
IBM Spectrum LSF 10.1

Resource Ceonnector

IBM

© Copyright IBM Corp. 2024.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Tables of Contents
LSF resource connector overview

Configuring resource providers
Setting the initial configuration
Configuring multiple resource providers
Configuring different templates to create instances
Assigning exclusive resources to a template
Configuring Amazon Web Services for LSF resource connector

Preparing to configure AWS
Building a cloud image

Preparing Amazon Web Services components
Launching the Amazon Web Services EC2 instance
Installing an LSF server host on the AWS EC2 instance

Enabling LSF resource connector for Amazon Web Services (AWS)
The aws_enable.sh script
Choose account authentication method
Executing AWS enablement script for LSF
Completing the enabling of Resource Connector for AWS

Configuring user scripts to register AWS hosts
Configuring bursting behavior

Configuring a threshold
Providing specific policy configurations
Controlling reclaim behavior

Assigning exclusive resources to a template
Configuring AWS access with federated accounts
Configure AWS launch templates
Attach EFA network interfaces
Use AWS spot instances

Configuring AWS Spot instances
Using Amazon EC2 Fleet
Submitting jobs to AWS

How LSF returns hosts to AWS

Updating LSF configuration for resource connector
Pre-provisioning and post-provisioning
Define resource provisioning policies
Use the LSF patch installer to update resource connector

View information on the LSF resource connector
Checking the LSF resource connector status
Use badmin to view LSF resource connector information
Viewing LSF resource connector job events
Logging and troubleshooting

Configuration reference
lsb.applications

RC_ACCOUNT
RC_RECLAIM_ACTION

lsb.queues

1

5

6

6

7

10

11

12

14

14

15

15

17

18

19

20

21

22

23

24

24

25

10

27

29

30

32

34

36

39

41

42

44

47

47

49

49

49

50

53

54

55

55

55

56

RC_ACCOUNT
RC_DEMAND_POLICY
RC_HOSTS

lsf.conf
EBROKERD_HOST_CLEAN_DELAY
LSB_RC_DEFAULT_HOST_TYPE
LSB_RC_EXTERNAL_HOST_FLAG
LSB_RC_EXTERNAL_HOST_IDLE_TIME
LSB_RC_EXTERNAL_HOST_MAX_TTL
LSB_RC_MQTT_ERROR_LIMIT
LSF_MQ_BROKER_HOSTS
LSB_RC_QUERY_INTERVAL
LSB_RC_REQUEUE_BUFFER
LSB_RC_TEMPLATE_REQUEST_DELAY
LSB_RC_UPDATE_INTERVAL
MQTT_BROKER_HOST
MQTT_BROKER_PORT

hostProviders.json
policy_config.json
awsprov_config.json
awsprov_templates.json

56

57

58

58

59

60

61

61

62

62

63

64

64

65

66

66

67

68

71

76

77

IBM Spectrum
LSF resource connector overview

The resource connector for IBM® Spectrum
LSF feature
(previously referred to as host factory) enables LSF
clusters to borrow resources from supported resource providers.

LSF
resource connector plug-ins support the following resource providers:

IBM
Cloud Virtual Servers for VPC Gen 2 (IBM Cloud Gen 2), configured with the
ibmcloudgen2_config.json and ibmcloudgen2_templates.json
files. The IBM Cloud provider requires
IBM Spectrum
LSF Fix Pack 11.
Amazon Web Services (AWS), which is configured with the awsprov_config.json
and
awsprov_templates.json files. The AWS provider requires IBM Spectrum
LSF Fix Pack 2.
Microsoft Azure, which is configured with the azureprov_config.json and
azureprov_templates.json files.
The Microsoft Azure provider requires IBM Spectrum
LSF Fix Pack 3.
Google Compute Cloud, configured with the
googleprov_config.json and googleprov_templates.json
files. The Google Compute provider requires IBM Spectrum
LSF Fix Pack 4.
OpenStack,
which is configured with the osprov_config.json and
osprov_templates.json files. The
OpenStack provider requires IBM Spectrum
LSF Fix Pack 1.

LSF
clusters can borrow hosts from a resource provider to satisfy pending workload. The borrowed
resources
join the LSF
cluster as hosts. When the resources become idle, LSF
resource connector returns them to the
resource provider.

The resource connector generates requests for extra hosts from the resource provider and
dispatches jobs to
dynamic hosts that join the LSF
cluster. When the resource provider reclaims the hosts, the resource
connector requeues the jobs
that are running on the LSF hosts,
shuts down LSF
daemons, and releases the
hosts to the provider.

Requirements for configuring the resource connector
The following are requirements for configuring the IBM Spectrum
LSF resource connector.

You must have root access to the LSF management host.
Both the LSF management host and the compute
nodes (provider instances) must be reachable from
each other.
You must be able to restart the LSF cluster.
You must be familiar with the provider's concepts and be able to perform administrative
tasks.
The virtual network to be used by the provider's virtual instances must be configured so that
they can
communicate with the LSF hosts on-premise.
You must configure the provider instances to map users to the LSF cluster submission users. For
example, add the submission users to the provider instance or synchronize the users on the launched
provider instances.
Decide how you want LSF to authenticate to the provider to access their services.

Java requirements for LSF management host
The following are Java requirements for the IBM Spectrum
LSF
management host before
configuring the IBM
Spectrum
LSF resource connector.

IBM Spectrum LSF 10.1 1

Java Runtime Environment (JRE) version 8

How LSF
borrows hosts from a resource provider
The following workflow summarizes how your job uses resources that are borrowed from a resource
provider:

1. A user submits a job to LSF as
normal. The job generates demand, but the cluster doesn't have enough
resources to service it, so it
must borrow hosts from an external provider.

2. The mbatchd daemon checks if hosts are already allocated that match the
demand, and LSF
calculates
how many of each template type it requires to run the job. LSF sends
this demand to the resource
connector ebrokerd daemon.
The administrator
configures templates representing LSF hosts.
Each resource provider has its own
template file that defines the mapping between LSF
resource demand requests and hosts that the
provider allocates to LSF. Each
template in the file represents a set of hosts that share some attributes,
such as the number of
CPUs, the amount of available memory, the installed software stack, and
operating system image.

3. Based on the demand from the submitted job, LSF
resource connector makes an allocation request to
the resource provider.
For
example, if the resource provider is IBM Cloud Gen
2,
resource connector makes an allocation
request to IBM Cloud Gen 2 as the
LSF_Consumer.

4. For IBM Cloud Gen 2 resources, if enough resources are available in the
rg_shared resource group,
the allocation request succeeds.

5. The ebrokerd daemon monitors the status of the request in the resource
provider until it detects that
the request succeeds, starts LSF
daemons on the allocated hosts, and notifies LSF that
the hosts join
the cluster and are ready to use.

6. When the host joins the cluster, the job is dispatched to the host.
7. When there is no more demand for borrowed resources, LSF lets
resource connector know and the

ebrokerd daemon returns the resources to the
provider.
8. Some resource providers (for example,
IBM
Cloud Gen 2) can also be configured to reclaim borrowed

resources from LSF when
they require the resources to satisfy their workload demand.

Example of borrowing hosts from IBM Cloud Gen 2
In the following example, the resource provider is IBM Cloud Gen
2:

1. bhosts -a

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

lsfmanagement ok - 1 1 0 0 0 0

2. IBM
Cloud Gen 2 has a host ibmcloud01 with
ncpus=1.
3. Resource connector is configured to connect to the
IBM
Cloud Gen 2 cluster.
4. A template is created that provides a numeric attribute ncpus with range
[1:1].
5. The bsub command submits a job that requires a single slot.
6. Eventually host
ibmcloud01
joins the cluster, and the new job runs.

bhosts -a

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

lsfmangemnt ok - 1 1 1 0 0 0

ibmcloud01 ok - 1 1 1 0 0 0

View the status of provisioned hosts

2 IBM Spectrum LSF 10.1

Use the bhosts -rc or the bhosts -rconly command to see
information about resources that are provisioned
by LSF
resource connector.

The -rc and -rconly options make use of the third-party
mosquitto message queue application. LSF
resource
connector publishes additional provider host information to displayed by these
bhosts options. The
mosquitto binary file is included as part
of the LSF
distribution.

To use the -rc and -rconly options, LSF
resource connector must be enabled with the
LSB_RC_EXTERNAL_HOST_FLAG parameter
in the lsf.conf file.

If you use the MQTT message broker that is distributed withLSF, you
must configure the
LSF_MQ_BROKER_HOSTS and
MQTT_BROKER_HOST parameters in the lsf.conf file. The
LSF_MQ_BROKER_HOSTS and MQTT_BROKER_HOST parameters must
specify the same host name. The
LSF_MQ_BROKER_HOSTS parameter enables LIM to
start the mosquitto daemon.

If you use an existing MQTT message broker, you must configure the
MQTT_BROKER_HOST parameter. You
can optionally specify an MQTT broker port with
the MQTT_BROKER_PORT parameter.

Use the ps command to check that the MQTT message broker daemon
(mosquitto) is installed and running:
ps -ef | grep
mosquitto.

Configure the EBROKERD_HOST_CLEAN_DELAY to specify a delay, in minutes,
after which the ebrokerd
daemon removes information about relinquished or
reclaimed hosts. This parameter allows the bhosts
command to get LSF
resource connector provider host information for some time after they are
deprovisioned.

Three more columns are shown in the bhosts command host list:

RC_STATUS
LSF
resource connector status.

Preprovision_Started
Resource connector started the preprovisioning script for the new host.

Preprovision_Failed
The preprovisioning script returned an error.

Allocated
The host is ready to join the LSF cluster.

Reclaim_Received
A host reclaim request was received from the provider (for example, for an AWS spot
instance).

RelinquishReq_Sent
LSF
started to relinquish the host.

Relinquished
LSF
finished relinquishing the host.

Deallocated_Sent
LSF sent a
return request to the provider.

Postprovision_Started
LSF
started the postprovisioning script after the host was returned.

Done
The host life cyle is complete.

PROV_STATUS
Provider status. This status depends the provider. For example, AWS has pending, running,
shutting
down, terminated, and others. Check documentation for the provider to understand the status
that is
displayed.

UPDATED_AT
Time stamp of the latest status change.

IBM Spectrum LSF 10.1 3

For hosts provisioned by resource connector, these columns show appropriate status values and a
time
stamp. A dash (-) is displayed in these columns for other hosts in
the cluster.

For example,

bhosts -rc

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
RC_STATUS PROV_STATUS UPDATED_AT

icgen2host-10-240-0-37 ok - 1 0 0 0 0 0
Allocated running 2017-04-07T12:28:46CDT

lsf1.aws. closed - 1 0 0 0 0 0 -
- -

The -l option shows more detailed information about provisioned
hosts:

bhosts -rc -l

HOST icgen2host-10-240-0-37

STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV RC_STATUS
PROV_STATUS UPDATED_AT DISPATCH_WINDOW

ok 60.00 - 1 0 0 0 0 0 Allocated
running 2017-04-07T12:28:46CDT -

 CURRENT LOAD USED FOR SCHEDULING:

 r15s r1m r15m ut pg io ls it tmp swp mem
slots

 Total 1.0 0.0 0.0 1% 0.0 33 0 3 5504M 0M 385M
1

 Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M
-

The -rconly option shows the status of all hosts that are provisioned by
LSF resource connector, no matter if
they are in the cluster or not.

The following information is shown:

PUB_DNS_NAME and PUB_IP_ADDRESS
Public DNS name and IP address of the host.

PRIV_DNS_NAME and PRIV_IP_ADDRESS
Private DNS name and IP address of the host.

RC_STATUS
LSF
resource connector status.

PROV_STATUS
Resource provider status.

TAG
The RC_ACCOUNT value that is defined in the
lsb.queues or lsb.applications files.

UPDATED_AT
Time stamp of the latest status change.

For example,

bhosts -rconly

PROVIDER : aws

 TEMPLATE : aws-vm-1

 PUB_DNS_NAME PUB_IP_ADDRESS PRIV_DNS_NAME PRIV_IP_ADDRESS
RC_STATUS PROV_STATUS TAG UPDATED_AT

 icgen2host-10-240-0-37 52.43.171.109 ip-192-168-0-85.us
192.168.0.85 Done terminated default 2017-
05-31T14:30:47CDT

 icgen2host-10-240-0-47 35.160.157.112 ip-192-168-0-69.us

4 IBM Spectrum LSF 10.1

192.168.0.69 Allocated running default 2017-
05-31T14:32:00CDT

Limitations
Do not create advanced reservations on AWS instances because the reservations might be terminated
after
idle time. If advanced reservations are created on instances, they remain active if the
instances are destroyed.
However, jobs are not able to run on the instance since the LSF
daemons are shut down on terminated
instances and the jobs become unavailable.

Hosts can be returned to their resource provider at any time by idle time or
time-to-live policy, EGO
reclaim,
or AWS reclaim. The hosts might be closed or unavailable when the advanced reservation
starts.

Hosts can be returned to their resource provider at any time by idle time or
time-to-live policy, or AWS
reclaim. The hosts might be closed or unavailable when the advanced
reservation starts.

It also is possible for resource connector to over-demand for its workload if a borrowed host
joins the cluster
but it is not immediately usable by scheduler.

If borrowed hosts cannot resolve host names, then commands like lsrcp do not
work when used to copy the
files from one instance to another.

The HOSTS parameter in the lsb.queues file and the
job-level -m option do not apply to borrowed hosts
managed through the resource
connector.

Administrators must use the RC_HOSTS parameter in the queue to specify the
external resources that
resource connector can borrow resources from. A queue can borrow hosts only
from the resource that the
RC_HOSTS parameter defines. For
example, if the queue defines only the AWS resources
(RC_HOSTS=awshost), it
cannot borrow EGO or
OpenStack resources.

The RC_ACCOUNT parameter that is defined in an application profile in the
lsb.applications file is not
displayed in the bapp -l
command. The bqueues -l command shows the value of the
RC_ACCOUNT and
RC_HOSTS parameters that are defined in
queues. The bhosts -rconly option displays the RC_ACCOUNT
value under the TAG column.

If you configure the LSF_MQ_BROKER_HOSTS parameter to enable the
bhosts -rc and bhosts -rconly
command options to display
resource provider host information, the -rc and -rconly options do
not support
host groups or CUs.

Configuring resource providers for LSF
resource
connector

Modify resource connector configuration files after installation to enable resource
providers.

Initial configuration

Set the basic configuration files for the LSF resource connector.

Configure multiple resource providers

You can configure multiple resource providers in one LSF cluster.

Configuring different templates to create instances

If you configure multiple templates in a provider's template file, you can run different types of jobs on

different template instances.

IBM Spectrum LSF 10.1 5

Assigning exclusive resources to a template
When you assign exclusive resources to a template, LSF recognizes the exclusive resource definition for
demand calculation. You must set up the exclusive resource when launching the instance.
Configuring Amazon Web Services for LSF resource connector
Follow these steps to configure Amazon Web Services (AWS) to create instances for LSF resource
connector to make allocation requests on behalf of LSF.

Initial configuration

Set the basic configuration files for the LSF
resource connector.

About this task
If you are using LSF 10.1,
after installing the LSF
cluster, use the configuration files that are included with the
LSF
resource connector to set up a basic configuration.

Procedure
1. Create an initial host provider configuration file from the example
hostProviders.json file.

Copy the LSF_TOP/10.1.0/resource_connector/example_hostProviders.json file to
LSF_TOP/conf/conf/resource_connector/hostProviders.json and
customize this file for your cluster.

For more details on the hostProviders.json file, refer to
hostProviders.json.

2. Create initial configuration files for the required resource providers from the example
resource
connector configuration files.
Copy all the configuration files for your resource providers from
LSF_TOP/10.1.0/resource_connector/provider_name/conf file to
LSF_TOP/conf/resource_connector/provider_name/conf
and customize these files for your cluster.

For more details on the configuration files for your resource providers, refer to
Configuring different
templates to create instances and LSF resource connector configuration reference.

Important: Use the default scriptPath parameter value, which refers
to the
LSF_TOP/10.1.0/resource_connector/provider_name file path. If you put the script
files in the
LSF_TOP/conf/resource_connector directory or use a custom value
for scriptPath, LSF
resource
connector patch files do not automatically update the script and library files. This is
because the LSF
patchinstall command only updates files under the LSF_TOP/10.1.0 directory.

3. Create a user_data.sh script file that runs when each new instance
launches.
Save the user_data.sh script file in the LSF_TOP/10.1.0/resource_connector/provider_name/scripts
directory. You can create
a script file based on the example script file in the following file path:
LSF_TOP/10.1.0/resource_connector/provider_name/scripts/example_user_data.sh

4. Change the ownership of all new files and directories in the LSF_TOP/conf
directory to the cluster
administrator.

Configure multiple resource providers

6 IBM Spectrum LSF 10.1

You can configure multiple resource providers in one LSF
cluster.

Each provider has its own set of configurable parameters that are defined in the
hostProviders.json file (see
hostProviders.json for more information). A log file for each
provider
(<provider_name>.log.<host_name>)
is
located in the LOGDIR and a persistence file is located in
LSF_SHAREDIR/<cluster_name>/resource_connector/aws-db.json.

All the providers must have the same LSF
administrator account.

Each host provider must have a unique name. If two different host providers use the same name,
LSF logs a
warning and ignores one of the entries.

The LSF
administrator must have access to the directories specified by the confPath
and scriptPath
attributes in the hostProviders.json
file. For example:

{

 "providers":[

 {

 "name": "aws1",

 "type": "awsProv",

 "confPath": "resource_connector/aws1",

 "scriptPath": "resource_connector/aws1",

 "scriptOptions": "-Dhttps.proxyHost=10.115.206.146 -
Dhttps.proxyPort=8888",

 "billingPeriod": "60",

 "preProvPath": "/usr/share/lsf/scripts/pre_provision_aws1.sh",

 "postProvPath": "/usr/share/lsf/scripts/post_provision_aws1.sh",

 "provTimeOut" : 10

 },

 {

 "name": "aws2",

 "type": "awsProv",

 "confPath": "resource_connector/aws2",

 "scriptPath": "resource_connector/aws2",

 "billingPeriod": "30",

 "preProvPath": "/usr/share/lsf/scripts/pre_provision_aws2.sh",

 "postProvPath": "/usr/share/lsf/scripts/post_provision_aws2.sh",

 "provTimeOut" : 20

 }

]

}

Both full and relative paths are supported for configuration and script files. The default
assumes a path
relative LSF_TOP/conf/resource_connector for
configuration files and
LSF_TOP/LSF_VERSION/resource_connector/
for scripts.

Changes to the hostProviders.json configuration file requires a
reconfiguration of LSF by
running the command
badmin mbdrestart on the LSF management
host.

Related reference
hostProviders.json

Configuring different templates to create instances

IBM Spectrum LSF 10.1 7

If you configure multiple templates in a provider's template file, you can run different
types of jobs on
different template instances.

About this task
LSF
resource connector can map resources to attributes in the cloud provider template. You can define
one
String or Numeric resource, or a series of
Boolean resources, and configure different values in attributes for
different
templates. For example, you can define a static String resource such as
vm_type, and map different
values for different templates..

Procedure
1. Define the resource in the lsf.shared file.

To define a String resource named vm_type:

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION # Keywords

...

 vm_type String () () (vm types for different templates)

...

End Resource

2. In the cloud provider template file, configure the different values of the resource attribute
for the
different templates, then configure the corresponding key-value pair in
userData.
Tip:

For each applicable template, add the resource name to attributes and the
corresponding key-
value pair to userData.
The sum of the maxNumber value for all templates
should not be greater than 25120;
otherwise, any hosts above this 25120 limit will be ignored.

For example, for AWS, edit the
LSF_TOP/conf/resource_connector/aws/conf/awsprov_templates.json
file. To associate vm_type=micro with the cloud-VM-1
template and to associate vm_type=small
with the
cloud-VM-2 template, add the vm_type resource to
attributes and the corresponding value for
the vm_type key
in userData:

{

 "templates": [

 {

 "templateId": "cloud-VM-1",

 "maxNumber": 5,

 "attributes": {

 "type": ["String", "X86_64"],

 "ncores": ["Numeric", "1"],

 "ncpus": ["Numeric", "1"],

 "nthreads": ["Numeric", "2"],

 "mem": ["Numeric", "455001"],

 "vm_type": ["String", "micro"],

 "awshost": ["Boolean", "1"],

 },

 ...

 "userData": "vm_type=micro"

 },

 {

 "templateId": "cloud-VM-2",

 "maxNumber": 5,

 "attributes": {

 "type": ["String", "X86_64"],

 "ncores": ["Numeric", "1"],

8 IBM Spectrum LSF 10.1

 "ncpus": ["Numeric", "1"],

 "nthreads": ["Numeric", "1"],

 "mem": ["Numeric", "512"],

 "vm_type": ["String", "small"],

 "awshost": ["Boolean", "1"]

 },

 ...

 "userData": "vm_type=small"

 }

]

}

3. Edit the user_data.sh script file for the cloud provider to modify the
value of the
LSF_LOCAL_RESOURCES parameter in the lsf.conf
file for new instances.
The user_data.sh script runs when each new instance launches.

For example, for AWS, modify the
LSF_TOP/10.1/resource_connector/aws/scripts/user_data.sh
file.
Add the following lines to enable the user_data.sh script to modify the
value of the
LSF_LOCAL_RESOURCES parameter in the lsf.conf
file on the newly-created instance.

if [-n "$vm_type"]; then

 sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resourcemap
$vm_type*vm_type]\"/" $LSF_CONF_FILE

fi

4. To select different templates in LSF, use
the resource key-value pair in the selection string when
specifying the resource requirements for
your job.

The following command triggers LSF
resource connector to create an instance from the cloud-
VM-1 template, and to
run the job on this
instance:

bsub -R "select[vm_type==micro]" myjob

The following command triggers LSF
resource connector to create an instance from the cloud-
VM-2 template, and to
run the job on this
instance:

bsub -R "select[vm_type==small]" myjob

What to do next
The AWS and Google cloud providers use a local user_data.sh script on the
LSF management host in
LSF_TOP/10.1/resource_connector/provider_name/scripts/user_data.sh.
Some other cloud providers,
such as Azure, CycleCloud, and IBM Cloud use the user data script's URL
in the template configuration.
Modify the URL to the user_data.sh file to let
it take effect.
Instead of the String resource, you can also use the
Numeric resource or a series of Boolean resources
for
different templates. For Boolean resources, you must modify the user_data.sh
file to add
[resource <bool_resource_name>] into the
LSF_LOCAL_RESOURCES parameter.
For
example:

if [-n ${bool_resource_A}]; then

 sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resource bool_resource_A]\"/"
$LSF_CONF_FILE

fi

if [-n ${bool_resource_B}]; then

 sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resource bool_resource_B]\"/"
$LSF_CONF_FILE

fi

IBM Spectrum LSF 10.1 9

You can also use the LSF-defined String resource templateID to select a
different template. To select a
different template, configure a different value for the
templateID attribute in different templates, but
you do not have to configure
its key-value pair in the userData attribute. Each cloud provider creates an
internal environment template_id for different templates. Copy the following
lines (which are from the
example_user_data.sh file) to your
user_data.sh file:

if [-n "${template_id}"]; then

 sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resourcemap
${template_id}*templateID]\"/" $LSF_CONF_FILE

fi

You cannot use the LSF-defined resource rc_account to select different templates.

Assigning exclusive resources to a template

When you assign exclusive resources to a template, LSF
recognizes the exclusive resource definition for
demand calculation. You must set up the exclusive
resource when launching the instance.

An exclusive resource is a special resource that is assignable to a host. A host with an
exclusive resource does
not receive jobs unless that job explicitly requests the resource.

For example, you might want to run test jobs only on the cheapest instance type configured for
your resource
provider. You want to be able to select a template with that vmType
only when you want to run on it. Unless
specifically requested, this template is not chosen by the
scheduler.

LSF
resource connector supports an exclusive Boolean resource (for example
instance_store) that is
defined in the attribute section of a template.
Resource connector recognizes the exclusive resource definition
when it creates hosts based on that
template. The logical not (!) operator is used to create hosts do not use
the
exclusive resource (!instance_store). For
example,

{

"templates": [

{

"templateId": "Template-VM-1",

"attributes": {

"type": ["String", "X86_64"],

"ncores": ["Numeric", "1"],

"ncpus": ["Numeric", "1"],

"mem": ["Numeric", "1024"],

"awshost1": ["Boolean", "1"],

"!instance_store": ["Boolean", "1"]

},

…

"userData": "zone=us_west_2a;instance_store=!instance_store"

}

]

}

Add the exclusive resource to the user_data.sh file to set up the exclusive
resource in the
LSF_LOCAL_RESOURCES parameter when the instance is launched,
and refer to it in the userData attribute in
the template. For
example,

cat user_data.sh

#

Support rc_account resource to enable RC_ACCOUNT policy

Add additional local resources if needed

#

10 IBM Spectrum LSF 10.1

if [-n "${rc_account}"]; then

sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resourcemap
${rc_account}*rc_account]\"/" $LSF_CONF_FILE

echo "update LSF_LOCAL_RESOURCES lsf.conf successfully, add [resourcemap
${rc_account}*rc_account]" >> $logfile

fi

if [-n "${instance_store}"]; then

sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resource ${instance_store}]\"/"
$LSF_CONF_FILE

echo "Updated LSF_LOCAL_RESOURCES in $LSF_CONF_FILE successfully, add [resource
${instance_store}]" >> $logfile

else

echo "instance_store does not exist in the environment variable" >> $logfile

fi

Configuring Amazon Web Services for LSF
resource
connector

Follow these steps to configure Amazon Web Services (AWS) to create instances for
LSF resource connector
to make allocation requests on behalf of LSF.

Preparing to configure LSF resource connector for AWS

The purpose of the Configuring IBM Spectrum LSF resource connector guide is to describe how to

configure IBM® Spectrum LSF resource connector to cloud-burst to a cloud provider and have LSF
automatically borrow hosts in the cloud to grow the cluster when demand is high. Resource connector
will release and terminate the borrowed hosts when the demand is low and hosts are idle.
Building a cloud image

To create an Amazon Machine Image (AMI) for an LSF cloud compute host, the cluster administrator
must first manually launch an instance and install LSF on an EC2 instance. An AMI is then created from
this instance. Subsequent cloud instances can be dynamically launched by LSF using this AMI.
Enabling LSF resource connector for Amazon Web Services (AWS)

Enabling LSF resource connector for AWS is done through first executing aws_enable.sh script then
following with a few manual steps. The script needs to be executed on the LSF management host
where the launch request of the AWS EC2 instance takes place.
Configuring bursting behavior

LSF has two places to configure the overall decision on how to configure bursting behavior because
only the scheduler (the mbsched daemon) has information about jobs and this information is not
needed by the resource connector policy module. A decision is first made to determine if demand is
generated or not at the scheduler. This is controlled at the queue level using the queue threshold.
Assigning exclusive resources to a template

When you assign exclusive resources to a template, LSF recognizes the exclusive resource definition for
demand calculation. You must set up the exclusive resource when launching the instance.
Configuring AWS access with federated accounts

Resource connector supports federated accounts for LSF resource connector as an alternative to
requiring permanent AWS IAM account credentials. Federated users are external identities that are
granted temporary credentials with secure access to resources in AWS without requiring creation of
IAM users. Users are authenticated outside of AWS (for example, through Windows Active Directory).
All AWS resource connector features are supported when you use federated accounts instead of
IAM credentials.

IBM Spectrum LSF 10.1 11

Configure launch templates for AWS
A launch template is an Amazon Elastic Compute Cloud (EC2) feature that reduces the number of steps
that are required to create an AWS instance by capturing all launch parameters within one resource.
Attach EFA network interfaces to AWS templates
The Elastic Fabric Adapter (EFA) is a network interface for Amazon Elastic Compute Cloud (EC2)
instances that allows you to run HPC applications with improved levels of communication between
several different nodes.
Use AWS spot instances
Use spot instances to bid on spare Amazon EC2 computing capacity. Since spot instances are often
available at a discount compared to the pricing of On-Demand instances, you can significantly reduce
the cost of running your applications, grow your application’s compute capacity and throughput for the
same budget, and enable new types of cloud computing applications.
Using Amazon EC2 Fleet
As of Fix Pack 14, the LSF resource connector for Amazon Web Services (AWS) uses an Amazon EC2
Fleet API to create multiple (that is, a fleet of) instances. EC2 Fleet is an AWS feature that extends the
existing spot fleet, which gives you a unique ability to create fleets of EC2 instances composed of a
combination of EC2 on-demand, reserved, and spot instances, by using a single API. Follow these steps
to configure AWS using Amazon EC2 Fleet to create instances for LSF resource connector to make
allocation requests on behalf of LSF.
Submitting jobs to launch instances from Amazon Web Services
Use the bsub command to submit jobs that require instances that are launched from AWS as the
resource provider. Use the bhosts to monitor borrowed hosts. Use the bhosts command to monitor
host status.

Preparing to configure LSF resource connector for AWS

The purpose of the Configuring IBM Spectrum LSF resource connector guide is to describe
how to configure
IBM Spectrum
LSF resource connector to cloud-burst to a cloud provider and have LSF
automatically borrow
hosts in the cloud to grow the cluster when demand is high. Resource connector
will release and terminate
the borrowed hosts when the demand is low and hosts are idle.

IBM Spectrum
LSF resource connector supports multiple cloud providers resource connector currently
only
supports Linux. Some understanding of those cloud providers is required in order to complete
the tasks of the
document and it is recommend going over these prerequisites as a starting
point.

Amazon Web Services terms
The following terms are used throughout this guide and are specific to AWS features and functionality.

AWS EC2 Instance: Amazon Web Services virtual server in Amazon’s elastic compute
cloud.
AMI: Amazon Machine Image for launching EC2 instances.
ARN: Amazon Resource Name is a format for uniquely naming AWS resources (for example,
arn:aws:iam::<account number>:instance-profile/LSFRole
AWS IAM: Amazon Web Services identity and access management for AWS resources.
Federated Account: Federation enables users access to AWS cloud resources through single
sign-on
to access AWS accounts using credentials from your corporate directory.
VPC: Amazon virtual private cloud allows networking configuration that the EC2 instances
will reside
in.

12 IBM Spectrum LSF 10.1

Prerequisite reading
AWS Management Console - Getting Started: The console is one of the main access points to
configure AWS related settings including creation of the access key, users, roles, AMI and launching
the
first instance.
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html

Amazon Machine Images (AMI): https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

Getting Started with Amazon EC2 Linux Instances: The AMI that LSF will use requires the
user to
build it based on a launched instance.
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

AWS IAM Users: https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
OR

AWS Identity and Federation:
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html

and

https://aws.amazon.com/identity/federation/

AWS VPC: The launched instances from LSF will need to reside in a VPC which allows access
to the on-
premise hosts in the same LSF cluster.
http://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/ExerciseOverview.html

Gathering your requirements
There are some details not covered in this document since they are environment dependent and are
varied for
each organization. You are expected to obtain this information through your organization
either ahead of time
or when the step requires the information. For example, this may include:

How to connect from an on-premise host machine to a launched AWS EC2 instance.
What type of user authentication is used for AWS access; IAM Credentials or Account
Federation
Note: Both IAM user credentials and federated accounts support all AWS RC features. The
user for
either option must be assigned the correct permissions. (See Enabling LSF resource connector for
Amazon Web Services (AWS))

Required configuration concepts
Below is an overview of the required steps required to cloud-burst. This document is written with
the
assumption that you are familiar with these concepts.

Launch AWS EC2 instance from a public or private Linux AMI
Install LSF as a server host on the AWS EC2 instance
Build a cloud image by saving a new AMI based on the AWS EC2 instance
Setting up required policies for the IAM Roles used from IAM users or federated accounts
Create an AWS Key Pair
Configure DNS settings to allow the on-premise cluster to communicate with AWS EC2 instances
either
through using public IP’s or DNS network configurations

IBM Spectrum LSF 10.1 13

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://aws.amazon.com/identity/federation/
http://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/ExerciseOverview.html

Building a cloud image

To create an Amazon Machine Image (AMI) for an LSF cloud compute host, the cluster
administrator must first
manually launch an instance and install LSF on an EC2 instance. An AMI is
then created from this instance.
Subsequent cloud instances can be dynamically launched by LSF using
this AMI.

Preparing AWS components

Follow these steps to prepare Amazon Web Services (AWS) for LSF Resource Connector.

Launching the Amazon Web Services EC2 instance

AWS EC2 describes the instance type. Follow these steps to launch the Amazon Web Services (AWS)

EC2 instance.
Installing an LSF server host on the AWS EC2 instance

Follow these steps to install an LSF server host on the Amazon Web Services (AWS) for EC2 instance.

Preparing AWS components

Follow these steps to prepare Amazon Web Services (AWS) for LSF
Resource Connector.

Before you begin
LSF should be installed on the local management host already which means the LSF ports are already
determined.

You must already have access to an AWS account or ask your AWS Admin to gain access.

Procedure
1. Login to the AWS console as the administrator or a user with privileges to create and modify
VPC,

subnets, and AMIs.
2. Create a security group for LSF.

You can use the default security group that is provided by AWS or create your own with customized
rules to open all LSF listening ports to the security groups that are used to launch instances. If
the
default is used, it must also be configured to allow network traffic through the LSF ports. The
ports
must match the ports in the existing LSF cluster.

LSF has the following default port number values:
LSF_LIM_PORT=7869 (TCP and UDP)
LSF_RES_PORT=6878 (TCP)
LSB_SBD_PORT=6882 (TCP)

You can also add management host IP address to accept all traffic from the management host.

Tip: Remember the security Group ID (for example, sg-1234) as this is required in the
awsprov_templates.json file.
Note: If you allow only the traffic from the default ports, some nioscommands, such as bsub –I for
interactive jobs, might not work, since the ports are configured for them dynamically and are
different
from the default ports. Open additional ports in the firewall or network to allow NIOS to
communicate.
Use LSF_NIOS_PORT_RANGE to configure the port range which is opened for LSF to
use.

3. Create a Virtual Private Cloud (VPC) and subnets.

14 IBM Spectrum LSF 10.1

A Virtual Private Cloud (VPC) is a virtual network that is dedicated to an AWS
account.

AWS help: https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

A subnet is a range of IP addresses in your VPC. You can launch AWS resources into a subnet that
you
select. Use a public subnet for resources that must be connected to the internet, and a private
subnet
for resources that aren't connected to the internet.

If the Auto-Assign Public IP option is checked, public IP or public DNS is available for created
instances
in this subnet.

In most of the cases, the management host does not run on AWS. AWS server hosts must have either a
public IP address or the network must be configured in a way for the management host LIM to connect
to the
LIMs on the AWS server host. By default, Amazon assigns a private DNS to the instances that are
created.

Tip: Remember the subnet ID that will be needed in the awsprov_templates.json file that
is used to
launch the instance by LSF.

Launching the Amazon Web Services EC2 instance

AWS EC2 describes the instance type. Follow these steps to launch the Amazon Web Services
(AWS) EC2
instance.

Procedure
1. Log in to the AWS Console with either the federated account or IAM user created above.
2. Select the security group that you created for LSF and
pick the machine attributes, VPC, and subnet

information that you created when preparing the AWS
components.
3. Continue through the launch screens from AWS to launch the AWS EC2 instance

Note: AWS help: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-
launch-instance_linux

Installing an LSF server host on the AWS EC2 instance

Follow these steps to install an LSF server host on the Amazon Web Services (AWS) for EC2
instance.

Before you begin
You must already have launched an AWS EC2 instance.

About this task
AWS uses public-key cryptography to secure the login information for an instance. A Linux
instance has no
password; you use a key pair to log in to your instance securely. You specify the
name of the key pair when you
launch your instance, then provide the private key when you log in
using SSH.

IBM Spectrum LSF 10.1 15

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance_linux

Note: AWS help: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
After the instance is created, use ssh to log in to the instance with the key file
generated above and perform
the following tasks to install LSF on the EC2 instance.

Procedure
1. Copy the LSF package to EC2 host.

lsf10.1.0.12_linux2.6-glibc2.3-x86_64.tar.Z
lsf10.1.0.12_lsfinstall_linux_x86_64.tar.Z
license.dat or lsf.entitlement

2. Set up firewall communications on the instance.
Modify the instance's firewall to open all LSF listening ports. The ports must match those from
the
existing LSF cluster. The ports are required to be opened so the LSF daemons can communicate
from
the AWS instance to the on-premise management host. The following are the default port number
values:

LSF_LIM_PORT=7869 (TCP and UDP)
LSF_RES_PORT=6878 (TCP)
LSB_SBD_PORT=6882 (TCP)

3. Prepare users for LSF. (Optional)
For jobs submitted by a user to run on the instance, the instance must have this user prepared or
LSF
user mapping configured. For more information about user groups and user account mapping, see
Managing
Users and User Groups and Between-Host User Account Mapping.

4. Install the required software (ed.x86_64).
If no software is installed, you can use command yum install to install it:

yum install ed

5. Configure the server.config file and install LSF as a server host on AWS
EC2.
./lsfinstall -s -f server.config

The following example shows typical installation parameters to set in the
server.config file.

$ cat /home/ec2-user/lsf/lsf10.1_lsfinstall/server.config

The LSF_ADMIN must be same admin as the primary cluster and you must make
sure the user

exists in the instance

LSF_TOP="/home/ec2-user/lsf"

LSF_ADMINS="ec2-user"

LSF_TARDIR="/home/ec2-user/lsf/"

The below is not required if an entitlement (LSF_ENTITLEMENT_FILE) is used.

LSF_LICENSE="/home/ec2-user/lsf/license.dat"

LSF_SERVER_HOSTS="management.myserver.com"

The [resource awshost] is required in the server.config

LSF_LOCAL_RESOURCES="[resource awshost] [resource define_ncpus_threads]"

LSF_LIM_PORT="7869"

LSF_LOCAL_RESOURCES (Required): LSF uses the Boolean resource name awshost to
identify AWS
instances.

LSF_LIM_PORT (Required): The port number must be the same as the one defined on the LSF
management host of your cluster.

16 IBM Spectrum LSF 10.1

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

LSF_SERVER_HOSTS (Required): List of management host candidates that the server host will
communicate with for the cluster.

Note: By default, LSF maps ncpus to cores (number_processors x number_cores), but AWS
treats each
virtual CPU as a hyperthreaded core. To map the exact number of AWS instance virtual
CPUs to LSF
ncpus, add the resource name define_ncpus_threads to the list of local resources. The
define_ncpus_threads resource maps the number of LSF ncpus to threads instead of cores for AWS
server
hosts.

6. If required, update the /etc/hosts file on the EC2 host to add the management host name so the EC2
host can ping the management host.

7. Start the LSF daemons on the instance manually and make sure that the EC2 instance can join the
management host cluster as a dynamic host.
If the EC2 instance is started properly, the lshosts and
lsload commands show this dynamic host
information, and the
bhosts command shows a status of closed_RC.

LSF looks up host names and addresses for all communication between hosts borrowed from a
resource provider and management host candidates. Make sure that your environment settings for IP
address resolution work between the LSF management host and borrowed hosts that join the cluster.

Tip: Check whether the management host candidates can ping the borrowed EC2 instances by
using
the host name from the hostname command and vice versa. Also, make sure that the
borrowed EC2
instances can ping themselves with the reported host name from the hostname
command.
If the hosts can ping themselves and each other only by using IP address but not by using the
host
name, DNS settings need to be configured.

If the borrowed host cannot join the cluster, check the VPN, firewall, or security group
settings. You
must open firewall rules for all LSF ports between the LSF management and borrowed server
host IP
ranges.

For more information on troubleshooting refer to Logging and troubleshooting the LSF resource
connector.

8. Shut down the daemons.
9. Create an Amazon machine image (AMI) from the EC2 instance.

Tip: Remember the name of the image (imageId) as it is
required in the awsprov_templates.json file
for LSF to launch instances based
on this AMI with LSF installed.
Note: The hostsetup script must not be executed on the AWS EC2 instance. LSF uses the
user_data.sh
script to startup the LSF daemons on the launched
instances.

Enabling LSF resource connector for Amazon Web
Services (AWS)

Enabling LSF resource connector for AWS is done through first executing
aws_enable.sh script then following
with a few manual steps. The script needs
to be executed on the LSF management host where the launch
request of the AWS EC2 instance takes
place.

aws_enable.sh script

Choose account authentication method

Choose whether to use an IAM user or federated account to access AWS.
Executing the AWS enablement script for LSF

Completing the enabling of Resource Connector for AWS

IBM Spectrum LSF 10.1 17

aws_enable.sh script

The aws_enable.sh script updates the following resource connector
configuration files:

<LSF_TOP>/conf/resource_connector/aws/conf/awsprov_config.json
<LSF_TOP>/conf/resource_connector/aws/conf/credentials
<LSF_TOP>/<LSF_VERSION>/resource_connector/aws/scripts/user_data.sh
<LSF_TOP>/conf/resource_connector/policy_config.json
<LSF_TOP>/conf/resource_connector/hostProviders.json

These files are backed up to <file_name>.aws_backup
before they are updated by the aws_enable.sh script.
All updated files are
rolled back if the script fails.

These configurations are mandatory to enable LSF resource connector for AWS.

Detailed steps for using the aws_enable.sh script are described in the
aws_enable.config file. After installation
of LSF on the management host, the
aws_enable.sh and aws_enable.config files are located in
<LSF_TOP>/lsf_version/install.

The aws_enable.sh script sets the following LSF configuration:

The resource connector demand calculation scheduler module is configured. The
schmod_demand
plugin is uncommented in the lsb.modules
file.
The awshost Boolean resource is added to the lsf.shared file to identify
hosts that are borrowed from
AWS.
The LSB_RC_EXTERNAL_HOST_FLAG=awshost parameter is configured in the
lsf.conf file to enable the
resource connector for AWS.
An AWS queue awsexample is created with the RC_HOSTS=awshost parameter
configured in the
lsb.queues file. Set any other queue parameters you need in
this queue.
The LSF_REG_FLOAT_HOSTS=Y parameter is set in the
lsf.conf file. The
LSF_DYNAMIC_HOST_WAIT_TIME=2 parameter
is also configured in the lsf.conf file if the parameter is
not already set. If
the LSF_DYNAMIC_HOST_WAIT_TIME parameter is already set, the script keeps the
configured value.
For increased security, the LSF_HOST_ADDR_RANGE parameter is configured in
the lsf.cluster.
<cluster_name > file to the value that
you set in the aws_enable.config file. It is required in the
aws_enable_script as it identifies the range of IP addresses that are allowed
to be LSF hosts that can
be dynamically added to or removed from the cluster.

The aws_enable.sh script requires the following information to be specified
in the aws_enable.config file to
enable RC to burst to AWS:

AWS_LSF_TOP is a required parameter of the top directory that LSF was
installed to in the AWS AMI
created for cloud-bursting.
Purpose: This value will be used
to update the user_data.sh script which allows the newly launched
instances to find LSF when the
instance starts up.

AWS_REGION is to be set as the Amazon Web Services region of the user’s
account.
Purpose: LSF will gather information from this region only and launch instances
into this region. Only
one region can be supported per provider.

If AWS_IAM_CREDENTIAL_ID and AWS_IAM_CREDENTIAL_KEY
parameters are set in the
aws_enable.config file, then these values will be set
as the AWS parameters aws_access_key_id and
aws_secret_access_key in the credentials file.

18 IBM Spectrum LSF 10.1

Purpose: LSF will use
this credential to access AWS through the AWS API’s

If AWS_FED_CREDENTIAL_SCRIPT is set in the
aws_enable.config file, then LSF will not use a fixed
credential to access AWS.
Instead it will use this user provided script to generate a temporary
credential to
use.
Purpose: LSF will use this script to generate and renew temporary credentials to
access AWS.

Choose account authentication method

Choose whether to use an IAM user or federated account to access AWS.

Before you begin
For either of the authentication methods that you choose, the user's role that is used for
LSF configuration
must have at least the following AWS permissions granted to that user for the
minimal cloud bursting to AWS:

ec2:DescribeInstances
ec2:DescribeImages
ec2:DescribeKeyPairs
ec2:DescribeSecurityGroups
ec2:DescribeAvailabilityZones
ec2:RunInstances
ec2:TerminateInstances
ec2:StopInstances
ec2:StartInstances"

Note: Some advanced configurations require additional policies. The iam:PassRole is
needed if the instance
profile feature is used.

About this task
Select one of the following account authentication methods to access AWS.

Procedure
Create an IAM access key and credential files.
To create an access key and credential files, log in to the AWS Management Console and open the
IAM
console at https://console.aws.amazon.com/iam/. IAM allows secure access to AWS resources for
users and
also allows shared access to an AWS account. If you create an access key for each user using
the web
GUI, you must download the credentials. A credentials.csv file is
generated.

Tip: The access key ID and secret access key in the credentials.csv
file is needed in the aws_enable.sh
script or can be added directly to the LSF
credentials file.
Use federated accounts for AWS.
A wrapper script is required for this authentication method.

Federated users are external identities that are granted temporary credentials with secure access
to
resources in AWS without requiring creation of IAM users. Users are authenticated outside of AWS
(for
example, through Windows Active Directory). LSF
resource connector integrates with federated
accounts through a user defined script that requires
specific format for the output.

IBM Spectrum LSF 10.1 19

https://console.aws.amazon.com/iam/

The roles for the user must have the required policies and permissions attached in AWS.

For more information, refer to the following Amazon documentation:

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
Follow the instructions in the section, Configuring AWS access with federated accounts to create
the script. The location of the script
will need to be set as the value of
AWS_FED_CREDENTIAL_SCRIPT. The AWS
resource connector can be enabled first with IAM
and switched later to federated accounts after
through the awsprov_config.json file.

https://aws.amazon.com/identity/federation/.
Note: The aws_enable.sh script must be executed on the local LSF
management host. The
local
management host
is the machine that initiates the AWS EC2 instances.
Use
the management host
instance profile credentials.
When the LSF
management host and the resource connector are deployed in an AWS EC2 instance with
an appropriate
instance profile, the resource connector uses the instance profile's credentials to access
the AWS
API.

This authentication method requires that the awsprov_config.json configuration file does not contain
the
AWS_CREDENTIAL_FILE and AWS_CREDENTIAL_SCRIPT
parameters.

For more information about using the management host instance
profile credentials, see the Amazon
documentation: https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-
ec2.html.

Executing the AWS enablement script for LSF

Before you begin
LSF should already be installed on an AWS AMI and already installed on the on-premise management host.

About this task
To use the aws_enable.sh script, follow these steps.

Procedure
1. Source the LSF profile (for example,
<LSF_TOP>/conf/profile.lsf).
2. Edit the
<LSF_TOP>/<LSF_VERSION>/install/aws_enable.config
file to configure the installation

parameters.
3. Run ./aws_enable.sh -f aws_enable.config.

If live configuration in LSF is
enabled, the lsb.queues and
lsf.cluster.cluster_name under the
LSF_LIVE_CONFDIR directory is updated by the aws_enable.sh
script.

Note: To disable the LSF
resource connector for AWS after you run the aws_enable.sh script, comment
out
or remove the line in the lsf.conf where the AWS host resource is defined (in
the
LSB_RC_EXTERNAL_HOST_FLAG=awshost parameter).

20 IBM Spectrum LSF 10.1

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://aws.amazon.com/identity/federation/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Completing the enabling of Resource Connector for AWS

Before you begin
Before performing this task, the aws_enable.sh script must already have been
executed successfully.

About this task
To complete the enabling of Resource Connector for AWS perform the following steps:

Procedure
1. Create the hostProviders.json file with lsfadmin as
the owner.

The hostProviders.json file specifies which resource providers that the
LSF resource connector can use.
Create this file in the default directory,
<LSF_TOP>/conf/resource_connector

For more information, refer to hostProviders.json.

{

 "providers":[

 {

 "name": "aws",

 "type": "awsProv",

 "confPath": "resource_connector/aws",

 "scriptPath": "resource_connector/aws"

 }

]

}

2. Create AWS instance templates.
Create at least one template in the awsprov_templates.json file in the
default directory,
<LSF_TOP>/conf/resource_connector/aws/conf/awsprov_templates.json.
Make sure that your template accurately defines at least the following attributes:

ncpus
awshost

The following template is a minimal example for hosts with 4 CPUs:

{

 "Templates":

 [

 {

 "templateId": "TemplateA",

 "attributes":

 {

 "ncpus": ["Numeric", "4"],

 "awshost": ["Boolean", "1"]

 },

 "imageId": "ami-27ai",

 "vmType": "t2.micro",

 "subnetId": "subnet-b573",

 "keyName": "LSF-Key",

 "MaxNumber": "10",

 "securityGroupIds": ["sg-7231"]

 }

IBM Spectrum LSF 10.1 21

]

}

What to do next
To validate the configuration of LSF resource connector for AWS, refer to Submitting jobs to launch instances
from Amazon Web Services to submit a test job to ensure LSF can launch an AWS
EC2 instance with LSF
daemons running. The host may not be able to join successfully to the LSF
cluster due to DNS or network
settings. If this is the case, the instance will be created and live
for a few minutes and terminated. LSF will
then retry and launch subsequent AWS EC2 instances.

Kill the job to stop LSF from retrying and continue to Configuring user scripts to register Amazon Web Services
hosts with the LSF master host to configure the user_data.sh script to
try fixing any specific DNS or
environment issues.

Configuring user scripts to register Amazon Web Services hosts with the LSF management host

If a DNS server is not set up to resolve the LSF management host and AWS instances, use the

user_data.sh script under the <LSF_TOP>/<LSF_VERSION>/resource_connector/aws/scripts directory
to register the dynamic hosts and resolve the DNS entries on both sides.

Configuring user scripts to register Amazon Web
Services hosts with the LSF management
host

If a DNS server is not set up to resolve the LSF management
host and AWS instances, use the user_data.sh
script under the
<LSF_TOP>/<LSF_VERSION>/resource_connector/aws/scripts
directory to register the
dynamic hosts and resolve the DNS entries on both sides.

About this task
When AWS creates an instance, the EC2 host has two IP addresses and two host names (internal and
public).
By default, AWS uses the internal IP address and host name that is reported by the hostname
command to
communicate, but an external (public) LSF management host cannot recognize the private host
name and IP
address. For the management host to recognize the instance and use public DNS to resolve the
EC2 public
host name and public IP address of the instance, you must update the internal host name
of the instance to its
public host name before it joins the LSF cluster.

Set up the user_data.sh script to use a public DNS to resolve an EC2 public
host name and IP address to
communicate with the LSF management
host directly. For example, add the following code to the
user_data.sh script
to give a machine host name that the management host can recognize:

Get my public IP

publicIP=$(curl whatismyip.akamai.com)

Make up AWS EC2 host name with public DNS

publicName=ec2-${publicIP//./-}.us-west-2.compute.amazonaws.com

Update host name

echo ${publicName} > /etc/hostname

hostname ${publicName}

Tip: To validate the configuration of LSF resource connector for AWS, refer to Submit jobs to resource
connector to submit a test and make sure the launched AWS
instances can join the LSF cluster.

22 IBM Spectrum LSF 10.1

LSF looks
up host names and addresses for all communication between AWS instances and management host
candidates.
Make sure that your environment settings for IP address resolution work between the LSF
management
host and instances that join the cluster.

Check whether the management host candidate can ping the instance by using both its public IP address
and
the host name reported by the hostname command and vice versa. Make sure that
the instances can ping
themselves and each other with both public IP address and reported host name.
If the instances can ping
themselves and each other only by using IP address but not by using the
host name, DNS settings need to be
configured.

If the instance cannot join the cluster, check the VPN, firewall, or security group settings. You
must open
firewall rules for all LSF ports
between the LSF management
and borrowed server host IP ranges.

If pre-provisioning steps are required to set up specifics on the management host when an EC2
instance is
launched, users can use the pre-provision feature of LSF resource connector.
Post-provisioning can be used to
clean up the steps done in the pre-provision. Refer to Pre-provisioning and post-provisioning for more details.

Example

Configuring bursting behavior

LSF has
two places to configure the overall decision on how to configure bursting behavior because only the
scheduler (the mbsched daemon) has information about jobs and this information is
not needed by the
resource connector policy module. A decision is first made to determine if demand
is generated or not at the
scheduler. This is controlled at the queue level using the queue
threshold.

By default, any pending workload on a cloud enabled queue triggers demand to the resource
connector policy
module to determine how many AWS EC2 instances to launch. A more restrictive policy
can be defined to fine
tune the bursting behavior with the following:

Configuring a threshold on when to launch instances in AWS
(RC_DEMAND_POLICY, configured in the
queue)
Throttling the rate of launching instances in AWS (StepValue) and Maximum
instances to request for
AWS (MaxNumber)
Considering when to reclaim the AWS EC2 instances
(LSB_RC_EXTERNAL_HOST_IDLE_TIME and
LSB_RC_EXTERNAL_HOST_MAX_TTL)

Additional fine tuning of the policies can be done through a customized policy script which is
used after the
default plug-in runs to determine the final demand to be used. This is done through
the policy_config.json file
using the
UserDefinedScriptPath parameter, which is described in policy_config.json.

Configuring a threshold

Configuring the thresholds that determine whether bursting should be considered is done at the queue

level in the LSF lsb.queues file. By default there are no queues configured with thresholds.
Providing specific policy configurations

Administrators can define several policies in the policy_config.json configuration file to be in effect for
the cluster. LSF evaluates the policies one after another going through the list, so that all policies are
valid before any demand or host requests are made. When the scope matches for several policies, each
of the policies in effect has an AND relationship.
Controlling reclaim behavior

IBM Spectrum LSF 10.1 23

Configuring a threshold

Configuring the thresholds that determine whether bursting should be considered is done
at the queue level
in the LSF
lsb.queues file. By default there are no queues configured with
thresholds.

About this task
The RC_DEMAND_POLICY parameter has the following syntax:

RC_DEMAND_POLICY = THRESHOLD[[num_pend_jobs[,duration]] ...]

The demand policy defined by the RC_DEMAND_POLICY parameter can contain
multiple conditions, in an OR
relationship. A condition is defined as
[num_pend_jobs[,duration]]. The queue has more than the specified
number of eligible
pending jobs that are expected to run at least the specified duration in minutes. The
num_pend_jobs option is required, and the duration is optional. The default threshold is
THRESHOLD[[1,0]].

In the following example for the admin queue, LSF
calculates demand if one of the following conditions are
met:

The queue has 5 or more pending jobs in past 10 minutes
There has been one or more pending jobs in past 60 minutes
There are 100 or more pending jobs.

As long as pending jobs at the queue meet at least one threshold condition, LSF
expresses the demand to
resource connector to trigger borrowing.

Example bursting threshold configuration for lsb.queues
lsb.queues

Begin Queue

QUEUE_NAME = admin

DESCRIPTION = Sysadmin jobs, not preempted

PRIORITY = 50

USERS = lsfadmins

EXCLUSIVE = Y

RERUNNABLE = Y

RC_ACCOUNT = ProjectB

RC_HOSTS = awshost

RC_DEMAND_POLICY = THRESHOLD[[5,10] [1,60] [100,0]]

End Queue

lsb.queues

Providing specific policy configurations

Administrators can define several policies in the policy_config.json
configuration file to be in effect for the
cluster. LSF
evaluates the policies one after another going through the list, so that all policies are valid
before
any demand or host requests are made. When the scope matches for several policies, each of
the policies in
effect has an AND relationship.

24 IBM Spectrum LSF 10.1

About this task
The scope of the policies is controlled in the "Consumer" component of the policy. The scope is
determined by
the values in the rcAccount,
templateName and provider names. Refer to policy_config.json for more
details.

In the following example, GlobalPolicyA1 applies to the whole cluster. Across all combined
rcAccounts,
templates and providers since the "all" keyword was used for all parameters of the
scope. ProjectPolicyA2
applies only to ProjectB, jobs submitted to “admin” queue, across all
combined templates and providers.

Example policies configuration in policy_config.json
{

 "Policies":

 [

 {

 "Name": "GlobalPolicyA1",

 "Consumer":

 {

 "rcAccount": ["all"],

 "templateName": ["all"],

 "provider": ["all"]

 },

 "MaxNumber": “100”,

 "StepValue": "5:20"

 },

{

	 “Name” : “ProjectPolicyA2”,

	 “Consumer”:

	 	 {

	 	 “rcAccount”: [“ProjectB”],

	 	 “templateName”: [“all”],

	 	 “provider”: [“all”]

	 	 },

	 	 “MaxNumber”: “50”,

	 	 “StepValue”: “10:10”

 }

]

}

Controlling reclaim behavior

About this task
Two parameters control when LSF will
return and terminate the AWS EC2 instances launched by LSF;
LSB_RC_EXTERNAL_HOST_IDLE_TIME and
LSB_RC_EXTERNAL_HOST_MAX_TTL. Both define values in
minutes. Refer to LSB_RC_EXTERNAL_HOST_IDLE_TIME and LSB_RC_EXTERNAL_HOST_MAX_TTL for the
default values.

The following example uses the values of LSB_RC_EXTERNAL_HOST_IDLE_TIME=60
and
LSB_RC_EXTERNAL_HOST_MAX_TTL=0. This means that when the AWS EC2 host has
no workload for 60
minutes, it will be terminated.

These parameters are applied and effective for the whole LSF
cluster.

IBM Spectrum LSF 10.1 25

Example
Combining the examples in this chapter, the following scenario describes and explain the
behavior of LSF as
jobs are submitted to the LSF
cluster.

1. Initially at t0, (00:00), there are no AWS instances requested since none of the THRESHOLD
conditions
are met for the priority queue. 20 Jobs are submitted to the priority queue.

2. At t6, (00:06), there are 11 jobs submitted to the admin queue which belongs to ProjectB. Since
the 11
jobs just arrived, it does not meet any of the THRESHOLD conditions for admin queue [[5,10]
[1,60]
[100,0]].

3. At t10, (00:10), The same 20 jobs from (1) and 11 jobs from (2) are still pending. The 11 jobs
in the
admin queue do not meet the THRESHOLD so no bursting is done for the admin queue. The
priority
queue is not cloud enabled, so no bursting for the priority queue’s 20 jobs.

4. At t16, (00:16), the same 11 jobs from (2) are still pending, which has a pending time of 10
minutes.
The scheduler will allow bursting as the THRESHOLD of [5, 10] is met for the admin queue.
How many
AWS EC2 instances will be launched is determined next.

5. The resource connector policy receives the request for 11 hosts and will evaluate the applicable
policies. Both policies apply and need to be evaluated.

The order does not matter as both policies need to be met. Using GlobalPolicyA1 first,
the 11 hosts request
first checks MaxNumber which is 100 and it is not exceeded. Next checking the
StepValue, it only allows 5
hosts to be launched every 20 minutes, so the 11 hosts request is
reduced to 5.

Checking the next policy in scope, ProjectPolicyA2, the MaxNumber is not
exceeded as 10 < 50. Next checking
the StepValue it allows 10 hosts every 10 minutes, so since 5
< 10 the final number of launched AWS
instances is 5. There will be 5 AWS EC2 instances launched
at time t16.

Assigning exclusive resources to a template

When you assign exclusive resources to a template, LSF
recognizes the exclusive resource definition for
demand calculation. You must set up the exclusive
resource when launching the instance.

An exclusive resource is a special resource that is assignable to a host. A host with an
exclusive resource does
not receive jobs unless that job explicitly requests the resource.

For example, you might want to run test jobs only on the cheapest instance type configured for
your resource
provider. You want to be able to select a template with that vmType
only when you want to run on it. Unless
specifically requested, this template is not chosen by the
scheduler.

LSF
resource connector supports an exclusive Boolean resource (for example
instance_store) that is
defined in the attribute section of a template.
Resource connector recognizes the exclusive resource definition
when it creates hosts based on that
template. The logical not (!) operator is used to create hosts do not use
the
exclusive resource (!instance_store). For
example,

{

"templates": [

{

26 IBM Spectrum LSF 10.1

"templateId": "Template-VM-1",

"attributes": {

"type": ["String", "X86_64"],

"ncores": ["Numeric", "1"],

"ncpus": ["Numeric", "1"],

"mem": ["Numeric", "1024"],

"awshost1": ["Boolean", "1"],

"!instance_store": ["Boolean", "1"]

},

…

"userData": "zone=us_west_2a;instance_store=!instance_store"

}

]

}

Add the exclusive resource to the user_data.sh file to set up the exclusive
resource in the
LSF_LOCAL_RESOURCES parameter when the instance is launched,
and refer to it in the userData attribute in
the template. For
example,

cat user_data.sh

#

Support rc_account resource to enable RC_ACCOUNT policy

Add additional local resources if needed

#

if [-n "${rc_account}"]; then

sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resourcemap
${rc_account}*rc_account]\"/" $LSF_CONF_FILE

echo "update LSF_LOCAL_RESOURCES lsf.conf successfully, add [resourcemap
${rc_account}*rc_account]" >> $logfile

fi

if [-n "${instance_store}"]; then

sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resource ${instance_store}]\"/"
$LSF_CONF_FILE

echo "Updated LSF_LOCAL_RESOURCES in $LSF_CONF_FILE successfully, add [resource
${instance_store}]" >> $logfile

else

echo "instance_store does not exist in the environment variable" >> $logfile

fi

Configuring AWS access with federated accounts

Resource connector supports federated accounts for LSF
resource connector as an alternative to requiring
permanent AWS IAM account credentials. Federated
users are external identities that are granted temporary
credentials with secure access to resources
in AWS without requiring creation of IAM users. Users are
authenticated outside of AWS (for example,
through Windows Active Directory). All AWS resource connector
features are supported when you use
federated accounts instead of IAM credentials.

Before you begin
The LSF
administrator must create a script or executable that can be executed by the primary LSF
administrator to generate temporary credentials to be used with AWS. The temporary credentials also
must
have the assigned role that has the policies associated for AWS permissions required by
LSF.

IBM Spectrum LSF 10.1 27

The script must be accessible from LSF management
candidate hosts. The script must also be set for the
default profile. The script must output to
stdout in the following format.

[default]

aws_access_key_id=<value>

aws_secret_access_key=<value>

aws_session_token=<value>

For
example:

[default]

aws_access_key_id=aGJ3P1gFRQCEsPNFppTSen+fQTLqS1sLcHldPQmG

aws_secret_access_key=ASIAJ6UWHCWUWRECOKIQ

aws_session_token=
FQoDYXdzENr//////////wEaDHoDxdyu+3TeTAWQDSLTAYncjAgKT/6A1VKtbj6XJ/

l8fbMIzAg3yTIrfHNawTKBmIlAhT07HGN5zZd2YqhjHhKSNIHJUCDsW+pZ8WW+CBcqNTNDInLiM2ubPn8z
j

ItMeknniPMBfwZn+qfQCcl/QjaPgKGXzUBpfVhe202GuGr8bZno4Dzgy7yOmITTugiuUTBh9YKK27OBPZH

ieD6JzvAV0aV2mbFQaznWYhKq2s1MSy7JC4bmaFPNCN81igkfY7AVbYtwTxnFP6peVS2Dergd5Hllef9nU
+V

9WW7nk0yZLyYoxO+lxgU=

The script is executed automatically by LSF when a
credential is required to access AWS services. The script
cannot be interactive since it will be run
automatically by LSF.
Note: If an Active Directory user name and password is required for the script, it must be done
automatically
by storing it in environment variables or a secure file. The environment variable or
file must be readable by the
LSF
primary administrator because that user executes the script.

About this task
Identity federation in AWS allows external identities (federated accounts) to access AWS services
and
resources while being authenticated and authorized outside of AWS IAM. This allows integration
of AWS with
existing authentication services (for example, Active Directory) in enterprise
environments instead of requiring
administrators to create IAM user credentials for each existing
user.

Important: To use existing enterprise users stored in Active Directory (federated
accounts) you must use
temporary credentials.
Federated accounts in AWS require temporary credentials to be generated to allow connection to
AWS. These
credentials are temporary and expire after a specific duration. LSF
resource connector generates the
temporary credentials through execution of an administrator-defined
script or executable that is able to
generate the temporary credentials for LSF to
use. LSF uses
the temporary credentials to establish a
connection to AWS to launch, monitor and terminate EC2
instances.

Procedure
Use the AWS_CREDENTIAL_SCRIPT parameter in the
awsprov_config.json file to specify a path to the script
that generates
temporary credentials for federated accounts.
For
example,

AWS_CREDENTIAL_SCRIPT=/shared/dir/generateCredentials.py

LSF
executes the script as the primary LSF
administrator to generate a temporary credentials before it creates
the EC2 instance.

awsprov_config.json
awsprov_templates.json

28 IBM Spectrum LSF 10.1

Configure launch templates for AWS

A launch template is an Amazon Elastic Compute Cloud (EC2) feature that reduces the
number of steps that
are required to create an AWS instance by capturing all launch parameters
within one resource.

About this task
A launch template contains the configuration information to launch an instance so that you do not
have to
specify them each time you launch an instance. For example, a launch template can contain
the AMI ID,
instance type, and network settings that you typically use to launch instances.

You can configure the LSF
resource connector template for AWS to specify the launch template to use. You
can also create
multiple launch template versions, each of which can have different launch parameters, and
specify
which launch template version to use.

Procedure
Edit the awsprov_templates.json file and specify the launch template
parameters.

a. Set the launchTemplateId parameter value to the ID of the launch
template.
This can be a string between 1 and 255 characters in length.

b. Optional: Set the launchTemplateVersion parameter value to the
version of the launch template to
select when launching instances.
Specify a version number or use one of the following keywords:

$Latest
Amazon EC2 Auto Scaling selects the latest version of the launch template when launching
instances.

$Default
Amazon EC2 Auto Scaling selects the default version of the launch template when launching
instances. This is the default value of the launchTemplateVersion
attribute.

Results
You can launch on-demand or spot instances with launch templates by specifying the launch
template. If the
attached template is a spot type, LSF
creates a spot instance without creating a fleet request. Create spot
fleet requests by specifying
the spot price and fleet role along with the launch template.

Users cannot override the subnet ID and security group from the launch template if the network
interface is
defined in the launch template, even if the network interface is defined as an empty
value. Users can override
launch parameters such as the instance type, AMI, keypair, and security
group if the network interface is not
defined in the specified template by specifying those values
in the awsprov_templates.json file

Example
{

 "templateId": "aws-vm-1",

 "maxNumber": 6,

 "priority" : 80,

IBM Spectrum LSF 10.1 29

 "attributes": {

 "type": ["String", "X86_64"],

 "ncores": ["Numeric", "1"],

 "ncpus": ["Numeric", "1"],

 "mem": ["Numeric", "512"],

 "awshost": ["Boolean", "1"],

 "zone": ["String", "us_west_2b"],

 "pricing": ["String", "spot"]

 },

 "launchTemplateId" : "lt-007f0f860d19c8848",

 "launchTemplateVersion" : "$Latest",

 "fleetRole": "arn:aws:iam::700071821657:role/aws-ec2-spot-fleet-tagging-role",

 "allocationStrategy":"lowestPrice",

 "spotPrice": "1.16"

}

awsprov_templates.json
Attach EFA network interfaces to AWS templates

Attach EFA network interfaces to AWS templates

The Elastic Fabric Adapter (EFA) is a network interface for Amazon Elastic Compute Cloud
(EC2) instances
that allows you to run HPC applications with improved levels of communication
between several different
nodes.

Before you begin
You can only specify an EFA network interface for supported AMI or instance types. For more
details on
supported AMI or instance types for EFA interfaces, refer to the Amazon Web Services website
(https://aws.amazon.com/).

Procedure
1. Install and configure the EFA network interface.

a. Perform the relevant steps in Getting Started with EFA and MPI from the Amazon Web Services
website (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html).
To install and configure the EFA network interface for the LSF
resource connector templates for
AWS, perform the following steps in Getting Started with EFA
and MPI:

i. Prepare an EFA-enabled security group.
Ensure that this security group allows all inbound and
outbound traffic to and from the
security group itself.

ii. Launch a temporary instance.
iii. Install the EFA software.

Install the EFA-enabled kernel, EFA drivers, Libfabric, and Open MPI
stack, which are
required to support EFA on the launched instance.

iv. Install Intel MPI.
v. Install the HPC application.

vi. Create an EFA-enabled AMI.
vii. Launch EFA-enabled instances into a cluster placement group.

30 IBM Spectrum LSF 10.1

https://aws.amazon.com/
https://aws.amazon.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html

2. Edit the awsprov_templates.json file and specify the EFA network interface
for your specific LSF
resource connector template for AWS.

a. Set the imageId parameter value to the same ID when you created an
EFA-enabled AMI.
b. Set the securityGroupIds parameter value to the same security group ID
when you created an

EFA-enabled security group.
Ensure that your EFA-enabled instances are members of a security group that allows all inbound
and outbound traffice to itself.

c. Add a new parameter, interfaceType, and set the parameter value to
efa.
If this parameter is not specified, the default value is interface, which
indicates that the
template uses a regular (non-EFA) network interface.

d. Set the maxNumber parameter value to the number of EFA-enabled instances
that you want to
launch.

e. Set the vmType parameter value to one of the supported instance
types.
For more details on supported instance types for EFA interfaces, refer to Elastic Fabric
Adapter
from the Amazon Web Services website
(https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html).

f. Set the subnetId and placementGroupName parameter
values for your cluster.
Ensure that you launch EFA-enabled instances into a cluster placement group.

A new network interface is created per instance. These automatically-created network interfaces
are
deleted when the instance terminates.

Example
{

 "templateId": "aws-vm-1",

 "maxNumber": 2,

 "attributes": {

 "type": ["String", "X86_64"],

 "ncores": ["Numeric", "1"],

 "ncpus": ["Numeric", "1"],

 "mem": ["Numeric", "512"],

 "awshost": ["Boolean", "1"],

 "zone": ["String", "us_west_2a"],

 "pricing": ["String", "spot"]

 },

 "imageId": "ami-07e3bcfe7a2a2fbb8",

 "vmType": "c5n.18xlarge",

 "keyName": "ib19b07",

 "interfaceType" : "efa",

 "placementGroupName": "pg_1",

 "tenancy": "default",

 "securityGroupIds": ["sg-08f1a36be62fe02a4"],

 "subnetId": "subnet-0fe69d290ae026155",

 "fleetRole": "arn:aws:iam::700071821657:role/EC2-Spot-Fleet-role",

 "allocationStrategy":"lowestPrice",

 "spotPrice": "1.16",

 "userData": "zone=us_west_2a;pricing=spot"

}

awsprov_templates.json
Configure launch templates for AWS

IBM Spectrum LSF 10.1 31

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html

Use AWS spot instances

Use spot instances to bid on spare Amazon EC2 computing capacity. Since spot
instances are often available
at a discount compared to the pricing of On-Demand instances, you can
significantly reduce the cost of
running your applications, grow your application’s compute capacity
and throughput for the same budget, and
enable new types of cloud computing
applications.

With spot instances you can reduce your operating costs by up to 50-90%, compared to on-demand
instances. Since spot instances typically cost 50-90% less, you can increase your compute capacity
by 2-10
times within the same budget.

Spot instances are supported on any Linux x86 system that is supported by LSF.

Spot Instances have some restrictions, including instance types and fleet limitations. For more
information,
see http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-limits.html

Requesting Spot instances
Submit the job that requires spot instance pricing with the pricing==spot
resource requirement in the bsub
command:

bsub -R “awshost && pricing==spot” myjob

The pricing resource must be configured in the
lsf.shared
file:

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION

...

pricing String () () (Pricing option: spot/ondemand)

...

End Resource

Spot instances are reclaimed when the spot price goes higher than the current bid price.

You can also configure an AWS template to use spot
instances.

awsprov_templates.json:

{

 "templateId": "aws-spotvm-demo",

 "maxNumber": 2,

 "attributes": {

 …

 "awshost": ["Boolean", "1"],

 "pricing": ["String", "spot"],

 },

 ...

 ...

 ...

 "userData": "pricing=spot"

 },

Edit the user_data.sh script to use the spot instance
pricing
resource:

#!/bin/bash

echo START >> /var/log/user-data.log 2>&1

run hostsetup

32 IBM Spectrum LSF 10.1

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-limits.html

...

if [-n "${pricing}"]; then

sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resourcemap ${pricing}*pricing]\"/"
$LSF_CONF_FILE

echo "update LSF_LOCAL_RESOURCES lsf.conf successfully, add [resourcemap
${pricing}*pricing]" >> $logfile

fi

...

The user_data.sh script is located in the
<LSF_TOP>/<LSF_VERSION>/resource_connector/aws/scripts
directory.

Security requirements for spot instances
You must create a spot fleet role add the corresponding Amazon Resource Name (ARN) to the
awsprov_templates.json template configuration file. For steps to create a spot
fleet role, see
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet-requests.html#spot-fleet-
prerequisites

The AWS user linked to the access key that is stored in the credentials file must have the Spot
fleet
permissions to bid on, launch, and terminate the configured Spot fleets. For steps to add
permissions
to a user, see http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet-requests.html#spot-
fleet-prerequisites

Logging and troubleshooting
To increase traceability, use the TRACE log level in the
LogLevel parameter in the awsprov_config.json file. This
log level prints the entry of the method with the value of the parameters and the exit of the method
with the
return value (if exists).

The following troubleshooting messages are created when the log level is configured as
DEBUG. For
troubleshooting purposes, every state change on a Spot instance
request is logged with a predefined format:

Spot Fleet Request ID – Spot Instance Request Id- Spot Instance Machine ID: State
update message

Limitations and known issues
The Spot Instance Termination Notice is not accurate if the system clock is not synchronized
between
the management host and the compute host. System clock synchronization is required for reclaim
to
work.
The following AWS topic explains this issue: :
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html

.
If a request remains pending for 60 minutes, resource connector assumes that the request is
lost. The
request is ignored and LSF
recalculates the demand. In AWS Spot instances, the request remains
pending and is not closed.
LSF checks
periodically for any hosts that are planned to be reclaimed and requeues the jobs within the
2
minute termination notice. However, it's possible that AWS might not honor the 2 minute termination
notice, and machines are terminated without a termination notice. For more information, see: :
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html#spot-instance-
termination-notices

IBM Spectrum LSF 10.1 33

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet-requests.html#spot-fleet-prerequisites
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet-requests.html#spot-fleet-prerequisites
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html#spot-instance-termination-notices

Configuring AWS Spot instances
Configure LSF to make Spot instance requests.

Amazon Spot Instances
Amazon Spot Bid Advisor

awsprov_templates.json
awsprov_config.json

Configuring AWS Spot instances

Configure LSF to
make Spot instance requests.

Procedure
1. Configure the pricing resource in the
lsf.shared file:

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION

...

pricing String () () (Pricing option: spot/ondemand)

...

End Resource

2. Configure a Spot instance template in the awsprov_templates.json
file.
The following parameters enable Spot instance requests:

vmType
Specify a machine type of the AWS instance you want to create. The
vmType must support Spot
instances.
Use commas to separate multiple machine types. For
example:

"vmType": "c4.large, m4.large"

For supported machine types, see
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-limits.html#spot-limits-
unsupported

fleetRole
For Spot Instance templates. Specify the role that grants the permission
to bid on, launch, and
terminate spot fleet instances on behalf of the user.
For the steps to
create a Fleet role, see:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet-requests.html#spot-fleet-
prerequisites

spotPrice
For Spot instance templates. Specify the bid price for the instance. Set a
suitable value (usually
the On-Demand price) to make sure that the Spot price is equal to or above
the market Spot
price. The Spot instance is launched when the Spot price of the instance is below
the bid
specified in the spotPrice attribute.
For more information about
Spot pricing, see https://aws.amazon.com/ec2/spot/bid-advisor/

allocationStrategy

34 IBM Spectrum LSF 10.1

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://aws.amazon.com/ec2/spot/bid-advisor/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-limits.html#spot-limits-unsupported
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet-requests.html#spot-fleet-prerequisites
https://aws.amazon.com/ec2/spot/bid-advisor/

For Spot instance templates. The allocation strategy for your Spot fleet
determines how it fulfills
your Spot fleet request from the possible Spot instance pools that are
represented by its launch
specifications. You can specify the following allocation strategies in
your Spot fleet request:

lowestPrice
The Spot instances come from the pool with the lowest price. This is the default strategy.

diversified
The Spot instances are distributed across all pools.

3. Optional: In the awsprov_config.json file, configure the
AWS_SPOT_TERMINATE_ON_RECLAIM
parameter.
The
AWS_SPOT_TERMINATE_ON_RECLAIM parameter processes requests for terminating
Amazon EC2
Spot instances that are planned to be reclaimed by AWS.
If set to
true, the AWS plugin sends an instance termination request to AWS when
notified by LSF that
the reclaimed Spot instance has been closed and the affected jobs are requeued.

Valid values
are true and false. The default value is
false.

4. Optional: Starting in IBM Spectrum LSF Version 10.1 Fix Pack 13, if you set
the allocationStrategy to
lowestPrice, LSF automatically
redirects to the next available template. The next available template is
based on template priority,
which can be the next cheapest Spot or On-Demand instance when the
marketed spot price is higher
than the bid price.. If another allocation strategy is set, such as
diversified, LSF does not automatically switch to the cheapest template.
You can view the current market price, by running the following command:

badmin rc view -c templates -p aws

An example of the output, when the template spot price is equal or greater than the market price,
which enables the template:

aws

 Templates

 templateId: aws2

 maxNumber: 2

 spotPrice: 0.004000 >>> This is the spot price set that is
higher than the current market price.

 fleetRole: arn:aws:iam::700071821657:role/EC2-Spot-Fleet-role

 allocationStrategy: lowestPrice

 imageId: ami-0dbddce684d30c81d

 subnetId: subnet-0dfee843e19bfeb52

 vmType: t3a.micro

 keyName: ib19b07

 userData: pricing=spot;zone=us_west_2b

 marketSpotPrice: 0.003200 >>> This is the real current
market price, which is lower than the spot price.

 securityGroupIds: ["sg-08f1a36be62fe02a4"]

 ebsOptimized: FALSE

 priority: 5

 attributes

 mem: ["Numeric", "700"]

 ncpus: ["Numeric", "2"]

 zone: ["String", "us_west_2b"]

 awshost: ["Boolean", "1"]

 ncores: ["Numeric", "1"]

 type: ["String", "X86_64"]

 pricing: ["String", "spot"]

An example output, when the template spot price is less than market price, which disables the
template:

IBM Spectrum LSF 10.1 35

aws

templateId: aws-vm-3

 spotPrice: 0.003800

 marketSpotPrice: 0.031500

 Template disabled as the spot bid price is lesser than the market
spot price

Starting in IBM Spectrum LSF Version 10.1 Fix Pack 13, LSF automatically disables the template as
the
spot bid price is lesser than the market spot price and redirects to the next available
template. The next
available template is based on template priority, which might be the next
cheapest Spot or On-Demand
instance template. This template is temporarily disabled until the market
price drops or the price is
manually increased in the template. To manually increase the spot price,
specify a greater bid price for
the spotPrice parameter in the
awsprov_templates.json file.

Using Amazon EC2 Fleet

As of Fix Pack 14, the LSF
resource connector for Amazon Web Services (AWS) uses an Amazon EC2 Fleet API
to create multiple
(that is, a fleet of) instances. EC2 Fleet is an AWS feature that extends
the existing spot
fleet, which gives you a unique ability to create fleets of EC2 instances composed of a combination of EC2 on-
demand, reserved,
and spot instances, by using a single API. Follow these steps to configure AWS using
Amazon EC2 Fleet to create instances for LSF
resource connector to make allocation requests on behalf of
LSF.

Before you begin
For more information about Amazon EC2 Fleet, see the AWS documentation.
Before using EC2 Fleet, ensure that you complete the AWS prerequisites for EC2 Fleet, and
specifically
note:

You require an AWS launch template.
You can create this using the AWS EC2 console and set
attributes accordingly.
The EC2 Fleet
maintain type is not supported; only set to instant or
request types.
Additionally, before you can use an EC2
Fleet
request type, you must create the service-linked
role for EC2
Fleet, called AWSServiceRoleForEC2Fleet. This role grants the EC2 Fleet
permission to request, launch, terminate, and tag instances on your
behalf.

About this task
To use the EC2 Fleet API to create instances, the LSF
configurations required after your AWS prerequisites
include configuring the LSF
awsprov_templates.json template and then to create a customized EC2 Fleet
.json
file. Finally, you can verify your LSF
configuration by running the badmin rc view command.

Procedure
1. Configure your awsprov_template.json file, and ensure that it includes the
ec2FleetConfig parameter,

and optionally, the
onDemandTargetCapacityRatio parameter, as follows:

ec2FleetConfig
An absolute or relative path to the EC2 Fleet
configuration file (for example, to a ec2-fleet-
config.json file). For relative
path, the path must be relative to
LSF_TOP/conf/resource_connector/aws/conf
directory.

36 IBM Spectrum LSF 10.1

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-fleet.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/manage-ec2-fleet.html#ec2-fleet-prerequisites

Tip: If you have not yet created this file, follow the next step, and
then return to this parameter
to provide the path to the file.

onDemandTargetCapacityRatio
Optional. Defines how on-demand and spot instances are
distributed among the
TotalTargetCapacity in each EC2 Fleet
request.
Specify a value that is a positive float number
between 0.0 and 1.0. The value represents the
ratio between
OnDemandTargetCapacity to TotalTargetCapacity. To request
pure on-demand or
pure spot instances, you can set this ratio to 1 or
0. If not defined, it follows the
DefaultTargetCapacityType in
the ec2FleetConfig file.

maxNumber
The existing maxNumber parameter restricts the number of instances that can
be provisioned in
the template. Note that as of Fix Pack 14, to support AWS EC2 Fleet templates,
the MaxNumber
is a multiplier of the ncpu value, not a
direct number of instances. For EC2 Fleet, maxNumber
multiplied by ncpus is the maximum slots that EC2 Fleet template can get and
can be
provisioned in this template. For example, if the maxNumber is
5 and ncpus is 2, then the
maximum slots for the
fleet request will be 10.

Here is an example awsprov_templates.json template with EC2 Fleet parameters:

{

 "templates": [

 {

 "templateId": "fleet-lsf-template-1",

 "maxNumber": 5,

 "attributes": {

 "type": ["String", "X86_64"],

 "ncores": ["Numeric", "1"],

 "ncpus": ["Numeric", "2"],

 "mem": ["Numeric", "512"],

 "awshost": ["Boolean", "1"]

 },

 "priority": "121",

 "ec2FleetConfig": "ec2-fleet-config.json",

 "onDemandTargetCapacityRatio":"0.5",

 "instanceTags": "Name=fleet-lsf-template-1"

 }

]

}

Save the file. The default location for the file is
<LSF_TOP>/conf/resource_connector/aws/conf; for
example,
<LSF_TOP>/conf/resource_connector/aws/conf/awsprov_templates.json
.

2. Configure a customized EC2 Fleet configuration file (for example,
one called ec2-fleet-config.json).
AWS uses this file to override the sections
from AWS launch template.
EC2 Fleet has various attributes. When you define the EC2 Fleet configuration file, use JSON format
with the attributes that
you want. For more information, see the AWS documentation: EC2 Fleet
example configurations.
Note: The EC2
Fleet
maintain type is not supported. It must be explicitly set to
instant or request.
The following example EC2
Fleet configuration file shows an instant type.
When creating the EC2 Fleet configuration file, note the following parameters:

LaunchTemplateId
Required. Identifies the AWS launch template.

Overrides
Required. Contains all the customized attributes and values pairs. The
WeightedCapacity must
be defined in this Overrides section
for each VM type in the EC2 Fleet configuration file. The
value of each VM
type's WeightedCapacity is the slots number in LSF, which
depends on the

IBM Spectrum LSF 10.1 37

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-fleet-examples.html

EGO_DEFINE_NCPUS=cores or EGO_DEFINE_NCPUS=threads
setting in the lsf.conf
configuration file. When
EGO_DEFINE_NCPUS is not defined in the lsf.conf file, or
if
EGO_DEFINE_NCPUS=cores, then this value must match the instance number of cores.
If
EGO_DEFINE_NCPUS=threads is defined in the lsf.conf file,
then this value must match the
instance number of virtual CPUs. In the following example EC2 Fleet configuration file, if
EGO_DEFINE_NCPUS=coresin
lsf.conf, then the WeightedCapacity value is
2, if
EGO_DEFINE_NCPUS=threads in the file, then the
WeightedCapacity value is 4.

Priority
Required. The AWS priority for the instance. A lower number will be a higher priority.

TargetCapacityUnitType and InstanceRequirements
Note that these parameters are not supported.

TargetCapacitySpecification
Required. The target capacity must be specified, for
example:

"TargetCapacitySpecification":{

 "TotalTargetCapacity": $LSF_TOTAL_TARGET_CAPACITY,

 "OnDemandTargetCapacity": $LSF_ONDEMAND_TARGET_CAPACITY,

 "SpotTargetCapacity": $LSF_SPOT_TARGET_CAPACITY,

 "DefaultTargetCapacityType": "spot | on-demand"

 }

Here is an example ec2-fleet-config.json file:

{

 "LaunchTemplateConfigs": [

 {

 "LaunchTemplateSpecification": {

 "LaunchTemplateId": "lt-07e47351a93fc8b4f",

 "Version": "1"

 },

 "Overrides":[

 {

 "InstanceType":"c3.large",

 "SubnetId":"subnet-0fe69d290ae026155",

 "WeightedCapacity": 2,

 "Priority": 30

 },

 {

 "InstanceType":"c3.xlarge",

 "SubnetId":"subnet-0dfee843e19bfeb52",

 "WeightedCapacity": 4,

 "Priority": 20

 },

 {

 "InstanceType":"c3.2xlarge",

 "SubnetId":"subnet-0d206516fa58d74b8",

 "WeightedCapacity": 8,

 "Priority": 10

 }

]

 }

],

 "TargetCapacitySpecification": {

 "TotalTargetCapacity": $LSF_TOTAL_TARGET_CAPACITY,

 "OnDemandTargetCapacity": $LSF_ONDEMAND_TARGET_CAPACITY,

 "SpotTargetCapacity": $LSF_SPOT_TARGET_CAPACITY,

 "DefaultTargetCapacityType": "spot"

 },

 "OnDemandOptions": {

 "AllocationStrategy": "prioritized"

 },

38 IBM Spectrum LSF 10.1

 "SpotOptions": {

 "AllocationStrategy": "capacity-optimized-prioritized",

 "InstanceInterruptionBehavior": "terminate"

 },

 "Type": "instant"

}

Save the file. The default location for the file is
<LSF_TOP>/conf/resource_connector/aws/conf; for
example,
<LSF_TOP>/conf/resource_connector/aws/conf/ec2-fleet-config.json

3. Verify your LSF
EC2 Fleet configuration by running the badmin rc -c templates command.
For example, running badmin rc view -c templates based on the example
outputs:

badmin rc view -c templates

aws

 Templates

 templateId: fleet-lsf-template-1

 maxNumber: 5

 instanceTags: Name=fleet-lsf-template-1

 ebsOptimized: FALSE

 priority: 121

 ec2FleetConfig: ec2-fleet-config.json

 onDemandTargetCapacityRatio: 0.500000

 attributes

 mem: ["Numeric", "512"]

 ncpus: ["Numeric", "2"]

 awshost: ["Boolean", "1"]

 ncores: ["Numeric", "1"]

 type: ["String", "X86_64"]

Running badmin rc view based on the example when there are jobs. The output
shows (slot-
based-capacity) to indicate that the template is an EC2 Fleet request template and therefore, the
total target demand is slots based capacity. The
example shows a request of ten slots (not ten VMs):

badmin rc view

aws

 Instances

 Target update time: Thu May 26 17:05:59 2023

 Query request time: Thu May 26 17:05:52 2023

 templateId: fleet-lsf-template-1 (slot-based-capacity)

 rcAccount: default

 Target: 10

 Processing requests: 0

 Fulfilled requests

 Not available: 0

 Available: 10

Submitting jobs to launch instances from Amazon Web
Services

Use the bsub command to submit jobs that require instances that are
launched from AWS as the resource
provider. Use the bhosts to monitor borrowed
hosts. Use the bhosts command to monitor host status.

About this task
In this task, ip-10-11-13-19 is a sample instance from AWS.

IBM Spectrum LSF 10.1 39

An AWS allocation occurs as follows:

Resource connector calls a command that makes a machine instance launch request to AWS.
After the launch command returns successfully, resource connector notifies LSF that
it can use the host
after it joins the cluster.
When the instance starts, LSF
daemons start. When the host joins the cluster, the job is dispatched to
the host.

Procedure
1. Use the bsub command to submit jobs that require instances that are launched
from AWS as the

resource provider.
The following bsub command with no options submits a job that triggers a
launch demand when no
available resources are in the LSF cluster:

bsub myjob

You also can use the
awshost resource in a select[] resource requirement
string. Because the
awshost resource is defined in a template as a Boolean
attribute, it triggers a launch
demand:

bsub -R "select[awshost]" myjob

2. Use the bhosts command to monitor instances.
The status of the instances becomes ok when they join the
LSF cluster as dynamic hosts.
Verify that the job is running on
ip-10-11-13-19:

bhosts -a

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP
USUSP RSV

lsfmanagement ok - 1 0 0 0
0 0

ip-10-11-13-19 ok - 1 1 1 0
0 0

3. Use the bhosts command to monitor the status of the instances.
Run bhosts with -a option, which shows all hosts, including
terminated instances.

If an instance from AWS has no running jobs on it in the number of minutes specified by the
LSF_EXTERNAL_HOST_IDLE_TIME parameter, it is relinquished and its host status
changes to
closed_RC.

You cannot use the badmin hopen command to open a borrowed host in
closed_RC status.

bhosts -a

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP
USUSP RSV

lsfmanagement ok - 1 0 0 0
0 0

ip-10-11-13-19 closed_RC - 1 0 0 0
0 0

If an instance is in the cluster more than the number of minutes specified by the
LSB_RC_EXTERNAL_HOST_MAX_TTL parameter, it is closed
(closed status) and any running jobs on
the instance are allowed to run
to completion.

bhosts -a

HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV

lsfmanagement ok - 1 0 0 0 0 0

ip-10-11-13-19 closed_RC - 1 1 1 0 0 0

40 IBM Spectrum LSF 10.1

4. Optional: Use external job submission and execution controls.
Use the job submission and execution controls feature to use external, site-specific executable
files to
validate, modify, and reject jobs, transfer data, and modify the job execution environment.
To control
job submissions, such as permission checks before instances are launched from AWS, you
can set up
an external submission (esub) script.

For more information, see External Job Submission and Execution
Controls.

Results
AWS can reclaim EC2 Spot instances. Amazon EC2 reclaims a
spot instance when the Spot price is greater
than the bid price placed in the request.

Every 30 seconds (the LSB_RC_QUERY_INTERVAL, configured in the
lsf.conf file), a request is sent to
AWS to check if any machine is eligible to
be reclaimed by AWS. AWS provides a 2 minute termination
notice.
If an instance is marked to be terminated or was already terminated, resource connector sends a
relinquish machine request to LSF.

If the AWS_SPOT_TERMINATE_ON_RECLAIM=true parameter is set in the
awsprov_config.json
file, the AWS plug in sends an instance termination request
to AWS when notified by LSF that
the
reclaimed Spot instance has been closed and the affected jobs are requeued.
If the AWS_SPOT_TERMINATE_ON_RECLAIM=false or the parameter is set in the
awsprov_config.json file, the AWS plug in does not send an instance termination
request and
allows the instance to be terminated by AWS.

The default is AWS_SPOT_TERMINATE_ON_RECLAIM=false.
Specify
AWS_SPOT_TERMINATE_ON_RECLAIM=false has if you want AWS will reclaim the host.
If the
host is reclaimed in the middle of an instance hour, you will not be charged for this hour.
For more
information, see: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-
instances.html#spot-pricing.
The disadvantage is that the host is no longer managed by LSF. It is
AWS's responsibility to terminate the host. LSF relies
on AWS to perform the termination. If the
termination is not done, extra charges can occur.

LSF closes
the reclaimed hosts and sends a requeue signal to the jobs on the host at a configurable
time before
the requested return time. After the hosts are drained of jobs, LSF
notifies resource
connector that the hosts are closed.

How LSF returns hosts to AWS

Amazon Web Services never reclaims an on-demand instance actively . Borrowed AWS instances are

returned passively.

How LSF
returns hosts to AWS

Amazon Web Services never reclaims an on-demand instance actively . Borrowed AWS instances are returned
passively.

It is idle for the time (configured by the LSB_RC_EXTERNAL_HOST_IDLE_TIME
parameter in the
lsf.conf file).
A time-to-live period expires (configured by the
LSB_RC_EXTERNAL_HOST_MAX_TTL parameter in
lsf.conf file).
If host factory notifies LSF that a
host is ready to use, but the host does not join the cluster for 10
minutes. This value is
hardcoded.

IBM Spectrum LSF 10.1 41

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html#spot-pricing

If the billingPeriod parameter is configured in the
hostProviders.json file, the
LSB_RC_EXTERNAL_HOST_IDLE_TIME value defined in the
lsf.conf file is ignored. Resource connector uses
the time the instance was
launched to return the machine to the provider.

For example, if a host was launched at 10:00 AM, and billingPeriod is 60
minutes, and the host became idle at
10:55, it is returned before the next billing cycle that starts
at 11 AM.

If set to 0 or not defined, resource connnector uses the value defined in the parameter
LSB_RC_EXTERNAL_HOST_IDLE_TIME in the lsf.conf file.

If the host was previously in the cluster, LSF closes
it (closed_RC status) and waits for any running jobs on
the host to
complete. After the host is drained of jobs, LSF
notifies the resource connector. The resource
connector deallocates the host by terminating the
instance in AWS.

You cannot use the badmin hopen command to open a borrowed host in
closed_RC status.

Updating LSF
configuration for resource connector

Configure LSF to
enable the resource connector.

About this task
Restart the LSF
daemons on the management host for the changes to take effect.

Procedure
1. Log in to the LSF management
host as root.
2. Configure DNS.

LSF looks
up host names and addresses for all communication between hosts borrowed from a
resource provider
and management host candidates. Make sure that your environment settings for IP
address resolution work
between the LSF management
host and borrowed hosts that join the cluster.

Check whether the management host candidates can ping the borrowed hosts by using the host name
from
the hostname command and vice versa. Also make sure that the borrowed hosts can
ping
themselves and each other with the reported host name. If the hosts can ping themselves and
each
other only by using IP address but not by using the host name, DNS settings need to be
configured.

If the borrowed host cannot join the cluster, check the VPN, firewall, or security group
settings. You
must open firewall rules for all LSF ports
between the LSF management
and borrowed server host IP
ranges.

If the LSF management
host and the borrowed host reside in different host domains, specify the
portion of both domain
names in the LSF_STRIP_DOMAIN parameter in the
$LSB_SHAREDIR/lsf.conf
file that is accessible by the LSF management
host, with both domain names separated by a colon (:).

3. Define the RC_DEMAND_POLICY parameter in the
lsb.queues file to specify threshold conditions for
triggering demand to borrow
resources through resource connector for all the jobs in a queue.
The RC_DEMAND_POLICY parameter has the following syntax:

RC_DEMAND_POLICY = THRESHOLD[[
num_pend_jobs[,duration]] …
]

42 IBM Spectrum LSF 10.1

The demand policy defined by the RC_DEMAND_POLICY parameter can contain
multiple conditions, in
an OR relationship. A condition is defined as [
num_pend_jobs[,duration]]. The queue
has more than
the specified number of eligible pending jobs that are expected to run at least the
specified duration in
minutes. The num_pend_jobs option is required, and the
duration is optional.

The default threshold is THRESHOLD[[1,0]].

In the following example, LSF
calculates demand if the queue has 5 or more pending jobs in past 10
minutes, or 1 or more pending
jobs in past 60 minutes, or 100 or more pending
jobs.

RC_DEMAND_POLICY = THRESHOLD[[5, 10] [1, 60] [100]]

As long as pending jobs at the queue meet at least one threshold condition, LSF
expresses the demand
to resource connector to trigger borrowing.

4. Define the MAX_SBD_CONNS
parameter in the lsb.params file to set the maximum number of open file
connections between the mbatchd and sbatchd daemons. As a best
practice, set the value as
MAX_SBD_CONNS = 2 * maximum_number_of_hosts +
300, where the
maximum_number_of_hosts includes the number
of active VMs created in the resource connector for
future jobs.

5. Optional: Define optimizations to set rules after the calculation of demand
to try to get better results
and applied to the provisioning results. The
Optimizations category is specified in the
policy_config.json
file. An example of optimization you can configure are
allocation rules. The allocRules parameter is a
list of allocation rule entries
that specify how many hosts from a certain template are worth considering
over another template. For
more information about the allocRules parameter, see policy_config.json
topic.

6. Optional: Define the account name to tag the borrowed hosts so they cannot be used by other
groups,
users, or jobs.

To define the account name at the queue or application level, define the
RC_ACCOUNT
parameter in the lsb.queues or
lsb.applications file.
To set the project name as the default account name, enable
DEFAULT_RC_ACCOUNT_PER_PROJECT=Y in the lsb.params file.
This account name overrides
the value of the RC_ACCOUNT parameter at the
application and queue levels (lsb.applications
and
lsb.queues files).
To allow users to assign a specific account name at the job level, enable
ENABLE_RC_ACCOUNT_REQUEST_BY_USER=Y in the lsb.params
file. This allows users to use the
bsub -rcacct
"rc_account_name" command option to assign an account name. This
account name overrides the account name that is set at the application and queue level, as well
as
the setting of the project name.
This also allows you to use an esub script to
set the LSB_SUB6_RC_ACCOUNT parameter to
change the job level account name. The
value of LSB_SUB6_RC_ACCOUNT overrides all other
values of the account name,
including the bsub -rcacct command option.

When a job is submitted to the queue or application, the host that the job borrows is tagged with
the
value of the RC_ACCOUNT parameter. Other applications or queues that have a
different value for the
RC_ACCOUNT parameter cannot use the borrowed host.

When the borrowed host joins the cluster, you can use the lshosts -s or
lshosts -l command to view its
RC_ACCOUNT value.

For AWS, edit the user_data.sh file
to use the lshosts command to see the RC_ACCOUNT value.

The user_data.sh script is located in the
<LSF_TOP>/<LSF_VERSION>/resource_connector/aws/scripts
directory.

a. Make sure that the LSF_TOP variable points to the
LSF_TOP directory for your cluster.

IBM Spectrum LSF 10.1 43

b. Make sure that the following lines are not commented out.

%EXPORT_USER_DATA%

logfile=/tmp/userscript.log

env > $logfile

if [-n "${rc_account}"]; then

sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resourcemap
${rc_account}*rc_account]\"/"

 $LSF_CONF_FILE

echo "update LSF_LOCAL_RESOURCES lsf.conf successfully,

 add [resourcemap ${rc_account}*rc_account]" >> $logfile

fi

What to do next
Restart the LSF
daemons on the management host for the changes to take effect.

bctrld restart lim

bctrld restart res

badmin mbdrestart

Pre-provisioning and post-provisioning

Set up pre-provisioning in LSF resource connector to run commands before the resource instance joins

the cluster. Configure post-provisioning scripts to run clean up commands after the instance is
terminated, but before the host is removed from the cluster.
Configure resource provisioning policies

LSF resource connector provides built in policies for limiting the number of instances to be launched
and the maximum number of instances to be created. The default plugin framework is a single python
script that communicates via stdin and stdout in JSON data structures. LSF resource connector
provides an interface for administrators to write their own resource policy plugin.
Use the LSF patch installer to update resource connector

The LSF patch installer (patchinstall command) doesn't support installing files under the LSF_TOP/conf
directory. The patchinstall command operates only on files under the LSF_TOP/<version> directory.

lsb.modules
lsb.queues
lsf.conf
lsf.shared
MAX_SBD_CONNS

Pre-provisioning and post-provisioning

Set up pre-provisioning in LSF
resource connector to run commands before the resource instance joins the
cluster. Configure
post-provisioning scripts to run clean up commands after the instance is terminated, but
before the
host is removed from the cluster.

The pre- and post-provisioning script knows the instance ID, the instance name, and the instance
IP address.

The pre-provisioning script runs on the management host right after the resource instance is created,
but
before the instance is marked as allocated to the LSF
cluster, and before a job can start to run on it. Use the
pre-provisioning script to run instance
setup scripts (for example, network or user access configuration), run
data transfer commands before
the job starts on the instance, or add hosts to a specific group.

44 IBM Spectrum LSF 10.1

The post-provisioning script runs after the instance is terminated, but before it is relinquished
to the provider.
Use the post-provisioning script to run clean up tasks; for example, clean up job
files or remove the host from
the host cache file when the instance terminates.

You can specify a delayOnReturn attribute in your scripts that specifies the
number of minutes that the
resource connector waits before it returns the host in case the pre- or
post-provisioning script fails. The
default value is 20. For the scripts that are run successfully,
resource connector does not apply the delay,
even if delayOnReturn is set.

Enable pre- and post-provisioning
To enable pre- and post-provisioning scripts, set the following parameters in the
hostProviders.json file:

preProvPath
Resource connector runs the pre-provisioning script that is specified with absolute path after
the
instance is created and started successfully but before it is marked allocated to the LSF
cluster.

postProvPath
Resource connector runs the post-provisioning script that is specified with absolute path after
the
instance is terminated successfully but before it is removed from the LSF
cluster.

provTimeOut
This parameter is used to avoid the pre- or post-provisioning program from running for unlimited
time.
Specify a value in minutes.
If the program doesn’t complete in the specified time, it is
ended and reported as failed. You can
disable pre- or post-provisioning by setting the
provTimeOut value to 0.

The default value is 10 minutes. If the pre- or
post-provisioning program doesn't return after 10
minutes, it ends.

Pre-provisioning and post-provisioning script output
Pre and post provision scripts are expected to return results to inform LSF is the hosts have
been provisioned
correctly or not. The output needs to look like the following example:

[{

"machines": [

 {

 "name": "instance name",

 "result": "succeed",

 "message": "User added successfully"

 },

 {

 "name": "ip-192-168-0-154.us-west-2.compute.internal",

 "result": "failed",

 "message": "Could not resolve host name”,

 “delayOnReturn” : 30

 }

]

}]

Example input.json file
The input.json file is the data in json format which is sent by LSF to the
user’s provision scripts as input. The
user defined provisioning scripts can use the input data of
the AWS instances launched by LSF to do the
necessary provisioning steps. The
input.json file contains the following information:

IBM Spectrum LSF 10.1 45

[{

"machines": [

 {

 "name": "ip-192-168-0-153.us-west-2.compute.internal",

 " publicIpAddress ": "55.66.xx.xx",

 " privateIpAddress ": "55.66.xx.xx",

 " machineId ": "i-19034xxxxx",

 “rcAccount”: “project1” ,

 "providerName": "aws",

 "providerType": "awsProv",

 "templateName": "Template-VM-2"

 }

]

}]

Example
This example uses the jq package to parse the
input.json from LSF for
each of the automatically launched
AWS instances. After parsing the instance details the user can
customize code to configure any DNS settings
or cleanup steps for each instance before passing a
success or error result back to LSF in the
specified format.

LSF reads
the output to determine if the newly launched host was successfully provisioned.

#!/bin/sh

inputFile=$1

outputFile=$2

echo $inputFile $outputFile

count=$(cat $inputFile | jq '.machines[]' |grep 'name' | wc -l)

a=0

result="succeed"

while [$a -lt $count]

do

 hostName=$(cat $inputFile | jq '.machines['${a}'].name')

 privateIp=$(cat $inputFile | jq '.machines['${a}'].publicIpAddress')

 publicIp=$(cat $inputFile | jq '.machines['${a}'].privateIpAddress')

 instanceId=$(cat $inputFile | jq '.machines['${a}'].machineId')

 rcAccount=$(cat $inputFile | jq '.machines['${a}'].rcAccount')

 providerName=$(cat $inputFile | jq '.machines['${a}'].providerName')

 providerType=$(cat $inputFile | jq '.machines['${a}'].providerType')

 templateName=$(cat $inputFile | jq '.machines['${a}'].templateName')

 #add your custom code here for each machine in the request

 #write the output of each machine to the output json file

 sed -i '/]/i {\"name\": '${hostName}', \"result\": \"'${result}'\", \"message\":
\"'${message}'\" }' $outputFile

 a=`expr $a + 1`

done

Related reference
hostProviders.json

46 IBM Spectrum LSF 10.1

Configure resource provisioning policies

LSF
resource connector provides built in policies for limiting the number of instances to be launched
and the
maximum number of instances to be created. The default plugin framework is a single python
script that
communicates via stdin and stdout in JSON data
structures. LSF
resource connector provides an interface for
administrators to write their own resource policy
plugin.

Example policies
LSF
resource connector provides an example policy, which you can configure in the
example_policy_config.json file:

Step index and step time determine how many instances to launch at a time. The
StepValue parameter
specifies step index and step time. For example, the
"StepValue": "10:10" means that the
resource connector launches no more than
10 instances every 10 minutes.
Maximum number of instances (per account, per template, per provider) at any given time is
specified
by the MaxNumber parameter.

To enable this feature, rename the example_policy_config.json file under the
LSF_TOP/conf/resource_connector directory to
policy_config.json and set the cluster administrator as the file
owner.

Resource policy plug in interface
You should not change the default resource policy plugin files (Main.py and
Log.py in the
LSF_TOP/LSF_VERSION/resource_connector/policy
directory). Instead, you can create you own script or binary
executable file and specify the path of
that script in the UserDefinedScriptPath parameter in the
policy_config.json. The default policy script provided by LSF runs
your script and uses the demand calculated
by your script to create hosts for the cluster.

Your script can have the following input for each provider, template and
RC_ACCOUNT:

The demand target requested by the cluster.
The current allocation of hosts.
The outstanding requests that have been made but not yet filled.
The number of reclaimed hosts.

Related reference
policy_config.json

Use the LSF patch
installer to update resource
connector

The LSF patch
installer (patchinstall command) doesn't support installing files under the
LSF_TOP/conf
directory. The patchinstall
command operates only on files under the
LSF_TOP/<version>
directory.

IBM Spectrum LSF 10.1 47

Update resource connector
When the patch installer installs new configuration files or other items under
LSF_TOP/10.1.0/resource_connector/<provider_name>/conf, you must move them to
the appropriate
directory under
LSF_TOP/conf/resource_connector/<provider_name>/conf.
You must also change the
ownership of any new files and directories to the cluster administrator.
Everything under the
LSF_TOP/conf/resource_connector
directory must be owned by the cluster administrator.

For example, when the patch installer installs the following new configuration files for Amazon
Web Services
(AWS) under LSF_TOP/10.1.0/resource_connector/aws/conf/:

awsprov_templates.json
awsprov_config.json
credentials

You must move these files to the
LSF_TOP/conf/resource_connector/aws/conf directory and
change the
ownership of the aws directory and configuration files to the
cluster administrator.

Roll back a resource connector patch
Follow these steps to roll back a patch:

1. Log on to the LSF management
host as root
2. Set your environment:

For csh or tcsh: % source
LSF_TOP/conf/cshrc.lsf
For sh, ksh, or bash: $.
LSF_TOP/conf/profile.lsf

3. Close all hosts and queues on your
cluster:

badmin hclose all

badmin qinact all

4. Roll back the
patch:

./patchinstall -r <patch>

5. Shut down the
cluster:

bctrld stop sbd all

bctrld stop res all

bctrld stop lim all

6. Restart the
cluster:

bctrld start lim all

bctrld start res all

bctrld start sbd all

7. Open hosts and queues
again:

badmin hopen all

badmin qact all

Remember: Remove the most recent patch and return the cluster to the previous patch
level. To roll back
multiple versions, you must roll back one patch level at a time, in the reverse
order of installation.
To roll back the same version of the patch applied on multiple platforms,
you must roll back the same patch
for multiple packages you applied, in the reverse order of
installation, so that the resource connector common
files are also rolled back to previous
version.

48 IBM Spectrum LSF 10.1

For more information about patch rollback, see the -r option of the
patchinstall command..

View information on the LSF resource connector

View information on the LSF
resource connector by checking the status of the ebrokerd daemon, running the
badmin rc subcommand, or by viewing the
log files.

Checking the LSF resource connector status

To submit jobs that borrow resources from a resource provider, the LSF resource connector status must

be enabled and the ebrokerd daemon process must be running.
Use the badmin command to view LSF resource connector information

Use the badmin rc subcommand to view information on the LSF resource connector.
Viewing LSF resource connector job events

The JOB_FINISH2 LSF event contains details about LSF resource connector jobs. The LSF lsb.stream
file can then capture and stream actions about the JOB_FINISH2 event. Starting in Fix Pack 14, to
provide more details in the JOB_FINISH2 event logs, LSF includes the RC_ACCOUNT and VM_TYPE
fields with the JOB_FINISH2 event.
Logging and troubleshooting the LSF resource connector

Log files for the resource connector are located in the log directory that is defined by the LSF_LOGDIR
parameter in the lsf.conf file.

Checking the LSF resource connector status

To submit jobs that borrow resources from a resource provider, the LSF resource connector
status must be
enabled and the ebrokerd daemon process must be
running.

Procedure
On the LSF management
host, verify that the ebrokerd daemon process is running after the resource
connector is enabled.

ps -ef | grep ebrokerd

Use the badmin command to view LSF
resource
connector information

Use the badmin rc subcommand to view information on the LSF
resource connector.

Procedure
1. Use the badmin rc view command to view LSF
resource connector information from the specified host

providers.
rc view [-c "instances | policies | templates
…"] [-p "
provider …"]

IBM Spectrum LSF 10.1 49

Use the -p option to specify the host provider from which to view information.
Use a space to separate
multiple host providers.

Use the -c option to specify whether you want to view information on instances,
policies, or templates.
Use a space to separate multiple types of information. By default, this
command shows information on
instances only.

2. Use the badmin rc error command to view LSF
resource connector error messages from the specified
host providers.
To get the error messages, the third-party mosquitto message queue application
must be running on
the host.

rc error [-t
daysd | hoursh | minutesm]
[-p "
provider …"]

Use the -p option to specify the host provider from which to view information.
Use a space to separate
multiple host providers.

Use the -t option to specify the earliest time from which
to review the error messages.
Note: When specifying days, badmin retrieves messages from this time at
midnight. For example, when
running badmin rc error -t 1d,
badmin retrieves messages from today at midnight, and when
running
badmin rc error -t 2d, badmin retrieves messages from
yesterday at midnight.

Viewing LSF
resource connector job events

The JOB_FINISH2
LSF event contains details about LSF
resource connector jobs. The LSF
lsb.stream file can
then capture and stream actions about the
JOB_FINISH2 event. Starting in Fix Pack 14, to provide
more
details in the JOB_FINISH2 event logs, LSF
includes the RC_ACCOUNT and VM_TYPE fields with the

JOB_FINISH2 event.

Procedure
1. Enable JOB_FINISH2 LSF
events:

a. Log on to the host as the primary LSF
administrator.
b. Edit lsb.params configuration file to these include these
configurations:

ENABLE_EVENT_STREAM=Y
ALLOW_EVENT_TYPE=JOB_FINISH2

c. Save your changes to the lsb.params file and reconfigure the
cluster for your changes to take
effect:

badmin reconfig

2. Starting in Fix
Pack 14, to provide more details in the JOB_FINISH2 event logs, the
RC_ACCOUNT field
is included with the JOB_FINISH2 event. This
field will reflect the RC_ACCOUNT value assigned to the
job, and follow
existing override policies if specified for the job, project, application, or queue level. (If
not
specified at any of these levels, then the RC_ACCOUNT value shows the
RC_ACCOUNT field, with a
value of default).

a. The RC_ACCOUNT values specified for each of these levels are
located in different configuration
files; if required, set the value within the appropriate
parameter and configuration file:

For RC_ACCOUNT at the job level, see the ENABLE_RC_ACCOUNT_REQUEST_BY_USER
parameter in the
lsb.params file.

50 IBM Spectrum LSF 10.1

For RC_ACCOUNT at the project level, see the DEFAULT_RC_ACCOUNT_PER_PROJECT
parameter in the
lsb.params file.
For RC_ACCOUNT at the application level, see the RC_ACCOUNT
parameter in the
lsb.applications file.
For RC_ACCOUNT at the queue level, see the RC_ACCOUNT parameter in
the lsb.queues
file.

b. If you made changes to any of the configuration files, save your changes to the files
and
reconfigure the cluster for your changes to take effect:

badmin reconfig

Tip: If you do not set these resource connector account parameters, or if the LSF
resource connector is
not enabled, the RC_ACCOUNT field cannot be retrieved,
but the JOB_FINISH2 event still shows the
RC_ACCOUNT field as
a value of default.

3. Starting in Fix Pack 14, to provide the
JOB_FINISH2 event logs more detail, include the VM_TYPE field
with the JOB_FINISH2 event. To show the VM_TYPE field:

a. Edit the lsf.shared file:
i. Define the vm_type resource in the lsf.shared file. For
example, to define a String

resource called vm_type,
specify:

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
Keywords

...

vm_type String () () (The type of VM)

...

End Resource

ii. Reconfigure LIM and restart the mbatchd daemon for your
lsf.shared file change to take
effect:

lsadmin reconfig

badmin mbdrestart

b. Edit the user_data.sh script file for each cloud provider:
i. LIM on the LSF
management host retrieves the VM_TYPE field. A resource connector host

them
sends this information to the management host by way of the
LSF_TOP/10.1/resource_connector/provider/scripts/user_data.sh
script vm_type setting
in the LSF_LOCAL_RESOURCES parameter
within the lsf.conf file.
Enable the user_data.sh
script of each cloud provider to modify the value of the
LSF_LOCAL_RESOURCES
parameter in the lsf.conf file, by adding the following lines to the
file:

if [-n "${vm_type}"]; then

 sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resourcemap
${vm_type}*vm_type]\"/" $LSF_CONF_FILE

fi

Note that the method of getting this VM_TYPE field varies
depending on the cloud
provider. For example:

Example IBM® Cloud user_data.sh script

vm_type=$(dmidecode |grep Manufacturer|grep IBM| cut -d ':' -f
4)

if [-n "$vm_type"]; then

 sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resourcemap
$vm_type*vm_type]\"/" $LSF_CONF_FILE

 echo "Update LSF_LOCAL_RESOURCES in $LSF_CONF_FILE

IBM Spectrum LSF 10.1 51

successfully, add [resourcemap ${vm_type}*vm_type]" >>
$logfile

else

 echo "Can not get instance VM type" >> $logfile

fi

Example Amazon Web Services (AWS) user_data.sh script

vm_type=$(curl http://169.254.169.254/latest/meta-
data/instance-type)

#Note that this is cloud provider specific

if [-n "$vm_type"]; then

sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resourcemap
$vm_type*vm_type]\"/" $LSF_CONF_FILE

else

echo "vm_type doesn't exist in envrionment variable" >>
$logfile

fi

Example Google Cloud Platform user_data.sh script

vm_type=$(dmidecode |grep Manufacturer|grep IBM| cut -d ':' -f
4)

if [-n "$vm_type"]; then

 sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resourcemap
$vm_type*vm_type]\"/" $LSF_CONF_FILE

 echo "Update LSF_LOCAL_RESOURCES in $LSF_CONF_FILE
successfully, add [resourcemap ${vm_type}*vm_type]" >>
$logfile

else

 echo "Can not get instance VM type" >> $logfile

fi

Example Microsoft Azure CycleCloud user_data.sh script

vm_type=$(curl -H Metadata:true
"http://169.254.169.254/metadata/instance/compute/vmSize?api-
version=2018-10-01&format=text")

#Note that this is cloud provider specific

if [-n "$vm_type"]; then

sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resourcemap
$vm_type*vm_type]\"/" $LSF_CONF_FILE

else

echo "vm_type doesn't exist in envrionment variable" >>
$logfile

fi

Example Microsoft Azure user_data.sh script

vm_type=$(curl -H Metadata:true
"http://169.254.169.254/metadata/instance/compute/vmSize?api-
version=2018-10-01&format=text")

#Note that this is cloud provider specific

if [-n "$vm_type"]; then

sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resourcemap
$vm_type*vm_type]\"/" $LSF_CONF_FILE

else

echo "vm_type doesn't exist in envrionment variable" >>
$logfile

fi

Results
52 IBM Spectrum LSF 10.1

The following JOB_FINISH2 event log shows the addition of the
rc_account and vm_type fields:

"JOB_FINISH2" "10.11" 1666989002 2321 45 "userId" "0" "userName" "root"
"numProcessors" "1"

"options" "33816578" "jStatus" "64" "submitTime" "1666988304" "termTime" "0"
"startTime" "1666988401"

"endTime" "1666989002" "queue" "normal" "resReq" "profile==cx2_4x8" "fromHost"
"rhel7x-mgmt-1" "cwd"

"/share/10.1/lsf_rc" "jobFile" "1666988304.2321" "numExHosts" "1" "execHosts"
"icgen2host-10-240-0-10"

"slotUsages" "1" "cpuTime" "0.441864" "command" "sleep 600" "ru_utime" "0.229670"
"ru_stime" "0.212194"

"ru_maxrss" "3072" "ru_nswap" "0" "projectName" "default" "exitStatus" "0"
"maxNumProcessors" "1"

"exitInfo" "0" "chargedSAAP" "/root" "numhRusages" "0" "runtime" "601" "maxMem"
"3072" "avgMem" "2048"

"effectiveResReq" "select[(profile == cx2_4x8) && (type == any)] order[r15s:pg] "
"subcwd"

"/share/10.1/lsf_rc" "serial_job_energy" "0.000000" "numAllocSlots" "1"
"allocSlots"

"icgen2host-10-240-0-10" "ineligiblePendingTime" "-1" "options2" "1040"
"hostFactor" "12.500000"

"cpuPeak" "0.000000" "cpuEfficiency" "0.000000" "memEfficiency" "0.000000"

"rc_account" "default" "vm_type" "cx2-4x8"

Related reference
lsb.params
lsb.applications
lsb.queues
lsf.shared
lsf.conf

Logging and troubleshooting the LSF resource connector

Log files for the resource connector are located in the log directory that is defined by
the LSF_LOGDIR
parameter in the lsf.conf file.

Log files for LSF
To change the log level or log classes for LSF, update the following parameters in the lsf.conf file:

LSF_LOG_MASK
LSB_DEBUG_MBD
LSB_DEBUG_EBROKERD

For example, the following parameters set the log level to
LOG_INFO, and the debugging log class for the
mbatchd and ebrokerd daemons to
LC2_RC:

LSF_LOG_MASK=LOG_INFO

LSB_DEBUG_MBD="LC2_RC"

LSB_DEBUG_EBROKERD="LC2_RC"

IBM Spectrum LSF 10.1 53

Log files for the resource connector
To change the log level for the resource connecto r for AWS, update the
LogLevel parameter in the
<LSF_TOP>/conf/resource_connector/aws/conf/awsprov_config.json
resource provider configuration file.

For example, set the log level to INFO:

{

 "LogLevel": "INFO",

}

Persistent files for the resource connector
The resource connector saves some state information for synchronization with LSF after
failover or restart.
This information is saved in persistent files, which are in the
<LSB_SHAREDIR>/<cluster_name>/resource_connector/
directory.

Validating the federated account script
When using AWS_CREDENTIALS_SCRIPT for federated accounts, LSF
executes the script specified by the user
set as the value of this parameter. The temporary
credential for LSF to use
to launch and manage the AWS
EC2 instance is stored internally under
<LSF_TOP>/work/<clusterName>/resource_connector/aws_federatedUser_credentials.

1. Ensure resource connector logging is enabled and check for errors in the logs.
2. Execute the script as the primary LSF
administrator on the LSF management
host to ensure the

standard output format matches the one specified in section Configuring AWS access with federated
accounts.

3. If there are errors when executing the script, those need to be fixed to make sure it can create
a
temporary credential and output to stdout in the correct format to be used by
LSF.

4. After correcting the script, if there is a stale
aws_federateduser_credentials file, remove it so that a new
file can be
generated immediately. Otherwise, LSF will
generate one automatically every 30 minutes.

LSF
resource connector configuration reference

Reference for configuring LSF
resource connector.

lsb.applications

Configure the operation of LSF resource connector in the lsb.applications file.

lsb.queues

Configure the operation of LSF resource connector in the lsb.queues file.

lsf.conf

Enable and configure the operation of LSF resource connector in the lsf.conf file.

hostProviders.json

The hostProviders.json file configures which resource providers LSF resource connector can use.

policy_config.json

The policy_config.json file configures custom policies for resource providers for LSF resource

connector. The resource policy plug-in reads this file.
awsprov_config.json

The awsprov_config.json file contains administrative settings for the resource connector.

54 IBM Spectrum LSF 10.1

awsprov_templates.json
The awsprov_templates.json file defines the mapping between LSF resource demand requests and
AWS instances.

lsb.applications

Configure the operation of LSF
resource connector in the lsb.applications file.

RC_ACCOUNT

Assigns an account name (tag) to hosts borrowed through LSF resource connector, so that they cannot

be used by other user groups, users, or jobs.
RC_RECLAIM_ACTION

Controls how the LSF resource connector takes action on jobs that are running on a host when that host
is reclaimed.

RC_ACCOUNT

Assigns an account name (tag) to hosts borrowed through LSF
resource connector, so that they cannot be
used by other user groups, users, or jobs.

Syntax
RC_ACCOUNT=account_name

Description
When a job is submitted to an application profile with the RC_ACCOUNT
parameter specified, hosts borrowed
to run the job are tagged with the value of the
RC_ACCOUNT parameter. The borrowed host cannot be used by
other applications
that have a different value for the RC_ACCOUNT parameter (or that don't have
the
RC_ACCOUNT parameter defined at all).

After the borrowed host joins the cluster, use the lshosts -s command to view
the value of the RC_ACCOUNT
parameter for the host.

Example
RC_ACCOUNT=project1

Default
No account defined for the application profile

RC_RECLAIM_ACTION

IBM Spectrum LSF 10.1 55

Controls how the LSF
resource connector takes action on jobs that are running on a host when that host is
reclaimed.

Syntax
RC_RECLAIM_ACTION = REQUEUE | TERMINATE

Description
Specify one of the following actions:

REQUEUE: Requeue the jobs that are running on a host that is
reclaimed.
TERMINATE: Terminate the jobs that are running on a host that is
reclaimed.

Default
TERMINATE for interactive jobs.

REQUEUE for all other jobs.

lsb.queues

Configure the operation of LSF
resource connector in the lsb.queues file.

RC_ACCOUNT

Assigns an account name (tag) to hosts borrowed through LSF resource connector, so that they cannot

be used by other user groups, users, or jobs.
RC_DEMAND_POLICY

Defines threshold conditions for the determination of whether demand is triggered to borrow resources
through resource connector for all the jobs in a queue. As long as pending jobs at the queue meet at
least one threshold condition, LSF expresses the demand to resource connector to trigger borrowing.
RC_HOSTS

Enables LSF resource connector to borrow specific host types from a resource provider.

RC_ACCOUNT

Assigns an account name (tag) to hosts borrowed through LSF
resource connector, so that they cannot be
used by other user groups, users, or jobs.

Syntax
RC_ACCOUNT=account_name

Description

56 IBM Spectrum LSF 10.1

When a job is submitted to a queue with the RC_ACCOUNT parameter specified,
hosts borrowed to run the job
are tagged with the value of the RC_ACCOUNT
parameter. The borrowed host cannot be used by other queues
that have a different value for the
RC_ACCOUNT parameter (or that don't have the RC_ACCOUNT
parameter
defined).

After the borrowed host joins the cluster, use the lshosts -s command to view
the value of the RC_ACCOUNT
parameter for the host.

Example
RC_ACCOUNT=project1

Default
The string "default" - Meaning, no account is defined for the queue.

RC_DEMAND_POLICY

Defines threshold conditions for the determination of whether demand is triggered to
borrow resources
through resource connector for all the jobs in a queue. As long as pending jobs at
the queue meet at least one
threshold condition, LSF
expresses the demand to resource connector to trigger borrowing.

Syntax
RC_DEMAND_POLICY = THRESHOLD[[
num_pend_jobs[,duration]] …
]

Description
The demand policy defined by the RC_DEMAND_POLICY parameter can contain
multiple conditions, in an OR
relationship. A condition is defined as
[
num_pend_jobs[,duration]]. The queue
has more than the specified
number of eligible pending jobs that are expected to run at least the
specified duration in minutes. The
num_pend_jobs option is required, and the
duration is optional. The default duration is 0 minutes.

LSF
considers eligible pending jobs for the policy. An ineligible pending job (for example, a job
dependency is
not satisfied yet) keeps pending even thought hosts are available. The policy counts a
job for eligibility no
matter how many tasks or slots the job requires. Each job element is counted
as a job. Pending demand for a
resizable job is not counted, though LSF can
allocate borrowed resources to the resizable job.

LSF
evaluates the policies at each demand calculation cycle, and accumulates duration if the
num_pend_jobs
option is satisfied. The mbschd daemon resets
the duration of the condition when it restarts or if the
condition has not been evaluated in the
past two minutes. For example, if no pending jobs are in the cluster,
for two minutes,
mbschd stops evaluating them.

Example
In the following example, LSF
calculates demand if the queue has five or more pending jobs in past ten
minutes, or one or more
pending jobs in past 60 minutes, or 100 or more pending
jobs.

IBM Spectrum LSF 10.1 57

RC_DEMAND_POLICY = THRESHOLD[[5, 10] [1, 60] [100]]

Default
Not defined for the queue

RC_HOSTS

Enables LSF
resource connector to borrow specific host types from a resource provider.

Syntax
RC_HOSTS=string

RC_HOSTS = none | all |
host_type [host_type ...]

Description
The host_type flag is a Boolean resource that is a member of the list of host
resources that are defined in the
LSB_RC_EXTERNAL_HOST_FLAG parameter in the
lsf.conf file.

If the RC_HOSTS parameter is not defined in the queue, its default value is
none. Borrowing is disabled for any
queue that explicitly defines
RC_HOSTS=none, even if the LSB_RC_EXTERNAL_HOST_FLAG
parameter is
defined in the lsf.conf file.

If the RC_HOSTS parameter is not defined in any queue, borrowing cannot
happen for any job.

Note: The HOSTS parameter in the lsb.queues file and the
bsub -m option do not apply to hosts that are
managed through the resource
connector. To specify the resource connector host types that can be used by a
queue, you must
specify the RC_HOSTS parameter in that queue.

Example
RC_HOSTS=awshost

Default
none - host borrowing from resource providers is disabled, and no borrowed hosts
can be used by the queue.

lsf.conf

Enable and configure the operation of LSF resource connector in the lsf.conf file.

EBROKERD_HOST_CLEAN_DELAY

For LSF resource connector. Specifies the delay, in minutes, after which the ebrokerd daemon removes

information about relinquished or reclaimed hosts. This parameter allows the bhosts -rc and bhosts -

58 IBM Spectrum LSF 10.1

rconly command options to get LSF resource connector provider host information for some time after
they are no longer provisioned.
LSB_RC_DEFAULT_HOST_TYPE
LSF resource connector default host type.
LSB_RC_EXTERNAL_HOST_FLAG
Setting the LSB_RC_EXTERNAL_HOST_FLAG parameter enables the LSF resource connector feature.
LSB_RC_EXTERNAL_HOST_IDLE_TIME
For LSF resource connector. If no jobs are running on a resource provider instance for the specified
number of minutes, LSF relinquishes the instances.
LSB_RC_EXTERNAL_HOST_MAX_TTL
For LSF resource connector. Maximum time-to-live for a resource provider instance. If an instance is in
the cluster for this number of minutes, LSF closes it and its status goes to closed_RC).
LSB_RC_MQTT_ERROR_LIMIT
For LSF resource connector. The maximum number of API error messages that are stored in Mosquitto
per host provider.
LSF_MQ_BROKER_HOSTS
For LSF resource connector. Enables support for the bhosts -rc and bhosts -rconly command options
to get LSF resource connector provider host information
LSB_RC_QUERY_INTERVAL
For LSF resource connector. The interval in seconds that the resource connector checks host status and
asynchronous requests from a resource provider.
LSB_RC_REQUEUE_BUFFER
For LSF resource connector. The number of seconds before the expiration of the reclaim grace period
before which LSF starts to send re-queue signals to running jobs on reclaimed hosts.
LSB_RC_TEMPLATE_REQUEST_DELAY
For LSF resource connector. The amount of time that LSF waits before repeating a request for a
template, in minutes, if the ebrokerd daemon encountered certain provider errors in a previous
request.
LSB_RC_UPDATE_INTERVAL
For LSF resource connector. Configures how often LSF calculates demand for pending jobs and
publishes this demand to the ebrokerd daemon.
MQTT_BROKER_HOST
For LSF resource connector. If you do not use the MQTT message broker daemon (mosquitto) that is
provided with LSF, specifies the host name that mosquitto runs on. The MQTT message broker
receives provider host information from ebrokerd and publishes that information for the bhosts -rc and
bhosts -rconly command options to display.
MQTT_BROKER_PORT
For LSF resource connector. If you do not use the MQTT message broker daemon (mosquitto) that is
provided with LSF, specifies the TCP port for the MQTT message broker daemon (mosquitto). The
MQTT message broker receives provider host information from ebrokerd and publishes that
information for the bhosts -rc and bhosts -rconly command options to display.

EBROKERD_HOST_CLEAN_DELAY

For LSF
resource connector. Specifies the delay, in minutes, after which the ebrokerd
daemon removes
information about relinquished or reclaimed hosts. This parameter allows the
bhosts -rc and bhosts -rconly
command options to get LSF
resource connector provider host information for some time after they are no
longer
provisioned.

IBM Spectrum LSF 10.1 59

Syntax
EBROKERD_HOST_CLEAN_DELAY=minutes

Description
After configuring this parameter, run badmin mbdrestart on the management host to
restart ebrokerd.

After configuring this parameter, run bctrld restart lim on the management host
and, if any of the specified
host names is not the management host name, lsadmin
limrestart
host_name.

Example
EBROKERD_HOST_CLEAN_DELAY=30

Default
60 minutes

See also
LSF_MQ_BROKER_HOSTS
MQTT_BROKER_HOST
MQTT_BROKER_PORT
bhosts -rc and bhosts -rconly

LSB_RC_DEFAULT_HOST_TYPE

LSF resource connector default host type.

Syntax
LSB_RC_DEFAULT_HOST_TYPE=string

Description
Specifies the default host type to use for a template if the
type attribute is not defined on a template in the
template configuration
files.

Example
LSB_RC_DEFAULT_HOST_TYPE=X86_64

Default
X86_64

60 IBM Spectrum LSF 10.1

LSB_RC_EXTERNAL_HOST_FLAG

Setting the LSB_RC_EXTERNAL_HOST_FLAG parameter enables the
LSF resource connector feature.

Syntax
LSB_RC_EXTERNAL_HOST_FLAG="string ..."

Description
Specify a list of Boolean resource names that identify host providers that are
available for borrowing. Any
hosts or instances that provide a resource from the list are initially
closed by LSF at
startup. Hosts and
instances are only opened when the resource connector informs LSF that
the host was successfully allocated
or the instance is launched.

Run the badmin mbdrestart command for this parameter to take
effect.

Example
LSB_RC_EXTERNAL_HOST_FLAG="awshost googlehost azurehost"

Default
Not defined

LSB_RC_EXTERNAL_HOST_IDLE_TIME

For LSF
resource connector. If no jobs are running on a resource provider instance for the specified number
of
minutes, LSF
relinquishes the instances.

Syntax
LSB_RC_EXTERNAL_HOST_IDLE_TIME=minutes

Description
If the LSB_RC_EXTERNAL_HOST_IDLE_TIME parameter is set to 0, the
policy is disabled and the resource
provider instance is never shut down for lack of
jobs.

Example
LSB_RC_EXTERNAL_HOST_IDLE_TIME=30

Default
IBM Spectrum LSF 10.1 61

60 minutes

LSB_RC_EXTERNAL_HOST_MAX_TTL

For LSF
resource connector. Maximum time-to-live for a resource provider instance. If an instance is in the
cluster for this number of minutes, LSF closes
it and its status goes to closed_RC).

Syntax
LSB_RC_EXTERNAL_HOST_MAX_TTL=minutes

Description
If the resource provider is still active after the specified number of minutes, LSF
changes the host status to
closed_RC, which prevents the host from
accepting additional workload. If the
LSB_RC_EXTERNAL_HOST_MAX_TTL parameter is
set to 0, the policy is disabled. The cloud resource is
returned and terminated if the workload that
associated with the host is done.

You cannot use the badmin hopen command to open a borrowed host in
closed_RC status.

Example
LSB_RC_EXTERNAL_HOST_MAX_TTL=30

Default
0 minutes (disabled)

LSB_RC_MQTT_ERROR_LIMIT

For LSF
resource connector. The maximum number of API error messages that are stored in Mosquitto per
host
provider.

Syntax
LSB_RC_MQTT_ERROR_LIMIT=integer

Description
This parameter specifies the maximum number of messages that the badmin rc
error command displays for
each host provider.

Run badmin mbdrestart for any change to take effect.

62 IBM Spectrum LSF 10.1

Example
LSB_RC_MQTT_ERROR_LIMIT=20

Default
10

LSF_MQ_BROKER_HOSTS

For LSF
resource connector. Enables support for the bhosts -rc and bhosts
-rconly command options to get
LSF
resource connector provider host information

Syntax
LSF_MQ_BROKER_HOSTS=host_name...

Description
If you use the MQTT message broker daemon (mosquitto) that is provided with
LSF resource connector,
specifies the host name where LIM starts that mosquitto
daemon. The MQTT message broker receives
provider host information from ebrokerd
and publishes that information for the bhosts -rc and bhosts
-rconly
command options to display. If the LSF_MQ_BROKER_HOSTS
parameter is not specified, the MQTT broker is
not started, and the bhosts -rc
and bhosts -rconly command options fail.

Specify hosts that run the MQTT message
broker daemon (mosquitto). When LIM starts, it checks the
LSF_MQ_BROKER_HOSTS parameter, and if a host is on the list, LIM starts the
mosquitto daemon on this
host. For failover to work properly for displaying
resource connector hosts, define all the management
candidate hosts in this list.

LIM manages the message broker lifecycle, terminating and restarting it when necessary.

Failure of the mosquitto daemon is recorded in the LIM log.

The host_name is one of the existing LSF
cluster hosts. After configuring this parameter, run the bctrld restart
lim
command on the management host. If the specified host name is not the management host, run the
bctrld restart lim
host_name command.

To verify that the mosquitto daemon is up and running, use the ps
-ef | grep mosquitto command.

Example
LSF_MQ_BROKER_HOSTS=hosta

Default
Not defined.

IBM Spectrum LSF 10.1 63

See also
EBROKERD_HOST_CLEAN_DELAY
MQTT_BROKER_HOST
MQTT_BROKER_PORT
bhosts -rc and bhosts -rconly

LSB_RC_QUERY_INTERVAL

For LSF
resource connector. The interval in seconds that the resource connector checks host status and
asynchronous requests from a resource provider.

Syntax
LSB_RC_QUERY_INTERVAL=seconds

Description
Run badmin mbdrestart for any change to take effect.

Example
LSB_RC_QUERY_INTERVAL=60

Default
30 seconds

LSB_RC_REQUEUE_BUFFER

For LSF
resource connector. The number of seconds before the expiration of the reclaim grace period before
which LSF starts to send re-queue signals to running jobs on reclaimed hosts.

Syntax
LSB_RC_REQUEUE_BUFFER=seconds

Description
The minimum value is 1, which means that LSF sends the re-queue signal 1 second before the hosts
are
reclaimed and the daemons are shut down. Use a low value for jobs on reclaimed hosts to run
longer.

Note: A low value increases the risk that the re-queue operation does not complete before the host
is
reclaimed and the daemons are shut down. If a host is reclaimed before the re-queue is complete,
the jobs on

64 IBM Spectrum LSF 10.1

the host go to UNKNWN status until the host is returned to
LSF.

Example
LSB_RC_REQUEUE_BUFFER=20

Default
30 seconds

LSB_RC_TEMPLATE_REQUEST_DELAY

For LSF
resource connector. The amount of time that LSF waits
before repeating a request for a template, in
minutes, if the ebrokerd daemon
encountered certain provider errors in a previous request.

Syntax
LSB_RC_TEMPLATE_REQUEST_DELAY=integer

Description
This parameter takes effect if the ebrokerd daemon encounters one of the
following provider errors when
requesting a template from the host provider API:

InsufficientAddressCapacity: Not enough available addresses to satisfy the
minimum request.
InsufficientCapacity: Not enough capacity to satisfy the import instance
request.
InsufficientInstanceCapacity: Not enough instance capacity available to satisfy
the request.
InsufficientHostCapacity: Not enough capacity to satisfy the dedicated host
request.
InsufficientReservedInstanceCapacity: Not enough available reserved instances
to satisfy
the minimum request.

As of Fix Pack 14, this parameter takes effect if the VPC Gen 2 (IBM Cloud
Gen 2) API return instance status
fails with the following capacity status reason codes:

cannot_start_capacity
cannot_start_compute
cannot_start_ip_address
cannot_start_network
cannot_start_placement_group
cannot_start_storage

Run badmin mbdrestart for any change to take effect.

Example
LSB_RC_TEMPLATE_REQUEST_DELAY=20

Default
IBM Spectrum LSF 10.1 65

10

LSB_RC_UPDATE_INTERVAL

For LSF
resource connector. Configures how often LSF
calculates demand for pending jobs and publishes this
demand to the ebrokerd
daemon.

Syntax
LSB_RC_UPDATE_INTERVAL=seconds

Description
This parameter updates the demand calculation according to the specified interval instead of
calculating
demand every scheduler cycle to avoid performance impact.

Example
LSB_RC_UPDATE_INTERVAL=20

Default
30 seconds

MQTT_BROKER_HOST

For LSF
resource connector. If you do not use the MQTT message broker daemon (mosquitto)
that is provided
with LSF,
specifies the host name that mosquitto runs on. The MQTT message broker receives
provider host
information from ebrokerd and publishes that information for the
bhosts -rc and bhosts -rconly command
options to display.

Syntax
MQTT_BROKER_HOST=host_name

Description
If you use an existing MQTT message broker, use the MQTT_BROKER_HOST
parameter to specify the host
that runs the mosquitto daemon. You can also
optionally specify a port for the MQTT broker with the
MQTT_BROKER_PORT
parameter.

After configuring this parameter, run badmin mbdrestart on the management host to
restart ebrokerd.

Example
66 IBM Spectrum LSF 10.1

MQTT_BROKER_HOST=hosta

Default
Not defined.

See also
EBROKERD_HOST_CLEAN_DELAY
LSF_MQ_BROKER_HOSTS
MQTT_BROKER_PORT
bhosts -rc and bhosts -rconly

MQTT_BROKER_PORT

For LSF
resource connector. If you do not use the MQTT message broker daemon (mosquitto)
that is provided
with LSF,
specifies the TCP port for the MQTT message broker daemon (mosquitto). The MQTT
message
broker receives provider host information from ebrokerd and publishes
that information for the bhosts -rc
and bhosts -rconly command
options to display.

Syntax
MQTT_BROKER_PORT=port_number

Description
After configuring this parameter, run badmin mbdrestart on the management host to
restart ebrokerd.

If you use the mosquitto daemon from the LSF
distribution, and you define a port that is not the default 1883,
you also must define the port in
$LSF_ENVDIR/mosquitto.conf. LIM then starts the mosquitto
daemon with
the non-default port and ebrokerd connects the MQTT broker via the
port defined in the lsf.conf file.

If you are using an external mosquitto daemon, the port number you define in
MQTT_BROKER_PORT must be
the same port in the external
mosquitto.conf file.

Example
MQTT_BROKER_PORT=4477

Default
1883.

See also
EBROKERD_HOST_CLEAN_DELAY
LSF_MQ_BROKER_HOSTS

IBM Spectrum LSF 10.1 67

MQTT_BROKER_HOST
bhosts -rc and bhosts -rconly

hostProviders.json

The hostProviders.json file configures which resource providers
LSF resource connector can use.

The default location for the hostProviders.json file is
<LSF_TOP>/conf/resource_connector/hostProviders.json.

The hostProviders.json file contains a JSON list of named providers. For
example, for AWS, the type is
awsProv.

You can specify an absolute path for configuration and script files. The default assumes a path
relative
<LSF_TOP>/conf/resource_connector for
configuration files and
<LSF_TOP>/<LSF_VERSION>/resource_connector/
for scripts.

Changes to the hostProviders.json configuration file requires a
reconfiguration of LSF by
running the command
badmin mbdrestart on the LSF management
host.

You can also configure multiple instances of the the same provider, with different properties for
different
purposes.

For hosts to operate in the same cluster, all host providers must have the same LSF
administrator. The LSF
administrator must have access to the directories specified by confPath and
scriptPath.

You cannot define more than one pre- or post-provisioning script.

The pre- or post-provisioning script is local to each provider defined in the
providers list. If you want all
providers to run the same script, you need to
specify the same path inside each provider.

Each host provider must have a unique name. If two different host providers use the same name,
LSF logs a
warning and ignores one of the entries.

Parameters
providers

A list of resource providers.
name

The name of the resource provider.
type

The type of the resource provider.
confPath

Path to the resource provider configuration directory. Full and relative paths are
supported.
The default confPathis relative to
LSF_TOP/conf/resource_connector.

scriptPath
Path to the resource provider script directory. Full and relative paths are supported.
The
default scriptPath is relative to
LSF_TOP/LSF_VERSION/resource_connector.

Important: Use the default scriptPath parameter value,
which refers to the
LSF_TOP/LSF_VERSION/resource_connector/provider_name
file path. If you put the script files in the
LSF_TOP/conf/resource_connector
directory or use a custom value for scriptPath, LSF
resource

68 IBM Spectrum LSF 10.1

connector patch files do not automatically update the script and library files. This is
because the LSF
patchinstall command only updates files under the
LSF_TOP/LSF_VERSION directory.

scriptOptions
For AWS resource provider. By default, LSF
assumes that the management host has direct
access to
AWS. If your site's security policy requires the connection to AWS to be made through a
proxy server,
the scriptOptions attribute enables LSF to
connect to AWS instances through the specified proxy host
name or IP address, and proxy server port.

LSF sets
environment variable SCRIPT_OPTIONS when launching the scripts.

preProvPath and postProvPath
Optional. The resource connector runs the pre-provisioning script (specified with
absolute path, such
as /usr/share/lsf/scripts/pre_provision.sh) after the
instance is created and started successfully, but
before it is marked allocated to the LSF
cluster.
The resource connector runs the post-provisioning script (specified with absolute path,
such as
/usr/share/lsf/scripts/post_provision.sh) after the instance is
terminated successfully, but before it is
removed from the LSF
cluster.

Here is an example input JSON file (note that the name value is the name
assigned by the provider, not
the hostname):

{

"machines": [

 {

 "name": "name_provided_by_provider",

 "publicIpAddress": "55.66.xx.xx",

 "privateIpAddress": "10.0.xx.xx",

 "machineId ": "i-19034xxxxx",

 "rcAccount": "project1" ,

 "providerName": "aws",

 "providerType": "awsProv",

 "templateName": "Template-VM-2"

 },

 {

 "name": "name_provided_by_provider",

 "machineId": "idxxxxxxxxxxxxx",

 "publicIpAddress": "55.66.xx.xx",

 "privateIpAddress": "10.0.xx.xx",

 "machineId ": "i-19034xxxxx",

 "rcAccount" : "project2",

 "providerName": "aws",

 "providerType": "awsProv",

 "templateName": "Template-VM-2"

 }

]

}

Next, the output JSON file is passed. The scripts run for each request and a
request can have multiple
machines in it.

Here is an example expected return for the scripts.
Note that delayOnReturn value specifies the
number of minutes that the resource
connector will wait before returning the host if a fails. The default
wait time is 20 minutes. The
delayOnReturn parameter is not used if the scripts execute
successfully:

{

"machines": [

 {

 "name": "name_provided_by_providerl",

 "machineId ": "i-19034xxxxx",

IBM Spectrum LSF 10.1 69

 "result": "succeed",

 "message": ""

 },

 {

 "name": "name_provided_by_provider",

 "machineId ": "i-19034xxxxx",

 "result": "failed",

 "message": "could not resolve host name”,

 "delayOnReturn": 20

 }

]

}

The script exit code is an integer:

A 0 exit code indicates a successful completion with no errors and produces an
output JSON file
with content.
A -1 exit code indicates a failed script or one that runs with fatal errors and
produces an empty
output JSON file.

provTimeOut
Optional. This parameter is used to avoid the pre- or post-provisioning program from
running for
unlimited time. Specify a value in minutes.
If the program does not complete in the
specified time, it is ended and reported as failed. Setting the
provTimeOut
value to 0 disables script timeout.

The default value is ten minutes. If the
pre-provisioning or post-provisioning program does not return
after ten minutes, it ends.

provHostTimeOut
Optional. The timeout value for each host provider. The default value is ten minutes.

If a resource
connector host does not join the LSF
cluster within this timeout value, then the host is
relinquished.

billingPeriod
Ignore the LSB_RC_EXTERNAL_HOST_IDLE_TIME value defined in the
lsf.conf file and use the time the
instance was launched to return the machine
to the provider.
For example, if a host was launched at 10:00 AM, and
billingPeriod is 60 minutes, and the host became
idle at 10:55, it is returned
before the next billing cycle that starts at 11 AM.

If set to 0 or not defined, the resource
connector uses the value defined in the parameter
LSB_RC_EXTERNAL_HOST_IDLE_TIME in the lsf.conf
file.

The default billing period is 0.

Example
{

 "providers":[

 {

 "name": "aws1",

 "type": "awsProv",

 "confPath": "resource_connector/aws",

 "scriptPath": "resource_connector/aws",

 "scriptOptions": "-Dhttps.proxyHost=10.115.206.146 -
Dhttps.proxyPort=8888",

 "billingPeriod": "60",

70 IBM Spectrum LSF 10.1

 "preProvPath": "/usr/share/lsf/scripts/pre_provision.sh",

 "postProvPath": "/usr/share/lsf/scripts/post_provision.sh",

 "provTimeOut" : 10

 },

 {

 "name": "aws2",

 "type": "awsProv",

 "confPath": "resource_connector/aws",

 "scriptPath": "resource_connector/aws",

 "billingPeriod": "30",

 "preProvPath": "/usr/share/lsf/scripts/pre_provision.sh",

 "postProvPath": "/usr/share/lsf/scripts/post_provision.sh",

 "provTimeOut" : 20

 }

]

}

policy_config.json

The policy_config.json file configures custom policies for resource
providers for LSF
resource connector. The
resource policy plug-in reads this file.

The default location for the file is

<LSF_TOP>/conf/resource_connector/policy_config.json

The policy_config.json file contains a JSON list of named policies and
optimizations. Policies are rules set
during the calculation of demand. Optimizations are rules set
after the calculation of demand to try to get
better results. Each policy contains a name, a
consumer, a maximum number of instances that can be
launched for the consumer, and maximum number of
instances that can be launched in a specified period.

Parameters
UserDefinedScriptPath

Optional. Specify the full path to your own resource provider policy script. Your custom policy
script
runs after the default plug-in runs with the same input JSON file, and the demand that is
calculated by
your script is used. Demand that is calculated by the default plug-in is ignored. If
the
UserDefinedScriptPath is defined and it fails to run, the demand is 0,
which means no demand.
The following example defines the path to the script
userscript.py:

"UserDefinedScriptPath" : "/usr/share/lsf/10.1/scripts/userscript.py"

Policies
Optional. A list of policies that apply on the demand calculation. If the policies are not
defined, the
demand that is calculated by resource connector is used.

Name
Required. The name of the policy. You can define multiple policies in the list. Each policy must
have a unique name.

Consumer
Optional. The following consumer attributes are supported:

rcAccount

IBM Spectrum LSF 10.1 71

A list of accounts that can borrow hosts through LSF
resource connector. Supported
values are all or any valid account name that
is defined in the RC_ACCOUNT tag in the
lsb.queues file.
If this attribute is not defined, the default value is all.

templateName
A list of template names. Supported values are all or any valid template
name. If this
attribute is not defined, the default value is all.

provider
A list of resource provider names. Supported values are all or any valid
provider name. If
this attribute is not defined, the default value is
all.wh

perRcAccount
Used with the MaxNumber parameter in the
Policies parameter of this policy_config.json
file to
define the maximum number of instances per resource
connector account. Specify
a list of accounts that can borrow hosts through LSF
resource connector. The value cannot
be set to all.
If the
perRcAccount value is not defined, the default value will be
default.

perTemplateName
Used with the MaxNumber parameter in the
Policies parameter of this policy_config.json
file to
define the maximum number of instances per resource
connector template. Specify
a list of template names. Supported values are any valid template names.
The value
cannot be set to all.

perProvider
Used with the MaxNumber parameter in the
Policies parameter of this policy_config.json
file to
define the maximum number of instances per resource
provider. Specify a list of
resource provider names. Supported values are any valid provider names.
The value
cannot be set to all.

If a consumer is not defined, the following attributes apply to all providers, templates,
accounts
defined in the cluster:

MaxNumber
Optional. The maximum number of instances a user can create or launch for the consumer.
When specifying the MaxNumber parameter in the
Policies parameter, you can also specify
values for the
perRcAccount, perTemplateName, and
perProvider consumer attributes.
Additionally, for the
perRcAccount attribute, the value cannot be set to all;
if the perRcAccount
is not defined, the default value will be
default.

StepValue
Optional. The StepValue parameter has two values, which are separated by a
colon (:). The step
index is the maximum number of
instances that can be launched at a time for the defined
consumer. The step time
controls how fast the cluster grows. The step time specifies how long
the plug-in waits before it
launches another set of instances that are specified by the step value.
If the consumer is not
defined, the parameter applies cluster wide.
For example, if step value is defined as 5 and step
time is defined as 10 ("StepValue":
"5:10") and a request comes in for 20
instances, 5 instances are launched in the first 10
minutes, 5 more in next 10 minutes until the
demand is met or the maximum number instances
that are specified by the
MaxNumber parameter are launched.

The default for step index to launch
all the instances at the same time.

Default Value for step time is 10 minutes. The default
value that is applied only if a step value is
defined but a step time is not defined.

Optimizations

72 IBM Spectrum LSF 10.1

Optional. Rules set after the calculation of demand to try to get
better results. Optimizations to apply to
the provisioning results.

allocRules
Optional. A list of allocation rule entries that specify how many hosts from a certain template
are
worth considering over another template. For every allocation rule entry, each of the following
allocation rule attributes are mandatory:

fromTemplate
The following fromTemplate attributes are supported:

provider
Specifies a resource provider name. Supported value is any valid provider name.

templateName
Specifies a template name. The value must be a valid templateName under the
provider.

factor
Number of hosts that are being replaced.

toTemplate
The following toTemplate attributes are supported:

provider
Specifies a resource provider name. Supported value is any valid provider name.

templateName
Specifies a template name. The value must be a valid templateName under the
provider.

factor
Number of hosts to be replaced.

For any attribute that is not defined or any errors in a configuration, the allocation
rule entry is
ignored and the next entry is evaluated.

Tip: Configuring this allocRules parameter, compliments configuring
the RC_DEMAND_POLICY
parameter in the lsf.queues file. The
RC_DEMAND_POLICY parameter enables LSF to
gather
more pending jobs before provisioning. As a result, the jobs can be optimized with more
information, but result in delayed run time. For more information about the
RC_DEMAND_POLICY parameter, see RC_DEMAND_POLICY topic.
Consider the following
optimizations configuration example:

"Optimizations" : {

 "allocRules" : [

 {

 "fromTemplate": {

 "provider" : "aws",

 "templateName" : "aws_template1",

 "factor" : 4

 },

 "toTemplate" : {

 "provider" : "aws",

 "templateName": "aws_template3",

 "factor" : 1

 }

 },

 {

 "fromTemplate": {

 "provider" : "aws",

 "templateName" : "aws_template1",

IBM Spectrum LSF 10.1 73

 "factor" : 2

 },

 "toTemplate" : {

 "provider" : "aws",

 "templateName": "aws_template2",

 "factor" : 1

 }

 }

]

 }

The following command displays the policies and optimizations configured:
badmin rc view
-c policies
Here is the display
output:

Optimizations

 4 hosts (aws:aws_template1) replaced by 1 hosts
(aws:aws_template3)

 2 hosts (aws:aws_template1) replaced by 1 hosts
(aws:aws_template2)

For
this example, to ensure the rules works for most cases, a proper template priority needs to
be set.
In this example configuration, aws_template1 is a replacement template so it needs
to
have a highest template priority than other templates. The aws_template3 is the
first rule to
consider for the replacement, so the template priority needs to be lower than
aws_template1,
but higher than aws_template2. Therefore, the
template priority can have the following
settings:

Template name Priority
aws_template1 10
aws_template3 9
aws_template2 8

Example

{

 "UserDefinedScriptPath" : "/usr/share/lsf/10.1/scripts/userscript.py",

 "Policies":

 [

 {

 "Name": "Policy1",

 "Consumer":

 {

 "rcAccount": ["all"],

 "templateName": ["all"],

 "provider": ["all"]

 },

 "MaxNumber": "100",

 "StepValue": "5:10"

 },

 {

 "Name": "Policy2",

 "Consumer":

 {

 "rcAccount": ["default", "project1"],

 "templateName": ["aws_template1"],

 "provider": ["aws"]

 },

 "MaxNumber": "50",

74 IBM Spectrum LSF 10.1

 "StepValue": "5:20"

 },

 {

 "Name": "Policy3",

 "Consumer":

 {

 "perRcAccount": ["project1","project2"],

 "perTemplateName": ["ibm_template1","ibm_template2"],

 "perProvider": ["ibmcloudhpc"]

 },

 "MaxNumber": "100",

 "StepValue": "5:10"

 }

],

"Optimizations" : {

 "allocRules" : [

 {

 "fromTemplate": {

 "provider" : "aws",

 "templateName" : "aws_template1",

 "factor" : 4

 },

 "toTemplate" : {

 "provider" : "aws",

 "templateName": "aws_template3",

 "factor" : 1

 }

 },

 {

 "fromTemplate": {

 "provider" : "aws",

 "templateName" : "aws_template1",

 "factor" : 2

 },

 "toTemplate" : {

 "provider" : "aws",

 "templateName": "aws_template2",

 "factor" : 1

 }

 }

]

 }

}

To view the policies and optimizations that are configured for your resource connector
policy
(policy_config.json) file, run the
command:

badmin rc view -c policies

An example of the
output:

Policies

 Name: Policy1

 Consumer

 rcAccount: ["all"]

 templateName: ["all"]

 provider: ["all"]

 MaxNumber: 100

 StepValue: 5:10

 Name: Policy2

 Consumer

 rcAccount: ["default", "project1"]

 templateName: ["aws_template1"]

IBM Spectrum LSF 10.1 75

 provider: ["aws"]

 MaxNumber: 50

 StepValue: 5:20

 Name: Policy3

 Consumer

 perRcAccount: ["project1", "project2"]

 perTemplateName: ["ibm_template1", "ibm_template2"]

 provider: ["ibmcloudhpc"]

 MaxNumber: 50

 StepValue: 5:20

Optimizations

 4 hosts (aws:aws_template1) replaced by 1 hosts (aws:aws_template3)

 2 hosts (aws:aws_template1) replaced by 1 hosts (aws:aws_template2)

In addition,
consider the RC_DEMAND_POLICY parameter in the lsf.queues
file contained the following
example
configuration:

RC_DEMAND_POLICY = THRESHOLD[[2,10] [4,5]]

This
configuration sets optimization to first apply four hosts with aws_template1 VMs
with one host with
aws_template3 VM. Then, considers applying two hosts with
aws_template1 VMs with one hosts
aws_template2 VM. The
RC_DEMAND_POLICY defined the buffer time for four jobs is shorter than two
jobs,
so that when the demand trigger by four or more jobs, then the first optimization rule is
applied; otherwise,
the second optimization rule is applied.

Related reference
RC_DEMAND_POLICY

awsprov_config.json

The awsprov_config.json file contains administrative settings
for the resource connector.

For example, you can configure the awsprov_config.json file to
start remote AWS services, such as creating
virtual instances.

The default location for the file is

<LSF_TOP>/conf/resource_connector/aws/conf/awsprov_config.json

Parameters
The file is a JSON format tuple that contains the following parameter fields:

LogLevel
The log level for the host provider. Use the following log levels:

TRACE
INFO (the default level)
DEBUG
WARN
ERROR
FATAL

76 IBM Spectrum LSF 10.1

AWS_CREDENTIAL_FILE
Defines the path to the AWS authentication file for using AWS IAM credentials. The file contains
the
user access key and user access secret key. The resource connector uses the credentials in this
file to
authenticate LSF users
with the AWS identity service. These users must have administrative privileges
on AWS to perform
required AWS functions (start and stop instances, and so on).
If the LSF
management host and
the resource connector are deployed in an AWS instance, do not
include the
AWS_CREDENTIAL_FILEparameter. The AWS API credentials are retrieved from the
AWS
environment automatically.

AWS_CREDENTIAL_SCRIPT
Defines the path to the AWS credential script for
using federated accounts with AWS
You cannot define both the parameters
AWS_CREDENTIAL_FILE and AWS_CREDENTIAL_SCRIPT.

Define AWS_CREDENTIAL_SCRIPT only when federated accounts are used with
AWS. When
AWS_CREDENTIAL_SCRIPT is defined, the
AWS_CREDENTIAL_FILE is ignored.

For example:

AWS_CREDENTIAL_SCRIPT=/shared/dir/generateCredentials.py

When neither
AWS_CREDENTIAL_FILE nor AWS_CREDENTIAL_SCRIPT parameters
are defined,
resource connector attempts to retrieve API credentials from an instance profile
defined in , under the
assumption that it is running in an AWS EC2 instance.

AWS_KEY_FILE
Optional. The path to the AWS key pair file. The key pair name is used to
log in to instances with ssh. If
the AWS_KEY_FILE parameter
is not specified, no key file is defined.

AWS_REGION
AWS region name that is attached to instances and user
account.
Specifies the region in which the user and the key file are created and where the
instances are
provisioned. The key file is specific to the region.

AWS_SPOT_TERMINATE_ON_RECLAIM
Optional. Process requests for terminating Amazon EC2 Spot instances that
are planned to be
reclaimed by AWS.
If set to true, the AWS plug-in sends
an instance termination request to AWS when notified by LSF
that
the reclaimed Spot instance has been closed and the affected jobs are re-queued.

Valid values
are true and false. The default value is
false.

awsprov_templates.json

The awsprov_templates.json file defines the mapping between
LSF resource demand requests and AWS
instances.

The template represents a set of hosts that share some attributes, such as the number of CPUs,
the amount of
available memory, the installed software stack, operating system.

LSF
requests resources from the resource connector by specifying the number of instances of a particular
template that it requires to satisfy its demand. The resource connector uses the definitions in this
file to map
this demand into a set of allocation requests in AWS.

The default location for the file is
<LSF_TOP>/conf/resource_connector/aws/conf/awsprov_templates.json.

IBM Spectrum LSF 10.1 77

Description
LSF
requests resources from the resource connector by specifying the number of instances of a particular
template that it requires to satisfy its demand. The resource connector uses the definitions in this
file to map
this demand into a set of allocation requests in AWS.

Important: When you define templates, you must make sure that the attribute definitions
that are presented
to LSF
exactly match the attributes that are provided by AWS. If, for example, the attribute definition
specifies
hosts with ncpus=4, but the actual hosts that are returned by AWS
report ncpus=2, the demand calculation
in LSF is not
accurate.

Parameters
The file contains a JSON-defined list called
templates. Each template in the list is an object
that contains the
following parameters:

templateId
The unique template name. The templateId cannot
contain underscores (_).

maxNumber
That maximum number of instances to provide. Set the
MaxNumber to an appropriate value according
to the instance quota of the
LSF project.
As
of Fix Pack 14, to support AWS EC2 Fleet templates,
the MaxNumber is a multiplier of the ncpu
value, not a
direct number of instances. For EC2 Fleet, maxNumber
multiplied by ncpus is the
maximum slots that EC2 Fleet template can get and
can be provisioned in this template. For example, if
the maxNumber is
5 and ncpus is 2, then the maximum slots for the
fleet request will be 10.

attributes
A list of attributes that represent the hosts in the template from the
LSF point of view. LSF
attempts to
place its pending workload on hosts that match these attributes to calculate how many
instances of
each template to request.
You can define any arbitrary string resource in the
lsf.shared file and use that as an attribute in the
awsprov_templates.json file. You can then use that attribute in a
bsub select string (for example, bsub
-R "select[zone ==
us_east_2a"]). If zone == us_east_2a is selected at job
submission,
hosts are created from the template that defines the zone
attribute to us_east_2a.

To submit a job with a specific template name
or a template string attribute, you must define that string
resource in the
lsf.shared and in the user_data.sh script for that
resource to be added to the lsf.conf file
on the server host that is created
from the template.

The user_data.sh script is located in the
<LSF_TOP>/<LSF_VERSION>/resource_connector/aws/scripts
directory.

Each attribute string in the list has the following format:

"attribute_name": ["attribute_type", "attribute_value"]

attribute_name
An LSF
resource name, for example, type or ncores.
The
attribute name must either be a built-in resource (such r15s or
type), or defined in the
Resource
section in the lsf.shared file on the LSF
management
host.

attribute_type
Can be either Boolean, String, or
Numeric and must correspond to the corresponding
resource definition in the
lsf.shared file.

78 IBM Spectrum LSF 10.1

attribute_value
The value of the resource that is provided by hosts. For
Boolean resources, use 1 to define the
presence of the
resource and 0 to define its absence. For Numeric
resources, specify a range
that uses [min:max].

Depending on your cloud provider, various attributes are supported in the template.

The following attributes have default values if they are not defined:

type
The default value is given by the setting of the LSB_RC_DEFAULT_HOST_TYPE
in the lsf.conf file.
The default value of
LSB_RC_DEFAULT_HOST_TYPE is X86_64.

ncpus
Default value is 1.

Take note of these attributes:

gpuextend
Optional. A string that represents the GPU topology on the template
host.
This attribute value is in the following
format:

"key1=value1;key2=value2;..."

The following keys are supported
in this attribute:

ngpus
Total number of GPUs. This must be defined either as a key in gpuextend or
defined as a
separate attribute. If it is defined in both places, the key value in
gpuextend takes
precedence.

nnumas
Total number of NUMA nodes. The default value is 1.

gbrand
The GPU brand. This value is case sensitive, and supports NVIDIA GPUs. For a list of GPU
brands
and models, run the nvidia-sml -L command.
For example, for Tesla
K80, the GPU brand is Tesla.

gmodel
The GPU model. This value is case sensitive, and supports NVIDIA GPUs. For a list of GPU
brands
and models, run the nvidia-sml -L command.
For example, for Tesla
K80, the GPU model is K80.

gmem
The total GPU memory, in MB.

nvlink
Specifies whether the GPU supports NVLink. Valid values (case
insensitive) are y, n, yes,
no.

imageId
The ID of the Amazon Machine Image (AMI) that has LSF
preinstalled on it. This AMI is used to launch
virtual instances.

subnetId
The subnet name (virtual private cloud) used to launch virtual instances.
Use the subnet through which
the instance can communicate with the LSF
cluster.
For AWS spot instances only, you can specify
more than one subnet, separated by commas. For
example:

IBM Spectrum LSF 10.1 79

"subnetId": "subnet-bc219af5, subnet-ac819ch2"

More than one subnet
are not supported for on-demand AWS instances.
vmType

The machine type of the AWS instance you want to create. The
vmType that is configured in each
template must correctly represent the
template attributes presented to LSF from
AWS.
For AWS Spot instances only, you can specify multiple
machine types, separated by commas. For
example:

"vmType": "c4.large, m4.large"

Multiple machine types are not
supported for on-demand AWS instances.
launchTemplateId

Optional. The ID of the launch template. Specify a string between 1 and
255 characters in length.
launchTemplateVersion

Optional. The version number of the launch template to select when
launching instances. Specify the
version number of the launch template or one of the following keywords:

$Latest
Amazon EC2 Auto Scaling selects the latest version of the launch template when launching
instances.

$Default
Amazon EC2 Auto Scaling selects the default version of the launch template when launching
instances. This is the default value of the launchTemplateVersion
attribute.

fleetRole
For Spot Instance templates. Specifies the role that grants the permission
to bid on, launch, and
terminate spot fleet instances on behalf of the user.

spotPrice
For Spot Instance templates. Specifies the bid price for the instance. The
Spot instance is launched
when the Spot price of the instance is below the bid specified in the
spotPrice attribute.
The spotPrice attribute is used
in determining if the request is a spot request or an on-demand request.
If you set the
spotPrice attribute with a positive number, the AWS plug-in considers this
request as a
spot request. If the attributes fleetRole or
allocationStrategy are defined, but the spotPrice is not
defined, the request is considered an on-demand request.

If an on-demand request is initiated
using a template with multiple vmType or subnetId values,
the
request fails.

allocationStrategy
Optional. For spot instance templates. The allocation strategy for your
spot fleet determines how it
fulfills your Spot fleet request from the possible spot instance pools
that are represented by its launch
specifications. You can specify the following allocation
strategies in your spot fleet request:

CapacityOptimized
The Spot instances come from the pools with optimal capacity for the number of instances that
are launching. This is the default strategy.

LowestPrice
The Spot instances come from the pool with the lowest price.

Diversified
The Spot instances are distributed across all pools.

keyName
Optional. The name of the key-pair file that is used by
ssh to log in the launched instance. If no value is
specified then the instance
is launched with no key.
If the proper permission is not available, then the value is ignored and
the AWS log will be informed.

80 IBM Spectrum LSF 10.1

interfaceType
Optional. The type of network interface to attach to the
instance.
Specify efa to attach an Elastic Fabric Adapter (EFA) interface
to an instance. You can only specify an
EFA network interface for supported AMI or instance types.
For more details on supported AMI or
instance types for EFA interfaces, refer to the Amazon Web Services website
(https://aws.amazon.com/).

Note: If you defined
efa in the AWS launch template, you cannot remove or unset the
efa interface
value by using this AWS launch template
The default
value is interface, which specifies that a non-EFA network interface is
attached to the
template.

securityGroupIds
Optional. A list of strings for AWS security groups that are applied to
instances. If you don't specify
securityGroupIds, AWS uses the
default group.

instanceProfile
Specifies an AWS IAM instance profile to assign to the requested instance. Jobs running in that
instance can use the instance profile credentials to access other AWS resources.
The instance
profile can be specified by one of the following methods:

Short name; for example, MyProfile.
Valid characters for the instance
profile name are uppercase and lowercase alphanumeric
characters and any of the following ASCII
characters: equal sign (=), comma (,), period
(.), at
sign (@), minus sign
(-).

AWS Amazon Resource Name (ARN); for example, arn:aws:iam::<account
number>:instance-profile/LSFRole.
The colon character (:)
cannot appear in the short name or path. The string arn: at the
beginning of
the profile reference determines whether the reference is an ARN or a short name.
Note: In this
context “IAM Role” is essentially equivalent to “Instance Profile”.

instanceTags
Optional. A string that represents a list of keys and their values. These
key-value pairs are used to tag
the instance, by using Amazon instance tagging feature. If an
instance is launched that uses
TemplateA, it is tagged with value of the
instanceTags attribute defined in TemplateA.
If
instanceTags is not specified, LSF still
tags the newly launched instances with the following key-value
pair:

InstanceID = <ID of the instance created>

The instanceTags attribute also tags
EBS volumes with the same tag as the instance. EBS volumes are
persistent block storage volumes used
with an EC2 instance. EBS volumes are expensive, so you can
use the instance ID that tags the
volumes for the accounting purposes.
Note: The tags cannot start with the string
aws:. This prefix is reserved for internal AWS tags. AWS
gives an error if an
instance or EBS volume is tagged with a keyword starting with aws:. Resource
connector removes and ignores user-defined tags that start with
aws:.

ebsOptimized
An Amazon EBS-optimized instance provides additional, dedicated capacity for Amazon EBS input and
output. This optimization improves performance for your EBS volumes by minimizing contention
between
Amazon EBS input and output and other traffic from your instance.

See the AWS documentation for more information about Amazon
EBS-optimized I\instances.

Use the ebsOptimized attribute in your AWS template to create instances with
Amazon EBS
optimization enabled.

IBM Spectrum LSF 10.1 81

https://aws.amazon.com/
https://aws.amazon.com/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html

Valid values are Boolean true and false. The
default is false. You must specify the proper vmType
that
supports EBS optimization.

The EBS optimization service is expensive and only available on high-end instance types. If the
instance type does not support the attribute, an error messages is issued. Resource connector
suspends the provider for 10 minutes. You can change the vmType in the template and
restart
ebrokerd.

priority
By default, LSF sorts
candidate template hosts by template name. However, an administrator might
want to sort them by
priority, so LSF favors
one template to the other. The priority attribute has been
added. LSF will
use higher priority templates first (for example, less expensive templates should be
assigned higher
priorities).
The default value of priority is 0, which means the lowest
priority. If template hosts have the same
priority, LSF sorts
them by template name.

placementGroupName
Optional. The name of the placement group that the instances are launched
to. The group must exist on
your AWS account. Successfully launching the instances into a placement
group has the following
requirements:

A placement group can't span multiple availability zones.
The name that you specify for a placement group must be unique within your AWS account.
The instance type that is defined in the template must be supported by the placement group
created.
Terminate all the instances in the placement group before the placement group is deleted.

To use the tenancy attribute, if you do not have a placement group in your AWS account, you must
at
least insert a placement group with a blank name inside quotation marks. If you have a placement
group, specify the placement group name inside the quotation marks. For example,
"placementGroupName": "", or "placementGroupName":
"hostgroupA",.

tenancy
Requires placementGroupName in the template. The values for tenancy can be
default, dedicated,
and host. However, LSF
currently only supports default and dedicated.
See the AWS documentation for more information about Amazon Dedicated Instances (
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html)

userData
Optional. A string that represents a list of keys and their values. The
string has the following format:

<key1>=<value1>;<key2>=<value2>; ...

key
The key name of the userData, such as "packages,
volume, zone, or
templateName.

value
A comma-separated list of userData values, for example,
package1, package2.

Each key is converted to uppercase by the resource connector and exported as an
environment variable
with the specified value inside the instance (and is accessible by the user
script). After userData is
defined, it is divided into keys and values and
exported to the instance's environment variables.

For example, if the
userData parameter is defined as packages=M,N;logfile=X,
the following
environment variables are exported inside the instance at start
time:

PACKAGES=M,N

LOGFILE=X

These variables can be read by the user_data.sh
script in the instance as the keys PACKAGES and
ZONE.

82 IBM Spectrum LSF 10.1

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html

ec2FleetConfig
Required for AWS EC2 Fleet instances (offered as
of Fix Pack 14). An absolute or relative path to the
EC2 Fleet
configuration file (for example, to a ec2-fleet-config.json file). For relative
path, the path
must be relative to LSF_TOP/conf/resource_connector/aws/conf
directory.

onDemandTargetCapacityRatio
Optional for AWS EC2 Fleet instances (offered as of Fix Pack 14). Defines how on-demand and spot
instances are
distributed among the TotalTargetCapacity in each EC2 Fleet
request.
Specify a value that is a positive float number
between 0.0 and 1.0. The value represents the ratio
between
OnDemandTargetCapacity to TotalTargetCapacity. To request
pure on-demand or pure spot
instances, you can set this ratio to 1 or
0. If not defined, it follows the DefaultTargetCapacityType in
the
ec2FleetConfig file.

Example overall awsprov_templates.json file
{

 "Templates":

 [

 {

 "templateId": "TemplateA",

 "attributes":

 {

 "type": ["String", "X86_64"],

 "ncpus": ["Numeric", "4"],

 "mem": ["Numeric", "480"],

 "maxmem": ["Numeric", "512"],

 "awshost": ["Boolean", "1"],

 "zone": ["String", "us_east_2a"]

 "pricing": ["String", "ondemand"],

 "computeUnit": ["String", "encl_3"]

 },

 "imageId": "ami-27b1",

 "subnetId": "subnet-b5738",

 "vmType": "t2.micro",

 "maxNumber": "1",

 "keyName": "LSF_Key",

 "securityGroupIds": ["sg-72314"],

 "placementGroupName": "lsfgrp1",

 "instanceTags": "group=LSF;project=Amazon",

 "userData": "pricing=ondemand;zone=us_west_2b"

 }

]

}

The example defines a template that is named TemplateA. LSF
attempts to place any pending workload on
hypothetical hosts of type X86_64 with
ncpus=4 and mem>480 MB. If LSF
successfully places some of its
pending workload on N number of hosts, it requests N
instances of TemplateA to the resource connector.

If demand is generated for this template, the connector logic attempts to allocate N hosts
with the configured
image and vmType (instance type) in AWS. If it succeeds
to obtain any instances, even if there are fewer than
requested, the resource connector informs
LSF that it can use the instances.

In this example, the template also defines the awshost resource. You can
make sure that your jobs generate
demand for AWS resources by using
'select[awshost]' in your LSF job
submission resource requirement
strings.

The zone attribute is an example string resource that is defined in the
lsf.shared file. If the zone attribute is
specified, an
instance is created in the specified zone.

IBM Spectrum LSF 10.1 83

The user script scripts/user_data.sh is included in the instance and run
during instance startup.

The following script is an example of scripts/user_data.sh in a CentOS 6 image. It reads environment variables
and updates the
lsf.conf file on the instance to define the new zone
attribute for that machine.

#!/bin/bash

LSF_TOP=/usr/share/lsf

LSF_CONF_FILE=$LSF_TOP/conf/lsf.conf

run user script to enable selecting template based on zone

%EXPORT_USER_DATA%

logfile=/tmp/userscript.log

env > $logfile

if [-n "${zone}"]; then

sed -i "s/\(LSF_LOCAL_RESOURCES=.*\)\"/\1 [resource ${zone}]

 [resourcemap ${zone}*zone]\"/" $LSF_CONF_FILE

echo "update LSF_LOCAL_RESOURCES lsf.conf successfully,

 add [resource ${zone}] [resourcemap ${zone}*zone]" >> $logfile

else

echo "zone doesn't exist in environnment variable" >> $logfile

fi

Example awsprov_templates.json file for on-demand
instances

The following template creates on-demand instances:

{

 "templates": [

 {

 "templateId": "templateA",

 "attributes": {

 "type": ["String", "X86_64"],

 "ncores": ["Numeric", "1"],

 "ncpus": ["Numeric", "1"],

 "nram": ["Numeric", "512"],

 "awshost1": ["Boolean", "1"],

 "zone": ["String", "us_west_2a"],

 "pricing": ["String", "ondemand"]

 },

 "imageId": "ami-8914cbe9",

 "subnetId": "subnet-cc0248ba",

 "vmType": "t2.nano",

 "keyName": "martin",

 "securityGroupIds": ["sg-b35182ca"],

 "instanceTags": "Name=aws1-vm-1-from-cluster-aws1",

 "userData": "zone=us_west_2a;pricing=ondemand"

 }

]

}

Example awsprov_templates.json file for spot instances
The following template creates spot instances:

{

 "templates": [

 {

84 IBM Spectrum LSF 10.1

 "templateId": "templateB",

 "attributes": {

 "type": ["String", "X86_64"],

 "ncores": ["Numeric", "1"],

 "ncpus": ["Numeric", "1"],

 "nram": ["Numeric", "512"],

 "awshost1": ["Boolean", "1"],

 "zone": ["String", "us_west_2b"],

 "pricing": ["String", "spot"]

 },

 "imageId": "ami-8914cbe9",

 "subnetId": "subnet-7c0dfb27,subnet-12286475,subnet-cc0248ba",

 "keyName": "martin",

 "vmType": "c4.xlarge, m4.large",

 "fleetRole": "arn:aws:iam::700071821657:role/EC2-Spot-Fleet-role",

 "securityGroupIds": ["sg-b35182ca"],

 "spotPrice": "0.1",

 "allocationStrategy":"diversified",

 "instanceTags": "Name=aws1-vm-3-spot-aws1",

 "userData": "zone=us_west_2b;pricing=spot"

 }

]

}

Example awsprov_templates.json file for EBS-optimized
instances

The following template creates EBS-optimized instances.
Note that the vmType is m4.large, which supports
EBS
optimization. EBS optimization is enabled by default in the m4.large instance
type.

{

 "templates": [

 {

 "templateId": "Template-VM-1",

 "maxNumber": 4,

 "attributes": {

 "type": ["String", "X86_64"],

 "ncores": ["Numeric", "1"],

 "ncpus": ["Numeric", "1"],

 "mem": ["Numeric", "1024"],

 "awshost1": ["Boolean", "1"]

 },

 "imageId": "ami-40a8cb20",

 "vmType": "m4.large",

 "subnetId": "subnet-cc0248ba",

 "keyName": "martin",

 "securityGroupIds": ["sg-b35182ca"],

 "instanceTags" : "group=project1",

 "ebsOptimized" : true,

 "userData": "zone=us_west_2a"

 }

]

}

Example awsprov_templates.json file for
Amazon EC2 Fleet
instances

IBM Spectrum LSF 10.1 85

As of Fix Pack 14, the LSF
resource connector for Amazon Web Services (AWS) uses an Amazon EC2 Fleet API
to create multiple
(that is, a fleet of) instances. EC2 Fleet is an AWS feature that extends
the existing spot
fleet, which gives you a unique ability to create fleets of EC2 instances composed of a combination of EC2 on-
demand, reserved,
and spot instances, by using a single API.
The following
template creates Amazon EC2 Fleet
instances

{

 "templates": [

 {

 "templateId": "fleet-lsf-template-1",

 "maxNumber": 5,

 "attributes": {

 "type": ["String", "X86_64"],

 "ncores": ["Numeric", "1"],

 "ncpus": ["Numeric", "2"],

 "mem": ["Numeric", "512"],

 "awshost": ["Boolean", "1"]

 },

 "priority": "121",

 "ec2FleetConfig": "ec2-fleet-config.json",

 "onDemandTargetCapacityRatio":"0.5",

 "instanceTags": "Name=fleet-lsf-template-1"

 }

]

}

86 IBM Spectrum LSF 10.1

	LSF resource connector overview
	Configuring resource providers
	Setting the initial configuration
	Configuring multiple resource providers
	Configuring different templates to create instances
	Assigning exclusive resources to a template
	Configuring Amazon Web Services for LSF resource connector
	Preparing to configure AWS
	Building a cloud image
	Preparing Amazon Web Services components
	Launching the Amazon Web Services EC2 instance
	Installing an LSF server host on the AWS EC2 instance

	Enabling LSF resource connector for Amazon Web Services (AWS)
	The aws_enable.sh script
	Choose account authentication method
	Executing AWS enablement script for LSF
	Completing the enabling of Resource Connector for AWS
	Configuring user scripts to register AWS hosts

	Configuring bursting behavior
	Configuring a threshold
	Providing specific policy configurations
	Controlling reclaim behavior

	Assigning exclusive resources to a template
	Configuring AWS access with federated accounts
	Configure AWS launch templates
	Attach EFA network interfaces
	Use AWS spot instances
	Configuring AWS Spot instances

	Using Amazon EC2 Fleet
	Submitting jobs to AWS
	How LSF returns hosts to AWS

	Updating LSF configuration for resource connector
	Pre-provisioning and post-provisioning
	Define resource provisioning policies
	Use the LSF patch installer to update resource connector

	View information on the LSF resource connector
	Checking the LSF resource connector status
	Use badmin to view LSF resource connector information
	Viewing LSF resource connector job events
	Logging and troubleshooting

	Configuration reference
	lsb.applications
	RC_ACCOUNT
	RC_RECLAIM_ACTION

	lsb.queues
	RC_ACCOUNT
	RC_DEMAND_POLICY
	RC_HOSTS

	lsf.conf
	EBROKERD_HOST_CLEAN_DELAY
	LSB_RC_DEFAULT_HOST_TYPE
	LSB_RC_EXTERNAL_HOST_FLAG
	LSB_RC_EXTERNAL_HOST_IDLE_TIME
	LSB_RC_EXTERNAL_HOST_MAX_TTL
	LSB_RC_MQTT_ERROR_LIMIT
	LSF_MQ_BROKER_HOSTS
	LSB_RC_QUERY_INTERVAL
	LSB_RC_REQUEUE_BUFFER
	LSB_RC_TEMPLATE_REQUEST_DELAY
	LSB_RC_UPDATE_INTERVAL
	MQTT_BROKER_HOST
	MQTT_BROKER_PORT

	hostProviders.json
	policy_config.json
	awsprov_config.json
	awsprov_templates.json

