
SAS/ACCESS® 9.2 
Interface to CA-Datacom/DB
Reference

SAS® Documentation



The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008.
SAS/ACCESS ® 9.2 Interface to CA-Datacom/DB: Reference. Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.2 Interface to CA-Datacom/DB: Reference
Copyright © 2008, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59047-933-9
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, March 2008
1st printing, March 2008
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.



Contents

P A R T 1 SAS/ACCESS Interface to CA-Datacom/DB: Usage 1

Chapter 1 � Overview of the SAS/ACCESS Interface to CA-Datacom/DB 3
Introduction to the SAS/ACCESS Interface to CA-Datacom/DB 3

Purpose of the SAS/ACCESS Interface to CA-Datacom/DB 3

SAS/ACCESS Descriptor Files 4

Example Data in the CA-Datacom/DB Document 6

Chapter 2 � CA-Datacom/DB Essentials 7
Introduction to CA-Datacom/DB Essentials 7

CA-Datacom/DB and CA-DATADICTIONARY Software 7

CA-Datacom/DB Databases 9

CA-Datacom/DB Indexing 12

Selecting a Subset of CA-Datacom/DB Data 12

Sorting Data in a SAS/ACCESS View Descriptor 12

Security Features for CA-Datacom/DB 13

CA-Datacom/DB Execution Environments 13

Chapter 3 � Defining SAS/ACCESS Descriptor Files 15
Introduction to Defining SAS/ACCESS Descriptor Files 15

SAS/ACCESS Descriptor Files Essentials 15

Creating SAS/ACCESS Descriptor Files 16

Updating Descriptor Files 20

Extracting CA-Datacom/DB Data with the ACCESS Procedure 21

Chapter 4 � Using CA-Datacom/DB Data in SAS Programs 23
Introduction to Using CA-Datacom/DB Data in SAS Programs 23

Reviewing Columns for CA-Datacom/DB Data 24

Printing CA-Datacom/DB Data 25

Charting CA-Datacom/DB Data 26

Calculating Statistics for CA-Datacom/DB Data 28

Selecting and Combining CA-Datacom/DB Data 30

Updating a SAS Data File with CA-Datacom/DB Data 38

Performance Considerations 41

Chapter 5 � Browsing and Updating CA-Datacom/DB Data 43
Introduction to Browsing and Updating CA-Datacom/DB Data 43

Browsing and Updating CA-Datacom/DB Data with the SAS/FSP Procedures 44

Browsing and Updating CA-Datacom/DB Data with the SQL Procedure 50

Appending CA-Datacom/DB Data with the APPEND Procedure 53

P A R T 2 SAS/ACCESS Interface to CA-Datacom/DB: Reference 57



iv

Chapter 6 � ACCESS Procedure Reference 59
Introduction to ACCESS Procedure Reference 59

ACCESS Procedure Syntax 60

SAS Passwords for SAS/ACCESS Descriptors 63

Invoking the ACCESS Procedure 65

Statements 67

WHERE Clause in a View Descriptor 89

SORT Clause in a View Descriptor 95

Creating and Using View Descriptors Efficiently 96

ACCESS Procedure Data Conversions 97

P A R T 3 Appendixes 101

Appendix 1 � Information for the Database Administrator 103
Introduction to the Information for the Database Administrator 103

How the SAS/ACCESS Interface to CA-Datacom/DB Works 104

Retrieval Processing 105

Update Processing 107

Recovery Processing 108

How Changing the CA-DATADICTIONARY Database Affects Descriptor Files 109

SAS Security with CA-Datacom/DB 110

User Requirements Table (URT) 110

Locks and the Spool Files 111

Direct Addressing and Access by Row Number 111

Password Encryption/Decryption in CA-Datacom/DB 112

Maximizing the CA-Datacom/DB Interface Performance 112

Multi-Tasking with CA-Datacom/DB 112

Error Messages and Debugging Information for CA-Datacom/DB 113

System Options for the CA-Datacom/DB Interface 113

Appendix 2 � Advanced Topics 117
Introduction to Advanced Topics 117

Data Set Options 117

Using Multiple View Descriptors 124

User Exits from CA-Datacom/DB 124

Deleting and Inserting Data Records in CA-Datacom/DB 124

Missing Values (Nils) in CA-Datacom/DB Tables 125

SAS WHERE Clause Conditions Not Acceptable to CA-Datacom/DB 125

Deciding How to Specify Selection Criteria in CA-Datacom/DB 126

Validation of Data Values in CA-Datacom/DB 126

Validation against CA-DATADICTIONARY 126

Appendix 3 � Data and Descriptors for the Examples 129
Introduction to Data and Descriptors for the Examples 129

CA-Datacom/DB Tables 130

Access Descriptors for the CA-Datacom/DB Tables 144



v

View Descriptors for the CA-Datacom/DB Tables 146

SAS Data Files Used for CA-Datacom/DB Examples 149

Appendix 4 � Recommended Reading 153
Recommended Reading 153

Glossary 155

Index 161



vi



1

P A R T1

SAS/ACCESS Interface to CA-Datacom/DB:
Usage

Chapter 1. . . . . . . . . .Overview of the SAS/ACCESS Interface to CA-Datacom/DB 3

Chapter 2. . . . . . . . . .CA-Datacom/DB Essentials 7

Chapter 3. . . . . . . . . .Defining SAS/ACCESS Descriptor Files 15

Chapter 4. . . . . . . . . .Using CA-Datacom/DB Data in SAS Programs 23

Chapter 5. . . . . . . . . .Browsing and Updating CA-Datacom/DB Data 43



2



3

C H A P T E R

1
Overview of the SAS/ACCESS
Interface to CA-Datacom/DB

Introduction to the SAS/ACCESS Interface to CA-Datacom/DB 3
Purpose of the SAS/ACCESS Interface to CA-Datacom/DB 3

SAS/ACCESS Descriptor Files 4

Access Descriptor and View Descriptor Files 4

Access Descriptor Files 5

View Descriptor Files 5
Example Data in the CA-Datacom/DB Document 6

Introduction to the SAS/ACCESS Interface to CA-Datacom/DB
This section introduces you to SAS/ACCESS software and briefly describes how to

use the interface. This section also introduces the sample CA-Datacom/DB tables, view
descriptors, and SAS data files used in this document.

Purpose of the SAS/ACCESS Interface to CA-Datacom/DB
SAS/ACCESS software provides an interface between SAS and the CA-Datacom/DB

database management system (DBMS). You can perform the following tasks with this
SAS/ACCESS interface:

� Create SAS/ACCESS descriptor files using the ACCESS procedure.

� Directly access data in CA-Datacom/DB tables from within a SAS program, using
the descriptor files created with the ACCESS procedure.

� Extract CA-Datacom/DB data and place it in a SAS data file using the ACCESS
procedure or the DATA step.

� Update data in CA-Datacom/DB tables using the SQL procedure, the APPEND
procedure, SAS/FSP software, or SAS/AF software.

This SAS/ACCESS interface consists of two parts:

� the ACCESS procedure, which you use to define the SAS/ACCESS descriptor files

� the interface view engine, which enables you to use CA-Datacom/DB data in SAS
programs in much the same way as you use SAS data files

The ACCESS procedure enables you to describe CA-Datacom/DB data to SAS. You
store the description in SAS/ACCESS descriptor files, which you can use in SAS
programs much as you would use SAS data files. You can print, plot, and chart the data
described by the descriptor files, use it to create other SAS data files, and so on.
Chapter 4, “Using CA-Datacom/DB Data in SAS Programs,” on page 23 presents



4 SAS/ACCESS Descriptor Files � Chapter 1

several examples of using CA-Datacom/DB data in SAS programs. Chapter 5,
“Browsing and Updating CA-Datacom/DB Data,” on page 43 shows you how to use
descriptor files to update CA-Datacom/DB data from within a SAS program.

The interface view engine is an integral part of the SAS/ACCESS interface, but you
do not have to deal directly with the engine. SAS automatically interacts with the
engine when you use view descriptors in your SAS programs, so you can simply use
CA-Datacom/DB data just as you would use SAS data.

You can combine data from several CA-Datacom/DB tables. Such combinations are
not only possible but easy to do. SAS can distinguish among SAS data files,
SAS/ACCESS descriptor files, and other types of SAS files, and the software will use
the appropriate access method. See “Updating a SAS Data File with CA-Datacom/DB
Data” on page 38 for an example.

SAS/ACCESS Descriptor Files

Access Descriptor and View Descriptor Files
SAS/ACCESS software uses SAS/ACCESS descriptor files to establish a connection

between SAS and CA-Datacom/DB. To create these files, you use the ACCESS
procedure.

There are two types of descriptor files: access descriptors and view descriptors. The
following figure illustrates the relationships among a CA-Datacom/DB table, access
descriptors, and view descriptors.



Overview of the SAS/ACCESS Interface to CA-Datacom/DB � View Descriptor Files 5

Figure 1.1 Relationships between a CA-Datacom/DB Table, Access Descriptor
Files, and View Descriptor Files

The two types of descriptor files are discussed next. Chapter 3, “Defining SAS/
ACCESS Descriptor Files,” on page 15 shows you how to create and edit these files.

Access Descriptor Files
Access descriptor files are of member type ACCESS. Each access descriptor holds

essential information about one CA-Datacom/DB table you want to access, for example,
the table name, field names, and data types. It also contains corresponding SAS
information, such as the SAS column names, formats, and informats. Typically, you
have one access descriptor for each CA-Datacom/DB table.

An access descriptor describes one CA-Datacom/DB table. You cannot create a single
access descriptor that references two CA-Datacom/DB tables.

View Descriptor Files
View descriptor files are sometimes called SAS views, because their member type is

VIEW. This document uses the term view descriptor to distinguish them from views
created by the SQL procedure.

Each view descriptor can define all of the data or a particular subset of the data
described by one access descriptor (and therefore one CA-Datacom/DB table). For



6 Example Data in the CA-Datacom/DB Document � Chapter 1

example, you might want to use only three of four possible fields in the table and only
some of the values stored in the fields. The view descriptor enables you to select the
fields you want and, by specifying selection criteria, to select only the specific data you
want. (For example, your selection criteria might be that the date of transaction is
January 3, 1998, and that customers’ names begin with W.) Typically, for each access
descriptor, you have several view descriptors, which select different subsets of data.

You can join data from multiple CA-Datacom/DB tables with the SQL procedure. The
SQL procedure can join SAS data files, PROC SQL views, and SAS/ACCESS view
descriptors. See Chapter 4, “Using CA-Datacom/DB Data in SAS Programs,” on page 23
and Chapter 5, “Browsing and Updating CA-Datacom/DB Data,” on page 43 for
examples that use the SQL procedure.

Example Data in the CA-Datacom/DB Document

This document uses several CA-Datacom/DB tables to show you how to use the
SAS/ACCESS interface to CA-Datacom/DB. The tables were created for an
international textile manufacturer. This company’s product line includes some special
fabrics that are made to precise specifications. The tables are named CUSTOMERS,
EMPLOYEES, INVOICE, and ORDER. All the data is fictitious.

These tables are designed to show how the interface treats CA-Datacom/DB data.
They are not meant as examples for you to follow in designing tables for any purpose.

Appendix 3, “Data and Descriptors for the Examples,” on page 129 gives more
information about the tables, the data each table contains, and the sample descriptors.
Appendix 3 also gives information about the sample SAS data files used in Chapter 4,
“Using CA-Datacom/DB Data in SAS Programs,” on page 23.



7

C H A P T E R

2
CA-Datacom/DB Essentials

Introduction to CA-Datacom/DB Essentials 7
CA-Datacom/DB and CA-DATADICTIONARY Software 7

CA-Datacom/DB Databases 9

Overview of CA-Datacom/DB Databases 9

DATABASE Entity-type 9

RECORD Entity-type 9
FIELD Entity-type 10

Data Types in CA-Datacom/DB Fields 10

Numeric Data Types 10

Character Data Types 11

Date Types 11

Missing Values 11
CA-Datacom/DB Indexing 12

Selecting a Subset of CA-Datacom/DB Data 12

Sorting Data in a SAS/ACCESS View Descriptor 12

Security Features for CA-Datacom/DB 13

CA-Datacom/DB Execution Environments 13

Introduction to CA-Datacom/DB Essentials
This section introduces SAS users to CA-Datacom/DB. It focuses on the terms and

concepts that will help you use the SAS/ACCESS interface to CA-Datacom/DB. It
includes descriptions of the following:

� CA-Datacom/DB and CA-DATADICTIONARY software
� CA-Datacom/DB databases, tables, records, and fields
� CA-Datacom/DB data types
� CA-Datacom/DB indexing
� CA-Datacom/DB security features

If you want more information than this section provides, see the appropriate
CA-Datacom/DB documentation. For more information about CA-Datacom/DB
considerations, see Appendix 1, “Information for the Database Administrator,” on page
103 and Appendix 2, “Advanced Topics,” on page 117.

CA-Datacom/DB and CA-DATADICTIONARY Software
CA-Datacom/DB is a database management system (DBMS). The databases are fully

defined with CA-DATADICTIONARY.



8 CA-Datacom/DB and CA-DATADICTIONARY Software � Chapter 2

A CA-Datacom/DB database consists of various entity-types, which can occur one or
more times. For example, a database has areas, files, and records. Each data record in
a table has one or more fields. The order of the data records is determined by the value
for the field specified as the Native Key. Each field contains one type of data, and each
record can hold one data value for each field, except that a repeating field can assume
many values.

Note: CA-Datacom/DB views are not supported by the SAS/ACCESS interface to
CA-Datacom/DB. �

CA-DATADICTIONARY is a central, integrated, and active control facility that
provides the basis for shared and consistent system resource management. As a
repository for descriptive data, CA-DATADICTIONARY is your tool for the following
tasks:

� managing definitions and syntax
� enforcing naming conventions
� creating data relationships
� managing test and production environments

CA-DATADICTIONARY enables you to collect information in categories called
entity-types. Any data you enter into CA-DATADICTIONARY is associated with a
category, that is, an entity. For example, DATABASE, AREA, and FIELD are some
specific CA-DATADICTIONARY entities.

Each instance within the entity is an entity-occurrence. For example, defining a
database involves storing information about the database in the DATABASE occurrence.
Each database is listed by its unique name as an occurrence of the DATABASE entity.

Each occurrence has specific attributes such as data type. These attributes enable
you to describe specific properties of each occurrence. For example, you can specify the
type of data that a field contains or whether a key is a Master Key or a Native Key. The
actual information you store for each attribute is an attribute value. In addition,
CA-DATADICTIONARY enables you to define support data, such as aliases,
CA-Datacom/DB descriptors, text, and relationships.

CA-DATADICTIONARY enables you to have many copies (versions) of the same
occurrence. Each version of an occurrence can have one status at a given time. Only
TEST and PROD are used with the SAS/ACCESS interface to CA-Datacom/DB. The five
status values are as follows:

� TEST
� PROD (for production)
� HIST (for history)
� INCO (for incomplete)
� QUAL (for qualified production)

Depending on your site, you might find that using CA-DATADICTIONARY
interactively is more efficient for some tasks, while other tasks are simpler with batch
jobs.

For more information about CA-DATADICTIONARY and other CA-Datacom/DB
features or administration of CA-Datacom/DB databases, see the appropriate
CA-Datacom/DB documentation.



CA-Datacom/DB Essentials � RECORD Entity-type 9

CA-Datacom/DB Databases

Overview of CA-Datacom/DB Databases
A CA-Datacom/DB database is a collection of CA-Datacom/DB tables, organized

within certain CA-Datacom/DB areas and files. Each table consists of records that have
one or more FIELD entity-occurrences.

Typically, a database is organized according to the types of data and how you want to
use the data. You must understand and be familiar with your database’s organization
in order to retrieve and update information accurately and efficiently. And you must be
familiar with the organization and contents of the database to create descriptor files for
the SAS/ACCESS interface.

You need to know about several CA-Datacom/DB entity-types to use the
SAS/ACCESS interface to CA-Datacom/DB. The most important entity-types are
databases, records, and fields. Fields contain the actual data values, which are either
character or numeric type.

You can define a field as a simple field or a compound field. Fields can also become
keys. Two special keys, the Native Key and the Master Key, are required for each table.
CA-Datacom/DB generates an index for each key field. Knowing about the Native Key
and the indexes can help you minimize CA-Datacom/DB processing time for your view
descriptors. In addition, fields can repeat. For more information about fields, see
“FIELD Entity-type” on page 10.

The following sections describe the various CA-Datacom/DB entity-types that pertain
to the SAS/ACCESS interface to CA-Datacom/DB.

DATABASE Entity-type
Each DATABASE entity-occurrence in the CA-DATADICTIONARY database has a

unique name, from 1 to 32 characters long. A database also has a status (TEST or
PROD) and version associated with it.

RECORD Entity-type
A table consists of some number of records, each having one or more fields. The table

name is the name of a RECORD entity-occurrence, up to 32 characters long. Data
records in the table are ordered by the values for an assigned field called the Native
Key. CA-Datacom/DB permits up to 240 tables in a database. The tables can be spread
across one or more CA-Datacom/DB areas. When you define a record for a table, you
must define at least one field, one key, and one element for that record.

To create descriptor files for the SAS/ACCESS interface, you must know the name of
the RECORD entity-occurrence (table) and the user ID and optional password for the
CA-DATADICTIONARY. An access descriptor and its associated view descriptors
pertain to only one table.

Output 2.1 illustrates four fields from the table CUSTOMERS. Field names are
shown at the top of the columns. Each row represents the values in a record. The first
field, CUSTOMER, is the Native Key in this table, which causes the records to be
maintained in order by customer number.



10 FIELD Entity-type � Chapter 2

Output 2.1 A Sample CA-Datacom/DB Table

CUSTOMER CITY STATE COUNTRY
14324742 San Jose CA USA
14569877 Memphis TN USA
14898029 Rockville MD USA
24589689 Belgrade Yugoslavia
26422096 La Rochelle France
38763919 Buenos Aires Argentina
46783280 Singapore Singapore

FIELD Entity-type
Each FIELD entity-occurrence has a name (of up to 32 characters) and specific

attributes, such as the data type. For more information about data types, see “Data
Types in CA-Datacom/DB Fields” on page 10.

You can define several kinds of fields, as described briefly here.
� A simple field is a single field.
� A compound field consists of two or more simple or compound fields. The fields can

be of different data types and lengths; they can also repeat or be within repeating
fields. The fields making up a compound field must be contiguous.

� A key field enables you to quickly select and sequence data records. A key field can
be any combination of simple and compound fields, up to 180 characters. The
fields in a key do not have to be contiguous.

� The Native Key is the field that determines the order of the records in a
CA-Datacom/DB table. Each table must have one Native Key. It can be the same
as the Master Key.

� The Master Key enables you to prevent duplicate values in a key field and to
prevent changing values in that key. Each record must have one Master Key. It
can be the same as the Native Key.

� A repeating field is a simple field or a compound field that can occur more than
once. Repeating fields can also be nested within other repeating fields.

� An element is a unit of transfer between application programs and
CA-Datacom/DB. It consists of one or more contiguous fields. An element should
contain only those fields that an application program uses at execution time.
When defining an element, group together fields that are frequently accessed
together in applications.

Data Types in CA-Datacom/DB Fields
A CA-Datacom/DB field can be any one of a variety of data types; they are mostly

type character or type numeric, as discussed below.
When you create a view descriptor, the ACCESS procedure assigns SAS formats,

informats, and so on, in addition to SAS column names from the CA-Datacom/DB field
names. See “ACCESS Procedure Data Conversions” on page 97 for the default SAS
column formats and informats for each CA-Datacom/DB data type. You can change the
default formats and informats.

Numeric Data Types
Here are some of the numeric types available for CA-Datacom/DB fields:



CA-Datacom/DB Essentials � Missing Values 11

B binary

D packed decimal

E extended floating-point

L long floating-point

N numeric (zoned decimal)

S short floating-point

2 halfword binary (aligned)

4 fullword binary (aligned)

8 doubleword binary (aligned).

Character Data Types
Here are some of the character types available for CA-Datacom/DB fields:

C character

G graphics data

H hexadecimal character

K kanji (same as type Y)

T PL/I bit representation

Y double-byte character set (DBCS)

Z mixed DBCS and single byte.

Date Types
CA-Datacom/DB supports the CA-Datacom/DB SQL types SQL-DATE, SQL-TIME,

and SQL-STMP as binary data.

SQL-DATE
specifies date values in the format CCYYMMDD, where CC=century, YY=year,
MM=month, and DD=day.

SQL-TIME
specifies the time values in the format HHMMSS, where HH=hours, MM=minutes,
and SS=seconds.

SQL-STMP
specifies a date and a time and adds microseconds in the format
CCYYMMDDHHMMSSNNNNNN.

See “ACCESS Procedure Data Conversions” on page 97 for information about the
default formats that the ACCESS procedure assigns to the DBMS data types. To specify
a different representation, you can change the default SAS format in your descriptor
files.

Missing Values
Missing values in a CA-Datacom/DB table are referred to as nil values or simply nils.

Nil values for both character and numeric type data are blanks, that is, HEX (40)s. All



12 CA-Datacom/DB Indexing � Chapter 2

fields of a key must contain blanks for a value to be nil. There are no valid packed
decimal or zoned decimal nil values. You can specify binary zeros for nils (see “System
Options for the CA-Datacom/DB Interface” on page 113).

In SAS, nils are referred to as missing values. CA-Datacom/DB and SAS handle
missing values differently, but the interface view engine takes care of the differences.
See “Missing Values (Nils) in CA-Datacom/DB Tables” on page 125 for a discussion of
the differences.

CA-Datacom/DB Indexing

An index area is required for each CA-Datacom/DB database. CA-Datacom/DB
creates an index entry for each key value in each record. The indexes enable you to
retrieve records quickly based on the record’s contents.

Selecting a Subset of CA-Datacom/DB Data

A database would not be very efficient if all records had to be accessed when you
needed data from only some of them. Therefore, you can specify selection criteria to
identify those parts of the CA-Datacom/DB table that you want to access.

Selection criteria contain one or more conditions that values must meet. Typically, a
condition consists of a field name, an operator, and a value, but you can also compare
the values of two fields or give a range of values. Conditions can be combined with AND
(&) or OR (|).

Here are some sample conditions.

cost<.50
lastname eq ’Smith’

part=9567 & onhand>2.0e+6

For the SAS/ACCESS interface to CA-Datacom/DB, you can include a WHERE clause
in a view descriptor to specify selection criteria or you can include a SAS WHERE
clause in a SAS program. Or you can include both WHERE clauses. The interface view
engine translates WHERE clauses into CA-Datacom/DB selection criteria.

Note that the WHERE clause for a view descriptor and the SAS WHERE clause have
some differences. For more information about WHERE clauses and a description of the
syntax, see “WHERE Clause in a View Descriptor” on page 89 and “Deciding How to
Specify Selection Criteria in CA-Datacom/DB” on page 126.

Sorting Data in a SAS/ACCESS View Descriptor

Records in a CA-Datacom/DB table are maintained in order by values in the specified
Native Key. In a SAS/ACCESS view descriptor, you can provide a different Default Key
for the view, and the records will then assume the order of your specified Default Key.
You can also specify a SORT clause, which consists of the keyword SORT followed by
one or more field names, separated by commas. You can specify ascending or
descending order for each sort key; the default is ascending order. Here is an example:

sort state, city, lastname desc



CA-Datacom/DB Essentials � CA-Datacom/DB Execution Environments 13

In addition, you can specify data order in a SAS program using a SAS BY clause.
Note, however, that a SAS BY clause overrides a SORT clause stored in a view
descriptor unless the SAS procedure includes the NOTSORTED option. In this
situation, the SAS BY clause is ignored, and the SORT clause in the view descriptor is
used.

For more information about SORT clauses, see “SORT Clause in a View Descriptor”
on page 95.

Security Features for CA-Datacom/DB

The CA-DATADICTIONARY database is protected by user IDs, passwords, and locks.
You must give the correct user ID and optional password to the ACCESS procedure so
the procedure can obtain CA-DATADICTIONARY information for creating an access
descriptor. CA-Datacom/DB also has security interfaces to packages such as RACF. In
addition, you can develop your own security program through a user exit in the
interface view engine.

CA-Datacom/DB Execution Environments

When you access a CA-Datacom/DB database, you can work in either a single user
execution environment or a multi-user execution environment. In a single user
environment, each user has a copy of CA-Datacom/DB and has exclusive use of the
database.

The SAS/ACCESS interface to CA-Datacom/DB runs only under a multi-user
environment. In a multi-user environment, many databases can be accessed from many
regions concurrently, with exclusive control at the logical record level. Only one copy of
CA-Datacom/DB is required to handle all regions. Recovery is centralized for all users.



14



15

C H A P T E R

3
Defining SAS/ACCESS Descriptor
Files

Introduction to Defining SAS/ACCESS Descriptor Files 15
SAS/ACCESS Descriptor Files Essentials 15

Creating SAS/ACCESS Descriptor Files 16

Access Descriptor and View Descriptor Files 16

The ACCESS Procedure 16

Creating Access Descriptors and View Descriptors in One PROC Step 16
Updating Descriptor Files 20

Extracting CA-Datacom/DB Data with the ACCESS Procedure 21

Introduction to Defining SAS/ACCESS Descriptor Files
To use the SAS/ACCESS interface to CA-Datacom/DB, you must define special files

that describe CA-Datacom/DB tables and data to SAS. These files are called
SAS/ACCESS descriptor files. This section uses examples to illustrate creating and
editing these files, as well as using the ACCESS procedure to extract CA-Datacom/DB
data and place it in a SAS data file. (For complete reference information about the
ACCESS procedure, see Chapter 6, “ACCESS Procedure Reference,” on page 59.)

The examples in this section are based on the CA-Datacom/DB table named
CUSTOMERS. (See Appendix 3, “Data and Descriptors for the Examples,” on page 129
to review the data in this table.) The examples create an access descriptor file named
MYLIB.CUSTS for that table. Then, the examples create two view descriptor files,
VLIB.USACUST and VLIB.CUSTADD, based on the access descriptor.

SAS/ACCESS Descriptor Files Essentials
SAS interacts with CA-Datacom/DB through an interface view engine that uses SAS/

ACCESS descriptor files created with the ACCESS procedure. There are two types of
descriptor files:

� access descriptor files (member type ACCESS)
� view descriptor files (member type VIEW)

An access descriptor contains information about the CA-Datacom/DB table that you
want to use. The information includes the table name, the field names, and their data
types. You use the access descriptor to create view descriptors. Think of an access
descriptor as a master descriptor file for a single CA-Datacom/DB table, because it
usually contains a complete description of that table.

A view descriptor defines a subset of the data described by an access descriptor. You
choose this subset by selecting particular fields in the CA-Datacom/DB table, and you



16 Creating SAS/ACCESS Descriptor Files � Chapter 3

can specify selection criteria that the data must meet. For example, you might want to
select two fields, LAST-NAME and CITY-STATE, and specify that the value stored in
field CITY-STATE must be AUSTIN TX. You can also specify a sequence order for the
data. After you create your view descriptor, you can use it in a SAS program to read
data directly from the CA-Datacom/DB table or to extract the data and place it in a
SAS data file. Typically, for each access descriptor that you define, you have several
view descriptors, each selecting different subsets of data.

Creating SAS/ACCESS Descriptor Files

Access Descriptor and View Descriptor Files
The examples in this section illustrate creating a permanent access descriptor named

MYLIB.CUSTS and two view descriptors named VLIB.USACUST and VLIB.CUSTADD.
Begin by using the SAS LIBNAME statement to associate librefs with the SAS data
libraries in which you want to store the descriptors. (See the SAS documentation for
your operating system for more details on the LIBNAME statement.)

You can have one library for access descriptors and a separate library for view
descriptors, or you can put both access descriptors and view descriptors in the same
library. Having separate libraries for access and view descriptors helps you maintain
data security by enabling you to separately control who can read and update each type
of descriptor.

In this document, the libref MYLIB is used for access descriptors and the libref VLIB
is used for view descriptors.

The ACCESS Procedure
You define descriptor files with the ACCESS procedure. You can define access

descriptor files and view descriptor files in the same procedure execution or in separate
executions. Within an execution, you can define multiple descriptors of the same or
different types.

The following section shows how to define an access descriptor and multiple view
descriptors in a single procedure execution. Examples of how to create the same
descriptor files in separate PROC ACCESS executions are provided in Appendix 3,
“Data and Descriptors for the Examples,” on page 129.

When you use a separate PROC ACCESS execution to create a view descriptor, note
that you must use the ACCDESC= option to specify an existing access descriptor from
which the view descriptor will be created.

Creating Access Descriptors and View Descriptors in One PROC Step
Perhaps the most common way to use the ACCESS procedure statements is to create

an access descriptor and one or more view descriptors based on this access descriptor in
a single PROC ACCESS execution. The following example shows how to do this. First
an access descriptor is created (MYLIB.CUSTS). Then two view descriptors are created
(VLIB.USACUST and VLIB.CUSTADD). Each statement is then explained in the order
that it appears in the example program.

proc access dbms=Datacom;
create mylib.custs.access;



Defining SAS/ACCESS Descriptor Files � Creating Access Descriptors and View Descriptors in One PROC Step 17

user=demo;
table=customers;
assign = yes;
drop contact;
list all;
extend all;
rename customer = custnum telephone = phone

streetaddress = street;
format firstorderdate = date7.;
informat firstorderdate = date7.;
content firstorderdate = yymmdd6.;
list all;

create vlib.usacust.view;
select customer state zipcode name

firstorderdate;
list view;
extend view;

subset where customer eq 1#;
subset sort firstorderdate;
list view;

create vlib.custadd.view;
select state zipcode country name city;
list view;

list all;

run;

proc access dbms=Datacom;
invokes the ACCESS procedure for the SAS/ACCESS interface to CA-Datacom/DB.

create mylib.custs.access;
identifies the access descriptor, MYLIB.CUSTS, that you want to create. The
MYLIB libref must be associated with a SAS library before you can specify this
statement.

user=demo;
specifies a required CA-DATADICTIONARY user ID. In this case, the user name is
DEMO for the CA-Datacom/DB table CUSTOMERS. The name is the 32-character
entity-occurrence name of a PERSON entity in CA-DATADICTIONARY. The value
entered is saved in the access descriptor and any view descriptor created from it.
The user name and optional password (not used here) must have
CA-DATADICTIONARY retrieval authority on six entity-types: DATABASE, FILE,
RECORD, ELEMENT, KEY, and FIELD.

table=customers;
indicates the name of the CA-Datacom/DB table that you want to use. The table
name is required. The table name is a 32-character field that names an
entity-occurrence of type RECORD in CA-DATADICTIONARY. (For
CA-Datacom/DB R8, the type is TABLE.) The combination of values in the TABLE
statement and optional DATABASE and STATUS statements (not used here) must
be unique.



18 Creating Access Descriptors and View Descriptors in One PROC Step � Chapter 3

assign = yes;
generates unique SAS column names based on the first eight non-blank characters
of the CA-Datacom/DB field names. The column names and attributes can be
changed in this access descriptor but not in any view descriptors created from this
access descriptor.

Note that although the ASSIGN statement assigns names to the columns, it
does not select them for inclusion in any view descriptors created from this access
descriptor. You must select the fields in the view descriptor with the SELECT
statement. Unless fields are dropped, they are automatically included in the
access descriptor.

drop contact;
marks the CA-Datacom/DB field with the name CONTACT as non-display. The
CONTACT field is a simple field; therefore, it is the only DBMS column that is
dropped. When the DROP statement indicates a compound field, which can consist
of multiple simple and compound fields, all DBMS columns associated with the
compound field are marked as non-display, unless otherwise specified with the
OCCURS statement. Compound fields are identified by the word *GROUP* in
their description in the LIST statement output.

Columns that are dropped also do not appear in any view descriptors created
from this access descriptor.

list all;
lists the access descriptor’s item identifier numbers, the CA-Datacom/DB field
names, the CA-Datacom/DB level numbers, the SAS column names, and the SAS
formats. You can use the item identifier as a field identifier in statements that
require you to use the DBMS column name. The list is written to the SAS log.
Any columns that have been dropped from display (using the DROP statement)
have *NON-DISPLAY* next to them.

extend all;
lists information about the SAS columns in the access descriptor, including the
informat, the database content, and the number of times a field repeats. The list is
written to the SAS log. When you are creating multiple descriptors, you can use
the EXTEND statement before the next CREATE statement to list all the
information about the descriptor you are creating.

rename customer = custnum telephone = phone streetaddress = street;
renames the default SAS column names associated with the CUSTOMER,
TELEPHONE, and STREETADDDRESS fields to CUSTNUM, PHONE, and
STREET, respectively. Specify the CA-Datacom/DB field name or its positional
equivalent from the LIST statement on the left side of the equal sign (=) and the
new SAS name on the right. Because the ASSIGN=YES statement is specified,
any view descriptors that are created from this access descriptor will
automatically use the new names.

format firstorderdate = date7.;
changes the FIRSTORD SAS column from its default format to a new SAS format.
The format specifies the way a value will be printed. In this case, it is a date
format. Specify the CA-Datacom/DB field name or its positional equivalent from
the LIST statement on the left side of the equal sign (=) and the new SAS format
on the right. Because the ASSIGN=YES statement is specified, any view
descriptors that are created from this access descriptor will automatically use the
new format for the FIRSTORD column.

informat firstorderdate = date7.;
changes the FIRSTORD SAS column from its default informat to a new SAS
informat. The informat specifies the way a value will be read. In this case, it is a



Defining SAS/ACCESS Descriptor Files � Creating Access Descriptors and View Descriptors in One PROC Step 19

date informat. Specify the CA-Datacom/DB field name or its positional equivalent
from the LIST statement on the left side of the equal sign (=) and the new
informat on the right. Because the ASSIGN=YES statement is specified, any view
descriptors that are created from this access descriptor will automatically use the
new informat for the FIRSTORD column.

content firstorderdate = yymmdd6.;
specifies the SAS date format to use for the FIRSTORD SAS column. This format
indicates the way date values are represented internally in the CA-Datacom/DB
table (in this case, yymmdd). Specify the CA-Datacom/DB field name or its
positional equivalent from the LIST statement on the left side of the equal sign (=)
and the date format on the right. Because the ASSIGN=YES statement is
specified, any view descriptors that are created from this access descriptor will
automatically use this date format for the FIRSTORD column.

list all;
lists the item identifiers, the CA-Datacom/DB field names, the SAS column names,
and other SAS information in the access descriptor so you can see the
modifications before proceeding with the next CREATE statement.

create vlib.usacust.view;
writes the access descriptor to the library associated with MYLIB and identifies
the view descriptor, VLIB.USACUST, that you want to create. The VLIB libref
must be associated with a library before you can specify this statement.

select customer state zipcode name firstorderdate;
selects the CUSTOMER, STATE, ZIPCODE, NAME, and FIRSTORDERDATE
fields for inclusion in the view descriptor. A SELECT statement is required to
create the view, unless a RENAME, FORMAT, INFORMAT, or CONTENT
statement is used.

list view;
lists the item identifiers, the DBMS column names, the SAS column names, and
other SAS information associated with the CA-Datacom/DB fields selected for the
view. The list is written to the SAS log.

extend view;
lists detail information about the SAS columns in the view, including the informat,
the DB content, and the number of times a field repeats. The list is written to the
SAS log.

subset where customer eq 1#;
specifies that you want to include only records with 1 as the first character in the
CUSTOMER DBMS column.

subset sort firstorderdate;
specifies that you want to sort the records by the value of the FIRSTORDERDATE
DBMS column.

list view;
lists the item identifiers, the DBMS column names, the SAS column names, and
other SAS information associated with the view, to show the modifications.

create vlib.custadd.view;
writes view descriptor VLIB.USACUST to the library associated with VLIB and
identifies a second view descriptor, VLIB.CUSTADD, that you want to create.

select state zipcode country name city;
selects the STATE, ZIPCODE, COUNTRY, NAME, and CITY fields for inclusion in
the view descriptor.



20 Updating Descriptor Files � Chapter 3

list view;
lists the item identifiers, the DBMS column names, the SAS column names, and
other SAS information associated with the CA-Datacom/DB fields selected for the
view.

list all;
lists updated SAS information for the fields in the access descriptor. Fields that
were dropped have *NON-DISPLAY* next to the SAS column description. Fields
that were selected in the VLIB.CUSTADD view descriptor have *SELECTED*
next to them. Fields that were selected in VLIB.USACUST will not show as
selected in the access descriptor. Selection information, including status and any
selection criteria, are reset in the access descriptor for each new view descriptor.
The list is written to the SAS log.

run;
writes the view descriptor when the RUN statement is processed.

Updating Descriptor Files

This section describes how to update existing descriptor files. You update access
descriptor and view descriptor files with the UPDATE statement. You can edit the user
and field information in the descriptor files.

When you update an access descriptor, the view descriptors that are based on this
access descriptor are not updated automatically. You must re-create or update any view
descriptors that you want to reflect the changes made to the access descriptor. That is,
for some updates (such as dropping a field), the view descriptors are still valid, but they
do not reflect the changes made in the access descriptor. In other situations (for
example, if you edited the access descriptor to use a different userid or to add a
password), the view descriptors would no longer be valid. A valid descriptor file can also
be made useless by an update. For example, if an update to an access descriptor drops
two of the four fields defined in a view descriptor, you might want to update or delete
the view descriptor.

The following example updates access descriptor MYLIB.CUSTS to drop additional
fields. The VLIB.USACUSTS and VLIB.CUSTADD view descriptors remain valid.
However, you might want to update them to select new fields to replace those dropped
as a result of the update.

proc access dbms=Datacom;
update mylib.custs.access;
drop 3 7;
list all;

run;

The statements are described below.

proc access dbms=Datacom;
invokes the ACCESS procedure for the SAS/ACCESS interface to CA-Datacom/DB.

update mylib.custs.access;
identifies the access descriptor, MYLIB.CUSTS, that you want to update. The
MYLIB libref must be associated with a SAS library before you can specify this
statement.

drop 3 7;
marks the CA-Datacom/DB fields associated with position 3 (STATEZIP) and
position 7 (TELEPHONE) as non-display. STATEZIP is a compound (*GROUP*)



Defining SAS/ACCESS Descriptor Files � Extracting CA-Datacom/DB Data with the ACCESS Procedure 21

field consisting of STATE and ZIPCODE. Dropping a group effectively drops the
members of the group, so the STATE and ZIPCODE fields (which are selected in
VLIB.USACUST and VLIB.CUSTADD) are marked as non-display as well.

list all;
lists updated SAS information for the fields in the access descriptor. Fields that
were dropped have *NON-DISPLAY* next to the SAS column description. The list
is written to the SAS log.

run;
writes the updated access descriptor when the RUN statement is processed.

Altering a CA-Datacom table that has descriptor files defined can also cause these
files to be out of date or invalid. If you add a field to a table, an access descriptor is still
valid. However, if you delete a field or change its characteristics and that field is used
in a view descriptor, the view will fail when executed. For more information, see “How
Changing the CA-DATADICTIONARY Database Affects Descriptor Files” on page 109.

Extracting CA-Datacom/DB Data with the ACCESS Procedure

Although you can access CA-Datacom/DB data directly in your SAS programs, it is
sometimes better to extract the CA-Datacom/DB data and place it in a SAS data file.
For example, if you are using the same CA-Datacom/DB data in several SAS jobs, it
might be less resource-intensive to access extracted data in a SAS data file than to
access a CA-Datacom/DB table repeatedly. (See “Performance Considerations” on page
41 for other circumstances in which extracting data is the more efficient method.)

You can extract CA-Datacom/DB data by using PROC ACCESS statement options.
You can also extract data using the DATA step. (See Chapter 4, “Using CA-Datacom/DB
Data in SAS Programs,” on page 23 for examples using the SQL procedure to extract
CA-Datacom/DB data and place it in a SAS data file.) Note that if you store view
descriptors and SAS data files in the same SAS library, you must give them unique
member names.

To extract data using the PROC ACCESS statement options, submit the following
SAS code:

proc access viewdesc=vlib.usacust out=mydata.usaout;
run;

VLIB.USACUST is the two-level name that specifies the libref and member name for
the view descriptor you want to use for extracting data, in this case, USACUST. Note
that VLIB.USACUST must already exist. MYDATA.USAOUT is the two-level name
specifying the libref and member name for the output SAS data file.



22



23

C H A P T E R

4
Using CA-Datacom/DB Data in
SAS Programs

Introduction to Using CA-Datacom/DB Data in SAS Programs 23
Reviewing Columns for CA-Datacom/DB Data 24

Printing CA-Datacom/DB Data 25

Charting CA-Datacom/DB Data 26

Calculating Statistics for CA-Datacom/DB Data 28

Using FREQ, MEANS, and RANK Procedures 28
Using the FREQ Procedure 28

Using the MEANS Procedure 28

Using the RANK Procedure 30

Selecting and Combining CA-Datacom/DB Data 30

Using the WHERE Statement or the SQL Procedure 30

Selecting Data with the WHERE Statement 31
Combining Data with the SQL Procedure 32

Combining Data from Various Sources 32

Creating New Fields with the PROC SQL GROUP BY Clause 37

Updating a SAS Data File with CA-Datacom/DB Data 38

Using a DATA Step UPDATE Statement 38
Updating a Version 6 Data File 38

Updating a Version 8 and Later Data File 40

Performance Considerations 41

Introduction to Using CA-Datacom/DB Data in SAS Programs
An advantage of the SAS/ACCESS interface to CA-Datacom/DB is that it enables

SAS to read and write CA-Datacom/DB data directly using SAS programs. This section
presents examples using CA-Datacom/DB data that is described by view descriptors in
SAS programs. For information about the views and sample data, see Appendix 3,
“Data and Descriptors for the Examples,” on page 129.

Throughout the examples, the SAS terms column and row are used instead of
comparable CA-Datacom/DB terms, because this section illustrates using SAS
procedures and the DATA step. The examples include printing and charting data, using
the SQL procedure to combine data from various sources, and updating Version 6 and
Version 8 and later SAS data sets with data from CA-Datacom/DB. For more
information about the SAS language and procedures used in the examples, refer to the
documents listed at the end of each section.

At the end of this section, “Performance Considerations” on page 41 presents some
techniques for using view descriptors efficiently in SAS programs.



24 Reviewing Columns for CA-Datacom/DB Data � Chapter 4

Reviewing Columns for CA-Datacom/DB Data
If you want to use CA-Datacom/DB data that is described by a view descriptor in your

SAS program but cannot remember the SAS column names or formats and informats,
you can use the CONTENTS or DATASETS procedure to display this information.

The following example uses the DATASETS procedure to give you information about
the view descriptor VLIB.CUSPHON, which is based on the CA-Datacom/DB table
CUSTOMERS.

proc datasets library=vlib memtype=view;
contents data=cusphon;

run;

The following output shows the information for this example. The data that is
described by VLIB.CUSPHON is shown in Output 4.9.

Output 4.1 Using the DATASETS Procedure with a View Descriptor

The SAS System 1
DATASETS PROCEDURE

Data Set Name: VLIB.CUSPHON Observations: 22
Member Type: VIEW Variables: 3
Engine: SASIODDB Indexes: 0
Created: 11:19 Friday, October 12, 1990 Observation Length: 80
Last Modified: 12:03 Friday, October 12, 1990 Deleted Observations: 0
Data Set Type: Compressed: NO
Label:

-----Engine/Host Dependent Information-----

-----Alphabetic List of Variables and Attributes-----

# Variable Type Len Pos Format Informat Label
----------------------------------------------------------------------
1 CUSTNUM Char 8 0 $8. $8. CUSTOMER
3 NAME Char 60 20 $60. $60. NAME
2 PHONE Char 12 8 $12. $12. TELEPHONE

Note the following points about this output:
� You cannot change a view descriptor’s column labels using the DATASETS

procedure. The labels are generated as the complete CA-Datacom/DB field name
when the view descriptor is created, and they cannot be overridden.

� The Created date is when the access descriptor for this view descriptor was
created.

� The Last Modified date is the last time the view descriptor was updated or
created.

� The Observations number shown is the number of records in the
CA-Datacom/DB table.

For more information about the DATASETS procedure, see the SAS Language
Reference: Dictionary and the Base SAS Procedures Guide.



Using CA-Datacom/DB Data in SAS Programs � Printing CA-Datacom/DB Data 25

Printing CA-Datacom/DB Data
Printing CA-Datacom/DB data that is described by a view descriptor is exactly like

printing a SAS data file, as shown by the following example:

proc print data=vlib.empinfo;
title2 ’Brief Employee Information’;

run;

VLIB.EMPINFO derives its data from the EMPLOYEES table. The following output
shows the first page of output for this example.

Output 4.2 Results of Printing CA-Datacom/DB Data

Brief Employee Information 1
OBS EMPID DEPT LASTNAME

1 119012 CSR010 WOLF-PROVENZA
2 120591 SHP002 HAMMERSTEIN
3 123456 VARGAS
4 127845 ACC024 MEDER
5 129540 SHP002 CHOULAI
6 135673 ACC013 HEMESLY
7 212916 CSR010 WACHBERGER
8 216382 SHP013 PURINTON
9 234967 CSR004 SMITH

10 237642 SHP013 BATTERSBY
11 239185 ACC024 DOS REMEDIOS
12 254896 CSR011 TAYLOR-HUNYADI
13 321783 CSR011 GONZALES
14 328140 ACC043 MEDINA-SIDONIA
15 346917 SHP013 SHIEKELESLAM
16 356134 ACC013 DUNNETT
17 423286 ACC024 MIFUNE
18 456910 CSR010 ARDIS
19 456921 SHP002 KRAUSE
20 457232 ACC013 LOVELL
21 459287 SHP024 RODRIGUES
22 677890 CSR010 NISHIMATSU-LYNCH

When you use the PRINT procedure, you might want to use the OBS= option, which
enables you to specify the last row to be processed. This is especially useful when the
view descriptor describes large amounts of data or when you just want to see an
example of the output. The following example uses the OBS= option to print the first
five rows described by the view descriptor VLIB.CUSORDR:

proc print data=vlib.cusordr (obs=5);
title ’First Five Data Records Described by VLIB.CUSORDR’;

run;

VLIB.CUSORDR accesses data from the table ORDER. The following output shows
the result of this example.



26 Charting CA-Datacom/DB Data � Chapter 4

Output 4.3 Results of Using the OBS= Option

First Five Data Records Described by VLIB.CUSORDR 1
OBS STOCKNUM SHIPTO

1 9870 19876078
2 1279 39045213
3 8934 18543489
4 3478 29834248
5 2567 19783482

In addition to the OBS= option, the FIRSTOBS= option also works with view
descriptors, but the FIRSTOBS= option does not improve performance significantly
because each record must still be read and its position calculated.

For more information about the PRINT procedure, see the Base SAS Procedures
Guide. For more information about the OBS= and FIRSTOBS= options, see the SAS
Language Reference: Dictionary.

Charting CA-Datacom/DB Data
CHART procedure programs work with CA-Datacom/DB data that is described by

view descriptors just as they do with SAS data files. The following example uses the
view descriptor VLIB.ALLORDR to create a vertical bar chart of the number of orders
per product:

proc chart data=vlib.allordr;
vbar stocknum;
title ’Data Described by VLIB.ALLORDR’;

run;

VLIB.ALLORDR accesses data from the table ORDER. The following output shows
the information for this example. STOCKNUM represents each product. The number of
orders for each product is represented by the height of the bar.



Using CA-Datacom/DB Data in SAS Programs � Charting CA-Datacom/DB Data 27

Output 4.4 Results of Charting CA-Datacom/DB Data

Data Described by VLIB.ALLORDR 1
Frequency

8 + ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****

7 + ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****

6 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

5 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

4 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

3 + ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****

2 + ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****

1 + ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
| ***** ***** ***** ***** ***** *****
----------------------------------------------------------------------------

750 2250 3750 5250 6750 8250 9750

STOCKNUM

For more information about the CHART procedure, see the Base SAS Procedures
Guide.

If you have SAS/GRAPH software, you can create colored block charts, plots, and
other graphics based on CA-Datacom/DB data. See the SAS/GRAPH Software:
Reference, Volumes 1 and 2 for more information about the kinds of graphics you can
produce with this SAS software product.



28 Calculating Statistics for CA-Datacom/DB Data � Chapter 4

Calculating Statistics for CA-Datacom/DB Data

Using FREQ, MEANS, and RANK Procedures
You can use statistical procedures with CA-Datacom/DB data that is described by

view descriptors just as you would with SAS data files. This section shows simple
examples using the FREQ and MEANS procedures and a more advanced example using
the RANK procedure.

Using the FREQ Procedure
Suppose you want to find what percentage of your invoices went to each country so

that you can decide where to increase your overseas marketing. The following example
calculates the percentage of invoices for each country appearing in the CA-Datacom/DB
table INVOICE using the view descriptor VLIB.INV:

proc freq data=vlib.inv;
tables country;
title ’Data Described by VLIB.INV’;

run;

The following output shows the one-way frequency table this example generates.

Output 4.5 Results of Using the FREQ Procedure

Data Described by VLIB.INV 1
COUNTRY

Cumulative Cumulative
COUNTRY Frequency Percent Frequency Percent
--------------------------------------------------------------
Argentina 2 11.8 2 11.8
Australia 1 5.9 3 17.6
Brazil 4 23.5 7 41.2
USA 10 58.8 17 100.0

For more information about the FREQ procedure, see the Base SAS Procedures Guide.

Using the MEANS Procedure
Suppose you want to determine some statistics for each of your USA customers. The

view descriptor VLIB.USAORDR accesses records from the ORDER table that have a
SHIPTO value beginning with a 1, indicating a USA customer.

The following example generates the mean and sum of the length of material ordered
and the fabric charges for each USA customer. Also included are the number of rows
(N) and the number of missing values (NMISS).

proc means data=vlib.usaordr mean sum n nmiss maxdec=0;
by shipto;
var length fabricch;
title ’Data Described by VLIB.USAORDR’;

run;



Using CA-Datacom/DB Data in SAS Programs � Using the MEANS Procedure 29

The BY statement causes the interface view engine to generate ordering criteria so that
the data is sorted. The following output shows some of the information produced by this
example.

Output 4.6 Results of Using the MEANS Procedure

Data Described by VLIB.USAORDR 1
-------------------------------- SHIPTO=14324742 -------------------------------

Variable Label N Nmiss Mean Sum
--------------------------------------------------------------
LENGTH LENGTH 4 0 1095 4380
FABRICCH FABRICCHARGES 2 2 1934460 3868920
--------------------------------------------------------------

-------------------------------- SHIPTO=14898029 -------------------------------

Variable Label N Nmiss Mean Sum
--------------------------------------------------------------
LENGTH LENGTH 2 0 2500 5000
FABRICCH FABRICCHARGES 2 0 1400825 2801650
--------------------------------------------------------------

-------------------------------- SHIPTO=15432147 -------------------------------

Variable Label N Nmiss Mean Sum
--------------------------------------------------------------
LENGTH LENGTH 4 0 725 2900
FABRICCH FABRICCHARGES 2 2 252149 504297
--------------------------------------------------------------

-------------------------------- SHIPTO=18543489 -------------------------------

Variable Label N Nmiss Mean Sum
--------------------------------------------------------------
LENGTH LENGTH 6 0 303 1820
FABRICCH FABRICCHARGES 4 2 11063836 44255344
--------------------------------------------------------------

-------------------------------- SHIPTO=19783482 -------------------------------

Variable Label N Nmiss Mean Sum
--------------------------------------------------------------
LENGTH LENGTH 4 0 450 1800
FABRICCH FABRICCHARGES 4 0 252149 1008594
--------------------------------------------------------------

-------------------------------- SHIPTO=19876078 -------------------------------

Variable Label N Nmiss Mean Sum
--------------------------------------------------------------
LENGTH LENGTH 2 0 690 1380
FABRICCH FABRICCHARGES 0 2 . .
--------------------------------------------------------------

For more information about the MEANS procedure, see the Base SAS Procedures
Guide.



30 Using the RANK Procedure � Chapter 4

Using the RANK Procedure

You can use advanced statistics procedures with CA-Datacom/DB data that is
described by a view descriptor. The following example uses the RANK procedure with
data that is described by the view descriptor VLIB.EMPS to calculate the order of
birthdays for a set of employees. This example creates a SAS data file
MYDATA.RANKEX from the view descriptor VLIB.EMPS. It assigns the column name
DATERANK to the new field created by the procedure. (The VLIB.EMPS view
descriptor includes a WHERE clause to select only the employees whose job code is 602.)

proc rank data=vlib.emps out=vlib.rankexam;
var birthdat;
ranks daterank;

run;
proc print data=vlib.rankexam;

title ’Order of Employee Birthdays’;
run;

VLIB.EMPS is based on the CA-Datacom/DB table EMPLOYEES. The following output
shows the result of this example.

Output 4.7 Results of Using the RANK Procedure

Order of Employee Birthdays 1
OBS EMPID JOBCODE BIRTHDAT LASTNAME DATERANK

1 456910 602 24SEP53 ARDIS 5
2 237642 602 13MAR54 BATTERSBY 6
3 239185 602 28AUG59 DOS REMEDIOS 7
4 321783 602 03JUN35 GONZALES 2
5 120591 602 12FEB46 HAMMERSTEIN 4
6 135673 602 21MAR61 HEMESLY 8
7 456921 602 12MAY62 KRAUSE 9
8 457232 602 15OCT63 LOVELL 11
9 423286 602 31OCT64 MIFUNE 12
10 216382 602 24JUL63 PURINTON 10
11 234967 602 21DEC67 SMITH 13
12 212916 602 29MAY28 WACHBERGER 1
13 119012 602 05JAN46 WOLF-PROVENZA 3

For more information about the RANK procedure and other advanced statistics
procedures, see the Base SAS Procedures Guide.

Selecting and Combining CA-Datacom/DB Data

Using the WHERE Statement or the SQL Procedure

Many SAS programs select and combine data from various sources. The method you
use depends on the configuration of the data. The next examples show you how to select
and combine data using two different methods. When choosing between these methods,
consider the issues described in “Performance Considerations” on page 41.



Using CA-Datacom/DB Data in SAS Programs � Selecting Data with the WHERE Statement 31

Selecting Data with the WHERE Statement

Suppose you have two view descriptors, VLIB.USINV and VLIB.FORINV, that list
the invoices for the USA and foreign countries, respectively. You could use the SET
statement to concatenate these files into a single SAS data file. The WHERE statement
specifies that you want a data file containing information about customers who have not
paid their bills and whose bills amount to at least $300,000.

data notpaid(keep=invoicen billedto amtbille billedon);
set vlib.usainv vlib.forinv;
where paidon is missing and amtbille>=300000.00;

run;

proc print;
title ’High Bills--Not Paid’;

run;

In the SAS WHERE statement, be sure to use the SAS column names, not the
CA-Datacom/DB field names. Both VLIB.USAINV and VLIB.FORINV are based on the
CA-Datacom/DB table INVOICE. The following output shows the result of the new
temporary data file, WORK.NOTPAID.

Output 4.8 Results of Selecting Data with one WHERE Statement

High Bills--Not Paid 1
OBS INVOICEN BILLEDTO AMTBILLE BILLEDON

1 12102 18543489 11063836.00 17NOV88
2 11286 43459747 12679156.00 10OCT88
3 12051 39045213 1340738760.90 02NOV88
4 12471 39045213 1340738760.90 27DEC88
5 12476 38763919 34891210.20 24DEC88

The first line of the DATA step uses the KEEP= data set option. This data set option
works with SAS/ACCESS views just as it works with other SAS data sets. That is, the
KEEP= option specifies that you want only the listed columns included in the new data
file, NOTPAID, although you can use the other columns within the DATA step.

Notice that the WHERE statement includes two conditions to be met. First, it selects
only rows that have a missing value for the field PAIDON. As you can see, it is
important to know how the CA-Datacom/DB data is configured before you use this data
in a SAS program. The field PAIDON contains values that translate to missing values
in SAS. (Also, each of the two view descriptors has its own WHERE clause.)

Second, the WHERE statement requires that the amount in each bill be higher than
a certain figure. Again, you should be familiar with the CA-Datacom/DB data so that
you can determine a reasonable figure for this expression.

When referencing a view descriptor in a SAS procedure or DATA step, it is more
efficient to use a WHERE statement than a subsetting IF statement. A DATA step or
SAS procedure passes the SAS WHERE statement as a WHERE clause to the interface
view engine, which adds it (using a Boolean AND) to any WHERE clause defined in the
view descriptor’s selection criteria. The selection criteria are then passed to
CA-Datacom/DB for processing. Processing CA-Datacom/DB data using a WHERE
clause might reduce the number of records read from the database and therefore often
improves performance.



32 Combining Data with the SQL Procedure � Chapter 4

For more information about the SAS WHERE statement, refer to the SAS Language
Reference: Dictionary.

Combining Data with the SQL Procedure
This section provides two examples of using the SAS SQL procedure with

CA-Datacom/DB data. PROC SQL implements the Structured Query Language (SQL)
and is included in Base SAS software. The first example illustrates using PROC SQL to
combine data from three sources. The second example shows how to use the PROC SQL
GROUP BY clause to create a new column from data that is described by a view
descriptor.

Combining Data from Various Sources
The SQL procedure provides a way to select and combine data from one or more

database products. For example, suppose you have view descriptors VLIB.CUSPHON
and VLIB.CUSORDR based on the CA-Datacom/DB tables CUSTOMERS and ORDER,
respectively, and a SAS data file, MYDATA.OUTOFSTK, which contains product names
and numbers that are out of stock. You can use the SQL procedure to join all these
sources of data to form a single output file. A WHERE statement or a subsetting IF
statement would not be appropriate in this case because you want to compare column
values from several sources rather than simply merge or concatenate the data.

proc print data=vlib.cusphon;
title ’Data Described by VLIB.CUSPHON’;

run;

proc print data=vlib.cusordr;
title ’Data Described by VLIB.CUSORDR’;

run;

proc print data=mydata.outofstk;
title ’SAS Data File MYDATA.OUTOFSTK’;

run;

The following output shows the results of the PRINT procedure performed on the
data that is described by the VLIB.CUSPHON and VLIB.CUSORDR view descriptors
and on the MYDATA.OUTOFSTK SAS data file.



Using CA-Datacom/DB Data in SAS Programs � Combining Data from Various Sources 33

Output 4.9 Data that is Described by the View Descriptor VLIB.CUSPHON

Data Described by VLIB.CUSPHON 1

OBS CUSTNUM PHONE

1 12345678 919/489-5682
2 14324742 408/629-0589
3 14569877 919/489-6792
4 14898029 301/760-2541
5 15432147 616/582-3906
6 18543489 512/478-0788
7 19783482 703/714-2900
8 19876078 209/686-3953
9 24589689 (012)736-202
10 26422096 4268-54-72
11 26984578 43-57-04
12 27654351 02/215-37-32
13 28710427 (021)570517
14 29834248 (0552)715311
15 31548901 406/422-3413
16 38763919 244-6324
17 39045213 012/302-1021
18 43290587 (02)933-3212
19 43459747 03/734-5111
20 46543295 (03)022-2332
21 46783280 3762855
22 48345514 213445

OBS NAME

1 DURHAM SCIENTIFIC SUPPLY COMPANY
2 SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS
3 PRECISION PRODUCTS
4 UNIVERSITY BIOMEDICAL MATERIALS
5 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
6 LONE STAR STATE RESEARCH SUPPLIERS
7 TWENTY-FIRST CENTURY MATERIALS
8 SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC.
9 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
10 SOCIETE DE RECHERCHES POUR DE CHIRURGIE ORTHOPEDIQUE
11 INSTITUT FUR TEXTIL-FORSCHUNGS
12 INSTITUT DE RECHERCHE SCIENTIFIQUE MEDICALE
13 ANTONIE VAN LEEUWENHOEK VERENIGING VOOR MICROBIOLOGIE
14 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
15 NATIONAL COUNCIL FOR MATERIALS RESEARCH
16 INSTITUTO DE BIOLOGIA Y MEDICINA NUCLEAR
17 LABORATORIO DE PESQUISAS VETERNINARIAS DESIDERIO FINAMOR
18 HASSEI SAIBO GAKKAI
19 RESEARCH OUTFITTERS
20 WESTERN TECHNOLOGICAL SUPPLY
21 NGEE TECHNOLOGICAL INSTITUTE
22 GULF SCIENTIFIC SUPPLIES



34 Combining Data from Various Sources � Chapter 4

Output 4.10 Data that is Described by the View Descriptor VLIB.CUSORDR

Data Described by VLIB.CUSORDR 1
OBS STOCKNUM SHIPTO

1 9870 19876078
2 1279 39045213
3 8934 18543489
4 3478 29834248
5 2567 19783482
6 4789 15432147
7 3478 29834248
8 1279 14324742
9 8934 31548901
10 2567 14898029
11 9870 48345514
12 1279 39045213
13 8934 18543489
14 2567 19783482
15 9870 18543489
16 3478 24589689
17 1279 38763919
18 8934 43459747
19 2567 15432147
20 9870 14324742
21 9870 19876078
22 1279 39045213
23 8934 18543489
24 3478 29834248
25 2567 19783482
26 4789 15432147
27 3478 29834248
28 1279 14324742
29 8934 31548901
30 2567 14898029
31 9870 48345514
32 1279 39045213
33 8934 18543489
34 2567 19783482
35 9870 18543489
36 3478 24589689
37 1279 38763919
38 8934 43459747
39 2567 15432147
40 9870 14324742



Using CA-Datacom/DB Data in SAS Programs � Combining Data from Various Sources 35

Output 4.11 Data in the SAS Data File MYDATA.OUTOFSTK

SAS Data File MYDATA.OUTOFSTK 1

OBS FIBERNAM FIBERNUM

1 olefin 3478
2 gold 8934
3 dacron 4789

The following SAS code selects and combines data from these three sources to create
a view, SQL.BADORDRS*. This view retrieves customer and product information so
that the sales department can notify customers of products that are no longer available.

proc sql;
create view sql.badordrs as

select cusphon.custnum, cusphon.name, cusphon.phone,
cusordr.stocknum, outofstk.fibernam as product

from vlib.cusphon, vlib.cusordr, mydata.outofstk
where cusordr.stocknum=outofstk.fibernum and

cusphon.custnum=cusordr.shipto
order by cusphon.custnum, product;

title ’Data Described by SQL.BADORDRS’;
select * from sql.badordrs;

The CREATE VIEW statement incorporates a WHERE clause as part of the SELECT
statement, but it is not the same as the SAS WHERE statement illustrated earlier in
this section. The last SELECT statement retrieves and displays the PROC SQL view,
SQL.BADORDRS. To select all fields from the view, an asterisk (*) is used in place of
field names. The fields are displayed in the same order as they were specified in the
first SELECT clause.

The following output shows the data that is described by the SQL.BADORDRS view.
Note that the SQL procedure uses the DBMS labels in the output by default.

* You might want to store your PROC SQL views in a SAS library other than the one storing your view descriptors, because
they both have member type view.



36 Combining Data from Various Sources � Chapter 4

Output 4.12 Results of Combining DA-Datacom/DB Data

Data Described by SQL.BADORDRS 1

CUSTOMER NAME
TELEPHONE STOCKNUM PRODUCT
----------------------------------------------------------------------
15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
616/582-3906 4789 dacron

15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
616/582-3906 4789 dacron

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

18543489 LONE STAR STATE RESEARCH SUPPLIERS
512/478-0788 8934 gold

24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
(012)736-202 3478 olefin

24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
(012)736-202 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
(0552)715311 3478 olefin

31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH
406/422-3413 8934 gold

31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH
406/422-3413 8934 gold

43459747 RESEARCH OUTFITTERS
03/734-5111 8934 gold

43459747 RESEARCH OUTFITTERS
03/734-5111 8934 gold

The view SQL.BADORDRS lists entries for all customers who have ordered
out-of-stock products. However, it contains duplicate rows because some companies
have ordered the same product more than once. To make the data more readable for the
sales department, you can create a final SAS data file, MYDATA.BADNEWS, using the
SET statement and the special variable FIRST.PRODUCT. This variable identifies the
first row in a particular BY group. You need a customer’s name associated only once to
notify that customer that a product is out of stock, regardless of the number of times
the customer has placed an order for it.



Using CA-Datacom/DB Data in SAS Programs � Creating New Fields with the PROC SQL GROUP BY Clause 37

data mydata.badnews;
set sql.badordrs;
by custnum product;
if first.product;

run;

proc print;
title ’MYDATA.BADNEWS Data File’;

run;

The data file MYDATA.BADNEWS contains a row for each unique combination of
customer and out-of-stock product. The following output displays this data file.

Output 4.13 Results of Subsetting Data with the FIRST Variable

MYDATA.BADNEWS Data File 1
OBS CUSTNUM NAME
1 15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS
2 18543489 LONE STAR STATE RESEARCH SUPPLIERS
3 24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA
4 29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY
5 31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH
6 43459747 RESEARCH OUTFITTERS

OBS PHONE STOCKNUM PRODUCT
1 616/582-3906 4789 dacron
2 512/478-0788 8934 gold
3 (012)736-202 3478 olefin
4 (0552)715311 3478 olefin
5 406/422-3413 8934 gold
6 03/734-5111 8934 gold

For more information about the special variable FIRST, see “BY Statement” in the
SAS Language Reference: Dictionary.

Creating New Fields with the PROC SQL GROUP BY Clause
It is often useful to create new fields with summary or aggregate functions, such as

AVG or SUM. Although you cannot use the ACCESS procedure to create new fields, you
can easily use the SQL procedure with data that is described by a view descriptor to
display output containing new fields.

This example uses the SQL procedure to retrieve and manipulate data from the view
descriptor VLIB.ALLEMP, which is based on the CA-Datacom/DB table EMPLOYEES.
When this query (as a SELECT statement is often called) is submitted, it calculates and
displays the average salary for each department. The AVG function is the SQL
procedure’s equivalent of the SAS MEAN function.

proc sql;
title ’Average Salary Per Department’;
select distinct dept,

avg(salary) label=’Average Salary’ format=dollar12.2
from vlib.allemp
where dept is not missing
group by dept;

The order of the columns displayed matches the order of the columns specified in the
SELECT list of the query. The following output shows the query’s result.



38 Updating a SAS Data File with CA-Datacom/DB Data � Chapter 4

Output 4.14 Results of Creating New Fields with the SQL Procedure

Average Salary Per Department 1

Average
DEPT Salary
--------------------
ACC013 $54,591.33
ACC024 $55,370.55
ACC043 $75,000.34
CSR004 $17,000.00
CSR010 $44,324.19
CSR011 $41,966.16
SHP002 $40,111.31
SHP013 $41,068.44
SHP024 $50,000.00

For more information about the SQL procedure, refer to the Base SAS Procedures
Guide.

Updating a SAS Data File with CA-Datacom/DB Data

Using a DATA Step UPDATE Statement
You can update a SAS data file with CA-Datacom/DB data that is described by a view

descriptor the same way you update a SAS data file with data from another data file:
by using a DATA step UPDATE statement. In this section, the term transaction data
refers to the new data that is to be added to the original file. Because the SAS/ACCESS
interface to CA-Datacom/DB uses the Version 6 compatibility engine, the transaction
data is from a Version 6 source. The original file can be a Version 6 data file or a
Version 8 and later data file.

Updating a Version 6 Data File
You can update a Version 6 SAS data file with CA-Datacom/DB data the same way

you did in Version 6 of SAS. Suppose you have a Version 6 data file, LIB6.BIRTHDAY,
that contains employee ID numbers, last names, and birthdays. You want to update
this data file with data described by VLIB.EMPS, a view descriptor based on the
CA-Datacom/DB table EMPLOYEES. To perform the update, enter the following SAS
code:

proc sort data=lib6.birthday;
by lastname;

run;
proc print data=lib6.birthday;

format birthdat date7.;
title ’LIB6.BIRTHDAY Data File’;

run;

proc print data=vlib.emps;
title ’Data Described by VLIB.EMPS’;

run;



Using CA-Datacom/DB Data in SAS Programs � Updating a Version 6 Data File 39

data mydata.newbday;
update lib6.birthday vlib.emps;
by lastname;

run;

proc print;
title ’MYDATA.NEWBDAY Data File’;

run;

In this example, the updated SAS data file, MYDATA.NEWBDAY, is a Version 6 data
file. It is stored in the Version 6 SAS library associated with the libref MYDATA.

When the UPDATE statement references the view descriptor VLIB.EMPS and uses a
BY statement in the DATA step, the BY statement causes the interface view engine to
automatically generate a SORT clause for the column LASTNAME. Thus, the SORT
clause causes the CA-Datacom/DB data to be presented to SAS in a sorted order so it
can be used to update the MYDATA.NEWBDAY data file. The data file
LIB6.BIRTHDAY had to be sorted (by the SAS SORT procedure) before the update,
because the UPDATE statement expects the data to be sorted by the BY column.

The following output shows the results of the PRINT procedure on the original data
file, the transaction data, and the updated data file.

Output 4.15 Data File to Be Updated, LIB6.BIRTHDAY

LIB6.BIRTHDAY Data File 1
OBS EMPID BIRTHDAT LASTNAME

1 129540 31JUL60 CHOULAI
2 356134 25OCT60 DUNNETT
3 127845 25DEC43 MEDER
4 677890 24APR65 NISHIMATSU-LYNCH
5 459287 05JAN34 RODRIGUES
6 346917 15MAR50 SHIEKELESLAN
7 254896 06APR49 TAYLOR-HUNYADI

Output 4.16 Data that is Described by VLIB.EMPS

Data Described by VLIB.EMPS 1
OBS EMPID JOBCODE BIRTHDAT LASTNAME

1 456910 602 24SEP53 ARDIS
2 237642 602 13MAR54 BATTERSBY
3 239185 602 28AUG59 DOS REMEDIOS
4 321783 602 03JUN35 GONZALES
5 120591 602 12FEB46 HAMMERSTEIN
6 135673 602 21MAR61 HEMESLY
7 456921 602 12MAY62 KRAUSE
8 457232 602 15OCT63 LOVELL
9 423286 602 31OCT64 MIFUNE

10 216382 602 24JUL63 PURINTON
11 234967 602 21DEC67 SMITH
12 212916 602 29MAY28 WACHBERGER
13 119012 602 05JAN46 WOLF-PROVENZA



40 Updating a Version 8 and Later Data File � Chapter 4

Output 4.17 Updated Data File, MYDATA. NEWBDAY

MYDATA.NEWBDAY Data File 1
OBS EMPID BIRTHDAT LASTNAME JOBCODE

1 456910 24SEP53 ARDIS 602
2 237642 13MAR54 BATTERSBY 602
3 129540 31JUL60 CHOULAI .
4 239185 28AUG59 DOS REMEDIOS 602
5 356134 25OCT60 DUNNETT .
6 321783 03JUN35 GONZALES 602
7 120591 12FEB46 HAMMERSTEIN 602
8 135673 21MAR61 HEMESLY 602
9 456921 12MAY62 KRAUSE 602

10 457232 15OCT63 LOVELL 602
11 127845 25DEC43 MEDER .
12 423286 31OCT64 MIFUNE 602
13 677890 24APR65 NISHIMATSU-LYNCH .
14 216382 24JUL63 PURINTON 602
15 459287 05JAN34 RODRIGUES .
16 346917 15MAR50 SHIEKELESLAN .
17 234967 21DEC67 SMITH 602
18 254896 06APR49 TAYLOR-HUNYADI .
19 212916 29MAY28 WACHBERGER 602
20 119012 05JAN46 WOLF-PROVENZA 602

Updating a Version 8 and Later Data File
Versions 6, 8, and later of SAS support different naming conventions; therefore, there

could be character-length discrepancies between the columns in the original data file
and the transaction data. You have two choices when updating a Version 8 and later
data file:

� Let the compatibility engine truncate names exceeding 8 characters. The
truncated names will be added to the updated data file as new columns.

� Rename the columns in the Version 8 and later data file to match the columns in
the descriptor file.

The following example resolves character-length discrepancies by using the
RENAME= DATA step option with the UPDATE statement. A Version 8 data file,
LIB8.BIRTHDAYS, is updated with data described by VLIB.EMPS.

proc sort data=lib8.birthdays;
by last_name;

run;

proc print data=lib8.birthdays;
format birthdate date7.;
title ’LIB8.BIRTHDAYS Data File’;

run;

data newdata.v8_birthdays;
update lib8.birthday
(rename= (last_name=lastname

firstname=firstnme
birthdate=birthdat)) vlib.emps;



Using CA-Datacom/DB Data in SAS Programs � Performance Considerations 41

by lastname firstnme;
run;

proc print data=newdata.v8_birthdays;
title ’NEWDATA.V8_BIRTHDAYS Data File’;

run;

In this example, the up-dated data file NEWDATA.V8_BIRTHDAYS is a Version 8
data file that is stored in a Version 8 library associated with the libref NEWDATA.
Version 8 and later supports member and column names of up to 32 characters.
However, the RENAME= DATA step option is used with the UPDATE statement to
change the longer column names in LIB8.BIRTHDAYS to match the 8-character column
names in VLIB.EMPS. The columns are renamed before the updated data file is created.

The following output shows the results of the PRINT procedure on the original data
file. The updated file looks like Output 4.17.

Output 4.18 Data File to be Updated, LIB8.BIRTHDAYS

LIB8.BIRTHDAYS Data File 1

OBS EMPLOYEE_ID BIRTHDATE LAST_NAME
1 129540 31JUL60 CHOULAI
2 356134 25OCT60 DUNNETT
3 127845 25DEC43 MEDER
4 677890 24APR65 NISHIMATSU-LYNCH
5 459287 05JAN34 RODRIGUES
6 346917 15MAR50 SHIEKELESLAN
7 254896 06APR49 TAYLOR-HUNYADI

For more information about the UPDATE statement, see the SAS Language
Reference: Dictionary.

You cannot update a CA-Datacom/DB table directly using the DATA step, but you can
update a CA-Datacom/DB table using SAS/AF applications and the following
procedures: APPEND, FSEDIT, FSVIEW, and SQL. See Chapter 5, “Browsing and
Updating CA-Datacom/DB Data,” on page 43 for more information about updating
CA-Datacom/DB data.

Performance Considerations

While you can generally treat view descriptors like SAS data files in SAS programs,
there are a few things you should keep in mind:

� It is sometimes better to extract CA-Datacom/DB data and place it in a SAS data
file than to read it directly. Here are some circumstances when you should
probably extract:

� If you plan to use the same CA-Datacom/DB data in several procedures in the
same session, you might improve performance by extracting the
CA-Datacom/DB data. Placing this data in a SAS data file requires a certain
amount of disk space to store the data and I/O to write the data. However,
SAS data files are organized to provide optimal performance with PROC and
DATA steps. Programs using SAS data files often use less CPU time than
when they read CA-Datacom/DB data directly.



42 Performance Considerations � Chapter 4

� If you plan to read large amounts of data from a CA-Datacom/DB table and
the data is being shared by several users (multi-user environment), your
direct reading of the data could adversely affect all users’ response times.

� If you are the creator of a table, and you think that directly reading this data
would present a security risk, you might want to extract the data and not
distribute information about either the access descriptor or view descriptor.

� If you intend to use the data in a particular sorted order several times, it is
usually more efficient to run the SORT procedure on the view descriptor, using the
OUT= option, than to request the same sort repeatedly (with a SORT clause) on
the CA-Datacom/DB data. Note that you cannot run the SORT procedure on a
view descriptor unless you use the SORT procedure’s OUT= option.

� Sorting data can be resource-intensive, whether it is done with the SORT
procedure, with a BY statement, or with a SORT clause included in the view
descriptor. When you use a SAS BY statement with a view descriptor, it is most
efficient to use a BY column that is associated with an indexed CA-Datacom/DB
field. Also, if you do not need a certain order, blank out the Default Key.
Otherwise, you might cause an unnecessary sort.

� If you use a Default Key, the interface view engine will use an index read instead
of a sort if it can. Index reads are faster, but not always possible. For example, an
index read is not possible if you specify multiple sort keys, multiple WHERE
clause conditions, or a WHERE clause condition with a column that is not a key.

� When you are writing a SAS program and referencing a view descriptor, it is more
efficient to use a WHERE statement in the program than it is to use a subsetting
IF statement. The interface view engine passes the WHERE statement as
CA-Datacom/DB selection criteria to the view descriptor, connecting it (with the
AND operator) to any WHERE clause included in the view descriptor. Applying a
WHERE clause to the CA-Datacom/DB data might reduce the number of records
processed, which often improves performance.

� You can provide your own URT with options that are fine-tuned for your
applications.

� Refer to “Creating and Using View Descriptors Efficiently” on page 96 for more
details on creating efficient view descriptors.



43

C H A P T E R

5
Browsing and Updating
CA-Datacom/DB Data

Introduction to Browsing and Updating CA-Datacom/DB Data 43
Browsing and Updating CA-Datacom/DB Data with the SAS/FSP Procedures 44

Using the FSBROWSE, FSEDIT, and FSVIEW Procedures 44

Browsing Data with PROC FSBROWSE 44

Updating Data with PROC FSEDIT 45

Browsing Data with PROC FSVIEW 45
Updating Data with PROC FSVIEW 46

Specifying a WHERE Clause While Browsing or Updating Data 47

Inserting and Deleting Data Records with the SAS/FSP Procedures 48

Browsing and Updating CA-Datacom/DB Data with the SQL Procedure 50

Using the SQL Procedure 50

Browsing Data with the SELECT Statement 50
Updating Data with the UPDATE Statement 52

Adding and Removing Data with the INSERT and DELETE Statements 53

Appending CA-Datacom/DB Data with the APPEND Procedure 53

Introduction to Browsing and Updating CA-Datacom/DB Data
The SAS/ACCESS interface to CA-Datacom/DB enables you to browse and update

your CA-Datacom/DB data directly from a SAS session or program. This section shows
you how to use SAS procedures to browse and update CA-Datacom/DB data that is
described by SAS/ACCESS view descriptors.

Most of the examples in this section use the view descriptor VLIB.USACUST that
you created in Chapter 3, “Defining SAS/ACCESS Descriptor Files,” on page 15. See
Appendix 3, “Data and Descriptors for the Examples,” on page 129 for definitions of the
view descriptors referenced in this section. This appendix also contains the
CA-Datacom/DB tables and SAS data files used in this document.

Refer to Chapter 2, “CA-Datacom/DB Essentials,” on page 7 and Appendix 1,
“Information for the Database Administrator,” on page 103 for more information about
retrieval processing, update processing, and locks.



44 Browsing and Updating CA-Datacom/DB Data with the SAS/FSP Procedures � Chapter 5

Browsing and Updating CA-Datacom/DB Data with the SAS/FSP
Procedures

Using the FSBROWSE, FSEDIT, and FSVIEW Procedures
If your site has SAS/FSP software as well as SAS/ACCESS software, you can browse

and update CA-Datacom/DB data that is described by a view descriptor from within a
SAS program.

You have a choice of three SAS/FSP procedures: FSBROWSE, FSEDIT, and FSVIEW.
The FSBROWSE and FSEDIT procedures show you one data record at a time, while the
FSVIEW procedure displays multiple records in a tabular format similar to the PRINT
procedure. PROC FSVIEW enables you to browse or update CA-Datacom/DB data,
depending on which option you choose. You cannot use the FSBROWSE, FSEDIT, or
FSVIEW procedures on an access descriptor.

To scroll through the data, use the FORWARD and BACKWARD commands. To end
your browse or edit session, issue the END command.

Browsing Data with PROC FSBROWSE

The FSBROWSE procedure enables you to look at CA-Datacom/DB data that is
described by a view descriptor but not to change it. For example, the following SAS
statements enable you to look at one record at a time:

proc fsbrowse data=vlib.usacust;
run;

The FSBROWSE procedure retrieves one record at a time from a CA-Datacom/DB
table. The following graphic shows the first record of the USA customers’ data
described by the VLIB.USACUST view descriptor. To browse each record, use the
FORWARD and BACKWARD commands.

Display 5.1 FSBROWSE Window



Browsing and Updating CA-Datacom/DB Data � Browsing Data with PROC FSVIEW 45

Updating Data with PROC FSEDIT
The FSEDIT procedure enables you to update CA-Datacom/DB data that is described

by a view descriptor. For example, in Display 5.1 on page 44 the ZIPCODE, NAME, and
FIRSTORD values are missing in the first record. You can add values to these fields
with the FSEDIT procedure.

To use PROC FSEDIT, submit the following SAS statements:

proc fsedit data=vlib.usacust;
run;

Display 5.2 FSEDIT Window

The FSEDIT procedure also retrieves one record at a time. To edit a record, scroll to
it, and type in the new data after the appropriate label. For example, enter the
information about the DURHAM SCIENTIFIC SUPPLY COMPANY, as shown in Display 5.2
on page 45. To end your editing session, issue the END command.

Note: The data is presented in order by the Default Key value (usually the Native
Key) unless the view descriptor contains a SORT clause. �

Browsing Data with PROC FSVIEW
To browse CA-Datacom/DB data, submit the PROC FSVIEW statement as follows:

proc fsview data=vlib.usacust;
run;



46 Updating Data with PROC FSVIEW � Chapter 5

Display 5.3 FSVIEW Window

PROC FSVIEW displays the data in a listing format instead of one observation at a
time, as shown in the graphic above. Browse mode is the default for the FSVIEW
procedure. Notice that a (B) for browse follows the view descriptor’s name and that the
values in the first record reflect the changes made using the FSEDIT procedure in the
previous example.

To see the rest of the table’s data, scroll the display on the monitor to the right
several times by issuing the RIGHT command on the command line or by using the
function key assigned to this command.

Note: The data is presented in order by the Default Key value (usually the Native
Key) unless the view descriptor contains a SORT clause. If the view descriptor contains
a WHERE clause but no SORT clause, the order is unpredictable. �

Updating Data with PROC FSVIEW
To edit CA-Datacom/DB data with PROC FSVIEW, submit the PROC FSVIEW

statement as follows:

proc fsview data=vlib.usacust modify;
run;

The word “EDIT” can be used instead of MODIFY. The display will be the same as
Display 5.3 on page 46 except that an (E) for edit will be displayed in the window title.

Note: Any update in the FSVIEW window is final. The CANCEL command in the
FSVIEW window does not cancel your changes, whether you have scrolled. �



Browsing and Updating CA-Datacom/DB Data � Specifying a WHERE Clause While Browsing or Updating Data 47

Specifying a WHERE Clause While Browsing or Updating Data
You can specify a WHERE statement to subset CA-Datacom/DB data when you

invoke the SAS/FSP procedures. You can also use a WHERE command to do the same
thing after you have invoked one of the SAS/FSP procedures.

In the following example, a WHERE statement is used to retrieve only customers
from California:

proc fsedit data=vlib.usacust;
where state=’CA’;

run;

The following graphic shows the FSEDIT window after the statements have been
submitted.

Display 5.4 FSEDIT Window After SAS WHERE Statement

Only two records with a STATE value of CA are retrieved for editing. Note that the
word (Subset) appears after VLIB.USACUST in the window title to remind you that the
data retrieved is a subset of the data that is described by the view descriptor. You can
then edit each record by typing over the information you want to modify. Issue the END
command to end your editing session. If you want to cancel changes to a record, you
can issue the CANCEL command before you scroll. Once you scroll though, the change
is committed.

You can also use a SAS WHERE command to display a subset of your data. A
WHERE command is a SAS WHERE expression that is entered on the command line.
The following graphic shows how the FSEDIT window appears when the subset is
generated within the procedure with the following WHERE command:

where state=’CA’



48 Inserting and Deleting Data Records with the SAS/FSP Procedures � Chapter 5

Display 5.5 FSEDIT Window After SAS WHERE Command

Only the two records with a STATE value of CA are retrieved for editing. Where
appears after VLIB.USACUST in the window title to remind you that the data
retrieved is a subset of the data that is described by the view descriptor. You can then
edit each record, as described earlier.

Although these examples have shown a WHERE clause with the FSEDIT procedure,
you can also retrieve a subset of the data when using the FSBROWSE and FSVIEW
procedures. For more information about the SAS WHERE statement, see the SAS
Language Reference: Dictionary. For more information about the SAS WHERE
command within the SAS/FSP procedures, refer to the SAS/FSP Procedures Guide.

Inserting and Deleting Data Records with the SAS/FSP Procedures
Inserting and deleting records with the SAS/FSP procedures is different for view

descriptors than for SAS data files.
You can use the FSEDIT and FSVIEW procedures to insert records into a

CA-Datacom/DB table on which a view descriptor is based. Insertion of new records
depends on the attributes assigned to the Master Key and whether the Master Key is
included in your view descriptor. For example, if the DUPE-MASTER-KEY attribute is
set to N (no), values for the Master Key cannot be duplicated. You will receive an error
message if you try to insert a record having a Master Key value that duplicates an
existing value. Therefore, be sure to define your view descriptors carefully if you intend
to use them to insert records into a CA-Datacom/DB table.

Refer to Appendix 1, “Information for the Database Administrator,” on page 103 for
details about inserting data. Refer to SAS/FSP Procedures Guide for information about
how to use insertion commands such as ADD and DUP in the FSEDIT procedure and
AUTOADD and DUP in the FSVIEW procedure. However, note that with the
SAS/ACCESS interface to CA-Datacom/DB, a duplicated record is inserted immediately
after the original record rather than at the end of the CA-Datacom/DB table.

When you use the DELETE command with a view descriptor that describes
CA-Datacom/DB data, the current record is removed permanently from the
CA-Datacom/DB table. Also, the DELETE command works differently in the FSVIEW



Browsing and Updating CA-Datacom/DB Data � Inserting and Deleting Data Records with the SAS/FSP Procedures 49

procedure than it does in the FSEDIT procedure. Refer to SAS/FSP Procedures Guide
for more information about this command.

The following example illustrates using the DELETE command in the FSEDIT
procedure. Scroll forward to the record to be deleted and enter the DELETE command
on the command line, as shown in the following graphic.

Display 5.6 Deleting a CA-Datacom/DB Record

The DELETE command deletes the record and displays a message to that affect, as
shown in the following graphic.

Display 5.7 The Deleted Row



50 Browsing and Updating CA-Datacom/DB Data with the SQL Procedure � Chapter 5

For more information about using the SAS/FSP procedures, see the SAS/FSP
Procedures Guide.

Browsing and Updating CA-Datacom/DB Data with the SQL Procedure

Using the SQL Procedure
The SAS SQL procedure also enables you to retrieve and update CA-Datacom/DB

data. You can retrieve and browse the data by specifying a view descriptor in a PROC
SQL SELECT statement.

To update the data, you can specify view descriptors in the PROC SQL INSERT,
DELETE, and UPDATE statements. Here is a summary of these PROC SQL
statements:

DELETE deletes records from a CA-Datacom/DB table.

INSERT inserts records into a CA-Datacom/DB table.

SELECT retrieves and displays data from CA-Datacom/DB tables. A SELECT
statement is usually referred to as a query, because it queries the
tables for information.

UPDATE updates records in a CA-Datacom/DB table.

When using the SQL procedure in interactive line mode, note that the data is
displayed in the SAS OUTPUT window. The procedure displays output data
automatically without using the PRINT procedure and executes without using the RUN
statement when an SQL procedure statement is executed. You can use the QUIT
statement if you want to exit the SQL procedure.

CAUTION:
When you use the SQL procedure for update processing (DELETE, INSERT, and UPDATE
statements), you must set the SQL procedure option UNDO_POLICY. The SQL procedure
supports backouts of group updates for those databases that support member-level
locking. CA-Datacom/DB software does not support member-level locks. The
UNDO_POLICY option enables updates to be processed without backouts. For the
CA-Datacom/DB interface, you set the value of the option to NONE. For example:

proc sql undo_policy=none;
update vlib.usacust
set zipcode=27702
where custnum=’12345678’;

If the update is processed successfully, it is applied to the database table and a
warning message is issued. The message signifies that if multiple records were
updated by the command and a failure occurred some time after the first record was
successfully processed, then there is no way for PROC SQL to avoid a partial update.

Partial updating means that some records are updated and some are not. It does
not mean that some fields in the same record are updated while other fields are not. �

Browsing Data with the SELECT Statement
You can use the SELECT statement to browse CA-Datacom/DB data that is described

by a view descriptor. The query in the following example retrieves and displays all the
fields and records in the CUSTOMERS table that are described by the VLIB.USACUST



Browsing and Updating CA-Datacom/DB Data � Browsing Data with the SELECT Statement 51

view descriptor. The UNDO_POLICY option is included to disable member-level locking
and to enable updates later in the PROC SQL execution. You can exclude the
UNDO_POLICY option if you do not plan to perform updates. The LINESIZE= system
option is used to reset the default output width to 120 columns.

Note: The following SQL procedure examples assume that the CUSTOMERS table
has not been updated by the earlier SAS/FSP examples. �

options linesize=120;

proc sql undo_policy=none;
title ’CA---Datacom/DB Data Output from a SELECT Statement’;

select custnum, state label=’STATE’, zipcode label=’ZIPCODE’,
name, firstord

from vlib.usacust;

The following output shows the query’s results. Notice that the SQL procedure
displays the CA-Datacom/DB field names, not the corresponding SAS column names.

Output 5.1 Results of a PROC SQL Query

CA-Datacom/DB Data Output from a SELECT Statement

CUSTOMER STATE ZIPCODE NAME FIRSTORDERDATE

-------------------------------------------------------------------------------------------

12345678 NC . .

14324742 CA 95123 SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS 05FEB65

19783482 VA 22090 TWENTY-FIRST CENTURY MATERIALS 18JUL68

14898029 MD 20850 UNIVERSITY BIOMEDICAL MATERIALS 12NOV76

19876078 CA 93274 SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC. 11MAY79

18543489 TX 78701 LONE STAR STATE RESEARCH SUPPLIERS 10SEP79

14569877 NC 27514 PRECISION PRODUCTS 15AUG83

15432147 MI 49001 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS 28APR86

You can specify a WHERE clause as part of the SELECT statement to subset the
records for display. This example displays the companies that are located in North
Carolina.

title ’CA---Datacom/DB Data Output Subset by a WHERE Clause’;
select custnum, state label=’STATE’, zipcode label=’ZIPCODE’,

name, firstord
from vlib.usacust
where state=’NC’;

Notice that the PROC SQL statement is not repeated in this query. You do not need
to repeat the PROC statement unless you use another SAS procedure, the DATA step,
or a QUIT statement between PROC SQL statements. The following output displays
the two companies from North Carolina described by VLIB.USACUST.



52 Updating Data with the UPDATE Statement � Chapter 5

Output 5.2 Results of PROC SQL Query Subset by a WHERE Clause

CA-Datacom/DB Data Output Subset by a WHERE Clause
CUSTOMER STATE ZIPCODE NAME FIRSTORDERDATE
---------------------------------------------------------------
12345678 NC . .
14569877 NC 27514 PRECISION PRODUCTS 15AUG83

Updating Data with the UPDATE Statement
You can use the UPDATE statement to update CA-Datacom/DB data. Remember

that when you reference a view descriptor in a PROC SQL statement, you are not
updating the view descriptor, but rather the CA-Datacom/DB data that is described by
the view descriptor.

The following UPDATE statements update the values described by the first record of
VLIB.USACUST. The SELECT statement then displays the view’s output. The ORDER
BY clause in the SELECT statement causes the data to be presented in ascending order
by the CUSTNUM field. The UNDO_POLICY option is omitted since it was specified in
the original SQL request.

update vlib.usacust
set zipcode=27702
where custnum=’12345678’;

update vlib.usacust
set name=’DURHAM SCIENTIFIC SUPPLY COMPANY’
where custnum=’12345678’;

update vlib.usacust
set firstord=’02jan88’d
where custnum=’12345678’;
title ’Updated VLIB.USACUST View Descriptor’;

select custnum, state label=’STATE’, zipcode label=’ZIPCODE’, name,
firstord from vlib.usacust
order by custnum;

The following output displays the query’s results.

Output 5.3 Results of Updating Data with an UPDATE Statement

Updated VLIB.USACUST View Descriptor

CUSTOMER STATE ZIPCODE NAME FIRSTORDERDATE

---------------------------------------------------------------------------------------------

12345678 NC 27702 DURHAM SCIENTIFIC SUPPLY COMPANY 02JAN88

14324742 CA 95123 SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS 05FEB65

14569877 NC 27514 PRECISION PRODUCTS 15AUG83

14898029 MD 20850 UNIVERSITY BIOMEDICAL MATERIALS 12NOV76

15432147 MI 49001 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS 28APR86

18543489 TX 78701 LONE STAR STATE RESEARCH SUPPLIERS 10SEP79

19783482 VA 22090 TWENTY-FIRST CENTURY MATERIALS 18JUL68

19876078 CA 93274 SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC. 11MAY79



Browsing and Updating CA-Datacom/DB Data � Appending CA-Datacom/DB Data with the APPEND Procedure 53

Adding and Removing Data with the INSERT and DELETE Statements
You can use the INSERT statement to add records to a CA-Datacom/DB table or the

DELETE statement to remove records. In the following example, the record containing
the CUSTNUM value 15432147 is deleted from the table CUSTOMERS. The SELECT
statement then displays the VLIB.USACUST data, ordering them again by the
CUSTNUM field. Again, the UNDO_POLICY option was omitted because it was
specified in the original SQL request and no intervening SAS procedure, DATA step, or
QUIT statement occurred between SQL statements.

delete from vlib.usacust
where custnum=’15432147’;

title ’Record Deleted from CA-Datacom/DB CUSTOMERS Table’;
select custnum, state label=’STATE’, zipcode label=’ZIPCODE’,

name, firstord
from vlib.usacust
order by custnum;

The following output displays the query’s results.

Output 5.4 Results of Removing Data with a DELETE Statement

Record Deleted from CA-Datacom/DB CUSTOMERS Table

CUSTOMER STATE ZIPCODE NAME FIRSTORDERDATE

----------------------------------------------------------------------------------------------

12345678 NC 27702 DURHAM SCIENTIFIC SUPPLY COMPANY 02JAN88

14324742 CA 95123 SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS 05FEB65

14569877 NC 27514 PRECISION PRODUCTS 15AUG83

14898029 MD 20850 UNIVERSITY BIOMEDICAL MATERIALS 12NOV76

18543489 TX 78701 LONE STAR STATE RESEARCH SUPPLIERS 10SEP79

19783482 VA 22090 TWENTY-FIRST CENTURY MATERIALS 18JUL68

19876078 CA 93274 SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC. 11MAY79

CAUTION:
Always use the WHERE clause in a DELETE statement. If you omit the WHERE clause
from the DELETE statement, you will delete all the data in the CA-Datacom/DB
table accessed by the view descriptor. �

For more information about the SAS SQL procedure, see the Base SAS Procedures
Guide.

Appending CA-Datacom/DB Data with the APPEND Procedure

You can append data that is described by SAS/ACCESS view descriptors and PROC
SQL views to SAS data files and vice versa. You can also append data that is described
by view descriptors to each other.

The input file and base file do not have to match column for column. If they do not
match, use the FORCE option in the APPEND procedure. This will include all columns
in the base file. Values for columns that are not shared by the base and input files are
set to missing.



54 Appending CA-Datacom/DB Data with the APPEND Procedure � Chapter 5

In the following example, two personnel managers have kept separate employee
records. One manager has kept records in the CA-Datacom/DB table EMPLOYEES,
that is described by the view descriptor VLIB.DCMEMPS. The other manager has kept
records in the SAS data file, MYDATA.SASEMPS. Due to a corporate reorganization,
the two sources of data must be combined so that all employee data is stored in the
CA-Datacom/DB table EMPLOYEES. The APPEND procedure can perform this task.

The data that is described by the view descriptor VLIB.DCMEMPS and the data in
the SAS data file MYDATA.SASEMPS are printed with the following statements and
displayed in Output 5.5 and Output 5.6.

proc print data=vlib.dcmemps;
title ’Data Described by VLIB.DCMEMPS’;

run;

proc print data=mydata.sasemps;
format birthdat date7.;
title ’Data in MYDATA.SASEMPS Data File’;

run;

Output 5.5 Data Described by VLIB.DCMEMPS

Data Described by VLIB.DCMEMPS 1
OBS EMPID BIRTHDAT LASTNAME FIRSTNAM MIDDLENA

1 119012 05JAN46 WOLF-PROVENZA G. ANDREA
2 120591 12FEB46 HAMMERSTEIN S. RACHAEL
3 123456 . VARGAS PAUL JESUS
4 127845 25DEC43 MEDER VLADIMIR JORAN
5 129540 31JUL60 CHOULAI CLARA JANE
6 135673 21MAR61 HEMESLY STEPHANIE J.
7 212916 29MAY28 WACHBERGER MARIE-LOUISE TERESA
8 216382 24JUL63 PURINTON PRUDENCE VALENTINE
9 234967 21DEC67 SMITH GILBERT IRVINE

10 237642 13MAR54 BATTERSBY R. STEPHEN
11 239185 28AUG59 DOS REMEDIOS LEONARD WESLEY
12 254896 06APR49 TAYLOR-HUNYADI ITO MISHIMA
13 321783 03JUN35 GONZALES GUILLERMO RICARDO
14 328140 02JUN51 MEDINA-SIDONIA MARGARET ROSE
15 346917 15MAR50 SHIEKELESLAM SHALA Y.
16 356134 25OCT60 DUNNETT CHRISTINE MARIE
17 423286 31OCT64 MIFUNE YUKIO TOSHIRO
18 456910 24SEP53 ARDIS RICHARD BINGHAM
19 456921 12MAY62 KRAUSE KARL-HEINZ G.
20 457232 15OCT63 LOVELL WILLIAM SINCLAIR
21 459287 15JAN34 RODRIGUES JUAN M.
22 677890 24APR65 NISHIMATSU-LYNCH CAROL ANNE



Browsing and Updating CA-Datacom/DB Data � Appending CA-Datacom/DB Data with the APPEND Procedure 55

Output 5.6 Data in MYDATA.SASEMPS

Data in MYDATA.SASEMPS Data File 1
OBS EMPID BIRTHDAT LASTNAME FIRSTNAM MIDDLENA

1 245962 30AUG64 BEDORTHA KATHY MARTHA
2 765432 01MAR59 POWELL FRANK X.
3 219223 13JUN47 HANSINGER BENJAMIN HAROLD
4 326745 21FEB52 RAWN BEATRICE MAY

Submitting the following APPEND procedure combines data from these two sources:

proc append base=vlib.dcmemps data=mydata.sasemps;
run;

proc print data=vlib.dcmemps;
title ’Appended Data’;

run;

The following output displays the appended data that is described by the view
descriptor VLIB.DCMEMPS. Notice that the data is inserted in the order of Native Key
values.

Output 5.7 Result of Appending Data

Appended Data 1
OBS EMPID BIRTHDAT LASTNAME FIRSTNAM MIDDLENA

1 119012 05JAN46 WOLF-PROVENZA G. ANDREA
2 120591 12FEB46 HAMMERSTEIN S. RACHAEL
3 123456 . VARGAS PAUL JESUS
4 127845 25DEC43 MEDER VLADIMIR JORAN
5 129540 31JUL60 CHOULAI CLARA JANE
6 135673 21MAR61 HEMESLY STEPHANIE J.
7 212916 29MAY28 WACHBERGER MARIE-LOUISE TERESA
8 216382 24JUL63 PURINTON PRUDENCE VALENTINE
9 219223 13JUN47 HANSINGER BENJAMIN HAROLD
10 234967 21DEC67 SMITH GILBERT IRVINE
11 237642 13MAR54 BATTERSBY R. STEPHEN
12 239185 28AUG59 DOS REMEDIOS LEONARD WESLEY
13 245962 30AUG64 BEDORTHA KATHY MARTHA
14 254896 06APR49 TAYLOR-HUNYADI ITO MISHIMA
15 321783 03JUN35 GONZALES GUILLERMO RICARDO
16 326745 21FEB52 RAWN BEATRICE MAY
17 328140 02JUN51 MEDINA-SIDONIA MARGARET ROSE
18 346917 15MAR50 SHIEKELESLAM SHALA Y.
19 356134 25OCT60 DUNNETT CHRISTINE MARIE
20 423286 31OCT64 MIFUNE YUKIO TOSHIRO
21 456910 24SEP53 ARDIS RICHARD BINGHAM
22 456921 12MAY62 KRAUSE KARL-HEINZ G.
23 457232 15OCT63 LOVELL WILLIAM SINCLAIR
24 459287 05JAN34 RODRIGUES JUAN M.
25 677890 24APR65 NISHIMATSU-LYNCH CAROL ANNE
26 765432 01MAR59 POWELL FRANK X.

The APPEND procedure also accepts a WHERE= data set option or a WHERE
statement to retrieve a subset of data. In the following example, a subset of



56 Appending CA-Datacom/DB Data with the APPEND Procedure � Chapter 5

observations from MYDATA.SASEMPS is added to VLIB.DCEMPS. The results are
displayed in Output 5.8.

proc append base=vlib.dcmemps data=mydata.sasemps
(where=(lastname like ’B%’ or lastname like ’H%’));

run;

proc print data=vlib.dcmemps;
title ’Appended Data’;

run;

The following output displays the data when the observations appended to the
BASE= data set are subset by the WHERE= data set option. In this case, the WHERE=
data set option specifies that only the employees with last names beginning with B or H
should be added to the BASE= data set.

Output 5.8 Results of Appending Data with a WHERE= Data Set Option

Appended Data 1
OBS EMPID BIRTHDAT LASTNAME FIRSTNAM MIDDLENA

1 119012 05JAN46 WOLF-PROVENZA G. ANDREA
2 120591 12FEB46 HAMMERSTEIN S. RACHAEL
3 123456 . VARGAS PAUL JESUS
4 127845 25DEC43 MEDER VLADIMIR JORAN
5 129540 31JUL60 CHOULAI CLARA JANE
6 135673 21MAR61 HEMESLY STEPHANIE J.
7 212916 29MAY28 WACHBERGER MARIE-LOUISE TERESA
8 216382 24JUL63 PURINTON PRUDENCE VALENTINE
9 219223 13JUN46 HANSINGER BENJAMIN HAROLD

10 234967 21DEC67 SMITH GILBERT IRVINE
11 237642 13MAR54 BATTERSBY R. STEPHEN
12 239185 28AUG59 DOS REMEDIOS LEONARD WESLEY
13 245962 30AUG64 BEDORTHA KATHY MARTHA
14 254896 06APR49 TAYLOR-HUNYADI ITO MISHIMA
15 321783 03JUN35 GONZALES GUILLERMO RICARDO
16 328140 02JUN51 MEDINA-SIDONIA MARGARET ROSE
17 346917 15MAR50 SHIEKELESLAM SHALA Y.
18 356134 25OCT60 DUNNETT CHRISTINE MARIE
19 423286 31OCT64 MIFUNE YUKIO TOSHIRO
20 456910 24SEP53 ARDIS RICHARD BINGHAM
21 456921 12MAY62 KRAUSE KARL-HEINZ G.
22 457232 15OCT63 LOVELL WILLIAM SINCLAIR
23 459287 05JAN34 RODRIGUES JUAN M.
24 677890 24APR65 NISHIMATSU-LYNCH CAROL ANNE

For more information about the APPEND procedure, see the Base SAS Procedures
Guide.

Note that when the FORCE option is used to append columns whose names do not
match, any column names that are longer than 8 characters will be truncated at 8
characters.



57

P A R T2

SAS/ACCESS Interface to CA-Datacom/DB:
Reference

Chapter 6. . . . . . . . . .ACCESS Procedure Reference 59



58



59

C H A P T E R

6
ACCESS Procedure Reference

Introduction to ACCESS Procedure Reference 59
ACCESS Procedure Syntax 60

Description 61

PROC ACCESS Statement Options 61

Options 62

SAS Passwords for SAS/ACCESS Descriptors 63
Overview of SAS Passwords 63

Assigning Passwords for SAS/ACCESS Descriptors 63

ACCESS Procedure Method for Assigning Passwords 63

DATASETS Procedure Method for Assigning Passwords 64

Invoking the ACCESS Procedure 65

Statements 67
WHERE Clause in a View Descriptor 89

View WHERE Clause Syntax 89

The Asterisk in View WHERE Clauses 91

View WHERE Clause Expressions 91

Specifying Values in View WHERE Clauses 92
Character Fields in View WHERE Clauses 92

Date Values in View WHERE Clauses 92

$HEX. Format Fields in View WHERE Clauses 92

Values That Do Not Fit the Field Picture 93

Masking Values in View WHERE Clauses 93
Multi-Field Keys in View WHERE Clauses 94

Guidelines for View WHERE Clauses 94

SORT Clause in a View Descriptor 95

Overview of the SORT Clause 95

View SORT Clause Syntax 95

View SORT Clause Example 96
View SORT Clause Guidelines 96

Creating and Using View Descriptors Efficiently 96

ACCESS Procedure Data Conversions 97

Introduction to ACCESS Procedure Reference

The ACCESS procedure enables you to create and edit the descriptor files that are
used by the SAS/ACCESS interface to CA-Datacom/DB. This section provides reference
information for the ACCESS procedure statements, including procedure syntax and
statement options.



60 ACCESS Procedure Syntax � Chapter 6

Additionally, the following sections provide information to help you optimize use of
the interface:

� “Creating and Using View Descriptors Efficiently” on page 96 presents several
efficiency considerations for using the SAS/ACCESS interface to CA-Datacom/DB.

� “ACCESS Procedure Data Conversions” on page 97 summarizes how the
SAS/ACCESS interface converts each type of CA-Datacom/DB data into its SAS
column format and informat equivalents.

For examples of how to use PROC ACCESS, refer to Chapter 3, “Defining SAS/ACCESS
Descriptor Files,” on page 15. If you need help with SAS data sets and data libraries,
their naming conventions, or any terms used in the ACCESS procedure, refer to the
SAS Language Reference: Dictionary and the SAS Companion for z/OS.

Remember that help is available from within the ACCESS procedure by issuing the
HELP command on any command line.

ACCESS Procedure Syntax
PROC ACCESS <options>;

Creating and Updating Statements
CREATE libref.member-name.ACCESS | VIEW;
UPDATE libref.member-name.ACCESS|VIEW <password-level=SAS-password>;

Database-Description Statements
DATABASE | DB<=> <">Datacom-database-name<">;
DBSTAT< => <">PROD<"> | <">TEST<"> | <">test-version<">;
PASSWORD | PASS | PW<=> <">Datacom-password<">;
TABLE<=> <">Datacom-table-name<">;
TBLSTAT<=> <">PROD<"> | <">TEST<"> | <">test-version<">;
URT<=> <">User-Requirements-Table-name<">;
USER<=> <">authorized-Datacom-userid<">;

Editing Statements
ASSIGN | AN<=> YES | NO | Y | N;
CONTENT <">column-identifier-1<"> <=> SAS-date-format | length

<...<">column-identifier-n<"> <=> SAS-date-format | length>;
DROP <">column-identifier-1<"> <...<">column-identifier-n<">>;
EXTEND ALL | VIEW | <">column-identifier-1<">

<...<">column-identifier-n<">>;
FORMAT | FMT <">column-identifier-1<"> <=> SAS-format-name

<...<">column-identifier-n<"> <=> SAS-format-name>;
INFORMAT | INFMT <">column-identifier-1<"> <=> SAS-format-name

<...<">column-identifier-n<"> <=> SAS-format-name>;
KEY<=> <">Datacom-short-name<">;
LIST ALL | VIEW | <">column-identifier-1<"> <...<">column-identifier-n<">;>
LISTINFO ALL | VIEW | <">column-identifier-1<">

<...<">column-identifier-n<">>;



ACCESS Procedure Reference � PROC ACCESS Statement Options 61

LISTOCC <">column-identifier-1<"> <...<">column-identifier-n<">>;
OCCURS <">column-identifier<">

CONTENT occurrence-1 <=> SAS-format-name
<...occurrence-n <=> SAS-format-name>;
|
DROP occurrence-1 <TO> occurrence-n;
|
FORMAT <">occurrence-1<"> <=> SAS-format-name
<...<">occurrence-n<"> <=> SAS-format-name>;
|
INFORMAT <">occurrence-1<"> <=>SAS-format-name
<...<">occurrence-n<"> <=> SAS-format-name>;
|
RENAME <">occurrence-1<"> <=> SAS-name
<...<">occurrence-n<"> <=> SAS-name>;
|
RESET occurrence-1 <TO> occurrence-n;
|
SELECT occurrence-1 <TO> occurrence-n;

RENAME <">column-identifier-1<"> <=> SAS-name
<...<">column-identifier-n<"> <=>SAS-name>;

RESET ALL | <">column-identifier-1<"> <...<">column-identifier-n<">>;
SELECT ALL | <">column-identifier-1<"> <...<">column-identifier-n<">>;
SUBSET selection-criteria;
QUIT | EXIT;

Description
You use the ACCESS procedure to create and edit access descriptors and view

descriptors, and to create SAS data files. Descriptor files describe DBMS data so that
you can read, update, or extract the DBMS data directly from within a SAS session or
in a SAS program.

The ACCESS procedure can run in batch or interactive line modes.
The following sections provide complete information about PROC ACCESS options

and statements.

PROC ACCESS Statement Options
PROC ACCESS options;

Depending on which options you use, the PROC ACCESS statement performs several
tasks.

You use the PROC ACCESS statement with database-description statements and
certain procedure statements to create descriptors or SAS data files from DBMS data.
See “Invoking the ACCESS Procedure” on page 65 for information about which
procedure statements to use for each task.

The PROC ACCESS statement takes the following options:

ACCDESC=libref.access-descriptor
specifies an access descriptor. ACCDESC= is used with the DBMS= option to
create a view descriptor that is based on the specified access descriptor. You



62 Options � Chapter 6

specify the view descriptor’s name in the CREATE statement. You can also use a
SAS data set option on the ACCDESC= option to specify any passwords that have
been assigned to the access descriptor.

The ACCDESC= option has two aliases: AD= and ACCESS=.

DBMS=Datacom
specifies the database management system that you want the descriptor(s) to
access. Specify DBMS=Datacom since you are using the SAS/ACCESS interface to
CA-Datacom/DB.

OUT=<libref.>member-name
specifies the SAS data file to which DBMS data is written. OUT= is used only
with the VIEWDESC= option.

VIEWDESC=<libref.>view-descriptor
specifies a view descriptor that accesses the CA-Datacom/DB data. VIEWDESC=
is used only with the OUT= option.

For example:

proc access dbms=Datacom viewdesc=vlib.invq4
out=dlib.invq4;

run;

The VIEWDESC= option has two aliases: VD= and VIEW=.

Options
The ACCESS procedure statement takes the following options:

ACCDESC=libref.access-descriptor
specifies an access descriptor. ACCDESC= is used with the DBMS= option to
create a view descriptor that is based on the specified access descriptor. You
specify the view descriptor’s name in the CREATE statement. You can also use a
SAS data set option on the ACCDESC= option to specify any passwords that have
been assigned to the access descriptor.

The ACCDESC= option has two aliases: AD= and ACCESS=.

DBMS=Datacom
specifies the database management system you want the descriptor(s) to access.
Specify DBMS=Datacom since you are using the SAS/ACCESS interface to
CA-Datacom/DB.

OUT=<libref.>member-name
specifies the SAS data file to which DBMS data written. OUT= is used only with
the VIEWDESC= option.

VIEWDESC=<libref.>view-descriptor
specifies a view-descriptor that accesses the CA-Datacom/DB data. VIEWDESC=
is used only with the OUT= option.

For example:

proc access dbms=Datacom viewdesc=vlib.invq4
out=dlib.invq4;

run;

The VIEWDESC= option has two aliases: VD= and VIEW=.



ACCESS Procedure Reference � Assigning Passwords for SAS/ACCESS Descriptors 63

SAS Passwords for SAS/ACCESS Descriptors

Overview of SAS Passwords
SAS enables you to control access to SAS data sets and access descriptors by

associating one or more SAS passwords with them.
The following table summarizes the levels of protection that SAS passwords have and

their effects on access descriptors and view descriptors.

Table 6.1 Password and Descriptor Interaction

READ= WRITE= ALTER=

access descriptor no effect on descriptor no effect on descriptor protects descriptor
from being read or
edited

view descriptor protects DBMS data
from being read or
edited

protects DBMS data
from being edited

protects descriptor
from being read or
edited

For detailed information about the levels of protection and the types of passwords
you can use, refer to the SAS Language Reference: Dictionary. The following section
describes how you assign SAS passwords to descriptors.

Assigning Passwords for SAS/ACCESS Descriptors

ACCESS Procedure Method for Assigning Passwords
You can assign a SAS password when you define a descriptor in the ACCESS

procedure or after the descriptor file has been created by using PROC DATASETS.
Four password levels are available: READ=, WRITE=, ALTER=, and PW=. PW=

assigns read, write, and alter privileges to a descriptor.
You can assign multiple levels of protection to a descriptor. However, for more than

one level of protection (for example, both READ and ALTER), be sure to use a different
password for each level. If you use the same password for each level, a user to whom
you grant READ privileges only (in order to read the DBMS data) would also have
privileges to alter your descriptor (which you do not want).

To assign a password in the ACCESS procedure, specify the password level and
password as a data set option in the CREATE statement. The following example
creates and assigns passwords to an access descriptor and a view descriptor in the same
procedure execution:

proc access dbms=Datacom;
create work.emps.access (alter=rouge);
table=employees;
user=demo;

create work.emp.view (alter=ego);
select 1 2 3 4;

run;



64 Assigning Passwords for SAS/ACCESS Descriptors � Chapter 6

Users will have to specify the ALTER password EGO to browse or edit the view
descriptor and the ALTER password ROUGE to browse, edit, or define additional view
descriptors from this access descriptor.

When creating a view descriptor from a password-protected access descriptor, specify
the access descriptor password as a data set option after the ACCDESC= option. The
following example specifies two data set options. The first specifies the access descriptor
password and the second assigns a password to the view descriptor.

proc access dbms=Datacom ad=work.emps.access (alter=rouge);
create work.emp2.view (alter=dumb);
select 5 6 7 8;

run;

DATASETS Procedure Method for Assigning Passwords
You assign a SAS password to an existing descriptor by using the DATASETS

procedure. The DATASETS procedure MODIFY statement enables you to assign,
change, and delete SAS passwords.

Here is the basic syntax for using PROC DATASETS to assign a password to an
access descriptor, a view descriptor, or a SAS data file:

PROC DATASETS LIBRARY=libref MEMTYPE=member-type;
MODIFY member-name (password-level = password-modification);

RUN;

In this syntax statement, the password-level argument can have one or more of the
following values: READ=, WRITE=, ALTER=, or PW=. The password-modification
argument enables you to assign a new password or to change or delete an existing
password.

For example, this PROC DATASETS statement assigns the password MONEY with
the ALTER level of protection to the access descriptor MYLIB.EMPLOYEE.

proc datasets library=mylib memtype=access;
modify employee (alter=money);

run;

In this case, users are prompted for a password whenever they try to browse or edit the
access descriptor or create view descriptors that are based on access descriptor
MYLIB.EMPLOYEE.

In the next example, the PROC DATASETS statement assigns the passwords MYPW
and MYDEPT with READ and ALTER levels of protection to view descriptor
VLIB.CUSPHON:

proc datasets library=vlib memtype=view;
modify cusphon (read=mypw alter=mydept);

run;

In this case, users are prompted for the SAS password when they try to read or
update the DBMS data, or try to browse or edit the view descriptor VLIB.CUSPHON
itself. You need both levels to protect the data and descriptor. Assign a WRITE level of
protection to prevent data updates.

To delete a password on a descriptor file or any SAS data set, put a slash after the
password:

proc datasets library=vlib memtype=view;
modify cusphon (read=mypw/ alter=mydept/);

run;



ACCESS Procedure Reference � Invoking the ACCESS Procedure 65

Refer to the SAS Language Reference: Dictionary for more examples of assigning,
changing, deleting, and using SAS passwords with PROC DATASETS.

Invoking the ACCESS Procedure

To invoke the ACCESS procedure, you use the options described in PROC ACCESS
Statement Options and certain procedure statements. The options and statements that
you choose are determined by your task.

� To create an access descriptor, use the following statements:

PROC ACCESS DBMS=Datacom;

CREATE libref.member-name.ACCESS;
database-description statements;
optional editing statements;

RUN;

� To create an access descriptor and a view descriptor in the same procedure, use
the following statements:

PROC ACCESS DBMS=Datacom;

CREATE libref.member-name.ACCESS;
database-description statements;
optional editing statements;

CREATE libref.member-name.VIEW;
SELECT item-list;
optional editing statements;

RUN;

� To create a view descriptor from an existing access descriptor, use the following
statements:

PROC ACCESS DBMS=Datacom ACCDESC=libref.access-descriptor;

CREATE libref.member-name.VIEW;
SELECT item-list;
optional editing statements;

RUN;

� To update an access descriptor, use the following statements:

PROC ACCESS DBMS=Datacom;

UPDATE libref.member-name.ACCESS;
procedure statements;

RUN;



66 Invoking the ACCESS Procedure � Chapter 6

� To update a view descriptor, use the following statements:

PROC ACCESS DBMS=Datacom;
UPDATE libref.member-name.VIEW;

procedure statements;

RUN;

See for a listing of database description and editing statements. For information to
help you code efficient descriptor files, see .

Note that when you update an access descriptor (for example, drop another field from
the display), the view descriptors based on this access descriptor are not updated
automatically. You must re-create or modify any view descriptors that you want to
reflect the changes made to the access descriptor. Altering a DBMS table can invalidate
both access descriptors and view descriptors.

CAUTION:
Updating access descriptors does not automatically update view descriptors. When you
update an access descriptor (for example, drop another field from the display), the
view descriptors based on this access descriptor are not updated automatically. You
must re-create or modify any view descriptors that you want to reflect the changes
made to the access descriptor. The view descriptors would still be valid, but they
would no longer match the access descriptor. However, in some situations the view
descriptors would no longer be valid (for example, if you re-create an access
descriptor with the same name but base it on a different CA-Datacom/DB table). �

CAUTION:
Altering CA-Datacom/DB tables can affect descriptor files. Altering a CA-Datacom/DB
table that has descriptor files defined on it might cause these descriptors to be
out-of-date or invalid. For example, if you add a field to a table and an existing
access descriptor is defined on that table, the access descriptor does not reflect the
new field, but it remains valid. However, if you delete a field or delete a table on
which the view descriptor is based, the view descriptor fails when executed.
Therefore, you must change the descriptor files manually when changes to
CA-DATADICTIONARY invalidate them.

1 When you change CA-DATADICTIONARY, you must re-create the access
descriptor(s) with PROC ACCESS, using the same name(s).

2 Then you must edit each view descriptor with PROC ACCESS. You will get a
message if the view descriptor differs from its access descriptor. Change the
view descriptor as needed.

�

The SAS/ACCESS interface view engine does a rudimentary validation of a view
descriptor upon opening it. For example, the engine checks the data type information.
If a problem is found, the engine writes a message to the log and stops.

For more information about the effects of changing a CA-Datacom/DB table on
existing view descriptors, see Appendix 1, “Information for the Database
Administrator,” on page 103.



ACCESS Procedure Reference � ASSIGN Statement 67

Statements

ASSIGN Statement

Specifies whether view descriptors that are created from an access descriptor will inherit or select
their own SAS column names and formats.

Optional statement

Applies to: access descriptor

Syntax
ASSIGN | AN <=> YES | NO | Y | N;

Details
The ASSIGN statement specifies whether view descriptors will inherit the SAS column
names and formats that were assigned in the parent access descriptor at the time that
the access descriptor was created, or whether the column names and formats can be
selected in the view descriptor.

If you specify ASSIGN=YES, then default SAS column names and formats are
generated for all CA-Datacom/DB field names and these names and formats will be
used in all derived view descriptors. You can edit the default column names and
formats in the access descriptor with the RENAME, FORMAT, INFORMAT, and
CONTENT statements, but you cannot edit them in the view descriptor.

If ASSIGN=NO, which is the default value, default names are not generated and any
SAS column names assigned in the access descriptor can be edited in the view
descriptor. If you do not specify any column names in the access descriptor, then fields
selected in the view descriptor will use default SAS column names and formats, unless
you edit them with the RENAME, FORMAT, INFORMAT, and CONTENT statements.

Default SAS column names follow these rules:
� If the CA-Datacom/DB field name is longer than eight characters, SAS uses only

the first eight characters. If truncating would result in duplicate names, numbers
are appended to the end of the name. For example, the CA-Datacom/DB field
names CUSTOMERNAME and CUSTOMERNUMBER would become the SAS
column names CUSTOMER and CUSTOME1.

� If the CA-Datacom/DB field name contains invalid SAS name characters, such as a
hyphen (-), SAS replaces them with underscores (_). For example, the
CA-Datacom/DB field name FUNC-INT becomes the SAS name FUNC_INT.

� For a key, the five-character Datacom-NAME is used, if there is one. If that is
missing, the first eight nonblank characters of the entity-occurrence name are used.

� For repeating fields, SAS generates unique SAS names by suffixing or overlaying
the occurrence number on the last position(s) of the SAS name. For example, the
third occurrence of PHONE is PHONE3, the ninth occurrence of LASTNAME is
LASTNAM9, and the eleventh occurrence of ADDRESS is ADDRES11. In some
cases, this feature causes different fields to have SAS names that differ only in the



68 CONTENT Statement � Chapter 6

suffixed number. For example, if you select BRANCH-NUMBER,
BRANCH-PHONE, and BRANCH-ADDRESS and each repeats four times, the
SAS names generated by default would be: BRANCH_1, BRANCH_2, BRANCH_3,
BRANCH_4, BRANCH_5, BRANCH_6, BRANCH_7, BRANCH_8, BRANCH_9,
BRANCH10, BRANCH11, and BRANCH12.

The generated names are not listed in the LIST statement output.

� The SAS name for a compound field contains *GROUP*. To see the fully expanded
repeating structure, use the LISTOCC statement. To see the field composition, use
the LISTINFO statement.

� You can set different default names with a user exit, which is described in
Appendix 2, “Advanced Topics,” on page 117.

CONTENT Statement

Specifies a SAS date format or length.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
CONTENT <">column-identifier-1<"> <=> SAS-date-format | length

<...<">column-identifier-n<"> <=> SAS-date-format | length>;

Details
The CONTENT statement enables you to specify a SAS date format or column length
for a CA-Datacom/DB nondate field. A date format means that the CA-Datacom/DB
data has the specified representation. The column length determines the number of
characters to be accessed.

SAS stores datetime values as the number of days and seconds before and after
January 1, 1960. Entering a SAS date format or column length automatically changes
the default values for SAS formats and informats. However, if you have previously
changed any format or informat values, specifying a CONTENT value does not change
those values. Four date formats are used:

� YYMMDDw. where w is 6 for two-digit years or 8 for four-digit years

� MMDDYYw. where w is 6 for two-digit years or 8 for four-digit years

� DDMMYYw. where w is 6 for two-digit years or 8 for four-digit years

� JULIANw. where w is 5 for two-digit years or 7 for four-digit years.

The column-identifier argument can be either the CA-Datacom/DB field name or the
positional equivalent from the LIST statement, which is the number that represents the
column’s place in the access descriptor. If the column contains special characters or
national characters, enclose the name in quotation marks.

If you specify ASSIGN=YES when you create an access descriptor, you cannot change
the value for this statement when you later create a view descriptor based on that
access descriptor. You do not have to issue a SELECT statement for DBMS columns
that are named in the CONTENT statement.



ACCESS Procedure Reference � CREATE Statement 69

SAS supports the CA-Datacom/DB SQL types SQL-DATE, SQL-TIME, and
SQL-STMP as binary data. (See “ACCESS Procedure Data Conversions” on page 97 for
more information about the default formats that the ACCESS procedure assigns to
these DBMS data types.)

CREATE Statement

Creates a SAS/ACCESS descriptor file.

Required statement

Applies to: access descriptor or view descriptor

Syntax
CREATE libref.member-name.ACCESS | VIEW;

Details
The CREATE statement identifies the access descriptor or view descriptor that you
want to create. This statement is required for creating a descriptor file.

To create a descriptor, use a three-level name. The first level identifies the libref of
the SAS library where you will store the descriptor. You can store the descriptor in a
temporary (WORK) or permanent SAS library. The second level is the descriptor’s
name. The third level is the type of SAS file: specify ACCESS for an access descriptor
or VIEW for a view descriptor.

You can use the CREATE statement as many times as necessary in one procedure
execution. That is, you can create multiple access descriptors and view descriptors
based on those access descriptors, within the same execution of the ACCESS procedure.
Or, you can create access descriptors and view descriptors in separate executions of the
procedure.

Access descriptors When you create an access descriptor, you must place statements
or groups of statements in a certain order after the PROC ACCESS statement and its
options, as listed below:

1 The CREATE statement for the access descriptor must directly follow the PROC
ACCESS statement.

2 Database-description statements must follow the CREATE statement: TABLE,
TBLSTAT, USER, PASSWORD, DATABASE, DBSTAT, and URT. The order of the
database-description statements does not matter.

3 The editing statements must follow the database-description statements: ASSIGN,
CONTENT, DROP, EXTEND, FORMAT, INFORMAT, KEY, LIST, LISTINFO,
LISTOCC, OCCURS, QUIT, RENAME, and RESET. The SELECT and SUBSET
statements are used only when creating view descriptors. QUIT is an editing
statement but it terminates PROC ACCESS without creating your descriptor.

4 The RUN statement is used to signal the end of the ACCESS procedure.

Information from database-description statements is stored in the access descriptor.
Therefore, you do not need to repeat this information when you create view descriptors.



70 DATABASE Statement � Chapter 6

However, if no security values were entered in the access descriptor, then you can use
the database-description statements in a view descriptor to supply them.

View descriptors When you create a view descriptor for an existing access descriptor,
you must use the ACCDESC= option with the ACCESS procedure.

When you create view descriptors and access descriptors in the same procedure
execution, you must place the statements or groups of statements in the following order:

1 You must create an access descriptor before creating a view descriptor based on
that access descriptor.

2 You should omit the RUN statement from the access descriptor specification.

3 Any database-description statements, such as PASSWORD, must precede the
editing statements.

4 Among the editing statements, RENAME, CONTENT, FORMAT, and INFORMAT
can be specified only when ASSIGN=NO is specified in the access descriptor
referenced by the view descriptor. The order of the statements within this group
usually does not matter; see the individual statement descriptions for any
restrictions.

5 The RUN statement is used to signal the end of the ACCESS procedure.

If you create only one descriptor in a PROC step, the CREATE statement and its
accompanying statements are checked for errors when you submit PROC ACCESS for
processing. If you create multiple descriptors in the same PROC step, each CREATE
statement (and its accompanying statements) is checked for errors as it is processed.

If no errors are found, each descriptor is saved when a new descriptor is created or
when the RUN statement is processed. If errors are found, error messages are written
to the SAS log and processing is terminated. After you correct the errors, resubmit your
statements.

For examples of how to create access descriptors and view descriptors, see Chapter 3,
“Defining SAS/ACCESS Descriptor Files,” on page 15.

DATABASE Statement

Identifies the CA-Datacom/DB database to use.

Optional statement

Applies to: access descriptor

Syntax
DATABASE | DB<=> <">Datacom-database-name<">;

Details
The DATABASE statement enables you to specify the name of the CA-Datacom/DB
database that contains the CA-Datacom/DB table you want to access. In
CA-Datacom/DB, Database is a 32-character field that names an entity-occurrence of
type DATABASE in CA-DATADICTIONARY.



ACCESS Procedure Reference � DROP Statement 71

The database name is required only if the table specified in the TABLE statement is
not unique in the dictionary. If the name contains special characters or national
characters, enclose it in quotation marks.

DB is the alias for the DATABASE statement.

DBSTAT Statement

Indicates the status or version of the specified CA-Datacom/DB database.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
DBSTAT<=> <">PROD<"> | <">TEST<"> | <">test-version<">;

Details
The DBSTAT statement enables you to indicate the CA-DATADICTIONARY status and
version of the CA-Datacom/DB database that you want to access. The DBSTAT
statement is required only if the database you want to use is not the one in production
status.

The DBSTAT statement can take one of the following arguments:

PROD indicates the database that is currently in production. This is the
default.

TEST indicates the database that is currently in test.

test-version indicates a specific test version of the database. This argument must
be in the form of Txxx, where xxx is a 3–digit number.

Other status values, such as HIST, are not used.

DROP Statement

Drops a DBMS column so that it cannot be selected in a view descriptor.

Optional statement

Applies to: access descriptor

Syntax
DROP <">column-identifier-1<"> <... <">column-identifier-n<">>;



72 EXTEND Statement � Chapter 6

Details
The DROP statement drops the specified DBMS column from an access descriptor. The
column therefore cannot be selected by a view descriptor that is based on the access
descriptor. However, the specified column in the DBMS table remains unaffected by
this statement.

The column-identifier argument can be either the CA-Datacom/DB field name or the
positional equivalent from the LIST statement, which is the number that represents the
column’s place in the access descriptor. For example, to drop the third and fifth
columns, submit the following statement:

drop 3 5;

If the column name contains special characters or national characters, enclose the
name in quotation marks. You can drop as many columns as you want in one DROP
statement.

To display a column that was previously dropped, specify the column name in the
RESET statement. However, doing so also resets all of the column’s attributes (such as
SAS column name, format, and so on) to their default values.

EXTEND Statement

Lists columns in the descriptor and gives information about them.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
EXTEND ALL | VIEW | <">column-identifier-1<"> <...<">column-identifier-n<">>;

Details
The EXTEND statement lists information about the DBMS columns in a descriptor.
The word *GROUP* is displayed to indicate the existence of a group.

You can use the EXTEND statement when creating an access or a view descriptor.
The EXTEND information is written to your SAS log.

You can specify EXTEND as many times as you want while creating a descriptor;
specify EXTEND last in your PROC ACCESS code to see the completed descriptor
information. Or, if you are creating multiple descriptors, specify EXTEND before the
next CREATE statement to list all the information about the descriptor you are creating.

The EXTEND statement can take one of the following arguments:

ALL
lists all of the DBMS columns in the file, the positional equivalents, the SAS
names, the SAS informats, the database contents, the number of occurrences, and
the DBMS column types (Alpha or Zoned). When you are creating an access
descriptor, *NON-DISPLAY* appears next to the column description for any column
that has been dropped. When you are creating a view descriptor, *SELECTED*
appears next to the column description for columns that you have selected for the
view.



ACCESS Procedure Reference � FORMAT Statement 73

VIEW
lists all the DBMS columns that are selected for the view descriptor, along with
their positional equivalents, their SAS names and informats, the database
contents, number of occurrences, DBMS column types, any subsetting clauses, and
the word *SELECTED*. Any DBMS columns that are dropped in the access
descriptor are not displayed. The VIEW argument is valid only for a view
descriptor.

column-identifier
lists the specified DBMS column’s SAS name, its positional equivalent, its SAS
informat, the database content, number of occurrences, DBMS column type, and
whether the column has been selected or dropped. If the column name contains
special characters or national characters, enclose the name in quotation marks.

The column-identifier argument can be either the CA-Datacom/DB field name,
the positional equivalent from the LIST statement, which is the number that
represents the column’s place in the descriptor, or a list of names or positions. For
example, to list information about the fifth column in the descriptor, submit the
following statement:

extend 5;

Or, to list information about the fifth, sixth, and eighth columns in the
descriptor, submit the following statement:

extend 5 6 8;

FORMAT Statement

Changes the SAS format for a DBMS column.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
FORMAT <">column-identifier-1<"> <=> SAS-format-name

<...<">column-identifier-n<"> <=> SAS-format-name>;

Details
The FORMAT statement changes a SAS column format from its default format; the
default SAS column format is based on the data type of the DBMS column. (See
“ACCESS Procedure Data Conversions” on page 97 for information about the default
formats that the ACCESS procedure assigns to your DBMS data types.)



74 INFORMAT Statement � Chapter 6

The column-identifier argument can be either the CA-Datacom/DB field name or the
positional equivalent from the LIST statement, which is the number that represents the
column’s place in the access descriptor. For example, to associate the DATE9. format
with the BIRTHDATE column and with the second column in the access descriptor,
submit the following statement:

format 2=date9. birthdate=date9.;

The column-identifier is specified on the left and the SAS format is specified on the
right of the expression. The equal sign (=) is optional. If the CA-Datacom/DB field name
contains special characters or national characters, enclose the name in quotation marks.
You can enter formats for as many columns as you want in one FORMAT statement.

You can use the FORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value.

Note: You do not have to issue a SELECT statement in a view descriptor for the
columns included in the FORMAT statement. The FORMAT statement selects the
columns. When you use the FORMAT statement in access descriptors, the FORMAT
statement reselects columns that were previously dropped with the DROP statement. �

FMT is the alias for the FORMAT statement.

INFORMAT Statement

Changes a SAS informat for a DBMS column.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
INFORMAT <">column-identifier<"> <=> SAS-format-name

<...<">column-identifier-n<"> <=> SAS-format-name>;

Details
The INFORMAT statement changes a SAS column informat from its default informat;
the default column informat is based on the data type of the DBMS column. (See
“ACCESS Procedure Data Conversions” on page 97 for information about the default
informats that the ACCESS procedure assigns to your DBMS data types.)

The column-identifier argument can be either the CA-Datacom/DB field name or the
positional equivalent from the LIST statement, which is the number that represents the
column’s place in the access descriptor. For example, to associate the DATE9. informat
with the BIRTHDATE column and with the second column in the access descriptor,
submit the following statement:

informat 2=date9. birthdate=date9.;

The column-identifier is specified on the left and the SAS informat is specified on the
right of the expression. The equal sign (=) is optional. If the DBMS column name



ACCESS Procedure Reference � LIST Statement 75

contains special characters or national characters, enclose the name in quotation marks.
You can enter informats for as many columns as you want in one INFORMAT statement.

You can use the INFORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value.

Note: You do not have to issue a SELECT statement in a view descriptor for the
columns included in the INFORMAT statement. The INFORMAT statement selects the
columns. When you use the INFORMAT statement with access descriptors, the
INFORMAT statement reselects columns that were previously dropped with the DROP
statement. �

INFMT is the alias for the INFORMAT statement.

KEY Statement

Specifies a key field that governs the order that records are read.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
KEY<=> <">Datacom-short-name<">;

Details
The KEY statement specifies the CA-Datacom/DB short name for a Default Key in the
CA-Datacom/DB table. The Default Key value governs the order in which records are
read. The Default Key is an optional key that defaults to the Native Key. The Native
Key governs how records are stored and maintained.

You can specify another key as the Default Key if you want the records processed in
a certain order, but you do not want to specify a SORT clause to achieve that result.
You can also specify a Default Key with the DDBKEY= data set option when you
execute a SAS procedure.

If the CA-Datacom/DB short name contains special characters or national characters,
enclose the name in quotation marks.

LIST Statement

Lists columns in the descriptor and gives information about them.

Optional statement

Applies to: access descriptor or view descriptor



76 LISTINFO Statement � Chapter 6

Syntax
LIST ALL | VIEW |<">column-identifier-1<">

<... <">column-identifier-n<">>;

Details
The LIST statement lists the columns in the descriptor along with information about
the columns. The LIST statement can be used when creating an access descriptor or a
view descriptor. The LIST information is written to your SAS log.

You can specify LIST as many times as you want while creating a descriptor; specify
LIST last in your PROC ACCESS code to see the completed descriptor information. Or,
if you are creating multiple descriptors, specify LIST before the next CREATE
statement to list all the information about the descriptor you are creating.

The LIST statement can take one of the following arguments:

ALL
lists all the DBMS columns in the file, the positional equivalents, the SAS column
names, and the SAS formats that are available for the access descriptor. When
you are creating an access descriptor, *NON-DISPLAY* appears next to the column
description for any column that has been dropped. When you are creating a view
descriptor, *SELECTED* appears next to the column description for columns that
you have selected for the view.

VIEW
lists all the DBMS columns that are selected for the view descriptor, along with
their positional equivalents, their SAS column names and formats, any subsetting
clauses, and the word *SELECTED*. Any columns that were dropped in the access
descriptor are not displayed. The VIEW argument is valid only for a view
descriptor.

column-identifier
lists the specified DBMS column name, its positional equivalent, its SAS column
name and format, and whether the column has been selected or dropped. If the
column name contains special characters or national characters, enclose the name
in quotation marks.

The column-identifier argument can be either the CA-Datacom/DB field name or
the positional equivalent from the LIST statement, which is the number that
represents the column’s place in the descriptor. For example, to list information
about the fifth and eighth columns in the descriptor, submit the following
statement:

list 5 8;

LISTINFO Statement

Shows additional data field information.

Optional statement

Applies to: access descriptor or view descriptor



ACCESS Procedure Reference � LISTOCC Statement 77

Syntax
LISTINFO ALL | VIEW |<">column-identifier-1<">

<...<">column-identifier-n<">>;

Details
The LISTINFO statement shows additional data field information for one or more
DBMS columns in the descriptor. The LISTINFO statement can be used when creating
an access or a view descriptor. The LISTINFO information is written to your SAS log.

The LISTINFO statement is especially helpful for key fields. It shows the
CA-Datacom/DB short name as well as all the columns and levels that make up the key.

The LISTINFO statement can take one of the following arguments:

ALL
lists the field composition of all the DBMS columns in the file.

VIEW
lists the field composition of the DBMS columns selected for the view descriptor.
Any columns that are dropped in the access descriptor are not displayed. The
VIEW argument is valid only for a view descriptor.

column-identifier
lists the field composition of the specified DBMS columns. If the column name
contains special characters or national characters, enclose the name in quotation
marks.

The column-identifier argument can be either the CA-Datacom/DB field name,
the positional equivalent from the LIST statement, which is the number that
represents the column’s place in the descriptor, or a list of names or positions. For
example, to list information about the fifth column in the descriptor, submit the
following statement:

listinfo 5;

Or, to list information about the fifth, sixth, and eighth columns in the
descriptor, submit the following statement:

listinfo 5 6 8;

LISTOCC Statement

Lists occurrences for repeating data fields.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
LISTOCC <">column-identifier-1<"> <... <">column-identifier-n<">>;



78 OCCURS Statement � Chapter 6

Details

The LISTOCC statement lists all the occurrences for the specified repeating fields along
with information such as the CA-Datacom/DB level, the SAS column name, the
occurrence number, the SAS column format and informat, the DB content, and whether
the occurrence has been selected or dropped. The LISTOCC statement can be used
when creating an access descriptor or a view descriptor. The LISTOCC information is
written to your SAS log.

The LISTOCC statement takes the following argument:

column-identifier
can be either the CA-Datacom/DB field name or the positional equivalent from the
LIST statement, which is the number that represents the column’s place in the
descriptor. For example, to list occurrences for the fifth column in the descriptor,
submit the following statement:

listocc 5;

If the DBMS column name contains special characters or national characters, enclose
the name in quotation marks. The column-identifier must be a repeating field.

OCCURS Statement

Modifies the occurrences of a repeating data field.

Optional statement

Applies to: access descriptor or view descriptor

Syntax

OCCURS <">column-identifier<">
CONTENT <">occurrence-1<"> <=> SAS-date-format | length
<... <">occurrence-n<"><=> SAS-date-format| length>;
|
DROP occurrence <<TO> ... occurrence-n>;
|
FORMAT <">occurrence-1<"> <=> SAS-format-name
<… <">occurrence-n<"> <=> SAS-format-name>;
|
INFORMAT <">occurrence-1<"> <=> SAS-format-name
<… <">occurrence-n<"> <=> SAS-format-name>;
|
RENAME <">occurrence-1<"> <=> SAS-name
< ... <">occurrence-n<"> <=> SAS-name>;
|
RESET occurrence-1 <<TO> ... occurrence-n>;
|
SELECT occurrence <<TO> … occurrence-n>;



ACCESS Procedure Reference � OCCURS Statement 79

Details
You use the OCCURS statement to modify values for occurrences of a repeating data
field. The OCCURS statement can be used when creating an access descriptor or a view
descriptor.

The OCCURS statement enables you to complete the following tasks:

� select individual occurrences or a range of occurrences

� drop individual occurrences or a range of occurrences

� reset individual occurrences or a range of occurrences

� change the format value for one or more occurrences

� change the informat value for one or more occurrences

� change the database content value for one or more occurrences

� rename the SAS column name for one or more occurrences.

You can see the two-character numeric level of a CA-Datacom/DB field by using one
of the LIST statements. The LVL column displays the word KEY for keys, the number
01 for simple fields and top-level compound fields, 02 for secondary fields, and so on.
This listing is for information only and cannot be edited.

The column-identifier must be a repeating field, and can be the CA-Datacom/DB field
name or the positional equivalent from the LIST statement. The occurrence argument
can be the occurrence name or the occurrence number. If the CA-Datacom/DB field
name or the occurrence name contains special characters, like ’-’, enclose the name in
quotation marks. The ’=’is optional for all subcommands.

You can use the LISTOCC statement to review your changes.
You do not have to issue a SELECT statement in a view descriptor for occurrences

included in the CONTENT, FORMAT, INFORMAT, and RENAME subcommands. The
subcommands select the columns.

The OCCURS statement can take one of the following subcommands:

CONTENT
enables you to change the DB content attribute of an individual occurrence. This
subcommand can be used when creating access or view descriptors. Changing the
DB content attribute of an occurrence has the same effect on the SAS formats and
informats for CA-Datacom/DB tables and records as changing the DB content
attribute of a column. See “CONTENT Statement” on page 68 for more
information. For example, if the FIRSTORDERDATE column in the CUSTOMERS
table is a repeating field, and you want to change the DB content attribute for
occurrences nine and ten, submit the following statement:

occurs firstorderdate content 9 yymmdd6. 10 = yymmdd6.;

DROP
enables you to drop individual occurrences from your descriptor. If you drop all
occurrences of a column, the column is automatically dropped. This subcommand
is used only when defining access descriptors.

You can drop one or more individual occurrences or a range of occurrences. For
example, if you want to drop occurrences one, two, and three of the
BRANCHOFFICE column in the CUSTOMERS table, submit the following
statement:

occurs "BRANCHOFFICE" drop 1 2 3;

or

occurs "BRANCHOFFICE" drop 1 to 3;



80 OCCURS Statement � Chapter 6

FORMAT
enables you to change the format attribute of individual occurrences. This
subcommand can be used when creating access or view descriptors. However, the
format attribute cannot be changed in a view descriptor when you set
ASSIGN=YES.

You can change the format attribute of one or more occurrences in one FORMAT
subcommand. For example, if you want to change the format attribute for
occurrences nine and ten of the BRANCHOFFICE column in the CUSTOMER
table, submit the following statement:

occurs "BRANCHOFFICE" format 9 $21. 10 = $8.;

INFORMAT
enables you to change the informat attribute of an individual occurrence. This
subcommand can be used when creating access or view descriptors. However, the
informat attribute cannot be changed in a view descriptor when you set
ASSIGN=YES.

You can change the informat attribute of one or more occurrences in one
INFORMAT subcommand. For example, if the BRANCHOFFICE column in the
CUSTOMERS table is a repeating field, and you want to change the informat
attribute for occurrences nine and ten, submit the following statement:

occurs "BRANCHOFFICE" informat 9 $21. 10 = $8.;

RENAME
enables you to rename a SAS column name for an individual occurrence. This
subcommand can be used when creating an access or view descriptor. However,
this subcommand has different effects on access and view descriptors based on the
value specified in the ASSIGN statement.

If you set ASSIGN=NO in the access descriptor, the SAS column name can be
renamed. If you set ASSIGN=YES, the SAS column name can be renamed in the
access descriptor but not in the view descriptor.

You can rename the SAS column name for one or more occurrences in one
RENAME subcommand. For example, if you want to rename occurrences nine and
ten of the BRANCH-OFFICE column in the CUSTOMERS table, submit the
following statement:

occurs "BRANCH-OFFICE" rename 9 london 10 = tokyo;

RESET
enables you to reset the attributes of individual occurrences. This subcommand
can be used when creating an access or view descriptor. Specifying the RESET
subcommand for an occurrence has the same effect on occurrence attributes as
specifying the RESET statement for a column. See “RESET Statement” on page 83
for more information.

You can reset one or more individual occurrences or a range of occurrences. For
example, if you want to reset occurrences one, two, and three of the
BRANCHOFFICE column in the CUSTOMERS table, submit the following
statement:

occurs "BRANCHOFFICE" reset 1 2 3;

or

occurs "BRANCHOFFICE" reset 1 to 3;



ACCESS Procedure Reference � QUIT Statement 81

SELECT
enables you to select individual occurrences to be included in your descriptor. This
subcommand is used only when defining view descriptors.

You can select one or more individual occurrences or a range of occurrences. For
example, if you want to select occurrences one, two, and three of the
BRANCHOFFICE column in the CUSTOMERS table, submit the following
statement:

occurs "BRANCHOFFICE" select 1 2 3;

or

occurs "BRANCHOFFICE" select 1 to 3;

The result of selecting a key that consists of multiple fields is always a SAS
character column. The value of the SAS column is the concatenated values of the
component fields. If any of the component fields are numeric, they are converted to
character representation, with a format and length set by the interface view engine.
The character-only restriction exists so that the key can be used in a WHERE clause.

PASSWORD Statement

Specifies a CA-DATADICTIONARY password.

Optional statement

Applies to: access descriptor

Syntax
PASSWORD | PASS | PW<=> <">Datacom-password<">;

Details
The PASSWORD statement enables you to supply a CA-DATADICTIONARY password.
Not every user ID requires a password.

The value is the 12-character PASSWORD attribute of the PERSON
entity-occurrence identified in User Name. If you enter a value, it is saved (in
encrypted form) in the access descriptor and in any view descriptor created from it.

If the password contains any special characters or national characters, enclose it in
quotation marks.

PASS and PW are aliases for the PASSWORD statement.

QUIT Statement

Terminates the procedure.

Optional statement



82 RENAME Statement � Chapter 6

Applies to: access descriptor or view descriptor

Syntax
QUIT | EXIT;

Details
The QUIT statement terminates the ACCESS procedure without any further descriptor
creation.

EXIT is the alias for the QUIT statement.

RENAME Statement

Modifies the SAS column name.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
RENAME <">column-identifier-1<"> <=> SAS-name

<...<">column-identifier-n<"> <=> SAS-name>;

Details
The RENAME statement enters or modifies the SAS column name that is associated
with a DBMS column. The RENAME statement can be used when creating an access
descriptor or a view descriptor. However, the value of the ASSIGN statement affects
when the RENAME statement can be used.

When you create an access descriptor, the default setting for a SAS column name is a
blank. When ASSIGN=YES, default SAS column names are generated and these SAS
column names are used by all of the view descriptors derived from this access
descriptor. You can use the RENAME statement to edit the SAS column names
assigned in the access descriptor and these renamed SAS column will be used by its
view descriptors, unless a RESET statement or another RENAME statement is used in
the access descriptor.

If you omit the ASSIGN statement or specify it with a NO value, you can use the
RENAME statement to assign a SAS column name. In this case, the SAS column
names that you enter in the access descriptor will be retained by any view descriptors
derived from this access descriptor; however, you can edit them in the view descriptor
with the RENAME statement. Column names renamed in the view descriptor apply
only to that view descriptor.

The column-identifier argument can be either the CA-Datacom/DB field name or the
positional equivalent from the LIST statement, which is the number that represents the



ACCESS Procedure Reference � RESET Statement 83

column’s place in the descriptor. For example, to rename the SAS column names that
are associated with the seventh DBMS column and the nine-character FIRSTNAME
DBMS column in a descriptor, submit the following statement:

rename 7 birthdy firstname=fname;

The DBMS column name (or positional equivalent) is specified on the left side of the
expression, with the SAS column name on the right side. The equal sign (=) is optional.
If the CA-Datacom/DB field name contains special characters or national characters,
enclose the name in quotation marks. You can rename as many columns as you want in
one RENAME statement.

When you are creating a view descriptor, the RENAME statement automatically
selects the renamed column for the view. That is, if you rename the SAS column name
associated with a DBMS column, you do not have to issue a SELECT statement for that
column.

RESET Statement
Resets DBMS columns to their default settings.

Optional statement
Applies to: access descriptor or view descriptor

Syntax
RESET <ALL | <">column-identifier-1<">

<... <">column-identifier-n<">>>;

Details
The RESET statement resets either the attributes of all the DBMS columns or the
attributes of the specified DBMS columns to their default values. The RESET statement
can be used when creating an access descriptor or a view descriptor. However, this
statement has different effects on access and view descriptors, as described below.

Access descriptors When you create an access descriptor, the default setting for a
SAS column name is a blank. However, if you have previously entered or modified any
of the SAS column names, the RESET statement resets the modified names to the
default names that are generated by the ACCESS procedure. How the default SAS
column names are set depends on whether you included the ASSIGN statement. If you
omitted ASSIGN or set it to NO, the default names are blank. If you set ASSIGN=YES,
the default names are the first eight characters of each CA-Datacom/DB field name.

The current SAS column format and informat are reset to the default SAS format
and informat, which was determined from the DBMS column’s data type. The current
DB content is also reset to the default value. Any columns that were previously
dropped, that are specified in the RESET command, become available; they can be
selected in view descriptors that are based on this access descriptor.

View descriptors When you create a view descriptor, the RESET statement clears
any columns that were included in the SELECT statement (that is, it "de-selects" the
columns).



84 SELECT Statement � Chapter 6

When creating the view descriptor, if you reset a column and then select it again
within the same procedure execution, the SAS column name, format, informat, and
database content are reset to their default values (the SAS name is generated from the
DBMS column name, and the format and informat values are generated from the data
type). This applies only if you have omitted the ASSIGN statement or set the value to
NO when you created the access descriptor on which the view descriptor is based. If you
specified ASSIGN=YES when you created the access descriptor, the RESET statement
cannot be used to restore the default column names and formats in the view descriptor,
but it will affect the SELECT statement for the view.

The RESET statement can take one of the following arguments:

ALL
for access descriptors, resets all the DBMS columns that have been defined to
their default names and format settings and reselects any dropped columns.

For view descriptors, ALL resets all the columns that have been selected, so
that no columns are selected for the view; you can then use the SELECT
statement to select new columns.

column-identifier
can be either the CA-Datacom/DB field name or the positional equivalent from the
LIST statement, which is the number that represents the column’s place in the
access descriptor. For example, to reset the third column, submit the following
statement:

reset 3;

If the CA-Datacom/DB field name contains special characters or national
characters, enclose the name in quotation marks. You can reset as many columns
as you want in one RESET statement, or use the ALL option to reset all the
columns.

SELECT Statement

Selects DBMS columns for the view descriptor.

Required statement

Applies to: view descriptor

Syntax
SELECT ALL | <">column-identifier-1<"> <...<">column-identifier-n<">>;

Details
The SELECT statement specifies which DBMS columns in the access descriptor to
include in the view descriptor. This is a required statement and is used only when
defining view descriptors.

The SELECT statement can take one of the following arguments:

ALL



ACCESS Procedure Reference � SUBSET Statement 85

includes in the view descriptor all the DBMS columns that were defined in the
access descriptor excluding dropped columns.

column-identifier
can be either the CA-Datacom/DB field name or the positional equivalent from the
LIST statement, which is the number that represents the column’s place in the
access descriptor on which the view is based. For example, to select the first three
columns, submit the following statement:

select 1 2 3;

If the CA-Datacom/DB field name contains special characters or national
characters, enclose the name in quotation marks. You can select as many DBMS
columns as you want in one SELECT statement.

SELECT statements are cumulative within the same view creation. That is, if you
submit the following two SELECT statements, columns 1, 5, and 6 are selected, not just
columns 5 and 6:

select 1;
select 5 6;

To clear all your current selections when creating a view descriptor, use the RESET
ALL statement; you can then use another SELECT statement to select new columns.

SUBSET Statement

Adds or modifies selection criteria for a view descriptor.

Optional statement

Applies to: view descriptor

Syntax
SUBSET <selection-criteria>;

Details
You use the SUBSET statement to specify selection criteria when you create a view
descriptor. This statement is optional; if you omit it, the view retrieves all the data
(that is, all the rows) in the DBMS table.

The selection-criteria argument can be either a WHERE clause or a SORT clause.
For more information about the WHERE clause, see “WHERE Clause in a View
Descriptor” on page 89. For more information about the SORT clause, see “SORT
Clause in a View Descriptor” on page 95. You can use either SAS column names or
DBMS column names in your selection criteria. Specify your WHERE clause and SORT
clause by using the same or separate SUBSET statements. For example, you can
submit the following SUBSET statements:

subset where jobcode = 1204;
subset sort lastname;
subset where jobcode=1204 sort lastname;



86 TABLE Statement � Chapter 6

SAS does not check the SUBSET statement for errors. The statement is verified and
validated only when the view descriptor is used in a SAS program.

To delete the selection criteria, submit a SUBSET statement without any arguments.

TABLE Statement

Indicates the CA-Datacom/DB table you want to use.

Required statement

Applies to: access descriptor

Syntax
TABLE<=> <">Datacom-table-name<">;

Details
The TABLE statement specifies the CA-Datacom/DB table that you want to access.
Datacom-table-name is the 32-character field that names an entity-occurrence of type
RECORD in the CA-DATADICTIONARY. (For CA-Datacom/DB R8, the type is TABLE.)

The TABLE statement is required to create an access descriptor and the table name
must be unique. If the table name is not unique, you can combine the TABLE
statement with the DATABASE, DBSTAT, and TBLSTAT statements until a unique
combination is identified.

If the table name contains special characters or national characters, enclose the
name in quotation marks.

TBLSTAT Statement

Indicates the status or version of the specified CA-Datacom/DB table.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
TBLSTAT<=> <">PROD<"> | <">TEST<"> | <">test-version<">;

Details
The TBLSTAT statement enables you to indicate the CA-DATADICTIONARY status
and version of the CA-Datacom/DB table you want to access. The TBLSTAT statement
is required only if the database you want to use is not the one in production status.



ACCESS Procedure Reference � UPDATE Statement 87

The TBLSTAT statement can take one of the following arguments:

PROD indicates the table that is currently in production. This is the
default.

TEST indicates the table that is currently in test.

test-version indicates a specific test version of the database. This argument must
be in the form of Txxx, where xxx is a 3–digit number.

Other status values, such as HIST, are not used.

UPDATE Statement

Updates a SAS/ACCESS descriptor file.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
UPDATE libref.member-name.ACCESS | VIEW

<password-level=SAS-password>;

Details
The UPDATE statement identifies an existing access descriptor or view descriptor that
you want to update (edit). The descriptor can exist in either a temporary (WORK) or
permanent SAS library. If the descriptor has been protected with a SAS password that
prohibits editing of the ACCESS or VIEW descriptor, then the password must be
specified on the UPDATE statement.

Note: It is recommended that you re-create (or overwrite) your descriptors rather
than update them. SAS does not validate updated descriptors. If you create an error
while updating a descriptor, you will not know of it until you use the descriptor in a
SAS procedure such as PROC PRINT. �

To update a descriptor, use its three-level name. The first level identifies the libref of
the SAS library where you stored the descriptor. The second level is the descriptor’s
name (member name). The third level is the type of SAS file: ACCESS or VIEW.

You can use the UPDATE statement as many times as necessary in one procedure
execution. That is, you can update multiple access descriptors, as well as one or more
view descriptors based on these access descriptors, within the same execution of the
ACCESS procedure. Or, you can update access descriptors and view descriptors in
separate executions of the procedure.

You can use the CREATE statement and the UPDATE statement in the same
procedure execution.

If you update only one descriptor in a procedure execution, the UPDATE statement
must be the first statement after the PROC ACCESS statement (Note: The ACCDESC=
parameter cannot be specified on the PROC ACCESS statement).

The following statements are not supported when using the UPDATE statement:
ASSIGN, RESET, SELECT, and OCCURS subcommands RESET and SELECT.



88 URT Statement � Chapter 6

Note: You cannot create a view descriptor after you have updated a view descriptor
in the same procedure execution. You can create a view descriptor after updating or
creating an access descriptor or after creating a view descriptor. �

The following example updates the access descriptor MYLIB.ORDERS on the
CA-Datacom/DB table ORDER. In this example, the SAS column names are changed
and formats are added.

proc access dbms=Datacom;
update mylib.orders.access;
rename ordernum ord_num

fabriccharges fabrics;
format firstorderdate date7.;
informat firstorderdate date7.;
content firstorderdate yymmdd6.;

run;

The following example updates an access descriptor MYLIB.EMPLOYEE on the
CA-Datacom/DB table EMPLOYEES and then re-creates a view descriptor VLIB.EMPS,
which was based on MYLIB.EMPLOYEE. The original access descriptor included all of
the DBMS columns in the table. Here, the SALARY and BIRTHDATE columns are
dropped from the access descriptor so that users cannot see this data. Because RESET
is not supported when UPDATE is used, the view descriptor VLIB.EMPS must be
re-created in order to omit the SALARY and BIRTHDATE columns.

proc access dbms=Datacom;
/* update access descriptor */
update mylib.employee.access;
drop salary birthdate;
list all;

/* re-create view descriptor */
create vlib.emps.view;
select empid hiredate dept jobcode sex

lastname firstname middlename phone;
format empid 6.

hiredate date7.;
subset where jobcode=1204;

run;

URT Statement

Identifies the user requirements table to use.

Optional statement

Applies to: access descriptor or view descriptor

Syntax
URT<=> <">User-Requirements-Table-name<">;



ACCESS Procedure Reference � View WHERE Clause Syntax 89

Details
The URT statement identifies the user requirements table (URT) to be used by the
interface view engine when it opens a view descriptor. CA-Datacom/DB requires a URT
to open a table. For more information, see “User Requirements Table (URT)” on page
110. However, this statement is optional. If you do not specify a URT when creating an
access descriptor or a view descriptor, the engine will create a default URT. A URT
name can also be provided with a data set option (see “Data Set Options” on page 117).

If you specify a URT when creating an access descriptor, the interface view engine
will use it when it opens any view descriptors created from this access descriptor.

If the URT name contains special characters or national characters, enclose the name
in quotation marks.

USER Statement

Specifies a CA-DATADICTIONARY user ID.

Required statement

Applies to: access descriptor

Syntax
USER<=> <">authorized-Datacom-userid<">;

Details
The USER statement supplies a required CA-DATADICTIONARY user ID. The user ID
is a 32-character entity-occurrence name of a PERSON entity in
CA-DATADICTIONARY, which is not necessarily the same as the user’s TSO ID.

The value entered in the USER statement is saved in the access descriptor and in
any view descriptor created from the access descriptor. The user name and optional
password must have retrieval authority on six entity-types: DATABASE, FILE,
RECORD, ELEMENT, KEY, and FIELD.

If the user ID contains special characters or national characters, enclose it in
quotation marks.

WHERE Clause in a View Descriptor

View WHERE Clause Syntax
You can use a WHERE Clause in a view descriptor to select specific records from a

CA-Datacom/DB table. You can reference any CA-Datacom/DB field included in the
view descriptor.

A WHERE clause in a view descriptor consists of the word WHERE followed by one
or more conditions that specify criteria for selecting records from one CA-Datacom/DB
table. (WITH and WH are valid aliases for the word WHERE.)



90 View WHERE Clause Syntax � Chapter 6

A condition can be one of the following:

field-name<(occurrence)>|key-name operator value
field-name* operator field-name*
field-name<(occurrence)>|key-name range-operator low-value * high-value

The user-supplied elements of the WHERE clause conditions are described here.

field-name<(occurrence)>|key-name
is the CA-Datacom/DB name of the field or key for which you are specifying
criteria. The field must be selected in the view descriptor. The interface view
engine assumes that the name in a condition is a SAS name. If it is not, the name
will be treated as a CA-Datacom/DB name.

If the field is a repeating field, you must specify the occurrence of that field in
parenthesis, where occurrence is one of the following:

n indicates the nth occurrence. For example,

where address(3) contains dallas

selects those records where the third occurrence of ADDRESS
contains DALLAS.

ALL indicates all occurrences selected in the view descriptor. For
example, the WHERE clause below selects those records where
all occurrences of ADDRESS contains DALLAS.

where address(all) contains dallas

ANY indicates any occurrence. An asterisk (*) can be used instead of
ANY. For example,

where address(any) contains dallas

selects those records where any occurrence of ADDRESS
contain DALLAS. You could have used ADDRESS(*) instead.

operator
is one of the following:

= or EQ equal to

> or GT greater than

< or LT less than

!= or = or NE not equal

>= or GE or
GTE

greater than or equal to

<= or LE or LTE less than or equal to

CONTAINS or
CONTAINING

contains

CONTAIN or
CONTAINING

does not contain

!CONTAIN or
!CONTAINING

does not contain



ACCESS Procedure Reference � View WHERE Clause Expressions 91

range-operator
is one of the following:

= or EQ or
SPANS

is within the range (inclusive)

!= or = or NE is outside the range

value, high-value, and low-value
represent valid values for the field or key.

For more information, see “Specifying Values in View WHERE Clauses” on page 92.

The Asterisk in View WHERE Clauses
The asterisk (*) is required when comparing two field names. For example, the

following WHERE clause selects those records where the wages are less than the
commission:

where ytd-wages*<ytd-commission*

This WHERE clause

where ship-quant*=order-quantity*

selects those records where the ship-quantity is equal to the order-quantity.
The asterisk is also required when comparing low and high range values. For

example, the following WHERE clause selects employees with employee numbers
between 2300 and 2400:

where number spans 2300*2400

The WHERE clause

where lastname spans ’A’*’Smith’

selects those employees with last names up to Smith. See “Character Fields in View
WHERE Clauses” on page 92 for details on the use of quotation marks.

If the asterisk appears in a value, enclose the value in quotation marks or use the
DDBSPANS system option to specify another special character. For more information
about system options, see “System Options for the CA-Datacom/DB Interface” on page
113.

View WHERE Clause Expressions
Conditions can be combined to form expressions. Two conditions can be joined with

OR (|) or AND (&). Since expressions within parentheses are processed before those
outside, use parentheses to have the OR processed before the AND.

where cost=.50 & (type=ansi12 | class=sorry)

Conditions can also be preceded by NOT (X).

where cost=.50 & not (type=ansi12 | class=sorry)

The following WHERE clause selects all records where AVAIL is Y or W:

where avail eq y | avail eq w

The next WHERE clause selects all records where PART is 9846 and ON-HAND is
greater than 2x106:

where part=9846 & on-hand>2.Oe+6



92 Specifying Values in View WHERE Clauses � Chapter 6

Specifying Values in View WHERE Clauses

Character Fields in View WHERE Clauses

For character fields you can use quoted or unquoted strings. Any value entered
within quotation marks is left as is; all unquoted values are uppercased, and redundant
blanks are removed. For example,

where lastname=Smith

extracts data for SMITH, and the next example extracts data for Smith:

where lastname=’Smith’

If the value is shorter than the field, it is padded on the right with blanks before the
comparison. (No padding is done if you use the CONTAINS operator.) If the value is
longer than the field, it is truncated to the field length before the comparison is done.
The WHERE clause

where name=Anderson

selects all records where NAME is ANDERSON. The WHERE clause

where city=’TRUTH OR CONSEQUENCES’ | stzip=’NM 87901’

selects all records where CITY is TRUTH OR CONSEQUENCES or STZIP is NM
87901. Notice in the first condition that quotation marks prevent OR from being used
as an operator. In the second condition, they prevent the extra space between NM and
87901 from being removed.

In this example, either of these WHERE clauses

where shop=’Joe’’s Garage’
where shop=’’Joe;s Garage’’

selects all records where SHOP is Joe’s Garage. Because the value is enclosed in
quotation marks, the two consecutive single quotation marks are treated as one
quotation mark. You can also use double quotation marks around a value. Also, two
consecutive double quotation marks become one double quotation mark if surrounded
by double quotation marks. If two consecutive double quotation marks are surrounded
by single quotation marks, they remain two double quotation marks and conversely.

Date Values in View WHERE Clauses

You can use the DB Content statement to specify a date format. Using this
statement, you can specify the dates according to your SAS informat. Do not use ’d as
you would for SAS software.

$HEX. Format Fields in View WHERE Clauses

For fields that are converted to $HEX. format because of their data type or length
(see “ACCESS Procedure Data Conversions” on page 97), the value must be specified in
hexadecimal. A value longer than the field is truncated to the field length before the
comparison is done. A value shorter than the field is padded on the right with binary
zeros before the comparison. For example, if CODE has $HEX4. format,

where code=f1f

extracts the data for CODE equals 10 (F1F0).



ACCESS Procedure Reference � Specifying Values in View WHERE Clauses 93

Values That Do Not Fit the Field Picture
If you specify a value that does not fit the field’s picture, you might receive an error,

or the value might be adjusted to fit the picture before sending the request to
CA-Datacom/DB.

The following examples illustrate how various misfit values are handled. Assume
throughout that COST has a database length of 5, with 2 decimals.

In the first set of examples, some misfit values produce errors, some are truncated,
and some cause operators to be changed. Errors occur when the equals operator or not
equals operator is used with a misfit value. Operators are changed when that change
plus truncation means the value will fit the picture and still produce the results you
intended.

Table 6.2 Various Misfit Field Values

Condition Request Sent to CA-DATACOM/DB

cost=.003 Error (underflow: field has two decimals)

cost>.003 cost>0.00 (truncated)

cost>3.0052 cost>3 (truncated)

cost<.0001 cost ≤ 0.00 (truncated, < changed to ≤ )

cost<20.001 cost ≤ 20 (truncated, < changed to ≤ )

The next examples show values that exceed the field size. If possible, your values are
replaced with the largest value that can be stored in the field.

Table 6.3 Field Values That Are Too Large

Condition Request Sent to CA-DATACOM/DB

cost<11123 cost ≤ 999.99

cost = 9999 Error (overflow, field cannot store integers > 999)

cost >= -12345 cost ≥ - 999.99

Masking Values in View WHERE Clauses
When a condition includes the EQ, NE, CONTAINS, or NOT CONTAINS operator

and the field is in display code, you can mask the value. That is, you can specify that
only certain positions within the value are to be compared to those positions in the field.
A pound sign (#) marks the positions that you do not want to be compared. For example,

where zipcode eq 7#8

selects all records with zip codes that have a 7 in the first position and an 8 in the third
position. The condition

where lastname contains m#n

selects all records with last names such as Mendoza, Harman, and Warminsky.
If you use the EQ or NE operators and you mask a value that is shorter than the

database field, your values are padded on the right with mask characters. (No padding
is done for NOT CONTAINS.) For example,

where lastname eq m#n

would select records with last names such as Mendoza, McNeal, and Monroe. Names
such as Harman or Warminsky would not qualify.



94 Specifying Values in View WHERE Clauses � Chapter 6

Use the DDBMASK system option to change the default masking character (#). For
more information about system options, see “System Options for the CA-Datacom/DB
Interface” on page 113.

Multi-Field Keys in View WHERE Clauses
For a condition that specifies a multi-field key, you might need to enclose each value

with delimiters.

Note: You cannot use compound fields in the WHERE clause. �

For multi-key fields, use a delimiter character* before and after each value if the
value you are entering is not the same length as the multi-field key and you are using
either NOT CONTAINS or the mask character. Values for keys are always in display
code. For example, suppose INIT-ID is a multi-key field. INIT is a character field of
length 3, and ID is a numeric field of length 7. The WHERE clause

where init-id=\jde\27#\

selects all records where the initials are JDE and the ID number starts with 27. Your
value for ID is padded on the right with mask characters, so the entire value is treated
as if you had specified JDE27#####.

You can omit delimiters if you specify the same number of characters as the
multi-field key contains. For example, this WHERE clause

where init-id=jde27#####

also selects all records where the initials are JDE and the ID number starts with 27,
just as in the previous example. No delimiters are required here because JDE27#####
is 10 characters long, which is the same size as the key field.

When you do not include delimiters or masked characters in the value, blanks or
zeros are used for padding. The WHERE clause

where weight-sex=78m

selects all records where weight equals 78 and sex equals M. The value is treated as if
it had been specified as \78\m\.

On the other hand, the WHERE clause

where age-degree=25bs

selects all records where age equals 25 and degree equals BS. The value is treated as if
it had been specified as \25\bs \.

Note: A considerable amount of processing is required when a procedure must
convert an apparently simple condition into a complex request to CA-Datacom/DB. For
example, if the fields AGE and SEX are not contiguous within the record, the procedure
converts the condition AGE-SEX<25M to SEX<M OR (SEX=M AND AGE<25) before
submitting the request. CA-Datacom/DB, in turn, processes the request and, if possible,
uses permanent indexes to satisfy it. �

Guidelines for View WHERE Clauses
Consider the following guidelines when you specify a WHERE clause in the view

descriptor:
� You can enter a WHERE clause or a SORT clause or both, in either order. But if

you enter both, do not use a terminator between them.

* Use the DDBDELIM system option to change the default delimiter character (\). For more information about system
options, see “System Options for the CA-Datacom/DB Interface” on page 113.



ACCESS Procedure Reference � View SORT Clause Syntax 95

� The keyword WHERE is not required unless the WHERE clause is the second
clause (following the SORT clause). The SORT clause must begin with SORT.

� CA-Datacom/DB does not have a date data type. However, the selection criteria
will honor a SAS date format if you specify one in the CONTENT and INFORMAT
statements.

� The CA-Datacom/DB fields must be selected in the view descriptor in order for you
to use them in the WHERE clause.

� All conditions in the WHERE clause must refer to fields in a single table. To join
conditions that pertain to two CA-Datacom/DB tables, use the SQL procedure.

� If you enter a SAS WHERE clause when you use the view descriptor in a SAS
procedure, the SAS WHERE clause is connected to the WHERE clause in the view
descriptor (if any) with the AND operator.

� The WHERE clause is not parsed (or checked) until the interface view engine tries
to execute it for a procedure.

� Field names in the WHERE clause conditions can be SAS names or
CA-Datacom/DB names. However, you should use SAS names for repeating fields
or for fields within repeating fields.

� Character literals and values for zoned decimal fields can contain the pound sign
(#) to indicate masking out characters for pattern matching operations.

For more information about specifying WHERE clauses, see “Deciding How to Specify
Selection Criteria in CA-Datacom/DB” on page 126.

SORT Clause in a View Descriptor

Overview of the SORT Clause
When you define a view descriptor, you can also include a SORT clause to specify data

order. You can reference only the CA-Datacom/DB fields selected for the view descriptor.
Without a SORT clause or a SAS BY statement, the data order is determined by the

Native Key for the CA-Datacom/DB table (or by the Default Key specified in the access
or view descriptor).

A SAS BY statement automatically issues a SORT clause to CA-Datacom/DB.
However, the SAS BY statement might cause grouping of the output results in some
procedures; this might not be what you want.

If a view descriptor already contains a SORT clause, the BY statement overrides the
SORT clause for that program. An exception is when the SAS procedure includes the
NOTSORTED option. Then, the SAS BY statement is ignored, and the view descriptor
SORT clause is used.

View SORT Clause Syntax
The syntax for the SORT clause is

SORT field-name <ASCENDING|UP|A> <DESCENDING|DOWN|D>
<,field-name...>



96 View SORT Clause Example � Chapter 6

The elements of the SORT clause are described here.

field-name
is a CA-Datacom/DB field name or SAS column name of a CA-Datacom/DB field
included in the view descriptor. Use commas to separate sort keys. You can also
specify either ascending or descending order for each field name.

ASCENDING|UP|A
specifies that you want the data ordered by ascending values of the field-name.
ASCENDING is the default.

DESCENDING|DOWN|D
specifies that you want the data ordered by descending values of the field-name.

If you specify more than one CA-Datacom/DB field, the values are ordered by the
first named field, then the second, and so on.

View SORT Clause Example
The following SORT clause causes the values to be presented in ascending order

based on the values in field STATE, then within states in descending order based on the
values in field CITY:

sort state, city down

View SORT Clause Guidelines
Consider the following guidelines when you specify a SORT clause in the view

descriptor:

� You can enter a WHERE clause or a SORT clause or both, in either order. But if
you enter both, do not use a terminator between them.

� The keyword WHERE is not required unless the WHERE clause is the second
clause (following the SORT clause). The SORT clause must begin with SORT.

� If you specify a SAS BY clause when you execute a procedure, it replaces the
SORT clause in the view descriptor. However, if the SAS procedure includes the
NOTSORTED option, the SAS BY clause is ignored and the SORT clause in the
view descriptor is used. A message is written to the LOG window when the
NOTSORTED option causes a SORT clause to be ignored.

� The CA-Datacom/DB fields must be selected in the view descriptor in order for you
to use them in the SORT clause.

� In the SORT clause, you can specify multiple fields, separated by commas.

� The SORT clause is not parsed (or checked) until the interface view engine tries to
execute it for a procedure.

� Field names in the SORT clause conditions can be SAS names or CA-Datacom/DB
names. However, you should use SAS names for repeating fields or for fields
within repeating fields.

Creating and Using View Descriptors Efficiently

When creating or using view descriptors, follow these guidelines to minimize the use
of CA-Datacom/DB and your operating system resources and to reduce the time
CA-Datacom/DB takes to access data.



ACCESS Procedure Reference � ACCESS Procedure Data Conversions 97

� Select only the fields your program needs. Selecting unnecessary fields adds extra
processing time.

� Specify the order in which records are presented to SAS (with a SORT clause or a
SAS BY statement) only if SAS needs the data in a particular order for subsequent
processing.

The SAS BY statement issues an ordering clause to CA-Datacom/DB so that
CA-Datacom/DB does the sorting using its system resources. This SORT clause
overrides any existing SORT clause for the view descriptor. If you decide to use a
SORT clause or a SAS BY statement, order by a key, which is indexed, when
possible. (For help in determining which fields in a table are indexed, see your
DBA or the table’s creator.)

As an alternative to using a SORT clause, which consumes CPU time each time
you access the CA-Datacom/DB table, you could use the SORT procedure with the
OUT= option to create a sorted SAS data file. This is a better approach for data
you want to use many times.

� If a view descriptor describes a large CA-Datacom/DB table and you will use the
view descriptor often, it might be more efficient to extract the data and place them
in a SAS data file. (Even though the extracted data file will be very large, you will
need to create it only once. Also, the extracted data will not reflect any subsequent
updates to the table.) See “Performance Considerations” on page 41 for more
information about when it is best to extract data.

� Specify selection criteria to retrieve a subset of the records CA-Datacom/DB
software returns to SAS, where possible.

� If you use a Default Key, the interface view engine will use an index read instead
of a sort if it can. Index reads are faster, but not always possible. For example, an
index read is not possible if you specify multiple sort keys, multiple WHERE
clause conditions, or a WHERE clause condition with a column that is not a key.

� Omit the KEY statement if you do not need a certain order and you want to
retrieve the data sequentially. Otherwise, you might cause an unnecessary sort.
PROC FSBROWSE, FSEDIT, and FSVIEW automatically use random access and
require a value in the Default Key field.

� You can provide your own URT that is fine-tuned for your applications.

ACCESS Procedure Data Conversions
The following table shows the default formats that SAS assigns to each

CA-Datacom/DB data type. The default formats also become the default informats. len
is the value of the LENGTH attribute of the CA-Datacom/DB field. dec is the value of
the DECIMALS attribute of the CA-Datacom/DB field.

Table 6.4 Default SAS Column Formats for CA-Datacom/DB Data Types

Field Type Field Description Default SAS Format

C character $len.

B binary:

for length ≤ 8, unsigned (2xlen+1).dec

for length 8, signed (2xlen+2).dec

for length > 8 $HEX(2xlen).

for length = 4, semantic-type= SQL-DATE DATE9.



98 ACCESS Procedure Data Conversions � Chapter 6

Field Type Field Description Default SAS Format

for length = 3, semantic-type= SQL-TIME TIME8.

for length = 10, semantic-type= SQL-STMP DATETIME30.6

D packed decimal:

for length ≤16, unsigned (2xlen+1).dec

for length 16, signed (2xlen+2).dec

for length > 16 $HEX(2xlen).

E extended floating-point $HEX(2xlen).

G graphics data $HEX(2xlen).

H hexadecimal character $len.

K kanji (same as Y) $HEX(2xlen).

L long floating-point E24.

N numeric (zoned decimal):

for length 16, unsigned len.dec

for length 16, signed (len+1).dec

for length > 16 $HEX(2xlen).

S short floating-point E14.

T PL/I bit representation $HEX(2xlen).

Y double-byte character set (DBCS) $HEX(2xlen).

Z mixed DBCS and single byte $HEX(2xlen).

2 halfword binary (aligned), unsigned 5.dec

2 halfword binary (aligned), signed 6.dec

4 fullword binary (aligned), unsigned 9.dec

4 fullword binary (aligned), signed 10.dec

8 doubleword binary (aligned), unsigned 17.0

Note that CA-Datacom/DB numeric fields are copied into SAS character columns
with a $HEX. format if they are too long to fit in a SAS numeric column. For example,
a CA-Datacom/DB field of type B with a length of 30 is copied into a SAS column with
$HEX60. format. A field of type B with a length of 5 and dec of 2 is copied into a SAS
column with 11.2 format. An error message appears if any precision is lost.

The maximum SAS format width is 200, so SAS uses 200 for CA-Datacom/DB fields
whose length exceeds 200.

You might want to change the default format whenever it does not seem appropriate
for the values stored in the table. For example, a packed decimal field of length 4 and 2
decimal places would have a default SAS format of 7.2. A very large negative number
with a decimal (such as -99,999.99) might not fit.

If SAS software discovers the output format is too small, it issues the following
warning message to the error log: AT LEAST ONE W.D FORMAT WAS TOO SMALL
FOR THE NUMBER TO BE PRINTED. THE DECIMAL POINT MIGHT BE SHIFTED
BY THE BEST FORMAT. The message can occur, for example, when you invoke the
PRINT procedure. If this message appears, you should specify a larger width.

The format determines how values in the SAS column are displayed; it does not
affect how those values are stored. Their storage is determined by their



ACCESS Procedure Reference � ACCESS Procedure Data Conversions 99

CA-Datacom/DB type and length. Therefore, you cannot replace a character format
with a numeric format or conversely.

If numeric values in the table are a lot smaller than their length implies, space on
the output print line can be conserved by specifying smaller w. or w.d formats.

Each key is converted to one SAS character column, even if the key is numeric or has
more than one component field. The length of a key becomes its default format width.
You cannot change the format for a key.

If you assign a date format to a numeric field, be sure that you also specify the SAS
date format in the DB Content field to indicate you are storing dates in your table.

For binary data types, if the SEMANTIC-TYPE attribute is not set to SQL-DATE,
SQL-TIME, nor SQL-STMP, the data will be treated as normal binary data. To store a
SAS date for a normal binary field, use the ACCESS procedure CONTENT statement to
assign a date format.



100



101

P A R T3

Appendixes

Appendix 1. . . . . . . . .Information for the Database Administrator 103

Appendix 2. . . . . . . . .Advanced Topics 117

Appendix 3. . . . . . . . .Data and Descriptors for the Examples 129

Appendix 4. . . . . . . . .Recommended Reading 153



102



103

A P P E N D I X

1
Information for the Database
Administrator

Introduction to the Information for the Database Administrator 103
How the SAS/ACCESS Interface to CA-Datacom/DB Works 104

Overview for the Database Administrator 104

Using the CA-Datacom/DB Interface View Engine 104

How the CA-Datacom/DB Interface View Engine Works 104

Calls Made on Behalf of the ACCESS Procedure 104
Calls Made by Other SAS Procedures 105

Retrieval Processing 105

Retrievals with a WHERE Clause or SORT Clause 105

Retrievals with No WHERE Clause 105

The Internal Record ID (RID) 106

Update Processing 107
Updating, Deleting, and Adding Data Records 107

Repositioning to an Inserted Record 107

Recovery Processing 108

How Changing the CA-DATADICTIONARY Database Affects Descriptor Files 109

Changes That Affect the Descriptor Files 109
Changes That Do Not Affect Existing View Descriptors 109

Changes That Might Affect Existing View Descriptors 109

Changes That Cause Existing View Descriptors to Fail 110

SAS Security with CA-Datacom/DB 110

User Requirements Table (URT) 110
Locks and the Spool Files 111

Direct Addressing and Access by Row Number 111

Password Encryption/Decryption in CA-Datacom/DB 112

Maximizing the CA-Datacom/DB Interface Performance 112

Multi-Tasking with CA-Datacom/DB 112

Error Messages and Debugging Information for CA-Datacom/DB 113
System Options for the CA-Datacom/DB Interface 113

Introduction to the Information for the Database Administrator
This appendix explains how the SAS/ACCESS interface to CA-Datacom/DB works so

that you can decide how to administer its use at your site. This appendix also covers
system options, performance considerations, debugging, and locking.



104 How the SAS/ACCESS Interface to CA-Datacom/DB Works � Appendix 1

How the SAS/ACCESS Interface to CA-Datacom/DB Works

Overview for the Database Administrator
When you use the ACCESS procedure to create an access descriptor file, SAS calls

CA-DATADICTIONARY to get a description of the database. When you create a view
descriptor file, SAS has information about the database in the access descriptor, so it
does not call CA-DATADICTIONARY.

The ACCESS procedure writes the descriptor files to a SAS library. Then, when you
use a SAS procedure with a view descriptor whose data is in a CA-Datacom/DB table,
SAS Supervisor calls the interface view engine to access the data. The engine can
access a CA-Datacom/DB table for reading, updating, inserting, and deleting. The
interface view engine accesses CA-DATADICTIONARY to validate the view descriptor.

When you update either an access descriptor or a view descriptor, SAS does not call
CA-Datacom/DB or CA-DATADICTIONARY.

Note: Data records in a CA-Datacom/DB table cannot be accessed by number. That
is, in SAS terms, a CA-Datacom/DB record is not addressable by row number.
Therefore, various SAS procedures behave differently when accessing a
CA-Datacom/DB table than they do when accessing a SAS data file. For example, the
PRINT and FSEDIT procedures behave differently.

� The PRINT procedure issues messages informing you that row numbers are not
available and that the procedure has generated line numbers for its output. The
numbers do not come from the CA-Datacom/DB table.

� The FSEDIT procedure does not display a row number in the upper right corner of
the window. If you try to enter a number on the command line, an error message
appears.

�

Using the CA-Datacom/DB Interface View Engine

How the CA-Datacom/DB Interface View Engine Works
The interface view engine is an application program that retrieves and updates data

in a CA-Datacom/DB table. Calls are in one of the following categories:
� calls made on behalf of the ACCESS procedure when it is creating an access

descriptor
� calls made by a SAS DATA step or by SAS procedures that reference a view

descriptor with the DATA= option

In all situations, the interface view engine initiates and terminates communication
between the engine and CA-Datacom/DB. Each time a different SAS procedure requires
use of CA-Datacom/DB, the program makes an initialization call to the engine. This
first call establishes communication with CA-Datacom/DB. Additional calls to the
engine perform retrieval and update operations required by the SAS procedure.

Calls Made on Behalf of the ACCESS Procedure
The ACCESS procedure calls the interface view engine to retrieve information from

the CA-DATADICTIONARY database about entity-occurrence names and attributes.
The engine sends this information (for example, name, data type, level) to the ACCESS



Information for the Database Administrator � Retrievals with No WHERE Clause 105

procedure for each field in the table. The procedure stores this information in the access
descriptor for later use when creating view descriptors.

Also, if you are using the ACCESS procedure to extract information and place them
in a SAS data file, the ACCESS procedure calls the interface view engine.

Calls Made by Other SAS Procedures
SAS procedures can access records in a CA-Datacom/DB table by referring to a view

descriptor with the DATA= option. SAS examines the view descriptor to determine
which database management system is referred to and passes control to the appropriate
engine. The interface view engine uses information stored in the view descriptor (for
example, field name, data type, key, level, and occurs specifications) to process
CA-Datacom/DB data records as if they were rows in a SAS data file.

Before doing any retrievals, the engine processes the WHERE clause (if any) to select
a subset of data records that are to be processed as rows. The engine constructs the
selection criteria from the view WHERE clause and the SAS WHERE clause (if any). If
no WHERE clauses exist, all data records in the table qualify.

The interface view engine forms a SAS row (according to the view descriptor), which
it passes back to the calling procedure for processing.

Based on the capabilities of the SAS procedure, the next call to the engine might be a
request to update or delete the SAS row that was just retrieved. For updates, the
engine issues UPDAT, ADDIT, and DELET commands for the data records. Typically
the SAS procedure then calls the engine again to retrieve another SAS row. If so, the
engine locates another data record, constructs another SAS row, and returns it to the
SAS procedure. This cycle continues until the SAS procedure terminates or until the
last qualified SAS row has been constructed and returned to the SAS procedure.

Retrieval Processing

Retrievals with a WHERE Clause or SORT Clause
Retrievals are done to view data records and also to establish a position for updates

and deletions. The type of processing depends on whether you specify a WHERE clause
and whether the SORT clause (if any) can be satisfied by simply traversing an index.

The CA-Datacom/DB set-at-a-time commands are used for a WHERE clause that can
be translated into CA-Datacom/DB selection criteria. Those commands are also used for
a SORT clause that cannot be satisfied by simply traversing an index. The SELFR
command builds a Select File according to the WHERE clause, the SORT clause, or
both clauses. Then the SELNR command moves left and right along the Select File, one
position at a time. SELNR can also skip directly to the first or last record on the Select
File.

The SELSM command skips directly to a specific record that is not adjacent to the
current record and that is also not the first or last record on the Select File.
Information in the internal record ID (RID) permits the SAS procedure to note any
position in a file and return directly to it. The RELES command, issued before SELSM,
drops the previous lock.

Retrievals with No WHERE Clause
If you do not specify any WHERE clause, the type of retrieval processing depends on

the type of SORT clause (if any) and on the Default Key being used.



106 The Internal Record ID (RID) � Appendix 1

With no WHERE clause and a SORT clause (if any) that can be satisfied from a
single index, the interface view engine uses CA-Datacom/DB record-at-a-time
commands to retrieve data. If you specify a Default Key or let the Default Key default
to the Native Key or request ordering that is represented by an index, the interface
view engine traverses the respective index for that key.

Note: You can also manually set the Default Key to blanks. In this special situation,
if you do not specify a WHERE clause or a SORT clause and the CA-Datacom/DB table
is opened for retrieval only, the engine avoids accessing any index; it uses GSETP and
GETPS commands to read the data area of the table sequentially in its physical
sequence. This method is the fastest way to extract an entire table into a SAS file.
GETPS and GSETP use look-ahead buffering by blocking records. Therefore, to avoid
update contention, these commands are used only for retrieval. �

When SAS procedures are doing only retrievals with no WHERE clause and the
Native Key is the Default Key, the interface view engine uses GSETL and GETIT
commands. These commands do look-ahead buffering by blocking records. For example,
when you execute the PRINT procedure with no WHERE clause and the Default Key is
the Native Key, the interface view engine completes the following steps:

1 opens the table’s URT for sequential retrieval.
2 moves low values to the key value portion of the request area and issues the

GSETL command for the Native Key. This command rewinds to the beginning of
the table.

3 issues GETIT commands until it receives return code 19, which indicates
end-of-file.

Note: If you set the Default Key to blanks, PROC PRINT uses GSETP and GETPS
commands instead of GSETL and GETIT commands. �

The next example shows how the FSEDIT procedure uses the RDUKG, RDUNX,
RDUBR, and RDUKL commands to read and lock records. (These commands are the
locking forms of REDKG and so on.) For the FSEDIT procedure, the interface view
engine completes the following steps:

1 opens the table’s URT for direct access with intent to update.
2 reads and locks the first data record by moving low values to the key value portion

of the request area and then issuing an RDUKG command for the Default Key
(usually the Native Key).

3 scrolls right with the RDUNX command (or left with the RDUBR command).
These commands retrieve the next higher (or lower) entry in the index and lock
the record, dropping the previous lock.

If you scroll off the beginning (left) or end (right) of the table, the interface view
engine receives an end-of-file signal. In this situation, the engine retrieves the
lowest or highest index entry, as indicated, and relocks the data record.

The Internal Record ID (RID)
Occasionally, the interface view engine also uses RDULE and REDLE (locking and

not locking) commands, which provide direct addressability. Also, the LOCKG, LOCKL,
and LOCNX commands are required when the engine must recover from a situation
where another user has deleted a data record that the current user wants to view.

All retrieval commands return an internal record ID (RID). CA-Datacom/DB sends
the RID to the interface view engine. A SAS procedure can request the RID from the
engine even though it is internal and not a row number. The engine uses most of the



Information for the Database Administrator � Repositioning to an Inserted Record 107

request area for the RID (approximately 256 bytes), not just the internal seven-byte
record-ID. Commands such as REDLE and RDULE can use the retained RID
information in a rebuilt request area to reestablish the previous position in the index.
Thus, after a record is retrieved, its RID can be used to retrieve the record again.

Here is how the FSVIEW procedure uses the RID. For a large table, PROC FSVIEW
might need to display several screens of data. FSVIEW asks the engine for the RID for
each data record it retrieves and saves the RID. If FSVIEW needs to redisplay the
window, it asks the engine to reposition using the specifically saved RID. Once the
position is reestablished, FSVIEW can ask the engine to traverse forward or backward
to retrieve the records that are needed to fill up the window again.

For example, suppose you are using the FSVIEW procedure to look at a
CA-Datacom/DB table. If you issue the FORWARD command, the engine moves
through the entire table and displays the last screen of data. For each new display,
FSVIEW notes the RID of the record being displayed at the top of the screen.

If you issue the BACKWARD command to back up a screen, FSVIEW simply asks the
engine to point to the RID of the previous screen, rather than reading the table
backwards sequentially. The engine issues a RELES command to drop the previous
lock, then issues an RDULE command and reads forward one record at a time until it
has redisplayed that screenful of data.

If the data record pointed to has been deleted (perhaps by another user), the REDLE/
RDULE command fails. In this situation, FSVIEW asks the engine to go forward to the
next undeleted data record. Since the engine has saved the RID of the deleted record, it
can go forward even though the record itself was deleted.

The LOCKG command enables the interface view engine to position on the first index
entry that has the proper key value. Then the engine can move forward with the
LOCNX command until it receives an entry with the same key value but a higher
internal record-ID or an entry with a higher value than the one requested. The LOCKL
command skips backward from a deleted record if the SAS procedure requests it.

Update Processing

Updating, Deleting, and Adding Data Records
Update processing involves updating, deleting, and adding data records. You must

retrieve the data record before updating or deleting it.
Adding a new record requires additional processing after the record has been

inserted. The position of the new record must be established so the interface view
engine can find and display it for interactive online updating. However, a procedure
such as the APPEND procedure can avoid the additional processing time for
repositioning. If the DDBLOAD= data set option is nonzero, for example, DDBLOAD
equals 1, the APPEND procedure loads the data from a SAS file into the
CA-Datacom/DB table with an uninterrupted succession of ADDIT commands. Then
you can use a SAS procedure, such as FSEDIT or PRINT, to view the new records.

For more information about the DDBLOAD option, see “Data Set Options” on page
117 and “System Options for the CA-Datacom/DB Interface” on page 113.

Repositioning to an Inserted Record
If the Default Key is the Master Key and DUPE-MASTER-KEY is N, repositioning

takes place efficiently. Without a WHERE clause, the RDULE command locks the



108 Recovery Processing � Appendix 1

record. The LOCKX command can locate the index entry just added. Subsequent
commands move backward and forward, traversing the actual index.

With a WHERE clause, the interface view engine uses the Compound Boolean
Selection (CBS) facility instead of directly traversing a permanent database index.
After an ADD, the original Select File does not contain the new record; therefore, it
issues a LOCKX command, followed by an RDUID command, which enables the engine
to keep an internal table of internal record ID numbers. You can return to the new
records without reissuing the WHERE clause.

Repositioning is less efficient if the key value is not guaranteed to be unique. The
interface view engine tries to retrieve the newly added record by issuing a SELFR
command containing a WHERE clause that comprises all the values in the record just
added. If more than one record qualifies, the last record is retrieved, which often is the
last record that was added.

In conclusion, here are some external effects of adding new data records.
� For better performance, use the DDBLOAD option to suppress the additional

overhead of repositioning. If DDBLOAD equals 1 and there is no WHERE clause,
the newly added records are accessible, but you are not repositioned to them when
they are added to the table. However, you can find them without leaving the
procedure.

For DDBLOAD=1 and a WHERE clause, the new records are not accessible for
viewing since they are not on the original Select File and you suppressed the
overhead of keeping track of them. You must either reissue the WHERE clause or
exit the procedure and call it again to see the new records.

� If DDBLOAD equals 0 (the default), the engine takes the time to keep track of the
new records for repositioning. With no WHERE clause, an entry is placed in the
index for the Default Key and that will become the new position. With a WHERE
clause or the type of SORT clause that causes a Select File, the engine appends
the new record ID at the end of the Select File (not in value order).

Note: Repositioning with a WHERE clause is similar to the Base SAS engine
processing in which new rows are shown at the end of the SAS data file. On the other
hand, repositioning without a WHERE clause reflects the CA-Datacom/DB processing in
which new records are shown in Default Key order. (The record goes in the same place
in the table with or without a WHERE clause. This discussion simply explains how it
looks to SAS.) �

Recovery Processing
The interface view engine does not perform recovery processing as part of its normal

behavior. The engine issues a database commit statement only once after a procedure
or DATA step completes, unless an error is encountered. When an error is encountered,
processing stops and no rollback is attempted. You can implement basic recovery
techniques by using the DDBCOMIT= and DDBERLMT= data set options, either
individually or together. The DDBCOMIT= option enables you to specify the number of
records that are processed before a database commit is issued, including rows that are
not processed successfully. DDBERLMT= enables you to specify the number of errors
before SAS stops processing and initiates a rollback. For more information about the
options, including their interaction with each other, see “Data Set Options” on page 117.



Information for the Database Administrator � Changes That Might Affect Existing View Descriptors 109

How Changing the CA-DATADICTIONARY Database Affects Descriptor
Files

Changes That Affect the Descriptor Files
Changes to the CA-DATADICTIONARY database can affect descriptor files. You

must fix the descriptors manually if changes to the CA-DATADICTIONARY database
invalidate the access or view descriptors. Use the ACCESS procedure to update the
access descriptor. Also, update each view descriptor with the ACCESS procedure. You
will receive a message if the view descriptor differs from the access descriptor. Change
the view descriptor as required.

The interface view engine validates a view descriptor when it opens it. If there is a
problem, a message is sent to the LOG window and processing stops. Therefore, you
must change the descriptor files manually when changes to CA-DATADICTIONARY
invalidate them.

1 When you change the CA-DATADICTIONARY database, you must recreate the
access descriptor(s) with PROC ACCESS, using the same name(s).

2 Then you must update each view descriptor with PROC ACCESS. You will get a
message if the view descriptor differs from its access descriptor. Change the view
descriptor as needed.

3 The SAS/ACCESS interface view engine does a rudimentary validation of a view
descriptor when it opens it. For example, it checks the data type information. If it
finds a problem, it writes a message to the log and stops.

Before changing CA-DATADICTIONARY, consider the guidelines discussed in the
next three sections.

Changes That Do Not Affect Existing View Descriptors
The following changes to the CA-DATADICTIONARY database have no effect on

existing view descriptors:

� creating or deleting keys, unless you specified a deleted key as the Default Key.

� adding new fields to a RECORD entity-occurrence.

� deleting fields not referenced in any view descriptor. (Note that if an access
descriptor includes the deleted item, users could eventually create a view
descriptor using that item, which would be a problem.)

� changing element definitions, as long as a set of one or more elements still exists
that can satisfy view descriptors. The interface view engine does not require one
element per view descriptor; it looks for the best set of elements for each view
descriptor.

� increasing the number of times a field repeats.

Changes That Might Affect Existing View Descriptors
The following changes to the CA-Datacom/DB database might have an effect on

existing view descriptors: changing a field name or decreasing the number of times a
field repeats.



110 Changes That Cause Existing View Descriptors to Fail � Appendix 1

Changes That Cause Existing View Descriptors to Fail
The following changes to the CA-Datacom/DB database cause existing view

descriptors to fail:
� inserting or deleting another level in repeating fields.
� changing the attributes of a field. Specifically,

� You can change the pictures for character fields, but you cannot change them to
a numeric type field.

� You cannot change a numeric data type to a character data type.

� deleting fields that are referenced in a view descriptor.

The interface view engine validates the view against the current
CA-DATADICTIONARY CA-Datacom/DB database and issues an informative error
message if it detects discrepancies.

SAS Security with CA-Datacom/DB
To secure data from accidental update or deletion, you can do the following on the

SAS side of the interface:
� Set up all access descriptors yourself.
� Set up all view descriptors yourself and give them to users on a selective basis.
� Give users read-only access or no access to the SAS library in which you store the

access descriptors. Read-only access prevents users from editing access descriptors
and enables them to see only the fields selected for each view descriptor. No access
prevents users from doing LIST ALL commands to see the contents of the access
descriptor.

� Set up several access descriptors for different users.
� Use the DDBUPD systems option to have a read-only system. (For details, see

“System Options for the CA-Datacom/DB Interface” on page 113.)

User Requirements Table (URT)
A User Requirements Table (URT) is a load module that is required by

CA-Datacom/DB. The URT is loaded by the interface view engine and passed to
CA-Datacom/DB when a table is opened. It contains information about how the table is
to be accessed. Various values in the URT, such as number and size of buffers, can
affect performance.

You can specify a URT in various ways; these are given below. The interface view
engine looks for a URT in the order of the situations described. Note that a specific
URT always overrides a generic or a default URT.

1 You can designate a specific URT with a data set option when you run a SAS
program. For details, see the DDBURT= data set option in “Data Set Options” on
page 117.

2 You can designate a specific URT by saving its name in the view descriptor.

Note: ACCESS=SEQ is not used. Use ACCESS=RANSEQ. The engine never alters
the type of ACCESS that you specify in a URT. Also, AUTODXC=NO is not used in a
URT. �



Information for the Database Administrator � Direct Addressing and Access by Row Number 111

For more information about URTs, see the appropriate CA-Datacom/DB
documentation.

Version 5 URTs work with the Version 8 and higher interface with the following
exceptions:

� Version 5 URTs probably have the UPDATE= parameter set to NO. This will fail if
you open a view descriptor for update in Version 8 and higher. For security
reasons, the interface view engine does not upgrade UPDATE=NO to
UPDATE=YES. However, the interface view engine does downgrade UPDATE=YES
to UPDATE=NO if appropriate in order to prevent possible problems.

� The ACCESS=SEQ parameter in a URT is not supported beginning in Version 8
and higher, because additional commands are required to support the engine
specifications. Change any existing URTs to ACCESS=RANSEQ.

� The AUTODXC=NO parameter will fail beginning in Version 8 and higher. With
the SAS locking requests, it tends to exceed CA-Datacom/DB limits on the number
of records locked.

Locks and the Spool Files
CA-Datacom/DB supports record-level locking. It does not support a table lock or any

type of member-level locking as in SAS. If a procedure requests member-level locking,
the interface view engine creates an intermediate file of the SAS records, sometimes
called a spool file. This spool file guarantees static data required by the SAS procedure,
but at a potentially high processing cost.

A spool file is created if all the following conditions are true:
� The file is opened with member-level locking.
� The file is opened for sequential retrievals.
� The file is opened for a procedure that requires multiple passes or "by-rewinds".

Note: The spool file creates a temporary file of static data. It does not prevent other
users from changing the data in the table. �

The processing costs might be so high that some tables cannot be processed.
Therefore, a DDBLOCK= data set option is available that instructs the interface view
engine not to build the intermediate file. If DDBLOCK equals 1, a warning message
appears, but the procedure continues to execute. The user executes the procedure at his
own risk. Presumably, that user is the only one using the table or the table is under
exclusive use by some method separate from SAS.

Alternatively, if you are concerned about keeping the data static while the SAS
procedure executes, you could extract the CA-Datacom/DB data into a SAS data file,
then run the procedure against that data file.

Direct Addressing and Access by Row Number
Direct (random) addressing is supported by the SAS/ACCESS interface to

CA-Datacom/DB. However, access by row number is not supported, because qualified
records can float around if your updates or other users’ deletions move the records out
of your WHERE clause context.

For example, if you are on row 3 while someone else is deleting row 4, you go forward
to row 5. In another situation, if you update row 3 so that it no longer matches your
WHERE clause, it is gone if you ever try to go back to it (even in the same session).



112 Password Encryption/Decryption in CA-Datacom/DB � Appendix 1

CA-Datacom/DB re-evaluates each retrieval against the WHERE clause and will not
return data records that once qualified but currently do not qualify.

Password Encryption/Decryption in CA-Datacom/DB
The CA-DATADICTIONARY password is encrypted and decrypted with SAS routines.

Maximizing the CA-Datacom/DB Interface Performance
Among the factors that affect the interface performance are the size of the table

being accessed, the number of fields being accessed, and the number of data records
qualified by the selection criteria. For tables that have many fields and many data
records, you should evaluate all SAS programs that need to access the table directly. In
your evaluation, consider the following questions:

� Does the program need all the CA-Datacom/DB fields? If not, create and use an
appropriate view descriptor that includes only the fields needed.

� Do the selection criteria retrieve only those data records needed for subsequent
analysis? If not, specify different conditions so that the selected records are
restricted for the program being used.

� Is the data going to be used by more than one procedure in one SAS session? If so,
consider extracting the data and placing it in a SAS data file for SAS procedures
to use, instead of enabling the data to be accessed directly by each procedure. See
“Performance Considerations” on page 41 for circumstances in which extracting
data is the more efficient method.

� Do the records need to be in a particular order? If so, include a SORT clause in the
appropriate view descriptors or a SAS BY clause in a SAS program.

� Do the selection criteria enable CA-Datacom/DB to use key (indexed) fields and
non-indexed fields efficiently? See “WHERE Clause in a View Descriptor” on page
89 for some guidelines on specifying efficient selection criteria.

� Does your WHERE clause cause CA-Datacom/DB to create a temporary index,
which often requires excessive processing time? For more information about
displaying WHERE clauses and messages about creating temporary indexes, see
“DDBTRACE= Data Set Option” on page 122.

� What kind of locking mechanism is required? (See “Locks and the Spool Files” on
page 111.)

� Are your CA-DATADICTIONARY elements well-matched to your view descriptors?
� Would a different URT help?
� Would use of a default key give you a faster result?

Multi-Tasking with CA-Datacom/DB
SAS creates a new task for each window that is opened by each user. If the host

option SYNCHIO equals NO (the default for some environments), asynchronous
processing can occur. That is, work in multiple windows can be done concurrently.

CA-Datacom/DB also supports concurrent tasking. The interface view engine uses
Option 3 (the most flexible one), described in the section called "Extended Programming"
in the CA-Datacom/DB System Programming Guide. When SAS creates a new task, the
interface view engine also creates a new task to communicate with CA-Datacom/DB.



Information for the Database Administrator � System Options for the CA-Datacom/DB Interface 113

At initialization time, CA-Datacom/DB must know the maximum number of
concurrent tasks that a particular address space will have active. Use the DDBTASK
system option to specify this number to the interface view engine. The default is 2. The
engine will reject attempts to open more than the maximum number of tasks specified
and will issue an error message

For a given address space, the CA-Datacom/DB operator display facility typically
shows a given SAS address space as having one user active for CA-DATADICTIONARY
communications and one user active for database work. One task is allocated to
CA-DATADICTIONARY, and the number of tasks specified in DDBTASK is allocated to
database work. For example, suppose you specify DDBTASK equal to 4. The
CA-Datacom/DB operator facility would allocate and display a total of five tasks for
your copy of SAS.

Error Messages and Debugging Information for CA-Datacom/DB

If you are experiencing a problem with the SAS/ACCESS interface to
CA-Datacom/DB, the technical support staff at SAS Institute might ask you to provide
additional debugging information. They might instruct you to set a debugging option
for your job and rerun it.

The DDBTRACE option is available as a data set option on your PROC statement or
DATA step. You can also set DDBTRACE as a system option. For example, if
DDBTRACE equals 1, you can look at the WHERE clause that was processed. If you
specify DDBTRACE=1, the view descriptor WHERE clause and the SAS WHERE
clause, if any, appear on the SAS log. The display also shows the various fields that
make up the key fields. For example, suppose POLI is a key field composed of two
fields, PO and LI, and you specify the following:

poli eq \2222\0000

The WHERE clause display shows the following:

po eq 2222 and li eq 0000

Note: The engine translates the SAS WHERE clause (if any) as much as possible
into CA-Datacom/DB format and connects it to the view WHERE clause with the AND
operator. �

The text of most error messages is self-explanatory. However, some error messages
have a prefix containing a display code decimal number. This prefixed number contains
the CA-Datacom/DB return code and the internal return code. For example, in the
following message

10.0 Duplicate Master Key not allowed

the number 10 is the return code and 0 is the internal return code.

System Options for the CA-Datacom/DB Interface

SAS system options for the CA-Datacom/DB interface are specified the same way as
other SAS system options. The CA-Datacom/DB options are invocation options.
Therefore, you can specify the options in a configuration file, in the DFLTOPTS table, or
when you invoke SAS. They cannot be changed during the SAS session.



114 System Options for the CA-Datacom/DB Interface � Appendix 1

Several system options (for example, DDBDBN=, DDBPW=, DDBUSER=, and
DDBSV=) can also be specified as data set options. A data set option value can override
a system option for the duration of a single procedure or DATA step. See “Data Set
Options” on page 117 for more information about data set options.

Several system options control the default values used when creating a new access
descriptor. You can override the default values by specifying different values in the
ACCESS procedure or by setting the appropriate values to the options. Here are some
examples of setting system options for the interface:

DDBDBN=INVENTORY
DDBLOAD=1

The first system option sets INVENTORY to be the CA-Datacom/DB database name.
The second system option requests the CA-Datacom/DB engine to keep track of the
number of inserts to the database.

Another useful system option is DDBUPD. This option specifies whether the
interface view engine performs updates against the CA-Datacom/DB tables. The value
Y enables updates; the value N enables read-only access. When the value is N, any
attempt to update a CA-Datacom/DB table is rejected and an error message is written
to the SAS log. The default value is Y.

Note: In previous releases of the SAS/ACCESS interface to CA-Datacom/DB,
DDBUPD was called DDBENGMD. �

Once your SAS session is executing, you can display the values of system options by
entering the following SAS statements:

proc options ddb;
run;

The system options for the SAS/ACCESS interface to CA-Datacom/DB are written to
the SAS log. Note that you cannot see the options for any passwords.

For convenience, you might want to set certain options during installation rather
than with each SAS invocation. In addition, you might want to restrict certain options
so they cannot be changed for a SAS session. You do this by specifying their values in
the Restricted Options Table during installation. Refer to the installation instructions
for details.

The CA-Datacom/DB system options are listed in the following table.

Table A1.1 CA-Datacom/DB System Options

Systems Option Default Purpose

DDBDBN blanks Database name

DDBPW blanks Password for CA-DATADICTIONARY

DDBSV PROD Status/Version

DDBURT blanks User Requirements Table to be used

DDBUSER blanks User ID for CA-DATADICTIONARY

DDBDELIM \ Changes the delimiter

DDBUPD

(formerly DDBENGMD)

0 Engine mode (update or read-only)

DDBLOAD 0 Mode for loading data records

DDBLOCK 0 Spooling mechanism

DDBMASK # Changes the mask character



Information for the Database Administrator � System Options for the CA-Datacom/DB Interface 115

Systems Option Default Purpose

DDBMISS blank Sets missing values to blanks or X’00

DDBSPANS * Changes the SPANS character

DDBTASK 2 Number of concurrent tasks

DDBTRACE 0 Displays WHERE clauses and debug traces



116



117

A P P E N D I X

2
Advanced Topics

Introduction to Advanced Topics 117
Data Set Options 117

Using Multiple View Descriptors 124

User Exits from CA-Datacom/DB 124

Deleting and Inserting Data Records in CA-Datacom/DB 124

Missing Values (Nils) in CA-Datacom/DB Tables 125
SAS WHERE Clause Conditions Not Acceptable to CA-Datacom/DB 125

Deciding How to Specify Selection Criteria in CA-Datacom/DB 126

WHERE Clause in the View Descriptor 126

SAS WHERE Clause 126

Validation of Data Values in CA-Datacom/DB 126

Validation against CA-DATADICTIONARY 126

Introduction to Advanced Topics
This appendix contains more details about some advanced topics, such as data set

options, processing inserts and deletions, multiple views, and multiple windows, as well
as how you can optimize your selection criteria. The discussions supplement other
portions of this manual.

Data Set Options
Data set options enable you to override some of the run-time options that are stored

in view descriptors. There are no LIBNAME options.
Here is a list of available data set options.

DDBCOMIT=n

DDBERLMT=n

DDBKEY= ’default-key’

DDBLOAD=0|1

DDBLOCK=0|1
DDBPW= ’password’

DDBSV= ’status/version’

DDBTRACE=0|1
DDBURT= ’User-Requirements-Table-name’

DDBUSER= ’userid’



118 DDBCOMIT= Data Set Option � Appendix 2

You can specify the data set options with the DATA= argument in any PROC
statement or DATA step. They are effective for that single execution of the procedure.
Data set options will override the corresponding values stored in the view descriptor.

The following example executes the FSEDIT procedure using a view descriptor
named CUSTM. The data set options specified in the PROC statement will set the user
ID to JOHN and the password to MINE, regardless of what user ID and password was
included in the view descriptor.

proc fsedit data=vlib.custm (ddbuser=’john’ ddbpw=’mine’);
run;

A description of each data set option follows.

DDBCOMIT= Data Set Option

Specifies the number of rows that will be processed before a database COMMIT statement is
issued.

Default: 0
Alias: DBCOMMIT=
See also: DDBERLMT=

Syntax
DDBCOMIT= n

n
is an integer that is equal to or greater than zero.

Details
The DDBCOMIT= data set option affects update, delete, and insert processing. The
number of rows includes rows that are not processed successfully. DDBCOMIT=0 is the
default setting and specifies that a commit is issued only once after the procedure or
DATA step completes. In the following example, a commit is issued after every 10 rows
are inserted:

proc append data=mylib.staff base=datacom.dept (ddbload=1 ddbcomit=10);
run;

For DDBCOMIT= to be enforced, CA-Datacom/DB logging must be turned on and
TXNUNDO=YES must be specified in the User Requirements Table (URT).
TXNUNDO=YES is specified in the default URT that is shipped with SAS/ACCESS
interface to CA-Datacom/DB software. If DDBCOMIT > 0 and logging is off, then the
locks are released, but a commit is not issued.

If DDBCOMIT=0 and DDBERLMT > 1, a rollback is attempted when DDBERLMT=
is reached. If DDBCOMIT > 0, a commit can be issued before a rollback that is needed
by the DDBERLMT= option. For more information, see DDBERLMT=.

In PROC SQL, the DDBCOMIT= option enables PROC SQL
UNDO_POLICY=REQUIRED for both DDBCOMIT=0 and DDBCOMIT > 0.



Advanced Topics � DDBERLMT= Data Set Option 119

DDBERLMT= Data Set Option

Specifies the number of errors that are used before SAS stops processing and issues a rollback.

Default: 1
Alias: ERRLIMIT=
See also: DDBCOMIT=

Syntax
DDBERLMT= n

n
is a positive integer that represents the number of errors after which SAS stops
processing and issues a rollback.

Details
For insert, update, delete, and append operations, a rollback is issued when
DDBERLMT= is reached. For read operations, processing stops when the specified
number of errors occurs. If DDBERLMT is set to 0, no rollback is attempted and
processing continues to completion regardless of the number of errors encountered.

For DDBERLMT= to be enforced, CA-Datacom/DB logging must be turned on and
TXNUNDO=YES must be specified in the User Requirements Table (URT).
TXNUNDO=YES is specified in the default URT that is shipped with SAS/ACCESS
interface to CA-Datacom/DB software.

If you specify a value for DDBCOMIT= other than 0, rollbacks affected by the
DDBERLMT= option might not include records that are processed unsuccessfully
because they were already committed by DDBCOMIT=. The following table
summarizes the interaction between DDBERLMT= and DDBCOMIT=.

Table A2.1 Interaction between the DDBERLMT= and DDBCOMIT= Data Set Options

DDBERLMT= DDBCOMIT= Result

1 0 Defaults. No commit or rollback. Processing ends upon
the first error.

0 0 No commit or rollback. Processing does not end upon
an error.

0 >0 A commit is performed when the transactions that are
processed equal DDBCOMIT=. No rollback is
performed. Processing does not end upon an error.



120 DDBKEY= Data Set Option � Appendix 2

DDBERLMT= DDBCOMIT= Result

>1 0 No commit. A rollback is performed, processing ends.
or both when DDBERLMT= is reached.

>1 >0 A commit is performed when the commit count equals
DDBCOMIT=. A rollback is performed when the error
counts equals DDBERLMT=. If a multiple of
DDBCOMIT= equals DDBERLMT=, then a rollback, not
a commit, is performed when DDBERLMT= is reached.

DDBKEY= Data Set Option

Specifies a Default Key.

Syntax
DDBKEY=’default-key’

’default-key’
is a CA-Datacom/DB short name for the key that you want to use.

Details
The DDBKEY= data set option specifies an optional Default Key for the CA-Datacom/DB
table. If one is specified in the view descriptor, this data set option overrides it.

DDBLOAD= Data Set Option

Specifies a fast-loading process.

Default value: 0

Syntax
DDBLOAD= 0|1

0
causes the software to reposition itself after adding a new record.

1
does not reposition the software after adding new records.



Advanced Topics � DDBPW= Data Set Option 121

Details
After a new record is added, the interface view engine attempts to determine its
position so it can find and display the record for interactive online updating. The
DDBLOAD= data set option enables you to avoid the processing time needed for
repositioning when it is not necessary. For example, executing the APPEND procedure
with the DDBLOAD = 1 would decrease processing time.

Do not set DDBLOAD equal to 1 for SAS procedures such as FSEDIT that reposition
on a newly added data record.

DDBLOCK= Data Set Option

Suppresses the creation of an interface spool file.

Default value: 0

Syntax
DDBLOCK= 0|1

0
causes the interface view engine to create an intermediate file (spool file), which
holds the data to be processed by the SAS program.

1
suppresses creation of the spool file, assuming that only one user is accessing the
database table or that the database table is locked by some method separate from
SAS.

Details
SAS and CA-Datacom/DB use different locking mechanisms. The interface view engine
compensates by creating a spool file of static data, which can adversely affect
performance. The DDBLOCK= data set option suppresses creation of the spool file and
lets static data be provided another way.

DDBPW= Data Set Option

Specifies a CA-DATADICTIONARY password.

Syntax
DDBPW=’password’



122 DDBSV= Data Set Option � Appendix 2

’password’
is the 12-character PASSWORD attribute of the PERSON entity-occurrence for the
specified userid.

Details
The DDBPW= data set option specifies an optional CA-DATADICTIONARY password.
If one is specified in the view descriptor, this data set option overrides it. If
CA-DATADICTIONARY requires a password and the view descriptor does not include
one, you must specify the password with the DDBPW= data set option.

Not every userid requires a password.

DDBSV= Data Set Option

Specifies the status and version of the CA-Datacom/DB table that you want to access.

Syntax
DDBSV=’status/version’

’status/version’
is a 4-character field. A status is either PROD, TEST, or T (for TEST) plus a 3-digit
number. The default is PROD.

Details
The DDBSV= data set option specifies an optional CA-DATADICTIONARY status value.
If one is specified in the view descriptor, this data set option overrides it. Other status
values, such as HIST, are not used. Status/version can be changed any time.

DDBTRACE= Data Set Option

Displays information for debugging purposes.

Default value: 0

Syntax
DDBTRACE= 0|1



Advanced Topics � DDBUSER= Data Set Option 123

0
does not display trace information.

1
displays trace information.

Details
The DDBTRACE= data set option can be used to produce traces for debugging
purposes. Contact Technical Support at SAS if you need more information. It also
enables you to display the WHERE clause that is passed to CA-Datacom/DB, and a
message indicating whether a temporary index will be created.

DDBURT= Data Set Option

Specifies the URT that will be used by the interface view engine when it opens the view descriptor.

Syntax
DDBURT=’User-Requirements-Table-name’

Details
The interface view engine will create a default URT unless you stored one as a system
option, included one in the view descriptor, or specified one with the DDBURT= data set
option in the SAS program.

DDBUSER= Data Set Option

Specifies the CA-DATADICTIONARY userid.

Syntax
DDBUSER=’userid’

’userid’
is the 32-character entity-occurrence name of a PERSON entity in the
CA-DATADICTIONARY database.

Details
The userid is required. If you specify this data set option, it overrides the userid in the
view descriptor.



124 Using Multiple View Descriptors � Appendix 2

The CA-Datacom/DB userid is not necessarily the same as the user’s TSO ID. The
userid and optional password must have retrieval authority on six entity-types:
DATABASE, FILE, RECORD, KEY, ELEMENT, and FIELD.

Using Multiple View Descriptors
The SAS/ACCESS interface to CA-Datacom/DB supports having multiple views (view

descriptors) open simultaneously. Multiple views can be open for updating as well as
retrievals.

User Exits from CA-Datacom/DB
Two user exits are available to you. You can set your own default SAS names with a

user exit in the ACCESS procedure. You can also do security checking with a user exit
that is available in the interface view engine. For more information about user exits,
contact your on-site SAS support personnel.

Deleting and Inserting Data Records in CA-Datacom/DB
Deleting and inserting data records in a CA-Datacom/DB table is a straightforward

process for SAS as well as for CA-Datacom/DB. However, several considerations are
worth noting.

� When inserting a new row in SAS, you normally visualize the new data being
appended at the end of the SAS data file. However, CA-Datacom/DB conventions
affect the appearance of a procedure such as FSEDIT.

When you include a WHERE clause or criteria that require a Select file, the
customary SAS behavior applies. Otherwise, newly added data records appear in
order by the Native Key, not at the end. The new records are always inserted in
the table in the proper place, in order by the Native Key. Including or not
including a WHERE clause simply determines how the table looks to SAS.

Note: If you are going to use a view descriptor to insert new data records, you
must select at least one key (or the fields that make up the key) for that view
descriptor. Select the Master Key if the Master Key values must be unique. If you
request repositioning (that is, the DDBLOAD= option is set to zero or default to
zero), either the default key must be selected or all of the fields that it comprises
must be selected. An ADD cannot be processed if DDBLOAD equals 0 and the
Default Key field is set to blanks. �

� If INCLUDE-NIL-KEY equals YES, null values are indexed. However, if
DUPE-MASTER-KEY equals NO, duplicate values cannot be indexed. That is, if
you insert two records with missing values for the Master Key, the second insert
fails. Native Key values must be unique, another reason that the second insert of
a missing value fails.

� In order for you to even see newly added records while in an interactive procedure,
the interface view engine does some fairly complex processing that is referred to as
repositioning. Repositioning means retrieving a record immediately after it has
been inserted, so that it is visible to you. This is important in an interactive
procedure, but not as important in a procedure such as PROC APPEND.



Advanced Topics � SAS WHERE Clause Conditions Not Acceptable to CA-Datacom/DB 125

Therefore, to save processing time, a DDBLOAD= data set option is available that
enables you to turn repositioning on and off. Setting the DDBLOAD= data set
option causes the APPEND procedure, for example, to process faster and more
efficiently. For more information about the DDBLOAD= data set option, see “Data
Set Options” on page 117.

� Deleting a data record removes the record from the CA-Datacom/DB table. The
deleted data record is no longer available for access even though it might have
satisfied the WHERE clause selection criteria before it was removed.

Missing Values (Nils) in CA-Datacom/DB Tables
When the interface view engine stores a missing value in a CA-Datacom/DB table,

the missing value is represented by all blanks for both numeric and character type
fields. When the engine retrieves a missing value, it appears as all blanks for SAS
character columns and as a period (.) for SAS numeric columns.

Note: A system option is available if you want to set missing values to zeros. �

SAS WHERE Clause Conditions Not Acceptable to CA-Datacom/DB
Here is a list of some (but not all) SAS WHERE clause conditions that are not

acceptable to CA-Datacom/DB; they are handled automatically by SAS post-processing.
� arithmetic expressions, for example,

where c1=c4*3
where c4<-c5

� expressions in which a column or combination of columns assumes a value of 1 or
0 to signify true or false, for example,

where c1
where (c1=c2)*20

� concatenation of character columns
� truncated comparison, for example,

c1=:abc

� DATETIME and TIME formats, for example,

’12:00’t
’01jan60:12:00’dt

� SOUNDEX
� HAVING, GROUP BY
� references to missing values. This includes the period (.) for numeric columns,

blanks for character columns, and the IS MISSING and IS NULL operators.



126 Deciding How to Specify Selection Criteria in CA-Datacom/DB � Appendix 2

Deciding How to Specify Selection Criteria in CA-Datacom/DB

WHERE Clause in the View Descriptor
Include a WHERE clause in your view descriptor when you want to do the following

tasks:
� restrict users of view descriptors to certain subsets of data
� use CA-Datacom/DB syntax and functionality, such as masking or delimiters
� prevent users from sequentially passing the entire CA-Datacom/DB table.

SAS WHERE Clause
Use a SAS WHERE clause when the previous guidelines do not apply and you want

to do the following tasks:
� have more run-time flexibility in subsetting data
� use SAS WHERE clause capabilities that CA-Datacom/DB does not support, such

as arithmetic expressions or truncated comparisons.

Note: Masking and delimiter characters are ignored in a SAS WHERE clause. For
example,

where x=’\y\a’

would cause the software to look for backslashes in the data. �

Validation of Data Values in CA-Datacom/DB
The interface view engine does not validate the incoming data. That is, it does not

check to see whether invalid data was entered in a CA-Datacom/DB table, for example,
nonpacked data into a packed type field. However, it does check for SAS format return
codes from retrievals and moves missing values into the retrieved row if errors occur.
No checking takes place for updates or WHERE clause processing.

Validation against CA-DATADICTIONARY
The interface view engine always reads in the CA-DATADICTIONARY information

when it processes a view descriptor, because CA-DATADICTIONARY contains
information that is not in the view descriptor, for example, the element entity.

Consider the following matters regarding CA-DATADICTIONARY usage by the
interface view engine:

� Elements are groupings of fields. They are used to read and update the tables.
The interface view engine makes a "best-fit" list of elements to use when it
executes the view descriptor. If the database administrator fine-tunes the element
definitions to improve performance, the interface view engine can take advantage
of the improvements.



Advanced Topics � Validation against CA-DATADICTIONARY 127

� The interface view engine rejects a view descriptor if certain information that is
stored in the view descriptor does not match the dictionary. Specifically, you
cannot change the following information:

� entity-occurrence names and types for these entities: DATABASE, FILE,
RECORD, KEY, FIELD

� field class, from simple to compound or vice versa
� field data types, from one category to another. The categories are as follows:

numeric: types B (binary), 2 (halfword), 4 (fullword), 8 (double), N(Zoned),
D (packed decimal)

float: types L (long float), S (short float)
alpha: types C (char), H (hex)
Xtype: types B > 8 bytes, D and N > 16 bytes, E (extended float), G

(graphics), K (kanji), T (PL/1 bit), Y (double byte character set), Z (mixed
DBCS and single byte)

Note: Xtype is an artificial type. It represents a CA-Datacom/DB type that
cannot be fully handled in SAS. �

� You should set up a CA-DATADICTIONARY user ID and password for SAS and
not change them. The user ID should have retrieval authority in
CA-DATADICTIONARY for six entity-types: DATABASE, FILE, RECORD,
ELEMENT, KEY, and FIELD. The user ID and password do not protect data, but
the interface view engine needs them to obtain information from
CA-DATADICTIONARY. If you change the user ID or password, then the view
descriptors must be recreated, or you must use the data set options to override the
user ID and password. (You can also zap these values in the CSECT DDBAUSE
option, which is used by the ACCESS procedure.)



128



129

A P P E N D I X

3
Data and Descriptors for the
Examples

Introduction to Data and Descriptors for the Examples 129
CA-Datacom/DB Tables 130

Using the CA-Datacom/DB Tables 130

CA-DATADICTIONARY Statements for Sample Tables 130

CUSTOMERS Table 136

EMPLOYEES Table 139
INVOICE Table 141

ORDER Table 142

Access Descriptors for the CA-Datacom/DB Tables 144

MYLIB.CUSTS Access Descriptor 144

MYLIB.EMPLOYEE Access Descriptor 145

MYLIB.INVOICE Access Descriptor 145
MYLIB.ORDERS Access Descriptor 145

View Descriptors for the CA-Datacom/DB Tables 146

VLIB.ALLEMP View Descriptor 146

VLIB.ALLORDR View Descriptor 146

VLIB.CUSORDR View Descriptor 146
VLIB.CUSPHON View Descriptor 146

VLIB.CUSTADD View Descriptor 147

VLIB.DCMEMPS View Descriptor 147

VLIB.EMPINFO View Descriptor 147

VLIB.EMPS View Descriptor 147
VLIB.FORINV View Descriptor 147

VLIB.INV View Descriptor 148

VLIB.USACUST View Descriptor 148

VLIB.USAINV View Descriptor 148

VLIB.USAORDR View Descriptor 149

SAS Data Files Used for CA-Datacom/DB Examples 149
MYDATA.OUTOFSTK Data File 149

MYDATA.SASEMPS Data File 150

LIB6.BIRTHDAY Data File 150

Introduction to Data and Descriptors for the Examples

This appendix gives information about the CA-Datacom/DB tables, descriptor files,
and SAS data files used in the examples in this document. It shows the
CA-DATADICTIONARY statements and the data that were used to build the
CA-Datacom/DB tables. It also displays the access descriptors and view descriptors,
along with selection criteria specified for them. In addition, this appendix shows the



130 CA-Datacom/DB Tables � Appendix 3

data and the SAS statements that were used to create the SAS data files for the
examples.

If you want to run the examples, contact your on-site SAS support personnel for
information.

CA-Datacom/DB Tables

Using the CA-Datacom/DB Tables
This section describes the CA-Datacom/DB tables referenced in this document. It

shows the following information:
� the CA-DATADICTIONARY statements and data for the tables
� the Native Key and the Master Key for each table
� the compound fields and repeating fields, if any

The four CA-Datacom/DB tables used in the examples are named CUSTOMERS,
EMPLOYEES, INVOICE, and ORDER. They are all in one CA-Datacom/DB database
named TEXTILES. To build the tables, follow these steps:

1 Create the CA-DATADICTIONARY entries and catalog them to CA-Datacom/DB.
2 Create the SAS data files.
3 Create an access descriptor and an associated view descriptor for each table. Make

sure that all SAS names in the view descriptors match the names in the SAS data
files. Use the access descriptors in this appendix as a model. Select every field for
the access descriptors, and create view descriptors that also select every field.

4 Run the APPEND procedure with the data set options shown here:

proc append data=SAS-file base=view-descriptor; run;

CA-DATADICTIONARY Statements for Sample Tables
Here are the CA-DATADICTIONARY statements used to create the four sample

CA-Datacom/DB tables. This is input to the DDUPDATE utility.

//SYSIN DD *
-USR ADR-INSTALL,NEWUSER
-ADD DATABASE,TEXTILES(T001)
3000 030
-END
-ADD AREA,TEX030(T001)
1000 CONNECT,TEXTILES
3001 TEX SASBXB.Datacom.TEX030
3002 TEX030 3380 04096
-END
-ADD FILE,CUSTOMF(T001)
1000 CONNECT,TEX030
3100 DB 01024 FBLK Y
3101 CUS 001 Y Y ADR/DB
-END
-ADD RECORD,CUSTOMERS(T001)
1000 CONNECT,CUSTOMF
3200 DB



Data and Descriptors for the Examples � CA-DATADICTIONARY Statements for Sample Tables 131

-END
-GRP START,RECORD,CUSTOMERS(T001)
-ADD FIELD,CUSTOMER
4010 START START
4012 S C L N 00008 00 00001
-END
-ADD FIELD,STATEZIP
4010 CUSTOMER START
4012 C C L N 00007 00 00001
-END
-ADD FIELD,STATE
4010 STATEZIP STATEZIP
4012 S C L N 00002 00 00001
-END
-ADD FIELD,ZIPCODE
4010 STATE STATEZIP
4012 S N R N 00005 00 00001
-END
-ADD FIELD,COUNTRY
4010 STATE START
4012 S C L N 00020 00 00001
-END
-ADD FIELD,TELEPHONE
4010 COUNTRY START
4012 S C L N 00012 00 00001
-END
-ADD FIELD,NAME
4010 TELEPHONE START
4012 S C L N 00060 00 00001
-END
-ADD FIELD,CONTACT
4010 NAME START
4012 S C L N 00030 00 00001
-END
-ADD FIELD,STREETADDRESS
4010 CONTACT START
4012 S C L N 00040 00 00001
-END
-ADD FIELD,CITY
4010 STREETADDRESS START
4012 S C L N 00025 00 00001
-END
-ADD FIELD,FIRSTORDERDATE
4010 CITY START
4012 S N R N 00006 00 00001
-END
-ADD FIELD,SIGNATURELIST
4010 FIRSTORDERDATE START
4012 C C L N 00044 00 00005
-END
-ADD FIELD,LIMIT
4010 SIGNATURELIST SIGNATURELIST
4012 S N R N 00014 02 00001
-END



132 CA-DATADICTIONARY Statements for Sample Tables � Appendix 3

-ADD FIELD,SIGNATURE
4010 LIMIT SIGNATURELIST
4012 S C L N 00030 00 00001
-END
-ADD FIELD,BRANCHOFFICE
4010 SIGNATURE START
4012 S C L N 00025 00 00010
-END
-GRP END
-ADD KEY,CUSTOMERS.CUSKEY(T001)
5000 CUSKY 001 Y Y Y
5010 ADD CUSTOMER
5011 $FIRST
-END
-ADD ELEMENT,CUSTOMERS.CUSELM(T001)
6000 CUSEL
6010 ADD CUSTOMER
6010 ADD STATE
6010 ADD ZIPCODE
6010 ADD COUNTRY
6010 ADD TELEPHONE
6010 ADD NAME
6010 ADD CONTACT
6010 ADD STREETADDRESS
6010 ADD CITY
6010 ADD FIRSTORDERDATE
6010 ADD SIGNATURELIST
6010 ADD BRANCHOFFICE
-END
-ADD FILE,EMPLOYF(T001)
1000 CONNECT,TEX030
3100 DB 01024 FBLK Y
3101 EMP 002 Y Y ADR/DB
-END
-ADD RECORD,EMPLOYEES(T001)
1000 CONNECT,EMPLOYF
3200 DB
-END
-GRP START,RECORD,EMPLOYEES(T001)
-ADD FIELD,EMPID
4010 START START
4012 S N R N 00006 00 00001
-END
-ADD FIELD,HIREDATE
4010 EMPID START
4012 S N R N 00006 00 00001
-END
-ADD FIELD,SALARY
4010 HIREDATE START
4012 S N R N 00007 02 00001
-END
-ADD FIELD,DEPT
4010 SALARY START
4012 S C L N 00006 00 00001



Data and Descriptors for the Examples � CA-DATADICTIONARY Statements for Sample Tables 133

-END
-ADD FIELD,JOBCODE
4010 DEPT START
4012 S N R N 00005 00 00001
-END
-ADD FIELD,SEX
4010 JOBCODE START
4012 S C L N 00001 00 00001
-END
-ADD FIELD,BIRTHDATE
4010 SEX START
4012 S N R N 00006 00 00001
-END
-ADD FIELD,LASTNAME
4010 BIRTHDATE START
4012 S C L N 00018 00 00001
-END
-ADD FIELD,FIRSTNAME
4010 LASTNAME START
4012 S C L N 00015 00 00001
-END
-ADD FIELD,MIDDLENAME
4010 FIRSTNAME START
4012 S C L N 00015 00 00001
-END
-ADD FIELD,PHONE
4010 MIDDLENAME START
4012 S C L N 00004 00 00001
-END
-GRP END
-ADD KEY,EMPLOYEES.EMPKEY(T001)
5000 EMPKY 002 Y Y Y
5010 ADD EMPID
5011 $FIRST
-END
-ADD ELEMENT,EMPLOYEES.EMPELM(T001)
6000 EMPEL
6010 ADD EMPID
6010 ADD HIREDATE
6010 ADD SALARY
6010 ADD DEPT
6010 ADD JOBCODE
6010 ADD SEX
6010 ADD BIRTHDATE
6010 ADD LASTNAME
6010 ADD FIRSTNAME
6010 ADD MIDDLENAME
6010 ADD PHONE
-ADD FILE,INVOICF(T001)
1000 CONNECT,TEX030
3100 DB 01024 FBLK Y
3101 INV 003 Y Y ADR/DB
-END
-ADD RECORD,INVOICE(T001)



134 CA-DATADICTIONARY Statements for Sample Tables � Appendix 3

1000 CONNECT,INVOICF
3200 DB
-END
-GRP START,RECORD,INVOICE(T001)
-ADD FIELD,INVOICENUM
4010 START START
4012 S N R N 00005 00 00001
-END
-ADD FIELD,BILLEDTO
4010 INVOICENUM START
4012 S C L N 00008 00 00001
-END
-ADD FIELD,AMTBILLED
4010 BILLEDTO START
4012 S N R N 00014 02 00001
-END
-ADD FIELD,COUNTRY
4010 AMTBILLED START
4012 S C L N 00020 00 00001
-END
-ADD FIELD,AMOUNTINUS
4010 COUNTRY START
4012 S N R N 00010 02 00001
-END
-ADD FIELD,BILLEDBY
4010 AMOUNTINUS START
4012 S N R N 00006 00 00001
-END
-ADD FIELD,BILLEDON
4010 BILLEDBY START
4012 S N R N 00006 00 00001
-END
-ADD FIELD,PAIDON
4010 BILLEDON START
4012 S N R N 00006 00 00001
-END
-ADD FIELD,COMPUTEDEXCHANG
4010 PAIDON START
4012 S L R Y 00008 00 00001
-END
-GRP END
-ADD KEY,INVOICE.INVKEY(T001)
5000 INVKY 003 Y Y Y
5010 ADD INVOICENUM
5011 $FIRST
-END
-ADD ELEMENT,INVOICE.INVELM(T001)
6000 INVEL
6010 ADD INVOICENUM
6010 ADD BILLEDTO
6010 ADD AMTBILLED
6010 ADD COUNTRY
6010 ADD AMOUNTINUS
6010 ADD BILLEDBY



Data and Descriptors for the Examples � CA-DATADICTIONARY Statements for Sample Tables 135

6010 ADD BILLEDON
6010 ADD PAIDON
6010 ADD COMPUTEDEXCHANG
-ADD FILE,ORDERF(T001)
1000 CONNECT,TEX030
3100 DB 01024 FBLK Y
3101 ORD 004 Y Y ADR/DB
-END
-ADD RECORD,ORDER(T001)
1000 CONNECT,ORDERF
3200 DB
-END
-GRP START,RECORD,ORDER(T001)
-ADD FIELD,ORDERNUM
4010 START START
4012 S N R N 00005 00 00001
-END
-ADD FIELD,STOCKNUM
4010 ORDERNUM START
4012 S N R N 00004 00 00001
-END
-ADD FIELD,LENGTH
4010 STOCKNUM START
4012 S N R N 00004 00 00001
-END
-ADD FIELD,FABRICCHARGES
4010 LENGTH START
4012 S N R N 00010 02 00001
-END
-ADD FIELD,SHIPTO
4010 FABRICCHARGES START
4012 S C L N 00008 00 00001
-END
-ADD FIELD,DATEORDERED
4010 SHIPTO START
4012 S N R N 00006 00 00001
-END
-ADD FIELD,SHIPPED
4010 DATEORDERED START
4012 S N R N 00006 00 00001
-END
-ADD FIELD,TAKENBY
4010 SHIPPED START
4012 S N R N 00006 00 00001
-END
-ADD FIELD,PROCESSEDBY
4010 TAKENBY START
4012 S N R N 00006 00 00001
-END
-ADD FIELD,SPECIALINSTRUCT
4010 PROCESSEDBY START
4012 S C L N 00001 00 00001
-END
-GRP END



136 CUSTOMERS Table � Appendix 3

-ADD KEY,ORDER.ORDKEY(T001)
5000 ORDKY 004 Y Y Y
5010 ADD ORDERNUM
5011 $FIRST
-END
-ADD ELEMENT,ORDER.ORDELM(T001)
6000 ORDEL
6010 ADD ORDERNUM
6010 ADD STOCKNUM
6010 ADD LENGTH
6010 ADD FABRICCHARGES
6010 ADD SHIPTO
6010 ADD DATEORDERED
6010 ADD SHIPPED
6010 ADD TAKENBY
6010 ADD PROCESSEDBY
6010 ADD SPECIALINSTRUCT
//

CUSTOMERS Table
The sample CA-Datacom/DB table named CUSTOMERS is in the TEXTILES

database. The user ID is DEMO. CUSKEY is the Native Key and the Master Key.
CUSKEY consists of the CUSTOMER field, which contains a unique integer number for
each customer.

In the CUSTOMERS table, STATEZIP is a compound field, consisting of the two
simple fields STATE and ZIPCODE at level 2. SIGNATURELIST is also a compound
field; it consists of the LIMIT field and the SIGNATURE field. The data values for this
compound field indicate whose signature is required for specific amounts of money. This
compound field is also a repeating field. The last field, BRANCHOFFICE, is a repeating
field that can occur ten times. It is a simple field containing city names of branch offices
for the customer.

Here are the fields in the CUSTOMERS table. The data is shown in Output A3.1.

DATA CUSTOMER;
INPUT @1 CUSTNUM $8. /* CUSTOMER NUMBER */

@10 STATE $2.
@13 ZIPCODE 5. /* ZIPCODE IF COMPANY IS */

/* IN THE U.S., OTHERWISE */
/* IT IS THE MAIL CODE */
/* APPROPRIATE FOR THE */
/* COUNTRY WHERE THE */
/* COMPANY IS LOCATED */

@20 COUNTRY $20.
@42 PHONE $12. /
@1 NAME $60. / /* CUSTOMER’S COMPANY NAME*/
@1 CONTACT $30. /* CONTACT AT CUSTOMER’S */

/* COMPANY */
@31 STREET $40. /
@1 CITY $25.
@30 FIRSTORD YYMMDD6./ /* DATE OF FIRST ORDER */
@1 LIMIT1 15.2 /* SIGNATURE LIMIT #1 */
@20 SIGNATU1 $30. / /* SIGNATURE NAME #1 */
@1 LIMIT2 15.2 /* SIGNATURE LIMIT #2 */



Data and Descriptors for the Examples � CUSTOMERS Table 137

@20 SIGNATU2 $30. / /* SIGNATURE NAME #2 */
@1 LIMIT3 15.2 /* SIGNATURE LIMIT #3 */
@20 SIGNATU3 $30. / /* SIGNATURE NAME #3 */
@1 BRANCHO1 $25. /* BRANCH OFFICE #1 */
@30 BRANCHO2 $25. / /* BRANCH OFFICE #2 */
@1 BRANCHO3 $25. /* BRANCH OFFICE #3 */
@30 BRANCHO4 $25.; /* BRANCH OFFICE #4 */

FORMAT FIRSTORD DATE7.;

Output A3.1 Data for CUSTOMERS Table

CUSTOMER NAME COUNTRY TELEPHON

12345678 919/489-5682

14324742 SANTA CLARA VALLEY TECHNOLOGY SPECIALISTS USA 408/629-0589

14569877 PRECISION PRODUCTS USA 919/489-6792

14898029 UNIVERSITY BIOMEDICAL MATERIALS USA 301/760-2541

15432147 GREAT LAKES LABORATORY EQUIPMENT MANUFACTURERS USA 616/582-3906

18543489 LONE STAR STATE RESEARCH SUPPLIERS USA 512/478-0788

19783482 TWENTY-FIRST CENTURY MATERIALS USA 703/714-2900

19876078 SAN JOAQUIN SCIENTIFIC AND INDUSTRIAL SUPPLY, INC. USA 209/686-3953

24589689 CENTAR ZA TECHNICKU I NAUCNU RESTAURIRANJE UMJETNINA Yugoslavia (012)736-202

26422096 SOCIETE DE RECHERCHES POUR DE CHIRURGIE ORTHOPEDIQUE France 4268-54-72

26984578 INSTITUT FUR TEXTIL-FORSCHUNGS Austria 43-57-04

27654351 INSTITUT DE RECHERCHE SCIENTIFIQUE MEDICALE Belgium 02/215-37-32

28710427 ANTONIE VAN LEEUWENHOEK VERENIGING VOOR MICROBIOLOGIE Netherlands (021)570517

29834248 BRITISH MEDICAL RESEARCH AND SURGICAL SUPPLY Britain (0552)715311

31548901 NATIONAL COUNCIL FOR MATERIALS RESEARCH Canada 406/422-3413

38763919 INSTITUTO DE BIOLOGIA Y MEDICINA NUCLEAR Argentina 244-6324

39045213 LABORATORIO DE PESQUISAS VETERNINARIAS DESIDERIO FINAMOR Brazil 012/302-1021

43290587 HASSEI SAIBO GAKKAI Japan (02)933-3212

43459747 RESEARCH OUTFITTERS Australia 03/734-5111

46543295 WESTERN TECHNOLOGICAL SUPPLY Japan (03)022-2332

46783280 NGEE TECHNOLOGICAL INSTITUTE Singapore 3762855

48345514 GULF SCIENTIFIC SUPPLIES United Arab Emirates 213445

CUSTOMER STREETAD CITY STATE ZIPCODE

12345678 NC .

14324742 5089 CALERO AVENUE SAN JOSE CA 95123

14569877 198 FAYETTVILLE ROAD MEMPHIS NC 27514

14898029 1598 PICCARD DRIVE ROCKVILLE MD 20850

15432147 103 HARRIET STREET KALAMAZOO MI 49001

18543489 5609 RIO GRANDE AUSTIN TX 78701

19783482 4613 MICHAEL FARADAY DRIVE RESTON VA 22090

19876078 1095 HIGHWAY 99 SOUTH TULARE CA 93274

24589689 TAKOVSKA 4 BELGRADE .

26422096 40 RUE PERIGNON LA ROCHELLE 75014

26984578 MECHITARISTENGASSE 5 VIENNA 5110

27654351 103 RUE D’EGMONT BRUSSELS 5010

28710427 BIRMOERSTRAAT 34 THE HAGUE HV 3607

29834248 44 PRINCESS GATE, HYDE PARK LONDON, SW7 1PU .

31548901 5063 RICHMOND MALL VANCOUVER, V5T 1L2 BC .

38763919 SALGUERO 2345 BUENOS AIRES 1405

39045213 RUA DONA ANTONIA DE QUEIROS 381 SAO PAULO SP 1051

43290587 3-2-7 ETCHUJMA, KOTO-KU TOKYO 101 .

43459747 191 LOWER PLENTY ROAD PRAHRAN, VICTORIA 3181

46543295 4-3-8 ETCHUJMA, KOTO-KU TOKYO 102 .

46783280 356 CLEMENTI ROAD SINGAPORE 2374

48345514 POB 8032 RAS AL KHAIMAH .



138 CUSTOMERS Table � Appendix 3

CUSTOMER CONTACT FIRSTORD LIMIT SIGNATU

12345678 . .

14324742 A. BAUM 05FEB65 5000.00 BOB HENSON

25000.00 KAREN DRESSER

14569877 CHARLES BARON 15AUG83 5000.00 JEAN CRANDALL

100000.00 STEVE BLUNTSEN

14898029 S. TURNER 12NOV76 10000.00 MASON FOXWORTH

50000.00 DANIEL STEVENS

100000.00 ELIZABETH PATTON

15432147 D.W. KADARAUCH 28APR86 10000.00 JACK TREVANE

18543489 A. SILVERIA 10SEP79 10000.00 NANCY WALSH

50000.00 TED WHISTLER

100000.00 EVAN MASSEY

19783482 M.R. HEFFERNAN 18JUL68 5000.00 PETER THOMAS

10000.00 LOUIS PICKERING

19876078 J.A. WHITTEN 11MAY79 7500.00 EDWARD LOWE

25000.00 E.F. JENSEN

24589689 J.V. VUKASINOVIC 30NOV81 .

26422096 Y. CHAVANON 14JUN83 5000.00 MICHELE PICARD

10000.00 M.L.SEIS

26984578 GUNTER SPIELMANN 25MAY87 100000.00 FRANZ BECH

27654351 I. CLEMENS 14OCT86 5000.00 C.J. HELMER

28710427 M.C. BORGSTEEDE 10OCT85 10000.00 J.J. JASPER

29834248 A.D.M. BRYCESON 29JAN86 5000.00 ELVIN POMEROY

31548901 W.E. MACDONALD 19MAR84 1000.00 DAPHNE MARSHALL

38763919 JORGE RUNNAZZO 10DEC84 2500.00 M.L. CARLOS

39045213 ELISABETE REGIS GUILLAUMON 18AUG82 1500.00 RICK ESTABAN

43290587 Y. FUKUDA 08FEB74 10000.00 R. YAMOTO

43459747 R.G. HUGHES 28JUL72 1000.00 DENNIS RICHMOND

5000.00 JANICE HEATH

46543295 19APR84 10000.00 DAPHNE MARSHALL

46783280 LING TAO SOON 27SEP79 .

48345514 J.Q. RIFAII 10SEP86 .

CUSTOMER BRANCHO1 BRANCHO2 BRANCHO3 BRANCHO4

12345678

14324742 TORONTO HOUSTON TOKYO LONDON

14569877 NEW YORK CHICAGO LOS ANGELES

14898029 NEW YORK CHICAGO DALLAS

15432147 CHICAGO COLUMBUS

18543489 HOUSTON DALLAS EL PASO LUBBOCK

19783482 WASHINGTON D.C. NEW YORK

19876078

24589689

26422096 LONDON NEW YORK

26984578 LONDON NEW YORK ROME

27654351 LONDON BOSTON

28710427 LONDON

29834248 SINGAPORE TORONTO CAIRO

31548901 SEATTLE TORONTO

38763919 MIAMI NEW YORK

39045213 MIAMI NEW YORK

43290587 SAN FRANCISCO

43459747 SEATTLE

46543295 SEATTLE TORONTO SAN FRANCISCO DENVER

46783280

48345514



Data and Descriptors for the Examples � EMPLOYEES Table 139

EMPLOYEES Table
The sample CA-Datacom/DB table named EMPLOYEES is in the TEXTILES

database. The user ID is DEMO. EMPKEY is the Native Key and the Master Key. It
consists of the numeric field EMPID, which contains a unique integer number for each
employee.

Here are the fields in the EMPLOYEE table. The data is shown in Output A3.2.

DATA EMPLOY;
INPUT @1 EMPID 6. /* EMPLOYEE ID NUMBER */

@10 HIREDATE YYMMDD6.
@20 SALARY 8.2
@30 DEPT $6.
@40 JOBCODE 5.
@47 SEX $1.
@50 BIRTHDAT YYMMDD6. /
@1 LASTNAME $18.
@20 FIRSTNAM $15.
@40 MIDDLENA $15.
@60 PHONE $4. ;

FORMAT HIREDATE DATE7.;
FORMAT BIRTHDAT DATE7.;



140 EMPLOYEES Table � Appendix 3

Output A3.2 Data for EMPLOYEES Table

OBS EMPID HIREDATE SALARY DEPT JOBCODE SEX BIRTHDAT LASTNAME
1 119012 01JUL68 42340.58 CSR010 602 F 05JAN46 WOLF-PROVENZA
2 120591 05DEC80 31000.55 SHP002 602 F 12FEB46 HAMMERSTEIN
3 123456 04APR89 . . . VARGAS
4 127845 16JAN67 75320.34 ACC024 204 M 25DEC43 MEDER
5 129540 01AUG82 56123.34 SHP002 204 F 31JUL60 CHOULAI
6 135673 15JUL84 46322.58 ACC013 602 F 21MAR61 HEMESLY
7 212916 15FEB51 52345.58 CSR010 602 F 29MAY28 WACHBERGER
8 216382 15JUN85 34004.65 SHP013 602 F 24JUL63 PURINTON
9 234967 19DEC88 17000.00 CSR004 602 M 21DEC67 SMITH

10 237642 01NOV76 43200.34 SHP013 602 M 13MAR54 BATTERSBY
11 239185 07MAY81 57920.66 ACC024 602 M 28AUG59 DOS REMEDIOS
12 254896 04APR85 35000.74 CSR011 204 M 06APR49 TAYLOR-HUNYADI
13 321783 10SEP67 48931.58 CSR011 602 M 03JUN35 GONZALES
14 328140 10JAN75 75000.34 ACC043 1204 F 02JUN51 MEDINA-SIDONIA
15 346917 02MAR87 46000.33 SHP013 204 F 15MAR50 SHIEKELESLAM
16 356134 14JUN85 62450.75 ACC013 204 F 25OCT60 DUNNETT
17 423286 19DEC88 32870.66 ACC024 602 M 31OCT64 MIFUNE
18 456910 14JUN78 45000.58 CSR010 602 M 24SEP53 ARDIS
19 456921 19AUG87 33210.04 SHP002 602 M 12MAY62 KRAUSE
20 457232 15JUL85 55000.66 ACC013 602 M 15OCT63 LOVELL
21 459287 02NOV64 50000.00 SHP024 204 M 05JAN34 RODRIGUES
22 677890 12DEC88 37610.00 CSR010 204 F 24APR65 NISHIMATSU-LYNCH

OBS FIRSTNAM MIDDLENA PHONE

1 G. ANDREA 3467
2 S. RACHAEL 3287
3 PAUL JESUS
4 VLADIMIR JORAN 6231
5 CLARA JANE 3921
6 STEPHANIE J. 6329
7 MARIE-LOUISE TERESA 8562
8 PRUDENCE VALENTINE 3852
9 GILBERT IRVINE 7274

10 R. STEPHEN 8342
11 LEONARD WESLEY 4892
12 ITO MISHIMA 0231
13 GUILLERMO RICARDO 3642
14 MARGARET ROSE 5901
15 SHALA Y. 8745
16 CHRISTINE MARIE 4213
17 YUKIO TOSHIRO 3278
18 RICHARD BINGHAM 4351
19 KARL-HEINZ G. 7452
20 WILLIAM SINCLAIR 6321
21 JUAN M. 5879
22 CAROL ANNE 6245



Data and Descriptors for the Examples � INVOICE Table 141

INVOICE Table
The sample CA-Datacom/DB table named INVOICE is in the TEXTILES database.

The user ID is DEMO. INVKEY is the Native Key and the Master Key. It consists of
the numeric field INVOICE, which contains a unique integer number for each invoice.

Here are the fields for the INVOICE table. The data is shown in Output A3.3.

DATA INVOICE;
INPUT @1 INVOICEN 5. /* INVOICE NUMBER */

@7 BILLEDTO $8. /* COMPANY THAT PLACED THE */
/* THE ORDER */

@15 AMTBILLE 15.2 /* AMOUNT OF BILL IN LOCAL */
/* CURRENCY */

@30 COUNTRY $20.
@50 AMOUNTIN 11.2 / /* AMOUNT OF BILL IN U.S. */

/* DOLLARS */

@1 BILLEDBY 6. /* EMPLOYEE WHO WROTE THE */
/* BILL */

@10 BILLEDON YYMMDD6. /* DATE THAT BILL WAS SENT */

@20 PAIDON YYMMDD6. /* DATE THAT BILL WAS PAID */

@30 COMPUTED TIME8. ; /* TIME OF DAY THAT THE */
/* EXCHANGE RATE TO U.S. */
/* DOLLARS WAS COMPUTED */

FORMAT BILLEDON DATE7.;
FORMAT PAIDON DATE7.;



142 ORDER Table � Appendix 3

Output A3.3 Data for INVOICE Table

OBS INVOICEN BILLEDTO AMTBILLE COUNTRY AMOUNTIN
1 11270 39045213 1340738760.90 Brazil 2256870.00
2 11271 18543489 11063836.00 USA 11063836.00
3 11273 19783482 252148.50 USA 252148.50
4 11276 14324742 1934460.00 USA 1934460.00
5 11278 14898029 1400825.00 USA 1400825.00
6 11280 39045213 1340738760.90 Brazil 2256870.00
7 11282 19783482 252148.50 USA 252148.50
8 11285 38763919 34891210.20 Argentina 2256870.00
9 11286 43459747 12679156.00 Australia 11063836.00

10 11287 15432147 252148.50 USA 252148.50
11 12051 39045213 1340738760.90 Brazil 2256870.00
12 12102 18543489 11063836.00 USA 11063836.00
13 12263 19783482 252148.50 USA 252148.50
14 12468 14898029 1400825.00 USA 1400825.00
15 12471 39045213 1340738760.90 Brazil 2256870.00
16 12476 38763919 34891210.20 Argentina 2256870.00
17 12478 15432147 252148.50 USA 252148.50

OBS BILLEDBY BILLEDON PAIDON COMPUTED

1 239185 05OCT88 18OCT88 3.96460000000000000E+04
2 457232 05OCT88 11OCT88 .
3 239185 06OCT88 11NOV88 .
4 135673 06OCT88 20OCT88 .
5 239185 06OCT88 19OCT88 .
6 423286 07OCT88 20OCT88 5.81540000000000000E+04
7 457232 07OCT88 25OCT88 .
8 239185 10OCT88 30NOV88 5.51630000000000000E+04
9 423286 10OCT88 . 3.38270000000000000E+04

10 457232 11OCT88 04NOV88 .
11 457232 02NOV88 . 3.11850000000000000E+04
12 239185 17NOV88 . .
13 423286 05DEC88 . .
14 135673 24DEC88 02JAN89 .
15 457232 27DEC88 . 5.09450000000000000E+04
16 135673 24DEC88 . 3.95630000000000000E+04
17 423286 24DEC88 02JAN89 .

ORDER Table

The sample CA-Datacom/DB table named ORDER is in the TEXTILES database.
The user ID is DEMO. ORDKEY is the Native Key and the Master Key. It consists of
the numeric field ORDERNUM, which contains a unique integer number for each order.

Here are the fields for the ORDER table. The data is shown in Output A3.4.

DATA ORDERS;
INPUT @1 ORDERNUM 5. /* ORDER NUMBER */

@6 STOCKNUM 4. /* STOCK NUMBER */

@10 LENGTH 4. /* LENGTH OF MATERIAL ORDERED */

@15 FABRICCH 11.2 /* FABRIC CHARGES */

@27 SHIPTO $8. /* CUSTOMER WHOM ORDER IS TO BE */
/* SHIPPED TO */

@35 DATEORDE YYMMDD6. /* DATE OF ORDER */



Data and Descriptors for the Examples � ORDER Table 143

@45 SHIPPED YYMMDD6. /* DATE THAT ORDER WAS SHIPPED */

@55 TAKENBY 6. /* EMPLOYEE WHO TOOK THE ORDER */

@62 PROCESSE 6. /* EMPLOYEE WHO PROCESSED THE */
/* THE ORDER */

@69 SPECIALI $1. ; /* THIS IS A FLAG THAT SIGNALS */
/*THERE ARE SPECIAL INSTRUCTIONS*/
/* ASSOCIATED WITH THIS ORDER. */

FORMAT DATEORDE DATE7.;
FORMAT SHIPPED DATE7.;

Output A3.4 Data for ORDER Table

OBS ORDERNUM STOCKNUM LENGTH FABRICCH

1 11269 9870 690 .
2 11270 1279 1750 2256870.00
3 11271 8934 110 11063836.00
4 11272 3478 1000 .
5 11273 2567 450 252148.50
6 11274 4789 1000 .
7 11275 3478 1000 .
8 11276 1279 1500 1934460.00
9 11277 8934 100 10058033.00
10 11278 2567 2500 1400825.00
11 11279 9870 650 .
12 11280 1279 1750 2256870.00
13 11281 8934 110 11063836.00
14 11282 2567 450 252148.50
15 11283 9870 690 .
16 11284 3478 1000 .
17 11285 1279 1750 2256870.00
18 11286 8934 110 11063836.00
19 11287 2567 450 252148.50
20 11288 9870 690 .
21 11969 9870 690 .
22 12051 1279 1750 2256870.00
23 12102 8934 110 11063836.00
24 12160 3478 1000 .
25 12263 2567 450 252148.50
26 12464 4789 1000 .
27 12465 3478 1000 .
28 12466 1279 1500 1934460.00
29 12467 8934 100 10058033.00
30 12468 2567 2500 1400825.00
31 12470 9870 650 .
32 12471 1279 1750 2256870.00
33 12472 8934 110 11063836.00
34 12473 2567 450 252148.50
35 12474 9870 690 .
36 12475 3478 1000 .
37 12476 1279 1750 2256870.00
38 12477 8934 110 11063836.00
39 12478 2567 450 252148.50
40 12479 9870 690 .



144 Access Descriptors for the CA-Datacom/DB Tables � Appendix 3

OBS ORDERNUM SHIPTO DATEORDE SHIPPED TAKENBY PROCESSE SPECIALI

1 11269 19876078 03OCT88 . 212916 .
2 11270 39045213 03OCT88 19OCT88 321783 237642 X
3 11271 18543489 03OCT88 13OCT88 456910 456921
4 11272 29834248 03OCT88 . 234967 .
5 11273 19783482 04OCT88 14NOV88 119012 216382
6 11274 15432147 04OCT88 . 212916 .
7 11275 29834248 04OCT88 . 234967 .
8 11276 14324742 04OCT88 21OCT88 321783 120591 X
9 11277 31548901 05OCT88 . 456910 .
10 11278 14898029 05OCT88 20OCT88 119012 456921
11 11279 48345514 05OCT88 . 212916 .
12 11280 39045213 06OCT88 21OCT88 321783 237642 X
13 11281 18543489 06OCT88 27OCT88 456910 216382
14 11282 19783482 06OCT88 26OCT88 119012 456921
15 11283 18543489 07OCT88 . 212916 .
16 11284 24589689 07OCT88 . 234967 .
17 11285 38763919 07OCT88 02DEC88 321783 120591 X
18 11286 43459747 07OCT88 03NOV88 456910 237642
19 11287 15432147 07OCT88 07NOV88 119012 216382
20 11288 14324742 10OCT88 . 212916 . Y
21 11969 19876078 25OCT88 . 212916 .
22 12051 39045213 31OCT88 . 321783 . X
23 12102 18543489 15NOV88 . 456910 .
24 12160 29834248 19NOV88 . 234967 . Z
25 12263 19783482 01DEC88 . 119012 .
26 12464 15432147 23DEC88 . 212916 .
27 12465 29834248 23DEC88 . 234967 .
28 12466 14324742 23DEC88 . 321783 . X
29 12467 31548901 23DEC88 . 456910 .
30 12468 14898029 23DEC88 03JAN89 119012 120591
31 12470 48345514 23DEC88 . 212916 .
32 12471 39045213 23DEC88 . 321783 . X
33 12472 18543489 23DEC88 03JAN89 456910 237642
34 12473 19783482 23DEC88 . 119012 .
35 12474 18543489 23DEC88 . 212916 .
36 12475 24589689 23DEC88 . 234967 .
37 12476 38763919 23DEC88 03JAN89 321783 456921 X
38 12477 43459747 23DEC88 . 456910 .
39 12478 15432147 23DEC88 03JAN89 119012 216382
40 12479 14324742 23DEC88 . 212916 .

Access Descriptors for the CA-Datacom/DB Tables

MYLIB.CUSTS Access Descriptor
The MYLIB.CUSTS access descriptor for the CUSTOMERS table was created as

follows:

proc access dbms=Datacom;
create mylib.custs.access;
user=demo;
table=customers;
assign = yes;
drop contact;
list all;
extend all;



Data and Descriptors for the Examples � MYLIB.ORDERS Access Descriptor 145

rename customer = custnum telephone = phone
streetaddress = street;

format firstorderdate = date7.;
informat firstorderdate = date7.;
content firstorderdate = yymmdd6.;
list all;

run;

MYLIB.EMPLOYEE Access Descriptor
The MYLIB.EMPLOYEE access descriptor for the EMPLOYEES table was created as

follows:

proc access dbms=Datacom;
create mylib.employee.access;
user=demo;
table=employees;
assign = yes;
format hiredate = date7.;
informat hiredate = date7.;
content hiredate = yymmdd6.;
format birthdate = date7.;
informat birthdate = date7.;
content birthdate = yymmdd6.;
list all;

extend all;
run;

MYLIB.INVOICE Access Descriptor
The MYLIB.INVOICE access descriptor for the INVOICE table was created as

follows:

proc access dbms=Datacom;
create mylib.invoice.access;
user=demo;
table=invoice;
assign = yes;
format billedon = date7.;
informat billedon = date7.;
content billedon = yymmdd6.;
format paidon = date7.;
informat paidon = date7.;
content paidon = yymmdd6.;
list all;
extend all;

run;

MYLIB.ORDERS Access Descriptor
The MYLIB.ORDERS access descriptor for the ORDER table was created as follows:

proc access dbms=Datacom;
create mylib.orders.access;



146 View Descriptors for the CA-Datacom/DB Tables � Appendix 3

user=demo;
table=order;
assign = yes;
format dateordered = date7.;
informat dateordered = date7.;
content dateordered = yymmdd6.;
format shipped = date7.;
informat shipped = date7.;
content shipped = yymmdd6.;
list all;
extend all;

run;

View Descriptors for the CA-Datacom/DB Tables

VLIB.ALLEMP View Descriptor
The VLIB.ALLEMP view descriptor was created as follows:

proc access dbms=Datacom ad=mylib.employee;
create vlib.allemp.view;
select all;
list view;

run;

VLIB.ALLORDR View Descriptor
The VLIB.ALLORDR view descriptor was created as follows:

proc access dbms=Datacom ad=mylib.orders;
create vlib.allordr.view;
select all;
list view;

run;

VLIB.CUSORDR View Descriptor
The VLIB.CUSORDR view descriptor contains no selection criteria.

proc access dbms=Datacom ad=mylib.orders;
create vlib.cusordr.view;
select stocknum shipto;
list view;

run;

VLIB.CUSPHON View Descriptor
The VLIB.CUSPHON view descriptor was created as follows:

proc access dbms=Datacom ad=mylib.custs;
create vlib.cusphon.view;



Data and Descriptors for the Examples � VLIB.FORINV View Descriptor 147

select customer telephone name;
list view;

run;

VLIB.CUSTADD View Descriptor
The VLIB.CUSTADD view descriptor was created as follows:

proc access dbms=Datacom ad=mylib.custs;
create vlib.custadd.view;
select state zipcode country name city;
list view;

run;

VLIB.DCMEMPS View Descriptor
The VLIB.DCMEMPS view descriptor was created as follows:

proc access dbms=Datacom ad=mylib.employee;
create vlib.dcmemps.view;
select empid birthdate lastname firstname

middlename;
list view;

run;

VLIB.EMPINFO View Descriptor
The VLIB.EMPINFO view descriptor was created as follows:

proc access dbms=Datacom ad=mylib.employee;
create vlib.empinfo.view;
select empid dept lastname;
list view;

run;

VLIB.EMPS View Descriptor
The VLIB.EMPS view descriptor was created as follows:

proc access dbms=Datacom ad=mylib.employee;
create vlib.emps.view;
select empid jobcode birthdate lastname;
subset where jobcode = 602;
subset sort lastname;
list view;

run;

VLIB.FORINV View Descriptor
The VLIB.FORINV view descriptor was created as follows:

proc access dbms=Datacom ad=mylib.invoice;
create vlib.forinv.view;



148 VLIB.INV View Descriptor � Appendix 3

select all;
subset where country != ’USA’;
list view;

run

VLIB.INV View Descriptor
The VLIB.INV view descriptor was created as follows:

proc access dbms=Datacom ad=mylib.invoice;
create vlib.inv.view;
select invoicenum amtbilled country billedby paidon;
subset sort billedby;
list view;

run;

VLIB.USACUST View Descriptor
The VLIB.USACUST view descriptor was created as follows:

proc access dbms=Datacom ad=mylib.custs;
create vlib.usacust.view;
select customer state zipcode name

firstorderdate;
list view;
extend view;

subset where customer eq 1#;
subset sort firstorderdate;
list view;
list all;

run;

VLIB.USAINV View Descriptor
The VLIB.USAINV view descriptor was created as follows:

proc access dbms=Datacom ad=mylib.invoice;
create vlib.usainv.view;
select all;
subset where country = ’USA’;
list view;

run;



Data and Descriptors for the Examples � MYDATA.OUTOFSTK Data File 149

VLIB.USAORDR View Descriptor
The VLIB.USAORDR view descriptor was created as follows:

proc access dbms=Datacom ad=mylib.orders;
create vlib.usaordr.view;
select ordernum stocknum length fabriccharges shipto;
subset sort shipto;
subset where shipto = 1#;
list view;

run;

SAS Data Files Used for CA-Datacom/DB Examples

MYDATA.OUTOFSTK Data File
The SAS data file MYDATA.OUTOFSTK is used in Chapter 4, “Using CA-Datacom/

DB Data in SAS Programs,” on page 23. It was created with the following SAS
statements:

libname mydata ’your-SAS-library’;
data mydata.outofstk;

input fibernam $8. fibernum;
datalines;

olefin 3478
gold 8934
dacron 4789
;

The following PRINT procedure produces the report shown in the output that follows.

proc print data=mydata.outofstk;
title ’SAS Data File MYDATA.OUTOFSTK’;

run;

Output A3.5 SAS Data File MYDATA.OUTOFSTK

SAS Data File MYDATA.OUTOFSTK
OBS FIBERNAM FIBERNUM

1 olefin 3478
2 gold 8934
3 dacron 4789



150 MYDATA.SASEMPS Data File � Appendix 3

MYDATA.SASEMPS Data File

The SAS data file MYDATA.SASEMPS is used in Chapter 5, “Browsing and Updating
CA-Datacom/DB Data,” on page 43. It was created with the following SAS statements:

libname mydata ’your-SAS-library’;
data mydata.sasemps;

input empid birthdat date7. lastname $18. firstnam $15.
middlena $15.;

datalines;
245962 30AUG64 BEDORTHA KATHY MARTHA
765432 01MAR59 POWELL FRANK X.
219223 13JUN47 HANSINGER BENJAMIN HAROLD
326745 21FEB52 RAWN BEATRICE MAY
;

The following PRINT procedure produces the report shown in the output that follows.

proc print data=mydata.sasemps;
format birthdat date7.;
title ’Data in MYDATA.SASEMPS Data File’;

run;

Output A3.6 SAS Data File MYDATA.SASEMPS

Data in MYDATA.SASEMPS Data File
OBS EMPID BIRTHDAT LASTNAME FIRSTNAM MIDDLENA

1 245962 30AUG64 BEDORTHA KATHY MARTHA
2 765432 01MAR59 POWELL FRANK X.
3 219223 13JUN47 HANSINGER BENJAMIN HAROLD
4 326745 21FEB52 RAWN BEATRICE MAY

LIB6.BIRTHDAY Data File

The SAS data file LIB6.BIRTHDAY is used in Chapter 4, “Using CA-Datacom/DB
Data in SAS Programs,” on page 23. It was created with the following SAS statements:

libname lib6 ’your-SAS-library’;
data lib6.birthday;

input empid birthdat date7. lastname $18.;
datalines;

129540 31JUL60 CHOULAI
356134 25OCT60 DUNNETT
127845 25DEC43 MEDER
677890 24APR65 NISHIMATSU-LYNCH
459287 05JAN34 RODRIGUES
346917 15MAR50 SHIEKELESLAN
254896 06APR49 TAYLOR-HUNYADI
;



Data and Descriptors for the Examples � LIB6.BIRTHDAY Data File 151

The following PRINT procedure produces the report shown in the following output.

proc print data=lib6.birthday;
format birthdat date7.;
title ’LIB6.BIRTHDAY Data File’;

run;

Output A3.7 SAS Data File LIB6.BIRTHDAY

LIB6.BIRTHDAY Data File
OBS EMPID BIRTHDAT LASTNAME

1 129540 31JUL60 CHOULAI
2 356134 25OCT60 DUNNETT
3 127845 25DEC43 MEDER
4 677890 24APR65 NISHIMATSU-LYNCH
5 459287 05JAN34 RODRIGUES
6 346917 15MAR50 SHIEKELESLAN
7 254896 06APR49 TAYLOR-HUNYADI



152



153

A P P E N D I X

4
Recommended Reading

Recommended Reading 153

Recommended Reading

Here is the recommended reading list for this title:
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary

� Base SAS Procedures Guide
� Getting Started with the SAS System in the z/OS Environment
� SAS/CONNECT User’s Guide

� SAS/GRAPH Software: Reference, Volumes 1 and 2
� SAS/STAT User’s Guide, Volumes 1, 2, and 3

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.



154



155

Glossary

access descriptor
a SAS/ACCESS file that describes data that is managed by a data management
system. After creating an access descriptor, you can use it as the basis for creating
one or more view descriptors. See also SAS data view, view descriptor.

area
an entity-type that consists of a collection of information in the
CA-DATADICTIONARY database.

batch mode
a method of executing SAS programs in which a file that contains SAS statements
plus any necessary operating environment commands is submitted to the computer’s
batch queue. After you submit the program, control returns to your personal
computer or workstation, where you can perform other tasks. Batch mode is
sometimes referred to as running in the background. The program output can be
written to files or printed on an output device.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed,
you can view SAS data either one observation (row) at a time or as a group in a
tabular format. You cannot update data that you are browsing.

CA-DATADICTIONARY database
a collection of CA-DATACOM/DB tables that have been organized within certain
CA-DATACOM/DB areas and files. The records in each table contain one or more
FIELD entity-occurrences.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology. In CA-DATACOM/DB, columns are
created from fields.

compound field
a field that contains two or more simple fields or compound fields that are contiguous.
A compound field can contain data of different types and lengths. Compound fields
can also be repeated or can be contained by other fields. See also simple field.

data management system
an integrated software application that enables you to create and manipulate data in
the form of databases.



156 Glossary

data type
in a CA-DATACOM/DB database, a classification according to the representation of
the values to be stored. The data type is an attribute of every field. It tells
CA-DATACOM/DB how much physical storage to set aside for the field and the type
of data the field will contain. CA-DATACOM/DB allows 16 different types of
character and numeric data. The CA-DATACOM/DB data type is similar to the type
attribute of SAS variables.

data value
in CA-DATACOM/DB, a character value or numeric value that is stored in a field.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes. In
CA-DATACOM/DB, a database is an entity-type that contains areas, files, records,
and fields. Each DATABASE entity-occurrence has a name and attributes in the
CA-DATADICTIONARY database.

database management system (DBMS)
a software application that enables you to create and manipulate data that is stored
in the form of databases. See also relational database management system.

descriptor file
a type of SAS/ACCESS file that is used to establish a connection between SAS and
files that are created and maintained by other software applications. Descriptor files
describe data to SAS. To create descriptor files, you use the ACCESS procedure.
There are two types of descriptor files: access descriptors and view descriptors. See
also access descriptor, view descriptor.

editing data
the process of viewing the contents of a file with the intent and the ability to change
those contents. Depending on how the file is accessed, you can view the data either
one observation at a time or in a tabular format.

element
a CA-DATACOM/DB unit of transfer between application programs and
CA-DATACOM/DB. An element consists of one or more contiguous CA-DATACOM/
DB fields.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular file format. There are several types of
engines. See also interface library engine, library engine, native library engine, view
engine.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular file format. There are several types of
engines. See also interface view engine.

entity-occurrence
an instance of a particular entity-type. For example, defining a database involves
storing information about the database in a DATABASE occurrence. Each database
is listed by its unique name as an occurrence of the DATABASE entity.

entity-type
any of the following data structures in which CA-DATACOM/DB data can be stored:
databases, areas, fields, records, and elements.



Glossary 157

field
the vertical component of a CA-DATACOM/DB table, which other software vendors
refer to as a column or as a variable. There are four types of fields: key field, simple
field, compound field, and repeating field. Each field has a name as well as specific
attributes such as data type and length.

file
In CA-DATACOM/DB, each database contains one or more FILE entity- occurrences
that comprise specific records, fields, and elements. Each FILE entity-occurrence
requires a unique name and specific attributes in the CA-DATADICTIONARY
database.

format, column
an instruction that SAS uses to display or write each value of a variable. Some
formats are supplied by SAS software. You can create your own formats by using the
FORMAT procedure in Base SAS software.

index
in other software vendors’ databases, a named object that directs the DBMS to the
storage location of a particular data value for a particular column. Some DBMSs
have additional specifications. These indexes are also used to optimize the processing
of WHERE clauses and joins. Depending on the SAS interface to a database product
and how selection criteria are specified, SAS might be able to use the indexes of the
DBMS to speed data retrieval. In CA-DATCOM/DB, an index contains an entry for
each key value in each record in a database. If a field is not indexed, the values are
not indexed. However, the fields and key values can still be searched sequentially.

informat, column
an instruction that SAS uses to read raw data values to create variable values. Some
informats are supplied by SAS software. Other informats can be written by the user
with the FORMAT procedure in Base SAS software.

interactive line mode
a method of running SAS programs in which you enter one line of a SAS program at
a time at the SAS session prompt. SAS processes each line immediately after you
press the ENTER or RETURN key. Procedure output and informative messages are
returned directly to your display device.

interface view engine
a SAS engine that retrieves data directly from files that have been formatted by
another vendor’s software and which presents the data to SAS in the form of a SAS
data set. Interface view engines are transparent to users and are not specified in
LIBNAME statements. See also engine.

key
in CA-DATACOM/DB, a field that enables you to quickly select and sequence data
records. A key can be any combination of simple and compound fields and can be up
to 180 characters long. The fields in the key do not have to be contiguous. See also
Native Key, Master Key.

Master Key
a field that enables you to prevent values in a key field from being duplicated and to
prevent values in that key from being changed. Each record must have one Master
Key. The Master Key can also be the Native Key.

member
a SAS file in a SAS library.

member name
a name that is assigned to a SAS file in a SAS library. See also member type.



158 Glossary

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, AUDIT, DMBD, DATA, CATALOG, FDB, INDEX,
ITEMSTOR, MDDB, PROGRAM, UTILITY, and VIEW.

missing value
in a CA-DATACOM/DB database, missing values are always represented by a blank
space.

Multi-User environment
a CA-DATACOM/DB execution environment in which several users access a database
at the same time, with queries and updates being handled simultaneously by a single
copy of the software. See also single-user environment.

Native Key
a field that determines the order of the records in a CA-DATACOM/DB table. Each
table must have one Native Key. The Native Key can also be the Master Key.

record
the horizontal component of a CA-DATACOM/DB table. A record is a set of fields
that are treated as a unit. Records within a table are ordered by the Native Key. A
record is analogous to a SAS row.

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. The main characteristic of a relational database
management system is the two-dimensional table. Examples of relational database
management systems are DB2, Oracle, Sybase, and Microsoft SQL Server.

repeating field
a simple field or compound field that can occur more than once. Repeating fields can
be nested within other repeating fields.

row
a collection of data values that are associated with a single entity such as a customer
or a state. Each row contains one data value for each variable.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. See also SAS data set, SAS data view.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. SAS data views can be created by the ACCESS and SQL procedures, as well
as by the SAS DATA step.



Glossary 159

simple field
a single CA-DATACOM/DB field. See also compound field.

single-user environment
a CA-DATACOM/DB execution environment in which each user has a copy of
CA-DATACOM/DB and has exclusive use of any database that he or she is currently
accessing. See also multi-user environment.

table
In CA-DATACOM/DB, the combination of one FILE entity-occurrence and one
RECORD entity-occurrence describes a table.

URT (User Requirements Table)
See User Requirements Table (URT).

user ID
a string of characters that a user must specify correctly in order to gain access to the
CA-DATADICTIONARY database.

User Requirements Table (URT)
a load module that is required by CA-DATACOM/DB. The URT is loaded by the
interface view engine and is passed to CA-DATACOM/DB when a table is opened. It
contains information about how the table is to be accessed. Various values in the
URT, such as the number and size of buffers, can affect performance.

variable
In the ACCESS procedure, variables are created from the database product’s columns
or fields.

view
a generic term (used by many software vendors) for a definition of a virtual data set
(or table). The definition is named and stored for later use. A view contains no data;
it merely describes or defines data that is stored elsewhere. See also SAS data view.

view descriptor
The subset consists of selected records in a CA-DATACOM/DB table.

windowing procedure
a SAS procedure that you can use by entering information in one or more windows or
dialog boxes. For example, the FSVIEW procedure is a windowing procedure. Some
procedures, such as ACCESS and DBLOAD, can be used either as windowing
procedures or in batch mode.



160



161

Index

A
ACCDESC= option

ACCESS procedure (CA-Datacom/DB) 61, 62
access by row number 111
access descriptors 4, 5, 15

assigning passwords 63
CA-DATADICTIONARY changes and 109
creating 16, 65, 69
creating view descriptors from 65, 67
passwords 63
resetting column defaults 83
updating 20, 65, 87

ACCESS procedure, CA-Datacom/DB 61
calls to interface view engine 104
creating descriptor files 16
data conversions 97
efficient view descriptors 96
extracting data 21
invoking 65
passwords for descriptors 63
SORT clause in view descriptors 95
syntax 61
terminating 82
WHERE clause in view descriptors 89

APPEND procedure 53
appending data 53
ASSIGN statement

ACCESS procedure (CA-Datacom/DB) 67
ASSIGN_statement 67
asterisk (*)

in view WHERE clauses 91

B
browsing data 43

FSBROWSE procedure 44
FSVIEW procedure 45
SELECT statement 50
SQL procedure 50
WHERE clause while browsing 47

C
CA-Datacom/DB 3, 7
CA-Datacom/DB databases 9, 70

fast-loading process 120
status or version of 71

CA-DATADICTIONARY 7
passwords for 122
updates, and descriptor files 109
user ID 89, 123
validation against 126

character data types 11
CHART procedure 26
charting data 26
columns 23, 24

changing format of 73
changing informat of 74
dropping 72
listing 72, 76
naming conventions 67
renaming 82
resetting to defaults 83
selecting for view descriptors 84

combining data
See selecting and combining data

COMMIT statement
row processing and 118

compound fields 10
concurrent tasking 112
CONTENT statement

ACCESS procedure (CA-Datacom/DB) 68
CONTENT_statement 68
CREATE statement

ACCESS procedure (CA-Datacom/DB) 69
CREATE_statement 69

D
data conversions 97
data fields

listing 77
data files

example data 149
updating 38

data set options
CA-Datacom/DB 117

data sets
passwords 63

data types 10
data validation 126
data views 8
database administration 103

access by row number 111
CA-Datacom/DB interface 104
debugging 113



162 Index

direct addressing 111
error messages 113
interface view engine 104
locks 111
multi-tasking 112
password encryption 112
performance 112
recovery processing 108
retrieval processing 105
security 110
spool files 111
system options for 113
update processing 107
user requirements table 110

DATABASE entity-type 9
DATABASE statement

ACCESS procedure (CA-Datacom/DB) 70
databases (CA-Datacom/DB)

See CA-Datacom/DB databases
DATABASE_statement 70
DATASETS procedure

assigning passwords 64
date format 68
date length 68
date types 11
DBMS= option

ACCESS procedure (CA-Datacom/DB) 62
DBSTAT statement

ACCESS procedure (CA-Datacom/DB) 71
DBSTAT_statement 71
DDBCOMIT= data set option 118
DDBCOMIT_data_set_option 118
DDBDBN system option 114
DDBDELIM system option 114
DDBERLMT= data set option 119
DDBERLMT_data_set_option 119
DDBKEY= data set option 120
DDBKEY_data_set_option 120
DDBLOAD= data set option 120
DDBLOAD system option 114
DDBLOAD_data_set_option 120
DDBLOCK= data set option 121
DDBLOCK system option 114
DDBLOCK_data_set_option 121
DDBMASK system option 114
DDBMISS system option 114
DDBPW= data set option 122
DDBPW system option 114
DDBPW_data_set_option 122
DDBSPANS system option 114
DDBSV= data set option 122
DDBSV system option 114
DDBSV_data_set_option 122
DDBTASK system option 114
DDBTRACE= data set option 113, 123
DDBTRACE system option 113, 114
DDBTRACE_data_set_option 122
DDBUPD system option 114
DDBURT= data set option 123
DDBURT system option 114
DDBURT_data_set_option 123
DDBUSER= data set option 123
DDBUSER system option 114
DDBUSER_data_set_option 123
debugging 113, 123
Default Keys 120

DELETE statement
SQL procedure 53

deleting records
SAS/FSP procedures for 48

descriptor files 4, 15
CA-DATADICTIONARY changes and 109
creating 16, 69
creating, in one PROC step 16
defining 15
updating 20, 87

direct addressing 111
DROP statement

ACCESS procedure (CA-Datacom/DB) 72
DROP_statement 71

E
elements 10
encryption 112
entity-occurrence 8
entity-types 8

DATABASE 9
FIELD 10
RECORD 9

error messages 113
example data 6, 129

SAS data files 149
tables 130

execution environments 13
EXTEND statement

ACCESS procedure (CA-Datacom/DB) 72
EXTEND_statement 72
extracting data 21, 41

F
fast-loading process 120
FIELD entity-type 10
fields

creating 37
data types in 10

FORMAT statement
ACCESS procedure (CA-Datacom/DB) 73

formats
changing, for columns 73

FORMAT_statement 73
FREQ procedure 28
FSBROWSE procedure 44
FSEDIT procedure 45
FSVIEW procedure

browsing data 45
internal record ID and 107
updating data 46

G
GETIT command 106
GETPS command 106
GROUP BY clause

creating fields 37
GSETL command 106
GSETP command 106

H
$HEX. format 92



Index 163

I
index reads 42
indexing 12
INFORMAT statement

ACCESS procedure (CA-Datacom/DB) 74
informats

changing, for columns 74
INFORMAT_statement 74
INSERT statement

SQL procedure 53
inserting records 124

INSERT statement (SQL) 53
SAS/FSP procedures for 48

interface to CA-Datacom/DB 3, 7
interface view engine 3

calls to 104
database administration 104
URT specification for 123

internal record ID (RID) 106

K
KEEP= data set option 31
key fields 10, 75
KEY statement

ACCESS procedure (CA-Datacom/DB) 75
keys

Default Keys 120
KEY_statement 75

L
LIST statement

ACCESS procedure (CA-Datacom/DB) 76
LISTINFO statement

ACCESS procedure (CA-Datacom/DB) 77
LISTINFO_statement 77
LISTOCC statement

ACCESS procedure (CA-Datacom/DB) 78
LISTOCC_statement 77
LIST_statement 76
LOCKG command 106
locking records 111
LOCKL command 106
LOCNX command 106

M
masking values 93
Master Key 10
MEANS procedure 28
member-level locking 111
missing values 11

in tables 125
multi-field keys

in view WHERE clauses 94
multi-tasking 112
multi-user environment 13

N
Native Key 10
nils 11

in tables 125
numeric data types 10

O
OBS= option

PRINT procedure 25
OCCURS 78
OCCURS statement

ACCESS procedure (CA-Datacom/DB) 79
OUT= option

ACCESS procedure (CA-Datacom/DB) 62

P
PASSWORD statement

ACCESS procedure (CA-Datacom/DB) 81
passwords

access descriptors 63
CA-DATADICTIONARY 122
data sets 63
encryption 112
specifying 81

PASSWORD_statement 81
percentages 28
performance 41, 112
PRINT procedure 25

OBS= option 25
printing data 25
PROC ACCESS statement

CA-Datacom/DB 61, 62

Q
QUIT statement

ACCESS procedure (CA-Datacom/DB) 82
QUIT_statement 82

R
RANK procedure 30
RDUBR command 106
RDUKG command 106
RDUKL command 106
RDULE command 106
RDUNX command 106
RECORD entity-type 9
record-level locking 111
recovery processing 108
REDLE command 106
RENAME statement

ACCESS procedure (CA-Datacom/DB) 82
RENAME_statement 82
repeating fields 10

DB content attributes 79
dropping occurrences 79
format attributes 80
informat attributes 80
listing 78
modifying occurrences of 79
renaming columns 80
resetting occurrences 80
selecting occurrences 81

RESET statement
ACCESS procedure (CA-Datacom/DB) 83

RESET_statement 83
retrieval processing 105

internal record ID 106
no WHERE clause 105



164 Index

SORT clause with 105
WHERE clause with 105

RID (internal record ID) 106
rollback 119
row number access 111
row processing

before COMMIT statement 118
rows 23

S
SAS/ACCESS interface to CA-Datacom/DB 3, 7
SAS data files

example data 149
updating 38

SAS/FSP procedures
browsing and updating data 44
inserting and deleting records 48

security 13, 110
SELECT statement

ACCESS procedure (CA-Datacom/DB) 84
SQL procedure 50

selecting and combining data 30
SQL procedure 32
WHERE statement 31

selection criteria 126
SAS WHERE clause 126
view descriptors 85
WHERE clause in view descriptor 126

SELECT_statement 84
simple fields 10
single user environment 13
SORT clauses 12

retrieval processing with 105
view SORT clauses 95

sorting data 12, 42
spool files 111

suppressing 121
SQL procedure

browsing and updating data 50
combining data 32
creating fields 37
DELETE statement 53
GROUP BY clause 37
INSERT statement 53
SELECT statement 50
UNDO_POLICY option 50
UPDATE statement 52

statistics calculation 28
SUBSET statement

ACCESS procedure (CA-Datacom/DB) 85
SUBSET_statement 85
subsetting data 12
system options

CA-Datacom/DB 113

T
table locks 111
TABLE statement

ACCESS procedure (CA-Datacom/DB) 86
tables 9

altering, and descriptor files 66
deleting records 124
example data 130
inserting records 124

missing values in 125
specifying 86
status of 86, 122
version of 86, 122

TABLE_statement 86
TBLSTAT statement

ACCESS procedure (CA-Datacom/DB) 86
TBLSTAT_statement 86
transaction data 38

U
UNDO_POLICY option

SQL procedure 50
update processing 107

repositioning to inserted record 107
UPDATE statement

ACCESS procedure (CA-Datacom/DB) 87
SQL procedure 52

UPDATE_statement 87
updating access descriptors 20, 65, 87
updating data 43

FSEDIT procedure 45
FSVIEW procedure 46
SQL procedure 50
UNDO_POLICY option (SQL) 50
UPDATE statement (SQL) 52
WHERE clause while updating 47

updating descriptor files 20, 87
updating SAS data files 38
updating view descriptors 20, 66, 87
URT statement

ACCESS procedure (CA-Datacom/DB) 89
URT (user requirements table) 89, 110, 123
URT_statement 88
user exits

CA-Datacom/DB 124
user IDs 89
user requirements table (URT) 89, 110, 123
USER statement

ACCESS procedure (CA-Datacom/DB) 89
USER_statement 89

V
validating data values 126
validation against CA-DATADICTIONARY 126
Version 6 files 38
Version 8 (and later) files 40
view descriptors 4, 5, 15

CA-DATADICTIONARY changes and 109, 110
creating 16, 65, 69, 70
creating from access descriptors 65, 67
dropping columns 72
efficient use of 96
multiple 124
referencing 42
resetting column defaults 83
selecting columns for 84
selection criteria for 85
SORT clause in 95
sorting data in 12
updating 20, 66, 87
WHERE clauses in 89, 126

view SORT clauses 95



Index 165

view WHERE clauses 89
asterisk (*) in 91
character fields 92
date values 92
expressions 91
guidelines for 94
$HEX. format fields 92
masking values in 93
multi-field keys in 94
syntax 89
values mismatched to fields 93

VIEWDESC= option
ACCESS procedure (CA-Datacom/DB) 62

W
WHERE clauses

in view descriptors 126

retrieval processing with 105

selection criteria 126

unacceptable conditions 125

view WHERE clauses 89

while browsing or updating data 47

WHERE statement

selecting data 31



 



Your Turn

We want your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.



 



SAS® Publishing delivers!
Whether you are new to the workforce or an experienced professional, you need to distinguish yourself in this rapidly 
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set 
yourself apart.

SAS® Press Series 
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you 
need in example-rich books from the SAS Press Series. Written by experienced SAS professionals from 
around the world, these books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation 
To successfully implement applications using SAS software, companies in every industry and on every 
continent all turn to the one source for accurate, timely, and reliable information—SAS documentation. We 
currently produce the following types of reference documentation: online help that is built into the software, 
tutorials that are integrated into the product, reference documentation delivered in HTML and PDF—free on 
the Web, and hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Learning Edition 4.1 
Get a workplace advantage, perform analytics in less time, and prepare for the SAS Base Programming 
exam and SAS Advanced Programming exam with SAS® Learning Edition 4.1. This inexpensive, intuitive 
personal learning version of SAS includes Base SAS® 9.1.3, SAS/STAT®, SAS/GRAPH®, SAS/QC®, SAS/ETS®, 
and SAS® Enterprise Guide® 4.1. Whether you are a professor, student, or business professional, this is a 
great way to learn SAS.

s u p p o r t . s a s . c o m / L E

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  
Other brand and product names are trademarks of their respective companies. © 2008 SAS Institute Inc. All rights reserved. 474059_1US.0108

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE


 


	Contents
	SAS/ACCESS Interface to CA-Datacom/DB: Usage
	Overview of the SAS/ACCESS Interface to CA-Datacom/DB
	Introduction to the SAS/ACCESS Interface to CA-Datacom/DB
	Purpose of the SAS/ACCESS Interface to CA-Datacom/DB
	SAS/ACCESS Descriptor Files
	Access Descriptor and View Descriptor Files
	Access Descriptor Files
	View Descriptor Files

	Example Data in the CA-Datacom/DB Document

	CA-Datacom/DB Essentials
	Introduction to CA-Datacom/DB Essentials
	CA-Datacom/DB and CA-DATADICTIONARY Software
	CA-Datacom/DB Databases
	Overview of CA-Datacom/DB Databases
	DATABASE Entity-type
	RECORD Entity-type
	FIELD Entity-type
	Data Types in CA-Datacom/DB Fields
	Numeric Data Types
	Character Data Types
	Date Types
	Missing Values

	CA-Datacom/DB Indexing
	Selecting a Subset of CA-Datacom/DB Data
	Sorting Data in a SAS/ACCESS View Descriptor
	Security Features for CA-Datacom/DB
	CA-Datacom/DB Execution Environments

	Defining SAS/ACCESS Descriptor Files
	Introduction to Defining SAS/ACCESS Descriptor Files
	SAS/ACCESS Descriptor Files Essentials
	Creating SAS/ACCESS Descriptor Files
	Access Descriptor and View Descriptor Files
	The ACCESS Procedure
	Creating Access Descriptors and View Descriptors in One PROC Step

	Updating Descriptor Files
	Extracting CA-Datacom/DB Data with the ACCESS Procedure

	Using CA-Datacom/DB Data in SAS Programs
	Introduction to Using CA-Datacom/DB Data in SAS Programs
	Reviewing Columns for CA-Datacom/DB Data
	Printing CA-Datacom/DB Data
	Charting CA-Datacom/DB Data
	Calculating Statistics for CA-Datacom/DB Data
	Using FREQ, MEANS, and RANK Procedures
	Using the FREQ Procedure
	Using the MEANS Procedure
	Using the RANK Procedure

	Selecting and Combining CA-Datacom/DB Data
	Using the WHERE Statement or the SQL Procedure
	Selecting Data with the WHERE Statement
	Combining Data with the SQL Procedure
	Combining Data from Various Sources
	Creating New Fields with the PROC SQL GROUP BY Clause

	Updating a SAS Data File with CA-Datacom/DB Data
	Using a DATA Step UPDATE Statement
	Updating a Version 6 Data File
	Updating a Version 8 and Later Data File

	Performance Considerations

	Browsing and Updating CA-Datacom/DB Data
	Introduction to Browsing and Updating CA-Datacom/DB Data
	Browsing and Updating CA-Datacom/DB Data with the SAS/FSP Procedures
	Using the FSBROWSE, FSEDIT, and FSVIEW Procedures
	Browsing Data with PROC FSBROWSE
	Updating Data with PROC FSEDIT
	Browsing Data with PROC FSVIEW
	Updating Data with PROC FSVIEW
	Specifying a WHERE Clause While Browsing or Updating Data
	Inserting and Deleting Data Records with the SAS/FSP Procedures

	Browsing and Updating CA-Datacom/DB Data with the SQL Procedure
	Using the SQL Procedure
	Browsing Data with the SELECT Statement
	Updating Data with the UPDATE Statement
	Adding and Removing Data with the INSERT and DELETE Statements

	Appending CA-Datacom/DB Data with the APPEND Procedure

	SAS/ACCESS Interface to CA-Datacom/DB: Reference
	ACCESS Procedure Reference
	Introduction to ACCESS Procedure Reference
	ACCESS Procedure Syntax
	Description
	PROC ACCESS Statement Options
	Options

	SAS Passwords for SAS/ACCESS Descriptors
	Overview of SAS Passwords
	Assigning Passwords for SAS/ACCESS Descriptors

	Invoking the ACCESS Procedure
	Statements
	WHERE Clause in a View Descriptor
	View WHERE Clause Syntax
	The Asterisk in View WHERE Clauses
	View WHERE Clause Expressions
	Specifying Values in View WHERE Clauses

	SORT Clause in a View Descriptor
	Overview of the SORT Clause
	View SORT Clause Syntax
	View SORT Clause Example
	View SORT Clause Guidelines

	Creating and Using View Descriptors Efficiently
	ACCESS Procedure Data Conversions

	Appendixes
	Information for the Database Administrator
	Introduction to the Information for the Database Administrator
	How the SAS/ACCESS Interface to CA-Datacom/DB Works
	Overview for the Database Administrator
	Using the CA-Datacom/DB Interface View Engine

	Retrieval Processing
	Retrievals with a WHERE Clause or SORT Clause
	Retrievals with No WHERE Clause
	The Internal Record ID (RID)

	Update Processing
	Updating, Deleting, and Adding Data Records
	Repositioning to an Inserted Record

	Recovery Processing
	How Changing the CA-DATADICTIONARY Database Affects Descriptor Files
	Changes That Affect the Descriptor Files
	Changes That Do Not Affect Existing View Descriptors
	Changes That Might Affect Existing View Descriptors
	Changes That Cause Existing View Descriptors to Fail

	SAS Security with CA-Datacom/DB
	User Requirements Table (URT)
	Locks and the Spool Files
	Direct Addressing and Access by Row Number
	Password Encryption/Decryption in CA-Datacom/DB
	Maximizing the CA-Datacom/DB Interface Performance
	Multi-Tasking with CA-Datacom/DB
	Error Messages and Debugging Information for CA-Datacom/DB
	System Options for the CA-Datacom/DB Interface

	Advanced Topics
	Introduction to Advanced Topics
	Data Set Options
	Using Multiple View Descriptors
	User Exits from CA-Datacom/DB
	Deleting and Inserting Data Records in CA-Datacom/DB
	Missing Values (Nils) in CA-Datacom/DB Tables
	SAS WHERE Clause Conditions Not Acceptable to CA-Datacom/DB
	Deciding How to Specify Selection Criteria in CA-Datacom/DB
	WHERE Clause in the View Descriptor
	SAS WHERE Clause

	Validation of Data Values in CA-Datacom/DB
	Validation against CA-DATADICTIONARY

	Data and Descriptors for the Examples
	Introduction to Data and Descriptors for the Examples
	CA-Datacom/DB Tables
	Using the CA-Datacom/DB Tables
	CA-DATADICTIONARY Statements for Sample Tables
	CUSTOMERS Table
	EMPLOYEES Table
	INVOICE Table
	ORDER Table

	Access Descriptors for the CA-Datacom/DB Tables
	MYLIB.CUSTS Access Descriptor
	MYLIB.EMPLOYEE Access Descriptor
	MYLIB.INVOICE Access Descriptor
	MYLIB.ORDERS Access Descriptor

	View Descriptors for the CA-Datacom/DB Tables
	VLIB.ALLEMP View Descriptor
	VLIB.ALLORDR View Descriptor
	VLIB.CUSORDR View Descriptor
	VLIB.CUSPHON View Descriptor
	VLIB.CUSTADD View Descriptor
	VLIB.DCMEMPS View Descriptor
	VLIB.EMPINFO View Descriptor
	VLIB.EMPS View Descriptor
	VLIB.FORINV View Descriptor
	VLIB.INV View Descriptor
	VLIB.USACUST View Descriptor
	VLIB.USAINV View Descriptor
	VLIB.USAORDR View Descriptor

	SAS Data Files Used for CA-Datacom/DB Examples
	MYDATA.OUTOFSTK Data File
	MYDATA.SASEMPS Data File
	LIB6.BIRTHDAY Data File


	Recommended Reading
	Recommended Reading

	Glossary
	Index



