proc delete data=x.test3;
run;

data x.test3 (bulkload=yes bl_delete_only_datafile=no);
c1=1;
run;

x dir BL_TEST3*.*;

Both options are set to NO in this example, so no files are deleted:

proc delete data=x.test4;
run;

data x.test4 (bulkload=yes bl_delete_only_datafile=no bl_delete_files=NO);
c1=1;
run;

x dir BL_TEST4*.*;

Only the data file is deleted in this example:

proc delete data=x.test5;
run;
data x.test5 (bulkload=yes bl_delete_only_datafile=YES);
c1=1;
run;

x dir BL_TEST5*.*;

The same is true in this example:

proc delete data=x.test6;
run;

data x.test6 (bulkload=yes bl_delete_only_datafile=YES bl_delete_files=NO);
c1=1;
run;

x dir BL_TEST6*.*;

See Also
“BL_CONTROL= Data Set Option” on page 214
“BL_DATAFILE= Data Set Option” on page 218
“BL_DELETE_DATAFILE= Data Set Option” on page 238
“BULKLOAD= Data Set Option” on page 290

242 BL_DELIMITER= Data Set Option � Chapter 11

BL_DELIMITER= Data Set Option

Specifies override of the default delimiter character for separating columns of data during data
transfer or retrieval during bulk load or bulk unload.

Default value: DBMS-specific
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, Greenplum, HP Neoview, Netezza

Syntax
BL_DELIMITER=’<any-single-character>’

Details
To specify this option, you must first set BULKLOAD=YES or BULKEXTRACT=YES.

Here is when you might want to use this option:
� to override the default delimiter character that the interface uses to separate

columns of data that it transfers to or retrieves from the DBMS during bulk load
(or bulk unload for Netezza)

� if your character data contains the default delimiter character, to avoid any
problems while parsing the data stream

Aster nCluster: The default is /t (the tab character).
Greenplum, Netezza: The default is | (the pipe symbol).
HP Neoview: The default is | (the pipe symbol). Valid characters that you can use

are a comma (,), a semicolon (;), or any ASCII character that you specify as an octal
number except for these:

� upper- and lowercase letters a through z
� decimal digits 0 through 9
� a carriage return (\015)
� a linefeed (\012)

Data Set Options for Relational Databases � BL_DIRECT_PATH= Data Set Option 243

For example, specify BL_DELIMITER=’\174’ to use the pipe symbol (| or \174 in octal
representation) as a delimiter. You must specify octal numbers as three digits even if
the first couple of digits would be 0–for example, \003 or \016, not \3 or \16.

Sybase IQ: The default is | (the pipe symbol). You can specify the delimiter as a
single printable character (such as |), or you can use hexadecimal notation to specify
any single 8-bit hexadecimal ASCII code. For example, to use the tab character as a
delimiter, you can specify BL_DELIMITER=’\x09’.

Example

Data in this example contains the pipe symbol:

data work.testdel;
col1=’my|data’;col2=12;
run;

This example shows how you can override this default when BULKLOAD=YES:

/* Using a comma to delimit data */
proc append base=netlib.mydat(BULKLOAD=YES BL_DELIMITER=’,’)
data=work.testdel;
run;

See Also
“BL_DATAFILE= Data Set Option” on page 218
“BL_DELETE_DATAFILE= Data Set Option” on page 238
“BL_FORCE_NOT_NULL= Data Set Option” on page 254
“BL_FORMAT= Data Set Option” on page 255
“BL_NULL= Data Set Option” on page 265
“BL_OPTIONS= Data Set Option” on page 267
“BL_QUOTE= Data Set Option” on page 274
“BL_USE_PIPE= Data Set Option” on page 286
“BULKEXTRACT= Data Set Option” on page 289
“BULKLOAD= Data Set Option” on page 290
“BULKUNLOAD= LIBNAME Option” on page 103
“BULKUNLOAD= Data Set Option” on page 291

BL_DIRECT_PATH= Data Set Option

Sets the Oracle SQL*Loader DIRECT option.

Default value: YES

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Syntax
BL_DIRECT_PATH=YES | NO

244 BL_DISCARDFILE= Data Set Option � Chapter 11

Syntax Description

YES
sets the Oracle SQL*Loader option DIRECT to TRUE, enabling the SQL*Loader to
use Direct Path Load to insert rows into a table.

NO
sets the Oracle SQL*Loader option DIRECT to FALSE, enabling the SQL*Loader to
use Conventional Path Load to insert rows into a table.

Details
To specify this option, you must first set BULKLOAD=YES.

The Conventional Path Load reads in multiple data records and places them in a
binary array. When the array is full, it is passed to Oracle for insertion, and Oracle
uses the SQL interface with the array option.

The Direct Path Load creates data blocks that are already in the Oracle database
block format. The blocks are then written directly into the database. This method is
significantly faster, but there are restrictions. For more information about the
SQL*Loader Direct and Conventional Path loads, see your Oracle utilities
documentation for SQL*Loader.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_DISCARDFILE= Data Set Option

Identifies the file that contains records that were filtered from bulk load because they did not
match the criteria as specified in the CONTROL file.

Default value: creates a file in the current directory or with the default file specifications

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Syntax
BL_DISCARDFILE=path-and-discard-filename

Syntax Description

path-and-discard-filename
is an SQL*Loader discard file containing rows that did not meet the specified criteria.
On most platforms, the default filename takes the form BL_<table>_<unique-ID>.dsc:

table specifies the table name

Data Set Options for Relational Databases � BL_DISCARDS= Data Set Option 245

unique-ID specifies a number that is used to prevent collisions in the event
of two or more simultaneous bulk loads of a particular table. The
SAS/ACCESS engine generates the number.

Details
To specify this option, you must first set BULKLOAD=YES.

SQL*Loader creates the file of discarded rows only if there are discarded rows and if
a discard file is requested. If you do not specify this option and a discard file does not
exist, a discard file is created in the current directory (or with the default file
specifications). If you do not specify this option and a discard file already exists, the
Oracle bulk loader reuses the existing file and replaces the contents with discarded
rows from the new load.

On most operating systems, the discard file has the same format as the data file, so
the discarded records can be loaded after corrections are made.

Operating Environment Information: On z/OS operating systems, the discard file is
created with default DCB attributes. For information about how to overcome such a
case, see the section about SQL*Loader file attributes in the SQL*Loader chapter in the
Oracle user’s guide for z/OS. �

Use BL_BADFILE= to set the name and location of the file that contains rejected
rows.

See Also
“BL_BADFILE= Data Set Option” on page 212
“BULKLOAD= Data Set Option” on page 290

BL_DISCARDS= Data Set Option

Specifies whether and when to stop processing a job, based on the number of discarded records.

Default value: 1000
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: HP Neoview

Syntax
BL_DISCARDS=number-of-discarded-records

Syntax Description

number
specifies whether and when to stop processing a job.

Details
To specify this option, you must first set BULKEXTRACT=YES.

246 BL_DISK_PARALLELISM= Data Set Option � Chapter 11

When the number of records in the bad data file for the job reaches the specified
number of discarded records, job processing stops.

Enter 0 to disable this option. This option is ignored for extraction.

See Also
“BL_BADDATA_FILE= Data Set Option” on page 211
“BULKEXTRACT= Data Set Option” on page 289

BL_DISK_PARALLELISM= Data Set Option

Specifies the number of processes or threads to use when writing data to disk.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under UNIX and PC Hosts

Syntax
BL_DISK_PARALLELISM=number of processes or threads

Syntax Description

number of processes or threads
specifies the number of processes or threads that the load utility uses to write data
records to the table-space containers.

Details
To specify this option, you must first set BULKLOAD=YES.

This option exploits the available containers when it loads data and significantly
improves load performance.

The maximum number that is allowed is the greater of four times the
BL_CPU_PARALLELISM value—which the load utility actually uses—or 50. By
default, BL_DISK_PARALLELISM is equal to the sum of the table–space containers on
all table spaces that contain objects for the table that is being loaded except where this
value exceeds the maximum number that is allowed.

If you do not specify a value, the utility selects an intelligent default that is based on
the number of table-space containers and the characteristics of the table.

See Also
For more information about using this option, see the DISK_PARALLELISM

parameter in the IBM DB2 Universal Database Data Movement Utilities Guide and
Reference.

“BL_CPU_PARALLELISM= Data Set Option” on page 216
“BL_DATA_BUFFER_SIZE= Data Set Option” on page 217
“BULKLOAD= Data Set Option” on page 290

Data Set Options for Relational Databases � BL_ERRORS= Data Set Option 247

BL_ENCODING= Data Set Option

Specifies the character set encoding to use for the external table.

Default value: DEFAULT
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Greenplum

Syntax
BL_ENCODING=character-set-encoding

Syntax Description

character-set-encoding
specifies the character set encoding to use for the external table. Specify a string
constant (such as ’SQL_ASCII’), an integer-encoding number, or DEFAULT to use the
default client encoding.

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_ERRORS= Data Set Option

Specifies whether and when to stop processing a job based on the number of failed records.

Default value: 1000
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: HP Neoview

Syntax
BL_ERRORS=number-of-failed-records

248 BL_ESCAPE= Data Set Option � Chapter 11

Syntax Description

number
specifies whether and when to stop processing a job. When the number of records in
the failed data file for the job reaches the specified number of failed records, job
processing stops. Enter 0 to disable this option.

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BL_FAILEDDATA= Data Set Option” on page 253
“BULKLOAD= Data Set Option” on page 290

BL_ESCAPE= Data Set Option

Specifies the single character to use for C escape sequences.

Default value: \
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Greenplum

Syntax
BL_ESCAPE=’<any-single-character>’

Details
To specify this option, you must first set BULKLOAD=YES or BULKEXTRACT=YES.

Use this option to specify the single character to use for C escape sequences. These
can be \n, \t, or \100. It can also be for escape data characters that might otherwise be
used as row or column delimiters. Be sure to choose one that is not used anywhere in
your actual column data.

Although the default is \ (backslash), you can specify any other character. You can
also specify OFF to disable the use of escape characters. This is very useful for Web log
data that contains numerous embedded backslashes that are not intended as escape
characters.

See Also
“BULKLOAD= Data Set Option” on page 290

Data Set Options for Relational Databases � BL_EXECUTE_CMD= Data Set Option 249

BL_EXECUTE_CMD= Data Set Option

Specifies the operating system command for segment instances to run.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
Restriction: Only for Web tables
DBMS Support: Greenplum

Syntax
BL_EXECUTE_CMD=command | script

Syntax Description

command
specifies the operating system command for segment instances to run.

script
specifies a script that contains one or more operating system commands for segment
instances to run.

Details
To specify this option, you must first set BULKLOAD=YES.

Output is Web table data at the time of access. Web tables that you define with an
EXECUTE clause run the specified shell command or script on the specified hosts. By
default, all active segment instances on all segment hosts run the command. For
example, if each segment host runs four primary segment instances, the command is
executed four times per host. You can also limit the number of segment instances that
execute the command.

See Also
“BL_EXECUTE_LOCATION= Data Set Option” on page 250
“BL_EXTERNAL_WEB= Data Set Option” on page 252
“BULKLOAD= Data Set Option” on page 290

250 BL_EXECUTE_LOCATION= Data Set Option � Chapter 11

BL_EXECUTE_LOCATION= Data Set Option

Specifies which segment instances runs the given command.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: Greenplum

Syntax
BL_EXECUTE_LOCATION=ALL | MASTER | HOST [segment-hostname],

number-of-segments | SEGMENT <segmentID>

Syntax Description

ALL
specifies that all segment instances run the given command or script.

MASTER
specifies that the master segment instance runs the given command or script.

HOST [segment-hostname], number-of-segments
indicates that the specified number of segments on the specified host runs the given
command or script.

SEGMENT <segmentID>
indicates that the specified segment instance runs the given command or script.

Details
To specify this option, you must first set BULKLOAD=YES.

For more information about valid values for this option, see the Greenplum Database
Administrator Guide.

See Also
“BL_EXECUTE_CMD= Data Set Option” on page 249
“BL_EXTERNAL_WEB= Data Set Option” on page 252
“BL_LOCATION= Data Set Option” on page 263
“BULKLOAD= Data Set Option” on page 290

Data Set Options for Relational Databases � BL_EXCEPTION= Data Set Option 251

BL_EXCEPTION= Data Set Option

Specifies the exception table into which rows in error are copied.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under UNIX and PC Hosts, Greenplum

Syntax
BL_EXCEPTION=exception table-name

Syntax Description

exception table-name
specifies the exception table into which rows in error are copied.

Details
To specify this option, you must first set BULKLOAD=YES.

DB2 under UNIX and PC Hosts: Any row that is in violation of a unique index or a
primary key index is copied. DATALINK exceptions are also captured in the exception
table. If you specify an unqualified table name, the table is qualified with the
CURRENT SCHEMA. Information that is written to the exception table is not written
to the dump file. In a partitioned database environment, you must define an exception
table for those partitions on which the loading table is defined. However, the dump file
contains rows that cannot be loaded because they are not valid or contain syntax errors.

Greenplum: Formatting errors are logged when running in single-row, error-isolation
mode. You can then examine this error table to determine whether any error rows were
not loaded. The specified error table is used if it already exists. If it does not, it is
generated automatically.

See Also
For more information about using this option with DB2 under UNIX and PC Hosts,

see the FOR EXCEPTION parameter in the IBM DB2 Universal Database Data
Movement Utilities Guide and Reference. For more information about the load exception
table, see the load exception table topics in the IBM DB2 Universal Database Data
Movement Utilities Guide and Reference and the IBM DB2 Universal Database SQL
Reference, Volume 1.

“BULKLOAD= Data Set Option” on page 290
“Capturing Bulk-Load Statistics into Macro Variables” on page 474

252 BL_EXTERNAL_WEB= Data Set Option � Chapter 11

BL_EXTERNAL_WEB= Data Set Option

Specifies whether the external data set accesses a dynamic data source.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: Greenplum

Syntax
BL_EXTERNAL_WEB=YES | NO

Syntax Description

YES
specifies that the external data set is not a dynamic data source that resides on the
Web.

NO
specifies that the external data set is a dynamic data source that resides on the Web.

Details
To specify this option, you must first set BULKLOAD=YES.

The external data set can access a dynamic data source on the Web, or it can run an
operating system command or script. For more information about external Web tables,
see the Greenplum Database Administrator Guide.

Examples

libname sasflt ’SAS-data-library’;
libname mydblib sasiogpl user=iqusr1 password=iqpwd1 dsn=greenplum;

proc sql;
create table mydblib.flights98

(bulkload=yes
bl_external_web=’yes’
bl_execute_cmd=’/var/load_scripts/get_flight_data.sh’
bl_execute_location=’HOST’
bl_format=’TEXT’
bl_delimiter=’|’)

as select * from _NULL_;
quit;

libname sasflt ’SAS-data-library’;
libname mydblib sasiogpl user=iqusr1 password=iqpwd1 dsn=greenplum;

Data Set Options for Relational Databases � BL_FAILEDDATA= Data Set Option 253

proc sql;
create table mydblib.flights98

(bulkload=yes
bl_external_web=’yes’
bl_location_protocol=’http’
bl_datafile=’intranet.company.com/expense/sales/file.csv’
bl_format=’CSV’)

as select * from _NULL_;
quit;

See Also
“Accessing Dynamic Data in Web Tables” on page 546
“BL_EXECUTE_CMD= Data Set Option” on page 249
“BL_EXECUTE_LOCATION= Data Set Option” on page 250
“BULKLOAD= Data Set Option” on page 290

BL_FAILEDDATA= Data Set Option

Specifies where to put records that could not be written to the database.

Default value: creates a data file in the current directory or with the default file
specifications
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: HP Neoview

Syntax
BL_FAILEDDATA=filename

254 BL_FORCE_NOT_NULL= Data Set Option � Chapter 11

Syntax Description

filename
specifies where to put source records that have a valid format but could not be written
to the database. For example, a record might fail a data conversion step or violate a
uniqueness constraint. These records are in the same format as the source file.

Details
To specify this option, you must first set BULKLOAD=YES or BULKEXTRACT=YES.

See Also
“BL_ERRORS= Data Set Option” on page 247
“BULKEXTRACT= Data Set Option” on page 289
“BULKLOAD= Data Set Option” on page 290

BL_FORCE_NOT_NULL= Data Set Option

Specifies how to process CSV column values.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, Greenplum

Syntax
BL_FORCE_NOT_NULL=YES | NO

Syntax Description

YES
specifies that each specified column is processed as if it is enclosed in quotes and is
therefore not a null value.

NO
specifies that each specified column is processed as if it is a null value.

Details
To specify this option, you must first set BULKLOAD=YES.

Data Set Options for Relational Databases � BL_HEADER= Data Set Option 255

You can use this option only when BL_FORMAT=CSV. For the default null string,
where no value exists between two delimiters, missing values are evaluated as
zero-length strings.

See Also
“BL_DELIMITER= Data Set Option” on page 242
“BL_FORMAT= Data Set Option” on page 255
“BL_NULL= Data Set Option” on page 265
“BL_QUOTE= Data Set Option” on page 274
“BULKLOAD= Data Set Option” on page 290

BL_FORMAT= Data Set Option
Specifies the format of the external or web table data.

Default value: TEXT
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Greenplum

Syntax
BL_FORMAT=TEXT | CSV

Syntax Description

TEXT
specifies plain text format.

CSV
specifies a comma-separated value format.

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BL_DELIMITER= Data Set Option” on page 242
“BL_FORCE_NOT_NULL= Data Set Option” on page 254
“BL_NULL= Data Set Option” on page 265
“BL_QUOTE= Data Set Option” on page 274
“BULKLOAD= Data Set Option” on page 290

BL_HEADER= Data Set Option
Indicates whether to skip or load the first record in the input data file.

256 BL_HOST= Data Set Option � Chapter 11

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Greenplum

Syntax
BL_HEADER=YES | NO

Syntax Description

YES
indicates that the first record is skipped (not loaded).

NO
indicates that the first record is loaded.

Details
To specify this option, you must first set BULKLOAD=YES.

You can use this option only when loading a table using an external Web source.
When the first record of the input data file contains the name of the columns to load,
you can indicate that it should be skipped during the load process.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_HOST= Data Set Option

Specifies the host name or IP address of the server where the external data file is stored.

Default value: DBMS-specific
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, Greenplum

Syntax
BL_HOST=’hostname’ [Aster nCluster]

BL_HOST=’localhost’ [Greenplum]

Data Set Options for Relational Databases � BL_HOSTNAME= Data Set Option 257

Syntax Description

localhost
specifies the IP address of the server where the external data file is stored.

Details
To specify this option, you must first set BULKLOAD=YES.

Use this option to pass the IP address to the DBMS bulk-load facility. You must
enclose the name in quotation marks.

Greenplum: The default is 127.0.0.1. You can use the GPLOAD_HOST environment
variable to override the default.

See Also
“BL_DBNAME= Data Set Option” on page 237
“BL_PATH= Data Set Option” on page 269
“BULKLOAD= Data Set Option” on page 290

BL_HOSTNAME= Data Set Option

Specifies the unqualified host name of the HP Neoview machine.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: HP Neoview

Syntax
BL_HOSTNAME=hostname

Details
To specify this option, you must first set BULKLOAD=YES or BULKEXTRACT=YES.

See Also
“BL_PORT= Data Set Option” on page 270
“BL_STREAMS= Data Set Option” on page 281
“BULKEXTRACT= LIBNAME Option” on page 102
“BULKEXTRACT= Data Set Option” on page 289
“BULKLOAD= Data Set Option” on page 290

258 BL_INDEX_OPTIONS= Data Set Option � Chapter 11

BL_INDEX_OPTIONS= Data Set Option

Lets you specify SQL*Loader Index options with bulk loading.

Alias: SQLLDR_INDEX_OPTION=
Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Syntax
BL_INDEX_OPTIONS=any valid SQL*Loader Index optionsegment-name

Syntax Description

any valid SQL*Loader Index option
The value that you specify for this option must be a valid SQL*Loader index option,
such as one of the following. Otherwise, an error occurs.

SINGLEROW Use this option when loading either a direct path with APPEND
on systems with limited memory or a small number of records
into a large table. It inserts each index entry directly into the
index, one record at a time.

By default, DQL*Loader does not use this option to append
records to a table.

SORTED
INDEXES

This clause applies when you are loading a direct path. It tells
the SQL*Loader that the incoming data has already been sorted
on the specified indexes, allowing SQL*Loader to optimize
performance. It allows the SQL*Loader to optimize index creation
by eliminating the sort phase for this data when using the
direct-path load method.

Details
To specify this option, you must first set BULKLOAD=YES.

You can now pass in SQL*Loader index options when bulk loading. For details about
these options, see the Oracle utilities documentation.

Example

This example shows how you can use this option.

proc sql;
connect to oracle (user=scott pw=tiger path=alien);
execute (drop table blidxopts) by oracle;
execute (create table blidxopts (empno number, empname varchar2(20))) by
oracle;
execute (drop index blidxopts_idx) by oracle;

Data Set Options for Relational Databases � BL_INDEXING_MODE= Data Set Option 259

execute (create index blidxopts_idx on blidxopts (empno)) by oracle;

quit;

libname x oracle user=scott pw=tiger path=alien;

data new;
empno=1; empname=’one’;
output;
empno=2; empname=’two’;
output;
run;

proc append base= x.blidxopts(bulkload=yes bl_index_options=’sorted indexes
(blidxopts_idx)’) data= new;
run;

See Also

“BULKLOAD= Data Set Option” on page 290

BL_INDEXING_MODE= Data Set Option

Indicates which scheme the DB2 load utility should use for index maintenance.

Default value: AUTOSELECT

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts

Syntax

BL_INDEXING_MODE=AUTOSELECT | REBUILD | INCREMENTAL |
DEFERRED

Syntax Description

AUTOSELECT
The load utility automatically decides between REBUILD or INCREMENTAL mode.

REBUILD
All indexes are rebuilt.

INCREMENTAL
Indexes are extended with new data

260 BL_KEEPIDENTITY= Data Set Option � Chapter 11

DEFERRED
The load utility does not attempt index creation if this mode is specified. Indexes are
marked as needing a refresh.

Details
To specify this option, you must first set BULKLOAD=YES.

For more information about using the values for this option, see the IBM DB2
Universal Database Data Movement Utilities Guide and Reference.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_KEEPIDENTITY= Data Set Option

Determines whether the identity column that is created during bulk load is populated with values
that Microsoft SQL Server generates or with values that the user provides.

Default value: LIBNAME setting

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: OLE DB

Syntax
BL_KEEPIDENTITY=YES | NO

Syntax Description

YES
specifies that the user must provide values for the identity column.

NO
specifies that the Microsoft SQL Server generates values for an identity column in
the table.

Details
To specify this option, you must first set BULKLOAD=YES.

This option is valid only when you use the Microsoft SQL Server provider.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“BL_KEEPIDENTITY= LIBNAME Option” on page 98.
“BULKLOAD= Data Set Option” on page 290

Data Set Options for Relational Databases � BL_LOAD_METHOD= Data Set Option 261

BL_KEEPNULLS= Data Set Option

Indicates how NULL values in Microsoft SQL Server columns that accept NULL are handled during
bulk load.

Default value: LIBNAME setting

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: OLE DB

Syntax
BL_KEEPNULLS=YES | NO

Syntax Description

YES
preserves NULL values inserted by the OLE DB interface.

NO
replaces NULL values that are inserted by the OLE DB interface with a default
value (as specified in the DEFAULT constraint).

Details
To specify this option, you must first set BULKLOAD=YES.

This option affects only values in Microsoft SQL Server columns that accept NULL
and that have a DEFAULT constraint.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“BL_KEEPNULLS= LIBNAME Option” on page 99.
“BULKLOAD= Data Set Option” on page 290

BL_LOAD_METHOD= Data Set Option

Specifies the method by which data is loaded into an Oracle table during bulk loading.

Default value: INSERT when loading an empty table; APPEND when loading a table that
contains data

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

262 BL_LOAD_REPLACE= Data Set Option � Chapter 11

Syntax
BL_LOAD_METHOD=INSERT | APPEND | REPLACE | TRUNCATE

Syntax Description

INSERT
requires the DBMS table to be empty before loading.

APPEND
appends rows to an existing DBMS table.

REPLACE
deletes all rows in the existing DBMS table and then loads new rows from the data
file.

TRUNCATE
uses the SQL truncate command to achieve the best possible performance. You must
first disable the referential integrity constraints of the DBMS table.

Details
To specify this option, you must first set BULKLOAD=YES.

REPLACE and TRUNCATE values apply only when you are loading data into a table
that already contains data. In this case, you can use REPLACE and TRUNCATE to
override the default value of APPEND. See your Oracle utilities documentation for
information about using the TRUNCATE and REPLACE load methods.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_LOAD_REPLACE= Data Set Option

Specifies whether DB2 appends or replaces rows during bulk loading.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under UNIX and PC Hosts

Syntax
BL_LOAD_REPLACE=YES | NO

Data Set Options for Relational Databases � BL_LOG= Data Set Option 263

Syntax Description

NO
the CLI LOAD interface appends new rows of data to the DB2 table.

YES
the CLI LOAD interface replaces the existing data in the table.

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_LOCATION= Data Set Option

Specifies the location of a file on a Web server for segment hosts to access.

Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Greenplum

Syntax
BL_LOCATION=http://file-location

See Also
“BL_EXECUTE_LOCATION= Data Set Option” on page 250
“BL_HOST= Data Set Option” on page 256
“BULKLOAD= Data Set Option” on page 290

BL_LOG= Data Set Option

Identifies a log file that contains information for bulk load, such as statistics and errors.

Default value: DBMS-specific

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts, Oracle, Teradata

264 BL_LOG= Data Set Option � Chapter 11

Syntax
BL_LOG=path-and-log-filename

Syntax Description

path-and-log-filename
is a file to which information about the loading process is written.

Details
To specify this option, you must first set BULKLOAD=YES. See the reference section
for your SAS/ACCESS interface for additional details.

When the DBMS bulk-load facility is invoked, it creates a log file. The contents of the
log file are DBMS-specific. The BL_ prefix distinguishes this log file from the one
created by the SAS log. If BL_LOG= is specified with the same path and filename as an
existing log, the new log replaces the existing log.

Oracle: When the SQL*Loader is invoked, it creates a log file. This file contains a
detailed summary of the load, including a description of any errors. If SQL*Loader
cannot create a log file, execution of the bulk load terminates. If a log file does not
already exist, it is created in the current directory or with the default file specifications.
If a log file does already exist, the Oracle bulk loader reuses the file, replacing the
contents with information from the new load. On most platforms, the default filename
takes the form BL_<table>_<unique-ID>.log:

table specifies the table name

unique-ID specifies a number that is used to prevent collisions in the event of
two or more simultaneous bulk loads of a particular table. The
SAS/ACCESS engine generates the number.

DB2 under UNIX and PC Hosts: If BL_LOG= is not specified, the log file is deleted
automatically after a successful operation. For more information, see the bulk-load
topic in the DB2 under UNIX and PC Hosts bulk loading section.

Teradata: For more information, see the bulk-load topic in the Teradata section
interface.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“BL_LOG= LIBNAME Option” on page 100.
“BULKLOAD= Data Set Option” on page 290
“Bulk Loading for DB2 Under UNIX and PC Hosts” on page 472
“Maximizing Teradata Load Performance” on page 804 (Teradata bulk loading)

Data Set Options for Relational Databases � BL_NULL= Data Set Option 265

BL_METHOD= Data Set Option

Specifies the bulk-load method to use for DB2.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under UNIX and PC Hosts

Syntax
BL_METHOD=CLILOAD

Syntax Description

CLILOAD
enables the CLI LOAD interface to the LOAD utility. You must also specify
BULKLOAD=YES before you can use the CLI LOAD interface.

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_NULL= Data Set Option

Specifies the string that represents a null value.

Default value: ’\N’ [TEXT mode], unquoted empty value [CSV mode]
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Greenplum

Syntax
BL_NULL=’\N’ | empty-value

266 BL_NUM_ROW_SEPS= Data Set Option � Chapter 11

Details
To specify this option, you must first set BULKLOAD=YES.

You might prefer an empty string even in TEXT mode for cases where you do not
want to distinguish nulls from empty strings. When you use this option with external
and Web tables, any data item that matches this string is considered a null value.

See Also
“BL_DELIMITER= Data Set Option” on page 242
“BL_FORCE_NOT_NULL= Data Set Option” on page 254
“BL_FORMAT= Data Set Option” on page 255
“BL_QUOTE= Data Set Option” on page 274
“BULKLOAD= Data Set Option” on page 290

BL_NUM_ROW_SEPS= Data Set Option

Specifies the number of newline characters to use as the row separator for the load or extract data
stream.

Default value: 1
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: HP Neoview

Syntax
BL_NUM_ROW_SEPS=<integer>

Details
To specify this option, you must first set BULKLOAD=YES.

You must specify an integer that is greater than 0 for this option.
If your character data contains newline characters and you want to avoid parsing

issues, you can specify a greater number for BL_NUM_ROW_SEPS=. This corresponds
to the records separated by clause in the HP Neoview Transporter control file.

See Also
“BL_NUM_ROW_SEPS= LIBNAME Option” on page 100
“BULKEXTRACT= LIBNAME Option” on page 102
“BULKEXTRACT= Data Set Option” on page 289
“BULKLOAD= Data Set Option” on page 290

Data Set Options for Relational Databases � BL_OPTIONS= Data Set Option 267

BL_OPTIONS= Data Set Option

Passes options to the DBMS bulk-load facility, which affects how it loads and processes data.

Default value: DBMS-specific
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Netezza, OLE DB,
Oracle, Sybase IQ

Syntax
BL_OPTIONS=’<option…,option>’ [DB2 under UNIX and PC Hosts, OLE DB, Oracle]

BL_OPTIONS=’<<option>> <<value> ... ’> [Aster nCluster, Netezza, Sybase IQ]

Syntax Description

option
specifies an option from the available options that are specific to each SAS/ACCESS
interface. See the details in this section.

Details
To specify this option, you must first set BULKLOAD=YES.

You can use BL_OPTIONS= to pass options to the DBMS bulk-load facility when it is
called, thereby affecting how data is loaded and processed. You must separate multiple
options with commas and enclose the entire string of options in single quotation marks.

Aster nCluster: By default, no options are specified.
DB2 under UNIX and PC Hosts: This option passes DB2 file-type modifiers to DB2

LOAD or IMPORT commands to affect how data is loaded and processed. Not all DB2
file type modifiers are appropriate for all situations. You can specify one or more DB2
file type modifiers with .IXF files. For a list of file type modifiers, see the description of
the LOAD and IMPORT utilities in the IBM DB2 Universal Database Data Movement
Utilities Guide and Reference.

Netezza: Any text that you enter for this option is appended to the USING clause of
the CREATE EXTERNAL TABLE statement—namely, any external_table_options in
the Netezza Database User’s Guide.

OLE DB: By default, no options are specified. This option is valid only when you are
using the Microsoft SQL Server provider. This option takes the same values as the -h
HINT option of the Microsoft BCP utility. For example, the ORDER= option sets the
sort order of data in the data file; you can use it to improve performance if the file is
sorted according to the clustered index on the table. See the Microsoft SQL Server
documentation for a complete list of supported bulk copy options.

Oracle: This option lets you specify the SQL*Loader options ERRORS= and LOAD=.
The ERRORS= option specifies the number of insert errors that terminates the load.
The default value of ERRORS=1000000 overrides the default value for the Oracle
SQL*Loader ERRORS= option, which is 50. LOAD= specifies the maximum number of
logical records to load. If the LOAD= option is not specified, all rows are loaded. See
your Oracle utilities documentation for a complete list of SQL*Loader options that you
can specify in BL_OPTIONS=.

268 BL_PARFILE= Data Set Option � Chapter 11

Sybase IQ: By default, no options are specified. Any text that you enter for this
option is appended to the LOAD TABLE command that the SAS/ACCESS interface uses
for the bulk-load process.

Examples

In this Oracle example BL_OPTIONS= specifies the number of errors that are
permitted during a load of 2,000 rows of data, where all listed options are enclosed in
quotation marks.

bl_options=’ERRORS=999,LOAD=2000’

This Netezza example shows you how to use BL_OPTIONS= to specify two different
external table options, ctrlchars and logdir:

data netlib.mdata(bulkload=yes bl_options="ctrlchars true logdir ’c:\temp’");
set saslib.transdata;
run;

See Also
To assign this option to a group of relational DBMS tables or views, see the

“BL_OPTIONS= LIBNAME Option” on page 101.
“BULKLOAD= Data Set Option” on page 290

BL_PARFILE= Data Set Option

Creates a file that contains the SQL*Loader command line options.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Oracle

Syntax
BL_PARFILE=<parse-file>

Syntax Description

parse-file
the name you give the file that contains the SQL*Loader command line options. The
name can also specify the path. If no path is specified, the file is created in the
current directory.

Data Set Options for Relational Databases � BL_PATH= Data Set Option 269

Details
To specify this option, you must first set BULKLOAD=YES.

This option prompts the SQL*Loader to use the PARFILE= option. This SQL*Loader
option enables you to specify SQL*Loader command line options in a file instead of as
command line options. Here is an example of how you can call the SQL*Loader by
specifying user ID and control options:

sqlldr userid=scott/tiger control=example.ctl

You can also call it by using the PARFILE = option:

sqlldr parfile=example.par

Example.par now contains the USERID= and CONTROL= options. One of the biggest
advantages of using the BL_PARFILE= option is security because the user ID and
password are stored in a separate file.

The permissions on the file default to the operating system defaults. Create the file
in a protected directory to prevent unauthorized users from accessing its contents.

To display the contents of the parse file in the SAS log, use the SASTRACE=",,,d"
option. However, the password is blocked out and replaced with xxxx.

Note: The parse file is deleted at the end of SQL*Loader processing. �

Example

This example demonstrates how SQL*Loader invocation is different when the
BL_PARFILE= option is specified.

libname x oracle user=scott pw=tiger;
/* SQL*Loader is invoked as follows without BL_PARFILE= */
sqlldr userid=scott/tiger@oraclev9 control=bl_bltst_0.ctl log=bl_bltst_0.log
bad=bl_bltst_0.bad discard=bl_bltst_0.dsc */

data x.bltst (bulkload=yes);
c1=1;
run;
/* Note how SQL*Loader is invoked in this DATA step, which uses BL_PARFILE=. */

sqlldr parfile=test.par
/* In this case all options are written to the test.par file. */

data x.bltst2 (bulkload=yes bl_parfile=’test.par’);
c1=1;
run;

See Also
“BULKLOAD= Data Set Option” on page 290

BL_PATH= Data Set Option

Specifies the path to use for bulk loading.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

270 BL_PORT= Data Set Option � Chapter 11

DBMS support: Aster nCluster

Syntax
BL_PATH=’path’

Syntax Description

path
specifies the path to use for bulk loading.

Details
To specify this option, you must first set BULKLOAD=YES or BULKEXTRACT=YES.

Use this option to pass the path to the DBMS bulk-load facility. You must enclose the
entire path in quotation marks.

See Also
“BL_DBNAME= Data Set Option” on page 237
“BL_HOST= Data Set Option” on page 256
“BULKLOAD= Data Set Option” on page 290

BL_PORT= Data Set Option

Specifies the port number to use.

Default value: DBMS-specific
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Greenplum, HP Neoview

Syntax
BL_PORT=<port>

Syntax Description

port
specifies the port number to use.

Details
To specify this option, you must first set BULKLOAD=YES or BULKEXTRACT=YES.

Greenplum: Use this option to specify the port number that bulk load uses to
communicate with the server where the input data file resides. There is no default.

Data Set Options for Relational Databases � BL_PORT_MIN= Data Set Option 271

HP Neoview: Use this option to specify the port number to which the HP Neoview
machine listens for connections. The default is 8080.

See Also
“BL_HOSTNAME= Data Set Option” on page 257
“BL_STREAMS= Data Set Option” on page 281
“BULKEXTRACT= LIBNAME Option” on page 102
“BULKEXTRACT= Data Set Option” on page 289
“BULKLOAD= Data Set Option” on page 290

BL_PORT_MAX= Data Set Option

Sets the highest available port number for concurrent uploads.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under UNIX and PC Hosts

Syntax
BL_PORT_MAX=<integer>

Syntax Description

integer
specifies a positive integer that represents the highest available port number for
concurrent uploads.

Details
To specify this option, you must first set BULKLOAD=YES. To reserve a port range,
you must specify values for this and also the BL_PORT_MIN= option.

See Also
“BL_PORT_MIN= Data Set Option” on page 271
“BULKLOAD= Data Set Option” on page 290

BL_PORT_MIN= Data Set Option

Sets the lowest available port number for concurrent uploads.

Default value: none

272 BL_PRESERVE_BLANKS= Data Set Option � Chapter 11

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under UNIX and PC Hosts

Syntax
BL_PORT_MIN=< integer>

Syntax Description

integer
specifies a positive integer that represents the lowest available port number for
concurrent uploads.

Details
To specify this option, you must first set BULKLOAD=YES. To reserve a port range,
you must specify values for both the BL_PORT_MIN and BL_PORT_MAX= options.

See Also
“BL_PORT_MAX= Data Set Option” on page 271
“BULKLOAD= Data Set Option” on page 290

BL_PRESERVE_BLANKS= Data Set Option

Determines how the SQL*Loader handles requests to insert blank spaces into CHAR/VARCHAR2
columns with the NOT NULL constraint.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Oracle

Syntax
BL_PRESERVE_BLANKS=YES | NO

Data Set Options for Relational Databases � BL_PROTOCOL= Data Set Option 273

Syntax Description

YES
specifies that blank values are inserted as blank spaces.

CAUTION:
When this option is set to YES, any trailing blank spaces are also inserted. For

this reason, use this option with caution. It is recommended that you set this
option to YES only for CHAR columns. Do not set this option to YES for
VARCHAR2 columns because trailing blank spaces are significant in VARCHAR2
columns. �

NO
specifies that blank values are inserted as NULL values.

Details
To specify this option, you must first set BULKLOAD=YES.

Operating Environment Information: This option is not supported on z/OS. �

See Also
“BULKLOAD= Data Set Option” on page 290

BL_PROTOCOL= Data Set Option

Specifies the protocol to use.

Default value: gpfdist
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Greenplum

Syntax
BL_PROTOCOL=’gpfdist’ | ’file’ | ’http’

Syntax Description

gpfdist
specifies the Greenplum file distribution program.

file
specifies external tables on a segment host.

http
specifies Web address of a file on a segment host. This value is valid only for external
Web tables.

274 BL_QUOTE= Data Set Option � Chapter 11

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BL_DATAFILE= Data Set Option” on page 218
“BL_HOST= Data Set Option” on page 256
“BL_DATAFILE= Data Set Option” on page 218
“BULKLOAD= Data Set Option” on page 290
“Using Protocols to Access External Tables” on page 544
“Using the file:// Protocol” on page 546

BL_QUOTE= Data Set Option

Specifies the quotation character for CSV mode.

Default value: " (double quote)

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Greenplum

Syntax
BL_QUOTE="

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BL_DELIMITER= Data Set Option” on page 242
“BL_FORCE_NOT_NULL= Data Set Option” on page 254
“BL_FORMAT= Data Set Option” on page 255
“BL_NULL= Data Set Option” on page 265

“BULKLOAD= Data Set Option” on page 290

BL_RECOVERABLE= Data Set Option

Determines whether the LOAD process is recoverable.

Default value: NO for DB2 under UNIX and PC Hosts, YES for Oracle

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts, Oracle

Data Set Options for Relational Databases � BL_REJECT_LIMIT= Data Set Option 275

Syntax
BL_RECOVERABLE=YES | NO

Syntax Description

YES
specifies that the LOAD process is recoverable. For DB2, YES also specifies that the
copy location for the data should be specified by BL_COPY_LOCATION=.

NO
specifies that the LOAD process is not recoverable. For Oracle, NO adds the
UNRECOVERABLE keyword before the LOAD keyword in the control file.

Details
To specify this option, you must first set BULKLOAD=YES.

Oracle: Set this option to NO to improve direct load performance.

CAUTION:
Be aware that an unrecoverable load does not log loaded data into the redo log file.
Therefore, media recovery is disabled for the loaded table. For more information about the
implications of using the UNRECOVERABLE parameter in Oracle, see your Oracle utilities
documentation. �

Example

This example for Oracle demonstrates the use of BL_RECOVERABLE= to specify
that the load is unrecoverable.

data x.recover_no (bulkload=yes bl_recoverable=no); c1=1; run;

See Also
“BULKLOAD= Data Set Option” on page 290

BL_REJECT_LIMIT= Data Set Option

Specifies the reject limit count.

Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Greenplum

Syntax
BL_REJECT_LIMIT=number

276 BL_REJECT_TYPE= Data Set Option � Chapter 11

Syntax Description

number
specifies the reject limit count either as a percentage (1 to 99) of total rows or as a
number of rows.

Details

To specify this option, you must first set BULKLOAD=YES and then set
BL_REJECT_TYPE=.

When BL_REJECT_TYPE=PERCENT, the percentage of rows per segment is
calculated based on the Greenplum database configuration parameter
(gp_reject_percent_threshold). The default value for this parameter is 300.

Input rows with format errors are discarded if the reject limit count is not reached on
any Greenplum segment instance during the load operation.

Constraint errors result when violations occur to such constraints as NOT NULL,
CHECK, or UNIQUE. A single constraint error causes the entire external table
operation to fail. If the reject limit is not reached, rows without errors are processed
and rows with errors are discarded.

See Also
“BL_REJECT_TYPE= Data Set Option” on page 276
“BULKLOAD= Data Set Option” on page 290

BL_REJECT_TYPE= Data Set Option

Indicates whether the reject limit count is a number of rows or a percentage of total rows.

Default value: ROWS

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Greenplum

Syntax

BL_REJECT_TYPE=ROWS | PERCENT

Syntax Description

ROWS
specifies the reject limit count as a number of rows.

PERCENT
specifies the reject limit count as a percentage (1 to 99) of total rows.

Data Set Options for Relational Databases � BL_REMOTE_FILE= Data Set Option 277

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BL_REJECT_LIMIT= Data Set Option” on page 275
“BULKLOAD= Data Set Option” on page 290

BL_REMOTE_FILE= Data Set Option

Specifies the base filename and location of DB2 LOAD temporary files.

Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts

Syntax
BL_REMOTE_FILE=pathname-and-base-filename

Syntax Description

pathname-and-base-filename
is the full pathname and base filename to which DB2 appends extensions (such as
.log, .msg, and .dat files) to create temporary files during load operations. By default,
the base filename takes the form BL_<table>_<unique-ID>:

table specifies the table name.

unique-ID specifies a number that is used to prevent collisions in the event
of two or more simultaneous bulk loads of a particular table. The
SAS/ACCESS engine generates the number.

Details
To specify this option, you must first set BULKLOAD=YES.

Do not use BL_REMOTE_FILE= unless you have SAS Release 6.1 or later for both
the DB2 client and server. Using the LOAD facility with a DB2 client or server before
Release 6.1 might cause the tablespace to become unusable in the event of a load error.
A load error might affect tables other than the table being loaded.

When you specify this option, the DB2 LOAD command is used (instead of the
IMPORT command). For more information about these commands, see the bulk-load
topic in the DB2 under z/OS section.

For pathname, specify a location on a DB2 server that is accessed exclusively by a
single DB2 server instance, and for which the instance owner has read and write
permissions. Make sure that each LOAD command is associated with a unique
pathname-and-base-filename value.

278 BL_RETRIES= Data Set Option � Chapter 11

See Also
To specify the path from the server, see the “BL_SERVER_DATAFILE= Data Set

Option” on page 280.
“BULKLOAD= Data Set Option” on page 290
“Bulk Loading for DB2 Under UNIX and PC Hosts” on page 472

BL_RETRIES= Data Set Option

Specifies the number of attempts to make for a job.

Default value: 3
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: HP Neoview

Syntax
BL_RETRIES=number-of-attempts

Syntax Description

YES
specifies the number of attempts to try to establish a database connection, to open a
JMS source, or to open a named pipe for a job.

NO
specifies that job entries in a specific job are processed serially.

Details
To specify this option, you must first set BULKEXTRACT=YES.

See Also
“BL_TENACITY= Data Set Option” on page 284
“BULKEXTRACT= Data Set Option” on page 289

BL_RETURN_WARNINGS_AS_ERRORS= Data Set Option

Specifies whether SQL*Loader (bulk-load) warnings should surface in SAS through the SYSERR
macro as warnings or as errors.

Default value: NO

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

Data Set Options for Relational Databases � BL_ROWSETSIZE= Data Set Option 279

DBMS support: Oracle

Syntax
BL_RETURN_WARNINGS_AS_ERRORS=YES | NO

Syntax Description

YES
specifies that all SQLLDER warnings are returned as errors, which SYSERR reflects.

NO
specifies that all SQLLDER warnings are returned as warnings.

Details
To specify this option, you must first set BULKLOAD=YES.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_ROWSETSIZE= Data Set Option

Specifies the number of records to exchange with the database.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: HP Neoview

Syntax
BL_ROWSETSIZE=number-of-records

Syntax Description

number-of-records
specifies the number of records in each batch of rows to exchange with the database.

Details
To specify this option, you must first set BULKEXTRACT=YES.

The value for this option must be an integer from 1 to 100,000. If you do not specify
this option, an optimized value is chosen based on the SQL table or query.

Enter 0 to disable this option. This option is ignored for extraction.

280 BL_SERVER_DATAFILE= Data Set Option � Chapter 11

See Also
“BULKEXTRACT= Data Set Option” on page 289

BL_SERVER_DATAFILE= Data Set Option

Specifies the name and location of the data file that the DBMS server instance sees.

Alias: BL_DATAFILE
Default value: creates a data file in the current directory or with the default file
specifications (same as for BL_DATAFILE=)
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under UNIX and PC Hosts, Sybase IQ

Syntax
BL_SERVER_DATAFILE=path-and-data-filename

Syntax Description

pathname-and-data-filename
fully qualified pathname and filename of the data file to load, as seen by the DBMS
server instance. By default, the base filename takes the form
BL_<table>_<unique-ID>:

table specifies the table name.

unique-ID specifies a number that is used to prevent collisions in the event
of two or more simultaneous bulk loads of a particular table. The
SAS/ACCESS engine generates the number.

Details
To specify this option, you must first set BULKLOAD=YES.

DB2 under UNIX and PC Hosts: You must also specify a value for
BL_REMOTE_FILE=. If the path to the data file from the DB2 server instance is
different from the path to the data file from the client, you must use
BL_SERVER_DATAFILE= to specify the path from the DB2 server. By enabling the
DB2 server instance to directly access the data file that BL_DATAFILE= specifies, this
option facilitates use of the DB2 LOAD command. For more information about the
LOAD command, see the bulk-load topic in the DB2 under z/OS section.

Sybase IQ: BL_CLIENT_DATAFILE= is the client view of the data file.

See Also
To specify the path from the client, see the “BL_DATAFILE= Data Set Option” on

page 218 [DB2 for UNIX and PC] or the “BL_CLIENT_DATAFILE= Data Set Option”
on page 213.

“BL_REMOTE_FILE= Data Set Option” on page 277

Data Set Options for Relational Databases � BL_STREAMS= Data Set Option 281

“BULKLOAD= Data Set Option” on page 290
“Bulk Loading for DB2 Under UNIX and PC Hosts” on page 472

BL_SQLLDR_PATH= Data Set Option

Specifies the location of the SQLLDR executable file.

Default value: SQLLDR

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Syntax
BL_SQLLDR_PATH=pathname

Syntax Description

pathname
is the full pathname to the SQLLDR executable file so that the SAS/ACCESS
Interface for Oracle can invoke SQL*Loader.

Details
To specify this option, you must first set BULKLOAD=YES.

Normally there is no need to specify this option because the environment is set up to
find the Oracle SQL*Loader automatically.

Operating Environment Information: This option is ignored on z/OS. �

See Also
“BULKLOAD= Data Set Option” on page 290

BL_STREAMS= Data Set Option

Specifies the value for the HP Neoview Transporter parallel streams option.

Default value: 4 (for extracts), none (for loads)

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: HP Neoview

282 BL_SUPPRESS_NULLIF= Data Set Option � Chapter 11

Syntax
BL_STREAMS=<number>

Syntax Description

number
specifies the value for the HP Neoview Transporter parallel streams option.

Details
To specify this option, you must first set BULKLOAD=YES or BULKEXTRACT=YES.

For source data, this option specifies the number of threads to use when reading data
and therefore the number of data files or pipes to create. For target data, the value for
this option is passed to the HP Neoview Transporter to control the number of internal
connections to use in the HP Neoview Transporter.

See Also
“BL_HOSTNAME= Data Set Option” on page 257
“BL_PORT= Data Set Option” on page 270
“BULKEXTRACT= LIBNAME Option” on page 102
“BULKEXTRACT= Data Set Option” on page 289
“BULKLOAD= Data Set Option” on page 290

BL_SUPPRESS_NULLIF= Data Set Option

Indicates whether to suppress the NULLIF clause for the specified columns to increase
performance when a table is created.

Default value: NO

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Syntax
BL_SUPPRESS_NULLIF=<_ALL_=YES | NO> | (<column-name-1=YES | NO>

<column-name-n=YES | NO>…)

Syntax Description

YES
column-name-1=YES indicates that the NULLIF clause should be suppressed for the
specified column in the table.

NO

Data Set Options for Relational Databases � BL_SYNCHRONOUS= Data Set Option 283

column-name-1=NO indicates that the NULLIF clause should not be suppressed for
the specified column in the table.

ALL
specifies that the YES or NO applies to all columns in the table.

Details
To specify this option, you must first set BULKLOAD=YES.

If you specify more than one column name, the names must be separated with spaces.
The BL_SUPPRESS_NULLIF= option processes values from left to right. If you

specify a column name twice or use the _ALL_ value, the last value overrides the first
value that you specified for the column.

Example

This example uses the BL_SUPPRESS_NULLIF= option in the DATA step to
suppress the NULLIF clause for columns C1 and C5 in the table.

data x.suppressnullif2_yes (bulkload=yes BL_SUPPRESS_NULLIF=(c1=yes c5=yes));
run;

The next example uses the BL_SUPPRESS_NULLIF= option in the DATA step to
suppress the NULLIF clause for all columns in the table.

libname x oracle user=dbitest pw=tiger path=lupin_o9010;

%let num=1000000; /* 1 million rows */

data x.testlmn (bulkload=yes
BL_SUPPRESS_NULLIF=(_all_ =yes)
rename=(year=yearx));

set x.big1mil (obs= &num) ;
run;

See Also
“BULKLOAD= Data Set Option” on page 290

BL_SYNCHRONOUS= Data Set Option

Specifies how to process source file record sets.

Default value: YES

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: HP Neoview

Syntax
BL_SYNCHRONOUS=YES | NO

284 BL_SYSTEM= Data Set Option � Chapter 11

Syntax Description

YES
specifies that source file record sets can be processed in a different order for
increased performance and parallelism.

NO
specifies that source file record sets are processed serially (in the order in which they
appear in the source file).

Details
To specify this option, you must first set BULKEXTRACT=YES.

This option is ignored for extraction.

See Also
“BULKEXTRACT= Data Set Option” on page 289

BL_SYSTEM= Data Set Option
Specifies the unqualified name of the primary segment on an HP Neoview system.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: HP Neoview

Syntax
BL_SYSTEM=unqualified-systemname

Syntax Description

unqualified-systemname
is the unqualified name of the primary segment on an HP Neoview system.

Details
To specify this option, you must first set YES or BULKEXTRACT=YES.

See Also
“BULKEXTRACT= Data Set Option” on page 289

BL_TENACITY= Data Set Option
Specifies how long the HP Neoview Transporter waits before trying again.

Data Set Options for Relational Databases � BL_TRIGGER= Data Set Option 285

Default value: 15
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: HP Neoview

Syntax
BL_TENACITY=number-of-seconds

Syntax Description

number-of-seconds
specifies how long the HP Neoview Transporter waits (in seconds) between attempts
to establish a database connection, open a JMS source, or open a named pipe before
retrying. The value can be 0 or a positive integer.

Details
To specify this option, you must first set BULKLOAD=YES.

Enter 0 to disable this option. This option is ignored for extracting.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_TRIGGER= Data Set Option

Specifies whether to enable triggers on a table when loading jobs.

Default value: YES

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: HP Neoview

Syntax
BL_TRIGGER=YES | NO

Syntax Description

YES
specifies that triggers on a table are enabled when loading jobs.

NO
specifies that triggers on a table are disabled when loading jobs.

286 BL_TRUNCATE= Data Set Option � Chapter 11

Details
To specify this option, you must first set BULKLOAD=YES.

Enter 0 to disable this option. This option is ignored for extracting.

See Also
“BULKLOAD= Data Set Option” on page 290

BL_TRUNCATE= Data Set Option

Specifies whether the HP Neoview Transporter truncates target tables (when loading) or target
data files (when extracting) before job processing begins.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: HP Neoview

Syntax
BL_TRUNCATE=YES | NO

Syntax Description

YES
specifies that the HP Neoview Transporter deletes data from the target before job
processing begins.

NO
specifies that the HP Neoview Transporter does not delete data from the target
before job processing begins.

Details
To specify this option, you must first set BULKEXTRACT=YES.

See Also
“BULKEXTRACT= Data Set Option” on page 289

BL_USE_PIPE= Data Set Option

Specifies a named pipe for data transfer.

Default value: DBMS-specific
Restriction: Not available for Oracle on z/OS

Data Set Options for Relational Databases � BL_WARNING_COUNT= Data Set Option 287

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: HP Neoview, Netezza, Oracle, Sybase IQ

Syntax
BL_USE_PIPE=YES | NO

Syntax Description

YES
specifies that a named pipe is used to transfer data between SAS/ACCESS interfaces
and the DBMS client interface.

NO
specifies that a flat file is used to transfer data.

Details
By default, the DBMS interface uses a named pipe interface to transfer large amounts
of data between SAS and the DBMS when using bulk load or bulk unload. If you prefer
to use a flat data file that you can save for later use or examination, specify
BL_USE_PIPE=NO.

HP Neoview: To specify this option, you must first set BULKEXTRACT=YES. This
option determines how to the sources section of the control file are set up and the
method that is used to transfer or receive data from the HP Neoview Transporter. In
particular, its setting helps you choose which specific source to select. The default value
is YES.

Netezza: To specify this option, you must first set BULKLOAD=YES or
BULKUNLOAD=YES. The default value is YES.

Oracle: To specify this option, you must first set BULKLOAD=YES or
BULKUNLOAD=YES. The default value is NO.

Sybase IQ: To specify this option, you must first set BULKLOAD=YES. The default
value is YES.

See Also
“BL_DATAFILE= Data Set Option” on page 218
“BULKEXTRACT= LIBNAME Option” on page 102
“BULKEXTRACT= Data Set Option” on page 289
“BULKLOAD= Data Set Option” on page 290
“BULKUNLOAD= LIBNAME Option” on page 103
“BULKUNLOAD= Data Set Option” on page 291

BL_WARNING_COUNT= Data Set Option

Specifies the maximum number of row warnings to allow before the load fails.

Default value: 2147483646

288 BUFFERS= Data Set Option � Chapter 11

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts

Syntax
BL_WARNING_COUNT=warning-count

Syntax Description

warning-count
specifies the maximum number of row warnings to allow before the load fails.

Details
To specify this option, you must first set BULKLOAD=YES and also specify a value for
BL_REMOTE_FILE=.

Use this option to limit the maximum number of rows that generate warnings. See
the log file for information about why the rows generated warnings.

See Also
“BL_REMOTE_FILE= Data Set Option” on page 277
“BULKLOAD= Data Set Option” on page 290

BUFFERS= Data Set Option

Specifies the number of shared memory buffers to use for transferring data from SAS to Teradata.

Default value: 2

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)

DBMS support: Teradata

Syntax
BUFFERS=number-of-shared-memory-buffers

Syntax Description

number-of-shared-memory-buffers
a numeric value between 1 and 8 that specifies the number of buffers used for
transferring data from SAS to Teradata.

Data Set Options for Relational Databases � BULKEXTRACT= Data Set Option 289

Details
BUFFERS= specifies the number of data buffers to use for transferring data from SAS

to Teradata. When you use the MULTILOAD= data set option, data is transferred from
SAS to Teradata using shared memory segments. The default shared memory buffer
size is 64K. The default number of shared memory buffers used for the transfer is 2.

Use BUFFERS= to vary the number of buffers for data transfer from 1 to 8. Use the
MBUFSIZE= data set option to vary the size of the shared memory buffers from the
size of each data row up to 1MB.

See Also
For more information about specifying the size of shared memory buffers, see the

“MBUFSIZE= Data Set Option” on page 335.
“MULTILOAD= Data Set Option” on page 342

BULK_BUFFER= Data Set Option

Specifies the number of bulk rows that the SAS/ACCESS engine can buffer for output.

Default value: 100
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Sybase

Syntax
BULK_BUFFER=numeric-value

Syntax Description

numeric-value
is the maximum number of rows that are allowed. This value depends on the amount
of memory that is available to your system.

Details
This option improves performance by specifying the number of rows that can be held in
memory for efficient retrieval from the DBMS. A higher number signifies that more
rows can be held in memory and accessed quickly during output operations.

BULKEXTRACT= Data Set Option

Rapidly retrieves (fetches) large number of rows from a data set.

Default value: NO

290 BULKLOAD= Data Set Option � Chapter 11

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: HP Neoview

Syntax
BULKEXTRACT=YES | NO

Syntax Description

YES
calls the HP Neoview Transporter to retrieve data from HP Neoview.

NO
uses standard HP Neoview result sets to retrieve data from HP Neoview.

Details
Using BULKEXTRACT=YES is the fastest way to retrieve large numbers of rows from
an HP Neoview table.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“BULKUNLOAD= LIBNAME Option” on page 103.
“BL_DATAFILE= Data Set Option” on page 218
“BL_DELETE_DATAFILE= Data Set Option” on page 238
“BL_DELIMITER= Data Set Option” on page 242
“BL_USE_PIPE= Data Set Option” on page 286
“BULKLOAD= Data Set Option” on page 290
“Extracting” on page 567

BULKLOAD= Data Set Option

Loads rows of data as one unit.

Alias: BL_DB2LDUTIL= [DB2 under z/OS], FASTLOAD= [Teradata]

Default value: NO

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Netezza, ODBC, OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
BULKLOAD=YES | NO

Data Set Options for Relational Databases � BULKUNLOAD= Data Set Option 291

Syntax Description

YES
calls a DBMS-specific bulk-load facility to insert or append rows to a DBMS table.

NO
uses the dynamic SAS/ACCESS engine to insert or append data to a DBMS table.

Details
Using BULKLOAD=YES is the fastest way to insert rows into a DBMS table.

See SAS/ACCESS documentation for your DBMS interface for details.
When BULKLOAD=YES, the first error encountered causes the remaining rows

(including the erroneous row) in the buffer to be rejected. No other errors within the
same buffer are detected, even if the ERRLIMIT= value is greater than one. In
addition, all rows before the error are committed, even if DBCOMMIT= is larger than
the number of the erroneous row.

Sybase: When BULKLOAD=NO, insertions are processed and rolled back as expected
according to DBCOMMIT= and ERRLIMIT= values. If the ERRLIMIT= value is
encountered, all uncommitted rows are rolled back. The DBCOMMIT= data set option
determines the commit intervals. For details, see the DBMS-specific reference section
for your interface.

See Also
“BULKEXTRACT= LIBNAME Option” on page 102
“BULKEXTRACT= Data Set Option” on page 289
“BULKUNLOAD= LIBNAME Option” on page 103
“BULKUNLOAD= Data Set Option” on page 291
“DBCOMMIT= Data Set Option” on page 297
“ERRLIMIT= Data Set Option” on page 325

BULKUNLOAD= Data Set Option

Rapidly retrieves (fetches) large number of rows from a data set.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Netezza

Syntax
BULKUNLOAD=YES | NO

292 CAST= Data Set Option � Chapter 11

Syntax Description

YES
calls the Netezza Remote External Table interface to retrieve data from the Netezza
Performance Server.

NO
uses standard Netezza result sets to retrieve data from the DBMS.

Details
Using BULKUNLOAD=YES is the fastest way to retrieve large numbers of rows from a
Netezza table.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“BULKUNLOAD= LIBNAME Option” on page 103.
“BL_DATAFILE= Data Set Option” on page 218
“BL_DELETE_DATAFILE= Data Set Option” on page 238
“BL_DELIMITER= Data Set Option” on page 242
“BL_USE_PIPE= Data Set Option” on page 286
“BULKLOAD= Data Set Option” on page 290
“Unloading” on page 633

CAST= Data Set Option

Specifies whether SAS or the Teradata DBMS server should perform data conversions.

Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Teradata

Syntax
CAST=YES | NO

Syntax Description

YES
forces data conversions (casting) to be done on the Teradata DBMS server and
overrides any data overhead percentage limit.

NO
forces data conversions to be done by SAS and overrides any data overhead
percentage limit.

Data Set Options for Relational Databases � CAST_OVERHEAD_MAXPERCENT= Data Set Option 293

Details
Internally, SAS numbers and dates are floating-point values. Teradata has several
formats for numbers, including integers, floating-point values, and decimal values.
Number conversion must occur when you are reading Teradata numbers that are not
floating points (Teradata FLOAT). SAS/ACCESS can use the Teradata CAST= function
to cause Teradata to perform numeric conversions. The parallelism of Teradata makes
it suitable for performing this work, particularly if you are running SAS on z/OS, where
CPU activity can be costly.

CAST= can cause more data to be transferred from Teradata to SAS, as a result of
the option forcing the Teradata type into a larger SAS type. For example, the CAST=
transfer of a Teradata BYTEINT to SAS floating point adds seven overhead bytes to
each row transferred.

These Teradata types are candidates for casting:
� INTEGER
� BYTEINT
� SMALLINT
� DECIMAL

� DATE

SAS/ACCESS limits data expansion for CAST= to 20% to trade rapid data conversion
by Teradata for extra data transmission. If casting does not exceed a 20% data increase,
all candidate columns are cast. If the increase exceeds this limit, SAS attempts to cast
Teradata DECIMAL types only. If casting only DECIMAL types still exceeds the
increase limit, data conversions are done by SAS.

You can alter the casting rules by using either CAST= or
CAST_OVERHEAD_MAXPERCENT= LIBNAME option. With
CAST_OVERHEAD_MAXPERCENT=, you can change the 20% overhead limit. With
CAST=, you can override the percentage rules:

� CAST=YES forces Teradata to cast all candidate columns
� CAST=NO cancels all Teradata casting

CAST= applies only when you are reading Teradata tables into SAS. It does not
apply when you are writing Teradata tables from SAS.

CAST= also applies only to SQL that SAS generates for you. If you supply your own
SQL with the explicit SQL feature of PROC SQL, you must code your own casting
clauses to force data conversions in Teradata instead of SAS.

See Also
“CAST= LIBNAME Option” on page 104
“CAST_OVERHEAD_MAXPERCENT= LIBNAME Option” on page 106

CAST_OVERHEAD_MAXPERCENT= Data Set Option

Specifies the overhead limit for data conversions to perform in Teradata instead of SAS.

Default value: 20%
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

294 COMMAND_TIMEOUT= Data Set Option � Chapter 11

Syntax
CAST_OVERHEAD_MAXPERCENT=<n>

Syntax Description

<n>
Any positive numeric value. The engine default is 20.

Details
Teradata INTEGER, BYTEINT, SMALLINT, and DATE columns require conversion
when read in to SAS. Either Teradata or SAS can perform conversions. When Teradata
performs the conversion, the row size that is transmitted to SAS using the Teradata
CAST operator can increase. CAST_OVERHEAD_MAXPERCENT= limits the allowable
increase, also called conversion overhead.

Examples

This example demonstrates the use of CAST_OVERHEAD_MAXPERCENT= to
increase the allowable overhead to 40%:

proc print data=mydblib.emp (cast_overhead_maxpercent=40);
where empno<1000;
run;

See Also
For more information about conversions, conversion overhead, and casting, see the

“CAST= LIBNAME Option” on page 104.

COMMAND_TIMEOUT= Data Set Option

Specifies the number of seconds to wait before a command times out.

Default value: LIBNAME setting

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: OLE DB

Syntax
COMMAND_TIMEOUT=number-of-seconds

Data Set Options for Relational Databases � CURSOR_TYPE= Data Set Option 295

See Also
To assign this option to a group of relational DBMS tables or views, see the

“COMMAND_TIMEOUT= LIBNAME Option” on page 107.

CURSOR_TYPE= Data Set Option
Specifies the cursor type for read only and updatable cursors.

Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under UNIX and PC Hosts, Microsoft SQL Server, ODBC, OLE DB

Syntax
CURSOR_TYPE=DYNAMIC | FORWARD_ONLY | KEYSET_DRIVEN | STATIC

Syntax Description

DYNAMIC
specifies that the cursor reflects all changes that are made to the rows in a result set
as you move the cursor. The data values and the membership of rows in the cursor
can change dynamically on each fetch. This is the default for the DB2 under UNIX
and PC Hosts, Microsoft SQL Server, and ODBC interfaces. For OLE DB details, see
“Details.”

FORWARD_ONLY [not valid for OLE DB]
specifies that the cursor functions like a DYNAMIC cursor except that it supports
only sequential fetching of rows.

KEYSET_DRIVEN
specifies that the cursor determines which rows belong to the result set when the
cursor is opened. However, changes that are made to these rows are reflected as you
move the cursor.

STATIC
specifies that the cursor builds the complete result set when the cursor is opened. No
changes made to the rows in the result set after the cursor is opened are reflected in
the cursor. Static cursors are read-only.

Details
Not all drivers support all cursor types. An error is returned if the specified cursor type
is not supported. The driver is allowed to modify the default without an error. See your
database documentation for more information.

When no options have been set yet, here are the initial DBMS-specific defaults.

DB2 for UNIX and PC Microsoft SQL Server ODBC OLE DB

KEYSET_DRIVEN DYNAMIC FORWARD_ONLY FORWARD_ONLY

296 DB_ONE_CONNECT_PER_THREAD= Data Set Option � Chapter 11

Here are the operation-specific defaults.

Operation
DB2 for UNIX and
PC

Microsoft
SQL Server ODBC OLE DB

insert

(UPDATE_SQL=NO)
KEYSET_DRIVEN DYNAMIC KEYSET_DRIVEN FORWARD_ONLY

read

(such as PROC PRINT)
driver default

driver default

(FORWARD_ONLY)

update

(UPDATE_SQL=NO)
KEYSET_DRIVEN DYNAMIC KEYSET_DRIVEN FORWARD_ONLY

CONNECTION=GLOBAL

CONNECTION=SHARED
DYNAMIC DYNAMIC

OLE DB: Here are the OLE DB properties that are applied to an open row set. For
details, see your OLE DB programmer reference documentation.

CURSOR_TYPE= OLE DB Properties Applied

FORWARD_ONLY/DYNAMIC (see
“Details”)

DBPROP_OTHERINSERT=TRUE,
DBPROP_OTHERUPDATEDELETE=TRUE

KEYSET_DRIVEN
DBPROP_OTHERINSERT=FALSE,
DBPROP_OTHERUPDATEDELETE=TRUE

STATIC
DBPROP_OTHERINSERT=FALSE,
DBPROP_OTHERUPDATEDELETE=FALSE

See Also

To assign this option to a group of relational DBMS tables or views, see the
“CURSOR_TYPE= LIBNAME Option” on page 115.

“KEYSET_SIZE= Data Set Option” on page 333 [only Microsoft SQL Server and
ODBC]

DB_ONE_CONNECT_PER_THREAD= Data Set Option

Specifies whether to limit the number of connections to the DBMS server for a threaded read.

Default value: YES

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Data Set Options for Relational Databases � DBCOMMIT= Data Set Option 297

Syntax

DB_ONE_CONNECT_PER_THREAD=YES | NO

Syntax Description

YES
enables this option, allowing only one connection per partition.

NO
disables this option.

Details

Use this option if you want to have only one connection per partition. By default, the
number of connections is limited to the maximum number of allowed threads. If the
value of the maximum number of allowed threads is less than the number of partitions
on the table, a single connection reads multiple partitions.

See Also

“Autopartitioning Scheme for Oracle” on page 715

DBCOMMIT= Data Set Option

Causes an automatic COMMIT (a permanent writing of data to the DBMS) after a specified number
of rows are processed.

Alias: CHECKPOINT= [Teradata]

Default value: the current LIBNAME setting

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP Neoview,
Informix, Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase,
Sybase IQ, Teradata

Syntax

DBCOMMIT=n

Syntax Description

n
specifies an integer greater than or equal to 0.

298 DBCONDITION= Data Set Option � Chapter 11

Details

DBCOMMIT= affects update, delete, and insert processing. The number of rows
processed includes rows that are not processed successfully. When DBCOMMIT=0,
COMMIT is issued only once—after the procedure or DATA step completes.

If you explicitly set the DBCOMMIT= option, SAS/ACCESS fails any update with a
WHERE clause.

If you specify both DBCOMMIT= and ERRLIMIT= and these options collide during
processing, COMMIT is issued first and ROLLBACK is issued second. Because
COMMIT is issued (through the DBCOMMIT= option) before ROLLBACK (through the
ERRLIMIT= option), DBCOMMIT= overrides ERRLIMIT=.

DB2 Under UNIX and PC Hosts: When BULKLOAD=YES, the default is 10000.
Teradata: For the default behavior of this option, see FastLoad description in the

Teradata section. DBCOMMIT= and ERRLIMIT= are disabled for MultiLoad to prevent
any conflict with ML_CHECKPOINT=.

Example

A commit is issued after every 10 rows are processed in this example:

data oracle.dept(dbcommit=10);
set myoralib.staff;

run;

See Also

To assign this option to a group of relational DBMS tables or views, see the
“DBCOMMIT= LIBNAME Option” on page 120.

“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“ERRLIMIT= LIBNAME Option” on page 146
“ERRLIMIT= Data Set Option” on page 325
“INSERT_SQL= LIBNAME Option” on page 151
“INSERT_SQL= Data Set Option” on page 330
“INSERTBUFF= LIBNAME Option” on page 152
“INSERTBUFF= Data Set Option” on page 331
“ML_CHECKPOINT= Data Set Option” on page 336
“Using FastLoad” on page 804

DBCONDITION= Data Set Option

Specifies criteria for subsetting and ordering DBMS data.

Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Data Set Options for Relational Databases � DBCREATE_TABLE_OPTS= Data Set Option 299

Syntax
DBCONDITION="DBMS-SQL-query-clause"

Syntax Description

DBMS-SQL-query-clause
is a DBMS-specific SQL query clause, such as WHERE, GROUP BY, HAVING, or
ORDER BY.

Details
You can use this option to specify selection criteria in the form of DBMS-specific SQL
query clauses, which the SAS/ACCESS engine passes directly to the DBMS for
processing. When selection criteria are passed directly to the DBMS for processing,
performance is often enhanced. The DBMS checks the criteria for syntax errors when it
receives the SQL query.

The DBKEY= and DBINDEX= options are ignored when you use DBCONDITION=.

Example

In this example, the function that is passed to the DBMS with the DBCONDITION=
option causes the DBMS to return to SAS only the rows that satisfy the condition.

proc sql;
create view smithnames as

select lastname from myoralib.employees
(dbcondition="where soundex(lastname) = soundex(’SMYTHE’)")
using libname myoralib oracle user=testuser pw=testpass path=dbmssrv;

select lastname from smithnames;

See Also
“DBINDEX= Data Set Option” on page 303
“DBKEY= Data Set Option” on page 305

DBCREATE_TABLE_OPTS= Data Set Option

Specifies DBMS-specific syntax to add to the CREATE TABLE statement.

Default value: the current LIBNAME setting

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

300 DBFORCE= Data Set Option � Chapter 11

Syntax
DBCREATE_TABLE_OPTS=’DBMS-SQL-clauses’

Syntax Description

DBMS-SQL-clauses
are one or more DBMS-specific clauses that can be appended at the end of an SQL
CREATE TABLE statement.

Details
You can use this option to add DBMS-specific clauses at the end of the SQL CREATE
TABLE statement. The SAS/ACCESS engine passes the SQL CREATE TABLE
statement and its clauses to the DBMS. The DBMS then executes the statement and
creates the DBMS table. This option applies only when you are creating a DBMS table
by specifying a libref associated with DBMS data.

If you are already using the DBTYPE= data set option within an SQL CREATE
TABLE statement, you can also use it to include column modifiers.

Example

In this example, the DB2 table TEMP is created with the value of the
DBCREATE_TABLE_OPTS= option appended to the CREATE TABLE statement.

libname mydblib db2 user=testuser
pwd=testpass dsn=sample;

data mydblib.temp (DBCREATE_TABLE_OPTS=’PARTITIONING
KEY (X) USING HASHING’);

x=1; output;
x=2; output;
run;

When you use this data set option to create the DB2 table, the SAS/ACCESS
interface to DB2 passes this DB2 SQL statement:

CREATE TABLE TEMP (X DOUBLE) PARTITIONING
KEY (X) USING HASHING

See Also
To assign this option to a group of relational DBMS tables or views, see the

“DBCREATE_TABLE_OPTS= LIBNAME Option” on page 124.
“DBTYPE= Data Set Option” on page 319

DBFORCE= Data Set Option

Specifies whether to force data truncation during insert processing.

Default value: NO

Data Set Options for Relational Databases � DBFORCE= Data Set Option 301

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, Netezza, ODBC, OLE DB,
Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBFORCE=YES | NO

Syntax Description

YES
specifies that rows that contain data values that exceed the length of the DBMS
column are inserted, and the data values are truncated to fit the DBMS column
length.

NO
specifies that the rows that contain data values that exceed the DBMS column length
are not inserted.

Details
This option determines how the SAS/ACCESS engine handles rows that contain data
values that exceed the length of the DBMS column. DBFORCE= works only when you
create a DBMS table with the DBTYPE= data set option—namely, you must specify
both DBTYPE= and this option. DBFORCE= does not work for inserts or updates.
Therefore, to insert or update a DBMS table, you cannot use the DBFORCE=
option—you must instead specify the options that are available with SAS procedures.
For example, specify the FORCE= data set option in SAS with PROC APPEND.

FORCE= overrides DBFORCE= when you use FORCE= with PROC APPEND or the
PROC SQL UPDATE statement. PROC SQL UPDATE does not warn you before it
truncates data.

Example

In this example, two librefs are associated with Oracle databases, and it does not
specify databases and schemas because it uses the defaults. In the DATA step,
MYDBLIB.DEPT is created from the Oracle data that MYORALIB.STAFF references.
The LASTNAME variable is a character variable of length 20 in MYORALIB.STAFF.
When MYDBLIB.DEPT is created, the LASTNAME variable is stored as a column of
type character and length 10 by using DBFORCE=YES.

libname myoralib oracle user=tester1 password=tst1;
libname mydblib oracle user=lee password=dataman;

data mydblib.dept(dbtype=(lastname=’char(10)’)
dbforce=yes);

set myoralib.staff;
run;

302 DBGEN_NAME= Data Set Option � Chapter 11

See Also
“DBNULL= Data Set Option” on page 310
“DBTYPE= Data Set Option” on page 319

DBGEN_NAME= Data Set Option

Specifies how SAS automatically renames columns (when they contain characters that SAS does
not allow, such as $) to valid SAS variable names.

Default value: DBMS
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBGEN_NAME=DBMS | SAS

Syntax Description

DBMS
specifies that SAS renames DBMS columns to valid SAS variable names. SAS
converts any disallowed characters to underscores. If it converts a column to a name
that already exists, it appends a sequence number at the end of the new name.

SAS
specifies that SAS converts DBMS columns with disallowed characters into valid SAS
variable names. SAS uses the format _COLn, where n is the column number,
starting with 0. If SAS converts a name to a name that already exists, it appends a
sequence number at the end of the new name.

Details
SAS retains column names when it reads data from DBMS tables unless a column
name contains characters that SAS does not allow, such as $ or @. SAS allows
alphanumeric characters and the underscore (_).

This option is intended primarily for National Language Support, notably converting
kanji to English characters. English characters that are converted from kanji are often
those that SAS does not allow. Although this option works for the single-byte character
set (SBCS) version of SAS, SAS ignores it in the double-byte character set (DBCS)
version. So if you have the DBCS version, you must first set VALIDVARNAME=ANY
before using your language characters as column variables.

Each of the various SAS/ACCESS interfaces handled name collisions differently in
SAS 6. Some interfaces appended at the end of the name, some replaced one or more of
the final characters in the name, some used a single sequence number, and others used
unique counters. When you specify VALIDVARNAME=V6, SAS handles name collisions
as it did in SAS 6.

Data Set Options for Relational Databases � DBINDEX= Data Set Option 303

Examples

If you specify DBGEN_NAME=SAS, SAS renames a DBMS column named Dept$Amt
to _COLn. If you specify DBGEN_NAME=DBMS, SAS renames the Dept$Amt column to
Dept_Amt.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“DBGEN_NAME= LIBNAME Option” on page 124.
“VALIDVARNAME= System Option” on page 423

DBINDEX= Data Set Option
Detects and verifies that indexes exist on a DBMS table.

Default value: DBMS-specific
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP Neoview,
Informix, Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase,
Sybase IQ, Teradata

Syntax
DBINDEX=YES | NO | <’>index-name<’>

Syntax Description

YES
triggers the SAS/ACCESS engine to search for all indexes on a table and return them
to SAS for evaluation. If SAS/ACCESS finds a usable index, it passes the join
WHERE clause to the DBMS for processing. A usable index should have at least the
same attributes as the join column.

NO
no automated index search is performed.

index-name
verifies the index name that is specified for the index columns on the DBMS table. It
requires the same type of call as when DBINDEX=YES is used.

Details
If indexes exist on a DBMS table and are of the correct type, you can use this option to
potentially improve performance when you are processing a join query that involves a
large DBMS table and a relatively small SAS data set that is passed to the DBMS.

CAUTION:
Improper use of this option can impair performance. See “Using the DBINDEX=,

DBKEY=, and MULTI_DATASRC_OPT= Options” on page 48 for detailed
information about using this option. �

304 DBINDEX= Data Set Option � Chapter 11

Queries must be issued to the necessary DBMS control or system tables to extract
index information about a specific table or validate the index that you specified.

You can enter the DBINDEX= option as a LIBNAME option, SAS data set option, or
an option with PROC SQL. Here is the order in which the engine processes it:

1 DATA step or PROC SQL specification.

2 LIBNAME statement specification

Specifying the DBKEY= data set option takes precedence over DBINDEX=.

Examples

Here is the SAS data set that is used in these examples:

data s1;
a=1; y=’aaaaa’; output;
a=2; y=’bbbbb’; output;
a=5; y=’ccccc’; output;

run;

This example demonstrates the use of DBINDEX= in the LIBNAME statement:

libname mydblib oracle user=myuser password=userpwd dbindex=yes;

proc sql;
select * from s1 aa, x.dbtab bb where aa.a=bb.a;
select * from s1 aa, mydblib.dbtab bb where aa.a=bb.a;

The DBINDEX= values for table dbtab are retrieved from the DBMS and compared
with the join values. In this case, a match was found so the join is passed down to the
DBMS using the index. If the index a was not found, the join would take place in SAS.

The next example demonstrates the use of DBINDEX= in the SAS DATA step:

data a;
set s1;
set x.dbtab(dbindex=yes) key=a;
set mydblib.dbtab(dbindex=yes) key=a;
run;

The key is validated against the list from the DBMS. If a is an index, then a pass-down
occurs. Otherwise, the join takes place in SAS.

This example shows how to use DBINDEX= in PROC SQL:

proc sql;
select * from s1 aa, x.dbtab(dbindex=yes) bb where aa.a=bb.a;
select * from s1 aa, mylib.dbtab(dbindex=yes) bb where aa.a=bb.a;
/*or*/
select * from s1 aa, x.dbtab(dbindex=a) bb where aa.a=bb.a;
select * from s1 aa, mylib.dbtab(dbindex=a) bb where aa.a=bb.a;

See Also
To assign this option to a group of relational DBMS tables or views, see the

“DBINDEX= LIBNAME Option” on page 125.
“DBKEY= Data Set Option” on page 305
“MULTI_DATASRC_OPT= LIBNAME Option” on page 160

Data Set Options for Relational Databases � DBKEY= Data Set Option 305

DBKEY= Data Set Option

Specifies a key column to optimize DBMS retrieval.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBKEY=(<’>column-1<’>< … <’>column-n<’>>)

Syntax Description

column
SAS uses this to build an internal WHERE clause to search for matches in the
DBMS table based on the key column. For example:

select * from sas.a, dbms.b(dbkey=x) where a.x=b.x;

In this example, DBKEY= specifies column x, which matches the key column that
the WHERE clause designates. However, if the DBKEY= column does NOT match
the key column in the WHERE clause, DBKEY= is not used.

Details
You can use this option to potentially improve performance when you are processing a
join that involves a large DBMS table and a small SAS data set or DBMS table.

When you specify DBKEY=, it is strongly recommended that an index exists for the
key column in the underlying DBMS table. Performance can be severely degraded
without an index.

CAUTION:
Improper use of this option can decrease performance. For detailed information

about using this option, see the “Using the DBINDEX=, DBKEY=, and
MULTI_DATASRC_OPT= Options” on page 48. �

Examples

This example uses DBKEY= with the MODIFY statement in a DATA step:

libname invty db2;
data invty.stock;

set addinv;
modify invty.stock(dbkey=partno) key=dbkey;
INSTOCK=instock+nwstock;
RECDATE=today();
if _iorc_=0 then replace;

306 DBLABEL= Data Set Option � Chapter 11

run;

To use more than one value for DBKEY=, you must include the second value as a join
on the WHERE clause. In the next example PROC SQL brings the entire DBMS table
into SAS and then proceeds with processing:

options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;

proc sql;
create table work.barbkey as
select keyvalues.empid, employees.hiredate, employees.jobcode

from mydblib.employees(dbkey=(empid jobcode))
inner join work.keyvalues on employees.empid = keyvalues.empid;

quit;

See Also
“DBINDEX= Data Set Option” on page 303

DBLABEL= Data Set Option
Specifies whether to use SAS variable labels or SAS variable names as the DBMS column names
during output processing.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBLABEL=YES | NO

Syntax Description

YES
specifies that SAS variable labels are used as DBMS column names during output
processing.

NO
specifies that SAS variable names are used as DBMS column names.

Details
This option is valid only for creating DBMS tables.

Example

In this example, a SAS data set, NEW, is created with one variable C1. This variable
is assigned a label of DEPTNUM. In the second DATA step, the MYDBLIB.MYDEPT

Data Set Options for Relational Databases � DBLINK= Data Set Option 307

table is created by using DEPTNUM as the DBMS column name. Setting
DBLABEL=YES enables the label to be used as the column name.

data new;
label c1=’deptnum’;
c1=001;

run;

data mydblib.mydept(dblabel=yes);
set new;

run;

proc print data=mydblib.mydept;
run;

DBLINK= Data Set Option

Specifies a link from your local database to database objects on another server [Oracle]. Specifies
a link from your default database to another database on the server to which you are connected
[Sybase].

Default value: LIBNAME setting

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle, Sybase

Syntax
DBLINK=database-link

Details
This option operates differently in each DBMS.

Oracle: A link is a database object that identifies an object that is stored in a remote
database. A link contains stored path information and can also contain user name and
password information for connecting to the remote database. If you specify a link, SAS
uses the link to access remote objects. If you omit DBLINK=, SAS accesses objects in
the local database.

Sybase: You can use this option to link to another database within the same server to
which you are connected. If you omit DBLINK=, SAS can access objects only in your
default database.

Example

In this example, SAS sends MYORADB.EMPLOYEES to Oracle as
EMPLOYEES@SALES.HQ.ACME.COM.

proc print data=myoradb.employees(dblink=’sales.hq.acme.com’);
run;

308 DBMASTER= Data Set Option � Chapter 11

See Also
To assign this option to a group of relational DBMS tables or views, see the

“DBLINK= LIBNAME Option” on page 129.

DBMASTER= Data Set Option

Designates which table is the larger table when you are processing a join that involves tables
from two different types of databases.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBMASTER=YES

Syntax Description

YES
designates which of two tables references in a join operation is the larger table.

Details
You can use this option with MULTI_DATASRC_OPT= to specify which table reference
in a join is the larger table. This can improve performance by eliminating the
processing that is normally performed to determine this information. However, this
option is ignored when outer joins are processed.

Data Set Options for Relational Databases � DBMAX_TEXT= Data Set Option 309

Example

In this example, a table from an Oracle database and a table from a DB2 database
are joined. DBMASTER= is set to YES to indicate that the Oracle table is the larger
table. The DB2 table is the smaller table.

libname mydblib oracle user=testuser /*database 1 */
pw=testpass path=’myorapath’

libname mydblib2 db2 user=testuser /*database 2 */
pw=testpass path=’mydb2path’;

proc sql;
select * from mydblib.bigtab(dbmaster=yes), mydblib2.smalltab

bigtab.x=smalltab.x;

See Also
“MULTI_DATASRC_OPT= LIBNAME Option” on page 160

DBMAX_TEXT= Data Set Option

Determines the length of any very long DBMS character data type that is read into SAS or written
from SAS when you are using a SAS/ACCESS engine.

Default value: 1024
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP Neoview,
Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Sybase IQ

Syntax
DBMAX_TEXT=integer

Syntax Description

integer
is a number between 1 and 32,767.

310 DBNULL= Data Set Option � Chapter 11

Details
This option applies to appending and updating rows in an existing table. It does not
apply when creating a table.

DBMAX_TEXT= is usually used with a very long DBMS character data type, such as
the Sybase TEXT data type or the Oracle CLOB data type.

Oracle: This option applies for CHAR, VARCHAR2, CLOB, and LONG data types.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“DBMAX_TEXT= LIBNAME Option” on page 130.

DBNULL= Data Set Option

Indicates whether NULL is a valid value for the specified columns when a table is created.

Default value: DBMS-specific

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBNULL=<_ALL_=YES | NO > | (<column-name-1=YES | NO>

<…<column-name-n=YES | NO>>)

Syntax Description

ALL [valid only for Informix, Oracle, Sybase, Teradata]
specifies that the YES or NO applies to all columns in the table.

YES
specifies that the NULL value is valid for the specified columns in the DBMS table.

NO
specifies that the NULL value is not valid for the specified columns in the DBMS
table.

Details
This option is valid only for creating DBMS tables. If you specify more than one column
name, you must separate them with spaces.

The DBNULL= option processes values from left to right. If you specify a column
name twice or if you use the _ALL_ value, the last value overrides the first value that
you specified for the column.

Data Set Options for Relational Databases � DBNULLKEYS= Data Set Option 311

Examples

In this example, you can use the DBNULL= option to prevent the EMPID and
JOBCODE columns in the new MYDBLIB.MYDEPT2 table from accepting NULL
values. If the EMPLOYEES table contains NULL values in the EMPID or JOBCODE
columns, the DATA step fails.

data mydblib.mydept2(dbnull=(empid=no jobcode=no));
set mydblib.employees;

run;

In this example, all columns in the new MYDBLIB.MYDEPT3 table except for the
JOBCODE column are prevented from accepting NULL values. If the EMPLOYEES
table contains NULL values in any column other than the JOBCODE column, the
DATA step fails.

data mydblib.mydept3(dbnull=(_ALL_=no jobcode=YES));
set mydblib.employees;

run;

See Also
“NULLCHAR= Data Set Option” on page 350
“NULLCHARVAL= Data Set Option” on page 351

DBNULLKEYS= Data Set Option

Controls the format of the WHERE clause with regard to NULL values when you use the DBKEY=
data set option.

Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, Netezza, ODBC, OLE DB,
Oracle, Sybase IQ

Syntax
DBNULLKEYS=YES | NO

Details
If there might be NULL values in the transaction table or the master table for the
columns that you specify in the DBKEY= option, then use DBNULLKEYS=YES. When
you specify DBNULLKEYS=YES and specify a column that the DBKEY= data set
option defines as NOT NULL, SAS generates a WHERE clause to find NULL values.
For example, if you specify DBKEY=COLUMN and COLUMN is not defined as NOT
NULL, SAS generates a WHERE clause with this syntax:

WHERE ((COLUMN = ?) OR ((COLUMN IS NULL) AND (? IS NULL)))

312 DBPROMPT= Data Set Option � Chapter 11

This syntax enables SAS to prepare the statement once and use it for any value (NULL
or NOT NULL) in the column. This syntax has the potential to be much less efficient
than the shorter form of the following WHERE clause. When you specify
DBNULLKEYS=NO or specify a column that is defined as NOT NULL in the DBKEY=
option, SAS generates a simple WHERE clause.

If you know that there are no NULL values in the transaction table or the master
table for the columns you specify in the DBKEY= option, you can use
DBNULLKEYS=NO. If you specify DBNULLKEYS=NO and specify
DBKEY=COLUMN, SAS generates a shorter form of the WHERE clause, regardless of
whether the column that is specified in DBKEY= is defined as NOT NULL:

WHERE (COLUMN = ?)

See Also

To assign this option to a group of relational DBMS tables or views, see the
“DBNULLKEYS= LIBNAME Option” on page 133.

“DBKEY= Data Set Option” on page 305

DBPROMPT= Data Set Option

Specifies whether SAS displays a window that prompts you to enter DBMS connection information.

Default value: NO

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, Greenplum, HP Neoview, MySQL, Netezza, Oracle,
Sybase, Sybase IQ

Syntax

DBPROMPT=YES | NO

Syntax Description

YES
displays the prompting window.

NO
does not display the prompting window.

Details

This data set option is supported only for view descriptors.
Oracle: In the Oracle interface, you can enter 30 characters each for USERNAME

and PASSWORD and up to 70 characters for PATH, depending on your platform and
terminal type.

Data Set Options for Relational Databases � DBSASLABEL= Data Set Option 313

Examples

In this example, connection information is specified in the ACCESS procedure. The
DBPROMPT= data set option defaults to NO during the PRINT procedure because it is
not specified.

proc access dbms=oracle;
create alib.mydesc.access;
user=testuser;
password=testpass;
table=dept;
create vlib.myview.view;
select all;

run;

proc print data=vlib.myview;
run;

In the next example, the DBPROMPT window opens during connection to the DBMS.
Values that were previously specified during the creation of MYVIEW are pulled into
the DBPROMPT window fields. You must edit or accept the connection information in
the DBPROMPT window to proceed. The password value appears as a series of
asterisks; you can edit it.

proc print data=vlib.myview(dbprompt=yes);
run;

See Also

To assign this option to a group of relational DBMS tables or views, see the
“DBPROMPT= LIBNAME Option” on page 134.

DBSASLABEL= Data Set Option

Specifies how the engine returns column labels.

Default value: COMPAT

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, HP Neoview, Informix,
Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Syntax

DBSASLABEL=COMPAT | NONE

314 DBSASTYPE= Data Set Option � Chapter 11

Syntax Description

COMPAT
specifies that the labels returned should be compatible with what the application
normally receives. In other words, engines exhibit their normal behavior.

NONE
specifies that the engine does not return a column label. The engine returns blanks
for the column labels.

Details
By default, the SAS/ACCESS interface for your DBMS generates column labels from
column names instead of from the real column labels.

You can use this option to override the default behavior. It is useful for when PROC
SQL uses column labels as headings instead of column aliases.

Examples

This example demonstrates how you can use DBSASLABEL= to return blank column
labels so that PROC SQL can use the column aliases as the column headings.

proc sql;
select deptno as Department ID, loc as Location
from mylib.dept(dbsaslabel=none);

When DBSASLABEL=NONE, PROC SQL ignores the aliases, and it uses DEPTNO
and LOC as column headings in the result set.

DBSASTYPE= Data Set Option

Specifies data types to override the default SAS data types during input processing.

Default value: DBMS-specific
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase IQ, Teradata

Syntax
DBSASTYPE=(column-name-1=< ’>SAS-data-type<’><…column-name-n=<’>SAS-data-

type<’>>)

Data Set Options for Relational Databases � DBSASTYPE= Data Set Option 315

Syntax Description

column-name
specifies a DBMS column name.

SAS-data-type
specifies a SAS data type, which can be CHAR(n), NUMERIC, DATETIME, DATE,
TIME. See your SAS/ACCESS interface documentation for details.

Details
By default, the SAS/ACCESS interface for your DBMS converts each DBMS data type
to a SAS data type during input processing. When you need a different data type, you
can use this option to override the default and assign a SAS data type to each specified
DBMS column. Some conversions might not be supported. In that case, SAS prints an
error to the log.

Examples

In this example, DBSASTYPE= specifies a data type to use for the column
MYCOLUMN when SAS is printing ODBC data. SAS can print the values if the data in
this DBMS column is stored in a format that SAS does not support, such as
SQL_DOUBLE(20).

proc print data=mylib.mytable
(dbsastype=(mycolumn=’CHAR(20)’));

run;

In the next example, data that is stored in the DBMS FIBERSIZE column has a data
type that provides more precision than what SAS could accurately support, such as
DECIMAL(20). If you use only PROC PRINT on the DBMS table, the data might be
rounded or display as a missing value. So you could use DBSASTYPE= instead to
convert the column so that the length of the character field is 21. The DBMS performs
the conversion before the data is brought into SAS, so precision is preserved.

proc print data=mylib.specprod
(dbsastype=(fibersize=’CHAR(21)’));

run;

The next example uses DBSASTYPE= to append one table to another when the data
types cannot be compared. If the EMPID variable in the SAS data set is defined as
CHAR(20) and the EMPID column in the DBMS table is defined as DECIMAL(20), you
can use DBSASTYPE= to make them match:

proc append base=dblib.hrdata (dbsastype=(empid=’CHAR(20)’))
data=saslib.personnel;

run;

DBSASTYPE= specifies to SAS that the EMPID is defined as a character field of
length 20. When a row is inserted from the SAS data set into a DBMS table, the DBMS
performs a conversion of the character field to the DBMS data type DECIMAL(20).

316 DBSLICE= Data Set Option � Chapter 11

DBSLICE= Data Set Option

Specifies user-supplied WHERE clauses to partition a DBMS query for threaded reads.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, HP Neoview, Informix,
Microsoft SQL Server, ODBC, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBSLICE=("WHERE-clause-1" " WHERE-clause-2" < ... " WHERE-clause-n">)

DBSLICE=(<server=>"WHERE-clause-1" <server=>" WHERE-clause-2" < …
<server=>" WHERE-clause-n">)

Syntax Description
Two syntax diagrams are shown here to highlight the simpler version. In many

cases, the first, simpler syntax is sufficient. The optional server= form is valid only for
DB2 under UNIX and PC Hosts, Netezza, and ODBC.

WHERE-clause
The WHERE clauses in the syntax signifies DBMS-valid WHERE clauses that
partition the data. The clauses should not cause any omissions or duplications of
rows in the results set. For example, if EMPNUM can be null, this DBSLICE=
specification omits rows, creating an incorrect result set:

DBSLICE=("EMPNUM<1000" "EMPNUM>=1000")

A correct form is:

DBSLICE=("EMPNUM<1000" "EMPNUM>=1000" "EMPNUM IS NULL")

In this example, DBSLICE= creates an incorrect set by duplicating SALES with a
value of 0:

DBSLICE=(‘‘SALES<=0 or SALES=NULL’’ ‘‘SALES>=0’’)

server
identifies a particular server node in a DB2 partitioned database or in a Microsoft
SQL Server partitioned view. Use this to obtain the best possible read performance
so that your SAS thread can connect directly to the node that contains the data
partition that corresponds to your WHERE clause. See the DBMS-specific reference
section for your interface for details.

Details
If your table reference is eligible for threaded reads (that is, if it is a read-only
LIBNAME table reference), DBSLICE= forces a threaded read to occur, partitioning the
table with the WHERE clauses you supply. Use DBSLICE= when SAS is unable to
generate threaded reads automatically, or if you can provide better partitioning.

DBSLICE= is appropriate for experienced programmers familiar with the layout of
their DBMS tables. A well-tuned DBSLICE= specification usually outperforms SAS

Data Set Options for Relational Databases � DBSLICEPARM= Data Set Option 317

automatic partitioning. For example, a well-tuned DBSLICE= specification might better
distribute data across threads by taking advantage of a column that SAS/ACCESS
cannot use when it automatically generates partitioning WHERE clauses.

DBSLICE= delivers optimal performance for DB2 under UNIX and for Microsoft SQL
Server. Conversely, DBSLICE= can degrade performance compared to automatic
partitioning. For example, Teradata starts the FastExport Utility for automatic
partitioning. If DBSLICE= overrides this action, WHERE clauses are generated
instead. Even with well planned WHERE clauses, performance is degraded because
FastExport is considerably faster.

CAUTION:
When using DBSLICE=, you are responsible for data integrity. If your WHERE clauses omit
rows from the result set or retrieves the same row on more than one thread, your input
DBMS result set is incorrect and your SAS program generates incorrect results. �

Examples

In this example, DBSLICE= partitions on the GENDER column can have only the
values m, M, f, and F. This DBSLICE= clause does not work for all DBMSs due to the
use of UPPER and single quotation marks. Some DBMSs require double quotation
marks around character literals. Two threads are created.

proc reg SIMPLE
data=lib.customers(DBSLICE="UPPER(GENDER)=’M’" "UPPER(GENDER)=’F’"));
var age weight;
where years_active>1;
run;

The next example partitions on the non-null column CHILDREN, the number of
children in a family. Three threads are created.

data local;
set lib.families(DBSLICE=("CHILDREN<2" "CHILDREN>2" "CHILDREN=2"));
where religion="P";
run;

See Also
“DBSLICEPARM= LIBNAME Option” on page 137
“DBSLICEPARM= Data Set Option” on page 317

DBSLICEPARM= Data Set Option

Controls the scope of DBMS threaded reads and the number of DBMS connections.

Default value: THREADED_APPS,2 [DB2 under z/OS, Oracle, and Teradata]
THREADED_APPS,2 or 3 [DB2 under UNIX and PC Hosts, HP Neoview, Informix,
Microsoft SQL Server, ODBC, and Sybase, Sybase IQ]
Valid in: DATA and PROC Steps (when accessing DBMS data using SAS/ACCESS
software) (also available as a SAS configuration file option, SAS invocation option,
global SAS option, and LIBNAME option)

318 DBSLICEPARM= Data Set Option � Chapter 11

DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, HP Neoview, Informix,
Microsoft SQL Server, ODBC, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBSLICEPARM=NONE | THREADED_APPS | ALL

DBSLICEPARM=(NONE | THREADED_APPS | ALL<max-threads>)

DBSLICEPARM=(NONE | THREADED_APPS | ALL <, max-threads>)

Syntax Description
Two syntax diagrams are shown here in order to highlight the simpler version. In

most cases, the simpler version suffices.

NONE
disables DBMS threaded reads. SAS reads tables on a single DBMS connection, as it
did with SAS 8 and earlier.

THREADED_APPS
makes fully threaded SAS procedures (threaded applications) eligible for threaded
reads.

ALL
makes all read-only librefs eligible for threaded reads. It includes SAS threaded
applications, the SAS DATA step, and numerous SAS procedures.

max-threads
specifies with a positive integer value the maximum number of connections per table
read. A partition or portion of the data is read on each connection. The combined
rows across all partitions are the same irrespective of the number of connections.
That is, changes to the number of connections do not change the result set.
Increasing the number of connections instead redistributes the same result set across
more connections.

There are diminishing returns when increasing the number of connections. With
each additional connection, more burden is placed on the DBMS, and a smaller
percentage of time is saved in SAS. See the DBMS-specific reference section about
threaded reads for your interface before using this parameter.

Details
You can use DBSLICEPARM= in numerous locations. The usual rules of option
precedence apply: A table option has the highest precedence, then a LIBNAME option,
and so on. A SAS configuration file option has the lowest precedence because
DBSLICEPARM= in any of the other locations overrides that configuration setting.

DBSLICEPARM=ALL and DBSLICEPARM=THREADED_APPS make SAS programs
eligible for threaded reads. To determine whether threaded reads are actually
generated, turn on SAS tracing and run a program, as shown in this example:

options sastrace=’’,,,d’’ sastraceloc=saslog nostsuffix;
proc print data=lib.dbtable(dbsliceparm=(ALL));

where dbcol>1000;
run;

If you want to directly control the threading behavior, use the DBSLICE= data set
option.

Data Set Options for Relational Databases � DBTYPE= Data Set Option 319

DB2 under UNIX and PC Hosts, HP Neoview, Informix, Microsoft SQL Server, ODBC,
Sybase, Sybase IQ: The default thread number depends on whether an application
passes in the number of threads (CPUCOUNT=) and whether the data type of the
column that was selected for purposes of data partitioning is binary.

Examples

This code shows how you can use DBSLICEPARM= in a PC SAS configuration file
entry to turn off threaded reads for all SAS users:

--dbsliceparm NONE

Here is how you can use DBSLICEPARM= as a z/OS invocation option to turn on
threaded reads for read-only references to DBMS tables throughout a SAS job:

sas o(dbsliceparm=ALL)

You can use this code to set DBSLICEPARM= as a SAS global option to increase
maximum threads to three for SAS threaded applications. It would most likely be one
of the first statements in your SAS code:

option dbsliceparm=(threaded_apps,3);

This code uses DBSLICEPARM= as a LIBNAME option to turn on threaded reads for
read-only table references that use this particular libref:

libname dblib oracle user=scott password=tiger dbsliceparm=ALL;

Here is how to use DBSLICEPARM= as a table level option to turn on threaded
reads for this particular table, requesting up to four connections:

proc reg SIMPLE;
data=dblib.customers (dbsliceparm=(all,4));
var age weight;
where years_active>1;

run;

See Also
“DBSLICE= Data Set Option” on page 316
“DBSLICEPARM= LIBNAME Option” on page 137

DBTYPE= Data Set Option

Specifies a data type to use instead of the default DBMS data type when SAS creates a DBMS table.

Default value: DBMS-specific

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

320 DBTYPE= Data Set Option � Chapter 11

Syntax
DBTYPE=(column-name-1=<’>DBMS-type<’>

<…column-name-n=<’>DBMS-type<’>>)

Syntax Description

column-name
specifies a DBMS column name.

DBMS-type
specifies a DBMS data type. See the documentation for your SAS/ACCESS interface
for the default data types for your DBMS.

Details
By default, the SAS/ACCESS interface for your DBMS converts each SAS data type to a
predetermined DBMS data type when it outputs data to your DBMS. When you need a
different data type, use DBTYPE= to override the default data type chosen by the
SAS/ACCESS engine.

You can also use this option to specify column modifiers. The allowable syntax for
these modifiers is generally DBMS-specific. For more information, see the SQL
reference for your database.

MySQL: All text strings are passed as is to the MySQL server. MySQL truncates text
strings to fit the maximum length of the field without generating an error message.

Teradata: In Teradata, you can use DBTYPE= to specify data attributes for a column.
See your Teradata CREATE TABLE documentation for information about the data type
attributes that you can specify. If you specify DBNULL=NO for a column, do not also
use DBTYPE= to specify NOT NULL for that column. If you do, ’NOT NULL’ is inserted
twice in the column definition. This causes Teradata to generate an error message.

Examples

In this example, DBTYPE= specifies the data types to use when you create columns
in the DBMS table.

data mydblib.newdept(dbtype=(deptno=’number(10,2)’ city=’char(25)’));
set mydblib.dept;

run;

This next example creates a new Teradata table, NEWDEPT, specifying the Teradata
data types for the DEPTNO and CITY columns.

data mydblib.newdept(dbtype=(deptno=’byteint’ city=’char(25)’));
set dept;
run;

Data Set Options for Relational Databases � DBTYPE= Data Set Option 321

The next example creates a new Teradata table, NEWEMPLOYEES, and specifies a
data type and attributes for the EMPNO column. The example encloses the Teradata
type and attribute information in double quotation marks. Single quotation marks
conflict with single quotation marks that the Teradata FORMAT attribute requires. If
you use single quotation marks, SAS returns syntax error messages.

data mydblib.newemployees(dbtype= (empno="SMALLINT FORMAT ’9(5)’
CHECK (empno >= 100 AND empno <= 2000)"));

set mydblib.employees;
run;

Where x indicates the Oracle engine, this example creates a new table, ALLACCTX,
and uses DBTYPE= to create the primary key, ALLACCT_PK.

data x.ALLACCTX (dbtype=(
SourceSystem = ’varchar(4)’
acctnum = ’numeric(18,5) CONSTRAINT "ALLACCT_PK" PRIMARY KEY’
accttype = ’numeric(18,5)’
balance = ’numeric(18,5)’
clientid = ’numeric(18,5)’
closedate = ’date’
opendate = ’date’
primary_cd = ’numeric(18,5)’
status = ’varchar(1)’
));
set work.ALLACCT ;
format CLOSEDATE date9.;
format OPENDATE date9.;
run;

The code generates this CREATE TABLE statement:

Output 11.1 Output from a CREATE TABLE Statement That Uses DBTYPE= to Specify a Column Modifier

CREATE TABLE ALLACCTX(SourceSystem varchar(4),
cctnum numeric(18,5) CONSTRAINT "ALLACCT_PK" PRIMARY KEY,
ccttype numeric(18,5),balance numeric(18,5),clientid numeric(18,5),
losedate date,opendate date,primary_cd numeric(18,5),status varchar(1))

See Also
“DBCREATE_TABLE_OPTS= Data Set Option” on page 299
“DBFORCE= Data Set Option” on page 300
“DBNULL= Data Set Option” on page 310

322 DEGREE= Data Set Option � Chapter 11

DEGREE= Data Set Option

Determines whether DB2 uses parallelism.

Default value: ANY
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under z/OS

Syntax
DEGREE=ANY | 1

Syntax Description

ANY
enables DB2 to use parallelism, and issues the SET CURRENT DEGREE =’xxx’ for
all DB2 threads that use that libref.

1
explicitly disables the use of parallelism.

Details
When DEGREE=ANY, DB2 has the option of using parallelism, when it is appropriate.

Setting DEGREE=1 prevents DB2 from performing parallel operations. Instead, DB2
is restricted to performing one task that, while perhaps slower, uses less system
resources.

DIMENSION= Data Set Option

Specifies whether the database creates dimension tables or fact tables.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster

Syntax
DIMENSION=YES | NO

Data Set Options for Relational Databases � DISTRIBUTED_BY= Data Set Option 323

Syntax Description

YES
specifies that the database creates dimension tables.

NO
specifies that the database creates fact tables.

See Also
“PARTITION_KEY= LIBNAME Option” on page 164
“PARTITION_KEY= Data Set Option” on page 357

DISTRIBUTED_BY= Data Set Option

Uses one or multiple columns to distribute table rows across database segments.

Default value: RANDOMLY DISTRIBUTED
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Greenplum

Syntax
DISTRIBUTED_BY=’column-1 <... ,column-n>’ | RANDOMLY DISTRIBUTED

Syntax Description

column-name
specifies a DBMS column name.

DISTRIBUTED RANDOMLY
determines the column or set of columns that the Greenplum database uses to
distribute table rows across database segments. This is known as round-robin
distribution.

Details
For uniform distribution—namely, so that table records are stored evenly across
segments (machines) that are part of the database configuration—the distribution key
should be as unique as possible.

324 DISTRIBUTE_ON= Data Set Option � Chapter 11

Example

This example shows how to create a table by specifying a distribution key.

libname x sasiogpl user=myuser password=mypwd dsn=Greenplum;

data x.sales (dbtype=(id=int qty=int amt=int) distributed_by=’distributed by (id)’);
id = 1;
qty = 100;
sales_date = ’27Aug2009’d;
amt = 20000;

run;

It creates the SALES table.

CREATE TABLE SALES
(id int,
qty int,
sales_date double precision,
amt int
) distributed by (id)

DISTRIBUTE_ON= Data Set Option

Specifies a column name to use in the DISTRIBUTE ON clause of the CREATE TABLE statement.

Alias: DISTRIBUTE= [Netezza]

Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, Netezza

Syntax
DISTRIBUTE_ON=’column-1 <... ,column-n>’ | RANDOM

Syntax Description

column-name
specifies a DBMS column name.

RANDOM
specifies that data is distributed evenly. For Netezza, the Netezza Performance
Server does this across all SPUs. This is known as round-robin distribution.

Details
You can use this option to specify a column name to use in the DISTRIBUTE ON=
clause of the CREATE TABLE statement. Each table in the database must have a

Data Set Options for Relational Databases � ERRLIMIT= Data Set Option 325

distribution key that consists of one to four columns. If you do not specify this option,
the DBMS selects a distribution key.

Examples

This example uses DISTRIBUTE_ON= to create a distribution key on a single
column.

proc sql;
create table netlib.customtab(DISTRIBUTE_ON=’partno’)

as select partno, customer, orderdat from saslib.orders;
quit;

To create a distribution key on more than one column, separate the columns with
commas.

data netlib.mytab(DISTRIBUTE_ON=’col1,col2’);
col1=1;col2=12345;col4=’mytest’;col5=98.45;
run;

This next example shows how to use the RANDOM keyword.

data netlib.foo(distribute_on=random);
mycol1=1;mycol2=’test’;
run;

ERRLIMIT= Data Set Option

Specifies the number of errors that are allowed before SAS stops processing and issues a rollback.

Default value: 1
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, Netezza, ODBC, OLE DB,
Oracle, Sybase, Sybase IQ, Teradata

Syntax
ERRLIMIT=integer

Syntax Description

integer
specifies a positive integer that represents the number of errors after which SAS
stops processing and issues a rollback.

Details
SAS ends the step abnormally and calls the DBMS to issue a rollback after a specified
number of errors while processing inserts, deletes, updates, and appends. If

326 ESCAPE_BACKSLASH= Data Set Option � Chapter 11

ERRLIMIT=0, SAS processes all rows no matter how many errors occur. The SAS log
displays the total number of rows that SAS processed and the number of failed rows, if
applicable.

If the step ends abnormally, any rows that SAS successfully processed after the last
commit are rolled back and are therefore lost. Unless DBCOMMIT=1, it is very likely
that rows will be lost. The default value is 1000.

Note: A significant performance impact can result if you use this option from a SAS
client session in SAS/SHARE or SAS/CONNECT environments to create or populate a
newly created table. To prevent this, use the default setting, ERRLIMIT=1. �

Teradata: DBCOMMIT= and ERRLIMIT= are disabled for MultiLoad to prevent any
conflict with ML_CHECKPOINT=.

Example

In this example, SAS stops processing and issues a rollback to the DBMS at the
occurrence of the tenth error. The MYDBLIB libref was assigned in a prior LIBNAME
statement.

data mydblib.employee3 (errlimit=10);
set mydblib.employees;
where salary > 40000;

run;

See Also
“DBCOMMIT= Data Set Option” on page 297
“ML_CHECKPOINT= Data Set Option” on page 336

ESCAPE_BACKSLASH= Data Set Option

Specifies whether backslashes in literals are preserved during data copy from a SAS data set to a
table.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: MySQL

Syntax
ESCAPE_BACKSLASH=YES | NO

Data Set Options for Relational Databases � FETCH_IDENTITY= Data Set Option 327

Syntax Description

YES
specifies that an additional backslash is inserted in every literal value that already
contains a backslash.

NO
specifies that backslashes that exist in literal values are not preserved. An error
results.

Details
MySQL uses the backslash as an escape character. When data that is copied from a
SAS data set to a MySQL table contains backslashes in literal values, the MySQL
interface can preserve them if ESCAPE_BACKSLASH=YES.

Example

In this example, SAS preserves the backslashes for x and y values.

libname out mysql user=dbitest pw=dbigrp1
server=striper database=test port=3306;

data work.test;
length x y z $10;
x = "ABC";
y = "DEF\";
z = ’GHI\’;

run;

data out.test(escape_backslash=yes);
set work.test;
run;

The code successfully generates this INSERT statement:

INSERT INTO ’test’ (’x’,’y’,’z’) VALUES (’ABC’,’DEF\\’,’GHI\\’)

If ESCAPE_BACKSLASH=NO instead in this example, this error displays:

ERROR: Execute error: You have an error in your SQL syntax; check the manual
that corresponds to your MySQL server version for the right syntax to use near
’GHI\’)’ at line 1

See Also
To assign this option to a group of relational DBMS tables or views, see the

“ESCAPE_BACKSLASH= LIBNAME Option” on page 146.

FETCH_IDENTITY= Data Set Option

Returns the value of the last inserted identity value.

328 IGNORE_ READ_ONLY_COLUMNS= Data Set Option � Chapter 11

Default value: NO

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts

Syntax

FETCH_IDENTITY=YES | NO

Syntax Description

YES
returns the value of the last inserted identity value.

NO
disables this option.

Details

You can use this option instead of issuing a separate SELECT statement after an
INSERT statement. If FETCH_IDENTITY=YES and the INSERT that is executed is a
single-row INSERT, the engine calls the DB/2 identity_val_local() function and places
the results into the SYSDB2_LAST_IDENTITY macro variable. Because the DB2
engine default is multirow inserts, you must set INSERTBUFF=1 to force a single-row
INSERT.

See Also

“FETCH_IDENTITY= LIBNAME Option” on page 148

IGNORE_ READ_ONLY_COLUMNS= Data Set Option

Specifies whether to ignore or include columns whose data types are read-only when generating
an SQL statement for inserts or updates.

Default value: NO

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP
Neoview, Microsoft SQL Server, Netezza, ODBC, OLE DB, Sybase IQ

Syntax

IGNORE_READ_ONLY_COLUMNS=YES | NO

Data Set Options for Relational Databases � IGNORE_ READ_ONLY_COLUMNS= Data Set Option 329

Syntax Description

YES
specifies that the SAS/ACCESS engine ignores columns whose data types are
read-only when you are generating insert and update SQL statements

NO
specifies that the SAS/ACCESS engine does not ignore columns whose data types are
read-only when you are generating insert and update SQL statements

Details
Several databases include data types that can be read-only, such as the Microsoft SQL
Server timestamp data type. Several databases also have properties that allow certain
data types to be read-only, such as the Microsoft SQL Server identity property.

When IGNORE_READ_ONLY_COLUMNS=NO (the default) and a DBMS table
contains a column that is read-only, an error is returned that the data could not be
modified for that column.

Examples

For this example, a database that contains the table Products is created with two
columns: ID and PRODUCT_NAME. The ID column is defined by a read-only data type
and PRODUCT_NAME is a character column.

CREATE TABLE products (id int IDENTITY PRIMARY KEY, product_name varchar(40))

If you have a SAS data set that contains the name of your products, you can insert
the data from the SAS data set into the Products table:

data work.products;
id=1;
product_name=’screwdriver’;
output;
id=2;
product_name=’hammer’;
output;
id=3;
product_name=’saw’;
output;
id=4;
product_name=’shovel’;
output;

run;

When IGNORE_READ_ONLY_COLUMNS=NO (the default), the database returns
an error because the ID column cannot be updated. However, if you set the option to
YES and execute a PROC APPEND, the append succeeds, and the generated SQL
statement does not contain the ID column.

libname x odbc uid=dbitest pwd=dbigrp1 dsn=lupinss
ignore_read_only_columns=yes;

options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;
proc append base=x.PRODUCTS data=work.products;
run;

330 IN= Data Set Option � Chapter 11

See Also
To assign this option to an individual data set, see the “IGNORE_

READ_ONLY_COLUMNS= LIBNAME Option” on page 149.

IN= Data Set Option

Lets you specify the database or tablespace in which you want to create a new table.

Alias: TABLESPACE=
Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS

Syntax
IN=’database-name.tablespace-name’|’DATABASE database-name’

Syntax Description

database-name.tablespace-name
specifies the names of the database and tablespace, which are separated by a period.

DATABASE database-name
specifies only the database name. In this case, you specify the word DATABASE,
then a space and the database name. Enclose the entire specification in single
quotation marks.

Details
The IN= option is relevant only when you are creating a new table. If you omit this
option, the default is to create the table in the default database or tablespace.

See Also
To assign this option to a group of relational DBMS tables or views, see the “IN=

LIBNAME Option” on page 150.

INSERT_SQL= Data Set Option

Determines the method to use to insert rows into a data source.

Default value: LIBNAME setting

Data Set Options for Relational Databases � INSERTBUFF= Data Set Option 331

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Microsoft SQL Server, ODBC, OLE DB

Syntax
INSERT_SQL=YES | NO

Syntax Description

YES
specifies that the SAS/ACCESS engine uses the data source’s SQL insert method to
insert new rows into a table.

NO
specifies that the SAS/ACCESS engine uses an alternate (DBMS-specific) method to
add new rows to a table.

Details
Flat-file databases such as dBase, FoxPro, and text files have generally improved insert
performance when INSERT_SQL=NO. Other databases might have inferior insert
performance or might fail with this setting. Therefore, you should experiment to
determine the optimal setting for your situation.

Microsoft SQL Server: The Microsoft SQL Server default is YES. When
INSERT_SQL=NO, the SQLSetPos (SQL_ADD) function inserts rows in groups that are
the size of the INSERTBUFF= option value. The SQLSetPos (SQL_ADD) function does
not work unless your ODBC driver supports it.

ODBC: The default for ODBC is YES, except for Microsoft Access, which has a
default of NO. When INSERT_SQL=NO, the SQLSetPos (SQL_ADD) function inserts
rows in groups that are the size of the INSERTBUFF= option value. The SQLSetPos
(SQL_ADD) function does not work unless your ODBC driver supports it.

OLE DB: By default, the OLE DB interface attempts to use the most efficient row
insertion method for each data source. You can use the INSERT_SQL option to override
the default in the event that it is not optimal for your situation. The OLE DB alternate
method (used when this option is set to NO) uses the OLE DB IRowsetChange interface.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“INSERT_SQL= LIBNAME Option” on page 151.
“INSERTBUFF= Data Set Option” on page 331

INSERTBUFF= Data Set Option

Specifies the number of rows in a single DBMS insert.

Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

332 INSERTBUFF= Data Set Option � Chapter 11

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP Neoview,
Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase IQ

Syntax
INSERTBUFF=positive-integer

Syntax Description

positive-integer
specifies the number of rows to insert. SAS allows the maximum that the DBMS
allows.

Details
SAS allows the maximum number of rows that the DBMS allows. The optimal value for
this option varies with factors such as network type and available memory. You might
need to experiment with different values in order to determine the best value for your
site.

SAS application messages that indicate the success or failure of an insert operation
represent information for only a single insert, even when multiple inserts are
performed. Therefore, when you assign a value that is greater than INSERTBUFF=1,
these messages might be incorrect.

If you set the DBCOMMIT= option with a value that is less than the value of
INSERTBUFF=, then DBCOMMIT= overrides INSERTBUFF=.

When you insert rows with the VIEWTABLE window or the FSEDIT or FSVIEW
procedure, use INSERTBUFF=1 to prevent the engine from trying to insert multiple
rows. These features do not support inserting more than one row at a time.

Additional driver-specific restrictions might apply.
DB2 under UNIX and PC Hosts: To use this option, you must first set

INSERT_SQL=YES. If one row in the insert buffer fails, all rows in the insert buffer
fail. The default is calculated based on the row length of your data.

HP Neoview, Netezza: The default is automatically calculated based on row length.
Microsoft SQL Server, Greenplum: To use this option, you must set

INSERT_SQL=YES.
MySQL: The default is 0. Values greater than 0 activate the INSERTBUFF= option,

and the engine calculates how many rows it can insert at one time, based on row size.
If one row in the insert buffer fails, all rows in the insert buffer might fail, depending
on your storage type.

ODBC: The default is 1.
OLE DB: The default is 1.
Oracle: When REREAD_EXPOSURE=YES, the (forced) default value is 1.

Otherwise, the default is 10.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“INSERTBUFF= LIBNAME Option” on page 152.
“DBCOMMIT= LIBNAME Option” on page 120
“DBCOMMIT= Data Set Option” on page 297
“INSERT_SQL= LIBNAME Option” on page 151
“INSERT_SQL= Data Set Option” on page 330

Data Set Options for Relational Databases � LOCATION= Data Set Option 333

KEYSET_SIZE= Data Set Option

Specifies the number of rows in the cursor that the keyset drives.

Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Microsoft SQL Server, ODBC

Syntax
KEYSET_SIZE=number-of-rows

Syntax Description

number-of-rows
is a positive integer from 0 through the number of rows in the cursor.

Details
This option is valid only when CURSOR_TYPE=KEYSET_DRIVEN.

If KEYSET_SIZE=0, then the entire cursor is keyset-driven. If a value greater than
0 is specified for KEYSET_SIZE=, then the value chosen indicates the number of rows,
within the cursor, that function as a keyset-driven cursor. When you scroll beyond the
bounds that KEYSET_SIZE= specifies, the cursor becomes dynamic and new rows
might be included in the cursor. This results in a new keyset, where the cursor
functions as a keyset-driven cursor again. Whenever the value specified is between 1
and the number of rows in the cursor, the cursor is considered to be a mixed cursor.
Part of the cursor functions as a keyset-driven cursor, and another part of the cursor
functions as a dynamic cursor.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“KEYSET_SIZE= LIBNAME Option” on page 154.

LOCATION= Data Set Option

Lets you further specify exactly where a table resides.

Alias: LOC=
Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under z/OS

334 LOCKTABLE= Data Set Option � Chapter 11

Syntax
LOCATION=location-name

Details
If you specify LOCATION=, you must also specify the AUTHID= data set option.

The location name maps to the location in the SYSIBM.LOCATIONS catalog in the
communication database.

In SAS/ACCESS Interface to DB2 under z/OS, the location is converted to the first
level of a three-level table name: location-name.AUTHID.TABLE. The DB2 Distributed
Data Facility (DDF) makes the connection implicitly to the remote DB2 subsystem
when DB2 receives a three-level name in an SQL statement.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“LOCATION= LIBNAME Option” on page 155.
“AUTHID= Data Set Option” on page 208

LOCKTABLE= Data Set Option

Places exclusive or shared locks on tables.

Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Informix

Syntax
LOCKTABLE=EXCLUSIVE | SHARE

Syntax Description

EXCLUSIVE
locks a table exclusively, preventing other users from accessing any table that you
open in the libref.

SHARE
locks a table in shared mode, allowing other users or processes to read data from the
tables, but preventing users from updating data.

Data Set Options for Relational Databases � MBUFSIZE= Data Set Option 335

Details
You can lock tables only if you are the owner or have been granted the necessary
privilege. If you omit LOCKTABLE=, no locking occurs.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“LOCKTABLE= LIBNAME Option” on page 155.

MBUFSIZE= Data Set Option

Specifies the size of the shared memory buffers to use for transferring data from SAS to Teradata.

Default value: 64K
Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata

Syntax
MBUFSIZE=size-of-shared-memory-buffers

Syntax Description

size-of-shared-memory-buffers
a numeric value (between the size of a row being loaded and 1MB) that specifies the
buffer size.

Details
To specify this option, you must first set MULTILOAD=YES.

This option specifies the size of data buffers used for transferring data from SAS to
Teradata. Two data set options are available for tuning the number and size of data
buffers used for transferring data from SAS to Teradata.

When you use MULTILOAD=, data transfers from SAS to Teradata using shared
memory segments. The default shared memory buffer size is 64K. The default number
of shared memory buffers that are used for the transfer is 2.

Use the MBUFSIZE= data set option to vary the size of the shared memory buffers
from the size of each data row up to 1MB.

Use BUFFERS= to vary the number of buffers for data transfer from 1 to 8.

See Also
For information about changing the number of shared memory buffers, see the

“BUFFERS= Data Set Option” on page 288.
“MULTILOAD= Data Set Option” on page 342

“Using MultiLoad” on page 805

336 ML_CHECKPOINT= Data Set Option � Chapter 11

ML_CHECKPOINT= Data Set Option

Specifies the interval between checkpoint operations in minutes.

Default value: none (see “Details”)
Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata

Syntax
ML_CHECKPOINT=checkpoint-rate

Syntax Description

checkpoint-rate
a numeric value that specifies the interval between checkpoint operations in minutes.

Details
To specify this option, you must first set MULTILOAD=YES.

If you do not specify a value for ML_CHECKPOINT=, the Teradata Multiload default
of 15 applies. If ML_CHECKPOINT= is between 1 and 59 inclusive, checkpoints are
taken at the specified intervals, in minutes. If ML_CHECKPOINT= is greater than or
equal to 60, a checkpoint occurs after a multiple of the specified rows are loaded.

ML_CHECKPOINT= functions very similarly to CHECKPOINT in the native
Teradata MultiLoad utility. However, it differs from DBCOMMIT=, which is disabled
for MultiLoad to prevent any conflict.

See the Teradata documentation on the MultiLoad utility for more information about
using MultiLoad checkpoints.

See Also
For more information about using checkpoints and restarting MultiLoad jobs, see the

“MULTILOAD= Data Set Option” on page 342.
“DBCOMMIT= LIBNAME Option” on page 120
“DBCOMMIT= Data Set Option” on page 297

“Using MultiLoad” on page 805

ML_ERROR1= Data Set Option

Specifies the name of a temporary table that MultiLoad uses to track errors that were generated
during the acquisition phase of a bulk-load operation.

Default value: none
Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)

Data Set Options for Relational Databases � ML_ERROR2= Data Set Option 337

DBMS support: Teradata

Syntax
ML_ERROR1=temporary-table-name

Syntax Description

temporary-table-name
specifies the name of a temporary table that MultiLoad uses to track errors that were
generated during the acquisition phase of a bulk-load operation.

Details
To specify this option, you must first set MULTILOAD=YES.

Use this option to specify the name of a table to use for tracking errors that were
generated during the acquisition phase of the MultiLoad bulk-load operation. By
default, the acquisition error table is named SAS_ML_ET_randnum, where randnum is
a random number.

When you restart a failed MultiLoad job, you must specify the same acquisition table
from the earlier run so that the MultiLoad job can restart correctly. Using
ML_RESTART=, ML_ERROR2=, and ML_WORK=, you must also specify the same log
table, application error table, and work table upon restarting.

Note: Do not use ML_ERROR1 with the ML_LOG= data set option. ML_LOG=
provides a common prefix for all temporary tables that the Teradata MultiLoad utility
uses. �

For more information about temporary table names that the Teradata MultiLoad
utility uses and what is stored in each, see the Teradata MultiLoad reference.

See Also
To specify a common prefix for all temporary tables that the Teradata MultiLoad

utility uses, see the “ML_LOG= Data Set Option” on page 339.
“ML_ERROR2= Data Set Option” on page 337
“ML_RESTART= Data Set Option” on page 340
“ML_WORK= Data Set Option” on page 341
“MULTILOAD= Data Set Option” on page 342
“Using MultiLoad” on page 805

ML_ERROR2= Data Set Option

Specifies the name of a temporary table that MultiLoad uses to track errors that were generated
during the application phase of a bulk-load operation.

Default value: none
Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)

338 ML_ERROR2= Data Set Option � Chapter 11

DBMS support: Teradata

Syntax
ML_ERROR2=temporary-table-name

Syntax Description

temporary-table-name
specifies the name of a temporary table that MultiLoad uses to track errors that were
generated during the application phase of a bulk-load operation.

Details
To specify this option, you must first set MULTILOAD=YES.

Use this option to specify the name of a table to use for tracking errors that were
generated during the application phase of the MultiLoad bulk-load operation. By
default, the application error table is named SAS_ML_UT_randnum, where randnum is
a random number.

When you restart a failed MultiLoad job, you must specify the same application table
from the earlier run so that the MultiLoad job can restart correctly. Using
ML_RESTART=, ML_ERROR1=, and ML_WORK=, you must also specify the same log
table, acquisition error table, and work table upon restarting.

Note: Do not use ML_ERROR2 with ML_LOG=, which provides a common prefix for
all temporary tables that the Teradata MultiLoad utility uses. �

For more information about temporary table names that the Teradata MultiLoad
utility uses and what is stored in each, see the Teradata MultiLoad reference.

See Also
To specify a common prefix for all temporary tables that the Teradata MultiLoad

utility uses, see the “ML_LOG= Data Set Option” on page 339.
“ML_ERROR1= Data Set Option” on page 336
“ML_RESTART= Data Set Option” on page 340
“ML_WORK= Data Set Option” on page 341
“MULTILOAD= Data Set Option” on page 342

“Using MultiLoad” on page 805

Data Set Options for Relational Databases � ML_LOG= Data Set Option 339

ML_LOG= Data Set Option

Specifies a prefix for the names of the temporary tables that MultiLoad uses during a bulk-load
operation.

Default value: none
Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata

Syntax
ML_LOG=prefix-for-MultiLoad-temporary-tables

Syntax Description

prefix-for-MultiLoad-temporary-tables
specifies the prefix to use when naming Teradata tables that the Teradata MultiLoad
utility uses during a bulk-load operation.

Details
To specify this option, you must first set MULTILOAD=YES.

You can use this option to specify a prefix for the temporary table names that the
MultiLoad utility uses during the load process. The MultiLoad utility uses a log table,
two error tables, and a work table while loading data to the target table. By default,
here are the names for these tables, where randnum is a random number.

Temporary Table Table Name

Restart table SAS_ML_RS_randnum

Acquisition error table SAS_ML_ET_randnum

Application error table SAS_ML_UT_randnum

Work table SAS_ML_WT_randnum

To override the default names, here are the table names that would be generated if
ML_LOG=MY_LOAD, for example.

Temporary Table Table Name

Restart table MY_LOAD_RS

Acquisition error table MY_LOAD_ET

Application error table MY_LOAD_UT

Work table MY_LOAD_WT

340 ML_RESTART= Data Set Option � Chapter 11

SAS/ACCESS automatically deletes the error tables if no errors are logged. If there
are errors, the tables are retained, and SAS/ACCESS issues a warning message that
includes the names of the tables in error.

Note: Do not use ML_LOG= with ML_RESTART=, ML_ERROR1=, ML_ERROR2=,
or ML_WORK= because ML_LOG= provide specific names to the temporary files. �

For more information about temporary table names that the Teradata MultiLoad
utility uses and what is stored in each, see the Teradata MultiLoad reference.

See Also
“ML_ERROR1= Data Set Option” on page 336
“ML_ERROR2= Data Set Option” on page 337
“ML_RESTART= Data Set Option” on page 340
“ML_RESTART= Data Set Option” on page 340
“ML_WORK= Data Set Option” on page 341
“MULTILOAD= Data Set Option” on page 342

“Using MultiLoad” on page 805

ML_RESTART= Data Set Option

Specifies the name of a temporary table that MultiLoad uses to track checkpoint information.

Default value: none
Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata

Syntax
ML_RESTART=temporary-table-name

Syntax Description

temporary-table-name
specifies the name of the temporary table that the Teradata MultiLoad utility uses to
track checkpoint information.

Details
To specify this option, you must first set MULTILOAD=YES.

Use this option to specify the name of a table to store checkpoint information. Upon
restart, ML_RESTART= is used to specify the name of the log table that you used for
tracking checkpoint information in the earlier failed run.

Note: Do not use ML_RESTART= with ML_LOG=, which provides a common prefix
for all temporary tables that the Teradata MultiLoad utility uses. �

For more information about the temporary table names that the Teradata MultiLoad
utility uses, see the Teradata documentation on the MultiLoad utility.

Data Set Options for Relational Databases � ML_WORK= Data Set Option 341

Use this option to specify the name of a table to use for tracking errors that were
generated during the application phase of the MultiLoad bulk-load operation. By
default, the application error table is named SAS_ML_UT_randnum, where randnum is
a random number.

When you restart a failed MultiLoad job, you must specify the same application table
from the earlier run so that the MultiLoad job can restart correctly. Using
ML_RESTART=, ML_ERROR1=, and ML_WORK=, you must also specify the same log
table, acquisition error table, and work table upon restarting.

Note: Do not use ML_ERROR2 with ML_LOG=, which provides a common prefix for
all temporary tables that the Teradata MultiLoad utility uses. �

For more information about temporary table names that the Teradata MultiLoad
utility uses and what is stored in each, see the Teradata MultiLoad reference.

See Also
To specify a common prefix for all temporary tables that the Teradata MultiLoad

utility uses, see the “ML_LOG= Data Set Option” on page 339.
“ML_ERROR1= Data Set Option” on page 336
“ML_ERROR2= Data Set Option” on page 337
“ML_WORK= Data Set Option” on page 341
“MULTILOAD= Data Set Option” on page 342

“Using MultiLoad” on page 805

ML_WORK= Data Set Option

Specifies the name of a temporary table that MultiLoad uses to store intermediate data.

Default value: none
Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata

Syntax
ML_WORK=temporary-table-name

Syntax Description

temporary-table-name
specifies the name of a temporary table that MultiLoad uses to store intermediate
data that the MultiLoad utility receives during a bulk-load operation.

Details
To specify this option, you must first set MULTILOAD=YES.

Use this option to specify the name of the table to use for tracking intermediate data
that the MultiLoad utility received during a bulk-load operation. When you restart the

342 MULTILOAD= Data Set Option � Chapter 11

job, use ML_WORK= to specify the name of the table for tracking intermediate data
during a previously failed MultiLoad job.

For more information about temporary table names that the MultiLoad utility uses
and what is stored in each, see the Teradata MultiLoad reference.

Note: Do not use ML_WORK= with ML_LOG=, which provides a common prefix for
all temporary tables that the Teradata MultiLoad utility uses. �

See Also
To specify a common prefix for all temporary tables that the Teradata MultiLoad

utility uses, see the “ML_LOG= Data Set Option” on page 339.
“ML_ERROR1= Data Set Option” on page 336
“ML_ERROR2= Data Set Option” on page 337
“ML_RESTART= Data Set Option” on page 340
“MULTILOAD= Data Set Option” on page 342

“Using MultiLoad” on page 805

MULTILOAD= Data Set Option

Specifies whether Teradata insert and append operations should use the Teradata MultiLoad utility.

Default value: NO
Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata

Syntax
MULTILOAD=YES | NO

Syntax Description

YES
uses the Teradata MultiLoad utility, if available, to load Teradata tables.

NO
sends inserts to Teradata tables one row at a time.

Details

Bulk Loading The SAS/ACCESS MultiLoad facility provides a bulk-loading method of
loading both empty and existing Teradata tables. Unlike FastLoad, MultiLoad can
append data to existing tables.

To determine whether threaded reads are actually generated, turn on SAS tracing by
setting OPTIONS SASTRACE=”,,,d” in your program.

Data Buffers Two data set options are available for tuning the number and the size of
data buffers that are used for transferring data from SAS to Teradata. Data is

Data Set Options for Relational Databases � MULTILOAD= Data Set Option 343

transferred from SAS to Teradata using shared memory. The default shared memory
buffer size is 64K. The default number of shared memory buffers used for the transfer
is 2. You can use BUFFERS= to vary the number of buffers for data transfer from 1 to
8. You can use MBUFSIZE= to vary the size of the shared memory buffers from the size
of each data row up to 1MB.

Temporary Tables The Teradata MultiLoad utility uses four different temporary
tables when it performs the bulk-load operation. It uses a log table to track restart
information, two error tables to track errors, and a work table to hold data before the
insert operation is made.

By default, the SAS/ACCESS MultiLoad facility generates names for these
temporary tables, where randnum represents a random number. To specify a different
name for these tables, use ML_RESTART=, ML_ERROR1=, ML_ERROR2=, and
ML_WORK=, respectively.

Temporary Table Table Name

Restart table SAS_ML_RS_randnum

Acquisition error table SAS_ML_ET_randnum

Application error table SAS_ML_UT_randnum

Work table SAS_ML_WT_randnum

You can use ML_LOG= to specify a prefix for the temporary table names that
MultiLoad uses.

Here is the order that is used for naming the temporary tables that MultiLoad uses:

1 If you set ML_LOG=, the prefix that you specified is used when naming temporary
tables for MultiLoad.

2 If you do not specify ML_LOG=, the values that you specified for ML_ERROR1,
ML_ERROR2, ML_WORK, ML_RESTART are used.

3 If you do not specify any table naming options, temporary table names are
generated by default.

Note: You cannot use ML_LOG with any of these options: ML_ERROR1,
ML_ERROR2, ML_WORK, and ML_RESTART. �

Restarting MultiLoad The MultiLoad bulk-load operation (or MultiLoad job) works in
phases. The first is the acquisition phase, during which data is transferred from SAS to
Teradata work tables. The second is the application phase, during which data is applied
to the target table.

If the MultiLoad job fails during the acquisition phase, you can restart the job from
the last successful checkpoint. The exact observation from which the MultiLoad job
must be restarted displays in the SAS log. If the MultiLoad job fails in the application
phase—when data is loaded onto the target tables from the work table—restart the
MultiLoad job outside of SAS. The MultiLoad restart script displays in the SAS log. You
can run the generated MultiLoad script outside of SAS to complete the load.

You can use ML_CHECKPOINT= to specify the checkpoint rate. Specify a value for
ML_CHECKPOINT= if you want restart capability. If checkpoint tracking is not used
and the MultiLoad fails in the acquisition phase, the load needs to be restarted from
the beginning. ML_CHECKPOINT=0 is the default, and no checkpoints are recoded if
you use the default.

344 MULTILOAD= Data Set Option � Chapter 11

If ML_CHECKPOINT is between 1 and 59 inclusive, checkpoints are recorded at the
specified interval in minutes. If ML_CHECKPOINT is greater than or equal to 60, then
a checkpoint occurs after a multiple of the specified rows are loaded.

ML_CHECKPOINT= functions very much like the Teradata MultiLoad utility
checkpoint, but it differs from the DBCOMMIT= data set option.

These restrictions apply when you restart a failed MultiLoad job.
� The failed MultiLoad job must have specified a checkpoint rate other than 0 using

the ML_CHECKPOINT= data set option. Otherwise, restarting begins from the
first record of the source data.

Checkpoints are relevant only to the acquisition phase of MultiLoad. Even if
ML_CHECKPOINT=0 is specified, a checkpoint takes place at the end of the
acquisition phase. If the job fails after that (in the application phase) you must
restart the job outside of SAS using the MultiLoad script written to the SAS log.

For example, this MultiLoad job takes a checkpoint every 1000 records.

libname trlib teradata user=testuser pw=XXXXXX server=dbc;

/* Create data to MultiLoad */
data work.testdata;

do x=1 to 50000;
output;

end;
end;

data trlib.mlfloat(MultiLoad=yes ML_CHECKPOINT=1000);
set work.testdata;
run;

� You must restart the failed MultiLoad job as an append process because the target
table already exists. It is also necessary to identify the work tables, restart table,
and the error tables used in the original job.

For example, suppose that the DATA step shown above failed with this error
message in the SAS log:

ERROR: MultiLoad failed with DBS error 2644 after a checkpoint was
taken for 13000 records.
Correct error and restart as an append process with data set options

ML_RESTART=SAS_ML_RS_1436199780, ML_ERROR1=SAS_ML_ET_1436199780,
ML_ERROR2=SAS_ML_UT_1436199780, and ML_WORK=SAS_ML_WT_1436199780.

If the first run used FIRSTOBS=n, then use the value (7278+n-1) for FIRSTOBS
in the restart.

Otherwise use FIRSTOBS=7278.
Sometimes the FIRSTOBS value used on the restart can be an earlier position
than the last checkpoint because restart is block-oriented and not
record-oriented.

After you fix the error, you must restart the job as an append process and you
must specify the same work, error, and restart tables as you used in the earlier
run. You use a FIRSTOBS= value on the source table to specify the record from
which to restart.
/* Restart a MultiLoad job that failed in the acquisition phase

after correcting the error */
proc append data=work.testdata(FIRSTOBS=7278)
base=trmlib.mlfloat(MultiLoad=YES ML_RESTART=SAS_ML_RS_1436199780

ML_ERROR1=SAS_ML_ET_1436199780 ML_ERROR2=SAS_ML_UT_1436199780
ML_WORK=SAS_ML_WT_1436199780 ML_CHECKPOINT=1000);

Data Set Options for Relational Databases � MULTILOAD= Data Set Option 345

run;

� If you used ML_LOG= in the run that failed, you can specify the same value for
ML_LOG= on restart. Therefore, you need not specify four data set options to
identify the temporary tables that MultiLoad uses.

For example, assume that this is how the original run used ML_LOG=:
data trlib.mlfloat(MultiLoad=yes ML_CHECKPOINT=1000 ML_LOG=MY_ERRORS);
set work.testdata;

run;

If this DATA step fails with this error, the restart capability needs only
ML_LOG= to identify all necessary tables.
ERROR: MultiLoad failed with DBS error 2644 after a checkpoint was taken for
13000 records. Correct error and restart as an append process with data set options

ML_RESTART=SAS_ML_RS_1436199780, ML_ERROR1=SAS_ML_ET_1436199780,
ML_ERROR2=SAS_ML_UT_1436199780, and ML_WORK=SAS_ML_WT_1436199780.

If the first run used FIRSTOBS=n, then use the value (7278+n-1) for FIRSTOBS
in the restart.

Otherwise use FIRSTOBS=7278.
Sometimes the FIRSTOBS value used on the restart can be an earlier position
than the last checkpoint because restart is block-oriented and not
record-oriented.

proc append data=work.testdata(FIRSTOBS=7278)
base=trlib.mlfloat(MultiLoad=YES ML_LOG=MY_ERRORS ML_CHECKPOINT=1000);

run;

� If the MultiLoad process fails in the application phase, SAS has already
transferred all data to be loaded to Teradata. You must restart a MultiLoad job
outside of SAS using the script that is written to the SAS log. See your Teradata
documentation on the MultiLoad utility for instructions on how to run MultiLoad
scripts. Here is an example of a script that is written in the SAS log.

=-=-= MultiLoad restart script starts here =-=-=
.LOGTABLE MY_ERRORS_RS;
.LOGON boom/mloaduser,********;
.begin import mload tables "mlfloat" CHECKPOINT 0 WORKTABLES

MY_ERRORS_WT ERRORTABLES
MY_ERRORS_ET MY_ERRORS_UT

/*TIFY HIGH EXIT SASMLNE.DLL TEXT ’2180*/;
.layout saslayout indicators;
.FIELD "x" * FLOAT;
.DML Label SASDML;
insert into "mlfloat".*;
.IMPORT INFILE DUMMY
/*SMOD SASMLAM.DLL ’2180 2180 2180 */
FORMAT UNFORMAT LAYOUT SASLAYOUT
APPLY SASDML;
.END MLOAD;
.LOGOFF;
=-=-= MultiLoad restart script ends here =-=-=
ERROR: MultiLoad failed with DBS error 2644 in the application phase.
Run the MultiLoad restart script listed above outside of SAS
to restart the job.

346 MULTILOAD= Data Set Option � Chapter 11

� If the original run used a value for FIRSTOBS= for the source data, use the
formula from the SAS log error message to calculate the value for FIRSTOBS=
upon restart. These examples show how to do this.

/* Create data to MultiLoad */
data work.testdata;

do x=1 to 50000;
output;

end;
run;

libname trlib teradata user=testuser pw=testpass server=boom;

/* Load 40,000 rows to the Teradata table */
data trlib.mlfloat(MultiLoad=yes ML_CHECKPOINT=1000 ML_LOG=MY_ERRORS);
set work.testdata(FIRSTOBS=10001);
run;

Assume that the DATA step shown above failed with this error message:

ERROR: MultiLoad failed with DBS error 2644 after a checkpoint
was taken for 13000 records.
Correct the error and restart the load as an append process with
data set option ML_LOG=MY_ERRORS.
If the first run used FIRSTOBS=n, then use the value (7278+n-1)
for FIRSTOBS in the restart.
Otherwise use FIRSTOBS=7278.
Sometimes the FIRSTOBS value specified on the restart can be
an earlier position than the last checkpoint because MultiLoad
restart is block-oriented and not record-oriented.

The FIRSTOBS for the restart step can be calculated using the formula
provided—that is, FIRSTOBS=7278+100001-1=17278. Use FIRSTOBS=17278 on
the source data.

proc append data=work.testdata(FIRSTOBS=17278)
base=trlib.mlfloat(MultiLoad=YES ML_LOG=MY_ERRORS ML_CHECKPOINT=1000);

run;

Please keep these considerations in mind.

� DBCOMMIT= is disabled for MultiLoad in order to prevent any conflict with
ML_CHECKPOINT=.

� ERRLIMIT= is not available for MultiLoad because the number of errors are
known only at the end of each load phase.

� For restart to work correctly, the data source must return data in the same
order. If the order of data that is read varies from one run to another and the
load job fails in the application phase, delete temporary tables and restart
the load as a new process. If the job fails in the application phase, restart the
job outside of SAS as usual since the data needed to complete the load has
already been transferred.

� The restart capability in MultiLoad is block-oriented, not record-oriented. For
example, if a checkpoint was taken at 5000 records, you might need to restart
from an earlier record, such as record 4000, because the block of data
containing record 5001 might have started at record 4000. The exact record
where restart should occur displays in the SAS log.

Data Set Options for Relational Databases � MULTILOAD= Data Set Option 347

Examples

This example uses MultiLoad to load SAS data to an alternate database. Note that it
specifies database=mloaduser in the LIBNAME statement.

libname trlib teradata user=testuser pw=testpass server=dbc database=mloaduser;
/*MultiLoad 20000 observations into alternate database mloaduser */

data trlib.trmload14(DBCREATE_TABLE_OPTS="PRIMARY INDEX(IDNUM)" MultiLoad=yes
ML_LOG=TRMLOAD14 ML_CHECKPOINT=5000);

set permdata.BIG1MIL(drop=year obs=20000);
run;

This example extracts data from one table using FastExport and loads data into
another table using MultiLoad.

libname trlib teradata user=testuser pw=testpass server=dbc;

/* Create data to load */
data trlib.trodd(DBCREATE_TABLE_OPTS="PRIMARY INDEX(IDNUM)" MultiLoad=yes);
set permdata.BIG1MIL(drop=year obs=10000);

where mod(IDNUM,2)=1;
run;

/* FastExport from one table and MultiLoad into another */
proc append data=trlib.treven(dbsliceparm=all) base=trlib.trall(MultiLOAD=YES);
run;

See Also
For information about specifying how long to wait before retrying a logon operation,

see the “SLEEP= Data Set Option” on page 371.
For information about specifying how many hours to continue to retry a logon

operation, see the “TENACITY= Data Set Option” on page 372
For information about specifying a prefix for the temporary table names that

MultiLoad uses, see the “ML_LOG= Data Set Option” on page 339.
“BUFFERS= Data Set Option” on page 288
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“DBCOMMIT= LIBNAME Option” on page 120
“DBCOMMIT= Data Set Option” on page 297
“FASTEXPORT= LIBNAME Option” on page 147
“Maximizing Teradata Load Performance” on page 804
“MBUFSIZE= Data Set Option” on page 335
“ML_CHECKPOINT= Data Set Option” on page 336
“ML_ERROR1= Data Set Option” on page 336
“ML_ERROR2= Data Set Option” on page 337
“ML_RESTART= Data Set Option” on page 340
“ML_WORK= Data Set Option” on page 341
“QUERY_BAND= LIBNAME Option” on page 172
“QUERY_BAND= Data Set Option” on page 360

“Using MultiLoad” on page 805

348 MULTISTMT= Data Set Option � Chapter 11

MULTISTMT= Data Set Option

Specifies whether insert statements are sent to Teradata one at a time or in a group.

Default value: NO

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Teradata

Syntax
MULTISTMT=YES | NO

Syntax Description

YES
attempts to send as many inserts to Teradata that can fit in a 64K buffer. If
multistatement inserts are not possible, processing reverts to single-row inserts.

NO
send inserts to Teradata one row at a time.

Details
To specify this option, you must first set MULTILOAD=YES.

When you request multistatement inserts, SAS first determines how many insert
statements that it can send to Teradata. Several factors determine the actual number
of statements that SAS can send, such as how many SQL insert statements can fit in a
64K buffer, how many data rows can fit in the 64K data buffer, and how many inserts
the Teradata server chooses to accept. When you need to insert large volumes of data,
you can significantly improve performance by using MULTISTMT= instead of inserting
only single-row.

When you also specify the DBCOMMIT= option, SAS uses the smaller of the
DBCOMMIT= value and the number of insert statements that can fit in a buffer as the
number of insert statements to send together at one time.

You cannot currently use MULTISTMT= with the ERRLIMIT= option.

Examples

Here is an example of how you can send insert statements one at a time to Teradata.

libname user teradata user=zoom pw=XXXXXX server=dbc;
proc delete data=user.testdata;
run;

data user.testdata(DBTYPE=(I="INT") MULTISTMT=YES);
do i=1 to 50;

output;
end;

run;

Data Set Options for Relational Databases � MULTISTMT= Data Set Option 349

In the next example, DBCOMMIT=100, so SAS issues a commit after every 100 rows,
so it sends only 100 rows at a time.

libname user teradata user=zoom pw=XXXXX server=dbc;
proc delete data=user.testdata;
run;

proc delete data=user.testdata;run;
data user.testdata(MULTISTMT=YES DBCOMMIT=100);
do i=1 to 1000;

output;
end;

run;

In the next example, DBCOMMIT=1000, which is much higher than in the previous
example. In this example, SAS sends as many rows as it can fit in the buffer at a time
(up to 1000) and issues a commit after every 1000 rows. If only 600 can fit, 600 are sent
to the database, followed by the remaining 400 (the difference between 1000 and the
initial 600 that were already sent), and then all rows are committed.

libname user teradata user=zoom pw=XXXXX server=dbc;
proc delete data=user.testdata;
run;

proc delete data=user.testdata;
run;
data user.testdata(MULTISTMT=YES DBCOMMIT=1000);
do i=1 to 10000;

output;
end;

run;

This next example sets CONNECTION=GLOBAL for all tables, creates a global
temporary table, and stores the table in the current database schema.

libname user teradata user=zoom pw=XXXXX server=dbc connection=global;
proc delete data=user.temp1;
run;

proc sql;
connect to teradata(user=zoom pw=XXXXXXX server=dbc connection=global);
execute (CREATE GLOBAL TEMPORARY TABLE temp1 (col1 INT)

ON COMMIT PRESERVE ROWS) by teradata;
execute (COMMIT WORK) by teradata;

quit;

data work.test;
do col1=1 to 1000;

output;
end;

run;

proc append data=work.test base=user.temp1(multistmt=yes);
run;

350 NULLCHAR= Data Set Option � Chapter 11

See Also
To assign this option to a group of relational DBMS tables or views, see the

“MULTISTMT= LIBNAME Option” on page 161.
“DBCOMMIT= LIBNAME Option” on page 120
“DBCOMMIT= Data Set Option” on page 297
“ERRLIMIT= LIBNAME Option” on page 146
“ERRLIMIT= Data Set Option” on page 325
“MULTILOAD= Data Set Option” on page 342

NULLCHAR= Data Set Option

Indicates how missing SAS character values are handled during insert, update, DBINDEX=, and
DBKEY= processing.

Default value: SAS
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
NULLCHAR=SAS | YES | NO

Syntax Description

SAS
indicates that missing character values in SAS data sets are treated as NULL values
if the DBMS allows NULLs. Otherwise, they are treated as the NULLCHARVAL=
value.

YES
indicates that missing character values in SAS data sets are treated as NULL values
if the DBMS allows NULLs. Otherwise, an error is returned.

NO
indicates that missing character values in SAS data sets are treated as the
NULLCHARVAL= value (regardless of whether the DBMS allows NULLs for the
column).

Details
This option affects insert and update processing and also applies when you use the
DBINDEX= and DBKEY= data set options.

This option works with the NULLCHARVAL= data set option, which determines
what is inserted when NULL values are not allowed.

All missing SAS numeric values (represented in SAS as ’.’) are treated by the DBMS
as NULLs.

Data Set Options for Relational Databases � NULLCHARVAL= Data Set Option 351

Oracle: For interactions between NULLCHAR= and BULKLOAD=ZX‘11, see the
bulk-load topic in the Oracle section.

See Also
“BULKLOAD= Data Set Option” on page 290
“DBINDEX= Data Set Option” on page 303
“DBKEY= Data Set Option” on page 305
“DBNULL= Data Set Option” on page 310
“NULLCHARVAL= Data Set Option” on page 351

NULLCHARVAL= Data Set Option

Defines the character string that replaces missing SAS character values during insert, update,
DBINDEX=, and DBKEY= processing.

Default value: a blank character
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
NULLCHARVAL=’character-string’

Details
This option affects insert and update processing and also applies when you use the
DBINDEX= and DBKEY= data set options.

This option works with the NULLCHAR= option to determine whether a missing
SAS character value is treated as a NULL value.

If NULLCHARVAL= is longer than the maximum column width, one of these things
happens:

� The string is truncated if DBFORCE=YES.
� The operation fails if DBFORCE=NO.

See Also
“DBFORCE= Data Set Option” on page 300
“DBINDEX= Data Set Option” on page 303
“DBKEY= Data Set Option” on page 305
“DBNULL= Data Set Option” on page 310
“NULLCHAR= Data Set Option” on page 350

352 OR_PARTITION= Data Set Option � Chapter 11

OR_PARTITION= Data Set Option

Allows reading, updating, and deleting from a particular partition in a partitioned table, also
inserting and bulk loading into a particular partition in a partitioned table.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Oracle

Syntax
OR_PARTITION=name of a partition in a partitioned Oracle table

Syntax Description

name of a partition in a partitioned Oracle table
The name of the partition must be valid or an error occurs.

Details
Use this option in cases where you are working with only one particular partition at a
time in a partitioned table. Specifying this option boosts performance because you are
limiting your access to only one partition of a table instead of the entire table.

This option is appropriate when reading, updating, and deleting from a partitioned
table, also when inserting into a partitioned table or bulk loading to a table. You can
use it to boost performance.

Example

This example shows one way you can use this option.

libname x oracle user=scott pw=tiger path=oraclev9;

proc delete data=x.orparttest; run;
data x.ORparttest (dbtype=(NUM=’int’)

DBCREATE_TABLE_OPTS=’partition by range (NUM)
(partition p1 values less than (11),
partition p2 values less than (21),
partition p3 values less than (31),
partition p4 values less than (41),
partition p5 values less than (51),
partition p6 values less than (61),
partition p7 values less than (71),
partition p8 values less than (81)
)’);

do i=1 to 80;
NUM=i;

output;
end;

Data Set Options for Relational Databases � OR_PARTITION= Data Set Option 353

run;

options sastrace=",,t,d" sastraceloc=saslog nostsuffix;

/* input */
proc print data=x.orparttest (or_partition=p4);
run;

/* update */
proc sql;

/* update should fail with 14402, 00000, "updating partition key column would
cause a partition change"
// *Cause: An UPDATE statement attempted to change the value of a partition
// key column causing migration of the row to another partition
// *Action: Do not attempt to update a partition key column or make sure that
// the new partition key is within the range containing the old
// partition key.
*/
update x.orparttest (or_partition=p4) set num=100;

update x.orparttest (or_partition=p4) set num=35;

select * from x.orparttest (or_partition=p4);
select * from x.orparttest (or_partition=p8);

/* delete */
delete from x.orparttest (or_partition=p4);

select * from x.orparttest;
quit;

/* load to an existing table */
data new; do i=31 to 39; num=i; output;end;
run;
data new2; do i=1 to 9; num=i; output;end;
run;

proc append base= x.orparttest (or_partition=p4) data= new;
run;

/* insert should fail 14401, 00000, "inserted partition key is outside
specified partition"
// *Cause: the concatenated partition key of an inserted record is outside
// the ranges of the two concatenated partition bound lists that
// delimit the partition named in the INSERT statement
// *Action: do not insert the key or insert it in another partition
*/

354 OR_PARTITION= Data Set Option � Chapter 11

proc append base= x.orparttest (or_partition=p4) data= new2;
run;

/* load to an existing table */
proc append base= x.orparttest (or_partition=p4 bulkload=yes
bl_load_method=truncate) data= new;
run;

/* insert should fail 14401 */
proc append base= x.orparttest (or_partition=p4 bulkload=yes
bl_load_method=truncate) data= new2;
run;

Here are a series of sample scenarios that illustrate how you can use this option. The
first one shows how to create the ORPARTTEST table, on which all remaining examples
depend.

libname x oracle user=scott pw=tiger path=oraclev9;
proc delete data=x.orparttest; run;
data x.ORparttest (dbtype=(NUM=’int’)

DBCREATE_TABLE_OPTS=’partition by range (NUM)
(partition p1 values less than (11),
partition p2 values less than (21),
partition p3 values less than (31),
partition p4 values less than (41),
partition p5 values less than (51),
partition p6 values less than (61),
partition p7 values less than (71),
partition p8 values less than (81)
)’);

do i=1 to 80;
NUM=i; output;

end;
run;

Only the P4 partition is read in this next example.

proc print data=x.orparttest (or_partition-p4);
run;

In this example, rows that belong to only the single P4 partition are updated.

proc sql;
update x.orparttest (or_partition=p4) set num=35;
quit;

The above example also illustrates how a particular partition can be updated.
However, updates and even inserts to the partition key column are done in such a way
that it must be migrated to a different partition in the table. Therefore, the following
example fails because the value 100 does not belong to the P4 partition.

proc sql;
update x.orparttest (or_partition=p4) set num=100;
quit;

Data Set Options for Relational Databases � OR_UPD_NOWHERE= Data Set Option 355

All rows in the P4 partition are deleted in this example.

proc sql;
delete from x.orparttest (or_partition=p4);
quit;

In this next example, rows are added to the P4 partition in the table.

data new;
do i=31 to 39; num=i; output;end;

run;
proc append base= x.orparttest (or_partition=p4);

data= new;
run;

The next example also adds rows to the P4 partition but uses the SQL*Loader
instead.

proc append base= x.orparttest (or_partition=p4 bulkload=yes);
data= new;

run;

OR_UPD_NOWHERE= Data Set Option
Specifies whether SAS uses an extra WHERE clause when updating rows with no locking.

Alias: ORACLE_73_OR_ABOVE=
Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Oracle

Syntax
OR_UPD_NOWHERE=YES | NO

Syntax Description

YES
SAS does not use an additional WHERE clause to determine whether each row has
changed since it was read. Instead, SAS uses the SERIALIZABLE isolation level
(available with Oracle 7.3 and later) for update locking. If a row changes after the
serializable transaction starts, the update on that row fails.

NO
SAS uses an additional WHERE clause to determine whether each row has changed
since it was read. If a row has changed since being read, the update fails.

Details
Use this option when you are updating rows without locking
(UPDATE_LOCK_TYPE=NOLOCK).

356 ORHINTS= Data Set Option � Chapter 11

By default (OR_UPD_NOWHERE=YES), updates are performed in serializable
transactions so that you can avoid problems with extra WHERE clause processing and
potential WHERE clause floating-point precision.

Specify OR_UPD_NOWHERE=NO for compatibility when you are updating a SAS 6
view descriptor.

Note: Due to the published Oracle bug 440366, sometimes an update on a row fails
even if the row has not changed. Oracle offers this solution: When you create a table,
increase the number of INITRANS to at least 3 for the table. �

Example

In this example, you create a small Oracle table, TEST, and then update the TEST
table once by using the default setting (OR_UPD_NOWHERE=YES) and once by
specifying OR_UPD_NOWHERE=NO.

libname oralib oracle user=testuser pw=testpass update_lock_type=no;

data oralib.test;
c1=1;
c2=2;
c3=3;
run;

options sastrace=",,,d" sastraceloc=saslog;

proc sql;
update oralib.test set c2=22;
update oralib.test(or_upd_nowhere=no) set c2=222;

quit;

This code uses the SASTRACE= and SASTRACELOC= system options to send the
output to the SAS log.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“OR_UPD_NOWHERE= LIBNAME Option” on page 163.
“Locking in the Oracle Interface” on page 728
“SASTRACE= System Option” on page 408
“SASTRACELOC= System Option” on page 419
“UPDATE_LOCK_TYPE= Data Set Option” on page 397

ORHINTS= Data Set Option

Specifies Oracle hints to pass to Oracle from a SAS statement or SQL procedure.

Default value: none

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Data Set Options for Relational Databases � PARTITION_KEY= Data Set Option 357

Syntax
ORHINTS=’Oracle-hint’

Syntax Description

Oracle-hint
specifies an Oracle hint for SAS/ACCESS to pass to the DBMS as part of an SQL
query.

Details
If you specify an Oracle hint, SAS passes the hint to Oracle. If you omit ORHINTS=,
SAS does not send any hints to Oracle.

Examples

This example runs a SAS procedure on DBMS data and SAS converts the procedure
to one or more SQL queries. ORHINTS= enables you to specify an Oracle hint for SAS
to pass as part of the SQL query.

libname mydblib oracle user=testuser password=testpass path=’myorapath’;

proc print data=mydblib.payroll(orhints=’/*+ ALL_ROWS */’);
run;

In the next example, SAS sends the Oracle hint ’/*+ ALL_ROWS */’ to Oracle as
part of this statement:

SELECT /*+ ALL_ROWS */ * FROM PAYROLL

PARTITION_KEY= Data Set Option

Specifies the column name to use as the partition key for creating fact tables.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster

Syntax
PARTITION_KEY=’column-name’

Details
You must enclose the column name in quotation marks.

Aster nCluster uses dimension and fact tables. To create a data set in Aster nCluster
without error, you must set both the DIMENSION= and PARTITION_KEY=
(LIBNAME or data set) options.

358 PRESERVE_COL_NAMES= Data Set Option � Chapter 11

See Also
To assign this option to a group of relational DBMS tables or views, see the

“PARTITION_KEY= LIBNAME Option” on page 164.
“DIMENSION= Data Set Option” on page 322

PRESERVE_COL_NAMES= Data Set Option

Preserves spaces, special characters, and case sensitivity in DBMS column names when you
create DBMS tables.

Alias: PRESERVE_NAMES= (see “Details”)
Default value: LIBNAME setting
Valid in: DATA and PROC steps (when creating DBMS tables using SAS/ACCESS
software).
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Oracle,
Sybase IQ, Teradata

Syntax
PRESERVE_COL_NAMES=YES | NO

Syntax Description

NO
specifies that column names that are used in DBMS table creation are derived from
SAS variable names by using the SAS variable name normalization rules. (For more
information see the VALIDVARNAME= system option.) However, the database
applies its DBMS-specific normalization rules to the SAS variable names when it
creates the DBMS column names.

The use of name literals to create column names that use database keywords or
special symbols other than the underscore character might be illegal when DBMS
normalization rules are applied. To include nonstandard SAS symbols or database
keywords, specify PRESERVE_COL_NAMES=YES.

YES
specifies that column names that are used in table creation are passed to the DBMS
with special characters and the exact, case-sensitive spelling of the name preserved.

Details
This option applies only when you use SAS/ACCESS to create a new DBMS table.
When you create a table, you assign the column names by using one of these methods:

� To control the case of the DBMS column names, specify variables with the desired
case and set PRESERVE_COL_NAMES=YES. If you use special symbols or
blanks, you must set VALIDVARNAME=ANY and use name literals. For more
information, see the naming topic in this document and also the system options
section in SAS Language Reference: Dictionary.

Data Set Options for Relational Databases � QUALIFIER= Data Set Option 359

� To enable the DBMS to normalize the column names according to its naming
conventions, specify variables with any case and set
PRESERVE_COLUMN_NAMES=NO.

When you use SAS/ACCESS to read from, insert rows into, or modify data in an
existing DBMS table, SAS identifies the database column names by their spelling.
Therefore, when the database column exists, the case of the variable does not matter.

For more information, see the SAS/ACCESS naming topic in the DBMS-specific
reference section for your interface.

To save some time when coding, specify the PRESERVE_NAMES= alias if you plan
to specify both the PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options
in your LIBNAME statement.

To use column names in your SAS program that are not valid SAS names, you must
use one of these techniques:

� Use the DQUOTE= option in PROC SQL and then reference your columns using
double quotation marks. For example:

proc sql dquote=ansi;
select "Total$Cost" from mydblib.mytable;

� Specify the global VALIDVARNAME=ANY system option and use name literals in
the SAS language. For example:

proc print data=mydblib.mytable;
format ’Total$Cost’n 22.2;

If you are creating a table in PROC SQL, you must also include the
PRESERVE_COL_NAMES=YES option. Here is an example:

libname mydblib oracle user=testuser password=testpass;
proc sql dquote=ansi;
create table mydblib.mytable (preserve_col_names=yes) ("my$column" int);

PRESERVE_COL_NAMES= does not apply to the Pass-Through Facility.

See Also

To assign this option to a group of relational DBMS tables or views, see the naming
in your interface for the “PRESERVE_COL_NAMES= LIBNAME Option” on page 166.

Chapter 2, “SAS Names and Support for DBMS Names,” on page 11
“VALIDVARNAME= System Option” on page 423

QUALIFIER= Data Set Option

Specifies the qualifier to use when you are reading database objects, such as DBMS tables and
views.

Default value: LIBNAME setting

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: HP Neoview, Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB

360 QUERY_BAND= Data Set Option � Chapter 11

Syntax
QUALIFIER=<qualifier-name>

Details
If this option is omitted, the default qualifier name, if any, is used for the data source.
QUALIFIER= can be used for any data source, such as a DBMS object, that allows
three-part identifier names: qualifier.schema.object.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“QUALIFIER= LIBNAME Option” on page 170.

QUERY_BAND= Data Set Option

Specifies whether to set a query band for the current transaction.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

Syntax
QUERY_BAND=”pair-name=pair_value” FOR TRANSACTION;

Syntax Description

pair-name=pair_value
specifies a name and value pair of a query band for the current transaction.

Details
Use this option to set unique identifiers on Teradata transactions and to add them to
the current transaction. The Teradata engine uses this syntax to pass the name-value
pair to Teradata:

SET QUERY_BAND="org=Marketing;report=Mkt4Q08;" FOR TRANSACTION;

For more information about this option and query-band limitations, see Teradata
SQL Reference: Data Definition Statements.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“QUERY_BAND= LIBNAME Option” on page 172.
“BULKLOAD= LIBNAME Option” on page 102

Data Set Options for Relational Databases � READ_ISOLATION_LEVEL= Data Set Option 361

“BULKLOAD= Data Set Option” on page 290
“FASTEXPORT= LIBNAME Option” on page 147
“Maximizing Teradata Load Performance” on page 804
“MULTILOAD= Data Set Option” on page 342

QUERY_TIMEOUT= Data Set Option

Specifies the number of seconds of inactivity to wait before canceling a query.

Default value: LIBNAME setting

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP Neoview,
Microsoft SQL Server, Netezza, ODBC, Sybase IQ

Syntax
QUERY_TIMEOUT=number-of-seconds

Details
QUERY_TIMEOUT= 0 indicates that there is no time limit for a query. This option is
useful when you are testing a query, you suspect that a query might contain an endless
loop, or the data is locked by another user.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“QUERY_TIMEOUT= LIBNAME Option” on page 172.

READ_ISOLATION_LEVEL= Data Set Option

Specifies which level of read isolation locking to use when you are reading data.

Default value: DBMS-specific

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, Microsoft SQL Server,
ODBC, OLE DB, Oracle, Sybase, Teradata

Syntax
READ_ISOLATION_LEVEL=DBMS-specific-value

362 READ_LOCK_TYPE= Data Set Option � Chapter 11

Syntax Description

dbms-specific-value
See the DBMS-specific reference section for your interface for this value.

Details
The degree of isolation defines the degree to which these items are affected:

� rows that are read and updated by the current application are available to other
concurrently executing applications

� update activity of other concurrently executing application processes can affect the
current application

DB2 under UNIX and PC Hosts, Netezza, ODBC: This option is ignored if you do not
set READ_LOCK_TYPE=ROW.

See the locking topic for your interface in the DBMS-specific reference section for
details.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“READ_ISOLATION_LEVEL= LIBNAME Option” on page 175.
“READ_LOCK_TYPE= Data Set Option” on page 362

READ_LOCK_TYPE= Data Set Option

Specifies how data in a DBMS table is locked during a read transaction.

Default value: DBMS-specific

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, Microsoft SQL Server,
ODBC, OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
READ_LOCK_TYPE=ROW | PAGE | TABLE | NOLOCK | VIEW

Syntax Description
Not all values are valid for every interface. See the details in this section.

ROW [valid only for DB2 under UNIX and PC Hosts, Microsoft SQL Server, ODBC,
Oracle]

locks a row if any of its columns are accessed.

PAGE [valid only for Sybase]
locks a page of data, which is a DBMS-specific number of bytes.

Data Set Options for Relational Databases � READ_MODE_WAIT= Data Set Option 363

TABLE [valid only for DB2 under UNIX and PC Hosts, DB2 under z/OS, ODBC,
Oracle, Microsoft SQL Server, Teradata]

locks the entire DBMS table. If you specify READ_LOCK_TYPE=TABLE, you must
also specify the CONNECTION=UNIQUE, or you receive an error message. Setting
CONNECTION=UNIQUE ensures that your table lock is not lost—for example, due
to another table closing and committing rows in the same connection.

NOLOCK [valid only for Microsoft SQL Server, Oracle, Sybase, and ODBC with the
Microsoft SQL Server driver]

does not lock the DBMS table, pages, or any rows during a read transaction.

VIEW [valid only for Teradata]
locks the entire DBMS view.

Details
If you omit READ_LOCK_TYPE=, you get either the default action for the DBMS that
you are using, or a lock for the DBMS that was set with the LIBNAME statement. See
the locking topic for your interface in the DBMS-specific reference section for details.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“READ_LOCK_TYPE= LIBNAME Option” on page 176.
“CONNECTION= LIBNAME Option” on page 108

READ_MODE_WAIT= Data Set Option

Specifies during SAS/ACCESS read operations whether Teradata waits to acquire a lock or fails
your request when a different user has locked the DBMS resource.

Default value: LIBNAME setting

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Teradata

Syntax
READ_MODE_WAIT=YES | NO

Syntax Description

YES
specifies that Teradata waits to acquire the lock, and SAS/ACCESS waits indefinitely
until it can acquire the lock.

NO
specifies that Teradata fails the lock request if the specified DBMS resource is locked.

364 READBUFF= Data Set Option � Chapter 11

Details
If you specify READ_MODE_WAIT=NO, and a different user holds a restrictive lock,
then the executing SAS step fails. SAS/ACCESS continues to process the job by
executing the next step. If you specify READ_MODE_WAIT=YES, SAS/ACCESS waits
indefinitely until it can acquire the lock.

A restrictive lock means that another user is holding a lock that prevents you from
obtaining your desired lock. Until the other user releases the restrictive lock, you
cannot obtain your lock. For example, another user’s table-level WRITE lock prevents
you from obtaining a READ lock on the table.

For more information, see locking topic in the Teradata section.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“READ_MODE_WAIT= LIBNAME Option” on page 177.
“Locking in the Teradata Interface” on page 832

READBUFF= Data Set Option

Specifies the number of rows of DBMS data to read into the buffer.

Alias: ROWSET_SIZE= [DB2 under UNIX and PC Hosts, Microsoft SQL Server,
Netezza, ODBC, OLE DB]
Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Microsoft SQL Server, Netezza, ODBC, OLE DB, Oracle,
Sybase, Sybase IQ

Syntax
READBUFF=integer

Syntax Description

integer
is the maximum value that is allowed by the DBMS.

Details
This option improves performance by specifying a number of rows that can be held in
memory for input into SAS. Buffering data reads can decrease network activities and
increase performance. However, because SAS stores the rows in memory, higher values
for READBUFF= use more memory. In addition, if too many rows are selected at once,
then the rows that are returned to the SAS application might be out of date.

When READBUFF=1, only one row is retrieved at a time. The higher the value for
READBUFF=, the more rows the SAS/ACCESS engine retrieves in one fetch operation.

Data Set Options for Relational Databases � SASDATEFMT= Data Set Option 365

DB2 under UNIX and PC Hosts: By default, the SQLFetch API call is used and no
internal SAS buffering is performed. Setting READBUFF=1 or greater causes the
SQLExtendedFetch API call to be used.

Greenplum, Microsoft SQL Server, Netezza, ODBC, Sybase IQ: By default, the
SQLFetch API call is used and no internal SAS buffering is performed. Setting
READBUFF=1 or greater causes the SQLExtendedFetch API call to be used.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“READBUFF= LIBNAME Option” on page 174.

SASDATEFMT= Data Set Option

Changes the SAS date format of a DBMS column.

Default value: DBMS-specific

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, HP Neoview,
Informix, Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase,
Sybase IQ, Teradata

Syntax
SASDATEFMT=(DBMS-date-col-1=’SAS-date-format’

<… DBMS-date-col-n=’SAS-date-format’>)

Syntax Description

DBMS-date-col
specifies the name of a date column in a DBMS table.

SAS-date-format
specifies a SAS date format that has an equivalent (like-named) informat. For
example, DATETIME21.2 is both a SAS format and a SAS informat, so it is a valid
value for the SAS-date-format argument.

Details
If the SAS column date format does not match the date format of the corresponding
DBMS column, convert the SAS date values to the appropriate DBMS date values. Use
the SASDATEFMT= option to convert date values from the default SAS date format to
another SAS date format that you specify.

Use the SASDATEFMT= option to prevent date type mismatches in these
circumstances:

� during input operations to convert DBMS date values to the correct SAS DATE,
TIME, or DATETIME values

366 SASDATEFMT= Data Set Option � Chapter 11

� during output operations to convert SAS DATE, TIME, or DATETIME values to
the correct DBMS date values.

The column names specified in this option must be DATE, DATETIME, or TIME
columns; columns of any other type are ignored.

The format specified must be a valid date format; output with any other format is
unpredictable.

If the SAS date format and the DBMS date format match, this option is not needed.
The default SAS date format is DBMS-specific and is determined by the data type of

the DBMS column. See the documentation for your SAS/ACCESS interface.

Note: For non-English date types, SAS automatically converts the data to the SAS
type of NUMBER. The SASDATEFMT= option does not currently handle these date
types. However, you can use a PROC SQL view to convert the DBMS data to a SAS
date format as you retrieve the data, or use a format statement in other contexts. �

Oracle: It is recommended that you use the DBSASTYPE= data set option instead of
SASDATEFMT=.

Examples

In this example, the APPEND procedure adds SAS data from the SASLIB.DELAY
data set to the Oracle table that is accessed by MYDBLIB.INTERNAT. Using
SASDATEFMT=, the default SAS format for the Oracle column DATES is changed to
the DATE9. format. Data output from SASLIB.DELAY into the DATES column in
MYDBLIB.INTERNAT now converts from the DATE9. format to the Oracle format
assigned to that type.

libname mydblib oracle user=testuser password=testpass;
libname saslib ’your-SAS-library’;

proc append base=mydblib.internat(sasdatefmt=(dates=’date9.’))force
data=saslib.delay;

run;

In the next example, SASDATEFMT= converts DATE1, a SAS DATETIME value, to
a Teradata date column named DATE1.

libname x teradata user=testuser password=testpass;

proc sql noerrorstop;
create table x.dateinfo (date1 date);
insert into x.dateinfo
(sasdatefmt=(date1=’datetime21.’))
values (’31dec2000:01:02:30’dt);

In this example, SASDATEFMT= converts DATE1, a Teradata date column, to a SAS
DATETIME type named DATE1.

libname x teradata user=testuser password=testpass;

data sas_local;
format date1 datetime21.;
set x.dateinfo(sasdatefmt=(date1=’datetime21.’));
run;

Data Set Options for Relational Databases � SCHEMA= Data Set Option 367

See Also
“DBSASTYPE= Data Set Option” on page 314

SCHEMA= Data Set Option

Allows reading of such database objects as tables and views in the specified schema.

Alias: DATABASE= [Teradata]
Default value: LIBNAME option [Aster nCluster, DB2 under UNIX and PC Hosts,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, Netezza, ODBC, OLE DB,
Oracle, Sybase, Sybase IQ], AUTHID= [DB2 under z/OS]
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Aster nCluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, Netezza, ODBC, OLE DB,
Oracle, Sybase, Sybase IQ, Teradata

Syntax
SCHEMA=schema-name

Syntax Description

schema-name
specifies the name that is assigned to a logical classification of objects in a relational
database.

Details
For this option to work, you must have appropriate privileges to the schema that is
specified.

If you do not specify this option, you connect to the default schema for your DBMS.
The values for SCHEMA= are usually case sensitive, so be careful when you specify

this option.
Aster nCluster: The default is none, which uses the database user’s default schema.

However, when the user’s default scheme is the user name—for example, when
SQLTables is called to get a table listing using PROC DATASETS or SAS Explorer—the
user name is used instead.

Oracle: The default is the LIBNAME setting. If PRESERVE_TAB_NAMES=NO, SAS
converts the SCHEMA= value to uppercase because all values in the Oracle data
dictionary are converted to uppercase unless quoted.

Sybase: You cannot use the SCHEMA= option when you use
UPDATE_LOCK_TYPE=PAGE to update a table.

Teradata: The default is the LIBNAME setting. If you omit this option, a libref points
to your default Teradata database, which often has the same name as your user name.
You can use this option to point to a different database. This option enables you to view
or modify a different user’s DBMS tables or views if you have the required Teradata
privileges. (For example, to read another user’s tables, you must have the Teradata

368 SEGMENT_NAME= Data Set Option � Chapter 11

privilege SELECT for that user’s tables.) For more information about changing the
default database, see the DATABASE statement in your Teradata documentation.

Examples

In this example, SCHEMA= causes DB2 to interpret MYDB.TEMP_EMPS as
SCOTT.TEMP_EMPS.

proc print data=mydb.temp_emps
schema=SCOTT;

run;

In this next example, SAS sends any reference to Employees as Scott.Employees.

libname mydblib oracle user=testuser password=testpass path="myorapath";

proc print data=employees (schema=scott);
run;

In this example, user TESTUSER prints the contents of the Employees table, which
is located in the Donna database.

libname mydblib teradata user=testuser pw=testpass;

proc print data=mydblib.employees(schema=donna);
run;

See Also
To assign this option to a group of relational DBMS tables or views, see the

“SCHEMA= LIBNAME Option” on page 181.
“PRESERVE_TAB_NAMES= LIBNAME Option” on page 168

SEGMENT_NAME= Data Set Option

Lets you control the segment in which you create a table.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Sybase

Syntax
SEGMENT_NAME=segment-name

Data Set Options for Relational Databases � SESSIONS= Data Set Option 369

Syntax Description

segment-name
specifies the name of the segment in which to create a table.

SESSIONS= Data Set Option

Specifies how many Teradata sessions to be logged on when using FastLoad, FastExport, or
Multiload.

Default value: none

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)

DBMS support: Teradata

Syntax

SESSIONS=number-of-sessions

Syntax Description

number-of-sessions
specifies a numeric value that indicates the number of sessions to be logged on.

Details

When reading data with FastExport or loading data with FastLoad and MultiLoad, you
can request multiple sessions to increase throughput. Using large values might not
necessarily increase throughput due to the overhead associated with session
management. Check whether your site has any recommended value for the number of
sessions to use. See your Teradata documentation for details about using multiple
sessions.

Example

This example uses SESSIONS= in a LIBNAME statement to request that five
sessions be used to load data with FastLoad.

libname x teradata user=prboni pw=prboni;

proc delete data=x.test;run;
data x.test(FASTLOAD=YES SESSIONS=2);
i=5;
run;

370 SET= Data Set Option � Chapter 11

See Also
“SESSIONS= LIBNAME Option” on page 183

SET= Data Set Option

Specifies whether duplicate rows are allowed when creating a table.

Alias: TBLSET
Default value: NO
Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata

Syntax
SET=YES | NO

Syntax Description

YES
specifies that no duplicate rows are allowed.

NO
specifies that duplicate rows are allowed.

Details
Use the SET= data set option to specify whether duplicate rows are allowed when
creating a table. The default value for SET= is NO. This option overrides the default
Teradata MULTISET characteristic.

Example

This example creates a Teradata table of type SET that does not allow duplicate rows.

libname trlib teradata user=testuser pw=testpass;
options sastrace=’,,,d’ sastraceloc=saslog;
proc delete data=x.test1;
run;

data x.test1(TBLSET=YES);
i=1;output;
run;

Data Set Options for Relational Databases � SLEEP= Data Set Option 371

SLEEP= Data Set Option

Specifies the number of minutes that MultiLoad waits before it retries logging in to Teradata.

Default value: 6
Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata

Syntax
SLEEP=number-of-minutes

Syntax Description

number-of-minutes
the number of minutes that MultiLoad waits before it retries logging on to Teradata.

Details
Use the SLEEP= data set option to indicate to MultiLoad how long to wait before it
retries logging on to Teradata when the maximum number of utilities are already
running. (The maximum number of Teradata utilities that can run concurrently varies
from 5 to 15, depending upon the database server setting.) The default value for
SLEEP= is 6 minutes. The value that you specify for SLEEP must be greater than 0.

Use SLEEP= with the TENACITY= data set option, which specifies the time in hours
that MultiLoad must continue to try the logon operation. SLEEP= and TENACITY=
function very much like the SLEEP and TENACITY run-time options of the native
Teradata MultiLoad utility.

See Also
For information about specifying how long to continue to retry a logon operation, see

the “TENACITY= Data Set Option” on page 372.
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“MULTILOAD= Data Set Option” on page 342

372 TENACITY= Data Set Option � Chapter 11

TENACITY= Data Set Option

Specifies how many hours MultiLoad continues to retry logging on to Teradata if the maximum
number of Teradata utilities are already running.

Default value: 4
Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata

Syntax
TENACITY=number-of-hours

Syntax Description

number-of-hours
the number of hours to continue to retry logging on to Teradata.

Details
Use the TENACITY= data set option to indicate to MultiLoad how long to continue
retrying a logon operation when the maximum number of utilities are already running.
(The maximum number of Teradata utilities that can run concurrently varies from 5 to
15, depending upon the database server setting.) The default value for TENACITY= is
four hours. The value specified for TENACITY must be greater than zero.

Use TENACITY= with SLEEP=, which specifies the number of minutes that
MultiLoad waits before it retries logging on to Teradata. SLEEP= and TENACITY=
function very much like the SLEEP and TENACITY run-time options of the native
Teradata MultiLoad utility.

This message is written to the SAS log if the time period that TENACITY= specifies
is exceeded.

ERROR: MultiLoad failed unexpectedly with returncode 12

Note: Check the MultiLoad log for more information about the cause of the
MultiLoad failure. SAS does not receive any informational messages from Teradata in
either of these situations:

� when the currently run MultiLoad process waits because the maximum number of
utilities are already running

� if MultiLoad is terminated because the time limit that TENACITY= specifies has
been exceeded

The native Teradata MultiLoad utility sends messages associated with SLEEP= and
TENACITY= only to the MultiLoad log. So nothing is written to the SAS log. �

Data Set Options for Relational Databases � TPT= Data Set Option 373

See Also

For information about specifying how long to wait before retrying a logon operation,
see the “SLEEP= Data Set Option” on page 371.

“Maximizing Teradata Load Performance” on page 804e
“Using the TPT API” on page 807
“MULTILOAD= Data Set Option” on page 342

TPT= Data Set Option

Specifies whether SAS uses the TPT API to load data for Fastload, MultiLoad, or Multi-Statement
insert requests.

Default value: YES

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Teradata

Syntax

TPT=YES | NO

Syntax Description

YES
specifies that SAS uses the TPT API when Fastload, MultiLoad, or Multi-Statement
insert is requested.

NO
specifies that SAS does not use the TPT API when Fastload, MultiLoad, or
Multi-Statement insert is requested.

Details

To use this option, you must first set BULKLOAD=YES.
By using the TPT API, you can load data into a Teradata table without working

directly with such stand-alone Teradata utilities as Fastload, MultiLoad, or TPump.
When TPT=NO, SAS uses the TPT API load driver for FastLoad, the update driver for
MultiLoad, and the stream driver for Multi-Statement insert.

When TPT=YES, sometimes SAS cannot use the TPT API due to an error or because
it is not installed on the system. When this happens, SAS does not produce an error,
but it still tries to load data using the requested load method (Fastload, MultiLoad, or
Multi-Statement insert). To check whether SAS used the TPT API to load data, look for
a similar message to this one in the SAS log:

NOTE: Teradata connection: TPT FastLoad/MultiLoad/MultiStatement insert
has read n row(s).

374 TPT_APPL_PHASE= Data Set Option � Chapter 11

Example

In this example, SAS data is loaded into Teradata using the TPT API. This is the
default method of loading when Fastload, MultiLoad, or Multi-Statement insert is
requested. SAS still tries to load data even if it cannot use the TPT API.

libname tera Teradata user=testuser pw=testpw;
/* Create data */
data testdata;
do i=1 to 100;
output;
end;
run;
/* Load using FastLoad TPT. This note appears in the SAS log if SAS uses TPT.
NOTE: Teradata connection: TPT FastLoad has inserted 100 row(s).*/
data tera.testdata(FASTLOAD=YES TPT=YES);
set testdata;
run;

See Also

To assign this option to a group of relational DBMS tables or views, see the “TPT=
LIBNAME Option” on page 192.

“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“MULTISTMT= Data Set Option” on page 348
“TPT_APPL_PHASE= Data Set Option” on page 374
“TPT_BUFFER_SIZE= Data Set Option” on page 376
“TPT_CHECKPOINT_DATA= Data Set Option” on page 377
“TPT_DATA_ENCRYPTION= Data Set Option” on page 379
“TPT_ERROR_TABLE_1= Data Set Option” on page 380
“TPT_ERROR_TABLE_2= Data Set Option” on page 381
“TPT_LOG_TABLE= Data Set Option” on page 382
“TPT_MAX_SESSIONS= Data Set Option” on page 384
“TPT_MIN_SESSIONS= Data Set Option” on page 384
“TPT_PACK= Data Set Option” on page 385
“TPT_PACKMAXIMUM= Data Set Option” on page 386
“TPT_RESTART= Data Set Option” on page 387
“TPT_TRACE_LEVEL= Data Set Option” on page 389
“TPT_TRACE_LEVEL_INF= Data Set Option” on page 390
“TPT_TRACE_OUTPUT= Data Set Option” on page 392
“TPT_WORK_TABLE= Data Set Option” on page 393

TPT_APPL_PHASE= Data Set Option
Specifies whether a load process that is being restarted has failed in the application phase.

Default value: NO
Valid in: PROC steps (when accessing DBMS data using SAS/ACCESS software)

Data Set Options for Relational Databases � TPT_APPL_PHASE= Data Set Option 375

DBMS support: Teradata

Syntax
TPT_APPL_PHASE=YES | NO

Syntax Description

YES
specifies that the Fastload or MultiLoad run that is being restarted has failed in the
application phase. This is valid only when SAS uses the TPT API.

NO
specifies that the load process that is being restarted has not failed in the application
phase.

Details
To use this option, you must first set TPT=YES.

SAS can restart from checkpoints any Fastload, MultiLoad, and Multi-Statement
insert that is run using the TPT API. The restart procedure varies: It depends on
whether checkpoints were recorded and in which phase the step failed during the load
process. Teradata loads data in two phases: the acquisition phase and the application
phase. In the acquisition phase, data transfers from SAS to Teradata. After this phase,
SAS has no more data to transfer to Teradata. If failure occurs after this phase, set
TPT_APPL_PHASE=YES in the restart step to indicate that restart is in the
application phase. (Multi-Statement insert does not have an application phase and so
need not be restarted if it fails after the acquisition phase.)

Use OBS=1 for the source data set when restart occurs in the application phase.
When SAS encounters TPT_RESTART=YES and TPT_APPL_PHASE=YES, it initiates
restart in the application phase. No data from the source data set is actually sent. If
you use OBS=1 for the source data set, the SAS step completes as soon as it reads the
first record. (It actually throws away the record because SAS already sent all data to
Teradata for loading.)

Examples

Here is a sample SAS program that failed after the acquisition phase.

libname x teradata user=testuser pw=testpw;
data x.test(MULTILOAD=YES TPT=YES CHECKPOINT=7);
do i=1 to 20;
output;
end;
run;

ERROR: Teradata connection: Failure occurred after the acquisition phase.
Restart outside of SAS using checkpoint data 14.

Set TPT_APPL_PHASE=YES to restart when failure occurs in the application phase
because SAS has already sent all data to Teradata.

proc append base=x.test(MULTILOAD=YES TPT_RESTART=YES
TPT_CHECKPOINT_DATA=14 TPT_APPL_PHASE=YES) data=test(obs=1);

376 TPT_BUFFER_SIZE= Data Set Option � Chapter 11

run;

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_CHECKPOINT_DATA= Data Set Option” on page 377
“TPT_RESTART= Data Set Option” on page 387

TPT_BUFFER_SIZE= Data Set Option

Specifies the output buffer size in kilobytes when SAS sends data to Teradata with Fastload or
MultiLoad using the TPT API.

Default value: 64
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

Syntax
TPT_BUFFER_SIZE=integer

Syntax Description

integer
specifies the size of data parcels in kilobytes from 1 through 64.

Details
To use this option, you must first set TPT=YES.

You can use the output buffer size to control the amount of data that is transferred in
each parcel from SAS to Teradata when using the TPT API. A larger buffer size can
reduce processing overhead by including more data in each parcel. See your Teradata
documentation for details.

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373

Data Set Options for Relational Databases � TPT_CHECKPOINT_DATA= Data Set Option 377

TPT_CHECKPOINT_DATA= Data Set Option

Specifies the checkpoint data to return to Teradata when restarting a failed MultiLoad or
Multi-Statement step that uses the TPT API.

Default value: none
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

Syntax
TPT_CHECKPOINT_DATA=checkpoint_data_in_error_message

Syntax Description

checkpoint_data_in_error_message
specifies the value to use to restart a failed MultiLoad or Multi-Statement step that
uses the TPT API.

Details
To use this option, you must first set TPT=YES and TPT_RESTART=YES.

SAS can restart from the last checkpoint any failed Fastload, MultiLoad, and
Multi-Statement insert that are run using the TPT API. Teradata returns a checkpoint
value each time MultiLoad or Multi-Statement records a checkpoint. The SAS log
contains this value when a load fails. SAS must provide the same value as a data set
option when it tries to restart the load process.

Here are the rules that govern restart.
� The TPT API does not return a checkpoint value when FastLoad records a

checkpoint. Therefore, you need not set TPT_CHECKPOINT_VALUE= when you
use FastLoad. Set TPT_RESTART= instead.

� If the default error table name, work table name, or restart table name is
overridden, SAS must use the same name while restarting the load process.

� Teradata loads data in two phases: the acquisition phase and the application
phase. In the acquisition phase, data transfers from SAS to Teradata. After this
phase, SAS has no more data to transfer to Teradata. If failure occurs after this
phase, set TPT_APPL_PHASE=YES while restarting. (Multi-Statement insert
does not have an application phase and so need not be restarted if it fails after the
acquisition phase.) Use OBS=1 for the source data set because SAS has already
sent the data to Teradata, so there is no need to send any more data.

� If failure occurred before the acquisition phase ended and the load process
recorded no checkpoints, you must restart the load process from the beginning by
setting TPT_RESTART=YES. However, you need not set
TPT_CHECKPOINT_VALUE= because no checkpoints were recorded. The error
message in the SAS log provides all needed information for restart.

Examples

In this example, assume that the MultiLoad step that uses the TPT API fails before
the acquisition phase ends and no options were set to record checkpoints.

378 TPT_CHECKPOINT_DATA= Data Set Option � Chapter 11

libname x teradata user=testuser pw=testpw;
data test;In
do i=1 to 100;
output;
end;
run;

/* Set TPT=YES is optional because it is the default. */
data x.test(MULTILOAD=YES TPT=YES);
set test;
run;

This error message is sent to the SAS log. You need not set
TPT_CHECKPOINT_DATA= because no checkpoints were recorded.

ERROR: Teradata connection: Correct error and restart as an APPEND process
with option TPT_RESTART=YES. Since no checkpoints were taken,
if the previous run used FIRSTOBS=n, use the same value in the restart.

Here is an example of the restart step.

proc append data=test base=x.test(FASTLOAD=YES TPT=YES TPT_RESTART=YES);
run;

In this next example, failure occurs after checkpoints are recorded.

libname tera teradata user=testuser pw=testpw;
/* Create data */
data testdata;
do i=1 to 100;
output;
end;
run;

/* Assume that this step fails after loading row 19. */
data x.test(MULTISTMT=YES CHECKPOINT=3);
set testdata;
run;

Here is the resulting error when it fails after loading 18 rows.

ERROR: Teradata connection: Correct error and restart as an APPEND process
with option TPT_RESTART=YES. If the previous run used FIRSTOBS=n,
use the value (n-1+ 19) for FIRSTOBS in the restart. Otherwise use FIRSTOBS= 19 .
Also specify TPT_CHECKPOINT_DATA= 18.

You can restart the failed step with this code.

proc append base=x.test(MULTISTMT=YES TPT_RESTART=YES
TPT_CHECKPOINT_DATA=18) data=test(firstobs=19);

run;

If failure occurs after the end of the acquisition phase, you must write a custom C++
program to restart from the point where it stopped.

Here is a sample SAS program that failed after the acquisition phase and the
resulting error message.

Data Set Options for Relational Databases � TPT_DATA_ENCRYPTION= Data Set Option 379

libname x teradata user=testuser pw=testpw;
data x.test(MULTILOAD=YES TPT=YES CHECKPOINT=7);
do i=1 to 20;
output;
end;
run;

ERROR: Teradata connection: Failure occurred after the acquisition phase.
Restart outside of SAS using checkpoint data 14.

Set TPT_APPL_PHASE=YES to restart when failure occurs in the application phase
because SAS has already sent all data to Teradata.

proc append base=x.test(MULTILOAD=YES TPT_RESTART=YES
TPT_CHECKPOINT_DATA=14 TPT_APPL_PHASE=YES) data=test(obs=1);

run;

See Also

“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“MULTILOAD= Data Set Option” on page 342
“MULTISTMT= Data Set Option” on page 348
“TPT= LIBNAME Option” on page 192
“BULKLOAD= Data Set Option” on page 290
“TPT_APPL_PHASE= Data Set Option” on page 374
“TPT_RESTART= Data Set Option” on page 387

TPT_DATA_ENCRYPTION= Data Set Option

Specifies whether to fully encrypt SQL requests, responses, and data when SAS sends data to
Teradata for Fastload, MultiLoad, or Multi-Statement insert that uses the TPT API.

Default value: NO

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Teradata

Syntax

TPT_DATA_ENCRYPTION=YES | NO

Syntax Description

YES
specifies that all communication between the Teradata client and server is encrypted
when using the TPT API.

380 TPT_ERROR_TABLE_1= Data Set Option � Chapter 11

NO
specifies that all communication between the Teradata client and server is not
encrypted when using the TPT API.

Details
To use this option, you must first set TPT=YES.

You can ensure that SQL requests, responses, and data that is transferred between
the Teradata client and server is encrypted when using the TPT API. See your Teradata
documentation for details.

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“MULTISTMT= Data Set Option” on page 348
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373

TPT_ERROR_TABLE_1= Data Set Option

Specifies the name of the first error table for SAS to use when using the TPT API with Fastload or
MultiLoad.

Default value: table_name_ET
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

Syntax
TPT_ERROR_TABLE_1=valid_teradata_table_name

Syntax Description

valid_teradata_table_name
specifies the name of the first error table for SAS to use when using the TPT API to
load data with Fastload or MultiLoad.

Details
To use this option, you must first set TPT=YES. This option is valid only when using
the TPT API.

Fastload and MultiLoad require an error table to hold records that were rejected
during the acquisition phase. If you do not specify an error table, Teradata appends
"_ET" to the name of the target table to load and uses it as the first error table by

Data Set Options for Relational Databases � TPT_ERROR_TABLE_2= Data Set Option 381

default. You can override this name by setting TPT_ERROR_TABLE_1=. If you do this
and the load step fails, you must specify the same name when restarting. For
information about errors that are logged in this table, see your Teradata documentation.

The name that you specify in TPT_ERROR_TABLE_1= must be unique. It cannot be
the name of an existing table unless it is in a restart scenario.

Example

In this example, a different name is provided for both the first and second error
tables that Fastload and MultiLoad use with the TPT API.

libname tera teradata user=testuser pw=testpw;
/* Load using Fastload TPT. Use alternate names for the error tables. */
data tera.testdata(FASTLOAD=YES TPT_ERROR_TABLE_1=testerror1

TPT_ERROR_TABLE_2=testerror2);
i=1;output; i=2;output;
run;

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_ERROR_TABLE_2= Data Set Option” on page 381
“TPT_LOG_TABLE= Data Set Option” on page 382
“TPT_WORK_TABLE= Data Set Option” on page 393

TPT_ERROR_TABLE_2= Data Set Option

Specifies the name of the second error table for SAS to use when using the TPT API with Fastload
or MultiLoad.

Default value: table_name_UV
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

Syntax
TPT_ERROR_TABLE_2=valid_teradata_table_name

382 TPT_LOG_TABLE= Data Set Option � Chapter 11

Syntax Description

valid_teradata_table_name
specifies the name of the second error table for SAS to use when using the TPT API
to load data with Fastload or MultiLoad.

Details
To use this option, you must first set TPT=YES. This option is valid only when using
the TPT API.

Fastload and MultiLoad require an error table to hold records that were rejected
during the acquisition phase. If you do not specify an error table, Teradata appends
"_UV" to the name of the target table to load and uses it as the second error table by
default. You can override this name by setting TPT_ERROR_TABLE_2=. If you do this
and the load step fails, you must specify the same name when restarting. For
information about errors that are logged in this table, see your Teradata documentation.

The name that you specify in TPT_ERROR_TABLE_2= must be unique. It cannot be
the name of an existing table unless it is in a restart scenario.

Example

In this example, a different name is provided for both the first and second error
tables that Fastload and MultiLoad use with the TPT API.

libname tera teradata user=testuser pw=testpw;
/* Load using Fastload TPT. Use alternate names for the error tables. */
data tera.testdata(FASTLOAD=YES TPT_ERROR_TABLE_1=testerror1

TPT_ERROR_TABLE_2=testerror2);
i=1;output; i=2;output;
run;

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_ERROR_TABLE_1= Data Set Option” on page 380
“TPT_LOG_TABLE= Data Set Option” on page 382
“TPT_WORK_TABLE= Data Set Option” on page 393

TPT_LOG_TABLE= Data Set Option

Specifies the name of the restart log table for SAS to use when using the TPT API with Fastload,
MultiLoad, or Multi-Statement insert.

Default value: table_name_RS

Data Set Options for Relational Databases � TPT_LOG_TABLE= Data Set Option 383

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Teradata

Syntax
TPT_LOG_TABLE=valid_teradata_table_name

Syntax Description

valid_teradata_table_name
specifies the name of the restart log table for SAS to use when using the TPT API to
load data with Fastload or MultiLoad.

Details
To use this option, you must first set TPT=YES. This option is valid only when using
the TPT API.

Fastload, MultiLoad, and Multi-Statement insert that use the TPT API require a
restart log table. If you do not specify a restart log table, Teradata appends "_RS" to the
name of the target table to load and uses it as the restart log table by default. You can
override this name by setting TPT_LOG_TABLE=. If you do this and the load step fails,
you must specify the same name when restarting.

The name that you specify in TPT_LOG_TABLE= must be unique. It cannot be the
name of an existing table unless it is in a restart scenario.

Example

In this example, a different name is provided for the restart log table that
Multi-Statement uses with the TPT API.

libname tera teradata user=testuser pw=testpw;
/* Load using Fastload TPT. Use alternate names for the log table. */
data tera.testdata(MULTISTMT=YES TPT_LOG_TABLE=restarttab);
i=1;output; i=2;output;
run;

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“MULTISTMT= Data Set Option” on page 348
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_ERROR_TABLE_1= Data Set Option” on page 380
“TPT_ERROR_TABLE_2= Data Set Option” on page 381
“TPT_WORK_TABLE= Data Set Option” on page 393

384 TPT_MAX_SESSIONS= Data Set Option � Chapter 11

TPT_MAX_SESSIONS= Data Set Option

Specifies the maximum number of sessions for Teradata to use when using the TPT API with
FastLoad, MultiLoad, or Multi-Statement insert.

Default value: 1 session per available Access Module Processor (AMP)
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

Syntax
TPT_MAX_SESSIONS=integer

Syntax Description

integer
specifies the maximum number of sessions for Teradata to use when using the TPT
API to load data with FastLoad, MultiLoad, or Multi-Statement insert.

Details
To use this option, you must first set TPT=YES. This option is valid only when using

the TPT API.
You can control the number of sessions for Teradata to use when using the TPT API

to load data with MultiLoad. The maximum value cannot be more than the number of
available Access Module Processors (AMPs). See your Teradata documentation for
details.

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“MULTISTMT= Data Set Option” on page 348
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_MIN_SESSIONS= Data Set Option” on page 384

TPT_MIN_SESSIONS= Data Set Option

Specifies the minimum number of sessions for Teradata to use when using the TPT API with
FastLoad, MultiLoad, or Multi-Statement insert.

Default value: 1

Data Set Options for Relational Databases � TPT_PACK= Data Set Option 385

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

Syntax
TPT_MIN_SESSIONS=integer

Syntax Description

integer
specifies the minimum number of sessions for Teradata to use when using the TPT
API to load data with FastLoad, MultiLoad, or Multi-Statement insert.

Details
To use this option, you must first set TPT=YES. This option is valid only when using
the TPT API.

You can control the number of sessions that are required before using the TPT API to
load data with MultiLoad. This value must be greater than zero and less than the
maximum number of required sessions. See your Teradata documentation for details.

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“MULTISTMT= Data Set Option” on page 348
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_MAX_SESSIONS= Data Set Option” on page 384

TPT_PACK= Data Set Option

Specifies the number of statements to pack into a Multi-Statement insert request when using the
TPT API.

Default value: 20
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

Syntax
TPT_PACK=integer

386 TPT_PACKMAXIMUM= Data Set Option � Chapter 11

Syntax Description

integer
specifies the number of statements to pack into a Multi-Statement insert request
when using the TPT API.

Details
To use this option, you must first set TPT=YES. This option is valid only when using
the TPT API.

The maximum value is 600. See your Teradata documentation for details.

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“MULTISTMT= Data Set Option” on page 348
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_PACKMAXIMUM= Data Set Option” on page 386

TPT_PACKMAXIMUM= Data Set Option

Specifies the maximum possible number of statements to pack into Multi-Statement insert
requests when using the TPT API.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

Syntax
TPT_PACKMAXIMUM=integer

Syntax Description

YES
specifies the maximum possible pack factor to use.

NO
specifies that the default pack factor is used.

Details
To use this option, you must first set TPT=YES. This option is valid only when using

the TPT API.
The maximum value is 600. See your Teradata documentation for details.

Data Set Options for Relational Databases � TPT_RESTART= Data Set Option 387

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“MULTISTMT= Data Set Option” on page 348
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_PACK= Data Set Option” on page 385

TPT_RESTART= Data Set Option

Specifies that a failed Fastload, MultiLoad, or Multi-Statement run that used the TPT API is being
restarted.

Default value: NO
Valid in: PROC steps (when accessing DBMS data using SAS/ACCESS software)
DBMS support: Teradata

Syntax
TPT_RESTART=YES | NO

Syntax Description

YES
specifies that the load process is being restarted.

NO
specifies that the load process is not being restarted.

Details
To use this option, you must first set TPT=YES. This option is valid only when using

the TPT API.
SAS can restart from checkpoints any Fastload, MultiLoad, and Multi-Statement

insert that are run using the TPT API. The restart procedure varies: It depends on
whether checkpoints were recorded and in which phase the step failed during the load
process. The error message in the log is extremely important and contains instructions
on how to restart.

Here are the rules that govern restart.
� The TPT API does not return a checkpoint value when FastLoad records a

checkpoint. Therefore, you need not set TPT_CHECKPOINT_VALUE= when you
use FastLoad. Set TPT_RESTART= instead.

� If the default error table name, work table name, or restart table name is
overridden, SAS must use the same name while restarting the load process.

� Teradata loads data in two phases: the acquisition phase and the application
phase. In the acquisition phase, data transfers from SAS to Teradata. After this
phase, SAS has no more data to transfer to Teradata. If failure occurs after this
phase, set TPT_APPL_PHASE=YES while restarting. (Multi-Statement insert

388 TPT_RESTART= Data Set Option � Chapter 11

does not have an application phase and so need not be restarted if it fails after the
acquisition phase.) Use OBS=1 for the source data set because SAS has already
sent the data to Teradata, so there is no need to send any more data.

� If failure occurred before the acquisition phase ended and the load process
recorded no checkpoints, you must restart the load process from the beginning by
setting TPT_RESTART=YES. However, you need not set
TPT_CHECKPOINT_VALUE= because no checkpoints were recorded. The error
message in the SAS log provides all needed information for restart.

Examples

In this example, assume that the MultiLoad step that uses the TPT API fails before
the acquisition phase ends and no options were set to record checkpoints.

libname x teradata user=testuser pw=testpw;
data test;In
do i=1 to 100;
output;
end;
run;

/* Set TPT=YES is optional because it is the default. */
data x.test(MULTILOAD=YES TPT=YES);
set test;
run;

This error message is sent to the SAS log. You need not set
TPT_CHECKPOINT_DATA= because no checkpoints were recorded.

ERROR: Teradata connection: Correct error and restart as an APPEND process
with option TPT_RESTART=YES. Since no checkpoints were taken,
if the previous run used FIRSTOBS=n, use the same value in the restart.

Here is an example of the restart step.

proc append data=test base=x.test(MULTILOAD=YES TPT=YES TPT_RESTART=YES);
run;

In this next example, failure occurs after checkpoints are recorded.

libname tera teradata user=testuser pw=testpw;
/* Create data */
data testdata;
do i=1 to 100;
output;
end;
run;
/* Assume that this step fails after loading row 19. */
data x.test(MULTISTMT=YES CHECKPOINT=3);
set testdata;
run;

Here is the resulting error when it fails after loading 18 rows.

ERROR: Teradata connection: Correct error and restart as an APPEND process
with option TPT_RESTART=YES. If the previous run used FIRSTOBS=n,
use the value (n-1+ 19) for FIRSTOBS in the restart. Otherwise use FIRSTOBS=19.
Also specify TPT_CHECKPOINT_DATA= 18.

Data Set Options for Relational Databases � TPT_TRACE_LEVEL= Data Set Option 389

You can restart the failed step with this code.

proc append base=x.test(MULTISTMT=YES TPT_RESTART=YES
TPT_CHECKPOINT_DATA=18) data=test(firstobs=19);

run;

If failure occurs after the end of the acquisition phase, you must write a custom C++
program to restart from the point where it stopped.

Here is a sample SAS program that failed after the acquisition phase and the
resulting error message.

libname x teradata user=testuser pw=testpw;
data x.test(MULTILOAD=YES TPT=YES CHECKPOINT=7);
do i=1 to 20;
output;
end;
run;

ERROR: Teradata connection: Failure occurred after the acquisition phase.
Restart outside of SAS using checkpoint data 14.

Set TPT_APPL_PHASE=YES to restart when failure occurs in the application phase
because SAS has already sent all data to Teradata.

proc append base=x.test(MULTILOAD=YES TPT_RESTART=YES
TPT_CHECKPOINT_DATA=14 TPT_APPL_PHASE=YES) data=test(obs=1);

run;

You must always use TPT_CHECKPOINT_DATA= with TPT_RESTART= for
MultLoad and Multi-Statement insert.

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“MULTISTMT= Data Set Option” on page 348
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_APPL_PHASE= Data Set Option” on page 374
“TPT_CHECKPOINT_DATA= Data Set Option” on page 377

TPT_TRACE_LEVEL= Data Set Option

Specifies the required tracing level for sending data to Teradata and using the TPT API with
Fastload, MultiLoad, or Multi-Statement insert.

Default value: 1
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

390 TPT_TRACE_LEVEL_INF= Data Set Option � Chapter 11

Syntax
TPT_TRACE_LEVEL=integer

Syntax Description

integer
specifies the needed tracing level (1 to 9) when loading data to Teradata.

1 no tracing

2 operator-level general trace

3 operator-level command-line interface (CLI) trace

4 operator-level notify method trace

5 operator-level common library trace

6 all operator-level traces

7 Telnet API (TELAPI) layer general trace

8 PutRow/GetRow trace

9 operator log message information

Details
To use this option, you must first set TPT=YES. This option is valid only when using
the TPT API.

You can perform debugging by writing diagnostic messages to an external log file
when loading data to Teradata using the TPT API. If you do not specify a name in
TPT_TRACE_OUTPUT= for the log file, a default name is generated using the current
timestamp. See your Teradata documentation for details.

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“MULTISTMT= Data Set Option” on page 348
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_TRACE_LEVEL_INF= Data Set Option” on page 390
“TPT_TRACE_OUTPUT= Data Set Option” on page 392

TPT_TRACE_LEVEL_INF= Data Set Option

Specifies the tracing level for the required infrastructure for sending data to Teradata and using
the TPT API with Fastload, MultiLoad, or Multi-Statement insert.

Data Set Options for Relational Databases � TPT_TRACE_LEVEL_INF= Data Set Option 391

Default value: 1

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Teradata

Syntax
TPT_TRACE_LEVEL_INF=integer

Syntax Description

integer
specifies the needed infrastructure tracing level (10 to 18) when loading data to
Teradata.

10 no tracing

11 operator-level general trace

12 operator-level command-line interface (CLI) trace

13 operator-level notify method trace

14 operator-level common library trace

15 all operator-level traces

16 Telnet API (TELAPI) layer general trace

17 PutRow/GetRow trace

18 operator log message information

Details
To use this option, you must first set TPT=YES. This option is valid only when using

the TPT API.
You can perform debugging by writing diagnostic messages to an external log file

when loading data to Teradata using the TPT API. If you do not specify a name in
TPT_TRACE_OUTPUT= for the log file, a default name is generated using the current
timestamp. See your Teradata documentation for details.

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“MULTISTMT= Data Set Option” on page 348
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_TRACE_LEVEL= Data Set Option” on page 389
“TPT_TRACE_OUTPUT= Data Set Option” on page 392

392 TPT_TRACE_OUTPUT= Data Set Option � Chapter 11

TPT_TRACE_OUTPUT= Data Set Option

Specifies the name of the external file for SAS to use for tracing when using the TPT API with
Fastload, MultiLoad, or Multi-Statement insert.

Default value: driver_name timestamp

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Teradata

Syntax
TPT_TRACE_OUTPUT=integer

Syntax Description

integer
specifies the name of the external file to use for tracing. The name must be a valid
filename for the operating system.

Details
To use this option, you must first set TPT=YES. This option is valid only when using

the TPT API.
When loading data to Teradata using Teradata PT API, diagnostic messages can be

written to an external log file. If no name is specified for the log file and tracing is
requested, then a default name is generated using the name of the driver and a
timestamp. If a name is specified using TPT_TRACE_OUTPUT, then that file will be
used for trace messages. If the file already exists, it is overwritten. Please refer to the
Teradata documentation for more details.

You can write diagnostic message to an external log file when loading data to
Teradata using the TPT PT API. If you do not specify a name in
TPT_TRACE_OUTPUT= for the log file and tracing is requested, a default name is
generated using the name of the driver and the current timestamp. Otherwise, the
name that you specify is used for tracing messages. See your Teradata documentation
for details.

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“BULKLOAD= LIBNAME Option” on page 102
“BULKLOAD= Data Set Option” on page 290
“MULTILOAD= Data Set Option” on page 342
“MULTISTMT= Data Set Option” on page 348
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_TRACE_LEVEL= Data Set Option” on page 389
“TPT_TRACE_LEVEL_INF= Data Set Option” on page 390

Data Set Options for Relational Databases � TPT_WORK_TABLE= Data Set Option 393

TPT_WORK_TABLE= Data Set Option

Specifies the name of the work table for SAS to use when using the TPT API with MultiLoad.

Default value: table_name_WT
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

Syntax
TPT_WORK_TABLE=valid_teradata_table_name

Syntax Description

valid_teradata_table_name
specifies the name of the work table for SAS to use when using the TPT API to load
data with MultiLoad.

Details
To use this option, you must first set TPT=YES. This option is valid only when using
the TPT API.

MultiLoad inserts that use the TPT API require a work table. If you do not specify a
work table, Teradata appends "_WT" to the name of the target table to load and uses it
as the work table by default. You can override this name by setting
TPT_WORK_TABLE=. If you do this and the load step fails, you must specify the same
name when restarting.

The name that you specify in TPT_WORK_TABLE= must be unique. It cannot be the
name of an existing table unless it is in a restart scenario.

Example

In this example, a different name is provided for the work table that MultiLoad uses
with the TPT API.

libname tera teradata user=testuser pw=testpw;
/* Load using Multiload TPT. Use alternate names for the work table. */
data tera.testdata(MULTILOAD=YES TPT_WORK_TABLE=worktab);
i=1;output; i=2;output;
run;

See Also
“Maximizing Teradata Load Performance” on page 804
“Using the TPT API” on page 807
“MULTILOAD= Data Set Option” on page 342
“TPT= LIBNAME Option” on page 192
“TPT= Data Set Option” on page 373
“TPT_ERROR_TABLE_1= Data Set Option” on page 380

394 TRAP151= Data Set Option � Chapter 11

“TPT_ERROR_TABLE_2= Data Set Option” on page 381
“TPT_LOG_TABLE= Data Set Option” on page 382

TRAP151= Data Set Option

Enables removal of columns that cannot be updated from a FOR UPDATE OF clause so that update
of columns can proceed as normal.

Default value: NO
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under z/OS

Syntax
TRAP151=YES | NO

Syntax Description

YES
removes the non-updatable column that is designated in the error-151 and
reprepares the statement for processing. This process is repeated until all columns
that cannot be updated are removed, and all remaining columns can be updated.

NO
disables TRAP151=. TRAP151= is disabled by default. It is not necessary to specify
NO.

Data Set Options for Relational Databases � TRAP151= Data Set Option 395

Examples

In this example, DB2DBUG is turned on so that you can see what occurs when
TRAP151=YES:

Output 11.2 SAS Log for TRAP151=YES

proc fsedit data=x.v4(trap151=yes);
run;
SELECT * FROM V4 FOR FETCH ONLY
SELECT * FROM V4 FOR FETCH ONLY
SELECT "A","X","Y","B","Z","C" FROM V4 FOR UPDATE OF "A","X","Y","B","Z","C"
DB2 SQL Error, sqlca->sqlcode=-151
WARNING: SQLCODE -151: repreparing SELECT as:

SELECT "A","X","Y","B","Z","C" FROM V4 FOR UPDATE OF "A","Y","B","Z","C"
DB2 SQL Error, sqlca->sqlcode=-151
WARNING: SQLCODE -151: repreparing SELECT as:

SELECT "A","X","Y","B","Z","C" FROM V4 FOR UPDATE OF "A","B","Z","C"
DB2 SQL Error, sqlca->sqlcode=-151
WARNING: SQLCODE -151: repreparing SELECT as:

SELECT "A","X","Y","B","Z","C" FROM V4 FOR UPDATE OF "A","B","C"
COMMIT WORK
NOTE: The PROCEDURE FSEDIT used 0.13 CPU seconds and 14367K.

The next example features the same code with TRAP151 turned off:

Output 11.3 SAS Log for TRAP151=NO

proc fsedit data=x.v4(trap151=no);
run;
SELECT * FROM V4 FOR FETCH ONLY
SELECT * FROM V4 FOR FETCH ONLY
SELECT "A","X","Y","B","Z","C" FROM V4 FOR UPDATE OF "A","X","Y","B","Z","C"
DB2 SQL Error, sqlca->sqlcode=-151
ERROR: DB2 prepare error; DSNT4081 SQLCODE= ---151, ERROR;

THE UPDATE STATEMENT IS INVALID BECAUSE THE CATALOG DESCRIPTION OF COLUMN C
INDICATES THAT IT CANNOT BE UPDATED.

COMMIT WORK
NOTE: The SAS System stopped processing this step because of errors.
NOTE: The PROCEDURE FSEDIT used 0.08 CPU seconds and 14367K.

396 UPDATE_ISOLATION_LEVEL= Data Set Option � Chapter 11

UPDATE_ISOLATION_LEVEL= Data Set Option

Defines the degree of isolation of the current application process from other concurrently running
application processes.

Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, Microsoft SQL Server,
MySQL, ODBC, OLE DB, Oracle, Sybase, Teradata

Syntax
UPDATE_ISOLATION_LEVEL=DBMS-specific-value

Syntax Description

dbms-specific-value
See the documentation for your SAS/ACCESS interface for the values for your DBMS.

Details
The degree of isolation identifies the degree to which:

� the rows that are read and updated by the current application are available to
other concurrently executing applications

� update activity of other concurrently executing application processes can affect the
current application.

See the SAS/ACCESS documentation for your DBMS for additional, DBMS-specific
details about locking.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“UPDATE_ISOLATION_LEVEL= LIBNAME Option” on page 195.

Data Set Options for Relational Databases � UPDATE_LOCK_TYPE= Data Set Option 397

UPDATE_LOCK_TYPE= Data Set Option

Specifies how data in a DBMS table is locked during an update transaction.

Default value: LIBNAME setting

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, Microsoft SQL Server,
ODBC, OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
UPDATE_LOCK_TYPE=ROW | PAGE | TABLE | NOLOCK | VIEW

Syntax Description
Not all values are valid for every interface. See the details in this section.

ROW
locks a row if any of its columns are going to be updated. (This value is valid in the
DB2 under UNIX and PC Hosts, Microsoft SQL Server, ODBC, OLE DB, and Oracle
interfaces.)

PAGE
locks a page of data, which is a DBMS-specific number of bytes. (This value is valid
in the Sybase interface.)

TABLE
locks the entire DBMS table. (This value is valid in the DB2 under UNIX and PC
Hosts, DB2 under z/OS, Microsoft SQL Server, ODBC, Oracle, and Teradata
interfaces.)

NOLOCK
does not lock the DBMS table, page, or any rows when reading them for update. (This
value is valid in the Microsoft SQL Server, ODBC, Oracle, and Sybase interfaces.)

VIEW
locks the entire DBMS view. (This value is valid in the Teradata interface.)

Details
If you omit UPDATE_LOCK_TYPE=, you get either the default action for the DBMS
that you are using, or a lock for the DBMS that was set with the LIBNAME statement.
You can set a lock for one DBMS table by using the data set option or for a group of
DBMS tables by using the LIBNAME option.

See the SAS/ACCESS documentation for your DBMS for additional, DBMS-specific
details about locking.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“UPDATE_LOCK_TYPE= LIBNAME Option” on page 196.

398 UPDATE_MODE_WAIT= Data Set Option � Chapter 11

UPDATE_MODE_WAIT= Data Set Option

Specifies during SAS/ACCESS update operations whether the DBMS waits to acquire a lock or fails
your request when a different user has locked the DBMS resource.

Default value: LIBNAME setting
Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata

Syntax
UPDATE_MODE_WAIT=YES | NO

Syntax Description

YES
specifies that Teradata waits to acquire the lock, so SAS/ACCESS waits indefinitely
until it can acquire the lock.

NO
specifies that Teradata fails the lock request if the specified DBMS resource is locked.

Details
If you specify UPDATE_MODE_WAIT=NO and if a different user holds a restrictive
lock, then your SAS step fails and SAS/ACCESS continues the job by processing the
next step. If you specify UPDATE_MODE_WAIT=YES, SAS/ACCESS waits indefinitely
until it can acquire the lock.

A restrictive lock means that a different user is holding a lock that prevents you from
obtaining your desired lock. Until the other user releases the restrictive lock, you
cannot obtain your lock. For example, another user’s table-level WRITE lock prevents
you from obtaining a READ lock on the table.

Use SAS/ACCESS locking options only when Teradata standard locking is
undesirable.

For more information, see the locking topic in the Teradata section.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“UPDATE_MODE_WAIT= LIBNAME Option” on page 196.
“Locking in the Teradata Interface” on page 832

UPDATE_SQL= Data Set Option

Determines which method to use to update and delete rows in a data source.

Default value: LIBNAME setting

Data Set Options for Relational Databases � UPDATEBUFF= Data Set Option 399

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Microsoft SQL Server, ODBC

Syntax
UPDATE_SQL=YES | NO

Syntax Description

YES
specifies that SAS/ACCESS uses Current-of-Cursor SQL to update or delete rows in
a table.

NO
specifies that SAS/ACCESS uses the SQLSetPos() API to update or delete rows in a
table.

Details
This is the update and delete equivalent of the INSERT_SQL= data set option.

See Also
To assign this option to a group of relational DBMS tables or views, see the

“UPDATE_SQL= LIBNAME Option” on page 198.
“INSERT_SQL= Data Set Option” on page 330

UPDATEBUFF= Data Set Option

Specifies the number of rows that are processed in a single DBMS update or delete operation.

Default value: LIBNAME setting

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Syntax
UPDATEBUFF=positive-integer

Syntax Description

positive-integer
is the maximum value that is allowed by the DBMS.

400 UPDATEBUFF= Data Set Option � Chapter 11

Details
When updating with the VIEWTABLE window or PROC FSVIEW, use
UPDATEBUFF=1 to prevent the DBMS interface from trying to update multiple rows.
By default, these features update only one observation at a time (since by default they
use record-level locking, they lock only the observation that is currently being edited).

See Also
To assign this option to a group of relational DBMS tables or views, see the

“UPDATEBUFF= LIBNAME Option” on page 199.

401

C H A P T E R

12
Macro Variables and System
Options for Relational Databases

Introduction to Macro Variables and System Options 401
Macro Variables for Relational Databases 401

System Options for Relational Databases 403

Available System Options 403

DB2CATALOG= System Option 403

DBFMTIGNORE= System Option 404
DBIDIRECTEXEC= System Option 405

DBSRVTP= System Option 407

SASTRACE= System Option 408

SASTRACELOC= System Option 419

SQLGENERATION= System Option 420

SQLMAPPUTTO= System Option 422
VALIDVARNAME= System Option 423

Introduction to Macro Variables and System Options

This section describes the system options and macro variables that you can use with
SAS/ACCESS software. It describes only those components of the macro facility that
depend on SAS/ACCESS engines. Most features of the SAS macro facility are portable.
For more information, see the SAS Macro Language: Reference and the SAS Help for
the macro facility.

Macro Variables for Relational Databases

SYSDBMSG, SYSDBRC, SQLXMSG, and SQLXRC are automatic SAS macro
variables. The SAS/ACCESS engine and your DBMS determine their values. Initially,
SYSDBMSG and SQLXMSG are blank, and SYSDBRC and SQLXRC are set to 0.

SAS/ACCESS generates several return codes and error messages while it processes
your programs. This information is available to you through these SAS macro variables.

SYSDBMSG
contains DBMS-specific error messages that are generated when you use
SAS/ACCESS software to access your DBMS data.

SYSDBRC
contains DBMS-specific error codes that are generated when you use SAS/ACCESS
software to access your DBMS data. Error codes that are returned are text, not
numbers.

402 Macro Variables for Relational Databases � Chapter 12

You can use these variables anywhere while you are accessing DBMS data. Because
only one set of macro variables is provided, it is possible that, if tables from two
different DBMSs are accessed, it might not be clear from which DBMS the error
message originated. To address this problem, the name of the DBMS is inserted at the
beginning of the SYSDBMSG macro variable message or value. The contents of the
SYSDBMSG and SYSDBRC macro variables can be printed in the SAS log by using the
%PUT macro. They are reset after each SAS/ACCESS LIBNAME statement, DATA
step, or procedure is executed. In the statement below, %SUPERQ masks special
characters such as &, %, and any unbalanced parentheses or quotation marks that
might exist in the text stored in the SYSDBMSG macro.

%put %superq(SYSDBMSG)

These special characters can cause unpredictable results if you use this statement:

%put &SYSDBMSG

It is more advantageous to use %SUPERQ.
If you try to connect to Oracle and use the incorrect password, you receive the

messages shown in this output.

Output 12.1 SAS Log for an Oracle Error

2? libname mydblib oracle user=pierre pass=paris path="orav7";

ERROR: Oracle error trying to establish connection. Oracle error is
ORA-01017: invalid username/password; logon denied

ERROR: Error in the LIBNAME or FILENAME statement.
3? %put %superq(sysdbmsg);

Oracle: ORA-01017: invalid username/passsword; logon denied
4? %put &sysdbrc;

-1017
5?

You can also use SYMGET to retrieve error messages:

msg=symget("SYSDBMSG");

For example:

data_null_;
msg=symget("SYSDBMSG");
put msg;
run;

The SQL pass-through facility generates return codes and error messages that are
available to you through these SAS macro variables:

SQLXMSG
contains DBMS-specific error messages.

SQLXRC
contains DBMS-specific error codes.

You can use SQLXMSG and SQLXRC only through explicit pass-through with the
SQL pass-through facility. See Return Codes“Return Codes” on page 426.

You can print the contents of SQLXMSG and SQLXRC in the SAS log by using the
%PUT macro. SQLXMSG is reset to a blank string, and SQLXRC is reset to 0 when
any SQL pass-through facility statement is executed.

Macro Variables and System Options for Relational Databases � DB2CATALOG= System Option 403

System Options for Relational Databases

Available System Options

Table 12.1 Available SAS System Options

SAS System Options Usage

DB2CATALOG= A restricted option

DBFMTIGNORE= NODBFMTIGNORE

DBIDIRECTEXEC= Specifically for use with SQL pass-through

DBSRVTP=

DBSLICEPARM=

For databases

REPLACE= No SAS/ACCESS interface support

SASTRACE=

SASTRACELOC=

SQLMAPPUTTO=

VALIDVARNAME=

Have specific SAS/ACCESS applications

DB2CATALOG= System Option

Overrides the default owner of the DB2 catalog tables.

Default value: SYSIBM
Valid in: OPTIONS statement

Syntax
DB2CATALOG= SYSIBM | catalog-owner

Syntax Description

SYSIBM
specifies the default catalog owner.

catalog-owner
specifies a different catalog owner from the default.

Details
The default value for this option is initialized when SAS is installed. You can override
the default only when these conditions are met:

404 DBFMTIGNORE= System Option � Chapter 12

� SYSIBM cannot be the owner of the catalog that you want to access.
� Your site must have a shadow catalog of tables (one to which all users have access).
� You must set DB2CATALOG= in the restricted options table and then rebuild the

table.

This option applies to only the local DB2 subsystem. So when you set the
LOCATION= or SERVER= connection option in the LIBNAME statement, the
SAS/ACCESS engine always uses SYSIBM as the default value.

DBFMTIGNORE= System Option

Specifies whether to ignore numeric formats.

Default value: NODBFMTIGNORE
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
DBMS Support: Teradata

Syntax
DBFMTIGNORE | NODBFMTIGNORE

Syntax Description

DBFMTIGNORE
specifies that numeric formats are ignored and FLOAT data type is created.

NODBFMTIGNORE
specifies that numeric formats are used.

Details
This option pertains only to SAS formats that are numeric. SAS takes all other
formats—such as date, time, datetime, and char—as hints when processing output. You
normally use numeric formats to specify a database data type when processing output.
Use this option to ignore numeric formats and create a FLOAT data type instead. For
example, the SAS/ACCESS engine creates a table with a column type of INT for a SAS
variable with a format of 5.0.

See Also
“Deploying and Using SAS Formats in Teradata” on page 816
“In-Database Procedures in Teradata” on page 831
“SQL_FUNCTIONS= LIBNAME Option” on page 186

Macro Variables and System Options for Relational Databases � DBIDIRECTEXEC= System Option 405

DBIDIRECTEXEC= System Option

Lets the SQL pass-through facility optimize handling of SQL Statements by passing them directly
to the databases for execution.

Default value: NODBIDIRECTEXEC

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

DBMS support: Aster n Cluster, DB2 under UNIX and PC Hosts, DB2 under z/OS,
Greenplum, HP Neoview, Informix, Microsoft SQL Server, MySQL, Netezza, ODBC,
OLE DB, Oracle, Sybase, Sybase IQ, Teradata

Syntax
DBIDIRECTEXEC | NODBIDIRECTEXEC

Syntax Description

DBIDIRECTEXEC
indicates that the SQL pass-through facility optimizes handling of SQL statements
by passing them directly to the database for execution, which optimizes performance.
Using this option, you can process CREATE TABLE AS SELECT and DELETE
statements.

NODBIDIRECTEXEC
indicates that the SQL pass-through facility does not optimize handling of SQL
statements.

Details
You can significantly improve CPU and input/output performance by using this option,
which applies to all hosts and all SAS/ACCESS engines.

Certain database-specific criteria exist for passing SQL statements to the DBMS.
These criteria are the same as the criteria that exist for passing joins. For details for
your DBMS, see “Passing Joins to the DBMS” on page 43 and “When Passing Joins to
the DBMS Will Fail” on page 45.

When these criteria are met, a database can process the CREATE TABLE table-name
AS SELECT statement in a single step instead of as three separate statements
(CREATE, SELECT, and INSERT). For example, if multiple librefs point to different
data sources, the statement is processed normally, regardless of how you set this option.
However, when you enable it, PROC SQL sends the CREATE TABLE AS SELECT
statement to the database.

You can also send a DELETE statement directly to the database for execution, which
can improve CPU, input, and output performance.

Once a system administrator sets the default for this option globally, users can
override it within their own configuration file.

When you specify DBIDIRECTEXEC=, PROC SQL can pass this statement directly
to the database:

CREATE TABLE table-name AS SELECT query

406 DBIDIRECTEXEC= System Option � Chapter 12

Before an SQL statement can be processed, all librefs that are associated with the
statement must reference compatible data sources. For example, a CREATE TABLE AS
SELECT statement that creates an Oracle table by selecting from a SAS table is not
sent to the database for execution because the data sources are not compatible.

The libref must also use the same database server for all compatible data sources.

Example

This example creates a temporary table from a SELECT statement using the
DBIDIRECTEXEC system option.

libname lib1 db2 user=andy password=andypwd datasrc=sample connection=global;
libname lib2 db2 user=mike password=mikepwd datasrc=sample

connection=global dbmstemp=yes;

data lib1.tab1;
a=1;
b=’one’;

run;

options dbidirectexec sastraceloc=saslog;

proc sql;
create table lib2.tab1 as
select * from lib1.tab1;

quit;

In this next example, two librefs point to the same database server but use different
schemas.

libname lib1 db2 user=henry password=henrypwd datasrc=sample;
libname lib2 db2 user=scott password=scottpwd datasrc=sample;

data lib1.tab1;
a=1;
b=’one’;

run;

options dbidirectexec sastraceloc=saslog;

proc sql;
create table lib2.tab2 as
select * from lib1.t1;

quit;

This example shows how a statement can be passed directly to the database for
execution, if you specify DBIDIRECTEXEC.

libname company oracle user=scott pw=tiger path=mydb;
proc sql;

create table company.hr_tab as
select * from company.emp
where deptid = ’HR’;

quit;

Macro Variables and System Options for Relational Databases � DBSRVTP= System Option 407

DBSRVTP= System Option

Specifies whether SAS/ACCESS engines holds or blocks the originating client while making
performance-critical calls to the database.

Default value: NONE
Valid in: SAS invocation

Syntax
DBSRVTP= ’ALL’ | ’NONE’ | ’(engine-name(s))’

Syntax Description

ALL
indicates that SAS does not use any blocking operations for all underlying
SAS/ACCESS engines that support this option.

NONE
indicates that SAS uses standard blocking operations for all SAS/ACCESS engines.

engine-name(s)
indicates that SAS does not use any blocking operations for the specified
SAS/ACCESS engines. You can specify one or more engine names. If you specify
more than one, separate them with blank spaces and enclose the list in parentheses.

db2 (only supported under UNIX and PC Hosts)
informix
netezza
odbc (indicates that SAS uses non-blocking operations for SAS/ACCESS ODBC

and Microsoft SQL Server interfaces)
oledb
oracle
sybase
teradata (not supported on z/OS)

Details
This option applies only when SAS is called as a server responding to multiple clients.

You can use this option to help throughput of the SAS server because it supports
multiple simultaneous execution streams, if the server uses certain SAS/ACCESS
interfaces. Improved throughput occurs when the underlying SAS/ACCESS engine does
not hold or block the originating client, such that any one client using a SAS/ACCESS
product does not keep the SAS server from responding to other client requests.
SAS/SHARE software and SAS Integration Technologies are two ways of invoking SAS
as a server.

This option is a system invocation option, which means the value is set when SAS is
invoked. Because the DBSRVTP= option uses multiple native threads, enabling this
option uses the underlying DBMS’s threading support. Some databases handle
threading better than others, so you might want to invoke DBSRVTP= for some DBMSs
and not others. Refer to your documentation for your DBMS for more information.

408 SASTRACE= System Option � Chapter 12

The option accepts a string where values are the engine name of a SAS/ACCESS
product, ALL, or NONE. If multiple values are specified, enclose the values in quotation
marks and parentheses, and separate the values with a space.

This option is applicable on all Windows platforms, AIX, SLX, and z/OS (Oracle only).
On some of these hosts, you can call SAS with the -SETJMP system option. Setting
-SETJMP disables the DBSRVTP= option.

Examples

These examples call SAS from the UNIX command line:

sas -dbsrvtp all

sas -dbsrvtp ’(oracle db2)’

sas -dbsrvtp teradata

sas -dbsrvtp ’(sybase informix odbc oledb)’

sas -dbsrvtp none

SASTRACE= System Option

Generates trace information from a DBMS engine.

Default value: none
Valid in: configuration file, SAS invocation, OPTIONS statement
DBMS support: DB2 under UNIX and PC Hosts, DB2 under z/OS, HP Neoview, Informix,
Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Syntax
SASTRACE= ’,,,d’ | ’,,d,’ | ’d,’ | ’,,,db’ | ’,,,s’ | ’,,,sa’ | ’,,t,’

Syntax Description

’,,,d’
specifies that all SQL statements that are sent to the DBMS are sent to the log.

Here are the applicable statements:

SELECT

CREATE

DROP

INSERT

Macro Variables and System Options for Relational Databases � SASTRACE= System Option 409

UPDATE

DELETE

SYSTEM CATALOG

COMMIT

ROLLBACK
For engines that do not generate SQL statements, API calls and all parameters

are sent to the log.

’,,d,’
specifies that all routine calls are sent to the log. All function enters, exits, and
pertinent parameters and return codes are traced when you select this option. The
information varies from engine to engine, however.

This option is most useful if you have a problem and need to send a SAS log to
technical support for troubleshooting.

’d,’
specifies that all DBMS calls—such as API and client calls, connection information,
column bindings, column error information, and row processing—are sent to the log.
This information will vary from engine to engine, however.

This option is most useful if you have a problem and need to send a SAS log to
technical support for troubleshooting.

’,,,db’
specifies that only a brief version of all SQL statements that the ’,,,d’ option normally
generates are sent to the log.

’,,,s’
specifies that a summary of timing information for calls made to the DBMS is sent to
the log.

’,,,sa’
specifies that timing information for each call that is made to the DBMS is sent to
the log along with a summary.

’,,t,’
specifies that all threading information is sent to the log. Here is the information it
includes:

� the number of threads that are spawned
� the number of observations that each thread contains
� the exit code of the thread, if it fails

Details Specific to SAS/ACCESS
The SASTRACE= options have behavior that is specific to SAS/ACCESS software.

SASTRACE= is a very powerful tool to use when you want to see the commands that
SAS/ACCESS sent to your DBMS. SASTRACE= output is DBMS-specific. However,
most SAS/ACCESS engines show you statements like SELECT or COMMIT as the
DBMS processes them for the SAS application. These details below can help you
manage SASTRACE= output in your DBMS.

� When using SASTRACE= on PC platforms, you must also specify
SASTRACELOC=.

� To turn SAS tracing off, specify this option:

options sastrace=off;

� Log output is much easier to read if you specify NOSTSUFFIX. (NOSTSUFFIX is
not supported on z/OS.) Because this code is entered without specifying the option,
the resulting log is longer and harder to decipher.

410 SASTRACE= System Option � Chapter 12

options sastrace=’,,,d’ sastraceloc=saslog;
proc print data=mydblib.snow_birthdays;
run;

Here is the resulting log.

0 1349792597 sastb_next 2930 PRINT
ORACLE_5: Prepared: 1 1349792597 sastb_next 2930 PRINT
SELECT * FROM scott.SNOW_BIRTHDAYS 2 1349792597 sastb_next 2930 PRINT
3 1349792597 sastb_next 2930 PRINT
16 proce print data=mydblib.snow_birthdays; run;

4 1349792597 sastb_next 2930 PRINT
ORACLE_6: Executed: 5 1349792597 sastb_next 2930 PRINT
Prepared statement ORACLE_5 6 1349792597 sastb_next 2930 PRINT
7 1349792597 sastb_next 2930 PRINT

However, by using NOSTSUFFIX, the log file becomes much easier to read.

options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;
proc print data=mydblib.snow_birthdays;
run;

Here is the resulting log.

ORACLE_1: Prepared:
SELECT * FROM scott.SNOW_BIRTHDAYS

12 proc print data=mydblib.snow_birthdays; run;

ORACLE_2: Executed:
Prepared statement ORACLE_1

Examples

These examples use NOSTSUFFIX and SASTRACELOC=SASLOG and are based on
this data set:

data work.winter_birthdays;
input empid birthdat date9. lastname $18.;
format birthdat date9.;

datalines;
678999 28DEC1966 PAVEO JULIANA 3451
456788 12JAN1977 SHIPTON TIFFANY 3468
890123 20FEB1973 THORSTAD EDVARD 3329
;
run;

Example 1: SQL Trace ’,,,d’

options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger schema=bday_data;

data mydblib.snow_birthdays;
set work.winter_birthdays;

run;

libname mydblib clear;

Macro Variables and System Options for Relational Databases � SASTRACE= System Option 411

Output is written to the SAS log, as specified in the SASTRACELOC=SASLOG option.

Output 12.2 SAS Log Output from the SASTRACE= ’,,,d’ System Option

30 data work.winter_birthdays;

31 input empid birthdat date9. lastname $18.;

32 format birthdat date9.;

33 datalines;

NOTE: The data set WORK.WINTER_BIRTHDAYS has 3 observations and 3 variables.

NOTE: DATA statement used (Total process time):

real time 0.03 seconds

cpu time 0.04 seconds

37 ;

38 run;

39 options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;

40 libname mydblib oracle user=scott password=XXXXX schema=bday_data;

NOTE: Libref MYDBLIB was successfully assigned as follows:

Engine: ORACLE

Physical Name:

41 proc delete data=mydblib.snow_birthdays; run;

ORACLE_1: Prepared:

SELECT * FROM SNOW_BIRTHDAYS

ORACLE_2: Executed:

DROP TABLE SNOW_BIRTHDAYS

NOTE: Deleting MYDBLIB.SNOW_BIRTHDAYS (memtype=DATA).

NOTE: PROCEDURE DELETE used (Total process time):

real time 0.26 seconds

cpu time 0.12 seconds

42 data mydblib.snow_birthdays;

43 set work.winter_birthdays;

44 run;

ORACLE_3: Prepared:

SELECT * FROM SNOW_BIRTHDAYS

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

ORACLE_4: Executed:

CREATE TABLE SNOW_BIRTHDAYS(empid NUMBER ,birthdat DATE,lastname VARCHAR2 (18))

ORACLE_5: Prepared:

INSERT INTO SNOW_BIRTHDAYS (empid,birthdat,lastname) VALUES

(:empid,TO_DATE(:birthdat,’DDMONYYYY’,’NLS_DATE_LANGUAGE=American’),:lastname)

NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.

ORACLE_6: Executed:

Prepared statement ORACLE_5

ORACLE: *-*-*-*-*-*-* COMMIT *-*-*-*-*-*-*

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.

ORACLE: *-*-*-*-*-*-* COMMIT *-*-*-*-*-*-*

NOTE: DATA statement used (Total process time):

real time 0.47 seconds

cpu time 0.13 seconds

412 SASTRACE= System Option � Chapter 12

ORACLE_7: Prepared:

SELECT * FROM SNOW_BIRTHDAYS

45 proc print data=mydblib.snow_birthdays; run;

ORACLE_8: Executed:

Prepared statement ORACLE_7

NOTE: There were 3 observations read from the data set MYDBLIB.SNOW_BIRTHDAYS.

NOTE: PROCEDURE PRINT used (Total process time):

real time 0.04 seconds

cpu time 0.04 seconds

46

47 libname mydblib clear;

NOTE: Libref MYDBLIB has been deassigned.

Example 2: Log Trace ’,,d’

options sastrace=’,,d,’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger schema=bday_data;

data mydblib.snow_birthdays;
set work.winter_birthdays;

run;

libname mydblib clear;

Output is written to the SAS log, as specified in the SASTRACELOC=SASLOG option.

Macro Variables and System Options for Relational Databases � SASTRACE= System Option 413

Output 12.3 SAS Log Output from the SASTRACE= ’,,d,’ System Option

84 options sastrace=’,,d,’ sastraceloc=saslog nostsuffix;

ACCESS ENGINE: Entering DBICON

ACCESS ENGINE: Number of connections is 1

ORACLE: orcon()

ACCESS ENGINE: Successful physical conn id 1

ACCESS ENGINE: Exiting DBICON, Physical Connect id = 1, with rc=0X00000000

85 libname mydblib oracle user=dbitest password=XXXXX schema=bday_data;

ACCESS ENGINE: CONNECTION= SHAREDREAD

NOTE: Libref MYDBLIB was successfully assigned as follows:

Engine: ORACLE

Physical Name: lupin

86 data mydblib.snow_birthdays;

87 set work.winter_birthdays;

88 run;

ACCESS ENGINE: Entering yoeopen

ACCESS ENGINE: Entering dbiopen

ORACLE: oropen()

ACCESS ENGINE: Successful dbiopen, open id 0, connect id 1

ACCESS ENGINE: Exit dbiopen with rc=0X00000000

ORACLE: orqall()

ORACLE: orprep()

ACCESS ENGINE: Entering dbiclose

ORACLE: orclose()

ACCESS ENGINE: DBICLOSE open_id 0, connect_id 1

ACCESS ENGINE: Exiting dbiclos with rc=0X00000000

ACCESS ENGINE: Access Mode is XO_OUTPUT

ACCESS ENGINE: Access Mode is XO_SEQ

ACCESS ENGINE: Shr flag is XHSHRMEM

ACCESS ENGINE: Entering DBICON

ACCESS ENGINE: CONNECTION= SHAREDREAD

ACCESS ENGINE: Number of connections is 2

ORACLE: orcon()

ACCESS ENGINE: Successful physical conn id 2

ACCESS ENGINE: Exiting DBICON, Physical Connect id = 2, with rc=0X00000000

ACCESS ENGINE: Entering dbiopen

ORACLE: oropen()

ACCESS ENGINE: Successful dbiopen, open id 0, connect id 2

ACCESS ENGINE: Exit dbiopen with rc=0X00000000

ACCESS ENGINE: Exit yoeopen with SUCCESS.

ACCESS ENGINE: Begin yoeinfo

ACCESS ENGINE: Exit yoeinfo with SUCCESS.

ORACLE: orovar()

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

ORACLE: oroload()

ACCESS ENGINE: Entering dbrload with SQL Statement set to

CREATE TABLE SNOW_BIRTHDAYS(empid NUMBER ,birthdat DATE,lastname VARCHAR2 (18))

ORACLE: orexec()

ORACLE: orexec() END

ORACLE: orins()

ORACLE: orubuf()

ORACLE: orubuf()

ORACLE: SAS date : 28DEC1966

ORACLE: orins()

ORACLE: SAS date : 12JAN1977

ORACLE: orins()

ORACLE: SAS date : 20FEB1973

NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.

414 SASTRACE= System Option � Chapter 12

ORACLE: orforc()

ORACLE: orflush()

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.

ACCESS ENGINE: Enter yoeclos

ACCESS ENGINE: Entering dbiclose

ORACLE: orclose()

ORACLE: orforc()

ORACLE: orflush()

ACCESS ENGINE: DBICLOSE open_id 0, connect_id 2

ACCESS ENGINE: Exiting dbiclos with rc=0X00000000

ACCESS ENGINE: Entering DBIDCON

ORACLE: ordcon

ACCESS ENGINE: Physical disconnect on id = 2

ACCESS ENGINE: Exiting DBIDCON with rc=0X00000000, rc2=0X00000000

ACCESS ENGINE: Exit yoeclos with rc=0x00000000

NOTE: DATA statement used (Total process time):

real time 0.21 seconds

cpu time 0.06 seconds

ACCESS ENGINE: Entering DBIDCON

ORACLE: ordcon

ACCESS ENGINE: Physical disconnect on id = 1

ACCESS ENGINE: Exiting DBIDCON with rc=0X00000000, rc2=0X00000000

89 libname mydblib clear;

NOTE: Libref MYDBLIB has been deassigned.

Example 3: DBMS Trace ’d,’

options sastrace=’d,’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger schema=bday_data;

data mydblib.snow_birthdays;
set work.winter_birthdays;

run;

libname mydblib clear;

Output is written to the SAS log, as specified in the SASTRACELOC=SASLOG option.

Macro Variables and System Options for Relational Databases � SASTRACE= System Option 415

Output 12.4 SAS Log Output from the SASTRACE= ’d,’ System Option

ORACLE: PHYSICAL connect successful.

ORACLE: USER=scott

ORACLE: PATH=lupin

ORACLE: SCHEMA=bday_data

110 libname mydblib oracle user=dbitest password=XXXXX path=lupin schema=bday_data;

NOTE: Libref MYDBLIB was successfully assigned as follows:

Engine: ORACLE

Physical Name: lupin

111 data mydblib.snow_birthdays;

112 set work.winter_birthdays;

113 run;

ORACLE: PHYSICAL connect successful.

ORACLE: USER=scott

ORACLE: PATH=lupin

ORACLE: SCHEMA=bday_data

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

ORACLE: INSERTBUFF option value set to 10.

NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.

ORACLE: Rows processed: 3

ORACLE: Rows failed : 0

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.

ORACLE: Successfully disconnected.

ORACLE: USER=scott

ORACLE: PATH=lupin

NOTE: DATA statement used (Total process time):

real time 0.21 seconds

cpu time 0.04 seconds

ORACLE: Successfully disconnected.

ORACLE: USER=scott

ORACLE: PATH=lupin

114 libname mydblib clear;

NOTE: Libref MYDBLIB has been deassigned.

Example 4: Brief SQL Trace ’,,,db’

options sastrace=’,,,db’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger path=oraclev9;

data mydblib.employee1;
set mydblib.employee;

run;

Output is written to the SAS log, as specified in the SASTRACELOC=SASLOG option.

416 SASTRACE= System Option � Chapter 12

Output 12.5 SAS Log Output from the SASTRACE= ’,,,db’ System Option

ORACLE_23: Prepared: on connection 2

SELECT * FROM EMPLOYEE

19?

ORACLE_24: Prepared: on connection 3

SELECT * FROM EMPLOYEE1

NOTE: SAS variable labels, formats, and lengths are not written to DBMS

tables.

ORACLE_25: Executed: on connection 4

CREATE TABLE EMPLOYEE1(NAME VARCHAR2 (20),ID NUMBER (5),CITY VARCHAR2

(15),SALARY NUMBER ,DEPT NUMBER (5))

ORACLE_26: Executed: on connection 2

SELECT statement ORACLE_23

ORACLE_27: Prepared: on connection 4

INSERT INTO EMPLOYEE1 (NAME,ID,CITY,SALARY,DEPT) VALUES

(:NAME,:ID,:CITY,:SALARY,:DEPT)

NOTE: ORACLE_27 on connection 4

The Execute statements associated with

this Insert statement are suppressed due to SASTRACE brief

setting-SASTRACE=’,,,bd’. Remove the ’b’ to get full trace.

NOTE: There were 17 observations read from the data set MYDBLIB.EMPLOYEE.

Example 5: Time Trace ’,,,s’

options sastrace=’,,,s’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger schema=bday_data;

data mydblib.snow_birthdays;
set work.winter_birthdays;

run;

libname mydblib clear;

Output is written to the SAS log, as specified in the SASTRACELOC=SASLOG option.

Macro Variables and System Options for Relational Databases � SASTRACE= System Option 417

Output 12.6 SAS Log Output from the SASTRACE= ’,,,s’ System Option

118 options sastrace=’,,,s’ sastraceloc=saslog nostsuffix;

119 libname mydblib oracle user=dbitest password=XXXXX schema=bday_data;

NOTE: Libref MYDBLIB was successfully assigned as follows:

Engine: ORACLE

Physical Name: lupin

120 data mydblib.snow_birthdays;

121 set work.winter_birthdays;

122 run;

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.

Summary Statistics for ORACLE are:

Total SQL execution seconds were: 0.127079

Total SQL prepare seconds were: 0.004404

Total SQL row insert seconds were: 0.004735

Total seconds used by the ORACLE ACCESS engine were 0.141860

NOTE: DATA statement used (Total process time):

real time 0.21 seconds

cpu time 0.04 seconds

123 libname mydblib clear;

NOTE: Libref MYDBLIB has been deassigned.

Example 6: Time All Trace ’,,,sa’

options sastrace=’,,,sa’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger schema=bday_data;

data mydblib.snow_birthdays;
set work.winter_birthdays;

run;

libname mydblib clear;

Output is written to the SAS log, as specified in the SASTRACELOC=SASLOG option.

418 SASTRACE= System Option � Chapter 12

Output 12.7 SAS Log Output from the SASTRACE= ’,,,sa’ System Option

146 options sastrace=’,,,sa’ sastraceloc=saslog nostsuffix;

147

148 libname mydblib oracle user=dbitest password=XXXXX path=lupin schema=dbitest insertbuff=1;

NOTE: Libref MYDBLIB was successfully assigned as follows:

Engine: ORACLE

Physical Name: lupin

149 data mydblib.snow_birthdays;

150 set work.winter_birthdays;

151 run;

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

ORACLE: The insert time in seconds is 0.004120

ORACLE: The insert time in seconds is 0.001056

ORACLE: The insert time in seconds is 0.000988

NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.

Summary Statistics for ORACLE are:

Total SQL execution seconds were: 0.130448

Total SQL prepare seconds were: 0.004525

Total SQL row insert seconds were: 0.006158

Total seconds used by the ORACLE ACCESS engine were 0.147355

NOTE: DATA statement used (Total process time):

real time 0.20 seconds

cpu time 0.00 seconds

152

153 libname mydblib clear;

NOTE: Libref MYDBLIB has been deassigned.

Example 7: Threaded Trace ’,,t,’

options sastrace=’,,t,’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger schema=bday_data;

data mydblib.snow_birthdays(DBTYPE=(empid’number(10’);
set work.winter_birthdays;

run;

proc print data=mydblib.snow_birthdays(dbsliceparm=(all,3));
run;

Output is written to the SAS log, as specified in the SASTRACELOC=SASLOG option.

Macro Variables and System Options for Relational Databases � SASTRACELOC= System Option 419

Output 12.8 SAS Log Output from the SASTRACE= ’,,t,’ System Option

165 options sastrace=’,,t,’ sastraceloc=saslog nostsuffix;

166 data mydblib.snow_birthdays(DBTYPE=(empid=’number(10)’));

167 set work.winter_birthdays;

168 run;

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.

NOTE: DATA statement used (Total process time):

real time 0.21 seconds

cpu time 0.06 seconds

169 proc print data=mydblib.snow_birthdays(dbsliceparm=(all,3));

170 run;

ORACLE: DBSLICEPARM option set and 3 threads were requested

ORACLE: No application input on number of threads.

ORACLE: Thread 1 contains 1 obs.

ORACLE: Thread 2 contains 0 obs.

ORACLE: Thread 3 contains 2 obs.

ORACLE: Threaded read enabled. Number of threads created: 3

NOTE: There were 3 observations read from the data set MYDBLIB.SNOW_BaaaaaAYS.

NOTE: PROCEDURE PRINT used (Total process time):

real time 1.12 seconds

cpu time 0.17 seconds

For more information about tracing threaded reads, see “Generating Trace
Information for Threaded Reads” on page 54.

Note: You can also use SASTRACE= options with each other. For example,
SASTRACE=’,,d,d’. �

SASTRACELOC= System Option

Prints SASTRACE information to a specified location.

Default value: stdout

Valid in: configuration file, SAS invocation, OPTIONS statement

DBMS support: DB2 UNIX/PC, HP Neoview, Informix, Microsoft SQL Server, MySQL,
Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Syntax
SASTRACELOC=stdout | SASLOG | FILE ’path-and-filename’

Details
SASTRACELOC= lets you specify where to put the trace messages that SASTRACE=
generates. By default, output goes to the default output location for your operating
environment. Specify SASTRACELOC=SASLOG to send output to a SAS log.

This option and its values might differ for each host.

420 SQLGENERATION= System Option � Chapter 12

Example

On a PC platform this example writes trace information to the TRACE.LOG file in
the work directory on the C drive.

options sastrace=’,,,d’ sastraceloc=file ’c:\work\trace.log’;

SQLGENERATION= System Option

Specifies whether and when SAS procedures generate SQL for in-database processing of source
data.

Default value: NONE DBMS=’Teradata’

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

DBMS Support: DB2 under UNIX and PC Hosts, Oracle, Teradata

Syntax
SQLGENERATION=<(>NONE | DBMS <DBMS=’engine1 engine2 ... enginen’>

<<EXCLUDEDB=engine | ’engine1 engine2 ... enginen’>>

<<EXCLUDEPROC="engine=’proc1 proc2 ... procn’ engine2=’proc1 proc2 ... procn’
enginen=’proc1 proc2 ... procn’ "> <)>>

SQLGENERATION=" "

Syntax Description

NONE
prevents those SAS procedures that are enabled for in-database processing from
generating SQL for in-database processing. This is a primary state.

DBMS
allows SAS procedures that are enabled for in-database processing to generate SQL
for in-database processing of DBMS tables through supported SAS/ACCESS engines.
This is a primary state.

DBMS=’engine1 engine2 ... enginen’
specifies one or more SAS/ACCESS engines. It modifies the primary state.
Restriction: The maximum length of an engine name is 8 characters.

EXCLUDEDB=engine | ’engine1 engine2 ... enginen’
prevents SAS procedures from generating SQL for in-database processing for one or
more specified SAS/ACCESS engines.
Restriction: The maximum length of an engine name is 8 characters.

EXCLUDEPROC="engine=’proc1 proc2 ... procn’ enginen=’proc1 proc2 ... procn’ "
identifies engine-specific SAS procedures that do not support in-database processing.
Restrictions: The maximum length of a procedure name is 16 characters.

Macro Variables and System Options for Relational Databases � SQLGENERATION= System Option 421

An engine can appear only once, and a procedure can appear only once for a
given engine.

" "
resets the value to the default that was shipped.

Details
Use this option with such procedures as PROC FREQ to indicate what SQL is
generated for in-database processing based on the type of subsetting that you need and
the SAS/ACCESS engines that you want to access the source table.

You must specify NONE and DBMS, which indicate the primary state.
The maximum length of the option value is 4096. Also, parentheses are required

when this option value contains multiple keywords.
Not all procedures support SQL generation for in-database processing for every

engine type. If you specify a setting that is not supported, an error message indicates
the level of SQL generation that is not supported, and the procedure can reset to the
default so that source table records can be read and processed within SAS. If this is not
possible, the procedure ends and sets SYSERR= as needed.

You can specify different SQLGENERATION= values for the DATA= and OUT= data
sets by using different LIBNAME statements for each of these data sets.

Here is how SAS/ACCESS handles precedence.

Table 12.2 Precedence of Values for SQLGENERATION= LIBNAME and System Options

LIBNAME
Option

PROC EXCLUDE on
System Option?

Engine
Type

Engine Specified on
System Option

Resulting
Value

From
(option)

not set

NONE

DBMS

yes NONE

EXCLUDEDB

system

NONE NONE

DBMS

NONE

DBMS

DBMS

LIBNAME

NONE NONE

database
interface

DBMS DBMS

not set system

NONE

DBMS

no SQL
generated
for this
database
host or
database
version

LIBNAME

not set system

NONE

DBMS

no

Base

NONE

DBMS

NONE

LIBNAME

Examples

Here is the default that is shipped with the product.

options sqlgeneration=’’ ;
proc options option=sqlgeneration

422 SQLMAPPUTTO= System Option � Chapter 12

run;

SAS procedures generate SQL for in-database processing for all databases except
DB2 in this example.

options sqlgeneration=’’ ;
options sqlgeneration=(DBMS EXCLUDEDB=’DB2’) ;
proc options option=sqlgeneration ;
run;

In this example, in-database processing occurs only for Teradata, but SAS procedures
generate no SQL for in-database processing.

options sqlgeneration=’’ ;
options SQLGENERATION = (NONE DBMS=’Teradata’) ;
proc options option=sqlgeneration ;
run;

In this next example, SAS procedures do not generate SQL for in-database
processing even though in-database processing occurs only for Teradata.

options sqlgeneration=’’ ;
Options SQLGENERATION = (NONE DBMS=’Teradata’ EXCLUDEDB=’DB2’) ;
proc options option=sqlgeneration ;
run;

For this example, PROC1 and PROC2 for Oracle do not support in-database
processing, SAS procedures for Oracle that support in-database processing do not
generate SQL for in-database processing, and in-database processing occurs only for
Teradata.

options sqlgeneration=’’ ;
Options SQLGENERATION = (NONE EXCLUDEPROC="oracle=’proc1,proc2’"

DBMS=’Teradata’ EXCLUDEDB=’ORACLE’) ;
proc options option=sqlgeneration ;
run;

See Also
“SQLGENERATION= LIBNAME Option” on page 190 (includes examples)
Chapter 8, “Overview of In-Database Procedures,” on page 67

SQLMAPPUTTO= System Option
Specifies whether the PUT function is mapped to the SAS_PUT() function for a database, possible
also where the SAS_PUT() function is mapped.

Default value: SAS_PUT
Valid in: configuration file, SAS invocation, OPTIONS statement
DBMS Support: Netezza, Teradata

Syntax
SQLMAPPUTTO= NONE | SAS_PUT | (database.SAS_PUT)

Macro Variables and System Options for Relational Databases � VALIDVARNAME= System Option 423

Syntax Description

NONE
specifies to PROC SQL that no PUT mapping is to occur.

SAS_PUT
specifies that the PUT function be mapped to the SAS_PUT() function.

database.SAS_PUT
specifies the database name.

Requirement: If you specify a database name, you must enclose the entire
argument in parentheses.

Tip: It is not necessary that the format definitions and the SAS_PUT() function
reside in the same database as the one that contains the data that you want to
format. You can use the database.SAS_PUT argument to specify the database
where the format definitions and the SAS_PUT() function have been published.

Tip: The database name can be a multilevel name and it can include blanks.

Details
The %INDTD_PUBLISH_FORMATS macro deploys, or publishes, the PUT function
implementation to the database as a new function named SAS_PUT(). The
%INDTD_PUBLISH_FORMATS macro also publishes both user-defined formats and
formats that SAS supplies that you create using PROC FORMAT. The SAS_PUT()
function supports the use of SAS formats, and you can use it in SQL queries that SAS
submits to the database so that the entire SQL query can be processed inside the
database. You can also use it in conjunction with in-database procedures in Teradata.

You can use this option with the SQLREDUCEPUT=, SQLREDUCEPUTOBS, and
SQLREDUCEPUTVALUES= system options. For more information about these options,
see the SAS Language Reference: Dictionary.

See Also
“Deploying and Using SAS Formats in Teradata” on page 816
“Deploying and Using SAS Formats in Netezza” on page 634
“In-Database Procedures in Teradata” on page 831
“SQL_FUNCTIONS= LIBNAME Option” on page 186

VALIDVARNAME= System Option

Controls the type of SAS variable names that can be used or created during a SAS session.

Default value: V7

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Syntax
VALIDVARNAME= V7 | UPCASE | ANY

424 VALIDVARNAME= System Option � Chapter 12

Details That are Specific to SAS/ACCESS

VALIDVARNAME= enables you to control which rules apply for SAS variable names.
For more information about the VALIDVARNAME= system option, see the SAS
Language Reference: Dictionary. Here are the valid settings.

VALIDVARNAME=V7
indicates that a DBMS column name is changed to a valid SAS name by using
these rules:

� Up to 32 mixed-case alphanumeric characters are allowed.

� Names must begin with an alphabetic character or an underscore.

� Invalid characters are changed to underscores.

� Any column name that is not unique when it is normalized is made unique by
appending a counter (0,1,2,...) to the name.

This is the default value for SAS 7 and later.

VALIDVARNAME=UPCASE
indicates that a DBMS column name is changed to a valid SAS name as described
in VALIDVARNAME=V7 except that variable names are in uppercase.

VALIDVARNAME=ANY
allows any characters in DBMS column names to appear as valid characters in
SAS variable names. Symbols, such as the equal sign (=) and the asterisk (*), must
be contained in a ’variable-name’n construct. You must use ANY whenever you
want to read DBMS column names that do not follow the SAS naming conventions.

Example

This example shows how the SQL pass-through facility works with
VALIDVARNAME=V6.

options validvarname=v6;
proc sql;

connect to oracle (user=testuser pass=testpass);
create view myview as
select amount_b, amount_s

from connection to oracle
(select "Amount Budgeted$", "Amount Spent$"

from mytable);
quit;

proc contents data=myview;
run;

Output from this example would show that "Amount Budgeted$" becomes
AMOUNT_B and "Amount Spent$" becomes AMOUNT_S.

See Also

“Introduction to SAS/ACCESS Naming” on page 11

425

C H A P T E R

13
The SQL Pass-Through Facility
for Relational Databases

About SQL Procedure Interactions 425
Overview of SQL Procedure Interactions with SAS/ACCESS 425

Overview of the SQL Pass-Through Facility 425

Syntax for the SQL Pass-Through Facility for Relational Databases 426

Overview 426

Return Codes 426
CONNECT Statement 427

DISCONNECT Statement 431

EXECUTE Statement 432

CONNECTION TO Component 434

About SQL Procedure Interactions

Overview of SQL Procedure Interactions with SAS/ACCESS
The SQL procedure implements structured query language (SQL) for SAS software.

See the Base SAS Procedures Guide for information about PROC SQL. Here is how you
can use SAS/ACCESS software for relational databases for PROC SQL interactions.

� You can assign a libref to a DBMS using the SAS/ACCESS LIBNAME statement
and reference the new libref in a PROC SQL statement to query, update, or delete
DBMS data. (See Chapter 10, “The LIBNAME Statement for Relational
Databases,” on page 87.)

� You can embed LIBNAME information in a PROC SQL view and then
automatically connect to the DBMS every time the PROC SQL view is processed.
(See “SQL Views with Embedded LIBNAME Statements” on page 90.)

� You can send DBMS-specific SQL statements directly to a DBMS using an
extension to PROC SQL called the SQL pass-through facility. (See “Syntax for the
SQL Pass-Through Facility for Relational Databases” on page 426.)

Overview of the SQL Pass-Through Facility
The SQL pass-through facility uses SAS/ACCESS to connect to a DBMS and to send

statements directly to the DBMS for execution. An alternative to the SAS/ACCESS
LIBNAME statement, this facility lets you use the SQL syntax of your DBMS. It
supports any SQL that is not ANSI-standard that your DBMS supports.

426 Syntax for the SQL Pass-Through Facility for Relational Databases � Chapter 13

Not all SAS/ACCESS interfaces support this feature, however. To determine whether
it is available in your environment, see “Introduction” on page 75.

Here are the tasks that you can complete by using the SQL pass-through facility.

� Establish and terminate connections with a DBMS using its CONNECT and
DISCONNECT

� Send dynamic, non-query, DBMS-specific SQL statements to a DBMS using its
EXECUTE statement.

� Retrieve data directly from a DBMS using its CONNECTION TO component in
the FROM clause of a PROC SQL SELECT statement.

You can use SQL pass-through facility statements in a PROC SQL query, or you can
store them in an SQL view. When you create an SQL view, any arguments that you
specify in the CONNECT statement are stored with the view. Therefore, when you use
the view in a SAS program, SAS can establish the appropriate connection to the DBMS.

Syntax for the SQL Pass-Through Facility for Relational Databases

Overview
This section presents the syntax for the SQL pass-through facility statements and

the CONNECTION TO component. For DBMS-specific details, see the documentation
for your SAS/ACCESS interface.

PROC SQL <option(s)>;

CONNECT TO dbms-name <AS alias> <(<database-connection-arguments>
<connect-statement-arguments>)>;

DISCONNECT FROM dbms-name | alias;

EXECUTE (dbms-specific-SQL-statement) BY dbms-name | alias;

SELECT column-list FROM CONNECTION TO dbms-name | alias (dbms-query)

Return Codes
As you use the PROC SQL statements that are available in the SQL pass-through

facility, any error return codes and error messages are written to the SAS log. These
codes and messages are available to you through these SAS macro variables:

SQLXRC
contains the DBMS return code that identifies the DBMS error.

SQLXMSG
contains descriptive information about the DBMS error that the DBMS generates.

The contents of the SQLXRC and SQLXMSG macro variables are printed in the SAS
log using the %PUT macro. They are reset after each SQL pass-through facility
statement has been executed.

See “Macro Variables for Relational Databases” on page 401 for more information
about these return codes.

The SQL Pass-Through Facility for Relational Databases � CONNECT Statement 427

CONNECT Statement

Establishes a connection with the DBMS

Valid in: PROC SQL steps (when accessing DBMS data using SAS/ACCESS software)

Syntax
CONNECT TO dbms-name <AS alias> <(<database-connection-arguments>

<connect-statement-arguments>)>;

The CONNECT statement establishes a connection with the DBMS. You establish a
connection to send DBMS-specific SQL statements to the DBMS or to retrieve DBMS
data. The connection remains in effect until you issue a DISCONNECT statement or
terminate the SQL procedure.

Follow these steps to connect to a DBMS using the SQL pass-through facility.
1 Initiate a PROC SQL step.
2 Use the SQL pass-through facility CONNECT statement, identify the DBMS (such

as Oracle or DB2), and assign an (optional) alias.
3 Specify any attributes for the connection such as SHARED or UNIQUE.
4 Specify any arguments that are needed to connect to the database.

The CONNECT statement is optional for some DBMSs. However, if it is not
specified, the default values for all database connection arguments are used.

Any return code or message that is generated by the DBMS is available in the macro
variables SQLXRC and SQLXMSG after the statement executes. See “Macro Variables
for Relational Databases” on page 401 for more information about these macro variables.

Arguments
Use these arguments with the CONNECT statement.

dbms-name
identifies the database management system to which you want to connect. You
must specify the DBMS name for your SAS/ACCESS interface. You can also
specify an optional alias.

alias
specifies for the connection an optional alias that has 1 to 32 characters. If you
specify an alias, the keyword AS must appear before the alias. If an alias is not
specified, the DBMS name is used as the name of the Pass-Through connection.

database-connection-arguments
specifies the DBMS-specific arguments that PROC SQL needs to connect to the
DBMS. These arguments are optional for most databases. However, if you include
them, you must enclose them in parentheses. See the documentation for your
SAS/ACCESS interface for information about these arguments.

connect-statement-arguments
specifies arguments that indicate whether you can make multiple connections,
shared or unique connections, and so on, to the database. These arguments enable
the SQL pass-through facility to use some of the LIBNAME statement’s connection

428 CONNECT Statement � Chapter 13

management features. These arguments are optional, but if they are included,
they must be enclosed in parentheses.

CONNECTION= SHARED | GLOBAL
indicates whether multiple CONNECT statements for a DBMS can use the
same connection.

The CONNECTION= option enables you to control the number of
connections, and therefore transactions, that your SAS/ACCESS engine
executes and supports for each Pass-Through CONNECT statement.

When CONNECTION=GLOBAL, multiple CONNECT statements that use
identical values for CONNECTION=, CONNECTION_GROUP=,
DBCONINIT=, DBCONTERM=, and any database connection arguments can
share the same connection to the DBMS.

When CONNECTION=SHARED, the CONNECT statement makes one
connection to the DBMS. Only Pass-Through statements that use this alias
share the connection. SHARED is the default value for CONNECTION=.

In this example, the two CONNECT statements share the same connection
to the DBMS because CONNECTION=GLOBAL. Only the first CONNECT
statement actually makes the connection to the DBMS, while the last
DISCONNECT statement is the only statement that disconnects from the
DBMS.

proc sql;

/*...SQL Pass-Through statements referring to mydbone...*/

connect to oracle as mydbone
(user=testuser pw=testpass

path=’myorapath’
connection=global);

/*...SQL Pass-Through statements referring to mydbtwo...*/

connect to oracle as mydbtwo
(user=testuser pw=testpass

path=’myorapath’
connection=global);

disconnect from mydbone;
disconnect from mydbtwo;
quit;

CONNECTION_GROUP=connection-group-name
specifies a connection that can be shared among several CONNECT
statements in the SQL pass-through facility.

Default value: none
By specifying the name of a connection group, you can share one DBMS

connection among several CONNECT statements. The connection to the
DBMS can be shared only if each CONNECT statement specifies the same
CONNECTION_GROUP= value and specifies identical DBMS connection
arguments.

When CONNECTION_GROUP= is specified, it implies that the value of
the CONNECTION= option is GLOBAL.

The SQL Pass-Through Facility for Relational Databases � CONNECT Statement 429

DBCONINIT=<’>DBMS-user-command<’>
specifies a user-defined initialization command to be executed immediately
after the connection to the DBMS.

You can specify any DBMS command that can be passed by the
SAS/ACCESS engine to the DBMS and that does not return a result set or
output parameters. The command executes immediately after the DBMS
connection is established successfully. If the command fails, a disconnect
occurs, and the CONNECT statement fails. You must specify the command as
a single, quoted string, unless it is an environment variable.

DBCONTERM=’DBMS-user-command’
specifies a user-defined termination command to be executed before the
disconnect from the DBMS that occurs with the DISCONNECT statement.

Default value: none
The termination command that you select can be a script, stored

procedure, or any DBMS SQL language statement that might provide
additional control over the interaction between the SAS/ACCESS engine and
the DBMS. You can specify any valid DBMS command that can be passed by
the SAS/ACCESS engine to the DBMS and that does not return a result set
or output parameters. The command executes immediately before SAS
terminates each connection to the DBMS. If the command fails, SAS provides
a warning message but the disconnect still occurs. You must specify the
command as a quoted string.

DBGEN_NAME= DBMS | SAS
specifies whether to automatically rename DBMS columns containing
characters that SAS does not allow, such as $, to valid SAS variable names.
See “DBGEN_NAME= LIBNAME Option” on page 124 for more information.

DBMAX_TEXT=integer
determines the length of any very long DBMS character data type that is
read into SAS or written from SAS when using a SAS/ACCESS engine. This
option applies to reading, appending, and updating rows in an existing table.
It does not apply when you are creating a table.

Examples of a long DBMS data type are the SYBASE TEXT data type or
the Oracle LONG RAW data type.

DBPROMPT=YES | NO
specifies whether SAS displays a window that prompts the user to enter
DBMS connection information before connecting to the DBMS.

Default value: NO
Interaction: DEFER= LIBNAME option
If you specify DBPROMPT=YES, SAS displays a window that interactively

prompts you for the DBMS connection arguments when the CONNECT
statement is executed. Therefore, it is not necessary to provide connection
arguments with the CONNECT statement. If you do specify connection
arguments with the CONNECT statement and you specify
DBPROMPT=YES, the connection argument values are displayed in the
window. These values can be overridden interactively.

If you specify DBPROMPT=NO, SAS does not display the prompting indow.
The DBPROMPT= option interacts with the DEFER= LIBNAME option to

determine when the prompt window appears. If DEFER=NO, the
DBPROMPT window opens when the CONNECT statement is executed. If
DEFER=YES, the DBPROMPT window opens the first time a pass-through
statement is executed. The DEFER= option normally defaults to NO, but
defaults to YES if DBPROMPT=YES. You can override this default by
explicitly setting DEFER=NO.

430 CONNECT Statement � Chapter 13

DEFER=NO | YES
determines when the connection to the DBMS occurs.

Default value: NO
If DEFER=YES, the connection to the DBMS occurs when the first

Pass-Through statement is executed. If DEFER=NO, the connection to the
DBMS occurs when the CONNECT statement occurs.

VALIDVARNAME=V6
indicates that only SAS 6 variable names are considered valid. Specify this
connection argument if you want the SQL pass-through facility to operate in
SAS 6 compatibility mode.

By default, DBMS column names are changed to valid SAS names,
following these rules:

� Up to 32 mixed-case alphanumeric characters are allowed.

� Names must begin with an alphabetic character or an underscore.

� Characters that are not permitted are changed to underscores.

� Any column name that is not unique when it is normalized is made
unique by appending a counter (0,1,2,...) to the name.

When VALIDVARNAME=V6 is specified, the SAS/ACCESS engine for the
DBMS truncates column names to eight characters, as it does in SAS 6. If
required, numbers are appended to the ends of the truncated names to make
them unique. Setting this option overrides the value of the SAS system option
VALIDVARNAME= during (and only during) the Pass-Through connection.

This example shows how the SQL pass-through facility uses
VALIDVARNAME=V6 as a connection argument. Using this option causes
the output to show the DBMS column "Amount Budgeted$" as AMOUNT_B
and "Amount Spent$" as AMOUNT_S.

proc sql;
connect to oracle (user=gloria password=teacher

validvarname=v6)
create view budget2000 as
select amount_b, amount_s
from connection to oracle

(select "Amount Budgeted$", "Amount Spent$"
from annual_budget);

quit;
proc contents data=budget2000;
run;

For this example, if you omit VALIDVARNAME=V6 as a connection
argument, you must add it in an OPTIONS= statement in order for PROC
CONTENTS to work:

options validvarname=v6;
proc contents data=budget2000;
run;

Thus, using it as a connection argument saves you coding later.

Note: In addition to the arguments listed here, several other LIBNAME
options are available for use with the CONNECT statement. See the section about
the SQL pass-through facility in the documentation for your SAS/ACCESS
interface to determine which LIBNAME options are available in the SQL
pass-through facility for your DBMS. When used with the SQL pass-through

The SQL Pass-Through Facility for Relational Databases � DISCONNECT Statement 431

facility CONNECT statement, these options have the same effect as they do in a
LIBNAME statement. �

CONNECT Statement Example

This example connects to a Sybase server and assigns the alias SYBCON1 to it.
Sybase is a case-sensitive database, so database objects are in uppercase, as they were
created.

proc sql;
connect to sybase as sybcon1

(server=SERVER1 database=PERSONNEL
user=testuser password=testpass
connection=global);

%put &sqlxmsg &sqlxrc;

Note: You might be able to omit the CONNECT statement and implicitly connect to
a database by using default settings. See the documentation for your SAS/ACCESS
interface for more information. �

DISCONNECT Statement

Terminates the connection to the DBMS

Valid in: PROC SQL steps (when accessing DBMS data using SAS/ACCESS software)

Syntax
DISCONNECT FROM dbms-name | alias

The DISCONNECT statement ends the connection with the DBMS. If you do not
include the DISCONNECT statement, SAS performs an implicit DISCONNECT when
PROC SQL terminates. The SQL procedure continues to execute until you submit a
QUIT statement, another SAS procedure, or a DATA step.

Any return code or message that is generated by the DBMS is available in the macro
variables SQLXRC and SQLXMSG after the statement executes. See “Macro Variables
for Relational Databases” on page 401 for more information about these macro variables.

432 EXECUTE Statement � Chapter 13

Arguments
Use one of these arguments with the DISCONNECT statement.

dbms-name
specifies the database management system from which you want to disconnect.
You must specify the DBMS name for your SAS/ACCESS interface , or use an alias
in the DISCONNECT statement.

Note: If you used the CONNECT statement to connect to the DBMS, the
DBMS name or alias in the DISCONNECT statement must match what you
specified in the CONNECT statement. �

alias
specifies an alias that was defined in the CONNECT statement.

Example

To exit the SQL pass-through facility, use the facilities DISCONNECT statement and
then QUIT the PROC SQL statement. This example disconnects the user from a DB2
database with the alias DBCON1 and terminates the SQL procedure:

proc sql;
connect to db2 as dbcon1 (ssid=db2a);
...more SAS statements...
disconnect from dbcon1;
quit;

EXECUTE Statement

Sends DBMS-specific, non-query SQL statements to the DBMS

Valid in: PROC SQL steps (when accessing DBMS data using SAS/ACCESS software)

Syntax
EXECUTE (dbms-specific-sql-statement) BY dbms-name | alias;

The EXECUTE statement sends dynamic non-query, DBMS-specific SQL statements
to the DBMS and processes those statements.

In some SAS/ACCESS interfaces, you can issue an EXECUTE statement directly
without first explicitly connecting to a DBMS. (See CONNECT statement.) If you omit
the CONNECT statement, an implicit connection is performed (by using default values
for all database connection arguments) when the first EXECUTE statement is passed to
the DBMS. See the documentation for your SAS/ACCESS interface for details.

The EXECUTE statement cannot be stored as part of an SQL pass-through facility
query in a PROC SQL view.

The SQL Pass-Through Facility for Relational Databases � EXECUTE Statement 433

Arguments

(dbms-specific-sql-statement)
a dynamic non-query, DBMS-specific SQL statement. This argument is required
and must be enclosed in parentheses. However, the SQL statement cannot contain
a semicolon because a semicolon represents the end of a statement in SAS. The
SQL statement might be case sensitive, depending on your DBMS, and it is passed
to the DBMS exactly as you type it.

On some DBMSs, this argument can be a DBMS stored procedure. However,
stored procedures with output parameters are not supported in the SQL
pass-through facility. Furthermore, if the stored procedure contains more than one
query, only the first query is processed.

Any return code or message that is generated by the DBMS is available in the
macro variables SQLXRC and SQLXMSG after the statement executes. See
“Macro Variables for Relational Databases” on page 401 for more information
about these macro variables.

dbms-name
identifies the database management system to which you direct the DBMS-specific
SQL statement. The keyword BY must appear before the dbms-name argument.
You must specify either the DBMS name for your SAS/ACCESS interface or an
alias.

alias
specifies an alias that was defined in the CONNECT statement. (You cannot use
an alias if the CONNECT statement was omitted.)

Useful Statements to Include in EXECUTE Statements

You can pass these statements to the DBMS by using the SQL pass-through facility
EXECUTE statement.

CREATE
creates a DBMS table, view, index, or other DBMS object, depending on how the
statement is specified.

DELETE
deletes rows from a DBMS table.

DROP
deletes a DBMS table, view, or other DBMS object, depending on how the
statement is specified.

GRANT
gives users the authority to access or modify objects such as tables or views.

INSERT
adds rows to a DBMS table.

REVOKE
revokes the access or modification privileges that were given to users by the
GRANT statement.

UPDATE
modifies the data in one column of a row in a DBMS table.

For more information and restrictions on these and other SQL statements, see the
SQL documentation for your DBMS.

434 CONNECTION TO Component � Chapter 13

CONNECTION TO Component

Retrieves and uses DBMS data in a PROC SQL query or view

Valid in: PROC SQL step SELECT statements (when accessing DBMS data using
SAS/ACCESS software)

Syntax
CONNECTION TO dbms-name | alias (dbms-query)

The CONNECTION TO component specifies the DBMS connection that you want to
use or that you want to create (if you have omitted the CONNECT statement).
CONNECTION TO then enables you to retrieve DBMS data directly through a PROC
SQL query.

You use the CONNECTION TO component in the FROM clause of a PROC SQL
SELECT statement:

PROC SQL;
SELECT column-list

FROM CONNECTION TO dbms-name (dbms-query)
other optional PROC SQL clauses

QUIT;

You can use CONNECTION TO in any FROM clause, including those in nested
queries—that is, subqueries.

You can store an SQL pass-through facility query in an SQL view and then use that
view in SAS programs. When you create an SQL view, any options that you specify in
the corresponding CONNECT statement are stored too. So when the SQL view is used
in a SAS program, SAS can establish the appropriate connection to the DBMS.

On many relational databases, you can issue a CONNECTION TO component in a
PROC SQL SELECT statement directly without first connecting to a DBMS. (See
“CONNECT Statement” on page 427.) If you omit the CONNECT statement, an
implicit connection is performed when the first PROC SQL SELECT statement that
contains a CONNECTION TO component is passed to the DBMS. Default values are
used for all DBMS connection arguments. See the documentation for your
SAS/ACCESS interface for details.

Because relational databases and SAS have different naming conventions, some
DBMS column names might be changed when you retrieve DBMS data through the
CONNECTION TO component. See Chapter 2, “SAS Names and Support for DBMS
Names,” on page 11 for more information.

The SQL Pass-Through Facility for Relational Databases � CONNECTION TO Component 435

Arguments
dbms-name

identifies the database management system to which you direct the DBMS-specific
SQL statement. See the documentation for your SAS/ACCESS interface for the
name for your DBMS.

alias
specifies an alias, if one was defined in the CONNECT statement.

(dbms-query)
specifies the query that you are sending to the DBMS. The query can use any
DBMS-specific SQL statement or syntax that is valid for the DBMS. However, the
query cannot contain a semicolon because a semicolon represents the end of a
statement in SAS.

You must specify a query argument in the CONNECTION TO component, and
the query must be enclosed in parentheses. The query is passed to the DBMS
exactly as you type it. Therefore, if your DBMS is case sensitive, you must use the
correct case for DBMS object names.

On some DBMSs, the dbms-query argument can be a DBMS stored procedure.
However, stored procedures with output parameters are not supported in the SQL
pass-through facility. Furthermore, if the stored procedure contains more than one
query, only the first query is processed.

Example

After you connect (explicitly using the CONNECT statement or implicitly using
default settings) to a DBMS, you can send a DBMS-specific SQL query to the DBMS
using the facilities CONNECTION TO component. You issue a SELECT statement (to
indicate which columns you want to retrieve), identify your DBMS (such as Oracle or
DB2), and issue your query by using the SQL syntax of your DBMS.

This example sends an Oracle SQL query (highlighted below) to the Oracle database
for processing. The results from the Oracle SQL query serve as a virtual table for the
PROC SQL FROM clause. In this example MYCON is a connection alias.

proc sql;
connect to oracle as mycon (user=testuser

password=testpass path=’myorapath’);
%put &sqlxmsg;

select *
from connection to mycon
(select empid, lastname, firstname,

hiredate, salary
from employees where

hiredate>=’31-DEC-88’);
%put &sqlxmsg;

disconnect from mycon;
quit;

The SAS %PUT macro displays the &SQLXMSG macro variable for error codes and
information from the DBMS. See “Macro Variables for Relational Databases” on page
401 for more information.

This example gives the query a name and stores it as the SQL view
samples.HIRES88:

436 CONNECTION TO Component � Chapter 13

libname samples ’SAS-data-library’;

proc sql;
connect to oracle as mycon (user=testuser

password=testpass path=’myorapath’);
%put &sqlxmsg;

create view samples.hires88 as
select *

from connection to mycon
(select empid, lastname, firstname,

hiredate, salary
from employees where

hiredate>=’31-DEC-88’);
%put &sqlxmsg;

disconnect from mycon;

quit;

437

P A R T3

DBMS-Specific Reference

Chapter 14.SAS/ACCESS Interface to Aster nCluster 439

Chapter 15.SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts 455

Chapter 16.SAS/ACCESS Interface to DB2 Under z/OS 483

Chapter 17.SAS/ACCESS Interface to Greenplum 533

Chapter 18.SAS/ACCESS Interface to HP Neoview 553

Chapter 19.SAS/ACCESS Interface for Informix 573

Chapter 20.SAS/ACCESS Interface to Microsoft SQL Server 591

Chapter 21.SAS/ACCESS Interface for MySQL 605

Chapter 22.SAS/ACCESS Interface to Netezza 621

Chapter 23.SAS/ACCESS Interface to ODBC 653

Chapter 24.SAS/ACCESS Interface to OLE DB 681

Chapter 25.SAS/ACCESS Interface to Oracle 707

Chapter 26.SAS/ACCESS Interface to Sybase 739

Chapter 27.SAS/ACCESS Interface to Sybase IQ 763

Chapter 28.SAS/ACCESS Interface to Teradata 781

438

439

C H A P T E R

14
SAS/ACCESS Interface to Aster
nCluster

Introduction to SAS/ACCESS Interface to Aster nCluster 439
LIBNAME Statement Specifics for Aster nCluster 440

Overview 440

Arguments 440

Aster nCluster LIBNAME Statement Examples 443

Data Set Options for Aster nCluster 443
SQL Pass-Through Facility Specifics for Aster nCluster 445

Key Information 445

CONNECT Statement Example 445

Special Catalog Queries 445

Autopartitioning Scheme for Aster nCluster 446

Overview 446
Autopartitioning Restrictions 447

Nullable Columns 447

Using WHERE Clauses 447

Using DBSLICEPARM= 447

Using DBSLICE= 448
Passing SAS Functions to Aster nCluster 448

Passing Joins to Aster nCluster 449

Bulk Loading for Aster nCluster 450

Loading 450

Examples 450
Naming Conventions for Aster nCluster 451

Data Types for Aster nCluster 452

Overview 452

String Data 452

Numeric Data 452

Date, Time, and Timestamp Data 453
LIBNAME Statement Data Conversions 453

Introduction to SAS/ACCESS Interface to Aster nCluster
This section describes SAS/ACCESS Interface to Aster nCluster. For a list of

SAS/ACCESS features that are available for this interface, see “SAS/ACCESS Interface
to Aster nCluster: Supported Features” on page 75.

440 LIBNAME Statement Specifics for Aster nCluster � Chapter 14

LIBNAME Statement Specifics for Aster nCluster

Overview
This section describes the LIBNAME statement options that SAS/ACCESS Interface

to Aster nCluster supports and includes examples. For details about this feature see
“Overview of the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing Aster nCluster.

LIBNAME libref aster <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

aster
specifies the SAS/ACCESS engine name for the Aster nCluster interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. When you use the LIBNAME
statement, you can connect to the Aster nCluster database in two ways. Specify
only one of these methods for each connection because they are mutually exclusive.

� SERVER=, DATABASE=, PORT=, USER=, PASSWORD=

� DSN=, USER=, PORT=

� NOPROMPT=

� PROMPT=

� REQUIRED=

Here is how these options are defined.

SERVER=<’>server-name<’>
specifies the host name or IP address where the Aster nCluster database is
running. If the server name contains spaces or nonalphanumeric characters,
you must enclose it in quotation marks.

DATABASE=<’>database-name<’>
specifies the Aster nCluster database that contains the tables and views that
you want to access. If the database name contains spaces or
nonalphanumeric characters, you must enclose it in quotation marks. You
can also specify DATABASE= with the DB= alias.

PORT=port
specifies the port number that is used to connect to the specified Aster
nCluster database. If you do not specify a port, the default port 5480 is used.

USER=<’>Aster nCluster user-name<’>
specifies the Aster nCluster user name (also called the user ID) that you use
to connect to your database. If the user name contains spaces or
nonalphanumeric characters, you must enclose it in quotation marks.

SAS/ACCESS Interface to Aster nCluster � Arguments 441

PASSWORD=<’>Aster nCluster password<’>
specifies the password that is associated with your Aster nCluster User ID. If
the password contains spaces or nonalphanumeric characters, you must
enclose it in quotation marks. You can also specify PASSWORD= with the
PWD=, PASS=, and PW= aliases.

DSN=<’>Aster nCluster data-source<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. If you do not specify enough correct
connection options, an error is returned. No dialog box displays to help you
complete the connection string.

NOPROMPT=<’>Aster nCluster ODBC-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. If you do not specify enough correct
connection options, an error is returned. No dialog box displays to help you
with the connection string.

PROMPT=<’> Aster nCluster ODBC-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. When connection succeeds, the complete
connection string is returned in the SYSDBMSG macro variable. PROMPT=
does not immediately try to connect to the DBMS. Instead, it displays a dialog
box that contains the values that you entered in the PROMPT= connection
string. You can edit values or enter additional values in any field before you
connect to the data source. This option is not supported on UNIX platforms.

REQUIRED=<’>Aster nCluster ODBC-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. When connection succeeds, the complete
connection string is returned in the SYSDBMSG macro variable. If you do
not specify enough correct connection options, a dialog box prompts you for
the connection options. REQUIRED= lets you modify only required fields in
the dialog box. This option is not supported on UNIX platforms.

LIBNAME -options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to Aster
nCluster with the applicable default values. For more detail about these options,
see “LIBNAME Options for Relational Databases” on page 92.

Table 14.1 SAS/ACCESS LIBNAME Options for Aster nCluster

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTOCOMMIT= operation-specific

CONNECTION= UNIQUE

CONNECTION_GROUP= none

DBCOMMIT= 1000 (inserting) or 0 (updating)

DBCONINIT= none

DBCONTERM= none

442 Arguments � Chapter 14

Option Default Value

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= YES

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

DBMSTEMP= NO

DBNULLKEYS= YES

DBPROMPT= NO

DBSASLABEL= COMPAT

DEFER= NO

DELETE_MULT_ROWS= NO

DIMENSION= NO

DIRECT_EXE= none

DIRECT_SQL= YES

IGNORE_
READ_ONLY_COLUMNS=

NO

INSERTBUFF= automatically calculated based on row length

LOGIN_TIMEOUT= 0

MULTI_DATASRC_OPT= none

PARTITION_KEY= none

PRESERVE_COL_NAMES=
see “Naming Conventions for Aster nCluster” on page
451

PRESERVE_TAB_NAMES=
see “Naming Conventions for Aster nCluster” on page
451

QUERY_TIMEOUT= 0

QUOTE_CHAR= none

READBUFF= Automatically calculated based on row length

REREAD_EXPOSURE= NO

SCHEMA= none

SPOOL= YES

SQL_FUNCTIONS= none

SQL_FUNCTIONS_COPY= none

STRINGDATES= NO

TRACE= NO

TRACEFILE= none

UPDATE_MULT_ROWS= NO

SAS/ACCESS Interface to Aster nCluster � Data Set Options for Aster nCluster 443

Option Default Value

USE_ODBC_CL= NO

UTILCONN_TRANSIENT= NO

Aster nCluster LIBNAME Statement Examples
In this example, SERVER=, DATABASE=, USER=, and PASSWORD= are the

connection options.

LIBNAME mydblib ASTER SERVER=npssrv1 DATABASE=test
USER=netusr1 PASSWORD=netpwd1;

PROC Print DATA=mydblib.customers;
WHERE state=’CA’;

run;

In this next example, the DSN= option, the USER= option, and the PASSWORD=
option are connection options. The Aster nCluster data source is configured in the
ODBC Administrator Control Panel on Windows platforms. It is also configured in the
odbc.ini file or a similarly named configuration file on UNIX platforms.

LIBNAME mydblib aster dsn=nCluster user=netusr1 password=netpwd1;

PROC Print DATA=mydblib.customers;
WHERE state=’CA’;

run;

Here is how you can use the NOPROMPT= option.

libname x aster NOPROMPT="dsn=aster;";
libname x aster NOPROMPT="DRIVER=nCluster; server=192.168.28.100;

uid=username; pwd=password; database=asterdb";

This example uses the PROMPT= option. Blanks are also passed down as part of the
connection options. So the specified value must immediately follow the semicolon.

libname x aster PROMPT="DRIVER=nCluster;";

The REQUIRED= option is used in this example. If you enter all needed connection
options, REQUIRED= does not prompt you for any input.

libname x aster REQUIRED="DRIVER=nCluster; server=192.168.28.100;
uid=username;pwd=password; database=asterdb ;";

This error results because the database was specified as asterdb, which contains a
trailing blank, instead of asterdb.

ERROR: CLI error trying to establish connection:
ERROR: Database asterdb does not exist.

Data Set Options for Aster nCluster

All SAS/ACCESS data set options in this table are supported for Aster nCluster.
Default values are provided where applicable. For details about this feature, see the
“Overview” on page 207.

444 Data Set Options for Aster nCluster � Chapter 14

Table 14.2 SAS/ACCESS Data Set Options for Aster nCluster

Option Default Value

BL_DATAFILE= none

BL_DBNAME= none

BL_DELETE_DATAFILE= YES

BL_DELIMITER= \t (the tab symbol)

BL_HOST= none

BL_OPTIONS= none

BL_PATH= none

BULKLOAD= NO

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= none

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= YES

DBNULLKEYS= LIBNAME option setting

DBPROMPT= LIBNAME option setting

DBSASTYPE= See“Data Types for Aster nCluster” on page 452

DBTYPE= See“Data Types for Aster nCluster” on page 452

DIMENSION= NO

DISTRIBUTE_ON= none

ERRLIMIT= 1

IGNORE_ READ_ONLY_COLUMNS= NO

INSERTBUFF= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PARTITION_KEY= none

PRESERVE_COL_NAMES= LIBNAME option setting

QUERY_TIMEOUT= LIBNAME option setting

READBUFF= LIBNAME option setting

SAS/ACCESS Interface to Aster nCluster � Special Catalog Queries 445

Option Default Value

SASDATEFMT= none

SCHEMA= LIBNAME option setting

SQL Pass-Through Facility Specifics for Aster nCluster

Key Information
For general information about this feature, see “Overview of SQL Procedure

Interactions with SAS/ACCESS” on page 425. Aster nCluster examples are available.
Here are the SQL pass-through facility specifics for the Aster nCluster interface.

� The dbms-name is ASTER.

� The CONNECT statement is required.

� PROC SQL supports multiple connections to Aster nCluster. If you use multiple
simultaneous connections, you must use the alias argument to identify the
different connections. If you do not specify an alias, the default ASTERalias is used.

� The CONNECT statement database-connection-arguments are identical to its
LIBNAME connection options.

CONNECT Statement Example
This example uses the DBCON alias to connect to mynpssrv the Aster nCluster

database and execute a query. The connection alias is optional.

PROC sql;
connect to aster as dbcon
(server=mynpssrv database=test user=myuser password=mypwd);

select * from connection to dbcon
(select * from customers WHERE customer like ’1%’);

quit;

Special Catalog Queries
SAS/ACCESS Interface to Aster nCluster supports the following special queries. You

can use the queries to call the ODBC-style catalog function application programming
interfaces (APIs). Here is the general format of the special queries:

Aster::SQLAPI’parameter–1’, ’parameter-n’

Aster::
is required to distinguish special queries from regular queries. Aster:: is not case
sensitive.

SQLAPI
is the specific API that is being called. SQLAPI is not case sensitive.

446 Autopartitioning Scheme for Aster nCluster � Chapter 14

’parameter n’
is a quoted string that is delimited by commas.

Within the quoted string, two characters are universally recognized: the percent sign
(%) and the underscore (_). The percent sign matches any sequence of zero or more
characters, and the underscore represents any single character. To use either character
as a literal value, you can use the backslash character (\) to escape the match
characters. For example, this call to SQL Tables usually matches table names such as
myatest and my_test:

select * from connection to aster (ASTER::SQLTables "test","","my_test");

Use the escape character to search only for the my_test table.

select * from connection to aster (ASTER::SQLTables "test","","my_test");

SAS/ACCESS Interface to Aster nCluster supports these special queries.

ASTER::SQLTables <’Catalog’, ’Schema’, ’Table-name’, ’Type’>
returns a list of all tables that match the specified arguments. If you do not
specify any arguments, all accessible table names and information are returned.

ASTER::SQLColumns <’Catalog’, ’Schema’, ’Table-name’, ’Column-name’>
returns a list of all tables that match the specified arguments. If you do not
specify any arguments, all accessible table names and information are returned.

ASTER::SQLColumns <’Catalog’, ’Schema’, ’Table-name’, ’Column-name’>
returns a list of all columns that match the specified arguments. If you do not
specify any argument, all accessible column names and information are returned.

ASTER::SQLPrimaryKeys <’Catalog’, ’Schema’, ’Table-name’ ’Type’ >
returns a list of all columns that compose the primary key that matches the
specified table. A primary key can be composed of one or more columns. If you do
not specify any table name, this special query fails.

ASTER::SQLStatistics <’Catalog’, ’Schema’, ’Table-name’>
returns a list of the statistics for the specified table name, with options of
SQL_INDEX_ALL and SQL_ENSURE set in the SQLStatistics API call. If you do
not specify any table name argument, this special query fails.

ASTER::SQLGetTypeInfo
returns information about the data types that the Aster nCluster database
supports.

ASTER::SQLTablePrivileges<’Catalog’, ’Schema’, ’Table-name’>
returns a list of all tables and associated privileges that match the specified
arguments. If no arguments are specified, all accessible table names and
associated privileges are returned.

Autopartitioning Scheme for Aster nCluster

Overview
Autopartitioning for SAS/ACCESS Interface to Aster nCluster is a modulo (MOD)

function method. For general information about this feature, see “Autopartitioning
Techniques in SAS/ACCESS” on page 57.

SAS/ACCESS Interface to Aster nCluster � Using DBSLICEPARM= 447

Autopartitioning Restrictions
SAS/ACCESS Interface to Aster nCluster places additional restrictions on the

columns that you can use for the partitioning column during the autopartitioning
phase. Here is how columns are partitioned.

� SQL_INTEGER, SQL_BIT, SQL_SMALLINT, and SQL_TINYINT columns are
given preference.

� You can use SQL_DECIMAL, SQL_DOUBLE, SQL_FLOAT, SQL_NUMERIC, and
SQL_REAL columns for partitioning under these conditions:

� Aster nCluster supports converting these types to SQL_INTEGER by using
the INTEGER cast function.

� The precision minus the scale of the column is greater than 0 but less than
10—namely, 0<(precision-scale)<10.

Nullable Columns
If you select a nullable column for autopartitioning, the OR<column-name>IS NULL

SQL statement is appended at the end of the SQL code that is generated for the
threaded read. This ensures that any possible NULL values are returned in the result
set. Also, if the column to be used for the partitioning is SQL_BIT, the number of
threads are automatically changed to two, regardless of DBSLICEPARM= option setting.

Using WHERE Clauses
Autopartitioning does not select a column to be the partitioning column if it appears

in a WHERE clause. For example, this DATA step could not use a threaded read to
retrieve the data. All numeric columns in the table are in the WHERE clause:

DATA work.locemp;
SET trlib.MYEMPS;
WHERE EMPNUM<=30 and ISTENURE=0 and

SALARY<=35000 and NUMCLASS>2;
run;

Using DBSLICEPARM=
SAS/ACCESS Interface to Aster nCluster defaults to three threads when you use

autopartitioning but do not specify a maximum number of threads in to use for the
threaded read. See “DBSLICEPARM= LIBNAME Option” on page 137.

448 Using DBSLICE= � Chapter 14

Using DBSLICE=
You might achieve the best possible performance when using threaded reads by

specifying the “DBSLICE= Data Set Option” on page 316 for Aster nCluster in your
SAS operation. Using DBSLICE= allows connections to individual partitions so that
you can configure an Aster nCluster data source for each partition. Use this option to
specify both the data source and the WHERE clause for each partition.

proc print data=trilb.MYEMPS(DBSLICE=(DSN1=’EMPNUM BETWEEN 1 AND 33’
DSN2=’EMPNUM BETWEEN 34 AND 66’
DSN3=’EMPNUM BETWEEN 67 AND 100’));
run;

Using the DATASOURCE= option is not required to use DBSLICE= option with
threaded reads.

Using DBSLICE= works well when the table you want to read is not stored in
multiple partitions. It gives you flexibility in column selection. For example, if you
know that the STATE column in your employee table contains only a few distinct
values, you can tailor your DBSLICE= option accordingly.

data work.locemp;
set trlib2.MYEMP(DBSLICE=("STATE=’FL’" "STATE=’GA’"
"STATE=’SC’" "STATE=’VA’" "STATE=’NC’"));

where EMPNUM<=30 and ISTENURE=0 and SALARY<=35000 and NUMCLASS>2;
run;

Passing SAS Functions to Aster nCluster
SAS/ACCESS Interface to Aster nCluster passes the following SAS functions to Aster

nCluster for processing. Where the Aster nCluster function name differs from the SAS
function name, the Aster nCluster name appears in parentheses. For more information,
see “Passing Functions to the DBMS Using PROC SQL” on page 42.

� ABS
� ARCOS (ACOS)
� ARSIN (ASIN)
� ATAN
� ATAN2
� AVG
� BYTE (chr)
� CEIL (ceiling)
� COALESCE
� COS
� COUNT
� DAY (date_part)
� EXP
� FLOOR
� HOUR (date_part)
� INDEX (strpos)
� LOG (ln)

SAS/ACCESS Interface to Aster nCluster � Passing Joins to Aster nCluster 449

� LOG10 (log)
� LOWCASE (lower)
� MAX
� MIN
� MINUTE (date_part)
� MOD
� MONTH (date_part)
� QTR (date_part)
� REPEAT
� SIGN
� SIN
� SQRT
� STRIP (btrim)
� SUBSTR (substring
� SUM
� TAN
� TRANWRD (replace)
� TRIMN (rtrim)
� UPCASE (upper)
� YEAR (date_part)

SQL_FUNCTIONS= ALL allows for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to Aster nCluster. Due to incompatibility in date and time functions
between Aster nCluster and SAS, Aster nCluster might not process them correctly.
Check your results to determine whether these functions are working as expected. For
more information, see “SQL_FUNCTIONS= LIBNAME Option” on page 186.

� COMPRESS (replace)
� DATE (now::date)
� DATEPART (cast)
� DATETIME (now)
� LENGTH
� ROUND
� TIME (now::time)
� TIMEPART (cast)
� TODAY (now::date)
� TRANSLATE

Passing Joins to Aster nCluster
For a multiple libref join to pass to Aster nCluster, all of these components of the

LIBNAME statements must match exactly.
� user ID (USER=)
� password (PASSWORD=)
� server (SERVER=)
� database (DATABASE=)

450 Bulk Loading for Aster nCluster � Chapter 14

� port (PORT=)
� data source (DSN=, if specified)
� SQL functions (SQL_FUNCTIONS=)

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

Bulk Loading for Aster nCluster

Loading
Bulk loading is the fastest way to insert large numbers of rows into an Aster

nCluster table. To use the bulk-load facility, specify BULKLOAD=YES. The bulk-load
facility uses the Aster nCluster loader client application to move data from the client to
the Aster nCluster database. See “BULKUNLOAD= Data Set Option” on page 291.

Here are the Aster nCluster bulk-load data set options. For detailed information
about these options, see Chapter 11, “Data Set Options for Relational Databases,” on
page 203.

� BL_DATAFILE=
� BL_DBNAME=
� BL_DELETE_DATAFILE=
� BL_DELIMITER=
� BL_HOST=
� BL_OPTIONS=
� BL_PATH=
� BULKLOAD=

Examples
This example shows how you can use a SAS data set, SASFLT.FLT98, to create and

load a large Aster nCluster table, FLIGHTS98.

LIBNAME sasflt ’SAS-data-library’;
LIBNAME net_air ASTER user=louis pwd=fromage

server=air2 database=flights dimension=yes;

PROC sql;
create table net_air.flights98

(bulkload=YES bl_host=’queen’ bl_path=’/home/ncluster_loader/’
bl_dbname=’beehive’)

as select * from sasflt.flt98;
quit;

You can use BL_OPTIONS= to pass specific Aster nCluster options to the
bulk-loading process.

You can create the same table using a DATA step.

data net_air.flights98(bulkload=YES bl_host=’queen’ bl_path=’/home/ncluster_loader/’
bl_dbname=’beehive’);

SAS/ACCESS Interface to Aster nCluster � Naming Conventions for Aster nCluster 451

set sasflt.flt98;
run;

You can then append the SAS data set, SASFLT.FLT98, to the existing Aster nCluster
table, ALLFLIGHTS. SAS/ACCESS Interface to Aster nCluster to write data to a flat
file, as specified in the BL_DATAFILE= option. Rather than deleting the data file,
BL_DELETE_DATAFILE=NO causes the engine to retain it after the load completes.

PROC append base=net_air.allflights
(BULKLOAD=YES
BL_DATAFILE=’/tmp/fltdata.dat’
BL_HOST=’queen’
BL_PATH=’/home/ncluster_loader/’
BL_DBNAME=’beehive’
BL_DELETE_DATAFILE=NO)

data=sasflt.flt98;
run;

Naming Conventions for Aster nCluster
Since SAS 7, most SAS names can be up to 32 characters long. SAS/ACCESS

Interface to Aster nCluster supports table names and column names that contain up to
32 characters. If column names are longer than 32 characters, they are truncated to 32
characters. If truncating a column name would result in identical column names, SAS
generates a unique name by replacing the last character with a number. DBMS table
names must be 32 characters or less. SAS does not truncate a name longer than 32
characters. If you have a table name that is greater than 32 characters, it is
recommended that you create a table view.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options determine
how SAS/ACCESS Interface to Aster nCluster handles case sensitivity. Aster nCluster
is not case sensitive, so all names default to lowercase.

Aster nCluster objects include tables, views, and columns. They follow these
conventions.

� A name must be from 1 to 64 characters long.
� A name must begin with a letter (A through Z), diacritic marks, non-Latin

characters (200-377 octal) or an underscore (_).
� To enable case sensitivity, enclose names in quotes. All references to quoted names

must always be enclosed in quotes, and preserve case sensitivity.
� A name cannot begin with a _bee prefix. Leading _bee prefixes are reserved for

system objects.
� A name cannot be an Aster nCluster reserved word, such as WHERE or VIEW.
� A name cannot be the same as another Aster nCluster object that has the same

type.

For more information, see your Aster nCluster Database User’s Guide.

452 Data Types for Aster nCluster � Chapter 14

Data Types for Aster nCluster

Overview
Every column in a table has a name and a data type. The data type tells Aster

nCluster how much physical storage to set aside for the column and the form in which
the data is stored. This information includes information about Aster nCluster data
types and data conversions.

For information about Aster nCluster data types and to which data types are
available for your version of Aster nCluster, see the Aster nCluster Database User’s
Guide.

SAS/ACCESS Interface to Aster nCluster does not directly support TIMETZ or
INTERVAL types. Any columns using these types are read into SAS as character
strings.

String Data

CHAR(n)
specifies a fixed-length column for character string data. The maximum length is
32,768 characters.

VARCHAR(n)
specifies a varying-length column for character string data. The maximum length
is 32,768 characters.

Numeric Data

BIGINT
specifies a big integer. Values in a column of this type can range from
–9223372036854775808 to +9223372036854775807.

SMALLINT
specifies a small integer. Values in a column of this type can range from –32768
through +32767.

INTEGER
specifies a large integer. Values in a column of this type can range from
-2147483648 through +2147483647.

DOUBLE | DOUBLE PRECISION
specifies a floating-point number that is 64 bits long. The double precision type
typically has a range of around 1E-307 to 1E+308 with a precision of at least 15
decimal digits.

REAL
specifies a floating-point number that is 32 bits long. On most platforms, the real
type typically has a range of around 1E-37 to 1E+37 with a precision of at least 6
decimal digits.

SAS/ACCESS Interface to Aster nCluster � LIBNAME Statement Data Conversions 453

DECIMAL | DEC | NUMERIC | NUM
specifies a fixed-point decimal number. The precision and scale of the number
determines the position of the decimal point. The numbers to the right of the
decimal point are the scale, and the scale cannot be negative or greater than the
precision.

Date, Time, and Timestamp Data
SQL date and time data types are collectively called datetime values. The SQL data

types for dates, times, and timestamps are listed here. Be aware that columns of these
data types can contain data values that are out of range for SAS.

DATE
specifies date values. The range is 4713 BC to 5874897 AD. The default format
YYYY-MM-DD; for example, 1961-06-13. Aster nCluster supports many other
formats for entering date data. For more information, see your Aster nCluster
Database User’s Guide.

TIME
specifies time values in hours, minutes, and seconds to six decimal positions:
hh:mm:ss[.nnnnnn]. The range is 00:00:00.000000 to 24:00:00.000000. Due to the
ODBC-style interface that SAS/ACCESS Interface to Aster nCluster uses to
communicate with the server, fractional seconds are lost in the data transfer from
server to client.

TIMESTAMP
combines a date and time in the default format of yyyy-mm-dd hh:mm:ss[.nnnnnn].
For example, a timestamp for precisely 2:25 p.m. on January 25, 1991, would be
1991-01-25-14.25.00.000000. Values in a column of this type have the same ranges
as described for DATE and TIME.

LIBNAME Statement Data Conversions
This table shows the default formats that SAS/ACCESS Interface to Aster nCluster

assigns to SAS variables to read from an Aster nCluster table when using the
“Overview of the LIBNAME Statement for Relational Databases” on page 87. These
default formats are based on Aster nCluster column attributes.

Table 14.3 LIBNAME Statement: Default SAS Formats for Aster nCluster Data
Types

Aster nCluster Data Type SAS Data Type Default SAS Format

CHAR(n)* character $n.

VARCHAR(n)* character $n.

INTEGER numeric 11.

SMALLINT numeric 6.

BIGINT numeric 20.

DECIMAL(p,s) numeric m.n

NUMERIC(p,s) numeric m.n

REAL numeric none

454 LIBNAME Statement Data Conversions � Chapter 14

Aster nCluster Data Type SAS Data Type Default SAS Format

DOUBLE numeric none

TIME numeric TIME8.

DATE numeric DATE9.

TIMESTAMP numeric DATETIME25.6

* n in Aster nCluster data types is equivalent to w in SAS formats.

This table shows the default Aster nCluster data types that SAS/ACCESS assigns to
SAS variable formats during output operations when you use the LIBNAME statement.

Table 14.4 LIBNAME Statement: Default Aster nCluster Data Types for SAS
Variable Formats

SAS Variable Format Aster nCluster Data Type

m.n DECIMAL(p,s)

other numerics DOUBLE

$n. VARCHAR(n)*

datetime formats TIMESTAMP

date formats DATE

time formats TIME

* n in Aster nCluster data types is equivalent to w in SAS formats.

455

C H A P T E R

15
SAS/ACCESS Interface to DB2
Under UNIX and PC Hosts

Introduction to SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts 456
LIBNAME Statement Specifics for DB2 Under UNIX and PC Hosts 456

Overview 456

Arguments 456

DB2 Under UNIX and PC Hosts LIBNAME Statement Example 459

Data Set Options for DB2 Under UNIX and PC Hosts 460
SQL Pass-Through Facility Specifics for DB2 Under UNIX and PC Hosts 462

Key Information 462

Examples 462

Special Catalog Queries 463

Autopartitioning Scheme for DB2 Under UNIX and PC Hosts 464

Overview 464
Autopartitioning Restrictions 464

Nullable Columns 464

Using WHERE Clauses 464

Using DBSLICEPARM= 464

Using DBSLICE= 465
Configuring DB2 EEE Nodes on Physically Partitioned Databases 466

Temporary Table Support for DB2 Under UNIX and PC Hosts 467

Establishing a Temporary Table 467

Terminating a Temporary Table 467

Examples 468
DBLOAD Procedure Specifics for DB2 Under UNIX and PC Hosts 468

Key Information 468

Examples 470

Passing SAS Functions to DB2 Under UNIX and PC Hosts 470

Passing Joins to DB2 Under UNIX and PC Hosts 472

Bulk Loading for DB2 Under UNIX and PC Hosts 472
Overview 472

Using the LOAD Method 472

Using the IMPORT Method 473

Using the CLI LOAD Method 473

Capturing Bulk-Load Statistics into Macro Variables 474
Maximizing Load Performance for DB2 Under UNIX and PC Hosts 474

Examples 474

In-Database Procedures in DB2 under UNIX and PC Hosts 475

Locking in the DB2 Under UNIX and PC Hosts Interface 475

Naming Conventions for DB2 Under UNIX and PC Hosts 477
Data Types for DB2 Under UNIX and PC Hosts 477

Overview 477

Character Data 477

456 Introduction to SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � Chapter 15

String Data 478
Numeric Data 478

Date, Time, and Timestamp Data 479

DB2 Null and Default Values 480

LIBNAME Statement Data Conversions 480

DBLOAD Procedure Data Conversions 481

Introduction to SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts
This section describes SAS/ACCESS Interface to DB2 under UNIX and PC Hosts.

For a list of SAS/ACCESS features that are available in this interface, see “SAS/
ACCESS Interface to DB2 Under UNIX and PC Hosts: Supported Features” on page 76.

LIBNAME Statement Specifics for DB2 Under UNIX and PC Hosts

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to DB2

under UNIX and PC Hosts supports and includes an example. For details about this
feature, see “Overview of the LIBNAME Statement for Relational Databases” on page
87.

Here is the LIBNAME statement syntax for accessing DB2 under UNIX and PC
Hosts.

LIBNAME libref db2 <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

db2
specifies the SAS/ACCESS engine name for the DB2 under UNIX and PC Hosts
interface.

connection-options
provides connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. When you use the LIBNAME
statement, you can connect to DB2 several ways. Specify only one of these
methods for each connection because they are mutually exclusive.

� USER=, PASSWORD=, DATASRC=
� COMPLETE=

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � Arguments 457

� NOPROMPT=
� PROMPT=
� REQUIRED=

Here is how these options are defined.

USER=<’>user-name<’>
lets you connect to a DB2 database with a user ID that is different from the
default ID. USER= is optional. If you specify USER=, you must also specify
PASSWORD=. If USER= is omitted, your default user ID for your operating
environment is used.

PASSWORD=<’>password<’>
specifies the DB2 password that is associated with your DB2 user ID.
PASSWORD= is optional. If you specify USER=, you must specify
PASSWORD=.

DATASRC=<’>data-source-name<’>
specifies the DB2 data source or database to which you want to connect.
DATASRC= is optional. If you omit it, you connect by using a default
environment variable. DSN= and DATABASE= are aliases for this option.

COMPLETE=<’>CLI-connection-string<’>
specifies connection information for your data source or database for PCs
only. Separate multiple options with a semicolon. When a successful
connection is made, the complete connection string is returned in the
SYSDBMSG macro variable. If you do not specify enough correct connection
options, you are prompted with a dialog box that displays the values from the
COMPLETE= connection string. You can edit any field before you connect to
the data source. This option is not available on UNIX platforms. See your
DB2 documentation for more details.

NOPROMPT=<’>CLI-connection-string<’>
specifies connection information for your data source or database. Separate
multiple options with a semicolon. If you do not specify enough correct
connection options, an error is returned (no dialog box displays).

PROMPT=<’> CLI-connection-string<’>
specifies connection information for your data source or database for PCs only.
Separate multiple options with a semicolon. When a successful connection is
made, the complete connection string is returned in the SYSDBMSG macro
variable. PROMPT= does not immediately attempt to connect to the DBMS.
Instead, it displays a dialog box that contains the values that you entered in
the PROMPT= connection string. You can edit values or enter additional
values in any field before you connect to the data source.

This option is not available on UNIX platforms.

458 Arguments � Chapter 15

REQUIRED=<’>CLI-connection-string<’>
specifies connection information for your data source or database for PCs
only. Separate the multiple options with semicolons. When a successful
connection is made, the complete connection string is returned in the
SYSDBMSG macro variable. If you do not specify enough correct connection
options, a dialog box prompts you for the connection options. REQUIRED=
lets you modify only required fields in the dialog box.

This option is not available on UNIX platforms.

LIBNAME-options
defines how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to DB2 under
UNIX and PC Hosts, with the applicable default values. For more detail about
these options, see “LIBNAME Options for Relational Databases” on page 92.

Table 15.1 SAS/ACCESS LIBNAME Options for DB2 Under UNIX and PC Hosts

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTOCOMMIT= varies with transaction type

CONNECTION= SHAREDREAD

CONNECTION_GROUP= none

CURSOR_TYPE= operation-specific

DBCOMMIT= 1000 (insert); 0 (update); 10000 (bulk load)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= YES

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

DBMSTEMP= NO

DBNULLKEYS= YES

DBPROMPT= NO

DBSLICEPARM= THREADED_APPS,2 or 3

DEFER= NO

DIRECT_EXE= none

DIRECT_SQL= YES

FETCH_IDENTITY= NO

IGNORE_
READ_ONLY_COLUMNS=

NO

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � DB2 Under UNIX and PC Hosts LIBNAME Statement Example 459

Option Default Value

IN= none

INSERTBUFF= automatically calculated based on row length

MULTI_DATASRC_OPT= NONE

PRESERVE_COL_NAMES= NO (see “Naming Conventions for DB2 Under
UNIX and PC Hosts” on page 477)

PRESERVE_TAB_NAMES= NO (see “Naming Conventions for DB2 Under
UNIX and PC Hosts” on page 477)

QUERY_TIMEOUT= 0

READBUFF= automatically calculated based on row length

READ_ISOLATION_LEVEL= set by the user in the DB2Cli.ini file (see “Locking
in the DB2 Under UNIX and PC Hosts Interface”
on page 475)

READ_LOCK_TYPE= ROW

REREAD_EXPOSURE= NO

SCHEMA= your user ID

SPOOL= YES

SQL_FUNCTIONS= none

SQL_FUNCTIONS_COPY= none

SQLGENERATION= DBMS

STRINGDATES= NO

UPDATE_ISOLATION_LEVEL= CS (see “Locking in the DB2 Under UNIX and PC
Hosts Interface” on page 475)

UPDATE_LOCK_TYPE= ROW

UTILCONN_TRANSIENT= YES

DB2 Under UNIX and PC Hosts LIBNAME Statement Example
In this example, the libref MyDBLib uses the DB2 engine and the NOPROMPT=

option to connect to a DB2 database. PROC PRINT is used to display the contents of
the DB2 table Customers.

libname mydblib db2
noprompt="dsn=userdsn;uid=testuser;pwd=testpass;";

proc print data=mydblib.customers;
where state=’CA’;

run;

460 Data Set Options for DB2 Under UNIX and PC Hosts � Chapter 15

Data Set Options for DB2 Under UNIX and PC Hosts
All SAS/ACCESS data set options in this table are supported for DB2 under UNIX

and PC Hosts. Default values are provided where applicable. For general information
about this feature, see “About the Data Set Options for Relational Databases” on page
207.

Table 15.2 SAS/ACCESS Data Set Options for DB2 Under UNIX and PC Hosts

Option Default Value

BL_ALLOW_READ_ACCESS NO

BL_ALLOW_WRITE_ACCESS NO

BL_CODEPAGE= the window’s codepage ID

BL_COPY_LOCATION= none

BL_CPU_PARALLELISM none

BL_DATA_BUFFER_SIZE none

BL_DATAFILE= the current directory

BL_DELETE_DATAFILE= YES

BL_DISK_PARALLELISM none

BL_EXCEPTION none

BL_INDEXING_MODE= AUTOSELECT

BL_LOAD_REPLACE= NO

BL_LOG= the current directory

BL_METHOD= none

BL_OPTIONS= none

BL_PORT_MAX= none

BL_PORT_MIN= none

BL_RECOVERABLE= NO

BL_REMOTE_FILE= none

BL_SERVER_DATAFILE= creates a data file in the current directory or with the
default file specifications (same as for BL_DATAFILE=)

BL_WARNING_COUNT= 2147483646

BULKLOAD= NO

CURSOR TYPE= LIBNAME option setting

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � Data Set Options for DB2 Under UNIX and PC Hosts 461

Option Default Value

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= _ALL_=YES

DBNULLKEYS= LIBNAME option setting

DBPROMPT= LIBNAME option setting

DBSASLABEL= COMPAT

DBSASTYPE= see “Data Types for DB2 Under UNIX and PC Hosts” on
page 477

DBSLICE= none

DBSLICEPARM= THREADED_APPS,3

DBTYPE= see “Data Types for DB2 Under UNIX and PC Hosts” on
page 477

ERRLIMIT= NO

FETCH_IDENTITY= 1

IGNORE_
READ_ONLY_COLUMNS=

NO

IN= LIBNAME option setting

INSERTBUFF= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

QUERY_TIMEOUT= LIBNAME option setting

READ_ISOLATION_LEVEL= LIBNAME option setting

READ_LOCK_TYPE= LIBNAME option setting

READBUFF= LIBNAME option setting

SASDATEFMT= none

SCHEMA= LIBNAME option setting

UPDATE_ISOLATION_LEVEL= LIBNAME option setting

UPDATE_LOCK_TYPE= LIBNAME option setting

.

462 SQL Pass-Through Facility Specifics for DB2 Under UNIX and PC Hosts � Chapter 15

SQL Pass-Through Facility Specifics for DB2 Under UNIX and PC Hosts

Key Information
For general information about this feature, see “Overview of the SQL Pass-Through

Facility” on page 425. DB2 under UNIX and PC Hosts examples are available.
Here are the SQL pass-through facility specifics for the DB2 under UNIX and PC

Hosts interface.

� The dbms-name is DB2.

� The CONNECT statement is required.

� You can connect to only one DB2 database at a time. However, you can use
multiple CONNECT statements to connect to multiple DB2 data sources by using
the alias argument to distinguish your connections.

� The database-connection-arguments for the CONNECT statement are identical to
its LIBNAME connection options.

� These LIBNAME options are available with the CONNECT statement:

AUTOCOMMIT=

CURSOR_TYPE=

QUERY_TIMEOUT=

READ_ISOLATION_LEVEL=

See “LIBNAME Statement Syntax for Relational Databases” on page 89 for details
about these options.

Examples
This example connects to the SAMPLE database and sends it two EXECUTE

statements to process.

proc sql;
connect to db2 (database=sample);
execute (create view

sasdemo.whotookorders as
select ordernum, takenby,

firstname, lastname, phone
from sasdemo.orders,

sasdemo.employees
where sasdemo.orders.takenby=

sasdemo.employees.empid)
by db2;

execute (grant select on
sasdemo.whotookorders to testuser)
by db2;

disconnect from db2;
quit;

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � Special Catalog Queries 463

This example connects to the SAMPLE database by using an alias (DB1) and
performs a query, shown in italic type, on the SASDEMO.CUSTOMERS table.

proc sql;
connect to db2 as db1 (database=sample);
select *

from connection to db1
(select * from sasdemo.customers

where customer like ’1%’);
disconnect from db1;

quit;

Special Catalog Queries
SAS/ACCESS Interface to DB2 under UNIX and PC Hosts supports the following

special queries. You can use the queries to call the ODBC-style catalog function
application programming interfaces (APIs). Here is the general format of these queries:

DB2::SQLAPI “parameter 1”,”parameter n”

DB2::
is required to distinguish special queries from regular queries.

SQLAPI
is the specific API that is being called. Neither DB2:: nor SQLAPI are case
sensitive.

"parameter n"
is a quoted string that is delimited by commas.

Within the quoted string, two characters are universally recognized: the percent sign
(%) and the underscore (_). The percent sign matches any sequence of zero or more
characters, and the underscore represents any single character. To use either character
as a literal value, you can use the backslash character (\) to escape the match
characters. For example, this call to SQLTables usually matches table names such as
myatest and my_test:

select * from connection to db2 (DB2::SQLTables "test","","my_test");

Use the escape character to search only for the my_test table:

select * from connection to db2 (DB2::SQLTables "test","","my_test");

SAS/ACCESS Interface to DB2 under UNIX and PC Hosts supports these special
queries:

DB2::SQLDataSources
returns a list of database aliases that have been cataloged on the DB2 client.

DB2::SQLDBMSInfo
returns information about the DBMS server and version. It returns one row with
two columns that describe the DBMS name (such as DB2/NT) and version (such as
8.2).

464 Autopartitioning Scheme for DB2 Under UNIX and PC Hosts � Chapter 15

Autopartitioning Scheme for DB2 Under UNIX and PC Hosts

Overview
Autopartitioning for SAS/ACCESS Interface to DB2 for UNIX and PC Hosts is a

modulo (MOD) function method. For general information about this feature, see
“Autopartitioning Techniques in SAS/ACCESS” on page 57.

Autopartitioning Restrictions
SAS/ACCESS Interface to DB2 under UNIX and PC Hosts places additional

restrictions on the columns that you can use for the partitioning column during the
autopartitioning phase. Here is how columns are partitioned.

� INTEGER and SMALLINT columns are given preference.
� You can use other DB2 numeric columns for partitioning as long as the precision

minus the scale of the column is between 0 and 10—that is, 0<(precision-scale)<10.

Nullable Columns
If you select a nullable column for autopartitioning, the OR<column-name>IS NULL

SQL statement is appended at the end of the SQL code that is generated for the
threaded reads. This ensures that any possible NULL values are returned in the result
set.

Using WHERE Clauses
Autopartitioning does not select a column to be the partitioning column if it appears

in a SAS WHERE clause. For example, the following DATA step cannot use a threaded
read to retrieve the data because all numeric columns in the table (see the table
definition in “Using DBSLICE=” on page 465) are in the WHERE clause:

data work.locemp;
set trlib.MYEMPS;
where EMPNUM<=30 and ISTENURE=0 and
SALARY<=35000 and NUMCLASS>2;
run;

Using DBSLICEPARM=
Although SAS/ACCESS Interface to DB2 under UNIX and PC Hosts defaults to three

threads when you use autopartitioning, do not specify a maximum number of threads
for the threaded read in the DBSLICEPARM= LIBNAME option“DBSLICEPARM=
LIBNAME Option” on page 137DBSLICEPARM= LIBNAME option .

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � Using DBSLICE= 465

Using DBSLICE=
You might achieve the best possible performance when using threaded reads by

specifying the DBSLICE= data set option for DB2 in your SAS operation. This is
especially true if your DB2 data is evenly distributed across multiple partitions in a
DB2 Enterprise Extended Edition (EEE) database system. When you create a DB2
table under the DB2 EEE model, you can specify the partitioning key you want to use
by appending the clause PARTITIONING KEY(column-name) to your CREATE TABLE
statement. Here is how you can accomplish this by using the LIBNAME option,
DBCREATE_TABLE_OPTS=, within the SAS environment.

/*points to a triple node server*/
libname trlib2 db2 user=db2user pw=db2pwd db=sample3c
DBCREATE_TABLE_OPTS=’PARTITIONING KEY(EMPNUM);

proc delete data=trlib.MYEMPS1;
run;

data trlib.myemps(drop=morf whatstate
DBTYPE=(HIREDATE="date" SALARY="numeric(8,2)"
NUMCLASS="smallint" GENDER="char(1)" ISTENURE="numeric(1)" STATE="char(2)"
EMPNUM="int NOT NULL Primary Key"));

format HIREDATE mmddyy10.;
do EMPNUM=1 to 100;

morf=mod(EMPNUM,2)+1;
if(morf eq 1) then

GENDER=’F’;
else

GENDER=’M’;
SALARY=(ranuni(0)*5000);
HIREDATE=int(ranuni(13131)*3650);
whatstate=int(EMPNUM/5);
if(whatstate eq 1) then

STATE=’FL’;
if(whatstate eq 2) then

STATE=’GA’;
if(whatstate eq 3) then

STATE=’SC’;
if(whatstate eq 4) then

STATE=’VA’;
else

state=’NC’;
ISTENURE=mod(EMPNUM,2);
NUMCLASS=int(EMPNUM/5)+2;
output;

end;
run;

After the table MYEMPS is created on this three-node database, one-third of the
rows reside on each of the three nodes.

466 Configuring DB2 EEE Nodes on Physically Partitioned Databases � Chapter 15

Optimization of the threaded read against this partitioned table depends upon the
location of the DB2 partitions. If the DB2 partitions are on the same machine, you can
use DBSLICE= with the DB2 NODENUMBER function in the WHERE clause:

proc print data=trlib2.MYEMPS(DBSLICE=("NODENUMBER(EMPNO)=0"
"NODENUMBER(EMPNO)=1" "NODENUMBER(EMPNO)=2"));

run;

If the DB2 partitions reside on different physical machines, you can usually obtain
the best results by using the DBSLICE= option with the SERVER= syntax in addition
to the DB2 NODENUMBER function in the WHERE clause.

In the next example, DBSLICE= contains DB2-specific partitioning information.
Also, Sample3a, Sample3b, and Sample3c are DB2 database aliases that point to
individual DB2 EEE database nodes that exist on separate physical machines. For
more information about the configuration of these nodes, see “Configuring DB2 EEE
Nodes on Physically Partitioned Databases” on page 466.

proc print data=trlib2.MYEMPS(DBSLICE=(sample3a="NODENUMBER(EMPNO)=0"
samble3b="NODENUMBER(EMPNO)=1" sample3c="NODENUMBER(EMPNO)=2"));

run;

NODENUMBER is not required to use threaded reads for SAS/ACCESS Interface to
DB2 under UNIX and PC Hosts. The methods and examples described in DBSLICE=
work well in cases where the table you want to read is not stored in multiple partitions
to DB2. These methods also give you full control over which column is used to execute
the threaded read. For example, if the STATE column in your employee table contains
only a few distinct values, you can tailor your DBSLICE= clause accordingly:

data work.locemp;
set trlib2.MYEMPS (DBSLICE=("STATE=’GA’"

"STATE=’SC’" "STATE=’VA’" "STATE=’NC’"));
where EMPNUM<=30 and ISTENURE=0 and SALARY<=35000 and NUMCLASS>2;
run;

Configuring DB2 EEE Nodes on Physically Partitioned Databases
Assuming that the database SAMPLE is partitioned across three different machines,

you can create a database alias for it at each node from the DB2 Command Line
Processor by issuing these commands:

catalog tcpip node node1 remote <hostname> server 50000
catalog tcpip node node2 remote <hostname> server 50000
catalog tcpip node node3 remote <hostname> server 50000
catalog database sample as samplea at node node1
catalog database sample as sampleb at node node2
catalog database sample as samplec at node node3

This enables SAS/ACCESS Interface to DB2 to access the data for the SAMPLE table
directly from each node. For more information about configuring DB2 EEE to use
multiple physical partitions, see the DB2 Administrator’s Guide.

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � Terminating a Temporary Table 467

Temporary Table Support for DB2 Under UNIX and PC Hosts

Establishing a Temporary Table
For general information about this feature, see “Temporary Table Support for SAS/

ACCESS” on page 38.
To make full use of temporary tables, the CONNECTION=GLOBAL connection

option is necessary. You can use this option to establish a single connection across SAS
DATA step and procedure boundaries that can also be shared between the LIBNAME
statement and the SQL pass-through facility. Because a temporary table only exists
within a single connection, you must be able to share this single connection among all
steps that reference the temporary table. The temporary table cannot be referenced
from any other connection.

The type of temporary table that is used for this processing is created using the
DECLARE TEMPORARY TABLE statement with the ON COMMIT PRESERVE clause.
This type of temporary table lasts for the duration of the connection—unless it is
explicitly dropped—and retains its rows of data beyond commit points.

DB2 places all global temporary tables in the SESSION schema. Therefore, to
reference these temporary tables within SAS, you must explicitly provide the SESSION
schema in Pass-Through SQL statements or use the SCHEMA= LIBNAME option with
a value of SESSION.

Currently, the only supported way to create a temporary table is to use a PROC SQL
Pass-Through statement. To use both the SQL pass-through facility and librefs to
reference a temporary table, you need to specify a LIBNAME statement before the
PROC SQL step. This enables the global connection to persist across SAS steps, even
multiple PROC SQL steps, as shown in this example:

libname temp db2 database=sample user=myuser password=mypwd
schema=SESSION connection=global;

proc sql;
connect to db2 (db=sample user=myuser pwd=mypwd connection=global);
execute (declare global temporary table temptab1 like other.table

on commit PRESERVE rows not logged) by db2;
quit;

At this point, you can refer to the temporary table by using the libref Temp or by
using the CONNECTION=GLOBAL option with a PROC SQL step.

Terminating a Temporary Table
You can drop a temporary table at any time, or allow it to be implicitly dropped when

the connection is terminated. Temporary tables do not persist beyond the scope of a
single connection.

468 Examples � Chapter 15

Examples

In the following examples, it is assumed that there is a DeptInfo table on the DBMS
that has all of your department information. It is also assumed that you have a SAS
data set with join criteria that you want to use to get certain rows out of the DeptInfo
table, and another SAS data set with updates to the DeptInfo table.

These librefs and temporary tables are used:

libname saslib base ’SAS-Data-Library’;
libname dept db2 db=sample user=myuser pwd=mypwd connection=global;
libname temp db2 db=sample user=myuser pwd=mypwd connection=global

schema=SESSION;
/* Note that the temporary table has a schema of SESSION */

proc sql;
connect to db2 (db=sample user=myuser pwd=mypwd connection=global);
execute (declare global temporary table

temptab1 (dname char(20), deptno int)
on commit PRESERVE rows not logged) by db2;

quit;

The following example demonstrates how to take a heterogeneous join and use a
temporary table to perform a homogeneous join on the DBMS (as opposed to reading
the DBMS table into SAS to perform the join). Using the table created above, the SAS
data is copied into the temporary table to perform the join.

proc sql;
connect to db2 (db=sample user=myuser pwd=mypwd connection=global);
insert into temp.temptab1 select * from saslib.joindata;
select * from dept.deptinfo info, temp.temptab1 tab

where info.deptno = tab.deptno;
/* remove the rows for the next example */
execute (delete from session.temptab1) by db2;
quit;

In the following example, transaction processing on the DBMS occurs using a
temporary table as opposed to using either DBKEY= or
MULTI_DATASRC_OPT=IN_CLAUSE with a SAS data set as the transaction table.

connect to db2 (db=sample user=myuser pwd=mypwd connection=global);
insert into temp.temptab1 select * from saslib.transdat;
execute (update deptinfo d set deptno = (select deptno from session.temptab1)

where d.dname = (select dname from session.temptab1)) by db2;
quit;

DBLOAD Procedure Specifics for DB2 Under UNIX and PC Hosts

Key Information

For general information about this feature, see Appendix 2, “The DBLOAD Procedure
for Relational Databases,” on page 911. DB2 under UNIX and PC Hosts examples are
available.

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � Key Information 469

SAS/ACCESS Interface to DB2 under UNIX and PC Hosts supports all DBLOAD
procedure statements in batch mode. Here are the DBLOAD procedure specifics for the
DB2 under UNIX and PC Hosts interface.

� DBMS= value is DB2.
� Here are the database description statements that PROC DBLOAD uses:

IN= <’>database-name<’>;
specifies the name of the database in which you want to store the new DB2
table. The IN= statement is required and must immediately follow the PROC
DBLOAD statement. The database-name is limited to eight characters.
DATABASE= is an alias for the IN= statement.

The database that you specify must already exist. If the database name
contains the _, $, @, or # special character, you must enclose it in quotation
marks. DB2 recommends against using special characters in database names,
however.

USER= <’>user name<’>;
lets you connect to a DB2 database with a user ID that is different from the
default login ID.

USER= is optional in SAS/ACCESS Interface to DB2 under UNIX and PC
Hosts. If you specify USER=, you must also specify PASSWORD=. If USER=
is omitted, your default user ID is used.

PASSWORD= <’>password<’>;
specifies the password that is associated with your user ID.

PASSWORD= is optional in SAS/ACCESS Interface to DB2 under UNIX
and PC Hosts because users have default user IDs. If you specify USER=,
however, you must specify PASSWORD=.

If you do not wish to enter your DB2 password in uncoded text on this
statement, see PROC PWENCODE in Base SAS Procedures Guide for a
method to encode it.

� Here is the TABLE= statement:

TABLE= <’><schema-name.>table-name<’>;
identifies the DB2 table or DB2 view that you want to use to create an access
descriptor. The table-name is limited to 18 characters. If you use quotation
marks, the name is case sensitive. The TABLE= statement is required.

The schema-name is a person’s name or group ID that is associated with
the DB2 table. The schema name is limited to eight characters.

� Here is the NULLS statement.

NULLS variable-identifier-1 =Y|N|D < . . . variable-identifier-n =Y|N|D >;
enables you to specify whether the DB2 columns that are associated with the
listed SAS variables allow NULL values. By default, all columns accept
NULL values.

The NULLS statement accepts any one of these values.

Y specifies that the column accepts NULL values. This is
the default.

N specifies that the column does not accept NULL values.

D specifies that the column is defined as NOT NULL WITH
DEFAULT.

470 Examples � Chapter 15

Examples
The following example creates a new DB2 table, SASDEMO.EXCHANGE, from the

MYDBLIB.RATEOFEX data file. You must be granted the appropriate privileges in
order to create new DB2 tables or views.

proc dbload dbms=db2 data=mydblib.rateofex;
in=’sample’;
user=’testuser’;
password=’testpass’;
table=sasdemo.exchange;

rename fgnindol=fgnindollars
4=dollarsinfgn;

nulls updated=n fgnindollars=n
dollarsinfgn=n country=n;

load;
run;

The following example sends only a DB2 SQL GRANT statement to the SAMPLE
database and does not create a new table. Therefore, the TABLE= and LOAD
statements are omitted.

proc dbload dbms=db2;
in=’sample’;
sql grant select on sasdemo.exchange

to testuser;
run;

Passing SAS Functions to DB2 Under UNIX and PC Hosts
SAS/ACCESS Interface to DB2 under UNIX and PC Hosts passes the following SAS

functions to DB2 for processing if the DBMS driver or client that you are using
supports this function. Where the DB2 function name differs from the SAS function
name, the DB2 name appears in parentheses. For more information, see “Passing
Functions to the DBMS Using PROC SQL” on page 42.

ABS
ARCOS (ACOS)
ARSIN (ASIN)
ATAN
AVG
BYTE (CHAR)
CEIL (CEILING)
COMPRESS (REPLACE)
COS
COSH
COUNT (COUNT_BIG)
DAY (DAYOFMONTH)
EXP

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � Passing SAS Functions to DB2 Under UNIX and PC Hosts 471

FLOOR

HOUR

INDEX (LOCATE)

LENGTH

LOG

LOG10

LOWCASE (LCASE)

MAX

MIN

MINUTE

MOD

MONTH

QTR (QUARTER)

REPEAT

SECOND

SIGN

SIN

SINH

SQRT

STRIP

SUBSTR (SUBSTRING)

SUM

TAN

TANH

TRANWRD (REPLACE)

TRIMN (RTRIM)

UPCASE (UCASE)

WEEKDAY (DAYOFWEEK)

YEAR

SQL_FUNCTIONS=ALL allows for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to DB2. Due to incompatibility in date and time functions between DB2
and SAS, DB2 might not process them correctly. Check your results to determine
whether these functions are working as expected.

DATE (CURDATE)

DATEPART

DATETIME (NOW)

DAY (DAYOFMONTH)

SOUNDEX

TIME (CURTIME)

TIMEPART

TODAY (CURDATE)

472 Passing Joins to DB2 Under UNIX and PC Hosts � Chapter 15

Passing Joins to DB2 Under UNIX and PC Hosts
For a multiple libref join to pass to DB2, all of these components of the LIBNAME

statements must match exactly:
� user ID (USER=)
� password (PASSWORD=)
� update isolation level (UPDATE_ISOLATION_LEVEL=, if specified)
� read_isolation level (READ_ISOLATION_LEVEL=, if specified)
� qualifier (QUALIFIER=)
� data source (DATASRC=)
� prompt (PROMPT=, must not be specified)

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

Bulk Loading for DB2 Under UNIX and PC Hosts

Overview
Bulk loading is the fastest way to insert large numbers of rows into a DB2 table.

Using this facility instead of regular SQL insert statements, you can insert rows two to
ten times more rapidly. You must specify BULKLOAD=YES to use the bulk-load facility.

SAS/ACCESS Interface to DB2 under UNIX and PC Hosts offers LOAD, IMPORT,
and CLI LOAD bulk-loading methods. The BL_REMOTE_FILE= and BL_METHOD=
data set options determine which method to use.

For more information about the differences between IMPORT, LOAD, and CLI
LOAD, see the DB2 Data Movement Utilities Guide and Reference.

Using the LOAD Method
To use the LOAD method, you must have system administrator authority, database

administrator authority, or load authority on the database and the insert privilege on
the table being loaded.

This method also requires that the client and server machines are able to read and
write files to a common location, such as a mapped network drive or an NFS directory.
To use this method, specify the BL_REMOTE_FILE= option.

Because SAS/ACCESS Interface to DB2 uses the PC/IXF file format to transfer data
to the DB2 LOAD utility, you cannot use this method to load data into partitioned
databases.

Here are the bulk-load options available with the LOAD method. For details about
these options, see Chapter 11, “Data Set Options for Relational Databases,” on page 203.

� BL_CODEPAGE=
� BL_DATAFILE=
� BL_DELETE_DATAFILE=
� BL_LOG=: The log file contains a summary of load information and error

descriptions. On most platforms, the default filename is
BL_<table>_<unique-ID>.log.

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � Overview 473

table specifies the table name

unique-ID specifies a number used to prevent collisions in the event of two
or more simultaneous bulk loads of a particular table. The
SAS/ACCESS engine generates the number.

� BL_OPTIONS=
� BL_REMOTE_FILE=
� BL_SERVER_DATAFILE =
� BL_WARNING_COUNT=

Using the IMPORT Method
The IMPORT method does not offer the same level of performance as the LOAD

method, but it is available to all users who have insert privileges on the tables being
loaded. The IMPORT method does not require that the server and client have a
common location in order to access the data file. If you do not specify
BL_REMOTE_FILE=, the IMPORT method is automatically used.

Here are the bulk-loading options available with the IMPORT method. For detailed
information about these options, see Chapter 11, “Data Set Options for Relational
Databases,” on page 203.

� BL_CODEPAGE=
� BL_DATAFILE=
� BL_DELETE_DATAFILE=
� BL_LOG=
� BL_OPTIONS=.

Using the CLI LOAD Method
The CLI LOAD method is an interface to the standard DB2 LOAD utility, which

gives the added performance of using LOAD but without setting additional options for
bulk load. This method requires the same privileges as the LOAD method, and is
available only in DB2 Version 7 FixPak 4 and later clients and servers. If your client
and server can support the CLI LOAD method, you can generally see the best
performance by using it. The CLI LOAD method can also be used to load data into a
partitioned DB2 database for client and database nodes that are DB2 Version 8.1 or
later. To use this method, specify BL_METHOD=CLILOAD as a data set option. Here
are the bulk-load options that are available with the CLI LOAD method:

� BL_ALLOW_READ_ACCESS
� BL_ALLOW_WRITE_ACCESS
� BL_COPY_LOCATION=
� BL_CPU_PARALLELISM
� BL_DATA_BUFFER_SIZE
� BL_DISK_PARALLELISM
� BL_EXCEPTION
� BL_INDEXING_MODE=
� BL_LOAD_REPLACE=
� BL_LOG=
� BL_METHOD=
� BL_OPTIONS=

474 Capturing Bulk-Load Statistics into Macro Variables � Chapter 15

� BL_RECOVERABLE=
� BL_REMOTE_FILE=

Capturing Bulk-Load Statistics into Macro Variables
These bulk-loading macro variables capture how many rows are loaded, skipped,

rejected, committed, and deleted and then writes this information to the SAS log.
� SYSBL_ROWSCOMMITTED
� SYSBL_ROWSDELETED
� SYSBL_ROWSLOADED
� SYSBL_ROWSREJECTED
� SYSBL_ROWSSKIPPED

Maximizing Load Performance for DB2 Under UNIX and PC Hosts
These tips can help you optimize LOAD performance when you are using the DB2

bulk-load facility:
� Specifying BL_REMOTE_FILE= causes the loader to use the DB2 LOAD utility,

which is much faster than the IMPORT utility, but it requires database
administrator authority.

� Performance might suffer if your setting for DBCOMMIT= is too low. Increase the
default (which is 10000 when BULKLOAD=YES) for improved performance.

� Increasing the DB2 tuning parameters, such as Utility Heap and I/O
characteristics, improves performance. These parameters are controlled by your
database or server administrator.

� When using the IMPORT utility, specify BL_OPTIONS="COMPOUND=x" where x
is a number between 1 and 7 on Windows, and between 1 and 100 on UNIX. This
causes the IMPORT utility to insert multiple rows for each execute instead of one
row per execute.

� When using the LOAD utility on a multi-processor or multi-node DB2 server,
specify BL_OPTIONS="ANYORDER" to improve performance. Note that this
might cause the entries in the DB2 log to be out of order (because it enables DB2
to insert the rows in an order that is different from how they appear in the loader
data file).

Examples
The following example shows how to use a SAS data set, SASFLT.FLT98, to create

and load a large DB2 table, FLIGHTS98. Because the code specifies BULKLOAD=YES
and BL_REMOTE_FILE= is omitted, this load uses the DB2 IMPORT command.

libname sasflt ’SAS-data-library’;
libname db2_air db2 user=louis using=fromage

database=’db2_flt’ schema=statsdiv;

proc sql;
create table db2_air.flights98

(bulkload=YES bl_options=’compound=7 norowwarnings’)
as select * from sasflt.flt98;

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � Locking in the DB2 Under UNIX and PC Hosts Interface 475

quit;

The BL_OPTIONS= option passes DB2 file type modifiers to DB2. The
norowwarnings modifier indicates that all row warnings about rejected rows are to be
suppressed.

The following example shows how to append the SAS data set, SASFLT.FLT98 to a
preexisting DB2 table, ALLFLIGHTS. Because the code specifies BULKLOAD=YES and
BL_REMOTE_FILE=, this load uses the DB2 LOAD command.

proc append base=db2_air.allflights
(BULKLOAD=YES
BL_REMOTE_FILE=’/tmp/tmpflt’
BL_LOG=’/tmp/fltdata.log’
BL_DATAFILE=’/nfs/server/tmp/fltdata.ixf’
BL_SERVER_DATAFILE=’/tmp/fltdata.ixf’)

data=sasflt.flt98;
run;

Here, BL_REMOTE_FILE= and BL_SERVER_DATAFILE= are paths relative to the
server. BL_LOG= and BL_DATAFILE= are paths relative to the client.

The following example shows how to use the SAS data set SASFLT.ALLFLIGHTS to
create and load a large DB2 table, ALLFLIGHTS. Because the code specifies
BULKLOAD=YES and BL_METHOD=CLILOAD, this operation uses the DB2 CLI
LOAD interface to the LOAD command.

data db2_air.allflights(BULKLOAD=YES BL_METHOD=CLILOAD);
set sasflt.allflights;
run;

In-Database Procedures in DB2 under UNIX and PC Hosts
In the third maintenance release for SAS 9.2, the following Base SAS procedures

have been enhanced for in-database processing inside DB2 under UNIX and PC Hosts.
FREQ
RANK
REPORT
SORT
SUMMARY/MEANS
TABULATE

For more information, see Chapter 8, “Overview of In-Database Procedures,” on page
67.

Locking in the DB2 Under UNIX and PC Hosts Interface
The following LIBNAME and data set options let you control how the DB2 under

UNIX and PC Hosts interface handles locking. For general information about an
option, see “LIBNAME Options for Relational Databases” on page 92. For additional
information, see your DB2 documentation.

READ_LOCK_TYPE= ROW | TABLE

UPDATE_LOCK_TYPE= ROW | TABLE

476 Locking in the DB2 Under UNIX and PC Hosts Interface � Chapter 15

READ_ISOLATION_LEVEL= RR | RS | CS | UR
The DB2 database manager supports the RR, RS, CS, and UR isolation levels that
are defined in the following table. Regardless of the isolation level, the database
manager places exclusive locks on every row that is inserted, updated, or deleted.
All isolation levels therefore ensure that only this application process can change
any given row during a unit of work—no other application process can change any
rows until the unit of work is complete.

Table 15.3 Isolation Levels for DB2 Under UNIX and PC Hosts

Isolation Level Definition

RR (Repeatable Read) no dirty reads, no nonrepeatable reads, no phantom reads

RS (Read Stability) no dirty reads, no nonrepeatable reads; does allow phantom reads

CS (Cursor Stability) no dirty reads; does allow nonrepeatable reads and phantom
reads

UR (Uncommitted Read) allows dirty reads, nonrepeatable reads, and phantom reads

Here is how the terms in the table are defined.

Dirty reads A transaction that exhibits this phenomenon has very minimal
isolation from concurrent transactions. In fact, it can see
changes that those concurrent transactions made even before
they commit them.

For example, suppose that transaction T1 performs an
update on a row, transaction T2 then retrieves that row, and
transaction T1 then terminates with rollback. Transaction T2
has then seen a row that no longer exists.

Nonrepeatable
reads

If a transaction exhibits this phenomenon, it is possible that it
might read a row once and, if it attempts to read that row
again later in the course of the same transaction, another
concurrent transaction might have changed or even deleted the
row. Therefore, the read is not (necessarily) repeatable.

For example, suppose that transaction T1 retrieves a row,
transaction T2 then updates that row, and transaction T1 then
retrieves the same row again. Transaction T1 has now retrieved
the same row twice but has seen two different values for it.

Phantom reads When a transaction exhibits this phenomenon, a set of rows
that it reads once might be a different set of rows if the
transaction attempts to read them again.

For example, suppose that transaction T1 retrieves the set of
all rows that satisfy some condition. Suppose that transaction
T2 then inserts a new row that satisfies that same condition. If
transaction T1 now repeats its retrieval request, it sees a row
that did not previously exist (a “phantom”).

UPDATE_ISOLATION_LEVEL= CS | RS | RR
The DB2 database manager supports the CS, RS, and RR isolation levels defined
in the preceding table. Uncommitted reads are not allowed with this option.

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � Character Data 477

Naming Conventions for DB2 Under UNIX and PC Hosts
For general information about this feature, see Chapter 2, “SAS Names and Support

for DBMS Names,” on page 11.
The PRESERVE_TAB_NAMES= and PRESERVE_COL_NAMES= options determine

how SAS/ACCESS Interface to DB2 under UNIX and PC Hosts handles case sensitivity,
spaces, and special characters. (For information about these options, see “Overview of
the LIBNAME Statement for Relational Databases” on page 87.) DB2 is not case
sensitive and all names default to uppercase. See Chapter 10, “The LIBNAME
Statement for Relational Databases,” on page 87 for additional information about these
options.

DB2 objects include tables, views, columns, and indexes. They follow these naming
conventions.

� A name can begin with a letter or one of these symbols: dollar sign ($), number or
pound sign (#), or at symbol (@).

� A table name must be from 1 to 128 characters long. A column name must from 1
to 30 characters long.

� A name can contain the letters A to Z, any valid letter with a diacritic, numbers
from 0 to 9, underscore (_), dollar sign ($), number or pound sign (#), or at symbol
(@).

� Names are not case sensitive. For example, the table names CUSTOMER and
Customer are the same, but object names are converted to uppercase when they
are entered. If a name is enclosed in quotation marks, the name is case sensitive.

� A name cannot be a DB2- or an SQL-reserved word, such as WHERE or VIEW.
� A name cannot be the same as another DB2 object that has the same type.

Schema and database names have similar conventions, except that they are each
limited to 30 and 8 characters respectively. For more information, see your DB2 SQL
reference documentation.

Data Types for DB2 Under UNIX and PC Hosts

Overview
Every column in a table has a name and a data type. The data type tells DB2 how

much physical storage to set aside for the column and the form in which the data is
stored. DB2 uses IBM SQL data types. This section includes information about DB2
data types, null and default values, and data conversions.

For more information about DB2 data types and to determine which data types are
available for your version of DB2, see your DB2 SQL reference documentation.

Character Data

BLOB (binary large object)
contains varying-length binary string data with a length of up to 2 gigabytes. It
can hold structured data that user-defined types and functions can exploit. Similar

478 String Data � Chapter 15

to FOR BIT DATA character strings, BLOB strings are not associated with a code
page.

CLOB (character large object)
contains varying-length character string data with a length of up to 2 gigabytes. It
can store large single-byte character set (SBCS) or mixed (SBCS and multibyte
character set, or MBCS) character-based data, such as documents written with a
single character set. It therefore has an SBCS or mixed code page associated with
it.

String Data

CHAR(n)
specifies a fixed-length column for character string data. The maximum length is
254 characters.

VARCHAR(n)
specifies a varying-length column for character string data. The maximum length
of the string is 4000 characters. If the length is greater than 254, the column is a
long-string column. SQL imposes some restrictions on referencing long-string
columns. For more information about these restrictions, see your IBM
documentation.

LONG VARCHAR
specifies a varying-length column for character string data. The maximum length
of a column of this type is 32700 characters. A LONG VARCHAR column cannot
be used in certain functions, subselects, search conditions, and so on. For more
information about these restrictions, see your IBM documentation.

GRAPHIC(n)
specifies a fixed-length column for graphic string data. n specifies the number of
double-byte characters and can range from 1 to 127. If n is not specified, the
default length is 1.

VARGRAPHIC(n)
specifies a varying-length column for graphic string data. n specifies the number
of double-byte characters and can range from 1 to 2000.

LONG VARGRAPHIC
specifies a varying-length column for graphic-string data. n specifies the number
of double-byte characters and can range from 1 to 16350.

Numeric Data

BIGINT
specifies a big integer. Values in a column of this type can range from
–9223372036854775808 to +9223372036854775807. However, numbers that
require decimal precision greater than 15 digits might be subject to rounding and
conversion errors.

SMALLINT
specifies a small integer. Values in a column of this type can range from –32768 to
+32767.

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � Date, Time, and Timestamp Data 479

INTEGER
specifies a large integer. Values in a column of this type can range from
–2147483648 to +2147483647.

FLOAT | DOUBLE | DOUBLE PRECISION
specifies a floating-point number that is 64 bits long. Values in a column of this
type can range from –1.79769E+308 to –2.225E−307 or +2.225E−307 to
+1.79769E+308, or they can be 0. This data type is stored the same way that SAS
stores its numeric data type. Therefore, numeric columns of this type require the
least processing when SAS accesses them.

DECIMAL | DEC | NUMERIC | NUM
specifies a mainframe-packed decimal number with an implicit decimal point. The
precision and scale of the number determines the position of the decimal point.
The numbers to the right of the decimal point are the scale, and the scale cannot
be negative or greater than the precision. The maximum precision is 31 digits.
Numbers that require decimal precision greater than 15 digits might be subject to
rounding and conversion errors.

Date, Time, and Timestamp Data
SQL date and time data types are collectively called datetime values. The SQL data

types for dates, times, and timestamps are listed here. Be aware that columns of these
data types can contain data values that are out of range for SAS.

DATE
specifies date values in various formats, as determined by the country code of the
database. For example, the default format for the United States is mm-dd-yyyy
and the European standard format is dd.mm.yyyy. The range is 01-01-0001 to
12-31-9999. A date always begins with a digit, is at least eight characters long,
and is represented as a character string. For example, in the U.S. default format,
January 25, 1991, would be formatted as 01-25-1991.

The entry format can vary according to the edit codes that are associated with
the field. For more information about edit codes, see your IBM documentation.

TIME
specifies time values in a three part format. The values range from 0 to 24 for
hours (hh) and from 0 to 59 for minutes (mm) and seconds (ss). The default form
for the United States is hh:mm:ss, and the IBM European standard format for
time is hh.mm[.ss]. For example, in the U.S. default format 2:25 p.m. would be
formatted as 14:25:00.

The entry format can vary according to the edit codes that are associated with
the field. For more information about edit codes, see your IBM documentation.

TIMESTAMP
combines a date and time and adds an optional microsecond to make a seven-part
value of the format yyyy-mm-dd-hh.mm.ss[.nnnnnn]. For example, a timestamp
for precisely 2:25 p.m. on January 25, 1991, would be 1991-01-25-14.25.00.000000.
Values in a column of this type have the same ranges as described earlier for
DATE and TIME.

For more information about SQL data types, datetime formats, and edit codes that
are used in the United States and other countries, see your IBM documentation.

480 DB2 Null and Default Values � Chapter 15

DB2 Null and Default Values
DB2 has a special value called NULL. A DB2 NULL value means an absence of

information and is analogous to a SAS missing value. When SAS/ACCESS reads a DB2
NULL value, it interprets it as a SAS missing value.

You can define a column in a DB2 table so that it requires data. To do this in SQL,
you specify a column as NOT NULL. NOT NULL tells SQL to only allow a row to be
added to a table if there is a value for the field. For example, NOT NULL assigned to
the field CUSTOMER in the table SASDEMO.CUSTOMER does not allow a row to be
added unless there is a value for CUSTOMER. When creating a DB2 table with
SAS/ACCESS, you can use the DBNULL= data set option to indicate whether NULL is
a valid value for specified columns.

DB2 columns can also be defined as NOT NULL WITH DEFAULT. For more
information about using the NOT NULL WITH DEFAULT value, see your DB2 SQL
reference documentation.

Knowing whether a DB2 column allows NULLs, or whether the host system supplies
a default value for a column that is defined as NOT NULL WITH DEFAULT, can assist
you in writing selection criteria and in entering values to update a table. Unless a
column is defined as NOT NULL or NOT NULL WITH DEFAULT, it allows NULL
values.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” on page 31.

To control how DB2 handles SAS missing character values, use the NULLCHAR=
and NULLCHARVAL= data set options.

LIBNAME Statement Data Conversions
This table shows the default formats that SAS/ACCESS Interface to DB2 assigns to

SAS variables when using the LIBNAME statement to read from a DB2 table. These
default formats are based on DB2 column attributes.

Table 15.4 LIBNAME Statement: Default SAS Formats for DB2 Data Types

DB2 Data Type SAS Data Type Default SAS Format

BLOB character $HEXn.

CLOB character $n.

CHAR(n)

VARCHAR(n

LONG VARCHAR

character $n.

GRAPHIC(n)

VARGRAPHIC(n)

LONG VARGRAPHIC

character $n.

INTEGER numeric 11.

SMALLINT numeric 6.

BIGINT numeric 20.

DECIMAL numeric m.n

NUMERIC numeric m.n

SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts � DBLOAD Procedure Data Conversions 481

DB2 Data Type SAS Data Type Default SAS Format

FLOAT numeric none

DOUBLE numeric none

TIME numeric TIME8.

DATE numeric DATE9.

TIMESTAMP numeric DATETIMEm.n

* n in DB2 data types is equivalent to w in SAS formats.

The following table shows the default DB2 data types that SAS/ACCESS assigns to
SAS variable formats during output operations when you use the LIBNAME statement.

Table 15.5 LIBNAME Statement: Default DB2 Data Types for SAS Variable
Formats

SAS Variable Format DB2 Data Type

m.n DECIMAL (m,n)

other numerics DOUBLE

$n. VARCHAR(n) (n<=4000)

LONG VARCHAR(n) (n>4000)

datetime formats TIMESTAMP

date formats DATE

time formats TIME

* n in DB2 data types is equivalent to w in SAS formats.

DBLOAD Procedure Data Conversions
The following table shows the default DB2 data types that SAS/ACCESS assigns to

SAS variable formats when you use the DBLOAD procedure.

Table 15.6 PROC DBLOAD: Default DB2 Data Types for SAS Variable Formats

SAS Variable Format DB2 Data Type

$w. CHAR(n)

w. DECIMAL(p)

w.d DECIMAL(p,s)

IBw.d, PIBw.d INTEGER

all other numerics* DOUBLE

datetimew.d TIMESTAMP

datew. DATE

time.** TIME

* Includes all SAS numeric formats, such as BINARY8 and E10.0.
** Includes all SAS time formats, such as TODw,d and HHMMw,d.

482

483

C H A P T E R

16
SAS/ACCESS Interface to DB2
Under z/OS

Introduction to SAS/ACCESS Interface to DB2 Under z/OS 485
LIBNAME Statement Specifics for DB2 Under z/OS 485

Overview 485

Arguments 485

DB2 Under z/OS LIBNAME Statement Example 487

Data Set Options for DB2 Under z/OS 487
SQL Pass-Through Facility Specifics for DB2 Under z/OS 489

Key Information 489

Examples 490

Autopartitioning Scheme for DB2 Under z/OS 491

Overview 491

Autopartitioning Restrictions 491
Column Selection for MOD Partitioning 491

How WHERE Clauses Restrict Autopartitioning 492

Using DBSLICEPARM= 492

Using DBSLICE= 492

Temporary Table Support for DB2 Under z/OS 492
Establishing a Temporary Table 492

Terminating a Temporary Table 493

Examples 493

Calling Stored Procedures in DB2 Under z/OS 494

Overview 494
Examples 494

Basic Stored Procedure Call 494

Stored Procedure That Returns a Result Set 495

Stored Procedure That Passes Parameters 495

Stored Procedure That Passes NULL Parameter 495

Specifying the Schema for a Stored Procedure 496
Executing Remote Stored Procedures 496

ACCESS Procedure Specifics for DB2 Under z/OS 496

Key Information 496

Examples 497

DBLOAD Procedure Specifics for DB2 Under z/OS 498
Key Information 498

Examples 499

The DB2EXT Procedure 500

Overview 500

Syntax 500
PROC DB2EXT Statement Options 500

FMT Statement 501

RENAME Statement 501

484 Contents � Chapter 16

SELECT Statement 501
EXIT Statement 502

Examples 502

The DB2UTIL Procedure 502

Overview 502

DB2UTIL Statements and Options 503
PROC DB2UTIL Statements and Options 503

MAPTO Statement 504

RESET Statement 504

SQL Statement 505

UPDATE Statement 505

WHERE Statement 505
ERRLIMIT Statement 505

EXIT Statement 505

Modifying DB2 Data 505

Inserting Data 505

Updating Data 506
Deleting Data 506

PROC DB2UTIL Example 506

Maximizing DB2 Under z/OS Performance 507

Assessing When to Tune Performance 507

Methods for Improving Performance 507
Optimizing Your Connections 509

Passing SAS Functions to DB2 Under z/OS 510

Passing Joins to DB2 Under z/OS 511

SAS System Options, Settings, and Macros for DB2 Under z/OS 512

System Options 512

Settings 514
Macros 514

Bulk Loading for DB2 Under z/OS 515

Overview 515

Data Set Options for Bulk Loading 515

File Allocation and Naming for Bulk Loading 516
Examples 517

Locking in the DB2 Under z/OS Interface 520

Naming Conventions for DB2 Under z/OS 521

Data Types for DB2 Under z/OS 521

Overview 521
Character Data 522

String Data 522

Numeric Data 522

Date, Time, and Timestamp Data 523

DB2 Null and Default Values 523

LIBNAME Statement Data Conversions 524
ACCESS Procedure Data Conversions 525

DBLOAD Procedure Data Conversions 526

Understanding DB2 Under z/OS Client/Server Authorization 527

Libref Connections 527

Non-Libref Connections 528
Known Issues with RRSAF Support 529

DB2 Under z/OS Information for the Database Administrator 529

How the Interface to DB2 Works 529

How and When Connections Are Made 530

DDF Communication Database 531

SAS/ACCESS Interface to DB2 Under z/OS � Arguments 485

DB2 Attachment Facilities (CAF and RRSAF) 531
Accessing DB2 System Catalogs 532

Introduction to SAS/ACCESS Interface to DB2 Under z/OS
This section describes SAS/ACCESS Interface to DB2 under z/OS. For a list of

SAS/ACCESS features that are available in this interface, see “SAS/ACCESS Interface
to DB2 Under z/OS: Supported Features” on page 77.

Note: z/OS is the successor to the OS/390 (formerly MVS) operating system. SAS
9.1 for z/OS is supported on both OS/390 and z/OS operating systems and, throughout
this document, any reference to z/OS also applies to OS/390 unless otherwise stated. �

LIBNAME Statement Specifics for DB2 Under z/OS

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to DB2

under z/OS supports and includes an example. For details about this feature, see
“Overview of the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing DB2 under z/OS interface.

LIBNAME libref db2 <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

db2
specifies the SAS/ACCESS engine name for the DB2 under z/OS interface.

connection-options
provides connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. Here is how these options are defined.

LOCATION=location
maps to the location in the SYSIBM.LOCATIONS catalog in the
communication database. In SAS/ACCESS Interface to DB2 under z/OS, the
location is converted to the first level of a three-level table name:
location.authid.table. DB2 Distributed Data Facility (DDF) Communication
Database (CDB) makes the connection implicitly to the remote DB2
subsystem when DB2 receives a three-level name in an SQL statement.

If you omit this option, SAS accesses the data from the local DB2 database
unless you have specified a value for the SERVER= option. This option is not
validated until you access a DB2 table. If you specify LOCATION=, you must
also specify the AUTHID= option.

SSID=DB2-subsystem-id

486 Arguments � Chapter 16

specifies the DB2 subsystem ID to connect to at connection time. SSID= is
optional. If you omit it, SAS connects to the DB2 subsystem that is specified
in the SAS system option, DB2SSID=. The DB2 subsystem ID is limited to
four characters. For more information, see “Settings” on page 514.

SERVER=DRDA-server
specifies the DRDA server that you want to connect to. SERVER= enables
you to access DRDA resources stored at remote locations. Check with your
system administrator for system names. You can connect to only one server
per LIBNAME statement. SERVER= is optional. If you omit it, you access
tables from your local DB2 database, unless you have specified a value for the
LOCATION= LIBNAME option. There is no default value for this option. For
information about accessing a database server on Linux, UNIX, or Windows
using a libref, see the REMOTE_DBTYPE= LIBNAME option. For
information about configuring SAS to use the SERVER= option, see the
installation instructions for this interface.

LIBNAME-options
defines how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to DB2 under
z/OS, with the applicable default values. For more detail about these options, see
“LIBNAME Options for Relational Databases” on page 92.

Table 16.1 SAS/ACCESS LIBNAME Options

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTHID= your user ID

CONNECTION= SHAREDREAD

CONNECTION_GROUP= none

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBLIBINIT= none

DBLIBTERM= none

DBMSTEMP= NO

DBNULLKEYS= YES

DBSASLABEL= COMPAT

DBSLICEPARM= THREADED_APPS,2

DEFER= NO

DEGREE= ANY

DIRECT_EXE= none

DIRECT_SQL= YES

IN= none

SAS/ACCESS Interface to DB2 Under z/OS � Data Set Options for DB2 Under z/OS 487

Option Default Value

LOCATION= none

MULTI_DATASRC_OPT= NONE

PRESERVE_COL_NAMES= NO

PRESERVE_TAB_NAMES= NO

READBUFF= 1

READ_ISOLATION_LEVEL= DB2 z/OS determines the isolation level

READ_LOCK_TYPE= none

REMOTE_DBTYPE= ZOS

REREAD_EXPOSURE= NO

SCHEMA= your user ID

SPOOL= YES

SQL_FUNCTIONS= none

SQL_FUNCTIONS_COPY= none

UPDATE_ISOLATION_LEVEL= DB2 z/OS determines the isolation level

UPDATE_LOCK_TYPE= none

UTILCONN_TRANSIENT= YES

DB2 Under z/OS LIBNAME Statement Example
In this example, the libref MYLIB uses the DB2 under z/OS interface to connect to

the DB2 database that the SSID= option specifies, with a connection to the testserver
remote server.

libname mylib db2 ssid=db2
authid=testuser server=testserver;

proc print data=mylib.staff;
where state=’CA’;

run;

Data Set Options for DB2 Under z/OS
All SAS/ACCESS data set options in this table are supported for SAS/ACCESS

Interface to DB2 under z/OS. Default values are provided where applicable. For
general information about this feature, see “About the Data Set Options for Relational
Databases” on page 207.

Table 16.2 SAS/ACCESS Data Set Options for DB2 Under z/OS

Option Default Value

AUTHID= current LIBNAME option setting

BL_DB2CURSOR= none

BL_DB2DATACLAS= none

488 Data Set Options for DB2 Under z/OS � Chapter 16

Option Default Value

BL_DB2DEVT_PERM= SYSDA

BL_DB2DEVT_TEMP= SYSDA

BL_DB2DISC= a generated data set name

BL_DB2ERR= a generated data set name

BL_DB2IN= a generated data set name

BL_DB2LDCT1= none

BL_DB2LDCT2= none

BL_DB2LDCT3= none

BL_DB2LDEXT= GENRUN

BL_DB2MAP= a generated data set name

BL_DB2MGMTCLAS= none

BL_DB2PRINT= a generated data set name

BL_DB2PRNLOG= YES

BL_DB2REC= a generated data set name

BL_DB2RECSP= 10

BL_DB2RSTRT= NO

BL_DB2SPC_PERM= 10

BL_DB2SPC_TEMP= 10

BL_DB2STORCLAS= none

BL_DB2TBLXST= NO

BL_DB2UNITCOUNT= none

BL_DB2UTID= user ID and second level DSN qualifier

BULKLOAD= NO

DBCOMMIT= current LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= current LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBNULL= YES

DBNULLKEYS= current LIBNAME option setting

DBSASLABEL= COMPAT

DBSASTYPE= see “Data Types for DB2 Under z/OS” on page 521

DBSLICE= none

DBSLICEPARM= THREADED_APPS,2

SAS/ACCESS Interface to DB2 Under z/OS � Key Information 489

Option Default Value

DBTYPE= none

DEGREE= ANY

ERRLIMIT= 1

IN= current LIBNAME option setting

LOCATION= current LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= current LIBNAME option setting

READBUFF= LIBNAME setting

READ_ISOLATION_LEVEL= current LIBNAME option setting

READ_LOCK_TYPE= current LIBNAME option setting

TRAP_151= NO

UPDATE_ISOLATION_LEVEL= current LIBNAME option setting

UPDATE_LOCK_TYPE= current LIBNAME option setting

SQL Pass-Through Facility Specifics for DB2 Under z/OS

Key Information
For general information about this feature, see “Overview of the SQL Pass-Through

Facility” on page 425. DB2 z/OS examples are available.
Here are the SQL pass-through facility specifics for the DB2 under z/OS interface:

� The dbms-name is DB2.

� The CONNECT statement is optional.

� The interface supports connections to multiple databases.

� Here are the CONNECT statement database-connection-arguments:

SSID=DB2-subsystem-id
specifies the DB2 subsystem ID to connect to at connection time. SSID= is
optional. If you omit it, SAS connects to the DB2 subsystem that is specified
in the SAS system option, DB2SSID=. The DB2 subsystem ID is limited to
four characters. See “Settings” on page 514 for more information.

SERVER=DRDA-server
specifies the DRDA server that you want to connect to. SERVER= enables
you to access DRDA resources stored at remote locations. Check with your
system administrator for system names. You can connect to only one server
per LIBNAME statement.

SERVER= is optional. If you omit it, you access tables from your local DB2
database unless you have specified a value for the LOCATION= LIBNAME
option. There is no default value for this option.

490 Examples � Chapter 16

For information about setting up DB2 z/OS so that SAS can connect to the
DRDA server when the SERVER= option is used, see the installation
instructions for this interface.

Although you can specify any LIBNAME option in the CONNECT statement,
only SSID= and SERVER= are honored.

Examples
This example connects to DB2 and sends it two EXECUTE statements to process.

proc sql;
connect to db2 (ssid=db2);
execute (create view testid.whotookorders as

select ordernum, takenby, firstname,
lastname, phone
from testid.orders, testid.employees
where testid.orders.takenby=

testid.employees.empid)
by db2;

execute (grant select on testid.whotookorders
to testuser) by db2;

disconnect from db2;
quit;

This next example omits the optional CONNECT statement, uses the default setting
for DB2SSID=, and performs a query (shown in highlighting) on the Testid.Customers
table.

proc sql;
select * from connection to db2
(select * from testid.customers where customer like ’1%’);

disconnect from db2;
quit;

This example creates the Vlib.StockOrd SQL view that is based on the Testid.Orders
table. Testid.Orders is an SQL/DS table that is accessed through DRDA.

libname vlib ’SAS-data-library’

proc sql;
connect to db2 (server=testserver);
create view vlib.stockord as

select * from connection to db2
(select ordernum, stocknum, shipto, dateorderd

from testid.orders);
disconnect from db2;

quit;

SAS/ACCESS Interface to DB2 Under z/OS � Column Selection for MOD Partitioning 491

Autopartitioning Scheme for DB2 Under z/OS

Overview
Autopartitioning for SAS/ACCESS Interface to DB2 under z/OS is a modulo (MOD)

method. Threaded reads for DB2 under z/OS involve a trade-off. A threaded read with
even distribution of rows across the threads substantially reduces elapsed time for your
SAS step. So your job completes in less time. This is positive for job turnaround time,
particularly if your job needs to complete within a constrained period of time. However,
threaded reads always increase the CPU time of your SAS job and the workload on
DB2. If increasing CPU consumption or increasing DB2 workload for your job are
unacceptable, you can turn threaded reads off by specifying DBSLICEPARM=NONE. To
turn off threaded reads for all SAS jobs, set DBSLICEPARM=NONE in the SAS
restricted options table.

For general information about this feature, see “Autopartitioning Techniques in SAS/
ACCESS” on page 57.

Autopartitioning Restrictions
SAS/ACCESS Interface to DB2 under z/OS places additional restrictions on the

columns that you can use for the partitioning column during the autopartitioning
phase. Here are the column types that you can partition.

� INTEGER

� SMALLINT

� DECIMAL

� You must confine eligible DECIMAL columns to an integer range—specifically,
DECIMAL columns with precision that is less than 10. For example,
DECIMAL(5,0) and DECIMAL(9,2) are eligible.

Column Selection for MOD Partitioning
If multiple columns are eligible for partitioning, the engine queries the DB2 system

tables for information about identity columns and simple indexes. Based on the
information about the identity columns, simple indexes, column types, and column
nullability, the partitioning column is selected in order by priority:

1 Identity column

2 Unique simple index: SHORT or INT, integral DECIMAL, and then nonintegral
DECIMAL

3 Nonunique simple index: SHORT or INT (NOT NULL), integral DECIMAL (NOT
NULL), and then nonintegral DECIMAL (NOT NULL)

4 Nonunique simple index: SHORT or INT (nullable), integral DECIMAL (nullable),
and then nonintegral DECIMAL (nullable)

5 SHORT or INT (NOT NULL), integral DECIMAL (NOT NULL), and then
nonintegral DECIMAL (NOT NULL)

6 SHORT or INT (nullable), integral DECIMAL (nullable), and then nonintegral
DECIMAL (nullable)

492 How WHERE Clauses Restrict Autopartitioning � Chapter 16

If a nullable column is selected for autopartitioning, the SQL statement
OR<column-name>IS NULL is appended at the end of the SQL code that is generated for
one read thread. This ensures that any possible NULL values are returned in the
result set.

How WHERE Clauses Restrict Autopartitioning
Autopartitioning does not select a column to be the partitioning column if it appears

in a SAS WHERE clause. For example, this DATA step cannot use a threaded read to
retrieve the data because all numeric columns in the table (see the table definition in
“Using DBSLICE=” on page 492) are in the WHERE clause:

data work.locemp;
set trlib.MYEMPS;
where EMPNUM<=30 and ISTENURE=0 and

SALARY<=35000 and NUMCLASS>2;
run;

Using DBSLICEPARM=
SAS/ACCESS Interface to DB2 under z/OS defaults to two threads when you use

autopartitioning.

Using DBSLICE=
You can achieve the best possible performance when using threaded reads by

specifying the DBSLICE= data set option for DB2 in your SAS operation.

Temporary Table Support for DB2 Under z/OS

Establishing a Temporary Table
For general information about this feature, see “Temporary Table Support for SAS/

ACCESS” on page 38.
To make full use of temporary tables, the CONNECTION=GLOBAL connection

option is necessary. You can use this option to establish a single connection across SAS
DATA step and procedure boundaries that can also be shared between the LIBNAME
statement and the SQL pass-through facility. Because a temporary table only exists
within a single connection, you must be able to share this single connection among all
steps that reference the temporary table. The temporary table cannot be referenced
from any other connection.

The type of temporary table that is used for this processing is created using the
DECLARE TEMPORARY TABLE statement with the ON COMMIT PRESERVE clause.
This type of temporary table lasts for the duration of the connection—unless it is
explicitly dropped—and retains its rows of data beyond commit points.

To create a temporary table, use a PROC SQL Pass-Through statement. To use both
the SQL pass-through facility and librefs to reference a temporary table, you need to
specify DBMSTEMP=YES in a LIBNAME statement that persists beyond the PROC

SAS/ACCESS Interface to DB2 Under z/OS � Examples 493

SQL step. The global connection then persists across SAS DATA steps and even
multiple PROC SQL steps, as shown in this example:

libname temp db2 connection=global;

proc sql;
connect to db2 (connection=global);
exec (declare global temporary table temptab1

like other.table on commit PRESERVE rows) by db2;
quit;

At this point, you can refer to the temporary table by using the Temp libref or the
CONNECTION=GLOBAL option with a PROC SQL step.

Terminating a Temporary Table

You can drop a temporary table at any time, or allow it to be implicitly dropped when
the connection is terminated. Temporary tables do not persist beyond the scope of a
singe connection.

Examples

These examples assume there is a DeptInfo table on the DBMS that has all of your
department information. They also assume that you have a SAS data set with join
criteria that you want to use to get certain rows out of the DeptInfo table, and another
SAS data set with updates to the DeptInfo table.

These librefs and temporary tables are used.

libname saslib base ’my.sas.library’;
libname dept db2 connection=global schema=dschema;
libname temp db2 connection=global schema=SESSION;
/* Note that temporary table has a schema of SESSION */

proc sql;
connect to db2 (connection=global);
exec (declare global temporary table temptab1

(dname char(20), deptno int)
on commit PRESERVE rows) by db2;

quit;

This example demonstrates how to take a heterogeneous join and use a temporary
table to perform a homogeneous join on the DBMS (as opposed to reading the DBMS
table into SAS to perform the join). Using the table created above, the SAS data is
copied into the temporary table to perform the join.

proc append base=temp.temptab1 data=saslib.joindata;
run;
proc sql;

connect to db2 (connection=global);
select * from dept.deptinfo info, temp.temptab1 tab

where info.deptno = tab.deptno;
/* remove the rows for the next example */
exec(delete from session.temptab1) by db2;

quit;

494 Calling Stored Procedures in DB2 Under z/OS � Chapter 16

In this next example, transaction processing on the DBMS occurs using a temporary
table as opposed to using either DBKEY= or MULTI_DATASRC_OPT=IN_CLAUSE
with a SAS data set as the transaction table.

proc append base=temp.temptab1 data=saslib.transdat;
run;

proc sql;
connect to db2 (connection=global);
exec(update dschema.deptinfo d set deptno = (select deptn from

session.temptab1)
where d.dname = (select dname from session.temptab1)) by db2;

quit;

Calling Stored Procedures in DB2 Under z/OS

Overview
A stored procedure is one or more SQL statements or supported third-generation

languages (3GLs, such as C) statements that are compiled into a single procedure that
exists in DB2. Stored procedures might contain static (hardcoded) SQL statements.
Static SQL is optimized better for some DBMS operations. In a carefully managed
DBMS environment, the programmer and the database administrator can know the
exact SQL to be executed.

SAS usually generates SQL dynamically. However, the database administrator can
encode static SQL in a stored procedure and therefore restrict SAS users to a tightly
controlled interface. When you use a stored procedure call, you must specify a schema.

SAS/ACCESS support for stored procedure includes passing input parameters,
retrieving output parameters into SAS macro variables, and retrieving the result set
into a SAS table. (Although DB2 stored procedures can return multiple result sets,
SAS/ACCESS Interface to DB2 under z/OS can retrieve only a single result set.)

You can call stored procedures only from PROC SQL.

Examples

Basic Stored Procedure Call
Use CALL statement syntax to call a stored procedure.

call "schema".stored_proc

SAS/ACCESS Interface to DB2 Under z/OS � Examples 495

The simplest way to call a stored procedure is to use the EXECUTE statement in
PROC SQL. In this example, STORED_PROC is executed using a CALL statement.
SAS does not capture the result set.

proc sql;
connect to db2;
execute (call "schema".stored_proc);
quit;

Stored Procedure That Returns a Result Set
You can also return the result set to a SAS table. In this example, STORED_PROC is

executed using a CALL statement. The result is returned to a SAS table, SasResults.

proc sql;
connect to db2;
create table sasresults as select * from connection to db2 (call "schema".stored_proc);
quit;

Stored Procedure That Passes Parameters
The CALL statement syntax supports the passing of parameters. You can specify

input parameters as numeric constants, character constants, or a null value. You can
also pass input parameters by using SAS macro variable references. To capture the
value of an output parameter, a SAS macro variable reference is required. This
example uses a constant (1), an input/output parameter (:INOUT), and an output
parameter (:OUT). Not only is the result set returned to the SAS results table, the SAS
macro variables INOUT and OUT capture the parameter outputs.

proc sql;
connect to db2;
%let INOUT=2;
create table sasresults as select * from connection to db2

(call "schema".stored_proc (1,:INOUT,:OUT));
quit;

Stored Procedure That Passes NULL Parameter
In these calls, NULL is passed as the parameter to the DB2 stored procedure.
Null string literals in the call

call proc(’’);
call proc("")

Literal period or literal NULL in the call

call proc(.)
call proc(NULL)

SAS macro variable set to NULL string

%let charparm=;
call proc(:charparm)

SAS macro variable set to period (SAS numeric value is missing)

%let numparm=.;
call proc(:numparm)

Only the literal period and the literal NULL work generically for both DB2 character
parameters and DB2 numeric parameters. For example, a DB2 numeric parameter

496 ACCESS Procedure Specifics for DB2 Under z/OS � Chapter 16

would reject "" and %let numparm=.; would not pass a DB2 NULL for a DB2 character
parameter. As a literal, a period passes NULL for both numeric and character
parameters. However, when it is in a SAS macro variable, it constitutes a NULL only
for a DB2 numeric parameter.

You cannot pass NULL parameters by omitting the argument. For example, you
cannot use this call to pass three NULL parameters.

call proc(,,)

You could use this call instead.

call proc(NULL,NULL,NULL)

Specifying the Schema for a Stored Procedure
Use standard CALL statement syntax to execute a stored procedure that exists in

another schema, as shown in this example.

proc sql;
connect to db2;
execute (call otherschema.stored_proc);

quit;

If the schema is in mixed case or lowercase, enclose the schema name in double
quotation marks.

proc sql;
connect to db2;
execute (call "lowschema".stored_proc);

quit;

Executing Remote Stored Procedures
If the stored procedure exists on a different DB2 instance, specify it with a valid

three-part name.

proc sql;
connect to db2;
create table sasresults as select * from connection to db2

(call otherdb2.procschema.prod5 (1, NULL));
quit;

ACCESS Procedure Specifics for DB2 Under z/OS

Key Information
See ACCESS Procedure for general information about this feature. DB2 under z/OS

examples“Examples” on page 497 are available.
SAS/ACCESS Interface to DB2 under z/OS supports all ACCESS procedure

statements in interactive line, noninteractive, and batch modes. Here are the ACCESS
procedure specifics for the DB2 under z/OS interface.

� The DBMS= value is db2.

� Here are the database-description-statements.

SAS/ACCESS Interface to DB2 Under z/OS � Examples 497

SSID=DB2-subsystem-id
specifies the DB2 subsystem ID to connect to at connection time. SSID= is
optional. If you omit it, SAS connects to the DB2 subsystem that is specified
in the SAS system option, DB2SSID=. The DB2 subsystem ID is limited to
four characters. See “Settings” on page 514 for more information.

SERVER=DRDA-server
specifies the DRDA server that you want to connect to. SERVER= enables
you to access DRDA resources stored at remote locations. Check with your
system administrator for system names. You can connect to only one server
per LIBNAME statement.

SERVER= is optional. If you omit it, you access tables from your local DB2
database unless you have specified a value for the LOCATION= LIBNAME
option. There is no default value for this option.

For information about configuring SAS to use the SERVER= option, see
the installation instructions for this interface.

LOCATION=location
enables you to further qualify where a table is located.

In the DB2 z/OS engine, the location is converted to the first level of a
three-level table name: Location.Authid.Table. The connection to the remote
DB2 subsystem is done implicitly by DB2 when DB2 receives a three-level
table name in an SQL statement.

LOCATION= is optional. If you omit it, SAS accesses the data from the
local DB2 database.

� Here is the TABLE= statement:

TABLE= <authorization-id.>table-name
identifies the DB2 table or DB2 view that you want to use to create an access
descriptor. The table-name is limited to 18 characters. The TABLE=
statement is required.

The authorization-id is a user ID or group ID that is associated with the
DB2 table. The authorization ID is limited to eight characters. If you omit
the authorization ID, DB2 uses your TSO (or z/OS) user ID. In batch mode,
however, you must specify an authorization ID, otherwise an error message is
generated.

Examples
This example creates an access descriptor and a view descriptor that are based on

DB2 data.

options linesize=80;
libname adlib ’SAS-data-library’;
libname vlib ’SAS-data-library’;

proc access dbms=db2;

/* create access descriptor */
create adlib.customr.access;
table=testid.customers;
ssid=db2;
assign=yes;
rename customer=custnum;
format firstorder date7.;
list all;

498 DBLOAD Procedure Specifics for DB2 Under z/OS � Chapter 16

/* create vlib.usacust view */
create vlib.usacust.view;
select customer state zipcode name

firstorder;
subset where customer like ’1%’;

run;

This next example uses the SERVER= statement to access the SQL/DS table
Testid.Orders from a remote location. Access and view descriptors are then created
based on the table.

libname adlib ’SAS-data-library’;
libname vlib ’SAS-data-library’;

proc access dbms=db2;
create adlib.customr.access;
table=testid.orders;
server=testserver;
assign=yes;
list all;

create vlib.allord.view;
select ordernum stocknum shipto dateorderd;

subset where stocknum = 1279;
run;

DBLOAD Procedure Specifics for DB2 Under z/OS

Key Information
See DBLOAD Procedure for general information about this feature. DB2 z/OS

examples“Examples” on page 499 are available.
SAS/ACCESS Interface to DB2 under z/OS supports all DBLOAD procedure

statements in interactive line, noninteractive, and batch modes. Here are the DBLOAD
procedure specifics for SAS/ACCESS Interface to DB2 under z/OS.

� The DBMS= value is DB2.

� Here are the database description statements that PROC DBLOAD uses:

SSID=DB2-subsystem-id
specifies the DB2 subsystem ID to connect to at connection time. SSID= is
optional. If you omit it, SAS connects to the DB2 subsystem that is specified
in the SAS system option, DB2SSID=. The DB2 subsystem ID is limited to
four characters. See “Settings” on page 514 for more information.

SERVER=DRDA server
specifies the DRDA server that you want to connect to. SERVER= enables
you to access DRDA resources stored at remote locations. Check with your
system administrator for system names. You can connect to only one server
per LIBNAME statement.

SAS/ACCESS Interface to DB2 Under z/OS � Examples 499

SERVER= is optional. If you omit it, you access tables from your local DB2
database unless you have specified a value for the LOCATION= LIBNAME
option. There is no default value for this option.

For information about configuring SAS to use the SERVER= option, see
the z/OS installation instructions.

IN database.tablespace |’DATABASE database’
specifies the name of the database or the table space in which you want to
store the new DB2 table. A table space can contain multiple tables. The
database and tablespace arguments are each limited to 18 characters. The IN
statement must immediately follow the PROC DBLOAD statement.

database.tablespace
specifies the names of the database and the table space, which are
separated by a period.

’DATABASE database ’
specifies only the database name. In this case, specify the word
DATABASE, followed by a space and the database name. Enclose the
entire specification in single quotation marks.

� Here is the NULLS= statement:

NULLS variable-identifier-1 =Y|N|D < . . . variable-identifier-n =Y|N|D >
enables you to specify whether the DB2 columns that are associated with the
listed SAS variables allow NULL values. By default, all columns accept
NULL values.

The NULLS statement accepts any one of these three values:
� Y – specifies that the column accepts NULL values. This is the default.
� N – specifies that the column does not accept NULL values.
� D – specifies that the column is defined as NOT NULL WITH DEFAULT.

See “DB2 Null and Default Values” on page 523 for information about
NULL values that is specific to DB2.

� Here is the TABLE= statement:

TABLE= <authorization-id.>table-name;
identifies the DB2 table or DB2 view that you want to use to create an access
descriptor. The table-name is limited to 18 characters. The TABLE=
statement is required.

The authorization-id is a user ID or group ID that is associated with the
DB2 table. The authorization ID is limited to eight characters. If you omit
the authorization ID, DB2 uses your TSO (or z/OS) user ID. However, in batch
mode you must specify an authorization ID or an error message is generated.

Examples
This example creates a new DB2 table, Testid.Invoice, from the Dlib.Invoice data file.

The AmtBilled column and the fifth column in the table (AmountInUS) are renamed.
You must have the appropriate privileges before you can create new DB2 tables.

libname adlib ’SAS-data-library’;
libname dlib ’SAS-data-library’;

proc dbload dbms=db2 data=dlib.invoice;
ssid=db2;
table=testid.invoice;
accdesc=adlib.invoice;

500 The DB2EXT Procedure � Chapter 16

rename amtbilled=amountbilled
5=amountindollars;

nulls invoicenum=n amtbilled=n;
load;

run;

For example, you can create a SAS data set, Work.Schedule, that includes the names
and work hours of your employees. You can use the SERVER= command to create the
DB2 table, Testid.Schedule, and load it with the schedule data on the DRDA resource,
TestServer, as shown in this example.

libname adlib ’SAS-data-library’;

proc dbload dbms=db2 data=work.schedule;
in sample;
server=testserver;
accdesc=adlib.schedule;
table=testid.schedule;
list all;
load;

run;

The DB2EXT Procedure

Overview
The DB2EXT procedure creates SAS data sets from DB2 under z/OS data. PROC

DB2EXT runs interactively, noninteractively, and in batch mode. The generated data
sets are not password protected. However, you can edit the saved code to add password
protection.

PROC DB2EXT ensures that all SAS names that are generated from DB2 column
values are unique. A numeric value is appended to the end of a duplicate name. If
necessary, the procedure truncates the name when appending the numeric value.

Syntax
Here is the syntax for the DB2EXT procedure:

PROC DB2EXT <options>;
FMT column-number-1=’SAS-format-name-1’

<... column-number-n=’SAS-format-name-n’>;
RENAME column-number-1=’SAS-name-1’

<... column-number-n=’SAS-name-n’>;
SELECT DB2-SQL-statement;
EXIT;

PROC DB2EXT Statement Options
IN=SAS-data-set

SAS/ACCESS Interface to DB2 Under z/OS � Syntax 501

specifies a mapping data set that contains information such as DB2 names, SAS
variable names, and formats for input to PROC DB2EXT.

This option is available for use only with previously created mapping data sets.
You cannot create new mapping data sets with DB2EXT.

OUT=SAS-data-set | libref.SAS-data-set
specifies the name of the SAS data set that is created. If you omit OUT=, the data
set is named "work.DATAn", where n is a number that is sequentially updated.
The data set is not saved when your SAS session ends. If a file with the name that
you specify in the OUT= option already exists, it is overwritten. However, you
receive a warning that this is going to happen.

SSID=subsystem-name
specifies the name of the DB2 subsystem that you want to access. If you omit
SSID=, the subsystem name defaults to DB2.

The subsystem name defaults to the subsystem that is defined in the
DB2SSID= option. It defaults to DB2 only if neither the SSID= option nor the
DB2SSID= option are specified.

FMT Statement

FMT column-number-1=’SAS-format-name-1’
<... column-number-n=’SAS-format-name-n’>;

The FMT statement assigns a SAS output format to the DB2 column that is specified
by column-number. The column-number is determined by the order in which you list
the columns in your SELECT statement. If you use SELECT *, the column-number is
determined by the order of the columns in the database.

You must enclose the format name in single quotation marks. You can specify
multiple column formats in a single FMT statement.

RENAME Statement

RENAME column-number-1=’SAS-name-1’
<... column-number-n=’SAS-name-n’>;

The RENAME statement assigns the SAS-name to the DB2 column that is specified
by column-number. The column-number is determined by the order in which you list
the columns in your SELECT statement. If you use SELECT *, the column-number is
determined by the order of the columns in the database.

You can rename multiple columns in a single RENAME statement.

SELECT Statement

SELECT DB2-SQL-statement;

The DB2-SQL-statement defines the DB2 data that you want to include in the SAS
data set. You can specify table names, column names, and data subsets in your
SELECT statement. For example, this statement selects all columns from the Employee
table and includes only employees whose salary is greater than $40,000.

select * from employee where salary > 40000;

502 Examples � Chapter 16

EXIT Statement

EXIT;

The EXIT statement terminates the procedure without further processing.

Examples
This code creates a SAS data set named MyLib.NoFmt that includes three columns

from the DB2 table EmplInfo. The RENAME statement changes the name of the third
column that is listed in the SELECT statement (from firstname in the DB2 table to
fname in the SAS data set.

/* specify the SAS library where the SAS data set is to be saved */

libname mylib ’userid.xxx’;

proc db2ext ssid=db25 out=mylib.nofmt;
select employee, lastname, firstname from sasdemo.emplinfo;
rename 3=fname;

run;

This code uses a mapping file to specify which data to include in the SAS data set
and how to format that data.

/* specify the SAS library where the SAS data set is to be saved */
libname mylib ’userid.xxx’;

/* specify the SAS library that contains the mapping data set */
libname inlib ’userid.maps’;

proc db2ext in=inlib.mapping out=mylib.mapout ssid=db25;
run;

The DB2UTIL Procedure

Overview
You can use the DB2UTIL procedure to insert, update, or delete rows in a DB2 table

using data from a SAS data set. You can choose one of two methods of processing:
creating an SQL output file or executing directly. PROC DB2UTIL runs interactively,
noninteractively, or in batch mode.

Support for the DB2UTIL procedure provides compatibility with SAS 5 version of
SAS/ACCESS Interface to DB2 under z/OS. It is not added to other SAS/ACCESS
DBMS interfaces, and enhancement of this procedure for future releases of
SAS/ACCESS are not guaranteed. It is recommended that you write new applications
by using LIBNAME features.

The DB2UTIL procedure uses the data in an input SAS data set, along with your
mapping specifications, to generate SQL statements that modify the DB2 table. The
DB2UTIL procedure can perform these functions.

DELETE

SAS/ACCESS Interface to DB2 Under z/OS � DB2UTIL Statements and Options 503

deletes rows from the DB2 table according to the search condition that you specify.

INSERT
builds rows for the DB2 table from the SAS observations, according to the map
that you specify, and inserts the rows.

UPDATE
sets new column values in your DB2 table by using the SAS variable values that
are indicated in your map.

When you execute the DB2UTIL procedure, you specify an input SAS data set, an
output DB2 table, and how to modify the data. To generate data, you must also supply
instructions for mapping the input SAS variable values to the appropriate DB2 columns.

In each execution, the procedure can generate and execute SQL statements to
perform one type of modification only. However, you can also supply your own SQL
statements (except the SQL SELECT statement) to perform various modifications
against your DB2 tables, and the procedure executes them.

For more information about the types of modifications that are available and how to
use them, see “Modifying DB2 Data” on page 505. For an example of how to use this
procedure, see “PROC DB2UTIL Example” on page 506.

DB2UTIL Statements and Options
The PROC DB2UTIL statement invokes the DB2UTIL procedure. These statements

are used with PROC DB2UTIL:

PROC DB2UTIL <options>;

MAPTO SAS-name-1=DB2-name-1 <…SAS-name-n=DB2-name-n>;

RESET ALL|SAS-name| COLS;

SQL SQL-statement;

UPDATE;

WHERE SQL-WHERE-clause;

ERRLIMIT=error-limit;

EXIT;

PROC DB2UTIL Statements and Options

DATA=SAS-data-set | <libref.>SAS-data-set
specifies the name of the SAS data set that contains the data with which you want
to update the DB2 table. DATA= is required unless you specify an SQL file with
the SQLIN= option.

TABLE=DB2-tablename
specifies the name of the DB2 table that you want to update. TABLE= is required
unless you specify an SQL file with the SQLIN= option.

FUNCTION= D | I | U | DELETE | INSERT | UPDATE
specifies the type of modification to perform on the DB2 table by using the SAS
data set as input. See Modifying DB2 Data“Modifying DB2 Data” on page 505 for
a detailed description of this option. FUNCTION= is required unless you specify
an SQL file with the SQLIN= option.

504 DB2UTIL Statements and Options � Chapter 16

COMMIT=number
specifies the maximum number of SQL statements to execute before issuing an
SQL COMMIT statement to establish a synchpoint. The default is 3.

ERROR=fileref |fileref.member
specifies an external file where error information is logged. When DB2 issues an
error return code, the procedure writes all relevant information, including the SQL
statement that is involved, to this external file. If you omit the ERROR=
statement, the procedure writes the error information to the SAS log.

LIMIT=number
specifies the maximum number of SQL statements to issue in an execution of the
procedure. The default value is 5000. If you specify LIMIT=0, no limit is set. The
procedure processes the entire data set regardless of its size.

SQLIN=fileref | fileref.member
specifies an intermediate SQL output file that is created by a prior execution of
PROC DB2UTIL by using the SQLOUT= option. The file that is specified by
SQLIN= contains SQL statements to update a DB2 table. If you specify an SQLIN=
file, then the procedure reads the SQL statements and executes them in line mode.
When you specify an SQLIN= file, DATA=, TABLE=, and SQLOUT= are ignored.

SQLOUT=fileref | fileref.member
specifies an external file where the generated SQL statements are to be written.
This file is either a z/OS sequential data set or a member of a z/OS partitioned
data set. Use this option to update or delete data.

When you specify the SQLOUT= option, the procedure edits your specifications,
generates the SQL statements to perform the update, and writes them to the
external file for later execution. When they are input to the later run for
execution, the procedure passes them to DB2.

SSID=subsystem-name
specifies the name of the DB2 subsystem that you want to access. If you omit
DB2SSID=, the subsystem name defaults to DB2. See “Settings” on page 514 for
more information.

MAPTO Statement
MAPTO SAS-name-1=DB2-name-1<… SAS-name-n=DB2-name-n>;

The MAPTO statement maps the SAS variable name to the DB2 column name. You
can specify as many values in one MAPTO statement as you want.

RESET Statement
RESET ALL | SAS-name | COLS;

Use the RESET statement to erase the editing that was done to SAS variables or
DB2 columns. The RESET statement can perform one or more of these actions:

ALL
resets all previously entered map and column names to default values for the
procedure.

SAS-name
resets the map entry for that SAS variable.

COLS
resets the altered column values.

SAS/ACCESS Interface to DB2 Under z/OS � Modifying DB2 Data 505

SQL Statement
SQL SQL-statement;
The SQL statement specifies an SQL statement that you want the procedure to

execute dynamically. The procedure rejects SQL SELECT statements.

UPDATE Statement
UPDATE;
The UPDATE statement causes the table to be updated by using the mapping

specifications that you supply. If you do not specify an input or an output mapping data
set or an SQL output file, the table is updated by default.

If you have specified an output mapping data set in the SQLOUT= option, PROC
DB2UTIL creates the mapping data set and ends the procedure. However, if you specify
UPDATE, the procedure creates the mapping data set and updates the DB2 table.

WHERE Statement
WHERE SQL-WHERE-clause;
The WHERE statement specifies the SQL WHERE clause that you want to use to

update the DB2 table. This statement is combined with the SQL statement generated
from your mapping specifications. Any SAS variable names in the WHERE clause are
substituted at that time, as shown in this example.

where db2col = %sasvar;

ERRLIMIT Statement
ERRLIMIT=error-limit;
The ERRLIMIT statement specifies the number of DB2 errors that are permitted

before the procedure terminates.

EXIT Statement
EXIT;
The EXIT statement exits from the procedure without further processing. No output

data is written, and no SQL statements are issued.

Modifying DB2 Data
The DB2UTIL procedure generates SQL statements by using data from an input SAS

data set. However, the SAS data set plays a different role for each type of modification
that is available through PROC DB2UTIL. These sections show how you use each type
and how each type uses the SAS data set to make a change in the DB2 table.

Inserting Data
You can insert observations from a SAS data set into a DB2 table as rows in the

table. To use this insert function, name the SAS data set that contains the data you
want to insert and the DB2 table to which you want to add information in the PROC
DB2UTIL statement. You can then use the MAPTO statement to map values from SAS
variables to columns in the DB2 table. If you do not want to insert the values for all
variables in the SAS data set into the DB2 table, map only the variables that you want
to insert. However, you must map all DB2 columns to a SAS column.

506 PROC DB2UTIL Example � Chapter 16

Updating Data
You can change the values in DB2 table columns by replacing them with values from

a SAS data set. You can change a column value to another value for every row in the
table, or you can change column values only when certain criteria are met. For
example, you can change the value of the DB2 column NUM to 10 for every row in the
table. You can also change the value of the DB2 column NUM to the value in the SAS
variable NUMBER, providing that the value of the DB2 column name and the SAS data
set variable name match.

You specify the name of the SAS data set and the DB2 table to be updated when you
execute PROC DB2UTIL. You can specify that only certain variables be updated by
naming only those variables in your mapping specifications.

You can use the WHERE clause to specify that only the rows on the DB2 table that
meet certain criteria are updated. For example, you can use the WHERE clause to
specify that only the rows with a certain range of values are updated. Or you can
specify that rows to be updated when a certain column value in the row matches a
certain SAS variable value in the SAS data set. In this case, you could have a SAS data
set with several observations in it. For each observation in the data set, the DB2UTIL
procedure updates the values for all rows in the DB2 table that have a matching value.
Then the procedure goes on to the next observation in the SAS data set and continues
to update values in DB2 columns in rows that meet the comparison criteria.

Deleting Data
You can remove rows from a DB2 table when a certain condition is met. You can

delete rows from the table when a DB2 column value in the table matches a SAS
variable value in the SAS data set. Name the DB2 table from which you want to delete
rows and the SAS data set that contains the target deletion values in the PROC
DB2UTIL statement. Then use the WHERE statement to specify the DB2 column name
and the SAS variable whose values must match before the deletion is performed.

If you want to delete values that are based on criteria other than values in SAS data
variables (for example, deleting every row with a department number of 600), then you
can use an SQL DELETE statement.

PROC DB2UTIL Example
This example uses the UPDATE function in PROC DB2UTIL to update a list of

telephone extensions from a SAS data set. The master list of extensions is in the DB2
table Testid.Employees and is updated from the SAS data set Trans. First, create the
SAS data set.

options db2dbug;

data trans;
empno=321783;
ext=’3999’;
output;
empno=320001;
ext=’4321’;
output;
empno=212916;
ext=’1300’;
output;

run;

Next, specify the data set in PROC DB2UTIL.

SAS/ACCESS Interface to DB2 Under z/OS � Methods for Improving Performance 507

proc db2util data=trans table=testid.employees function=u;
mapto ext=phone;
where empid=%empno;
update;

run;

The row that includes EMPID=320001 is not found in the Testid.Employees table and
is therefore not updated. You can ignore the warning in the SAS log.

Maximizing DB2 Under z/OS Performance

Assessing When to Tune Performance
Among the factors that affect DB2 performance are the size of the table that is being

accessed and the form of the SQL SELECT statement. If the table that is being accessed
is larger than 10,000 rows (or 1,000 pages), you should evaluate all SAS programs that
access the table directly. When you evaluate the programs, consider these questions.

� Does the program need all columns that the SELECT statement retrieves?
� Do the WHERE clause criteria retrieve only those rows that are needed for

subsequent analysis?
� Is the data going to be used by more than one procedure in one SAS session? If so,

consider extracting the data into a SAS data file for SAS procedures to use instead
of allowing the data to be accessed directly by each procedure.

� Do the rows need to be in a particular order? If so, can an indexed column be used
to order them? If there is no index column, is DB2 doing the sort?

� Do the WHERE clause criteria allow DB2 to use the available indexes efficiently?
� What type of locks does DB2 need to acquire?
� Are the joins being passed to DB2?
� Can your DB2 system use parallel processing to access the data more quickly?

In addition, the DB2 Resource Limit Facility limits execution time of dynamic SQL
statements. If the time limit is exceeded, the dynamic statement is terminated and the
SQL code -905 is returned. This list describes several situations in which the RLF could
stop a user from consuming large quantities of CPU time.

� An extensive join of DB2 tables with the SAS SQL procedure.
� An extensive search by the FSEDIT, FSVIEW, or FSBROWSE procedures or an

SCL application.
� Any extensive extraction of data from DB2.
� An extensive select.
� An extensive load into a DB2 table. In this case, you can break up the load by

lowering the commit frequency, or you can use the bulk-load facility through
SAS/ACCESS Interface to DB2 under z/OS.

Methods for Improving Performance
You can do several things in your SAS application to improve DB2 engine

performance.

508 Methods for Improving Performance � Chapter 16

� Set the SAS system option DB2DBUG. This option prints to the SAS log the
dynamic SQL that is generated by the DB2 engine and all other SQL that is
executed by the DB2 engine. You can then verify that all WHERE clauses, PROC
SQL joins, and ORDER BY clauses are being passed to DB2. This option is for
debugging purposes and should not be set once the SAS application is used in
production. The NODB2DBUG option disables this behavior.

� Verify that all SAS procedures and DATA steps that read DB2 data share
connections where possible. You can do this by using one libref to reference all
SAS applications that read DB2 data and by accepting the default value of
SHAREDREAD for the CONNECTION= option.

� If your DB2 subsystem supports parallel processing, you can assign a value to the
CURRENT DEGREE special register. Setting this register might enable your SQL
query to use parallel operations. You can set the special register by using the
LIBNAME options DBCONINIT= or DBLIBINIT= with the SET statement as
shown in this example:

libname mydb2 db2 dbconinit="SET CURRENT DEGREE=’ANY’";

� Use the view descriptor WHERE clause or the DBCONDITION= option to pass
WHERE clauses to DB2. You can also use these methods to pass sort operations to
DB2 with the ORDER BY clause instead of performing a sort within SAS.

� If you are using a SAS application or an SCL application that reads the DB2 data
twice, let the DB2 engine spool the DB2 data. This happens by default because the
default value for the SPOOL= option is YES.

The spool file is read both when the application rereads the DB2 data and when
the application scrolls forward or backward through the data. If you do not use
spooling, and you need to scroll backward through the DB2 table, the DB2 engine
must start reading from the beginning of the data and read down to the row that
you want to scroll back to.

� Use the SQL procedure to pass joins to DB2 instead of using the MATCH MERGE
capability (that is, merging with a BY statement) of the DATA step.

� Use the DBKEY= option when you are doing SAS processing that involves the
KEY= option. When you use the DBKEY= option, the DB2 engine generates a
WHERE clause that uses parameter markers. During the execution of the
application, the values for the key are substituted into the parameter markers in
the WHERE clause.

If you do not use the DBKEY= option, the entire table is retrieved into SAS, and
the join is performed in SAS.

� Consider using stored procedures when they can improve performance in client/
server applications by reducing network traffic. You can execute a stored
procedure by using the DBCONINIT= or DBLIBINIT= LIBNAME options.

� Use the READBUFF= LIBNAME option to retrieve records in blocks instead of
one at a time.

SAS/ACCESS Interface to DB2 Under z/OS � Optimizing Your Connections 509

Optimizing Your Connections

Since SAS 7, the DB2 engine supports more than one connection to DB2 per SAS
session. This is an improvement over SAS 6 in a number of ways, especially in a server
environment. One advantage is being able to separate tasks that fetch rows from a
cursor from tasks that must issue commits. This separation eliminates having to
resynchronize the cursor, prepare the statement, and fetch rows until you are
positioned back on the row you were on. It also enables tasks that must issue commits
to eliminate locking contention to do so sooner because they are not delayed until after
cursors are closed to prevent having to resynchronize. In general, tables that are
opened for input fetch from cursors do not issue commits, while update openings might,
and output openings do, issue commits.

You can control how the DB2 engine uses connections by using the CONNECTION=
option in the LIBNAME statement. At one extreme is CONNECTION=UNIQUE, which
causes each table access, whether it is for input, update, or output, to create and use its
own connection. Conversely, CONNECTION=SHARED means that only one connection
is made, and that input, update, and output accesses all share that connection.

The default value for the CONNECTION= option is CONNECTION=SHAREDREAD,
which means that tables opened for input share one connection, while update and
output openings get their own connections. CONNECTION=SHAREDREAD allows for
the best separation between tasks that fetch from cursors and tasks that must issue
commits, eliminating the resynchronizing of cursors.

The values GLOBAL and GLOBALREAD perform similarly to SHARED and
SHAREDREAD. The difference is that you can share the given connection across any of
the librefs that you specify as GLOBAL or GLOBALREAD.

Although the default value of CONNECTION=SHAREDREAD is usually optimal, at
times another value might be better. If you must use multiple librefs, you might want
to set them each as GLOBALREAD. In this case, you have one connection for all of your
input openings, regardless of which libref you use, as opposed to one connection per
libref for input openings. In a single-user environment (as opposed to a server session),
you might know that you do not have multiple openings occurring at the same time. In
this case, you might want to use SHARED—or GLOBAL for multiple librefs. By using
such a setting, you eliminate the overhead of creating separate connections for input,
update, and output transactions. If you have only one opening at a time, you eliminate
the problem of resynchronizing input cursors if a commit occurs.

Another reason for using SHARED or GLOBAL is the case of opening a table for
output while opening another table within the same database for input. This can result
in a -911 deadlock situation unless both opens occur in the same connection.

As explained in “DB2 Under z/OS Information for the Database Administrator” on
page 529, the first connection to DB2 is made from the main SAS task. Subsequent
connections are made from corresponding subtasks, which the DB2 engine attaches;
DB2 allows only one connection per task. Due to the system overhead of intertask
communication, the connection established from the main SAS task is a faster
connection in terms of CPU time. Because this is true, you can expect better
performance (less CPU time) if you use the first connection for these operations when
you read or write large numbers of rows. If you read only rows, SHAREDREAD or
GLOBALREAD can share the first connection. However, if you are both reading and
writing rows (input and output opens), you can use CONNECTION=UNIQUE to make
each opening use the first connection. UNIQUE causes each opening to have its own
connection. If you have only one opening at a time, and some are input while others are
output (for large amounts of data), the performance benefit of using the main SAS task
connection far outweighs the overhead of establishing a new connection for each
opening.

510 Passing SAS Functions to DB2 Under z/OS � Chapter 16

The utility connection is another type of connection that the DB2 engine uses, which
the use does not control. This connection is a separate connection that can access the
system catalog and issue commits to release locks. Utility procedures such as
DATASETS and CONTENTS can cause this connection to be created, although other
actions necessitate it as well. There is one connection of this type per libref, but it is not
created until it is needed. If you have critical steps that must use the main SAS task
connection for performance reasons, refrain from using the DEFER=YES option in the
LIBNAME statement. It is possible that the utility connection can be established from
that task, causing the connection you use for your opening to be from a slower subtask.

In summary, no one value works best for the CONNECTION= option in all possible
situations. You might need to try different values and arrange your SAS programs in
different ways to obtain the best performance possible.

Passing SAS Functions to DB2 Under z/OS
SAS/ACCESS Interface to DB2 under z/OS passes the following SAS functions to

DB2 for processing if the DBMS driver or client that you are using supports this
function. Where the DB2 function name differs from the SAS function name, the DB2
name appears in parentheses. For more information, see “Passing Functions to the
DBMS Using PROC SQL” on page 42.

ABS
ARCOS (ACOS)
ARSIN (ASIN)
ATAN
AVG
CEIL
COS
COSH
COUNT
EXP
DTEXTDAY
DTEXTMONTH
DTEXTWEEKDAY
DTEXTYEAR
FLOOR
HOUR
INDEX (LOCATE)
LEFT (LTRIM)
LOG
LOG10
LOWCASE (LCASE)
MAX
MIN
MINUTE
MOD
QTR (QUARTER)

SAS/ACCESS Interface to DB2 Under z/OS � Passing Joins to DB2 Under z/OS 511

REPEAT
RIGHT (RTRIM)

SECOND

SIGN
SIN

SINH

SQRT
STRIP

SUBSTR

SUM

TAN
TANH

TRANWRD (REPLACE)

TRIMN (RTRIM)
TRUNC

UPCASE (UCASE)

WEEKDAY (DAYOFWEEK)

SQL_FUNCTIONS= ALL allows for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to DB2. Due to incompatibility in date and time functions between DB2
and SAS, DB2 might not process them correctly. Check your results to determine
whether these functions are working as expected.

DATEPART (DATE)

LENGTH

TIMEPART (TIME)

TODAY (CURRENT DATE)
TRANSLATE

Because none of these functions existed in DB2 before DB2 V6, these functions are
not passed to the DBMS in DB2 V5. These functions are also not passed to the DBMS
when you connect using DRDA because there is no way to determine what location you
are connected to and which functions are supported there.

These functions are passed to the DBMS in DB2 V5, as well as DB2 V6 and later.
They are not passed to the DBMS when you connect using DRDA.

YEAR

MONTH

DAY

Passing Joins to DB2 Under z/OS
With these exceptions, multiple libref joins are passed to DB2 z/OS.

� If you specify the SERVER= option for one libref, you must also specify it for the
others, and its value must be the same for all librefs.

512 SAS System Options, Settings, and Macros for DB2 Under z/OS � Chapter 16

� If you specify the DIRECT_SQL= option for one or multiple librefs, you must not
set it to NO, NONE, or NOGENSQL.

For completeness, the portable code checks these options, regardless of the engine:
� DBCONINIT=
� DBCONTERM=
� DBLIBINIT=
� DBLIBTERM=
� DIRECT_EXE=
� DIRECT_SQL=
� PRESERVE_COL_NAMES=
� PRESERVE_TAB_NAMES=

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

SAS System Options, Settings, and Macros for DB2 Under z/OS

System Options
You can use these SAS system options when you start a SAS session that accesses

DB2 under z/OS.

DB2DBUG | NODB2DBUG
used to debug SAS code. When you submit a SAS statement that accesses DB2
data, DB2DBUG displays any DB2 SQL queries (generated by SAS) that are
processed by DB2. The queries are written to the SAS log. NODB2DBUG is the
default.

For example, if you submit a PROC PRINT statement that references a DB2
table, the DB2 SQL query displays in the SAS log. SAS/ACCESS Interface to DB2
under z/OS generates this query.

libname mylib db2 ssid=db2;

proc print data=mylib.staff;
run;

proc sql;
select * from mylib.staff

order by idnum;
quit;

DB2 statements that appear in the SAS log are prepared and described in order
to determine whether the DB2 table exists and can be accessed.

DB2DECPT=decimal-value
specifies the setting of the DB2 DECPOINT= option. The decpoint-value argument
can be a period (.) or a comma (,). The default is a period (.).

DB2DECPT= is valid as part of the configuration file when you start SAS.

DB2IN= ’database-name.tablespace-name’ | ’DATABASE database-name’
enables you to specify the database and tablespace in which you want to create a
new table. The DB2IN= option is relevant only when you are creating a new table.

SAS/ACCESS Interface to DB2 Under z/OS � System Options 513

If you omit this option, the default is to create the table in the default database
and tablespace.

database.tablespace specifies the names of the database and tablespace.
’DATABASE database-name’ specifies only the database name. Enclose the

entire specification in single quotation marks.
You can override the DB2IN= system option with the IN= LIBNAME or data set

option.

DB2PLAN=plan-name
specifies the name of the plan that is used when connecting (or binding) SAS to
DB2. SAS provides and supports this plan, which can be adapted for each user’s
site. The value for DB2PLAN= can be changed at any time during a SAS session,
so that different plans can be used for different SAS steps. However, if you use
more than one plan during a single SAS session, you must understand how and
when SAS/ACCESS Interface to DB2 under z/OS makes the connections. If one
plan is in effect and you specify a new plan, the new plan does not affect the
existing DB2 connections.

DB2RRS | NODB2RRS
specifies the attachment facility to be used for a SAS session when connecting to
DB2. This option is an invocation-only option.

Specify NODB2RRS, the default, to use the Call Attachment Facility (CAF).
Specify DB2RRS to use the Recoverable Resource Manager Services Attachment
Facility (RRSAF). For details about using RRSAF, see “How the Interface to DB2
Works” on page 529.

DB2RRSMP | NODB2RRSMP
specifies that the multiphase SRRCMIT commit and SRRBACKrollback calls are
used instead of the COMMIT and ROLLBACK SQL statements. This option is
ignored unless DB2RRS is specified. This option is available only at invocation.

Specify NODB2RRSMP, the default, when DB2 is the only Resource Manager
for your application. Specify DB2RRSMP when your application has other
resource managers, which requires the use of the multiphase calls. Using the
multiphase calls when DB2 is your only resource manager can have performance
implications. Using COMMIT and ROLLBACK when you have more than one
resource manager can result in an error, depending upon the release of DB2.

DB2SSID=subsystem-name
specifies the DB2 subsystem name. The subsystem-name argument is one to four
characters that consist of letters, numbers, or national characters (#, $, or @); the
first character must be a letter. The default value is DB2. For more information,
see “Settings” on page 514.

DB2SSID= is valid in the OPTIONS statement, as part of the configuration file,
and when you start SAS.

You can override the DB2SSID= system option with the SSID= connection
option.

DB2UPD=Y | N
specifies whether the user has privileges through SAS/ACCESS Interface to DB2
under z/OS to update DB2 tables. This option applies only to the user’s update
privileges through the interface and not necessarily to the user’s privileges while
using DB2 directly. Altering the setting of DB2UPD= has no effect on your DBMS
privileges, which have been set with the GRANT statement. The default is Y (Yes).

DB2UPD= is valid in the OPTIONS statement, as part of the configuration file,
and when you start SAS. This option does not affect the SQL pass-through facility,
PROC DBLOAD, or the SAS 5 compatibility procedures.

514 Settings � Chapter 16

Settings
To connect to DB2, you must specify a valid DB2 subsystem name in one of these

ways.

� the DB2SSID= system option. SAS/ACCESS Interface to DB2 under z/OS uses
this value if no DB2 subsystem is specified.

� the SSID= option in the PROC ACCESS statement
� the SSID= statement of PROC DBLOAD
� the SSID= option in the PROC SQL CONNECT statement, which is part of the

SQL pass-through facility
� the SSID= connection option in the LIBNAME statement

If a site does not specify a valid DB2 subsystem when it accesses DB2, this message
is generated:

ERROR: Cannot connect to DB2 subsystem XXXX,
rc=12, reason code = 00F30006. See the
Call Attachment Facility documentation
for an explanation.

XXXX is the name of the subsystem to which SAS tried to connect. To find the
correct value for your DB2 subsystem ID, contact your database administrator.

Macros
Use the automatic SYSDBRC macro variable to capture DB2 return codes when

using the DB2 engine. The macro variable is set to the last DB2 return code that was
encountered only when execution takes place through SAS/ACCESS Interface to DB2
under z/OS. If you reference SYSDBRC before engine processing takes place, you
receive this message:

WARNING: Apparent symbolic reference SYSDBRC not resolved.

Use SYSDBRC for conditional post-processing. Below is an example of how to abend
a job. The table DB2TEST is dropped from DB2 after the view descriptor is created,
resulting in a -204 code.

data test;
x=1;
y=2;
proc dbload dbms=db2 data=test;
table=db2test;

in ’database test’;
load;
run;

proc access dbms=db2;
create work.temp.access;
table=user1.db2test;
create work.temp.view;
select all;
run;
proc sql;
execute(drop table db2test)by db2;

SAS/ACCESS Interface to DB2 Under z/OS � Data Set Options for Bulk Loading 515

quit;

proc print data=temp;
run;

data _null_;
if "&sysdbrc" not in (’0’,’100’) then
do;

put ’The DB2 Return Code is: ’ "&sysdbrc";
abort abend;

end;
run;

Because the abend prevents the log from being captured, you can capture the SAS
log by using the SAS system option, ALTLOG.

Bulk Loading for DB2 Under z/OS

Overview
By default, the DB2 under z/OS interface loads data into tables by preparing an SQL

INSERT statement, executing the INSERT statement for each row, and issuing a
COMMIT statement. You must specify BULKLOAD=YES to start the DB2 LOAD
utility. You can then bulk-load rows of data as a single unit, which can significantly
enhance performance. For smaller tables, the extra overhead of the bulk-loading
process might slow performance. For larger tables, the speed of the bulk-loading
process outweighs the overhead costs.

When you use bulk load, see the SYSPRINT output for information about the load. If
you run the LOAD utility and it fails, ignore the messages in the SAS log because they
might be inaccurate. However, if errors existed before you ran the LOAD utility, error
messages in the SAS log might be valid.

SAS/ACCESS Interface to DB2 under z/OS provides bulk loading through
DSNUTILS, an IBM stored procedure that start the DB2 LOAD utility. DSNUTILS is
included in DB2 Version 6 and later, and it is available for DB2 Version 5 in a
maintenance release. Because the LOAD utility is complex, familiarize yourself with it
before you use it through SAS/ACCESS. Also check with your database administrator
to determine whether this utility is available.

Data Set Options for Bulk Loading
Below are the DB2 under z/OSbulk-load data set options. All begin with BL_ for bulk

load. To use the bulk-load facility, you must specify BULKLOAD=YES or all bulk-load
options are ignored. (The DB2 under z/OS interface alias for BULKLOAD= is
DB2LDUTIL=.)

� BL_DB2CURSOR=
� BL_DB2DATACLAS=
� BL_DB2DEVT_PERM=
� BL_DB2DEVT_TEMP=
� BL_DB2DISC=
� BL_DB2ERR=

516 File Allocation and Naming for Bulk Loading � Chapter 16

� BL_DB2IN=
� BL_DB2LDCT1=
� BL_DB2LDCT2=
� BL_DB2LDCT3=
� BL_DB2LDEXT=
� BL_DB2MGMTCLAS=
� BL_DB2MAP=
� BL_DB2PRINT=

� BL_DB2PRNLOG=
� BL_DB2REC=
� BL_DB2RECSP=
� BL_DB2RSTRT=
� BL_DB2SPC_PERM=
� BL_DB2SPC_TEMP=
� BL_DB2STORCLAS=
� BL_DB2TBLXST=

� BL_DB2UNITCOUNT=
� BL_DB2UTID=

File Allocation and Naming for Bulk Loading
When you use bulk loading, these files (data sets) are allocated.
� The DB2 DSNUTILS procedure allocates these as new and catalogs the SysDisc,

SysMap, and SysErr file unless BL_DB2LDEXT=USERUN (in which case the data
sets are allocated as old and are kept).

� The DB2 interface engine allocates as new and catalogs the files SysIn and SysRec
when the execution method specifies to generate them.

� The DB2 interface engine allocates as new and catalogs the file SysPrint when the
execution method specifies to run the utility.

All allocations of these data sets are reversed by the end of the step. If errors occur
before generation of the SysRec, any of these data sets that were allocated as new and
cataloged are deleted as part of cleanup because they would be empty.

The interface engine uses these options when it allocates nonexisting SYS data set
names.

� DSNUTILS uses BL_DB2DEVT_PERM= and BL_DB2SPC_PERM= for SysDisc,
SysMap, and SysErr.

� The DB2 interface engine uses BL_DB2DEVT_PERM= for SysIn, SysRec, and
SysPrint.

� SysRec uses BL_DB2RECSPC=. BL_DB2RECSPC= is necessary because the
engine cannot determine how much space the SysRec requires—it depends on the
volume of data being loaded into the table.

� DSNUTILs uses BL_DB2DEVT_TEMP= and BL_DB2SPC_TEMP= to allocate the
other data set names that the LOAD utility requires.

This table shows how SysIn and SysRec are allocated based on the values of
BL_DB2LDEXT= and BL_DB2IN=, and BL_DB2REC=.

SAS/ACCESS Interface to DB2 Under z/OS � Examples 517

Table 16.3 SysIn and SysRec Allocation

BL_DB2LDEXT= BL_DB2IN=/
BL_DB2REC=

Data set name DISPOSITION

GENRUN not specified generated NEW, CATALOG, DELETE

GENRUN specified specified NEW, CATALOG, DELETE

GENONLY not specified generated NEW, CATALOG, DELETE

GENONLY specified specified NEW, CATALOG, DELETE

USERUN not specified ERROR

USERUN specified specified OLD, KEEP, KEEP

When SAS/ACCESS Interface to DB2 under z/OS uses existing files, you must specify
the filenames. When the interface generates the files, it creates them with names you
provide or with unique names it generates. Engine-generated filenames use system
generated data set names with the format
SYSyyddd.Thhmmss.RA000.jobname.name.Hgg where

SYSyyddd
is replaced by the user ID. The user ID used to prequalify these generated data set
names is determined the same as within the rest of SAS, except when running in
a server environment, where the authenticated ID of the client is used.

name
is replaced by the given SYS ddname of the data set.

For example, if you do not specify any data set names and run GENRUN under TSO,
you get a set of files allocated with names such as

USERID.T125547.RA000.USERID.DB2DISC.H01
USERID.T125547.RA000.USERID.DB2ERR.H01
USERID.T125547.RA000.USERID.DB2IN.H01
USERID.T125547.RA000.USERID.DB2MAP.H01
USERID.T125547.RA000.USERID.DB2PRINT.H01
USERID.T125547.RA000.USERID.DB2REC.H01

Because it produces unique names, even within a sysplex (within one second per user
ID per system), this naming convention makes it easy to associate all information for
each utility execution, and to separate it from other executions.

Bulk-load files are removed at the end of the load process to save space. They are not
removed if the utility fails to allow for the load process to be restarted.

Examples
Use these LIBNAME statements for all examples.

libname db2lib db2;
libname shlib db2 connection=shared;

Create a table.

data db2lib.table1 (bulkload=yes);
x=1;
name=’Tom’;

run;

Append Table1 to itself.

518 Examples � Chapter 16

data shlib.table1
(bulkload=yes bl_db2tblxst=yes bl_db2ldct1=’RESUME YES’);
set shlib.table1;

run;

Replace Table1 with itself.

data shlib.table1
(bulkload=yes bl_db2tblxst=yes bd_db2ldct1=’REPLACE’);
set shlib.table1;

run;

Load DB2 tables directly from other objects.

data db2lib.emp (bulkload=yes);
bl_db2ldct1=’replace log no nocopypend’ bl_db2cursor=’select * from dsn8710.emp’);
set db2lib.emp (obs=0);

run;

You can also use this option in a PROC SQL statement to load DB2 tables directly
from other objects, as shown below.

options sastrace=’,,,d’;
libname db2lib db2 authid=dsn8710;
libname mylib db2;

proc delete data mylib.emp;
run;

proc sql;
connect to db2;
create table mylib.emp

(BULKLOAD=YES
BL_DB2LDCT1=’REPLACE LOG NO NOCOPYPEND’
BL_DB2CURSOR=’SELECT FIRSTNAME, LASTNAME, WORKDEPT,

HIREDATE, JOB, SALARY, BONUS, COMM
FROM DSN8710.EMP’)

as select firstname, lastname, workdept,
hiredate, job, salary, bonus, comm

from db2lib.emp (obs=0);
quit;

Here is another similar example.

options sastrace=’,,,d’;
libname db2lib db2 authid=dsn8710;
libname mylib db2;

proc delete data mylib.emp;
run;

proc sql;
connect to db2;
create table mylib.emp

(BULKLOAD=YES
BL_DB2LDCT1=’REPLACE LOG NO NOCOPYPEND’
BL_DB2CURSOR=’SELECT FIRSTNAME, LASTNAME, WORKDEPT,

HIREDATE, JOB, SALARY, BONUS, COMM

SAS/ACCESS Interface to DB2 Under z/OS � Examples 519

FROM DSN8710.EMP’
BL_DB2LDCT3=’RUNSTATS TABLESPACE DSNDB04.TEMPTTABL

TABLE(ALL) INDEX(ALL) REPORT YES’)
as select firstname, lastname, workdept,

hiredate, job, salary, bonus, comm
from db2lib.emp (obs=0);

quit;

Generate control and data files, create the table, but do not run the utility to load it.

data shlib.table2 (bulkload=yes
bl_db2ldext=genonly bl_db2in=’userid.sysin’ bl_db2rec=’userid.sysrec’);
set shlib.table1;

run;

Use the control and data files that you generated in the preceding example load the
table. The OBS=1 data set option on the input file prevents the DATA step from
reading the whole file. Because the data is really in SysRec, you need only the input file
to satisfy the engine.

data db2lib.table2 (bulkload=yes bl_db2tblxst=yes
bl_db2ldext=userun bl_db2in=’userid.sysin’ bl_db2rec=’userid.sysrec’);

set db2lib.table1 (obs=1);
run;

A more efficient approach than the previous example is to eliminate going to DB2 to
read even one observation from the input table. This also means that the DATA step
processes only one observation, without any input I/O. Note that the one variable V is
not on the table. Any variables listed here (there is no need for more than one), are
irrelevant because the table already exists; they are not used.

data db2lib.table2 (bulkload=yes bl_db2tblxst=yes
bl_db2ldext=userun bl_db2in=’userid.sysin’ bl_db2rec=’userid.sysrec’);

v=0;
run;

Generate control and data files, but do not create the table or run the utility. Setting
BL_DB2TBLXST=YES when the table does not exist prevents you from creating the
table; this only makes sense because you are not going to load any data into the table at
this time.

data db2lib.table3 (bulkload=yes bl_db2tblxst=yes
bl_db2ldext=genonly bl_db2in=’userid.sysin’ bl_db2rec=’userid.sysrec’);

set db2lib.table1;
run;

Use the control and data files that you generated in the preceding example to load
the table. The OBS=1 data set option on the input file prevents the DATA step from
reading the whole file. In this case, you must specify the input file because it contains
the column definitions that are necessary to create the table.

data shlib.table3 (bulkload=yes bl_db2ldext=userun
bl_db2in=’userid.sysin’ bl_db2rec=’userid.sysrec’);

set shlib.table1 (obs=1);
run;

If you know the column names, a more efficient approach than the previous example
is to eliminate going to DB2 to get the column definitions. In this case, the variable
names and data types must match, because they are used to create the table. However,

520 Locking in the DB2 Under z/OS Interface � Chapter 16

the values specified for the variables are not included on the table, because all data to
load comes from the existing SysRec.

data db2lib.table3 (bulkload=yes bl_db2ldext=userun
bl_db2in=’userid.sysin’ bl_db2rec=’userid.sysrec’);

x=0;
name=’???’;

run;

You can use other applications that do output processing.

data work.a;
x=1;

run;

proc sql;
create db2lib.table4 (bulkload=yes) as select * from a;

quit;

Locking in the DB2 Under z/OS Interface

The following LIBNAME and data set options let you control how the DB2 under
z/OS interface handles locking. For general information about an option, see Chapter
10, “The LIBNAME Statement for Relational Databases,” on page 87. For additional
information, see your DB2 documentation.

READ_LOCK_TYPE=TABLE

UPDATE_LOCK_TYPE=TABLE

READ_ISOLATION_LEVEL= CS | UR | RR | "RR KEEP UPDATE LOCKS" | RS |
"RS KEEP UPDATE LOCKS"

Here are the valid values for this option. DB2 determines the default isolation
level.

Table 16.4 Isolation Levels for DB2 Under z/OS

Value Isolation Level

CS Cursor stability

UR Uncommitted read

RR Repeatable read

RR KEEP UPDATE LOCKS* Repeatable read keep update locks

RS Read stability

RS KEEP UPDATE LOCKS* Read stability keep update locks

* When specifying a value that consists of multiple words, enclose the entire string in
quotation marks.

UPDATE_ISOLATION_LEVEL= CS | UR | RR | "RR KEEP UPDATE LOCKS" |
RS | "RS KEEP UPDATE LOCKS"

The valid values for this option are described in the preceding table. The default
isolation level is determined by DB2.

SAS/ACCESS Interface to DB2 Under z/OS � Overview 521

Naming Conventions for DB2 Under z/OS
For general information about this feature, see Chapter 2, “SAS Names and Support

for DBMS Names,” on page 11.
The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= LIBNAME options

determine how SAS/ACCESS Interface to DB2 under z/OS handles case sensitivity,
spaces, and special characters. The default for both of these options is NO. Although
DB2 is case-sensitive, it converts table and column names to uppercase by default. To
preserve the case of the table and column names that you send to DB2, enclose them in
quotation marks. For information about these options, see “Overview of the LIBNAME
Statement for Relational Databases” on page 87.

DB2 objects include tables, views, columns, and indexes. They follow these naming
conventions.

� These objects must have names of the following length in characters: column
(1–30), index (1–18), table (1–18), view (1–18), alias (1–18), synonym (1–18), or
correlation (1–128). However, SAS limits table names to 32 bytes. This limitation
prevents database table objects that are defined through a DATA step—for
example, to have names that are longer than 32.

These objects must have names from 1–8 characters long: authorization ID,
referential constraint, database, table space, storage group, package, or plan.

A location name can be 1–16 characters long.
� A name must begin with a letter. If the name is in quotation marks, it can start

with and contain any character. Depending on how your string delimiter is set,
quoted strings can contain quotation marks such as “O’Malley”.

� A name can contain the letters A–Z, numbers from 0–9, number or pound sign (#),
dollar sign ($), or at symbol (@).

� Names are not case sensitive. For example, CUSTOMER and Customer are the same.
However, if the name of the object is in quotation marks, it is case sensitive.

� A name cannot be a DB2-reserved word.
� A name cannot be the same as another DB2 object. For example, each column

name within the same table must be unique.

Data Types for DB2 Under z/OS

Overview
Every column in a table has a name and a data type. The data type tells DB2 how

much physical storage to set aside for the column and the form in which the data is
stored. This section includes information about DB2 data types, NULL and default
values, and data conversions.

For more information about DB2 data types, see your DB2 SQL reference
documentation.

SAS/ACCESS Interface to DB2 under z/OS supports all DB2 data types.

522 Character Data � Chapter 16

Character Data

BLOB (binary large object)
contains varying-length binary string data with a length of up to 2 gigabytes. It
can hold structured data that user-defined types and functions can exploit. Like
FOR BIT DATA character strings, BLOB strings are not associated with a code
page.

CLOB (character large object)
contains varying-length character string data with a length of up to 2 gigabytes. It
can store large single-byte character set (SBCS) or mixed (SBCS and multibyte
character set, or MBCS) character-based data, such as documents written with a
single character set. It therefore has an SBCS or mixed code page associated with
it.

String Data

CHAR(n)
specifies a fixed-length column of length n for character string data. The
maximum for n is 255.

VARCHAR(n)
specifies a varying-length column for character string data. n specifies the
maximum length of the string. If n is greater than 255, the column is a long string
column. DB2 imposes some restrictions on referencing long string columns.

LONG VARCHAR
specifies a varying-length column for character string data. DB2 determines the
maximum length of this column. A column defined as LONG VARCHAR is always
a long string column and, therefore, subject to referencing restrictions.

GRAPHIC(n), VARGRAPHIC(n), LONG VARGRAPHIC
specifies graphic strings and is comparable to the types for character strings.
However, n specifies the number of double-byte characters, so the maximum value
for n is 127. If n is greater than 127, the column is a long string column and is
subject to referencing restrictions.

Numeric Data

BIGINT
specifies a big integer. Values in a column of this type can range from
–9223372036854775808 to +9223372036854775807. However, numbers that
require decimal precision greater than 15 digits might be subject to rounding and
conversion errors.

SMALLINT
specifies a small integer. Values in a column of this type can range from –32,768 to
+32,767.

SAS/ACCESS Interface to DB2 Under z/OS � DB2 Null and Default Values 523

INTEGER | INT
specifies a large integer. Values in a column of this type can range from
–2,147,483,648 to +2,147,483,647.

REAL | FLOAT(n)
specifies a single-precision, floating-point number. If n is omitted or if n is greater
than 21, the column is double-precision. Values in a column of this type can range
from approximately –7.2E+75 through 7.2E+75.

FLOAT(n) | DOUBLE PRECISION | FLOAT | DOUBLE
specifies a double-precision, floating-point number. n can range from 22 through
53. If n is omitted, 53 is the default. Values in a column of this type can range
from approximately –7.2E+75 through 7.2E+75.

DECIMAL(p,s) | DEC(p,s)
specifies a packed-decimal number. p is the total number of digits (precision) and s
is the number of digits to the right of the decimal point (scale). The maximum
precision is 31 digits. The range of s is 0 ≤ s ≤ p.

If s is omitted, 0 is assigned and p might also be omitted. Omitting both s and p
results in the default DEC(5,0). The maximum range of p is 1 −1031 to 1031 −1.

Even though the DB2 numeric columns have these distinct data types, the DB2
engine accesses, inserts, and loads all numerics as FLOATs.

Date, Time, and Timestamp Data
DB2 date and time data types are similar to SAS date and time values in that they

are stored internally as numeric values and are displayed in a site-chosen format. The
DB2 data types for dates, times, and timestamps are listed here. Note that columns of
these data types might contain data values that are out of range for SAS, which
handles dates from 1582 A.D. through 20,000 A.D.

DATE
specifies date values in the format YYYY-MM-DD. For example, January 25, 1989,
is input as 1989-01-25. Values in a column of this type can range from 0001-01-01
through 9999-12-31.

TIME
specifies time values in the format HH.MM.SS. For example, 2:25 p.m. is input as
14.25.00. Values in a column of this type can range from 00.00.00 through 24.00.00.

TIMESTAMP
combines a date and time and adds a microsecond to make a seven-part value of
the format YYYY-MM-DD-HH.MM.SS.MMMMMM. For example, a timestamp for
precisely 2:25 p.m. on January 25, 1989, is 1989-01-25-14.25.00.000000. Values in
a column of this type can range from 0001-01-01-00.00.00.000000 through
9999-12-31-24.00.00.000000.

DB2 Null and Default Values
DB2 has a special value that is called NULL. A DB2 NULL value means an absence

of information and is analogous to a SAS missing value. When SAS/ACCESS reads a
DB2 NULL value, it interprets it as a SAS missing value.

DB2 columns can be defined so that they do not allow NULL data. For example,
NOT NULL would indicate that DB2 does not allow a row to be added to the
TestID.Customers table unless there is a value for CUSTOMER. When creating a DB2

524 LIBNAME Statement Data Conversions � Chapter 16

table with SAS/ACCESS, you can use the DBNULL= data set option to indicate
whether NULL is a valid value for specified columns.

You can also define DB2 columns as NOT NULL WITH DEFAULT. The following
table lists the default values that DB2 assigns to columns that you define as NOT
NULL WITH DEFAULT. An example of such a column is STATE in Testid.Customers.
If a column is omitted from a view descriptor, default values are assigned to the
column. However, if a column is specified in a view descriptor and it has no values, no
default values are assigned.

Table 16.5 Default values that DB2 assigns for columns defined as NOT NULL WITH DEFAULT

DB2 Column Type DB2 Default*

CHAR(n) | GRAPHIC(n) blanks, unless the NULLCHARVAL= option is
specified

VARCHAR | LONG VARCHAR | VARGRAPHIC | LONG
VARGRAPHIC

empty string

SMALLINT | INT | FLOAT | DECIMAL | REAL 0

DATE current date, derived from the system clock

TIME current time, derived from the system clock

TIMESTAMP current timestamp, derived from the system
clock

* The default values that are listed in this table pertain to values that DB2 assigns.

Knowing whether a DB2 column allows NULL values or whether DB2 supplies a
default value can assist you in writing selection criteria and in entering values to
update a table. Unless a column is defined as NOT NULL or NOT NULL WITH
DEFAULT, the column allows NULL values.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” on page 31.

To control how DB2 handles SAS missing character values, use the NULLCHAR=
and NULLCHARVAL= data set options.

LIBNAME Statement Data Conversions

This table shows the default formats that SAS/ACCESS Interface to DB2 assigns to
SAS variables when using the LIBNAME statement to read from a DB2 table. These
default formats are based on DB2 column attributes.

Table 16.6 LIBNAME Statement: Default SAS Formats for DB2 Data Types

DB2 Column Type Default SAS Format

BLOB $HEXn.

CLOB $n.

CHAR(n)

VARCHAR(n)

LONG VARCHAR(n)

$n

SAS/ACCESS Interface to DB2 Under z/OS � ACCESS Procedure Data Conversions 525

DB2 Column Type Default SAS Format

GRAPHIC(n)

VARGRAPHIC(n)

LONG VARGRAPHIC

$n.(n<=127)

$127. (n>127)

INTEGER m.n

SMALLINT m.n

DECIMAL(m,n) m.n

FLOAT none

NUMERIC(m,n) m.n

DATE DATE9.

TIME TIME8.

DATETIME DATETIME30.6

This table shows the default DB2 data types that SAS/ACCESS assigns to SAS
variable formats during output operations.

Table 16.7 LIBNAME Statement: Default DB2 Data Types for SAS Variable
Formats

SAS Variable Format DB2 Data Type

$w.

$CHARw.

$VARYINGw.

$HEXw.

CHARACTER(w) for 1–255

VARCHAR(w) for >255

any date format DATE

any time format TIME

any datetime format TIMESTAMP

all other numeric formats FLOAT

ACCESS Procedure Data Conversions

The following table shows the default SAS variable formats that SAS/ACCESS
assigns to DB2 data types when you use the ACCESS procedure.

Table 16.8 ACCESS Procedure: Default SAS Formats for DB2 Data Types

DB2 Column Type Default SAS Format

CHAR(n) $n. (n<=199)

VARCHAR(n) $n.

$200. (n>200)

LONG VARCHAR $n.

526 DBLOAD Procedure Data Conversions � Chapter 16

DB2 Column Type Default SAS Format

GRAPHIC(n)

VARGRAPHIC(n)

LONG VARGRAPHIC

$n.(n<=127)

$127. (n>127)

INTEGER 11.0

SMALLINT 6.0

DECIMAL(m,n) m+2.s

for example, DEC(6,4) = 8.4

REAL E12.6

DOUBLE PRECISION E12.6

FLOAT(n) E12.6

FLOAT E12.6

NUMERIC(m,n) m.n

DATE DATE7.

TIME TIME8.

DATETIME DATETIME30.6

You can use the YEARCUTOFF= option to make your DATE7. dates comply with
Year 2000 standards. For more information about this SAS system option, see SAS
Language Reference: Dictionary.

DBLOAD Procedure Data Conversions
The following table shows the default DB2 data types that SAS/ACCESS assigns to

SAS variable formats when you use the DBLOAD procedure.

Table 16.9 DBLOAD Procedure: Default DB2 Data Types for SAS Variable Formats

SAS Variable Format DB2 Data Type

$w.

$CHARw.

$VARYINGw.

$HEXw.

CHARACTER

any date format DATE

any time format TIME

any datetime format TIMESTAMP

all other numeric formats FLOAT

SAS/ACCESS Interface to DB2 Under z/OS � Libref Connections 527

Understanding DB2 Under z/OS Client/Server Authorization

Libref Connections

When you use SAS/ACCESS Interface to DB2 under z/OS, you can enable each client
to control its own connections using its own authority (instead of sharing connections
with other clients) by using the DB2 Recoverable Resource Manager Services Attachment
Facility (RRSAF). See DB2 Attachment Facilities (CAF and RRSAF)“DB2 Attachment
Facilities (CAF and RRSAF)” on page 531 for information about this facility.

When you use SAS/ACCESS Interface to DB2 under z/OS with RRSAF, the
authorization mechanism works differently than it does in Base SAS:

� In Base SAS, the SAS server always validates the client’s authority before
allowing the client to access a resource.

� In SAS/ACCESS Interface to DB2 under z/OS (with RRSAF), DB2 checks the
authorization identifier that is carried by the connection from the SAS server. In
most situations, this is the client’s authorization identifier. In one situation,
however, this is the SAS server’s authorization identifier. A client can access a
resource by using the server’s authorization identifier only if the client uses a libref
that was predefined in the server session.

In this next example, a user assigns the libref SRVPRELIB in the SRV1 server
session. In the client session, a user then issues a LIBNAME statement that makes a
logical assignment using the libref MYPRELIB, and the user specifies the LIBNAME
option SERVER=srv1. The client can then access resources by using the server’s
authority for the connection.

1 In the server session

libname srvprelib db2 ssid=db25;
proc server id=srv1;
run;

2 In the client session

libname myprelib server=srv1 slibref=srvprelib;
proc print data=myprelib.db2table;
run;

In this example, because the client specifies a regular libref, MYDBLIB, the client
has its own authority for the connections.

1 In the server session

libname myprelib db2 ssid=db25;
proc server id=srv1;
run;

2 In the client session

libname mydblib server=srv1 roptions=’ssid=db25’ rengine=db2;
proc print data=mydblib.db2table;
run;

In this table, SAS/SHARE clients use LIBNAME statements to access SAS libraries
and DB2 data through the server. In this description, a logical LIBNAME statement is
a statement that associates a libref with another libref that was previously assigned.

528 Non-Libref Connections � Chapter 16

Table 16.10 Librefs and Their Authorization Implications

Client Session

libname local v8 ’SAS.data.library’
disp=old;

libname dblocal db2
connection=unique;

These statements execute in the client session. these
are local assignments. The authority ID is the ID of the
client.

libname remote ’SAS.data.library’
server=serv1 rengine=v8
roptions=’disp=old’;

libname dbremote server=serv1
rengine=db2
roptions=’connection=unique’;

These statements execute in the server session on behalf
of the client. Libref Remote is a Base SAS engine
remote assignment. Libref DbRemote is a DB2 engine
remote assignment. In both cases, the authority ID is
the ID of the client.

Server Session (id=serv1)

libname predef v8 ’SAS.data.library’
disp=old;

libname dbpredef db2
connection=unique;

Because librefs PreDef and DbPreDef are defined in the
server session, they can be referenced only by a client
using a logical LIBNAME statement. There is no
authority ID because clients cannot access these librefs
directly.

Logical Assignments - Client Session

libname alias (local);

libname dbalias (dblocal);

These statements create aliases ALIAS and DBALIAS
for librefs Local and DbLocal, which were assigned in
the client session above. The authority ID is the ID of
the client.

libname logic server=serv1
slibref=predef;

libname dblogic server=serv1
slibref=dbpredef;

These statements refer to librefs PreDef and DbPreDef,
which were assigned in the server session above.

Libref Logic is a Base SAS engine logical assignment of
remote libref PreDef. The authority ID for libref Logic is
the ID of the client.

Libref DbLogic is a DB2 engine logical assignment of
remote libref DbPreDef. The authority ID for libref
DbLogic is the ID of the server.

For the Base SAS engine Remote and Logic librefs, the authority that is verified is
the client’s. (This is true for all Base SAS engine assignments.) Although the DB2
engine librefs DbRemote and DbLogic refer to the same resources, the authority verified
for DbRemote is that of the client, whereas the authority verified for DbLogic is that of
the server. When using SAS/ACCESS Interface to DB2 under z/OS, you can determine
whose authority (client or server) is used to access DB2 data.

Non-Libref Connections
When you make connections using the SQL pass-through facility or view descriptors,

the connections to the database are not based on a DB2 engine libref. A connection that
is created in the server, by using these features from a client, always has the authority
of the client, because there is no server-established connection to reference.

This example uses the SAS/SHARE Remote SQL pass-through facility. The client has
its own authority for the connections.

1 In the server session:

SAS/ACCESS Interface to DB2 Under z/OS � How the Interface to DB2 Works 529

proc server id=srv1;
run;

2 In the client session

proc sql;
connect to remote (server=srv1 dbms=db2 dbmsarg=(ssid=db25));
select * from connection to remote

(select * from db2table);
disconnect from remote;

quit;

This example uses a previously created view descriptor. The client has its own
authority for the connections. The PreLib libref PreLib that was previously assigned
and the client-assigned libref MyLib have no relevant difference. These are Base SAS
engine librefs and not DB2 engine librefs.

1 In the server session

libname prelib V8 ’SAS.data.library’;
proc server id=srv1;
run;

2 In the client session

libname prelib server=srv1;
proc print data=prelib.accview;
run;

3 In the client session

libname mylib ’SAS.data.library2’ server=srv1 rengine=v8;
proc print data=mylib.accview;
run;

Known Issues with RRSAF Support
SAS/SHARE can use various communication access methods to communicate with

clients. You can specify these through the COMAMID and COMAUX1 system options.
When you use XMS (Cross Memory Services) as an access method, DB2 also uses

XMS in the same address space. Predefining DB2 server librefs before starting PROC
SERVER can result in errors due to the loss of the XMS Authorization Index, because
both SAS and DB2 are acquiring and releasing it. When using XMS as an access
method, use only client-assigned librefs on the server.

This problem does not occur when you use the TCPIP access method. So if you use
TCPIP instead of XMS, you can use both client-assigned (client authority) and
server-preassigned (server authority) librefs. You can also use either access method if
your connection is not based on a libref (client authority).

DB2 Under z/OS Information for the Database Administrator

How the Interface to DB2 Works
SAS/ACCESS Interface to DB2 under z/OS uses either the Call Attachment Facility

(CAF) or the Recoverable Resource Management Services Attachment Facility (RRSAF)
to communicate with the local DB2 subsystem. Both attachment facilities enable

530 How and When Connections Are Made � Chapter 16

programs to connect to DB2 and to use DB2 for SQL statements and commands.
SAS/ACCESS Interface to DB2 under z/OS uses the attachment facilities to establish
and control its connections to the local DB2 subsystem. DB2 allows only one connection
for each task control block (TCB), or task. SAS and SAS executables run under one
TCB, or task.

The DB2 LIBNAME statement enables SAS users to connect to DB2 more than once.
Because the CAF and RRSAF allow only one connection per TCB, SAS/ACCESS
Interface to DB2 under z/OS attaches a subtask for each subsequent connection that is
initiated. It uses the ATTACH, DETACH, POST, and WAIT assembler macros to create
and communicate with the subtasks. It does not limit the number of connections/
subtasks that a single SAS user can initiate. This image illustrates how the DB2
engine works.

Display 16.1 Design of the DB2 Engine

How and When Connections Are Made
SAS/ACCESS Interface to DB2 under z/OS always makes an explicit connection to

the local DB2 subsystem (SSID). When a connection executes successfully, a thread to
DB2 is established. For each thread’s or task’s connection, DB2 establishes
authorization identifiers (AUTHIDs).

SAS/ACCESS Interface to DB2 under z/OS determines when to make a connection to
DB2 based on the type of open mode (read, update, or output mode) that a SAS
application requests for the DB2 tables. Here is the default behavior:

� SAS/ACCESS Interface to DB2 under z/OS shares the connection for all openings
in read mode for each DB2 LIBNAME statement

� SAS/ACCESS Interface to DB2 under z/OS acquires a separate connection to DB2
for every opening in update or output mode.

You can change this default behavior by using the CONNECTION= option.
Several SAS applications require SAS/ACCESS Interface to DB2 under z/OS to query

the DB2 system catalogs. When this type of query is required, SAS/ACCESS Interface
to DB2 under z/OS acquires a separate connection to DB2 in order to avoid contention
with other applications that are accessing the DB2 system catalogs. See “Accessing
DB2 System Catalogs” on page 532 for more information.

The DEFER= LIBNAME option also controls when a connection is established. The
UTILCONN_TRANSIENT= also allows control of the utility connection—namely,
whether it must stay open.

SAS/ACCESS Interface to DB2 Under z/OS � DB2 Attachment Facilities (CAF and RRSAF) 531

DDF Communication Database
DB2 Distributed Data Facility (DDF) Communication Database (CDB) enables DB2

z/OS applications to access data on other systems. Database administrators are
responsible for customizing CDB. SAS/ACCESS Interface to DB2 under z/OS supports
both types of DDF: system-directed access (private protocol) and Distributed Relational
Database Architecture.

System-directed access enables one DB2 z/OS subsystem to execute SQL statements
on another DB2 z/OS subsystem. System-directed access uses a DB2-only private
protocol. It is known as a private protocol because you can use only it between DB2
databases. IBM recommends that users use DRDA. Although SAS/ACCESS Interface to
DB2 under z/OS cannot explicitly request a connection, it can instead perform an
implicit connection when SAS initiates a distributed request. To initiate an implicit
connection, you must specify the LOCATION= option. When you specify this option, the
three-level table name (location.authid.table) is used in the SQL statement that
SAS/ACCESS Interface to DB2 under z/OS generates. When the SQL statement that
contains the three-level table name is executed, an implicit connection is made to the
remote DB2 subsystem. The primary authorization ID of the initiating process must be
authorized to connect to the remote location.

Distributed Relational Database Architecture (DRDA) is a set of protocols that enables
a user to access distributed data. This enables SAS/ACCESS Interface to DB2 under
z/OS to access multiple remote tables at various locations. The tables can be distributed
among multiple platforms, and both like and unlike platforms can communicate with
one another. In a DRDA environment, DB2 acts as the client, server, or both.

To connect to a DRDA remote server or location, SAS/ACCESS Interface to DB2
under z/OS uses an explicit connection. To establish an explicit connection,
SAS/ACCESS Interface to DB2 under z/OS first connects to the local DB2 subsystem
through an attachment facility (CAF or RRSAF). It then issues an SQL CONNECT
statement to connect from the local DB2 subsystem to the remote DRDA server before
it accesses data. To initiate a connection to a DRDA remote server, you must specify the
SERVER= connection option. By specifying this option, SAS uses a separate connection
for each remote DRDA location.

DB2 Attachment Facilities (CAF and RRSAF)
By default, SAS/ACCESS Interface to DB2 under z/OS uses the Call Attachment

Facility (CAF) to make its connections to DB2. SAS supports multiple CAF connections
for a SAS session. Thus, for a SAS server, all clients can have their own connections to
DB2; multiple clients no longer have to share one connection. Because CAF does not
support sign-on, however, each connection that the SAS server makes to DB2 has the
z/OS authorization identifier of the server, not the authorization identifier of the client
for which the connection is made.

If you specify the DB2RRS system option, SAS/ACCESS Interface to DB2 under z/OS
engine uses the Recoverable Resource Manager Services Attachment Facility (RRSAF).
Only one attachment facility can be used at a time, so the DB2RRS or NODB2RRS
system option can be specified only when a SAS session is started. SAS supports
multiple RRSAF connections for a SAS session. RRSAF is a new feature in DB2 Version
5, Release 1, and its support in SAS/ACCESS Interface to DB2 under z/OS was new in
SAS 8.

The RRSAF is intended for use by SAS servers, such as the ones that SAS/SHARE
software use. RRSAF supports the ability to associate a z/OS authorization identifier
with each connection at sign on. This authorization identifier is not the same as the
authorization ID that is specified in the AUTHID= data set or LIBNAME option. DB2

532 Accessing DB2 System Catalogs � Chapter 16

uses the RRSAF-supported authorization identifier to validate a given connection’s
authorization to use both DB2 and system resources, when those connections are made
using the System Authorization Facility and other security products like RACF.
Basically, this authorization identifier is the user ID with which you are logged on to
z/OS.

With RRSAF, the SAS server makes the connections for each client and the
connections have the client z/OS authorization identifier associated with them. This is
true only for clients that the SAS server authenticated, which occurred when the client
specified a user ID and password. Servers authenticate their clients when the clients
provide their user IDs and passwords. Generally, this is the default way that servers
are run. If a client connects to a SAS server without providing his user ID and
password, then the identifier associated with its connections is that of the server (as
with CAF) and not the identifier of the client.

Other than specifying DB2RRS at SAS start-up, you do not need to do anything else
to use RSSAF. SAS/ACCESS Interface to DB2 under z/OS automatically signs on each
connection that it makes to DB2 with either the identifier of the authenticated client or
the identifier of the SAS server for non-authenticated clients. The authenticated clients
have the same authorities to DB2 as they have when they run their own SAS session
from their own ID and access DB2.

Accessing DB2 System Catalogs
For many types of SAS procedures, SAS/ACCESS Interface to DB2 under z/OS must

access DB2 system catalogs for information. This information is limited to a list of all
tables for a specific authorization identifier. The interface generates this SQL query to
obtain information from system catalogs:

SELECT NAME FROM SYSIBM.SYSTABLES
WHERE (CREATOR = ’authid’);

Unless you specify the AUTHID= option, the authorization ID is the z/OS user ID
that is associated with the job step.

The SAS procedures or applications that request the list of DB2 tables includes, but
is not limited to, PROC DATASETS and PROC CONTENTS, or any application that
needs a member list. If the SAS user does not have the necessary authorization to read
the DB2 system catalogs, the procedure or application fails.

Because querying the DB2 system catalogs can cause some locking contentions,
SAS/ACCESS Interface to DB2 under z/OS initiates a separate connection for the query
to the DB2 system catalogs. After the query completes, a COMMIT WORK command is
executed.

Under certain circumstances, you can access a catalog file by overriding the default
value for the “DB2CATALOG= System Option” on page 403.

533

C H A P T E R

17
SAS/ACCESS Interface to
Greenplum

Introduction to SAS/ACCESS Interface to Greenplum 534
LIBNAME Statement Specifics for Greenplum 534

Overview 534

Arguments 534

LIBNAME Statement Examples 536

Data Set Options for Greenplum 537
SQL Pass-Through Facility Specifics for Greenplum 539

Key Information 539

CONNECT Statement Example 539

Special Catalog Queries 539

Autopartitioning Scheme for Greenplum 540

Overview 540
Autopartitioning Restrictions 540

Nullable Columns 541

Using WHERE Clauses 541

Using DBSLICEPARM= 541

Using DBSLICE= 541
Passing SAS Functions to Greenplum 542

Passing Joins to Greenplum 544

Bulk Loading for Greenplum 544

Overview 544

Using Protocols to Access External Tables 544
Configuring the File Server 545

Stopping gpfdist 545

Troubleshooting gpfdist 546

Using the file:// Protocol 546

Accessing Dynamic Data in Web Tables 546

Data Set Options for Bulk Loading 546
Examples 547

Naming Conventions for Greenplum 547

Data Types for Greenplum 548

Overview 548

String Data 548
Numeric Data 548

Date, Time, and Timestamp Data 549

Greenplum Null Values 550

LIBNAME Statement Data Conversions 551

534 Introduction to SAS/ACCESS Interface to Greenplum � Chapter 17

Introduction to SAS/ACCESS Interface to Greenplum
This section describes SAS/ACCESS Interface to Greenplum. For a list of

SAS/ACCESS features that are available for this interface, see “SAS/ACCESS Interface
to Greenplum: Supported Features” on page 77.

LIBNAME Statement Specifics for Greenplum

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to

Greenplum supports and includes examples. For details about this feature, see
“Overview of the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing Greenplum.

LIBNAME libref greenplm <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

greenplm
specifies the SAS/ACCESS engine name for the Greenplum interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. When you use the LIBNAME
statement, you can connect to the Greenplum database in two ways. Specify only
one of these methods for each connection because they are mutually exclusive.

� SERVER=, DATABASE=, PORT=, USER=, PASSWORD=
� DSN=, USER=, PASSWORD=

Here is how these options are defined.

SERVER=<’>server-name<’>
specifies the Greenplum server name or the IP address of the server host. If
the server name contains spaces or nonalphanumeric characters, you must
enclose it in quotation marks.

DATABASE=<’>database-name<’>
specifies the Greenplum database that contains the tables and views that you
want to access. If the database name contains spaces or nonalphanumeric
characters, you must enclose it in quotation marks. You can specify
DATABASE= with the DB= alias.

PORT=port
specifies the port number that is used to connect to the specified Greenplum
database. If you do not specify a port, the default is 5432.

USER=<’>Greenplum user-name<’>

SAS/ACCESS Interface to Greenplum � Arguments 535

specifies the Greenplum user name (also called the user ID) that is used to
connect to the database. If the user name contains spaces or
nonalphanumeric characters, use quotation marks.

PASSWORD=<’>Greenplum password<’>
specifies the password that is associated with your Greenplum user ID. If the
password contains spaces or nonalphabetic characters, you must enclose it in
quotation marks. You can also specify PASSWORD= with the PWD=, PASS=,
and PW= aliases.

DSN=<’>Greenplum data-source<’>
specifies the configured Greenplum ODBC data source to which you want to
connect. It is recommended that you use this option only if you have existing
Greenplum ODBC data sources configured on your client. This method
requires additional setup—either through the ODBC Administrator control
panel on Windows platforms, or through the odbc.ini file or a similarly named
configuration file on UNIX platforms. It is recommended that you use this
connection method only if you have existing, functioning data sources that
have been defined.

LIBNAME -options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to Greenplum
with the applicable default values. For more detail about these options, see
“LIBNAME Options for Relational Databases” on page 92.

Table 17.1 SAS/ACCESS LIBNAME Options for Greenplum

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTOCOMMIT= operation-specific

CONNECTION= SHAREDREAD

CONNECTION_GROUP= none

DBCOMMIT= 1000 (inserting) or 0 (updating)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= YES

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

DBMSTEMP= none

DBNULLKEYS= none

DBPROMPT= none

DBSASLABEL= COMPAT

536 LIBNAME Statement Examples � Chapter 17

Option Default Value

DEFER= none

DELETE_MULT_ROWS= NO

DIRECT_EXE= none

IGNORE_
READ_ONLY_COLUMNS=

none

INSERTBUFF= automatically calculated based on row length

MULTI_DATASRC_OPT= none

PRESERVE_COL_NAMES= see “Naming Conventions for Greenplum” on page 547

PRESERVE_TAB_NAMES= see “Naming Conventions for Greenplum” on page 547

QUERY_TIMEOUT= 0

QUOTE_CHAR= none

READBUFF= automatically calculated based on row length

REREAD_EXPOSURE= none

SCHEMA= none

SPOOL= none

SQL_FUNCTIONS= none

SQL_FUNCTIONS_COPY= none

STRINGDATES= none

TRACE= none

TRACEFILE= none

UPDATE_MULT_ROWS= NO

UTILCONN_TRANSIENT= none

LIBNAME Statement Examples
In this example, SERVER=, DATABASE=, PORT=, USER=, and PASSWORD= are

the connection options.

libname mydblib greenplm server=gplum04 db=customers port=5432
user=gpusr1 password=gppwd1;

proc print data=mydblib.customers;
where state=’CA’;

run;

SAS/ACCESS Interface to Greenplum � Data Set Options for Greenplum 537

In the next example, DSN=, USER=, and PASSWORD= are the connection options.
The Greenplum data source is configured in the ODBC Administrator Control Panel on
Windows platforms. It is also configured in the odbc.ini file or a similarly named
configuration file on UNIX platforms.

libname mydblib greenplm DSN=gplumSalesDiv user=gpusr1 password=gppwd1;

proc print data=mydblib.customers;
where state=’CA’;

Data Set Options for Greenplum
All SAS/ACCESS data set options in this table are supported for Greenplum. Default

values are provided where applicable. For details about this feature, see “Overview” on
page 207.

Table 17.2 SAS/ACCESS Data Set Options for Greenplum

Option Default Value

BL_DATAFILE= none

BL_DELETE_DATAFILE= none

BL_DELIMITER= |

BL_ENCODING= DEFAULT

BL_ESCAPE= \

BL_EXCEPTION= none

BL_EXECUTE_CMD= none

BL_EXECUTE_LOCATION= none

BL_EXTERNAL_WEB=

BL_FORCE_NOT_NULL= none

BL_FORMAT= TEXT

BL_HEADER= NO

BL_HOST= 127.0.0.1

BL_NULL=
’\N’ [TEXT mode], unquoted empty value [CSV
mode]

BL_PORT= 8080

BL_PROTOCOL= ’gpfdist’

BL_QUOTE= " (double quotation mark)

BL_REJECT_LIMIT= none

BL_REJECT_TYPE= ROWS

BULKLOAD= none

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

538 Data Set Options for Greenplum � Chapter 17

Option Default Value

DBFORCE= none

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= none

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= none

DBNULLKEYS= LIBNAME option setting

DBPROMPT= LIBNAME option setting

DBSASTYPE=
see “DBSASTYPE= Data Set Option” on page
314

DBTYPE= see “Data Types for Greenplum” on page 548

DISTRIBUTED_BY= DISTRIBUTED_RANDOMLY

ERRLIMIT= 1

IGNORE_ READ_ONLY_COLUMNS= none

INSERTBUFF= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

QUERY_TIMEOUT= LIBNAME option setting

READBUFF= LIBNAME option setting

SASDATEFMT= none

SCHEMA= LIBNAME option setting

SAS/ACCESS Interface to Greenplum � Special Catalog Queries 539

SQL Pass-Through Facility Specifics for Greenplum

Key Information
For general information about this feature, see “About SQL Procedure Interactions”

on page 425. Greenplum examples are available.
Here are the SQL pass-through facility specifics for the Greenplum interface.
� The dbms-name is GREENPLM.
� The CONNECT statement is required.
� PROC SQL supports multiple connections to Greenplum. If you use multiple

simultaneous connections, you must use the alias argument to identify the
different connections. If you do not specify an alias, the default GREENPLM alias is
used.

� The CONNECT statement database-connection-arguments are identical to its
LIBNAME connection options.

CONNECT Statement Example
This example uses the DBCON alias to connect to the greenplum04 Greenplum

server database and execute a query. The connection alias is optional.

proc sql;
connect to greenplm as dbcon
(server=greenplum04 db=sample port=5432 user=gpusr1 password=gppwd1);

select * from connection to dbcon
(select * from customers where customer like ’1%’);

quit;

Special Catalog Queries
SAS/ACCESS Interface to Greenplum supports the following special queries. You can

use the queries to call functions in ODBC-style function application programming
interfaces (APIs). Here is the general format of the special queries:

Greenplum::SQLAPI ’parameter–1’, ’parameter-n’

Greenplum::
is required to distinguish special queries from regular queries. Greenplum:: is not
case sensitive.

SQLAPI
is the specific API that is being called. SQLAPI is not case sensitive.

’parameter n’
is a quoted string that is delimited by commas.

Within the quoted string, two characters are universally recognized: the percent sign
(%) and the underscore (_). The percent sign matches any sequence of zero or more
characters, and the underscore represents any single character. To use either character
as a literal value, you can use the backslash character (\) to escape the match

540 Autopartitioning Scheme for Greenplum � Chapter 17

characters. For example, this call to SQLTables usually matches table names such as
myatest and my_test:

select * from connection to greenplm (Greenplum::SQLTables "test","","my_test");

Use the escape character to search only for the my_test table:

select * from connection to greenplm (Greenplum::SQLTables "test","","my_test");

SAS/ACCESS Interface to Greenplum supports these special queries.

Greenplum::SQLTables <’Catalog’, ’Schema’, ’Table-name’, ’Type’>
returns a list of all tables that match the specified arguments. If you do not
specify any arguments, all accessible table names and information are returned.

Greenplum::SQLColumns <’Catalog’, ’Schema’, ’Table-name’, ’Column-name’>
returns a list of all tables that match the specified arguments. If you do not
specify any arguments, all accessible table names and information are returned.

Greenplum::SQLColumns <’Catalog’, ’Schema’, ’Table-name’, ’Column-name’>
returns a list of all columns that match the specified arguments. If you do not
specify any argument, all accessible column names and information are returned.

Greenplum::SQLPrimaryKeys <’Catalog’, ’Schema’, ’Table-name’ ’Type’ >
returns a list of all columns that compose the primary key that matches the
specified table. A primary key can be composed of one or more columns. If you do
not specify any table name, this special query fails.

Greenplum::SQLStatistics <’Catalog’, ’Schema’, ’Table-name’>
returns a list of the statistics for the specified table name, with options of
SQL_INDEX_ALL and SQL_ENSURE set in the SQLStatistics API call. If you do
not specify any table name argument, this special query fails.

Greenplum::SQLGetTypeInfo
returns information about the data types that the Greenplum nCluster database
supports.

Autopartitioning Scheme for Greenplum

Overview
Autopartitioning for SAS/ACCESS Interface to Greenplum is a modulo (MOD)

function method. For general information about this feature, see “Autopartitioning
Techniques in SAS/ACCESS” on page 57.

Autopartitioning Restrictions
SAS/ACCESS Interface to Greenplum places additional restrictions on the columns

that you can use for the partitioning column during the autopartitioning phase. Here is
how columns are partitioned.

� INTEGER and SMALLINT columns are given preference.
� You can use other numeric columns for partitioning if the precision minus the scale

of the column is greater than 0 but less than 10; that is, 0<(precision-scale)<10.

SAS/ACCESS Interface to Greenplum � Using DBSLICE= 541

Nullable Columns
If you select a nullable column for autopartitioning, the OR<column-name>IS NULL

SQL statement is appended at the end of the SQL code that is generated for the
threaded read. This ensures that any possible NULL values are returned in the result
set.

Using WHERE Clauses
Autopartitioning does not select a column to be the partitioning column if it appears

in a SAS WHERE clause. For example, this DATA step cannot use a threaded read to
retrieve the data because all numeric columns in the table are in the WHERE clause:

data work.locemp;
set trlib.MYEMPS;
where EMPNUM<=30 and ISTENURE=0 and
SALARY<=35000 and NUMCLASS>2;
run;

Using DBSLICEPARM=
Although SAS/ACCESS Interface to Greenplum defaults to three threads when you

use autopartitioning, do not specify a maximum number of threads for the threaded
read in “DBSLICEPARM= LIBNAME Option” on page 137.

Using DBSLICE=
You might achieve the best possible performance when using threaded reads by

specifying the “DBSLICE= Data Set Option” on page 316 for Greenplum in your SAS
operation. This is especially true if your Greenplum data is evenly distributed across
multiple partitions in a Greenplum database system.

When you create a Greenplum table using the Greenplum database partition model,
you can specify the partitioning key that you want to use by appending the PARTITION
BY<column-name> clause to your CREATE TABLE statement. Here is how you can
accomplish this by using the DBCREATE_TABLE_OPTS=LIBNAME option within the
SAS environment.

/* Points to a triple-node server. */
libname mylib sasiogpl user=myuser pw=mypwd db=greenplum;
DBCREATE_TABLE_OPTS=’PARTITION BY(EMPNUM);

proc delete data=mylib.MYEMPS1;
run;

data mylib.myemps(drop=morf whatstate
DBTYPE=(HIREDATE="date" SALARY="numeric(8,2)"
NUMCLASS="smallint" GENDER="char(1)" ISTENURE="numeric(1)" STATE="char(2)"
EMPNUM="int NOT NULL Primary Key"));

format HIREDATE mmddyy10.;
do EMPNUM=1 to 100;

morf=mod(EMPNUM,2)+1;
if(morf eq 1) then

542 Passing SAS Functions to Greenplum � Chapter 17

GENDER=’F’;
else

GENDER=’M’;
SALARY=(ranuni(0)*5000);
HIREDATE=int(ranuni(13131)*3650);
whatstate=int(EMPNUM/5);
if(whatstate eq 1) then

STATE=’FL’;
if(whatstate eq 2) then

STATE=’GA’;
if(whatstate eq 3) then

STATE=’SC’;
if(whatstate eq 4) then

STATE=’VA’;
else

state=’NC’;
ISTENURE=mod(EMPNUM,2);
NUMCLASS=int(EMPNUM/5)+2;
output;

end;
run;

After the MYEMPS table is created on this three-node database, a third of the rows
reside on each of the three nodes.

Using DBSLICE= works well when the table you want to read is not stored in
multiple partitions. It gives you flexibility in column selection. For example, if you
know that the STATE column in your employee table contains only a few distinct
values, you can tailor your DBSLICE= option accordingly.

data work.locemp;
set mylib.MYEMPS (DBSLICE=("STATE=’GA’"

"STATE=’SC’" "STATE=’VA’" "STATE=’NC’"));
where EMPNUM<=30 and ISTENURE=0 and SALARY<=35000 and NUMCLASS>2;
run;

Passing SAS Functions to Greenplum
SAS/ACCESS Interface to Greenplum passes the following SAS functions to

Greenplum for processing. Where the Greenplum function name differs from the SAS
function name, the Greenplum name appears in parentheses. For more information, see
“Passing Functions to the DBMS Using PROC SQL” on page 42.

� ABS

� ARCOS (ACOS)

� ARSIN (ASIN)
� ATAN

� ATAN2

� AVG
� BYTE (CHR)

� CEIL

� COS
� COUNT

SAS/ACCESS Interface to Greenplum � Passing SAS Functions to Greenplum 543

� DAY (DATEPART)

� EXP

� FLOOR

� HOUR (DATEPART)

� INDEX (STRPOS)

� LENGTH

� LOG (LN)

� LOG10 (LOG)

� LOWCASE (LOWER)

� MAX

� MIN

� MINUTE (DATEPART)

� MOD

� MONTH (DATEPART)

� QTR (DATEPART)

� REPEAT

� SECOND (DATEPART)

� SIGN

� SIN

� SQRT

� STRIP (BTRIM)

� SUBSTR (SUBSTRING)

� SUM

� TAN

� TRANWRD (REPLACE)

� TRIMN (RTRIM)

� UPCASE (UPPER)

� WEEKDAY (DATEPART)

� YEAR (DATEPART)

SQL_FUNCTIONS=ALL enables for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to Greenplum. Due to incompatibility in date and time functions
between Greenplum and SAS, Greenplum might not process them correctly. Check your
results to determine whether these functions are working as expected. See
“SQL_FUNCTIONS= LIBNAME Option” on page 186.

� COMPRESS (REPLACE)

� DATE (NOW)

� DATEPART (CONVERT)

� DATETIME (NOW)

� SOUNDEX

� TIME

� TIMEPART (TIME)

� TODAY (NOW)

544 Passing Joins to Greenplum � Chapter 17

Passing Joins to Greenplum

For a multiple libref join to pass to Greenplum, all of these components of the
LIBNAME statements must match exactly.

� user ID (USER=)

� password (PASSWORD=)

� host(HOST=)

� server (SERVER=)

� database (DATABASE=)

� port (PORT=)

� data source (DSN=, if specified)

� SQL functions (SQL_FUNCTIONS=)

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

Bulk Loading for Greenplum

Overview
Bulk loading provides high-performance access to external data sources. Multiple

Greenplum instances read data in parallel, which enhances performance.
Bulk loading enables you to insert large data sets into Greenplum tables in the

shortest span of time. You can also use bulk loading to execute high-performance SQL
queries against external data sources, without first loading those data sources into a
Greenplum database. These fast SQL queries enable you to optimize the extraction,
transformation, and loading tasks that are common in data warehousing.

Two types of external data sources, external tables and Web tables, have different
access methods. External tables contain static data that can be scanned multiple times.
The data does not change during queries. Web tables provide access to dynamic data
sources as if those sources were regular database tables. Web tables cannot be scanned
multiple times. The data can change during the course of a query.

The following sections show you how to access external tables and Web tables using
the bulk-loading facility.

Using Protocols to Access External Tables
Use these protocols to access (static) external tables.

gpfdist://
To use the gpfdist:// protocol, install and configure the gpfdist (Greenplum file
distribution) program on the host that stores the external tables see “Configuring
the File Server” on page 545. The gpfdist utility serves external tables in parallel
to the primary Greenplum database segments. The gpfdist:// protocol is
advantageous because it ensures that all Greenplum database segments are used
during the loading of external tables.

SAS/ACCESS Interface to Greenplum � Stopping gpfdist 545

To specify files to gpfdist, use the BL_DATAFILE= data set option. Specify file
paths that are relative to the directory from which gpfdist is serving files (the
directory where you executed gpfdist).

The gpfdist utility is part of the loader package for the platform where SAS is
running. You can also download it from the Greenplum Web site:
www.greenplum.com.

file://
To use the file:// protocol, external tables must reside on a segment host in a
location that Greenplum superusers (gpadmin) can access. The segment host name
must match the host name, as specified in the gp_configuration system catalog
table. In other words, the external tables that you want to load must reside on a
host that is part of the set of servers that comprise the database configuration.
The file:// protocol is advantageous because it does not require configuration.

Configuring the File Server
Follow these steps to configure the gpfdist file server.

1 Download and install gpfdist from www.greenplum.com.

2 Define and load a new environment variable called GPLOAD_HOME.

3 Set the value of the variable to the directory that contains the external tables that
you want to load.

The directory path must be relative to the directory in which you execute
gpfdist, and it must exist before gpfdist tries to access it.

� For Windows, open My Computer, select the Advanced tab, and click the
Environment Variables button.

� For UNIX, enter this command or add it to your profile:

export GPLOAD_HOME=directory

4 Start gpfdist as shown in these examples.

� For Windows:

C:> gpfdist -d %GPLOAD_HOME% -p 8081 -l %GPLOAD_HOME%\gpfdist.log

� For UNIX:

$ gpfdist -d $GPLOAD_HOME -p 8081 -l $GPLOAD_HOME/gpfdist.log &

You can run multiple instances of gpfdist on the same host as long each instance has
a unique port and directory.

If you do not set GPLOAD_HOME, the value of the BL_DATAFILE= data set option
specifies the directory that contains the external tables to be loaded. If BL_DATAFILE
is not specified, then the current directory is assumed to contain the external tables.

Stopping gpfdist
In Windows, to stop an instance of gpfdist, use the Task Manager or close the

Command Window that you used to start that instance of gpfdist.
Follow these steps In UNIX to stop an instance of gpfdist.

1 Find the process ID:

$ ps ax | grep gpfdist (Linux)
$ ps -ef | grep gpfdist (Solaris)

546 Troubleshooting gpfdist � Chapter 17

2 Kill the process. For example:

$ kill 3456

Troubleshooting gpfdist
Run this command to test connectivity between an instance of gpfdist and a

Greenplum database segment.

$ wget http://gpfdist_hostname:port/filename

Using the file:// Protocol
You can use the file:// protocol to identify external files for bulk loading with no

additional configuration required. However, using the GPLOAD_HOME environment
variable is highly recommended. If you do not specify GPLOAD_HOME, the
BL_DATAFILE data set option specifies the source directory. The default source
directory is the current directory if you do not set BL_DATAFILE=. The Greenplum
server must have access to the source directory.

Accessing Dynamic Data in Web Tables
Use these data set options to access Web tables:
� BL_LOCATION=
� BL_EXECUTE_CMD=

Data Set Options for Bulk Loading
Here are the Greenplum bulk-load data set options. For detailed information about

these options, see Chapter 11, “Data Set Options for Relational Databases,” on page 203.
� BL_DATAFILE=
� BL_CLIENT_DATAFILE=
� BL_DELETE_DATAFILE=
� BL_DELIMITER=
� BL_ENCODING=
� BL_ESCAPE=
� BL_EXCEPTION=
� BL_EXECUTE_CMD=
� BL_EXECUTE_LOCATION=
� BL_EXTERNAL_WEB=
� BL_FORCE_NOT_NULL=
� BL_FORMAT=
� BL_HEADER=
� BL_HOST=
� BL_NULL=
� BL_PORT=
� BL_PROTOCOL=
� BL_QUOTE=

SAS/ACCESS Interface to Greenplum � Naming Conventions for Greenplum 547

� BL_REJECT_LIMIT=
� BL_REJECT_TYPE=
� BL_USE_PIPE=
� BULKLOAD=

Examples
This first example shows how you can use a SAS data set, SASFLT.FLT98, to create

and load a large Greenplum table, FLIGHTS98.

libname sasflt ’SAS-data-library’;
libname mydblib greenplm host=iqsvr1 server=iqsrv1_users

db=users user=iqusr1 password=iqpwd1;

proc sql;
create table net_air.flights98

(bulkload=YES)
as select * from sasflt.flt98;

quit;

This next example shows how you can append the SAS data set, SASFLT.FLT98, to
the existing Greenplum table ALLFLIGHTS. The BL_USE_PIPE=NO option forces
SAS/ACCESS Interface to Greenplum to write data to a flat file, as specified in the
BL_DATAFILE= option. Rather than deleting the data file,
BL_DELETE_DATAFILE=NO causes the engine to leave it after the load has completed.

proc append base=new_air.flights98
(BULKLOAD=YES
BL_DATAFILE=’/tmp/fltdata.dat’
BL_USE_PIPE=NO
BL_DELETE_DATAFILE=NO)

data=sasflt.flt98;
run;

Naming Conventions for Greenplum
For general information about this feature, see Chapter 2, “SAS Names and Support

for DBMS Names,” on page 11.
Since SAS 7, most SAS names can be up to 32 characters long. SAS/ACCESS

Interface to Greenplum supports table names and column names that contain up to 32
characters. If DBMS column names are longer than 32 characters, they are truncated
to 32 characters. If truncating a column name results in identical names, SAS
generates a unique name by replacing the last character with a number. DBMS table
names must be 32 characters or less because SAS does not truncate a longer name. If
you already have a table name that is greater than 32 characters, it is recommended
that you create a table view.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options determine
how SAS/ACCESS Interface to Greenplum handles case sensitivity. (For information
about these options, see “Overview of the LIBNAME Statement for Relational
Databases” on page 87.) Greenplum is not case sensitive, so all names default to
lowercase.

Greenplum objects include tables, views, and columns. They follow these naming
conventions.

548 Data Types for Greenplum � Chapter 17

� A name can contain as many as 128 characters.

� The first character in a name can be a letter or @, _, or #.

� A name cannot be a Greenplum reserved word, such as WHERE or VIEW.

� A name must be unique within each type of each object.

For more information, see the Greenplum Database Administrator Guide.

Data Types for Greenplum

Overview
Every column in a table has a name and a data type. The data type tells Greenplum

how much physical storage to set aside for the column and the form in which the data
is stored. This section includes information about Greenplum data types, null and
default values, and data conversions.

For more information about Greenplum data types and to determine which data
types are available for your version of Greenplum, see the Greenplum Database
Administrator Guide.

SAS/ACCESS Interface to Greenplum does not directly support any data types that
are not listed below. Any columns using these types are read into SAS as character
strings.

String Data
CHAR(n)

specifies a fixed-length column for character string data. The maximum length is
32,767 characters. If the length is greater than 254, the column is a long-string
column. SQL imposes some restrictions on referencing long-string columns. For
more information about these restrictions, see the Greenplum Database
Administrator Guide.

VARCHAR(n)
specifies a varying-length column for character string data. The maximum length
is 32,767 characters. If the length is greater than 254, the column is a long-string
column. SQL imposes some restrictions on referencing long-string columns. For
more information about these restrictions, see the Greenplum Database
Administrator Guide.

LONG VARCHAR(n)
specifies a varying-length column for character string data. The maximum size is
limited by the maximum size of the database file. To determine the maximum size
of your database, see the Greenplum Database Administrator Guide.

Numeric Data
BIGINT

specifies a big integer. Values in a column of this type can range from
–9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 .

SAS/ACCESS Interface to Greenplum � Date, Time, and Timestamp Data 549

SMALLINT
specifies a small integer. Values in a column of this type can range from –32768 to
+32767.

INTEGER
specifies a large integer. Values in a column of this type can range from
–2147483648 to +2147483647.

TINYINT
specifies a tiny integer. Values in a column of this type can range from 0 through
255.

BIT
specifies a Boolean type. Values in a column of this type can be either 0 or 1.
Inserting any nonzero value into a BIT column stores a 1 in the column.

DOUBLE | DOUBLE PRECISION
specifies a floating-point number that is 64 bits long. Values in a column of this
type can range from -1.79769E+308 to –2.225E-307 or +2.225E-307 to
+1.79769E+308, or they can be 0. This data type is stored the same way that SAS
stores its numeric data type. Therefore, numeric columns of this type require the
least processing when SAS accesses them.

REAL
specifies a floating-point number that is 32 bits long. Values in a column of this
type can range from approximately -3.4E38 to –1.17E-38 and +1.17E-38 to
+3.4E38.

FLOAT
specifies a floating-point number. If you do not supply the precision, the FLOAT
data type is the same as the REAL data type. If you supply the precision, the
FLOAT data type is the same as the REAL or DOUBLE data type, depending on
the value of the precision. The cutoff between REAL and DOUBLE is
platform-dependent. It is the number of bits that are used in the mantissa of the
single-precision floating-point number on the platform.

DECIMAL | DEC | NUMERIC
specifies a fixed-point decimal number. The precision and scale of the number
determines the position of the decimal point. The numbers to the right of the
decimal point are the scale, and the scale cannot be negative or greater than the
precision. The maximum precision is 126 digits.

Date, Time, and Timestamp Data
SQL date and time data types are collectively called datetime values. The SQL data

types for dates, times, and timestamps are listed here. Be aware that columns of these
data types can contain data values that are out of range for SAS.

CAUTION:
The following data types can contain data values that are out of range for SAS. �

DATE
specifies date values. The range is 01-01-0001 to 12-31-9999. The default format
YYYY-MM-DD. For example, 1961-06-13.

TIME
specifies time values in hours, minutes, and seconds to six decimal positions:
hh:mm:ss[.nnnnnn]. The range is 00:00:00.000000 to 23:59:59.999999. Due to the
ODBC-style interface that SAS/ACCESS Interface to Greenplum uses to

550 Greenplum Null Values � Chapter 17

communicate with the server, fractional seconds are lost in the data transfer from
server to client.

TIMESTAMP
combines a date and time in the default format of yyyy-mm-dd hh:mm:ss[.nnnnnn].
For example, a timestamp for precisely 2:25 p.m. on January 25, 1991, would be
1991-01-25-14.25.00.000000. Values in a column of this type have the same ranges
and limitations as described for DATE and TIME.

Greenplum Null Values
Greenplum has a special value called NULL. A Greenplum NULL value means an

absence of information and is analogous to a SAS missing value. When SAS/ACCESS
reads a Greenplum NULL value, it interprets it as a SAS missing value. When loading
SAS tables from Greenplum sources, SAS/ACCESS stores Greenplum NULL values as
SAS missing values.

In Greenplum tables, NULL values are valid in all columns by default. There are
two methods to define a column in a Greenplum table so that it requires data:

� Using SQL, you specify a column as NOT NULL. This tells SQL to allow only a
row to be added to a table if a value exists for the field. Rows that contain NULL
values in that column are not added to the table.

� Another approach is to assert NOT NULL DEFAULT. For more information, see
the Greenplum Database Administrator Guide.

When creating Greenplum tables with SAS/ACCESS, you can use the DBNULL=
data set option to specify the treatment of NULL values. For more information about
how SAS handles NULL values, see “DBNULL= Data Set Option” on page 310.

Knowing whether Greenplum column enables NULLs or whether the host system
supplies a value for an undefined column as NOT NULL DEFAULT can help you write
selection criteria and enter values to update a table. Unless a column is defined as
NOT NULL or NOT NULL DEFAULT, it enables NULL values.

To control how SAS missing character values are handled by the DBMS, use the
NULLCHAR= and NULLCHARVAL=data set options.

SAS/ACCESS Interface to Greenplum � LIBNAME Statement Data Conversions 551

LIBNAME Statement Data Conversions
The following table shows the default formats that SAS/ACCESS Interface to

Greenplum assigns to SAS variables when using the . See “Overview of the LIBNAME
Statement for Relational Databases” on page 87.

These default formats are based on Greenplum column attributes.

Table 17.3 LIBNAME Statement: Default SAS Formats for Greenplum Data Types

Greenplum Data Type SAS Data Type Default SAS Format

CHAR(n)* character $n.

VARCHAR(n)* character $n.

INTEGER numeric 11.

SMALLINT numeric 6.

TINYINT numeric 4.

BIT numeric 1.

BIGINT numeric 20.

DECIMAL(p,s) numeric m.n

NUMERIC(p,s) numeric m.n

REAL numeric none

DOUBLE numeric none

TIME numeric TIME8.

DATE numeric DATE9.

TIMESTAMP numeric DATETIME25.6

* n in Greenplum data types is equivalent to w in SAS formats.

The next table shows the default Greenplum data types that SAS/ACCESS assigns to
SAS variable formats during output operations when you use the LIBNAME statement.

Table 17.4 LIBNAME Statement: Default Greenplum Data Types for SAS Variable
Formats

SAS Variable Format Greenplum Data Type

m.n DECIMAL(p,s)

other numerics DOUBLE

$n. VARCHAR(n)*

datetime formats TIMESTAMP

date formats DATE

time formats TIME

* n in Greenplum data types is equivalent to w in SAS formats.

552

553

C H A P T E R

18
SAS/ACCESS Interface to HP
Neoview

Introduction to SAS/ACCESS Interface to HP Neoview 554
LIBNAME Statement Specifics for HP Neoview 554

Overview 554

Arguments 554

HP Neoview LIBNAME Statement Examples 557

Data Set Options for HP Neoview 557
SQL Pass-Through Facility Specifics for HP Neoview 559

Key Information 559

CONNECT Statement Example 559

Special Catalog Queries 560

Autopartitioning Scheme for HP Neoview 561

Overview 561
Autopartitioning Restrictions 561

Nullable Columns 561

Using WHERE Clauses 561

Using DBSLICEPARM= 561

Using DBSLICE= 561
Temporary Table Support for HP Neoview 562

General Information 562

Establishing a Temporary Table 562

Terminating a Temporary Table 563

Examples 563
Passing SAS Functions to HP Neoview 564

Passing Joins to HP Neoview 565

Bulk Loading and Extracting for HP Neoview 565

Loading 565

Overview 565

Examples 566
Extracting 567

Overview 567

Examples 567

Naming Conventions for HP Neoview 568

Data Types for HP Neoview 568
Overview 568

String Data 569

Numeric Data 569

Date, Time, and Timestamp Data 570

HP Neoview Null Values 570
LIBNAME Statement Data Conversions 571

554 Introduction to SAS/ACCESS Interface to HP Neoview � Chapter 18

Introduction to SAS/ACCESS Interface to HP Neoview
This section describes SAS/ACCESS Interface to HP Neoview. For a list of

SAS/ACCESS features that are available in this interface, see “SAS/ACCESS Interface
to HP Neoview: Supported Features” on page 78.

LIBNAME Statement Specifics for HP Neoview

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to HP

Neoview supports and includes examples. For details about this feature, see “Overview
of the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing HP Neoview.

LIBNAME libref neoview <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

neoview
specifies the SAS/ACCESS engine name for the HP Neoview interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. When you use the LIBNAME
statement on UNIX or Microsoft Windows, you can connect to HP Neoview
Database Connectivity Service (NDCS) by connecting a client to a data source.
Specify only one of the following methods for each connection because each is
mutually exclusive.

� SERVER=, SCHEMA=, PORT=, USER=, PASSWORD=
� DSN=, USER=, PORT=

SAS/ACCESS Interface to HP Neoview � Arguments 555

Here is how these options are defined.

SERVER=<’>server-name<’>
specifies the server name or IP address of the HP Neoview server to which
you want to connect. This server accesses the database that contains the
tables and views that you want to access. If the server name contains spaces
or nonalphanumeric characters, you must enclose it in quotation marks.

SCHEMA=<’>schema-name<’>
specifies the name of a schema. When you use it with SERVER= or PORT=,
it is passed directly as a connection option to the database. When you use it
with DSN=, it qualifies SQL statements as a LIBNAME option. You can also
use it as a data set option.

PORT=port
specifies the port number that is used to connect to the specified HP Neoview
server. If you do not specify a port, the default is 18650.

USER=<’>Neoview-user-name<’>
specifies the HP Neoview user name (also called the user ID) that you use to
connect to your database. If the user name contains spaces or
nonalphanumeric characters, you must enclose it in quotation marks.

PASSWORD=<’>Neoview-password<’>
specifies the password that is associated with your HP Neoview user name. If
the password contains spaces or nonalphanumeric characters, you must
enclose it in quotation marks. You can also specify PASSWORD= with the
PWD=, PASS=, and PW= aliases.

DSN=<’>Neoview-data-source<’>
specifies the configured HP Neoview ODBC data source to which you want to
connect. Use this option if you have existing HP Neoview ODBC data sources
that are configured on your client. This method requires additional
setup—either through the ODBC Administrator control panel on Windows
platforms or through the MXODSN file or a similarly named configuration
file on UNIX platforms. So it is recommended that you use this connection
method only if you have existing, functioning data sources that have been
defined.

LIBNAME-options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to HP Neoview,
with the applicable default values. For more detail about these options, see
“LIBNAME Statement Syntax for Relational Databases” on page 89.

556 Arguments � Chapter 18

Table 18.1 SAS/ACCESS LIBNAME Options for HP Neoview

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTOCOMMIT= operation-specific

BL_NUM_ROW_SEPS= 1

BULKEXTRACT= NO

CONNECTION= UNIQUE

CONNECTION_GROUP= none

CONNECTION_TIMEOUT= 0

DBCOMMIT= 1000 (inserting) or 0 (updating)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= YES

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

DBMSTEMP= NO

DBNULLKEYS= YES

DBPROMPT= NO

DBSLICEPARM= THREADED_APPS,3

DEFER= NO

DELETE_MULT_ROWS=

DIRECT_EXE= none

DIRECT_SQL= YES

IGNORE_
READ_ONLY_COLUMNS=

NO

INSERTBUFF= automatically calculated based on row length

MULTI_DATASRC_OPT= none

PRESERVE_COL_NAMES= see “Naming Conventions for HP Neoview” on page 568

PRESERVE_TAB_NAMES= see “Naming Conventions for HP Neoview” on page 568

QUALIFIER= none

QUERY_TIMEOUT= 0

QUOTE_CHAR= none

READBUFF= automatically calculated based on row length

REREAD_EXPOSURE= NO

SAS/ACCESS Interface to HP Neoview � Data Set Options for HP Neoview 557

Option Default Value

SCHEMA= none

SPOOL= YES

SQL_FUNCTIONS= none

SQL_FUNCTIONS_COPY= none

STRINGDATES= NO

TRACE= NO

TRACEFILE= none

UPDATE_MULT_ROWS=

UTILCONN_TRANSIENT= NO

HP Neoview LIBNAME Statement Examples
In this example, SERVER=, DATABASE=, USER=, and PASSWORD= are connection

options.

libname mydblib neoview server=ndcs1 schema=USR user=neo1 password=neopwd1;

In the next example, DSN=, USER=, and PASSWORD= are connection options.

libname mydblib neoview DSN=TDM_Default_DataSource user=neo1 password=neopwd1;

Data Set Options for HP Neoview
All SAS/ACCESS data set options in this table are supported for HP Neoview.

Default values are provided where applicable. For general information about this
feature, see “Overview” on page 207.

Table 18.2 SAS/ACCESS Data Set Options for HP Neoview

Option Default Value

BL_BADDATA_FILE=
When BL_USE_PIPE=NO, creates a file in the
current directory or with the default file
specifications.

BL_DATAFILE=
When BL_USE_PIPE=NO, creates a file in the
current directory or with the default file
specifications.

BL_DELETE_DATAFILE= YES (only when BL_USE_PIPE=NO)

BL_DELIMITER= | (the pipe symbol)

BL_DISCARDS= 1000

BL_ERRORS= 1000

BL_FAILEDDATA=
creates a data file in the current directory or
with the default file specifications

BL_HOSTNAME= none

BL_NUM_ROW_SEPS= 1

558 Data Set Options for HP Neoview � Chapter 18

Option Default Value

BL_PORT= none

BL_RETRIES= 3

BL_ROWSETSIZE= none

BL_STREAMS= 4 for extracts, no default for loads

BL_SYNCHRONOUS= YES

BL_SYSTEM= none

BL_TENACITY= 15

BL_TRIGGER= YES

BL_TRUNCATE= NO

BL_USE_PIPE= YES

BULKEXTRACT= LIBNAME option setting

BULKLOAD= NO

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= YES

DBNULLKEYS= LIBNAME option setting

DBPROMPT= LIBNAME option setting

DBSASLABEL= COMPAT

DBSASTYPE= see “Data Types for HP Neoview” on page 568

DBSLICE= none

DBSLICEPARM= THREADED_APPS,3

DBTYPE= see “Data Types for HP Neoview” on page 568

ERRLIMIT= 1

IGNORE_ READ_ONLY_COLUMNS= NO

INSERTBUFF= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

QUALIFIER= LIBNAME option setting

SAS/ACCESS Interface to HP Neoview � CONNECT Statement Example 559

Option Default Value

QUERY_TIMEOUT= LIBNAME option setting

READBUFF= LIBNAME option setting

SASDATEFMT= none

SCHEMA= LIBNAME option setting

SQL Pass-Through Facility Specifics for HP Neoview

Key Information
For general information about this feature, see “About SQL Procedure Interactions”

on page 425.
Here are the SQL pass-through facility specifics for the HP Neoview interface.
� The dbms-name is NEOVIEW.
� The CONNECT statement is required.
� PROC SQL supports multiple connections to HP Neoview. If you use multiple

simultaneous connections, you must use the alias argument to identify the
different connections. If you do not specify an alias, the default neoview alias is
used.

� The CONNECT statement database-connection-arguments are identical to its
LIBNAME connection-options.

� You can use the SCHEMA= option only with the SERVER= and PORT= connection
options. It is not valid with DSN= in a pass-through connection.

CONNECT Statement Example
This example, uses the DBCON alias to connection to the ndcs1 HP Neoview server

and execute a query. The connection alias is optional.

proc sql;
connect to neoview as dbcon
(server=ndcs1 schema=TEST user=neo1 password=neopwd1);

select * from connection to dbcon
(select * from customers where customer like ’1%’);

quit;

560 Special Catalog Queries � Chapter 18

Special Catalog Queries
SAS/ACCESS Interface to HP Neoview supports the following special queries. You

can use the queries to call the ODBC-style catalog function application programming
interfaces (APIs). Here is the general format of the special queries:

Neoview::SQLAPI “parameter 1”,”parameter n”

Neoview::
is required to distinguish special queries from regular queries.

SQLAPI
is the specific API that is being called. Neither Neoview:: nor SQLAPI are case
sensitive.

"parameter n"
is a quoted string that is delimited by commas.

Within the quoted string, two characters are universally recognized: the percent sign
(%) and the underscore (_). The percent sign matches any sequence of zero or more
characters, and the underscore represents any single character. To use either character
as a literal value, you can use the backslash character (\) to escape the match
characters. For example, this call to SQLTables usually matches table names such as
myatest and my_test:

select * from connection to neoview (NEOVIEW::SQLTables ","my_test");

Use the escape character to search only for the my_test table:

select * from connection to neoview (NEOVIEW::SQLTables ","my_test");

SAS/ACCESS Interface to HP Neoview supports these special queries:

Neoview::SQLTables <"Catalog", "Schema", "Table-name", "Type">
returns a list of all tables that match the specified arguments. If you do not
specify any arguments, all accessible table names and information are returned.

Neoview::SQLColumns <"Catalog", "Schema", "Table-name", "Column-name">
returns a list of all columns that match the specified arguments. If you do not
specify any argument, all accessible column names and information are returned.

Neoview::SQLPrimaryKeys <"Catalog", "Schema", "Table-name">
returns a list of all columns that compose the primary key that matches the
specified table. A primary key can be composed of one or more columns. If you do
not specify any table name, this special query fails.

Neoview::SQLSpecialColumns <"Identifier-type", "Catalog-name", "Schema-name",
"Table-name", "Scope", "Nullable">

returns a list of the optimal set of columns that uniquely identify a row in the
specified table.

Neoview::SQLStatistics <"Catalog", "Schema", "Table-name">
returns a list of the statistics for the specified table name, with options of
SQL_INDEX_ALL and SQL_ENSURE set in the SQLStatistics API call. If you do
not specify any table name argument, this special query fails.

Neoview::SQLGetTypeInfo
returns information about the data types that the HP Neoview server supports.

SAS/ACCESS Interface to HP Neoview � Using DBSLICE= 561

Autopartitioning Scheme for HP Neoview

Overview
Autopartitioning for SAS/ACCESS Interface to HP Neoview is a modulo (MOD)

function method. For general information about this feature, see “Autopartitioning
Techniques in SAS/ACCESS” on page 57.

Autopartitioning Restrictions
SAS/ACCESS Interface to HP Neoview places additional restrictions on the columns

that you can use for the partitioning column during the autopartitioning phase. Here is
how columns are partitioned.

� BIGINT, INTEGER, SMALLINT, and SMALLINT columns are given preference.
� You can use DECIMAL, DOUBLE, FLOAT, NUMERIC, or REAL columns for

partitioning if the precision minus the scale of the column is greater than 0 but
less than 19; that is, 0<(precision-scale)<19.

Nullable Columns
If you select a nullable column for autopartitioning, the OR<column-name>IS NULL

SQL statement is appended at the end of the SQL code that is generated for the
threaded read. This ensures that any possible NULL values are returned in the result
set.

Using WHERE Clauses
Autopartitioning does not select a column to be the partitioning column if it appears

in a SAS WHERE clause. For example, this DATA step cannot use a threaded read to
retrieve the data because all numeric columns in the table are in the WHERE clause:

data work.locemp;
set neolib.MYEMPS;
where EMPNUM<=30 and ISTENURE=0 and

SALARY<=35000 and NUMCLASS>2;
run;

Using DBSLICEPARM=
Although SAS/ACCESS Interface to HP Neoview defaults to three threads when you

use autopartitioning, do not specify a maximum number of threads for the threaded
read in the “DBSLICEPARM= LIBNAME Option” on page 137.

Using DBSLICE=
You might achieve the best possible performance when using threaded reads by

specifying the “DBSLICE= Data Set Option” on page 316 for HP Neoview in your SAS

562 Temporary Table Support for HP Neoview � Chapter 18

operation. This is especially true if you defined an index on one column in the table.
SAS/ACCESS Interface to HP Neoview selects only the first integer-type column in the
table. This column might not be the same column that is being used as the partitioning
key. If so, you can specify the partition column using DBSLICE=, as shown in this
example.

proc print data=neolib.MYEMPS(DBSLICE=("EMPNUM BETWEEN 1 AND 33"
"EMPNUM BETWEEN 34 AND 66" "EMPNUM BETWEEN 67 AND 100"));
run;

Using DBSLICE= also gives you flexibility in column selection. For example, if you
know that the STATE column in your employee table contains only a few distinct
values, you can customize your DBSLICE= clause accordingly.

datawork.locemp;
set neolib2.MYEMP(DBSLICE=("STATE=’FL’" "STATE=’GA’"

"STATE=’SC’" "STATE=’VA’" "STATE=’NC’"));
where EMPNUM<=30 and ISTENURE=0 and SALARY<=35000 and NUMCLASS>2;
run;

Temporary Table Support for HP Neoview

General Information
See the section on the temporary table support in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.

Establishing a Temporary Table
To make full use of temporary tables, the CONNECTION=GLOBAL connection

option is necessary. This option lets you use a single connection across SAS DATA steps
and SAS procedure boundaries. This connection can also be shared between LIBNAME
statements and the SQL pass-through facility. Because a temporary table exists only
within a single connection, you need to be able to share this single connection among all
steps that reference the temporary table. The temporary table cannot be referenced
from any other connection.

You can currently use only a PROC SQL statement to create a temporary table. To
use both the SQL pass-through facility and librefs to reference a temporary table, you
must specify a LIBNAME statement before the PROC SQL step so that global
connection persists across SAS steps and even across multiple PROC SQL steps. Here
is an example:

proc sql;
connect to neoview (dsn=NDCS1_DataSource

user=myuser password=mypwd connection=global);
execute (create volatile table temptab1 as select * from permtable) by neoview;

quit;

At this point, you can refer to the temporary table by using either the Temp libref or
the CONNECTION=GLOBAL option with a PROC SQL step.

SAS/ACCESS Interface to HP Neoview � Examples 563

Terminating a Temporary Table
You can drop a temporary table at any time or allow it to be implicitly dropped when

the connection is terminated. Temporary tables do not persist beyond the scope of a
single connection.

Examples
The following assumptions apply to the examples in this section:

� The DeptInfo table already exists on the DBMS that contains all your department
information.

� One SAS data set contains join criteria that you want to use to extract specific
rows from the DeptInfo table.

� The other SAS data set contains updates to the DeptInfo table.

These examples use the following librefs and temporary tables.

libname saslib base ’SAS-Data-Library’;
libname dept neoview dsn=Users_DataSource user=myuser pwd=mypwd connection=global;

proc sql;
connect to neoview (dsn=Users_DataSource user=myuser pwd=mypwd connection=global);
execute (create volatile table temptab1 (dname char(20), deptno int)) by neoview;

quit;

This first example shows how to use a heterogeneous join with a temporary table to
perform a homogeneous join on the DBMS instead of reading the DBMS table into SAS
to perform the join. By using the table that was created previously, you can copy SAS
data into the temporary table to perform the join.

proc sql;
connect to neoview (dsn=Users_DataSource user=myuser pwd=mypwd connection=global);
insert into dept.temptab1 select * from saslib.joindata;
select * from dept.deptinfo info, dept.temptab1 tab

where info.deptno = tab.deptno;
/* remove the rows for the next example */
execute (delete from temptab1) by neoview;
quit;

In this next example, transaction processing on the DBMS occurs by using a
temporary table instead of using either DBKEY= or
MULTI_DATASRC_OPT=IN_CLAUSE with a SAS data set as the transaction table.

proc sql;
connect to neoview (dsn=Users_DataSource user=myuser pwd=mypwd connection=global);

insert into dept.temptab1 select * from saslib.transdat;
execute (update deptinfo d set dname = (select dname from temptab1)

where d.deptno = (select deptno from temptab1)) by neoview;
quit;

564 Passing SAS Functions to HP Neoview � Chapter 18

Passing SAS Functions to HP Neoview
SAS/ACCESS Interface to HP Neoview passes the following SAS functions to HP

Neoview for processing. Where the HP Neoview function name differs from the SAS
function name, the HP Neoview name appears in parentheses. For more information,
see “Passing Functions to the DBMS Using PROC SQL” on page 42.

ABS
ARCOS (ACOS)
ARSIN (ASIN)
ATAN
ATAN2
AVG
BYTE (CHAR)
CEIL(CEILING)
COALESCE
COMPRESS (REPLACE)
COS
COSH
COUNT
DAY
EXP
FLOOR
HOUR
INDEX (LOCATE)
LEFT (LTRIM)
LOG
LOG10
LOWCASE (LOWER)
MAX
MIN
MINUTE
MOD
MONTH
REPEAT
QTR
SECOND
SIGN
SIN
SINH
SQRT
STRIP (TRIM)
SUBSTR
SUM
TAN

SAS/ACCESS Interface to HP Neoview � Loading 565

TANH
TRANWRD (REPLACE)
TRIMN (RTRIM)
UPCASE (UPPER)
YEAR

SQL_FUNCTIONS= ALL allows for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to HP Neoview. Due to incompatibility in date and time functions
between HP Neoview and SAS, HP Neoview might not process them correctly. Check
your results to determine whether these functions are working as expected.

DATE (CURRENT_DATE)
DATEPART (CAST)
DATETIME (CURRENT_DATE)
LENGTH
ROUND
TIME (CURRENT_TIMESTAMP)
TIMEPART (CAST)
TODAY (CURRENT_DATE)

Passing Joins to HP Neoview
For a multiple libref join to pass to HP Neoview, all of these components of the

LIBNAME statements must match exactly:
� user ID (USER=)
� password (PASSWORD=)
� server (SERVER=)
� port (PORT=)
� data source (DSN=, if specified)
� SQL functions (SQL_FUNCTIONS=)

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

Bulk Loading and Extracting for HP Neoview

Loading

Overview
Bulk loading is the fastest way to insert large numbers of rows into an HP Neoview

table. To use the bulk-load facility, specify BULKLOAD=YES. The bulk-load facility

566 Loading � Chapter 18

uses the HP Neoview Transporter with an HP Neoview control file to move data from
the client to HP Neoview.

Here are the HP Neoview bulk-load data set options. For detailed information about
these options, see Chapter 11, “Data Set Options for Relational Databases,” on page 203.

� BL_BADDATA_FILE=
� BL_DATAFILE=
� BL_DELETE_DATAFILE=
� BL_DELIMITER=
� BL_DISCARDS=
� BL_ERRORS=
� BL_FAILEDDATA=
� BL_HOSTNAME=
� BL_NUM_ROW_SEPS=
� BL_PORT=
� BL_RETRIES=
� BL_ROWSETSIZE=
� BL_SYNCHRONOUS=
� BL_TENACITY=
� BL_TRIGGER=
� BL_TRUNCATE=
� BL_USE_PIPE=
� BULKLOAD=

Examples
This first example shows how you can use a SAS data set, SASFLT.FLT98, to create

and load a large HP Neoview table, FLIGHTS98:

libname sasflt ’SAS-data-library’;
libname net_air neoview DSN=air2 user=louis

pwd=fromage schema=FLIGHTS;

proc sql;
create table net_air.flights98

(bulkload=YES bl_system=FLT0101)
as select * from sasflt.flt98;

quit;

This next example shows how you can append the SAS data set, SASFLT.FLT98, to
the existing HP Neoview table, ALLFLIGHTS. The BL_USE_PIPE=NO option forces
SAS/ACCESS Interface to HP Neoview to write data to a flat file, as specified in the
BL_DATAFILE= option. Rather than deleting the data file,
BL_DELETE_DATAFILE=NO causes the engine to leave it after the load has completed.

proc append base=net_air.allflights
(BULKLOAD=YES
BL_DATAFILE=’/tmp/fltdata.dat’
BL_USE_PIPE=NO
BL_DELETE_DATAFILE=NO)
BL_SYSTEM=FLT0101

data=sasflt.flt98;
run;

SAS/ACCESS Interface to HP Neoview � Extracting 567

Extracting

Overview

Bulk extracting is the fastest way to retrieve large numbers of rows from an HP
Neoview table. To use the bulk-extract facility, specify BULKEXTRACT=YES. The bulk
extract facility uses the HP Neoview Transporter with an HP Neoview control file to
move data from the client to HP Neoview into SAS.

Here are the HP Neoview bulk-extract data set options:

BL_BADDATA_FILE=

BL_DATAFILE=

BL_DELETE_DATAFILE=

BL_DELIMITER=

BL_FAILEDDATA=

BL_SYSTEM=

BL_TRUNCATE=

BL_USE_PIPE=

BULKEXTRACT=

Examples

This first example shows how you can read the large HP Neoview table, FLIGHTS98,
to create and populate a SAS data set, SASFLT.FLT98:

libname sasflt ’SAS-data-library’;
libname net_air neoview DSN=air2 user=louis

pwd=fromage schema=FLIGHTS;

proc sql;
create table sasflt.flt98

as select * from net_air.flights98
(bulkextract=YES bl_system=FLT0101);

quit;

This next example shows how you can append the contents of the HP Neoview table,
ALLFLIGHTS, to an existing SAS data set, SASFLT.FLT98. The BL_USE_PIPE=NO
option forces SAS/ACCESS Interface to HP Neoview to read data from a flat file, as
specified in the BL_DATAFILE= option. Rather than deleting the data file,
BL_DELETE_DATAFILE=NO causes the engine to leave it after the extract has
completed.

proc append base=sasflt.flt98
data=net_air.allflights
(BULKEXTRACT=YES
BL_DATAFILE=’/tmp/fltdata.dat’
BL_USE_PIPE=NO
BL_DELETE_DATAFILE=NO);

BL_SYSTEM=FLT0101
run;

568 Naming Conventions for HP Neoview � Chapter 18

Naming Conventions for HP Neoview

For general information about this feature, see Chapter 2, “SAS Names and Support
for DBMS Names,” on page 11.

Since SAS 7, most SAS names can be up to 32 characters long. SAS/ACCESS
Interface to HP Neoview supports table names and column names that contain up to 32
characters. If DBMS column names are longer than 32 characters, they are truncated
to 32 characters. If truncating a column name would result in identical names, SAS
generates a unique name by replacing the last character with a number. DBMS table
names must be 32 characters or less because SAS does not truncate a longer name. If
you already have a table name that is greater than 32 characters, it is recommended
that you create a table view.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options determine
how SAS/ACCESS Interface to HP Neoview handles case sensitivity. (For information
about these options, see “Overview of the LIBNAME Statement for Relational
Databases” on page 87.) HP Neoview is not case sensitive by default, and all names
default to uppercase.

HP Neoview objects include tables, views, and columns. Follow these naming
conventions:

� A name must be from 1 to 128 characters long.

� A name must begin with a letter (A through Z, or a through z). However if the
name appears within double quotation marks, it can start with any character.

� A name cannot begin with an underscore (_). Leading underscores are reserved for
system objects.

� Names are not case sensitive. For example, CUSTOMER and Customer are the same,
but object names are converted to uppercase when they are stored in the HP
Neoview database. However, if you enclose a name in quotation marks, it is case
sensitive.

� A name cannot be an HP Neoview reserved word, such as WHERE or VIEW.

� A name cannot be the same as another HP Neoview object that has the same type.

For more information, see your HP Neoview SQL Reference Manual.

Data Types for HP Neoview

Overview
Every column in a table has a name and a data type. The data type tells HP

Neoview how much physical storage to set aside for the column and the form in which
the data is stored. This section includes information about HP Neoview data types, null
and default values, and data conversions.

For more information about HP Neoview data types and to determine which data
types are available for your version of HP Neoview, see your HP Neoview SQL Reference
Manual.

SAS/ACCESS Interface to HP Neoview does not directly support HP Neoview
INTERVAL types. Any columns using these types are read into SAS as character
strings.

SAS/ACCESS Interface to HP Neoview � Numeric Data 569

String Data

CHAR(n)
specifies a fixed-length column for character string data. The maximum length is
32,708 characters.

VARCHAR(n)
specifies a varying-length column for character string data. The maximum length
is 32,708 characters.

Numeric Data

LARGEINT
specifies a big integer. Values in a column of this type can range from
–9223372036854775808 to +9223372036854775807.

SMALLINT
specifies a small integer. Values in a column of this type can range from –32768
through +32767.

INTEGER
specifies a large integer. Values in a column of this type can range from
–2147483648 through +2147483647.

DOUBLE
specifies a floating-point number that is 64 bits long. Values in a column of this
type can range from –1.79769E+308 to –2.225E-307 or +2.225E-307 to
+1.79769E+308, or they can be 0. This data type is stored the same way that SAS
stores its numeric data type. Therefore, numeric columns of this type require the
least processing when SAS accesses them.

FLOAT
specifies an approximate numeric column. The column stores floating-point
numbers and designates from 1 through 52 bits of precision. Values in a column of
this type can range from +/–2.2250738585072014e-308 to
+/–1.7976931348623157e+308 stored in 8 bytes.

REAL
specifies a floating-point number that is 32 bits long. Values in a column of this
type can range from approximately –3.4E38 to –1.17E-38 and +1.17E-38 to
+3.4E38.

DECIMAL | DEC | NUMERIC
specifies a fixed-point decimal number. The precision and scale of the number
determines the position of the decimal point. The numbers to the right of the
decimal point are the scale, and the scale cannot be negative or greater than the
precision. The maximum precision is 38 digits.

570 Date, Time, and Timestamp Data � Chapter 18

Date, Time, and Timestamp Data
SQL date and time data types are collectively called datetime values. The SQL data

types for dates, times, and timestamps are listed here. Be aware that columns of these
data types can contain data values that are out of range for SAS.

DATE
specifies date values. The range is 01-01-0001 to 12-31-9999. The default format
YYYY-MM-DD—for example, 1961–06–13. HP Neoview supports many other
formats for entering date data. For more information, see your HP Neoview SQL
Reference Manual.

TIME
specifies time values in hours, minutes, and seconds to six decimal positions:
hh:mm:ss[.nnnnnn]. The range is 00:00:00.000000 to 23:59:59.999999. However,
due to the ODBC-style interface that SAS/ACCESS Interface to HP Neoview uses
to communicate with the HP Neoview server, any fractional seconds are lost in the
transfer of data from server to client.

TIMESTAMP
combines a date and time in the default format of yyyy-mm-dd hh:mm:ss[.nnnnnn].
For example, a timestamp for precisely 2:25 p.m. on January 25, 1991, would be
1991-01-25-14.25.00.000000. Values in a column of this type have the same ranges
as described for DATE and TIME.

HP Neoview Null Values
HP Neoview has a special value called NULL. An HP Neoview NULL value means an

absence of information and is analogous to a SAS missing value. When SAS/ACCESS
reads an HP Neoview NULL value, it interprets it as a SAS missing value.

You can define a column in an HP Neoview table so that it requires data. To do this
in SQL, you specify a column as NOT NULL, which tells SQL to allow only a row to be
added to a table if a value exists for the field. For example, NOT NULL assigned to the
CUSTOMER field in the SASDEMO.CUSTOMER table does not allow a row to be
added unless there is a value for CUSTOMER. When creating an HP Neoview table
with SAS/ACCESS, you can use the DBNULL= data set option to indicate whether
NULL is a valid value for specified columns.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” in SAS/ACCESS for Relational Databases:
Reference.

To control how SAS missing character values are handled by the DBMS, use the
NULLCHAR= and NULLCHARVAL= data set options.

SAS/ACCESS Interface to HP Neoview � LIBNAME Statement Data Conversions 571

LIBNAME Statement Data Conversions
This table shows the default formats that SAS/ACCESS Interface to HP Neoview

assigns to SAS variables when using the LIBNAME statement to read from an HP
Neoview table. These default formats are based on HP Neoview column attributes.

Table 18.3 LIBNAME Statement: Default SAS Formats for HP Neoview Data Types

HP Neoview Data Type SAS Data Type Default SAS Format

CHAR(n) character $n.

VARCHAR(n) character $n.

LONGVARCHAR(n) character $n.

DECIMAL(p,s) numeric m.n

NUMERIC(p,s) numeric p,s

SMALLINT numeric 6.

INTEGER numeric 11.

REAL numeric none

FLOAT(p) numeric p

DOUBLE numeric none

LARGEINT numeric 20.

DATE numeric DATE9.

TIME numeric TIME8.

TIMESTAMP numeric DATETIME25.6

The following table shows the default HP Neoview data types that SAS/ACCESS
assigns to SAS variable formats during output operations when you use the LIBNAME
statement.

Table 18.4 LIBNAME Statement: Default HP Neoview Data Types for SAS Variable
Formats

SAS Variable Format HP Neoview Data Type

m.n DECIMAL (m,n)

other numerics DOUBLE

$n. VARCHAR(n)

datetime formats TIMESTAMP

date formats DATE

time formats TIME

* n in HP Neoview data types is equivalent to w in SAS formats.

572

573

C H A P T E R

19
SAS/ACCESS Interface for
Informix

Introduction to SAS/ACCESS Interface to Informix 574
Overview 574

Default Environment 574

LIBNAME Statement Specifics for Informix 574

Overview 574

Arguments 574
Informix LIBNAME Statement Example 576

Data Set Options for Informix 576

SQL Pass-Through Facility Specifics for Informix 577

Key Information 577

Stored Procedures and the SQL Pass-Through Facility 578

Command Restrictions for the SQL Pass-Through Facility 578
Examples 579

Autopartitioning Scheme for Informix 580

Overview 580

Autopartitioning Restrictions 580

Using WHERE Clauses 581
Using DBSLICEPARM= 581

Using DBSLICE= 581

Temporary Table Support for Informix 581

Overview 581

Establishing a Temporary Table 581
Terminating a Temporary Table 582

Example 582

Passing SAS Functions to Informix 582

Passing Joins to Informix 583

Locking in the Informix Interface 584

Naming Conventions for Informix 585
Data Types for Informix 585

Overview 585

Character Data 585

Numeric Data 586

Date, Time, and Interval Data 586
Informix Null Values 586

LIBNAME Statement Data Conversions 587

SQL Pass-Through Facility Data Conversions 588

Overview of Informix Servers 588

Informix Database Servers 588
Using the DBDATASRC Environment Variables 588

Using Fully Qualified Table Names 589

589

574 Introduction to SAS/ACCESS Interface to Informix � Chapter 19

Introduction to SAS/ACCESS Interface to Informix

Overview
This section describes SAS/ACCESS Interface to Informix. See “SAS/ACCESS

Interface to Informix: Supported Features” on page 78 for a list of SAS/ACCESS
features that are available in this interface. For background information about
Informix, see “Overview of Informix Servers” on page 588.

Default Environment
When you access Informix tables by using SAS/ACCESS Interface to Informix, the

default Informix read isolation level is set for committed reads, and SAS spooling is on.
Committed reads enable you to read rows unless another user or process is updating
the rows. Reading in this manner does not lock the rows. SAS spooling guarantees that
you get identical data each time you re-read a row because SAS buffers the rows after
you read them the first time. This default environment is suitable for most users. If
this default environment is unsuitable for your needs, see “Locking in the Informix
Interface” on page 584.

To see the SQL statements that SAS issues to the Informix server, include the
SASTRACE= option in your code:

option sastrace=’,,,d’;

If you use quotation marks in your Informix SQL statements, set your
DELIMIDENT= environment variable to DELIMIDENT=YES or Informix might reject
your statements. Because some SAS options that preserve case generate SQL
statements that contain quotation marks, you should set DELIMIDENT=YES in your
environment.

LIBNAME Statement Specifics for Informix

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to

Informix supports and includes an example. For details about this feature, see
“Overview of the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing Informix.

LIBNAME libref informix <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

SAS/ACCESS Interface for Informix � Arguments 575

informix
specifies the SAS/ACCESS engine name for the Informix interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. Here is how these options are defined.

USER=<’>Informix-user-name<’>
specifies the Informix user name that you use to connect to the database that
contains the tables and views that you want to access. If you omit the
USER= option, your operating environment account name is used, if
applicable to your operating environment.

USING=<’>Informix-password<’>
specifies the password that is associated with the Informix user. If you omit
the password, Informix uses the password in the /etc/password file.

USING= can also be specified with the PASSWORD= and PWD= aliases.

SERVER=<’>ODBC-data-source<’>
specifies the ODBC data source to which you want to connect. An error
occurs if the SERVER= option is not set. For UNIX platforms, you must
configure the data source by modifying the odbc.ini file. See your ODBC
driver documentation for details.

For the SAS/ACCESS 9 Interface to Informix, the Informix ODBC Driver
API is used to connect to Informix, and connection options have changed
accordingly. The DATABASE= option from the SAS 8 version of SAS/ACCESS
was removed. If you need to specify a database, set it in the odbc.ini file. For
SERVER= options, instead of specifying the server name, as in SAS 8, specify
an ODBC data source name. You can also use a user ID and password with
SERVER=.

DBDATASRC=<’>database-data-source<’>
environment variable that lets you set a default data source. This value is
used if you do not specify a SERVER= connection option.

LIBNAME-options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to Informix, with
the applicable default values. For more detail about these options, see “LIBNAME
Options for Relational Databases” on page 92.

Table 19.1 SAS/ACCESS LIBNAME Options for Informix

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTOCOMMIT= YES

CONNECTION= SHAREDREAD

CONNECTION_GROUP= none

DBCOMMIT= 1000 (insert) or 0 (update)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

576 Informix LIBNAME Statement Example � Chapter 19

Option Default Value

DBGEN_NAME= DBMS

DBINDEX= NO

DBLIBINIT= none

DBLIBTERM= none

DBNULLKEYS= NO

DBPROMPT= NO

DBSASLABEL= COMPAT

DBSLICEPARM= THREADED_APPS,2 or 3

DEFER= NO

none

DIRECT_SQL= YES

LOCKTABLE= no locking

LOCKTIME= none

LOCKWAIT= not set

MULTI_DATASRC_OPT= NONE

PRESERVE_COL_NAMES= NO

PRESERVE_TAB_NAMES= NO

READ_ISOLATION_LEVEL= COMMITTED READ (see “Locking in the Informix
Interface” on page 584)

REREAD_EXPOSURE= NO

SCHEMA= your user name

SPOOL= YES

SQL_FUNCTIONS= none

UTILCONN_TRANSIENT= NO

Informix LIBNAME Statement Example
In this example, the libref MYDBLIB uses the Informix interface to connect to an

Informix database:

libname mydblib informix user=testuser using=testpass server=testdsn;

In this example USER=, USING=, and SERVER= are connection options.

Data Set Options for Informix
All SAS/ACCESS data set options in this table are supported for Informix. Default

values are provided where applicable. For general information about this feature, see
“Overview” on page 207.

SAS/ACCESS Interface for Informix � Key Information 577

Table 19.2 SAS/ACCESS Data Set Options for Informix

Option Default Value

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBNULL= _ALL_=YES

DBNULLKEYS= LIBNAME option setting

DBSASLABEL= COMPAT

DBSASTYPE= see “Data Types for Informix” on page 585

DBSLICE= none

DBSLICEPARM= THREADED_APPS,2 or 3

DBSLICEPARM= see “Data Types for Informix” on page 585

ERRLIMIT= 1

LOCKTABLE= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

SASDATEFMT= DATETIME

SCHEMA= LIBNAME option setting

SQL Pass-Through Facility Specifics for Informix

Key Information

Here are the SQL pass-through facility specifics for the Informix interface.
� The dbms-name is informix.
� The CONNECT statement is optional when you are connecting to an Informix

database if the DBDATASRC environment variable has been set. When you omit a
CONNECT statement, an implicit connection is performed when the first
EXECUTE statement or CONNECTION TO component is passed to the DBMS.

� You can connect to only one Informix database at a time. However, you can specify
multiple CONNECT statements if they all connect to the same Informix database.

578 Stored Procedures and the SQL Pass-Through Facility � Chapter 19

If you use multiple connections, you must use an alias to identify the different
connections. If you omit an alias, informix is automatically used.

� The CONNECT statement database-connection-arguments are identical to its
connection-options.

� If you use quotation marks in your Informix Pass-Through statements, your
DELIMIDENT= environment variable must be set to DELIMIDENT=YES, or your
statements are rejected by Informix.

Stored Procedures and the SQL Pass-Through Facility
The SQL pass-through facility recognizes two types of stored procedures in Informix

that perform only database functions. The methods for executing the two types of
stored procedures are different.

� Procedures that return no values to the calling application:
Stored procedures that do not return values can be executed directly by using

the Informix SQL EXECUTE statement. Stored procedure execution is initiated
with the Informix EXECUTE PROCEDURE statement. The following example
executes the stored procedure make_table. The stored procedure has no input
parameters and returns no values.

execute (execute procedure make_table())
by informix;

� Procedures that return values to the calling application:
Stored procedures that return values must be executed by using the PROC SQL

SELECT statement with a CONNECTION TO component. This example executes
the stored procedure read_address, which has one parameter, "Putnum".

The values that read_address returns serve as the contents of a virtual table
for the PROC SQL SELECT statement.

select * from connection to informix
(execute procedure read_address ("Putnum"));

For example, when you try to execute a stored procedure that returns values
from a PROC SQL EXECUTE statement, you get this error message:

execute (execute procedure read_address
("Putnum")) by informix;

ERROR: Informix EXECUTE Error: Procedure
(read_address) returns too many values.

Command Restrictions for the SQL Pass-Through Facility
Informix SQL contains extensions to the ANSI-89 standards. Some of these

extensions, such as LOAD FROM and UNLOAD TO, are restricted from use by any
applications other than the Informix DB-Access product. Specifying these extensions in
the PROC SQL EXECUTE statement generates this error:

-201
A syntax error has occurred

SAS/ACCESS Interface for Informix � Examples 579

Examples

This example connects to Informix by using data source testdsn:

proc sql;
connect to informix
(user=SCOTT password=TIGER server=testdsn);

You can use the DBDATASRC environment variable to set the default data source.
This next example grants UPDATE and INSERT authority to user gomez on the

Informix ORDERS table. Because the CONNECT statement is omitted, an implicit
connection is made that uses a default value of informix as the connection alias and
default values for the SERVER= argument.

proc sql;
execute (grant update, insert on ORDERS to gomez) by informix;

quit;

This example connects to Informix and drops (removes) the table TempData from the
database. The alias Temp5 that is specified in the CONNECT statement is used in the
EXECUTE statement’s BY clause.

proc sql;
connect to informix as temp5
(server=testdsn);
execute (drop table tempdata) by temp5;
disconnect from temp5;

quit;

This example sends an SQL query, shown with highlighting, to the database for
processing. The results from the SQL query serve as a virtual table for the PROC SQL
FROM clause. In this example DBCON is a connection alias.

proc sql;
connect to informix as dbcon

(user=testuser using=testpass
server=testdsn);

select *
from connection to dbcon

(select empid, lastname, firstname,
hiredate, salary

from employees
where hiredate>=’31JAN88’);

disconnect from dbcon;
quit;

This next example gives the previous query a name and stores it as the PROC SQL
view Samples.Hires88. The CREATE VIEW statement appears in highlighting.

libname samples ’SAS-data-library’;

proc sql;
connect to informix as mycon

(user=testuser using=testpass
server=testdsn);

580 Autopartitioning Scheme for Informix � Chapter 19

create view samples.hires88 as
select *
from connection to mycon

(select empid, lastname, firstname,
hiredate, salary from employees
where hiredate>=’31JAN88’);

disconnect from mycon;
quit;

This example connects to Informix and executes the stored procedure testproc. The
select * clause displays the results from the stored procedure.

proc sql;
connect to informix as mydb

(server=testdsn);
select * from connection to mydb

(execute procedure testproc(’123456’));
disconnect from mydb;

quit;

Autopartitioning Scheme for Informix

Overview
Autopartitioning for SAS/ACCESS Interface to Informix is a modulo (MOD) function

method. For general information about this feature, see “Autopartitioning Techniques
in SAS/ACCESS” on page 57.

Autopartitioning Restrictions
SAS/ACCESS Interface to Informix places additional restrictions on the columns that

you can use for the partitioning column during the autopartitioning phase. Here is how
columns are partitioned.

� INTEGER
� SMALLINT
� BIT
� TINYINT
� You can also use DECIMALS with 0-scale columns as the partitioning column.
� Nullable columns are the least preferable.

SAS/ACCESS Interface for Informix � Establishing a Temporary Table 581

Using WHERE Clauses
Autopartitioning does not select a column to be the partitioning column if it appears

in a SAS WHERE clause. For example, the following DATA step cannot use a threaded
read to retrieve the data because all numeric columns in the table are in the WHERE
clause:

data work.locemp;
set trlib.MYEMPS;
where EMPNUM<=30 and ISTENURE=0 and
SALARY<=35000 and NUMCLASS>2;
run;

Using DBSLICEPARM=
Although SAS/ACCESS Interface to Informix defaults to three threads when you use

autopartitioning, do not specify a maximum number of threads in DBSLICEPARM=
LIBNAME option to use for the threaded read.

This example shows how to use of DBSLICEPARM= with the maximum number of
threads set to five:

libname x informix user=dbitest using=dbigrp1 server=odbc15;
proc print data=x.dept(dbsliceparm=(ALL,5));
run;

Using DBSLICE=
You can achieve the best possible performance when using threaded reads by

specifying the DBSLICE= data set option for Informix in your SAS operation. This
example shows how to use it.

libname x informix user=dbitest using=dbigrp1 server=odbc15;
data xottest;
set x.invoice(dbslice=("amtbilled<10000000" "amtbilled>=10000000"));
run;

Temporary Table Support for Informix

Overview

For general information about this feature, see “Temporary Table Support for SAS/
ACCESS” on page 38.

Establishing a Temporary Table
To establish the DBMS connection to support the creation and use of temporary

tables, issue a LIBNAME statement with the connection options
CONNECTION_GROUP=connection-group and CONNECTION=GLOBAL. This

582 Terminating a Temporary Table � Chapter 19

LIBNAME statement is required even if you connect to the database using the
Pass-Through Facility CONNECT statement, because it establishes a connection group.

For every new PROC SQL step or LIBNAME statement, you must reissue a
CONNECT statement with the CONNECTION_GROUP= option set to the same value
so that the connection can be reused.

Terminating a Temporary Table
To terminate a temporary table, disassociate the libref by issuing this statement:

libname libref clear;

Example
In this Pass-Through example, joins are pushed to Informix:

libname x informix user=tester using=xxxxx server=dsn_name
connection=global connection_group=mygroup;

proc sql;
connect to informix (user=tester using=xxxxx server=dsn_name

connection=global connection_group=mygroup);
execute (select * from t1 where (id >100)

into scratch scr1) by informix;
create table count2 as select * from connection to informix

(select count(*) as totrec from scr1);
quit;

proc print data=count2;
run;

proc sql;
connect to informix (user=tester using=xxxxx server=dsn_name

connection=global connection_group=mygroup);
execute(select t2.fname, t2.lname, scr1.dept from t2, scr1 where

(t2.id = scr1.id) into scratch t3) by informix;
quit;

libname x clear; /* connection closed, temp table closed */

Passing SAS Functions to Informix
SAS/ACCESS Interface to Informix passes the following SAS functions to Informix for

processing if the DBMS driver or client that you are using supports this function. For
more information, see “Passing Functions to the DBMS Using PROC SQL” on page 42.

ABS
ARCOS

SAS/ACCESS Interface for Informix � Passing Joins to Informix 583

ARSIN
ATAN
ATAN2
AVG
COS
COUNT
DATE
DAY
DTEXTDAY
DTEXTMONTH
DTEXTWEEKDAY
DTEXTYEAR
EXP
HOUR
INT
LOG
LOG10
MAX
MDY
MIN
MINUTE
MONTH
SECOND
SIN
SQRT
STRIP
SUM
TAN
TODAY
WEEKDAY
YEAR

SQL_FUNCTIONS= ALL allows for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to Informix. Due to incompatibility in date and time functions between
Informix and SAS, the Informix server might not process them correctly. Check your
results to determine whether these functions are working as expected.

DATEPART
TIMEPART

Passing Joins to Informix
For a multiple libref join to pass to Informix, all of these components of the

LIBNAME statements must match exactly:

584 Locking in the Informix Interface � Chapter 19

user ID (USER=)

password (USING=)
server (SERVER=)

Due to an Informix database limitation, the maximum number of tables that you can
specify to perform a join is 22. An error message appears if you specify more than 22.

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

Locking in the Informix Interface

In most cases, SAS spooling is on by default for the Informix interface and provides
the data consistency you need.

To control how the Informix interface handles locking, you can use the
“READ_ISOLATION_LEVEL= LIBNAME Option” on page 175. Here are the valid
values.

COMMITTED_READ
retrieves only committed rows. No locks are acquired, and rows can be locked
exclusively for update by other users or processes. This is the default setting.

REPEATABLE_READ
gives you a shared lock on every row that is selected during the transaction. Other
users or processes can also acquire a shared lock, but no other process can modify
any row that is selected by your transaction. If you repeat the query during the
transaction, you re-read the same information. The shared locks are released only
when the transaction commits or rolls back. Another process cannot update or
delete a row that is accessed by using a repeatable read.

DIRTY_READ
retrieves committed and uncommitted rows that might include phantom rows,
which are rows that are created or modified by another user or process that might
subsequently be rolled back. This type of read is most appropriate for tables that
are not frequently updated.

CURSOR_STABILITY
gives you a shared lock on the selected row. Another user or process can acquire a
shared lock on the same row, but no process can acquire an exclusive lock to
modify data in the row. When you retrieve another row or close the cursor, the
shared lock is released.

If you set READ_ISOLATION_LEVEL= to REPEATABLE_READ or
CURSOR_STABILITY, it is recommended that you assign a separate libref and that you
clear that libref when you have finished working with the tables. This technique
minimizes the negative performance impact on other users that occurs when you lock
the tables. To clear the libref, include this code:

libname libref clear;

For current Informix releases, READ_ISOLATION_LEVEL= is valid only when
transaction logging is enabled. If transaction logging is not enabled, an error is
generated when you use this option. Also, locks placed when
READ_ISOLATION_LEVEL= REPEATABLE READ or CURSOR_STABILITY are not
freed until the libref is cleared.

To see the SQL locking statements that SAS issues to the Informix server, include in
your code the “SASTRACE= System Option” on page 408.

SAS/ACCESS Interface for Informix � Character Data 585

option sastrace=’,,,d’;

For more details about Informix locking, see your Informix documentation.

Naming Conventions for Informix

For general information about this feature, see Chapter 2, “SAS Names and Support
for DBMS Names,” on page 11.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= LIBNAME options
determine how SAS/ACCESS Interface to Informix handles case sensitivity, spaces, and
special characters. For information about these options, see “Overview of the
LIBNAME Statement for Relational Databases” on page 87.

Informix objects include tables and columns. They follow these naming conventions.

� Although table and column names must be from 1 to 32 characters, the limitation
on some Informix servers might be lower.

� Table and column names must begin with a letter or an underscore (_) that is
followed by letters, numbers, or underscores. Special characters are not supported.
However, if you enclose a name in quotation marks and
PRESERVE_TAB_NAMES=YES (when applicable), it can begin with any character.

Because several problems were found in the Informix ODBC driver that result from
using uppercase or mixed case, Informix encourages users to use lowercase for table and
column names. Informix currently has no schedule for fixing these known problems.

Data Types for Informix

Overview
Every column in a table has a name and a data type. The data type tells Informix

how much physical storage to set aside for the column and the form in which the data
is stored. This section includes information about Informix data types, null values, and
data conversions.

Character Data
CHAR(n), NCHAR(n)

contains character string data from 1 to 32,767 characters in length and can
include tabs and spaces.

VARCHAR(m,n), NVARCHAR(m,n)
contains character string data from 1 to 255 characters in length.

TEXT
contains unlimited text data, depending on memory capacity.

BYTE
contains binary data of variable length.

586 Numeric Data � Chapter 19

Numeric Data
DECIMAL, MONEY, NUMERIC

contains numeric data with definable scale and precision. The amount of storage
that is allocated depends on the size of the number.

FLOAT, DOUBLE PRECISION
contains double-precision numeric data up to 8 bytes.

INTEGER
contains an integer up to 32 bits (from –231 to 231−1).

REAL, SMALLFLOAT
contains single-precision, floating-point numbers up to 4 bytes.

SERIAL
stores sequential integers up to 32 bits.

SMALLINT
contains integers up to 2 bytes.

INT8
contains an integer up to 64 bits (–2(63–1) to 2(63–1)).

SERIAL8
contains sequential integers up to 64 bits.

When the length value of INT8 or SERIAL8 is greater than 15, the last few digits
currently do not display correctly due to a display limitation.

Date, Time, and Interval Data
DATE

contains a calendar date in the form of a signed integer value.

DATETIME
contains a calendar date and time of day stored in 2 to 11 bytes, depending on
precision.

When the DATETIME column is in an uncommon format (for example,
DATETIME MINUTE TO MINUTE or DATETIME SECOND TO SECOND), the
date and time values might not display correctly.

INTERVAL
contains a span of time stored in 2 to 12 bytes, depending on precision.

Informix Null Values
Informix has a special value that is called NULL. An Informix NULL value means

an absence of information and is analogous to a SAS missing value. When
SAS/ACCESS reads an Informix NULL value, it interprets it as a SAS missing value.

If you do not indicate a default value for an Informix column, the default value is
NULL. You can specify the keywords NOT NULL after the data type of the column when
you create an Informix table to prevent NULL values from being stored in the column.
When creating an Informix table with SAS/ACCESS, you can use the DBNULL= data
set option to indicate whether NULL is a valid value for specified columns.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” on page 31.

SAS/ACCESS Interface for Informix � LIBNAME Statement Data Conversions 587

To control how Informix handles SAS missing character values, use the
NULLCHAR= and NULLCHARVAL= data set options.

LIBNAME Statement Data Conversions
This table shows the default formats that SAS/ACCESS Interface to Infomix assigns

to SAS variables when using the LIBNAME statement to read from an Infomix table.
These default formats are based on Infomix column attributes. To override these
default data types, use the DBTYPE= data set option on a specific data set.

Table 19.3 LIBNAME Statement: Default SAS Formats for Informix Data Types

Informix Column Type Default SAS Format

CHAR(n) $n

DATE DATE9.

DATETIME** DATETIME24.5

DECIMAL m+2.n

DOUBLE PRECISION none

FLOAT none

INTEGER none

INT8# none

INTERVAL $n

MONEY none

NCHAR(n) $n

NLS support required

NUMERIC none

NVARCHAR(m,n)* $m

NLS support required

REAL none

SERIAL none

SERIAL8# none

SMALLFLOAT none

SMALLINT none

TEXT* $n

VARCHAR(m,n)* $m

* Only supported by Informix online databases.
The precision of an INT8 or SERIAL8 is 15 digits.
** If the Informix field qualifier specifies either HOUR, MINUTE, SECOND, or FRACTION as the

largest unit, the value is converted to a SAS TIME value. All other values—such as YEAR,
MONTH, or DAY—are converted to a SAS DATETIME value.

The following table shows the default Informix data types that SAS/ACCESS applies
to SAS variable formats during output operations when you use the LIBNAME
statement.

588 SQL Pass-Through Facility Data Conversions � Chapter 19

Table 19.4 LIBNAME Statement: Default Informix Data Types for SAS Variable
Formats

SAS Variable Format Informix Data Type

$w. CHAR(w).

w. with SAS format name of NULL DOUBLE

w.d with SAS format name of NULL DOUBLE

all other numerics DOUBLE

datetimew.d DATETIME YEAR TO FRACTION(5)

datew. DATE

time. DATETIME HOUR TO SECOND

SQL Pass-Through Facility Data Conversions
The SQL pass-through facility uses the same default conversion formats as the

LIBNAME statement. For conversion tables, see “LIBNAME Statement Data
Conversions” on page 587.

Overview of Informix Servers

Informix Database Servers
There are two types of Informix database servers, the Informix OnLline and Informix

SE servers. Informix OnLine database servers can support many users and provide
tools that ensure high availability, high reliability, and that support critical
applications. Informix SE database servers are designed to manage relatively small
databases that individuals use privately or that a small number of users share.

Using the DBDATASRC Environment Variables
The SQL pass-through facility supports the environment variable DBDATASRC,

which is an extension to the Informix environment variable. If you set DBDATASRC,
you can omit the CONNECT statement. The value of DBDATASRC is used instead of
the SERVER= argument in the CONNECT statement. The syntax for setting
DBDATASRC is like the syntax of the SERVER= argument:

Bourne shell:

export DBDATABASE=’testdsn’

C shell:

setenv DBDATASRC testdsn

SAS/ACCESS Interface for Informix � Using Fully Qualified Table Names 589

If you set DBDATASRC, you can issue a PROC SQL SELECT or EXECUTE
statement without first connecting to Informix with the CONNECT statement.

If you omit the CONNECT statement, an implicit connection is performed when the
SELECT or EXECUTE statement is passed to Informix.

If you create an SQL view without an explicit CONNECT statement, the view can
dynamically connect to different databases, depending on the value of the DBDATASRC
environment variable.

Using Fully Qualified Table Names
Informix supports a connection to only one database. If you have data that spans

multiple databases, you must use fully qualified table names to work within the
Informix single-connection constraints.

In this example, the tables Tab1 and Tab2 reside in different databases, MyDB1 and
MyDB2, respectively.

proc sql;
connect to informix
(server=testdsn);

create view tab1v as
select * from connection
to informix

(select * from mydb1.tab1);

create view tab2v as
select * from connection
to informix

(select * from mydb2.tab2);
quit;

data getboth;
merge tab1v tab2v;
by common;

run;

Because the tables reside in separate databases, you cannot connect to each database
with a PROC SQL CONNECT statement and then retrieve the data in a single step.
Using the fully qualified table name (that is, database.table) enables you to use any
Informix database in the CONNECT statement and access Informix tables in the same
or different databases in a single SAS procedure or DATA step.

590

591

C H A P T E R

20
SAS/ACCESS Interface to
Microsoft SQL Server

Introduction to SAS/ACCESS Interface to Microsoft SQL Server 591
LIBNAME Statement Specifics for Microsoft SQL Server 592

Overview 592

Arguments 592

Microsoft SQL Server LIBNAME Statement Examples 595

Data Set Options for Microsoft SQL Server 595
SQL Pass-Through Facility Specifics for Microsoft SQL Server 597

Key Information 597

CONNECT Statement Examples 597

Connection To Component Examples 598

DBLOAD Procedure Specifics for Microsoft SQL Server 598

Overview 598
Examples 599

Passing SAS Functions to Microsoft SQL Server 600

Locking in the Microsoft SQL Server Interface 600

Naming Conventions for Microsoft SQL Server 601

Data Types for Microsoft SQL Server 602
Overview 602

Microsoft SQL Server Null Values 602

LIBNAME Statement Data Conversions 602

Introduction to SAS/ACCESS Interface to Microsoft SQL Server
This section describes SAS/ACCESS Interface to Microsoft SQL Server. For a list of

SAS/ACCESS features that are available for this interface, see “SAS/ACCESS Interface
to Microsoft SQL Server: Supported Features” on page 79.

SAS/ACCESS Interface to Microsoft SQL Server has been tested and certified against
Data Direct Technologies Connect ODBC and Data Direct SequeLink ODBC products.

592 LIBNAME Statement Specifics for Microsoft SQL Server � Chapter 20

LIBNAME Statement Specifics for Microsoft SQL Server

Overview
This section describes the LIBNAME statement as supported in SAS/ACCESS

Interface to Microsoft SQL Server and includes examples. For details about this feature,
see “Overview of the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing Microsoft SQL Server.

LIBNAME libref sqlsvr <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

sqlsvr
specifies the SAS/ACCESS engine name for the Microsoft SQL Server interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. When you use the LIBNAME
statement, you can connect to Microsoft SQL Server in many different ways.
Specify only one of these methods for each connection because they are mutually
exclusive.

� USER=, PASSWORD=, and DATASRC=
� COMPLETE=
� NOPROMPT=
� PROMPT=
� REQUIRED=

Here is how these options are defined.

USER=<’>user-name<’>
lets you connect to Microsoft SQL Server with a user ID that is different from
the default ID. USER= is optional. UID= is an alias for this option.

PASSWORD=<’>password<’>
specifies the Microsoft SQL Server password that is associated with your user
ID. PASSWORD= is optional. PWD= is an alias for this option.

DATASRC=<’>SQL-Server-data-source<’>
specifies the Microsoft SQL Server data source to which you want to connect.
For UNIX platforms, data sources must be configured by modifying the
.ODBC.ini file. DSN= is an alias for this option that indicates that the
connection is attempted using the ODBC SQLConnect API, which requires a
data source name. You can also use a user ID and password with DSN=. This
API is guaranteed to be present in all drivers.

COMPLETE=<’>SQL-Server-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. When connection succeeds, the complete

SAS/ACCESS Interface to Microsoft SQL Server � Arguments 593

connection string is returned in the SYSDBMSG macro variable. If you do
not specify enough correct connection options, you are prompted with a dialog
box that displays the values from the COMPLETE= connection string. You
can edit any field before you connect to the data source. See your driver
documentation for more details.

NOPROMPT=<’>SQL-Server-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. If you do not specify enough correct
connection options, an error is returned. No dialog box displays to help you
with the connection string.

PROMPT=<’> SQL-Server-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. When connection succeeds, the complete
connection string is returned in the SYSDBMSG macro variable. PROMPT=
does not immediately try to connect to the DBMS. Instead, it displays a
dialog box that contains the values that you entered in the PROMPT=
connection string. You can edit values or enter additional values in any field
before you connect to the data source.

REQUIRED=<’>SQL-Server-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. When connection succeeds, the complete
connection string is returned in the SYSDBMSG macro variable. If you do
not specify enough correct connection options, a dialog box prompts you for
the connection options. REQUIRED= lets you modify only required fields in
the dialog box.

These Microsoft SQL Server connection options are not supported on UNIX.
� BULKCOPY=
� COMPLETE=
� PROMPT=
� REQUIRED=

LIBNAME-options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to Microsoft SQL
Server, with the applicable default values. For more detail about these options, see
“LIBNAME Options for Relational Databases” on page 92.

Table 20.1 SAS/ACCESS LIBNAME Options for Microsoft SQL Server

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTOCOMMIT= varies with transaction type

BL_LOG= none

CONNECTION= data-source specific

CONNECTION_GROUP= none

CURSOR_TYPE= DYNAMIC

DBCOMMIT= 1000 (inserting) or 0 (updating)

594 Arguments � Chapter 20

Option Default Value

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= YES

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

DBMSTEMP= NO

DBNULLKEYS= YES

DBPROMPT= NO

DBSLICEPARM= THREADED_APPS,2 or 3

DEFER= NO

DELETE_MULT_ROWS= NO

DIRECT_EXE= none

DIRECT_SQL= YES

IGNORE_
READ_ONLY_COLUMNS=

NO

INSERT_SQL= YES

INSERTBUFF= 1

KEYSET_SIZE= 0

MULTI_DATASRC_OPT= NONE

PRESERVE_COL_NAMES=
see “Naming Conventions for Microsoft SQL Server”
on page 601

PRESERVE_TAB_NAMES=
see “Naming Conventions for Microsoft SQL Server”
on page 601

QUALIFIER= none

QUERY_TIMEOUT= 0

QUOTE_CHAR = none

READBUFF= 0

READ_ISOLATION_LEVEL=
RC (see “Locking in the Microsoft SQL Server
Interface” on page 600)

READ_LOCK_TYPE= ROW

REREAD_EXPOSURE= NO

SCHEMA= none

SPOOL= YES

STRINGDATES= NO

TRACE= NO

SAS/ACCESS Interface to Microsoft SQL Server � Data Set Options for Microsoft SQL Server 595

Option Default Value

TRACEFILE= none

UPDATE_ISOLATION_LEVEL=
RC (see “Locking in the Microsoft SQL Server
Interface” on page 600)

UPDATE_LOCK_TYPE= ROW

UPDATE_MULT_ ROWS= NO

UPDATE_SQL= driver-specific

USE_ODBC_CL= NO

UTILCONN_TRANSIENT= NO

Microsoft SQL Server LIBNAME Statement Examples
In following example, USER= and PASSWORD= are connection options.

libname mydblib sqlsvr user=testuser password=testpass;

In the following example, the libref MYDBLIB connects to a Microsoft SQL Server
database using the NOPROMPT= option.

libname mydblib sqlsvr
noprompt="uid=testuser;
pwd=testpass;
dsn=sqlservr;"
stringdates=yes;

proc print data=mydblib.customers;
where state=’CA’;

run;

Data Set Options for Microsoft SQL Server
All SAS/ACCESS data set options in this table are supported for Microsoft SQL

Server. Default values are provided where applicable. For general information about
this feature, see “Overview” on page 207.

Table 20.2 SAS/ACCESS Data Set Options for Microsoft SQL Server

Option Default Value

CURSOR_TYPE= LIBNAME option setting

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

596 Data Set Options for Microsoft SQL Server � Chapter 20

Option Default Value

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= YES

DBNULLKEYS= LIBNAME option setting

DBPROMPT= LIBNAME option setting

DBSASLABEL= COMPAT

DBSASTYPE=
see “Data Types for Microsoft SQL Server” on
page 602

DBSLICE= none

DBSLICEPARM= THREADED_APPS,2 or 3

DBTYPE=
see “Data Types for Microsoft SQL Server” on
page 602

ERRLIMIT= 1

IGNORE_ READ_ONLY_COLUMNS= NO

INSERT_SQL= LIBNAME option setting

INSERTBUFF= LIBNAME option setting

KEYSET_SIZE= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

QUALIFIER= LIBNAME option setting

QUERY_TIMEOUT= LIBNAME option setting

READBUFF= LIBNAME option setting

READ_ISOLATION_LEVEL= LIBNAME option setting

READ_LOCK_TYPE= LIBNAME option setting

SASDATEFMT= none

SCHEMA= LIBNAME option setting

UPDATE_ISOLATION_LEVEL= LIBNAME option setting

UPDATE_LOCK_TYPE= LIBNAME option setting

UPDATE_SQL= LIBNAME option setting

SAS/ACCESS Interface to Microsoft SQL Server � CONNECT Statement Examples 597

SQL Pass-Through Facility Specifics for Microsoft SQL Server

Key Information
For general information about this feature, see “Autopartitioning Techniques in SAS/

ACCESS” on page 57. Microsoft SQL Server examples are available.
Here are the SQL pass-through facility specifics for the Microsoft SQL Server

interface under UNIX hosts.
� The dbms-name is SQLSVR.
� The CONNECT statement is required.

� PROC SQL supports multiple connections to Microsoft SQL Server. If you use
multiple simultaneous connections, you must use the alias argument to identify
the different connections. If you do not specify an alias, the default alias is used.
The functionality of multiple connections to the same Microsoft SQL Server data
source might be limited by the particular data source driver.

� The CONNECT statement database-connection-arguments are identical to its
LIBNAME statement connection options.

� These LIBNAME options are available with the CONNECT statement:

AUTOCOMMIT=
CURSOR_TYPE=
KEYSET_SIZE=

QUERY_TIMEOUT=
READBUFF=
READ_ISOLATION_LEVEL=

TRACE=
TRACEFILE=
USE_ODBC_CL=

� The DBMS-SQL-query argument can be a DBMS-specific SQL EXECUTE
statement that executes a DBMS stored procedure. However, if the stored
procedure contains more than one query, only the first query is processed.

CONNECT Statement Examples
These examples connect to a data source that is configured under the data source

name User’s Data using the alias USER1. The first example uses the connection
method that is guaranteed to be present at the lowest level of conformance. Note that
DATASRC= names can contain quotation marks and spaces.

proc sql;
connect to sqlsvr as user1
(datasrc="User’s Data" user=testuser password=testpass);

This example uses the connection method that represents a more advanced level of
Microsoft SQL Server ODBC conformance. It uses the input dialog box that is provided
by the driver. The DSN= and UID= arguments are within the connection string. The
SQL pass-through facility therefore does not parse them but instead passes them to the
ODBC driver manager.

598 Connection To Component Examples � Chapter 20

proc sql;
connect to SQLSVR as user1
(required = "dsn=User’s Data; uid=testuser");

In this example, you can select any data source that is configured on your machine.
The example uses the connection method that represents a more advanced level of
Microsoft SQL Server ODBC conformance, Level 1. When connection succeeds, the
connection string is returned in the SQLXMSG and SYSDBMSG macro variables. It
can then be stored if you use this method to configure a connection for later use.

proc sql;
connect to SQLSVR (required);

This example prompts you to specify the information that is required to make a
connection to the DBMS. You are prompted to supply the data source name, user ID,
and password in the dialog boxes that are displayed.

proc sql;
connect to SQLSVR (prompt);

Connection To Component Examples
This example sends Microsoft SQL Server 6.5 (configured under the data source

name "SQL Server") an SQL query for processing. The results from the query serve as
a virtual table for the PROC SQL FROM clause. In this example MYDB is the
connection alias.

proc sql;
connect to SQLSVR as mydb

(datasrc="SQL Server" user=testuser password=testpass);
select * from connection to mydb

(select CUSTOMER, NAME, COUNTRY
from CUSTOMERS
where COUNTRY <> ’USA’);

quit;

This next example returns a list of the columns in the CUSTOMERS table.

proc sql;
connect to SQLSVR as mydb

(datasrc = "SQL Server" user=testuser password=testpass);
select * from connection to mydb

(ODBC::SQLColumns (, , "CUSTOMERS"));
quit;

DBLOAD Procedure Specifics for Microsoft SQL Server

Overview
For general information about this feature, see “Overview: DBLOAD Procedure” on

page 911.
The Microsoft SQL Server under UNIX hosts interface supports all DBLOAD

procedure statements (except ACCDESC=) in batch mode. Here are SAS/ACCESS
Interface to Microsoft SQL Server specifics for the DBLOAD procedure.

SAS/ACCESS Interface to Microsoft SQL Server � Examples 599

� The DBLOAD step DBMS= value is SQLSVR.

� Here are the database description statements that PROC DBLOAD uses:

DSN= <’>database-name<’>;
specifies the name of the database in which you want to store the new
Microsoft SQL Server table. The database-name is limited to eight characters.

The database that you specify must already exist. If the database name
contains the _, $, @, or # special character, you must enclose it in quotation
marks. The Microsoft SQL Server standard recommends against using
special characters in database names, however

USER= <’>user name<’>;
enables you to connect to a Microsoft SQL Server database with a user ID
that is different from the default ID.

USER= is optional in the Microsoft SQL Server interface. If you specify
USER=, you must also specify PASSWORD=. If USER= is omitted, your
default user ID is used.

PASSWORD=<’>password<’>;
specifies the Microsoft SQL Server password that is associated with your user
ID.

PASSWORD= is optional in the Microsoft SQL Server interface because
users have default user IDs. If you specify USER=, you must specify
PASSWORD=. If you do not wish to enter your SQL Server password in clear
text on this statement, see PROC PWENCODE in Base SAS Procedures
Guide for a method to encode it.

Examples
The following example creates a new Microsoft SQL Server table,

TESTUSER.EXCHANGE, from the DLIB.RATEOFEX data file. You must be granted
the appropriate privileges in order to create new Microsoft SQL Server tables or views.

proc dbload dbms=SQLSVR data=dlib.rateofex;
dsn=sample;
user=’testuser’;
password=’testpass’;
table=exchange;
rename fgnindol=fgnindollars

4=dollarsinfgn;
nulls updated=n fgnindollars=n

dollarsinfgn=n country=n;
load;

run;

The following example only sends a Microsoft SQL Server SQL GRANT statement to
the SAMPLE database and does not create a new table. Therefore, the TABLE= and
LOAD statements are omitted.

proc dbload dbms=SQLSVR;
user=’testuser’;
password=’testpass’;
dsn=sample;
sql grant select on testuser.exchange

to dbitest;
run;

600 Passing SAS Functions to Microsoft SQL Server � Chapter 20

Passing SAS Functions to Microsoft SQL Server

SAS/ACCESS Interface to Microsoft SQL Server passes the following SAS functions
to the data source for processing if the DBMS server supports this function. For more
information, see “Passing Functions to the DBMS Using PROC SQL” on page 42.

ABS

ARCOS

ARSIN

ATAN

AVGCEIL

COS

EXP

FLOOR

LOG

LOG10

LOWCASE

MAX

MIN

SIGN

SIN

Locking in the Microsoft SQL Server Interface

The following LIBNAME and data set options let you control how the Microsoft SQL
Server interface handles locking. For general information about an option, see
“LIBNAME Options for Relational Databases” on page 92.

READ_LOCK_TYPE= ROW | TABLE | NOLOCK

UPDATE_LOCK_TYPE= ROW | TABLE | NOLOCK

READ_ISOLATION_LEVEL= S | RR | RC | RU | V
The Microsoft SQL Server ODBC driver manager supports the S, RR, RC, RU, and
V isolation levels, as defined in this table.

Table 20.3 Isolation Levels for Microsoft SQL Server

Isolation Level Definition

S (serializable) Does not allow dirty reads, nonrepeatable reads, or
phantom reads.

RR (repeatable read) Does not allow dirty reads or nonrepeatable reads; does
allow phantom reads.

RC (read committed) Does not allow dirty reads or nonrepeatable reads; does
allow phantom reads.

SAS/ACCESS Interface to Microsoft SQL Server � Naming Conventions for Microsoft SQL Server 601

Isolation Level Definition

RU (read uncommitted) Allows dirty reads, nonrepeatable reads, and phantom
reads.

V (versioning) Does not allow dirty reads, nonrepeatable reads, or
phantom reads. These transactions are serializable but
higher concurrency is possible than with the serializable
isolation level. Typically, a nonlocking protocol is used.

Here is how the terms in the table are defined.

Dirty read A transaction that exhibits this phenomenon has very minimal
isolation from concurrent transactions. In fact, the transaction
can see changes that are made by those concurrent
transactions even before they commit.

For example, if transaction T1 performs an update on a row,
transaction T2 then retrieves that row, and transaction T1 then
terminates with rollback. Transaction T2 has then seen a row
that no longer exists.

Nonrepeatable
read

If a transaction exhibits this phenomenon, it is possible that it
might read a row once and, if it attempts to read that row
again later in the course of the same transaction, the row might
have been changed or even deleted by another concurrent
transaction. Therefore, the read is not necessarily repeatable.

For example, if transaction T1 retrieves a row, transaction
T2 updates that row, and transaction T1 then retrieves the
same row again. Transaction T1 has now retrieved the same
row twice but has seen two different values for it.

Phantom reads When a transaction exhibits this phenomenon, a set of rows
that it reads once might be a different set of rows if the
transaction attempts to read them again.

For example, transaction T1 retrieves the set of all rows that
satisfy some condition. If transaction T2 inserts a new row that
satisfies that same condition and transaction T1 repeats its
retrieval request, it sees a row that did not previously exist, a
phantom.

UPDATE_ISOLATION_LEVEL= S | RR | RC | V
The Microsoft SQL Server ODBC driver manager supports the S, RR, RC, and V
isolation levels that are defined in the preceding table.

Naming Conventions for Microsoft SQL Server

For general information about this feature, see Chapter 2, “SAS Names and Support
for DBMS Names,” on page 11.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= LIBNAME options
determine how SAS/ACCESS Interface to Microsoft SQL Server handles case sensitivity,
spaces, and special characters. (For information about these options, see “Overview of
the LIBNAME Statement for Relational Databases” on page 87.) The default value for
both of these options is YES for Microsoft Access, Microsoft Excel, and Microsoft SQL

602 Data Types for Microsoft SQL Server � Chapter 20

Server; NO for all others. For additional information about these options, see “Overview
of the LIBNAME Statement for Relational Databases” on page 87.

Microsoft SQL Server supports table names and column names that contain up to 32
characters. If DBMS column names are longer than 32 characters, SAS truncates them
to 32 characters. If truncating a column name would result in identical names, SAS
generates a unique name by replacing the last character with a number. DBMS table
names must be 32 characters or less because SAS does not truncate a longer name. If
you already have a table name that is greater than 32 characters, it is recommended
that you create a table view.

Data Types for Microsoft SQL Server

Overview

Every column in a table has a name and a data type. The data type tells the
Microsoft SQL Server how much physical storage to set aside for the column and the
form in which the data is stored.

Microsoft SQL Server Null Values
Microsoft SQL Server has a special value called NULL. A Microsoft SQL Server

NULL value means an absence of information and is analogous to a SAS missing value.
When SAS/ACCESS reads a Microsoft SQL Server NULL value, it interprets it as a
SAS missing value.

Microsoft SQL Server columns can be defined as NOT NULL so that they require
data—they cannot contain NULL values. When a column is defined as NOT NULL, the
DBMS does not add a row to the table unless the row has a value for that column.
When creating a DBMS table with SAS/ACCESS, you can use the DBNULL= data set
option to indicate whether NULL is a valid value for specified columns.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” on page 31 in SAS/ACCESS for Relational
Databases: Reference.

To control how SAS missing character values are handled by Microsoft SQL Server,
use the NULLCHAR= and NULLCHARVAL= data set options.

LIBNAME Statement Data Conversions
The following table shows all data types and default SAS formats that SAS/ACCESS

Interface to Microsoft SQL Server supports.

Table 20.4 Microsoft SQL Server Data Types and Default SAS Formats

Microsoft SQL Server Data Type Default SAS Format

SQL_CHAR $n

SQL_VARCHAR $n

SQL_LONGVARCHAR $n

SAS/ACCESS Interface to Microsoft SQL Server � LIBNAME Statement Data Conversions 603

Microsoft SQL Server Data Type Default SAS Format

SQL_BINARY $n.*

SQL_VARBINARY $n.*

SQL_LONGVARBINARY $n.*

SQL_DECIMAL m or m.n or none if m and n are not specified

SQL_NUMERIC m or m.n or none if m and n are not specified

SQL_INTEGER 11.

SQL_SMALLINT 6.

SQL_TINYINT 4.

SQL_BIT 1.

SQL_REAL none

SQL_FLOAT none

SQL_DOUBLE none

SQL_BIGINT 20.

SQL_DATE DATE9.

SQL_TIME TIME8.

Microsoft SQL Server cannot support fractions
of seconds for time values

SQL_TIMESTAMP
DATETIMEm.n where m and n depend on
precision

* Because the Microsoft SQL Server driver does the conversion, this field displays as if the $HEXn.
format were applied.

The following table shows the default data types that the Microsoft SQL Server
interface uses when creating tables.

Table 20.5 Default Microsoft SQL Server Output Data Types

SAS Variable Format Default Microsoft SQL Server Data Type

m.n
SQL_DOUBLE or SQL_NUMERIC using m.n if
the DBMS allows it

$n. SQL_VARCHAR using n

datetime formats SQL_TIMESTAMP

date formats SQL_DATE

time formats SQL_TIME

The Microsoft SQL Server interface allows non-default data types to be specified with
the DBTYPE= data set option.

604

605

C H A P T E R

21
SAS/ACCESS Interface for MySQL

Introduction to SAS/ACCESS Interface to MySQL 605
LIBNAME Statement Specifics for MySQL 605

Overview 605

Arguments 606

MySQL LIBNAME Statement Examples 607

Data Set Options for MySQL 608
SQL Pass-Through Facility Specifics for MySQL 609

Key Information 609

Examples 609

Autocommit and Table Types 610

Understanding MySQL Update and Delete Rules 611

Passing SAS Functions to MySQL 612
Passing Joins to MySQL 613

Naming Conventions for MySQL 614

Data Types for MySQL 615

Overview 615

Character Data 615
Numeric Data 616

Date, Time, and Timestamp Data 617

LIBNAME Statement Data Conversions 617

Case Sensitivity for MySQL 619

Introduction to SAS/ACCESS Interface to MySQL
This section describes SAS/ACCESS Interface to MySQL. For a list of SAS/ACCESS

features that are available in this interface, see “SAS/ACCESS Interface to MySQL:
Supported Features” on page 79.

LIBNAME Statement Specifics for MySQL

Overview
This section describes the LIBNAME statements that SAS/ACCESS Interface to

MySQL supports and includes examples. For details about this feature, see “Overview
of the LIBNAME Statement for Relational Databases” on page 87.

606 Arguments � Chapter 21

Here is the LIBNAME statement syntax for accessing MySQL.

LIBNAME libref mysql <connection-options><LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables.

mysql
specifies the SAS/ACCESS engine name for MySQL interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. Here is how these options are defined.

USER=<’>user name<’>
specifies the MySQL user login ID. If this argument is not specified, the
current user is assumed. If the user name contains spaces or
nonalphanumeric characters, you must enclose the user name in quotation
marks.

PASSWORD=<’>password<’>
specifies the MySQL password that is associated with the MySQL login ID. If
the password contains spaces or nonalphanumeric characters, you must
enclose the password in quotation marks.

DATABASE=<’>database<’>
specifies the MySQL database to which you want to connect. If the database
name contains spaces or nonalphanumeric characters, you must enclose the
database name in quotation marks.

SERVER=<’>server<’>
specifies the server name or IP address of the MySQL server. If the server
name contains spaces or nonalphanumeric characters, you must enclose the
server name in quotation marks.

PORT=port
specifies the port used to connect to the specified MySQL server. If you do not
specify a value, 3306 is used.

LIBNAME-options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to MySQL, with
the applicable default values. For more detail about these options, see “LIBNAME
Options for Relational Databases” on page 92.

Table 21.1 SAS/ACCESS LIBNAME Options for MySQL

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTOCOMMIT= YES

CONNECTION= SHAREDREAD

SAS/ACCESS Interface for MySQL � MySQL LIBNAME Statement Examples 607

Option Default Value

CONNECTION_GROUP= none

DBCOMMIT= 1000 when inserting rows; 0 when
updating rows, deleting rows, or
appending rows to an existing table

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= NO

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

DBMSTEMP= NO

DBPROMPT= NO

DBSASLABEL= COMPAT

DEFER= NO

DIRECT_EXE= none

DIRECT_SQL= YES

ESCAPE_BACKSLASH=

INSERTBUFF= 0

MULTI_DATASRC_OPT= none

PRESERVE_COL_NAMES= YES

PRESERVE_TAB_NAMES= YES

QUALIFIER= none

REREAD_EXPOSURE= NO

SPOOL= YES

SQL_FUNCTIONS= none

SQL_FUNCTIONS_COPY= none

UTILCONN_TRANSIENT= NO

MySQL LIBNAME Statement Examples
In the following example, the libref MYSQLLIB uses SAS/ACCESS Interface to

MySQL to connect to a MySQL database. The SAS/ACCESS connection options are
USER=, PASSWORD=, DATABASE=, SERVER=, and PORT=.

libname mysqllib mysql user=testuser password=testpass database=mysqldb
server=mysqlserv port=9876;

proc print data=mysqllib.employees;
where dept=’CSR010’;

608 Data Set Options for MySQL � Chapter 21

run;

Data Set Options for MySQL
All SAS/ACCESS data set options in this table are supported for MySQL. Default

values are provided where applicable. For general information about this feature, see
“Overview” on page 207.

Table 21.2 Data Set Options for MySQL

Option Default Value

AUTOCOMMIT= the current LIBNAME option setting

DBCOMMIT= the current LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= the current LIBNAME option setting

DBGEN_NAME= DBMS

DBINDEX= the current LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= YES

DBPROMPT= the current LIBNAME option setting

DBSASLABEL= COMPAT

DBSASTYPE= see “Data Types for MySQL” on page 615

DBTYPE= see “LIBNAME Statement Data
Conversions” on page 617

ESCAPE_BACKSLASH NO

INSERTBUFF= 0

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= current LIBNAME option setting

QUALIFIER= the current LIBNAME option setting

SASDATEFORMAT= DATETIME20.0

UPDATE_ISOLATION_LEVEL= the current LIBNAME option setting

SAS/ACCESS Interface for MySQL � Examples 609

SQL Pass-Through Facility Specifics for MySQL

Key Information
For general information about this feature, see “Overview of the SQL Pass-Through

Facility” on page 425. MySQL examples are available.
Here are the SQL pass-through facility specifics for MySQL.
� The dbms-name is mysql.
� If you call MySQL stored procedures that return multiple result sets, SAS returns

only the last result set.
� Due to a current limitation in the MySQL client library, you cannot run MySQL

stored procedures when SAS is running on AIX.
� Here are the database-connection-arguments for the CONNECT statement.

USER=<’>MySQL-login-ID<’>
specifies an optional MySQL login ID. If USER= is not specified, the current
user is assumed. If you specify USER=, you also must specify PASSWORD=.

PASSWORD=<’>MySQL-password<’>
specifies the MySQL password that is associated with the MySQL login ID. If
you specify PASSWORD=, you also must specify USER=.

DATABASE=<’>database-name<’>
specifies the MySQL database.

SERVER=<’>server-name<’>
specifies the name or IP address of the MySQL server to which to connect. If
server-name is omitted or set to localhost, a connection to the local host is
established.

PORT=port
specifies the port on the server that is used for the TCP/IP connection.

Operating Environment Information: Due to a current limitation in the MySQL client
library, you cannot run MySQL stored procedures when SAS is running on AIX. �

Examples
This example uses the alias DBCON for the DBMS connection (the connection alias

is optional):

proc sql;
connect to mysql as dbcon

(user=testuser password=testpass server=mysqlserv
database=mysqldb port=9876);

quit;

610 Autocommit and Table Types � Chapter 21

This example connects to MySQL and sends it two EXECUTE statements to process:

proc sql;
connect to mysql (user=testuser password=testpass server=mysqlserv

database=mysqldb port=9876);
execute (create table whotookorders as

select ordernum, takenby,
firstname, lastname, phone

from orders, employees
where orders.takenby=employees.empid)

by mysql;
execute (grant select on whotookorders

to testuser) by mysql;
disconnect from mysql;

quit;

This example performs a query, shown in highlighted text, on the MySQL table
CUSTOMERS:

proc sql;
connect to mysql (user=testuser password=testpass server=mysqlserv

database=mysqldb port=9876);
select *

from connection to mysql
(select * from customers
where customer like ’1%’);

disconnect from mysql;
quit;

Autocommit and Table Types

MySQL supports several table types, two of which are InnoDB (the default) and
MyISAM. A single database can contain tables of different types. The behavior of a
table is determined by its table type. For example, by definition, a table created of
MyISAM type does not support transactions. Consequently, all DML statements
(updates, deletes, inserts) are automatically committed. If you need transactional
support, specify a table type of InnoDB in the DBCREATE_TABLE_OPTS LIBNAME
option. This table type allows for updates, deletes, and inserts to be rolled back if an
error occurs; or updates, deletes, and inserts to be committed if the SAS DATA step or
procedure completes successfully.

By default, the MYSQL LIBNAME engine sets AUTOCOMMIT=YES regardless of the
table type. If you are using tables of the type InnoDB, set the LIBNAME option
AUTOCOMMIT=NO to improve performance. To control how often COMMITS are
executed, set the DBCOMMIT option.

Note: The DBCOMMIT option can affect SAS/ACCESS performance. Experiment
with a value that best fits your table size and performance needs before using it for
production jobs. Transactional tables require significantly more memory and disk space
requirements. �

SAS/ACCESS Interface for MySQL � Understanding MySQL Update and Delete Rules 611

Understanding MySQL Update and Delete Rules

To avoid data integrity problems when updating or deleting data, you need a primary
key defined on your table. See the MySQL documentation for more information about
table types and transactions.

The following example uses AUTOCOMMIT=NO and DBTYPE to create the primary
key, and DBCREATE_TABLE_OPTS to determine the MySQL table type.

libname invty mysql user=dbitest server=d6687 database=test autocommit=no
reread_exposure=no;

proc sql;
drop table invty.STOCK23;
quit;

/* Create DBMS table with primary key and of type INNODB*/
data invty.STOCK23(drop=PARTNO DBTYPE=(RECDATE="date not null,

primary key(RECDATE)") DBCREATE_TABLE_OPTS="type = innodb");
input PARTNO $ DESCX $ INSTOCK @17

RECDATE date7. @25 PRICE;
format RECDATE date7.;
datalines;

K89R seal 34 27jul95 245.00
M447 sander 98 20jun95 45.88
LK43 filter 121 19may96 10.99
MN21 brace 43 10aug96 27.87
BC85 clamp 80 16aug96 9.55
KJ66 cutter 6 20mar96 24.50
UYN7 rod 211 18jun96 19.77
JD03 switch 383 09jan97 13.99
BV1I timer 26 03jan97 34.50
;

The next examples show how you can update the table now that STOCK23 has a
primary key:

proc sql;
update invty.STOCK23 set price=price*1.1 where INSTOCK > 50;
quit;

612 Passing SAS Functions to MySQL � Chapter 21

Passing SAS Functions to MySQL
SQL_FUNCTIONS= ALL allows for SAS functions that have slightly different

behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to MySQL. Due to incompatibility in date and time functions between
MySQL and SAS, MySQL might not process them correctly. Check your results to
determine whether these functions are working as expected.

Where the MySQL function name differs from the SAS function name, the MySQL
name appears in parentheses. For more information, see “Passing Functions to the
DBMS Using PROC SQL” on page 42.

ABS
ARCOS (ACOS)
ARSIN (ASIN)
ATAN
AVG
BYTE (CHAR)
CEIL (CEILING)
COALESCE
COS
COT
COUNT
DATE (CURDATE)
DATEPART
DATETIME (NOW)
DAY (DAYOFMONTH)
DTEXTDAY
DTEXTMONTH
DTEXTWEEKDAY
DTEXTYEAR
EXP
FLOOR
HOUR
INDEX (LOCATE)
LENGTH
LOG
LOG2
LOG10
LOWCASE (LCASE)
MAX
MIN
MINUTE
MOD
MONTH
QTR (QUARTER)

SAS/ACCESS Interface for MySQL � Passing Joins to MySQL 613

REPEAT
ROUND
SECOND
SIGN
SIN
SOUNDEX
SQRT
STRIP (TRIM)
SUBSTR (SUBSTRING)
TAN
TIME (CURTIME())
TIMEPART
TODAY (CURDATE())
TRIMN (RTRIM)
UPCASE (UCASE)
WEEKDAY (DAYOFWEEK)
YEAR

Passing Joins to MySQL
For a multiple libref join to pass to MySQL, all of these components of the LIBNAME

statements must match exactly:
� user (USER=)
� password (PASSWORD=)
� database DATABASE=)
� server (SERVER=)

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

614 Naming Conventions for MySQL � Chapter 21

Naming Conventions for MySQL
For general information about this feature, see Chapter 2, “SAS Names and Support

for DBMS Names,” on page 11.
MySQL database identifiers that you can name include databases, tables, and

columns. They follow these naming conventions.
� Aliases must be from 1 to 255 characters long. All other identifier names must be

from 1 to 64 characters long.
� Database names can use any character that is allowed in a directory name except

for a period, a backward slash (\), or a forward slash (/).
� By default, MySQL encloses column names and table names in quotation marks.
� Table names can use any character that is allowed in a filename except for a

period or a forward slash.
� Table names must be 32 characters or less because SAS does not truncate a longer

name. If you already have a table name that is greater than 32 characters, it is
recommended that you create a table view.

� Column names and alias names allow all characters.
� Embedded spaces and other special characters are not permitted unless you

enclose the name in quotation marks.
� Embedded quotation marks are not permitted.
� Case sensitivity is set when a server is installed. By default, the names of

database objects are case sensitive on UNIX and not case sensitive on Windows.
For example, the names CUSTOMER and Customer are different on a case-sensitive
server.

� A name cannot be a MySQL reserved word unless you enclose the name in
quotation marks. See the MySQL documentation for more information about
reserved words.

� Database names must be unique. For each user within a database, names of
database objects must be unique across all users. For example, if a database
contains a department table that User A created, no other user can create a
department table in the same database.

MySQL does not recognize the notion of schema, so tables are automatically
visible to all users with the appropriate privileges. Column names and index
names must be unique within a table.

For more detailed information about naming conventions, see your MySQL
documentation.

SAS/ACCESS Interface for MySQL � Character Data 615

Data Types for MySQL

Overview
Every column in a table has a name and a data type. The data type tells MySQL

how much physical storage to set aside for the column and the form in which the data
is stored. This section includes information about MySQL data types and data
conversions.

Character Data
BLOB (binary large object)

contains binary data of variable length up to 64 kilobytes. Variables entered into
columns of this type must be inserted as character strings.

CHAR (n)
contains fixed-length character string data with a length of n, where n must be at
least 1 and cannot exceed 255 characters.

ENUM (“value1”, “value2”, “value3”,...)
contains a character value that can be chosen from the list of allowed values. You
can specify up to 65535 ENUM values. If the column contains a string not
specified in the value list, the column value is set to “0”.

LONGBLOB
contains binary data of variable length up to 4 gigabytes. Variables entered into
columns of this type must be inserted as character strings. Available memory
considerations might limit the size of a LONGBLOB data type.

LONGTEXT
contains text data of variable length up to 4 gigabytes. Available memory
considerations might limit the size of a LONGTEXT data type.

MEDIUMBLOB
contains binary data of variable length up to 16 megabytes. Variables entered into
columns of this type must be inserted as character strings.

MEDIUMTEXT
contains text data of variable length up to 16 megabytes.

SET (“value1”, “value2”, “value3”,...)
contains zero or more character values that must be chosen from the list of
allowed values. You can specify up to 64 SET values.

TEXT
contains text data of variable length up to 64 kilobytes.

TINYBLOB
contains binary data of variable length up to 256 bytes. Variables entered into
columns of this type must be inserted as character strings.

TINYTEXT
contains text data of variable length up to 256 bytes.

616 Numeric Data � Chapter 21

VARCHAR (n)
contains character string data with a length of n, where n is a value from 1 to 255.

Numeric Data
BIGINT (n)

specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for BIGINT can range from
–9223372036854775808 to 9223372036854775808.

DECIMAL (length, decimals)
specifies a fixed-point decimal number, where length is the total number of digits
(precision), and decimals is the number of digits to the right of the decimal point
(scale).

DOUBLE (length, decimals)
specifies a double-precision decimal number, where length is the total number of
digits (precision), and decimals is the number of digits to the right of the decimal
point (scale). Values can range from approximately –1.8E308 to –2.2E-308 and
2.2E-308 to 1.8E308 (if UNSIGNED is specified).

FLOAT (length, decimals)
specifies a floating-point decimal number, where length is the total number of
digits (precision) and decimals is the number of digits to the right of the decimal
point (scale). Values can range from approximately –3.4E38 to –1.17E-38 and
1.17E-38 to 3.4E38 (if UNSIGNED is specified).

INT (n)
specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for INT can range from –2147483648 to
2147483647.

MEDIUMINT (n)
specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for MEDIUMINT can range from –8388608
to 8388607.

SMALLINT (n)
specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for SMALLINT can range from –32768 to
32767.

TINYINT (n)
specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for TINYINT can range from –128 to 127.

SAS/ACCESS Interface for MySQL � LIBNAME Statement Data Conversions 617

Date, Time, and Timestamp Data

DATE
contains date values. Valid dates are from January 1, 1000, to December 31, 9999.
The default format is YYYY-MM-DD—for example, 1961-06-13.

DATETIME
contains date and time values. Valid values are from 00:00:00 on January 1, 1000,
to 23:59:59 on December 31, 9999. The default format is YYYY-MM-DD
HH:MM:SS—for example, 1992-09-20 18:20:27.

TIME
contains time values. Valid times are –838 hours, 59 minutes, 59 seconds to 838
hours, 59 minutes, 59 seconds. The default format is HH:MM:SS—for example,
12:17:23.

TIMESTAMP
contains date and time values used to mark data operations. Valid values are from
00:00:00 on January 1, 1970, to 2037. The default format is YYYY-MM-DD
HH:MM:SS—for example, 1995–08–09 15:12:27.

LIBNAME Statement Data Conversions
This table shows the default formats that SAS/ACCESS Interface to MySQL assigns

to SAS variables when using the LIBNAME statement to read from a MySQL table.
These default formats are based on MySQL column attributes.

Table 21.3 LIBNAME Statement: Default SAS Formats for MySQL Data Types

MySQL Column Type SAS Data Type Default SAS Format

CHAR(n) character $n.

VARCHAR(n) character $n.

TINYTEXT character $n.

TEXT character $n. (where n is the value of the
DBMAX_TEXT= option)

MEDIUMTEXT character $n. (where n is the value of the
DBMAX_TEXT= option)

LONGTEXT character $n. (where n is the value of the
DBMAX_TEXT= option)

TINYBLOB character $n. (where n is the value of the
DBMAX_TEXT= option)

BLOB character $n. (where n is the value of the
DBMAX_TEXT= option)

MEDIUMBLOB character $n. (where n is the value of the
DBMAX_TEXT= option)

LONGBLOB character $n. (where n is the value of the
DBMAX_TEXT= option)

ENUM character $n.

618 LIBNAME Statement Data Conversions � Chapter 21

MySQL Column Type SAS Data Type Default SAS Format

SET character $n.

TINYINT numeric 4.0

SMALLINT numeric 6.0

MEDIUMINT numeric 8.0

INT numeric 11.0

BIGINT numeric 20.

DECIMAL numeric m.n

FLOAT numeric

DOUBLE numeric

DATE numeric DATE

TIME numeric TIME

DATETIME numeric DATETIME

TIMESTAMP numeric DATETIME

The following table shows the default MySQL data types that SAS/ACCESS assigns
to SAS variable formats during output operations when you use the LIBNAME
statement.

Table 21.4 LIBNAME Statement: Default MySQL Data Types for SAS Variable
Formats

SAS Variable Format MySQL Data Type

m.n* DECIMAL ([m-1],n)**

n (where n <= 2) TINYINT

n (where n <= 4) SMALLINT

n (where n <=6) MEDIUMINT

n (where n <= 17) BIGINT

other numerics DOUBLE

$n (where n <= 255) VARCHAR(n)

$n (where n > 255) TEXT

datetime formats TIMESTAMP

date formats DATE

time formats TIME

* n in MySQL data types is equivalent to w in SAS formats.
** DECIMAL types are created as (m-1, n). SAS includes space to write the value, the decimal

point, and a minus sign (if necessary) in its calculation for precision These must be removed
when converting to MySQL.

SAS/ACCESS Interface for MySQL � Case Sensitivity for MySQL 619

Case Sensitivity for MySQL

In MySQL, databases and tables correspond to directories and files within those
directories. Consequently, the case sensitivity of the underlying operating system
determines the case sensitivity of database and table names. This means database and
table names are not case sensitive in Windows, and case sensitive in most varieties of
UNIX.

In SAS, names can be entered in either uppercase or lowercase. MySQL recommends
that you adopt a consistent convention of either all uppercase or all lowercase table
names, especially on UNIX hosts. This can be easily implemented by starting your
server with -O lower_case_table_names=1. Please see the MySQL documentation for
more details.

If your server is on a case-sensitive platform, and you choose to allow case sensitivity,
be aware that when you reference MYSQL objects through the SAS/ACCESS interface,
objects are case sensitive and require no quotation marks. Also, in the SQL
pass-through facility, all MySQL object names are case sensitive. Names are passed to
MySQL exactly as they are entered.

For more information about case sensitivity and MySQL names, see “Naming
Conventions for MySQL” on page 614.

620

621

C H A P T E R

22
SAS/ACCESS Interface to Netezza

Introduction to SAS/ACCESS Interface to Netezza 622
LIBNAME Statement Specifics for Netezza 622

Overview 622

Arguments 622

Netezza LIBNAME Statement Examples 625

Data Set Options for Netezza 625
SQL Pass-Through Facility Specifics for Netezza 626

Key Information 626

CONNECT Statement Examples 627

Special Catalog Queries 627

Temporary Table Support for Netezza 628

General Information 628
Establishing a Temporary Table 628

Terminating a Temporary Table 629

Examples 629

Passing SAS Functions to Netezza 630

Passing Joins to Netezza 631
Bulk Loading and Unloading for Netezza 632

Loading 632

Overview 632

Examples 632

Unloading 633
Overview 633

Examples 633

Deploying and Using SAS Formats in Netezza 634

Using SAS Formats 634

How It Works 635

Deployed Components for In-Database Processing 636
User-Defined Formats in the Netezza Data Warehouse 637

Publishing SAS Formats 637

Overview of the Publishing Process 637

Running the %INDNZ_PUBLISH_FORMATS Macro 638

%INDNZ_PUBLISH_FORMATS Macro Syntax 638
Tips for Using the %INDNZ_PUBLISH_FORMATS Macro 641

Special Characters in Directory Names 642

Netezza Permissions 643

Format Publishing Macro Example 643

Using the SAS_PUT() Function in the Netezza Data Warehouse 644
Implicit Use of the SAS_PUT() Function 644

Explicit Use of the SAS_PUT() Function 646

Determining Format Publish Dates 647

622 Introduction to SAS/ACCESS Interface to Netezza � Chapter 22

Naming Conventions for Netezza 648
Data Types for Netezza 648

Overview 648

String Data 649

Numeric Data 649

Date, Time, and Timestamp Data 649
Netezza Null Values 650

LIBNAME Statement Data Conversions 650

Introduction to SAS/ACCESS Interface to Netezza
This section describes SAS/ACCESS Interface to Netezza. For a list of SAS/ACCESS

features that are available in this interface, see “SAS/ACCESS Interface to Netezza:
Supported Features” on page 80.

LIBNAME Statement Specifics for Netezza

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to

Netezza supports and includes examples. For details about this feature, see “Overview
of the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing Netezza.

LIBNAME libref netezza <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

netezza
specifies the SAS/ACCESS engine name for the Netezza interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. When you use the LIBNAME
statement, you can connect to the Netezza Performance Server in two ways.
Specify only one of these methods for each connection because they are mutually
exclusive.

� SERVER=, DATABASE=, PORT=, USER=, PASSWORD=, READ_ONLY=
� DSN=, USER=, PORT=

Here is how these options are defined.

SERVER=<’>server-name<’>
specifies the server name or IP address of the Netezza Performance Server to
which you want to connect. This server accesses the database that contains

SAS/ACCESS Interface to Netezza � Arguments 623

the tables and views that you want to access. If the server name contains
spaces or nonalphanumeric characters, you must enclose it in quotation
marks.

DATABASE=<’>database-name<’>
specifies the name of the database on the Netezza Performance Server that
contains the tables and views that you want to access. If the database name
contains spaces or nonalphanumeric characters, you must enclose it in
quotation marks. You can also specify DATABASE= with the DB= alias.

PORT=port
specifies the port number that is used to connect to the specified Netezza
Performance Server. If you do not specify a port, the default is 5480.

USER=<’>Netezza-user-name<’>
specifies the Netezza user name (also called the user ID) that you use to
connect to your database. If the user name contains spaces or
nonalphanumeric characters, you must enclose it in quotation marks.

PASSWORD=<’>Netezza-password<’>
specifies the password that is associated with your Netezza user name. If the
password contains spaces or nonalphanumeric characters, you must enclose it
in quotation marks. You can also specify PASSWORD= with the PWD=,
PASS=, and PW= aliases.

READ_ONLY=YES | NO
specifies whether to connect to the Netezza database in read-only mode (YES)
or read-write (NO) mode. If you do not specify anything for READ_ONLY=,
the default of NO is used. You can also specify READ_ONLY with the
READONLY= alias.

DSN=<’>Netezza-data-source<’>
specifies the configured Netezza ODBC data source to which you want to
connect. Use this option if you have existing Netezza ODBC data sources that
are configured on your client. This method requires additional setup—either
through the ODBC Administrator control panel on Windows platforms, or
through the odbc.ini file or a similarly named configuration file on UNIX
platforms. So it is recommended that you use this connection method only if
you have existing, functioning data sources that have been defined.

LIBNAME-options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to Netezza, with
the applicable default values. For more detail about these options, see “LIBNAME
Options for Relational Databases” on page 92.

Table 22.1 SAS/ACCESS LIBNAME Options for Netezza

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTOCOMMIT= operation-specific

BULKUNLOAD= NO

CONNECTION= UNIQUE

CONNECTION_GROUP= none

624 Arguments � Chapter 22

Option Default Value

DBCOMMIT= 1000 (inserting) or 0 (updating)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= YES

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

DBMSTEMP= NO

DBNULLKEYS= YES

DBPROMPT= NO

DBSASLABEL= COMPAT

DEFER= NO

DELETE_MULT_ROWS=

DIRECT_EXE= none

DIRECT_SQL= YES

IGNORE_
READ_ONLY_COLUMNS=

NO

INSERTBUFF= automatically calculated based on row length

LOGIN_TIMEOUT= 0

MULTI_DATASRC_OPT= none

PRESERVE_COL_NAMES= see “Naming Conventions for Netezza” on page 648

PRESERVE_TAB_NAMES= see “Naming Conventions for Netezza” on page 648

QUALIFIER= none

QUERY_TIMEOUT= 0

QUOTE_CHAR= none

READBUFF= automatically calculated based on row length

REREAD_EXPOSURE= NO

SCHEMA= none

SPOOL= YES

SQL_FUNCTIONS= none

SQL_FUNCTIONS_COPY= none

STRINGDATES= NO

TRACE= NO

TRACEFILE= none

UPDATE_MULT_ROWS=

SAS/ACCESS Interface to Netezza � Data Set Options for Netezza 625

Option Default Value

USE_ODBC_CL = NO

UTILCONN_TRANSIENT= NO

Netezza LIBNAME Statement Examples
In this example, SERVER=, DATABASE=, USER=, and PASSWORD= are connection

options.

libname mydblib netezza server=npssrv1 database=test user=netusr1 password=netpwd1;

proc print data=mydblib.customers;
where state=’CA’;

run;

In the next example, DSN=, USER=, and PASSWORD= are connection options. The
NZSQL data source is configured in the ODBC Administrator Control Panel on
Windows platforms or in the odbc.ini file or a similarly named configuration file on
UNIX platforms.

libname mydblib netezza dsn=NZSQL user=netusr1 password=netpwd1;

proc print data=mydblib.customers;
where state=’CA’;

run;

Data Set Options for Netezza
All SAS/ACCESS data set options in this table are supported for Netezza. Default

values are provided where applicable. For general information about this feature, see
“Overview” on page 207.

Table 22.2 SAS/ACCESS Data Set Options for Netezza

Option Default Value

BL_DATAFILE=
When BL_USE_PIPE=NO, creates a file in the
current directory or with the default file
specifications.

BL_DELETE_DATAFILE= YES (only when BL_USE_PIPE=NO)

BL_DELIMITER= | (the pipe symbol)

BL_OPTIONS= none

BL_USE_PIPE= YES

BULKLOAD= NO

BULKUNLOAD= LIBNAME option setting

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

626 SQL Pass-Through Facility Specifics for Netezza � Chapter 22

Option Default Value

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= YES

DBNULLKEYS= LIBNAME option setting

DBPROMPT= LIBNAME option setting

DBSASTYPE= see “Data Types for Netezza” on page 648

DBTYPE= see “Data Types for Netezza” on page 648

DISTRIBUTE_ON= none

ERRLIMIT= 1

IGNORE_ READ_ONLY_COLUMNS= NO

INSERTBUFF= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

QUALIFIER= LIBNAME option setting

QUERY_TIMEOUT= LIBNAME option setting

READBUFF= LIBNAME option setting

SASDATEFMT= none

SCHEMA= LIBNAME option setting

SQL Pass-Through Facility Specifics for Netezza

Key Information
For general information about this feature, see “About SQL Procedure Interactions”

on page 425. Netezza examples are available.
Here are the SQL pass-through facility specifics for the Netezza interface.
� The dbms-name is NETEZZA.
� The CONNECT statement is required.
� PROC SQL supports multiple connections to Netezza. If you use multiple

simultaneous connections, you must use the alias argument to identify the
different connections. If you do not specify an alias, the default netezza alias is
used.

SAS/ACCESS Interface to Netezza � Special Catalog Queries 627

� The CONNECT statement database-connection-arguments are identical to its
LIBNAME connection-options.

CONNECT Statement Examples
This example uses the DBCON alias to connection to the mynpssrv Netezza

Performance Server and execute a query. The connection alias is optional.

proc sql;
connect to netezza as dbcon
(server=mynpssrv database=test user=myuser password=mypwd);

select * from connection to dbcon
(select * from customers where customer like ’1%’);

quit;

Special Catalog Queries
SAS/ACCESS Interface to Netezza supports the following special queries. You can

the queries use to call the ODBC-style catalog function application programming
interfaces (APIs). Here is the general format of the special queries:

Netezza::SQLAPI “parameter 1”,”parameter n”

Netezza::
is required to distinguish special queries from regular queries.

SQLAPI
is the specific API that is being called. Neither Netezza:: nor SQLAPI are case
sensitive.

"parameter n"
is a quoted string that is delimited by commas.

Within the quoted string, two characters are universally recognized: the percent sign
(%) and the underscore (_). The percent sign matches any sequence of zero or more
characters, and the underscore represents any single character. To use either character
as a literal value, you can use the backslash character (\) to escape the match
characters. For example, this call to SQLTables usually matches table names such as
myatest and my_test:

select * from connection to netezza (NETEZZA::SQLTables "test","","my_test");

Use the escape character to search only for the my_test table:

select * from connection to netezza (NETEZZA::SQLTables "test","","my_test");

SAS/ACCESS Interface to Netezza supports these special queries:

Netezza::SQLTables <"Catalog", "Schema", "Table-name", "Type">
returns a list of all tables that match the specified arguments. If you do not
specify any arguments, all accessible table names and information are returned.

Netezza::SQLColumns <"Catalog", "Schema", "Table-name", "Column-name">
returns a list of all columns that match the specified arguments. If you do not
specify any argument, all accessible column names and information are returned.

628 Temporary Table Support for Netezza � Chapter 22

Netezza::SQLPrimaryKeys <"Catalog", "Schema", "Table-name">
returns a list of all columns that compose the primary key that matches the
specified table. A primary key can be composed of one or more columns. If you do
not specify any table name, this special query fails.

Netezza::SQLSpecialColumns <"Identifier-type", "Catalog-name", "Schema-name",
"Table-name", "Scope", "Nullable">

returns a list of the optimal set of columns that uniquely identify a row in the
specified table.

Netezza::SQLStatistics <"Catalog", "Schema", "Table-name">
returns a list of the statistics for the specified table name, with options of
SQL_INDEX_ALL and SQL_ENSURE set in the SQLStatistics API call. If you do
not specify any table name argument, this special query fails.

Netezza::SQLGetTypeInfo
returns information about the data types that the Netezza Performance Server
supports.

Temporary Table Support for Netezza

General Information
See the section on the temporary table support in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.

Establishing a Temporary Table

To make full use of temporary tables, the CONNECTION=GLOBAL connection
option is necessary. This option lets you use a single connection across SAS DATA steps
and SAS procedure boundaries. This connection can also be shared between LIBNAME
statements and the SQL pass-through facility. Because a temporary table exists only
within a single connection, you need to be able to share this single connection among all
steps that reference the temporary table. The temporary table cannot be referenced
from any other connection.

You can currently use only a PROC SQL statement to create a temporary table. To
use both the SQL pass-through facility and librefs to reference a temporary table, you
must specify a LIBNAME statement before the PROC SQL step so that global
connection persists across SAS steps and even across multiple PROC SQL steps. Here
is an example:

proc sql;
connect to netezza (server=nps1 database=test

user=myuser password=mypwd connection=global);
execute (create temporary table temptab1 as select * from permtable) by netezza;

quit;

At this point, you can refer to the temporary table by using either the Temp libref or
the CONNECTION=GLOBAL option with a PROC SQL step.

SAS/ACCESS Interface to Netezza � Examples 629

Terminating a Temporary Table
You can drop a temporary table at any time or allow it to be implicitly dropped when

the connection is terminated. Temporary tables do not persist beyond the scope of a
single connection.

Examples
The following assumptions apply to the examples in this section:

� The DeptInfo table already exists on the DBMS that contains all of your
department information.

� One SAS data set contains join criteria that you want to use to extract specific
rows from the DeptInfo table.

� Another SAS data set contains updates to the DeptInfo table.

These examples use the following librefs and temporary tables.

libname saslib base ’SAS-Data-Library’;
libname dept netezza server=nps1 database=test

user=myuser pwd=mypwd connection=global;
libname temp netezza server=nps1 database=test

user=myuser pwd=mypwd connection=global;

proc sql;
connect to netezza (server=nps1 database=test

user=myuser pwd=mypwd connection=global);
execute (create temporary table temptab1 (dname char(20),

deptno int)) by netezza;
quit;

This first example shows how to use a heterogeneous join with a temporary table to
perform a homogeneous join on the DBMS, instead of reading the DBMS table into SAS
to perform the join. By using the table that was created previously, you can copy SAS
data into the temporary table to perform the join.

proc sql;
connect to netezza (server=nps1 database=test

user=myuser pwd=mypwd connection=global);
insert into temp.temptab1 select * from saslib.joindata;
select * from dept.deptinfo info, temp.temptab1 tab

where info.deptno = tab.deptno;
/* remove the rows for the next example */
execute (delete from temptab1) by netezza;
quit;

In this next example, transaction processing on the DBMS occurs by using a
temporary table instead of using either DBKEY= or
MULTI_DATASRC_OPT=IN_CLAUSE with a SAS data set as the transaction table.

proc sql;
connect to netezza (server=nps1 database=test user=myuser pwd=mypwd connection=global);

insert into temp.temptab1 select * from saslib.transdat;
execute (update deptinfo d set dname = (select dname from temptab1)

where d.deptno = (select deptno from temptab1)) by netezza;
quit;

630 Passing SAS Functions to Netezza � Chapter 22

Passing SAS Functions to Netezza
SAS/ACCESS Interface to Netezza passes the following SAS functions to Netezza for

processing. Where the Netezza function name differs from the SAS function name, the
Netezza name appears in parentheses. For more information, see “Passing Functions to
the DBMS Using PROC SQL” on page 42.

ABS
ARCOS (ACOS)
ARSIN (ASIN)
ATAN
ATAN2
AVG
BAND (int4and)
BNOT (int4not)
BLSHIFT (int4shl)
BRSHIFT (int4shr)
BOR (int4or)
BXOR (int4xor)
BYTE (chr)
CEIL
COALESCE
COMPRESS (translate)
COS
COUNT
DAY (date_part)
EXP
FLOOR
HOUR (date_part)
INDEX (position)
LOG (ln)
LOG10 (log)
LOWCASE (lower)
MAX
MIN
MINUTE (date_part)
MOD
MONTH (date_part)
QTR (date_part)
REPEAT
SECOND (date_part)
SIGN
SIN
SOUNDEX
SQRT

SAS/ACCESS Interface to Netezza � Passing Joins to Netezza 631

STRIP (btrim)

SUBSTR

SUM

TAN

TRANWRD (translate)

TRIMN (rtrim)

UPCASE (upper)

WEEK[<SAS date val>, ’V’] (date_part)

YEAR (date_part)

SQL_FUNCTIONS= ALL allows for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to Netezza. Due to incompatibility in date and time functions between
Netezza and SAS, Netezza might not process them correctly. Check your results to
determine whether these functions are working as expected.

DATE (current_date)

DATEPART (cast)

DATETIME (now)

LENGTH

ROUND

TIME (current_time)

TIMEPART (cast)

TODAY (current_date)

TRANSLATE

WEEK[<SAS date val>] (date part)

WEEK[<SAS date val>, ’U’] (date part)

WEEK[<SAS date val>, ’W’] (date part)

Passing Joins to Netezza

For a multiple libref join to pass to Netezza, all of these components of the
LIBNAME statements must match exactly:

� user ID (USER=)

� password (PASSWORD=)

� server (SERVER=)

� database (DATABASE=)

� port (PORT=)

� data source (DSN=, if specified)

� catalog (QUALIFIER=, if specified)

� SQL functions (SQL_FUNCTIONS=)

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

632 Bulk Loading and Unloading for Netezza � Chapter 22

Bulk Loading and Unloading for Netezza

Loading

Overview
Bulk loading is the fastest way to insert large numbers of rows into a Netezza table.

To use the bulk-load facility, specify BULKLOAD=YES. The bulk-load facility uses the
Netezza Remote External Table interface to move data from the client to the Netezza
Performance Server.

Here are the Netezza bulk-load data set options. For detailed information about these
options, see Chapter 11, “Data Set Options for Relational Databases,” on page 203.

� BL_DATAFILE=
� BL_DELETE_DATAFILE=
� BL_DELIMITER=
� BL_OPTIONS=
� BL_USE_PIPE=
� BULKLOAD=

Examples
This first example shows how you can use a SAS data set, SASFLT.FLT98, to create

and load a large Netezza table, FLIGHTS98:

libname sasflt ’SAS-data-library’;
libname net_air netezza user=louis pwd=fromage

server=air2 database=flights;

proc sql;
create table net_air.flights98

(bulkload=YES bl_options=’logdir "c:\temp\netlogs"’)
as select * from sasflt.flt98;

quit;

You can use BL_OPTIONS= to pass specific Netezza options to the bulk-loading
process. The logdir option specifies the directory for the nzbad and nzlog files to be
generated during the load.

This next example shows how you can append the SAS data set, SASFLT.FLT98, to
the existing Netezza table, ALLFLIGHTS. The BL_USE_PIPE=NO option forces
SAS/ACCESS Interface to Netezza to write data to a flat file, as specified in the
BL_DATAFILE= option. Rather than deleting the data file,
BL_DELETE_DATAFILE=NO causes the engine to leave it after the load has completed.

proc append base=net_air.allflights
(BULKLOAD=YES
BL_DATAFILE=’/tmp/fltdata.dat’
BL_USE_PIPE=NO
BL_DELETE_DATAFILE=NO)

data=sasflt.flt98;
run;

SAS/ACCESS Interface to Netezza � Unloading 633

Unloading

Overview
Bulk unloading is the fastest way to insert large numbers of rows from a Netezza

table. To use the bulk-unload facility, specify BULKUNLOAD=YES. The bulk-unload
facility uses the Netezza Remote External Table interface to move data from the client
to the Netezza Performance Server into SAS.

Here are the Netezza bulk-unload data set options:
BL_DATAFILE=
BL_DELIMITER=
BL_OPTIONS=
BL_USE_PIPE=
BULKLOAD=

Examples
This first example shows how you can read the large Netezza table, FLIGHTS98, to

create and populate a SAS data set, SASFLT.FLT98:

libname sasflt ’SAS-data-library’;
libname net_air netezza user=louis pwd=fromage

server=air2 database=flights;

proc sql;
create table sasflt.flt98

as select * from net_air.flights98
(bulkunload=YES bl_options=’logdir "c:\temp\netlogs"’);

quit;

You can use BL_OPTIONS= to pass specific Netezza options to the unload process.
The logdir option specifies the directory for the nzbad and nzlog files to be generated
during the unload.

This next example shows how you can append the contents of the Netezza table,
ALLFLIGHTS, to an existing SAS data set, SASFLT.FLT98. The BL_USE_PIPE=NO
option forces SAS/ACCESS Interface to Netezza to read data from a flat file, as specified
in the BL_DATAFILE= option. Rather than deleting the data file,
BL_DELETE_DATAFILE=NO causes the engine to leave it after the unload has
completed.

proc append base=sasflt.flt98
data=net_air.allflights
(BULKUNLOAD=YES
BL_DATAFILE=’/tmp/fltdata.dat’
BL_USE_PIPE=NO
BL_DELETE_DATAFILE=NO);

run;

634 Deploying and Using SAS Formats in Netezza � Chapter 22

Deploying and Using SAS Formats in Netezza

Using SAS Formats
SAS formats are basically mapping functions that change an element of data from

one format to another. For example, some SAS formats change numeric values to
various currency formats or date-and-time formats.

SAS supplies many formats. You can also use the SAS FORMAT procedure to define
custom formats that replace raw data values with formatted character values. For
example, this PROC FORMAT code creates a custom format called $REGION that
maps ZIP codes to geographic regions.

proc format;
value $region
’02129’, ’03755’, ’10005’ = ’Northeast’
’27513’, ’27511’, ’27705’ = ’Southeast’
’92173’, ’97214’, ’94105’ = ’Pacific’;

run;

SAS programs frequently use both user-defined formats and formats that SAS
supplies. Although they are referenced in numerous ways, using the PUT function in
the SQL procedure is of particular interest for SAS In-Database processing.

The PUT function takes a format reference and a data item as input and returns a
formatted value. This SQL procedure query uses the PUT function to summarize sales
by region from a table of all customers:

select put(zipcode,$region.) as region,
sum(sales) as sum_sales from sales.customers
group by region;

The SAS SQL processor knows how to process the PUT function. Currently,
SAS/ACCESS Interface to Netezza returns all rows of unformatted data in the
SALES.CUSTOMERS table in the Netezza database to the SAS System for processing.

The SAS In-Database technology deploys, or publishes, the PUT function
implementation to Netezza as a new function named SAS_PUT(). Similar to any other
programming language function, the SAS_PUT() function can take one or more input
parameters and return an output value.

The SAS_PUT() function supports use of SAS formats. You can specify the
SAS_PUT() function in SQL queries that SAS submits to Netezza in one of two ways:

� implicitly by enabling SAS to automatically map PUT function calls to SAS_PUT()
function calls

� explicitly by using the SAS_PUT() function directly in your SAS program

If you used the SAS_PUT() function in the previous example, Netezza formats the
ZIP code values with the $REGION format and processes the GROUP BY clause using
the formatted values.

By publishing the PUT function implementation to Netezza as the SAS_PUT()
function, you can realize these advantages:

� You can process the entire SQL query inside the database, which minimizes data
transfer (I/O).

� The SAS format processing leverages the scalable architecture of the DBMS.

� The results are grouped by the formatted data and are extracted from the Netezza
data warehouse.

SAS/ACCESS Interface to Netezza � How It Works 635

Deploying SAS formats to execute inside a Netezza database can enhance
performance and exploit Netezza parallel processing.

How It Works
By using the SAS formats publishing macro, you can generate a SAS_PUT() function

that enables you to execute PUT function calls inside the Netezza data warehouse. You
can reference the formats that SAS supplies and most custom formats that you create
by using PROC FORMAT.

The SAS formats publishing macro takes a SAS format catalog and publishes it to the
Netezza data warehouse. Inside the Netezza data warehouse, a SAS_PUT() function,
which emulates the PUT function, is created and registered for use in SQL queries.

Figure 22.1 Process Flow Diagram

SAS SAS

Client Application

PROC FORMATPublishing Client

Format
Catalog

Install
Script

Format
Publishing

Macros

SAS/ACCESS
Interfaces

SAS/ACCESS
Interfaces

DBMS

SAS_PUT()
Function

Deployed
Components

for In-Database
Processing

3

4

2

1

Here is the basic process flow.
u Install the components that are necessary for in-database processing in the

Netezza data warehouse.

636 Deployed Components for In-Database Processing � Chapter 22

For more information, see “Deployed Components for In-Database Processing”
on page 636.

Note: This is a one-time installation process. �

v If you need to, create your custom formats by using PROC FORMAT and use the
LIBRARY= option to create a permanent catalog.

For more information, see “User-Defined Formats in the Netezza Data
Warehouse” on page 637 and the FORMAT procedure in the Base SAS Procedures
Guide.

w Start SAS 9.2 and run the SAS publishing macros.

For more information, see “Publishing SAS Formats” on page 637.

x After the SAS_PUT() function is created, it is available to use in any SQL
expression in the same way that Netezza built-in functions are used.

For more information, see “Using the SAS_PUT() Function in the Netezza Data
Warehouse” on page 644.

Deployed Components for In-Database Processing
Components that are deployed to Netezza for in-database processing are contained

in a self-extracting TAR file on the SAS Software Depot.
The following components are deployed:

� the SAS 9.2 Formats Library for Netezza. The library contains many formats that
are available in Base SAS. After you install the SAS 9.2 Formats Library and run
the %INDNZ_PUBLISH_FORMATS macro, the SAS_PUT() function can call
these formats.

Note: The SAS Scoring Accelerator for Netezza also uses these libraries. For
more information about this product, see the SAS Scoring Accelerator for Netezza:
User’s Guide. �

� the SAS Accelerator Publishing Agent. The SAS Accelerator Publishing Agent
contains all macros that are needed for publishing the SAS 9.2 Formats Library
(TwinFin systems only), the SAS_PUT() function, and user-defined formats for
Netezza:

� %INDNZ_PUBLISH_JAZLIB (TwinFin systems only). The
%INDNZ_PUBLISH_JAZLIB macro publishes the SAS 9.2 Formats Library
for Netezza.

� %INDNZ_PUBLISH_COMPILEUDF. The
%INDNZ_PUBLISH_COMPILEUDF macro creates the SAS_COMPILEUDF,
SAS_DIRECTORYUDF, and SAS_HEXTOTEXTUDF functions that are
needed to facilitate the publishing of the SAS_PUT() function and formats.

� %INDNZ_PUBLISH_FORMATS. The %INDNZ_PUBLISH_FORMATS macro
publishes the SAS_PUT() function and formats.

The %INDNZ_PUBLISH_JAZLIB and %INDNZ_PUBLISH_COMPILEUDF
macros are typically run by your system or database administrator.

For more information about creating the SAS Software Depot, see your Software Order
e–mail. For more information about installing and configuring these components, see
the SAS In-Database Products: Administrator’s Guide.

SAS/ACCESS Interface to Netezza � Publishing SAS Formats 637

User-Defined Formats in the Netezza Data Warehouse
You can use PROC FORMAT to create user-defined formats and store them in a

format catalog. You can then use the %INDNZ_PUBLISH_FORMATS macro to export
the user-defined format definitions to the Netezza data warehouse where the
SAS_PUT() function can reference them.

If you use the FMTCAT= option to specify a format catalog in the
%INDNZ_PUBLISH_FORMATS macro, these restrictions and limitations apply:

� Trailing blanks in PROC FORMAT labels are lost when publishing a picture
format.

� Avoid using PICTURE formats with the MULTILABEL option. You cannot
successfully create a CNTLOUT= data set when PICTURE formats are present.
This a known issue with PROC FORMAT.

� The following limitations apply if you are using a character set encoding other
than Latin1:

� Picture formats are not supported. The picture format supports only Latin1
characters.

� If the format value’s encoded string is longer than 256 bytes, the string is
truncated and a warning is printed to the SAS log.

� If you use the MULTILABEL option, only the first label that is found is returned.
For more information, see the PROC FORMAT MULTILABEL option in the Base
SAS Procedures Guide.

� The %INDNZ_PUBLISH_FORMATS macro rejects a format unless the
LANGUAGE= option is set to English or is not specified.

� Although the format catalog can contain informats, the
%INDNZ_PUBLISH_FORMATS macro ignores the informats.

� User-defined formats that include a format that SAS supplies are not supported.

Publishing SAS Formats

Overview of the Publishing Process
The SAS publishing macros are used to publish formats and the SAS_PUT() function

in Netezza.
The %INDNZ_PUBLISH_FORMATS macro creates the files that are needed to build

the SAS_PUT() function and publishes those files to the Netezza data warehouse.
This macro also registers the formats that are included in the SAS 9.2 Formats

Library for Netezza. In addition to registering the formats that SAS supplies, you can
publish the PROC FORMAT definitions that are contained in a single SAS format
catalog. The process of publishing a PROC FORMAT catalog entry converts the
value-range-sets, for example, 1=’yes’ 2=’no’, into embedded data in Netezza. For more
information on value-range-sets, see PROC FORMAT in the Base SAS Procedures Guide.

The %INDNZ_PUBLISH_FORMATS macro performs the following tasks:
� produces the set of .c, .cpp, and .h files that are necessary to build the SAS_PUT()

function
� produces a script of the Netezza commands that are necessary to register the

SAS_PUT() function on the Netezza data warehouse
� transfers the .c, .cpp, and .h files to Netezza using the Netezza External Table

interface

638 Publishing SAS Formats � Chapter 22

� calls the SAS_COMPILEUDF function to compile the source files into object files
and to access the SAS 9.2 Formats Library for Netezza

� uses SAS/ACCESS Interface to Netezza to run the script to create the SAS_PUT()
function with the object files

Running the %INDNZ_PUBLISH_FORMATS Macro

To run the %INDNZ_PUBLISH_FORMATS macro, complete the following steps:

1 Start SAS 9.2 and submit these commands in the Program Editor or Enhanced
Editor:

%indnzpf;
%let indconn = server=myserver user=myuserid password=XXXX

database=mydb;

The %INDNZPF macro is an autocall library that initializes the format
publishing software.

The INDCONN macro variable is used as credentials to connect to Netezza. You
must specify the server, user, password, and database to access the machine on
which you have installed the Netezza data warehouse. You must assign the
INDCONN macro variable before the %INDNZ_PUBLISH_FORMATS macro is
invoked.

Here is the syntax for the value of the INDCONN macro variable:

SERVER=server USER=userid PASSWORD=password
DATABASE=database

Note: You can use only PASSWORD= or PW= for the password argument. Other
aliases such as PASS= or PWD= are not supported and cause errors. �

Note: The INDCONN macro variable is not passed as an argument to the
%INDNZ_PUBLISH_FORMATS macro. This information can be concealed in your
SAS job. You might want to place it in an autoexec file and set the permissions on
the file so that others cannot access the user ID and password. �

2 Run the %INDNZ_PUBLISH_FORMATS macro. For more information, see
“%INDNZ_PUBLISH_FORMATS Macro Syntax” on page 638.

Messages are written to the SAS log that indicate whether the SAS_PUT()
function was successfully created.

%INDNZ_PUBLISH_FORMATS Macro Syntax

%INDNZ_PUBLISH_FORMATS (
<, DATABASE=database–name>
<. DBCOMPILE=database-name>
<, DBJAZLIB=database-name>
<, FMTCAT=format-catalog-filename>
<, FMTTABLE=format-table-name>
<, ACTION=CREATE | REPLACE | DROP>
<, OUTDIR=diagnostic-output-directory>
);

SAS/ACCESS Interface to Netezza � Publishing SAS Formats 639

Arguments

DATABASE=database-name
specifies the name of a Netezza database to which the SAS_PUT() function and
the formats are published. This argument lets you publish the SAS_PUT()
function and the formats to a shared database where other users can access them.
Interaction: The database that is specified by the DATABASE= argument takes

precedence over the database that you specify in the INDCONN macro variable.
For more information, see “Running the %INDNZ_PUBLISH_FORMATS
Macro” on page 638.

Tip: It is not necessary that the format definitions and the SAS_PUT() function
reside in the same database as the one that contains the data that you want to
format. You can use the SQLMAPPUTO= system option to specify the database
where the format definitions and the SAS_PUT() function have been published.

DBCOMPILE=database-name
specifies the name of the database where the SAS_COMPILEUDF function was
published.
Default: SASLIB
See: For more information about the publishing the SAS_COMPILEUDF

function, see the SAS In-Database Products: Administrator’s Guide.

DBJAZLIB=database-name
specifies the name of the database where the SAS 9.2 Formats Library for Netezza
was published.
Default: SASLIB
Restriction: This argument is supported only on TwinFin systems.
See: For more information about publishing the SAS 9.2 Formats Library on

TwinFin systems, see the SAS In-Database Products: Administrator’s Guide.

FMTCAT=format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created with the FORMAT procedure and will be made available in
Netezza.
Default: If you do not specify a value for FMTCAT= and you have created

user-defined formats in your SAS session, the default is WORK.FORMATS. If
you do not specify a value for FMTCAT= and you have not created any
user-defined formats in your SAS session, only the formats that SAS supplies
are available in Netezza.

Interaction: If the format definitions that you want to publish exist in multiple
catalogs, you must copy them into a single catalog for publishing.

Interaction: If you specify more than one format catalog using the FMTCAT
argument, only the last catalog specified is published.

Interaction: If you do not use the default catalog name (FORMATS) or the
default library (WORK or LIBRARY) when you create user-defined formats, you
must use the FMTSEARCH system option to specify the location of the format
catalog. For more information, see PROC FORMAT in the Base SAS Procedures
Guide.

See Also: “User-Defined Formats in the Netezza Data Warehouse” on page 637

640 Publishing SAS Formats � Chapter 22

FMTTABLE=format–table–name
specifies the name of the Netezza table that contains all formats that the
%INDNZ_PUBLISH_FORMATS macro creates and that the SAS_PUT() function
supports. The table contains the columns shown in Table 2.1.

Table 22.3 Format Table Columns

Column Name Description

FMTNAME specifies the name of the format.

SOURCE specifies the origin of the format. SOURCE can contain one of these
values:

SAS supplied by SAS

PROCFMT User-defined with PROC FORMAT

Default: If FMTTABLE is not specified, no table is created. You can see only the
SAS_PUT() function. You cannot see the formats that are published by the
macro.

Interaction: If ACTION=CREATE or ACTION=DROP is specified, messages are
written to the SAS log that indicate the success or failure of the table creation
or drop.

ACTION=CREATE | REPLACE | DROP
specifies that the macro performs one of these actions:

CREATE
creates a new SAS_PUT() function.

REPLACE
overwrites the current SAS_PUT() function, if a SAS_PUT() function is
already registered or creates a new SAS_PUT() function if one is not
registered.

DROP
causes the SAS_PUT() function to be dropped from the Netezza database.
Interaction: If FMTTABLE= is specified, both the SAS_PUT() function and

the format table are dropped. If the table name cannot be found or is
incorrect, only the SAS_PUT() function is dropped.

Default: CREATE
Tip: If the SAS_PUT() function was published previously and you specify

ACTION=CREATE or REPLACE, no warning is issued. Also, if you specify
ACTION=DROP and the SAS_PUT() function does not exist, no warning is
issued.

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information
about the success or failure of the publishing process.
See: “Special Characters in Directory Names” on page 642

SAS/ACCESS Interface to Netezza � Publishing SAS Formats 641

Tips for Using the %INDNZ_PUBLISH_FORMATS Macro

� Use the ACTION=CREATE option only the first time that you run the
%INDNZ_PUBLISH_FORMATS macro. After that, use ACTION=REPLACE or
ACTION=DROP.

� The %INDNZ_PUBLISH_FORMATS macro does not require a format catalog. To
publish only the formats that SAS supplies, you need to have either no format
catalog or an empty format catalog. You can use this code to create an empty
format catalog in your WORK directory before you publish the PUT function and
the formats that SAS supplies:

proc format;
run;

� If you modify any PROC FORMAT entries in the source catalog, you must
republish the entire catalog.

� When SAS parses the PUT function, SAS checks to make sure that the format is a
known format name. SAS looks for the format in the set of formats that are
defined in the scope of the current SAS session. If the format name is not defined
in the context of the current SAS session, the SAS_PUT() function is returned to
the local SAS session for processing.

� Using both the SQLREDUCEPUT= system option (or the PROC SQL
REDUCEPUT= option) and SQLMAPPUTTO= can result in a significant
performance boost. First, SQLREDUCEPUT= works to reduce as many PUT
functions as possible. Then you can map the remaining PUT functions to
SAS_PUT() functions, by setting SQLMAPPUTTO= SAS_PUT.

� If the %INDNZ_PUBLISH_FORMATS macro is executed between two procedure
calls, the page number of the last query output is increased by two.

642 Publishing SAS Formats � Chapter 22

Special Characters in Directory Names
If the directory names that are used in the macros contain any of the following

special characters, you must mask the characters by using the %STR macro quoting
function. For more information, see the %STR function and macro string quoting topic
in SAS Macro Language: Reference.

Table 22.4 Special Characters in Directory Names

Character How to Represent

blank1 %str()

2 %str()

; %str(;)

, (comma) %str(,)

= %str(=)

+ %str(+)

- %str(–)

> %str(>)

< %str(<)

^ %str(^)

| %str(|)

& %str(&)

%str(#)

/ %str(/)

~ %str(~)

% %str(%%)

’ %str(%’)

" %str(%")

(%str(%()

) %str(%))

%str()

1 Only leading blanks require the %STR function, but you should avoid using leading blanks in
directory names.

2 Asterisks (*) are allowed in UNIX directory names. Asterisks are not allowed in Windows
directory names. In general, avoid using asterisks in directory names.

SAS/ACCESS Interface to Netezza � Publishing SAS Formats 643

Here are some examples of directory names with special characters:

Table 22.5 Examples of Special Characters in Directory Names

Directory Code Representation

c:\temp\Sales(part1) c:\temp\Sales%str(%()part1%str(%))

c:\temp\Drug "trial" X c:\temp\Drug %str(%")trial(%str(%") X

c:\temp\Disc’s 50% Y c:\temp\Disc%str(%’)s 50%str(%%) Y

c:\temp\Pay,Emp=Z c:\temp\Pay%str(,)Emp%str(=)Z

Netezza Permissions
You must have permission to create the SAS_PUT() function and formats, and

tables in the Netezza database. You must also have permission to execute the
SAS_COMPILEUDF, SAS_DIRECTORYUDF, and SAS_HEXTOTEXTUDF functions in
either the SASLIB database or the database specified in lieu of SASLIB where these
functions are published.

Without these permissions, the publishing of the SAS_PUT() function and formats
fail. To obtain these permissions, contact your database administrator.

For more information on specific permissions, see the SAS In-Database Products:
Administrator’s Guide.

Format Publishing Macro Example

%indnzpf;
%let indconn = server=netezbase user=user1 password=open1 database=mydb;
%indnz_publish_formats(fmtcat= fmtlib.fmtcat);

This sequence of macros generates .c, .cpp, and .h files for each data type. The
format data types that are supported are numeric (FLOAT, INT), character, date, time,
and timestamp (DATETIME). The %INDNZ_PUBLISH_FORMATS macro also produces
a text file of Netezza CREATE FUNCTION commands that are similar to these:

CREATE FUNCTION sas_put(float , varchar(256))
RETURNS VARCHAR(256)
LANGUAGE CPP
PARAMETER STYLE npsgeneric
CALLED ON NULL INPUT
EXTERNAL CLASS NAME ’Csas_putn’
EXTERNAL HOST OBJECT ’/tmp/tempdir_20090528T135753_616784/formal5.o_x86’
EXTERNAL NSPU OBJECT ’/tmp/tempdir_20090528T135753_616784/formal5.o_diab_ppc’

After it is installed, you can call the SAS_PUT() function in Netezza by using SQL.
For more information, see “Using the SAS_PUT() Function in the Netezza Data
Warehouse” on page 644.

644 Using the SAS_PUT() Function in the Netezza Data Warehouse � Chapter 22

Using the SAS_PUT() Function in the Netezza Data Warehouse

Implicit Use of the SAS_PUT() Function

After you install the formats that SAS supplies in libraries inside the Netezza data
warehouse and publish any custom format definitions that you created in SAS, you can
access the SAS_PUT() function with your SQL queries.

If the SQLMAPPUTTO= system option is set to SAS_PUT and you submit your
program from a SAS session, the SAS SQL processor maps PUT function calls to
SAS_PUT() function references that Netezza understands.

This example illustrates how the PUT function is mapped to the SAS_PUT()
function using implicit pass-through.

options sqlmapputto=sas_put;

%put &mapconn;

libname dblib netezza &mapconn;

/*-- Set SQL debug global options --*/
/*----------------------------------*/
options sastrace=’,,,d’ sastraceloc=saslog;

/*-- Execute SQL using Implicit Passthru --*/
/*---*/
proc sql noerrorstop;

title1 ’Test SAS_PUT using Implicit Passthru ’;
select distinct

PUT(PRICE,Dollar8.2) AS PRICE_C
from dblib.mailorderdemo;

quit;

These lines are written to the SAS log.

options sqlmapputto=sas_put;

%put &mapconn;
user=dbitext password=dbigrp1 server=spubox database=TESTDB

sql_functions="EXTERNAL_APPEND=WORK.dbfuncext" sql_functions_copy=saslog;

libname dblib netezza &mapconn;

NOTE: Libref DBLIB was successfully assigned, as follows:
Engine: NETEZZA
Physical Name: spubox

/*-- Set SQL debug global options --*/
/*----------------------------------*/
options sastrace=’,,,d’ sastraceloc=saslog;

/*-- Execute SQL using Implicit Passthru --*/
/*---*/

SAS/ACCESS Interface to Netezza � Using the SAS_PUT() Function in the Netezza Data Warehouse 645

proc sql noerrorstop;
title1 ’Test SAS_PUT using Implicit Passthru ’;
select distinct

PUT(PRICE,Dollar8.2) AS PRICE_C
from dblib.mailorderdemo

;
NETEZZA: AUTOCOMMIT is NO for connection 1
NETEZZA: AUTOCOMMIT turned ON for connection id 1

NETEZZA_1: Prepared: on connection 1
SELECT * FROM mailorderdemo

NETEZZA: AUTOCOMMIT is NO for connection 2
NETEZZA: AUTOCOMMIT turned ON for connection id 2

NETEZZA_2: Prepared: on connection 2
select distinct cast(sas_put(mailorderdemo."PRICE", ’DOLLAR8.2’) as char(8))

as PRICE_C from mailorderdemo

NETEZZA_3: Executed: on connection 2
Prepared statement NETEZZA_2

ACCESS ENGINE: SQL statement was passed to the DBMS for fetching data.

Test SAS_PUT using Implicit Passthru 9
13:42 Thursday, May 7, 2009

PRICE_C

$10.00
$12.00
$13.59
$48.99
$54.00
$8.00
$14.00
$27.98
$13.99

quit;

Be aware of these items:

� The SQLMAPPUTTO= system option must be set to SAS_PUT to ensure that the
SQL processor maps your PUT functions to the SAS_PUT() function and the
SAS_PUT() reference is passed through to Netezza.

� The SAS SQL processor translates the PUT function in the SQL SELECT
statement into a reference to the SAS_PUT() function.

select distinct cast(sas_put("sas"."mailorderdemo"."PRICE", ’DOLLAR8.2’)
as char(8)) as "PRICE_C" from "sas"."mailorderdemo"

646 Using the SAS_PUT() Function in the Netezza Data Warehouse � Chapter 22

A large value, VARCHAR(n), is always returned because one function prototype
accesses all formats. Use the CAST expression to reduce the width of the returned
column to be a character width that is reasonable for the format that is being used.

The return text cannot contain a binary zero value (hexadecimal 00) because
the SAS_PUT() function always returns a VARCHAR(n) data type and a Netezza
VARCHAR(n) is defined to be a null-terminated string.

� The format of the SAS_PUT() function parallels that of the PUT function:

SAS_PUT(source, ’format.’)

The SELECT DISTINCT clause executes inside Netezza, and the processing is
distributed across all available data nodes. Netezza formats the price values with the
$DOLLAR8.2 format and processes the SELECT DISTINCT clause using the formatted
values.

Explicit Use of the SAS_PUT() Function
If you use explicit pass-through (direct connection to Netezza), you can use the

SAS_PUT() function call in your SQL program.
This example shows the same query from “Implicit Use of the SAS_PUT() Function”

on page 644 and explicitly uses the SAS_PUT() function call.

options sqlmapputto=sas_put sastrace=’,,,d’ sastraceloc=saslog;

proc sql noerrorstop;
title1 ’Test SAS_PUT using Explicit Passthru’;
connect to netezza (user=dbitest password=XXXXXXX database=testdb

server=spubox);

select * from connection to netezza
(select distinct cast(sas_put("PRICE",’DOLLAR8.2’) as char(8)) as

"PRICE_C" from mailorderdemo);

disconnect from netezza;
quit;

The following lines are written to the SAS log.

options sqlmapputto=sas_put sastrace=’,,,d’ sastraceloc=saslog;

proc sql noerrorstop;
title1 ’Test SAS_PUT using Explicit Passthru’;
connect to netezza (user=dbitest password=XXXXXXX database=testdb server=spubox);

select * from connection to netezza
(select distinct cast(sas_put("PRICE",’DOLLAR8.2’) as char(8)) as

"PRICE_C" from mailorderdemo);

Test SAS_PUT using Explicit Passthru 2
17:13 Thursday, May 7, 2009

PRICE_C

$27.98
$10.00
$12.00
$13.59

SAS/ACCESS Interface to Netezza � Determining Format Publish Dates 647

$48.99
$54.00
$13.98
$8.00

$14.00

disconnect from netezza;
quit;

Note: If you explicitly use the SAS_PUT() function in your code, it is recommended
that you use double quotation marks around a column name to avoid any ambiguity
with the keywords. For example, if you did not use double quotation marks around the
column name, DATE, in this example, all date values would be returned as today’s date.

select distinct
cast(sas_put("price", ’dollar8.2’) as char(8)) as "price_c",
cast(sas_put("date", ’date9.1’) as char(9)) as "date_d",
cast(sas_put("inv", ’best8.’) as char(8)) as "inv_n",
cast(sas_put("name", ’$32.’) as char(32)) as "name_n"

from mailorderdemo;

�

Determining Format Publish Dates
You might need to know when user-defined formats or formats that SAS supplies

were published. SAS supplies two special formats that return a datetime value that
indicates when this occurred.

� The INTRINSIC-CRDATE format returns a datetime value that indicates when
the SAS 9.2 Formats Library was published.

� The UFMT-CRDATE format returns a datetime value that indicates when the
user-defined formats were published.

Note: You must use the SQL pass-through facility to return the datetime value
associated with the INTRINSIC-CRDATE and UFMT-CRDATE formats, as illustrated
in this example.

proc sql noerrorstop;
connect to &netezza (&connopt);

title ’Publish date of SAS Format Library’;
select * from connection to &netezza

(
select sas_put(1, ’intrinsic-crdate.’)

as sas_fmts_datetime;
);

title ’Publish date of user-defined formats’;
select * from connection to &netezza

(
select sas_put(1, ’ufmt-crdate.’)

as my_formats_datetime;
);

disconnect from netezza;
quit;

�

648 Naming Conventions for Netezza � Chapter 22

Naming Conventions for Netezza
For general information about this feature, see Chapter 2, “SAS Names and Support

for DBMS Names,” on page 11.
Since SAS 7, most SAS names can be up to 32 characters long. SAS/ACCESS

Interface to Netezza supports table names and column names that contain up to 32
characters. If DBMS column names are longer than 32 characters, they are truncated
to 32 characters. If truncating a column name would result in identical names, SAS
generates a unique name by replacing the last character with a number. DBMS table
names must be 32 characters or less because SAS does not truncate a longer name. If
you already have a table name that is greater than 32 characters, it is recommended
that you create a table view.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options determine
how SAS/ACCESS Interface to Netezza handles case sensitivity. (For information about
these options, see “Overview of the LIBNAME Statement for Relational Databases” on
page 87.) Netezza is not case sensitive, and all names default to lowercase.

Netezza objects include tables, views, and columns. Follow these naming conventions:
� A name must be from 1 to 128 characters long.
� A name must begin with a letter (A through Z), diacritic marks, or non-Latin

characters (200-377 octal).
� A name cannot begin with an underscore (_). Leading underscores are reserved for

system objects.
� Names are not case sensitive. For example, CUSTOMER and Customer are the same,

but object names are converted to lowercase when they are stored in the Netezza
database. However, if you enclose a name in quotation marks, it is case sensitive.

� A name cannot be a Netezza reserved word, such as WHERE or VIEW.
� A name cannot be the same as another Netezza object that has the same type.

For more information, see your Netezza Database User’s Guide.

Data Types for Netezza

Overview
Every column in a table has a name and a data type. The data type tells Netezza

how much physical storage to set aside for the column and the form in which the data
is stored. This section includes information about Netezza data types, null and default
values, and data conversions.

For more information about Netezza data types and to determine which data types
are available for your version of Netezza, see your Netezza Database User’s Guide.

SAS/ACCESS Interface to Netezza does not directly support TIMETZ or INTERVAL
types. Any columns using these types are read into SAS as character strings.

SAS/ACCESS Interface to Netezza � Date, Time, and Timestamp Data 649

String Data

CHAR(n), NCHAR(n)
specifies a fixed-length column for character string data. The maximum length is
32,768 characters. NCHAR data is stored as UTF-8 in the Netezza database.

VARCHAR(n), NVARCHAR(n)
specifies a varying-length column for character string data. The maximum length
is 32,768 characters. NVARCHAR data is stored as UTF-8 in the Netezza database.

Numeric Data

BIGINT
specifies a big integer. Values in a column of this type can range from
–9223372036854775808 to +9223372036854775807.

SMALLINT
specifies a small integer. Values in a column of this type can range from –32768
through +32767.

INTEGER
specifies a large integer. Values in a column of this type can range from
–2147483648 through +2147483647.

BYTEINT
specifies a tiny integer. Values in a column of this type can range from –128 to
+127.

DOUBLE | DOUBLE PRECISION
specifies a floating-point number that is 64 bits long. Values in a column of this
type can range from –1.79769E+308 to –2.225E-307 or +2.225E-307 to
+1.79769E+308, or they can be 0. This data type is stored the same way that SAS
stores its numeric data type. Therefore, numeric columns of this type require the
least processing when SAS accesses them.

REAL
specifies a floating-point number that is 32 bits long. Values in a column of this
type can range from approximately –3.4E38 to –1.17E-38 and +1.17E-38 to
+3.4E38.

DECIMAL | DEC | NUMERIC | NUM
specifies a fixed-point decimal number. The precision and scale of the number
determines the position of the decimal point. The numbers to the right of the
decimal point are the scale, and the scale cannot be negative or greater than the
precision. The maximum precision is 38 digits.

Date, Time, and Timestamp Data
SQL date and time data types are collectively called datetime values. The SQL data

types for dates, times, and timestamps are listed here. Be aware that columns of these
data types can contain data values that are out of range for SAS.

650 Netezza Null Values � Chapter 22

DATE
specifies date values. The range is 01-01-0001 to 12-31-9999. The default format
YYYY-MM-DD—for example, 1961-06-13. Netezza supports many other formats for
entering date data. For more information, see your Netezza Database User’s Guide.

TIME
specifies time values in hours, minutes, and seconds to six decimal positions:
hh:mm:ss[.nnnnnn]. The range is 00:00:00.000000 to 23:59:59.999999. However,
due to the ODBC-style interface that SAS/ACCESS Interface to Netezza uses to
communicate with the Netezza Performance Server, any fractional seconds are lost
in the transfer of data from server to client.

TIMESTAMP
combines a date and time in the default format of yyyy-mm-dd hh:mm:ss[.nnnnnn].
For example, a timestamp for precisely 2:25 p.m. on January 25, 1991, would be
1991-01-25-14.25.00.000000. Values in a column of this type have the same ranges
as described for DATE and TIME.

Netezza Null Values
Netezza has a special value called NULL. A Netezza NULL value means an absence

of information and is analogous to a SAS missing value. When SAS/ACCESS reads a
Netezza NULL value, it interprets it as a SAS missing value.

You can define a column in a Netezza table so that it requires data. To do this in
SQL, you specify a column as NOT NULL, which tells SQL to allow only a row to be
added to a table if a value exists for the field. For example, NOT NULL assigned to the
CUSTOMER field in the SASDEMO.CUSTOMER table does not allow a row to be
added unless there is a value for CUSTOMER. When creating a Netezza table with
SAS/ACCESS, you can use the DBNULL= data set option to indicate whether NULL is
a valid value for specified columns.

You can also define Netezza columns as NOT NULL DEFAULT. For more information
about using the NOT NULL DEFAULT value, see your Netezza Database User’s Guide.

Knowing whether a Netezza column allows NULLs or whether the host system
supplies a default value for a column that is defined as NOT NULL DEFAULT can help
you write selection criteria and enter values to update a table. Unless a column is
defined as NOT NULL or NOT NULL DEFAULT, it allows NULL values.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” in SAS/ACCESS for Relational Databases:
Reference.

To control how SAS missing character values are handled by the DBMS, use the
NULLCHAR= and NULLCHARVAL= data set options.

LIBNAME Statement Data Conversions
This table shows the default formats that SAS/ACCESS Interface to Netezza assigns

to SAS variables when using the LIBNAME statement to read from a Netezza table.
These default formats are based on Netezza column attributes.

Table 22.6 LIBNAME Statement: Default SAS Formats for Netezza Data Types

Netezza Data Type SAS Data Type Default SAS Format

CHAR(n)* character $n.

VARCHAR(n)* character $n.

SAS/ACCESS Interface to Netezza � LIBNAME Statement Data Conversions 651

Netezza Data Type SAS Data Type Default SAS Format

INTEGER numeric 11.

SMALLINT

BYTEINT

numeric

numeric

6.

4.

BIGINT numeric 20.

DECIMAL(p,s) numeric m.n

NUMERIC(p,s) numeric m.n

REAL numeric none

DOUBLE numeric none

TIME numeric TIME8.

DATE numeric DATE9.

TIMESTAMP numeric DATETIME25.6

* n in Netezza data types is equivalent to w in SAS formats.

The following table shows the default Netezza data types that SAS/ACCESS assigns
to SAS variable formats during output operations when you use the LIBNAME
statement.

Table 22.7 LIBNAME Statement: Default Netezza Data Types for SAS Variable
Formats

SAS Variable Format Netezza Data Type

m.n DECIMAL(p,s)

other numerics DOUBLE

$n. VARCHAR(n)*

datetime formats TIMESTAMP

date formats DATE

time formats TIME

* n in Netezza data types is equivalent to w in SAS formats.

652

653

C H A P T E R

23
SAS/ACCESS Interface to ODBC

Introduction to SAS/ACCESS Interface to ODBC 654
Overview 654

ODBC Concepts 654

ODBC on a PC Platform 654

ODBC on a UNIX Platform 655

ODBC for PC and UNIX Platforms 655
LIBNAME Statement Specifics for ODBC 656

Overview 656

Arguments 656

ODBC LIBNAME Statement Examples 660

Data Set Options for ODBC 660

SQL Pass-Through Facility Specifics for ODBC 662
Key Information 662

CONNECT Statement Examples 662

Connection to Component Examples 663

Special Catalog Queries 664

Autopartitioning Scheme for ODBC 666
Overview 666

Autopartitioning Restrictions 666

Nullable Columns 667

Using WHERE Clauses 667

Using DBSLICEPARM= 667
Using DBSLICE= 667

Configuring SQL Server Partitioned Views for Use with DBSLICE= 668

DBLOAD Procedure Specifics for ODBC 670

Overview 670

Examples 672

Temporary Table Support for ODBC 672
Overview 672

Establishing a Temporary Table 672

Terminating a Temporary Table 672

Examples 673

Passing SAS Functions to ODBC 674
Passing Joins to ODBC 675

Bulk Loading for ODBC 676

Locking in the ODBC Interface 676

Naming Conventions for ODBC 677

Data Types for ODBC 678
Overview 678

ODBC Null Values 678

LIBNAME Statement Data Conversions 679

654 Introduction to SAS/ACCESS Interface to ODBC � Chapter 23

Introduction to SAS/ACCESS Interface to ODBC

Overview
This section describes SAS/ACCESS Interface to ODBC. For a list of SAS/ACCESS

features that are available in this interface, see “SAS/ACCESS Interface to ODBC:
Supported Features” on page 81.

ODBC Concepts
Open database connectivity (ODBC) standards provide a common interface to a

variety of data sources. The goal of ODBC is to enable access to data from any
application, regardless of which DBMS handles the data. ODBC accomplishes this by
inserting a middle layer—consisting of an ODBC driver manager and an ODBC
driver—between an application and the target DBMS. The purpose of this layer is to
translate application data queries into commands that the DBMS understands.
Specifically, ODBC standards define application programming interfaces (APIs) that
enable applications such as SAS software to access a database. For all of this to work,
both the application and the DBMS must be ODBC-compliant, meaning the application
must be able to issue ODBC commands and the DBMS must be able to respond to these.

Here are the basic components and features of ODBC.
Three components provide ODBC functionality: the client interface, the ODBC driver

manager, and the ODBC driver for the data source with which you want to work, as
shown below.

Figure 23.1 The ODBC Interface to SAS

For PC and UNIX environments, SAS provides SAS/ACCESS Interface to ODBC as
the client interface. Consisting of the ODBC driver manager and the ODBC driver, the
client setup with which SAS/ACCESS Interface to ODBC works is quite different
between the two platforms.

ODBC on a PC Platform
On the PC side, the Microsoft ODBC Data Source Administrator is the ODBC driver

manager. You can open the ODBC Data Source Administrator from the Windows
control panel. Working through a series of dialog boxes, you can create an ODBC data

SAS/ACCESS Interface to ODBC � ODBC Concepts 655

source name (DSN) by selecting a particular ODBC driver for the database with which
you want to work from the list of available drivers. You can then provide specific
connection information for the database that the specific driver can access.

USER DSN specific to an individual user. It is available only to the user who
creates it.

SYSTEM DSN not specific to an individual user. Anyone with permission to access
the data source can use it.

FILE DSN not specific to an individual user. It can be shared among users even
though it is created locally. Because this DSN is file-based, it
contains all information that is required to connect to a data source.

You can create multiple DSNs in this way and then reference them in your PC-based
SAS/ACCESS Interface to ODBC code.

When you use the ODBC Data Source Administrator on the PC to create your ODBC
data sources, the ODBC drivers for the particular databases from which you want to
enable access to data are often in the list of available drivers, especially those for the
more common databases. If the ODBC driver you want is not listed, you must work to
obtain one.

ODBC on a UNIX Platform
ODBC on UNIX works a bit differently. The ODBC driver manager and ODBC

drivers on the PC are available by default, so you need only plug them in. Because
these components are not generally available on UNIX, you must instead work with
third-party vendors to obtain them.

When you submit SAS/ACCESS Interface to ODBC code, SAS looks first for an
ODBC driver manager. It checks the directories that are listed in such environment
variables settings as LD_LIBRARY_PATH, LIBPATH, or SHLIB_PATH, depending on
your UNIX platform. It uses the first ODBC driver manager that it finds.

The ODBC driver manager then checks .INI files—either a stand-alone ODBC.INI
file, or a combination of ODBC.INI and ODBCINST.INI files—for the DSNs that you
specified in your code. To make sure that the intended .INI files are referenced, you can
use such environment variables settings as ODBCINI or ODBCSYSINI, depending on
how your .INI files are set up. You can set up global .INI files for all your users, or you
can set up .INI files for single users or groups of users. This is similar to using the
ODBC Data Source Administrator to create either SYSTEM or USER DSNs for PC
platforms. One or more .INI files include a section for each DSN, and each section
includes specific connection information for each data source from which you ultimately
want to enable access to data. Some ODBC driver vendors provide tools with which you
can build one or more of your .INI files. However, editing a sample generic .INI file that
is provided with the ODBC driver is often done manually.

Most database vendors—such as Sybase, Oracle, or DB2—include ODBC drivers for
UNIX platforms. However, to use SAS/ACCESS Interface to ODBC, you must pair a
UNIX-based ODBC driver manager with your UNIX-based ODBC driver. Freeware
ODBC driver managers for UNIX such as unixODBC are generally available for
download. Another alternative is to obtain the required ODBC client components for
UNIX platforms from third-party vendors who market both ODBC drivers for various
databases and an ODBC driver manager that works with these drivers. To use
SAS/ACCESS Interface to ODBC, you can select any ODBC client solution that you
want as long as it is ODBC-compliant.

ODBC for PC and UNIX Platforms
These concepts are common across both PC and UNIX platforms.

656 LIBNAME Statement Specifics for ODBC � Chapter 23

� ODBC uses SQL syntax for queries and statement execution, or for statements
that are executed as commands. However, all databases that support ODBC are
not necessarily SQL databases. For example, many databases do not have system
tables. Also, the term table can describe a variety of items–including a file, a part
of a file, a group of files, a typical SQL table, generated data, or any potential
source of data. This is an important distinction. All ODBC data sources respond to
a base set of SQL statements such as SELECT, INSERT, UPDATE, DELETE,
CREATE, and DROP in their simplest forms. However, some databases do not
support other statements and more complex forms of SQL statements.

� The ODBC standard allows for various levels of conformance that is generally
categorized as low, medium, and high. As previously mentioned, the level of SQL
syntax that is supported varies. Also, some driver might not support many
programming interfaces. SAS/ACCESS Interface to ODBC works with API calls
that conform to the lowest level of ODBC compliance, Level 1. However, it does
use some Level 2 API calls if they are available.

SAS programmers or end users must make sure that their particular ODBC
driver supports the SQL syntax to be used. If the driver supports a higher level of
API conformance, some advanced features are available through the PROC SQL
CONNECT statement and special queries that SAS/ACCESS Interface to ODBC
supports. For more information, see “Special Catalog Queries” on page 664.

� The ODBC manager and drivers return standard operation states and custom text
for any warnings or errors. The state variables and their associated text are
available through the SAS SYSDBRC and SYSDBMSG macro variables.

LIBNAME Statement Specifics for ODBC

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to

ODBC supports and includes examples. For details about this feature, see “Overview of
the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing ODBC.

LIBNAME libref odbc <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

SAS/ACCESS Interface to ODBC � Arguments 657

odbc
specifies the SAS/ACCESS engine name for the ODBC interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. When you use the LIBNAME
statement, you can connect to ODBC in many different ways. Specify only one of
these methods for each connection because they are mutually exclusive.

� USER=, PASSWORD=, DATASRC=

� COMPLETE=

� NOPROMPT=

� PROMPT=

� READBUFF=

� REQUIRED=

Here is how these options are defined.

USER=<’>user-name<’>
lets you connect to an ODBC database with a user ID that is different from
the default ID. USER= is optional. UID= is an alias for this option.

PASSWORD=<’>password<’>
specifies the ODBC password that is associated with your user ID.
PASSWORD= is optional. PWD is an alias for this option. If you do not want
to enter your DB2 password in uncoded text on this statement, see PROC
PWENCODE in Base SAS Procedures Guidefor a method to encode it.

DATASRC=<’>ODBC-data-source<’>
specifies the ODBC data source to which you want to connect. For PC
platforms, data sources must be configured by using the ODBC icon in the
Windows Control Panel. For UNIX platforms, data sources must be
configured by modifying the .odbc.ini file. DSN= is an alias for this option that
indicates that the connection is attempted using the ODBC SQLConnect API,
which requires a data source name. You can also use a user ID and password
with DSN=. If you want to use an ODBC file DSN, then instead of supplying
DATASRC=<’>ODBC-data-source<’>, use the PROMPT= or NOPROMPT=
option followed by "filedsn=(name-of-your-file-dsn);". For example:

libname mydblib odbc noprompt="filedsn=d:\share\msafiledsn.dsn;";

COMPLETE=<’>ODBC-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. When connection succeeds, the complete
connection string is returned in the SYSDBMSG macro variable. If you do
not specify enough correct connection options, you are prompted with a dialog
box that displays the values from the COMPLETE= connection string. You
can edit any field before you connect to the data source. This option is not
supported on UNIX platforms. See your ODBC driver documentation for
more details.

NOPROMPT=<’>ODBC-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. If you do not specify enough correct
connection options, an error is returned. No dialog box displays to help you
complete the connection string.

658 Arguments � Chapter 23

PROMPT=<’>ODBC-connection-information<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. When connection succeeds, the complete
connection string is returned in the SYSDBMSG macro variable. PROMPT=
does not immediately try to connect to the DBMS. Instead, it displays a dialog
box that contains the values that you entered in the PROMPT= connection
string. You can edit values or enter additional values in any field before you
connect to the data source. This option is not supported on UNIX platforms.

READBUFF= number-of-rows
Use this argument to improve the performance of most queries to ODBC. By
setting the value of the READBUFF= argument in your SAS programs, you
can find the optimal number of rows for a specified query on a specified table.
The default buffer size is one row per fetch. The maximum is 32,767 rows per
fetch, although a practical limit for most applications is less and depends
upon on the available memory.

REQUIRED=<’>ODBC-connection-options<’>
specifies connection options for your data source or database. Separate
multiple options with a semicolon. When connection succeeds, the complete
connection string is returned in the SYSDBMSG macro variable. If you do
not specify enough correct connection options, a dialog box prompts you for
the connection options. REQUIRED= lets you modify only required fields in
the dialog box. This option is not supported on UNIX platforms.

See your ODBC driver documentation for a list of the ODBC connection options
that your ODBC driver supports.

These ODBC connection options are not supported on UNIX.
� BULKCOPY=
� COMPLETE=
� PROMPT=
� REQUIRED=

LIBNAME-options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to ODBC, with
the applicable default values. For more detail about these options, see “LIBNAME
Options for Relational Databases” on page 92.

Table 23.1 SAS/ACCESS LIBNAME Options for ODBC

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTOCOMMIT= data-source specific

BL_LOG= none

BL_OPTIONS= none

BULKLOAD= NO

CONNECTION= data-source specific

CONNECTION_GROUP= none

CURSOR_TYPE= FORWARD_ONLY

SAS/ACCESS Interface to ODBC � Arguments 659

Option Default Value

DBCOMMIT= 1000 (inserting) or 0 (updating)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= YES

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

DBMSTEMP= NO

DBNULLKEYS= YES

DBPROMPT= NO

DBSLICEPARM= THREADED_APPS,2 or 3

DEFER= NO

DELETE_MULT_ROWS= NO

DIRECT_EXE= none

DIRECT_SQL= YES

IGNORE_
READ_ONLY_COLUMNS=

NO

INSERT_SQL= data-source specific

INSERTBUFF= 1

KEYSET_SIZE= 0

LOGIN_TIMEOUT 0

MULTI_DATASRC_OPT= NONE

PRESERVE_COL_NAMES= see “Naming Conventions for ODBC” on page 677

PRESERVE_TAB_NAMES = see “Naming Conventions for ODBC” on page 677

QUALIFIER= none

QUERY_TIMEOUT= 0

QUOTE_CHAR= none

READ_ISOLATION_LEVEL= RC (see “Locking in the ODBC Interface” on page 676)

READ_LOCK_TYPE= ROW

READBUFF= 0

REREAD_EXPOSURE= NO

SCHEMA= none

SPOOL= YES

SQL_FUNCTIONS= none

SQL_FUNCTIONS_COPY= none

660 ODBC LIBNAME Statement Examples � Chapter 23

Option Default Value

STRINGDATES= NO

TRACE= NO

TRACEFILE= none

UPDATE_ISOLATION_LEVEL= RC (see “Locking in the ODBC Interface” on page 676)

UPDATE_LOCK_TYPE= ROW

UPDATE_MULT_ROWS= NO

UPDATE_SQL= driver-specific

USE_ODBC_CL= NO

UTILCONN_TRANSIENT= NO

ODBC LIBNAME Statement Examples
In the following example, USER=, PASSWORD=, and DATASRC= are connection

options.

libname mydblib odbc user=testuser password=testpass datasrc=mydatasource;

In this example, the libref MYLIB uses the ODBC engine to connect to an Oracle
database. The connection options are USER=, PASSWORD=, and DATASRC=.

libname mydblib odbc datasrc=orasrvr1 user=testuser password=testpass;

proc print data=mydblib.customers;
where state=’CA’;

run;

In the next example, the libref MYDBLIB uses the ODBC engine to connect to a
Microsoft SQL Server database. The connection option is NOPROMPT=.

libname mydblib odbc
noprompt="uid=testuser;pwd=testpass;dsn=sqlservr;"
stringdates=yes;

proc print data=mydblib.customers;
where state=’CA’;

run;

Data Set Options for ODBC
All SAS/ACCESS data set options in this table are supported for ODBC. Default

values are provided where applicable. For general information about this feature, see
“Overview” on page 207.

Table 23.2 SAS/ACCESS Data Set Options

Option Default Value

BULKLOAD= LIBNAME option setting

CURSOR_TYPE= LIBNAME option setting

SAS/ACCESS Interface to ODBC � Data Set Options for ODBC 661

Option Default Value

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= YES

DBNULLKEYS= LIBNAME option setting

DBPROMPT= LIBNAME option setting

DBSASLABEL= COMPAT

DBSASTYPE= see “Data Types for ODBC” on page 678

DBSLICE= none

DBSLICEPARM= THREADED_APPS,2 or 3

DBTYPE= see “Data Types for ODBC” on page 678

ERRLIMIT= 1

IGNORE_ READ_ONLY_COLUMNS= NO

INSERT_SQL= LIBNAME option setting

INSERTBUFF= LIBNAME option setting

KEYSET_SIZE= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

QUALIFIER= LIBNAME option setting

QUERY_TIMEOUT= LIBNAME option setting

READ_ISOLATION_LEVEL= LIBNAME option setting

READ_LOCK_TYPE= LIBNAME option setting

READBUFF= LIBNAME option setting

SASDATEFMT= none

SCHEMA= LIBNAME option setting

UPDATE_ISOLATION_LEVEL= LIBNAME option setting

662 SQL Pass-Through Facility Specifics for ODBC � Chapter 23

Option Default Value

UPDATE_LOCK_TYPE= LIBNAME option setting

UPDATE_SQL= LIBNAME option setting

SQL Pass-Through Facility Specifics for ODBC

Key Information
For general information about this feature, see “Overview of the SQL Pass-Through

Facility” on page 425. ODBC examples are available.
Here are the SQL pass-through facility specifics for the ODBC interface.
� The dbms-name is ODBC.
� The CONNECT statement is required.
� PROC SQL supports multiple connections to ODBC. If you use multiple

simultaneous connections, you must use the alias argument to identify the
different connections. If you do not specify an alias, the default odbc alias is used.
The functionality of multiple connections to the same ODBC data source might be
limited by the particular data source driver.

� The CONNECT statement database-connection-arguments are identical to its
LIBNAME connection-options. Not all ODBC drivers support all of these
arguments. See your driver documentation for more information.

� On some DBMSs, the DBMS-SQL-query argument can be a DBMS-specific SQL
EXECUTE statement that executes a DBMS stored procedure. However, if the
stored procedure contains more than one query, only the first query is processed.

� These options are available with the CONNECT statement. For information, see
the LIBNAME Statement section.

AUTOCOMMIT=
CURSOR_TYPE=
KEYSET_SIZE=
QUERY_TIMEOUT=
READBUFF=
READ_ISOLATION_LEVEL=
TRACE=
TRACEFILE=
USE_ODBC_CL=
UTILCONN_TRANSIENT=

CONNECT Statement Examples
These examples use ODBC to connect to a data source that is configured under the

data source name User’s Data using the alias USER1. The first example uses the
connection method that is guaranteed to be present at the lowest level of ODBC
conformance. DATASRC= names can contain quotation marks and spaces.

proc sql;
connect to ODBC as user1
(datasrc="User’s Data" user=testuser password=testpass);

SAS/ACCESS Interface to ODBC � Connection to Component Examples 663

This example uses the connection method that represents a more advanced level of
ODBC conformance. It uses the input dialog box that is provided by the driver. The
DATASRC= and USER= arguments are within the connection string. The SQL
pass-through facility therefore does not parse them but instead passes them to the
ODBC manager.

proc sql;
connect to odbc as user1
(required = "dsn=User’s Data;uid=testuser");

This example enables you to select any data source that is configured on your
machine. The example uses the connection method that represents a more advanced
level of ODBC conformance, Level 1. When connection succeeds, the connection string
is returned in the SQLXMSG and SYSDBMSG macro variables and can be stored if this
method is used to configure a connection for later use.

proc sql;
connect to odbc (required);

This next example prompts you to specify the information that is required to make a
connection to the DBMS. You are prompted to supply the data source name, user ID,
and password in the dialog boxes that display.

proc sql;
connect to odbc (prompt);

Connection to Component Examples
This example sends an Oracle SQL query (presented in highlighted text) to the

Oracle database for processing. The results from the query serve as a virtual table for
the PROC SQL FROM clause. In this example MYCON is a connection alias.

proc sql;
connect to odbc as mycon

(datasrc=ora7 user=testuser password=testpass);

select *
from connection to mycon

(select empid, lastname, firstname,
hiredate, salary
from sasdemo.employees

where hiredate>=’31.12.1988’);

disconnect from mycon;
quit;

This next example gives the previous query a name and stores it as the SQL view
Samples.Hires88. The CREATE VIEW statement appears highlighted.

libname samples ’SAS-data-library’;

proc sql;
connect to odbc as mycon

(datasrc=ora7 user=testuser password=testpass);

create view samples.hires88 as
select *

from connection to mycon

664 Special Catalog Queries � Chapter 23

(select empid, lastname, firstname,
hiredate, salary from sasdemo.employees
where hiredate>=’31.12.1988’);

disconnect from mycon;
quit;

This example connects to Microsoft Access and creates a view NEWORDERS from all
columns in the ORDERS table.

proc sql;
connect to odbc as mydb

(datasrc=MSAccess7);
create view neworders as
select * from connection to mydb

(select * from orders);
disconnect from mydb;
quit;

This next example sends an SQL query to Microsoft SQL Server, configured under
the data source name SQL Server, for processing. The results from the query serve as
a virtual table for the PROC SQL FROM clause.

proc sql;
connect to odbc as mydb

(datasrc="SQL Server" user=testuser password=testpass);
select * from connection to mydb

(select CUSTOMER, NAME, COUNTRY
from CUSTOMERS
where COUNTRY <> ’USA’);

quit;

This example returns a list of the columns in the CUSTOMERS table.

proc sql;
connect to odbc as mydb

(datasrc="SQL Server" user=testuser password=testpass);
select * from connection to mydb

(ODBC::SQLColumns (, , "CUSTOMERS"));
quit;

Special Catalog Queries

SAS/ACCESS Interface to ODBC supports the following special queries. Many
databases provide or use system tables that allow queries to return the list of available
tables, columns, procedures, and other useful information. ODBC provides much of this
functionality through special application programming interfaces (APIs) to
accommodate databases that do not follow the SQL table structure. You can use these
special queries on SQL and non-SQL databases.

Here is the general format of the special queries:

ODBC::SQLAPI “parameter 1”,”parameter n”

ODBC::
is required to distinguish special queries from regular queries.

SAS/ACCESS Interface to ODBC � Special Catalog Queries 665

SQLAPI
is the specific API that is being called. Neither ODBC:: nor SQLAPI are case
sensitive.

"parameter n"
is a quoted string that is delimited by commas.

Within the quoted string, two characters are universally recognized: the percent sign
(%) and the underscore (_). The percent sign matches any sequence of zero or more
characters; the underscore represents any single character. Each driver also has an
escape character that can be used to place characters within the string. See the driver
documentation to determine the valid escape character.

The values for the special query arguments are DBMS-specific. For example, you
supply the fully qualified table name for a “Catalog” argument. In dBase, the value of
“Catalog” might be c:\dbase\tst.dbf and in SQL Server, the value might be
test.customer. In addition, depending on the DBMS that you are using, valid values
for a “Schema” argument might be a user ID, a database name, or a library. All
arguments are optional. If you specify some but not all arguments within a parameter,
use a comma to indicate the omitted arguments. If you do not specify any parameters,
commas are not necessary. Special queries are not available for all ODBC drivers.

ODBC supports these special queries:

ODBC::SQLColumns <"Catalog", "Schema", "Table-name", "Column-name">
returns a list of all columns that match the specified arguments. If no arguments
are specified, all accessible column names and information are returned.

ODBC::SQLColumnPrivileges <"Catalog", "Schema", "Table-name", "Column-name">
returns a list of all column privileges that match the specified arguments. If no
arguments are specified, all accessible column names and privilege information are
returned.

ODBC::SQLDataSources
returns a list of database aliases to which ODBC is connected.

ODBC::SQLDBMSInfo
returns a list of DB2 databases (DSNs) to which ODBC is connected. It returns
one row with two columns that describe the DBMS name (such as SQL Server or
Oracle) and the corresponding DBMS version.

ODBC::SQLForeignKeys <"PK-catalog", "PK-schema", "PK-table-name", "FK-catalog",
"FK-schema", "FK-table-name">

returns a list of all columns that comprise foreign keys that match the specified
arguments. If no arguments are specified, all accessible foreign key columns and
information are returned.

ODBC::SQLGetTypeInfo
returns information about the data types that are supported in the data source.

ODBC::SQLPrimaryKeys <"Catalog", "Schema", "Table-name">
returns a list of all columns that compose the primary key that matches the
specified table. A primary key can be composed of one or more columns. If no table
name is specified, this special query fails.

ODBC::SQLProcedures <"Catalog", "Schema", "Procedure-name">
returns a list of all procedures that match the specified arguments. If no
arguments are specified, all accessible procedures are returned.

666 Autopartitioning Scheme for ODBC � Chapter 23

ODBC::SQLProcedureColumns <"Catalog", "Schema", "Procedure-name",
"Column-name">

returns a list of all procedure columns that match the specified arguments. If no
arguments are specified, all accessible procedure columns are returned.

ODBC::SQLSpecialColumns <"Identifier-type", "Catalog-name", "Schema-name",
"Table-name", "Scope", "Nullable">

returns a list of the optimal set of columns that uniquely identify a row in the
specified table.

ODBC::SQLStatistics <"Catalog", "Schema", "Table-name">
returns a list of the statistics for the specified table name, with options of
SQL_INDEX_ALL and SQL_ENSURE set in the SQLStatistics API call. If the
table name argument is not specified, this special query fails.

ODBC::SQLTables <"Catalog", "Schema", "Table-name", "Type">
returns a list of all tables that match the specified arguments. If no arguments are
specified, all accessible table names and information are returned.

ODBC::SQLTablePrivileges <"Catalog", "Schema", "Table-name">
returns a list of all tables and associated privileges that match the specified
arguments. If no arguments are specified, all accessible table names and
associated privileges are returned.

Autopartitioning Scheme for ODBC

Overview
Autopartitioning for SAS/ACCESS Interface to ODBC is a modulo (MOD) function

method. For general information about this feature, see “Autopartitioning Techniques
in SAS/ACCESS” on page 57.

Autopartitioning Restrictions
SAS/ACCESS Interface to ODBC places additional restrictions on the columns that

you can use for the partitioning column during the autopartitioning phase. Here is how
columns are partitioned.

� SQL_INTEGER, SQL_BIT, SQL_SMALLINT, and SQL_TINYINT columns are
given preference.

� You can use SQL_DECIMAL, SQL_DOUBLE, SQL_FLOAT, SQL_NUMERIC, and
SQL_REAL columns for partitioning under these conditions:

� The ODBC driver supports converting these types to SQL_INTEGER by
using the INTEGER cast function.

� The precision minus the scale of the column is greater than 0 but less than
10, that is, 0<(precision-scale)<10.

The exception to the above rule is for Oracle SQL_DECIMAL columns. As long as the
scale of the SQL_DECIMAL column is 0, you can use the column as the partitioning
column.

SAS/ACCESS Interface to ODBC � Using DBSLICE= 667

Nullable Columns
If you select a nullable column for autopartitioning, the OR<column-name>IS NULL

SQL statement is appended at the end of the SQL code that is generated for the
threaded read. This ensures that any possible NULL values are returned in the result
set. Also, if the column to be used for the partitioning is SQL_BIT, the number of
threads are automatically changed to two, regardless of how the DBSLICEPARM=
option is set.

Using WHERE Clauses
Autopartitioning does not select a column to be the partitioning column if it appears

in the WHERE clause. For example, the following DATA step could not use a threaded
read to retrieve the data because all numeric columns in the table are in the WHERE
clause:

data work.locemp;
set trlib.MYEMPS;
where EMPNUM<=30 and ISTENURE=0 and

SALARY<=35000 and NUMCLASS>2;
run;

Using DBSLICEPARM=
SAS/ACCESS Interface to ODBC defaults to three threads when you use

autopartitioning but do not specify a maximum number of threads in DBSLICEPARM=
to use for the threaded read.

Using DBSLICE=
You might achieve the best possible performance when using threaded reads by

specifying the DBSLICE= option for ODBC in your SAS operation. This is especially
true if your DBMS supports multiple database partitions and provides a mechanism to
allow connections to individual partitions. If your DBMS supports this concept, you can
configure an ODBC data source for each partition and use the DBSLICE= clause to
specify both the data source and the WHERE clause for each partition, as shown in this
example:

proc print data=trilib.MYEMPS(DBSLICE=(DSN1="EMPNUM BETWEEN 1 AND 33"
DSN2="EMPNUM BETWEEN 34 AND 66"
DSN3="EMPNUM BETWEEN 67 AND 100"));
run;

See your DBMS or ODBC driver documentation for more information about
configuring for multiple partition access. You can also see Configuring SQL Server
Partitioned Views for Use with DBSLICE=“Configuring SQL Server Partitioned Views
for Use with DBSLICE=” on page 668 for an example of configuring multiple partition
access to a table.

Using the DATASOURCE= syntax is not required to use DBSLICE= with threaded
reads for the ODBC interface. The methods and examples described in DBSLICE=
work well in cases where the table you want to read is not stored in multiple partitions
in your DBMS. These methods also give you flexibility in column selection. For

668 Configuring SQL Server Partitioned Views for Use with DBSLICE= � Chapter 23

example, if you know that the STATE column in your employee table only contains a
few distinct values, you can tailor your DBSLICE= clause accordingly:

datawork.locemp;
set trlib2.MYEMP(DBSLICE=("STATE=’FL’" "STATE=’GA’"

"STATE=’SC’" "STATE=’VA’" "STATE=’NC’"));
where EMPNUM<=30 and ISTENURE=0 and SALARY<=35000 and NUMCLASS>2;
run;

Configuring SQL Server Partitioned Views for Use with DBSLICE=
Microsoft SQL Server implements multiple partitioning by creating a global view

across multiple instances of a Microsoft SQL Server database. For this example,
assume that Microsoft SQL Server has been installed on three separate machines
(SERVER1, SERVER2, SERVER3), and three ODBC data sources (SSPART1, SSPART2,
SSPART3) have been configured against these servers. Also, a linked server definition
for each of these servers has been defined. This example uses SAS to create the tables
and associated views, but you can accomplish this outside of the SAS environment.

1 Create a local SAS table to build the Microsoft SQL Server tables.

data work.MYEMPS;
format HIREDATE mmddyy 0. SALARY 9.2

NUMCLASS 6. GENDER $1. STATE $2. EMPNUM 10.;
do EMPNUM=1 to 100;

morf=mod(EMPNUM,2)+1;
if(morf eq 1) then

GENDER=’F’;
else

GENDER=’M’;
SALARY=(ranuni(0)*5000);
HIREDATE=int(ranuni(13131)*3650);
whatstate=int(EMPNUM/5);
if(whatstate eq 1) then

STATE=’FL’;
if(whatstate eq 2) then

STATE=’GA’;
if(whatstate eq 3) then

STATE=’SC’;
if(whatstate eq 4) then

STATE=’VA’;
else

state=’NC’;
ISTENURE=mod(EMPNUM,2);
NUMCLASS=int(EMPNUM/5)+2;
output;

end;
run;

SAS/ACCESS Interface to ODBC � Configuring SQL Server Partitioned Views for Use with DBSLICE= 669

2 Create a table on each of the SQL server databases with the same table structure,
and insert one–third of the overall data into each table. These table definitions
also use CHECK constraints to enforce the distribution of the data on each of the
subtables of the target view.

libname trlib odbc user=ssuser pw=sspwd dsn=sspart1;
proc delete data=trlib.MYEMPS1;
run;
data trlib.MYEMPS1(drop=morf whatstate

DBTYPE=(HIREDATE="datetime" SALARY="numeric(8,2)"
NUMCLASS="smallint" GENDER="char(1)" ISTENURE="bit" STATE="char(2)"
EMPNUM="int NOT NULL Primary Key CHECK (EMPNUM BETWEEN 0 AND 33)"));

set work.MYEMPS;
where (EMPNUM BETWEEN 0 AND 33);
run;

libname trlib odbc user=ssuer pw=sspwd dsn=sspart2;
proc delete data=trlib.MYEMPS2;
run;
data trlib.MYEMPS2(drop=morf whatstate

DBTYPE=(HIREDATE="datetime" SALARY="numeric(8,2)"
NUMCLASS="smallint" GENDER="char(1)" ISTENURE="bit" STATE="char(2)"
EMPNUM="int NOT NULL Primary Key CHECK (EMPNUM BETWEEN 34 AND 66)"));

set work.MYEMPS;
where (EMPNUM BETWEEN 34 AND 66);
run;

libname trlib odbc user=ssuer pw=sspwd dsn=sspart3;
proc delete data=trlib.MYEMPS3;
run;
data trlib.MYEMPS3(drop=morf whatstate

DBTYPE=(HIREDATE="datetime" SALARY="numeric(8,2)"
NUMCLASS="smallint" GENDER="char(1)" ISTENURE="bit" STATE="char(2)"
EMPNUM="int NOT NULL Primary Key CHECK (EMPNUM BETWEEN 67 AND 100)"));

set work.MYEMPS;
where (EMPNUM BETWEEN 67 AND 100);
run;

3 Create a view using the UNION ALL construct on each Microsoft SQL Server
instance that references the other two tables. This creates a global view that
references the entire data set.

/*SERVER1,SSPART1*/
proc sql noerrorstop;
connect to odbc (UID=ssuser PWD=sspwd DSN=SSPART1);
execute (drop view MYEMPS) by odbc;
execute (create view MYEMPS AS

SELECT * FROM users.ssuser.MYEMPS1
UNION ALL
SELECT * FROM SERVER2.users.ssuser.MYEMPS2
UNION ALL
SELECT * FROM SERVER3.users.ssuser.MYEMPS3) by odbc;

quit;

/*SERVER2,SSPART2*/
proc sql noerrorstop;

670 DBLOAD Procedure Specifics for ODBC � Chapter 23

connect to odbc (UID=ssuser PWD=sspwd DSN=SSPART2);
execute (drop view MYEMPS) by odbc;
execute (create view MYEMPS AS

SELECT * FROM users.ssuser.MYEMPS2
UNION ALL
SELECT * FROM SERVER1.users.ssuser.MYEMPS1
UNION ALL
SELECT * FROM SERVER3.users.ssuser.MYEMPS3) by odbc;

quit;

/*SERVER3,SSPART3*/
proc sql noerrorstop;
connect to odbc (UID=ssuser PWD=sspwd DSN=SSPART3);
execute (drop view MYEMPS) by odbc;
execute (create view MYEMPS AS

SELECT * FROM users.ssuser.MYEMPS3
UNION ALL
SELECT * FROM SERVER2.users.ssuser.MYEMPS2
UNION ALL
SELECT * FROM SERVER1.users.ssuser.MYEMPS1) by odbc;

quit;

4 Set up your SAS operation to perform the threaded read. The DBSLICE= option
contains the Microsoft SQL Server partitioning information.

proc print data=trlib.MYEMPS(DBLICE=(sspart1="EMPNUM BETWEEN 1 AND 33"
sspart2="EMPNUM BETWEEN 34 AND 66"
sspart3="EMPNUM BETWEEN 67 AND 100"));
run;

This configuration lets the ODBC interface access the data for the MYEMPS view
directly from each subtable on the corresponding Microsoft SQL Server instance. The
data is inserted directly into each subtable, but this process can also be accomplished
by using the global view to divide up the data. For example, you can create empty
tables and then create the view as seen in the example with the UNION ALL construct.
You can then insert the data into the view MYEMPS. The CHECK constraints allow the
Microsoft SQL Server query processor to determine which subtables should receive the
data.

Other tuning options are available when you configure Microsoft SQL Server to use
partitioned data. For more information, see the "Creating a Partitioned View" and
"Using Partitioned Views" sections in Creating and Maintaining Databases (SQL Server
2000).

DBLOAD Procedure Specifics for ODBC

Overview
See the section about the DBLOAD procedure in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.
SAS/ACCESS Interface to ODBC supports all DBLOAD procedure statements (except

ACCDESC=) in batch mode. Here are the DBLOAD procedure specifics for ODBC:
� The DBLOAD step DBMS= value is ODBC.
� Here are the database description statements that PROC DBLOAD uses:

SAS/ACCESS Interface to ODBC � Overview 671

DSN= <’>ODBC-data-source<’>;
specifies the name of the data source in which you want to store the new
ODBC table. The data-source is limited to eight characters.

The data source that you specify must already exist. If the data source
name contains the _, $, @, or # special character, you must enclose it in
quotation marks. The ODBC standard recommends against using special
characters in data source names, however.

USER= <’>user name<’>;
lets you connect to an ODBC database with a user ID that is different from
the default ID. USER= is optional in ODBC. If you specify USER=, you must
also specify PASSWORD=. If USER= is omitted, your default user ID is used.

PASSWORD=<’>password<’>;
specifies the ODBC password that is associated with your user ID.

PASSWORD= is optional in ODBC because users have default user IDs. If
you specify USER=, you must specify PASSWORD=.

Note: If you do not wish to enter your ODBC password in uncoded text on
this statement, see PROC PWENCODE in Base SAS Procedures Guidefor a
method to encode it. �

BULKCOPY= YES|NO;
determines whether SAS uses the Microsoft Bulk Copy facility to insert data
into a DBMS table (Microsoft SQL Server only). The default value is NO.

The Microsoft Bulk Copy (BCP) facility lets you efficiently insert rows of
data into a DBMS table as a unit. As the ODBC interface sends each row of
data to BCP, the data is written to an input buffer. When you have inserted
all rows or the buffer reaches a certain size (the DBCOMMIT= data set
option determines this), all rows are inserted as a unit into the table, and the
data is committed to the table.

You can also set the DBCOMMIT=n option to commit rows after every n
insertions.

If an error occurs, a message is written to the SAS log, and any rows that
have been inserted in the table before the error are rolled back.

Note: BULKCOPY= is not supported on UNIX. �

� Here is the TABLE= statement:

TABLE= <authorization-id.>table-name;
identifies the table or view that you want to use to create an access
descriptor. The TABLE= statement is required.

The authorization-id is a user ID or group ID that is associated with the
table.

� Here is the NULLS statement:

NULLS variable-identifier-1 =Y|N|D < . . . variable-identifier-n =Y|N|D >;
enables you to specify whether the columns that are associated with the
listed SAS variables allow NULL values. By default, all columns accept
NULL values.

The NULLS statement accepts any one of these three values:

Y – specifies that the column accepts NULL values. This is the default.

N – specifies that the column does not accept NULL values.

D – specifies that the column is defined as NOT NULL WITH DEFAULT.

672 Examples � Chapter 23

Examples

The following example creates a new ODBC table, TESTUSER.EXCHANGE, from
the DLIB.RATEOFEX data file. You must be granted the appropriate privileges in
order to create new ODBC tables or views.

proc dbload dbms=odbc data=dlib.rateofex;
dsn=sample;
user=’testuser’;
password=’testpass’;
table=exchange;
rename fgnindol=fgnindollars

4=dollarsinfgn;
nulls updated=n fgnindollars=n

dollarsinfgn=n country=n;
load;

run;

The following example only sends an ODBC SQL GRANT statement to the SAMPLE
database and does not create a new table. Therefore, the TABLE= and LOAD
statements are omitted.

proc dbload dbms=odbc;
user=’testuser’;
password=’testpass’;
dsn=sample;
sql grant select on testuser.exchange

to dbitest;
run;

Temporary Table Support for ODBC

Overview

For general information about this features, see .“Temporary Table Support for SAS/
ACCESS” on page 38

Establishing a Temporary Table

When you want to use temporary tables that persist across SAS procedures and DATA
steps with ODBC, you must use the CONNECTION=SHARED LIBNAME option. When
you do this, the temporary table is available for processing until the libref is closed.

Terminating a Temporary Table

You can drop a temporary table at any time, or allow it to be implicitly dropped when
the connection is terminated. Temporary tables do not persist beyond the scope of a
single connection.

SAS/ACCESS Interface to ODBC � Examples 673

Examples

Using the Internat sample table, the following example creates a temporary table,
#LONDON, with Microsoft SQL Server that contains information about flights that flew
to London. This table is then joined with a larger SQL Server table that lists all flights,
March, but matched only on flights that flew to London.

libname samples odbc dsn=lupinss uid=dbitest pwd=dbigrp1 connection=shared;

data samples.’#LONDON’n;
set work.internat;
where dest=’LON’;

run;

proc sql;
select b.flight, b.dates, b.depart, b.orig

from samples.’#LONDON’n a, samples.march b
where a.dest=b.dest;

quit;

In the following example a temporary table called New is created with Microsoft SQL
Server. The data from this table is then appended to an existing SQL Server table
named Inventory.

libname samples odbc dsn=lupinss uid=dbitest pwd=dbigrp1 connection=shared;

data samples.inventory(DBTYPE=(itemnum=’char(5)’ item=’varchar(30)’
quantity=’numeric’));

itemnum=’12001’;
item=’screwdriver’;
quantity=15;
output;

itemnum=’12002’;
item=’hammer’;
quantity=25:
output;

itemnum=’12003’;
item=’sledge hammer’;
quantity=10;
output;

itemnum=’12004’;
item=’saw’;
quantity=50;
output;

itemnum=’12005’;
item=’shovel’;
quantity=120;
output;

run;

data samples.’#new’n(DBTYPE=(itemnum=’char(5)’ item=’varchar(30)’
quantity=’numeric’));

itemnum=’12006’;
item=’snow shovel’;
quantity=5;

674 Passing SAS Functions to ODBC � Chapter 23

output;
itemnum=’12007’;

item=’nails’;
quantity=500;
output;

run;

proc append base=samples.inventory data=samples.’#new’n;
run;

proc print data=samples.inventory;
run;

The following example demonstrates the use of a temporary table using the SQL
pass-through facility.

proc sql;
connect to odbc as test (dsn=lupinss uid=dbitest

pwd=dbigrp1 connection=shared);
execute (create table #FRANCE (flight char(3), dates datetime,

dest char(3))) by test;

execute (insert #FRANCE select flight, dates, dest from internat
where dest like ’%FRA%’) by test;

select * from connection to test (select * from #FRANCE);
quit;

Passing SAS Functions to ODBC
SAS/ACCESS Interface to ODBC passes the following SAS functions to the data

source for processing if the DBMS server supports this function. Where the ODBC
function name differs from the SAS SQL function name, the ODBC name appears in
parentheses. For more information, see “Passing Functions to the DBMS Using PROC
SQL” on page 42.

ABS
ARCOS
ARSIN
ATAN
AVG
CEIL
COS
COUNT
EXP
FLOOR
LOG
LOG10
LOWCASE
MAX
MIN

SAS/ACCESS Interface to ODBC � Passing Joins to ODBC 675

SIGN
SIN
SQRT
STRIP
SUM
TAN
UPCASE

SQL_FUNCTIONS=ALL allows for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to ODBC. Due to incompatibility in date and time functions between
ODBC and SAS, ODBC might not process them correctly. Check your results to
determine whether these functions are working as expected.

BYTE (CHAR)
COMPRESS (REPLACE)
DATE (CURDATE)
DATEPART
DATETIME (NOW)
DAY (DAYOFMONTH)
HOUR
INDEX (LOCATE)
LENGTH
MINUTE
MONTH
QTR (QUARTER)
REPEAT
SECOND
SOUNDEX
SUBSTR (SUBSTRING)
TIME (CURTIME)
TIMEPART
TODAY (CURDATE)
TRIMN (RTRIM)
TRANWRD (REPLACE)
WEEKDAY (DAYOFWEEK)
YEAR

Passing Joins to ODBC
For a multiple libref join to pass to ODBC, all of these components of the LIBNAME

statements must match exactly:
� user ID (USER=)
� password (PASSWORD=)
� data source (DATASRC=)

676 Bulk Loading for ODBC � Chapter 23

� catalog (QUALIFIER=)
� update isolation level (UPDATE_ISOLATION_LEVEL=, if specified)
� read isolation level (READ_ISOLATION_LEVEL=, if specified)
� prompt (PROMPT=, must not be specified)

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

Bulk Loading for ODBC
The BULKLOAD= LIBNAME option calls the Bulk Copy (BCP) facility, which lets

you efficiently insert rows of data into a DBMS table as a unit. BCP= is an alias for
this option.

Note: The Bulk Copy facility is available only when you are accessing Microsoft
SQL Server data on Windows platforms. To use this facility, your installation of
Microsoft SQL Server must include the ODBCBCP.DLL file. BULKCOPY= is not
available on UNIX. �

As the ODBC interface sends rows of data to the Bulk Copy facility, data is written
to an input buffer. When you send all rows or when the buffer reaches a certain size
(DBCOMMIT= determines this), all rows are inserted as a unit into the table and the
data is committed to the table. You can set the DBCOMMIT= option to commit rows
after a specified number of rows are inserted.

If an error occurs, a message is written to the SAS log, and any rows that were
inserted before the error are rolled back.

Locking in the ODBC Interface
The following LIBNAME and data set options let you control how the ODBC

interface handles locking. For general information about an option, see “LIBNAME
Options for Relational Databases” on page 92.

READ_LOCK_TYPE= ROW | TABLE | NOLOCK

\UPDATE_LOCK_TYPE= ROW | TABLE | NOLOCK

READ_ISOLATION_LEVEL= S | RR | RC | RU | V
The ODBC driver manager supports the S, RR, RC, RU, and V isolation levels that
are defined in this table.

Table 23.3 Isolation Levels for ODBC

Isolation Level Definition

S (serializable) Does not allow dirty reads, nonrepeatable reads, or
phantom reads.

RR (repeatable read) Does not allow dirty reads or nonrepeatable reads; does
allow phantom reads.

RC (read committed) Does not allow dirty reads or nonrepeatable reads; does
allow phantom reads.

SAS/ACCESS Interface to ODBC � Naming Conventions for ODBC 677

Isolation Level Definition

RU (read uncommitted) Allows dirty reads, nonrepeatable reads, and phantom
reads.

V (versioning) Does not allow dirty reads, nonrepeatable reads, or
phantom reads. These transactions are serializable but
higher concurrency is possible than with the serializable
isolation level. Typically, a nonlocking protocol is used.

Here are how the terms in the table are defined.

Dirty reads A transaction that exhibits this phenomenon has very minimal
isolation from concurrent transactions. In fact, it can see
changes that are made by those concurrent transactions even
before they commit.

For example, suppose that transaction T1 performs an
update on a row, transaction T2 then retrieves that row, and
transaction T1 then terminates with rollback. Transaction T2
has then seen a row that no longer exists.

Nonrepeatable
reads

If a transaction exhibits this phenomenon, it is possible that it
might read a row once and if it attempts to read that row again
later in the course of the same transaction, the row might have
been changed or even deleted by another concurrent
transaction. Therefore, the read is not (necessarily) repeatable.

For example, suppose that transaction T1 retrieves a row,
transaction T2 then updates that row, and transaction T1 then
retrieves the same row again. Transaction T1 has now retrieved
the same row twice but has seen two different values for it.

Phantom reads When a transaction exhibits this phenomenon, a set of rows
that it reads once might be a different set of rows if the
transaction attempts to read them again.

For example, suppose that transaction T1 retrieves the set of
all rows that satisfy some condition. Suppose that transaction
T2 then inserts a new row that satisfies that same condition. If
transaction T1 now repeats its retrieval request, it sees a row
that did not previously exist, a phantom.

UPDATE_ISOLATION_LEVEL= S | RR | RC | V
The ODBC driver manager supports the S, RR, RC, and V isolation levels defined
in the preceding table.

Naming Conventions for ODBC
For general information about this feature, see Chapter 2, “SAS Names and Support

for DBMS Names,” on page 11.
Because ODBC is an application programming interface (API) rather than a

database, table names and column names are determined at run time. Since SAS 7,
table names and column names can be up to 32 characters long. SAS/ACCESS
Interface to ODBC supports table names and column names that contain up to 32
characters. If DBMS column names are longer than 32 characters, SAS truncates them
to 32 characters. If truncating a column name would result in identical names, SAS

678 Data Types for ODBC � Chapter 23

generates a unique name by replacing the last character with a number. DBMS table
names must be 32 characters or less because SAS does not truncate a longer name. If
you already have a table name that is greater than 32 characters, it is recommended
that you create a table view.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options determine
how SAS/ACCESS Interface to ODBC handles case sensitivity, spaces, and special
characters. The default value for both options is YES for Microsoft Access, Microsoft
Excel, and Microsoft SQL Server and NO for all others. For information about these
options, see “Overview of the LIBNAME Statement for Relational Databases” on page
87.

This example specifies Sybase as the DBMS.

libname mydblib odbc user=TESTUSER password=testpass
database=sybase;

data mydblib.a;
x=1;
y=2;

run;

Sybase is generally case sensitive. This example would therefore produce a Sybase
table named a with columns named x and y.

If the DBMS being accessed was Oracle, which is not case sensitive, the example
would produce an Oracle table named A and columns named X and Y. The object names
would be normalized to uppercase.

Data Types for ODBC

Overview
Every column in a table has a name and a data type. The data type tells the DBMS

how much physical storage to set aside for the column and the form in which the data
is stored. This section includes information about ODBC null and default values and
data conversions.

ODBC Null Values
Many relational database management systems have a special value called NULL. A

DBMS NULL value means an absence of information and is analogous to a SAS
missing value. When SAS/ACCESS reads a DBMS NULL value, it interprets it as a
SAS missing value.

In most relational databases, columns can be defined as NOT NULL so that they
require data (they cannot contain NULL values). When a column is defined as NOT
NULL, the DBMS does not add a row to the table unless the row has a value for that
column. When creating a DBMS table with SAS/ACCESS, you can use the DBNULL=
data set option to indicate whether NULL is a valid value for specified columns.

ODBC mirrors the behavior of the underlying DBMS with regard to NULL values.
See the documentation for your DBMS for information about how it handles NULL
values.

SAS/ACCESS Interface to ODBC � LIBNAME Statement Data Conversions 679

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” in SAS/ACCESS for Relational Databases:
Reference.

To control how SAS missing character values are handled by the DBMS, use the
NULLCHAR= and NULLCHARVAL= data set options.

LIBNAME Statement Data Conversions
This table shows all data types and default SAS formats that SAS/ACCESS Interface

to ODBC supports. It does not explicitly define the data types as they exist for each
DBMS. It lists the SQL types that each DBMS data type would map to. For example, a
CHAR data type under DB2 would map to an ODBC data type of SQL_CHAR. All data
types are supported.

Table 23.4 ODBC Data Types and Default SAS Formats

ODBC Data Type Default SAS Format

SQL_CHAR $n

SQL_VARCHAR $n

SQL_LONGVARCHAR $n

SQL_BINARY $n.*

SQL_VARBINARY $n.*

SQL_LONGVARBINARY $n.*

SQL_DECIMAL m or m.n or none if m and n are not specified

SQL_NUMERIC m or m.n or none if m and n are not specified

SQL_INTEGER 11.

SQL_SMALLINT 6.

SQL_TINYINT 4.

SQL_BIT 1.

SQL_REAL none

SQL_FLOAT none

SQL_DOUBLE none

SQL_BIGINT 20.

SQL_INTERVAL $n

SQL_GUID $n

SQL_TYPE_DATE DATE9.

SQL_TYPE_TIME TIME8.

ODBC cannot support fractions of seconds for
time values

SQL_TYPE_TIMESTAMP
DATETIMEm.n where m and n depend on
precision

* Because the ODBC driver does the conversion, this field displays as if the $HEXn. format were
applied.

680 LIBNAME Statement Data Conversions � Chapter 23

The following table shows the default data types that SAS/ACCESS Interface to
ODBC uses when creating tables.SAS/ACCESS Interface to ODBC lets you specify
non-default data types by using the DBTYPE= data set option.

Table 23.5 Default ODBC Output Data Types

SAS Variable Format Default ODBC Data Type

m.n
SQL_DOUBLE or SQL_NUMERIC using m.n if
the DBMS allows it

$n. SQL_VARCHAR using n

datetime formats SQL_TIMESTAMP

date formats SQL_DATE

time formats SQL_TIME

681

C H A P T E R

24
SAS/ACCESS Interface to OLE DB

Introduction to SAS/ACCESS Interface to OLE DB 681
LIBNAME Statement Specifics for OLE DB 682

Overview 682

Arguments 682

Connecting with OLE DB Services 687

Connecting Directly to a Data Provider 687
OLE DB LIBNAME Statement Examples 688

Data Set Options for OLE DB 689

SQL Pass-Through Facility Specifics for OLE DB 690

Key Information 690

Examples 691

Special Catalog Queries 691
Examples of Special OLE DB Queries 694

Temporary Table Support for OLE DB 695

Overview 695

Establishing a Temporary Table 695

Terminating a Temporary Table 695
Examples 695

Passing SAS Functions to OLE DB 697

Passing Joins to OLE DB 698

Bulk Loading for OLE DB 699

Locking in the OLE DB Interface 699
Accessing OLE DB for OLAP Data 700

Overview 700

Using the SQL Pass-Through Facility with OLAP Data 701

Syntax 702

Examples 702

Naming Conventions for OLE DB 703
Data Types for OLE DB 704

Overview 704

OLE DB Null Values 704

LIBNAME Statement Data Conversions 705

Introduction to SAS/ACCESS Interface to OLE DB
This section describes SAS/ACCESS Interface to OLE DB. For a list of SAS/ACCESS

features that are available in this interface, see “SAS/ACCESS Interface to OLE DB:
Supported Features” on page 82.

Microsoft OLE DB is an application programming interface (API) that provides
access to data that can be in a database table, an e-mail file, a text file, or another type

682 LIBNAME Statement Specifics for OLE DB � Chapter 24

of file. This SAS/ACCESS interface accesses data from these sources through OLE DB
data providers such as Microsoft Access, Microsoft SQL Server, and Oracle.

LIBNAME Statement Specifics for OLE DB

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to OLE

DB supports and includes examples. For details about this feature, see “Overview of
the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing OLE DB.

LIBNAME libref oledb <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

oledb
specifies the SAS/ACCESS engine name for the OLE DB interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the data source. You can connect to a data source
either by using OLE DB Services or by connecting directly to the provider. For
details, see “Connecting with OLE DB Services” on page 687 and “Connecting
Directly to a Data Provider” on page 687.

These connection options are available with both connection methods. Here is
how they are defined.

USER=<’>user-name<’>
lets you connect to an OLE DB data source with a user ID that is different
from the default ID. The default is your user ID.

PASSWORD=<’>password<’>
specifies the OLE DB password that is associated with your user ID. If you do
not wish to enter your OLE DB password in uncoded text, see PROC
PWENCODE in Base SAS Procedures Guide for a method to encode it.

DATASOURCE=<’>data-source<’>
identifies the data source object (such as a relational database server or a
local file) to which you want to connect.

PROVIDER=<’>provider-name<’>
specifies which OLE DB provider to use to connect to the data source. This
option is required during batch processing. There is no restriction on the
length of the provider-name. If the provider-name contains blank spaces or
special characters, enclose it in quotation marks. If you do not specify a
provider, an OLE DB Services dialog box prompts you for connection
information. In batch mode, if you do not specify a provider the connection

SAS/ACCESS Interface to OLE DB � Arguments 683

fails. If you are using the Microsoft Jet OLE DB 4.0 provider, specify
PROVIDER=JET.

PROPERTIES=(<’>property-1<’>=<’>value-1<’> < . . .
<’>property-n<’>=<’>value-n<’>>)

specifies standard provider properties that enable you to connect to a data
source and to define connection attributes. If a property name or value
contains embedded spaces or special characters, enclose the name or value in
quotation marks. Use a blank space to separate multiple properties. If your
provider supports a password property, that value cannot be encoded. To use
an encoded password, use the PASSWORD= option instead. See your
provider documentation for a list and description of all properties that your
provider supports. No properties are specified by default.

PROVIDER_STRING=<’>extended-properties<’>
specifies provider-specific extended connection information, such as the file
type of the data source. If the string contains blank spaces or special
characters, enclose it in quotation marks. For example, the Microsoft Jet
provider accepts strings that indicate file type, such as ’Excel 8.0’. The
following example uses the Jet 4.0 provider to access the spreadsheet
Y2KBUDGET.XLS. Specify the ’Excel 8.0’ provider string so that Jet
recognizes the file as an Excel 8.0 worksheet.

libname budget oledb provider=jet provider_string=’Excel 8.0’
datasource=’d:\excel80\Y2Kbudget.xls’;

OLEDB_SERVICES=YES | NO
determines whether SAS uses OLE DB Services to connect to the data source.
Specify YES to use OLE DB Services or specify NO to use the provider to
connect to the data source. When you specify PROMPT=YES and
OLEDB_SERVICES=YES, you can set more options than you would
otherwise be able to set by being prompted by the provider’s dialog box. If
OLEDB_SERVICES=NO, you must specify PROVIDER= first in order for the
provider’s prompt dialog boxes to be used. If PROVIDER= is omitted, SAS
uses OLE DB Services, even if you specify OLEDB_SERVICES=NO. YES is
the default. For Microsoft SQL Server data, if BULKLOAD=YES, then
OLEDB_SERVICES= is set to NO. When OLEDB_SERVICES=YES and a
successful connection is made, the complete connection string is returned in
the SYSDBMSG macro variable.

PROMPT =YES | NO
determines whether one of these interactive dialog boxes displays to guide
you through the connection process:

� an OLE DB provider dialog box if OLEDB_SERVICES=NO and you
specify a provider.

� an OLE DB Services dialog box if OLEDB_SERVICES=YES or if you do
not specify a provider.

The OLE DB Services dialog box is generally preferred over the provider’s
dialog box because the OLE DB Services dialog box enables you to set options
more easily. If you specify a provider and set OLEDB_SERVICES=NO, the
default is PROMPT=NO. Otherwise, the default is PROMPT=YES. If
OLEDB_SERVICES=YES or if you do not specify a provider, an OLE DB
Services dialog box displays even if you specify PROMPT=NO. Specify no
more than one of the following options on each LIBNAME statement:
COMPLETE=, REQUIRED=, PROMPT=. Any properties that you specify in
the PROPERTIES= option are displayed in the prompting interface, and you
can edit any field.

684 Arguments � Chapter 24

UDL_FILE=<’>path-and-file-name<’>
specifies the path and filename for a Microsoft universal data link (UDL). For
example, you could specify
UDL_FILE="C:\WinNT\profiles\me\desktop\MyDBLink.UDL" This option
does not support SAS filerefs. SYSDBMSG is not set on successful
completion. For more information, see Microsoft documentation about the
Data Link API. This option overrides any values that are set with the
INIT_STRING=, PROVIDER=, and PROPERTIES= options.

This connection option is available only when you use OLE DB Services.

INIT_STRING=’property-1=value-1<...;property-n=value-n>’
specifies an initialization string, enabling you to bypass the interactive
prompting interface yet still use OLE DB Services. (This option is not
available if OLEDB_SERVICES=NO.) Use a semicolon to separate properties.
After you connect to a data source, SAS returns the complete initialization
string to the macro variable SYSDBMSG, which stores the connection
information that you specify in the prompting window. You can reuse the
initialization string to make automated connections or to specify connection
information for batch jobs. For example, assume that you specify this
initialization string:

init_string=’Provider=SQLOLEDB;Password=dbmgr1;Persist
Security Info=True;User ID=rachel;Initial Catalog=users;
Data Source=dwtsrv1’;

Here is what the content of the SYSDBMSG macro variable would be:

OLEDB: Provider=SQLOLEDB;Password=dbmgr1;
Persist Security Info=True;User ID=rachel;
Initial Catalog=users;Data Source=dwtsrv1;

If you store this string for later use, delete the OLEDB: prefix and any
initial spaces before the first listed option. There is no default value.
However, if you specify a null value for this option, the OLE DB Provider for
ODBC (MSDASQL) is used with your default data source and its properties.
See your OLE DB documentation for more information about these default
values. This option overrides any values that are set with the PROVIDER=
and PROPERTIES= options. To write the initialization string to the SAS log,
submit this code immediately after connecting to the data source:
%put %superq(SYSDBMSG);

Only these connection options are available when you connect directly to a
provider.

COMPLETE=YES | NO
specifies whether SAS attempts to connect to the data source without
prompting you for connection information. If you specify COMPLETE=YES
and the connection information that you specify in your LIBNAME statement
is sufficient, then SAS makes the connection and does not prompt you for
additional information. If you specify COMPLETE=YES and the connection
information that you specify in your LIBNAME statement is not sufficient,
the provider’s dialog box prompts you for additional information. You can
enter optional information as well as required information in the dialog box.
NO is the default value. COMPLETE= is available only when you set
OLEDB_SERVICES=NO and you specify a provider. It is not available in the
SQL pass-through facility. Specify no more than one of these options on each
LIBNAME statement: COMPLETE=, REQUIRED=, PROMPT=.

SAS/ACCESS Interface to OLE DB � Arguments 685

REQUIRED=YES | NO
specifies whether SAS attempts to connect to the data source without
prompting you for connection information and whether you can interactively
specify optional connection information. If you specify REQUIRED=YES and
the connection information that you specify in your LIBNAME statement is
sufficient, SAS makes the connection and you are not prompted for additional
information. If you specify REQUIRED=YES and the connection information
that you specify in your LIBNAME statement is not sufficient, the provider’s
dialog box prompts you for the required connection information. You cannot
enter optional connection information in the dialog box. NO is the default
value. REQUIRED= is available only when you set OLEDB_SERVICES=NO
and you specify a provider in the PROVIDER= option. It is not available in
the SQL pass-through facility Specify no more than one of these options on
each LIBNAME statement: COMPLETE=, REQUIRED=, PROMPT=.

LIBNAME-options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to OLE DB, with
the applicable default values. For more detail about these options, see “LIBNAME
Options for Relational Databases” on page 92.

Table 24.1 SAS/ACCESS LIBNAME Options for OLE DB

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTOCOMMIT= data-source specific

BL_KEEPIDENTITY= NO

BL_KEEPNULLS= YES

BL_OPTIONS= not specified

BULKLOAD= NO

CELLPROP= VALUE

COMMAND_TIMEOUT= 0 (no time–out)

CONNECTION= SHAREDREAD

CONNECTION_GROUP= none

CURSOR_TYPE= FORWARD_ONLY

DBCOMMIT= 1000 (inserting) or 0 (updating)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= NO

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

686 Arguments � Chapter 24

Option Default Value

DBMSTEMP= NO

DBNULLKEYS= YES

DEFER= NO

DELETE_MULT_ROWS= NO

DIRECT_EXE= none

DIRECT_SQL= YES

IGNORE_ READ_ONLY_COLUMNS= NO

INSERT_SQL= data-source specific

INSERTBUFF= 1

MULTI_DATASRC_OPT= NONE

PRESERVE_COL_NAMES= see “Naming Conventions for OLE DB” on page
703

PRESERVE_TAB_NAMES= see “Naming Conventions for OLE DB” on page
703

QUALIFIER= none

QUALIFY_ROWS= NO

QUOTE_CHAR= not set

READBUFF= 1

READ_LOCK_TYPE= see “Locking in the OLE DB Interface” on page 699

READ_ISOLATION_LEVEL= not set (see “Locking in the OLE DB Interface” on
page 699)

REREAD_EXPOSURE= NO

SCHEMA= none

SPOOL= YES

SQL_FUNCTIONS= none

STRINGDATES= NO

UPDATE_ISOLATION_LEVEL= not set (see “Locking in the OLE DB Interface” on
page 699)

UPDATE_LOCK TYPE= ROW

UPDATE_MULT_ROWS= NO

UTILCONN_TRANSIENT= NO

SAS/ACCESS Interface to OLE DB � Connecting Directly to a Data Provider 687

Connecting with OLE DB Services
By default, SAS/ACCESS Interface to OLE DB uses OLE DB services because this is

often the fastest and easiest way to connect to a data provider.
OLE DB Services provides performance optimizations and scaling features, including

resource pooling. It also provides interactive prompting for the provider name and
connection information.

Assume that you submit a simple LIBNAME statement, such as this one:

libname mydblib oledb;

SAS directs OLE DB Services to display a dialog box that contains tabs where you
can enter the provider name and connection information.

After you make a successful connection using OLE DB Services, you can retrieve the
connection information and reuse it in batch jobs and automated connections. For more
information, see the connection options INIT_STRING= and OLEDB_SERVICES=.

Connecting Directly to a Data Provider
To connect to a data source, SAS/ACCESS Interface to OLE DB requires a provider

name and provider-specific connection information such as the user ID, password,
schema, or server name. If you know all of this information, you can connect directly to
a provider without using OLE DB Services .

If you are connecting to Microsoft SQL Server and you are specifying the
SAS/ACCESS option BULKLOAD=YES, you must connect directly to the provider by
specifying the following information:

� the name of the provider (PROVIDER=)
� that you do not want to use OLE DB Services (OLEDB_SERVICES=NO)

� any required connection information

After you connect to your provider, you can use a special OLE DB query called
PROVIDER_INFO to make subsequent unprompted connections easier. You can submit
this special query as part of a PROC SQL query in order to display all available
provider names and properties. For an example, see “Examples of Special OLE DB
Queries” on page 694.

If you know only the provider name and you are running an interactive SAS session,
you can be prompted for the provider’s properties. Specify PROMPT=YES to direct the
provider to prompt you for properties and other connection information. Each provider
displays its own prompting interface.

If you run SAS in a batch environment, specify only USER=, PASSWORD=,
DATASOURCE=, PROVIDER=, PROPERTIES=, and OLEDB_SERVICES=NO.

688 OLE DB LIBNAME Statement Examples � Chapter 24

OLE DB LIBNAME Statement Examples
In the following example, the libref MYDBLIB uses the SAS/ACCESS OLE DB

engine to connect to a Microsoft SQL Server database.

libname mydblib oledb user=username password=password
datasource=dept203 provider=sqloledb properties=(’initial catalog’=mgronly);

proc print data=mydblib.customers;
where state=’CA’;

run;

In the following example, the libref MYDBLIB uses the SAS/ACCESS engine for
OLE DB to connect to an Oracle database. Because prompting is enabled, you can
review and edit the user, password, and data source information in a dialog box.

libname mydblib oledb user=username password=password datasource=v2o7223.world
provider=msdaora prompt=yes;

proc print data=mydblib.customers;
where state=’CA’;

run;

In the following example, you submit a basic LIBNAME statement, so an OLE DB
Services dialog box prompts you for the provider name and property values.

libname mydblib oledb;

The advantage of being prompted is that you do not need to know any special syntax
to set the values for the properties. Prompting also enables you to set more options than
you might when you connect directly to the provider (and do not use OLE DB Services).

SAS/ACCESS Interface to OLE DB � Data Set Options for OLE DB 689

Data Set Options for OLE DB
All SAS/ACCESS data set options in this table are supported for OLE DB. Default

values are provided where applicable. For general information about this feature, see
“Overview” on page 207.

Table 24.2 SAS/ACCESS Data Set Options for OLE DB

Option Default Value

BL_KEEPIDENTITY= LIBNAME option setting

BL_KEEPNULLS= LIBNAME option setting

BL_OPTIONS= LIBNAME option setting

BULKLOAD= NO

COMMAND_TIMEOUT= LIBNAME option setting

CURSOR_TYPE= LIBNAME option setting

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= _ALL_=YES

DBNULLKEYS= LIBNAME option setting

DBSASLABEL= COMPAT

DBSASTYPE=
see Data Types for OLE DB“Data Types for OLE
DB” on page 704

DBTYPE=
see Data Types for OLE DB“Data Types for OLE
DB” on page 704

ERRLIMIT= 1

IGNORE_ READ_ONLY_COLUMNS= NO

INSERT_SQL= LIBNAME option setting

INSERTBUFF= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

PRESERVE_COL_NAMES= LIBNAME option setting

READBUFF= LIBNAME option setting

690 SQL Pass-Through Facility Specifics for OLE DB � Chapter 24

Option Default Value

READ_ISOLATION_LEVEL= LIBNAME option setting

SASDATEFMT= not set

SCHEMA= LIBNAME option setting

UPDATE_ISOLATION_LEVEL= LIBNAME option setting

UPDATE_LOCK_TYPE= LIBNAME option setting

UTILCONN_TRANSIENT= YES

SQL Pass-Through Facility Specifics for OLE DB

Key Information
For general information about this feature, see “Overview of the SQL Pass-Through

Facility” on page 425. OLE DB examples are available.
Here are the SQL pass-through facility specifics for the OLE DB interface.

� The dbms-name is OLEDB.

� The CONNECT statement is required.

� PROC SQL supports multiple connections to OLE DB. If you use multiple
simultaneous connections, you must use an alias to identify the different
connections. If you do not specify an alias, the default alias, OLEDB, is used. The
functionality of multiple connections to the same OLE DB provider might be
limited by a particular provider.

� The CONNECT statement database-connection-arguments are identical to the
LIBNAME connection options. For some data sources, the connection options have
default values and are therefore not required.

Not all OLE DB providers support all connection options. See your provider
documentation for more information.

� Here are the LIBNAME options that are available with the CONNECT statement:

AUTOCOMMIT=

CELLPROP=

COMMAND_TIMEOUT=

CURSOR_TYPE=

DBMAX_TEXT=

QUALIFY_ROWS=

READ_ISOLATION_LEVEL=

READ_LOCK_TYPE=

READBUFF=

STRINGDATES=.

SAS/ACCESS Interface to OLE DB � Special Catalog Queries 691

Examples
This example uses an alias to connect to a Microsoft SQL Server database and select

a subset of data from the PAYROLL table. The SAS/ACCESS engine uses OLE DB
Services to connect to OLE DB because this is the default action when the
OLEDB_SERVICES= option is omitted.

proc sql;
connect to oledb as finance
(user=username password=password datasource=dwtsrv1
provider=sqloledb);

select * from connection to finance (select * from payroll
where jobcode=’FA3’);

quit;

In this example, the CONNECT statement omits the provider name and properties.
An OLE DB Services dialog box prompts you for the connection information.

proc sql;
connect to oledb;
quit;

This example uses OLE DB Services to connect to a provider that is configured under
the data source name User’s Data with the alias USER1. Note that the data source
name can contain quotation marks and spaces.

proc sql;
connect to oledb as user1
(provider=JET datasource=’c:\db1.mdb’);;

Special Catalog Queries
SAS/ACCESS Interface to OLE DB supports the following special queries. Many

databases provide or use system tables that allow queries to return the list of available
tables, columns, procedures, and other useful information. OLE DB provides much of
this functionality through special application programming interfaces (APIs) to
accommodate databases that do not follow the SQL table structure. You can use these
special queries on SQL and non-SQL databases.

Not all OLE DB providers support all queries. See your provider documentation for
more information.

Here is the general format of the special queries:

OLEDB::schema-rowset("parameter 1","parameter n")

OLEDB::
is required to distinguish special queries from regular queries.

schema-rowset
is the specific schema rowset that is being called. All valid schema rowsets are
listed under the IDBSchemaRowset Interface in the Microsoft OLE DB
Programmer’s Reference. Both OLEDB:: and schema-rowset are case sensitive.

692 Special Catalog Queries � Chapter 24

"parameter n"
is a quoted string that is enclosed by commas. The values for the special query
arguments are specific to each data source. For example, you supply the fully
qualified table name for a "Qualifier" argument. In dBase, the value of "Qualifier"
might be c:\dbase\tst.dbf, and in SQL Server, the value might be
test.customer. In addition, depending on the data source that you use, values
for an "Owner" argument might be a user ID, a database name, or a library. All
arguments are optional. If you specify some but not all arguments within a
parameter, use commas to indicate omitted arguments. If you do not specify any
parameters, no commas are necessary. These special queries might not be
available for all OLE DB providers.

OLE DB supports these special queries:

OLEDB::ASSERTIONS(<"Catalog", "Schema", "Constraint-Name">)
returns assertions that are defined in the catalog that a given user owns.

OLEDB::CATALOGS(<"Catalog">)
returns physical attributes that are associated with catalogs that are accessible
from the DBMS.

OLEDB::CHARACTER_SETS(<"Catalog", "Schema","Character-Set-Name">)
returns the character sets that are defined in the catalog that a given user can
access.

OLEDB::CHECK_CONSTRAINTS(<"Catalog", "Schema", "Constraint-Name">)
returns check constraints that are defined in the catalog and that a given user
owns.

OLEDB::COLLATIONS(<"Catalog", "Schema", "Collation-Name">)
returns the character collations that are defined in the catalog and that a given
user can access.

OLEDB::COLUMN_DOMAIN_USAGE(<"Catalog", "Schema", "Domain-Name",
"Column-Name">)

returns the columns that are defined in the catalog, are dependent on a domain
that is defined in the catalog, and a given user owns.

OLEDB::COLUMN_PRIVILEGES(<"Catalog", "Schema", "Table-Name",
"Column-Name", "Grantor", "Grantee">)

returns the privileges on columns of tables that are defined in the catalog that a
given user grants or can access.

OLEDB::COLUMNS(<"Catalog", "Schema", "Table-Name", "Column-Name">)
returns the columns of tables that are defined in the catalogs that a given user can
access.

OLEDB::CONSTRAINT_COLUMN_USAGE(<"Catalog", "Schema", "Table-Name",
"Column-Name">)

returns the columns that referential constraints, unique constraints, check
constraints, and assertions use that are defined in the catalog and that a given
user owns.

OLEDB::CONSTRAINT_TABLE_USAGE(<"Catalog", "Schema", "Table-Name">)
returns the tables that referential constraints, unique constraints, check
constraints, and assertions use that are defined in the catalog and that a given
user owns.

SAS/ACCESS Interface to OLE DB � Special Catalog Queries 693

OLEDB::FOREIGN_KEYS(<"Primary-Key-Catalog", "Primary-Key-Schema",
"Primary-Key-Table-Name", "Foreign-Key-Catalog", "Foreign-Key-Schema",
"Foreign-Key-Table-Name">)

returns the foreign key columns that a given user defined in the catalog.

OLEDB::INDEXES(<"Catalog", "Schema", "Index-Name", "Type", "Table-Name">)
returns the indexes that are defined in the catalog that a given user owns.

OLEDB::KEY_COLUMN_USAGE(<"Constraint-Catalog", "Constraint-Schema",
"Constraint-Name", "Table-Catalog", "Table-Schema", "Table-Name",
"Column-Name">)

returns the columns that are defined in the catalog and that a given user has
constrained as keys.

OLEDB::PRIMARY_KEYS(<"Catalog", "Schema", "Table-Name">)
returns the primary key columns that a given user defined in the catalog.

OLEDB::PROCEDURE_COLUMNS(<"Catalog", "Schema", "Procedure-Name",
"Column-Name">)

returns information about the columns of rowsets that procedures return.

OLEDB::PROCEDURE_PARAMETERS(<"Catalog", "Schema", "Procedure-Name",
"Parameter-Name">)

returns information about the parameters and return codes of the procedures.

OLEDB::PROCEDURES(<"Catalog", "Schema", "Procedure-Name",
"Procedure-Type">)

returns procedures that are defined in the catalog that a given user owns.

OLEDB::PROVIDER_INFO()
returns output that contains these columns: PROVIDER_NAME,
PROVIDER_DESCRIPTION, and PROVIDER_PROPERTIES. The
PROVIDER_PROPERTIES column contains a list of all properties that the
provider supports. A semicolon (;) separates the properties. See “Examples of
Special OLE DB Queries” on page 694.

OLEDB::PROVIDER_TYPES(<"Data Type", "Best-Match">)
returns information about the base data types that the data provider supports.

OLEDB::REFERENTIAL_CONSTRAINTS(<"Catalog", "Schema",
"Constraint-Name">)

returns the referential constraints that are defined in the catalog that a given user
owns.

OLEDB::SCHEMATA(<"Catalog", "Schema", "Owner">)
returns the schemas that a given user owns.

OLEDB::SQL_LANGUAGES()
returns the conformance levels, options, and dialects that the SQL implementation
processing data supports and that is defined in the catalog.

OLEDB::STATISTICS(<"Catalog", "Schema", "Table-Name">)
returns the statistics that is defined in the catalog that a given user owns.

OLEDB::TABLE_CONSTRAINTS(<"Constraint-Catalog", "Constraint-Schema",
"Constraint-Name", "Table-Catalog", "Table-Schema", "Table-Name",
"Constraint-Type">)

returns the table constraints that is defined in the catalog that a given user owns.

694 Special Catalog Queries � Chapter 24

OLEDB::TABLE_PRIVILEGES(<"Catalog", "Schema", "Table-Name", "Grantor",
"Grantee">)

returns the privileges on tables that are defined in the catalog that a given user
grants or can access.

OLEDB::TABLES(<"Catalog", "Schema", "Table-Name", "Table-Type">)
returns the tables defined in the catalog that a given user grants and can access.

OLEDB::TRANSLATIONS(<"Catalog", "Schema", "Translation-Name">)
returns the character translations that are defined in the catalog and that are
accessible to a given user.

OLEDB::USAGE_PRIVILEGES(<"Catalog", "Schema", "Object-Name", "Object-Type",
"Grantor", "Grantee">)

returns the USAGE privileges on objects that are defined in the catalog and that a
given user grants or can access.

OLEDB::VIEW_COLUMN_USAGE(<"Catalog", "Schema", "View-Name">)
returns the columns on which viewed tables depend that are defined in the catalog
and that a given user owns.

OLEDB::VIEW_TABLE_USAGE(<"Catalog", "Schema", "View-Name">)
returns the tables on which viewed tables depend that are defined in the catalog
and that a given user owns.

OLEDB::VIEWS(<"Catalog", "Schema", "Table-Name">)
returns the viewed tables that are defined in the catalog and that a given user can
access.

For a complete description of each rowset and the columns that are defined in each
rowset, see the Microsoft OLE DB Programmer’s Reference.

Examples of Special OLE DB Queries

The following example retrieves a rowset that displays all tables that the HRDEPT
schema accesses:

proc sql;
connect to oledb(provider=sqloledb properties=("User ID"=testuser

Password=testpass
"Data Source"=’dwtsrv1’));

select * from connection to oledb
(OLEDB::TABLES(,"HRDEPT"));

quit;

It uses the special query OLEDB::PROVIDER_INFO() to produce this output:

proc sql;
connect to oledb(provider=msdaora properties=("User ID"=testuser

Password=testpass
"Data Source"="Oraserver"));

select * from connection to oledb
(OLEDB::PROVIDER_INFO());

quit;

SAS/ACCESS Interface to OLE DB � Examples 695

Output 24.1 Provider and Properties Output

PROVIDER_NAME PROVIDER_DESCRIPTION PROVIDER_PROPERTIES
------------- -------------------- -------------------
MSDAORA Microsoft OLE DB Password;User ID;Data

Provider for Oracle Source;Window Handle;Locale
Identifier;OLE DB Services;
Prompt; Extended Properties;

SampProv Microsoft OLE DB Data Source;Window Handle;
Sample Provider Prompt;

You could then reference the output when automating a connection to the provider.
For the previous result set, you could write this SAS/ACCESS LIBNAME statement:

libname mydblib oledb provider=msdaora
props=(’Data Source’=OraServer ’User ID’=scott ’Password’=tiger);

Temporary Table Support for OLE DB

Overview
For general information about this feature, see “Temporary Table Support for SAS/

ACCESS” on page 38.

Establishing a Temporary Table
When you want to use temporary tables that persist across SAS procedures and DATA

steps with OLE DB, you must use the CONNECTION=SHARED LIBNAME option. In
doing so, the temporary table is available for processing until the libref is closed.

Terminating a Temporary Table
You can drop a temporary table at any time, or allow it to be implicitly dropped when

the connection is terminated. Temporary tables do not persist beyond the scope of a
singe connection.

Examples
Using the sample Internat table, this example creates a temporary table, #LONDON,

with Microsoft SQL Server. It contains information about flights that flew to London.
This table is then joined with a larger SQL Server table that lists all flights, March, but
matched only on flights that flew to London.

libname samples oledb Provider=SQLOLEDB Password=dbigrp1 UID=dbitest
DSN=’lupin\sql2000’ connection=shared;

data samples.’#LONDON’n;

696 Examples � Chapter 24

set work.internat;
where dest=’LON’;

run;

proc sql;
select b.flight, b.dates, b.depart, b.orig

from samples.’#LONDON’n a, samples.march b
where a.dest=b.dest;

quit;

In this next example, a temporary table, New, is created with Microsoft SQL Server.
The data from this table is then appended to an existing SQL Server table, Inventory.

libname samples oledb provider=SQLOLEDB dsn=lupinss
uid=dbitest pwd=dbigrp1;

data samples.inventory(DBTYPE=(itemnum=’char(5)’ item=’varchar(30)’
quantity=’numeric’));

itemnum=’12001’;
item=’screwdriver’;
quantity=15;
output;

itemnum=’12002’;
item=’hammer’;
quantity=25:
output;

itemnum=’12003’;
item=’sledge hammer’;
quantity=10;
output;

itemnum=’12004’;
item=’saw’;
quantity=50;
output;

itemnum=’12005’;
item=’shovel’;
quantity=120;
output;

run;

data samples.’#new’n(DBTYPE=(itemnum=’char(5)’ item=’varchar(30)’
quantity=’numeric’));

itemnum=’12006’;
item=’snow shovel’;
quantity=5;
output;

itemnum=’12007’;
item=’nails’;
quantity=500;
output;

run;

proc append base=samples.inventory data=samples.’#new’n;
run;

SAS/ACCESS Interface to OLE DB � Passing SAS Functions to OLE DB 697

proc print data=samples.inventory;
run;

The following example demonstrates the use of a temporary table using the SQL
pass-through facility.

proc sql;
connect to oledb as test (provider=SQLOLEDB dsn=lupinss

uid=dbitest pwd=dbigrp1);
execute (create table #FRANCE (flight char(3), dates datetime,

dest char(3))) by test;

execute (insert #FRANCE select flight, dates, dest from internat
where dest like ’%FRA%’) by test;

select * from connection to test (select * from #FRANCE);
quit;

Passing SAS Functions to OLE DB
SAS/ACCESS Interface to OLE DB passes the following SAS functions for OLE DB

to DB2, Microsoft SQL Server, and Oracle for processing. Where the OLE DB function
name differs from the SAS function name, the OLE DB name appears in parentheses.
For more information, see “Passing Functions to the DBMS Using PROC SQL” on page
42.

DAY
DTEXTDAY
DTEXTMONTH
DTEXTYEAR
DTEXTWEEKDAY
HOUR
MINUTE
MONTH
SECOND
WEEKDAY
YEAR

SQL_FUNCTIONS= ALL allows for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to OLE DB. Due to incompatibility in date and time functions between
OLE DB and SAS, OLE DB might not process them correctly. Check your results to
determine whether these functions are working as expected.

ABS
ARCOS (ACOS)
ARSIN (ASIN)
ATAN
AVG
BYTE

698 Passing Joins to OLE DB � Chapter 24

CEIL
COMPRESS
COS
COUNT
DATEPART
DATETIME
EXP
FLOOR
HOUR
INDEX
LENGTH
LOG
LOG10
LOWCASE (LCASE)
MAX
MIN
MOD
QRT
REPEAT
SIGN
SIN
SOUNDEX
SQRT
STRIP (TRIM)
SUBSTR
SUM
TAN
TIME
TIMEPART
TODAY
UPCASE

Passing Joins to OLE DB
For a multiple libref join to pass to OLE DB, all of these components of the

LIBNAME statements must match exactly:
� user ID (USER=)
� password (PASSWORD=)
� data source (DATASOURCE=)
� provider (PROVIDER=)
� qualifier (QUALIFIER=, if specified)
� provider string (PROVIDER_STRING, if specified)
� path and filename (UDL_FILE=, if specified)
� initialization string (INIT_STRING=, if specified)

SAS/ACCESS Interface to OLE DB � Locking in the OLE DB Interface 699

� read isolation level (READ_ISOLATION_LEVEL=, if specified)

� update isolation level (UPDATE_ISOLATION_LEVEL=, if specified)

� all properties (PROPERTIES=)

� prompt (PROMPT=, must not be specified)

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43S.

Bulk Loading for OLE DB

The BULKLOAD= LIBNAME option calls the SQLOLEDB interface of
IRowsetFastLoad so that you can efficiently insert rows of data into a Microsoft SQL
Server database table as a unit. BCP= is an alias for this option.

Note: This functionality is available only when accessing Microsoft SQL Server data
on Windows platforms using Microsoft SQL Server Version 7.0 or later. �

As SAS/ACCESS sends rows of data to the bulk-load facility, the data is written to an
input buffer. When you have sent all rows or when the buffer reaches a certain size
(DBCOMMIT= determines this), all rows are inserted as a unit into the table and the
data is committed to the table. You can also set DBCOMMIT= to commit rows after a
specified number of rows are inserted.

If an error occurs, a message is written to the SAS log, and any rows that were
inserted before the error are rolled back.

If you specify BULKLOAD=YES and the PROVIDER= option is set, SAS/ACCESS
Interface to OLE DB uses the specified provider. If you specify BULKLOAD=YES and
PROVIDER= is not set, the engine uses the PROVIDER=SQLOLEDB value.

If you specify BULKLOAD=YES, connections that are made through OLE DB
Services or UDL files are not allowed.

Locking in the OLE DB Interface

The following LIBNAME and data set options let you control how the OLE DB
interface handles locking. For general information about an option, see “LIBNAME
Options for Relational Databases” on page 92.

READ_LOCK_TYPE= ROW | NOLOCK

UPDATE_LOCK_TYPE= ROW | NOLOCK

READ_ISOLATION_LEVEL= S | RR | RC | RU
The data provider sets the default value. OLE DB supports the S, RR, RC, and RU
isolation levels that are defined in this table.

Table 24.3 Isolation Levels for OLE DB

Isolation Level Definition

S (serializable) Does not allow dirty reads, nonrepeatable reads, or
phantom reads.

RR (repeatable read) Does not allow dirty reads or nonrepeatable reads; does
allow phantom reads.

700 Accessing OLE DB for OLAP Data � Chapter 24

Isolation Level Definition

RC (read committed) Does not allow dirty reads or nonrepeatable reads; does
allow phantom reads.

RU (read uncommitted) Allows dirty reads, nonrepeatable reads, and phantom
reads.

Here is how the terms in the table are defined.

Dirty reads A transaction that exhibits this phenomenon has very minimal
isolation from concurrent transactions. In fact, it can see
changes that are made by those concurrent transactions even
before they commit.

For example, suppose that transaction T1 performs an
update on a row, transaction T2 then retrieves that row, and
transaction T1 then terminates with rollback. Transaction T2
has then seen a row that no longer exists.

Nonrepeatable
reads

If a transaction exhibits this phenomenon, it is possible that it
might read a row once and if it attempts to read that row again
later in the course of the same transaction, the row might have
been changed or even deleted by another concurrent
transaction. Therefore, the read is not (necessarily) repeatable.

For example, suppose that transaction T1 retrieves a row,
transaction T2 then updates that row, and transaction T1 then
retrieves the same row again. Transaction T1 has now retrieved
the same row twice but has seen two different values for it.

Phantom reads When a transaction exhibits this phenomenon, a set of rows
that it reads once might be a different set of rows if the
transaction attempts to read them again.

For example, suppose that transaction T1 retrieves the set of
all rows that satisfy some condition. Suppose that transaction
T2 then inserts a new row that satisfies that same condition. If
transaction T1 now repeats its retrieval request, it sees a row
that did not previously exist, a phantom.

UPDATE_ISOLATION_LEVEL= S | RR | RC
The default value is set by the data provider. OLE DB supports the S, RR, and RC
isolation levels defined in the preceding table. The RU isolation level is not
allowed with this option.

Accessing OLE DB for OLAP Data

Overview

SAS/ACCESS Interface to OLE DB provides a facility for accessing OLE DB for
OLAP data. You can specify a Multidimensional Expressions (MDX) statement through
the SQL pass-through facility to access the data directly, or you can create an SQL view
of the data. If your MDX statement specifies a data set with more than five axes
(COLUMNS, ROWS, PAGES, SECTIONS, and CHAPTERS), SAS returns an error. See

SAS/ACCESS Interface to OLE DB � Using the SQL Pass-Through Facility with OLAP Data 701

the Microsoft Data Access Components Software Developer’s Kit for details about MDX
syntax.

Note: This implementation provides read-only access to OLE DB for OLAP data.
You cannot update or insert data with this facility. �

Using the SQL Pass-Through Facility with OLAP Data
The main difference between normal OLE DB access using the SQL pass-through

facility and the implementation for OLE DB for OLAP is the use of these additional
identifiers to pass MDX statements to the OLE DB for OLAP data:

MDX::
identifies MDX statements that return a flattened data set from the
multidimensional data.

MDX_DESCRIBE::
identifies MDX statements that return detailed column information.

An MDX_DESCRIBE:: identifier is used to obtain detailed information about each
returned column. During the process of flattening multidimensional data, OLE DB for
OLAP builds column names from each level of the given dimension. For example, for
OLE DB for OLAP multidimensional data that contains CONTINENT, COUNTRY,
REGION, and CITY dimensions, you could build a column with this name:

[NORTH AMERICA].[USA].[SOUTHEAST].[ATLANTA]

This name cannot be used as a SAS variable name because it has more than 32
characters. For this reason, the SAS/ACCESS engine for OLE DB creates a column
name based on a shortened description, in this case, ATLANTA. However, since there
could be an ATLANTA in some other combination of dimensions, you might need to
know the complete OLE DB for OLAP column name. Using the MDX_DESCRIBE::
identifier returns a SAS data set that contains the SAS name for the returned column
and its corresponding OLE DB for OLAP column name:

SASNAME MDX_UNIQUE_NAME

ATLANTA [NORTH AMERICA].[USA].[SOUTHEAST].[ATLANTA]
CHARLOTTE [NORTH AMERICA].[USA].[SOUTHEAST].[CHARLOTTE]

. .

. .

. .

If two or more SASNAME values are identical, a number is appended to the end of
the second and later instances of the name—for example, ATLANTA, ATLANTA0,
ATLANTA1, and so on. Also, depending on the value of the VALIDVARNAME= system
option, illegal characters are converted to underscores in the SASNAME value.

702 Using the SQL Pass-Through Facility with OLAP Data � Chapter 24

Syntax
This facility uses the following general syntax. For more information about SQL

pass-through facility syntax, see Overview of the SQL Pass-Through Facility“Overview
of the SQL Pass-Through Facility” on page 425.

PROC SQL <options>;
CONNECT TO OLEDB (<options>);
<non-SELECT SQL statement(s)>
SELECT column-identifier(s) FROM CONNECTION TO OLEDB

(MDX:: | MDX_DESCRIBE:: <MDX statement>)
<other SQL statement(s)>

;

Examples
The following code uses the SQL pass-through facility to pass an MDX statement to a

Microsoft SQL Server Decision Support Services (DSS) Cube. The provider used is the
Microsoft OLE DB for OLAP provider named MSOLAP.

proc sql noerrorstop;
connect to oledb (provider=msolap prompt=yes);
select * from connection to oledb

(MDX::select {[Measures].[Units Shipped],
[Measures].[Units Ordered]} on columns,
NON EMPTY [Store].[Store Name].members on rows
from Warehouse);

See the Microsoft Data Access Components Software Developer’s Kit for details about
MDX syntax.

The CONNECT statement requests prompting for connection information, which
facilitates the connection process (especially with provider properties). The MDX::
prefix identifies the statement within the parentheses that follows the MDX statement
syntax, and is not an SQL statement that is specific to OLAP. Partial output from this
query might look like this:

Store Units Shipped Units Ordered

Store6 10,647 11,699
Store7 24,850 26,223

. . .

. . .

. . .

SAS/ACCESS Interface to OLE DB � Naming Conventions for OLE DB 703

You can use the same MDX statement with the MDX_DESCRIBE:: identifier to see
the full description of each column:

proc sql noerrorstop;
connect to oledb (provider=msolap prompt=yes);
select * from connection to oledb

(MDX_DESCRIBE::select {[Measures].[Units Shipped],
[Measures].[Units Ordered]} on columns,
NON EMPTY [Store].[Store Name].members on rows
from Warehouse);

The next example creates a view of the OLAP data, which is then accessed using the
PRINT procedure:

proc sql noerrorstop;
connect to oledb(provider=msolap

props=(’data source’=sqlserverdb
’user id’=myuserid password=mypassword));

create view work.myview as
select * from connection to oledb

(MDX::select {[MEASURES].[Unit Sales]} on columns,
order(except([Promotion Media].[Media Type].members,
{[Promotion Media].[Media Type].[No Media]}),
[Measures].[Unit Sales],DESC) on rows

from Sales)
;

proc print data=work.myview;
run;

In this example, full connection information is provided in the CONNECT statement,
so the user is not prompted. The SQL view can be used in other PROC SQL statements,
the DATA step, or in other procedures, but you cannot modify (that is, insert, update, or
delete a row in) the view’s underlying multidimensional data.

Naming Conventions for OLE DB

For general information about this feature, see Chapter 2, “SAS Names and Support
for DBMS Names,” on page 11.

Because OLE DB is an application programming interface (API), data source names
for files, tables, and columns are determined at run time. Since SAS 7, most SAS
names can be up to 32 characters long. SAS/ACCESS Interface to OLE DB also
supports file, table, and column names up to 32 characters long. If DBMS column
names are longer than 32 characters, they are truncated to 32 characters. If truncating
a name results in identical names, then SAS generates unique names by replacing the
last character with a number. For more information, see Chapter 2, “SAS Names and
Support for DBMS Names,” on page 11.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= LIBNAME options
determine how SAS/ACCESS Interface to OLE DB handles case sensitivity, spaces, and
special characters. (For information about these options, see “Overview of the
LIBNAME Statement for Relational Databases” on page 87.) The default value for both
options is NO for most data sources. The default value is YES for Microsoft Access,
Microsoft Excel, and Microsoft SQL Server.

704 Data Types for OLE DB � Chapter 24

Data Types for OLE DB

Overview
Each data source column in a table has a name and a data type. The data type tells

the data source how much physical storage to set aside for the column and the form in
which the data is stored. This section includes information about OLE DB null and
default values and data conversions.

OLE DB Null Values
Many relational database management systems have a special value called NULL. A

DBMS NULL value means an absence of information and is analogous to a SAS
missing value. When SAS/ACCESS reads a DBMS NULL value, it interprets it as a
SAS missing value.

In most relational databases, columns can be defined as NOT NULL so that they
require data (they cannot contain NULL values). When a column is defined as NOT
NULL, the DBMS does not add a row to the table unless the row has a value for that
column. When creating a DBMS table with SAS/ACCESS, you can use the DBNULL=
data set option to indicate whether NULL is a valid value for specified columns.

OLE DB mirrors the behavior of the underlying DBMS with regard to NULL values.
See the documentation for your DBMS for information about how it handles NULL
values.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” in SAS/ACCESS for Relational Databases:
Reference.

To control how SAS missing character values are handled by the DBMS, use the
NULLCHAR= and NULLCHARVAL= data set options.

SAS/ACCESS Interface to OLE DB � LIBNAME Statement Data Conversions 705

LIBNAME Statement Data Conversions
This table shows all data types and default SAS formats that SAS/ACCESS Interface

to OLE DB supports. It does not explicitly define the data types as they exist for each
data source. It lists the types that each data source’s data type might map to. For
example, an INTEGER data type under DB2 might map to an OLE DB data type of
DBTYPE_I4. All data types are supported.

Table 24.4 OLE DB Data Types and Default SAS Formats

OLE DB Data Type Default SAS Format

DBTYPE_R8 none

DBTYPE_R4 none

DBTYPE_I8 none

DBTYPE_UI8 none

DBTYPE_I4 11.

DBTYPE_UI4 11.

DBTYPE_I2 6.

DBTYPE_UI2 6.

DBTYPE_I1 4.

DBTYPE_UI1 4.

DBTYPE_BOOL 1.

DBTYPE_NUMERIC m or m.n or none, if m and n are not specified

DBTYPE_DECIMAL m or m.n or none, if m and n are not specified

DBTYPE_CY DOLLARm.2

DBTYPE_BYTES $n.

DBTYPE_STR $n.

DBTYPE_BSTR $n.

DBTYPE_WSTR $n.

DBTYPE_VARIANT $n.

DBTYPE_DBDATE DATE9.

DBTYPE_DBTIME TIME8.

DBTYPE_DBTIMESTAMP

DBTYPE_DATE

DATETIMEm.n, where m depends on precision
and n depends on scale

DBTYPE_GUID $38.

706 LIBNAME Statement Data Conversions � Chapter 24

The following table shows the default data types that SAS/ACCESS Interface to OLE
DB uses when creating DBMS tables. SAS/ACCESS Interface to OLE DB lets you
specify non-default data types by using the DBTYPE= data set option.

Table 24.5 Default OLE DB Output Data Types

SAS Variable Format Default OLE DB Data Type

m.n
DBTYPE_R8 or DBTYPE_NUMERIC using m.n
if the DBMS allows it

$n. DBTYPE_STR using n

date formats DBTYPE_DBDATE

time formats DBTYPE_DBTIME

datetime formats DBTYPE_DBTIMESTAMP

707

C H A P T E R

25
SAS/ACCESS Interface to Oracle

Introduction to SAS/ACCESS Interface to Oracle 708
LIBNAME Statement Specifics for Oracle 708

Overview 708

Arguments 708

Oracle LIBNAME Statement Examples 711

Data Set Options for Oracle 711
SQL Pass-Through Facility Specifics for Oracle 713

Key Information 713

Examples 714

Autopartitioning Scheme for Oracle 715

Overview 715

Partitioned Oracle Tables 716
Nonpartitioned Oracle Tables 717

Performance Summary 718

Temporary Table Support for Oracle 718

Establishing a Temporary Table 718

Syntax 719
Terminating a Temporary Table 719

Example 719

ACCESS Procedure Specifics for Oracle 719

Overview 719

Examples 720
DBLOAD Procedure Specifics for Oracle 721

Examples 722

Maximizing Oracle Performance 723

Passing SAS Functions to Oracle 723

Passing Joins to Oracle 725

Bulk Loading for Oracle 725
Overview 725

Interactions with Other Options 726

z/OS Specifics 726

Example 726

In-Database Procedures in Oracle 727
Locking in the Oracle Interface 728

Naming Conventions for Oracle 729

Data Types for Oracle 729

Overview 729

Character Data 729
Numeric Data 730

Date, Timestamp, and Interval Data 730

Examples 731

708 Introduction to SAS/ACCESS Interface to Oracle � Chapter 25

Binary Data 735
Oracle Null and Default Values 735

LIBNAME Statement Data Conversions 735

ACCESS Procedure Data Conversions 737

DBLOAD Procedure Data Conversions 738

Introduction to SAS/ACCESS Interface to Oracle
This section describes SAS/ACCESS Interface to Oracle. For a list of SAS/ACCESS

features that are available in this interface, see “SAS/ACCESS Interface to Oracle:
Supported Features” on page 82.

LIBNAME Statement Specifics for Oracle

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to

Oracle supports and includes examples. For details about this feature, see “Overview of
the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing Oracle.

LIBNAME libref oracle <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

oracle
specifies the SAS/ACCESS engine name for the Oracle interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. Here is how these options are defined.

USER=<’>Oracle-user-name<’>
specifies an optional Oracle user name. If the user name contains blanks or
national characters, enclose it in quotation marks. If you omit an Oracle user
name and password, the default Oracle user ID OPS$sysid is used, if it is
enabled. USER= must be used with PASSWORD=.

PASSWORD=<’>Oracle-password<’>
specifies an optional Oracle password that is associated with the Oracle user
name. If you omit PASSWORD=, the password for the default Oracle user ID
OPS$sysid is used, if it is enabled. PASSWORD= must be used with USER=.

PATH=<’>Oracle-database-specification<’>
specifies the Oracle driver, node, and database. Aliases are required if you
are using SQL*Net Version 2.0 or later. In some operating environments, you

SAS/ACCESS Interface to Oracle � Arguments 709

can enter the information that is required by the PATH= statement before
invoking SAS.

SAS/ACCESS uses the same Oracle path designation that you use to
connect to Oracle directly. See your database administrator to determine the
databases that have been set up in your operating environment, and to
determine the default values if you do not specify a database. On UNIX
systems, the TWO_TASK environment variable is used, if set. If neither the
PATH= nor the TWO_TASK values have been set, the default value is the
local driver.

If you specify the appropriate system options or environment variables for Oracle,
you can often omit the connection options from your LIBNAME statements. See
your Oracle documentation for details.

LIBNAME-options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to Oracle, with
the applicable default values. For more detail about these options, see “LIBNAME
Options for Relational Databases” on page 92.

Table 25.1 SAS/ACCESS LIBNAME Options for Oracle

Option Default Value

ACCESS= none

ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS= conditional

ADJUST_NCHAR_COLUMN_LENGTHS= YES

AUTHDOMAIN= none

CONNECTION= SHAREDREAD

CONNECTION_GROUP= none

DB_LENGTH_SEMANTICS_BYTE= YES

DBCLIENT_MAX_BYTES=
matches the maximum number of
bytes per single character of the
SAS session encoding

DBSERVER_MAX_BYTES= usually 1

DBCOMMIT=

1000 when inserting rows; 0 when
updating rows, deleting rows, or
appending rows to an existing
table

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX=

NO

Use this option only when the
object is a TABLE, not a VIEW.
Use DBKEY when you do not
know whether the object is a
TABLE.

710 Arguments � Chapter 25

Option Default Value

DBLIBINIT= none

DBLIBTERM= none

DBLINK= the local database

DBMAX_TEXT= 1024

DBMSTEMP= NO

DBNULLKEYS= YES

DBPROMPT= NO

DBSLICEPARM= THREADED_APPS,2

DEFER= NO

DIRECT_EXE= none

DIRECT_SQL= YES

INSERTBUFF=
1 (forced default when
REREAD_EXPOSURE=YES);
otherwise, 10

LOCKWAIT= YES

MULTI_DATASRC_OPT= NONE

OR_ENABLE_INTERRUPT= NO

OR_UPD_NOWHERE= YES

PRESERVE_COL_NAMES= NO

PRESERVE_TAB_NAMES= NO

READBUFF= 250

READ_ISOLATION_LEVEL=
see “Locking in the Oracle
Interface” on page 728

READ_LOCK_TYPE= NOLOCK

REREAD_EXPOSURE= NO

SCHEMA=
SAS accesses objects in the default
and public schemas

SHOW_SYNONYMS= YES

SPOOL= YES

SQL_FUNCTIONS= none

SQL_FUNCTIONS_COPY= none

SQLGENERATION= DBMS

UPDATE_ISOLATION_LEVEL=
see “Locking in the Oracle
Interface” on page 728

UPDATE_LOCK_TYPE= NOLOCK

SAS/ACCESS Interface to Oracle � Data Set Options for Oracle 711

Option Default Value

UPDATEBUFF= 1

UTILCONN_TRANSIENT= NO

Oracle LIBNAME Statement Examples
In this first example, default settings are used for the connection options to make the

connection. If you specify the appropriate system options or environment variables for
Oracle, you can often omit the connection options from your LIBNAME statements. See
your Oracle documentation for details.

libname myoralib oracle;

In the next example, the libref MYDBLIB uses SAS/ACCESS Interface to Oracle to
connect to an Oracle database. The SAS/ACCESS connection options are USER=,
PASSWORD=, and PATH=. PATH= specifies an alias for the database specification,
which SQL*Net requires.

libname mydblib oracle user=testuser password=testpass path=hrdept_002;

proc print data=mydblib.employees;
where dept=’CSR010’;

run;

Data Set Options for Oracle

All SAS/ACCESS data set options in this table are supported for Oracle. Default
values are provided where applicable. For general information about this feature, see
“Overview” on page 207.

Table 25.2 SAS/ACCESS Data Set Options for Oracle

Option Default Value

BL_BADFILE=
creates a file in the current directory or with the
default file specifications

BL_CONTROL=
creates a control file in the current directory or with
the default file specifications

BL_DATAFILE=
creates a file in the current directory or with the
default file specifications

BL_DEFAULT_DIR= <database-name>

BL_DELETE_DATAFILE= YES

BL_DELETE_ONLY_DATAFILE= none

BL_DIRECT_PATH= YES

BL_DISCARDFILE=
creates a file in the current directory or with the
default file specifications

BL_INDEX_OPTIONS=
the current SQL*Loader Index options with
bulk-loading

712 Data Set Options for Oracle � Chapter 25

Option Default Value

BL_LOAD_METHOD=
When loading an empty table, the default value is
INSERT. When loading a table that contains data,
the default value is APPEND.

BL_LOG=

If a log file does not already exist, it is created in the
current directory or with the default file
specifications. If a log file does already exist, the
Oracle bulk loader reuses the file, replacing the
contents with information from the new load.

BL_OPTIONS= ERRORS=1000000

BL_PRESERVE_BLANKS= NO

BL_RECOVERABLE= YES

BL_RETURN_WARNINGS_AS_ERRORS= NO

BL_SQLLDR_PATH= sqldr

BL_SUPPRESS_NULLIF= NO

BL_USE_PIPE= NO

BULKLOAD= NO

DBCOMMIT= the current LIBNAME option setting

DB_ONE_CONNECT_PER_THREAD= YES

DBCONDITION= none

DBCREATE_TABLE_OPTS= the current LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= the current LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBLINK= the current LIBNAME option setting

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= YES

DBNULLKEYS= the current LIBNAME option setting

DBPROMPT= the current LIBNAME option setting

DBSASLABEL= COMPAT

DBSASTYPE= see “Data Types for Oracle” on page 729

DBSLICE= none

DBSLICEPARM= THREADED_APPS,2

DBTYPE=
see “LIBNAME Statement Data Conversions” on page
735

ERRLIMIT= 1

INSERTBUFF= the current LIBNAME option setting

SAS/ACCESS Interface to Oracle � Key Information 713

Option Default Value

NULLCHAR= SAS

NULLCHARVAL= a blank character

OR_PARTITION= an Oracle table partition name

OR_UPD_NOWHERE= the current LIBNAME option setting

ORHINTS= no hints

current LIBNAME option setting

READ_ISOLATION_LEVEL= the current LIBNAME option setting

READ_LOCK_TYPE= the current LIBNAME option setting

READBUFF= the current LIBNAME option setting

SASDATEFORMAT= DATETIME20.0

SCHEMA= the current LIBNAME option setting

UPDATE_ISOLATION_LEVEL= the current LIBNAME option setting

UPDATE_LOCK_TYPE= the current LIBNAME option setting

UPDATEBUFF= the current LIBNAME option setting

SQL Pass-Through Facility Specifics for Oracle

Key Information
For general information about this feature, see “Overview of the SQL Pass-Through

Facility” on page 425. Oracle examples are available.
Here are the SQL pass-through facility specifics for the Oracle interface.
� The dbms-name is oracle.
� The CONNECT statement is optional. If you omit it, an implicit connection is

made with your OPS$sysid, if it is enabled. When you omit a CONNECT
statement, an implicit connection is performed when the first EXECUTE
statement or CONNECTION TO component is passed to Oracle. In this case you
must use the default DBMS name oracle.

� The Oracle interface can connect to multiple databases (both local and remote) and
to multiple user IDs. If you use multiple simultaneous connections, you must use
an alias argument to identify each connection. If you do not specify an alias, the
default alias, oracle, is used.

� Here are the database-connection-arguments for the CONNECT statement.

USER=<’>Oracle-user-name<’>
specifies an optional Oracle user name. If you specify USER=, you must also
specify PASSWORD=.

PASSWORD= <’>Oracle-password<’>
specifies an optional Oracle password that is associated with the Oracle user
name. If you omit an Oracle password, the default Oracle user ID OPS$sysid
is used, if it is enabled. If you specify PASSWORD=, you must also specify
USER=.

714 Examples � Chapter 25

ORAPW= is an alias for this option. If you do not wish to enter your
Oracle password in uncoded text, see PROC PWENCODE in Base SAS
Procedures Guide for a method to encode it.

BUFFSIZE=number-of-rows
specifies the number of rows to retrieve from an Oracle table or view with
each fetch. Using this argument can improve the performance of any query to
Oracle.

By setting the value of the BUFFSIZE= argument in your SAS programs,
you can find the optimal number of rows for a given query on a given table.
The default buffer size is 250 rows per fetch. The value of BUFFSIZE= can
be up to 2,147,483,647 rows per fetch, although a practical limit for most
applications is less, depending on the available memory.

PRESERVE_COMMENTS
enables you to pass additional information (called hints) to Oracle for
processing. These hints might direct the Oracle query optimizer to choose the
best processing method based on your hint.

You specify PRESERVE_COMMENTS as an argument in the CONNECT
statement. You then specify the hints in the Oracle SQL query for the
CONNECTION TO component. Hints are entered as comments in the SQL
query and are passed to and processed by Oracle.

PATH=<’>Oracle-database-specification<’>
specifies the Oracle driver, node, and database. Aliases are required if you
are using SQL*Net Version 2.0 or later. In some operating environments, you
can enter the information that is required by the PATH= statement before
invoking SAS.

SAS/ACCESS uses the same Oracle path designation that you use to
connect to Oracle directly. See your database administrator to determine the
path designations that have been set up in your operating environment, and
to determine the default value if you do not specify a path designation. On
UNIX systems, the TWO_TASK environment variable is used, if set. If
neither PATH= nor TWO_TASK have been set, the default value is the local
driver.

Examples
This example uses the alias DBCON for the DBMS connection (the connection alias

is optional):

proc sql;
connect to oracle as dbcon

(user=testuser password=testpass buffsize=100
path=’myorapath’);

quit;

This next example connects to Oracle and sends it two EXECUTE statements to
process.

proc sql;
connect to oracle (user=testuser password=testpass);
execute (create view whotookorders as

select ordernum, takenby,
firstname, lastname, phone

from orders, employees
where orders.takenby=employees.empid)

SAS/ACCESS Interface to Oracle � Overview 715

by oracle;
execute (grant select on whotookorders

to testuser) by oracle;
disconnect from oracle;

quit;

As shown in highlighted text, this example performs a query on the CUSTOMERS
Oracle table:

proc sql;
connect to oracle (user=testuser password=testpass);
select *

from connection to oracle
(select * from customers
where customer like ’1%’);

disconnect from oracle;
quit;

In this example, the PRESERVE_COMMENTS argument is specified after the
USER= and PASSWORD= arguments. The Oracle SQL query is enclosed in the
required parentheses. The SQL INDX command identifies the index for the Oracle
query optimizer to use to process the query. Multiple hints are separated with blanks.

proc sql;
connect to oracle as mycon(user=testuser

password=testpass preserve_comments);
select *

from connection to mycon
(select /* +indx(empid) all_rows */

count(*) from employees);
quit;

Hints are not preserved in this next example, which uses the prior style of syntax:

execute (delete /*+ FIRST_ROWS */ from test2 where num2=1)
by &db

Using the new syntax, hints are preserved in this example:

execute by &db
(delete /*+ FIRST_ROWS */ from test2 where num2=2);

Autopartitioning Scheme for Oracle

Overview

Without user-specified partitioning from the DBSLICE= option, SAS/ACCESS
Interface to Oracle tries to use its own partitioning techniques. The technique it
chooses depends on whether the table is physically partitioned on the Oracle server.

For general information about this feature, see “Autopartitioning Techniques in SAS/
ACCESS” on page 57.

Note: Threaded reads for the Oracle engine on z/OS are not supported. �

716 Partitioned Oracle Tables � Chapter 25

Partitioned Oracle Tables

If you are working with a partitioned Oracle table, it is recommended that you let
the Oracle engine partition the table for you. The Oracle engine gathers all partition
information needed to perform a threaded read on the table.

A partitioned Oracle table is a good candidate for a threaded read because each
partition in the table can be read in parallel with little contention for disk resources. If
the Oracle engine determines that the table is partitioned, it makes the same number
of connections to the server as there are partitions, as long as the maximum number of
threads that are allowed is higher than the number of partitions. Each connection
retrieves rows from a single partition.

If the value of the maximum number of allowed threads is less than the number of
partitions on the table, a single connection reads multiple partitions. Each connection
retrieves rows from a single partition or multiple partitions. However, you can use the
DB_ONE_CONNECT_PER_THREAD= data set option so that there is only one
connection per thread.

The following example shows how to do this. First, create the SALES table in Oracle.

CREATE TABLE SALES (acct_no NUMBER(5),
acct_name CHAR(30), amount_of_sale NUMBER(6), qtr_no INTEGER)
PARTITION BY RANGE (qtr_no)
(PARTITION sales1 VALUES LESS THAN (2) TABLESPACE ts0,
PARTITION sales2 VALUES LESS THAN (2) TABLESPACE ts1,
PARTITION sales3 VALUES LESS THAN (2) TABLESPACE ts2,
PARTITION sales4 VALUES LESS THAN (2) TABLESPACE ts3)

Performing a threaded read on this table with the following code, SAS makes four
separate connections to the Oracle server and each connection reads from each partition.
Turning on SASTRACE= shows the SQL that is generated for each connection.

libname x oracle user=testuser path=oraserver;
data new;
set x.SALES (DBSLICEPARM=(ALL,10));
run;

ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES2)
ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES3)
ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES1)
ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES4)

Using the following code, SAS instead makes two separate connections to the Oracle
server and each connection reads from two different partitions.

libname x oracle user=testuser path=oraserver;
data new;
set x.SALES (DBSLICEPARM=(ALL,2));
run;

ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES2) UNION ALL SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE",
"QTR_NO" FROM SALES partition (SALES3)
ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES

SAS/ACCESS Interface to Oracle � Nonpartitioned Oracle Tables 717

partition (SALES1) UNION ALL SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE",
"QTR_NO" FROM SALES partition (SALES4)

Using DB_ONE_CONNECT_PER_THREAD=NO, however, you can override the
default behavior of limiting the number of connections to the number of threads. As
shown below, SAS makes four separate connections to the Oracle server and each
connection reads from each of the partition.

libname x oracle user=testuser path=oraserver;
data new;
set x.SALES (DBSLICEPARM=(ALL,2) DB_ONE_CONNECT_PER_THREAD=NO);
run;

ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES2)
ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES3)
ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES1)
ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES4)

The second parameter of the DBSLICEPARM= LIBNAME option determines the
number of threads to read the table in parallel. The number of partitions on the table,
the maximum number of allowed threads, and the value of
DB_ONE_CONNECT_PER_THREAD= determine the number of connections to the
Oracle server for retrieving rows from the table.

Nonpartitioned Oracle Tables

If the table is not partitioned, and the DBSLICE= option is not specified, Oracle
resorts to the MOD function (see “Autopartitioning Techniques in SAS/ACCESS” on
page 57 With this technique, the engine makes N connections, and each connection
retrieves rows based on a WHERE clause as follows:

WHERE ABS(MOD(ModColumn,N))=R

� ModColumn is a column in the table of type integer and is not used in any user
specified WHERE clauses. (The engine selects this column. If you do not think
this is the ideal partitioning column, you can use the DBSLICE= data set option to
override this default behavior.)

� R varies from 0 to (N-1) for each of the N WHERE clauses.

� N defaults to 2, and N can be overridden with the second parameter in the
DBSLICEPARM= data set option.

The Oracle engine selects the ModColumn to use in this technique. Any numeric
column with zero scale value can qualify as the ModColumn. However, if a primary key
column is present, it is preferred over all others. Generally, values in the primary key
column are in a serial order and yield an equal number of rows for each connection.
This example illustrates the point:

create table employee (empno number(10) primary key,
empname varchar2(20), hiredate date,
salary number(8,2), gender char(1));

718 Performance Summary � Chapter 25

Performing a threaded read on this table causes Oracle to make two separate
connections to the Oracle server. SAS tracing shows the SQL generated for each
connection:

data new;
set x.EMPLOYEE(DBSLICPARM=ALL);
run;
ORACLE: SELECT "EMPNO", "EMPNAME", "HIREDATE", "SALARY", "GENDER"
FROM EMPLOYEE WHERE ABS(MOD("EMPNO",2))=0
ORACLE: SELECT "EMPNO", "EMPNAME", "HIREDATE", "SALARY", "GENDER"
FROM EMPLOYEE WHERE ABS(MOD("EMPNO",2))=1

EMPNO, the primary key, is selected as the MOD column.
The success of MOD depends on the distribution of the values within the selected

ModColumn and the value of N. Ideally, the rows are distributed evenly among the
threads.

You can alter the N value by changing the second parameter of DBSLICEPARM=
LIBNAME option.

Performance Summary
There are times you might not see an improvement in performance with the MOD

technique. It is possible that the engine might not be able to find a column that
qualifies as a good MOD column. In these situations, you can explicitly specify
DBSLICE= data set option to force a threaded read and improve performance.

It is a good policy to let the engine autopartition and intervene with DBSLICE= only
when necessary.

Temporary Table Support for Oracle
For general information about this feature, see “Temporary Table Support for SAS/

ACCESS” on page 38.

Establishing a Temporary Table
A temporary table in Oracle persists just like a regular table, but contains either

session-specific or transaction-specific data. Whether the data is session- or
transaction-specific is determined by what is specified with the ON COMMIT keyword
when you create the temporary table.

In the SAS context, you must use the LIBNAME option, CONNECTION=SHARED,
before data in a temporary table persists over procedure and DATA step boundaries.
Without this option, the temporary table persists but the data within it does not.

For data to persist between explicit SQL pass-through boundaries, you must use the
LIBNAME option, CONNECTION=GLOBAL.

If you have a SAS data set and you want to join it with an Oracle table to generate a
report, the join normally occurs in SAS. However, using a temporary table you can also
have the join occur on the Oracle server.

SAS/ACCESS Interface to Oracle � Overview 719

Syntax
Here is the syntax to create a temporary table for which the data is

transaction-specific (default):

CREATE GLOBAL TEMPORARY TABLE table name ON COMMIT DELETE
ROWS

Here is the syntax to create a temporary table for which the data is session-specific:

CREATE GLOBAL TEMPORARY TABLE table name ON COMMIT PRESERVE
ROWS

Terminating a Temporary Table
You can drop a temporary table at any time, or allow it to be implicitly dropped when

the connection is terminated. Temporary tables do not persist beyond the scope of a
singe connection.

Example
In the following example, a temporary table, TEMPTRANS, is created in Oracle to

match the TRANS SAS data set, using the SQL pass-through facility:

proc sql;
connect to oracle (user=scott pw=tiger path=oraclev9);
execute (create global temporary table TEMPTRANS

(empid number, salary number)) by oracle;
quit;

libname ora oracle user=scott pw=tiger path=oracle9 connection=shared;

/* load the data from the TRANS table into the Oracle temporary table */
proc append base=ora.TEMPTRANS data=TRANS;
run;

proc sql;
/* do the join on the DBMS server */

select lastname, firstname, salary from ora.EMPLOYEES T1, ora.TEMPTRANS T2
where T1.empno=T2.empno;

quit;

ACCESS Procedure Specifics for Oracle

Overview
For general information about this feature, see Appendix 1, “The ACCESS Procedure

for Relational Databases,” on page 893. Oracle examples are available.
The Oracle interface supports all ACCESS procedure statements in line and batch

modes. See “About ACCESS Procedure Statements” on page 894.
Here are the ACCESS procedure specifics for Oracle.

720 Examples � Chapter 25

� The PROC ACCESS step DBMS= value is Oracle.
� Here are the database-description-statements that PROC ACCESS uses:

USER=<’>Oracle-user-name<’>
specifies an optional Oracle user name. If you omit an Oracle password and
user name, the default Oracle user ID OPS$sysid is used if it is enabled. If
you specify USER=, you must also specify ORAPW=.

ORAPW= <’>Oracle-password<’>
specifies an optional Oracle password that is associated with the Oracle user
name. If you omit ORAPW=, the password for the default Oracle user ID
OPS$sysid is used, if it is enabled. If you specify ORAPW=, you must also
specify USER=.

PATH=<’>Oracle-database-specification<’>
specifies the Oracle driver, node, and database. Aliases are required if you
are using SQL*Net Version 2.0 or later. In some operating environments, you
can enter the information that is required by the PATH= statement before
invoking SAS.

SAS/ACCESS uses the same Oracle path designation that you use to
connect to Oracle directly. See your database administrator to determine the
path designations that have are up in your operating environment, and to
determine the default value if you do not specify a path designation. On UNIX
systems, the TWO_TASK environment variable is used, if set. If neither
PATH= nor TWO_TASK have been set, the default value is the local driver.

� Here is the PROC ACCESS step TABLE= statement:

TABLE= <’><Oracle-table-name><’>;
specifies the name of the Oracle table or Oracle view on which the access
descriptor is based. This statement is required. The Oracle-table-name
argument can be up to 30 characters long and must be a valid Oracle table
name. If the table name contains blanks or national characters, enclose it in
quotation marks.

Examples
This example creates an access descriptor and a view descriptor based on Oracle data.

options linesize=80;

libname adlib ’SAS-data-library’;
libname vlib ’SAS-data-library’;

proc access dbms=oracle;

/* create access descriptor */

create adlib.customer.access;
user=testuser;
orapw=testpass;
table=customers;
path=’myorapath’;
assign=yes;
rename customer=custnum;
format firstorder date9.;
list all;

SAS/ACCESS Interface to Oracle � DBLOAD Procedure Specifics for Oracle 721

/* create view descriptor */

create vlib.usacust.view;
select customer state zipcode name

firstorder;
subset where customer like ’1%’;

run;

This next example creates another view descriptor that is based on the
ADLIB.CUSTOMER access descriptor. You can then print the view.

/* create socust view */

proc access dbms=oracle accdesc=adlib.customer;
create vlib.socust.view;
select customer state name contact;
subset where state in (’NC’, ’VA’, ’TX’);

run;

/* print socust view */

proc print data=vlib.socust;
title ’Customers in Southern States’;
run;

DBLOAD Procedure Specifics for Oracle
For general information about this feature, see Appendix 2, “The DBLOAD Procedure

for Relational Databases,” on page 911. Oracle examples are available.
The Oracle interface supports all DBLOAD procedure statements. See “About

DBLOAD Procedure Statements” on page 912.
Here are the DBLOAD procedure specifics for Oracle.
� The PROC DBLOAD step DBMS= value is Oracle.
� Here are the database-description-statements that PROC DBLOAD uses:

USER=<’>Oracle-user-name<’>
specifies an optional Oracle user name. If you omit an Oracle password and
user name, the default Oracle user ID OPS$sysid is used if it is enabled. If
you specify USER=, you must also specify ORAPW=.

ORAPW= <’>Oracle-password<’>
specifies an optional Oracle password that is associated with the Oracle user
name. If you omit ORAPW=, the password for the default Oracle user ID
OPS$sysid is used, if it is enabled. If you specify ORAPW=, you must also
specify USER=.

PATH=<’>Oracle-database-specification<’>
specifies the Oracle driver, node, and database. Aliases are required if you
are using SQL*Net Version 2.0 or later. In some operating environments, you
can enter the information that is required by the PATH= statement before
invoking SAS.

SAS/ACCESS uses the same Oracle path designation that you use to
connect to Oracle directly. See your database administrator to determine the
path designations that are set up in your operating environment, and to

722 Examples � Chapter 25

determine the default value if you do not specify a path designation. On UNIX
systems, the TWO_TASK environment variable is used, if set. If neither
PATH= nor TWO_TASK have been set, the default value is the local driver.

TABLESPACE= <’>Oracle-tablespace-name<’>;
specifies the name of the Oracle tablespace where you want to store the new
table. The Oracle-tablespace-name argument can be up to 18 characters long
and must be a valid Oracle tablespace name. If the name contains blanks or
national characters, enclose the entire name in quotation marks.

If TABLESPACE= is omitted, the table is created in your default
tablespace that is defined by the Oracle database administrator at your site.

� Here is the PROC DBLOAD step TABLE= statement:

TABLE= <’><Oracle-table-name><’>;
specifies the name of the Oracle table or Oracle view on which the access
descriptor is based. This statement is required. The Oracle-table-name
argument can be up to 30 characters long and must be a valid Oracle table
name. If the table name contains blanks or national characters, enclose the
name in quotation marks.

Examples

The following example creates a new Oracle table, EXCHANGE, from the
DLIB.RATEOFEX data file. (The DLIB.RATEOFEX data set is included in the sample
data shipped with your software.) An access descriptor, ADLIB.EXCHANGE, based on
the new table, is also created. The PATH= statement uses an alias to connect to a
remote Oracle 7 Server database.

The SQL statement in the second DBLOAD procedure sends an SQL GRANT
statement to Oracle. You must be granted Oracle privileges to create new Oracle tables
or to grant privileges to other users. The SQL statement is in a separate procedure
because you cannot create a DBMS table and reference it within the same DBLOAD
step. The new table is not created until the RUN statement is processed at the end of
the first DBLOAD step.

libname adlib ’SAS-data-library’;
libname dlib ’SAS-data-library’;

proc dbload dbms=oracle data=dlib.rateofex;
user=testuser;
orapw=testpass;
path=’myorapath’;
table=exchange;
accdesc=adlib.exchange;
rename fgnindol=fgnindolar 4=dolrsinfgn;
nulls updated=n fgnindol=n 4=n country=n;
load;

run;

proc dbload dbms=oracle;
user=testuser;
orapw=testpass;
path=’myorapath’;
sql grant select on testuser.exchange to pham;

run;

SAS/ACCESS Interface to Oracle � Passing SAS Functions to Oracle 723

This next example uses the APPEND option to append rows from the INVDATA data
set, which was created previously, to an existing Oracle table named INVOICE.

proc dbload dbms=oracle data=invdata append;
user=testuser;
orapw=testpass;
path=’myorapath’;
table=invoice;
load;

run;

Maximizing Oracle Performance
There are several measures you can take to optimize performance when using

SAS/ACCESS Interface to Oracle. For general information about improving
performance when using SAS/ACCESS engines, see Chapter 4, “Performance
Considerations,” on page 35.

SAS/ACCESS Interface to Oracle has several options that you can use to further
improve performance.

� For tips on multi-row processing, see these LIBNAME options: INSERTBUFF,
UPDATEBUFF, and READBUFF.

� For instructions on using the Oracle SQL*Loader to increase performance when
loading rows of data into Oracle tables, see “Passing Functions to the DBMS Using
PROC SQL” on page 42.

If you choose the transactional inserting of rows (specify BULKLOAD=NO), you can
improve performance by inserting multiple rows at a time. This performance
enhancement is comparable to using the Oracle SQL*Loader Conventional Path Load.
For more information about inserting multiple rows, see the INSERTBUFF= option.

Passing SAS Functions to Oracle
SAS/ACCESS Interface to Oracle passes the following SAS functions to Oracle for

processing. Where the Oracle function name differs from the SAS function name, the
Oracle name appears in parentheses. For more information, see “Passing Functions to
the DBMS Using PROC SQL” on page 42.

� ABS
� ARCOS (ACOS)
� ARSIN (ASIN)
� ATAN
� AVG
� CEIL
� COS
� COSH
� COUNT
� DATEPART
� DATETIME (SYSDATE)
� DTEXTDAY

724 Passing SAS Functions to Oracle � Chapter 25

� DTEXTMONTH
� DTEXTYEAR

� EXP
� FLOOR

� LOG
� LOG10

� LOG2
� LOWCASE (LCASE)

� MAX
� MIN

� SIGN
� SIN

� SINH
� SOUNDEX

� SQRT
� STRIP (TRIM)

� SUM
� TAN

� TRANSLATE
� TRIM (TRMIN)

� UPCASE (UPPER)

When the Oracle server is 9i or above, these additional functions are also passed.
� COALESCE

� DAY (EXTRACT)
� MONTH (EXTRACT)

� YEAR (EXTRACT)

SQL_FUNCTIONS=ALL allows for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to Oracle. Due to incompatibility in date and time functions between
Oracle and SAS, Oracle might not process them correctly. Check your results to
determine whether these functions are working as expected. For more information, see
“SQL_FUNCTIONS= LIBNAME Option” on page 186.

� DATE (TRUNC(SYSDATE))*
� DATEPART (TRUNC)*

� INDEX (INSTR)
� LENGTH

� MOD
� ROUND

� SUBSTR
� TODAY (TRUNC(SYSDATE)*

� TRANWRD (REPLACE)
� TRIM (RTRIM)

*Only in WHERE or HAVE clauses.

SAS/ACCESS Interface to Oracle � Overview 725

Passing Joins to Oracle
Before a join can pass to Oracle, all of these components of the LIBNAME statements

must match exactly:
� user ID (USER=)
� password (PASSWORD=)
� path (PATH=)

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

Bulk Loading for Oracle

Overview
SAS/ACCESS Interface to Oracle can call the Oracle SQL*Loader (SQLLDR) when

you set the data set option BULKLOAD=YES. The Oracle bulk loader provides superior
load performance, so you can rapidly move data from a SAS file into an Oracle table.
Future releases of SAS/ACCESS software will continue to use powerful Oracle tools to
improve load performance. An Oracle bulk-load example is available.

Here are the Oracle bulk-load data set options. For detailed information about these
options, see Chapter 11, “Data Set Options for Relational Databases,” on page 203.

� BL_BADFILE=
� BL_CONTROL=
� BL_DATAFILE=
� BL_DELETE_DATAFILE=
� BL_DIRECT_PATH=
� BL_DISCARDFILE=
� BL_INDEX_OPTIONS=
� BL_LOAD_METHOD=
� BL_LOG=
� BL_OPTIONS=
� BL_PARFILE=
� BL_PRESERVE_BLANKS=
� BL_RECOVERABLE=
� BL_RETURN_WARNINGS_AS_ERRORS=
� BL_SQLLDR_PATH=
� BL_SUPPRESS_NULLIF=
� BULKLOAD=

BULKLOAD= calls the Oracle bulk loader so that the Oracle engine can move data
from a SAS file into an Oracle table using SQL*Loader (SQLLDR).

Note: SQL*Loader direct-path load has a number of limitations. See your Oracle
utilities documentation for details, including tips to boost performance. You can also
view the SQL*Loader log file instead of the SAS log for information about the load
when you use bulk load. �

726 Interactions with Other Options � Chapter 25

Interactions with Other Options
When BULKLOAD=YES, the following statements are true:
� The DBCOMMIT=, DBFORCE=, ERRLIMIT=, and INSERTBUFF= options are

ignored.
� If NULLCHAR=SAS, and the NULLCHARVAL value is blank, then the

SQL*Loader attempts to insert a NULL instead of a NULLCHARVAL value.
� If NULLCHAR=NO, and the NULLCHARVAL value is blank, then the

SQL*Loader attempts to insert a NULL even if the DBMS does not allow NULL.
To avoid this result, set BL_PRESERVE_BLANKS=YES or set NULLCHARVAL

to a non-blank value and then replace the non-blank value with blanks after
processing, if necessary.

z/OS Specifics
When you use bulk load in the z/OS operating environment, the files that the

SQL*Loader uses must conform to z/OS data set standards. The data sets can be either
sequential data sets or partitioned data sets. Each filename that is supplied to the
SQL*Loader are subject to extension and FNA processing.

If you do not specify filenames using data set options, then default names in the form
of userid.SAS.data-set-extension apply. The userid is the TSO prefix when running
under TSO, and it is the PROFILE PREFIX in batch. The data-set-extensions are:

BAD for the bad file
CTL for the control file
DAT for the data file
DSC for the discard file
LOG for the log file

If you want to specify filenames using data set options, then you must use one of
these forms:

/DD/ddname
/DD/ddname(membername)
Name

For detailed information about these forms, see the SQL*Loader chapter in the Oracle
user’s guide for z/OS.

The Oracle engine runs the SQL*Loader by issuing a host-system command from
within your SAS session. The data set where the SQLLDR executable file resides must
be available to your TSO session or allocated to your batch job. Check with your system
administrator if you do not know the name or availability of the data set that contains
the SQLLDR executable file.

On z/OS, the bad file and the discard file are, by default, not created in the same
format as the data file. This makes it difficult to load the contents of these files after
making corrections. See the section on SQL*Loader file attributes in the SQL*Loader
section in the Oracle user’s guide for z/OS for information about overcoming this
limitation.

Example
This example shows you how to create and use a SAS data set to create and load to a

large Oracle table, FLIGHTS98. This load uses the SQL*Loader direct path method

SAS/ACCESS Interface to Oracle � In-Database Procedures in Oracle 727

because you specified BULKLOAD=YES. BL_OPTIONS= passes the specified
SQL*Loader options to SQL*Loader when it is invoked. In this example, you can use
the ERRORS= option to have up to 899 errors in the load before it terminates and the
LOAD= option loads the first 5,000 rows of the input data set, SASFLT.FLT98.

options yearcutoff=1925; /* included for Year 2000 compliance */

libname sasflt ’SAS-Data-Library’;
libname ora_air oracle user=testuser password=testpass

path=’ora8_flt’ schema=statsdiv;

data sasflt.flt98;
input flight $3. +5 dates date7. +3 depart time5. +2 orig $3.

+3 dest $3. +7 miles +6 boarded +6 capacity;
format dates date9. depart time5.;
informat dates date7. depart time5.;
datalines;

114 01JAN98 7:10 LGA LAX 2475 172 210
202 01JAN98 10:43 LGA ORD 740 151 210
219 01JAN98 9:31 LGA LON 3442 198 250

<...10,000 more observations...>

proc sql;
create table ora_air.flights98
(BULKLOAD=YES BL_OPTIONS=’ERRORS=899,LOAD=5000’) as

select * from sasflt.flt98;
quit;

During a load, certain SQL*Loader files are created, such as the data, log, and
control files. Unless otherwise specified, they are given a default name and written to
the current directory. For this example, the default names would be
bl_flights98.dat, bl_flights98.log, and bl_flights98.ctl.

In-Database Procedures in Oracle
In the third maintenance release for SAS 9.2, the following Base SAS procedures

have been enhanced for in-database processing inside Oracle.
FREQ
RANK
REPORT
SORT
SUMMARY/MEANS
TABULATE

For more information, see Chapter 8, “Overview of In-Database Procedures,” on page
67.

728 Locking in the Oracle Interface � Chapter 25

Locking in the Oracle Interface
The following LIBNAME and data set options let you control how the Oracle

interface handles locking. For general information about an option, see “LIBNAME
Options for Relational Databases” on page 92.

READ_LOCK_TYPE= NOLOCK | ROW | TABLE
The default value is NOLOCK. Here are the valid values for this option:

� NOLOCK — table locking is not used during the reading of tables and views.
� ROW — the Oracle ROW SHARE table lock is used during the reading of

tables and views.
� TABLE — the Oracle SHARE table lock is used during the reading of tables

and views.

If you set READ_LOCK_TYPE= to either TABLE or ROW, you must also set the
CONNECTION= option to UNIQUE. If not, an error occurs.

UPDATE_LOCK_TYPE= NOLOCK | ROW | TABLE
The default value is NOLOCK. Here are the valid values for this option:

� ROW — the Oracle ROW SHARE table lock is used during the reading of
tables and views for update.

� TABLE — the Oracle EXCLUSIVE table lock is used during the reading of
tables and views for update.

� NOLOCK — table locking is not used during the reading of tables and views
for update.

� If OR_UPD_NOWHERE=YES, updates are performed using serializable
transactions.

� If OR_UPD_NOWHERE=NO, updates are performed using an extra
WHERE clause to ensure that the row has not been updated since it
was first read. Updates might fail under these conditions, because other
users might modify a row after the row was read for update.

READ_ISOLATION_LEVEL= READCOMMITTED | SERIALIZABLE
Oracle supports the READCOMMITTED and SERIALIZABLE read isolation
levels, as defined in the following table. The SPOOL= option overrides the
READ_ISOLATION_LEVEL= option. The READ_ISOLATION_LEVEL= option
should be rarely needed because the SAS/ACCESS engine chooses the appropriate
isolation level based on other locking options.

Table 25.3 Isolation Levels for Oracle

Isolation Level Definition

SERIALIZABLE Does not allow dirty reads, nonrepeatable reads, or phantom reads.

READCOMMITTED
Does not allow dirty reads; does allow nonrepeatable reads and
phantom reads

UPDATE_ISOLATION_LEVEL= READCOMMITTED | SERIALIZABLE
Oracle supports the READCOMMITTED and SERIALIZABLE isolation levels, as
defined in the preceding table, for updates.

This option should be rarely needed because the SAS/ACCESS engine chooses
the appropriate isolation level based on other locking options.

SAS/ACCESS Interface to Oracle � Character Data 729

Naming Conventions for Oracle

For general information about this feature, see Chapter 2, “SAS Names and Support
for DBMS Names,” on page 11.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= LIBNAME options
determine how SAS/ACCESS Interface to Oracle handles case sensitivity, spaces, and
special characters. For information about these options, see “Overview of the
LIBNAME Statement for Relational Databases” on page 87.

You can name such Oracle objects as tables, views, columns, and indexes. For the
Oracle 7 Server, objects also include database triggers, procedures, and stored
functions. They follow these naming conventions.

� A name must be from 1 to 30 characters long. Database names are limited to 8
characters, and link names are limited to 128 characters.

� A name must begin with a letter. However, if you enclose the name in double
quotation marks, it can begin with any character.

� A name can contain the letters A through Z, the digits 0 through 9, the underscore
(_), $, and #. If the name appears within double quotation marks, it can contain
any characters, except double quotation marks.

� Names are not case sensitive. For example, CUSTOMER and Customer are the same.
However, if you enclose an object names in double quotation marks, it is case
sensitive.

� A name cannot be an Oracle reserved word.

� A name cannot be the same as another Oracle object in the same schema.

Data Types for Oracle

Overview
Every column in a table has a name and a data type. The data type tells Oracle how

much physical storage to set aside for the column and the form in which the data is
stored. This section includes information about Oracle data types, null and default
values, and data conversions.

For more detailed information about Oracle data types, see the Oracle Database SQL
Reference.

SAS/ACCESS Interface to Oracle does not support Oracle MLSLABEL and ROWID
data types.

Character Data

CHAR (n)
contains fixed-length character string data with a length of n, where n must be at
least 1 and cannot exceed 255 characters. (The limit is 2,000 characters with an
Oracle8 Server.) The Oracle 7 Server CHAR data type is not equivalent to the
Oracle Version 6 CHAR data type. The Oracle 7 Server CHAR data type is new
with the Oracle 7 Server and uses blank-padded comparison semantics.

730 Numeric Data � Chapter 25

CLOB (character large object)
contains varying-length character string data that is similar to type VARCHAR2.
Type CLOB is character data of variable length with a maximum length of 2
gigabytes. You can define only one CLOB column per table. Available memory
considerations might also limit the size of a CLOB data type.

VARCHAR2(n)
contains character string data with a length of n, where n must be at least 1 and
cannot exceed 2000 characters. (The limit is 4,000 characters with an Oracle8
Server.) The VARCHAR2 data type is equivalent to the Oracle Version 6 CHAR
data type except for the difference in maximum lengths. The VARCHAR2 data
type uses nonpadded comparison semantics.

Numeric Data
BINARY_DOUBLE

specifies a floating-point double binary with a precision of 38. A floating-point
value can either specify a decimal point anywhere from the first to the last digit or
omit the decimal point. A scale value does not apply to floating-point double
binaries because there is no restriction on the number of digits that can appear
after the decimal point. Compared to the NUMBER data type, BINARY_DOUBLE
provides substantially faster calculations, plus tighter integration with XML and
Java environments.

BINARY_FLOAT
specifies a floating-point single binary with a precision of 38. A floating-point
value can either specify a decimal point anywhere from the first to the last digit or
omit the decimal point. A scale value does not apply to floating-point single
binaries because there is no restriction on the number of digits that can appear
after the decimal point. Compared to the NUMBER data type, BINARY_FLOAT
provides substantially faster calculations, plus tighter integration with XML and
Java environments.

NUMBER
specifies a floating-point number with a precision of 38. A floating-point value can
either specify a decimal point anywhere from the first to the last digit or omit the
decimal point. A scale value does not apply to floating-point numbers because there
is no restriction on the number of digits that can appear after the decimal point.

NUMBER(p)
specifies an integer of precision p that can range from 1 to 38 and a scale of 0.

NUMBER(p,s)
specifies a fixed-point number with an implicit decimal point, where p is the total
number of digits (precision) and can range from 1 to 38, and s is the number of
digits to the right of the decimal point (scale) and can range from -84 to 127.

Date, Timestamp, and Interval Data
DATE

contains date values. Valid dates are from January 1, 4712 BC to December 31,
4712 AD. The default format is DD-MON-YY, for example ’05-OCT-98’.

TIMESTAMP
contains double binary data that represents the SAS DATETIME value, where d is
the fractional second precision that you specify on the column and w is derived

SAS/ACCESS Interface to Oracle � Date, Timestamp, and Interval Data 731

from the value of d. The default value of d is 6. Although you can override the
default format to view more than six decimal places, the accuracy of thie
TIMESTAMP value is not guaranteed. When you update or insert TIMESTAMP
into SAS, the value is converted to a string value with the form of
DDMONYYYY:HH24:MI:SS:SS, where the fractional second precision defaults to d
in the SAS DATETIME format. This value is then inserted into Oracle, using this
string:

TO_TIMESTAMP(:’’TS’’,’DDMONYYYY:HH24:MI:SSXFF’,
’NLS_DATE_LANGUAGE=American’

)

TIMESTAMP WITH TIME ZONE
contains a character string that is w characters long, where w is derived from the
fractional second precision that you specify on the column and the additional
width needed to specify the TIMEZONE value. When you update or insert
TIMESTAMP into SAS, the value is inserted into the column. The
NLS_TIMESTAMP_TZ_FORMAT parameter determines the expected format. An
error results if users do not ensure that the string matches the expected (default)
format.

TIMESTAMP WITH LOCAL TIME ZONE
contains double binary data that represents the SAS DATETIME value. (This data
type is the same as TIMESTAMP.) SAS returns whatever Oracle returns. When
you update or insert TIMESTAMP into SAS, the value is assumed to be a number
representing the number of months.

Note: A fix for Oracle Bug 2422838 is available in Oracle 9.2.0.5 and above. �

INTERVAL YEAR TO MONTH
contains double binary data that represents the number of months, where w is
based on the Year precision value that you specify on the column: INTERVAL
YEAR(p) TO MONTH. When you update or insert TIMESTAMP into SAS, the
value is assumed to be a number representing the number of months.

INTERVAL DAY TO SECOND
contains double binary data that represents the number of seconds, where d is the
same as the fractional second precision that you specify on the column:
INTERVAL DAY(p) TO SECOND(d). The width w is derived based on the values
for DAY precision (p) and SECOND d precision.

For compatibility with other DBMSs, Oracle supports the syntax for a wide variety of
numeric data types, including DECIMAL, INTEGER, REAL, DOUBLE-PRECISION,
and SMALLINT. All forms of numeric data types are actually stored in the same
internal Oracle NUMBER format. The additional numeric data types are variations of
precision and scale. A null scale implies a floating-point number, and a non-null scale
implies a fixed-point number.

Examples
Here is a TIMESTAMP example.

%let PTCONN= %str(user=scott pw=tiger path=oraclev10);
%let CONN= %str(user=scott pw=tiger path=oraclev10);

options sastrace=",,," sastraceloc=saslog nostsuffix;

732 Date, Timestamp, and Interval Data � Chapter 25

proc sql;
connect to oracle (&PTCONN);

/*execute (drop table EMP_ATTENDANCE) by oracle;*/

execute (create table EMP_ATTENDANCE (EMP_NAME VARCHAR2(10),
arrival_timestamp TIMESTAMP, departure_timestamp TIMESTAMP)) by oracle;

execute (insert into EMP_ATTENDANCE values
(’John Doe’, systimestamp, systimestamp+.2)) by oracle;

execute (insert into EMP_ATTENDANCE values
(’Sue Day’, TIMESTAMP’1980-1-12 10:13:23.33’,

TIMESTAMP’1980-1-12 17:13:23.33’)) by oracle;
quit;

libname ora oracle &CONN

proc contents data=ora.EMP_ATTENDANCE; run;

proc sql;
/* reading TIMESTAMP datatype */
select * from ora.EMP_ATTENDANCE;
quit;

/* appending to TIMESTAMP datatype */
data work.new;
EMP_NAME=’New Bee1’;
ARRIVAL_TIMESTAMP=’30sep1998:14:00:35.00’dt;
DEPARTURE_TIMESTAMP=’30sep1998:17:00:14.44’dt; output;
EMP_NAME=’New Bee2’;
ARRIVAL_TIMESTAMP=’30sep1998:11:00:25.11’dt;
DEPARTURE_TIMESTAMP=’30sep1998:14:00:35.27’dt; output;
EMP_NAME=’New Bee3’;
ARRIVAL_TIMESTAMP=’30sep1998:08:00:35.33’dt;
DEPARTURE_TIMESTAMP=’30sep1998:17:00:35.10’dt; output;
format ARRIVAL_TIMESTAMP datetime23.2;
format DEPARTURE_TIMESTAMP datetime23.2;
run;

title2 ’After append’;
proc append data=work.new base=ora.EMP_ATTENDANCE ; run;
proc print data=ora.EMP_ATTENDANCE ; run;

/* updating TIMESTAMP datatype */
proc sql;
update ora.EMP_ATTENDANCE set ARRIVAL_TIMESTAMP=. where EMP_NAME like ’%Bee2%’ ;

select * from ora.EMP_ATTENDANCE ;

delete from ora.EMP_ATTENDANCE where EMP_NAME like ’%Bee2%’ ;

select * from ora.EMP_ATTENDANCE ;

/* OUTPUT: Creating a brand new table using Data Step*/
data work.sasdsfsec; c_ts=’30sep1998:14:00:35.16’dt; k=1; output;

SAS/ACCESS Interface to Oracle � Date, Timestamp, and Interval Data 733

c_ts=’.’dt; k=2; output;
format c_ts datetime23.2; run;

/* picks default TIMESTAMP type */
options sastrace=",,,d" sastraceloc=saslog nostsuffix;
data ora.tab_tsfsec; set work.sasdsfsec; run;
options sastrace=",,," sastraceloc=saslog nostsuffix;
proc delete data=ora.tab_tsfsec; run;

/* Override the default datatype */
options sastrace=",,,d" sastraceloc=saslog nostsuffix;
data ora.tab_tsfsec (dbtype=(c_ts=’timestamp(3)’));
c_ts=’30sep1998:14:00:35’dt;
format c_ts datetime23.; run;
options sastrace=",,," sastraceloc=saslog nostsuffix;
proc delete data=ora.tab_tsfsec; run;

proc print data=ora.tab_tsfsec; run;

/* OUTPUT: Brand new table creation with bulkload=yes */
title2 ’Test OUTPUT with bulkloader’;
proc delete data=ora.tab_tsfsec; run;

/* picks default TIMESTAMP type */
data ora.tab_tsfsec (bulkload=yes); set work.sasdsfsec; run;
proc print data=ora.tab_tsfsec; run;

Here is an INTERVAL YEAR TO MONTH example.

proc sql;
connect to oracle (&PTCONN);
execute (drop table PRODUCT_INFO) by oracle;

execute (
create table PRODUCT_INFO (PRODUCT VARCHAR2(20), LIST_PRICE number(8,2),

WARRANTY_PERIOD INTERVAL YEAR(2) TO MONTH)
)by oracle;
execute (
insert into PRODUCT_INFO values (’Dish Washer’, 4000, ’02-00’)

)by Oracle;
execute (
insert into PRODUCT_INFO values (’TV’, 6000, ’03-06’)

)by Oracle;
quit;

proc contents data=ora.PRODUCT_INFO; run;

/* Shows WARRANTY_PERIOD as number of months */
proc print data=ora.PRODUCT_INFO; run;

/* Shows WARRANTY_PERIOD in a format just like in Oracle*/
proc print data=ora.PRODUCT_INFO(dbsastype=(WARRANTY_PERIOD=’CHAR(6)’)); run;

/* Add a new product */
data new_prods;

734 Date, Timestamp, and Interval Data � Chapter 25

PRODUCT=’Dryer’; LIST_PRICE=2000;WARRANTY_PERIOD=12;
run;

proc sql;
insert into ora.PRODUCT_INFO select * from new_prods;
select * from ora.PRODUCT_INFO;
select * from ora.PRODUCT_INFO where WARRANTY_PERIOD > 24;
quit;

Here is an INTERVAL DAY TO SECOND.

proc sql;
connect to oracle (&PTCONN);
execute (drop table PERF_TESTS) by oracle;

execute (
create table PERF_TESTS (TEST_NUMBER number(4) primary key,

TIME_TAKEN INTERVAL DAY TO SECOND)
)by oracle;

execute (
insert into PERF_TESTS values (1, ’0 00:01:05.000200000’)

)by Oracle;

execute (
insert into PERF_TESTS values (2, ’0 00:01:03.400000000’)

)by Oracle;

quit;

proc contents data=ora.PERF_TESTS; run;

/* Shows TIME_TAKEN as number of seconds */
proc print data=ora.PERF_TESTS; run;

/* Shows TIME_TAKEN in a format just like in Oracle*/
proc print data=ora.PERF_TESTS(dbsastype=(TIME_TAKEN=’CHAR(25)’)); run;

/* Add a new test*/
data new_tests;

TEST_NUMBER=3; TIME_TAKEN=50;
run;

proc sql;
insert into ora.PERF_TESTS select * from new_tests;
select * from ora.PERF_TESTS;

select * from ora.PERF_TESTS where TIME_TAKEN < 60;
quit;

SAS/ACCESS Interface to Oracle � LIBNAME Statement Data Conversions 735

Binary Data

RAW(n)
contains raw binary data, where n must be at least 1 and cannot exceed 255 bytes.
(In Oracle Version 8, the limit is 2,000 bytes.) Values entered into columns of this
type must be inserted as character strings in hexadecimal notation. You must
specify n for this data type.

BLOB
contains raw binary data of variable length up to 2 gigabytes. Values entered into
columns of this type must be inserted as character strings in hexadecimal notation.

Oracle Null and Default Values
Oracle has a special value called NULL. An Oracle NULL value means an absence of

information and is analogous to a SAS missing value. When SAS/ACCESS reads an
Oracle NULL value, it interprets it as a SAS missing value.

By default, Oracle columns accept NULL values. However, you can define columns so
that they cannot contain NULL data. NOT NULL tells Oracle not to add a row to the
table unless the row has a value for that column. When creating an Oracle table with
SAS/ACCESS, you can use the DBNULL= data set option to indicate whether NULL is
a valid value for specified columns.

To control how Oracle handles SAS missing character values, use the NULLCHAR=
and NULLCHARVAL= data set options.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” on page 31.

LIBNAME Statement Data Conversions
This table shows the default formats that SAS/ACCESS Interface to Oracle assigns

to SAS variables when using the LIBNAME statement to read from an Oracle table.
These default formats are based on Oracle column attributes.

Table 25.4 LIBNAME Statement: Default SAS Formats for Oracle Data Types

Oracle Data Type Default SAS Format

CHAR(n) *
$w.* (wherew is the minimum of n and the
value of the DBMAX_TEXT= option)

VARCHAR2(n)
$w. (where w is the minimum of n and the
value of the DBMAX_TEXT= option)

LONG
$w. (where w is the minimum of 32767 and the
value of the DBMAX_TEXT= option)

CLOB
$w.* (where w is the minimum of 32767 and
the value of the DBMAX_TEXT= option)

RAW(n)
$HEXw.* (where w/2 is the minimum of n and
the value of the DBMAX_TEXT= option)

LONG RAW
$HEXw. (where w/2 is the minimum of 32767
and the value of the DBMAX_TEXT= option)

736 LIBNAME Statement Data Conversions � Chapter 25

Oracle Data Type Default SAS Format

BLOB RAW
$HEXw. (where w/2 is the minimum of 32767
and the value of the DBMAX_TEXT= option)

BINARY_DOUBLE none

BINARY_FLOAT none

NUMBER none

NUMBER(p) w.

NUMBER(p,s) w.d

DATE DATETIME20.

TIMESTAMP
DATETIMEw.d (where d is derived from the
fractional-second precision)

TIMESTAMP WITH LOCAL TIMEZONE
DATETIMEw.d (where d is derived from the
fractional-second precision)

TIMESTAMP WITH TIMEZONE $w)

INTERVAL YEAR TO MONTH w. (where w is derived from the year precision)

INTERVAL DAY TO SECOND
w.d (where w is derived from the
fractional-second precision)

* The value of the DBMAX_TEXT= option can override these values.

SAS/ACCESS does not support Oracle data types that do not appear in this table.
If Oracle data falls outside valid SAS data ranges, the values are usually counted as

missing.
SAS automatically converts Oracle NUMBER types to SAS number formats by using

an algorithm that determines the correct scale and precision. When the scale and
precision cannot be determined, SAS/ACCESS allows the procedure or application to
determine the format. You can also convert numeric data to character data by using the
SQL pass-through facility with the Oracle TO_CHAR function. See your Oracle
documentation for more details.

The following table shows the default Oracle data types that SAS/ACCESS assigns to
SAS variable formats during output operations when you use the LIBNAME statement.

Table 25.5 LIBNAME Statement: Default Oracle Data Types for SAS Formats

SAS Variable Format Oracle Data Type

$w. VARCHAR2(w)

$w. (where w > 4000) CLOB

w.d NUMBER(p,s)

any date, time, or datetime format without
fractional parts of a second

DATE

any date, time, or datetime format without
fractional parts of a second

TIMESTAMP

To override these data types, use the DBTYPE= data set option during output
processing.

SAS/ACCESS Interface to Oracle � ACCESS Procedure Data Conversions 737

ACCESS Procedure Data Conversions
The following table shows the default SAS variable formats that SAS/ACCESS

assigns to Oracle data types when you use the ACCESS procedure .

Table 25.6 PROC ACCESS: Default SAS Formats for Oracle Data Types

Oracle Data Type Default SAS Format

CHAR(n) $n. (n <= 200) $200. (n > 200)

VARCHAR2(n) $n. (n <= 200) $200. (n > 200)

FLOAT BEST22.

NUMBER BEST22.

NUMBER(p) w.

NUMBER(p, s) w.d

DATE DATETIME16.

CLOB $200.

RAW(n) $n. (n < 200) $200. (n > 200)

BLOB RAW $200.

Oracle data types that are omitted from this table are not supported by
SAS/ACCESS. If Oracle data falls outside valid SAS data ranges, the values are
usually counted as missing.

The following table shows the correlation between the Oracle NUMBER data types
and the default SAS formats that are created from that data type.

Table 25.7 Default SAS Formats for Oracle NUMBER Data Types

Oracle NUMBER Data Type Rules Default SAS Format

NUMBER(p) 0 < p <= 32 (p + 1).0

NUMBER(p,s) p > 0, s < 0, |s| < p (p + |s| + 1).0

NUMBER(p,s) p > 0, s < 0, |s| >= p (p + |s| + 1).0

NUMBER(p,s) p > 0, s > 0, s < p (p + 2).s

NUMBER(p,s) p > 0, s > 0, s >= p (s + 3).s

NUMBER(p) p > 32 BEST22. SAS selects format

NUMBER p, s unspecified BEST22. SAS selects format

The general form of an Oracle number is NUMBER(p,s) where p is the precision and
s is the scale of the number. Oracle defines precision as the total number of digits, with
a valid range of -84 to 127. However, a negative scale means that the number is
rounded to the specified number of places to the left of the decimal. For example, if the
number 1,234.56 is specified as data type NUMBER(8,-2), it is rounded to the nearest
hundred and stored as 1,200.

738 DBLOAD Procedure Data Conversions � Chapter 25

DBLOAD Procedure Data Conversions
The following table shows the default Oracle data types that SAS/ACCESS assigns to

SAS variable formats when you use the DBLOAD procedureDBLOAD procedure.

Table 25.8 PROC DBLOAD: Default Oracle Data Types for SAS Formats

SAS Variable Format Oracle Data Type

$w. CHAR(n)

w. NUMBER(p)

w.d NUMBER(p,s)

all other numerics * NUMBER

datetimew.d DATE

datew. DATE

time. ** NUMBER

* Includes all SAS numeric formats, such as BINARY8 and E10.0.
** Includes all SAS time formats, such as TODw,d and HHMMw,d.

739

C H A P T E R

26
SAS/ACCESS Interface to Sybase

Introduction to SAS/ACCESS Interface to Sybase 740
LIBNAME Statement Specifics for Sybase 740

Overview 740

Arguments 740

Sybase LIBNAME Statement Example 742

Data Set Options for Sybase 743
SQL Pass-Through Facility Specifics for Sybase 744

Key Information 744

Example 745

Autopartitioning Scheme for Sybase 745

Overview 745

Overview 746
Indexes 746

Partitioning Criteria 746

Data Types 746

Examples 747

Temporary Table Support for Sybase 747
Overview 747

Establishing a Temporary Table 747

Terminating a Temporary Table 747

Example 747

ACCESS Procedure Specifics for Sybase 748
Overview 748

Example 749

DBLOAD Procedure Specifics for Sybase 750

Example 751

Passing SAS Functions to Sybase 751

Passing Joins to Sybase 753
Reading Multiple Sybase Tables 753

Locking in the Sybase Interface 754

Overview 754

Understanding Sybase Update Rules 754

Naming Conventions for Sybase 755
Data Types for Sybase 755

Overview 755

Character Data 756

Numeric Data 756

Date, Time, and Money Data 757
User-Defined Data 758

Sybase Null Values 758

LIBNAME Statement Data Conversions 758

740 Introduction to SAS/ACCESS Interface to Sybase � Chapter 26

ACCESS Procedure Data Conversions 760
DBLOAD Procedure Data Conversions 760

Data Returned as SAS Binary Data with Default Format $HEX 761

Data Returned as SAS Character Data 761

Inserting TEXT into Sybase from SAS 761

Case Sensitivity in Sybase 761
National Language Support for Sybase 762

Introduction to SAS/ACCESS Interface to Sybase

This section describes SAS/ACCESS Interface to Sybase. For a list of SAS/ACCESS
features that are available in this interface, see “SAS/ACCESS Interface to Sybase:
Supported Features” on page 83.

For information about Sybase IQ, see Chapter 27, “SAS/ACCESS Interface to Sybase
IQ,” on page 763.

LIBNAME Statement Specifics for Sybase

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to

Sybase supports. A Sybase example is available. For details about this feature, see
“Overview of the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing Sybase.

LIBNAME libref sybase <connection-options> <LIBNAME-options>;

Arguments
libref

is any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

sybase
is the SAS/ACCESS engine name for the Sybase interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. Here are the connection options for
Sybase.

USER=<’>SYBASE-user-name<’>
specifies the Sybase user name (also called the login name) that you use to
connect to your database. If the user name contains spaces or
nonalphanumeric characters, you must enclose it in quotation marks.

PASSWORD=<’>SYBASE-password<’>
specifies the password that is associated with your Sybase user name. If you
omit the password, a default password of NULL is used. If the password

SAS/ACCESS Interface to Sybase � Arguments 741

contains spaces or nonalphanumeric characters, you must enclose it in
quotation marks. PASSWORD= can also be specified with the SYBPW=,
PASS=, and PW= aliases.

DATABASE=<’>database-name<’>
specifies the name of the Sybase database that contains the tables and views
that you want to access. If the database name contains spaces or
nonalphanumeric characters, you must enclose it in quotation marks. If you
omit DATABASE=, the default database for your Sybase user name is used.
DATABASE= can also be specified with the DB= alias.

SERVER=<’>server-name<’>
specifies the server that you want to connect to. This server accesses the
database that contains the tables and views that you want to access. If the
server name contains lowercase, spaces, or nonalphanumeric characters, you
must enclose it in quotation marks. If you omit SERVER=, the default action
for your operating system occurs. On UNIX systems, the value of the
environment variable DSQUERY is used if it has been set.

IP_CURSOR= YES | NO
specifies whether implicit PROC SQL pass-through processes multiple result
sets simultaneously. IP_CURSOR is set to NO by default. Setting it to YES
allows this type of extended processing. However, it decreases performance
because cursors, not result sets, are being used. Do not set to YES unless
needed.

If you specify the appropriate system options or environment variables for your
database, you can often omit the connection options. See your Sybase
documentation for details.

LIBNAME-options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to Sybase, with
the applicable default values. For more detail about these options, see “LIBNAME
Options for Relational Databases” on page 92.

Table 26.1 SAS/ACCESS LIBNAME Options for Sybase

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTOCOMMIT= YES

CONNECTION= SHAREDREAD

CONNECTION_GROUP= none

DBCOMMIT= 1000 (inserting) or 0 (updating)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= NO

DBLIBINIT= none

742 Sybase LIBNAME Statement Example � Chapter 26

Option Default Value

DBLIBTERM= none

DBLINK= the local database

DBMAX_TEXT= 1024

DBPROMPT= NO

DBSASLABEL= COMPAT

DBSERVER_MAX_BYTES= COMPAT

DBSLICEPARM= THREADED_APPS,2 or 3

DEFER= NO

DIRECT_EXE= none

DIRECT_SQL= YES

ENABLE_BULK= YES

INTERFACE= none

MAX_CONNECTS= 25

MULTI_DATASRC_OPT= none

PACKETSIZE= server setting

QUOTED_IDENTIFIER= NO

READBUFF= 100

READ_ISOLATION_LEVEL= 1 (see “Locking in the Sybase Interface” on page 754)

READ_LOCK_TYPE=
NOLOCK (see “Locking in the Sybase Interface” on
page 754)

REREAD_EXPOSURE= NO

SCHEMA= none

SPOOL= YES

SQL_FUNCTIONS= none

SQL_FUNCTIONS_COPY= none

SQL_OJ_ANSI= NO

UPDATE_ISOLATION_LEVEL= 1 (see “Locking in the Sybase Interface” on page 754)

UPDATE_LOCK_TYPE=
PAGE (see “Locking in the Sybase Interface” on page
754)

UTILCONN_TRANSIENT= NO

Sybase LIBNAME Statement Example

In the following example, the libref MYDBLIB uses the Sybase engine to connect to a
Sybase database. USER= and PASSWORD= are connection options.

libname mydblib sybase user=testuser password=testpass;

SAS/ACCESS Interface to Sybase � Data Set Options for Sybase 743

If you specify the appropriate system options or environment variables for your
database, you can often omit the connection options. See your Sybase documentation for
details.

Data Set Options for Sybase
All SAS/ACCESS data set options in this table are supported for Sybase. Default

values are provided where applicable. For general information about this feature, see
“Overview” on page 207.

Table 26.2 SAS/ACCESS Data Set Options for Sybase

Option Default Value

AUTOCOMMIT= LIBNAME option setting

BULK_BUFFER= 100

BULKLOAD= NO

DBCOMMIT= LIBNAME setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME setting

DBFORCE= NO

DBGEN_NAME= LIBNAME option setting

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBLINK= LIBNAME option setting

DBMASTER= none

DBMAX_TEXT= LIBNAME option setting

DBNULL= _ALL_YES

DBPROMPT= LIBNAME option setting

DBSASLABEL= COMPAT

DBSLICE= none

DBSLICEPARM= THREADED_APPS,2 or 3

DBTYPE= see “Data Types for Sybase” on page 755

ERRLIMIT= 1

NULLCHAR= SAS

NULLCHARVAL= a blank character

READBUFF= LIBNAME option setting

READ_ISOLATION_LEVEL= LIBNAME option setting

READ_LOCK_TYPE= LIBNAME option setting

SASDATEFMT= DATETIME22.3

SCHEMA= LIBNAME option setting

744 SQL Pass-Through Facility Specifics for Sybase � Chapter 26

Option Default Value

SEGMENT_NAME= none

UPDATE_ISOLATION_LEVEL= LIBNAME option setting

UPDATE_LOCK_TYPE= LIBNAME option setting

SQL Pass-Through Facility Specifics for Sybase

Key Information
For general information about this feature, see “Overview of the SQL Pass-Through

Facility” on page 425. A Sybase example is available.
Here are the SQL pass-through facility specifics for the Sybase interface.
� The dbms-name is SYBASE.
� The CONNECT statement is optional. If you omit the CONNECT statement, an

implicit connection is made using the default values for all connection options.
� The interface can connect multiple times to one or more servers.
� Here are the database-connection-arguments for the CONNECT statement.

USER=<’>SYBASE-user-name<’>
specifies the Sybase user name (also called the login name) that you use to
connect to your database. If the user name contains spaces or
nonalphanumeric characters, you must enclose it in quotation marks.

PASSWORD=<’>SYBASE-password<’>
specifies the password that is associated with the Sybase user name.

If you omit the password, a default password of NULL is used. If the
password contains spaces or nonalphanumeric characters, you must enclose it
in quotation marks.

PASSWORD= can also be specified with the SYBPW=, PASS=, and PW=
aliases. If you do not wish to enter your Sybase password in uncoded text, see
PROC PWENCODE in Base SAS Procedures Guide for a method to encode it.

DATABASE=<’>database-name<’>
specifies the name of the Sybase database that contains the tables and views
that you want to access.

If the database name contains spaces or nonalphanumeric characters, you
must enclose it in quotation marks. If you omit DATABASE=, the default
database for your Sybase user name is used.

DATABASE= can also be specified with the DB= alias.

SERVER=<’>server-name<’>
specifies the server you want to connect to. This server accesses the database
that contains the tables and views that you want to access.

If the server name contains lowercase, spaces, or nonalphanumeric
characters, you must enclose it in quotation marks.

If you omit SERVER=, the default action for your operating system occurs.
On UNIX systems, the value of the environment variable DSQUERY is used
if it has been set.

INTERFACE=filename

SAS/ACCESS Interface to Sybase � Overview 745

specifies the name and location of the Sybase interfaces file. The interfaces
file contains the names and network addresses of all available servers on the
network.

If you omit this statement, the default action for your operating system
occurs. INTERFACE= is not used in some operating environments. Contact
your database administrator to determine whether it applies to your
operating environment.

SYBBUFSZ=number-of-rows
specifies the number of rows of DBMS data to write to the buffer. If this
statement is used, the SAS/ACCESS interface view engine creates a buffer
that is large enough to hold the specified number of rows. This buffer is
created when the associated database table is read. The interface view
engine uses SYBBUFSZ= to improve performance.

If you omit this statement, no data is written to the buffer.

Connection options for Sybase are all case sensitive. They are passed to Sybase
exactly as you type them.

� Here are the LIBNAME options that are available with the CONNECT statement.

� DBMAX_TEXT=

� MAX_CONNECTS=

� READBUFF=

� PACKETSIZE=

Example
This example retrieves a subset of rows from the Sybase INVOICE table. Because

the WHERE clause is specified in the DBMS query (the inner SELECT statement), the
DBMS processes the WHERE expression and returns a subset of rows to SAS.

proc sql;
connect to sybase(server=SERVER1

database=INVENTORY
user=testuser password=testpass);

%put &sqlxmsg;

select * from connection to sybase
(select * from INVOICE where BILLEDBY=457232);

%put &sqlxmsg;

The SELECT statement that is enclosed in parentheses is sent directly to the
database and therefore must be specified using valid database variable names and
syntax.

Autopartitioning Scheme for Sybase

Overview
For general information about this feature, see “Autopartitioning Techniques in SAS/

ACCESS” on page 57.

746 Overview � Chapter 26

Overview
Sybase autopartitioning uses the Sybase MOD function (%) to create multiple

SELECT statements with WHERE clauses, which, in the optimum scenario, divide the
result set into equal chunks; one chunk per thread. For example, assume that your
original SQL statement was SELECT * FROM DBTAB, and assume that DBTAB has a
primary key column PKCOL of type integer and that you want it partitioned into three
threads. Here is how the autopartitioning scheme would break up the table into three
SQL statements:

select * from DBTAB where (abs(PKCOL))%3=0
select * from DBTAB where (abs(PKCOL))%3=1
select * from DBTAB where (abs(PKCOL))%3=2

Since PKCOL is a primary key column, you should get a fairly even distribution
among the three partitions, which is the primary goal.

Indexes
An index on a SAS partitioning column increases performance of the threaded read.

If a primary key is not defined for the table, an index should be placed on the
partitioning column in order to attain similar benefits. Understanding and following
Sybase ASE Performance and Tuning Guide documentation recommendations with
respect to index creation and usage is essential in order to achieve optimum database
performance. Here is the order of column selection for the partitioning column:

1 Identity column
2 Primary key column (integer or numeric)
3 integer, numeric, or bit; not nullable
4 integer, numeric, or bit; nullable

If the column selected is a bit type, only two partitions are created because the only
values are 0 and 1.

Partitioning Criteria
The most efficient partitioning column is an Identity column, which is usually

identified as a primary key column. Identity columns usually lead to evenly partitioned
result sets because of the sequential values they store.

The least efficient partitioning column is a numeric, decimal, or float column that is
NULLABLE, and does not have an index defined.

Given equivalent selection criteria, columns defined at the beginning of the table
definition that meet the selection criteria takes precedence over columns defined toward
the end of the table definition.

Data Types
These data types are supported in partitioning column selection:
INTEGER
TINYINT
SMALLINT
NUMERIC

SAS/ACCESS Interface to Sybase � Example 747

DECIMAL

FLOAT

BIT

Examples
The following are examples of generated SELECT statements involving various

column data types:
COL1 is numeric, decimal, or float. This example uses three threads (the default)

and COL1 is NOT NULL.

select * from DBTAB where (abs(convert(INTEGER, COL1)))%3=0
select * from DBTAB where (abs(convert(INTEGER, COL1)))%3=1
select * from DBTAB where (abs(convert(INTEGER, COL1)))%3=2

COL1 is bit, integer, smallint, or tinyint. This example uses two threads (the default)
and COL1 is NOT NULL.

select * from DBTAB where (abs(COL1))%3=0
select * from DBTAB where (abs(COL1))%3=1

COL1 is and integer and is nullable.

select * from DBTAB where (abs(COL1))%3=0 OR COL1 IS NULL
select * from DBTAB where (abs(COL1))%3=1

Temporary Table Support for Sybase

Overview
For general information about this feature, see “Temporary Table Support for SAS/

ACCESS” on page 38.

Establishing a Temporary Table
When you specify CONNECTION=GLOBAL, you can reference a temporary table

throughout a SAS session, in both DATA steps and procedures. The name of the table
MUST start with the character ’#’. To reference it, use the SAS convention of an n
literal, as in mylib.’#foo’n.

Terminating a Temporary Table
You can drop a temporary table at any time, or allow it to be implicitly dropped when

the connection is terminated. Temporary tables do not persist beyond the scope of a
singe connection.

Example
The following example demonstrates how to use temporary tables:

748 ACCESS Procedure Specifics for Sybase � Chapter 26

/* clear any connection */
libname x clear;

libname x sybase user=test pass=test connection=global;

/* create the temp table. You can even use bulk copy */
/* Notice how the name is specified: ’#mytemp’n */

data x.’#mytemp’n (bulk=yes);
x=55;
output;
x=44;
output;

run;

/* print it */
proc print data=x.’#mytemp’n;
run ;

/* The same temp table persists in PROC SQL, */
/* with the global connection specified */
proc sql;

connect to sybase (user=austin pass=austin connection=global);
select * from connection to sybase (select * from #mytemp);

quit;

/* use the temp table again in a procedure */
proc means data=x.’#mytemp’n;
run;

/* drop the connection, the temp table is automatically dropped */
libname x clear;

/* to convince yourself it’s gone, try to access it */
libname x sybase user=austin password=austin connection=global;

/* it’s not there */
proc print data=x.’#mytemp’n;
run;

ACCESS Procedure Specifics for Sybase

Overview
For general information about this feature, see Overview: ACCESS Procedure. on

page 893 A Sybase example is available.
SAS/ACCESS for Sybase supports all ACCESS procedure statements. Here are the

ACCESS Procedure specifics for Sybase.

� The DBMS= value for PROC ACCESS is SYBASE.

� The database-description-statements that PROC ACCESS uses are identical to the
database-connection-arguments on page 744 in the CONNECT statement for the
SQL pass-through facility.

SAS/ACCESS Interface to Sybase � Example 749

� The TABLE= statement for PROC ACCESS is:

TABLE= <’>table-name<’>;
specifies the name of the Sybase table or Sybase view on which the access
descriptor is based.

Example

The following example creates access descriptors and view descriptors for the
EMPLOYEES and INVOICE tables. These tables have different owners and are stored
in PERSONNEL and INVENTORY databases that reside on different machines. The
USER= and PASSWORD= statements identify the owners of the Sybase tables and
their passwords.

libname vlib ’sas-data-library’;

proc access dbms=sybase;
create work.employee.access;

server=’server1’;
database=’personnel’;
user=’testuser1’;
password=’testpass1’;
table=EMPLOYEES;

create vlib.emp_acc.view;
select all;
format empid 6.;
subset where DEPT like ’ACC%’;

run;

proc access dbms=sybase;
create work.invoice.access;

server=’server2’;
database=’inventory’;
user=’testuser2’;
password=’testpass2’;
table=INVOICE;
rename invoicenum=invnum;
format invoicenum 6. billedon date9.

paidon date9.;
create vlib.sainv.view;

select all;
subset where COUNTRY in (’Argentina’,’Brazil’);

run;

options linesize=120;
title ’South American Invoices and

Who Submitted Them’;

proc sql;
select invnum, country, billedon, paidon,

billedby, lastname, firstnam
from vlib.emp_acc, vlib.sainv
where emp_acc.empid=sainv.billedby;

750 DBLOAD Procedure Specifics for Sybase � Chapter 26

Sybase is a case-sensitive database. The PROC ACCESS database identification
statements and the Sybase column names in all statements except SUBSET are
converted to uppercase unless the names are enclosed in quotation marks. The
SUBSET statements are passed to Sybase exactly as you type them, so you must use
the correct case for the Sybase column names.

DBLOAD Procedure Specifics for Sybase
For general information about this feature, see Appendix 2, “The DBLOAD Procedure

for Relational Databases,” on page 911. A Sybase example is available.
The Sybase interface supports all DBLOAD procedure statements. Here are the

Sybase interface specifics for the DBLOAD procedure.
� The DBMS= value for PROC DBLOAD is SYBASE.
� The TABLE= statement for PROC DBLOAD is:

TABLE= <’>table-name<’>;
� PROC DBLOAD uses these database-description-statements.

USER=<’>SYBASE-user-name<’>
specifies the Sybase user name (also called the login name) that you use to
connect to your database. If the user name contains spaces or
nonalphanumeric characters, you must enclose it in quotation marks.

PASSWORD=<’>SYBASE-password<’>
specifies the password that is associated with the Sybase user name.

If you omit the password, a default password of NULL is used. If the
password contains spaces or nonalphanumeric characters, you must enclose it
in quotation marks.

PASSWORD= can also be specified with the SYBPW=, PASS=, and PW=
aliases.

DATABASE=<’>database-name<’>
specifies the name of the Sybase database that contains the tables and views
that you want to access.

If the database name contains spaces or nonalphanumeric characters, you
must enclose it in quotation marks. If you omit DATABASE=, the default
database for your Sybase user name is used.

You can also specify DATABASE= with the DB= alias.

SERVER=<’>server-name<’>
specifies the server that you want to connect to. This server accesses the
database that contains the tables and views that you want to access.

If the server name contains lowercase, spaces, or nonalphanumeric
characters, you must enclose it in quotation marks.

If you omit SERVER=, the default action for your operating system occurs.
On UNIX systems, the value of the environment variable DSQUERY is used
if it has been set.

INTERFACE=filename
specifies the name and location of the Sybase interfaces file. The interfaces
file contains the names and network addresses of all available servers on the
network.

If you omit this statement, the default action for your operating system
occurs. INTERFACE= is not used in some operating environments. Contact
your database administrator to determine whether it applies to your
operating environment.

SAS/ACCESS Interface to Sybase � Passing SAS Functions to Sybase 751

BULKCOPY= Y|N;
uses the Sybase bulk copy utility to insert rows into a Sybase table. The
default value is N.

If you specify BULKCOPY=Y, BULKCOPY= calls the Sybase bulk copy
utility in order to load data into a Sybase table. This utility groups rows so
that they are inserted as a unit into the new table. Using the bulk copy
utility can improve performance.

You use the COMMIT= statement to specify the number of rows in each
group (this argument must be a positive integer). After each group of rows is
inserted, the rows are permanently saved in the table. While each group is
being inserted, if one row in the group is rejected, then all rows in that group
are rejected.

If you specify BULKCOPY=N, rows are inserted into the new table using
Transact-SQL INSERT statements. See your Sybase documentation for more
information about the bulk copy utility.

Example
The following example creates a new Sybase table, EXCHANGE, from the

DLIB.RATEOFEX data file. (The DLIB.RATEOFEX data set is included in the sample
data that is shipped with your software.) An access descriptor ADLIB.EXCHANGE is
also created, and it is based on the new table. The DBLOAD procedure sends a
Transact-SQL GRANT statement to Sybase. You must be granted Sybase privileges to
create new Sybase tables or to grant privileges to other users.

libname adlib ’SAS-data-library’;
libname dlib ’SAS-data-library’;

proc dbload dbms=sybase data=dlib.rateofex;
server=’server1’;
database=’testdb’;
user=’testuser’;
password=’testpass’;
table=EXCHANGE;
accdesc=adlib.exchange;
rename fgnindol=fgnindolar 4=dolrsinfgn;
nulls updated=n fgnindol=n 4=n country=n;
load;

run;

Passing SAS Functions to Sybase
SAS/ACCESS Interface to Sybase passes the following SAS functions to Sybase for

processing if the DBMS driver/client that you are using supports the function. Where
the Sybase function name differs from the SAS function name, the Sybase name
appears in parentheses. See “Passing Functions to the DBMS Using PROC SQL” on
page 42 for information.

ABS
ARCOS (ACOS)
ARSIN (ASIN)
ATAN

752 Passing SAS Functions to Sybase � Chapter 26

AVG

BYTE (CHAR)

CEIL (CEILING)

COS

COUNT

DATETIME (GETDATE())

DATEPART

DAY

DTEXTDAY

DTEXTMONTH

DTEXTWEEKDAY

DTEXTYEAR

EXP

FLOOR

HOUR

LOG

LOWCASE (LCASE)

MAX

MIN

MINUTE

MONTH

SECOND

SIGN

SIN

SOUNDEX

SQRT

STRIP (RTRIM(LTRIM))

SUM

TAN

TRIMN (RTRIM)

UPCASE (UCASE)

WEEKDAY

YEAR

SQL_FUNCTIONS=ALL allows for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to Sybase. Due to incompatibility in date and time functions between
Sybase and SAS, Sybase might not process them correctly. Check your results to
determine whether these functions are working as expected.

DATEPART

ROUND

TIMEPART

SAS/ACCESS Interface to Sybase � Reading Multiple Sybase Tables 753

Passing Joins to Sybase
For a multiple libref join to pass to Sybase, all of these components of the LIBNAME

statements must match exactly:
user ID (USER=)
password (PASSWORD=)
database (DATABASE=)
server (SERVER=)

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

Reading Multiple Sybase Tables
SAS opens multiple Sybase tables for simultaneous reading in these situations:
� When you are using PROC COMPARE. Here is an example:

proc compare base=syb.data1 compare=syb.data2;

� When you are running an SCL program that reads from more than one Sybase
table simultaneously.

� When you are joining Sybase tables in SAS—namely, when implicit pass-through
is not used (DIRECT_SQL=NO). Here are four examples:

proc sql ;
select * from syb.table1, syb.table2 where table1.x=table2.x;

proc sql;
select * from syb.table1 where table1.x = (select x from syb.table2
where y = 33);

proc sql;
select empname from syb.employee where empyears > all (select empyears
from syb.employee where emptitle = ’salesrep’);

proc sql ;
create view myview as

select * from employee where empyears > all (select empyears from
syb.employee where emptitle = ’salesrep’);

proc print data=myview ;

To read two or more Sybase tables simultaneously, you must specify either the
LIBNAME option CONNECTION=UNIQUE or the LIBNAME option
READLOCK_TYPE=PAGE. Because READLOCK_TYPE=PAGE can degrade
performance, it is generally recommended that you use CONNECTION=UNIQUE
(unless there is a concern about the number of connections that are opened on the
database).

754 Locking in the Sybase Interface � Chapter 26

Locking in the Sybase Interface

Overview
The following LIBNAME and data set options let you control how the Sybase

interface handles locking. For general information about an option, see “LIBNAME
Options for Relational Databases” on page 92.

READ_LOCK_TYPE= PAGE | NOLOCK
The default value for Sybase is NOLOCK.

UPDATE_LOCK_TYPE= PAGE | NOLOCK

PAGE
SAS/ACCESS uses a cursor that you can update. PAGE is the default value
for Sybase. When you use this setting, you cannot use the SCHEMA= option,
and it is also recommended that the table have a defined primary key.

NOLOCK
SAS/ACCESS uses Sybase browse mode updating, in which the table that is
being updated must have a primary key and timestamp.

READ_ISOLATION_LEVEL= 1 | 2 | 3
For reads, Sybase supports isolation levels 1, 2, and 3, as defined in the following
table. See your Sybase documentation for more information.

Table 26.3 Isolation Levels for Sybase

Isolation Level Definition

1 Prevents dirty reads. This is the default transaction isolation level.

2 Uses serialized reads.

3 Also uses serialized reads.

UPDATE_ISOLATION_LEVEL= 1 | 3
Sybase uses a shared or update lock on base table pages that contain rows
representing a current cursor position. This option applies to updates only when
UPDATE_LOCK_TYPE=PAGE because cursor updating is in effect. It does not
apply when UPDATE_LOCK_TYPE=NOLOCK.

For updates, Sybase supports isolation levels 1 and 3, as defined in the
preceding table. See your Sybase documentation for more information.

Understanding Sybase Update Rules
To avoid data integrity problems when updating and deleting data in Sybase tables,

take these precautionary measures:

� Always define a primary key.
� If the updates are not taking place through cursor processing, define a timestamp

column.

It is not always obvious whether updates are using cursor processing. Cursor
processing is never used for LIBNAME statement updates if
UPDATE_LOCK_TYPE=NOLOCK. Cursor processing is always used in these situations:

SAS/ACCESS Interface to Sybase � Overview 755

� Updates using the LIBNAME statement with UPDATE_LOCK_TYPE=PAGE. Note
that this is the default setting for this option.

� Updates using PROC SQL views.

� Updates using PROC ACCESS view descriptors.

Naming Conventions for Sybase

For general information about this feature, see Chapter 2, “SAS Names and Support
for DBMS Names,” on page 11.

Sybase database objects include tables, views, columns, indexes, and database
procedures. They follow these naming conventions.

� A name must be from 1 to 30 characters long—or 28 characters, if you enclose the
name in quotation marks.

� A name must begin with an alphabetic character (A to Z) or an underscore (_)
unless you enclose the name in quotation marks.

� After the first character, a name can contain letters (A to Z) in uppercase or
lowercase, numbers from 0 to 9, underscore (_), dollar sign ($), pound sign (#), at
sign (@), yen sign (¥), and monetary pound sign (£).

� Embedded spaces are not allowed unless you enclose the name in quotation marks.

� Embedded quotation marks are not allowed.

� Case sensitivity is set when a server is installed. By default, the names of
database objects are case sensitive. For example, the names CUSTOMER and
customer are different on a case-sensitive server.

� A name cannot be a Sybase reserved word unless the name is enclosed in quotation
marks. See your Sybase documentation for more information about reserved words.

� Database names must be unique. For each owner within a database, names of
database objects must be unique. Column names and index names must be unique
within a table.

By default, Sybase does not enclose column names and table names in quotations
marks. To enclose these in quotation marks, you must use the
QUOTED_IDENTIFIER= LIBNAME option when you assign a libref.

When you use the DATASETS procedure to list your Sybase tables, the table names
appear exactly as they exist in the Sybase data dictionary. If you specified the
SCHEMA= LIBNAME option, SAS/ACCESS lists the tables for the specified schema
user name.

To reference a table or other named object that you own, or for the specified schema,
use the table name—for example, CUSTOMERS. If you use the DBLINK= LIBNAME
option, all references to the libref refer to the specified database.

Data Types for Sybase

Overview
Every column in a table has a name and a data type. The data type indicates to the

DBMS how much physical storage to reserve for the column and the format in which the

756 Character Data � Chapter 26

data is stored. This section includes information about Sybase data types, null values,
and data conversions, and also explains how to insert text into Sybase from SAS.

SAS/ACCESS does not support these Sybase data types: BINARY, VARBINARY,
IMAGE, NCHAR(n), and NVARCHAR(n). SAS/ACCESS provides an error message
when it tries to read a table that has at least one column that uses an unsupported
data type.

Character Data
You must enclose all character data in single or double quotation marks.

CHAR(n)
CHAR(n) is a character string that can contain letters, symbols, and numbers. Use
n to specify the maximum length of the string, which is the currently set value for
the Adaptive Server page size (2K, 4K, 8K, or 16K). Storage size is also n,
regardless of the actual entry length.

VARCHAR(n)
VARCHAR(n) is a varying-length character string that can contain letters,
symbols, and numbers. Use n to specify the maximum length of the string, which
is the currently set value for the Adaptive Server page size (2K, 4K, 8K, or 16K).
Storage size is the actual entry length.

TEXT
TEXT stores character data of variable length up to two gigabytes. Although SAS
supports the TEXT data type that Sybase provides, it allows a maximum of only
32,767 bytes of character data.

Numeric Data

NUMERIC(p,s), DECIMAL(p,s)
Exact numeric values have specified degrees of precision (p) and scale (s).
NUMERIC data can have a precision of 1 to 38 and scale of 0 to 38, where the
value of s must be less or equal to than the value of p. The DECIMAL data type is
identical to the NUMERIC data type. The default precision and scale are (18,0) for
the DECIMAL data type.

REAL, FLOAT
Floating-point values consist of an integer part, a decimal point, and a fraction
part, or scientific notation. The exact format for REAL and FLOAT data depends
on the number of significant digits and the precision that your machine supports.
You can use all arithmetic operations and aggregate functions with REAL and
FLOAT except modulus. The REAL (4-byte) range is approximately 3.4E−38 to
3.4E+38, with 7-digit precision. The FLOAT (8-byte) range is approximately
1.7E−308 to 1.7E+308, with 15-digit precision.

TINYINT, SMALLINT, INT
Integers contain no fractional part. The three-integer data types are TINYINT (1
byte), which has a range of 0 to 255; SMALLINT (2 bytes), which has a range of
–32,768 to +32,767; and INT (4 bytes), which has a range of –2,147,483,648 to
+2,147,483,647.

BIT
BIT data has a storage size of one bit and holds either a 0 or a 1. Other integer
values are accepted but are interpreted as 1. BIT data cannot be NULL and
cannot have indexes defined on it.

SAS/ACCESS Interface to Sybase � Date, Time, and Money Data 757

Date, Time, and Money Data

Sybase date and money data types are abstract data types. See your documentation
on Transact-SQL for more information about abstract data types.

DATE
DATE data is 4 bytes long and represents dates from January 1, 0001, to
December 31, 9999.

TIME
TIME data is 4 byes long and represents times from 12:00:00 AM to 11:59:59:999
PM.

SMALLDATETIME
SMALLDATETIME data is 4 bytes long and consists of one small integer that
represents the number of days after January 1, 1900, and one small integer that
represents the number of minutes past midnight. The date range is from January
1, 1900, to December 31, 2079.

DATETIME
DATETIME data has two 4-byte integers. The first integer represents the number
of days after January 1, 1900, and the second integer represents the number of
milliseconds past midnight. Values can range from January 1, 1753, to December
31, 9999.

You must enter DATETIME values as quoted character strings in various
alphabetic or numeric formats. You must enter time data in the prescribed order
(hours, minutes, seconds, milliseconds, AM, am, PM, pm), and you must include
either a colon or an AM/PM designator. Case is ignored, and spaces can be
inserted anywhere within the value.

When you input DATETIME values, the national language setting determines
how the date values are interpreted. You can change the default date order with
the SET DATEFORMAT statement. See your Transact-SQL documentation for
more information.

You can use Sybase built-in date functions to perform some arithmetic
calculations on DATETIME values.

TIMESTAMP
SAS uses TIMESTAMP data in UPDATE mode. If you select a column that
contains TIMESTAMP data for input into SAS, values display in hexadecimal
format.

SMALLMONEY
SMALLMONEY data is 4 bytes long and can range from –214,748.3648 to
214,748.3647. When it is displayed, it is rounded up to two places.

MONEY
MONEY data is 8 bytes long and can range from –922,337,203,685,477.5808 to
922,337,203,685,477.5807. You must include a dollar sign ($) before the MONEY
value. For negative values, you must include the minus sign after the dollar sign.
Commas are not allowed.

MONEY values are accurate to a ten-thousandth of a monetary unit. However,
when they are displayed, the dollar sign is omitted and MONEY values are
rounded up to two places. A comma is inserted after every three digits.

You can store values for currencies other than U.S. dollars, but no form of
conversion is provided.

758 User-Defined Data � Chapter 26

User-Defined Data
You can supplement the Sybase system data types by defining your own data types

with the Sybase system procedure sp_addtype. When you define your own data type
for a column, you can specify a default value (other than NULL) for the column and
define a range of allowable values for the column.

Sybase Null Values
Sybase has a special value that is called NULL. A This value indicates an absence of

information and is analogous to a SAS missing value. When SAS/ACCESS reads a
Sybase NULL value, it interprets it as a SAS missing value.

By default, Sybase columns are defined as NOT NULL. NOT NULL tells Sybase not
to add a row to the table unless the row has a value for the specified column.

If you want a column to accept NULL values, you must explicitly define it as NULL.
Here is an example of a CREATE TABLE statement that defines all table columns as
NULL except CUSTOMER. In this case, Sybase accepts a row only if it contains a value
for CUSTOMER.

create table CUSTOMERS
(CUSTOMER char(8) not null,
STATE char(2) null,
ZIPCODE char(5) null,
COUNTRY char(20) null,
TELEPHONE char(12) null,
NAME char(60) null,
CONTACT char(30) null,
STREETADDRESS char(40) null,
CITY char(25) null,
FIRSTORDERDATE datetime null);

When you create a Sybase table with SAS/ACCESS, you can use the DBNULL= data
set option to indicate whether NULL is a valid value for specified columns.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” on page 31.

To control how Sybase handles SAS missing character values, use the NULLCHAR=
and NULLCHARVAL= data set options.

LIBNAME Statement Data Conversions
This table shows the default formats that SAS/ACCESS Interface to Sybase assigns

to SAS variables when using the LIBNAME statement to read from a Sybase table.
These default formats are based on Sybase column attributes.

Table 26.4 LIBNAME Statement: Default SAS Formats for Sybase Server Data
Types

Sybase Column Type SAS Data Type Default SAS Format

CHAR(n) character $n

VARCHAR(n) character $n

TEXT character $n. (where n is the value of the
DBMAX_TEXT= option)

SAS/ACCESS Interface to Sybase � LIBNAME Statement Data Conversions 759

Sybase Column Type SAS Data Type Default SAS Format

BIT numeric 1.0

TINYINT numeric 4.0

SMALLINT numeric 6.0

INT numeric 11.0

NUMERIC numeric w, w.d (if possible)

DECIMAL numeric w, w.d (if possible)

FLOAT numeric

REAL numeric

SMALLMONEY numeric DOLLAR12.2

MONEY numeric DOLLAR24.2

DATE* numeric DATE9.

TIME* numeric TIME12.

SMALLDATETIME numeric DATETIME22.3

DATETIME numeric DATETIME22.3

TIMESTAMP hexadecimal $HEXw

* If a conflict might occur between the Sybase and SAS value for this data type, use
SASDATEFMT= to specify the SAS format.

** Where n specifies the current value for the Adaptive Server page size.

The following table shows the default Sybase data types that SAS/ACCESS assigns to
SAS variable formats during output operations when you use the LIBNAME statement.

Table 26.5 LIBNAME STATEMENT: Default Sybase Data Types for SAS Variable
Formats

SAS Variable Format Sybase Data Type

$w., $CHARw., $VARYINGw.,
$HEXw.

VARCHAR(w)

DOLLARw.d SMALLMONEY (where w < 6)

MONEY (where w >= 6)

datetime format DATETIME

date format DATE

time format TIME

any numeric with a SAS format
name of w.d (where d > 0 and w >
10) or w.

NUMERIC(p,s)

any numeric with a SAS format
name of w.d (where d = 0 and w < 10)

TINYINT (where w < 3)

SMALLINT (where w < 5)

INT (where w < 10)

any other numeric FLOAT

You can override these default data types by using the DBTYPE= data set option.

760 ACCESS Procedure Data Conversions � Chapter 26

ACCESS Procedure Data Conversions
The following table shows the default SAS variable formats that SAS/ACCESS

assigns to Sybase data types when you use the ACCESS procedure.

Table 26.6 PROC ACCESS: Default SAS Formats for Sybase Server Data Types

Sybase Column Type SAS Data Type Default SAS Format

CHAR(n) character $n. (n <= 200)

$200. (n > 200)

VARCHAR(n) character $n. (n <= 200)

$200. (n > 200)

BIT numeric 1.0

TINYINT numeric 4.0

SMALLINT numeric 6.0

INT numeric 11.0

FLOAT numeric BEST22.

REAL numeric BEST11.

SMALLMONEY numeric DOLLAR12.2

MONEY numeric DOLLAR24.2

SMALLDATETIME numeric DATETIME21.2

DATETIME numeric DATETIME21.2

The ACCESS procedure also supports Sybase user-defined data types. The ACCESS
procedure uses the Sybase data type on which a user-defined data type is based in order
to assign a default SAS format for columns.

The DECIMAL, NUMERIC, and TEXT data types are not supported in PROC
ACCESS. The TIMESTAMP data type does not display in PROC ACCESS.

DBLOAD Procedure Data Conversions
The following table shows the default Sybase data types that SAS/ACCESS assigns

to SAS variable formats when you use the DBLOAD procedure.

Table 26.7 PROC DBLOAD: Default Sybase Data Types for SAS Variable Formats

SAS Variable Format Sybase Data Type

$w., $CHARw., $VARYINGw.,
$HEXw.

CHAR(w)

w. TINYINT

w. SMALLINT

w. INT

w. FLOAT

w.d FLOAT

SAS/ACCESS Interface to Sybase � Case Sensitivity in Sybase 761

SAS Variable Format Sybase Data Type

IBw.d, PIBw.d INT

FRACT, E format, and other
numeric formats

FLOAT

DOLLARw.d, w<=12 SMALLMONEY

DOLLARw.d, w>12 MONEY

any datetime, date, or time format DATETIME

The DBLOAD procedure also supports Sybase user-defined data types. Use the
TYPE= statement to specify a user-defined data type.

Data Returned as SAS Binary Data with Default Format $HEX
BINARY
VARBINARY
IMAGE

Data Returned as SAS Character Data
NCHAR
NVARCHAR

Inserting TEXT into Sybase from SAS
You can insert only TEXT data into a Sybase table by using the BULKLOAD= data

set option, as in this example:

data yourlib.newtable(bulkload=yes);
set work.sasbigtext;

run;

If you do not use the BULKLOAD= option, you receive this error message:

ERROR: Object not found in database. Error Code: -2782
An untyped variable in the PREPARE statement ’S401bcf78’
is being resolved to a TEXT or IMAGE type.
This is illegal in a dynamic PREPARE statement.

Case Sensitivity in Sybase
SAS names can be entered in either uppercase or lowercase. When you reference

Sybase objects through the SAS/ACCESS interface, objects are case sensitive and
require no quotation marks.

However, Sybase is generally set for case sensitivity. Give special consideration to
the names of such objects as tables and columns when the SAS ACCESS or DBLOAD
procedures are to use them. The ACCESS procedure converts Sybase object names to
uppercase unless they are enclosed in quotation marks. Any Sybase objects that were

762 National Language Support for Sybase � Chapter 26

given lowercase names, or whose names contain national or special characters, must be
enclosed in quotation marks. The only exceptions are the SUBSET statement in the
ACCESS procedure and the SQL statement in the DBLOAD procedure. Arguments or
values from these statements are passed to Sybase exactly as you type them, with the
case preserved.

In the SQL pass-through facility, all Sybase object names are case sensitive. The
names are passed to Sybase exactly as they are typed.

For more information about case sensitivity and Sybase names, see “Naming
Conventions for Sybase” on page 755.

National Language Support for Sybase

To support output and update processing from SAS into Sybase in languages other
than English, special setup steps are required so that date, time, and datetime values
can be processed correctly. In SAS, you must ensure that the DFLANG= system option
is set to the correct language. A system administrator can set this globally
administrator or a user can set it within a single SAS session. In Sybase, the default
client language, set in the locales.dat file, must match the language that is used in SAS.

763

C H A P T E R

27
SAS/ACCESS Interface to Sybase
IQ

Introduction to SAS/ACCESS Interface to Sybase IQ 763
LIBNAME Statement Specifics for Sybase IQ 764

Overview 764

Arguments 764

Sybase IQ LIBNAME Statement Example 766

Data Set Options for Sybase IQ 767
SQL Pass-Through Facility Specifics for Sybase IQ 768

Key Information 768

CONNECT Statement Example 768

Special Catalog Queries 769

Autopartitioning Scheme for Sybase IQ 770

Overview 770
Autopartitioning Restrictions 770

Nullable Columns 770

Using WHERE Clauses 770

Using DBSLICEPARM= 770

Using DBSLICE= 771
Passing SAS Functions to Sybase IQ 771

Passing Joins to Sybase IQ 772

Bulk Loading for Sybase IQ 773

Loading 773

Examples 773
Locking in the Sybase IQ Interface 774

Naming Conventions for Sybase IQ 775

Data Types for Sybase IQ 776

Overview 776

String Data 776

Numeric Data 776
Date, Time, and Timestamp Data 777

Sybase IQ Null Values 778

LIBNAME Statement Data Conversions 778

Introduction to SAS/ACCESS Interface to Sybase IQ

This section describes SAS/ACCESS Interface to Sybase IQ. For a list of
SAS/ACCESS features that are available for this interface, see “SAS/ACCESS Interface
to Sybase IQ: Supported Features” on page 84.

For information about Sybase, see Chapter 26, “SAS/ACCESS Interface to Sybase,”
on page 739.

764 LIBNAME Statement Specifics for Sybase IQ � Chapter 27

LIBNAME Statement Specifics for Sybase IQ

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to

Sybase IQ supports and includes examples. For details about this feature, see
“Overview of the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing Sybase IQ.

LIBNAME libref sybaseiq <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

sybaseiq
specifies the SAS/ACCESS engine name for the SybaseIQ interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. When you use the LIBNAME
statement, you can connect to the Sybase IQ database in two ways. Specify only
one of these methods for each connection because they are mutually exclusive.

� HOST=, SERVER=, DATABASE=, PORT=, USER=, PASSWORD=
� DSN=, USER=, PASSWORD=

Here is how these options are defined.

HOST=<’>server-name<’>
specifies the host name or IP address where the Sybase IQ database is
running. If the server name contains spaces or nonalphanumeric characters,
you must enclose it in quotation marks.

SERVER=<’>server-name<’>
specifies the Sybase IQ server name, also known as the engine name. If the
server name contains spaces or nonalphanumeric characters, you must
enclose it in quotation marks.

DATABASE=<’>database-name<’>
specifies the Sybase IQ database that contains the tables and views that you
want to access. If the database name contains spaces or nonalphanumeric
characters, you must enclose it in quotation marks. You can also specify
DATABASE= with the DB= alias.

PORT=port
specifies the port number that is used to connect to the specified Sybase IQ
database. If you do not specify a port, the default is 2638.

USER=<’>Sybase IQ-user-name<’>
specifies the Sybase IQ user name (also called the user ID) that you use to
connect to your database. If the user name contains spaces or
nonalphanumeric characters, you must enclose it in quotation marks.

SAS/ACCESS Interface to Sybase IQ � Arguments 765

PASSWORD=<’>Sybase IQ-password<’>
specifies the password that is associated with your Sybase IQ user name. If
the password contains spaces or nonalphanumeric characters, you must
enclose it in quotation marks. You can also specify PASSWORD= with the
PWD=, PASS=, and PW= aliases.

DSN=<’>Sybase IQ-data-source<’>
specifies the configured Sybase IQ ODBC data source to which you want to
connect. Use this option if you have existing Sybase IQ ODBC data sources
that are configured on your client. This method requires additional
setup—either through the ODBC Administrator control panel on Windows
platforms or through the odbc.ini file or a similarly named configuration file
on UNIX platforms. So it is recommended that you use this connection
method only if you have existing, functioning data sources that have been
defined.

LIBNAME-options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to Sybase IQ,
with the applicable default values. For more detail about these options, see
“LIBNAME Options for Relational Databases” on page 92.

Table 27.1 SAS/ACCESS LIBNAME Options for Sybase IQ

Option Default Value

ACCESS= none

AUTHDOMAIN= none

AUTOCOMMIT= operation-specific

CONNECTION= SHAREDREAD

CONNECTION_GROUP= none

DBCOMMIT= 1000 (inserting) or 0 (updating)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= YES

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

DBMSTEMP= NO

DBNULLKEYS= YES

DBPROMPT= NO

DBSASLABEL= COMPAT

DBSLICEPARM= THREADED_APPS,2 or 3

DEFER= NO

DELETE_MULT_ROWS= NO

766 Sybase IQ LIBNAME Statement Example � Chapter 27

Option Default Value

DIRECT_EXE= none

DIRECT_SQL= YES

IGNORE_
READ_ONLY_COLUMNS=

NO

INSERTBUFF= automatically calculated based on row length

LOGIN_TIMEOUT= 0

MULTI_DATASRC_OPT= none

PRESERVE_COL_NAMES= see “Naming Conventions for Sybase IQ” on page 775

PRESERVE_TAB_NAMES= see “Naming Conventions for Sybase IQ” on page 775

QUERY_TIMEOUT= 0

QUOTE_CHAR= none

READ_ISOLATION_LEVEL=
RC (see “Locking in the Sybase IQ Interface” on page
774)

READ_LOCK_TYPE= ROW

READBUFF= automatically calculated based on row length

REREAD_EXPOSURE= NO

SCHEMA= none

SPOOL= YES

SQL_FUNCTIONS= none

SQL_FUNCTIONS_COPY= none

STRINGDATES= NO

TRACE= NO

TRACEFILE= none

UPDATE_ISOLATION_LEVEL=
RC (see “Locking in the Sybase IQ Interface” on page
774)

UPDATE_LOCK_TYPE= ROW

UPDATE_MULT_ROWS= NO

UTILCONN_TRANSIENT= NO

Sybase IQ LIBNAME Statement Example
In this example, HOST=, SERVER=, DATABASE=, USER=, and PASSWORD= are

connection options.

libname mydblib sybaseiq host=iqsvr1 server=iqsrv1_users
db=users user=iqusr1 password=iqpwd1;

proc print data=mydblib.customers;
where state=’CA’;

run;

SAS/ACCESS Interface to Sybase IQ � Data Set Options for Sybase IQ 767

In the next example, DSN=, USER=, and PASSWORD= are connection options. The
SybaseIQ SQL data source is configured in the ODBC Administrator Control Panel on
Windows platforms or in the odbc.ini file or a similarly named configuration file on
UNIX platforms.

libname mydblib sybaseiq DSN=SybaseIQSQL user=iqusr1 password=iqpwd1;

proc print data=mydblib.customers;
where state=’CA’;

run;

Data Set Options for Sybase IQ

All SAS/ACCESS data set options in this table are supported for Sybase IQ. Default
values are provided where applicable. For details about this feature, see “Overview” on
page 207.

Table 27.2 SAS/ACCESS Data Set Options for Sybase IQ

Option Default Value

BL_CLIENT_DATAFILE= none

BL_DATAFILE=
When BL_USE_PIPE=NO, creates a file in the
current directory or with the default file
specifications.

BL_DELETE_DATAFILE= YES (only when BL_USE_PIPE=NO)

BL_DELIMITER= | (the pipe symbol)

BL_OPTIONS= none

BL_SERVER_DATAFILE= creates a data file in the current directory or
with the default file specifications (same as for
BL_DATAFILE=)

BL_USE_PIPE= YES

BULKLOAD= NO

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= YES

DBNULLKEYS= LIBNAME option setting

768 SQL Pass-Through Facility Specifics for Sybase IQ � Chapter 27

Option Default Value

DBPROMPT= LIBNAME option setting

DBSASTYPE= see “Data Types for Sybase IQ” on page 776

DBSLICE= none

DBSLICEPARM= THREADED_APPS,2 or 3

DBTYPE= see “Data Types for Sybase IQ” on page 776

ERRLIMIT= 1

IGNORE_ READ_ONLY_COLUMNS= NO

INSERTBUFF= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

QUERY_TIMEOUT= LIBNAME option setting

READ_ISOLATION_LEVEL= LIBNAME option setting

READ_LOCK_TYPE= LIBNAME option setting

READBUFF= LIBNAME option setting

SASDATEFMT= none

SCHEMA= LIBNAME option setting

SQL Pass-Through Facility Specifics for Sybase IQ

Key Information
For general information about this feature, see “Overview of SQL Procedure

Interactions with SAS/ACCESS” on page 425. A Sybase IQ example is available.
Here are the SQL pass-through facility specifics for the Sybase IQ interface.
� The dbms-name is SYBASEIQ.
� The CONNECT statement is required.
� PROC SQL supports multiple connections to Sybase IQ. If you use multiple

simultaneous connections, you must use the alias argument to identify the
different connections. If you do not specify an alias, the default sybaseiq alias is
used.

� The CONNECT statement database-connection-arguments are identical to its
LIBNAME connection-options.

CONNECT Statement Example
This example uses the DBCON alias to connection to the iqsrv1 Sybase IQ database

and execute a query. The connection alias is optional.

proc sql;
connect to sybaseiq as dbcon

SAS/ACCESS Interface to Sybase IQ � Special Catalog Queries 769

(host=iqsvr1 server=iqsrv1_users db=users user=iqusr1 password=iqpwd1);
select * from connection to dbcon

(select * from customers where customer like ’1%’);
quit;

Special Catalog Queries
SAS/ACCESS Interface to Sybase IQ supports the following special queries. You can

the queries use to call the ODBC-style catalog function application programming
interfaces (APIs). Here is the general format of the special queries:

SIQ::SQLAPI “parameter 1”,”parameter n”

SIQ::
is required to distinguish special queries from regular queries. SIQ:: is not case
sensitive.

SQLAPI
is the specific API that is being called. SQLAPI is not case sensitive.

"parameter n"
is a quoted string that is delimited by commas.

Within the quoted string, two characters are universally recognized: the percent sign
(%) and the underscore (_). The percent sign matches any sequence of zero or more
characters, and the underscore represents any single character. To use either character
as a literal value, you can use the backslash character (\) to escape the match
characters. For example, this call to SQLTables usually matches table names such as
myatest and my_test:

select * from connection to sybaseiq (SIQ::SQLTables "test","","my_test");

Use the escape character to search only for the my_test table:

select * from connection to sybaseiq (SIQ::SQLTables "test","","my_test");

SAS/ACCESS Interface to Sybase IQ supports these special queries.

SIQ::SQLTables <"Catalog", "Schema", "Table-name", "Type">
returns a list of all tables that match the specified arguments. If you do not
specify any arguments, all accessible table names and information are returned.

SIQ::SQLColumns <"Catalog", "Schema", "Table-name", "Column-name">
returns a list of all columns that match the specified arguments. If you do not
specify any argument, all accessible column names and information are returned.

SIQ::SQLPrimaryKeys <"Catalog", "Schema", "Table-name">
returns a list of all columns that compose the primary key that matches the
specified table. A primary key can be composed of one or more columns. If you do
not specify any table name, this special query fails.

SIQ::SQLSpecialColumns <"Identifier-type", "Catalog-name", "Schema-name",
"Table-name", "Scope", "Nullable">

returns a list of the optimal set of columns that uniquely identify a row in the
specified table.

SIQ::SQLStatistics <"Catalog", "Schema", "Table-name">
returns a list of the statistics for the specified table name, with options of
SQL_INDEX_ALL and SQL_ENSURE set in the SQLStatistics API call. If you do
not specify any table name argument, this special query fails.

770 Autopartitioning Scheme for Sybase IQ � Chapter 27

SIQ::SQLGetTypeInfo
returns information about the data types that the Sybase IQ database supports.

Autopartitioning Scheme for Sybase IQ

Overview
Autopartitioning for SAS/ACCESS Interface to Sybase IQ is a modulo (MOD)

function method. For general information about this feature, see “Autopartitioning
Techniques in SAS/ACCESS” on page 57.

Autopartitioning Restrictions
SAS/ACCESS Interface to Sybase IQ places additional restrictions on the columns

that you can use for the partitioning column during the autopartitioning phase. Here is
how columns are partitioned.

� INTEGER, SMALLINT, and TINYINT columns are given preference.

� You can use DECIMAL, DOUBLE, FLOAT, NUMERIC, or NUMERIC columns for
partitioning if the precision minus the scale of the column is greater than 0 but
less than 10; that is, 0<(precision-scale)<10.

Nullable Columns
If you select a nullable column for autopartitioning, the OR<column-name>IS NULL

SQL statement is appended at the end of the SQL code that is generated for the
threaded read. This ensures that any possible NULL values are returned in the result
set. Also, if the column to be used for partitioning is defined as BIT, the number of
threads are automatically changed to two, regardless how DBSLICEPARM= is set.

Using WHERE Clauses
Autopartitioning does not select a column to be the partitioning column if it appears

in a SAS WHERE clause. For example, this DATA step cannot use a threaded read to
retrieve the data because all numeric columns in the table are in the WHERE clause:

data work.locemp;
set iqlib.MYEMPS;
where EMPNUM<=30 and ISTENURE=0 and
SALARY<=35000 and NUMCLASS>2;
run;

Using DBSLICEPARM=
Although SAS/ACCESS Interface to Sybase IQ defaults to three threads when you

use autopartitioning, do not specify a maximum number of threads for the threaded
read in the “DBSLICEPARM= LIBNAME Option” on page 137.

SAS/ACCESS Interface to Sybase IQ � Passing SAS Functions to Sybase IQ 771

Using DBSLICE=
You might achieve the best possible performance when using threaded reads by

specifying the “DBSLICE= Data Set Option” on page 316 for Sybase IQ in your SAS
operation. This is especially true if you defined an index on one of the columns in the
table. SAS/ACCESS Interface to Sybase IQ selects only the first integer-type column in
the table. This column might not be the same column where the index is defined. If so,
you can specify the indexed column using DBSLICE=, as shown in this example.

proc print data=iqlib.MYEMPS(DBSLICE=("EMPNUM BETWEEN 1 AND 33"
"EMPNUM BETWEEN 34 AND 66" "EMPNUM BETWEEN 67 AND 100"));
run;

Using DBSLICE= also gives you flexibility in column selection. For example, if you
know that the STATE column in your employee table contains only a few distinct
values, you can customize your DBSLICE= clause accordingly.

datawork.locemp;
set iqlib2.MYEMP(DBSLICE=("STATE=’FL’" "STATE=’GA’"
"STATE=’SC’" "STATE=’VA’" "STATE=’NC’"));

where EMPNUM<=30 and ISTENURE=0 and SALARY<=35000 and NUMCLASS>2;
run;

Passing SAS Functions to Sybase IQ
SAS/ACCESS Interface to Sybase IQ passes the following SAS functions to Sybase IQ

for processing. Where the Sybase IQ function name differs from the SAS function
name, the Sybase IQ name appears in parentheses. For more information, see “Passing
Functions to the DBMS Using PROC SQL” on page 42.

� ABS
� ARCOS (ACOS)
� ARSIN (ASIN)
� ATAN
� AVG
� BYTE (CHAR)
� CEIL
� COALESCE
� COS
� COUNT
� DAY
� EXP
� FLOOR
� HOUR
� INDEX (LOCATE)
� LOG
� LOG10
� LOWCASE (LOWER)
� MAX
� MIN

772 Passing Joins to Sybase IQ � Chapter 27

� MINUTE
� MOD
� MONTH
� QTR (QUARTER)
� REPEAT
� SECOND
� SIGN
� SIN
� SQRT
� STRIP (TRIM)
� SUBSTR (SUBSTRING)
� SUM
� TAN
� TRANWRD (REPLACE)
� TRIMN (RTRIM)
� UPCASE (UPPER)
� WEEKDAY (DOW)
� YEAR

SQL_FUNCTIONS=ALL allows for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can the SAS/ACCESS engine also pass these SAS
SQL functions to Sybase IQ. Due to incompatibility in date and time functions between
Sybase IQ and SAS, Sybase IQ might not process them correctly. Check your results to
determine whether these functions are working as expected. For more information, see
“SQL_FUNCTIONS= LIBNAME Option” on page 186.

� COMPRESS (REPLACE)
� DATE (CURRENT_DATE)
� DATEPART (DATE)
� DATETIME (CURRENT_TIMESTAMP)
� LENGTH (BYTE_LENGTH)
� TIME (CURRENT_TIME)
� TIMEPART (TIME)
� TODAY (CURRENT_DATE)
� SOUNDEX

Passing Joins to Sybase IQ
For a multiple libref join to pass to Sybase IQ, all of these components of the

LIBNAME statements must match exactly.
� user ID (USER=)
� password (PASSWORD=)
� host (HOST=)
� server (SERVER=)
� database (DATABASE=)
� port (PORT=)
� data source (DSN=, if specified)

SAS/ACCESS Interface to Sybase IQ � Examples 773

� SQL functions (SQL_FUNCTIONS=)

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

Bulk Loading for Sybase IQ

Loading
Bulk loading is the fastest way to insert large numbers of rows into a Sybase IQ

table. To use the bulk-load facility, specify BULKLOAD=YES. The bulk-load facility
uses the Sybase IQ LOAD TABLE command to move data from the client to the Sybase
IQ database.

Here are the Sybase IQ bulk-load data set options. For detailed information about
these options, see Chapter 11, “Data Set Options for Relational Databases,” on page 203.

� BL_CLIENT_DATAFILE=
� BL_DATAFILE=

� BL_DELETE_DATAFILE=
� BL_DELIMITER=
� BL_OPTIONS=
� BL_SERVER_DATAFILE=
� BL_USE_PIPE=
� BULKLOAD=

Examples
In this example, the SASFLT.FLT98 SAS data set creates and loads FLIGHTS98, a

large Sybase IQ table. For Sybase IQ 12.x, this works only when the Sybase IQ server
is on the same server as your SAS session.

libname sasflt ’SAS-data-library’;
libname mydblib sybaseiq host=iqsvr1 server=iqsrv1_users

db=users user=iqusr1 password=iqpwd1;

proc sql;
create table mydblib flights98

(bulkload=YES)
as select * from sasflt.flt98;

quit;

When the Sybase IQ server and your SAS session are not on the same server, you
need to include additional options, as shown in this example.

libname sasflt ’SAS-data-library’;
libname mydblib sybaseiq host=iqsvr1 server=iqsrv1_users

db=users user=iqusr1 password=iqpwd1;
proc sql;
create table mydblib flights98
(BULKLOAD=YES

774 Locking in the Sybase IQ Interface � Chapter 27

BL_USE_PIPE=NO
BL_SERVER_DATAFILE=’/tmp/fltdata.dat’
BL_CLIENT_DATAFILE=’/tmp/fltdata.dat’)

as select * from sasflt.flt98;
quit;

In this example, you can append the SASFLT.FLT98 SAS data set to the existing
Sybase IQ table, ALLFLIGHTS. The BL_USE_PIPE=NO option forces SAS/ACCESS
Interface to Sybase IQ to write data to a flat file, as specified in the BL_DATAFILE=
option. Rather than deleting the data file, BL_DELETE_DATAFILE=NO causes the
engine to leave it after the load has completed.

proc append base=mydblib.allflights
(BULKLOAD=YES

BL_DATAFILE=’/tmp/fltdata.dat’
BL_USE_PIPE=NO
BL_DELETE_DATAFILE=NO)

data=sasflt.flt98;
run;

Locking in the Sybase IQ Interface

The following LIBNAME and data set options let you control how the Sybase IQ
interface handles locking. For general information about an option, see “LIBNAME
Options for Relational Databases” on page 92.

READ_LOCK_TYPE= ROW | TABLE

UPDATE_LOCK_TYPE= ROW | TABLE

READ_ISOLATION_LEVEL= S | RR | RC | RU
Sybase IQ supports the S, RR, RC, and RU isolation levels that are defined in this
table.

Table 27.3 Isolation Levels for Sybase IQ

Isolation Level Definition

S (serializable) Does not allow dirty reads, nonrepeatable reads, or
phantom reads.

RR (repeatable read) Does not allow dirty reads or nonrepeatable reads; does
allow phantom reads.

RC (read committed) Does not allow dirty reads or nonrepeatable reads; does
allow phantom reads.

RU (read uncommitted) Allows dirty reads, nonrepeatable reads, and phantom
reads.

Here are how the terms in the table are defined.

Dirty reads A transaction that exhibits this phenomenon has very minimal
isolation from concurrent transactions. In fact, it can see
changes that are made by those concurrent transactions even
before they commit.

SAS/ACCESS Interface to Sybase IQ � Naming Conventions for Sybase IQ 775

For example, suppose that transaction T1 performs an
update on a row, transaction T2 then retrieves that row, and
transaction T1 then terminates with rollback. Transaction T2
has then seen a row that no longer exists.

Nonrepeatable
reads

If a transaction exhibits this phenomenon, it is possible that it
might read a row once and if it attempts to read that row again
later in the course of the same transaction, the row might have
been changed or even deleted by another concurrent
transaction. Therefore, the read is not (necessarily) repeatable.

For example, suppose that transaction T1 retrieves a row,
transaction T2 then updates that row, and transaction T1 then
retrieves the same row again. Transaction T1 has now retrieved
the same row twice but has seen two different values for it.

Phantom reads When a transaction exhibits this phenomenon, a set of rows
that it reads once might be a different set of rows if the
transaction attempts to read them again.

For example, suppose that transaction T1 retrieves the set of
all rows that satisfy some condition. Suppose that transaction
T2 then inserts a new row that satisfies that same condition. If
transaction T1 now repeats its retrieval request, it sees a row
that did not previously exist, a phantom.

UPDATE_ISOLATION_LEVEL= S | RR | RC
Sybase IQ supports the S, RR, and RC isolation levels defined in the preceding
table.

Naming Conventions for Sybase IQ
For general information about this feature, see Chapter 2, “SAS Names and Support

for DBMS Names,” on page 11.
Since SAS 7, most SAS names can be up to 32 characters long. SAS/ACCESS

Interface to Sybase IQ supports table names and column names that contain up to 32
characters. If DBMS column names are longer than 32 characters, they are truncated
to 32 characters. If truncating a column name would result in identical names, SAS
generates a unique name by replacing the last character with a number. DBMS table
names must be 32 characters or less because SAS does not truncate a longer name. If
you already have a table name that is greater than 32 characters, it is recommended
that you create a table view. For more information, see Chapter 2, “SAS Names and
Support for DBMS Names,” on page 11.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options determine
how SAS/ACCESS Interface to Sybase IQ handles case sensitivity. (For information
about these options, see “Overview of the LIBNAME Statement for Relational
Databases” on page 87.) Sybase IQ is not case sensitive, so all names default to
lowercase.

Sybase IQ objects include tables, views, and columns. They follow these naming
conventions.

� A name must be from 1 to 128 characters long.
� A name must begin with a letter (A through Z), underscore (_), at sign (@), dollar

sign ($), or pound sign (#).
� Names are not case sensitive. For example, CUSTOMER and Customer are the

same, but object names are converted to lowercase when they are stored in the

776 Data Types for Sybase IQ � Chapter 27

Sybase IQ database. However, if you enclose a name in quotation marks, it is case
sensitive.

� A name cannot be a Sybase IQ reserved word, such as WHERE or VIEW.
� A name cannot be the same as another Sybase IQ object that has the same type.

For more information, see your Sybase IQ Reference Manual.

Data Types for Sybase IQ

Overview
Every column in a table has a name and a data type. The data type tells Sybase IQ

how much physical storage to set aside for the column and the form in which the data
is stored. This information includes information about Sybase IQ data types, null and
default values, and data conversions.

For more information about Sybase IQ data types and to determine which data types
are available for your version of Sybase IQ, see your Sybase IQ Reference Manual.

SAS/ACCESS Interface to Sybase IQ does not directly support any data types that are
not listed below. Any columns using these types are read into SAS as character strings.

String Data

CHAR(n)
specifies a fixed-length column for character string data. The maximum length is
32,768 characters. If the length is greater than 254, the column is a long-string
column. SQL imposes some restrictions on referencing long-string columns. For
more information about these restrictions, see your Sybase IQ documentation.

VARCHAR(n)
specifies a varying-length column for character string data. The maximum length
is 32,768 characters. If the length is greater than 254, the column is a long-string
column. SQL imposes some restrictions on referencing long-string columns. For
more information about these restrictions, see your Sybase IQ documentation.

LONG VARCHAR(n)
specifies a varying-length column for character string data. The maximum size is
limited by the maximum size of the database file, which is currently 2 gigabytes.

Numeric Data

BIGINT
specifies a big integer. Values in a column of this type can range from
–9223372036854775808 to +9223372036854775807.

SMALLINT
specifies a small integer. Values in a column of this type can range from –32768
through +32767.

SAS/ACCESS Interface to Sybase IQ � Date, Time, and Timestamp Data 777

INTEGER
specifies a large integer. Values in a column of this type can range from
–2147483648 through +2147483647.

TINYINT
specifies a tiny integer. Values in a column of this type can range from 0 to 255.

BIT
specifies a Boolean type. Values in a column of this type can be either 0 or 1.
Inserting any nonzero value into a BIT column stores a 1 in the column.

DOUBLE | DOUBLE PRECISION
specifies a floating-point number that is 64 bits long. Values in a column of this
type can range from –1.79769E+308 to –2.225E-307 or +2.225E-307 to
+1.79769E+308, or they can be 0. This data type is stored the same way that SAS
stores its numeric data type. Therefore, numeric columns of this type require the
least processing when SAS accesses them.

REAL
specifies a floating-point number that is 32 bits long. Values in a column of this
type can range from approximately –3.4E38 to –1.17E-38 and +1.17E-38 to
+3.4E38.

FLOAT
specifies a floating-point number. If you do not supply the precision, the FLOAT
data type is the same as the REAL data type. If you supply the precision, the
FLOAT data type is the same as the REAL or DOUBLE data type, depending on
the value of the precision. The cutoff between REAL and DOUBLE is
platform-dependent, and it is the number of bits that are used in the mantissa of
the single-precision floating-point number on the platform.

DECIMAL | DEC | NUMERIC
specifies a fixed-point decimal number. The precision and scale of the number
determines the position of the decimal point. The numbers to the right of the
decimal point are the scale, and the scale cannot be negative or greater than the
precision. The maximum precision is 126 digits.

Date, Time, and Timestamp Data
SQL date and time data types are collectively called datetime values. The SQL data

types for dates, times, and timestamps are listed here. Be aware that columns of these
data types can contain data values that are out of range for SAS.

DATE
specifies date values. The range is 01-01-0001 to 12-31-9999. The default format
YYYY-MM-DD—for example, 1961-06-13.

TIME
specifies time values in hours, minutes, and seconds to six decimal positions:
hh:mm:ss[.nnnnnn]. The range is 00:00:00.000000 to 23:59:59.999999. However,
due to the ODBC-style interface that SAS/ACCESS Interface to Sybase IQ uses to
communicate with the Sybase IQ Performance Server, any fractional seconds are
lost in the transfer of data from server to client.

TIMESTAMP
combines a date and time in the default format of yyyy-mm-dd hh:mm:ss[.nnnnnn].
For example, a timestamp for precisely 2:25 p.m. on January 25, 1991, would be
1991-01-25-14.25.00.000000. Values in a column of this type have the same ranges
as described for DATE and TIME.

778 Sybase IQ Null Values � Chapter 27

Sybase IQ Null Values
Sybase IQ has a special value called NULL. A Sybase IQ NULL value means an

absence of information and is analogous to a SAS missing value. When SAS/ACCESS
reads a Sybase IQ NULL value, it interprets it as a SAS missing value.

You can define a column in a Sybase IQ table so that it requires data. To do this in
SQL, you specify a column as NOT NULL, which tells SQL to allow only a row to be
added to a table if a value exists for the field. For example, NOT NULL assigned to the
CUSTOMER field in the SASDEMO.CUSTOMER table does not allow a row to be
added unless there is a value for CUSTOMER. When creating a table with
SAS/ACCESS, you can use the DBNULL= data set option to indicate whether NULL is
a valid value for specified columns.

You can also define Sybase IQ columns as NOT NULL DEFAULT. For more
information about using the NOT NULL DEFAULT value, see your Sybase IQ Reference
Manual.

Knowing whether a Sybase IQ column allows NULLs or whether the host system
supplies a default value for a column that is defined as NOT NULL DEFAULT can help
you write selection criteria and enter values to update a table. Unless a column is
defined as NOT NULL or NOT NULL DEFAULT, it allows NULL values.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” on page 31.

To control how the DBMS handles SAS missing character values, use the
NULLCHAR= and NULLCHARVAL= data set options.

LIBNAME Statement Data Conversions
This table shows the default formats that SAS/ACCESS Interface to Sybase IQ

assigns to SAS variables to read from a Sybase IQ table when using the “Overview of
the LIBNAME Statement for Relational Databases” on page 87. These default formats
are based on Sybase IQ column attributes.

Table 27.4 LIBNAME Statement: Default SAS Formats for Sybase IQ Data Types

Sybase IQ Data Type SAS Data Type Default SAS Format

CHAR(n)* character $n.

VARCHAR(n)* character $n.

LONG VARCHAR(n)* character $n.

BIGINT numeric 20.

SMALLINT

TINYINT

numeric

numeric

6.

4.

INTEGER numeric 11.

BIT numeric 1.

DOUBLE numeric none

REAL numeric none

FLOAT numeric none

DECIMAL(p,s) numeric m.n

NUMERIC(p,s) numeric m.n

SAS/ACCESS Interface to Sybase IQ � LIBNAME Statement Data Conversions 779

Sybase IQ Data Type SAS Data Type Default SAS Format

TIME numeric TIME8.

DATE numeric DATE9.

TIMESTAMP numeric DATETIME25.6

* n in Sybase IQ data types is equivalent to w in SAS formats.

The following table shows the default Sybase IQ data types that SAS/ACCESS
assigns to SAS variable formats during output operations when you use the LIBNAME
statement.

Table 27.5 LIBNAME Statement: Default Sybase IQ Data Types for SAS Variable
Formats

SAS Variable Format Sybase IQ Data Type

m.n DECIMAL(p,s)

other numerics DOUBLE

$n. VARCHAR(n)*

datetime formats TIMESTAMP

date formats DATE

time formats TIME

* n in Sybase IQ data types is equivalent to w in SAS formats.

780

781

C H A P T E R

28
SAS/ACCESS Interface to
Teradata

Introduction to SAS/ACCESS Interface to Teradata 783
Overview 783

The SAS/ACCESS Teradata Client 783

LIBNAME Statement Specifics for Teradata 784

Overview 784

Arguments 784
Teradata LIBNAME Statement Examples 787

Data Set Options for Teradata 788

SQL Pass-Through Facility Specifics for Teradata 790

Key Information 790

Examples 791

Autopartitioning Scheme for Teradata 792
Overview 792

FastExport and Case Sensitivity 792

FastExport Password Security 793

FastExport Setup 793

Using FastExport 794
FastExport and Explicit SQL 794

Exceptions to Using FastExport 795

Threaded Reads with Partitioning WHERE Clauses 795

FastExport Versus Partitioning WHERE Clauses 795

Temporary Table Support for Teradata 796
Overview 796

Establishing a Temporary Table 796

Terminating a Temporary Table 797

Examples 797

Passing SAS Functions to Teradata 798

Passing Joins to Teradata 800
Maximizing Teradata Read Performance 800

Overview 800

Using the PreFetch Facility 800

Overview 800

How PreFetch Works 801
The PreFetch Option Arguments 801

When and Why Use PreFetch 801

Possible Unexpected Results 802

PreFetch Processing of Unusual Conditions 802

Using PreFetch as a LIBNAME Option 803
Using Prefetch as a Global Option 803

Maximizing Teradata Load Performance 804

Overview 804

782 Contents � Chapter 28

Using FastLoad 804
FastLoad Supported Features and Restrictions 804

Starting FastLoad 804

FastLoad Data Set Options 805

Using MultiLoad 805

MultiLoad Supported Features and Restrictions 805
MultiLoad Setup 806

MultiLoad Data Set Options 806

Using the TPT API 807

TPT API Supported Features and Restrictions 807

TPT API Setup 808

TPT API LIBNAME Options 808
TPT API Data Set Options 808

TPT API FastLoad Supported Features and Restrictions 808

Starting FastLoad with the TPT API 809

FastLoad with TPT API Data Set Options 809

TPT API MultiLoad Supported Features and Restrictions 809
Starting MultiLoad with the TPT API 810

MultiLoad with TPT API Data Set Options 810

TPT API Multi-Statement Insert Supported Features and Restrictions 810

Starting Multi-Statement Insert with the TPT API 810

Multi-Statement Insert with TPT API Data Set Options 810
Examples 811

Teradata Processing Tips for SAS Users 812

Reading from and Inserting to the Same Teradata Table 812

Using a BY Clause to Order Query Results 813

Using TIME and TIMESTAMP 814

Replacing PROC SORT with a BY Clause 815
Reducing Workload on Teradata by Sampling 816

Deploying and Using SAS Formats in Teradata 816

Using SAS Formats 816

How It Works 817

Deployed Components for In–Database Processing 819
User-Defined Formats in the Teradata EDW 819

Data Types and the SAS_PUT() Function 819

Publishing SAS Formats 821

Overview of the Publishing Process 821

Running the %INDTD_PUBLISH_FORMATS Macro 822
%INDTD_PUBLISH_FORMATS Macro Syntax 822

Tips for Using the %INDTD_PUBLISH_FORMATS Macro 824

Modes of Operation 825

Special Characters in Directory Names 825

Teradata Permissions 826

Format Publishing Macro Example 826
Using the SAS_PUT() Function in the Teradata EDW 827

Implicit Use of the SAS_PUT() Function 827

Explicit Use of the SAS_PUT() Function 829

Tips When Using the SAS_PUT() Function 830

Determining Format Publish Dates 830
Using the SAS_PUT() Function with SAS Web Report Studio 831

In-Database Procedures in Teradata 831

Locking in the Teradata Interface 832

Overview 832

Understanding SAS/ACCESS Locking Options 834

SAS/ACCESS Interface to Teradata � The SAS/ACCESS Teradata Client 783

When to Use SAS/ACCESS Locking Options 834
Examples 835

Setting the Isolation Level to ACCESS for Teradata Tables 835

Setting Isolation Level to WRITE to Update a Teradata Table 836

Preventing a Hung SAS Session When Reading and Inserting to the Same Table 836

Naming Conventions for Teradata 837
Teradata Conventions 837

SAS Naming Conventions 837

Naming Objects to Meet Teradata and SAS Conventions 837

Accessing Teradata Objects That Do Not Meet SAS Naming Conventions 837

Example 1: Unusual Teradata Table Name 838

Example 2: Unusual Teradata Column Names 838
Data Types for Teradata 838

Overview 838

Binary String Data 838

Character String Data 839

Date, Time, and Timestamp Data 839
Numeric Data 840

Teradata Null Values 840

LIBNAME Statement Data Conversions 841

Data Returned as SAS Binary Data with Default Format $HEX 842

Introduction to SAS/ACCESS Interface to Teradata

Overview
This section describes SAS/ACCESS Interface to Teradata. For a list of SAS/ACCESS

features that are available for this interface, see “SAS/ACCESS Interface to Teradata:
Supported Features” on page 85.

Note: SAS/ACCESS Interface to Teradata does not support the DBLOAD and
ACCESS procedures. The LIBNAME engine technology enhances and replaces the
functionality of these procedures. Therefore, you must revise SAS jobs that were
written for a different SAS/ACCESS interface and that include DBLOAD or ACCESS
procedures before you can run them with SAS/ACCESS Interface to Teradata. �

The SAS/ACCESS Teradata Client
Teradata is a massively parallel (MPP) RDBMS. A high-end Teradata server supports

many users. It simultaneously loads and extracts table data and processes complex
queries.

Because Teradata customers run many processors at the same time for queries of the
database, users enjoy excellent DBMS server performance. The challenge to client
software, such as SAS, is to leverage Teradata performance by rapidly extracting and
loading table data. SAS/ACCESS Interface to Teradata meets this challenge by letting
you optimize extracts and loads (reads and creates).

Information throughout this document explains how you can use the SAS/ACCESS
interface to optimize DBMS operations:

� It can create and update Teradata tables. It supports a FastLoad interface that
rapidly creates new table. It can also potentially optimize table reads by using
FastExport for the highest possible read performance.

784 LIBNAME Statement Specifics for Teradata � Chapter 28

� It supports MultiLoad, which loads both empty and existing Teradata tables and
greatly accelerates the speed of insertion into Teradata tables.

� It supports the Teradata Parallel Transporter (TPT) API on Windows and UNIX.
This API uses the Teradata load, update, and stream driver to load data and the
export driver to read data.

LIBNAME Statement Specifics for Teradata

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to

Teradata supports and includes examples. For a complete description of this feature,
see “Overview of the LIBNAME Statement for Relational Databases” on page 87.

Here is the LIBNAME statement syntax for accessing Teradata.

LIBNAME libref teradata <connection-options> <LIBNAME-options>;

Arguments
libref

specifies any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

teradata
specifies the SAS/ACCESS engine name for the Teradata interface.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. Here are the connection options for
the Teradata interface.

USER=<’>Teradata-user-name<’> | <">ldapid@LDAP<"> |
<">ldapid@LDAPrealm-name<">

specifies a required connection option that specifies a Teradata user name. If
the name contains blanks or national characters, enclose it in quotation
marks. For LDAP authentication with either a NULL or single realm,
append only the @LDAP token to the Teradata user name. In this case, no
realm name is needed. If you append a realm name, the LDAP
authentication server ignores it and authentication proceeds. However, if
multiple realms exist, you must append the realm name to the @LDAP token.
In this case, an LDAP server must already be configured to accept
authentication requests from the Teradata server.

PASSWORD=<’>Teradata-password<’>
specifies a required connection option that specifies a Teradata password. The
password that you specify must be correct for your USER= value. If you do
not want to enter your Teradata password in clear text on this statement, see
PROC PWENCODE in the Base SAS Procedures Guide for a method for
encoding it. For LDAP authentication, you use this password option to
specify the authentication string or password. If the authentication string or
password includes an embedded @ symbol, then a backslash (\) is required
and it must precede the @ symbol. See “Teradata LIBNAME Statement
Examples” on page 787.

SAS/ACCESS Interface to Teradata � Arguments 785

ACCOUNT=<’>account_ID<’>
is an optional connection option that specifies the account number that you
want to charge for the Teradata session.

TDPID=<’>dbcname<’>
specifies a required connection option if you run more than one Teradata
server. TDPID= operates differently for network-attached and
channel-attached systems, as described below. You can substitute SERVER=
for TDPID= in all circumstances.

� For NETWORK-ATTACHED systems (PC and UNIX), dbcname specifies
an entry in your (client) HOSTS file that provides an IP address for a
database server connection.

By default, SAS/ACCESS connects to the Teradata server that
corresponds to the dbccop1 entry in your HOSTS file. When you run
only one Teradata server and your HOSTS file defines the dbccop1 entry
correctly, you do not need to specify TDPID=.

However, if you run more than one Teradata server, you must use the
TDPID= option to specifying a dbcname of eight characters or less.
SAS/ACCESS adds the specified dbcname to the login string that it
submits to Teradata. (Teradata documentation refers to this name as
the tdpid component of the login string.)

After SAS/ACCESS submits a dbcname to Teradata, Teradata
searches your HOSTS file for all entries that begin with the same
dbcname. For Teradata to recognize the HOSTS file entry, the dbcname
suffix must be COPx (x is a number). If there is only one entry that
matches the dbcname, x must be 1. If there are multiple entries for the
dbcname, x must begin with 1 and increment sequentially for each
related entry. (See the example HOSTS file entries below.)

When there are multiple, matching entries for a dbcname in your
HOSTS file, Teradata does simple load balancing by selecting one of the
Teradata servers specified for login. Teradata distributes your queries
across these servers so that it can return your results as fast as possible.

The TDPID= examples below assume that your HOSTS file contains
these dbcname entries and IP addresses.

Example 1: TDPID= is not specified.
dbccop1 10.25.20.34

The TDPID= option is not specified, establishing a login to the
Teradata server that runs at 10.25.20.34.

Example 2: TDPID= myserver or SERVER=myserver
myservercop1 130.96.8.207

You specify a login to the Teradata server that runs at 130.96.8.207.

Example 3: TDPID=xyz or SERVER=xyz
xyzcop1 33.44.55.66
or xyzcop2 11.22.33.44

You specify a login to a Teradata server that runs at 11.22.33.44 or to
a Teradata server that runs at 33.44.55.66.

� For CHANNEL-ATTACHED systems (z/OS), TDPID= specifies the
subsystem name. This name must be TDPx, where x can be 0–9, A–Z
(not case sensitive), or $, # or @. If there is only one Teradata server,
and your z/OS system administrator has set up the HSISPB and
HSHSPB modules, you do not need to specify TDPID=. For further
information, see your Teradata TDPID documentation for z/OS.

786 Arguments � Chapter 28

DATABASE=<’>database-name<’>
specifies an optional connection option that specifies the name of the
Teradata database that you want to access, enabling you to view or modify a
different user’s Teradata DBMS tables or views, if you have the required
privileges. (For example, to read another user’s tables, you must have the
Teradata privilege SELECT for that user’s tables.) If you do not specify
DATABASE=, the libref points to your default Teradata database, which is
often named the same as your user name. If the database value that you
specify contains spaces or nonalphanumeric characters, you must enclose it in
quotation marks.

SCHEMA=<’>database-name<’>
specifies an optional connection option that specifies the database name to
use to qualify any database objects that the LIBNAME can reference.

LIBNAME-options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance, while others determine locking or naming behavior. The following
table describes the LIBNAME options for SAS/ACCESS Interface to Teradata,
with the applicable default values. For more detail about these options, see
“LIBNAME Options for Relational Databases” on page 92.

Table 28.1 SAS/ACCESS LIBNAME Options for Teradata

Option Default Value

ACCESS= none

AUTHDOMAIN= none

BULKLOAD= NO

CAST= none

CAST_OVERHEAD_MAXPERCENT= 20%

CONNECTION= for channel-attached systems (z/OS), the default is
SHAREDREAD; for network attached systems
(UNIX and PC platforms), the default is UNIQUE

CONNECTION_GROUP= none

DATABASE= (see SCHEMA=) none

DBCOMMIT= 1000 when inserting rows; 0 when updating rows

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= NO

DBLIBINIT= none

DBLIBTERM= none

DBMSTEMP= NO

DBPROMPT= NO

SAS/ACCESS Interface to Teradata � Teradata LIBNAME Statement Examples 787

Option Default Value

DBSASLABEL= COMPAT

DBSLICEPARM= THREADED_APPS,2

DEFER= NO

DIRECT_EXE=

DIRECT_SQL= YES

ERRLIMIT= 1 million

FASTEXPORT= NO

LOGDB= Default Teradata database for the libref

MODE= ANSI

MULTISTMT= NO

MULTI_DATASRC_OPT= IN_CLAUSE

PREFETCH= not enabled

PRESERVE_COL_NAMES= YES

PRESERVE_TAB_NAMES= YES

QUERY_BAND= none

READ_ISOLATION_LEVEL= see “Locking in the Teradata Interface” on page 832

READ_LOCK_TYPE= none

READ_MODE_WAIT= none

REREAD_EXPOSURE= NO

SCHEMA= your default Teradata database

SESSIONS= none

SPOOL= YES

SQL_FUNCTIONS= none

SQL_FUNCTIONS_COPY= none

SQLGENERATION= DBMS

TPT= YES

UPDATE_ISOLATION_LEVEL= see “Locking in the Teradata Interface” on page 832

UPDATE_LOCK_TYPE= none

UPDATE_MODE_WAIT= none

UTILCONN_TRANSIENT= NO

Teradata LIBNAME Statement Examples

These examples show how to make the proper connection by using the USER= and
PASSWORD= connection options. Teradata requires these options, and you must use
them together.

This example shows how to connect to a single or NULL realm.

libname x teradata user=’’johndoe@LDAP’’ password=’’johndoeworld’’;

788 Data Set Options for Teradata � Chapter 28

Here is an example of how to make the connection to a specific realm where multiple
realms are configured.

libname x teradata user=’’johndoe@LDAPjsrealm’’ password=’’johndoeworld’’;

Here is an example of a configuration with a single or NULL realm that contains a
password with an imbedded @ symbol. The password must contain a required
backslash (\), which must precede the embedded @ symbol.

libname x teradata user="johndoe@LDAP" password="johndoe\@world"

Data Set Options for Teradata

All SAS/ACCESS data set options in this table are supported for Teradata. Default
values are provided where applicable. For details about this feature, see “Overview” on
page 207.

Table 28.2 SAS/ACCESS Data Set Options for Teradata

Option Default Value

BL_CONTROL= creates a FastExport control file in the current
directory with a platform-specific name

BL_DATAFILE= creates a MultiLoad script file in the current directory
or with a platform-specific name

BL_LOG= FastLoad errors are logged in Teradata tables named
SAS_FASTLOAD_ERRS1_randnum and
SAS_FASTLOAD_ERRS2_randnum, where randnum is
a randomly generated number.

BUFFERS= 2

BULKLOAD= NO

CAST= none

CAST_OVERHEAD_MAXPERCENT= 20%

DBCOMMIT= the current LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= the current LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= the current LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBNULL= none

DBSASLABEL= COMPAT

DBSASTYPE= see “Data Types for Teradata” on page 838

DBSLICE= none

SAS/ACCESS Interface to Teradata � Data Set Options for Teradata 789

Option Default Value

DBSLICEPARM= THREADED_APPS,2

DBTYPE= see “Data Types for Teradata” on page 838

ERRLIMIT= 1

MBUFSIZE= 0

ML_CHECKPOINT= none

ML_ERROR1= none

ML_ERROR2= none

ML_LOG= none

ML_RESTART= none

ML_WORK= none

MULTILOAD= NO

MULTISTMT= NO

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= YES

QUERY_BAND= none

READ_ISOLATION_LEVEL= the current LIBNAME option setting

READ_LOCK_TYPE= the current LIBNAME option setting

READ_MODE_WAIT= the current LIBNAME option setting

SASDATEFORMAT= none

SCHEMA= the current LIBNAME option setting

SESSIONS= none

SET= NO

SLEEP= 6

TENACITY= 4

TPT= YES

TPT_APPL_PHASE= NO

TPT_BUFFER_SIZE= 64

TPT_CHECKPOINT_DATA= none

TPT_DATA_ENCRYPTION= none

TPT_ERROR_TABLE_1= table_name_ET

TPT_ERROR_TABLE_2= table_name_UV

TPT_LOG_TABLE= table_name_RS

TPT_MAX_SESSIONS= 1 session per available Access Module Processor (AMP)

TPT_MIN_SESSIONS= 1 session

TPT_PACK= 20

TPT_PACKMAXIMUM= NO

790 SQL Pass-Through Facility Specifics for Teradata � Chapter 28

Option Default Value

TPT_RESTART= NO

TPT_TRACE_LEVEL= 1

TPT_TRACE_LEVEL_INF= 1

TPT_TRACE_OUTPUT= driver name, followed by a timestamp

TPT_WORK_TABLE= table_name_WT

UPDATE_ISOLATION_LEVEL= the current LIBNAME option setting

UPDATE_LOCK_TYPE= the current LIBNAME option setting

UPDATE_MODE_WAIT= the current LIBNAME option setting

SQL Pass-Through Facility Specifics for Teradata

Key Information
For general information about this feature, see “Overview of the SQL Pass-Through

Facility” on page 425. Teradata examples are available.
Here are the SQL pass-through facility specifics for the Teradata interface.

� The dbms-name is TERADATA.

� The CONNECT statement is required.

� The Teradata interface can connect to multiple Teradata servers and to multiple
Teradata databases. However, if you use multiple simultaneous connections, you
must use an alias argument to identify each connection.

� The CONNECT statement database-connection-arguments are identical to the
LIBNAME connection options.

The MODE= LIBNAME option is available with the CONNECT statement. By
default, SAS/ACCESS opens Teradata connections in ANSI mode. In contrast,
most Teradata tools, such as BTEQ, run in Teradata mode. If you specify
MODE=TERADATA, Pass-Through connections open in Teradata mode, forcing
Teradata mode rules for all SQL requests that are passed to the Teradata DBMS.
For example, MODE= impacts transaction behavior and case sensitivity. See your
Teradata SQL reference documentation for a complete discussion of ANSI versus
Teradata mode.

� By default, SAS/ACCESS opens Teradata in ANSI mode. You must therefore use
one of these techniques when you write PROC SQL steps that use the SQL
pass-through facility.

� Specify an explicit COMMIT statement to close a transaction. You must also
specify an explicit COMMIT statement after any Data Definition Language
(DDL) statement. The examples below demonstrate these rules. For further
information about ANSI mode and DDL statements, see your Teradata SQL
reference documentation.

� Specify MODE=TERADATA in your CONNECT statement. When
MODE=TERADATA, you do not specify explicit COMMIT statements as
described above. When MODE=TERADATA, data processing is not case

SAS/ACCESS Interface to Teradata � Examples 791

sensitive. This option is available when you use the LIBNAME statement
and also with the SQL pass-through facility.

CAUTION:
Do not issue a Teradata DATABASE statement within the EXECUTE statement in

PROC SQL. Add the SCHEMA= option to your CONNECT statement if you must
change the default Teradata database. �

Examples
In this example, SAS/ACCESS connects to the Teradata DBMS using the dbcon alias.

proc sql;
connect to teradata as dbcon (user=testuser pass=testpass);

quit;

In the next example, SAS/ACCESS connects to the Teradata DBMS using the tera
alias, drops and then recreates the SALARY table, inserts two rows, and then
disconnects from the Teradata DBMS. Notice that COMMIT must follow each DDL
statement. DROP TABLE and CREATE TABLE are DDL statements. The COMMIT
statement that follows the INSERT statement is also required. Otherwise, Teradata
rolls back the inserted rows.

proc sql;
connect to teradata as tera (user=testuser password=testpass);
execute (drop table salary) by tera;
execute (commit) by tera;
execute (create table salary (current_salary float, name char(10)))

by tera;
execute (commit) by tera;
execute (insert into salary values (35335.00, ’Dan J.’)) by tera;
execute (insert into salary values (40300.00, ’Irma L.’)) by tera;
execute (commit) by tera;
disconnect from tera;

quit;

For this example, SAS/ACCESS connects to the Teradata DBMS using the tera
alias, updates a row, and then disconnects from the Teradata DBMS. The COMMIT
statement causes Teradata to commit the update request. Without the COMMIT
statement, Teradata rolls back the update.

proc sql;
connect to teradata as tera (user=testuser password=testpass);
execute (update salary set current_salary=45000

where (name=’Irma L.’)) by tera;
execute (commit) by tera;
disconnect from tera;

quit;

In this example, SAS/ACCESS uses the tera2 alias to connect to the Teradata
database, selects all rows in the SALARY table, displays them using PROC SQL, and
disconnects from the Teradata database. No COMMIT statement is needed in this
example because the operations are only reading data. No changes are made to the
database.

proc sql;
connect to teradata as tera2 (user=testuser password=testpass);
select * from connection to tera2 (select * from salary);

792 Autopartitioning Scheme for Teradata � Chapter 28

disconnect from tera2;
quit;

In this next example, MODE=TERADATA is specified to avoid case-insensitive
behavior. Because Teradata Mode is used, SQL COMMIT statements are not required.

/* Create & populate the table in Teradata mode (case insensitive). */
proc sql;

connect to teradata (user=testuser pass=testpass mode=teradata);
execute(create table casetest(x char(28))) by teradata;
execute(insert into casetest values(’Case Insensitivity Desired’)) by teradata;

quit;
/* Query the table in Teradata mode (for case-insensitive match). */
proc sql;

connect to teradata (user=testuser pass=testpass mode=teradata);
select * from connection to teradata (select * from
casetest where x=’case insensitivity desired’);

quit;

Autopartitioning Scheme for Teradata

Overview
For general information about this feature, see “Autopartitioning Techniques in SAS/

ACCESS” on page 57.
The FastExport Utility is the fastest available way to read large Teradata tables.

FastExport is NCR-provided software that delivers data over multiple Teradata
connections or sessions. If FastExport is available, SAS threaded reads use it. If
FastExport is not available, SAS threaded reads generate partitioning WHERE clauses.
Using the DBSLICE= option overrides FastExport. So if you have FastExport available
and want to use it, do not use DBSLICE=. To use FastExport everywhere possible, use
DBSLICEPARM=ALL.

Note: FastExport is supported only on z/OS and UNIX. Whether automatically
generated or created by using DBSLICE=, partitioning WHERE clauses is not
supported. �

FastExport and Case Sensitivity
In certain situations Teradata returns different row results to SAS when using

FastExport, compared to reading normally without FastExport. The difference arises
only when all of these conditions are met:

� A WHERE clause is asserted that compares a character column with a character
literal.

� The column definition is NOT CASESPECIFIC.
Unless you specify otherwise, most Teradata native utilities create NOT

CASESPECIFIC character columns. On the other hand, SAS/ACCESS Interface to
Teradata creates CASESPECIFIC columns. In general, this means that you do not
see result differences with tables that SAS creates, but you might with tables that
Teradata utilities create, which are frequently many of your tables. To determine

SAS/ACCESS Interface to Teradata � FastExport Setup 793

how Teradata creates a table, look at your column declarations with the Teradata
SHOW TABLE statement.

� A character literal matches to a column value that differs only in case.

You can see differences in the rows returned if your character column has
mixed-case data that is otherwise identical. For example, ’Top’ and ’top’ are
identical except for case.

Case sensitivity is an issue when SAS generates SQL code that contains a WHERE
clause with one or more character comparisons. It is also an issue when you supply the
Teradata SQL yourself with the explicit SQL feature of PROC SQL. The following
examples illustrate each scenario, using DBSLICEPARM=ALL to start FastExport
instead of the normal SAS read:

/* SAS generates the SQL for you. */
libname trlib teradata user=username password=userpwd dbsliceparm=all;
proc print data=trlib.employees;
where lastname=’lovell’;
run;

/* Use explicit SQL with PROC SQL & supply the
SQL yourself, also starting FastExport. */
proc sql;

connect to teradata(user=username password=userpwd dbsliceparm=all);
select * from connection to teradata

(select * from sales where gender=’f’ and salesamt>1000);
quit;

For more information about case sensitivity, see your Teradata documentation.

FastExport Password Security
FastExport requires passwords to be in clear text. Because this poses a security risk,

users must specify the full pathname so that the file path is in a protected directory:

� Windows users should specify BL_CONTROL="PROTECTED-DIR/myscr.ctl".
SAS/ACCESS creates the myscr.ctl script file in the protected directory with
PROTECTED-DIR as the path.

� UNIX users can specify a similar pathname.

� MVS users must specify a middle-level qualifier such as
BL_CONTROL="MYSCR.TEST1" so that the system generates the
USERID.MYSCR.TEST1.CTL script file.

� Users can also use RACF to protect the USERID.MYSCR* profile.

FastExport Setup
There are three requirements for using FastExport with SAS:

� You must have the Teradata FastExport Utility present on your system. If you do
not have FastExport and want to use it with SAS, contact NCR to obtain the
Utility.

� SAS must be able to locate the FastExport Utility on your system.

� The FastExport Utility must be able to locate the SasAxsm access module, which
is supplied with your SAS/ACCESS Interface to Teradata product. SasAxsm is in
the SAS directory tree, in the same location as the sasiotra component.

794 Using FastExport � Chapter 28

Assuming you have the Teradata FastExport Utility, perform this setup, which varies
by system:

� Windows: As needed, modify your Path environment variable to include both the
directories containing Fexp.exe (FastExport) and SasAxsm. Place these directory
specifications last in your path.

� UNIX: As needed, modify your library path environment variable to include the
directory containing sasaxsm.sl (HP) or sasaxsm.so (Solaris and AIX). These
shared objects are delivered in the $SASROOT/sasexe directory. You can copy
these modules where you want, but make sure that the directory into which you
copy them is in the appropriate shared library path environment variable. On
Solaris, the library path variable is LD_LIBRARY_PATH. On HP-UX, it is
SHLIB_PATH. On AIX, it is LIBPATH. Also, make sure that the directory
containing the Teradata FastExport Utility (fexp), is included in the PATH
environment variable. FastExport is usually installed in the /usr/bin directory.

� z/OS: No action is needed when starting FastExport under TSO. When starting
FastExport with a batch JCL, the SAS source statements must be assigned to a
DD name other than SYSIN. This can be done by passing a parameter such as
SYSIN=SASIN in the JCL where all SAS source statements are assigned to the
DD name SASIN.

Keep in mind that future releases of SAS might require an updated version of
SasAxsm. Therefore, when upgrading to a new SAS version, you should update the
path for SAS on Windows and the library path for SAS on UNIX.

Using FastExport
To use FastExport, SAS writes a specialized script to a disk that the FastExport

Utility reads. SAS might also log FastExport log lines to another disk file. SAS creates
and deletes these files on your behalf, so no intervention is required. Sockets deliver
the data from FastExport to SAS, so you do not need to do anything except install the
SasAxsm access module that enables data transfer.

On Windows, when the FastExport Utility is active, a DOS window appears
minimized as an icon on your toolbar. You can maximize the DOS window, but do not
close it. After a FastExport operation is complete, SAS closes the window for you.

This example shows how to create a SAS data set that is a subset of a Teradata table
that uses FastExport to transfer the data:

libname trlib teradata user=username password=userpwd;
data saslocal(keep=EMPID SALARY);
set trlib.employees(dbsliceparm=all);
run;

FastExport and Explicit SQL
FastExport is also supported for the explicit SQL feature of PROC SQL.
The following example shows how to create a SAS data set that is a subset of a

Teradata table by using explicit SQL and FastExport to transfer the data:

proc sql;
connect to teradata as pro1 (user=username password=userpwd dbsliceparm=all);
create table saslocal as select * from connection to pro1

(select EMPID, SALARY from employees);
quit;

SAS/ACCESS Interface to Teradata � FastExport Versus Partitioning WHERE Clauses 795

FastExport for explicit SQL is a Teradata extension only, for optimizing read
operations, and is not covered in the threaded read documentation.

Exceptions to Using FastExport
With the Teradata FastExport Utility and the SasAxsm module in place that SAS

supplies, FastExport works automatically for all SAS steps that have threaded reads
enabled, except for one situation. FastExport does not handle single Access Module
Processor (AMP) queries. In this case, SAS/ACCESS simply reverts to a normal single
connection read. For information about FastExport and single AMP queries, see your
Teradata documentation.

To determine whether FastExport worked, turn on SAS tracing in advance of the
step that attempts to use FastExport. If you use FastExport, you receive this (English
only) message, which is written to your SAS log:

sasiotra/tryottrm(): SELECT was processed with FastExport.

To turn on SAS tracing, run this statement:

options sastrace=’,,,d’ sastraceloc=saslog;

Threaded Reads with Partitioning WHERE Clauses
If FastExport is unavailable, threaded reads use partitioning WHERE clauses. You

can create your own partitioning WHERE clauses using the DBSLICE= option.
Otherwise, SAS/ACCESS to Teradata attempts to generate them on your behalf. Like
other SAS/ACCESS interfaces, this partitioning is based on the MOD function. To
generate partitioning WHERE clauses, SAS/ACCESS to Teradata must locate a table
column suitable for applying MOD. These types are eligible:

� BYTEINT
� SMALLINT
� INTEGER
� DATE
� DECIMAL (integral DECIMAL columns only)

A DECIMAL column is eligible only if the column definition restricts it to integer
values. In other words, the DECIMAL column must be defined with a scale of zero.

If the table you are reading contains more than one column of the above mentioned
types, SAS/ACCESS to Teradata applies some nominal intelligence to select a best
choice. Top priority is given to the primary index, if it is MOD-eligible. Otherwise,
preference is given to any column that is defined as NOT NULL. Since this is an
unsophisticated set of selection rules, you might want to supply your own partitioning
using the DBSLICE= option.

To view your table’s column definitions, use the Teradata SHOW TABLE statement.

Note: Partitioning WHERE clauses, either automatically generated or created by
using DBSLICE=, are not supported on z/OS.Whether automatically generated or
created by using DBSLICE=, partitioning WHERE clauses is not supported on z/OS and
UNIX. �

FastExport Versus Partitioning WHERE Clauses
Partitioning WHERE clauses are innately less efficient than FastExport. The

Teradata DBMS must process separate SQL statements that vary in the WHERE

796 Temporary Table Support for Teradata � Chapter 28

clause. In contrast, FastExport is optimal because only one SQL statement is
transmitted to the Teradata DBMS. However, older editions of the Teradata DBMS
place severe restrictions on the system-wide number of simultaneous FastExport
operations that are allowed. Even with newer versions of Teradata, your database
administrator might be concerned about large numbers of FastExport operations.

Threaded reads with partitioning WHERE clauses also place higher workload on
Teradata and might not be appropriate on a widespread basis. Both technologies
expedite throughput between SAS and the Teradata DBMS, but should be used
judiciously. For this reason, only SAS threaded applications are eligible for threaded
read by default. To enable more threaded reads or to turn them off entirely, use the
DBSLICEPARM= option.

Even when FastExport is available, you can force SAS/ACCESS to Teradata to
generate partitioning WHERE clauses on your behalf. This is accomplished with the
DBI argument to the DBSLICEPARM= option (DBSLICEPARM=DBI). This feature is
available primarily to enable comparisons of these techniques. In general, you should
use FastExport if it is available.

The explicit SQL feature of PROC SQL supports FastExport. Partitioning of WHERE
clauses is not supported for explicit SQL.

Temporary Table Support for Teradata

Overview
For general information about this feature, see “Temporary Table Support for SAS/

ACCESS” on page 38.

Establishing a Temporary Table
When you specify CONNECTION=GLOBAL, you can reference a temporary table

throughout a SAS session, in both DATA steps and procedures. Due to a Teradata
limitation, FastLoad and FastExport do not support use of temporary tables at this time.

Teradata supports two types of temporary tables, global and volatile. With the use of
global temporary tables, the rows are deleted after the connection is closed but the table
definition itself remains. With volatile temporary tables, the table (and all rows) are
dropped when the connection is closed.

When accessing a volatile table with a LIBNAME statement, it is recommended that
you do not use these options:

� DATABASE= (as a LIBNAME option)
� SCHEMA= (as a data set or LIBNAME option)

If you use either DATABASE= or SCHEMA=, you must specify DBMSTEMP=YES in
the LIBNAME statement to denote that all tables accessed through it and all tables
that it creates are volatile tables.

DBMSTEMP= also causes all table names to be not fully qualified for either
SCHEMA= or DATABASE=. In this case, you should use the LIBNAME statement only
to access tables—either permanent or volatile—within your default database or schema.

SAS/ACCESS Interface to Teradata � Examples 797

Terminating a Temporary Table
You can drop a temporary table at any time, or allow it to be implicitly dropped when

the connection is terminated. Temporary tables do not persist beyond the scope of a
single connection.

Examples
The following example shows how to use a temporary table:

/* Set global connection for all tables. */
libname x teradata user=test pw=test server=boom connection=global;

/* Create global temporary table & store in the current database schema. */
proc sql;

connect to teradata(user=test pw=test server=boom connection=global);
execute (CREATE GLOBAL TEMPORARY TABLE temp1 (col1 INT)

ON COMMIT PRESERVE ROWS) by teradata;
execute (COMMIT WORK) by teradata;

quit;

/* Insert 1 row into the temporary table to surface the table. */
proc sql;

connect to teradata(user=test pw=test server=boom connection=global);
execute (INSERT INTO temp1 VALUES(1)) by teradata;
execute (COMMIT WORK) by teradata;

quit;

/* Access the temporary table through the global libref. */
data work.new_temp1;
set x.temp1;
run;

/* Access the temporary table through the global connection. */
proc sql;

connect to teradata (user=test pw=test server=boom connection=global);
select * from connection to teradata (select * from temp1);

quit;

/* Drop the temporary table. */
proc sql;

connect to teradata(user=prboni pw=prboni server=boom connection=global);
execute (DROP TABLE temp1) by teradata;
execute (COMMIT WORK) by teradata;

quit;

This example shows how to use a volatile table:

/* Set global connection for all tables. */
libname x teradata user=test pw=test server=boom connection=global;

/* Create a volatile table. */
proc sql;

connect to teradata(user=test pw=test server=boom connection=global);
execute (CREATE VOLATILE TABLE temp1 (col1 INT)

798 Passing SAS Functions to Teradata � Chapter 28

ON COMMIT PRESERVE ROWS) by teradata;
execute (COMMIT WORK) by teradata;

quit;

/* Insert 1 row into the volatile table. */
proc sql;

connect to teradata(user=test pw=test server=boom connection=global);
execute (INSERT INTO temp1 VALUES(1)) by teradata;
execute (COMMIT WORK) by teradata;

quit;

/* Access the temporary table through the global libref. */
data _null_;

set x.temp1;
put _all_;

run;

/* Access the volatile table through the global connection. */
proc sql;

connect to teradata (user=test pw=test server=boom connection=global);
select * from connection to teradata (select * from temp1);

quit;

/* Drop the connection & the volatile table is automatically dropped. */
libname x clear;

/* To confirm that it is gone, try to access it. */
libname x teradata user=test pw=test server=boom connection=global;

/* It is not there. */
proc print data=x.temp1;
run;

Passing SAS Functions to Teradata
SAS/ACCESS Interface to Teradata passes the following SAS functions to Teradata

for processing. Where the Teradata function name differs from the SAS function name,
the Teradata name appears in parentheses. For more information, see “Passing
Functions to the DBMS Using PROC SQL” on page 42.

� ABS
� ACOS
� ARCOSH (ACOSH)
� ARSINH (ASINH)
� ASIN
� ATAN
� ATAN2
� AVG
� COALESCE
� COS
� COSH

SAS/ACCESS Interface to Teradata � Passing SAS Functions to Teradata 799

� COUNT
� DAY
� DTEXTDAY
� DTEXTMONTH
� DTEXTYEAR
� EXP
� HOUR
� INDEX (POSITION)
� LENGTH (CHARACTER_LENGTH)
� LOG
� LOG10
� LOWCASE (LCASE)
� MAX
� MIN
� MINUTE
� MOD
� MONTH
� SECOND
� SIN
� SINH
� SQRT
� STD (STDDEV_SAMP)
� STRIP (TRIM)
� SUBSTR
� SUM
� TAN
� TANH
� TIMEPART
� TRIM
� UPCASE
� VAR (VAR_SAMP)
� YEAR

SQL_FUNCTIONS=ALL allows for SAS functions that have slightly different
behavior from corresponding database functions that are passed down to the database.
Only when SQL_FUNCTIONS=ALL can SAS/ACCESS Interface to Teradata also pass
these SAS SQL functions to Teradata. Due to incompatibility in date and time functions
between Teradata and SAS, Teradata might not process them correctly. Check your
results to determine whether these functions are working as expected. For more
information, see “SQL_FUNCTIONS= LIBNAME Option” on page 186.

� DATE
� DATETIME (current_timestamp)(
� LEFT (TRIM
� LENGTH (CHARACTER_LENGTH)
� SOUNDEX
� TIME (current_time)
� TODAY

800 Passing Joins to Teradata � Chapter 28

� TRIM

DATETIME, SOUNDEX, and TIME are not entirely compatible with the
corresponding SAS functions. Also, for SOUNDEX, although Teradata always returns 4
characters, SAS might return more or less than 4 characters.

Passing Joins to Teradata

For a multiple libref join to pass to Teradata, all of these components of the
LIBNAME statements must match exactly:

� user ID (USER=)

� password (PASSWORD=)

� account ID (ACCOUNT=)

� server (TDPID= or SERVER=)

You must specify the SCHEMA= LIBNAME option to fully qualify each table name
in a join for each LIBNAME that you reference.

For more information about when and how SAS/ACCESS passes joins to the DBMS,
see “Passing Joins to the DBMS” on page 43.

Maximizing Teradata Read Performance

Overview
A major objective of SAS/ACCESS when you are reading DBMS tables is to take

advantage of the Teradata rate of data transfer. The DBINDEX=, SPOOL=, and
PREFETCH= options can help you achieve optimal read performance. This section
provides detailed information about PREFETCH as a LIBNAME option and
PREFETCH as a global option.

Using the PreFetch Facility

Overview
PreFetch is a SAS/ACCESS Interface to Teradata facility that speeds up a SAS job by

exploiting the parallel processing capability of Teradata. To obtain benefit from the
facility, your SAS job must run more than once and have these characteristics:

� use SAS/ACCESS to query Teradata DBMS tables

� should not contain SAS statements that create, update, or delete Teradata DBMS
tables

� run SAS code that changes infrequently or not at all.

In brief, the ideal job is a stable read-only SAS job.
Use of PreFetch is optional. To use the facility, you must explicitly enable it with the

PREFETCH LIBNAME option.

SAS/ACCESS Interface to Teradata � Using the PreFetch Facility 801

How PreFetch Works
When reading DBMS tables, SAS/ACCESS submits SQL statements on your behalf

to Teradata. Each SQL statement that is submitted has an execution cost: the amount
of time Teradata spends processing the statement before it returns the requested data
to SAS/ACCESS.

When PreFetch is enabled the first time you run your SAS job, SAS/ACCESS
identifies and selects statements with a high execution cost. SAS/ACCESS then stores
(caches) the selected SQL statements to one or more Teradata macros that it creates.

On subsequent runs of the job, when PreFetch is enabled, SAS/ACCESS extracts
statements from the cache and submits them to Teradata in advance. The rows that
these SQL statements select are immediately available to SAS/ACCESS because
Teradata prefetches them. Your SAS job runs faster because PreFetch reduces the wait
for SQL statements with a high execution cost. However, PreFetch improves elapsed
time only on subsequent runs of a SAS job. During the first run, SAS/ACCESS only
creates the SQL cache and stores selected SQL statements; no prefetching is performed.

The PreFetch Option Arguments

unique_storename
As mentioned, when PreFetch is enabled, SAS/ACCESS creates one or more
Teradata macros to store the selected SQL statements that PreFetch caches. You
can easily distinguish a PreFetch macro from other Teradata macros. The
PreFetch Teradata macro contains a comment that is prefaced with this text:

"SAS/ACCESS PreFetch Cache"

The name that the PreFetch facility assigns for the macro is the value that you
enter for the unique_storename argument. The unique_storename must be unique.
Do not specify a name that exists in the Teradata DBMS already for a DBMS
table, view, or macro. Also, do not enter a name that exists already in another
SAS job that uses the Prefetch facility.

#sessions
This argument specifies how many cached SQL statements SAS/ACCESS submits
in parallel to Teradata. In general, your SAS job completes faster if you increase
the number of statements that Teradata works on in advance. However, a large
number (too many sessions) can strain client and server resources. A valid value
is 1 through 9. If you do not specify a value for this argument, the default is 3.

In addition to the specified number of sessions, SAS/ACCESS adds an
additional session for submitting SQL statements that are not stored in the
PreFetch cache. Thus, if the default is 3, SAS/ACCESS actually opens up to four
sessions on the Teradata server.

algorithm
This argument is present to handle future enhancements. Currently PreFetch only
supports one algorithm, SEQUENTIAL.

When and Why Use PreFetch
If you have a read-only SAS job that runs frequently, this is an ideal candidate for

PreFetch; for example, a daily job that extracts data from Teradata tables. To help you
decide when to use PreFetch, consider these daily jobs:

� Job 1

Reads and collects data from the Teradata DBMS.

802 Using the PreFetch Facility � Chapter 28

� Job 2
Contains a WHERE clause that reads in values from an external, variable data

source. As a result, the SQL code that the job submits through a Teradata
LIBNAME statement or through PROC SQL changes from run to run.

In these examples, Job 1 is an excellent candidate for the facility. In contrast, Job 2
is not. Using PreFetch with Job 2 does not return incorrect results, but can impose a
performance penalty. PreFetch uses stored SQL statements. Thus, Job 2 is not a good
candidate because the SQL statements that the job generates with the WHERE clause
change each time the job is run. Consequently, the SQL statements that the job
generates never match the statements that are stored.

The impact of Prefetch on processing performance varies by SAS job. Some jobs
improve elapsed time 5% or less; others improve elapsed time 25% or more.

Possible Unexpected Results
It is unlikely, but possible, to write a SAS job that delivers unexpected or incorrect

results. This can occur if the job contains code that waits on some Teradata or system
event before proceeding. For example, SAS code that pauses the SAS job until another
user updates a given data item in a Teradata table. Or, SAS code that pauses the SAS
job until a given time; for example, 5:00 p.m. In both cases, PreFetch would generate
SQL statements in advance. But, table results from these SQL statements would not
reflect data changes that are made by the scheduled Teradata or system event.

PreFetch Processing of Unusual Conditions
PreFetch is designed to handle unusual conditions gracefully. Here are some of the

unusual conditions that are included:

Condition: Your job contains SAS code that creates updates, or deletes Teradata
tables.

PreFetch is designed only for read operations and is disabled when it encounters a
nonread operation. The facility returns a performance benefit up to the point
where the first nonread operation is encountered. After that, SAS/ACCESS
disables the PreFetch facility and continues processing.

Condition: Your SQL cache name (unique_storename value) is identical to the name
of a Teradata table.

PreFetch issues a warning message. SAS/ACCESS disables the PreFetch facility
and continues processing.

Condition: You change your SAS code for a job that has PreFetch enabled.
PreFetch detects that the SQL statements for the job changed and deletes the
cache. SAS/ACCESS disables Prefetch and continues processing. The next time
that you run the job, PreFetch creates a fresh cache.

Condition: Your SAS job encounters a PreFetch cache that was created by a different
SAS job.

PreFetch deletes the cache. SAS/ACCESS disables Prefetch and continues
processing. The next time that you run the job, PreFetch creates a fresh cache.

Condition: You remove the PreFetch option from an existing job.
Prefetch is disabled. Even if the SQL cache (Teradata macro) still exists in your
database, SAS/ACCESS ignores it.

Condition: You accidentally delete the SQL cache (the Teradata macro created by
PreFetch) for a SAS job that has enabled PreFetch.

SAS/ACCESS simply rebuilds the cache on the next run of the job. In subsequent
job runs, PreFetch continues to enhance performance.

SAS/ACCESS Interface to Teradata � Using Prefetch as a Global Option 803

Using PreFetch as a LIBNAME Option
If you specify the PREFETCH= option in a LIBNAME statement, PreFetch applies

the option to tables read by the libref.
If you have more than one LIBNAME in your SAS job, and you specify PREFETCH=

for each LIBNAME, remember to make the SQL cache name for each LIBNAME unique.
This example applies PREFETCH= to one of two librefs. During the first job run,

PreFetch stores SQL statements for tables referenced by the libref ONE in a Teradata
macro named PF_STORE1 for reuse later.

libname one teradata user=testuser password=testpass
prefetch=’pf_store1’;
libname two teradata user=larry password=riley;

This example applies PREFETCH= to multiple librefs. During the first job run,
PreFetch stores SQL statements for tables referenced by the libref EMP to a Teradata
macro named EMP_SAS_MACRO and SQL statements for tables referenced by the
libref SALE to a Teradata macro named SALE_SAS_MACRO.

libname emp teradata user=testuser password=testpass
prefetch=’emp_sas_macro’;
libname sale teradata user=larry password=riley
prefetch=’sale_sas_macro’;

Using Prefetch as a Global Option
Unlike other Teradata LIBNAME options, you can also invoke PreFetch globally for a

SAS job. To do this, place the OPTION DEBUG= statement in your SAS program
before all LIBNAME statements and PROC SQL steps. If your job contains multiple
LIBNAME statements, the global PreFetch invocation creates a uniquely named SQL
cache name for each of the librefs.

Do not be confused by the DEBUG= option here. It is merely a mechanism to deliver
the PreFetch capability globally. PreFetch is not for debugging; it is a supported feature
of SAS/ACCESS Interface to Teradata.

In this example the first time you run the job with PreFetch enabled, the facility
creates three Teradata macros: UNIQUE_MAC1, UNIQUE_MAC2, and
UNIQUE_MAC3. In subsequent runs of the job, PreFetch extracts SQL statements
from these Teradata macros, enhancing the job performance across all three librefs
referenced by the job.

option debug="PREFETCH(unique_mac,2,SEQUENTIAL)";
libname one teradata user=kamdar password=ellis;
libname two teradata user=kamdar password=ellis

database=larry;
libname three teradata user=kamdar password=ellis

database=wayne;
proc print data=one.kamdar_goods;
run;
proc print data=two.larry_services;
run;
proc print data=three.wayne_miscellaneous;
run;

In this example PreFetch selects the algorithm, that is, the order of the SQL
statements. (The OPTION DEBUG= statement must be the first statement in your SAS
job.)

804 Maximizing Teradata Load Performance � Chapter 28

option debug=’prefetch(pf_unique_sas,3)’;

In this example the user specifies for PreFetch to use the SEQUENTIAL algorithm.
(The OPTION DEBUG= statement must be the first statement in your SAS job.)

option debug=’prefetch(sas_pf_store,3,sequential)’;

Maximizing Teradata Load Performance

Overview
To significantly improve performance when loading data, SAS/ACCESS Interface to

Teradata provides these facilities. These correspond to native Teradata utilities.
� FastLoad
� MultiLoad
� Multi-Statement

SAS/ACCESS also supports the Teradata Parallel Transporter application
programming interface (TPT API), which you can also use with these facilities.

Using FastLoad

FastLoad Supported Features and Restrictions
SAS/ACCESS Interface to Teradata supports a bulk-load capability called FastLoad

that greatly accelerates insertion of data into empty Teradata tables. For general
information about using FastLoad and error recovery, see the Teradata FastLoad
documentation. SAS/ACCESS examples are available.

Note: Implementation of SAS/ACCESS FastLoad facility will change in a future
release of SAS. So you might need to change SAS programming statements and options
that you specify to enable this feature in the future. �

The SAS/ACCESS FastLoad facility is similar to the native Teradata FastLoad
Utility. They share these limitations:

� FastLoad can load only empty tables; it cannot append to a table that already
contains data. If you attempt to use FastLoad when appending to a table that
contains rows, the append step fails.

� Both the Teradata FastLoad Utility and the SAS/ACCESS FastLoad facility log
data errors to tables. Error recovery can be difficult. To find the error that
corresponds to the code that is stored in the error table, see the Teradata FastLoad
documentation.

� FastLoad does not load duplicate rows (rows where all corresponding fields contain
identical data) into a Teradata table. If your SAS data set contains duplicate rows,
you can use the normal insert (load) process.

Starting FastLoad
If you do not specify FastLoad, your Teradata tables are loaded normally (slowly). To

start FastLoad in the SAS/ACCESS interface, you can use one of these items:

SAS/ACCESS Interface to Teradata � Using MultiLoad 805

� the BULKLOAD=YES data set option in a processing step that populates an
empty Teradata table

� the BULKLOAD=YES LIBNAME option on the destination libref (the Teradata
DBMS library where one or more intended tables are to be created and loaded)

� the FASTLOAD= alias for either of these options

FastLoad Data Set Options
Here are the data set options that you can use with the FastLoad facility.
� BL_LOG= specifies the names of error tables that are created when you use the

SAS/ACCESS FastLoad facility. By default, FastLoad errors are logged in
Teradata tables named SAS_FASTLOAD_ERRS1_randnum and
SAS_FASTLOAD_ERRS2_randnum, where randnum is a randomly generated
number. For example, if you specify BL_LOG=my_load_errors, errors are logged in
tables my_load_errors1 and my_load_errors2. If you specify BL_LOG=errtab,
errors are logged in tables name errtab1 and errtab2.

Note: SAS/ACCESS automatically deletes the error tables if no errors are logged.
If errors occur, the tables are retained and SAS/ACCESS issues a warning
message that includes the names of the error tables. �

� DBCOMMIT=n causes a Teradata “checkpoint” after each group of n rows is
transmitted. Using checkpoints slows performance but provides known
synchronization points if failure occurs during the loading process. Checkpoints
are not used by default if you do not explicitly set DBCOMMIT= and
BULKLOAD=YES. The Teradata alias for this option is CHECKPOINT=.

See the section about data set options in SAS/ACCESS for Relational Databases:
Referencefor additional information about these options.

To see whether threaded reads are actually generated, turn on SAS tracing by setting
OPTIONS SASTRACE=”,,,d” in your program.

Using MultiLoad

MultiLoad Supported Features and Restrictions
SAS/ACCESS Interface to Teradata supports a bulk-load capability called MultiLoad

that greatly accelerates insertion of data into Teradata tables. For general information
about using MultiLoad with Teradata tables and for information about error recovery,
see the Teradata MultiLoad documentation. SAS/ACCESS examples are available.

Unlike FastLoad, which only loads empty tables, MultiLoad loads both empty and
existing Teradata tables. If you do not specify MultiLoad, your Teradata tables are
loaded normally (inserts are sent one row at a time).

The SAS/ACCESS MultiLoad facility loads both empty and existing Teradata tables.
SAS/ACCESS supports these features:

� You can load only one target table at a time.
� Only insert operations are supported.

Because the SAS/ACCESS MultiLoad facility is similar to the native Teradata
MultiLoad utility, they share a limitation in that you must drop the following items on
the target tables before the load:

806 Using MultiLoad � Chapter 28

� unique secondary indexes
� foreign key references
� join indexes

Both the Teradata MultiLoad utility and the SAS/ACCESS MultiLoad facility log
data errors to tables. Error recovery can be difficult, but the ability to restart from the
last checkpoint is possible. To find the error that corresponds to the code that is stored
in the error table, see the Teradata MultiLoad documentation.

MultiLoad Setup
Here are the requirements for using the MultiLoad bulk-load capability in SAS.
� The native Teradata MultiLoad utility must be present on your system. If you do

not have the Teradata MultiLoad utility and you want to use it with SAS, contact
Teradata to obtain the utility.

� SAS must be able to locate the Teradata MultiLoad utility on your system.
� The Teradata MultiLoad utility must be able to locate the SASMlam access

module and the SasMlne exit routine. They are supplied with SAS/ACCESS
Interface to Teradata.

� SAS MultiLoad requires Teradata client TTU 8.2 or later.

If it has not been done so already as part of the post-installation configuration process,
see the SAS configuration documentation for your system for information about how to
configure SAS to work with MultiLoad.

MultiLoad Data Set Options
Call the SAS/ACCESS MultiLoad facility by specifying MULTILOAD=YES. See the

MULTILOAD= data set option for detailed information and examples on loading data
and recovering from errors during the load process.

Here are the data set options that are available for use with the MultiLoad facility.
For detailed information about these options, see Chapter 11, “Data Set Options for
Relational Databases,” on page 203.

� MBUFSIZE=
� ML_CHECKPOINT=
� ML_ERROR1= lets the user name the error table that MultiLoad uses for tracking

errors from the acquisition phase. See the Teradata MultiLoad reference for more
information about what is stored in this table. By default, the acquisition error
table is named SAS_ML_ET_randnum where randnum is a random number.
When restarting a failed MultiLoad job, you need to specify the same acquisition
table from the earlier run so that the MultiLoad job can restart correctly. Note
that the same log table, application error table, and work table must also be
specified upon restarting, using ML_RESTART, ML_ERROR2, and ML_WORK
data set options. ML_ERROR1 and ML_LOG are mutually exclusive and cannot
be specified together.

� ML_ERROR2=
� ML_LOG= specifies a prefix for the temporary tables that the Teradata MultiLoad

utility uses during the load process. The MultiLoad utility uses a log table, two
error tables, and a work table while loading data to the target table. These tables
are named by default as SAS_ML_RS_randnum, SAS_ML_ET_randnum,
SAS_ML_UT_randnum, and SAS_ML_WT_randnum where randnum is a
randomly generated number. ML_LOG= is used to override the default names
used. For example, if you specify ML_LOG=MY_LOAD the log table is named

SAS/ACCESS Interface to Teradata � Using the TPT API 807

MY_LOAD_RS. Errors are logged in tables MY_LOAD_ET and MY_LOAD_UT. The work
table is named MY_LOAD_WT.

� ML_RESTART= lets the user name the log table that MultiLoad uses for tracking
checkpoint information. By default, the log table is named SAS_ML_RS_randnum
where randnum is a random number. When restarting a failed MultiLoad job, you
need to specify the same log table from the earlier run so that the MultiLoad job
can restart correctly. Note that the same error tables and work table must also be
specified upon restarting the job, using ML_ERROR1, ML_ERROR2, and
ML_WORK data set options. ML_RESTART and ML_LOG are mutually exclusive
and cannot be specified together.

� ML_WORK= lets the user name the work table that MultiLoad uses for loading
the target table. See the Teradata MultiLoad reference for more information about
what is stored in this table. By default, the work table is named
SAS_ML_WT_randnum where randnum is a random number. When restarting a
failed MultiLoad job, you need to specify the same work table from the earlier run
so that the MultiLoad job can restart correctly. Note that the same log table,
acquisition error table and application error table must also be specified upon
restarting the job using ML_RESTART, ML_ERROR1, and ML_ERROR2 data set
options. ML_WORK and ML_LOG are mutually exclusive and cannot be specified
together.

� SLEEP= specifies the number of minutes that MultiLoad waits before it retries a
logon operation when the maximum number of utilities are already running on the
Teradata database. The default value is 6. SLEEP= functions very much like the
SLEEP run-time option of the native Teradata MultiLoad utility.

� TENACITY= specifies the number of hours that MultiLoad tries to log on when
the maximum number of utilities are already running on the Teradata database.
The default value is 4. TENACITY= functions very much like the TENACITY
run-time option of the native Teradata MultiLoad utility.

Be aware that these options are disabled while you are using the SAS/ACCESS
MultiLoad facility.

� The DBCOMMIT= LIBNAME and data set options are disabled because
DBCOMMIT= functions very differently from CHECKPOINT of the native
Teradata MultiLoad utility.

� The ERRLIMIT= data set option is disabled because the number of errors is not
known until all records have been sent to MultiLoad. The default value of
ERRLIMIT=1 is not honored.

To see whether threaded reads are actually generated, turn on SAS tracing by setting
OPTIONS SASTRACE=”,,,d” in your program.

Using the TPT API

TPT API Supported Features and Restrictions
SAS/ACCESS Interface to Teradata supports the TPT API for loading data. The TPT

API provides a consistent interface for Fastload, MultiLoad, and Multi-Statement
insert. TPT API documentation refers to Fastload as the load driver, MultiLoad as the
update driver, and Multi-Statement insert as the stream driver. SAS supports all three
load methods and can restart loading from checkpoints when you use the TPT API with
any of them.

808 Using the TPT API � Chapter 28

TPT API Setup
Here are the requirements for using the TPT API in SAS for loading SAS.

� Loading data from SAS to Teradata using the TPT API requires Teradata client
TTU 8.2 or later. Verify that you have applied all of the latest Teradata eFixes.

� This feature is supported only on platforms for which Teradata provides the TPT
API.

� The native TPT API infrastructure must be present on your system. Contact
Teradata if you do not already have it but want to use it with SAS.

The SAS configuration document for your system contains information about how to
configure SAS to work with the TPT API. However, those steps might already have
been completed as part of the post-installation configuration process for your site.

TPT API LIBNAME Options
The TPT= LIBNAME option is common to all three supported load methods. If SAS

cannot use the TPT API, it reverts to using Fastload, MultiLoad, or Multi-Statement
insert, depending on which method of loading was requested without generating any
errors.

TPT API Data Set Options
These data set options are common to all three supported load methods:

� SLEEP=
� TENACITY=
� TPT=
� TPT_CHECKPOINT_DATA=
� TPT_DATA_ENCRYPTION=
� TPT_LOG_TABLE=
� TPT_MAX_SESSIONS=
� TPT_MIN_SESSIONS=
� TPT_RESTART=
� TPT_TRACE_LEVEL=
� TPT_TRACE_LEVEL_INF=

� TPT_TRACE_OUTPUT=

TPT API FastLoad Supported Features and Restrictions
SAS/ACCESS Interface to Teradata supports the TPT API for FastLoad, also known

as the load driver, SAS/ACCESS works by interfacing with the load driver through the
TPT API, which in turn uses the Teradata Fastload protocol for loading data. See your
Teradata documentation for more information about the load driver.

This is the default FastLoad method. If SAS cannot find the Teradata modules that
are required for the TPT API or TPT=NO, then SAS/ACCESS uses the old method of
Fastload. SAS/ACCESS can restart Fastload from checkpoints when FastLoad uses the
TPT API. The SAS/ACCESS FastLoad facility using the TPT API is similar to the
native Teradata FastLoad utility. They share these limitations.

� FastLoad can load only empty tables. It cannot append to a table that already
contains data. If you try to use FastLoad when appending to a table that contains
rows, the append step fails.

SAS/ACCESS Interface to Teradata � Using the TPT API 809

� Data errors are logged in Teradata tables. Error recovery can be difficult if you do
not TPT_CHECKPOINT_DATA= to enable restart from the last checkpoint. To
find the error that corresponds to the code that is stored in the error table, see
your Teradata documentation. You can restart a failed job for the last checkpoint
by following the instructions in the SAS error log.

� FastLoad does not load duplicate rows (those where all corresponding fields
contain identical data) into a Teradata table. If your SAS data set contains
duplicate rows, you can use other load methods.

Starting FastLoad with the TPT API
See the SAS configuration document for instructions on setting up the environment

so that SAS can find the TPT API modules.
You can use one of these options to start FastLoad in theSAS/ACCESS interface

using the TPT API:

� the TPT=YES data set option in a processing step that populates an empty
Teradata table

� the TPT=YES LIBNAME option on the destination libref (the Teradata DBMS
library where one or more tables are to be created and loaded)

FastLoad with TPT API Data Set Options
These data set options are specific to FastLoad using the TPT API:

� TPT_BUFFER_SIZE=

� TPT_ERROR_TABLE_1=

� TPT_ERROR_TABLE_2=

TPT API MultiLoad Supported Features and Restrictions
SAS/ACCESS Interface to Teradata supports the TPT API for MultiLoad, also known

as the update driver. SAS/ACCESS works by interfacing with the update driver
through the TPT API. This API then uses the Teradata Multiload protocol for loading
data. See your Teradata documentation for more information about the update driver.

This is the default MultiLoad method. If SAS cannot find the Teradata modules that
are required for the TPT API or TPT=NO, then SAS/ACCESS uses the old method of
MultiLoad. SAS/ACCESS can restart Multiload from checkpoints when MultiLoad uses
the TPT API.

The SAS/ACCESS MultiLoad facility loads both empty and existing Teradata tables.
SAS/ACCESS supports only insert operations and loading only one target table at time.

The SAS/ACCESS MultLoad facility using the TPT API is similar to the native
Teradata MultiLoad utility. A common limitation that they share is that you must drop
these items on target tables before the load:

� unique secondary indexes

� foreign key references

� join indexes

Errors are logged to Teradata tables. Error recovery can be difficult if you do not set
TPT_CHECKPOINT_DATA= to enable restart from the last checkpoint. To find the
error that corresponds to the code that is stored in the error table, see your Teradata
documentation. You can restart a failed job for the last checkpoint by following the
instructions in the SAS error log.

810 Using the TPT API � Chapter 28

Starting MultiLoad with the TPT API
See the SAS configuration document for instructions on setting up the environment

so that SAS can find the TPT API modules.
You can use one of these options to start MultiLoad in the SAS/ACCESS interface

using the TPT API:
� the TPT=YES data set option in a processing step that populates an empty

Teradata table
� the TPT=YES LIBNAME option on the destination libref (the Teradata DBMS

library where one or more tables are to be created and loaded)

MultiLoad with TPT API Data Set Options
These data set options are specific to MultiLoad using the TPT API:
� TPT_BUFFER_SIZE=
� TPT_ERROR_TABLE_1=
� TPT_ERROR_TABLE_2=

TPT API Multi-Statement Insert Supported Features and Restrictions
SAS/ACCESS Interface to Teradata supports the TPT API for Multi-Statement

insert, also known as the stream driver. SAS/ACCESS works by interfacing with the
stream driver through the TPT API, which in turn uses the Teradata Multi-Statement
insert (TPump) protocol for loading data. See your Teradata documentation for more
information about the stream driver.

This is the default Multi-Statement insert method. If SAS cannot find the Teradata
modules that are required for the TPT API or TPT=NO, then SAS/ACCESS uses the old
method of Multi-Statement insert. SAS/ACCESS can restart Multi-Statement insert
from checkpoints when Multi-Statement insert uses the TPT API.

The SAS/ACCESS Multi-Statement insert facility loads both empty and existing
Teradata tables. SAS/ACCESS supports only insert operations and loading only one
target table at time.

Errors are logged to Teradata tables. Error recovery can be difficult if you do not set
TPT_CHECKPOINT_DATA= to enable restart from the last checkpoint. To find the
error that corresponds to the code that is stored in the error table, see your Teradata
documentation. You can restart a failed job for the last checkpoint by following the
instructions on the SAS error log.

Starting Multi-Statement Insert with the TPT API
See the SAS configuration document for instructions on setting up the environment

so that SAS can find the TPT API modules.
You can use one of these options to start Multi-Statement in the SAS/ACCESS

interface using the TPT API:
� the TPT=YES data set option in a processing step that populates an empty

Teradata table
� the TPT=YES LIBNAME option on the destination libref (the Teradata DBMS

library where one or more tables are to be created and loaded)

Multi-Statement Insert with TPT API Data Set Options
These data set options are specific to Multi-Statement insert using the TPT API.

SAS/ACCESS Interface to Teradata � Examples 811

� TPT_PACK=

� TPT_PACKMAXIMUM=

Examples
This example starts the FastLoad facility.

libname fload teradata user=testuser password=testpass;
data fload.nffloat(bulkload=yes);

do x=1 to 1000000;
output;

end;
run;

This next example uses FastLoad to append SAS data to an empty Teradata table
and specifies the BL_LOG= option to name the error tables Append_Err1 and
Append_Err2. In practice, applications typically append many rows.

/* Create the empty Teradata table. */
proc sql;

connect to teradata as tera(user=testuser password=testpass);
execute (create table performers

(userid int, salary decimal(10,2), job_desc char(50)))
by tera;

execute (commit) by tera;
quit;

/* Create the SAS data to load. */
data local;

input userid 5. salary 9. job_desc $50.;
datalines;
0433 35993.00 grounds keeper
4432 44339.92 code groomer
3288 59000.00 manager
;

/* Append the SAS data & name the Teradata error tables. */
libname tera teradata user=testuser password=testpass;

proc append data=local base=tera.performers
(bulkload=yes bl_log=append_err);

run;

This example starts the MultiLoad facility.

libname trlib teradata user=testuser pw=testpass server=dbc;

/* Use MultiLoad to load a table with 2000 rows. */
data trlib.mlfloat(MultiLoad=yes);

do x=1 to 2000;
output;

end;
run;

/* Append another 1000 rows. */
data work.testdata;

812 Teradata Processing Tips for SAS Users � Chapter 28

do x=2001 to 3000;
output;

end;
run;

/* Append the SAS data to the Teradata table. */
proc append data=work.testdata base=trlib.mlfload

(MultiLoad=yes);
run;

This example loads data using TPT FastLoad.

/* Check the SAS log for this message to verify that the TPT API was used.
NOTE: Teradata connection: TPT Fastload has inserted 100 rows.
*/
data trlib.load(TPT=YES FASTLOAD=YES);

do x=1 to 1000;
output;

end;
run;

This example restarts a MultiLoad step that recorded checkpoints and failed after
loading 2000 rows of data.

proc append data=trlib.load(TPT=YES MULTILOAD=YES
TPT_RESTART=YES TPT_CHECKPOINT_DATA=2000)

data=work.inputdata(FIRSTOBS=2001);
run;

Teradata Processing Tips for SAS Users

Reading from and Inserting to the Same Teradata Table
If you use SAS/ACCESS to read rows from a Teradata table and then attempt to

insert these rows into the same table, you can hang (suspend) your SAS session.
Here is what happens:
� a SAS/ACCESS connection requests a standard Teradata READ lock for the read

operation.
� a SAS/ACCESS connection then requests a standard Teradata WRITE lock for the

insert operation.
� the WRITE lock request suspends because the read connection already holds a

READ lock on the table. Consequently, your SAS session hangs (is suspended).

Here is what happens in the next example:
� SAS/ACCESS creates a read connection to Teradata to fetch the rows selected

(select *) from TRA.SAMETABLE, requiring a standard Teradata READ lock;
Teradata issues a READ lock.

� SAS/ACCESS creates an insert connection to Teradata to insert the rows into
TRA.SAMETABLE, requiring a standard Teradata WRITE lock. But the WRITE
lock request suspends because the table is locked already by the READ lock.

� Your SAS/ACCESS session hangs.

SAS/ACCESS Interface to Teradata � Using a BY Clause to Order Query Results 813

libname tra teradata user=testuser password=testpass;
proc sql;
insert into tra.sametable

select * from tra.sametable;

To avoid this situation, use the SAS/ACCESS locking options. For details, see
“Locking in the Teradata Interface” on page 832.

Using a BY Clause to Order Query Results

SAS/ACCESS returns table results from a query in random order because Teradata
returns the rows to SAS/ACCESS randomly. In contrast, traditional SAS processing
returns SAS data set observations in the same order during every run of your job. If
maintaining row order is important, then you should add a BY clause to your SAS
statements. A BY clause ensures consistent ordering of the table results from Teradata.

In this example, the Teradata ORD table has NAME and NUMBER columns. The
PROC PRINT statements illustrate consistent and inconsistent ordering when it
displays ORD table rows.

libname prt teradata user=testuser password=testpass;

proc print data=prt.ORD;
var name number;
run;

If this statement is run several times, it yields inconsistent ordering, meaning that
ORD rows are likely to be arranged differently each time. This happens because
SAS/ACCESS displays the rows in the order in which Teradata returns them—that is,
randomly.

proc print data=prt.ORD;
var name number;
by name;
run;

This statement achieves more consistent ordering because it orders PROC PRINT
output by the NAME value. However, on successive runs of the statement, rows display
of rows with a different number and an identical name can vary, as shown here.

Output 28.1 PROC PRINT Display 1

Rita Calvin 2222
Rita Calvin 199

Output 28.2 PROC PRINT Display 2

Rita Calvin 199
Rita Calvin 2222

814 Using TIME and TIMESTAMP � Chapter 28

proc print data=prt.ORD;
var name number;
by name number;
run;

The above statement always yields identical ordering because every column is
specified in the BY clause. So your PROC PRINT output always looks the same.

Using TIME and TIMESTAMP
This example creates a Teradata table and assigns the SAS TIME8. format to the

TRXTIME0 column. Teradata creates the TRXTIME0 column as the equivalent
Teradata data type, TIME(0), with the value of 12:30:55.

libname mylib teradata user=testuser password=testpass;

data mylib.trxtimes;
format trxtime0 time8.;
trxtime0 = ’12:30:55’t;

run;

This example creates a Teradata column that specifies very precise time values. The
format TIME(5) is specified for the TRXTIME5 column. When SAS reads this column,
it assigns the equivalent SAS format TIME14.5.

libname mylib teradata user=testuser password=testpass;

proc sql noerrorstop;
connect to teradata (user=testuser password=testpass);
execute (create table trxtimes (trxtime5 time(5)

)) by teradata;
execute (commit) by teradata;
execute (insert into trxtimes

values (cast(’12:12:12’ as time(5))
)) by teradata;

execute (commit) by teradata;
quit;

/* You can print the value that is read with SAS/ACCESS. */
proc print data =mylib.trxtimes;
run;

SAS might not preserve more than four digits of fractional precision for Teradata
TIMESTAMP.

This next example creates a Teradata table and specifies a simple timestamp column
with no digits of precision. Teradata stores the value 2000-01-01 00:00:00. SAS assigns
the default format DATETIME19. to the TRSTAMP0 column generating the
corresponding SAS value of 01JAN2000:00:00:00.

proc sql noerrorstop;
connect to teradata (user=testuser password=testpass);
execute (create table stamps (tstamp0 timestamp(0)

)) by teradata;
execute (commit) by teradata;
execute (insert into stamps

values (cast(’2000--01--01 00:00:00’ as

SAS/ACCESS Interface to Teradata � Replacing PROC SORT with a BY Clause 815

timestamp(0))
)) by teradata;

execute (commit) by teradata;
quit;

This example creates a Teradata table and assigns the SAS format DATETIME23.3
to the TSTAMP3 column, generating the value 13APR1961:12:30:55.123. Teradata
creates the TSTAMP3 column as the equivalent data type TIMESTAMP(3) with the
value 1961-04-13 12:30:55.123.

libname mylib teradata user=testuser password=testpass;

data mylib.stamps;
format tstamp3 datetime23.3;
tstamp3 = ’13apr1961:12:30:55.123’dt;
run;

This next example illustrates how the SAS engine passes the literal value for
TIMESTAMP in a WHERE statement to Teradata for processing. Note that the value is
passed without being rounded or truncated so that Teradata can handle the rounding or
truncation during processing. This example would also work in a DATA step.

proc sql ;
select * from trlib.flytime where col1 = ’22Aug1995 12:30:00.557’dt ;
quit;

In SAS 8, the Teradata interface did not create TIME and TIMESTAMP data types.
Instead, the interface generated FLOAT values for SAS times and dates. This example
shows how to format a column that contains a FLOAT representation of a SAS datetime
into a readable SAS datetime.

libname mylib teradata user=testuser password=testpass;

proc print data=mylib.stampv80;
format stamp080 datetime25.0;
run;

Here, the old Teradata table STAMPV80 contains the FLOAT column, STAMP080,
which stores SAS datetime values. The FORMAT statement displays the FLOAT as a
SAS datetime value.

Replacing PROC SORT with a BY Clause
In general, PROC SORT steps are not useful to output a Teradata table. In

traditional SAS processing, PROC SORT is used to order observations in a SAS data set.
Subsequent SAS steps that use the sorted data set receive and process the observations
in the sorted order. Teradata does not store output rows in the sorted order. Therefore,
do not sort rows with PROC SORT if the destination sorted file is a Teradata table.

The following example illustrates a PROC SORT statement found in typical SAS
processing. You cannot use this statement in SAS/ACCESS Interface to Teradata.

libname sortprt ’.’;
proc sort data=sortprt.salaries;
by income;
proc print data=sortprt.salaries;

816 Reducing Workload on Teradata by Sampling � Chapter 28

This example removes the PROC SORT statement shown in the previous example. It
instead uses a BY clause with a VAR clause with PROC PRINT. The BY clause returns
Teradata rows ordered by the INCOME column.

libname sortprt teradata user=testuser password=testpass;
proc print data=sortprt.salaries;
var income;
by income;

Reducing Workload on Teradata by Sampling
The OBS= option triggers SAS/ACCESS to add a SAMPLE clause to generated SQL.

In this example, 10 rows are printed from dbc.ChildrenX:

Libname tra teradata user=sasdxs pass=****** database=dbc;
Proc print data=tra.ChildrenX (obs=10);
run;

The SQL passed to Teradata is:

SELECT "Child","Parent" FROM "ChildrenX" SAMPLE 10

Especially against large Teradata tables, small values for OBS= reduce workload and
spool space consumption on Teradata and your queries complete much sooner. See the
SAMPLE clause in your Teradata documentation for further information.

Deploying and Using SAS Formats in Teradata

Using SAS Formats
SAS formats are basically mapping functions that change an element of data from

one format to another. For example, some SAS formats change numeric values to
various currency formats or date-and-time formats.

SAS supplies many formats. You can also use the SAS FORMAT procedure to define
custom formats that replace raw data values with formatted character values. For
example, this PROC FORMAT code creates a custom format called $REGION that
maps ZIP codes to geographic regions.

proc format;
value $region
’02129’, ’03755’, ’10005’ = ’Northeast’
’27513’, ’27511’, ’27705’ = ’Southeast’
’92173’, ’97214’, ’94105’ = ’Pacific’;

run;

SAS programs, including in-database procedures, frequently use both user-defined
formats and formats that SAS supplies. Although they are referenced in numerous
ways, using the PUT function in the SQL procedure is of particular interest for SAS
In-Database processing.

The PUT function takes a format reference and a data item as input and returns a
formatted value. This SQL procedure query uses the PUT function to summarize sales
by region from a table of all customers:

SAS/ACCESS Interface to Teradata � How It Works 817

select put(zipcode,$region.) as region,
sum(sales) as sum_sales from sales.customers
group by region;

The SAS SQL processor knows how to process the PUT function. Currently,
SAS/ACCESS Interface to Teradata returns all rows of unformatted data in the
SALES.CUSTOMERS table in the Teradata database to the SAS System for processing.

The SAS In-Database technology deploys, or publishes, the PUT function
implementation to Teradata as a new function named SAS_PUT(). Similar to any other
programming language function, the SAS_PUT() function can take one or more input
parameters and return an output value.

The SAS_PUT() function supports use of SAS formats. You can specify the
SAS_PUT() function in SQL queries that SAS submits to Teradata in one of two ways:

� implicitly by enabling SAS to automatically map PUT function calls to SAS_PUT()
function calls

� explicitly by using the SAS_PUT() function directly in your SAS program

If you used the SAS_PUT() function in the previous example, Teradata formats the
ZIP code values with the $REGION format and processes the GROUP BY clause using
the formatted values.

By publishing the PUT function implementation to Teradata as the SAS_PUT()
function, you can realize these advantages:

� You can process the entire SQL query inside the database, which minimizes data
transfer (I/O).

� The SAS format processing leverages the scalable architecture of the DBMS.
� The results are grouped by the formatted data and are extracted from the

Teradata Enterprise Data Warehouse (EDW).

Deploying SAS formats to execute inside a Teradata database can enhance
performance and exploit Teradata parallel processing.

How It Works
By using the SAS formats publishing macro, you can generate a SAS_PUT() function

that enables you to execute PUT function calls inside the Teradata EDW. You can
reference the formats that SAS supplies and most custom formats that you create by
using PROC FORMAT.

The SAS formats publishing macro takes a SAS format catalog and publishes it to
the Teradata EDW. Inside the Teradata EDW, a SAS_PUT() function, which emulates
the PUT function, is created and registered for use in SQL queries.

818 How It Works � Chapter 28

Figure 28.1 Process Flow Diagram

SAS SAS

Client Application

PROC FORMATPublishing Client

Format
Catalog

Install
Script

Format
Publishing

Macros

SAS/ACCESS
Interfaces

Procedures
Enabled

for In-Database
Processing

SAS/ACCESS
Interfaces

DBMS

SAS_PUT()
Function

Deployed
Components

for In-Database
Processing

3

5

2

1

4

Here is the basic process flow.
u Install the components that are necessary for in–database processing in the

Teradata EDW.

Note: This is a one-time installation process. �

For more information, see “Deployed Components for In–Database Processing”
on page 819.

v If necessary, create your custom formats by using PROC FORMAT and create a
permanent catalog by using the LIBRARY= option.

For more information, see “User-Defined Formats in the Teradata EDW” on
page 819 and the FORMAT procedure in the Base SAS Procedures Guide.

w Start SAS 9.2 and run the %INDTD_PUBLISH_FORMATS macro. This macro
creates the files that are needed to build the SAS_PUT() function and publishes
those files to the Teradata EDW.

For more information, see “Publishing SAS Formats” on page 821.
x After the %INDTD_PUBLISH_FORMATS macro creates the script, SAS/ACCESS

Interface to Teradata executes the script and publishes the files to the Teradata
EDW.

For more information, see “Publishing SAS Formats” on page 821.
y Teradata compiles the .c and .h files and creates the SAS_PUT() function. The

SAS_PUT() function is available to use in any SQL expression and to use typically
wherever you use Teradata built-in functions.

SAS/ACCESS Interface to Teradata � Data Types and the SAS_PUT() Function 819

For more information, see “Using the SAS_PUT() Function in the Teradata
EDW” on page 827.

Deployed Components for In–Database Processing
Components that are deployed to Teradata for in–database processing are contained

in either an RPM file (Linux) or a PKG file (MP–RAS) in the SAS Software Depot.
The component that is deployed is the SAS 9.2 Formats Library for Teradata. The

SAS 9.2 Formats Library for Teradata contains many of the formats that are available
in Base SAS. After you install the SAS 9.2 Formats Library and run the
%INDTD_PUBLISH_FORMATS macro, the SAS_PUT() function can call these formats.

Note: The SAS Scoring Accelerator for Teradata also uses these libraries. For more
information about this product, see the SAS Scoring Accelerator for Teradata: User’s
Guide. �

For more information about creating the SAS Software Depot, see the instructions in
your Software Order e-mail. For more information about installing and configuring
these components, see the SAS In-Database Products: Administrator’s Guide.

User-Defined Formats in the Teradata EDW
You can use PROC FORMAT to create user-defined formats and store them in a

format catalog. You can then use the %INDTD_PUBLISH_FORMATS macro to export
the user-defined format definitions to the Teradata EDW where the SAS_PUT()
function can reference them.

If you use the FMTCAT= option to specify a format catalog in the
%INDTD_PUBLISH_FORMATS macro, these restrictions and limitations apply:

� Trailing blanks in PROC FORMAT labels are lost when publishing a picture
format.

� Avoid using PICTURE formats with the MULTILABEL option. You cannot
successfully create a CNTLOUT= data set when PICTURE formats are present.
This a known issue with PROC FORMAT.

� If you are using a character set encoding other than Latin1, picture formats are
not supported. The picture format supports only Latin1 characters.

� If you use the MULTILABEL option, only the first label that is found is returned.
For more information, see the PROC FORMAT MULTILABEL option in the Base
SAS Procedures Guide.

� The %INDTD_PUBLISH_FORMATS macro rejects a format unless the
LANGUAGE= option is set to English or is not specified.

� Although the format catalog can contain informats, the
%INDTD_PUBLISH_FORMATS macro ignores the informats.

� User-defined formats that include a format that SAS supplies are not supported.

Data Types and the SAS_PUT() Function
The SAS_PUT() function supports direct use of the Teradata data types shown in

Table 28.3 on page 820. In some cases, the Teradata database performs an implicit
conversion of the input data to the match the input data type that is defined for the
SAS_PUT() function. For example, all compatible numeric data types are implicitly
converted to FLOAT before they are processed by the SAS_PUT() function.

820 Data Types and the SAS_PUT() Function � Chapter 28

Table 28.3 Teradata Data Types Supported by the SAS_PUT() Function

Type of Data Data Type

Numeric BYTEINT

SMALLINT

INTEGER

BIGINT1

DECIMAL (ANSI NUMERIC)1

FLOAT (ANSI REAL or DOUBLE PRECISION)

Date and time DATE

TIME

TIMESTAMP

Character2, 3 CHARACTER4

VARCHAR

LONG VARCHAR

1 Numeric precision might be lost when inputs are implicitly converted to FLOAT before they are
processed by the SAS_PUT() function.

2 Only the Latin-1 character set is supported for character data. UNICODE is not supported at
this time.

3 When character inputs are larger than 256 characters, the results depend on the session mode
associated with the Teradata connection.

� In ANSI session mode (the typical SAS default mode) passing a character field larger than
256 results in a string truncation error.

� In Teradata session mode, character inputs larger than 256 characters are silently
truncated to 256 characters before the format is applied. The SAS/STAT procedures that
have been enhanced for in-database processing use the Teradata session mode.

4 The SAS_PUT() function has a VARCHAR data type for its first argument when the value
passed has a data type of CHARACTER. Therefore, columns with a data type of CHARACTER
have their trailing blanks trimmed when converting to a VARCHAR data type.

The SAS_PUT() function does not support direct use of the Teradata data types
shown in Table 28.4 on page 821. In some cases, unsupported data types can be
explicitly converted to a supported type by using SAS or SQL language constructs. For
information about performing explicit data conversions, see “Data Types for Teradata”
on page 838 and your Teradata documentation.

SAS/ACCESS Interface to Teradata � Publishing SAS Formats 821

Table 28.4 Teradata Data Types not Supported by the SAS_PUT() Function

Type of Data Data Type

ANSI date and time INTERVAL

TIME WITH TIME ZONE

TIMESTAMP WITH TIME ZONE

GRAPHIC server character set GRAPHIC

VARGRAPHIC

LONG VARGRAPHIC

Binary and large object CLOB

BYTE

VARBYTE

BLOB

If an incompatible data type is passed to the SAS_PUT() function, various error
messages can appear in the SAS log including these:

� Function SAS_PUT does not exist
� Data truncation
� SQL syntax error near the location of the first argument in the SAS_PUT function

call

Publishing SAS Formats

Overview of the Publishing Process
The SAS publishing macros are used to publish formats and the SAS_PUT() function

in the Teradata EDW.
The %INDTD_PUBLISH_FORMATS macro creates the files that are needed to build

the SAS_PUT() function and publishes these files to the Teradata EDW.
The %INDTD_PUBLISH_FORMATS macro also registers the formats that are

included in the SAS 9.2 Formats Library for Teradata. This makes many formats that
SAS supplies available inside Teradata. For more information about the SAS 9.2
Formats Library for Teradata, see “Deployed Components for In–Database Processing”
on page 819.

In addition to formats that SAS supplies, you can also publish the PROC FORMAT
definitions that are contained in a single SAS format catalog by using the FMTCAT=
option. The process of publishing a PROC FORMAT catalog entry converts the
value-range-sets, for example, 1=’yes’ 2=’no’, into embedded data in Teradata. For more
information on value-range-sets, see PROC FORMAT in the Base SAS Procedures Guide.

Note: If you specify more than one format catalog using the FMTCAT= option, the
last format that you specify is published. �

The %INDTD_PUBLISH_FORMATS macro performs the following tasks:
� creates .h and .c files, which are necessary to build the SAS_PUT() function
� produces a script of Teradata commands that are necessary to register the

SAS_PUT() function in the Teradata EDW
� uses SAS/ACCESS Interface to Teradata to execute the script and publish the files

to the Teradata EDW

822 Publishing SAS Formats � Chapter 28

Running the %INDTD_PUBLISH_FORMATS Macro
Follow these steps to run the %INDTD_PUBLISH_FORMATS macro.
1 Start SAS 9.2 and submit these commands in the Program Editor or Enhanced

Editor:

%indtdpf;
%let indconn = server="myserver" user="myuserid" password="xxxx"

database="mydb";

The %INDTDPF macro is an autocall library that initializes the format
publishing software.

The INDCONN macro variable is used as credentials to connect to Teradata.
You must specify the server, user, password, and database information to access
the machine on which you have installed the Teradata EDW. You must assign the
INDCONN macro variable before the %INDTD_PUBLISH_FORMATS macro is
invoked.

Here is the syntax for the value of the INDCONN macro variable:

SERVER="server" USER="userid" PASSWORD="password"
DATABASE="database"

Note: The INDCONN macro variable is not passed as an argument to the
%INDTD_PUBLISH_FORMATS macro. Consequently, this information can be
concealed in your SAS job. You might want to place it in an autoexec file and set
the permissions on the file so that others cannot access the user ID and
password. �

2 Run the %INDTD_PUBLISH_FORMATS macro. For more information, see
“%INDTD_PUBLISH_FORMATS Macro Syntax” on page 822.

Messages are written to the SAS log that indicate whether the SAS_PUT()
function was successfully created.

Note: USER librefs that are not assigned to WORK might cause unexpected or
unsuccessful behavior. �

%INDTD_PUBLISH_FORMATS Macro Syntax

%INDTD_PUBLISH_FORMATS (
<DATABASE=database–name>
<, FMTCAT=format-catalog-filename>
<, FMTTABLE=format-table-name>
<, ACTION=CREATE | REPLACE | DROP>
<, MODE=PROTECTED | UNPROTECTED>
<, OUTDIR=diagnostic-output-directory>
);

Arguments

DATABASE=database-name
specifies the name of a Teradata database to which the SAS_PUT() function and
the formats are published. This argument lets you publish the SAS_PUT()
function and the formats to a shared database where other users can access them.
Interaction: The database that is specified by the DATABASE= argument takes

precedence over the database that you specify in the INDCONN macro variable.

SAS/ACCESS Interface to Teradata � Publishing SAS Formats 823

For more information, see “Running the %INDTD_PUBLISH_FORMATS
Macro” on page 822.

Tip: It is not necessary that the format definitions and the SAS_PUT() function
reside in the same database as the one that contains the data that you want to
format. You can use the SQLMAPPUTTO= system option to specify where the
format definitions and the SAS_PUT() function are published. For more
information, see “SQLMAPPUTTO= System Option” on page 422.

FMTCAT=format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created with the FORMAT procedure and will be made available in
Teradata.
Default: If you do not specify a value for FMTCAT= and you have created

user-defined formats in your SAS session, the default is WORK.FORMATS. If
you do not specify a value for FMTCAT= and you have not created any
user-defined formats in your SAS session, only the formats that SAS supplies
are available in Teradata.

Interaction: If the format definitions that you want to publish exist in multiple
catalogs, you must copy them into a single catalog for publishing.

Interaction: If you specify more than one format catalog using the FMTCAT
argument, only the last catalog you specify is published.

Interaction: If you do not use the default catalog name (FORMATS) or the
default library (WORK or LIBRARY) when you create user-defined formats, you
must use the FMTSEARCH system option to specify the location of the format
catalog. For more information, see PROC FORMAT in the Base SAS Procedures
Guide.

See Also: “User-Defined Formats in the Teradata EDW” on page 819

FMTTABLE=format–table–name
specifies the name of the Teradata table that contains all formats that the
%INDTD_PUBLISH_FORMATS macro creates and that the SAS_PUT() function
supports. The table contains the columns in Table 28.5 on page 823.

Table 28.5 Format Table Columns

Column Name Description

FMTNAME specifies the name of the format.

SOURCE specifies the origin of the format. SOURCE can contain one of these
values:

SAS supplied by SAS

PROCFMT User-defined with PROC FORMAT

PROTECTED specifies whether the format is protected. PROTECTED can contain
one of these values:

YES Format was created with the MODE= option set
to PROTECTED.

NO Format was created with the MODE= option set
to UNPROTECTED.

Default: If FMTTABLE is not specified, no table is created. You can see only the
SAS_PUT() function. You cannot see the formats that are published by the
macro.

824 Publishing SAS Formats � Chapter 28

Interaction: If ACTION=CREATE or ACTION=DROP is specified, messages are
written to the SAS log that indicate the success or failure of the table creation
or drop.

ACTION=CREATE | REPLACE | DROP
specifies that the macro performs one of these actions:

CREATE
creates a new SAS_PUT() function.

REPLACE
overwrites the current SAS_PUT() function, if a SAS_PUT() function is
already registered or creates a new SAS_PUT() function if one is not
registered.

DROP
causes the SAS_PUT() function to be dropped from the Teradata database.
Interaction: If FMTTABLE= is specified, both the SAS_PUT() function and

the format table are dropped. If the table name cannot be found or is
incorrect, only the SAS_PUT() function is dropped.

Default: CREATE.
Tip: If the SAS_PUT() function was defined previously and you specify

ACTION=CREATE, you receive warning messages from Teradata. If the
SAS_PUT() function was defined previously and you specify
ACTION=REPLACE, a message is written to the SAS log indicating that the
SAS_PUT() function has been replaced.

MODE=PROTECTED | UNPROTECTED
specifies whether the running code is isolated in a separate process in the
Teradata database so that a program fault does not cause the database to stop.
Default: PROTECTED
Tip: Once the SAS formats are validated in PROTECTED mode, you can

republish them in UNPROTECTED mode for a performance gain.

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information
about the success or failure of the publishing process.
See: “Special Characters in Directory Names” on page 825

Tips for Using the %INDTD_PUBLISH_FORMATS Macro

� Use the ACTION=CREATE option only the first time that you run the
%INDTD_PUBLISH_FORMATS macro. After that, use ACTION=REPLACE or
ACTION=DROP.

� The %INDTD_PUBLISH_FORMATS macro does not require a format catalog. To
publish only the formats that SAS supplies, you need to have either no format
catalog or an empty format catalog. You can use this code to create an empty
format catalog in your WORK directory before you publish the PUT function and
the formats that SAS supplies:

proc format;
run;

� If you modify any PROC FORMAT entries in the source catalog, you must
republish the entire catalog.

SAS/ACCESS Interface to Teradata � Publishing SAS Formats 825

� If the %INDTD_PUBLISH_FORMATS macro is executed between two procedure
calls, the page number of the last query output is increased by two.

Modes of Operation
There are two modes of operation when executing the

%INDTD_PUBLISH_FORMATS macro: protected and unprotected. You specify the
mode by setting the MODE= argument.

The default mode of operation is protected. Protected mode means that the macro
code is isolated in a separate process in the Teradata database, and an error does not
cause the database to stop. It is recommended that you run the
%INDTD_PUBLISH_FORMATS macro in protected mode during acceptance tests.

When the %INDTD_PUBLISH_FORMATS macro is ready for production, you can
rerun the macro in unprotected mode. Note that you could see a performance
advantage when you republish the formats in unprotected mode

Special Characters in Directory Names
If the directory names that are used in the macros contain any of the following

special characters, you must mask the characters by using the %STR macro quoting
function. For more information, see the %STR function and macro string quoting topic
in SAS Macro Language: Reference.

Table 28.6 Special Characters in Directory Names

Character How to Represent

blank1 %str()

2 %str()

; %str(;)

, (comma) %str(,)

= %str(=)

+ %str(+)

- %str(–)

> %str(>)

< %str(<)

^ %str(^)

| %str(|)

& %str(&)

%str(#)

/ %str(/)

~ %str(~)

% %str(%%)

’ %str(%’)

" %str(%")

(%str(%()

826 Publishing SAS Formats � Chapter 28

Character How to Represent

) %str(%))

%str()

1 Only leading blanks require the %STR function, but you should avoid using leading blanks in
directory names.

2 Asterisks (*) are allowed in UNIX directory names. Asterisks are not allowed in Windows
directory names. In general, avoid using asterisks in directory names.

Here are some examples of directory names with special characters:

Table 28.7 Examples of Special Characters in Directory Names

Directory Code Representation

c:\temp\Sales(part1) c:\temp\Sales%str(%()part1%str(%))

c:\temp\Drug "trial" X c:\temp\Drug %str(%")trial(%str(%") X

c:\temp\Disc’s 50% Y c:\temp\Disc%str(%’)s 50%str(%%) Y

c:\temp\Pay,Emp=Z c:\temp\Pay%str(,)Emp%str(=)Z

Teradata Permissions
Because functions are associated with a database, the functions inherit the access

rights of that database. It could be useful to create a separate shared database for
scoring functions so that access rights can be customized as needed. In addition, to
publish the scoring functions in Teradata, you must have the following permissions:

CREATE FUNCTION

DROP FUNCTION
EXECUTE FUNCTION

ALTER FUNCTION

To obtain permissions, contact your database administrator.

Format Publishing Macro Example

%indtdpf;
%let indconn server="terabase" user="user1" password="open1" database="mydb";
%indtd_publish_formats(fmtcat= fmtlib.fmtcat);

This sequence of macros generates a .c and a .h file for each data type. The format
data types that are supported are numeric (FLOAT, INT), character, date, time, and
timestamp (DATETIME). The %INDTD_PUBLISH_FORMATS macro also produces a
text file of Teradata CREATE FUNCTION commands that are similar to these:

CREATE FUNCTION sas_put
(d float, f varchar(64))
RETURNS varchar(256)
SPECIFIC sas_putn
LANGUAGE C
NO SQL
PARAMETER STYLE SQL
NOT DETERMINISTIC

SAS/ACCESS Interface to Teradata � Using the SAS_PUT() Function in the Teradata EDW 827

CALLED ON NULL INPUT
EXTERNAL NAME
’SL!"jazxfbrs"’
’!CI!ufmt!C:\file-path\’
’!CI!jazz!C:\file-path\’
’!CS!formn!C:\file-path\’;

After it is installed, you can call the SAS_PUT() function in Teradata by using SQL.
For more information, see “Using the SAS_PUT() Function in the Teradata EDW” on
page 827.

Using the SAS_PUT() Function in the Teradata EDW

Implicit Use of the SAS_PUT() Function
After you install the formats that SAS supplies in libraries inside the Teradata EDW

and publish any custom format definitions that you created in SAS, you can access the
SAS_PUT() function with your SQL queries.

If the SQLMAPPUTTO= system option is set to SAS_PUT and you submit your
program from a SAS session, the SAS SQL processor maps PUT function calls to
SAS_PUT() function references that Teradata understands.

This example illustrates how the PUT function is mapped to the SAS_PUT()
function using implicit pass-through.

options sqlmapputto=sas_put;

libname dblib teradata user="sas" password="sas" server="sl96208"
database=sas connection=shared;

/*-- Set SQL debug global options --*/
/*----------------------------------*/
options sastrace=’,,,d’ sastraceloc=saslog;

/*-- Execute SQL using Implicit Passthru --*/
/*---*/
proc sql noerrorstop;

title1 ’Test SAS_PUT using Implicit Passthru ’;
select distinct

PUT(PRICE,Dollar8.2) AS PRICE_C
from dblib.mailorderdemo;

quit;

These lines are written to the SAS log.

libname dblib teradata user="sas" password="sas" server="sl96208"
database=sas connection=shared;

NOTE: Libref DBLIB was successfully assigned, as follows:
Engine: TERADATA
Physical Name: sl96208

/*-- Set SQL debug global options --*/
/*----------------------------------*/
options sastrace=’,,,d’ sastraceloc=saslog;

828 Using the SAS_PUT() Function in the Teradata EDW � Chapter 28

/*-- Execute SQL using Implicit Passthru --*/
/*---*/
proc sql noerrorstop;

title1 ’Test SAS_PUT using Implicit Passthru ’;
select distinct

PUT(PRICE,Dollar8.2) AS PRICE_C
from dblib.mailorderdemo

;

TERADATA_0: Prepared: on connection 0
SELECT * FROM sas."mailorderdemo"

TERADATA_1: Prepared: on connection 0
select distinct cast(sas_put("sas"."mailorderdemo"."PRICE", ’DOLLAR8.2’)
as char(8)) as "PRICE_C" from "sas"."mailorderdemo"

TERADATA: trforc: COMMIT WORK
ACCESS ENGINE: SQL statement was passed to the DBMS for fetching data.

TERADATA_2: Executed: on connection 0
select distinct cast(sas_put("sas"."mailorderdemo"."PRICE", ’DOLLAR8.2’)
as char(8)) as "PRICE_C" from "sas"."mailorderdemo"

TERADATA: trget - rows to fetch: 9
TERADATA: trforc: COMMIT WORK

Test SAS_PUT using Implicit Passthru 9
3:42 Thursday, September 25, 2008

PRICE_C

$8.00
$10.00
$12.00
$13.59
$13.99
$14.00
$27.98
$48.99
$54.00

quit;

Be aware of these items:

� The SQLMAPPUTTO= system option must be set to SAS_PUT to ensure that the
SQL processor maps your PUT functions to the SAS_PUT() function and the
SAS_PUT() reference is passed through to Teradata.

� The SAS SQL processor translates the PUT function in the SQL SELECT
statement into a reference to the SAS_PUT() function.

select distinct cast(sas_put("sas"."mailorderdemo"."PRICE", ’DOLLAR8.2’)
as char(8)) as "PRICE_C" from "sas"."mailorderdemo"

SAS/ACCESS Interface to Teradata � Using the SAS_PUT() Function in the Teradata EDW 829

A large value, VARCHAR(n), is always returned because one function prototype
accesses all formats. Use the CAST expression to reduce the width of the returned
column to be a character width that is reasonable for the format that is being used.

The return text cannot contain a binary zero value (hexadecimal 00) because
the SAS_PUT() function always returns a VARCHAR(n) data type and a Teradata
VARCHAR(n) is defined to be a null-terminated string.

The SELECT DISTINCT clause executes inside Teradata, and the processing is
distributed across all available data nodes. Teradata formats the price values with the
$DOLLAR8.2 format and processes the SELECT DISTINCT clause using the formatted
values.

Explicit Use of the SAS_PUT() Function
If you use explicit pass-through (direct connection to Teradata), you can use the

SAS_PUT() function call in your SQL program.
This example shows the same query from “Implicit Use of the SAS_PUT() Function”

on page 827 and explicitly uses the SAS_PUT() function call.

proc sql noerrorstop;
title1 ’Test SAS_PUT using Explicit Passthru;
connect to teradata (user=sas password=XXX database=sas server=sl96208);

select * from connection to teradata
(select distinct cast(sas_put("PRICE",’DOLLAR8.2’) as char(8)) as

"PRICE_C" from mailorderdemo);

disconnect from teradata;
quit;

The following lines are written to the SAS log.

proc sql noerrorstop;
title1 ’Test SAS_PUT using Explicit Passthru ’;
connect to teradata (user=sas password=XXX database=sas server=sl96208);

select * from connection to teradata
(select distinct cast(sas_put("PRICE",’DOLLAR8.2’) as char(8)) as

"PRICE_C" from mailorderdemo);

Test SAS_PUT using Explicit Passthru 10
13:42 Thursday, September 25, 2008

PRICE_C

$8.00
$10.00
$12.00
$13.59
$13.99
$14.00
$27.98
$48.99
$54.00

disconnect from teradata;
quit;

830 Determining Format Publish Dates � Chapter 28

Note: If you explicitly use the SAS_PUT() function in your code, it is recommended
that you use double quotation marks around a column name to avoid any ambiguity
with the keywords. For example, if you did not use double quotation marks around the
column name, DATE, in this example, all date values would be returned as today’s date.

select distinct
cast(sas_put("price", ’dollar8.2’) as char(8)) as "price_c",
cast(sas_put("date", ’date9.1’) as char(9)) as "date_d",
cast(sas_put("inv", ’best8.’) as char(8)) as "inv_n",
cast(sas_put("name", ’$32.’) as char(32)) as "name_n"

from mailorderdemo;

�

Tips When Using the SAS_PUT() Function
� When SAS parses the PUT function, SAS checks to make sure that the format is a

known format name. SAS looks for the format in the set of formats that are
defined in the scope of the current SAS session. If the format name is not defined
in the context of the current SAS session, the SAS_PUT() function is returned to
the local SAS session for processing.

� To turn off automatic translation of the PUT function to the SAS_PUT() function,
set the SQLMAPPUTTO= system option to NONE.

� The format of the SAS_PUT() function parallels that of the PUT function:

SAS_PUT(source, ’format.’)

� Using both the SQLREDUCEPUT= system option (or the PROC SQL
REDUCEPUT= option) and SQLMAPPUTTO= can result in a significant
performance boost. First, SQLREDUCEPUT= works to reduce as many PUT
functions as possible. Then you can map the remaining PUT functions to
SAS_PUT() functions, by setting SQLMAPPUTTO= SAS_PUT.

� Format widths greater than 256 can cause unexpected or unsuccessful behavior.
� If a variable is associated with a $HEXw. format, SAS/ACCESS creates the DBMS

table, and the PUT function is being mapped to the SAS_PUT()function,
SAS/ACCESS assumes that variable is binary and assigns a data type of BYTE to
that column. The SAS_PUT() function does not support the BYTE data type.
Teradata reports an error that the SAS_PUT() function is not found instead of
reporting that an incorrect data type was passed to the function. To avoid this
error, variables that are processed by the SAS_PUT() function implicitly should
not have the $HEXw. format associated with them. For more information, see
“Data Types and the SAS_PUT() Function” on page 819.

If you use the $HEXw. format in an explicit SAS_PUT() function call, this error
does not occur.

� If you use the $HEXw. format in an explicit SAS_PUT() function call, blanks in
the variable are converted to “20” but trailing blanks, that is blanks that occur
when using a format width greater than the variable width, are trimmed. For
example, the value “A ”(“A” with a single blank) with a $HEX4. format is written
as 4120. The value “A” (“A” with no blanks) with a $HEX4. format is written as
41 with no blanks.

Determining Format Publish Dates
You might need to know when user-defined formats or formats that SAS supplies

were published. SAS supplies two special formats that return a datetime value that
indicates when this occurred.

SAS/ACCESS Interface to Teradata � In-Database Procedures in Teradata 831

� The INTRINSIC-CRDATE format returns a datetime value that indicates when
the SAS 9.2 Formats Library was published.

� The UFMT-CRDATE format returns a datetime value that indicates when the
user-defined formats were published.

Note: You must use the SQL pass-through facility to return the datetime value
associated with the INTRINSIC-CRDATE and UFMT-CRDATE formats, as illustrated
in this example:

proc sql noerrorstop;
connect to &tera (&connopt);

title ’Publish date of SAS Format Library’;
select * from connection to &tera

(
select sas_put(1, ’intrinsic-crdate.’)

as sas_fmts_datetime;
);

title ’Publish date of user-defined formats’;
select * from connection to &tera

(
select sas_put(1, ’ufmt-crdate.’)

as my_formats_datetime;
);

disconnect from teradata;
quit;

�

Using the SAS_PUT() Function with SAS Web Report Studio
By default, SAS Web Report Studio uses a large query cache to improve

performance. When this query cache builds a query, it removes any PUT functions
before sending the query to the database.

In the third maintenance release for SAS 9.2, SAS Web Report Studio can run
queries with PUT functions and map those PUT functions calls to SAS_PUT() function
calls inside the Teradata EDW. To do this, you set the SAS_PUT custom property for a
SAS Information Map that is used as a data source. The SAS_PUT custom property
controls how SAS Web Report Studio uses the query cache and whether the PUT
function calls are processed inside the Teradata EDW as SAS_PUT() function calls.

For more information about the SAS_PUT custom property, see the SAS Intelligence
Platform: Web Application Administration Guide.

In-Database Procedures in Teradata

In the second and third maintenance release for SAS 9.2, the following Base SAS,
SAS Enterprise Miner, SAS/ETS, and SAS/STAT procedures have been enhanced for
in-database processing.

CORR*

CANCORR*

DMDB*

832 Locking in the Teradata Interface � Chapter 28

DMINE*

DMREG*

FACTOR*

FREQ
PRINCOMP*

RANK
REG*

REPORT
SCORE*

SORT
SUMMARY/MEANS
TIMESERIES*

TABULATE
VARCLUS*

*SAS Analytics Accelerator is required to run these procedures inside the database.
For more information, see SAS Analytics Accelerator for Teradata: Guide.

For more information, see Chapter 8, “Overview of In-Database Procedures,” on page
67.

Locking in the Teradata Interface

Overview
The following LIBNAME and data set options let you control how the Teradata

interface handles locking. For general information about an option, see “LIBNAME
Options for Relational Databases” on page 92.

Use SAS/ACCESS locking options only when Teradata standard locking is
undesirable. For tips on using these options, see “Understanding SAS/ACCESS Locking
Options” on page 834 and “When to Use SAS/ACCESS Locking Options” on page 834.
Teradata examples are available.

READ_LOCK_TYPE= TABLE | VIEW

UPDATE_LOCK_TYPE= TABLE | VIEW

READ_MODE_WAIT= YES | NO

UPDATE_MODE_WAIT= YES | NO

READ_ISOLATION_LEVEL= ACCESS | READ | WRITE
Here are the valid values for this option.

SAS/ACCESS Interface to Teradata � Overview 833

Table 28.8 Read Isolation Levels for Teradata

Isolation Level Definition

ACCESS Obtains an ACCESS lock by ignoring other users’ ACCESS,
READ, and WRITE locks. Permits other users to obtain a lock on
the table or view.

Can return inconsistent or unusual results.

READ Obtains a READ lock if no other user holds a WRITE or
EXCLUSIVE lock. Does not prevent other users from reading the
object.

Specify this isolation level whenever possible, it is usually
adequate for most SAS/ACCESS processing.

WRITE Obtains a WRITE lock on the table or view if no other user has a
READ, WRITE, or EXCLUSIVE lock on the resource. You cannot
explicitly release a WRITE lock. It is released only when the table
is closed. Prevents other users from acquiring any lock but
ACCESS.

This is unnecessarily restrictive, because it locks the entire table
until the read operation is finished.

UPDATE_ISOLATION_LEVEL= ACCESS | READ | WRITE
The valid values for this option, ACCESS, READ, and WRITE, are defined in the
following table.

Table 28.9 Update Isolation Levels for Teradata

Isolation Level Definition

ACCESS Obtains an ACCESS lock by ignoring other users’ ACCESS,
READ, and WRITE locks. Avoids a potential deadlock but can
cause data corruption if another user is updating the same data.

READ Obtains a READ lock if no other user holds a WRITE or
EXCLUSIVE lock. Prevents other users from being granted a
WRITE or EXCLUSIVE lock.

Locks the entire table or view, allowing other users to acquire
READ locks. Can lead to deadlock situations.

WRITE Obtains a WRITE lock on the table or view if no other user has a
READ, WRITE, or EXCLUSIVE lock on the resource. You cannot
explicitly release a WRITE lock. It is released only when the table
is closed. Prevents other users from acquiring any lock but
ACCESS.

Prevents all users, except those with ACCESS locks, from
accessing the table. Prevents the possibility of a deadlock, but
limits concurrent use of the table.

These locking options cause the LIBNAME engine to transmit a locking request to
the DBMS; Teradata performs all data-locking. If you correctly specify a set of
SAS/ACCESS read or update locking options, SAS/ACCESS generates locking modifiers
that override the Teradata standard locking.

If you specify an incomplete set of locking options, SAS/ACCESS returns an error
message. If you do not use SAS/ACCESS locking options, Teradata lock defaults are in

834 Understanding SAS/ACCESS Locking Options � Chapter 28

effect. For a complete description of Teradata locking, see the LOCKING statement in
your Teradata SQL reference documentation.

Understanding SAS/ACCESS Locking Options
SAS/ACCESS locking options modify Teradata’s standard locking. Teradata usually

locks at the row level; SAS/ACCESS lock options lock at the table or view level. The
change in the scope of the lock from row to table affects concurrent access to DBMS
objects. Specifically, READ and WRITE table locks increase the time that other users
must wait to access the table and can decrease overall system performance. These
measures help minimize these negative effects.

� Apply READ or WRITE locks only when you must apply special locking on
Teradata tables.

SAS/ACCESS locking options can be appropriate for special situations, as
described in “When to Use SAS/ACCESS Locking Options” on page 834. If
SAS/ACCESS locking options do not meet your specialized needs, you can use
additional Teradata locking features using views. See CREATE VIEW in your
Teradata SQL reference documentation for details.

� Limit the span of the locks by using data set locking options instead of LIBNAME
locking options whenever possible. (LIBNAME options affect all tables that you
open that your libref references. Data set options apply only to the specified table.)

If you specify these read locking options, SAS/ACCESS generates and submits to
Teradata locking modifiers that contain the values that you specify for the three read
lock options:

� READ_ISOLATION_LEVEL= specifies the level of isolation from other table users
that is required during SAS/ACCESS read operations.

� READ_LOCK_TYPE= specifies and changes the scope of the Teradata lock during
SAS/ACCESS read operations.

� READ_MODE_WAIT= specifies during SAS/ACCESS read operations whether
Teradata should wait to acquire a lock or fail your request when the DBMS
resource is locked by a different user.

If you specify these update lock options, SAS/ACCESS generates and submits to
Teradata locking modifiers that contain the values that you specify for the three update
lock options:

� UPDATE_ISOLATION_LEVEL= specifies the level of isolation from other table
users that is required as SAS/ACCESS reads Teradata rows in preparation for
updating the rows.

� UPDATE_LOCK_TYPE= specifies and changes the scope of the Teradata lock
during SAS/ACCESS update operations.

� UPDATE_MODE_WAIT= specifies during SAS/ACCESS update operations
whether Teradata should wait to acquire a lock or fail your request when the
DBMS resource is locked by a different user.

When to Use SAS/ACCESS Locking Options
This section describes situations that might require SAS/ACCESS lock options

instead of the standard locking that Teradata provides.
� Use SAS/ACCESS locking options to reduce the isolation level for a read operation.

When you lock a table using a READ option, you can lock out both yourself and
other users from updating or inserting into the table. Conversely, when other

SAS/ACCESS Interface to Teradata � Examples 835

users update or insert into the table, they can lock you out from reading the table.
In this situation, you want to reduce the isolation level during a read operation. To
do this, you specify these read SAS/ACCESS lock options and values.

� READ_ISOLATION_LEVEL=ACCESS
� READ_LOCK_TYPE=TABLE

� READ_MODE_WAIT=YES

One of these situations can result from the options and settings in this situation:
� Specify ACCESS locking, eliminating a lock out of yourself and other users.

Because ACCESS can return inconsistent results to a table reader, specify
ACCESS only if you are casually browsing data, not if you require precise
data.

� Change the scope of the lock from row-level to the entire table.

� Request that Teradata wait if it attempts to secure your lock and finds the
resource already locked.

� Use SAS/ACCESS lock options to avoid contention.

When you read or update a table, contention can occur: the DBMS is waiting for
other users to release their locks on the table that you want to access. This
contention suspends your SAS/ACCESS session. In this situation, to avoid
contention during a read operation, you specify these SAS/ACCESS read lock
options and values.

� READ_ISOLATION_LEVEL=READ
� READ_LOCK_TYPE=TABLE

� READ_MODE_WAIT=NO

One of these situations can result from the options and settings in this situation.
� Specify a READ lock.

� Change the scope of the lock. Because SAS/ACCESS does not support row locking
when you obtain the lock requested, you lock the entire table until your read
operation finishes.

� Tell SAS/ACCESS to fail the job step if Teradata cannot immediately obtain the
READ lock.

Examples

Setting the Isolation Level to ACCESS for Teradata Tables
/* This generates a quick survey of unusual customer purchases. */

libname cust teradata user=testuser password=testpass
READ_ISOLATION_LEVEL=ACCESS
READ_LOCK_TYPE=TABLE
READ_MODE_WAIT=YES
CONNECTION=UNIQUE;

proc print data=cust.purchases(where= (bill<2));
run;

data local;
set cust.purchases (where= (quantity>1000));
run;

836 Examples � Chapter 28

Here is what SAS/ACCESS does in the above example.
� Connects to the Teradata DBMS and specifies the three SAS/ACCESS

LIBNAME read lock options.
� Opens the PURCHASES table and obtains an ACCESS lock if a different

user does not hold an EXCLUSIVE lock on the table.
� Reads and displays table rows with a value less than 2 in the BILL column.
� Closes the PURCHASES table and releases the ACCESS lock.
� Opens the PURCHASES table again and obtains an ACCESS lock if a

different user does not hold an EXCLUSIVE lock on the table.
� Reads table rows with a value greater than 1000 in the QUANTITY column.
� Closes the PURCHASES table and releases the ACCESS lock.

Setting Isolation Level to WRITE to Update a Teradata Table
/* This updates the critical Rebate row. */

libname cust teradata user=testuser password=testpass;

proc sql;
update cust.purchases(UPDATE_ISOLATION_LEVEL=WRITE

UPDATE_MODE_WAIT=YES
UPDATE_LOCK_TYPE=TABLE)

set rebate=10 where bill>100;
quit;

In this example here is what SAS/ACCESS does:
� Connects to the Teradata DBMS and specifies the three SAS/ACCESS data set

update lock options.
� Opens the PURCHASES table and obtains a WRITE lock if a different user does

not hold a READ, WRITE, or EXCLUSIVE lock on the table.
� Updates table rows with BILL greater than 100 and sets the REBATE column to

10.
� Closes the PURCHASES table and releases the WRITE lock.

Preventing a Hung SAS Session When Reading and Inserting to the Same
Table

/* SAS/ACCESS lock options prevent the session hang */
/* that occurs when reading & inserting into the same table. */

libname tra teradata user=testuser password=testpass connection=unique;

proc sql;
insert into tra.sametable

select * from tra.sametable(read_isolation_level=access
read_mode_wait=yes
read_lock_type=table);

Here is what SAS/ACCESS does in the above example:
� Creates a read connection to fetch the rows selected (SELECT *) from

TRA.SAMETABLE and specifies an ACCESS lock
(READ_ISOLATION_LEVEL=ACCESS). Teradata grants the ACCESS lock.

� Creates an insert connection to Teradata to process the insert operation to
TRA.SAMETABLE. Because the ACCESS lock that is already on the table permits
access to the table, Teradata grants a WRITE lock.

SAS/ACCESS Interface to Teradata � Accessing Teradata Objects That Do Not Meet SAS Naming Conventions 837

� Performs the insert operation without hanging (suspending) your SAS session.

Naming Conventions for Teradata

Teradata Conventions
For general information about this feature, see Chapter 2, “SAS Names and Support

for DBMS Names,” on page 11.
You can use these conventions to name such Teradata objects as include tables,

views, columns, indexes, and macros.
� A name must be from 1 to 30 characters long.
� A name must begin with a letter unless you enclose it in double quotation marks.
� A name can contain letters (A to Z), numbers from 0 to 9, underscore (_), dollar

sign ($), and the number or pound sign (#). A name in double quotation marks can
contain any characters except double quotation marks.

� A name, even when enclosed in double quotation marks, is not case sensitive. For
example, CUSTOMER and Customer are the same.

� A name cannot be a Teradata reserved word.
� The name must be unique between objects, so a view and table in the same

database cannot have an identical name.

SAS Naming Conventions
Use these conventions when naming a SAS object:
� A name must be from 1 to 32 characters long.
� A name must begin with a letter (A to Z) or an underscore (_).
� A name can contain letters (A to Z), numbers from 0 to 9, and an underscore (_).
� Names are not case sensitive. For example, CUSTOMER and Customer are the same.
� A name cannot be enclosed in double quotation marks.
� A name need not be unique between object types.

Naming Objects to Meet Teradata and SAS Conventions
To easily share objects between SAS and the DBMS, create names that meet both

SAS and Teradata naming conventions:
� Start with a letter.
� Include only letters, digits, and underscores.
� Use a length of 1 to 30 characters.

Accessing Teradata Objects That Do Not Meet SAS Naming
Conventions

The following SAS/ACCESS code examples can help you access Teradata objects
(existing Teradata DBMS tables and columns) that have names that do not follow SAS
naming conventions.

838 Data Types for Teradata � Chapter 28

Example 1: Unusual Teradata Table Name
libname unusual teradata user=testuser password=testpass;
proc sql dquote=ansi;

create view myview as
select * from unusual."More names";

proc print data=myview;run;

Example 2: Unusual Teradata Column Names
SAS/ACCESS automatically converts Teradata column names that are not valid for

SAS, mapping such characters to underscores. It also appends numeric suffixes to
identical names to ensure that column names are unique.

create table unusual_names(Name$ char(20), Name# char(20),
"Other strange name" char(20))

In this example SAS/ACCESS converts the spaces found in the Teradata column
name, OTHER STRANGE NAME, to Other_strange_name. After the automatic
conversion, SAS programs can then reference the table as usual.

libname unusual teradata user=testuser password=testpass;
proc print data=unusual.unusual_names; run;

Output 28.3 PROC PRINT Display

Name_ Name_0 Other_strange_name

Data Types for Teradata

Overview
Every column in a table has a name and data type. The data type tells Teradata how

much physical storage to set aside for the column, as well as the form in which to store
the data. This section includes information about Teradata data types, null values, and
data conversions.

SAS/ACCESS 9 does not support these Teradata data types: GRAPHIC,
VARGRAPHIC, and LONG VARGRAPHIC.

Binary String Data
BYTE (n)

specifies a fixed-length column of length n for binary string data. The maximum
for n is 64,000.

VARBYTE (n)
specifies a varying-length column of length n for binary string data. The
maximum for n is 64,000.

SAS/ACCESS Interface to Teradata � Date, Time, and Timestamp Data 839

Character String Data

CHAR (n)
specifies a fixed-length column of length n for character string data. The
maximum for n is 64,000.

VARCHAR (n)
specifies a varying-length column of length n for character string data. The
maximum for n is 64,000. VARCHAR is also known as CHARACTER VARYING.

LONG VARCHAR
specifies a varying-length column, of the maximum length, for character string
data. LONG VARCHAR is equivalent to VARCHAR(32000) or VARCHAR(64000)
depending on which Teradata version your server is running.

Date, Time, and Timestamp Data

The date type in Teradata is similar to the SAS date value. It is stored internally as
a numeric value and displays in a site-defined format. Date type columns might contain
Teradata values that are out of range for SAS, which handles dates from A.D. 1582
through A.D. 20,000. If SAS/ACCESS encounters an unsupported date (for example, a
date earlier than A.D. 1582), it returns an error message and displays the date as a
missing value.

See “Using TIME and TIMESTAMP” on page 814 for examples.
The Teradata date/time types that SAS supports are listed here.

DATE
specifies date values in the default format YYYY-MM-DD. For example, January
25, 1989, is input as 1989-01-25. Values for this type can range from 0001-01-01
through 9999-12-31.

TIME (n)
specifies time values in the format HH:MM:SS.SS. In the time, SS.SS is the
number of seconds ranging from 00 to 59 with the fraction of a second following
the decimal point.

n is a number from 0 to 6 that represents the number of digits (precision) of the
fractional second. For example, TIME(5) is 11:37:58.12345 and TIME(0) is
11:37:58. This type is supported for Teradata Version 2, Release 3 and later.

TIMESTAMP (n)
specifies date/time values in the format YYYY-MM-DD HH:MM:SS.SS. In the
timestamp, SS.SS is the number of seconds ranging from 00 through 59 with the
fraction of a section following the decimal point.

n is a number from 0 to 6 that represents the number of digits (precision) of the
fractional second. For example, TIMESTAMP(5) is 1999-01-01 23:59:59.99999 and
TIMESTAMP(0) is 1999-01-01 23:59:59. This type is supported for Teradata
Version 2, Release 3 and later.

CAUTION:
When processing WHERE statements (using PROC SQL or the DATA step) that

contain literal values for TIME or TIMESTAMP, the SAS engine passes the values to
Teradata exactly as they were entered, without being rounded or truncated. This is
done so that Teradata can handle the rounding or truncation during processing. �

840 Numeric Data � Chapter 28

Numeric Data
When reading Teradata data, SAS/ACCESS converts all Teradata numeric data types

to the SAS internal format, floating-point.

BYTEINT
specifies a single-byte signed binary integer. Values can range from –128 to +127.

DECIMAL(n,m)
specifies a packed-decimal number. n is the total number of digits (precision). m is
the number of digits to the right of the decimal point (scale). The range for
precision is 1 through 18. The range for scale is 0 through n.

If m is omitted, 0 is assigned and n can also be omitted. Omitting both n and m
results in the default DECIMAL(5,0). DECIMAL is also known as NUMERIC.

CAUTION:
Because SAS stores numbers in floating-point format, a Teradata DECIMAL

number with very high precision can lose precision. For example, when
SAS/ACCESS running on a UNIX MP-RAS client reads a Teradata column
specified as DECIMAL (18,18), it maintains only 13 digits of precision. This can
cause problems. A large DECIMAL number can cause the WHERE clause that
SAS/ACCESS generates to perform improperly (fail to select the expected rows).
There are other potential problems. For this reason, use carefully large precision
DECIMAL data types for Teradata columns that SAS/ACCESS accesses. �

FLOAT
specifies a 64-bit Institute of Electrical and Electronics Engineers (IEEE)
floating-point number in sign-and-magnitude form. Values can range from
approximately 2.226 x 10-308 to 1.797 x 10308. FLOAT is also known as REAL or
DOUBLE PRECISION.

When the SAS/ACCESS client internal floating point format is IEEE, Teradata
FLOAT numbers convert precisely to SAS numbers. Exact conversion applies to
SAS/ACCESS Interface to Teradata running under UNIX MP-RAS. However, if
you are running SAS/ACCESS Interface to Teradata under z/OS, there can be
minor precision and magnitude discrepancies.

INTEGER
specifies a large integer. Values can range from −2,147,483,648 through
+2,147,483,647.

SMALLINT
specifies a small integer. Values can range from −32,768 through +32,767.

Teradata Null Values
Teradata has a special value that is called NULL. A Teradata NULL value means an

absence of information and is analogous to a SAS missing value. When SAS/ACCESS
reads a Teradata NULL value, it interprets it as a SAS missing value.

By default, Teradata columns accept NULL values. However, you can define columns
so that they do not contain NULL values. For example, when you create a SALES
table, define the CUSTOMER column as NOT NULL, telling Teradata not to add a row
to the table unless the CUSTOMER column for the row has a value. When creating a
Teradata table with SAS/ACCESS, you can use the DBNULL= data set option to
indicate whether NULL is a valid value for specified columns.

For more information about how SAS handles null values, see “Potential Result Set
Differences When Processing Null Data” on page 31.

SAS/ACCESS Interface to Teradata � LIBNAME Statement Data Conversions 841

To control how SAS missing character values are handled by Teradata, use the
NULLCHAR= and NULLCHARVAL= data set options.

LIBNAME Statement Data Conversions
This table shows the default formats that SAS/ACCESS Interface to Teradata assigns

to SAS variables when using the LIBNAME statement to read from a Teradata table.
SAS/ACCESS does not use Teradata table column attributes when it assigns defaults.

Table 28.10 Default SAS Formats for Teradata

Teradata Data Type Default SAS Format

CHAR(n) $n (n<= 32,767)

CHAR(n) $32767.(n>32,767) 1

VARCHAR(n) $n (n<= 32,767)

VARCHAR(n) $32767.(n> 32,767) 1

LONG VARCHAR(n) $32767. 1

BYTE(n) $HEXn. (n<= 32,767)

BYTE(n)1 $HEX32767.(n> 32,767)

VARBYTE(n) $HEXn. (n<= 32,767)

VARBYTE(n) $HEX32767.(n> 32,767)

INTEGER 11.0

SMALLINT 6.0

BYTEINT 4.0

DECIMAL(n, m)2 (n+2).(m)

FLOAT none

DATE3 DATE9.

TIME(n)4 for n=0, TIME8.

for n>0, TIME9+n.n

TIMESTAMP(n)4 for n=0, DATETIME19.

for n>0, DATETIME20+n.n

TRIM(LEADING FROM c) LEFT(c)

CHARACTER_LENGTH(TRIM(TRAILING
FROM c)

LENGTH(c)

842 Data Returned as SAS Binary Data with Default Format $HEX � Chapter 28

Teradata Data Type Default SAS Format

(v MOD d) MOD(v,d)

TRIMN(c) TRIM(TRAILING FROM c)

1 When reading Teradata data into SAS, DBMS columns that exceed 32,767 bytes are truncated.
The maximum size for a SAS character column is 32,767 bytes.

2 If the DECIMAL number is extremely large, SAS can lose precision. For details, see the topic
“Numeric Data”.

3 See the topic “Date/Time Data” for how SAS/ACCESS handles dates that are outside the valid
SAS date range.

4 TIME and TIMESTAMP are supported for Teradata Version 2, Release 3 and later. The TIME
with TIMEZONE, TIMESTAMP with TIMEZONE, and INTERVAL types are presented as SAS
character strings, and thus are harder to use.

When you create Teradata tables, the default Teradata columns that SAS/ACCESS
creates are based on the type and format of the SAS column. The following table shows
the default Teradata data types that SAS/ACCESS assigns to the SAS formats during
output processing when you use the LIBNAME statement.

Table 28.11 Default Output Teradata Data Types

SAS Data Type SAS Format Teradata Data Type

Character $w.

$CHARw.

$VARYINGw.

CHAR[w]

Character $HEXw. BYTE[w]

Numeric A date format DATE

Numeric TIMEw.d TIME(d)1

Numeric DATETIMEw.d TIMESTAMP(d)1

Numeric w.(w≤2) BYTEINT

Numeric w.(3≤w≤4) SMALLINT

Numeric w.(5≤w≤9) INTEGER

Numeric w.(w≥10) FLOAT

Numeric w.d DECIMAL(w-1,d)

Numeric All other numeric formats FLOAT

1 For Teradata Version 2, Release 2 and earlier, FLOAT is the default Teradata output type for SAS
time and datetime values. To display Teradata columns that contain SAS times and datetimes
properly, you must explicitly assign the appropriate SAS time or datetime display format to the
column.

To override any default output type, use the DBTYPE= data set option.

Data Returned as SAS Binary Data with Default Format $HEX

BYTE

VARBYTE

SAS/ACCESS Interface to Teradata � Data Returned as SAS Binary Data with Default Format $HEX 843

LONGVARBYTE
GRAPHIC
VARGRAPHIC
LONG VARGRAPHIC

844

845

P A R T4

Sample Code

Chapter 29.Accessing DBMS Data with the LIBNAME Statement 847

Chapter 30.Accessing DBMS Data with the SQL Pass-Through
Facility 867

Chapter 31.Sample Data for SAS/ACCESS for Relational Databases 875

846

847

C H A P T E R

29
Accessing DBMS Data with the
LIBNAME Statement

About the LIBNAME Statement Sample Code 847
Creating SAS Data Sets from DBMS Data 848

Overview 848

Using the PRINT Procedure with DBMS Data 848

Combining DBMS Data and SAS Data 849

Reading Data from Multiple DBMS Tables 850
Using the DATA Step UPDATE Statement with DBMS Data 850

Using the SQL Procedure with DBMS Data 851

Overview 851

Querying a DBMS Table 851

Querying Multiple DBMS Tables 854

Updating DBMS Data 856
Creating a DBMS Table 858

Using Other SAS Procedures with DBMS Data 859

Overview 859

Using the MEANS Procedure 859

Using the DATASETS Procedure 860
Using the CONTENTS Procedure 861

Using the RANK Procedure 862

Using the TABULATE Procedure 863

Using the APPEND Procedure 864

Calculating Statistics from DBMS Data 864
Selecting and Combining DBMS Data 865

Joining DBMS and SAS Data 866

About the LIBNAME Statement Sample Code
The examples in this section demonstrate how to use the LIBNAME statement to

associate librefs with DBMS objects, such as tables and views. The LIBNAME
statement is the recommended method for accessing DBMS data from within SAS.

These examples work with all SAS/ACCESS relational interfaces. Follow these steps
to run these examples.

1 Modify and submit the ACCAUTO.SAS file, which creates the appropriate
LIBNAME statements for each database.

2 Submit the ACCDATA.sas program to create the DBMS tables and SAS data sets
that the sample code uses.

3 Submit the ACCRUN.sas program to run the samples.

These programs are available in the SAS Sample Library. If you need assistance
locating the Sample Library, contact your SAS support consultant. See “Descriptions of

848 Creating SAS Data Sets from DBMS Data � Chapter 29

the Sample Data” on page 875 for information about the tables that are used in the
sample code.

Note: Before you rerun an example that updates DBMS data, resubmit the
ACCDATA.sas program to re-create the DBMS tables. �

Creating SAS Data Sets from DBMS Data

Overview
After you associate a SAS/ACCESS libref with your DBMS data, you can use the

libref just as you would use any SAS libref. The following examples illustrate basic uses
of the DATA step with librefs that reference DBMS data.

Using the PRINT Procedure with DBMS Data
In the following example, the interface to DB2 creates the libref MyDbLib and

associates the libref with tables and views that reside on DB2. The DATA= option
specifies a libref that references DB2 data. The PRINT procedure prints a New Jersey
staff phone list from the DB2 table Staff. Information for staff from states other than
New Jersey is not printed. The DB2 table Staff is not modified.

libname mydblib db2 ssid=db2;

proc print data=mydblib.staff
(keep=lname fname state hphone);
where state = ’NJ’;
title ’New Jersey Phone List’;

run;

Output 29.1 Using the PRINT Procedure with DBMS Data

New Jersey Phone List 1

Obs LNAME FNAME STATE HPHONE

1 ALVAREZ CARLOS NJ 201/732-8787
2 BAREFOOT JOSEPH NJ 201/812-5665
3 DACKO JASON NJ 201/732-2323
4 FUJIHARA KYOKO NJ 201/812-0902
5 HENDERSON WILLIAM NJ 201/812-4789
6 JOHNSON JACKSON NJ 201/732-3678
7 LAWRENCE KATHY NJ 201/812-3337
8 MURPHEY JOHN NJ 201/812-4414
9 NEWKIRK SANDRA NJ 201/812-3331
10 NEWKIRK WILLIAM NJ 201/732-6611
11 PETERS RANDALL NJ 201/812-2478
12 RHODES JEREMY NJ 201/812-1837
13 ROUSE JEREMY NJ 201/732-9834
14 VICK THERESA NJ 201/812-2424
15 YANCEY ROBIN NJ 201/812-1874

Accessing DBMS Data with the LIBNAME Statement � Combining DBMS Data and SAS Data 849

Combining DBMS Data and SAS Data
The following example shows how to read DBMS data into SAS and create additional

variables to perform calculations or subsetting operations on the data. The example
creates the SAS data set Work.HighWage from the DB2 table Payroll and adds a new
variable, Category. The Category variable is based on the value of the salary column in
the DB2 table Payroll. The Payroll table is not modified.

libname mydblib db2 ssid=db2;

data highwage;
set mydblib.payroll(drop=sex birth hired);
if salary>60000 then

CATEGORY="High";
else if salary<30000 then

CATEGORY="Low";
else

CATEGORY="Avg";
run;

options obs=20;

proc print data=highwage;
title "Salary Analysis";
format salary dollar10.2;

run;

Output 29.2 Combining DBMS Data and SAS Data

Salary Analysis 1

OBS IDNUM JOBCODE SALARY CATEGORY

1 1919 TA2 $34,376.00 Avg
2 1653 ME2 $35,108.00 Avg
3 1400 ME1 $29,769.00 Low
4 1350 FA3 $32,886.00 Avg
5 1401 TA3 $38,822.00 Avg
6 1499 ME3 $43,025.00 Avg
7 1101 SCP $18,723.00 Low
8 1333 PT2 $88,606.00 High
9 1402 TA2 $32,615.00 Avg
10 1479 TA3 $38,785.00 Avg
11 1403 ME1 $28,072.00 Low
12 1739 PT1 $66,517.00 High
13 1658 SCP $17,943.00 Low
14 1428 PT1 $68,767.00 High
15 1782 ME2 $35,345.00 Avg
16 1244 ME2 $36,925.00 Avg
17 1383 BCK $25,823.00 Low
18 1574 FA2 $28,572.00 Low
19 1789 SCP $18,326.00 Low
20 1404 PT2 $91,376.00 High

850 Reading Data from Multiple DBMS Tables � Chapter 29

Reading Data from Multiple DBMS Tables

You can use the DATA step to read data from multiple data sets. This example
merges data from the two Oracle tables Staff and SuperV in the SAS data set
Work.Combined.

libname mydblib oracle user=testuser password=testpass path=’@alias’;

data combined;
merge mydblib.staff mydblib.superv(in=super
rename=(supid=idnum));

by idnum;
if super;

run;

proc print data=combined;
title "Supervisor Information";

run;

Output 29.3 Reading Data from Multiple DBMS Tables

Supervisor Information 1

Obs IDNUM LNAME FNAME CITY STATE HPHONE JOBCAT

1 1106 MARSHBURN JASPER STAMFORD CT 203/781-1457 PT
2 1118 DENNIS ROGER NEW YORK NY 718/383-1122 PT
3 1126 KIMANI ANNE NEW YORK NY 212/586-1229 TA
4 1352 RIVERS SIMON NEW YORK NY 718/383-3345 NA
5 1385 RAYNOR MILTON BRIDGEPORT CT 203/675-2846 ME
6 1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787 TA
7 1405 DACKO JASON PATERSON NJ 201/732-2323 SC
8 1417 NEWKIRK WILLIAM PATERSON NJ 201/732-6611 NA
9 1420 ROUSE JEREMY PATERSON NJ 201/732-9834 ME
10 1431 YOUNG DEBORAH STAMFORD CT 203/781-2987 FA
11 1433 YANCEY ROBIN PRINCETON NJ 201/812-1874 FA
12 1442 NEWKIRK SANDRA PRINCETON NJ 201/812-3331 PT
13 1564 WALTERS ANNE NEW YORK NY 212/587-3257 SC
14 1639 CARTER-COHEN KAREN STAMFORD CT 203/781-8839 TA
15 1677 KRAMER JACKSON BRIDGEPORT CT 203/675-7432 BC
16 1834 LEBLANC RUSSELL NEW YORK NY 718/384-0040 BC
17 1882 TUCKER ALAN NEW YORK NY 718/384-0216 ME
18 1935 FERNANDEZ KATRINA BRIDGEPORT CT 203/675-2962 NA
19 1983 DEAN SHARON NEW YORK NY 718/384-1647 FA

Using the DATA Step UPDATE Statement with DBMS Data

You can also use the DATA step UPDATE statement to create a SAS data set with
DBMS data. This example creates the SAS data set Work.Payroll with data from the
Oracle tables Payroll and Payroll2. The Oracle tables are not modified.

The columns in the two Oracle tables must match. However, Payroll2 can have
additional columns. Any additional columns in Payroll2 are added to the Payroll data
set. The UPDATE statement requires unique values for IdNum to correctly merge the
data from Payroll2.

Accessing DBMS Data with the LIBNAME Statement � Querying a DBMS Table 851

libname mydblib oracle user=testuser password=testpass;

data payroll;
update mydblib.payroll

mydblib.payroll2;
by idnum;

proc print data=payroll;
format birth datetime9. hired datetime9.;
title ’Updated Payroll Data’;

run;

Output 29.4 Creating a SAS Data Set with DBMS Data by Using the UPDATE Statement

Updated Payroll Data 1

Obs IDNUM SEX JOBCODE SALARY BIRTH HIRED

1 1009 M TA1 28880 02MAR1959 26MAR1992
2 1017 M TA3 40858 28DEC1957 16OCT1981
3 1036 F TA3 42465 19MAY1965 23OCT1984
4 1037 F TA1 28558 10APR1964 13SEP1992
5 1038 F TA1 26533 09NOV1969 23NOV1991
6 1050 M ME2 35167 14JUL1963 24AUG1986
7 1065 M ME3 38090 26JAN1944 07JAN1987
8 1076 M PT1 69742 14OCT1955 03OCT1991
9 1094 M FA1 22268 02APR1970 17APR1991

10 1100 M BCK 25004 01DEC1960 07MAY1988
11 1101 M SCP 18723 06JUN1962 01OCT1990
12 1102 M TA2 34542 01OCT1959 15APR1991
13 1103 F FA1 23738 16FEB1968 23JUL1992
14 1104 M SCP 17946 25APR1963 10JUN1991
15 1105 M ME2 34805 01MAR1962 13AUG1990
16 1106 M PT3 94039 06NOV1957 16AUG1984
17 1107 M PT2 89977 09JUN1954 10FEB1979
18 1111 M NA1 40586 14JUL1973 31OCT1992
19 1112 M TA1 26905 29NOV1964 07DEC1992
20 1113 F FA1 22367 15JAN1968 17OCT1991

Using the SQL Procedure with DBMS Data

Overview
Rather than performing operations on your data in SAS, you can perform operations

on data directly in your DBMS by using the LIBNAME statement and the SQL
procedure. The following examples use the SQL procedure to query, update, and create
DBMS tables.

Querying a DBMS Table
This example uses the SQL procedure to query the Oracle table Payroll. The PROC

SQL query retrieves all job codes and provides a total salary amount for each job code.

libname mydblib oracle user=testuser password=testpass;

852 Querying a DBMS Table � Chapter 29

title ’Total Salary by Jobcode’;

proc sql;
select jobcode label=’Jobcode’,

sum(salary) as total
label=’Total for Group’
format=dollar11.2

from mydblib.payroll
group by jobcode;

quit;

Output 29.5 Querying a DBMS Table

Total Salary by Jobcode

Total for
Jobcode Group

BCK $232,148.00
FA1 $253,433.00
FA2 $447,790.00
FA3 $230,537.00
ME1 $228,002.00
ME2 $498,076.00
ME3 $296,875.00
NA1 $210,161.00
NA2 $157,149.00
PT1 $543,264.00
PT2 $879,252.00
PT3 $21,009.00
SCP $128,162.00
TA1 $249,492.00
TA2 $671,499.00
TA3 $476,155.00

The next example uses the SQL procedure to query flight information from the
Oracle table Delay. The WHERE clause specifies that only flights to London and
Frankfurt are retrieved.

libname mydblib oracle user=testuser password=testpass;

title ’Flights to London and Frankfurt’;

proc sql;
select dates format=datetime9.,
dest from mydblib.delay

where (dest eq "FRA") or
(dest eq "LON")

order by dest;
quit;

Note: By default, the DBMS processes both the WHERE clause and the ORDER BY
clause for optimized performance. See “Overview of Optimizing Your SQL Usage” on
page 41 for more information. �

Accessing DBMS Data with the LIBNAME Statement � Querying a DBMS Table 853

Output 29.6 Querying a DBMS Table with a WHERE clause

Flights to London and Frankfurt

DATES DEST

01MAR1998 FRA
04MAR1998 FRA
07MAR1998 FRA
03MAR1998 FRA
05MAR1998 FRA
02MAR1998 FRA
04MAR1998 LON
07MAR1998 LON
02MAR1998 LON
06MAR1998 LON
05MAR1998 LON
03MAR1998 LON
01MAR1998 LON

The next example uses the SQL procedure to query the DB2 table InterNat for
information about international flights with over 200 passengers. Note that the output
is sorted by using a PROC SQL query and that the TITLE, LABEL, and FORMAT
keywords are not ANSI standard SQL; they are SAS extensions that you can use in
PROC SQL.

libname mydblib db2 ssid=db2;

proc sql;
title ’International Flights by Flight Number’;
title2 ’with Over 200 Passengers’;
select flight label="Flight Number",

dates label="Departure Date"
format datetime9.,

dest label="Destination",
boarded label="Number Boarded"

from mydblib.internat
where boarded > 200
order by flight;

quit;

Output 29.7 Querying a DBMS Table with SAS Extensions

International Flights by Flight Number
with Over 200 Passengers

Flight Departure Number
Number Date Destination Boarded
--
219 04MAR1998 LON 232
219 07MAR1998 LON 241
622 07MAR1998 FRA 210
622 01MAR1998 FRA 207

854 Querying Multiple DBMS Tables � Chapter 29

Querying Multiple DBMS Tables
You can also retrieve data from multiple DBMS tables in a single query by using the

SQL procedure. This example joins the Oracle tables Staff and Payroll to query salary
information for employees who earn more than $40,000.

libname mydblib oracle user=testuser password=testpass;

title ’Employees with salary greater than $40,000’;

options obs=20;

proc sql;
select a.lname, a.fname, b.salary
format=dollar10.2

from mydblib.staff a, mydblib.payroll b
where (a.idnum eq b.idnum) and
(b.salary gt 40000);

quit;

Note: By default, SAS/ACCESS passes the entire join to the DBMS for processing in
order to optimize performance. See “Passing Joins to the DBMS” on page 43 for more
information. �

Output 29.8 Querying Multiple Oracle Tables

Employees with salary greater than $40,000
LNAME FNAME SALARY
--
WELCH DARIUS $40,858.00
VENTER RANDALL $66,558.00
THOMPSON WAYNE $89,977.00
RHODES JEREMY $40,586.00
DENNIS ROGER $111379.00
KIMANI ANNE $40,899.00
O’NEAL BRYAN $40,079.00
RIVERS SIMON $53,798.00
COHEN LEE $91,376.00
GREGORSKI DANIEL $68,096.00
NEWKIRK WILLIAM $52,279.00
ROUSE JEREMY $43,071.00

The next example uses the SQL procedure to join and query the DB2 tables March,
Delay, and Flight. The query retrieves information about delayed international flights
during the month of March.

libname mydblib db2 ssid=db2;

title "Delayed International Flights in March";

proc sql;
select distinct march.flight, march.dates format datetime9.,

delay format=2.0
from mydblib.march, mydblib.delay,

mydblib.internat

Accessing DBMS Data with the LIBNAME Statement � Querying Multiple DBMS Tables 855

where march.flight=delay.flight and
march.dates=delay.dates and
march.flight=internat.flight and
delay>0

order by delay descending;
quit;

Note: By default, SAS/ACCESS passes the entire join to the DBMS for processing in
order to optimize performance. See “Passing Joins to the DBMS” on page 43 for more
information. �

Output 29.9 Querying Multiple DB2 Tables

Delayed International Flights in March

FLIGHT DATES DELAY

622 04MAR1998 30
219 06MAR1998 27
622 07MAR1998 21
219 01MAR1998 18
219 02MAR1998 18
219 07MAR1998 15
132 01MAR1998 14
132 06MAR1998 7
132 03MAR1998 6
271 01MAR1998 5
132 02MAR1998 5
271 04MAR1998 5
271 05MAR1998 5
271 02MAR1998 4
219 03MAR1998 4
271 07MAR1998 4
219 04MAR1998 3
132 05MAR1998 3
219 05MAR1998 3
271 03MAR1998 2

The next example uses the SQL procedure to retrieve the combined results of two
queries to the Oracle tables Payroll and Payroll2. An OUTER UNION in PROC SQL
concatenates the data.

libname mydblib oracle user=testuser password=testpass;

title "Payrolls 1 & 2";

proc sql;
select idnum, sex, jobcode, salary,

birth format datetime9., hired format datetime9.
from mydblib.payroll

outer union corr
select *

from mydblib.payroll2
order by idnum, jobcode, salary;

quit;

856 Updating DBMS Data � Chapter 29

Output 29.10 Querying Multiple DBMS Tables

Payrolls 1 & 2 1

IDNUM SEX JOBCODE SALARY BIRTH HIRED

1009 M TA1 28880 02MAR1959 26MAR1992
1017 M TA3 40858 28DEC1957 16OCT1981
1036 F TA3 39392 19MAY1965 23OCT1984
1036 F TA3 42465 19MAY1965 23OCT1984
1037 F TA1 28558 10APR1964 13SEP1992
1038 F TA1 26533 09NOV1969 23NOV1991
1050 M ME2 35167 14JUL1963 24AUG1986
1065 M ME2 35090 26JAN1944 07JAN1987
1065 M ME3 38090 26JAN1944 07JAN1987
1076 M PT1 66558 14OCT1955 03OCT1991
1076 M PT1 69742 14OCT1955 03OCT1991
1094 M FA1 22268 02APR1970 17APR1991
1100 M BCK 25004 01DEC1960 07MAY1988
1101 M SCP 18723 06JUN1962 01OCT1990
1102 M TA2 34542 01OCT1959 15APR1991
1103 F FA1 23738 16FEB1968 23JUL1992
1104 M SCP 17946 25APR1963 10JUN1991
1105 M ME2 34805 01MAR1962 13AUG1990

Updating DBMS Data
In addition to querying data, you can also update data directly in your DBMS. You

can update rows, columns, and tables by using the SQL procedure. The following
example adds a new row to the DB2 table SuperV.

libname mydblib db2 ssid=db2;

proc sql;
insert into mydblib.superv

values(’1588’,’NY’,’FA’);
quit;

proc print data=mydblib.superv;
title "New Row in AIRLINE.SUPERV";

run;

Note: Depending on how your DBMS processes insert, the new row might not be
added as the last physical row of the table. �

Accessing DBMS Data with the LIBNAME Statement � Updating DBMS Data 857

Output 29.11 Adding to DBMS Data

New Row in AIRLINE.SUPERV 1

OBS SUPID STATE JOBCAT

1 1677 CT BC
2 1834 NY BC
3 1431 CT FA
4 1433 NJ FA
5 1983 NY FA
6 1385 CT ME
7 1420 NJ ME
8 1882 NY ME
9 1935 CT NA
10 1417 NJ NA
11 1352 NY NA
12 1106 CT PT
13 1442 NJ PT
14 1118 NY PT
15 1405 NJ SC
16 1564 NY SC
17 1639 CT TA
18 1401 NJ TA
19 1126 NY TA
20 1588 NY FA

The next example deletes all employees who work in Connecticut from the DB2 table
Staff.

libname mydblib db2 ssid=db2;

proc sql;
delete from mydblib.staff

where state=’CT’;
quit;

options obs=20;

proc print data=mydblib.staff;
title "AIRLINE.STAFF After Deleting Connecticut Employees";

run;

Note: If you omit a WHERE clause when you delete rows from a table, all rows in
the table are deleted. �

858 Creating a DBMS Table � Chapter 29

Output 29.12 Deleting DBMS Data

AIRLINE.STAFF After Deleting Connecticut Employees 1

OBS IDNUM LNAME FNAME CITY STATE HPHONE

1 1400 ALHERTANI ABDULLAH NEW YORK NY 212/586-0808
2 1350 ALVAREZ MERCEDES NEW YORK NY 718/383-1549
3 1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787
4 1499 BAREFOOT JOSEPH PRINCETON NJ 201/812-5665
5 1101 BAUCOM WALTER NEW YORK NY 212/586-8060
6 1402 BLALOCK RALPH NEW YORK NY 718/384-2849
7 1479 BALLETTI MARIE NEW YORK NY 718/384-8816
8 1739 BRANCACCIO JOSEPH NEW YORK NY 212/587-1247
9 1658 BREUHAUS JEREMY NEW YORK NY 212/587-3622
10 1244 BUCCI ANTHONY NEW YORK NY 718/383-3334
11 1383 BURNETTE THOMAS NEW YORK NY 718/384-3569
12 1574 CAHILL MARSHALL NEW YORK NY 718/383-2338
13 1789 CARAWAY DAVIS NEW YORK NY 212/587-9000
14 1404 COHEN LEE NEW YORK NY 718/384-2946
15 1065 COPAS FREDERICO NEW YORK NY 718/384-5618
16 1876 CHIN JACK NEW YORK NY 212/588-5634
17 1129 COUNIHAN BRENDA NEW YORK NY 718/383-2313
18 1988 COOPER ANTHONY NEW YORK NY 212/587-1228
19 1405 DACKO JASON PATERSON NJ 201/732-2323
20 1983 DEAN SHARON NEW YORK NY 718/384-1647

Creating a DBMS Table
You can create new tables in your DBMS by using the SQL procedure. This example

uses the SQL procedure to create the Oracle table GTForty by using data from the
Oracle Staff and Payroll tables.

libname mydblib oracle user=testuser password=testpass;

proc sql;
create table mydblib.gtforty as
select lname as lastname,

fname as firstname,
salary as Salary

format=dollar10.2
from mydblib.staff a,

mydblib.payroll b
where (a.idnum eq b.idnum) and

(salary gt 40000);
quit;

options obs=20;

proc print data=mydblib.gtforty noobs;
title ’Employees with salaries over $40,000’;
format salary dollar10.2;

run;

Accessing DBMS Data with the LIBNAME Statement � Using the MEANS Procedure 859

Output 29.13 Creating a DBMS Table

Employees with salaries over $40,000

LASTNAME FIRSTNAME SALARY

WELCH DARIUS $40,858.00
VENTER RANDALL $66,558.00
MARSHBURN JASPER $89,632.00
THOMPSON WAYNE $89,977.00
RHODES JEREMY $40,586.00
KIMANI ANNE $40,899.00
CASTON FRANKLIN $41,690.00
STEPHENSON ADAM $42,178.00
BANADYGA JUSTIN $88,606.00
O’NEAL BRYAN $40,079.00
RIVERS SIMON $53,798.00
MORGAN ALFRED $42,264.00

Using Other SAS Procedures with DBMS Data

Overview

Examples in this section illustrate basic uses of other SAS procedures with librefs
that refer to DBMS data.

Using the MEANS Procedure

This example uses the PRINT and MEANS procedures on a SAS data set created
from the Oracle table March. The MEANS procedure provides information about the
largest number of passengers on each flight.

libname mydblib oracle user=testuser password=testpass;

title ’Number of Passengers per Flight by Date’;

proc print data=mydblib.march noobs;
var dates boarded;
by flight dest;
sumby flight;
sum boarded;
format dates datetime9.;

run;

title ’Maximum Number of Passengers per Flight’;

proc means data=mydblib.march fw=5 maxdec=1 max;
var boarded;
class flight;

run;

860 Using the DATASETS Procedure � Chapter 29

Output 29.14 Using the PRINT and MEANS Procedures

Number of Passengers per Flight by Date

----------------------------- FLIGHT=132 DEST=YYZ ------------------------------

DATE BOARDED

01MAR1998 115
02MAR1998 106
03MAR1998 75
04MAR1998 117
05MAR1998 157
06MAR1998 150
07MAR1998 164
--------- -------

FLIGHT 884

----------------------------- FLIGHT=219 DEST=LON ------------------------------

DATE BOARDED

01MAR1998 198
02MAR1998 147
03MAR1998 197
04MAR1998 232
05MAR1998 160
06MAR1998 163
07MAR1998 241
--------- -------

FLIGHT 1338

Maximum Number of Passengers per Flight

The MEANS Procedure

Analysis Variable : BOARDED

FLIGHT N Obs Max
132 7 164.0

219 7 241.0

Using the DATASETS Procedure
This example uses the DATASETS procedure to view a list of DBMS tables, in this

case, in an Oracle database.

Note: The MODIFY and ALTER statements in PROC DATASETS are not available
for use with librefs that refer to DBMS data. �

libname mydblib oracle user=testuser password=testpass;

title ’Table Listing’;

proc datasets lib=mydblib;
contents data=_all_ nods;

run;

Accessing DBMS Data with the LIBNAME Statement � Using the CONTENTS Procedure 861

Output 29.15 Using the DATASETS Procedure

Table Listing
The DATASETS Procedure

-----Directory-----

Libref: MYDBLIB
Engine: Oracle
Physical Name:
Schema/User: testuser

Name Memtype

1 BIRTHDAY DATA
2 CUST DATA
3 CUSTOMERS DATA
4 DELAY DATA
5 EMP DATA
6 EMPLOYEES DATA
7 FABORDER DATA
8 INTERNAT DATA
9 INVOICES DATA

10 INVS DATA

Using the CONTENTS Procedure
This example shows output from the CONTENTS procedure when it is run on a

DBMS table. PROC CONTENTS shows all SAS metadata that the SAS/ACCESS
interface derives from the DBMS table.

libname mydblib oracle user=testuser password=testpass;

title ’Contents of the DELAY Table’;

proc contents data=mydblib.delay;
run;

862 Using the RANK Procedure � Chapter 29

Output 29.16 Using the CONTENTS Procedure

Contents of the DELAY Table

The CONTENTS Procedure

Data Set Name: MYDBLIB.DELAY Observations: .
Member Type: DATA Variables: 7
Engine: Oracle Indexes: 0
Created: . Observation Length: 0
Last Modified: . Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

2 DATES Num 8 8 DATETIME20. DATETIME20. DATES
7 DELAY Num 8 64 DELAY
5 DELAYCAT Char 15 32 $15. $15. DELAYCAT
4 DEST Char 3 24 $3. $3. DEST
6 DESTYPE Char 15 48 $15. $15. DESTYPE
1 FLIGHT Char 3 0 $3. $3. FLIGHT
3 ORIG Char 3 16 $3. $3. ORIG

Using the RANK Procedure
This example uses the RANK procedure to rank flights in the DB2 table Delay by

number of minutes delayed.

libname mydblib db2 ssid=db2;

options obs=20;

proc rank data=mydblib.delay descending
ties=low out=ranked;

var delay;
ranks RANKING;

run;

proc print data=ranked;
title ’Ranking of Delayed Flights’;
format delay 2.0

dates datetime9.;
run;

Accessing DBMS Data with the LIBNAME Statement � Using the TABULATE Procedure 863

Output 29.17 Using the RANK Procedure

Ranking of Delayed Flights 1

OBS FLIGHT DATES ORIG DEST DELAYCAT DESTYPE DELAY RANKING

1 114 01MAR1998 LGA LAX 1-10 Minutes Domestic 8 9
2 202 01MAR1998 LGA ORD No Delay Domestic -5 42
3 219 01MAR1998 LGA LON 11+ Minutes International 18 4
4 622 01MAR1998 LGA FRA No Delay International -5 42
5 132 01MAR1998 LGA YYZ 11+ Minutes International 14 8
6 271 01MAR1998 LGA PAR 1-10 Minutes International 5 13
7 302 01MAR1998 LGA WAS No Delay Domestic -2 36
8 114 02MAR1998 LGA LAX No Delay Domestic 0 28
9 202 02MAR1998 LGA ORD 1-10 Minutes Domestic 5 13

10 219 02MAR1998 LGA LON 11+ Minutes International 18 4
11 622 02MAR1998 LGA FRA No Delay International 0 28
12 132 02MAR1998 LGA YYZ 1-10 Minutes International 5 13
13 271 02MAR1998 LGA PAR 1-10 Minutes International 4 19
14 302 02MAR1998 LGA WAS No Delay Domestic 0 28
15 114 03MAR1998 LGA LAX No Delay Domestic -1 32
16 202 03MAR1998 LGA ORD No Delay Domestic -1 32
17 219 03MAR1998 LGA LON 1-10 Minutes International 4 19
18 622 03MAR1998 LGA FRA No Delay International -2 36
19 132 03MAR1998 LGA YYZ 1-10 Minutes International 6 12
20 271 03MAR1998 LGA PAR 1-10 Minutes International 2 25

Using the TABULATE Procedure
This example uses the TABULATE procedure on the Oracle table Payroll to display a

chart of the number of employees for each job code.

libname mydblib oracle user=testuser password=testpass;

title "Number of Employees by Jobcode";

proc tabulate data=mydblib.payroll format=3.0;
class jobcode;
table jobcode*n;
keylabel n="#";

run;

Output 29.18 Using the TABULATE Procedure

Number of Employees by Jobcode 1

JOBCODE
BCK
---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---
#
---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---
9

864 Using the APPEND Procedure � Chapter 29

Using the APPEND Procedure
In this example, the DB2 table Payroll2 is appended to the DB2 table Payroll with

the APPEND procedure. The Payroll table is updated on DB2.

Note: When you append data to a DBMS table, you are actually inserting rows into
a table. The rows can be inserted into the DBMS table in any order. �

libname mydblib db2 ssid=db2;

proc append base=mydblib.payroll
data=mydblib.payroll2;

run;

proc print data=mydblib.payroll;
title ’PAYROLL After Appending PAYROLL2’;
format birth datetime9. hired datetime9.;

run;

Note: In cases where a DBMS table that you are using is in the same database
space as a table that you are creating or updating, use the LIBNAME option
CONNECTION=SHARED to prevent a deadlock. �

Output 29.19 Using the APPEND Procedure

PAYROLL After Appending PAYROLL2 1

OBS IDNUM SEX JOBCODE SALARY BIRTH HIRED

1 1919 M TA2 34376 12SEP1960 04JUN1987
2 1653 F ME2 35108 15OCT1964 09AUG1990
3 1400 M ME1 29769 05NOV1967 16OCT1990
4 1350 F FA3 32886 31AUG1965 29JUL1990
5 1401 M TA3 38822 13DEC1950 17NOV1985
6 1499 M ME3 43025 26APR1954 07JUN1980
7 1101 M SCP 18723 06JUN1962 01OCT1990
8 1333 M PT2 88606 30MAR1961 10FEB1981
9 1402 M TA2 32615 17JAN1963 02DEC1990
10 1479 F TA3 38785 22DEC1968 05OCT1989
11 1403 M ME1 28072 28JAN1969 21DEC1991
12 1739 M PT1 66517 25DEC1964 27JAN1991
13 1658 M SCP 17943 08APR1967 29FEB1992
14 1428 F PT1 68767 04APR1960 16NOV1991
15 1782 M ME2 35345 04DEC1970 22FEB1992
16 1244 M ME2 36925 31AUG1963 17JAN1988
17 1383 M BCK 25823 25JAN1968 20OCT1992
18 1574 M FA2 28572 27APR1960 20DEC1992
19 1789 M SCP 18326 25JAN1957 11APR1978
20 1404 M PT2 91376 24FEB1953 01JAN1980

Calculating Statistics from DBMS Data

This example uses the FREQ procedure to calculate statistics on the DB2 table
Invoices.

Accessing DBMS Data with the LIBNAME Statement � Selecting and Combining DBMS Data 865

libname mydblib db2 ssid=db2;

proc freq data=mydblib.invoices(keep=invnum country);
tables country;
title ’Invoice Frequency by Country’;

run;

The following output shows the one-way frequency table that this example generates.

Output 29.20 Using the FREQ Procedure

Invoice Frequency by Country 1
The FREQ Procedure

COUNTRY

Cumulative Cumulative
COUNTRY Frequency Percent Frequency Percent

Argentina 2 11.76 2 11.76
Australia 1 5.88 3 17.65
Brazil 4 23.53 7 41.18
USA 10 58.82 17 100.00

Selecting and Combining DBMS Data
This example uses a WHERE statement in a DATA step to create a list that includes

only unpaid bills over $300,000.

libname mydblib oracle user=testuser password=testpass;

proc sql;
create view allinv as

select paidon, billedon, invnum, amtinus, billedto
from mydblib.invoices

quit;

data notpaid (keep=invnum billedto amtinus billedon);
set allinv;

where paidon is missing and amtinus>=300000.00;
run;

proc print data=notpaid label;
format amtinus dollar20.2 billedon datetime9.;
label amtinus=amountinus billedon=billedon

invnum=invoicenum billedto=billedto;
title ’High Bills--Not Paid’;

run;

866 Joining DBMS and SAS Data � Chapter 29

Output 29.21 Using the WHERE Statement

High Bills--Not Paid 1

Obs billedon invoicenum amountinus billedto

1 05OCT1998 11271 $11,063,836.00 18543489
2 10OCT1998 11286 $11,063,836.00 43459747
3 02NOV1998 12051 $2,256,870.00 39045213
4 17NOV1998 12102 $11,063,836.00 18543489
5 27DEC1998 12471 $2,256,870.00 39045213
6 24DEC1998 12476 $2,256,870.00 38763919

Joining DBMS and SAS Data
This example shows how to combine SAS and DBMS data using the SAS/ACCESS

LIBNAME statement. The example creates an SQL view, Work.Emp_Csr, from the DB2
table Employees and joins the view with a SAS data set, TempEmps, to select only
interns who are family members of existing employees.

libname mydblib db2 ssid=db2;

title ’Interns Who Are Family Members of Employees’;

proc sql;
create view emp_csr as
select * from mydblib.employees
where dept in (’CSR010’, ’CSR011’, ’CSR004’);

select tempemps.lastname, tempemps.firstnam,
tempemps.empid, tempemps.familyid,
tempemps.gender, tempemps.dept,
tempemps.hiredate

from emp_csr, samples.tempemps
where emp_csr.empid=tempemps.familyid;

quit;

Output 29.22 Combining an SQL View with a SAS Data Set

Interns Who Are Family Members of Employees 1

lastname firstnam empid familyid gender dept hiredate

SMITH ROBERT 765112 234967 M CSR010 04MAY1998
NISHIMATSU-LYNCH RICHARD 765111 677890 M CSR011 04MAY1998

867

C H A P T E R

30
Accessing DBMS Data with the
SQL Pass-Through Facility

About the SQL Pass-Through Facility Sample Code 867
Retrieving DBMS Data with a Pass-Through Query 867

Combining an SQL View with a SAS Data Set 870

Using a Pass-Through Query in a Subquery 871

About the SQL Pass-Through Facility Sample Code
The examples in this section demonstrate how to use the SQL pass-through facility

to access and update DBMS data. You can use the SQL pass-through facility to read
and write data between SAS and a DBMS. However, it is recommended that you use
the LIBNAME statement to access your DBMS data more easily and directly.

To run these examples, follow these steps:
1 Modify and submit the ACCAUTO.SAS file, which creates the appropriate

LIBNAME statements for each database.
2 Submit the ACCDATA.sas program to create the DBMS tables and SAS data sets

that the sample code uses.
3 Submit the ACCRUN.sas program to run the samples.

These programs are available in the SAS Sample Library. If you need assistance
locating the Sample Library, contact your SAS support consultant. See “Descriptions of
the Sample Data” on page 875 for information about the tables that are used in the
sample code.

Note: Before you rerun an example that updates DBMS data, resubmit the
ACCDATA.sas program to re-create the DBMS tables. �

Retrieving DBMS Data with a Pass-Through Query
This section describes how to retrieve DBMS data by using the statements and

components of the SQL pass-through facility. The following example, creates a brief
listing of the companies who have received invoices, the amount of the invoices, and the
dates on which the invoices were sent. This example accesses Oracle data.

First, the code specifies a PROC SQL CONNECT statement to connect to a particular
Oracle database that resides on a remote server. It refers to the database with the alias
MyDb. Then it lists the columns to select from the Oracle tables in the PROC SQL
SELECT clause.

Note: If desired, you can use a column list that follows the table alias, such as as
t1(invnum,billedon,amtinus,name) to rename the columns. This is not necessary,

868 Retrieving DBMS Data with a Pass-Through Query � Chapter 30

however. If you rename the columns by using a column list, you must specify them in
the same order in which they appear in the SELECT statement in the Pass-Through
query, so that the columns map one-to-one. When you use the new names in the first
SELECT statement, you can specify the names in any order. Add the NOLABEL option
to the query to display the renamed columns. �

The PROC SQL SELECT statement uses a CONNECTION TO component in the
FROM clause to retrieve data from the Oracle table. The Pass-Through query (in
italics) is enclosed in parentheses and uses Oracle column names. This query joins data
from the Invoices and Customers tables by using the BilledTo column, which references
the primary key column Customers.Customer. In this Pass-Through query, Oracle can
take advantage of its keyed columns to join the data in the most efficient way. Oracle
then returns the processed data to SAS.

Note: The order in which processing occurs is not the same as the order of the
statements in the example. The first SELECT statement (the PROC SQL query)
displays and formats the data that is processed and returned to SAS by the second
SELECT statement (the Pass-Through query). �

options linesize=120;

proc sql;
connect to oracle as mydb (user=testuser password=testpass);
%put &sqlxmsg;

title ’Brief Data for All Invoices’;
select invnum, name, billedon format=datetime9.,

amtinus format=dollar20.2
from connection to mydb
(select invnum, billedon, amtinus, name

from invoices, customers
where invoices.billedto=customers.customer
order by billedon, invnum);

%put &sqlxmsg;

disconnect from mydb;
quit;

The SAS %PUT statement writes the contents of the &SQLXMSG macro variable to
the SAS log so that you can check it for error codes and descriptive information from
the SQL pass-through facility. The DISCONNECT statement terminates the Oracle
connection and the QUIT statement ends the SQL procedure.

The following output shows the results of the Pass-Through query.

Accessing DBMS Data with the SQL Pass-Through Facility � Retrieving DBMS Data with a Pass-Through Query 869

Output 30.1 Data Retrieved by a Pass-Through Query

Brief Data for All Invoices

INVOICENUM NAME BILLEDON AMTINUS

11270 LABORATORIO DE PESQUISAS VETERINARIAS DESIDERIO FINAMOR 05OCT1998 $2,256,870.00

11271 LONE STAR STATE RESEARCH SUPPLIERS 05OCT1998 $11,063,836.00

11273 TWENTY-FIRST CENTURY MATERIALS 06OCT1998 $252,148.50

11276 SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS 06OCT1998 $1,934,460.00

11278 UNIVERSITY BIOMEDICAL MATERIALS 06OCT1998 $1,400,825.00

11280 LABORATORIO DE PESQUISAS VETERINARIAS DESIDERIO FINAMOR 07OCT1998 $2,256,870.00

11282 TWENTY-FIRST CENTURY MATERIALS 07OCT1998 $252,148.50

11285 INSTITUTO DE BIOLOGIA Y MEDICINA NUCLEAR 10OCT1998 $2,256,870.00

11286 RESEARCH OUTFITTERS 10OCT1998 $11,063,836.00

11287 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS 11OCT1998 $252,148.50

12051 LABORATORIO DE PESQUISAS VETERINARIAS DESIDERIO FINAMOR 02NOV1998 $2,256,870.00

12102 LONE STAR STATE RESEARCH SUPPLIERS 17NOV1998 $11,063,836.00

12263 TWENTY-FIRST CENTURY MATERIALS 05DEC1998 $252,148.50

12468 UNIVERSITY BIOMEDICAL MATERIALS 24DEC1998 $1,400,825.00

12476 INSTITUTO DE BIOLOGIA Y MEDICINA NUCLEAR 24DEC1998 $2,256,870.00

12478 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS 24DEC1998 $252,148.50

12471 LABORATORIO DE PESQUISAS VETERINARIAS DESIDERIO FINAMOR 27DEC1998 $2,256,870.00

The following example changes the Pass-Through query into an SQL view. It adds a
CREATE VIEW statement to the query, removes the ORDER BY clause from the
CONNECTION TO component, and adds the ORDER BY clause to a separate SELECT
statement that prints only the new SQL view. *

libname samples ’your-SAS-data-library’;

proc sql;
connect to oracle as mydb (user=testuser password=testpass);
%put &sqlxmsg;

create view samples.brief as
select invnum, name, billedon format=datetime9.,

amtinus format=dollar20.2
from connection to mydb

(select invnum, billedon, amtinus, name
from invoices, customers
where invoices.billedto=customers.customer);

%put &sqlxmsg;

disconnect from mydb;

options ls=120 label;

title ’Brief Data for All Invoices’;
select * from samples.brief

order by billedon, invnum;

quit;

The output from the Samples.Brief view is the same as shown in Output 30.1.

* If you have data that is usually sorted, it is more efficient to keep the ORDER BY clause in the Pass-Through query and let
the DBMS sort the data.

870 Combining an SQL View with a SAS Data Set � Chapter 30

When an SQL view is created from a Pass-Through query, the query’s DBMS
connection information is stored with the view. Therefore, when you reference the SQL
view in a SAS program, you automatically connect to the correct database, and you
retrieve the most current data in the DBMS tables.

Combining an SQL View with a SAS Data Set
The following example joins SAS data with Oracle data that is retrieved by using a

Pass-Through query in a PROC SQL SELECT statement.
Information about student interns is stored in the SAS data file, Samples.TempEmps.

The Oracle data is joined with this SAS data file to determine whether any of the
student interns have a family member who works in the CSR departments.

To join the data from Samples.TempEmps with the data from the Pass-Through
query, you assign a table alias (Query1) to the query. Doing so enables you to qualify
the query’s column names in the WHERE clause.

options ls=120;

title ’Interns Who Are Family Members of Employees’;

proc sql;
connect to oracle as mydb;
%put &sqlxmsg;

select tempemps.lastname, tempemps.firstnam, tempemps.empid,
tempemps.familyid, tempemps.gender, tempemps.dept,
tempemps.hiredate

from connection to mydb
(select * from employees) as query1, samples.tempemps

where query1.empid=tempemps.familyid;
%put &sqlxmsg;

disconnect from mydb;
quit;

Output 30.2 Combining a PROC SQL View with a SAS Data Set

Interns Who Are Family Members of Employees 1

lastname firstnam empid familyid gender dept hiredate

SMITH ROBERT 765112 234967 M CSR010 04MAY1998
NISHIMATSU-LYNCH RICHARD 765111 677890 M CSR011 04MAY1998

When SAS data is joined to DBMS data through a Pass-Through query, PROC SQL
cannot optimize the query. In this case it is much more efficient to use a SAS/ACCESS
LIBNAME statement. Yet there is another way to increase efficiency: extract the
DBMS data, place the data in a new SAS data file, assign SAS indexes to the
appropriate variables, and join the two SAS data files.

Accessing DBMS Data with the SQL Pass-Through Facility � Using a Pass-Through Query in a Subquery 871

Using a Pass-Through Query in a Subquery

The following example shows how to use a subquery that contains a Pass-Through
query. A subquery is a nested query and is usually part of a WHERE or HAVING
clause. Summary functions cannot appear in a WHERE clause, so using a subquery is
often a good technique. A subquery is contained in parentheses and returns one or
more values to the outer query for further processing.

This example creates an SQL view, Samples.AllEmp, based on Sybase data. Sybase
objects, such as table names and columns, are case sensitive. Database identification
statements and column names are converted to uppercase unless they are enclosed in
quotation marks.

The outer PROC SQL query retrieves data from the SQL view; the subquery uses a
Pass-Through query to retrieve data. This query returns the names of employees who
earn less than the average salary for each department. The macro variable, Dept,
substitutes the department name in the query.

libname mydblib sybase server=server1 database=personnel
user=testuser password=testpass;

libname samples ’your-SAS-data-library’;

/* Create SQL view */
proc sql;

create view samples.allemp as
select * from mydblib.employees;

quit;

/* Use the SQL pass-through facility to retrieve data */
proc sql stimer;

title "Employees Who Earn Below the &dept Average Salary";

connect to sybase(server=server1 database=personnel
user=testuser password=testpass);

%put &sqlxmsg;

%let dept=’ACC%’;

select empid, lastname
from samples.allemp
where dept like &dept and salary <

(select avg(salary) from connection to sybase
(select SALARY from EMPLOYEES

where DEPT like &dept));
%put &sqlxmsg;
disconnect from sybase;
quit;

When a PROC SQL query contains subqueries or inline views, the innermost query is
evaluated first. In this example, data is retrieved from the Employees table and
returned to the subquery for further processing. Notice that the Pass-Through query is
enclosed in parentheses (in italics) and another set of parentheses encloses the entire
subquery.

872 Using a Pass-Through Query in a Subquery � Chapter 30

When a comparison operator such as < or > is used in a WHERE clause, the
subquery must return a single value. In this example, the AVG summary function
returns the average salary of employees in the department, $57,840.86. This value is
inserted in the query, as if the query were written:

where dept like &dept and salary < 57840.86;

Employees who earn less than the department’s average salary are listed in the
following output.

Output 30.3 Output from a Pass-Through Query in a Subquery

Employees Who Earn Below the ’ACC%’ Average Salary

EMPID LASTNAME

123456 VARGAS
135673 HEMESLY
423286 MIFUNE
457232 LOVELL

It might appear to be more direct to omit the Pass-Through query and to instead
access Samples.AllEmp a second time in the subquery, as if the query were written as
follows:

%let dept=’ACC%’;

proc sql stimer;
select empid, lastname

from samples.allemp
where dept like &dept and salary <

(select avg(salary) from samples.allemp
where dept like &dept);

quit;

However, as the SAS log below indicates, the PROC SQL query with the
Pass-Through subquery performs better. (The STIMER option in the PROC SQL
statement provides statistics on the SAS process.)

Accessing DBMS Data with the SQL Pass-Through Facility � Using a Pass-Through Query in a Subquery 873

Output 30.4 SAS Log Comparing the Two PROC SQL Queries

213
214 %let dept=’ACC%’;
215
216 select empid, lastname, firstnam
217 from samples.allemp
218 where dept like &dept and salary <
219 (select avg(salary)
220 from connection to sybase
221 (select SALARY from EMPLOYEES
222 where DEPT like &dept));
NOTE: The SQL Statement used 0:00:00.2 real 0:00:00.20 cpu.
223 %put &sqlxmsg;

224 disconnect from sybase;
NOTE: The SQL Statement used 0:00:00.0 real 0:00:00.0 cpu.
225 quit;
NOTE: The PROCEDURE SQL used 0:00:00.0 real 0:00:00.0 cpu.

226
227 %let dept=’ACC%’;
228
229 proc sql stimer;
NOTE: The SQL Statement used 0:00:00.0 real 0:00:00.0 cpu.
230 select empid, lastname, firstnam
231 from samples.allemp
232 where dept like &dept and salary <
233 (select avg(salary)
234 from samples.allemp
235 where dept like &dept);

NOTE: The SQL Statement used 0:00:06.0 real 0:00:00.20 cpu.

874

875

C H A P T E R

31
Sample Data for SAS/ACCESS for
Relational Databases

Introduction to the Sample Data 875
Descriptions of the Sample Data 875

Introduction to the Sample Data
This section provides information about the DBMS tables that are used in the

LIBNAME statement and Pass-Through Facility sample code chapters. The sample
code uses tables that contain fictitious airline and textile industry data to show how the
SAS/ACCESS interfaces work with data that is stored in relational DBMS tables.

Descriptions of the Sample Data
The following PROC CONTENTS output excerpts describe the DBMS tables and SAS

data sets that are used in the sample code.

Output 31.1 Description of the March DBMS Data

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format Informat

7 boarded Num 8 24
8 capacity Num 8 32
2 dates Num 8 0 DATE9. DATE7.
3 depart Num 8 8 TIME5. TIME5.
5 dest Char 3 46
1 flight Char 3 40
6 miles Num 8 16
4 orig Char 3 43

876 Descriptions of the Sample Data � Chapter 31

Output 31.2 Description of the Delay DBMS Data

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format Informat

2 dates Num 8 0 DATE9. DATE7.
7 delay Num 8 8
5 delaycat Char 15 25
4 dest Char 3 22
6 destype Char 15 40
1 flight Char 3 16
3 orig Char 3 19

Output 31.3 Description of the InterNat DBMS Data

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format Informat

4 boarded Num 8 8
2 dates Num 8 0 DATE9. DATE7.
3 dest Char 3 19
1 flight Char 3 16

Output 31.4 Description of the Schedule DBMS Data

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format Informat

2 dates Num 8 0 DATE9. DATE7.
3 dest Char 3 11
1 flight Char 3 8
4 idnum Char 4 14

Output 31.5 Description of the Payroll DBMS Data

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format Informat

5 birth Num 8 8 DATE9. DATE7.
6 hired Num 8 16 DATE9. DATE7.
1 idnum Char 4 24
3 jobcode Char 3 29
4 salary Num 8 0
2 sex Char 1 28

Output 31.6 Description of the Payroll2 DBMS Data

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format Informat

5 birth Num 8 8 DATE9. DATE7.
6 hired Num 8 16 DATE9. DATE7.
1 idnum Char 4 24
3 jobcode Char 3 29
4 salary Num 8 0
2 sex Char 1 28

Sample Data for SAS/ACCESS for Relational Databases � Descriptions of the Sample Data 877

Output 31.7 Description of the Staff DBMS Data

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos

4 city Char 15 34
3 fname Char 15 19
6 hphone Char 12 51
1 idnum Char 4 0
2 lname Char 15 4
5 state Char 2 49

Output 31.8 Description of the Superv DBMSData

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Label

3 jobcat Char 2 6 Job Category
2 state Char 2 4
1 supid Char 4 0 Supervisor Id

Output 31.9 Description of the Invoices DBMSData

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format

3 AMTBILL Num 8 8
5 AMTINUS Num 8 16
6 BILLEDBY Num 8 24
7 BILLEDON Num 8 32 DATE9.
2 BILLEDTO Char 8 48
4 COUNTRY Char 20 56
1 INVNUM Num 8 0
8 PAIDON Num 8 40 DATE9.

Output 31.10 Description of the Employees DBMS Data

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format

7 BIRTHDTE Num 8 32 DATE9.
4 DEPT Char 6 40
1 EMPID Num 8 0
9 FRSTNAME Char 15 65
6 GENDER Char 1 46
2 HIREDATE Num 8 8 DATE9.
5 JOBCODE Num 8 24
8 LASTNAME Char 18 47

10 MIDNAME Char 15 80
11 PHONE Char 4 95
3 SALARY Num 8 16

878 Descriptions of the Sample Data � Chapter 31

Output 31.11 Description of the Customers DBMS Data

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format

8 ADDRESS Char 40 145
9 CITY Char 25 185
7 CONTACT Char 30 115
4 COUNTRY Char 20 23
1 CUSTOMER Char 8 8
10 FIRSTORD Num 8 0 DATE9.
6 NAME Char 60 55
5 PHONE Char 12 43
2 STATE Char 2 16
3 ZIPCODE Char 5 18

Output 31.12 Description of the Faborder DBMS Data

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format

6 DATEORD Num 8 32 DATE9.
4 FABCHARG Num 8 24
3 LENGTH Num 8 16
1 ORDERNUM Num 8 0
9 PROCSBY Num 8 56
7 SHIPPED Num 8 40 DATE9.
5 SHIPTO Char 8 64
10 SPECFLAG Char 1 72
2 STOCKNUM Num 8 8
8 TAKENBY Num 8 48

Output 31.13 Description of the TempEmps SAS Data Set

-----Alphabetic List of Variables and Attributes-----
Variable Type Len Pos Format Informat

3 dept Char 6 24
1 empid Num 8 0
8 familyid Num 8 16
6 firstnam Char 15 49
4 gender Char 1 30
2 hiredate Num 8 8 DATE9. DATE.
5 lastname Char 18 31
7 middlena Char 15 64

879

P A R T5

Converting SAS/ACCESS Descriptors to PROC
SQL Views

Chapter 32.The CV2VIEW Procedure 881

880

881

C H A P T E R

32
The CV2VIEW Procedure

Overview of the CV2VIEW Procedure 881
Syntax: PROC CV2VIEW 882

PROC CV2VIEW Statement 882

FROM_VIEW= Statement 882

FROM_LIBREF= Statement 883

REPLACE= Statement 883
SAVEAS= Statement 884

SUBMIT Statement 884

TO_VIEW= Statement 885

TO_LIBREF= Statement 885

TYPE= Statement 886

Examples: CV2VIEW Procedure 886
Example 1: Converting an Individual View Descriptor 886

Example 2: Converting a Library of View Descriptors for a Single DBMS 888

Example 3: Converting a Library of View Descriptors for All Supported DBMSs 889

Overview of the CV2VIEW Procedure
The CV2VIEW procedure converts SAS/ACCESS view descriptors into SQL views.

You should consider converting your descriptors for these reasons:
� Descriptors are no longer the recommended method for accessing relational

database data. By converting to SQL views, you can use the LIBNAME statement,
which is the preferred method. The LIBNAME statement provides greater control
over DBMS operations such as locking, spooling, and data type conversions. The
LIBNAME statement can also handle long field names, whereas descriptors cannot.

� SQL views are platform-independent. SAS/ACCESS descriptors are not.

The CV2VIEW procedure in SAS 9.1 can convert both of these descriptors:
� 64-bit SAS/ACCESS view descriptors that were created in either 64-bit SAS 8 or

64-bit SAS 9.1
� 32-bit SAS/ACCESS view descriptors that were created in 32-bit SAS 6 and SAS 8

If the descriptor that you want to convert is READ-, WRITE-, or ALTER-protected,
then those values are applied to the output SQL view. For security reasons, these
values do not appear if you save the generated SQL to a file. The PASSWORD part of
the LIBNAME statement is also not visible to prevent generated SQL statements from
being submitted manually without modification.

882 Syntax: PROC CV2VIEW � Chapter 32

Syntax: PROC CV2VIEW

Here is the syntax for the CV2VIEW procedure:

PROC CV2VIEW DBMS= dbms-name | ALL;

FROM_VIEW= libref.input-descriptor;

FROM_LIBREF= input-library;

TO_VIEW= libref.output-view;

TO_LIBREF= output-library;

TYPE= SQL | VIEW | ACCESS;

SAVEAS= external-filename;

SUBMIT;

REPLACE= ALL | VIEW | FILE;

PROC CV2VIEW Statement

PROC CV2VIEW DBMS= dbms-name | ALL;

Arguments

dbms-name
specifies the name of a supported database from which you want to obtain
descriptors. Valid values for dbms-name are DB2, Oracle, and Sybase.

ALL
specifies that you want the descriptors from all supported databases.

FROM_VIEW= Statement

Specifies the name of the view descriptor or access descriptor that you want to convert

Restriction: If you specify DBMS=ALL, then you cannot use the FROM_VIEW=
statement.

Requirement: You must specify either the FROM_VIEW= statement or the
FROM_LIBREF= statement.

Requirement: The FROM_VIEW= and TO_VIEW= statements are always used together.

FROM_VIEW=libref.input-descriptor;

The CV2VIEW Procedure � REPLACE= Statement 883

Arguments

libref
specifies the libref that contains the view descriptor or access descriptor that you
want to convert.

input-descriptor
specifies the view descriptor or access descriptor that you want to convert.

FROM_LIBREF= Statement

Specifies the library that contains the view descriptors or access descriptors that you want to
convert

Requirement: You must specify either the FROM_VIEW= statement or the
FROM_LIBREF= statement.

Requirement: The FROM_LIBREF= and TO_LIBREF= statements are always used
together.

FROM_LIBREF= input-library;

Argument

input-library
specifies a previously assigned library that contains the view descriptors or access
descriptors that you want to convert. All descriptors that are in the specified library
and that access data in the specified DBMS are converted into SQL views. If you
specify DBMS=ALL, then all descriptors that are in the specified library and that
access any supported DBMS are converted.

REPLACE= Statement

Specifies whether existing views and files are replaced

REPLACE= ALL | FILE | VIEW ;

Arguments

ALL
replaces the TO_VIEW= file if it already exists and replaces the SAVEAS= file if it
already exists.

884 SAVEAS= Statement � Chapter 32

FILE
replaces the SAVEAS= file if it already exists. If the file already exists, and if
REPLACE=FILE or REPLACE=ALL is not specified, the generated PROC SQL code
is appended to the file.

VIEW
replaces the TO_VIEW= file if it already exists.

SAVEAS= Statement

Saves the generated PROC SQL statements to a file

Interaction: If you specify the SAVEAS= statement, the generated SQL is not
automatically submitted, so you must use the SUBMIT statement.

SAVEAS=external-filename;

Argument

external-filename
lets you save the PROC SQL statements that are generated by PROC CV2VIEW to
an external file. You can modify this file and submit it on another platform.

Details

PROC CV2VIEW inserts comments in the generated SQL to replace any statements
that contain passwords. For example, if a view descriptor is READ-, WRITE-, or
ALTER-protected, the output view has the same level of security. However, the file that
contains the SQL statements does not show password values. The password in the
LIBNAME statement also does not show password values.

SUBMIT Statement

Causes PROC CV2VIEW to submit the generated PROC SQL statements when you specify the
SAVEAS= statement

Tip: If you do not use the SAVEAS= statement, PROC CV2VIEW automatically submits
the generated SQL, so you do not need to specify the SUBMIT statement.

SUBMIT;

The CV2VIEW Procedure � TO_LIBREF= Statement 885

TO_VIEW= Statement
Specifies the name of the new (converted) SQL view

Restriction: If you specify DBMS=ALL, then you cannot use the TO_VIEW= statement.
Requirement: You must specify either the TO_VIEW= statement or the TO_LIBREF=
statement.
Requirement: The FROM_VIEW= and TO_VIEW= statements are always used together.
Interaction: Use the REPLACE= statement to control whether the output file is
overwritten or appended if it already exists.

TO_VIEW=libref.output-view;

Arguments

libref
specifies the libref where you want to store the new SQL view.

output-view
specifies the name for the new SQL view that you want to create.

TO_LIBREF= Statement
Specifies the library that contains the new (converted) SQL views

Requirement: You must specify either the TO_VIEW= statement or the TO_LIBREF=
statement.
Requirement: The FROM_LIBREF= and TO_LIBREF= statements are always used
together.
Interaction: Use the REPLACE= statement if a file with the name of one of your output
views already exists. If a file with the name of one of your output views already exists
and you do not specify the REPLACE statement, PROC CV2VIEW does not convert
that view.

TO_LIBREF= output-library;

Argument

output-library
specifies the name of a previously assigned library where you want to store the new
SQL views.

Details
The names of the input view descriptors or access descriptors are used as the output

view names. In order to individually name your output views, use the FROM_VIEW=
statement and the TO_VIEW= statement.

886 TYPE= Statement � Chapter 32

TYPE= Statement

Specifies what type of conversion should occur

TYPE= SQL | VIEW | ACCESS;

Arguments

SQL
specifies that PROC CV2VIEW converts descriptors to SQL views. This is the default
behavior.

VIEW
specifies that PROC CV2VIEW converts descriptors to native view descriptor format.
It is most useful in the 32-bit to 64-bit case. It does not convert view descriptors
across different operating systems.

ACCESS
specifies that PROC CV2VIEW converts access descriptors to native access descriptor
format. It is most useful in the 32-bit to 64-bit case. It does not convert access
descriptors across different operating systems.

Details
When TYPE=VIEW or TYPE=ACCESS, then SAVEAS=, SUBMIT, and REPLACE=

or REPLACE_FILE= are not valid options.

Examples: CV2VIEW Procedure

Example 1: Converting an Individual View Descriptor
In this example, PROC CV2VIEW converts the MYVIEW view descriptor to the SQL

view NEWVIEW. When you use ALTER, READ, and WRITE, the MYVIEW view
descriptor is protected again alteration, reading, and writing. The PROC SQL
statements that PROC CV2VIEW generates are submitted and saved to an external file
named SQL.SAS.

libname input ’/username/descriptors/’;
libname output ’/username/sqlviews/’;

proc cv2view dbms=oracle;
from_view = input.myview (alter=apwd);
to_view = output.newview;
saveas = ’/username/vsql/sql.sas’;
submit;

replace file;

The CV2VIEW Procedure � Example 1: Converting an Individual View Descriptor 887

run;

PROC CV2VIEW generates these PROC SQL statements.

/* SOURCE DESCRIPTOR: MYVIEW */
PROC SQL DQUOTE=ANSI;
CREATE VIEW OUTPUT.NEWVIEW
(

/* READ= */
/* WRITE= */
/* ALTER= */
LABEL=EMPLINFO
)
AS SELECT

"EMPLOYEE " AS EMPLOYEE INFORMAT= 5.0 FORMAT= 5.0
LABEL= ’EMPLOYEE ’ ,

"LASTNAME " AS LASTNAME INFORMAT= $10. FORMAT= $10.
LABEL= ’LASTNAME ’ ,

"SEX " AS SEX INFORMAT= $6. FORMAT= $6.
LABEL= ’SEX ’ ,

"STATUS " AS STATUS INFORMAT= $9. FORMAT= $9.
LABEL= ’STATUS ’ ,

"DEPARTMENT" AS DEPARTME INFORMAT= 7.0 FORMAT= 7.0
LABEL= ’DEPARTMENT’ ,

"CITYSTATE " AS CITYSTAT INFORMAT= $15. FORMAT= $15.
LABEL= ’CITYSTATE ’

FROM _CVLIB_."EMPLINFO"
USING LIBNAME _CVLIB_
Oracle

/* PW= */
USER=ordevxx PATH=OracleV8 PRESERVE_TAB_NAMES=YES;
QUIT;

The REPLACE FILE statement causes an existing file named SQL.SAS to be
overwritten. Without this statement, the text would be appended to SQL.SAS if the
user has the appropriate privileges.

The LABEL value of EMPLINFO is the name of the underlying database table that is
referenced by the view descriptor.

If the underlying DBMS is Oracle or DB2, the CV2VIEW procedure adds the
PRESERVE_TAB_NAMES= option to the embedded LIBNAME statement. You can then
use CV2VIEW to access those tables with mixed-case or embedded-blank table names.

Note: This SQL syntax fails if you try to submit it because the PW field of the
LIBNAME statement is replaced with a comment in order to protect the password. The
ALTER, READ, and WRITE protection is commented out for the same reason. You can
add the passwords to the code and then submit the SQL to re-create the view. �

888 Example 2: Converting a Library of View Descriptors for a Single DBMS � Chapter 32

Example 2: Converting a Library of View Descriptors for a Single DBMS

In this example PROC CV2VIEW converts all Oracle view descriptors in the input
library into SQL views. If an error occurs during the conversion of a view descriptor,
the procedure moves to the next view. The PROC SQL statements that PROC
CV2VIEW generates are both submitted and saved to an external file named SQL.SAS.

libname input ’/username/descriptors/’;
libname output ’/username/sqlviews/’;
proc cv2view dbms=oracle;
from_libref = input;
to_libref = output;
saveas = ’/username/vsql/manyview.sas’;
submit;
run;

PROC CV2VIEW generates these PROC SQL statements for one of the views.

/* SOURCE DESCRIPTOR: PPCV2R */
PROC SQL DQUOTE=ANSI;

CREATE VIEW OUTPUT.PPCV2R
(
LABEL=EMPLOYEES
)
AS SELECT

"EMPID " AS EMPID INFORMAT= BEST22. FORMAT= BEST22.
LABEL= ’EMPID ’ ,

"HIREDATE " AS HIREDATE INFORMAT= DATETIME16. FORMAT= DATETIME16.
LABEL= ’HIREDATE ’ ,

"JOBCODE " AS JOBCODE INFORMAT= BEST22. FORMAT= BEST22.
LABEL= ’JOBCODE ’ ,

"SEX " AS SEX INFORMAT= $1. FORMAT= $1.
LABEL= ’SEX ’

FROM _CVLIB_."EMPLOYEES" (
SASDATEFMT = ("HIREDATE"= DATETIME16.))

USING LIBNAME _CVLIB_
Oracle
/* PW= */
USER=ordevxx PATH=OracleV8 PRESERVE_TAB_NAMES=YES;
QUIT;

The SAVEAS= statement causes all generated SQL for all Oracle view descriptors to
be stored in the MANYVIEW.SAS file.

If the underlying DBMS is Oracle or DB2, the CV2VIEW procedure adds the
PRESERVE_TAB_NAMES= option to the embedded LIBNAME statement. You can then
use CV2VIEW to access those tables with mixed-case or embedded-blank table names.

The CV2VIEW Procedure � Example 3: Converting a Library of View Descriptors for All Supported DBMSs 889

Example 3: Converting a Library of View Descriptors for All Supported
DBMSs

In this example PROC CV2VIEW converts all view descriptors that are in the input
library and that access data in any supported DBMS. If an error occurs during the
conversion of a view descriptor, then the procedure moves to the next view. The PROC
SQL statements that are generated by PROC CV2VIEW are automatically submitted
but are not saved to an external file (because the SAVEAS= statement is not used).

libname input ’/username/descriptors/’;
libname output ’/username/sqlviews/’;

proc cv2view dbms=all;
from_libref = input;
to_libref = output;
run;

890

891

P A R T6

Appendixes

Appendix 1.The ACCESS Procedure for Relational Databases 893

Appendix 2.The DBLOAD Procedure for Relational Databases 911

Appendix 3.Recommended Reading 925

892

893

A P P E N D I X

1
The ACCESS Procedure for
Relational Databases

Overview: ACCESS Procedure 893
Accessing DBMS Data 893

About ACCESS Procedure Statements 894

Syntax: ACCESS Procedure 895

PROC ACCESS Statement 896

Database Connection Statements 896
ASSIGN Statement 897

CREATE Statement 897

DROP Statement 899

FORMAT Statement 899

LIST Statement 900

QUIT Statement 901
RENAME Statement 901

RESET Statement 902

SELECT Statement 903

SUBSET Statement 904

TABLE= Statement 905
UNIQUE Statement 905

UPDATE Statement 906

Using Descriptors with the ACCESS Procedure 907

What Are Descriptors? 907

Access Descriptors 907
View Descriptors 908

Accessing Data Sets and Descriptors 909

Examples: ACCESS Procedure 909

Example 1: Update an Access Descriptor 909

Example 2: Create a View Descriptor 910

Overview: ACCESS Procedure

Accessing DBMS Data
The ACCESS procedure is still supported for the database systems and environments

on which it was available in SAS 6. However, it is no longer the recommended method
for accessing relational DBMS data. It is recommended that you access your DBMS
data more directly, using the LIBNAME statement or the SQL pass-through facility.

894 About ACCESS Procedure Statements � Appendix 1

Not all SAS/ACCESS interfaces support this feature. See Chapter 9, “SAS/ACCESS
Features by Host,” on page 75 to determine whether this feature is available in your
environment.

This section provides general reference information for the ACCESS procedure; see
SAS/ACCESS documentation for your DBMS for DBMS-specific details.

The ACCESS procedure, along with the DBLOAD procedure and an interface view
engine, creates an interface between SAS and data in other vendors’ databases. You can
use the ACCESS procedure to create and update descriptors.

About ACCESS Procedure Statements
The ACCESS procedure has several types of statements:
� Database connection statements are used to connect to your DBMS. For details, see

SAS/ACCESS documentation for your DBMS.
� Creating and updating statements are CREATE and UPDATE.
� Table and editing statements include ASSIGN, DROP, FORMAT, LIST, QUIT,

RENAME, RESET, SELECT, SUBSET, TABLE, and UNIQUE.

This table summarizes PROC ACCESS options and statements that are required to
accomplish common tasks.

Table A1.1 Statement Sequence for Accomplishing Tasks with the ACCESS Procedure

Task Statements and Options to Use

Create an access
descriptor

PROC ACCESS statement-options;
CREATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

RUN;

Create an access
descriptor and a view
descriptor

PROC ACCESS statement-options;
CREATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

CREATE libref.member-name.VIEW;
SELECT column-list;

editing-statements;

RUN;

Create a view descriptor
from an existing access
descriptor

PROC ACCESS statement-options, including
ACCDESC=libref.access-descriptor;

CREATE libref.member-name.VIEW;
SELECT column-list;

editing-statements;

RUN;

Update an access
descriptor

PROC ACCESS statement-options;
UPDATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

RUN;

The ACCESS Procedure for Relational Databases � Syntax: ACCESS Procedure 895

Task Statements and Options to Use

Update an access
descriptor and a view
descriptor

PROC ACCESS statement-options;
UPDATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

UPDATE libref.member-name.VIEW;
editing-statements;

RUN;

Update an access
descriptor and create a
view descriptor

PROC ACCESS statement-options;
UPDATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

CREATE libref.member-name.VIEW;
SELECT column-list;

editing-statements;

RUN;

Update a view descriptor
from an existing access
descriptor

PROC ACCESS statement-options, including
ACCDESC=libref.access-descriptor;

UPDATE libref.member-name.VIEW;
editing-statements;

RUN;

Create a SAS data set
from a view descriptor

PROC ACCESS statement-options, including DBMS=dbms-name;
VIEWDESC=libref.member; OUT=libref.member;

RUN;

Syntax: ACCESS Procedure
The general syntax for the ACCESS procedure is presented here. See SAS/ACCESS

documentation for your DBMS for DBMS-specific details.

PROC ACCESS<options>;

database-connection-statements;

CREATE libref.member-name.ACCESS | VIEW <password-option>;

UPDATE libref.member-name.ACCESS | VIEW <password-option>;

TABLE= <’>table-name<’>;

ASSIGN <=>YES | NO | Y | N;

DROP <’>column-identifier-1<’> <…<’>column-identifier-n<’>>;

FORMAT <’>column-identifier-1<’> <=> SAS-format-name-1
<…<’>column-identifier-n<’> <=> SAS-format-name-n>;

LIST <ALL | VIEW |<’>column-identifier<’>>;

QUIT;

896 PROC ACCESS Statement � Appendix 1

RENAME <’>column-identifier-1<’> <=> SAS-variable-name-1
<…<’>column-identifier-n<’> <=> SAS-variable-name-n>;

RESET ALL |<’>column-identifier-1< ’> <…<’>column-identifier-n<’>>;

SELECT ALL |<’>column-identifier-1<’> <…<’>column-identifier-n<’>>;

SUBSET selection-criteria;

UNIQUE <=> YES | NO | Y | N;

RUN;

PROC ACCESS Statement

PROC ACCESS <options>;

Options

ACCDESC=libref.access-descriptor
specifies an access descriptor. ACCDESC= is used with the DBMS= option to create
or update a view descriptor that is based on the specified access descriptor. You can
use a SAS data set option on the ACCDESC= option to specify any passwords that
have been assigned to the access descriptor.

Note: The ODBC interface does not support this option. �

DBMS=database-management-system
specifies which database management system you want to use. This DBMS-specific
option is required. See SAS/ACCESS documentation for your DBMS.

OUT=libref.member-name
specifies the SAS data file to which DBMS data is output.

VIEWDESC=libref.view-descriptor
specifies a view descriptor through which you extract the DBMS data.

Database Connection Statements

Provide DBMS-specific connection information

database-connection-statements;

Database connection statements are used to connect to your DBMS. For the
statements to use with your DBMS, see SAS/ACCESS documentation for your interface.

The ACCESS Procedure for Relational Databases � CREATE Statement 897

ASSIGN Statement

Indicates whether SAS variable names and formats are generated

Applies to: access descriptor
Interaction: FORMAT, RENAME, RESET, UNIQUE
Default: NO

ASSIGN <=>YES | NO | Y | N;

YES
generates unique SAS variable names from the first eight characters of the DBMS
column names. If you specify YES, you cannot specify the RENAME, FORMAT,
RESET, or UNIQUE statements when you create view descriptors that are based on
the access descriptor.

NO
lets you modify SAS variable names and formats when you create an access descriptor
and when you create view descriptors that are based on this access descriptor.

Details
The ASSIGN statement indicates how SAS variable names and formats are assigned:
� SAS automatically generates SAS variable names.
� You can change SAS variable names and formats in the view descriptors that are

created from the access descriptor.

Each time the SAS/ACCESS interface encounters a CREATE statement to create an
access descriptor, the ASSIGN statement is reset to the default NO value.

When you create an access descriptor, use the RENAME statement to change SAS
variable names and the FORMAT statement to change SAS formats.

When you specify YES, SAS generates names according to these rules:
� You can change the SAS variable names only in the access descriptor.
� SAS variable names that are saved in an access descriptor are always used when

view descriptors are created from the access descriptor. You cannot change them
in the view descriptors.

� The ACCESS procedure allows names only up to eight characters.

CREATE Statement

Creates a SAS/ACCESS descriptor file

Applies to: access descriptor or view descriptor

CREATE libref.member-name.ACCESS | VIEW <password-option>;

898 CREATE Statement � Appendix 1

libref.member-name
identifies the libref of the SAS library where you want to store the descriptor and
identifies the descriptor name.

ACCESS
specifies an access descriptor.

VIEW
specifies a view descriptor.

password-option
specifies a password.

Details
The CREATE statement is required. It names the access descriptor or view

descriptor that you are creating. Use a three-level name:

� The first level identifies the libref of the SAS library where you want to store the
descriptor,

� The second level is the descriptor name,

� The third level specifies the type of SAS file (specify ACCESS for an access
descriptor or VIEW for a view descriptor).

See Statement Sequence for Accomplishing Tasks with the ACCESS ProcedureTable
A1.1 on page 894 for the appropriate sequence of statements for creating access and
view descriptors.

Example
The following example creates an access descriptor AdLib.Employ on the Oracle table

Employees, and a view descriptor Vlib.Emp1204 based on AdLib.Employ, in the same
PROC ACCESS step.

proc access dbms=oracle;

/* create access descriptor */

create adlib.employ.access;
database=’qa:[dubois]textile’;
table=employees;
assign=no;
list all;

/* create view descriptor */

create vlib.emp1204.view;
select empid lastname hiredate salary dept
gender birthdate;
format empid 6.

salary dollar12.2
jobcode 5.
hiredate datetime9.
birthdate datetime9.;

subset where jobcode=1204;
run;

The ACCESS Procedure for Relational Databases � FORMAT Statement 899

DROP Statement

Drops a column so that it cannot be selected in a view descriptor

Applies to: access and view descriptors
Interaction: RESET, SELECT

DROP <’>column-identifier-1<’> <…<’>column-identifier-n<’>>;

column-identifier
specifies the column name or the positional equivalent from the LIST statement,
which is the number that represents the column’s place in the access descriptor. For
example, to drop the third and fifth columns, submit this statement:

drop 3 5;

Details
The DROP statement drops the specified column(s) from a descriptor. You can drop a

column when creating or updating an access descriptor; you can also drop a column
when updating a view descriptor. If you drop a column when creating an access
descriptor, you cannot select that column when creating a view descriptor that is based
on the access descriptor. The underlying DBMS table is unaffected by this statement.

To display a column that was previously dropped, specify that column name in the
RESET statement. However, doing so also resets all column attributes—such as the
SAS variable name and format—to their default values.

FORMAT Statement

Changes a SAS format for a DBMS column

Applies to: access descriptor or view descriptor
Interaction: ASSIGN, DROP, RESET

FORMAT <’>column-identifier-1<’> <=>SAS-format-name-1
<…<’>column-identifier-n<’> <=> SAS-format-name-n>;

column-identifier
specifies the column name or the positional equivalent from the LIST statement,
which is the number that represents the column’s place in the access descriptor. If
the column name contains lowercase characters, special characters, or national
characters, enclose the name in quotation marks.

SAS-format-name
specifies the SAS format to be used.

900 LIST Statement � Appendix 1

Details
The FORMAT statement changes SAS variable formats from their default formats.

The default SAS variable format is based on the data type of the DBMS column. See
SAS/ACCESS documentation for your DBMS for information about default formats that
SAS assigns to your DBMS data types.

You can use the FORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value. When you use the FORMAT statement with access descriptors, the FORMAT
statement also reselects columns that were previously dropped with the DROP
statement.

For example, to associate the DATE9. format with the BIRTHDATE column and with
the second column in the access descriptor, submit this statement:

format 2=date9. birthdate=date9.;

The equal sign (=) is optional. For example, you can use the FORMAT statement to
specify new SAS variable formats for four DBMS table columns:

format productid 4.
weight e16.9
fibersize e20.13
width e16.9;

LIST Statement

Lists columns in the descriptor and gives information about them

Applies to: access descriptor or view descriptor

Default: ALL

LIST <ALL | VIEW |<’>column-identifier<’>>;

ALL
lists all DBMS columns in the table, positional equivalents, SAS variable names, and
SAS variable formats that are available for a descriptor.

VIEW
lists all DBMS columns that are selected for a view descriptor, their positional
equivalents, their SAS names and formats, and any subsetting clauses.

column-identifier
lists information about a specified DBMS column, including its name, positional
equivalent, SAS variable name and format, and whether it has been selected. If the
column name contains lowercase characters, special characters, or national
characters, enclose the name in quotation marks.

The column-identifier argument can be either the column name or the positional
equivalent, which is the number that represents the column’s place in the descriptor.
For example, to list information about the fifth column in the descriptor, submit this
statement:

list 5;

The ACCESS Procedure for Relational Databases � RENAME Statement 901

Details
The LIST statement lists columns in the descriptor, along with information about the

columns. The LIST statement can be used only when creating an access descriptor or a
view descriptor. The LIST information is written to your SAS log.

To review the contents of an existing view descriptor, use the CONTENTS procedure.
When you use LIST for an access descriptor, *NON-DISPLAY* appears next to the

column description for any column that has been dropped; *UNSUPPORTED* appears
next to any column whose data type is not supported by your DBMS interface view
engine. When you use LIST for a view descriptor, *SELECTED* appears next to the
column description for columns that you have selected for the view.

Specify LIST last in your PROC ACCESS code in order to see the entire descriptor. If
you create or update multiple descriptors, specify LIST before each CREATE or
UPDATE statement to list information about all descriptors that you are creating or
updating.

QUIT Statement

Terminates the procedure

Applies to: access descriptor or view descriptor

QUIT;

Details
The QUIT statement terminates the ACCESS procedure without any further

descriptor creation. Changes made since the last CREATE, UPDATE, or RUN
statement are not saved; changes are saved only when a new CREATE, UPDATE, or
RUN statement is submitted.

RENAME Statement

Modifies the SAS variable name

Applies to: access descriptor or view descriptor
Interaction: ASSIGN, RESET

RENAME <’>column-identifier-1<’> <=> SAS-variable-name-1
<…<’>column-identifier-n<’> <=> SAS-variable-name-n>;

column-identifier
specifies the DBMS column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the descriptor.

902 RESET Statement � Appendix 1

If the column name contains lowercase characters, special characters, or national
characters, enclose the name in quotation marks. The equal sign (=) is optional.

SAS-variable-name
specifies a SAS variable name.

Details
The RENAME statement sets or modifies the SAS variable name that is associated

with a DBMS column.
Two factors affect the use of the RENAME statement: whether you specify the

ASSIGN statement when you are creating an access descriptor, and the type of
descriptor you are creating.

� If you omit the ASSIGN statement or specify it with a NO value, the renamed SAS
variable names that you specify in the access descriptor are retained when an
ACCESS procedure executes. For example, if you rename the CUSTOMER column
to CUSTNUM when you create an access descriptor, the column is still named
CUSTNUM when you select it in a view descriptor unless you specify another
RESET or RENAME statement.

When you create a view descriptor that is based on this access descriptor, you
can specify the RESET statement or another RENAME statement to rename the
variable. However, the new name applies only in that view. When you create other
view descriptors, the SAS variable names are derived from the access descriptor.

� If you specify the YES value in the ASSIGN statement, you can use the RENAME
statement to change SAS variable names only while creating an access descriptor.
As described earlier in the ASSIGN statement, SAS variable names and formats
that are saved in an access descriptor are always used when creating view
descriptors that are based on the access descriptor.

For example, to rename the SAS variable names that are associated with the seventh
column and the nine-character FIRSTNAME column in a descriptor, submit this
statement:

rename
7 birthdy ’firstname’=fname;

When you are creating a view descriptor, the RENAME statement automatically
selects the renamed column for the view. That is, if you rename the SAS variable
associated with a DBMS column, you do not have to issue a SELECT statement for that
column.

RESET Statement

Resets DBMS columns to their default settings

Applies to: access descriptor or view descriptor

Interaction: ASSIGN, DROP, FORMAT, RENAME, SELECT

RESET ALL |<’>column-identifier-1<’> <…<’>column-identifier-n<’>>;

The ACCESS Procedure for Relational Databases � SELECT Statement 903

ALL
resets all columns in an access descriptor to their default names and formats and
reselects any dropped columns. ALL deselects all columns in a view descriptor so
that no columns are selected for the view.

column-identifier
can be either the DBMS column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the access
descriptor. If the column name contains lowercase characters, special characters, or
national characters, enclose the name in quotation marks. For example, to reset the
SAS variable name and format associated with the third column, submit this
statement:

reset
3;

For access descriptors, the specified column is reset to its default name and format
settings. For view descriptors, the specified column is no longer selected for the view.

Details
The RESET statement resets column attributes to their default values. This

statement has different effects on access and view descriptors.
For access descriptors, the RESET statement resets the specified column names to

the default names that are generated by the ACCESS procedure. The RESET statement
also changes the current SAS variable format to the default SAS format. Any previously
dropped columns that are specified in the RESET statement become available.

When creating an access descriptor, if you omit the ASSIGN statement or set it to NO,
the default SAS variable names are blanks. If you set ASSIGN=YES, default names are
the first eight characters of each DBMS column name.

For view descriptors, the RESET statement clears (deselects) any columns that were
included in the SELECT statement. When you create a view descriptor that is based on
an access descriptor that is created without an ASSIGN statement or with
ASSIGN=NO, resetting and then reselecting (within the same procedure execution) a
SAS variable changes the SAS variable names and formats to their default values.
When you create a view descriptor that is based on an access descriptor created with
ASSIGN=YES, the RESET statement does not have this effect.

SELECT Statement

Selects DBMS columns for the view descriptor

Applies to: view descriptor

Interaction: RESET

SELECT ALL |<’>column-identifier-1<’> <…<’>column-identifier-n <’>>;

ALL
includes in the view descriptor all columns that were defined in the access descriptor
and that were not dropped.

904 SUBSET Statement � Appendix 1

column-identifier
can be either the DBMS column name or the positional equivalent from the LIST
statement. The positional equivalent is the number that represents where the
column is located in the access descriptor on which the view is based. For example,
to select the first three columns, submit this statement:

select 1 2 3;

If the column name contains lowercase characters, special characters, or national
characters, enclose the name in quotation marks.

Details
The SELECT statement is required. The SELECT statement specifies which DBMS

columns in an access descriptor to include in a view descriptor.
SELECT statements are cumulative within a view creation. That is, if you submit

the following SELECT statements, columns 1, 5, and 6 are selected:

select 1;
select 5 6;

To clear your current selections when creating a view descriptor, use the RESET ALL
statement.

SUBSET Statement

Adds or modifies selection criteria for a view descriptor

Applies to: view descriptor

SUBSET selection-criteria;

selection-criteria
one or more DBMS-specific SQL expressions that are accepted by your DBMS, such
as WHERE, ORDER BY, HAVING, and GROUP BY. Use DBMS column names, not
SAS variable names, in your selection criteria.

Details
You can use the SUBSET statement to specify selection criteria when you create a

view descriptor. This statement is optional. If you omit it, the view retrieves all data
(rows) in the DBMS table.

For example, you could submit the following SUBSET statement for a view
descriptor that retrieves rows from a DBMS table:

subset where firstorder is not null;

If you have multiple selection criteria, enter them all in one SUBSET statement, as
shown in this example:

subset where firstorder is not null
and country = ’USA’
order by country;

The ACCESS Procedure for Relational Databases � UNIQUE Statement 905

Unlike other ACCESS procedure statements, the SUBSET statement is case
sensitive. The SQL statement is sent to the DBMS exactly as you type it. Therefore,
you must use the correct case for any DBMS object names. See SAS/ACCESS
documentation for your DBMS for details.

SAS does not check the SUBSET statement for errors. The statement is verified only
when the view descriptor is used in a SAS program.

If you specify more than one SUBSET statement per view descriptor, the last
SUBSET overwrites the earlier SUBSETs. To delete the selection criteria, submit a
SUBSET statement without any arguments.

TABLE= Statement
Identifies the DBMS table on which the access descriptor is based

Applies to: access descriptor

TABLE= <’>table-name<’>;

table-name
a valid DBMS table name. If it contains lowercase characters, special characters, or
national characters, you must enclose it in quotation marks. See SAS/ACCESS
documentation for your DBMS for details about4 the TABLE= statement.

Details
This statement is required with the CREATE statement and optional with the

UPDATE statement.

UNIQUE Statement
Generates SAS variable names based on DBMS column names

Applies to: view descriptor
Interaction: ASSIGN

UNIQUE <=> YES | NO | Y | N;

YES
causes the SAS/ACCESS interface to append numbers to any duplicate SAS variable
names, thus making each variable name unique.

NO
causes the SAS/ACCESS interface to continue to allow duplicate SAS variable names
to exist. You must resolve these duplicate names before saving (and thereby creating)
the view descriptor.

906 UPDATE Statement � Appendix 1

Details
The UNIQUE statement specifies whether the SAS/ACCESS interface should

generate unique SAS variable names for DBMS columns for which SAS variable names
have not been entered.

The UNIQUE statement is affected by whether you specified the ASSIGN statement
when you created the access descriptor on which the view is based:

� If you specified the ASSIGN=YES statement, you cannot specify UNIQUE when
creating a view descriptor. YES causes SAS to generate unique names, so UNIQUE
is not necessary.

� If you omitted the ASSIGN statement or specified ASSIGN=NO, you must resolve
any duplicate SAS variable names in the view descriptor. You can use UNIQUE to
generate unique names automatically, or you can use the RENAME statement to
resolve duplicate names yourself. See RENAME statement“RENAME Statement”
on page 901 for information.

If duplicate SAS variable names exist in the access descriptor on which you are
creating a view descriptor, you can specify UNIQUE to resolve the duplication.

It is recommended that you use the UNIQUE statement and specify UNIQUE=YES.
If you omit the UNIQUE statement or specify UNIQUE=NO and SAS encounters
duplicate SAS variable names in a view descriptor, your job fails.

The equal sign (=) is optional in the UNIQUE statement.

UPDATE Statement

Updates a SAS/ACCESS descriptor file

Applies to: access descriptor or view descriptor

UPDATE libref.member-name.ACCESS | VIEW <password-option>;

libref.member-name
identifies the libref of the SAS library where you want to store the descriptor and
identifies the descriptor name.

ACCESS
specifies an access descriptor.

VIEW
specifies a view descriptor.

password-option
specifies a password.

Details
The UPDATE statement identifies an existing access descriptor or view descriptor

that you want to update. UPDATE is normally used to update database connection
information, such as user IDs and passwords. If your descriptor requires many changes,
it might be easier to use the CREATE statement to overwrite the old descriptor with a
new one.

The ACCESS Procedure for Relational Databases � Access Descriptors 907

Altering a DBMS table might invalidate descriptor files that are based on the DBMS
table, or it might cause these files to be out of date. If you re-create a table, add a new
column to a table, or delete an existing column from a table, use the UPDATE
statement to modify your descriptors so that they use the new information.

Rules that apply to the CREATE statement also apply to the UPDATE statement.
For example, the SUBSET statement is valid only for updating view descriptors.

The following statements are not supported when you use the UPDATE statement:
ASSIGN, RESET, SELECT, and UNIQUE.

See Table A1.1 on page 894 for the appropriate sequence of statements for updating
descriptors.

Using Descriptors with the ACCESS Procedure

What Are Descriptors?
Descriptors work with the ACCESS procedure by providing information about DBMS

objects to SAS, enabling you to access and update DBMS data from within a SAS
session or program.

There are two types of descriptors, access descriptors and view descriptors. Access
descriptors provide SAS with information about the structure and attributes of a DBMS
table or view. An access descriptor, in turn, is used to create one or more view
descriptors, or SAS data views, of the DBMS data.

Access Descriptors
Typically, each DBMS table or view has a single access descriptor that provides

connection information, data type information, and names for databases, tables, and
columns.

You use an access descriptor to create one or more view descriptors. When creating a
view descriptor, you select the columns and specify criteria for the rows you want to
retrieve. The figure below illustrates the descriptor creation process. Note that an
access descriptor, which contains the metadata of the DBMS table, must be created
before view descriptors can be created.

908 View Descriptors � Appendix 1

Figure 33.1 Creating an Access Descriptor and View Descriptors for a DBMS Table

DBMS
Table or View

Access
Descriptor File

View Descriptor Files

. . .

View Descriptors
You use a view descriptor in a SAS program much as you would any SAS data set.

For example, you can specify a view descriptor in the DATA= statement of a SAS
procedure or in the SET statement of a DATA step.

You can also use a view descriptor to copy DBMS data into a SAS data file, which is
called extracting the data. When you need to use DBMS data in several procedures or
DATA steps, you might use fewer resources by extracting the data into a SAS data file
instead of repeatedly accessing the data directly.

The SAS/ACCESS interface view engine usually tries to pass WHERE conditions to
the DBMS for processing. In most cases it is more efficient for a DBMS to process
WHERE conditions than for SAS to do the processing.

The ACCESS Procedure for Relational Databases � Example 1: Update an Access Descriptor 909

Accessing Data Sets and Descriptors
SAS lets you control access to SAS data sets and access descriptors by associating

one or more SAS passwords with them. When you create an access descriptor, the
connection information that you provide is stored in the access descriptor and in any
view descriptors based on that access descriptor. The password is stored in an
encrypted form. When these descriptors are accessed, the connection information that
was stored is also used to access the DBMS table or view. To ensure data security, you
might want to change the protection on the descriptors to prevent others from seeing
the connection information stored in the descriptors.

When you create or update view descriptors, you can use a SAS data set option after
the ACCDESC= option to specify the access descriptor password, if one exists. In this
case, you are not assigning a password to the view descriptor that is being created or
updated. Instead, using the password grants you permission to use the access
descriptor to create or update the view descriptor. Here is an example:

proc access dbms=sybase accdesc=adlib.customer
(alter=rouge);

create vlib.customer.view;
select all;

run;

By specifying the ALTER level of password, you can read the AdLib.Customer access
descriptor and create the Vlib.Customer view descriptor.

Examples: ACCESS Procedure

Example 1: Update an Access Descriptor

The following example updates an access descriptor AdLib.Employ on the Oracle
table Employees. The original access descriptor includes all of the columns in the table.
The updated access descriptor omits the Salary and BirthDate columns.

proc access dbms=oracle ad=adlaib.employ;

/* update access descriptor */

update adlib.employ.access;
drop salary birthdate;
list all;

run;

You can use the LIST statement to write all variables to the SAS log so that you can see
the complete access descriptor before you update it.

910 Example 2: Create a View Descriptor � Appendix 1

Example 2: Create a View Descriptor

The following example re-creates a view descriptor, VLIB.EMP1204, which is based
on an access descriptor, ADLIB.EMPLOY, which was previously updated.

proc access dbms=oracle;

/* re-create view descriptor */

create vlib.emp1204.view;
select empid hiredate dept jobcode gender

lastname firstname middlename phone;
format empid 6.

jobcode 5.
hiredate datetime9.;

subset where jobcode=1204;
run;

Because SELECT and RESET are not supported when UPDATE is used, the view
descriptor Vlib.Emp1204 must be re-created to omit the Salary and BirthDate columns.

911

A P P E N D I X

2
The DBLOAD Procedure for
Relational Databases

Overview: DBLOAD Procedure 911
Sending Data from SAS to a DBMS 911

Properties of the DBLOAD Procedure 912

About DBLOAD Procedure Statements 912

Syntax: DBLOAD Procedure 913

PROC DBLOAD Statement 914
Database Connection Statements 915

ACCDESC= Statement 915

COMMIT= Statement 915

DELETE Statement 916

ERRLIMIT= Statement 916

LABEL Statement 917
LIMIT= Statement 917

LIST Statement 917

LOAD Statement 918

NULLS Statement 919

QUIT Statement 920
RENAME Statement 920

RESET Statement 921

SQL Statement 921

TABLE= Statement 922

TYPE Statement 923
WHERE Statement 923

Example: Append a Data Set to a DBMS Table 924

Overview: DBLOAD Procedure

Sending Data from SAS to a DBMS
The DBLOAD procedure is still supported for the database systems and environments

on which it was available in SAS 6. However, it is no longer the recommended method
for sending data from SAS to a DBMS. It is recommended that you access your DBMS
data more directly, using the LIBNAME statement or the SQL pass-through facility.

912 Properties of the DBLOAD Procedure � Appendix 2

Not all SAS/ACCESS interfaces support this feature. See Chapter 9, “SAS/ACCESS
Features by Host,” on page 75 to determine whether this feature is available in your
environment.

Properties of the DBLOAD Procedure
This section provides general reference information for the DBLOAD procedure. See

the DBMS-specific reference in this document for details about your DBMS.
The DBLOAD procedure, along with the ACCESS procedure and an interface view

engine, creates an interface between SAS and data in other vendors’ databases.
The DBLOAD procedure enables you to create and load a DBMS table, append rows

to an existing table, and submit non-query DBMS-specific SQL statements to the DBMS
for processing. The procedure constructs DBMS-specific SQL statements to create and
load, or append, to a DBMS table by using one of these items:

� a SAS data file
� an SQL view or DATA step view
� a view descriptor that was created with the SAS/ACCESS interface to your DBMS

or with another SAS/ACCESS interface product
� another DBMS table referenced by a SAS libref that was created with the

SAS/ACCESS LIBNAME statement.

The DBLOAD procedure associates each SAS variable with a DBMS column and
assigns a default name and data type to each column. It also specifies whether each
column accepts NULL values. You can use the default information or change it as
necessary. When you are finished customizing the columns, the procedure creates the
DBMS table and loads or appends the input data.

About DBLOAD Procedure Statements
There are several types of DBLOAD statements:
� Use database connection statements to connect to your DBMS. See the

DBMS-specific reference in this document for details about your DBMS.
� Creating and loading statements are LOAD and RUN.
� Use table and editing statements to specify how a table is populated..

This table summarizes PROC DBLOAD options and statements that are required to
accomplish common tasks.

The DBLOAD Procedure for Relational Databases � Syntax: DBLOAD Procedure 913

Table A2.1 Statement Sequence for Accomplishing Common Tasks with the DBLOAD Procedure

Task Options and Statements to Use

Create and load a DBMS table PROC DBLOAD
statement-options;
database-connection-options;

TABLE= <’>table-name<’>;
LOAD;
RUN;

Submit a dynamic, non-query DBMS-SQL
statement to DBMS (without creating a
table)

PROC DBLOAD
statement-options;
database-connection-options;

SQL DBMS-specific-SQL-statements;
RUN;

LOAD must appear before RUN to create and load a table or append data to a table.

Syntax: DBLOAD Procedure
Here is the general syntax for the DBLOAD procedure. See the DBMS-specific

reference in this document for details about your DBMS.

PROC DBLOAD <options>;

database connection statements;

TABLE= <’>table-name<’>;

ACCDESC= <libref.>access-descriptor;

COMMIT= commit-frequency;

DELETE variable-identifier-1
<…variable-identifier-n>;

ERRLIMIT= error-limit;

LABEL;

LIMIT= load-limit;

LIST <ALL | COLUMN | variable-identifier>;

NULLS variable-identifier-1 = Y | N
<…variable-identifier-n = Y | N>;

QUIT;

RENAME variable-identifier-1 = <’>column-name-1< ’>
<…variable-identifier-n = <’>column-name-n<’>>;

RESET ALL | variable-identifier-1 <…variable-identifier-n>;

SQL DBMS-specific-SQL-statement;

TYPE variable-identifier-1 = ’column-type-1’ <…variable-identifier-n = ’column-type-n’>;

WHERE SAS-where-expression;

914 PROC DBLOAD Statement � Appendix 2

LOAD;

RUN;

PROC DBLOAD Statement

PROC DBLOAD <options>;

Options

DBMS=database-management-system
specifies which database management system you want to access. This
DBMS-specific option is required. See the DBMS-specific reference in this document
for details about your DBMS.

DATA=<libref.>SAS-data-set
specifies the input data set. You can retrieve input data from a SAS data file, an SQL
view, a DATA step view, a SAS/ACCESS view descriptor, or another DBMS table to
which a SAS/ACCESS libref points. If the SAS data set is permanent, you must use
its two-level name, libref.SAS-data-set. If you omit the DATA= option, the default is
the last SAS data set that was created.

APPEND
appends data to an existing DBMS table that you identify by using the TABLE=
statement. When you specify APPEND, the input data specified with the DATA=
option is inserted into the existing DBMS table. Your input data can be in the form
of a SAS data set, SQL view, or SAS/ACCESS view (view descriptor).

CAUTION:
When you use APPEND, you must ensure that your input data corresponds exactly to the
columns in the DBMS table. If your input data does not include values for all columns
in the DBMS table, you might corrupt your DBMS table by inserting data into the wrong
columns. Use the COMMIT, ERRLIMIT, and LIMIT statements to help safeguard against
data corruption. Use the DELETE and RENAME statements to drop and rename SAS input
variables that do not have corresponding DBMS columns. �

All PROC DBLOAD statements and options can be used with APPEND, except for
the NULLS and TYPE statements, which have no effect when used with APPEND.
The LOAD statement is required.

The following example appends new employee data from the SAS data set
NEWEMP to the DBMS table EMPLOYEES. The COMMIT statement causes a
DBMS commit to be issued after every 100 rows are inserted. The ERRLIMIT
statement causes processing to stop after five errors occur.

proc dbload dbms=oracle data=newemp append;
user=testuser;
password=testpass;
path=’myorapath’;
table=employees;
commit=100;
errlimit=5;
load;

run;

The DBLOAD Procedure for Relational Databases � COMMIT= Statement 915

By omitting the APPEND option from the DBLOAD statement, you can use the
PROC DBLOAD SQL statements to create a DBMS table and append to it in the
same PROC DBLOAD step.

Database Connection Statements

Provide DBMS connection information

database-connection-statements

These statements are used to connect to your DBMS and vary depending on which
SAS/ACCESS interface you are using. See the DBMS-specific reference in this
document for details about your DBMS. Examples include USER=, PASSWORD=, and
DATABASE=.

ACCDESC= Statement

Creates an access descriptor based on the new DBMS table

ACCDESC=< libref.>access-descriptor;

Details
The ACCDESC= statement creates an access descriptor based on the DBMS table

that you are creating and loading. If you specify ACCDESC=, the access descriptor is
automatically created after the new table is created and loaded. You must specify an
access descriptor if it does not already exist.

COMMIT= Statement

Issues a commit or saves rows after a specified number of inserts

Default: 1000

COMMIT=commit-frequency;

Details
The COMMIT= statement issues a commit (that is, generates a DBMS-specific SQL

COMMIT statement) after the specified number of rows has been inserted.

916 DELETE Statement � Appendix 2

Using this statement might improve performance by releasing DBMS resources each
time the specified number of rows has been inserted.

If you omit the COMMIT= statement, a commit is issued (or a group of rows is saved)
after each 1,000 rows are inserted and after the last row is inserted.

The commit-frequency argument must be a nonnegative integer.

DELETE Statement

Does not load specified variables into the new table

DELETE variable-identifier-1 <…variable-identifier-n>;

Details
The DELETE statement drops the specified SAS variables before the DBMS table is

created. The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to drop
the third variable, submit this statement:

delete 3;

When you drop a variable, the positional equivalents of the variables do not change.
For example, if you drop the second variable, the third variable is still referenced by the
number 3, not 2. If you drop more than one variable, separate the identifiers with
spaces, not commas.

ERRLIMIT= Statement

Stops the loading of data after a specified number of errors

Default: 100 (see the DBMS-specific details for possible exceptions)

ERRLIMIT=error-limit;

Details
The ERRLIMIT= statement stops the loading of data after the specified number of

DBMS SQL errors has occurred. Errors include observations that fail to be inserted and
commits that fail to execute. The ERRLIMIT= statement defaults to 10 when used with
APPEND.

The error-limit argument must be a nonnegative integer. To allow an unlimited
number of DBMS SQL errors to occur, specify ERRLIMIT=0. If the SQL CREATE
TABLE statement that is generated by the procedure fails, the procedure terminates.

The DBLOAD Procedure for Relational Databases � LIST Statement 917

LABEL Statement

Causes DBMS column names to default to SAS labels

Interacts with: RESET
Default: DBMS column names default to SAS variable names

LABEL;

Details
The LABEL statement causes the DBMS column names to default to the SAS variable

labels when the new table is created. If a SAS variable has no label, the variable name
is used. If the label is too long to be a valid DBMS column name, the label is truncated.

You must use the RESET statement after the LABEL statement for the LABEL
statement to take effect.

LIMIT= Statement

Limits the number of observations that are loaded

Default: 5000

LIMIT=load-limit;

Details
The LIMIT= statement places a limit on the number of observations that can be

loaded into the new DBMS table. The load-limit argument must be a nonnegative
integer. To load all observations from your input data set, specify LIMIT=0.

LIST Statement

Lists information about the variables to be loaded

Default: ALL

LIST <ALL | FIELD | variable-identifier>;

918 LOAD Statement � Appendix 2

Details
The LIST statement lists information about some or all of the SAS variables to be

loaded into the new DBMS table. By default, the list is sent to the SAS log.
The LIST statement can take these arguments.

ALL
lists information about all variables in the input SAS data set, despite whether
those variables are selected for the load.

FIELD
lists information about only the input SAS variables that are selected for the load.

variable-identifier
lists information about only the specified variable. The variable-identifier
argument can be either the SAS variable name or the positional equivalent. The
positional equivalent is the number that represents the variable’s position in the
data set. For example, if you want to list information for the column associated
with the third SAS variable, submit this statement:

list 3;

You can specify LIST as many times as you want while creating a DBMS table;
specify LIST before the LOAD statement to see the entire table.

LOAD Statement

Creates and loads the new DBMS table

Valid: in the DBLOAD procedure (required statement for loading or appending data)

LOAD;

Details
The LOAD statement informs the DBLOAD procedure to execute the action that you

request, including loading or appending data. This statement is required to create and
load a new DBMS table or to append data to an existing table.

When you create and load a DBMS table, you must place statements or groups of
statements in a certain order after the PROC DBLOAD statement and its options, as
listed in Table A2.1 on page 913.

Example
This example creates the SummerTemps table in Oracle based on the

DLib.TempEmps data file.

proc dbload dbms=oracle data=dlib.tempemps;
user=testuser; password=testpass;
path=’testpath’;
table=summertemps;
rename firstnam=firstname

The DBLOAD Procedure for Relational Databases � NULLS Statement 919

middlena=middlename;
type hiredate ’date’

empid ’number(6,0)’
familyid ’number(6,0)’;

nulls 1=n;
list;
load;

run;

NULLS Statement

Specifies whether DBMS columns accept NULL values

Default: Y

NULLS variable-identifier-1 = Y | N <…variable-identifier-n = Y | N>;

Details
Some DBMSs have three valid values for this statement, Y, N, and D. See the

DBMS-specific reference in this document for details about your DBMS.
The NULLS statement specifies whether the DBMS columns that are associated with

the listed input SAS variables allow NULL values. Specify Y to accept NULL values.
Specify N to reject NULL values and to require data in that column.

If you specify N for a numeric column, no observations that contain missing values in
the corresponding SAS variable are loaded into the table. A message is written to the
SAS log, and the current error count increases by one for each observation that is not
loaded. See “ERRLIMIT= Statement” on page 916 for more information.

If a character column contains blanks (the SAS missing value) and you have specified
N for the DBMS column, then blanks are inserted. If you specify Y, NULL values are
inserted.

The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want the
column that is associated with the third SAS variable to accept NULL values, submit
this statement:

nulls 3=y;

If you omit the NULLS statement, the DBMS default action occurs. You can list as
many variables as you want in one NULLS statement. If you have previously defined a
column as NULLS=N, you can use the NULLS statement to redefine it to accept NULL
values.

920 QUIT Statement � Appendix 2

QUIT Statement

Terminates the procedure

Valid: in the DBLOAD procedure (control statement)

QUIT;

Details
The QUIT statement terminates the DBLOAD procedure without further processing.

RENAME Statement
Renames DBMS columns

Interacts with: DELETE, LABEL, RESET

RENAME variable-identifier-1 = <’>column-name-1<’> <…variable-identifier-n =
<’>column-name-n<’>>;

Details
The RENAME statement changes the names of the DBMS columns that are

associated with the listed SAS variables. If you omit the RENAME statement, all
DBMS column names default to the corresponding SAS variable names unless you
specify the LABEL statement.

The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents where to place the variable in the data set. For example, submit this
statement if you want to rename the column associated with the third SAS variable:

rename 3=employeename;

The column-name argument must be a valid DBMS column name. If the column
name includes lowercase characters, special characters, or national characters, you
must enclose the column name in single or double quotation marks. If no quotation
marks are used, the DBMS column name is created in uppercase. To preserve case, use
this syntax: rename 3=’"employeename"’

The RENAME statement enables you to include variables that you have previously
deleted. For example, suppose you submit these statements:

delete 3;
rename 3=empname;

The DELETE statement drops the third variable. The RENAME statement includes
the third variable and assigns the name EMPNAME and the default column type to it.

The DBLOAD Procedure for Relational Databases � SQL Statement 921

You can list as many variables as you want in one RENAME statement. The
RENAME statement overrides the LABEL statement for columns that are renamed.
COLUMN is an alias for the RENAME statement.

RESET Statement

Resets column names and data types to their default values

Interacts with: DELETE, LABEL, RENAME, TYPE

RESET ALL | variable-identifier-1 <…variable-identifier-n>;

Details
The RESET statement resets columns that are associated with the listed SAS

variables to default values for the DBMS column name, column data type, and ability to
accept NULL values. If you specify ALL, all columns are reset to their default values,
and any dropped columns are restored with their default values. Here are the default
values.

column name
defaults to the SAS variable name, or to the SAS variable label (if you have used
the LABEL statement).

column type
is generated from the SAS variable format.

nulls
uses the DBMS default value.

The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to reset
the column associated with the third SAS variable, submit this statement:

reset 3;

You must use the RESET statement after the LABEL statement for the LABEL
statement to take effect.

SQL Statement

Submits a DBMS-specific SQL statement to the DBMS

SQL DBMS-specific-SQL-statement;

922 TABLE= Statement � Appendix 2

Details

The SQL statement submits a dynamic, non-query, DBMS-specific SQL statement to
the DBMS. You can use the DBLOAD statement to submit these DBMS-specific SQL
statements, despite whether you create and load a DBMS table.

You must enter the keyword SQL before each DBMS-specific SQL statement that you
submit. The SQL-statement argument can be any valid dynamic DBMS-specific SQL
statement except the SELECT statement. However, you can enter a SELECT statement
as a substatement within another statement, such as in a CREATE VIEW statement.
You must use DBMS-specific SQL object names and syntax in the DBLOAD SQL
statement.

You cannot create a DBMS table and reference it in your DBMS-specific SQL
statements within the same PROC DBLOAD step. The new table is not created until
the RUN statement is processed.

To submit dynamic, non-query DBMS-specific SQL statements to the DBMS without
creating a DBMS table, you use the DBMS= option, any database connection
statements, and the SQL statement.

Example

This example grants UPDATE privileges to user MARURI on the DB2
SasDemo.Orders table.

proc dbload dbms=db2;
in sample;
sql grant update on sasdemo.orders to maruri;

run;

TABLE= Statement

Names the DBMS table to be created and loaded

TABLE= <’>DBMS-specific-syntax<’>;

Details

When you create and load or append to a DBMS table, the TABLE= statement is
required. It must follow other database connection statements such as DATABASE= or
USER=. The TABLE= statement specifies the name of the DBMS table to be created
and loaded into a DBMS database. The table name must be a valid table name for the
DBMS. (See the DBMS-specific reference in this document for the syntax for your
DBMS.) If your table name contains lowercase characters, special characters, or
national characters, it must be enclosed in quotation marks.

In addition, you must specify a table name that does not already exist. If a table by
that name exists, an error message is written to the SAS log, and the table specified in
this statement is not loaded.

When you are submitting dynamic DBMS-specific SQL statements to the DBMS
without creating and loading a table, do not use this statement.

The DBLOAD Procedure for Relational Databases � WHERE Statement 923

TYPE Statement

Changes default DBMS data types in the new table

TYPE variable-identifier-1 = ’column-type-1’ <…variable-identifier-n = ’column-type-n’>;

Details
The TYPE statement changes the default DBMS column data types that are

associated with the corresponding SAS variables.
The variable-identifier argument can be either the SAS variable name or the

positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to change
the data type of the DBMS column associated with the third SAS variable, submit this
statement:

type 3=’char(17)’;

The argument column-type must be a valid data type for the DBMS and must be
enclosed in quotation marks.

If you omit the TYPE statement, the column data types are generated with default
DBMS data types that are based on the SAS variable formats. You can change as many
data types as you want in one TYPE statement. See the DBMS-specific reference in this
document for a complete list of default conversion data types for the DBLOAD
procedure for your DBMS.

WHERE Statement

Loads a subset of data into the new table

WHERE SAS-where-expression;

Details
The WHERE statement causes a subset of observations to be loaded into the new

DBMS table. The SAS-where-expression must be a valid SAS WHERE statement that
uses SAS variable names (not DBMS column names) as defined in the input data set.
This example loads only the observations in which the SAS variable COUNTRY has the
value BRAZIL.

where country=’Brazil’;

For more information about the syntax of the SAS WHERE statement, see SAS
Language Reference: Dictionary.

924 Example: Append a Data Set to a DBMS Table � Appendix 2

Example: Append a Data Set to a DBMS Table

The following example appends new employee data from the NewEmp SAS data set
to the Employees DBMS table. The COMMIT statement causes a DBMS commit to be
issued after every 100 rows are inserted. The ERRLIMIT statement causes processing
to stop after 10 errors occur.

proc dbload dbms=oracle data=newemp append;
user=testuser;
password=testpass;
path=’myorapath’;
table=employees;
commit=100;
errlimit=10;
load;

run;

By omitting the APPEND option from the DBLOAD statement, you can use the
PROC DBLOAD SQL statements to create a DBMS table and append to it in the same
PROC DBLOAD step.

925

A P P E N D I X

3
Recommended Reading

Recommended Reading 925

Recommended Reading

Here is the recommended reading list for this title:
� SAS/ACCESS Interface to PC Files: Reference
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� SAS Macro Language: Reference
� Base SAS Procedures Guide

� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

926

927

Glossary

This glossary defines SAS software terms that are used in this document as well as
terms that relate specifically to SAS/ACCESS software.

access descriptor
a SAS/ACCESS file that describes data that is managed by a data management
system. After creating an access descriptor, you can use it as the basis for creating
one or more view descriptors. See also view and view descriptor.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed,
you can view SAS data either one observation (row) at a time or as a group in a
tabular format. You cannot update data that you are browsing.

bulk load
to load large amounts of data into a database object, using methods that are specific
to a particular DBMS. Bulk loading enables you to rapidly and efficiently add
multiple rows of data to a table as a single unit.

client
(1) a computer or application that requests services, data, or other resources from a
server. (2) in the X Window System, an application program that interacts with the X
server and can perform tasks such as terminal emulation or window management.
For example, SAS is a client because it requests windows to be created, results to be
displayed, and so on.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

column function
an operation that is performed for each value in the column that is named as an
argument of the function. For example, AVG(SALARY) is a column function.

commit
the process that ends a transaction and makes permanent any changes to the
database that the user made during the transaction. When the commit process
occurs, locks on the database are released so that other applications can access the
changed data. The SQL COMMIT statement initiates the commit process.

928 Glossary

DATA step view
a type of SAS data set that consists of a stored DATA step program. Like other SAS
data views, a DATA step view contains a definition of data that is stored elsewhere;
the view does not contain the physical data. The view’s input data can come from one
or more sources, including external files and other SAS data sets. Because a DATA
step view only reads (opens for input) other files, you cannot update the view’s
underlying data.

data type
a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

data value
in SAS, a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

database management system (DBMS)
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

editing data
the process of viewing the contents of a file with the intent and the ability to change
those contents. Depending on how the file is accessed, you can view the data either
one observation at a time or in a tabular format.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular format. There are several types of engines.

file
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS libraries.

format
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS libraries. In SAS/ACCESS software, the
default formats vary according to the interface product.

index
(1) in SAS software, a component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS indexes
is to optimize WHERE-clause processing and to facilitate BY-group processing. (2) in
other software vendors’ databases, a named object that directs the DBMS to the
storage location of a particular data value for a particular column. Some DBMSs
have additional specifications. These indexes are also used to optimize the processing
of WHERE clauses and joins. Depending on the SAS interface to a database product
and how selection criteria are specified, SAS might or might not be able to use the
DBMS indexes to speed data retrieval.

Depending on how selection criteria are specified, SAS might use DBMS indexes to
speed data retrieval.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

Glossary 929

interface view engine
a SAS engine that is used by SAS/ACCESS software to retrieve data from files that
have been formatted by another vendor’s software. Each SAS/ACCESS interface has
its own interface view engine. Each engine reads the interface product data and
returns the data in a form that SAS can understand—that is, in a SAS data set. SAS
automatically uses an interface view engine; the engine name is stored in
SAS/ACCESS descriptor files so that you do not need to specify the engine name in a
LIBNAME statement.

libref
a name that is temporarily associated with a SAS library. The complete name of a
SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

member
a SAS file in a SAS library.

member name
a name that is given to a SAS file in a SAS library.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, PROGRAM, and VIEW.

missing value
in SAS, a term that describes the contents of a variable that contains no data for a
particular row or observation. By default, SAS prints or displays a missing numeric
value as a single period, and it prints or displays a missing character value as a
blank space.

observation
a row in a SAS data set. All data values in an observation are associated with a
single entity such as a customer or a state. Each observation contains one data value
for each variable. In a database product table, an observation is analogous to a row.
Unlike rows in a database product table or file, observations in a SAS data file have
an inherent order.

PROC SQL view
a SAS data set (of type VIEW) that is created by the SQL procedure. A PROC SQL
view contains no data. Instead, it stores information that enables it to read data
values from other files, which can include SAS data files, SAS/ACCESS views, DATA
step views, or other PROC SQL views. A PROC SQL view’s output can be either a
subset or a superset of one or more files.

query
a set of instructions that requests particular information from one or more data
sources.

930 Glossary

referential integrity
a set of rules that a DBMS uses to ensure that a change to a data value in one table
also results in a change to any related values in other tables or in the same table.
Referential integrity is also used to ensure that related data is not deleted or
changed accidentally.

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. Oracle and DB2 are examples of relational
database management systems.

rollback
in most databases, the process that restores the database to its state when changes
were last committed, voiding any recent changes. The SQL ROLLBACK statement
initiates the rollback processes. See also commit.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. A PROC SQL table is a SAS data file. SAS data
files are of member type DATA.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS/ACCESS views
See view descriptor and SAS data view.

SAS library
a collection of one or more SAS files that are recognized by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

server
in a network, a computer that is reserved for servicing other computers in the
network. Servers can provide several different types of services, such as file services
and communication services. Servers can also enable users to access shared
resources such as disks, data, and modems.

SQL pass-through facility
a group of SQL procedure statements that send and receive data directly between a
relational database management system and SAS. The SQL pass-through facility
includes the CONNECT, DISCONNECT, and EXECUTE statements, and the

Glossary 931

CONNECTION TO component. SAS/ACCESS software is required in order to use
the SQL pass-through facility.

Structured Query Language (SQL)
the standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. SAS implements SQL through the SQL procedure.

table
a two-dimensional representation of data, in which the data values are arranged in
rows and columns.

trigger
a type of user-defined stored procedure that is executed whenever a user issues a
data-modification command such as INSERT, DELETE, or UPDATE for a specified
table or column. Triggers can be used to implement referential integrity or to
maintain business constraints.

variable
a column in a SAS data set. A variable is a set of data values that describe a given
characteristic across all observations.

view
a definition of a virtual data set. The definition is named and stored for later use. A
view contains no data. It merely describes or defines data that is stored elsewhere.
The ACCESS and SQL procedures can create SAS data views.

view descriptor
a file created by SAS/ACCESS software that defines part or all database management
system (DBMS) data or PC file data that an access descriptor describes. The access
descriptor describes the data in a single DBMS table, DBMS view, or PC file.

wildcard
a file created by SAS/ACCESS software that defines part or all database management
system (DBMS) data or PC file data that an access descriptor describes. The access
descriptor describes the data in a single DBMS table, DBMS view, or PC file.

932

933

Index

A
ACCDESC= option

PROC ACCESS statement 896
ACCDESC= statement

DBLOAD procedure 915
access descriptors 907

ACCESS procedure with 907
converting into SQL views 881
creating 64, 898, 915
data set and descriptor access 909
identifying DBMS table for 905
listing columns in, with information 900
name, for converting 883
resetting columns to default settings 903
updating 906, 909

access levels
for opening libref connections 93

ACCESS= LIBNAME option 93
access methods 4

selecting 4
ACCESS procedure, relational databases 4, 893, 895

accessing DBMS data 893
database connection statements 896
DB2 under z/OS 496
DB2 under z/OS data conversions 525
descriptors with 907
examples 909
how it works 64
names 13
Oracle 719
Oracle data conversions 737
overview 64
reading data 64
Sybase 748
Sybase data conversions 760
syntax 895
unsupported in Teradata 783
updating data 65

accessing data
ACCESS procedure 893
from DBMS objects 62
repeatedly accessing 37

ACCOUNT= connection option
Teradata 785

acquisition error tables 337, 338
ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=

LIBNAME option 94
ADJUST_NCHAR_COLUMN_LENGTHS= LIBNAME op-

tion 95

aggregate functions
passing to DBMS 42

AIX
DB2 under UNIX and PC Hosts 76
Greenplum 77
HP Neoview 78
Informix 78
Microsoft SQL Server 79
MySQL 79
Netezza 80
ODBC 81
Oracle 82
Sybase 83
Sybase IQ 84

AIX (RS/6000)
Teradata 85

ALL argument
LIBNAME statement 90

ALL option
LIST statement (ACCESS) 900
RESET statement (ACCESS) 903

ANSI outer-join syntax 190
ANSI-standard SQL 4
APPEND procedure

DBMS data with 864
appending data sets 924
applications

threaded 52, 58
ASSIGN statement

ACCESS procedure 897
Aster nCluster 439

autopartitioning scheme 446
bulk loading 450
data conversions 453
data set options 443
data types 452
DBSLICE= data set option 448
DBSLICEPARM= LIBNAME option 447
LIBNAME statement 440
naming conventions 451
nullable columns 447
numeric data 452
passing joins to 449
passing SAS functions to 448
special catalog queries 445
SQL pass-through facility 445
string data 452
supported features 75
WHERE clauses 447

934 Index

attachment facility 513, 531
known issues with 529

AUTHDOMAIN= LIBNAME option 96
authentication domain metadata objects

connecting to server with name of 96
AUTHID= data set option 208
AUTHID= LIBNAME option 97
authorization

client/server, DB2 under z/OS 527
authorization ID 208

qualifying table names with 97
autocommit 209

MySQL 610
AUTOCOMMIT= data set option 209
AUTOCOMMIT= LIBNAME option 98
automatic COMMIT 297

after specified number of rows 120
autopartitioning 57

Aster nCluster 446
column selection for MOD partitioning 491
configuring DB2 EEE nodes on physically partitioned

databases 466
DB2 under UNIX and PC Hosts 464
DB2 under z/OS 491
Greenplum 540
HP Neoview 561
Informix 580
ODBC 666
Oracle 715
restricted by WHERE clauses 492
Sybase 745
Sybase IQ 770
Teradata 792

B
backslash

in literals 147, 327
BIGINT data type

Aster nCluster 452
DB2 under UNIX and PC Hosts 478
DB2 under z/OS 522
Greenplum 548
MySQL 616
Netezza 649
Sybase IQ 776

binary data
Oracle 735
Sybase 761

binary string data
Teradata 838

BINARY_DOUBLE data type
Oracle 730

BINARY_FLOAT data type
Oracle 730

BIT data type
Greenplum 549
Sybase 756
Sybase IQ 777

BL_ALLOW_READ_ACCESS= data set option 210
BL_ALLOW_WRITE_ACCESS= data set option 211
blank spaces

SQL*Loader 273
BL_BADDATA_FILE= data set option 211
BL_BADFILE= data set option 212
BL_CLIENT_DATAFILE= data set option 213

BL_CODEPAGE= data set option 214
BL_CONTROL= data set option 215
BL_COPY_LOCATION= data set option 216
BL_CPU_PARALLELISM= data set option 217
BL_DATA_BUFFER_SIZE= data set option 218
BL_DATAFILE= data set option 219

Teradata 220
BL_DB2CURSOR= data set option 221
BL_DB2DATACLAS= data set option 222
BL_DB2DEVT_PERM= data set option 222
BL_DB2DEVT_TEMP= data set option 223
BL_DB2DISC= data set option 223
BL_DB2ERR= data set option 224
BL_DB2IN= data set option 225
BL_DB2LDCT1= data set option 225
BL_DB2LDCT2= data set option 226
BL_DB2LDCT3= data set option 227
BL_DB2LDTEXT= data set option 227
BL_DB2MAP= data set option 229
BL_DB2MGMTCLAS= data set option 228
BL_DB2PRINT= data set option 229
BL_DB2PRNLOG= data set option 230
BL_DB2REC= data set option 231
BL_DB2RECSP= data set option 231
BL_DB2RSTRT= data set option 232
BL_DB2SPC_PERM= data set option 233
BL_DB2SPC_TEMP= data set option 233
BL_DB2STORCLAS= data set option 234
BL_DB2TBLXST= data set option 235
BL_DB2UNITCOUNT= data set option 236
BL_DB2UTID= data set option 237
BL_DBNAME= data set option 237
BL_DEFAULT_DIR= data set option 238
BL_DELETE_DATAFILE= data set option 239
BL_DELETE_ONLY_DATAFILE= data set option 240
BL_DELIMITER= data set option 242
BL_DIRECT_PATH= data set option 244
BL_DISCARDFILE= data set option 244
BL_DISCARDS= data set option 245
BL_DISK_PARALLELISM= data set option 246
BL_ENCODING= data set option 247
BL_ERRORS= data set option 248
BL_ESCAPE= data set option 248
BL_EXCEPTION= data set option 251
BL_EXECUTE_CMD= data set option 249
BL_EXECUTE_LOCATION= data set option 250
BL_EXTERNAL_WEB= data set option 252
BL_FAILEDDATA= data set option 254
BL_FORCE_NOT_NULL= data set option 254
BL_FORMAT= data set option 255
BL_HEADER= data set option 256
BL_HOST= data set option 257
BL_HOSTNAME= data set option 257
BL_INDEXING_MODE= data set option 259
BL_INDEX_OPTIONS= data set option 258
BL_KEEPIDENTITY= data set option 260
BL_KEEPIDENTITY= LIBNAME option 98
BL_KEEPNULLS= data set option 261
BL_KEEPNULLS= LIBNAME option 99
BL_LOAD_METHOD= data set option 262
BL_LOAD_REPLACE= data set option 263
BL_LOCATION= data set option 263
BL_LOG= data set option 264, 805
BL_LOG= LIBNAME option 100
BL_METHOD= data set option 265
BL_NULL= data set option 266

Index 935

BL_NUM_ROW_SEPS= data set option 266
BL_NUM_ROW_SEPS= LIBNAME option 100
BLOB data type

DB2 under UNIX and PC Hosts 477
DB2 under z/OS 522
MySQL 615
Oracle 735

blocking operations 407
BL_OPTIONS= data set option 267
BL_OPTIONS= LIBNAME option 101
BL_PARFILE= data set option 268
BL_PATH= data set option 270
BL_PORT= data set option 270
BL_PORT_MAX= data set option 271
BL_PORT_MIN= data set option 272
BL_PRESERVE_BLANKS= data set option 273
BL_PROTOCOL= data set option 273
BL_QUOTE= data set option 274
BL_RECOVERABLE= data set option 275
BL_REJECT_LIMIT= data set option 276
BL_REJECT_TYPE= data set option 276
BL_REMOTE_FILE= data set option 277
BL_RETRIES= data set option 278
BL_RETURN_WARNINGS_AS_ERRORS= data set op-

tion 279
BL_ROWSETSIZE= data set option 279
BL_SERVER_DATAFILE= data set option 280
BL_SQLLDR_PATH= data set option 281
BL_STREAMS= data set option 282
BL_SUPPRESS_NULLIF= data set option 282
BL_SYNCHRONOUS= data set option 284
BL_SYSTEM= data set option 284
BL_TENACITY= data set option 285
BL_TRIGGER= data set option 285
BL_TRUNCATE= data set option 286
BL_USE_PIPE= data set option 287
BL_WARNING_COUNT= data set option 288
buffers

buffering bulk rows 289
for transferring data 218
reading DBMS data 175
reading rows of DBMS data 364

BUFFERS= data set option 288
bulk copy 145
Bulk Copy (BCP) facility 671, 676
bulk extracting

HP Neoview 567
bulk-load facility

DBMS-specific 103
deleting the data file 239
passing options to 101

bulk loading 267
accessing dynamic data in Web tables 546
accessing external tables with protocols 544
appending versus replacing rows 263
Aster nCluster 450
C escape sequences 248
capturing statistics into macro variables 474
character set encoding for external table 247
client view of data file 213
codepage for converting character data 214
configuring file server 545
CSV column values 254
data file for 219
database name for 237
DB2 method 265

DB2 SELECT statement 221
DB2 server instance 280
DB2 under UNIX and PC Hosts 472
DB2 under z/OS 515
DB2 under z/OS, data set options 515
DB2 under z/OS, file allocation and naming 516
deleting data file created by SAS/ACCESS engine 240
delimiters 242
directory for intermediate files 238
error file name 100
external data sets accessing dynamic data sources 252
failed records 211, 248, 254
FastLoad performance 804
file:// protocol 546
file containing control statements 215
file location on Web server for segment host access 263
filtered out records 244
format of external or web table data 255
generic device type for permanent data sets 222
Greenplum 544
host name of server for external data file 257
HP Neoview 565
HP Neoview, unqualified host name 257
identity column 260
IP address of server for external data file 257
loading rows of data as one unit 291
log file for 264
memory for 218
Microsoft SQL Server, NULL values in columns 261
MultiLoad 342
MultiLoad performance 805
Netezza 632
newline characters as row separators 266
NULL values and 99
number of attempts for a job 278
number of records to exchange with database 279
ODBC 676
OLE DB 699
operating system command for segment instances 249
Oracle 262, 725
parallelism 217
passing options to DBMS bulk-load facility 101
path for 270
populating the identity column 98
port numbers 270, 271, 272
protocol for 273
quotation character for CSV mode 274
rejected records 212
row warnings 288
saving copy of loaded data 216
segment instances 250
skip or load first record in input data file 256
SQL*Loader Index options 258
stopping gpfdist 545
string that replaces a null value 266
Sybase IQ 773
SYSDISC data set name for LOAD utility 223
SYSERR data set name for LOAD utility 224
SYSIN data set name for LOAD utility 225
triggers and 285
troubleshooting gpfdist 546
unit address for permanent data sets 222
visibility of original table data 210
warnings 279

bulk rows
buffering for output 289

936 Index

bulk unloading 103
Netezza 633
unloading rows of data as one unit 292

BULK_BUFFER= data set option 289
BULKCOPY= statement, DBLOAD procedure

ODBC 671
BULKEXTRACT= data set option 290
BULKEXTRACT= LIBNAME option 102
BULKLOAD= data set option 291
BULKLOAD= LIBNAME option 103
BULKUNLOAD= data set option 292
BULKUNLOAD= LIBNAME option 103
BY clause

ordering query results 813
replacing SORT procedure with 815
Teradata 813, 815

BY-group processing
in-database procedures and 70

BYTE data type
Informix 585
Teradata 838

byte semantics
specifying CHAR or VARCHAR data type columns 94

BYTEINT data type 105
Netezza 649
Teradata 840

C
C escape sequences 248
CAF (Call Attachment Facility) 531
case sensitivity

DBMS column names 358
FastExport Utility 792
MySQL 619
names 12
Sybase 761

CAST= data set option 292
CAST= LIBNAME option 104
casting

overhead limit for 106
performed by SAS or Teradata 104

CAST_OVERHEAD_MAXPERCENT= data set op-
tion 294

CAST_OVERHEAD_MAXPERCENT= LIBNAME op-
tion 106

catalog queries
DB2 under UNIX and PC Hosts 463
Greenplum 539
HP Neoview 560
Netezza 627
ODBC 664
OLE DB 691
Sybase IQ 769

catalog tables
overriding default owner of 403

CELLPROP= LIBNAME option 107
CHAR column lengths 118
CHAR data type

Aster nCluster 452
DB2 under UNIX and PC Hosts 478
DB2 under z/OS 522
Greenplum 548
HP Neoview 569
Informix 585
MySQL 615

Netezza 649
Oracle 729
Sybase 756
Sybase IQ 776
Teradata 839

CHAR data type columns
adjusting lengths for 94, 95
specified with byte semantics 94

character data
codepage for converting during bulk load 214
DB2 under UNIX and PC Hosts 477
DB2 under z/OS 522
Informix 585
length of 309
MySQL 615
Oracle 729
Sybase 756

character data type
length of very long types 130

character set encoding
for bulk load external table 247

character string data
Teradata 839

characters
replacing unsupported characters in names 17

CHECKPOINT= data set option
FastLoad and 805

checkpoints 377
interval between 336
restart table 340

CLEAR argument
LIBNAME statement 90

client encoding
column length for 119

client/server authorization
DB2 under z/OS 527
known issues with RRSAF support 529
non-libref connections 528

client view
for bulk load data file 213

CLOB data type
DB2 under UNIX and PC Hosts 478
DB2 under z/OS 522
Oracle 730

codepages 214
column labels

returned by engine 314
specifying for engine use 136

column length
CHAR or VARCHAR columns 94, 95
for client encoding 119

column names
as partition key for creating fact tables 164, 357
basing variable names on 905
defaulting to labels 917
embedded spaces and special characters 174
in DISTRIBUTE ON clause 324
naming during output 306
preserving 18, 167, 358
renaming 14, 125, 429, 920, 9

columns
changing column formats 899
CSV column values 254
date format of 365
distributing rows across database segments 323
ignoring read-only columns 149

Index 937

limiting retrieval 35
NULL as valid value 310
NULL values accepted in 919
NULL values and bulk loading 99
renaming 302
resetting to default settings 903
selecting 903
selecting for MOD partitioning 491

commands
timeout for 108, 294

COMMAND_TIMEOUT= data set option 294
COMMAND_TIMEOUT= LIBNAME option 108
COMMIT, automatic 297

after specified number of rows 120
COMMIT= option

PROC DB2UTIL statement 504
COMMIT= statement

DBLOAD procedure 915
committed reads

Informix 584
COMPLETE= connection option

DB2 under UNIX and PC Hosts 457
Microsoft SQL Server 592
ODBC 657
OLE DB 684

configuration
DB2 EEE nodes on physically partitioned databases 466
file server 545
SQL Server partiioned views for DBSLICE= 668

connect exits 31
CONNECT statement, SQL procedure 427

arguments 427
example 431

CONNECTION= argument
CONNECT statement 428

connection groups 113
connection information

prompts to enter 134
protecting 28

CONNECTION= LIBNAME option 108
connection options

LIBNAME statement 89
CONNECTION TO component 434

syntax 426
CONNECTION_GROUP= argument

CONNECT statement 428
CONNECTION_GROUP= LIBNAME option 113
connections

CONNECT statement for establishing 427
controlling DBMS connections 29
DB2 under z/OS 530
DB2 under z/OS, optimizing 509
librefs and 108
simultaneous, maximum number allowed 159
specifying when connection occurs 140
terminating 431
timeout 115
to DBMS server for threaded reads 297
utility connections 200
with name of authentication domain metadata object 96

CONNECTION_TIMEOUT= LIBNAME option 115
CONTENTS procedure

DBMS data with 861
control statements

file for 215, 220
converting descriptors to SQL views 881

CREATE statement
ACCESS procedure 898
SQL procedure 433

CREATE TABLE statement 300
adding DBMS-specific syntax to 124

Cross Memory Services (XMS) 529
CSV column values 254
CSV mode

quotation character for 274
currency control 30
Cursor Library 200
cursor stability reads

Informix 584
cursor type 116, 295
CURSOR_TYPE= data set option 295
CURSOR_TYPE= LIBNAME option 116
CV2VIEW procedure 881

converting a library of view descriptors 889
converting an individual view descriptor 886
examples 886
syntax 882

cylinders
LOAD utility 233

D
data

displaying 8
user-defined (Sybase) 758

data access
ACCESS procedure 893
from DBMS objects 62
repeatedly accessing 37

data buffers
MultiLoad 342
transferring data to Teradata 288, 335

data classes
for SMS-managed data sets 222

data conversions
Aster nCluster 453
DB2 under UNIX and PC Hosts, DBLOAD proce-

dure 481
DB2 under UNIX and PC Hosts, LIBNAME state-

ment 480
DB2 under z/OS, ACCESS procedure 525
DB2 under z/OS, DBLOAD procedure 526
DB2 under z/OS, LIBNAME statement 524
Greenplum 551
HP Neoview 571
Informix, LIBNAME statement 587
Informix, SQL pass-through facility 588
Microsoft SQL Server 602
MySQL 617
Netezza 650
ODBC 679
OLE DB 705
Oracle, ACCESS procedure 737
Oracle, DBLOAD procedure 738
Oracle, LIBNAME statement 735
overhead limit 106
overhead limit for performing in Teradata instead of

SAS 294
performed by SAS or Teradata 104
Sybase, ACCESS procedure 760
Sybase, DBLOAD procedure 760
Sybase, LIBNAME statement 758

938 Index

Sybase IQ 778
Teradata 104, 292, 294, 841
Teradata DBMS server versus SAS 292

data copy
preserving backslashes in literals 147

data extraction
numeric precision and 8

data functions 62
DATA= option

PROC DB2UTIL statement 503
data ordering

threaded reads and 58
data providers

connecting directly to (OLE DB) 687
data representation

numeric precision and 7
data security 26

See also security
controlling DBMS connections 29
customizing connect and disconnect exits 31
defining views and schemas 29
extracting DBMS data to data sets 28
locking, transactions, and currency control 30
protecting connection information 28

data set options 207
affecting threaded reads 53
Aster nCluster 443
DB2 under UNIX and PC Hosts 460
DB2 under z/OS 487
DB2 under z/OS, bulk loading 515
FastLoad 805
FastLoad with TPT API 809
Greenplum 537
Greenplum, for bulk loading 546
HP Neoview 557
in-database procedures and 71
Informix 576
Microsoft SQL Server 595
multi-statement insert with TPT API data set options 810
MultiLoad 806
MultiLoad with TPT API 810
MySQL 608
Netezza 625
ODBC 660
OLE DB 689
Oracle 711
specifying in SQL procedure 207
Sybase 743
Sybase IQ 767
Teradata 788
TPT API 808

data set tables
updating 198

data sets
appending to DBMS tables 924
combining SAS and DBMS data 849
controlling access to 909
creating from DBMS data 848
creating tables with 23
DB2 under z/OS, creating from 500
DB2 under z/OS, manipulating rows 502
extracting DBMS data to 28
number of volumes for extending 236
rapidly retrieving rows 102, 103, 290
result data sets 107
SMS-managed 222, 228, 234

writing functions to 189
data source commands

timing out 108
data sources

default login timeout 158
schemas 367
updating and deleting rows in 198

DATA step views 6
data transfer

named pipes for 287
data types

Aster nCluster 452
changing default 923
DB2 under UNIX and PC Hosts 477
DB2 under z/OS 521
DBMS columns 921, 923
Greenplum 548
HP Neoview 568
Informix 585
Microsoft SQL Server 602
MySQL 615
Netezza 648
ODBC 678
OLE DB 704
Oracle 729
overriding SAS defaults 315
resetting to default 921
SAS_PUT() function and (Teradata) 819
specifying 320
Sybase 755
Sybase IQ 776
Teradata 819, 838

data warehouse
SAS_PUT() function in (Netezza) 644
user-defined formats in (Netezza) 637

database administrators
DB2 under z/OS 529
privileges and 25

DATABASE= connection option
Aster nCluster 440
Greenplum 534
MySQL 606
Netezza 623
Sybase 741
Sybase IQ 764
Teradata 786

database connection statements
ACCESS procedure 896
DBLOAD procedure 915

database links 307
database name

for bulk loading 237
database objects

identifying with qualifiers 170
linking from local database to database objects on another

server 129
qualifiers when reading 360

database servers
Informix 588
librefs pointing to 179

databases
linking from default to another database on a connected

server 129
linking from local database to database objects on another

server 129

Index 939

DATASETS procedure
assigning passwords 27
DBMS data with 860
reading Oracle table names 169
showing synonyms 184

DATASOURCE= connection option
OLE DB 682

DATASRC= connection option
DB2 under UNIX and PC Hosts 457
Microsoft SQL Server 592
ODBC 657

DATE data type
Aster nCluster 453
casting 105
DB2 under UNIX and PC Hosts 479
DB2 under z/OS 523
Greenplum 549
HP Neoview 570
Informix 586
MySQL 617
Netezza 650
Oracle 730
Sybase 757
Sybase IQ 777
Teradata 839

date formats
of DBMS columns 365

DATETIME data type
Informix 586
MySQL 617
Sybase 757

datetime values
Aster nCluster 453
DB2 under UNIX and PC Hosts 479
DB2 under z/OS 523
Greenplum 549
HP Neoview 570
Netezza 649
reading as character strings or numeric date values 192

DB2
appending versus replacing rows during bulk loading 263
bulk loading data file as seen by server instance 280
overriding owner of catalog tables 403
parallelism 140
saving copy of loaded data 216
server data file 280

DB2 catalog tables
overriding default owner of 403

DB2 SELECT statement 221
DB2 subsystem identifier 514
DB2 subsystem name 513
DB2 tables 512

database and tablespace for 512
deleting rows 502, 506
inserting data 505
inserting rows 502
modifying data 505
updating rows 502

DB2 under UNIX and PC Hosts 456, 477
autopartitioning scheme 464
bulk loading 472
capturing bulk-load statistics into macro variables 474
configuring EEE nodes on physically partitioned

databases 466
data conversions, DBLOAD procedure 481
data conversions, LIBNAME statement 480

data set options 460
data types 477
date, time, and timestamp data 479
DBLOAD procedure 468
DBSLICE= data set option 465
DBSLICEPARM= LIBNAME option 464
in-database procedures 475
LIBNAME statement 456
locking 475
maximizing load performance 474
naming conventions 477
NULL values 480
nullable columns 464
numeric data 478
passing joins to 472
passing SAS functions to 470
special catalog queries 463
SQL pass-through facility 462
string data 478
supported features 76
temporary tables 467
WHERE clauses 464

DB2 under z/OS 485
ACCESS procedure 496
accessing system catalogs 532
attachment facilities 531
autopartitioning scheme 491
bulk loading 515
bulk loading, file allocation and naming 516
calling stored procedures 494
character data 522
client/server authorization 527
column selection for MOD partitioning 491
connections 530
creating SAS data sets from 500
data conversions, ACCESS procedure 525
data conversions, DBLOAD procedure 526
data conversions, LIBNAME statement 524
data set options 487
data set options for buik loading 515
data types 521
database administrator information 529
DB2 subsystem identifier 514
DB2EXT procedure 500
DB2UTIL procedure 502
DBLOAD procedure 498
DBSLICE= data set option 492
DBSLICEPARM= LIBNAME option 492
DDF Communication Database 531
deleting rows 502
how it works 529
inserting rows 502
LIBNAME statement 485
locking 520
modifying DB2 data 505
naming conventions 521
NULL values 523
numeric data 522
optimizing connections 509
passing joins to 511
passing SAS functions to 510
performance 507
Resource Limit Facility 507
return codes 514
SQL pass-through facility 489
string data 522

940 Index

supported features 77
system options 512
temporary tables 492
updating rows 502
WHERE clauses restricting autopartitioning 492

DB2CATALOG= system option 403
DB2DBUG system option 512
DB2DECPT= system option 512
DB2EXT procedure 500

examples 502
EXIT statement 502
FMT statement 501
RENAME statement 501
SELECT statement 501
syntax 500

DB2IN= system option 512
DB2PLAN= system option 513
DB2RRS system option 513
DB2RRSMP system option 513
DB2SSID= system option 513
DB2UPD= system option 513
DB2UTIL procedure 502

ERRLIMIT statement 505
example 506
EXIT statement 505
MAPTO statement 504
modifying DB2 data 505
RESET statement 504
SQL statement 505
syntax 503
UPDATE statement 505
WHERE statement 505

DBCLIENT_MAX_BYTES= LIBNAME option 119
DBCOMMIT= data set option 297

FastLoad and 805
DBCOMMIT= LIBNAME option 120
DBCONDITION= data set option 299
DBCONINIT= argument

CONNECT statement 429
DBCONINIT= LIBNAME option 121
DBCONTERM= argument

CONNECT statement 429
DBCONTERM= LIBNAME option 123
DBCREATE_TABLE_OPTS= data set option 300
DBCREATE_TABLE_OPTS= LIBNAME option 124
DBDATASRC= connection option

Informix 575
DBDATASRC environment variables

Informix 588
DBFMTIGNORE= system option 404
DBFORCE= data set option 301
DBGEN_NAME= argument

CONNECT statement 429
DBGEN_NAME= data set option 302
DBGEN_NAME= LIBNAME option 125
DBIDIRECTEXEC= system option 405
DBINDEX= data set option 303

joins and 48
replacing missing values 351

DBINDEX= LIBNAME option 126
DBKEY= data set option 305

format of WHERE clause with 133
joins and 48
replacing missing values 351

DBLABEL= data set option 306

DB_LENGTH_SEMANTICS_BYTE= LIBNAME op-
tion 118

DBLIBINIT= LIBNAME option 127
DBLIBTERM= LIBNAME option 128
DBLINK= data set option 307
DBLINK= LIBNAME option 129
DBLOAD procedure, relational databases 4, 911

database connection statements 915
DB2 under UNIX and PC Hosts 468
DB2 under UNIX and PC Hosts data conversions 481
DB2 under z/OS 498
DB2 under z/OS data conversions 526
example 924
how it works 65
Microsoft SQL Server 598
names 14
ODBC 670
Oracle 721
Oracle data conversions 738
properties of 912
sending data from SAS to DBMS 911
Sybase 750
Sybase data conversions 760
syntax 913
unsupported in Teradata 783

DBMASTER= data set option 308
DBMAX_TEXT= argument

CONNECT statement 429
DBMAX_TEXT= data set option 309
DBMAX_TEXT= LIBNAME option 130
DBMS

assigning libref to remote DBMS 92
autocommit capability 209
connecting to, with CONNECT statement 427
failures when passing joins to 45
passing DISTINCT and UNION processing to 46
passing functions to, with SQL procedure 42
passing functions to, with WHERE clauses 47
passing joins to 43
passing WHERE clauses to 47
pushing heterogeneous joins to 39
submitting SQL statements to 922

DBMS data
accessing/extracting 893
APPEND procedure with 864
calculating statistics from 864
combining with SAS data 849, 866
CONTENTS procedure with 861
creating data sets from 848
creating DBMS tables 22
DATASETS procedure with 860
extracting to data sets 28
MEANS procedure with 859
PRINT procedure with 848
pushing updates 39
RANK procedure with 862
reading from multiple tables 850
renaming 14
repeatedly accessing 37
retrieving 15
retrieving and using in queries or views 434
retrieving with pass-through query 867
SAS views of 6
selecting and combining 865
sorting 37
SQL procedure with 851

Index 941

subsetting and ordering 299
TABULATE procedure with 863
UPDATE statement with 850
updating 856

DBMS engine
codepage for converting character data 214
trace information generated from 408

DBMS objects
accessing data from 62
naming behavior when creating 16

DBMS= option
PROC ACCESS statement 896

DBMS security 25
privileges 25
triggers 26

DBMS server
interrupting SQL processes on 162
number of connections for threaded reads 297

DBMS tables 90
See also tables
access descriptors based on 915
access methods 4
appending data sets to 924
committing or saving after inserts 915
creating 65, 858
creating and loading 918, 922
dropping variables before creating 916
inserting data with DBMS facility 103
limiting observations loaded to 917
loading data subsets into 923
locking data 196
naming 922
preserving column names 358
preserving names 168
querying 851
querying multiple 854
reading data from multiple 850
reading from 90
verifying indexes 303
writing to 90

DBMSTEMP= LIBNAME option 131
DBNULL= data set option 310
DBNULLKEYS= data set option 311
DBNULLKEYS= LIBNAME option 133
DB_ONE_CONNECT_PER_THREAD= data set op-

tion 297
DBPROMPT= argument

CONNECT statement 429
DBPROMPT= data set option 312
DBPROMPT= LIBNAME option 134
DBSASLABEL= data set option 314
DBSASLABEL= LIBNAME option 136
DBSASTYPE= data set option 315
DBSERVER_MAX_BYTES= LIBNAME option 136
DBSLICE= data set option 316

Aster nCluster 448
configuring SQL Server partitioned views for 668
DB2 under UNIX and PC Hosts 465
DB2 under z/OS 492
Greenplum 541
HP Neoview 561
Informix 581
ODBC 667
Sybase 316
Sybase IQ 316, 771
threaded reads and 53

DBSLICEPARM= data set option 318
Sybase 318
Sybase IQ 318
threaded reads and 53

DBSLICEPARM= LIBNAME option 138
Aster nCluster 447
DB2 under UNIX and PC Hosts 464
DB2 under z/OS 492
Greenplum 541
HP Neoview 561
Informix 581
ODBC 667
Sybase 138
Sybase IQ 138, 770

DBSRVTP= system option 407
DBTYPE= data set option 320
DDF Communication Database 531
debugging

DB2 under z/OS 512
tracing information for 194

DECIMAL data type
Aster nCluster 453
casting 105
DB2 under UNIX and PC Hosts 479
DB2 under z/OS 523
Greenplum 549
HP Neoview 569
Informix 586
MySQL 616
Netezza 649
Sybase 756
Sybase IQ 777
Teradata 840

DECPOINT= option 512
default database

linking to another database on a connected server 129
default login timeout 158
DEFER= argument

CONNECT statement 430
DEFER= LIBNAME option 140
DEGREE= data set option 322
DEGREE= LIBNAME option 140
degree of numeric precision 7
delete rules

MySQL 611
DELETE statement

DBLOAD procedure 916
SQL procedure 142, 433
SQL procedure, passing to empty a table 45

DELETE_MULT_ROWS= LIBNAME option 141
delimiters

bulk loading 242
delimiting identifiers 173
descriptor files

ACCESS procedure with 907
creating 898
listing columns in, with information 900
resetting columns to default settings 903
updating 906

descriptors 907
ACCESS procedure with 907

DIMENSION= data set option 323
DIMENSION= LIBNAME option 142
dimension tables 142, 323
DIRECT option

SQL*Loader 244

942 Index

DIRECT_EXE= LIBNAME option 142
directory names

special characters in 825
special characters in (Netezza) 642

DIRECT_SQL= LIBNAME option 46, 143
dirty reads

DB2 under UNIX and PC Hosts 476
Informix 584
Microsoft SQL Server 601
ODBC 677
OLE DB 700
Sybase IQ 774

discarded records 245
disconnect exits 31
DISCONNECT statement

SQL procedure 431
displaying data

numeric precision and 8
DISTINCT operator

passing to DBMS 46
DISTRIBUTE ON clause

column names in 324
Distributed Relational Database Architecture (DRDA) 531
DISTRIBUTED_BY= data set option 323
DISTRIBUTE_ON= data set option 324
DOUBLE data type

Aster nCluster 452
DB2 under UNIX and PC Hosts 479
DB2 under z/OS 523
Greenplum 549
HP Neoview 569
MySQL 616
Netezza 649
Sybase IQ 777

DOUBLE PRECISION data type
Aster nCluster 452
DB2 under UNIX and PC Hosts 479
DB2 under z/OS 523
Greenplum 549
Informix 586
Netezza 649
Sybase IQ 777

double quotation marks
naming and 15

DQUOTE=ANSI option
naming behavior and 15, 20

DRDA (Distributed Relational Database Architecture) 531
Driver Manager

ODBC Cursor Library and 200
DROP= data set option

limiting retrieval 36
DROP statement

ACCESS procedure 899
SQL procedure 433

DSN= connection option
Aster nCluster 441
Greenplum 535
HP Neoview 555
Netezza 623
ODBC 657
Sybase IQ 765

DSN= LIBNAME option 592
DSN= statement, DBLOAD procedure

Microsoft SQL Server 599
ODBC 671

duplicate rows 370

dynamic data
accessing in Web tables 546

E
EEE nodes

configuring on physically partitioned databases 466
embedded LIBNAME statements

SQL views with 90
ENABLE_BULK= LIBNAME option 145
encoding

character set encoding for bulk load external table 247
column length for client encoding 119
maximum bytes per single character in server encod-

ing 136
encryption 379
engines

blocking operations and 407
column labels used by 136
generating trace information from DBMS engine 408

ENUM data type
MySQL 615

ERRLIMIT= data set option 325
ERRLIMIT= LIBNAME option 146
ERRLIMIT statement

DB2UTIL procedure 505
DBLOAD procedure 916

error codes 401
error files 100
error limits

for Fastload utility 146
rollbacks and 325

error messages 401
ERROR= option

PROC DB2UTIL statement 504
error tracking

acquisition error tables 337, 338
errors 279
escape sequences 248
ESCAPE_BACKSLASH= data set option 327
ESCAPE_BACKSLASH= LIBNAME option 147
exception tables 251
exclusive locks 156
EXECUTE statement

SQL procedure 432
EXIT statement

DB2EXT procedure 502
DB2UTIL procedure 505

explicit SQL
FastExport Utility and 794

external tables
accessing with protocols 544

extract data stream
newline characters as row separators 100, 266

extracting data 28
ACCESS procedure 893
numeric precision and 8

F
fact tables 142, 323

column name as partition key 164, 357
failed records 211
FASTEXPORT= LIBNAME option 147
FastExport Utility 792

case sensitivity and 792

Index 943

explicit SQL and 794
password security 793
redirecting log tables to alternate database 157
setup 793
usage 794
usage exceptions 795
versus partitioning WHERE clauses 795

FastLoad 804
data set options 805
error limit for 146
examples 811
features and restrictions 804
invoking 804
starting with TPT API 809
TPT API data set options 809
TPT API features and restrictions 808

features by host 75
Aster nCluster 75
DB2 under UNIX and PC Hosts 76
DB2 under z/OS 77
Greenplum 77
HP Neoview 78
Informix 78
Microsoft SQL Server 79
MySQL 79
Netezza 80
ODBC 81
OLE DB 82
Oracle 82
Sybase 83
Sybase IQ 84
Teradata 85

features table 5
FETCH_IDENTITY= data set option 328
FETCH_IDENTITY= LIBNAME option 149
file:// protocol 546
file allocation

bulk loading, DB2 under z/OS 516
file server

configuring 545
FLOAT data type 404

DB2 under UNIX and PC Hosts 479
DB2 under z/OS 523
Greenplum 549
HP Neoview 569
Informix 586
MySQL 616
Sybase 756
Sybase IQ 777
Teradata 840

FMT statement
DB2EXT procedure 501

FORMAT statement
ACCESS procedure 899

formats
See also SAS formats
See also SAS formats (Netezza)
changing from default 899
date formats 365
determining publish dates 830
generating 897
numeric 404
publishing SAS formats (Teradata) 821
SAS 9.2 Formats Library for Teradata 819

FREQ procedure
DBMS data with 864

FROM_LIBREF= statement
CV2VIEW procedure 883

FROM_VIEW= statement
CV2VIEW procedure 883

fully qualified table names
Informix 589

function lists, in-memory 186
FUNCTION= option

PROC BD2UTIL statement 503
functions

See also SAS_PUT() function
data functions, processing 62
LIBNAME statement and 88
passing SQL functions to Sybase 752
passing to Aster nCluster 448
passing to DB2 under UNIX and PC Hosts 470
passing to DB2 under z/OS 510
passing to DBMS with SQL procedure 42
passing to DBMS with WHERE clauses 47
passing to Greenplum 542
passing to HP Neoview 564
passing to Informix 582
passing to Microsoft SQL Server 600
passing to MySQL 612
passing to Netezza 630
passing to ODBC 674
passing to OLE DB 697
passing to Oracle 723
passing to Sybase 751
passing to Sybase IQ 771
passing to Teradata 798
publishing (Teradata) 816
SQL 752
writing to data sets or logs 189

G
generated SQL

passing to DBMS for processing 143
gpfdist

stopping 545
troubleshooting 546

GRANT statement
SQL procedure 433

GRAPHIC data type
DB2 under UNIX and PC Hosts 478
DB2 under z/OS 522

Greenplum 534
accessing dynamic data in Web tables 546
accessing external tables with protocols 544
autopartitioning scheme 540
bulk loading 544
configuring file server 545
data conversions 551
data set options 537
data set options for bulk loading 546
data types 548
date, time, and timestamp data 549
DBSLICE= data set option 541
DBSLICEPARM= LIBNAME option 541
file:// protocol 546
LIBNAME statement 534
naming conventions 547
NULL values 550
nullable columns 541
numeric data 548

944 Index

passing joins to 544
passing SAS functions to 542
special catalog queries 539
SQL pass-through facility 539
stopping gpfdist 545
string data 548
supported features 77
troubleshooting gpfdist 546
WHERE clauses 541

group ID 208
qualifying table names with 97

H
heterogeneous joins

pushing to DBMS 39
$HEX format

Sybase 761
host, features by 75
HOST= connection option

Sybase IQ 764
HP Neoview 554

autopartitioniing scheme 561
bulk loading and extracting 565
data conversions 571
data set options 557
data types 568
date, time, and timestamp data 570
DBSLICE= data set option 561
DBSLICEPARM= LIBNAME option 561
LIBNAME statement 554
naming conventions 568
NULL values 570
nullable columns 561
numeric data 569
parallel stream option for Transporter 282
passing joins to 565
passing SAS functions to 564
retries for Transporter 285
special catalog queries 560
SQL pass-through facility 559
string data 569
supported features 78
temporary tables 562
truncating target tables 286
unqualified name of primary segment 284
WHERE clauses 561

HP-UX
DB2 under UNIX and PC Hosts 76
HP Neoview 78
Informix 78
Microsoft SQL Server 79
MySQL 79
Netezza 80
ODBC 81
Oracle 82
Sybase 83
Sybase IQ 84
Teradata 85

HP-UX for Itanium
DB2 under UNIX and PC Hosts 76
Greenplum 77
HP Neoview 78
Informix 78
Microsoft SQL Server 79
MySQL 79

Netezza 80
ODBC 81
Oracle 82
Sybase 83
Sybase IQ 84
Teradata 85

I
identifiers

delimiting 173
identity column 260

populating during bulk loading 98
identity values 328

last inserted 149
IGNORE_READ_ONLY_COLUMNS= data set option 329
IGNORE_READ_ONLY_COLUMNS= LIBNAME op-

tion 149
importing

table data accessible during import 211
IN= data set option 330
in-database procedures 67

BY-groups 70
considerations and limitations 70
controlling messaging with MSGLEVEL option 72
data set options and 71
DB2 under UNIX and PC Hosts 475
generating SQL for 420
items preventing in-database processing 71
LIBNAME statement 71
Oracle 727
row order 70
running 69
SAS formats and 816
Teradata 831

in-database processing
deployed components for (Netezza) 636
deployed components for (Teradata) 819

IN= LIBNAME option 151
in-memory function lists 186
IN= option

PROC DB2EXT statement 500
indexes 303

maintenance, DB2 load utility 259
processing joins of large table and small data set 126
Sybase 746

%INDNZ_PUBLISH_FORMATS macro
example 643
running 638
syntax 638
tips for using 641

%INDTD_PUBLISH_FORMATS macro 816
example 826
modes of operation 825
publishing SAS formats 821
running 822
special characters in directory names 825
syntax 822
usage tips 824

Informix 574
autopartitioning scheme 580
character data 585
data conversions, LIBNAME statement 587
data conversions, SQL pass-through facility 588
data set options 576
data types 585

Index 945

database servers 588
date, time, and interval data 586
DBDATASRC environment variables 588
DBSLICE= data set option 581
DBSLICEPARM= LIBNAME option 581
default environment 574
fully qualified table names 589
LIBNAME statement 574
locking 584
naming conventions 585
NULL values 586
numeric data 586
Online database servers 588
passing joins to 583
passing SAS functions to 582
SE database servers 588
servers 588
SQL pass-through facility 577
stored procedures 578
supported features 78
temporary tables 581
WHERE clauses 581

initialization command
executing after every connection 121
executing once 127
user-defined 121, 127, 429

InnoDB table type 610
input processing

overriding default SAS data types 315
insert processing

forcing truncation of data 301
INSERT statement

SQL procedure 433
insert statements

Teradata 162, 348
INSERTBUFF= data set option 332
INSERTBUFF= LIBNAME option 152
inserting data

appending data sets to DBMS tables 924
DB2 tables 502, 505
limiting observations loaded 917
loading data subsets into DBMS tables 923
saving DBMS table after inserts 915

INSERT_SQL= data set option 331
INSERT_SQL= LIBNAME option 151
installation 61
INT data type

MySQL 616
Sybase 756

INT8 data type
Informix 586

INTEGER data type
Aster nCluster 452
casting 105
DB2 under UNIX and PC Hosts 479
DB2 under z/OS 523
Greenplum 549
HP Neoview 569
Informix 586
Netezza 649
Sybase IQ 777
Teradata 840

INTERFACE= LIBNAME option 154
interfaces 61

features by host 75
invoking 61

threaded reads and 52
interfaces file

name and location of 154
interrupting SQL processes 162
INTERVAL data type

Informix 586
INTERVAL DAY TO SECOND data type

Oracle 731
INTERVAL YEAR TO MONTH data type

Oracle 731
INTRINSIC-CRDATE format 831
INT_STRING= connection option

OLE DB 684
IP_CURSOR= connection option

Sybase 741
isolation levels 176, 195, 396

J
joins

determining larger table 308
failures when passing to DBMS 45
indexes for joins of large table and small data set 126
outer joins 190
passing to Aster nCluster 449
passing to DB2 under UNIX and PC Hosts 472
passing to DB2 under z/OS 511
passing to DBMS 43
passing to Greenplum 544
passing to HP Neoview 565
passing to Informix 583
passing to MySQL 613
passing to Netezza 631
passing to ODBC 675
passing to OLE DB 698
passing to Oracle 725
passing to Sybase 753
passing to Sybase IQ 772
passing to Teradata 800
performance of joins between two data sources 160
performed by SAS 48
processing 62
pushing heterogeneous joins 39

K
KEEP= data set option

limiting retrieval 36
key column for DBMS retrieval 305
keyset-driven cursor 154
keysets 333

number of rows driven by 154
KEYSET_SIZE= data set option 333
KEYSET_SIZE= LIBNAME option 154

L
LABEL statement

DBLOAD procedure 917
labels

column labels for engine use 136
DBMS column names defaulting to 917

language support
Sybase 762

LARGEINT data type
HP Neoview 569

946 Index

last inserted identity value 149
length

CHAR or VARCHAR data type columns 94, 95
column length for client encoding 119
names 12
very long character data types 130

LIBNAME options 89, 92
prompting window for specifying 92

LIBNAME statement
See SAS/ACCESS LIBNAME statement

libraries
containing descriptors for conversion 883
disassociating librefs from 90
writing attributes to log 90

librefs
assigning interactively 88
assigning to remote DBMS 92
assigning with LIBNAME statement 87, 91
client/server authorization and 527
DBMS connections and 108
disassociating from libraries 90
level for opening connections 93
pointing to database servers 179
shared connections for multiple librefs 113

LIMIT= option
PROC DB2UTIL statement 504

LIMIT= statement
DBLOAD procedure 917

links
database links 307
from default database to another database 129
from local database to database objects on another

server 129
Linux for Intel

Aster nCluster 75
DB2 under UNIX and PC Hosts 76
Greenplum 77
HP Neoview 78
Microsoft SQL Server 79
MySQL 79
Netezza 80
ODBC 81
Oracle 82
Sybase 83
Sybase IQ 84
Teradata 85

Linux for Itanium
Oracle 82

Linux x64
Aster nCluster 75
DB2 under UNIX and PC Hosts 76
Greenplum 77
Informix 78
Microsoft SQL Server 79
MySQL 79
Netezza 80
ODBC 81
Oracle 82
Sybase 83
Sybase IQ 84
Teradata 85

LIST argument
LIBNAME statement 90

LIST statement
ACCESS procedure 900
DBLOAD procedure 918

literals
backslashes in 147, 327

load data stream
newline characters as row separators 100, 266

load driver 808
load performance

examples 811
FastLoad and 804
MultiLoad and 805
Teradata 804

LOAD process
recoverability of 275

LOAD statement
DBLOAD procedure 918

LOAD utility
base filename and location of temporary files 277
control statement 225, 226, 227
execution mode 227
index maintenance 259
restarts 232
running against existing tables 235
SYSDISC data set name 223
SYSIN data set name 225
SYSMAP data set name 229
SYSPRINT data set name 229
SYSREC data set name 231
temporary data sets 223
unique identifier for a given run 237

loading data 192
error limit for Fastload utility 146

loading tables
bulk copy for 145

local databases
linking to database objects on another server 129

LOCATION= connection option
DB2 under z/OS 485

LOCATION= data set option 334
LOCATION= LIBNAME option 155
locking 363, 398

controlling 30
DB2 under UNIX and PC Hosts 475
DB2 under z/OS 520
DBMS resources 197
during read isolation 362
during read transactions 176, 362
during update transactions 397
exclusive locks 156
Informix 584
Microsoft SQL Server 600
ODBC 676
OLE DB 699
Oracle 728
shared locks 156, 334
Sybase 754
Sybase IQ 774
Teradata 832
wait time for 156, 157

LOCKTABLE= data set option 334
LOCKTABLE= LIBNAME option 156
LOCKTIME= LIBNAME option 156
LOCKWAIT= LIBNAME option 157
log

writing functions to 189
writing library attributes to 90

log files
for bulk loading 264

Index 947

log tables
redirecting to alternate database 157

LOGDB= LIBNAME option 157
login timeout 158
LOGIN_TIMEOUT= LIBNAME option 158
long DBMS data type 429
LONG VARCHAR data type

DB2 under UNIX and PC Hosts 478
DB2 under z/OS 522
Greenplum 548
Sybase IQ 776
Teradata 839

LONG VARGRAPHIC data type
DB2 under UNIX and PC Hosts 478
DB2 under z/OS 522

LONGBLOB data type
MySQL 615

LONGTEXT data type
MySQL 615

M
macro variables 401

capturing bulk-load statistics into 474
management class

for SMS-managed data sets 228
MAPTO statement

DB2UTIL procedure 504
MAX_CONNECTS= LIBNAME option 159
MBUFSIZE= data set option 335

MultiLoad and 806
MDX command

defining result data sets 107
MDX statements 700
MEANS procedure

DBMS data with 859
MEDIUMBLOB data type

MySQL 615
MEDIUMINT data type

MySQL 616
MEDIUMTEXT data type

MySQL 615
memory

for bulk loading 218
messaging

controlling with MSGLEVEL option 72
metadata

for result data sets 107
Microsoft Bulk Copy (BCP) facility 671, 676
Microsoft SQL Server 591

configuring partitioned views for DBSLICE= 668
data conversions 602
data set options 595
data types 602
DBLOAD procedure 598
LIBNAME statement 592
locking 600
naming conventions 601
NULL values 602
NULL values and bulk loading 99, 261
passing SAS functions to 600
populating identity column during bulk loading 98
SQL pass-through facility 597
supported features 79

Microsoft Windows for Intel
Aster nCluster 75

DB2 under UNIX and PC Hosts 76
Greenplum 77
HP Neoview 78
MySQL 79
Netezza 80
ODBC 81
OLE DB 82
Oracle 82
Sybase 83
Sybase IQ 84
Teradata 85

Microsoft Windows for Itanium
DB2 under UNIX and PC Hosts 76
Greenplum 77
MySQL 79
Netezza 80
ODBC 81
OLE DB 82
Oracle 82
Sybase 83
Teradata 85

Microsoft Windows for x64
Sybase IQ 84

Microsoft Windows x64
Aster nCluster 75
DB2 under UNIX and PC Hosts 76
Netezza 80
ODBC 81
OLE DB 82
Oracle 82

missing values 350
replacing character values 351
result set differences and 31

ML_CHECKPOINT= data set option 336, 806
ML_ERROR1= data set option 337, 806
ML_ERROR2= data set option 338, 806
ML_LOG= data set option 339, 806
ML_RESTART= data set option 340, 807
ML_WORK= data set option 341, 807
MOD function

autopartitioning and 57
MOD partitioning

column selection for 491
MODE= LIBNAME option 159
MONEY data type

Informix 586
Sybase 757

MSGLEVEL system option
controlling messaging with 72

multi-statement insert
starting with TPT API 810
TPT API data set options 810
TPT API features and restrictions 810

MULTI_DATASRC_OPT= data set option
joins and 48

MULTI_DATASRC_OPT= LIBNAME option 160
MultiLoad 805

acquisition error tables 337, 338
bulk loading 342
data buffers 342
data set options 806
enabling/disabling 342
examples 347, 811
features and restrictions 805
prefix for temporary table names 339
restart table 340

948 Index

restarting 343
retries for logging in to Teradata 371, 372
setup 806
starting with TPT API 810
storing intermediate data 341
temporary tables 343
TPT API data set options 810
TPT API features and restrictions 809
work table 341

MULTILOAD= data set option 342
multiphase commit and rollback calls 513
MULTISTMT= data set option 348
MULTISTMT= LIBNAME option 162
MyISAM table type 610
MySQL 605

autocommit and table types 610
case sensitivity 619
character data 615
data conversions 617
data set options 608
data types 615
date, time, and timestamp data 617
LIBNAME statement 605
naming conventions 614
numeric data 616
passing functions to 612
passing joins to 613
SQL pass-through facility 609
supported features 79
update and delete rules 611

N
name literals 13, 22
named pipes 287
names 11

See also naming conventions
ACCESS procedure 13
behavior when creating DBMS objects 16
behavior when retrieving DBMS data 15
case sensitivity 12
database name for bulk loading 237
DB2 under z/OS, bulk loading file allocation 516
DBLOAD procedure 14
DBMS columns 920, 921
DBMS tables 922
default behaviors 13
double quotation marks and 15
examples of 17
length of 12
modification and truncation 13
name literals 13, 22
options affecting 15
overriding naming conventions 15
preserving column names 18
preserving table names 19
renaming DBMS columns to valid SAS names 125
renaming DBMS data 14
replacing unsupported characters 17

naming conventions 12
See also names
Aster nCluster 451
DB2 under UNIX and PC Hosts 477
DB2 under z/OS 521
Greenplum 547
HP Neoview 568

Informix 585
Microsoft SQL Server 601
MySQL 614
Netezza 648
ODBC 677
OLE DB 703
Oracle 729
Sybase 755
Sybase IQ 775
Teradata 837

national language support
Sybase 762

NCHAR data type
Informix 585
Netezza 649

Netezza 622
See also SAS formats (Netezza)
bulk loading and unloading 632
data conversions 650
data set options 625
data types 648
date, time, and timestamp data 649
LIBNAME statement 622
naming conventions 648
NULL values 650
numeric data 649
passing joins to 631
passing SAS functions to 630
rapidly retrieving a large number of rows 103
special catalog queries 627
SQL pass-through facility 626
string data 649
supported features 80
temporary tables 628

New Library window 88
newline characters

as row separators for load or extract data stream 100, 266
NLS

Sybase 762
NODB2DBUG system option 512
NODB2RRS system option 513
NODB2RRSMP system option 513
non-ANSI standard SQL 4
nonrepeatable reads 476

Microsoft SQL Server 601
ODBC 677
OLE DB 700
Sybase IQ 775

NOPROMPT= connection option
Aster nCluster 441
DB2 under UNIX and PC Hosts 457
Microsoft SQL Server 593
ODBC 657

NULL values
accepted in DBMS columns 919
as valid value when tables are created 310
bulk loading and 99
DB2 under UNIX and PC Hosts 480
DB2 under z/OS 523
Greenplum 550
HP Neoview 570
Informix 586
Microsoft SQL Server 602
Microsoft SQL Server columns 261
Netezza 650
ODBC 678

Index 949

OLE DB 704
Oracle 735
result set differences and 31
Sybase 758
Sybase IQ 778
Teradata 840

nullable columns
Aster nCluster 447
DB2 under UNIX and PC Hosts 464
Greenplum 541
HP Neoview 561
ODBC 667
Sybase IQ 770

NULLCHAR= data set option 350
NULLCHARVAL= data set option 351
NULLIF clause

suppressing 282
NULLS statement, DBLOAD procedure 919

ODBC 671
NUMBER data type

Oracle 730
NUMBER(p) data type

Oracle 730
NUMBER(p,s) data type

Oracle 730
numeric data

Aster nCluster 452
DB2 under UNIX and PC Hosts 478
DB2 under z/OS 522
Greenplum 548
HP Neoview 569
Informix 586
MySQL 616
Netezza 649
Oracle 730
Sybase 756
Sybase IQ 776
Teradata 840

NUMERIC data type
Aster nCluster 453
DB2 under UNIX and PC Hosts 479
Greenplum 549
HP Neoview 569
Informix 586
Netezza 649
Sybase 756
Sybase IQ 777

numeric formats 404
numeric precision 7

data representation and 7
displaying data and 8
options for choosing degree of 9
references for 10
rounding and 8
selectively extracting data and 8

NVARCHAR data type
Informix 585

O
objects

naming behavior when creating 16
observations 917
ODBC 654

autopartitioning scheme 666
bulk loading 676

components and features 654
Cursor Library 200
data conversions 679
data set options 660
data types 678
DBLOAD procedure 670
DBSLICE= data set option 667
DBSLICEPARM= LIBNAME option 667
LIBNAME statement 656
locking 676
naming conventions 677
NULL values 678
nullable columns 667
passing joins to 675
passing SAS functions to 674
PC platform 654, 655
special catalog queries 664
SQL pass-through facility 662
SQL Server partitioned views for DBSLICE= 668
supported features 81
temporary tables 672
UNIX platform 655
WHERE clauses 667

OLAP data
accessing with OLE DB 700
OLE DB SQL pass-through facility with 701

OLE DB 681
accessing OLAP data 700
bulk loading 699
connecting directly to data provider 687
connecting with OLE DB services 687
data conversions 705
data set options 689
data types 704
LIBNAME statement 682
locking 699
naming conventions 703
NULL values 704
passing joins to 698
passing SAS functions to 697
special catalog queries 691
SQL pass-through facility 690, 701
supported features 82
temporary tables 695

OLE DB services
connecting with 687

OLEDB_SERVICES= connection option 683
open database connectivity

See ODBC
OpenVMS for Itanium

Netezza 80
Oracle 82

operating system command
for segment instances 249

optimizing SQL usage
See SQL usage, optimizing

options
affecting naming behavior 15

Oracle 708
ACCESS procedure 719
autopartitioning scheme 715
binary data 735
bulk loading 262, 725
CHAR/VARCHAR2 column lengths 118
character data 729
data conversions, ACCESS procedure 737

950 Index

data conversions, DBLOAD procedure 738
data conversions, LIBNAME statement 735
data set options 711
data types 729
database links 307
date, timestamp, and interval data 730
DBLOAD procedure 721
hints 357
in-database procedures 727
LIBNAME statement 708
linking from local database to database objects on another

server 129
locking 728
naming conventions 729
nonpartitioned tables 717
NULL and default values 735
numeric data 730
partitioned tables 716
passing joins to 725
passing SAS functions to 723
performance 718, 723
SQL pass-through facility 713
supported features 82
temporary tables 718

Oracle SQL*Loader
See SQL*Loader

ordering DBMS data 299
OR_ENABLE_INTERRUPT= LIBNAME option 162
ORHINTS= data set option 357
OR_PARTITION= data set option 352
OR_UPD_NOWHERE= data set option 355
OR_UPD_NOWHERE= LIBNAME option 163
OUT= option

PROC ACCESS statement 896
PROC DB2EXT statement 501

outer joins 190
overhead limit

for data conversions 106
for data conversions in Teradata instead of SAS 294

P
packet size 164
PACKETSIZE= LIBNAME option 164
parallelism 322

building table objects 217
for DB2 140, 322
writing data to disk 246

partition key
creating fact tables 164, 357

partitioned tables
Oracle 716

partitioned views
SQL server, configuring for DBSLICE= 668

partitioning 352
See also autopartitioning
column selection for MOD partitioning 491
queries for threaded reads 316

partitioning WHERE clauses
FastExport versus 795
threaded reads 795

PARTITION_KEY= data set option 357
PARTITION_KEY= LIBNAME option 164
pass-through facility

See SQL pass-through facility

passing
functions, with WHERE clauses 47
joins 43
joins, and failures 45
SQL DELETE statement to empty a table 45
WHERE clauses 47

PASSWORD= connection option
Aster nCluster 441
DB2 under UNIX and PC Hosts 457
Greenplum 535
HP Neoview 555
Microsoft SQL Server 592
MySQL 606
Netezza 623
ODBC 657
OLE DB 682
Oracle 708
Sybase 740
Sybase IQ 765
Teradata 784

PASSWORD= statement, DBLOAD procedure
Microsoft SQL Server 599
ODBC 671

passwords
assigning 26
data set and descriptor access 909
FastExport Utility 793
protection levels 26

path
for bulk loading 270

PATH= connection option
Oracle 708

PC Hosts
See DB2 under UNIX and PC Hosts

PC platform
ODBC on 654, 655

performance
DB2 under z/OS 507
increasing SAS server throughput 35
indexes for processing joins 126
joins between two data sources 160
limiting retrieval 35
optimizing SQL statements in pass-through facility 405
optimizing SQL usage 41
Oracle 718, 723
processing queries, joins, and data functions 62
reducing table read time 51
repeatedly accessing data 37
sorting DBMS data 37
temporary table support 38
Teradata load performance 804
Teradata read performance 800
threaded reads and 51, 57

permanent tables 131
permissions

publishing SAS functions (Netezza) 643
phantom reads

DB2 under UNIX and PC Hosts 476
Microsoft SQL Server 601
ODBC 677
OLE DB 700
Sybase IQ 775

physically partitioned databases
configuring EEE nodes on 466

pipes 287

Index 951

plans
for connecting or binding SAS to DB2 513

PORT= connection option
Aster nCluster 440
Greenplum 534
HP Neoview 555
Netezza 623
Sybase IQ 764

port numbers 270, 271, 272
precision, numeric

See numeric precision
PreFetch 800

as global option 803
as LIBNAME option 803
enabling 166
how it works 801
option arguments 801
unexpected results 802
unusual conditions 802
when to use 801

PREFETCH= LIBNAME option 166, 803
PRESERVE_COL_NAMES= data set option 358

naming behavior and 15
PRESERVE_COL_NAMES= LIBNAME option 167

naming behavior and 15
PRESERVE_TAB_NAMES= LIBNAME option 168

naming behavior and 15
preserving

column names 18
table names 19

PRINT procedure
DBMS data with 848

privileges 25, 513
PROC CV2VIEW statement 882
PROC DBLOAD statement 914
procedures

See also in-database procedures
generating SQL for in-database processing of source

data 420
Informix stored procedures 578

PROMPT= connection option
Aster nCluster 441
DB2 under UNIX and PC Hosts 457
Microsoft SQL Server 593
ODBC 658
OLE DB 683

prompting window 92
prompts 429

DBMS connections and 312
to enter connection information 134

PROPERTIES= connection option
OLE DB 683

protocols
accessing external tables 544
for bulk loading 273

PROVIDER= connection option
OLE DB 682

PROVIDER_STRING= connection option
OLE DB 683

publishing SAS formats 816, 821
determining format publish dates 830
macro example 826
modes of operations for %INDTD_PUBLISH_FORMATS

macro 825
overview 821
running %INDTD_PUBLISH_FORMATS macro 822

special characters in directory names 825
sysntax for %INDTD_PUBLISH_FORMATS macro 822
Teradata permissions 826
tips for using %INDTD_PUBLISH_FORMATS

macro 824
publishing SAS formats (Netezza) 637

determining publish dates 647
how it works 635
macro example 643
overview 637
permissions 643
running %INDNZ_PUBLISH_FORMATS macro 638
syntax for %INDNZ_PUBLISH_FORMATS macro 638
tips for %INDNZ_PUBLISH_FORMATS 641

pushing
heterogeneous joins 39
updates 39

PUT function
in-database procedures and 816
mapping to SAS_PUT function 423

Q
QUALIFIER= data set option 360
QUALIFIER= LIBNAME option 170
qualifiers

reading database objects 360
qualifying table names 97
QUALIFY_ROWS= LIBNAME option 171
queries

Aster nCluster 445
DB2 under UNIX and PC Hosts 463
DBMS tables 851
Greenplum 539
HP Neoview 560
in subqueries 871
multiple DBMS tables 854
Netezza 627
ODBC 664
OLE DB 691
ordering results with BY clause 813
partitioning for threaded reads 316
processing 62
retrieving and using DBMS data in 434
retrieving DBMS data with pass-through queries 867
Sybase IQ 769
timeout for 173, 361

query bands 172, 360
QUERY_BAND= data set option 360
QUERY_BAND= LIBNAME option 172
QUERY_TIMEOUT= data set option 361
QUERY_TIMEOUT= LIBNAME option 173
QUIT statement

ACCESS procedure 901
DBLOAD procedure 920

quotation character
for CSV mode 274

quotation marks
delimiting identifiers 173
double 15

QUOTE_CHAR= LIBNAME option 173
QUOTED_IDENTIFIER= LIBNAME option 174

952 Index

R
random access engine

SAS/ACCESS engine as 180
RANK procedure

DBMS data with 862
ranking data 862
RAW data type

Oracle 735
read-only columns 329

ignoring when generating SQL statements 149
read-only cursors 116
read performance

Teradata 800
READBUFF= connection option

ODBC 658
READBUFF= data set option 364
READBUFF= LIBNAME option 175
reading data 64

with TPT API 147
READ_ISOLATION_LEVEL= data set option 362
READ_ISOLATION_LEVEL= LIBNAME option 176
READ_LOCK_TYPE= data set option 362
READ_LOCK_TYPE= LIBNAME option 176
READ_MODE_WAIT= data set option 363
READ_MODE_WAIT= LIBNAME option 178
READ_ONLY= connection option

Netezza 623
REAL data type

Aster nCluster 452
DB2 under z/OS 523
Greenplum 549
HP Neoview 569
Informix 586
Netezza 649
Sybase 756
Sybase IQ 777

records
failed records 211
rejected records 212

Recoverable Resource Manager Services Attachment Facility
(RRSAF) 513, 527, 529, 531

reject limit count 276
rejected records 212
relational databases

access methods 4
selecting an access method 4

remote DBMS
assigning libref to 92

remote library services (RLS) 92
remote stored procedures 496
REMOTE_DBTYPE= LIBNAME option 179
RENAME statement

ACCESS procedure 901
DB2EXT procedure 501
DBLOAD procedure 920

renaming
columns 14, 302, 920
DBMS data 14
tables 14
variables 14, 901

repeatable reads
Informix 584

repeatedly accessing data 37
REPLACE= data set option 207
REPLACE= statement

CV2VIEW procedure 883

representing data
numeric precision and 7

REQUIRED= connection option
Aster nCluster 441
DB2 under UNIX and PC Hosts 458
Microsoft SQL Server 593
ODBC 658
OLE DB 685

REREAD_EXPOSURE= LIBNAME option 180
RESET statement

ACCESS procedure 903
DB2UTIL procedure 504
DBLOAD procedure 921

Resource Limit Facility (DB2 under z/OS) 507
restart table 340
result sets

metadata and content of 107
null data and 31
qualifying member values 171

retrieving data
ACCESS procedure 893
KEEP= and DROP= options for limiting 36
limiting retrieval 35
naming behavior and 15
row and column selection for limiting 35

return codes 401
DB2 under z/OS 514
SQL pass-through facility 426

REVOKE statement
SQL procedure 433

rollbacks
error limits and 325

rounding data
numeric precision and 8

row order
in-database procedures and 70

row separators
newline characters for load or extract data stream 100,

266
rows

DB2 tables 502
deleting multiple rows 141
distributing across database segments 323
duplicate 370
inserting 151, 331
limiting retrieval 35
number driven by keyset 154
number in single insert operation 152, 332
number to process 199
rapidly retrieving 102, 103, 290
reading into buffers 364
updating and deleting in data sources 198
updating with no locking 163
wait time before locking 156
waiting indefinitely before locking 157

RRSAF (Recoverable Resource Manager Services Attach-
ment Facility) 513, 527, 529, 531

S
sample code

LIBNAME statement 847
SQL pass-through facility 867

sample data 875
descriptions of 875

Index 953

sampling
Teradata 816

SAS 9.2 Formats Library for Teradata 819
SAS/ACCESS

features by host 75
features for common tasks 5
installation requirements 61
interactions with SQL procedure 425
interfaces 61
interfaces and threaded reads 52
invoking interfaces 61
names 11
task table 5

SAS/ACCESS engine
as random access engine 180
blocking operations and 407
buffering bulk rows for output 289
reading data with TPT API 147

SAS/ACCESS LIBNAME statement 4, 87
accessing data from DBMS objects 62
advantages of 4
alternative to 425
arguments 89
assigning librefs 87, 91
assigning librefs interactively 88
assigning librefs to remote DBMS 92
Aster nCluster 440
Aster nCluster data conversions 453
connection options 89
data from a DBMS 90
DB2 under UNIX and PC Hosts 456
DB2 under UNIX and PC Hosts data conversions 480
DB2 under z/OS 485
DB2 under z/OS data conversions 524
disassociating librefs from libraries 90
functions and 88
Greenplum 534
Greenplum data conversions 551
how it works 62
HP Neoview 554
HP Neoview data conversions 571
in-database procedures and 71
Informix 574
Informix data conversions 587
LIBNAME options 89, 92
Microsoft SQL Server 592
Microsoft SQL Server data conversions 602
MySQL 605
MySQL data conversions 617
Netezza 622
Netezza data conversions 650
ODBC 656
ODBC data conversions 679
OLE DB 682
OLE DB data conversions 705
Oracle 708, 735
PreFetch as LIBNAME option 803
prompting window and LIBNAME options 92
sample code 847
sorting data 87
SQL views embedded with 90
Sybase 740
Sybase data conversions 758
Sybase IQ 764
Sybase IQ data conversions 778
syntax 89

Teradata 784, 841
TPT API LIBNAME options 808
writing library attributes to log 90

SAS/ACCESS views 6
SAS data views 6
SAS formats 634

9.2 Formats Library for Teradata 819
deploying 816
in-database procedures and 816
publishing 821
SAS_PUT() function and 816
Teradata 816

SAS formats (Netezza) 634
deployed components for in-database processing 636
determining format publish dates 647
explicit use of SAS_PUT() function 646
format publishing macro example 643
how it works 635
implicit use of SAS_PUT() function 644
%INDNZ_PUBLISH_FORMATS macro 638
%INDNZ_PUBLISH_FORMATS syntax 638
%INDNZ_PUBLISH_FORMATS tips 641
permissions 643
publishing 637
publishing overview 637
SAS_PUT() function in data warehouse 644
special characters in directory names 642
user-defined formats in data warehouse 637

SAS functions
passing to Aster nCluster 448
passing to DB2 under UNIX and PC Hosts 470
passing to DB2 under z/OS 510
passing to Greenplum 542
passing to HP Neoview 564
passing to Informix 582
passing to Microsoft SQL Server 600
passing to MySQL 612
passing to Netezza 630
passing to ODBC 674
passing to OLE DB 697
passing to Oracle 723
passing to Sybase 751
passing to Sybase IQ 771
passing to Teradata 798

SAS security 26
assigning passwords 26
controlling DBMS connections 29
customizing DBMS connect and disconnect exits 31
defining views and schemas 29
extracting DBMS data to data sets 28
locking, transactions, and currency control 30
protecting connection information 28
securing data 26

SAS server
increasing throughput 35

SAS views
creating 6

SAS Web Report Studio
using SAS_PUT() function with 831

SASDATEFMT= data set option 365
SAS_PUT() function 816

data types and 819
explicit use of 646, 829
implicit use of 644, 827
in data warehouse 644
mapping PUT function to 423

954 Index

publishing SAS formats 821
Teradata EDW 827
tips for using 830
with SAS Web Report Studio 831

SASTRACE= system option 408
location of trace messages 419

SASTRACELOC= system option 419
SAVEAS= statement

CV2VIEW procedure 884
SCHEMA= connection option

HP Neoview 555
SCHEMA= data set option 208, 367
SCHEMA= LIBNAME option 181
schemas 181, 367

data security 29
for stored procedures 496

security 26
See also data security
See also SAS security
assigning passwords 26
DBMS 25
privileges 25
result set differences and null data 31
SAS 26
securing data 26
triggers 26

segment host access
file location on Web server for 263

segment instances 250
operating system command for 249

SEGMENT_NAME= data set option 369
segments

creating tables in 369
SELECT statement

ACCESS procedure 903
DB2EXT procedure 501

SERIAL data type
Informix 586

SERIAL8 data type
Informix 586

SERVER= connection option
Aster nCluster 440
DB2 under z/OS 486
Greenplum 534
HP Neoview 555
Informix 575
MySQL 606
Netezza 622
Sybase 741
Sybase IQ 764

server encoding
maximum bytes per single character 136

servers
connecting with name of authentication domain metadata

object 96
Informix 588

SESSIONS= data set option 369
SESSIONS= LIBNAME option 183
SET= data set option 370
SET data type

MySQL 615
shared locks 156
SHOW_SYNONYMS= LIBNAME option 184
simultaneous connections

maximum number allowed 159

SLEEP= data set option 371
MultiLoad and 807

SMALLDATETIME data type
Sybase 757

SMALLFLOAT data type
Informix 586

SMALLINT data type
Aster nCluster 452
casting 105
DB2 under UNIX and PC Hosts 478
DB2 under z/OS 522
Greenplum 549
HP Neoview 569
Informix 586
MySQL 616
Netezza 649
Sybase 756
Sybase IQ 776
Teradata 840

SMALLMONEY data type
Sybase 757

SMS-managed data sets
data class for 222
management class for 228
storage class for 234

Solaris for SPARC
DB2 under UNIX and PC Hosts 76
Greenplum 77
HP Neoview 78
Informix 78
Microsoft SQL Server 79
MySQL 79
Netezza 80
ODBC 81
Oracle 82
Sybase 83
Sybase IQ 84
Teradata 85

Solaris x64
DB2 under UNIX and PC Hosts 76
Greenplum 77
MySQL 79
Netezza 80
ODBC 81
Oracle 82
Sybase 83
Sybase IQ 84
Teradata 85

SORT procedure
replacing with BY clause 815
Teradata 815

sorting data 87, 862
performance and 37
subsetting and ordering DBMS data 299
threaded reads and data ordering 58

source data
generating SQL for in-database processing of 420

source file record sets 284
special catalog queries

Aster nCluster 445
DB2 under UNIX and PC Hosts 463
Greenplum 539
HP Neoview 560
Netezza 627
ODBC 664
OLE DB 691

Index 955

Sybase IQ 769
special characters

in directory names 642, 825
stored in SYSDBMSG macro 401

spool files 185
SPOOL= LIBNAME option 185
SQL

ANSI-standard 4
executing statements 432
generating for in-database processing of source data 420
interrupting processes on DBMS server 162
non-ANSI standard 4
optimizing statement handling 405
passing delete statements 142
passing generated SQL to DBMS for processing 143

SQL functions
passing to Sybase 752

SQL pass-through facility 4, 425
advantages of 5
Aster nCluster 445
CONNECT statement 427
connecting with DBMS 427
CONNECTION TO component 434
DB2 under UNIX and PC Hosts 462
DB2 under z/OS 489
DISCONNECT statement 431
EXECUTE statement 432
generated return codes and error messages 402
Greenplum 539
how it works 63
HP Neoview 559
Informix 577
Informix data conversions 588
Microsoft SQL Server 597
MySQL 609
Netezza 626
ODBC 662
OLE DB 690, 701
optimizing statement handling 405
Oracle 713
queries in subqueries 871
retrieving and using DBMS data in SQL queries or

views 434
retrieving DBMS data with queries 867
return codes 426
sample code 867
sending statements to DBMS 432
shared connections for multiple CONNECT state-

ments 113
Sybase 744
Sybase IQ 768
syntax 426
tasks completed by 426
Teradata 790
terminating DBMS connections 431

SQL procedure
CONNECT statement 427
creating tables 22
DBMS data with 851
DISCONNECT statement 431
EXECUTE statement 432
interactions with SAS/ACCESS 425
passing DELETE statement to empty a table 45
passing functions to DBMS 42
specifying data set options 207
values within double quotation marks 15

SQL statement
DB2UTIL procedure 505
DBLOAD procedure 922

SQL usage, optimizing 41
DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT=

options 48
failures of passing joins 45
passing DELETE statement to empty a table 45
passing DISTINCT and UNION processing 46
passing functions to DBMS 42
passing joins 43
passing WHERE clauses 47

SQL views 6
converting descriptors to 881
embedded LIBNAME statements in 90
retrieving and using DBMS data in 434

SQL_FUNCTIONS= LIBNAME option 186
SQL_FUNCTIONS_COPY= LIBNAME option 189
SQLGENERATION= LIBNAME option 191
SQLGENERATION= system option 420
SQLIN= option

PROC DB2UTIL statement 504
SQLLDR executable file

location specification 281
SQL*Loader 725

blank spaces in CHAR/VARCHAR2 columns 273
command line options 268
DIRECT option 244
discarded rows file 244
index options for bulk loading 258
z/OS 726

SQLMAPPUTTO= system option 423
SQL_OJ_ANSI= LIBNAME option 190
SQLOUT= option

PROC DB2UTIL statement 504
SQLXMSG macro variable 401
SQLXRC macro variable 401
SSID= connection option

DB2 under z/OS 485
SSID= option

PROC DB2EXT statement 501
PROC DB2UTIL statement 504

statistics
calculating with DBMS data 864
capturing bulk-load statistics into macro variables 474

storage class
for SMS-managed data sets 234

stored procedures
DB2 under z/OS 494
Informix 578
passing NULL parameter 495
passing parameters 495
remote 496
returning result set 495
schemas for 496

string data
Aster nCluster 452
DB2 under UNIX and PC Hosts 478
DB2 under z/OS 522
Greenplum 548
HP Neoview 569
Netezza 649
Sybase IQ 776

STRINGDATES= LIBNAME option 192
SUBMIT statement

CV2VIEW procedure 885

956 Index

subqueries 871
SUBSET statement

ACCESS procedure 904
subsetting DBMS data 299
subsystem identifier (DB2) 514
subsystem name (DB2) 513
%SUPERQ macro 401
Sybase 740

ACCESS procedure 748
autopartitioning scheme 745
bulk copy for loading tables 145
case sensitivity 761
character data 756
data conversions, ACCESS procedure 760
data conversions, DBLOAD procedure 760
data conversions, LIBNAME statement 758
data returned as SAS binary data, default format

$HEX 761
data returned as SAS character data 761
data set options 743
data types 755
database links 307
date, time, and money data 757
DBLOAD procedure 750
DBSLICE= data set option 316
DBSLICEPARM= data set option 318
DBSLICEPARM= LIBNAME option 138
indexes 746
inserting TEXT data from SAS 761
LIBNAME statement 740
linking from default database to another database 129
locking 754
maximum simultaneous connections allowed 159
name and location of interfaces file 154
naming conventions 755
national language support 762
NULL values 758
numeric data 756
packet size 164
passing joins to 753
passing SAS functions to 751
passing SQL functions to 752
reading multiple tables 753
SQL pass-through facility 744
supported features 83
temporary tables 747
update rules 754
user-defined data 758

Sybase IQ 763
autopartitioning scheme 770
bulk loading 773
data conversions 778
data set options 767
data types 776
date, time, and timestamp data 777
DBSLICE= data set option 316, 771
DBSLICEPARM= data set option 318
DBSLICEPARM= LIBNAME option 138, 770
LIBNAME statement 764
locking 774
naming conventions 775
NULL values 778
nullable columns 770
numeric data 776
passing joins to 772
passing SAS functions to 771

special catalog queries 769
SQL pass-through facility 768
string data 776
supported features 84
WHERE clauses 770

synonyms 184
SYSDBMSG macro variable 401
SYSDBRC macro variable 401, 514
SYSDISC data set name 223
SYSIN data set name 225
SYSMAP data set name 229
SYSPRINT data set name 229
SYSPRINT output 230
SYSREC data set

name of 231
number of cylinders 231

system catalogs
DB2 under z/OS 532

system-directed access 531
system options 401, 403

DB2 under z/OS 512

T
table names

embedded spaces and special characters 174
fully qualified (Informix) 589
preserving 19, 168
qualifying 97

table objects 217
TABLE= option

DB2UTIL procedure 503
TABLE= statement, ACCESS procedure 905
TABLE= statement, DBLOAD procedure 922

ODBC 671
table types

MySQL 610
tables 155

See also DB2 tables
See also DBMS tables
See also temporary tables
bulk copy for loading 145
catalog tables 403
creating with data sets 23
creating with DBMS data 22
data accessible during import 211
database or tablespace for creating 151, 330
dimension tables 142, 323
duplicate rows 370
emptying with SQL DELETE statement 45
exception tables 251
fact tables 142, 164, 323, 357
location of 155, 334
original data visible during bulk load 210
read time 51
reading from and inserting to same Teradata table 812
redirecting log tables to alternate database 157
renaming 14
segments where created 369
temporary versus permanent 131
truncating target tables 286

TABULATE procedure
DBMS data with 863

target tables
truncating 286

task table 5

Index 957

TDPID= connection option
Teradata 785

temporary tables 131
acquisition error tables 337, 338
DB2 under UNIX and PC Hosts 467
DB2 under z/OS 492
HP Neoview 562
Informix 581
MultiLoad 343
Netezza 628
ODBC 672
OLE DB 695
Oracle 718
performance and 38
prefix for names of 339
pushing heterogeneous joins 39
pushing updates 39
restart table 340
Sybase 747
Teradata 796
work table 341

TENACITY= data set option 372
MultiLoad and 807

Teradata 783
See also TPT API
ANSI mode or Teradata mode 159
autopartitioning scheme 792
binary string data 838
BL_DATAFILE= data set option 220
buffers and transferring data to 288, 335
character string data 839
checkpoint data 377
data conversions 104, 841
data conversions, overhead limit for 294
data returned as SAS binary data with default format

$HEX 842
data set options 788
data types 838
data types and SAS_PUT() function 819
date, time, and timestamp data 839
deployed components for in-database processing 819
encryption 379
failed load process 375
FastExport Utility 792
FastExport Utility, logging sessions 369
FastLoad 804
FastLoad error limit 146
FastLoad logging sessions 369
generating SQL for in-database processing of source

data 191
in-database procedures 831
insert statements 348
LIBNAME statement 784
load performance 804
locking 178, 197, 832
maximum number of sessions 384
minimum number of sessions 385
MultiLoad 805
MultiLoad, logging sessions 369
MultiLoad, retries for logging in 371, 372
name of first error table 380
name of restart log table 383
name of second error table 382
naming conventions 837
NULL values 840
number of sessions 183

numeric data 840
ordering query results 813
output buffer size 376
overhead limit for data conversions 106
packing statements 386
passing joins to 800
passing SAS functions to 798
permissions and functions 826
PreFetch 800
processing tips 812
publishing functions 816
publishing SAS formats 821
read performance 800
reading from and inserting to same table 812
redirecting log tables to alternate database 157
replacing SORT procedure with BY clause 815
restarting failed runs 387
sampling 816
SAS 9.2 Formats Library for 819
SAS/ACCESS client 783
SAS formats in 816
sending insert statements to 162
sharing objects with SAS 837
SQL pass-through facility 790
supported features 85
temporary tables 796
threaded reads with partitioning WHERE clauses 795
TIME and TIMESTAMP 814
tracing levels 390, 391
tracing output 392
work table name 393

Teradata Enterprise Data Warehouse (EDW) 817
SAS_PUT() function in 827
user-defined formats in 819

Teradata Parallel Transporter
See TPT API

termination command
executing before every disconnect 123
executing once 128
user-defined 123, 128, 429

TEXT data type
Informix 585
MySQL 615
Sybase 756, 761

threaded applications 52
two-pass processing for 58

threaded reads 51
Aster nCluster 446
autopartitioning and 57
controlling number of threads 138
controlling scope of 138, 318
data ordering and 58
data set options affecting 53
DB2 under UNIX and PC Hosts 464
DB2 under z/OS 491
generating trace information for 54
Greenplum 540
HP Neoview 561
Informix 580
number of connections to DBMS server for 297
ODBC 666
Oracle 715
partitioning queries for 316
partitioning WHERE clauses with 795
performance and 51, 57
SAS/ACCESS interfaces and 52

958 Index

scope of 52
summary of 59
Sybase 745
Sybase IQ 770
Teradata 792
trace information for 409
two-pass processing and 58
underlying technology of 51
when threaded reads do not occur 59

throughput of SAS server 35
TIME data type

Aster nCluster 453
DB2 under UNIX and PC Hosts 479
DB2 under z/OS 523
Greenplum 549
HP Neoview 570
MySQL 617
Netezza 650
Sybase 757
Sybase IQ 777
Teradata 814, 839

timeouts
default login timeout 158
for commands 294
for data source commands 108
number of seconds to wait 115
queries 173, 361

TIMESTAMP data type
Aster nCluster 453
DB2 under UNIX and PC Hosts 479
DB2 under z/OS 523
Greenplum 550
HP Neoview 570
MySQL 617
Netezza 650
Oracle 730
Sybase 757
Sybase IQ 777
Teradata 814, 839

TIMESTAMP WITH LOCAL TIME ZONE data type
Oracle 731

TIMESTAMP WITH TIME ZONE data type
Oracle 731

TINYBLOB data type
MySQL 615

TINYINT data type
Greenplum 549
MySQL 616
Sybase IQ 777

TINYTEXT data type
MySQL 615

TO_LIBREF= statement
CV2VIEW procedure 885

TO_VIEW= statement
CV2VIEW procedure 885

TPT API 807
See also FastLoad
See also MultiLoad
data set options 808
loading data 192, 373
multi-statement insert features and restrictions 810
multi-statement insert with TPT API data set options 810
reading data 147
setup 808
starting multi-statement insert 810
supported features and restrictions 807

TPT= data set option 373
TPT= LIBNAME option 192, 808
TPT_APPL_PHASE= data set option 375
TPT_BUFFER_SIZE= data set option 376
TPT_CHECKPOINT_DATA= data set option 377
TPT_DATA_ENCRYPTION= data set option 379
TPT_ERROR_TABLE_1= data set option 380
TPT_ERROR_TABLE_2= data set option 382
TPT_LOG_TABLE= data set option 383
TPT_MAX_SESSIONS= data set option 384
TPT_MIN_SESSIONS= data set option 385
TPT_PACK= data set option 386
TPT_PACKMAXIMUM= data set option 386
TPT_RESTART= data set option 387
TPT_TRACE_LEVEL= data set option 390
TPT_TRACE_LEVEL_INF= data set option 391
TPT_TRACE_OUTPUT= data set option 392
TPT_WORK_TABLE= data set option 393
trace information

filename for 195
for debugging 194
for threaded reads 54, 409
generating from DBMS engine 408

TRACE= LIBNAME option 194
trace messages

location of 419
TRACEFILE= LIBNAME option 195
tracking errors

acquisition error tables 337, 338
transactions control 30
TRAP151= data set option 394
triggers 26, 285
truncation

forcing during insert processing 301
names 13
target tables 286

two-pass processing
for threaded applications 58

TYPE statement
DBLOAD procedure 923
CV2VIEW procedure 886

U
UDL_FILE= connection option

OLE DB 684
UFMT-CRDATE format 831
UNION operator

passing to DBMS 46
UNIQUE statement

ACCESS procedure 905
UNIX

See also DB2 under UNIX and PC Hosts
ODBC on 655

unsupported characters
replacing 17

updatable cursors 116
update driver 809
update privileges 513
update rules

MySQL 611
Sybase 754

UPDATE statement
ACCESS procedure 906
DB2UTIL procedure 505
DBMS data with 850

Index 959

SQL procedure 433
UPDATEBUFF= data set option 199, 399
UPDATEBUFF= LIBNAME option 199
UPDATE_ISOLATION_LEVEL= data set option 396
UPDATE_ISOLATION_LEVEL= LIBNAME option 195
UPDATE_LOCK_TYPE= data set option 397
UPDATE_LOCK_TYPE= LIBNAME option 196
UPDATE_MODE_WAIT= data set option 398
UPDATE_MODE_WAIT= LIBNAME option 197
UPDATE_MULT_ROWS= LIBNAME option 198
UPDATE_SQL= data set option 399
UPDATE_SQL= LIBNAME option 198
updating

access descriptors 906, 909
committing immediately after submitting 98
data 65
DB2 tables 502, 506
DBMS data 856
method for updating rows 399
non-updatable columns 394
pushing updates 39
specifying number of rows 399

USE_ODBC_CL= LIBNAME option 200
USER= connection option

Aster nCluster 440
DB2 under UNIX and PC Hosts 457
Greenplum 534
HP Neoview 555
Informix 575
Microsoft SQL Server 592
MySQL 606
Netezza 623
ODBC 657
OLE DB 682
Oracle 708
Sybase 740
Sybase IQ 764
Teradata 784

user-defined data
Sybase 758

user-defined formats
determining publish date 830
Netezza data warehouse 637
Teradata 816, 818
Teradata EDW 819

user-defined initialization command 121, 127, 429
user-defined termination command 123, 128, 429
user IDs 208

qualifying table names with 97
USER= statement, DBLOAD procedure

Microsoft SQL Server 599
ODBC 671

USING= connection option
Informix 575

UTILCONN_TRANSIENT= LIBNAME option 200
utility connections 200
utility spool files 185

V
VALIDVARNAME= system option 168, 424

naming behavior and 15
VALIDVARNAME=V6 argument

CONNECT statement 430
VARBYTE data type

Teradata 838

VARCHAR data type
Aster nCluster 452
DB2 under UNIX and PC Hosts 478
DB2 under z/OS 522
Greenplum 548
HP Neoview 569
Informix 585
MySQL 616
Netezza 649
Sybase 756
Sybase IQ 776
Terdata 839

VARCHAR data type columns
adjusting lengths for 94, 95
specified with byte semantics 94

VARCHAR2 column lengths 118
VARCHAR2 data type

Oracle 730
VARGRAPHIC data type

DB2 under UNIX and PC Hosts 478
DB2 under z/OS 522

variables
dropping before creating a table 916
generating names of 897
labels as DBMS column names 306
listing information about, before loading 918
macro variables 401
modifying names 901
names as DBMS column names 306
names based on column names 905
renaming 14
valid names during a SAS session 424

view descriptors 907, 908
See also SAS/ACCESS views
converting a library of 889
converting an individual 886
converting into SQL views 881
creating 898, 910
dropping columns to make unselectable 899
listing columns in, with information 900
name, for converting 883
reading data with 64
resetting columns to default settings 903
selecting DBMS columns 903
selection criteria, adding or modifying 904
updating 906

VIEWDESC= option
PROC ACCESS statement 896

views 6
See also SQL views
access methods 4
data security 29
DATA step views 6
reading from 90
SAS/ACCESS views 6
SAS data views 6
SQL Server partitioned views for DBSLICE= 668
writing to 90

volumes
for extending data sets 236

W
warnings 279

row warnings 288

960 Index

Web server
file location for segment host access 263

Web tables
accessing dynamic data in 546

WHERE clauses 47
Aster nCluster 447
DB2 under UNIX and PC Hosts 464
efficient versus inefficient 47
format of, with DBKEY= data set option 133
Greenplum 541
HP Neoview 561
Informix 581
NULL values and format of 311
ODBC 667
partitioning queries for threaded reads 316
passing functions to DBMS with 47
passing to DBMS 47
restricting autopartitioning 492
Sybase IQ 770

threaded reads and partitioning WHERE clauses 795

updating rows with no locking 163, 355

WHERE statement

DB2UTIL procedure 505

DBLOAD procedure 923

work table 341

X
XMS (Cross Memory Services) 529

Z
z/OS

See also DB2 under z/OS

features by host for Oracle 82

Oracle bulk loading 726

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

	Contents
	What’s New
	Overview
	All Supported SAS/ACCESS Interfaces to Relational Databases
	SAS/ACCESS Interface to Aster nCluster
	SAS/ACCESS Interface to DB2 under UNIX and PC Hosts
	SAS/ACCESS Interface to DB2 under z/OS
	SAS/ACCESS Interface to Greenplum
	SAS/ACCESS Interface to HP Neoview
	SAS/ACCESS Interface to Informix
	SAS/ACCESS Interface to MySQL
	SAS/ACCESS Interface to Netezza
	SAS/ACCESS Interface to ODBC
	SAS/ACCESS Interface to OLE DB
	SAS/ACCESS Interface to Oracle
	SAS/ACCESS Interface to Sybase
	SAS/ACCESS Interface to Sybase IQ
	SAS/ACCESS Interface to Teradata
	Documentation Enhancements

	Concepts
	Overview of SAS/ACCESS Interface to Relational Databases
	About This Document
	Methods for Accessing Relational Database Data
	Selecting a SAS/ACCESS Method
	Methods for Accessing DBMS Tables and Views
	SAS/ACCESS LIBNAME Statement Advantages
	SQL Pass-Through Facility Advantages
	SAS/ACCESS Features for Common Tasks

	SAS Views of DBMS Data
	Choosing Your Degree of Numeric Precision
	Factors That Can Cause Calculation Differences
	Examples of Problems That Result in Numeric Imprecision
	Your Options When Choosing the Degree of Precision That You Need
	References

	SAS Names and Support for DBMS Names
	Introduction to SAS/ACCESS Naming
	SAS Naming Conventions
	Length of Name
	Case Sensitivity
	SAS Name Literals

	SAS/ACCESS Default Naming Behaviors
	Modification and Truncation
	ACCESS Procedure
	DBLOAD Procedure

	Renaming DBMS Data
	Renaming SAS/ACCESS Tables
	Renaming SAS/ACCESS Columns
	Renaming SAS/ACCESS Variables

	Options That Affect SAS/ACCESS Naming Behavior
	Naming Behavior When Retrieving DBMS Data
	Naming Behavior When Creating DBMS Objects
	SAS/ACCESS Naming Examples
	Replacing Unsupported Characters
	Preserving Column Names
	Preserving Table Names
	Using DQUOTE=ANSI
	Using Name Literals
	Using DBMS Data to Create a DBMS Table
	Using a SAS Data Set to Create a DBMS Table

	Data Integrity and Security
	Introduction to Data Integrity and Security
	DBMS Security
	Privileges
	Triggers

	SAS Security
	Securing Data
	Assigning SAS Passwords
	Protecting Connection Information
	Extracting DBMS Data to a SAS Data Set
	Defining Views and Schemas
	Controlling DBMS Connections
	Locking, Transactions, and Currency Control
	Customizing DBMS Connect and Disconnect Exits

	Potential Result Set Differences When Processing Null Data

	Performance Considerations
	Increasing Throughput of the SAS Server
	Limiting Retrieval
	Row and Column Selection
	The KEEP= and DROP= Options

	Repeatedly Accessing Data
	Sorting DBMS Data
	Temporary Table Support for SAS/ACCESS
	Overview
	General Temporary Table Use
	Pushing Heterogeneous Joins
	Pushing Updates

	Optimizing Your SQL Usage
	Overview of Optimizing Your SQL Usage
	Passing Functions to the DBMS Using PROC SQL
	Passing Joins to the DBMS
	Passing the DELETE Statement to Empty a Table
	When Passing Joins to the DBMS Will Fail
	Passing DISTINCT and UNION Processing to the DBMS
	Optimizing the Passing of WHERE Clauses to the DBMS
	General Guidelines for WHERE Clauses
	Passing Functions to the DBMS Using WHERE Clauses

	Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options

	Threaded Reads
	Overview of Threaded Reads in SAS/ACCESS
	Underlying Technology of Threaded Reads
	SAS/ACCESS Interfaces and Threaded Reads
	Scope of Threaded Reads
	Options That Affect Threaded Reads
	Generating Trace Information for Threaded Reads
	Performance Impact of Threaded Reads
	Autopartitioning Techniques in SAS/ACCESS
	Data Ordering in SAS/ACCESS
	Two-Pass Processing for SAS Threaded Applications
	When Threaded Reads Do Not Occur
	Summary of Threaded Reads

	How SAS/ACCESS Works
	Introduction to How SAS/ACCESS Works
	Installation Requirements
	SAS/ACCESS Interfaces

	How the SAS/ACCESS LIBNAME Statement Works
	Accessing Data from a DBMS Object
	Processing Queries, Joins, and Data Functions

	How the SQL Pass-Through Facility Works
	How the ACCESS Procedure Works
	Overview of the ACCESS Procedure
	Reading Data
	Updating Data

	How the DBLOAD Procedure Works

	Overview of In-Database Procedures
	Introduction to In-Database Procedures
	Running In-Database Procedures
	In-Database Procedure Considerations and Limitations
	Overview
	Row Order
	BY-Groups
	LIBNAME Statement
	Data Set-related Options
	Miscellaneous Items

	Using MSGLEVEL Option to Control Messaging

	General Reference
	SAS/ACCESS Features by Host
	Introduction
	SAS/ACCESS Interface to Aster nCluster: Supported Features
	SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts: Supported Features
	SAS/ACCESS Interface to DB2 Under z/OS: Supported Features
	SAS/ACCESS Interface to Greenplum: Supported Features
	SAS/ACCESS Interface to HP Neoview: Supported Features
	SAS/ACCESS Interface to Informix: Supported Features
	SAS/ACCESS Interface to Microsoft SQL Server: Supported Features
	SAS/ACCESS Interface to MySQL: Supported Features
	SAS/ACCESS Interface to Netezza: Supported Features
	SAS/ACCESS Interface to ODBC: Supported Features
	SAS/ACCESS Interface to OLE DB: Supported Features
	SAS/ACCESS Interface to Oracle: Supported Features
	SAS/ACCESS Interface to Sybase: Supported Features
	SAS/ACCESS Interface to Sybase IQ: Supported Features
	SAS/ACCESS Interface to Teradata: Supported Features

	The LIBNAME Statement for Relational Databases
	Overview of the LIBNAME Statement for Relational Databases
	Assigning Librefs
	Sorting Data
	Using SAS Functions

	Assigning a Libref Interactively
	LIBNAME Options for Relational Databases

	Data Set Options for Relational Databases
	About the Data Set Options for Relational Databases
	Overview

	Macro Variables and System Options for Relational Databases
	Introduction to Macro Variables and System Options
	Macro Variables for Relational Databases
	System Options for Relational Databases
	Available System Options

	The SQL Pass-Through Facility for Relational Databases
	About SQL Procedure Interactions
	Overview of SQL Procedure Interactions with SAS/ACCESS
	Overview of the SQL Pass-Through Facility

	Syntax for the SQL Pass-Through Facility for Relational Databases
	Overview
	Return Codes

	DBMS-Specific Reference
	SAS/ACCESS Interface to Aster nCluster
	Introduction to SAS/ACCESS Interface to Aster nCluster
	LIBNAME Statement Specifics for Aster nCluster
	Overview
	Arguments
	Aster nCluster LIBNAME Statement Examples

	Data Set Options for Aster nCluster
	SQL Pass-Through Facility Specifics for Aster nCluster
	Key Information
	CONNECT Statement Example
	Special Catalog Queries

	Autopartitioning Scheme for Aster nCluster
	Overview
	Autopartitioning Restrictions
	Nullable Columns
	Using WHERE Clauses
	Using DBSLICEPARM=
	Using DBSLICE=

	Passing SAS Functions to Aster nCluster
	Passing Joins to Aster nCluster
	Bulk Loading for Aster nCluster
	Loading
	Examples

	Naming Conventions for Aster nCluster
	Data Types for Aster nCluster
	Overview
	String Data
	Numeric Data
	Date, Time, and Timestamp Data
	LIBNAME Statement Data Conversions

	SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts
	Introduction to SAS/ACCESS Interface to DB2 Under UNIX and PC Hosts
	LIBNAME Statement Specifics for DB2 Under UNIX and PC Hosts
	Overview
	Arguments
	DB2 Under UNIX and PC Hosts LIBNAME Statement Example

	Data Set Options for DB2 Under UNIX and PC Hosts
	SQL Pass-Through Facility Specifics for DB2 Under UNIX and PC Hosts
	Key Information
	Examples
	Special Catalog Queries

	Autopartitioning Scheme for DB2 Under UNIX and PC Hosts
	Overview
	Autopartitioning Restrictions
	Nullable Columns
	Using WHERE Clauses
	Using DBSLICEPARM=
	Using DBSLICE=
	Configuring DB2 EEE Nodes on Physically Partitioned Databases

	Temporary Table Support for DB2 Under UNIX and PC Hosts
	Establishing a Temporary Table
	Terminating a Temporary Table
	Examples

	DBLOAD Procedure Specifics for DB2 Under UNIX and PC Hosts
	Key Information
	Examples

	Passing SAS Functions to DB2 Under UNIX and PC Hosts
	Passing Joins to DB2 Under UNIX and PC Hosts
	Bulk Loading for DB2 Under UNIX and PC Hosts
	Overview
	Capturing Bulk-Load Statistics into Macro Variables
	Maximizing Load Performance for DB2 Under UNIX and PC Hosts
	Examples

	In-Database Procedures in DB2 under UNIX and PC Hosts
	Locking in the DB2 Under UNIX and PC Hosts Interface
	Naming Conventions for DB2 Under UNIX and PC Hosts
	Data Types for DB2 Under UNIX and PC Hosts
	Overview
	Character Data
	String Data
	Numeric Data
	Date, Time, and Timestamp Data
	DB2 Null and Default Values
	LIBNAME Statement Data Conversions
	DBLOAD Procedure Data Conversions

	SAS/ACCESS Interface to DB2 Under z/OS
	Introduction to SAS/ACCESS Interface to DB2 Under z/OS
	LIBNAME Statement Specifics for DB2 Under z/OS
	Overview
	Arguments
	DB2 Under z/OS LIBNAME Statement Example

	Data Set Options for DB2 Under z/OS
	SQL Pass-Through Facility Specifics for DB2 Under z/OS
	Key Information
	Examples

	Autopartitioning Scheme for DB2 Under z/OS
	Overview
	Autopartitioning Restrictions
	Column Selection for MOD Partitioning
	How WHERE Clauses Restrict Autopartitioning
	Using DBSLICEPARM=
	Using DBSLICE=

	Temporary Table Support for DB2 Under z/OS
	Establishing a Temporary Table
	Terminating a Temporary Table
	Examples

	Calling Stored Procedures in DB2 Under z/OS
	Overview
	Examples

	ACCESS Procedure Specifics for DB2 Under z/OS
	Key Information
	Examples

	DBLOAD Procedure Specifics for DB2 Under z/OS
	Key Information
	Examples

	The DB2EXT Procedure
	Overview
	Syntax
	Examples

	The DB2UTIL Procedure
	Overview
	DB2UTIL Statements and Options
	Modifying DB2 Data
	PROC DB2UTIL Example

	Maximizing DB2 Under z/OS Performance
	Assessing When to Tune Performance
	Methods for Improving Performance
	Optimizing Your Connections

	Passing SAS Functions to DB2 Under z/OS
	Passing Joins to DB2 Under z/OS
	SAS System Options, Settings, and Macros for DB2 Under z/OS
	System Options
	Settings
	Macros

	Bulk Loading for DB2 Under z/OS
	Overview
	Data Set Options for Bulk Loading
	File Allocation and Naming for Bulk Loading
	Examples

	Locking in the DB2 Under z/OS Interface
	Naming Conventions for DB2 Under z/OS
	Data Types for DB2 Under z/OS
	Overview
	Character Data
	String Data
	Numeric Data
	Date, Time, and Timestamp Data
	DB2 Null and Default Values
	LIBNAME Statement Data Conversions
	ACCESS Procedure Data Conversions
	DBLOAD Procedure Data Conversions

	Understanding DB2 Under z/OS Client/Server Authorization
	Libref Connections
	Non-Libref Connections
	Known Issues with RRSAF Support

	DB2 Under z/OS Information for the Database Administrator
	How the Interface to DB2 Works
	How and When Connections Are Made
	DDF Communication Database
	DB2 Attachment Facilities (CAF and RRSAF)
	Accessing DB2 System Catalogs

	SAS/ACCESS Interface to Greenplum
	Introduction to SAS/ACCESS Interface to Greenplum
	LIBNAME Statement Specifics for Greenplum
	Overview
	Arguments
	LIBNAME Statement Examples

	Data Set Options for Greenplum
	SQL Pass-Through Facility Specifics for Greenplum
	Key Information
	CONNECT Statement Example
	Special Catalog Queries

	Autopartitioning Scheme for Greenplum
	Overview
	Autopartitioning Restrictions
	Nullable Columns
	Using WHERE Clauses
	Using DBSLICEPARM=
	Using DBSLICE=

	Passing SAS Functions to Greenplum
	Passing Joins to Greenplum
	Bulk Loading for Greenplum
	Overview
	Using Protocols to Access External Tables
	Configuring the File Server
	Stopping gpfdist
	Troubleshooting gpfdist
	Using the file:// Protocol
	Accessing Dynamic Data in Web Tables
	Data Set Options for Bulk Loading
	Examples

	Naming Conventions for Greenplum
	Data Types for Greenplum
	Overview
	String Data
	Numeric Data
	Date, Time, and Timestamp Data
	Greenplum Null Values
	LIBNAME Statement Data Conversions

	SAS/ACCESS Interface to HP Neoview
	Introduction to SAS/ACCESS Interface to HP Neoview
	LIBNAME Statement Specifics for HP Neoview
	Overview
	Arguments
	HP Neoview LIBNAME Statement Examples

	Data Set Options for HP Neoview
	SQL Pass-Through Facility Specifics for HP Neoview
	Key Information
	CONNECT Statement Example
	Special Catalog Queries

	Autopartitioning Scheme for HP Neoview
	Overview
	Autopartitioning Restrictions
	Nullable Columns
	Using WHERE Clauses
	Using DBSLICEPARM=
	Using DBSLICE=

	Temporary Table Support for HP Neoview
	General Information
	Establishing a Temporary Table
	Terminating a Temporary Table
	Examples

	Passing SAS Functions to HP Neoview
	Passing Joins to HP Neoview
	Bulk Loading and Extracting for HP Neoview
	Loading
	Extracting

	Naming Conventions for HP Neoview
	Data Types for HP Neoview
	Overview
	String Data
	Numeric Data
	Date, Time, and Timestamp Data
	HP Neoview Null Values
	LIBNAME Statement Data Conversions

	SAS/ACCESS Interface for Informix
	Introduction to SAS/ACCESS Interface to Informix
	Overview
	Default Environment

	LIBNAME Statement Specifics for Informix
	Overview
	Arguments
	Informix LIBNAME Statement Example

	Data Set Options for Informix
	SQL Pass-Through Facility Specifics for Informix
	Key Information
	Stored Procedures and the SQL Pass-Through Facility
	Command Restrictions for the SQL Pass-Through Facility
	Examples

	Autopartitioning Scheme for Informix
	Overview
	Autopartitioning Restrictions
	Using WHERE Clauses
	Using DBSLICEPARM=
	Using DBSLICE=

	Temporary Table Support for Informix
	Overview
	Establishing a Temporary Table
	Terminating a Temporary Table
	Example

	Passing SAS Functions to Informix
	Passing Joins to Informix
	Locking in the Informix Interface
	Naming Conventions for Informix
	Data Types for Informix
	Overview
	Character Data
	Numeric Data
	Date, Time, and Interval Data
	Informix Null Values
	LIBNAME Statement Data Conversions
	SQL Pass-Through Facility Data Conversions

	Overview of Informix Servers
	Informix Database Servers
	Using the DBDATASRC Environment Variables
	Using Fully Qualified Table Names

	SAS/ACCESS Interface to Microsoft SQL Server
	Introduction to SAS/ACCESS Interface to Microsoft SQL Server
	LIBNAME Statement Specifics for Microsoft SQL Server
	Overview
	Arguments
	Microsoft SQL Server LIBNAME Statement Examples

	Data Set Options for Microsoft SQL Server
	SQL Pass-Through Facility Specifics for Microsoft SQL Server
	Key Information
	CONNECT Statement Examples
	Connection To Component Examples

	DBLOAD Procedure Specifics for Microsoft SQL Server
	Overview
	Examples

	Passing SAS Functions to Microsoft SQL Server
	Locking in the Microsoft SQL Server Interface
	Naming Conventions for Microsoft SQL Server
	Data Types for Microsoft SQL Server
	Overview
	Microsoft SQL Server Null Values
	LIBNAME Statement Data Conversions

	SAS/ACCESS Interface for MySQL
	Introduction to SAS/ACCESS Interface to MySQL
	LIBNAME Statement Specifics for MySQL
	Overview
	Arguments
	MySQL LIBNAME Statement Examples

	Data Set Options for MySQL
	SQL Pass-Through Facility Specifics for MySQL
	Key Information
	Examples

	Autocommit and Table Types
	Understanding MySQL Update and Delete Rules
	Passing SAS Functions to MySQL
	Passing Joins to MySQL
	Naming Conventions for MySQL
	Data Types for MySQL
	Overview
	Character Data
	Numeric Data
	Date, Time, and Timestamp Data
	LIBNAME Statement Data Conversions

	Case Sensitivity for MySQL

	SAS/ACCESS Interface to Netezza
	Introduction to SAS/ACCESS Interface to Netezza
	LIBNAME Statement Specifics for Netezza
	Overview
	Arguments
	Netezza LIBNAME Statement Examples

	Data Set Options for Netezza
	SQL Pass-Through Facility Specifics for Netezza
	Key Information
	CONNECT Statement Examples
	Special Catalog Queries

	Temporary Table Support for Netezza
	General Information
	Establishing a Temporary Table
	Terminating a Temporary Table
	Examples

	Passing SAS Functions to Netezza
	Passing Joins to Netezza
	Bulk Loading and Unloading for Netezza
	Loading
	Unloading

	Deploying and Using SAS Formats in Netezza
	Using SAS Formats
	How It Works
	Deployed Components for In-Database Processing
	User-Defined Formats in the Netezza Data Warehouse
	Publishing SAS Formats
	Using the SAS_PUT() Function in the Netezza Data Warehouse
	Determining Format Publish Dates

	Naming Conventions for Netezza
	Data Types for Netezza
	Overview
	String Data
	Numeric Data
	Date, Time, and Timestamp Data
	Netezza Null Values
	LIBNAME Statement Data Conversions

	SAS/ACCESS Interface to ODBC
	Introduction to SAS/ACCESS Interface to ODBC
	Overview
	ODBC Concepts

	LIBNAME Statement Specifics for ODBC
	Overview
	Arguments
	ODBC LIBNAME Statement Examples

	Data Set Options for ODBC
	SQL Pass-Through Facility Specifics for ODBC
	Key Information
	CONNECT Statement Examples
	Connection to Component Examples
	Special Catalog Queries

	Autopartitioning Scheme for ODBC
	Overview
	Autopartitioning Restrictions
	Nullable Columns
	Using WHERE Clauses
	Using DBSLICEPARM=
	Using DBSLICE=
	Configuring SQL Server Partitioned Views for Use with DBSLICE=

	DBLOAD Procedure Specifics for ODBC
	Overview
	Examples

	Temporary Table Support for ODBC
	Overview
	Establishing a Temporary Table
	Terminating a Temporary Table
	Examples

	Passing SAS Functions to ODBC
	Passing Joins to ODBC
	Bulk Loading for ODBC
	Locking in the ODBC Interface
	Naming Conventions for ODBC
	Data Types for ODBC
	Overview
	ODBC Null Values
	LIBNAME Statement Data Conversions

	SAS/ACCESS Interface to OLE DB
	Introduction to SAS/ACCESS Interface to OLE DB
	LIBNAME Statement Specifics for OLE DB
	Overview
	Arguments
	Connecting with OLE DB Services
	Connecting Directly to a Data Provider
	OLE DB LIBNAME Statement Examples

	Data Set Options for OLE DB
	SQL Pass-Through Facility Specifics for OLE DB
	Key Information
	Examples
	Special Catalog Queries

	Temporary Table Support for OLE DB
	Overview
	Establishing a Temporary Table
	Terminating a Temporary Table
	Examples

	Passing SAS Functions to OLE DB
	Passing Joins to OLE DB
	Bulk Loading for OLE DB
	Locking in the OLE DB Interface
	Accessing OLE DB for OLAP Data
	Overview
	Using the SQL Pass-Through Facility with OLAP Data

	Naming Conventions for OLE DB
	Data Types for OLE DB
	Overview
	OLE DB Null Values
	LIBNAME Statement Data Conversions

	SAS/ACCESS Interface to Oracle
	Introduction to SAS/ACCESS Interface to Oracle
	LIBNAME Statement Specifics for Oracle
	Overview
	Arguments
	Oracle LIBNAME Statement Examples

	Data Set Options for Oracle
	SQL Pass-Through Facility Specifics for Oracle
	Key Information
	Examples

	Autopartitioning Scheme for Oracle
	Overview
	Partitioned Oracle Tables
	Nonpartitioned Oracle Tables
	Performance Summary

	Temporary Table Support for Oracle
	Establishing a Temporary Table
	Syntax
	Terminating a Temporary Table
	Example

	ACCESS Procedure Specifics for Oracle
	Overview
	Examples

	DBLOAD Procedure Specifics for Oracle
	Examples

	Maximizing Oracle Performance
	Passing SAS Functions to Oracle
	Passing Joins to Oracle
	Bulk Loading for Oracle
	Overview
	Interactions with Other Options
	z/OS Specifics
	Example

	In-Database Procedures in Oracle
	Locking in the Oracle Interface
	Naming Conventions for Oracle
	Data Types for Oracle
	Overview
	Character Data
	Numeric Data
	Date, Timestamp, and Interval Data
	Binary Data
	Oracle Null and Default Values
	LIBNAME Statement Data Conversions
	ACCESS Procedure Data Conversions
	DBLOAD Procedure Data Conversions

	SAS/ACCESS Interface to Sybase
	Introduction to SAS/ACCESS Interface to Sybase
	LIBNAME Statement Specifics for Sybase
	Overview
	Arguments
	Sybase LIBNAME Statement Example

	Data Set Options for Sybase
	SQL Pass-Through Facility Specifics for Sybase
	Key Information
	Example

	Autopartitioning Scheme for Sybase
	Overview
	Indexes
	Partitioning Criteria
	Data Types
	Examples

	Temporary Table Support for Sybase
	Overview
	Establishing a Temporary Table
	Terminating a Temporary Table
	Example

	ACCESS Procedure Specifics for Sybase
	Overview
	Example

	DBLOAD Procedure Specifics for Sybase
	Example

	Passing SAS Functions to Sybase
	Passing Joins to Sybase
	Reading Multiple Sybase Tables
	Locking in the Sybase Interface
	Overview
	Understanding Sybase Update Rules

	Naming Conventions for Sybase
	Data Types for Sybase
	Overview
	Character Data
	Numeric Data
	Date, Time, and Money Data
	User-Defined Data
	Sybase Null Values
	LIBNAME Statement Data Conversions
	ACCESS Procedure Data Conversions
	DBLOAD Procedure Data Conversions
	Data Returned as SAS Binary Data with Default Format $HEX
	Data Returned as SAS Character Data
	Inserting TEXT into Sybase from SAS

	Case Sensitivity in Sybase
	National Language Support for Sybase

	SAS/ACCESS Interface to Sybase IQ
	Introduction to SAS/ACCESS Interface to Sybase IQ
	LIBNAME Statement Specifics for Sybase IQ
	Overview
	Arguments
	Sybase IQ LIBNAME Statement Example

	Data Set Options for Sybase IQ
	SQL Pass-Through Facility Specifics for Sybase IQ
	Key Information
	CONNECT Statement Example
	Special Catalog Queries

	Autopartitioning Scheme for Sybase IQ
	Overview
	Autopartitioning Restrictions
	Nullable Columns
	Using WHERE Clauses
	Using DBSLICEPARM=
	Using DBSLICE=

	Passing SAS Functions to Sybase IQ
	Passing Joins to Sybase IQ
	Bulk Loading for Sybase IQ
	Loading
	Examples

	Locking in the Sybase IQ Interface
	Naming Conventions for Sybase IQ
	Data Types for Sybase IQ
	Overview
	String Data
	Numeric Data
	Date, Time, and Timestamp Data
	Sybase IQ Null Values
	LIBNAME Statement Data Conversions

	SAS/ACCESS Interface to Teradata
	Introduction to SAS/ACCESS Interface to Teradata
	Overview
	The SAS/ACCESS Teradata Client

	LIBNAME Statement Specifics for Teradata
	Overview
	Arguments
	Teradata LIBNAME Statement Examples

	Data Set Options for Teradata
	SQL Pass-Through Facility Specifics for Teradata
	Key Information
	Examples

	Autopartitioning Scheme for Teradata
	Overview
	FastExport and Case Sensitivity
	FastExport Password Security
	FastExport Setup
	Using FastExport
	FastExport and Explicit SQL
	Exceptions to Using FastExport
	Threaded Reads with Partitioning WHERE Clauses
	FastExport Versus Partitioning WHERE Clauses

	Temporary Table Support for Teradata
	Overview
	Establishing a Temporary Table
	Terminating a Temporary Table
	Examples

	Passing SAS Functions to Teradata
	Passing Joins to Teradata
	Maximizing Teradata Read Performance
	Overview
	Using the PreFetch Facility
	Using PreFetch as a LIBNAME Option
	Using Prefetch as a Global Option

	Maximizing Teradata Load Performance
	Overview
	Using FastLoad
	Using MultiLoad
	Using the TPT API
	Examples

	Teradata Processing Tips for SAS Users
	Reading from and Inserting to the Same Teradata Table
	Using a BY Clause to Order Query Results
	Using TIME and TIMESTAMP
	Replacing PROC SORT with a BY Clause
	Reducing Workload on Teradata by Sampling

	Deploying and Using SAS Formats in Teradata
	Using SAS Formats
	How It Works
	Deployed Components for In–Database Processing
	User-Defined Formats in the Teradata EDW
	Data Types and the SAS_PUT() Function
	Publishing SAS Formats
	Using the SAS_PUT() Function in the Teradata EDW
	Determining Format Publish Dates
	Using the SAS_PUT() Function with SAS Web Report Studio

	In-Database Procedures in Teradata
	Locking in the Teradata Interface
	Overview
	Understanding SAS/ACCESS Locking Options
	When to Use SAS/ACCESS Locking Options
	Examples

	Naming Conventions for Teradata
	Teradata Conventions
	SAS Naming Conventions
	Naming Objects to Meet Teradata and SAS Conventions
	Accessing Teradata Objects That Do Not Meet SAS Naming Conventions

	Data Types for Teradata
	Overview
	Binary String Data
	Character String Data
	Date, Time, and Timestamp Data
	Numeric Data
	Teradata Null Values
	LIBNAME Statement Data Conversions
	Data Returned as SAS Binary Data with Default Format $HEX

	Sample Code
	Accessing DBMS Data with the LIBNAME Statement
	About the LIBNAME Statement Sample Code
	Creating SAS Data Sets from DBMS Data
	Overview
	Using the PRINT Procedure with DBMS Data
	Combining DBMS Data and SAS Data
	Reading Data from Multiple DBMS Tables
	Using the DATA Step UPDATE Statement with DBMS Data

	Using the SQL Procedure with DBMS Data
	Overview
	Querying a DBMS Table
	Querying Multiple DBMS Tables
	Updating DBMS Data
	Creating a DBMS Table

	Using Other SAS Procedures with DBMS Data
	Overview
	Using the MEANS Procedure
	Using the DATASETS Procedure
	Using the CONTENTS Procedure
	Using the RANK Procedure
	Using the TABULATE Procedure
	Using the APPEND Procedure

	Calculating Statistics from DBMS Data
	Selecting and Combining DBMS Data
	Joining DBMS and SAS Data

	Accessing DBMS Data with the SQL Pass-Through Facility
	About the SQL Pass-Through Facility Sample Code
	Retrieving DBMS Data with a Pass-Through Query
	Combining an SQL View with a SAS Data Set
	Using a Pass-Through Query in a Subquery

	Sample Data for SAS/ACCESS for Relational Databases
	Introduction to the Sample Data
	Descriptions of the Sample Data

	Converting SAS/ACCESS Descriptors to PROC SQL Views
	The CV2VIEW Procedure
	Overview of the CV2VIEW Procedure
	Syntax: PROC CV2VIEW
	Examples: CV2VIEW Procedure

	Appendixes
	The ACCESS Procedure for Relational Databases
	Overview: ACCESS Procedure
	Accessing DBMS Data
	About ACCESS Procedure Statements

	Syntax: ACCESS Procedure
	Using Descriptors with the ACCESS Procedure
	What Are Descriptors?
	Access Descriptors
	View Descriptors
	Accessing Data Sets and Descriptors

	Examples: ACCESS Procedure

	The DBLOAD Procedure for Relational Databases
	Overview: DBLOAD Procedure
	Sending Data from SAS to a DBMS
	Properties of the DBLOAD Procedure
	About DBLOAD Procedure Statements

	Syntax: DBLOAD Procedure
	Example: Append a Data Set to a DBMS Table

	Recommended Reading
	Recommended Reading

	Glossary
	Index

